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ABSTRACT

->By employing a recently obtained error bound for differentiable convex

inequalities, it is shown that, under appropriate constraint qualifications,

a minimum solution of an exact penalty function for a single value of the

penalty parameter which exceeds a certain threshold, is also a solution of

the convex program associated with the penalty function. No a priori as-

sumption is made regarding the solvability of the convex program. If such

a solvability assumption is made then we show that a threshold value of the

penalty parameter can be used which is smaller than both the above-mentioned

value and that of Zangwill. These various threshold values of the penalty4)

parameter also apply to the well known big-M method of linear programming. -
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SIGNIFICANCE AND EXPLANATION

By lumping constraints in a certain way into the objective function

to be minimized, constrained optimization problems can be solved as

*i simple unconstrained optimization problems. The principal contribution

of this work is to show the validity of this approach without a pri or'i

assuming that the constrained optimization problem is solvable and

without requiring the penalty parameter to take on more than one value.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.
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SUFFICIENCY OF EXACT PENALTY MINIMIZATION

0. L. angasarian

1. Introduction

Consider the convex program

(1.1) minimize f(x) subject to g(x) , 0

where f: Rn _, R, : Rn  m are convex functions on the n-dimensional

real Euclidean space Rn. It is well known [11,6] that if (1.1) has a

solution 1 and if the constraints of (1.1) satisfy a constraint qual-

ification then the exact penalty function

m
(1.2) P(x,a):- f(x) + 0eg(x)+ - f(x) +a I max{O, gtx)1

where e is a vector of ones in R, has a global minimn at i for each

value of a > i for some threshold value i. In [11, p. 356; 2, Theorem 40]

it was shown that

f(x )  f f(x + 1

(1 .3 ) C-1 :

mn - g(xl)

where x1  is any point satisfying the Slater constraint qualification

(1.4) g(x1) < 0

In [6, Theorem 4.9] it was shown that

(1.5) I max u

Sponsored by the United States Army under Contr, ;t No. DAAG29-80-C-0041.
This material is based on work supported by the National Science Founda-
tion under Grant MCS-8200632.
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-2- j
where i is an optimal Lagrange multiplier for (1.1) provided that (1.4)

holds. A minor modification of the proof of [6, Theorem 4.9] which invokes

[10, Theorem 28.2] instead of [7, Theorem 5.4.8] extends (1.5) to the case

where a relaxed Slater constraint qualification holds, that is

(1.6) g (x2) < 0, g, (x2) < 0 for some x2
1 92

where is nonlinear and is linear and I1 u 12 { 9,...,m}. In
1 2

contrast Zangwill's threshold (1.3) does not hold under the relaxed Slater

constraint qualification (1.6) but must be replaced by a different value

given by (2.2) below.

What is not well known and constitutes a principal concern of this work

are converses to the results stated above. In (11, p. 356; 2, Theorem 40]

Zangwill shows that if we assume a priori that the minimization problem (1.1)

has a solution, the Slater constraint qualification (1.4) is satisfied and

x minimizes the exact penalty function (1.2) for some a > then x

solves the minimization problem (1.1). Note the a priori assumptions that

(1.1) is solvable and that it satisfies the Slater constraint qualification.

By contrast in [6, Theorem 4.1] without any a priori assumptions regarding

the solvability of the minimization problem (1.1) or the satisfaction of a

constraint qualification it was shown that if (1.1) is feasible, that is

g(x) <0 for some x, and if i minimizes P(x,a) for all values of

ct > for some &, then i solves the minimization problem (1.1). Note

the distinction between these two sufficient conditions for R to solve

the minimization problem (1.1). In Zangwill's result there are a priori

assumptions that (1.1) is solvable and that its constraints satisfy the

Slater constraint qualification, while the penalty function P(x,t) need

.. :
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be minimized for a single value of a > al. In [6, Theorem 4.1] no a pii

assumption regarding the existence of a solution to (1.1) is made, however

feasibility of (1.1) is assumed and i must be a solution to min P(x,a)
xIRn

for all > i for some &, in order for 1 to be a solution to (1.1).

A primary purpose of this work is to combine the good features of these J

two results, namely the minimization of the penalty function for a single

value of the penalty parameter and without an a priori assumption that the ,1

minimization problem has a solution. This is done in Theorem 3.1 where it

is established that if for a single value of the penalty parameter a > &3

for a well defined &3 i minimizes the exact penalty function P(x,a)

over Rn, then i is also a global solution of the minimization problem

(1.1). Although no a priori assumption regarding the solvability of (1.1)

is made in Theorem 3.1, both the relaxed Slater constraint qualification

(1.6) and a mild asymptotic constraint qualification (3.2) are needed in

order to invoke the recent [8, Theorem 2.1] absolute error bound for convex

differentiable inequalities which plays a key role in the derivation of

Theorem 3.1. Another result of this work is a two-way improvement of

Zangwill's sufficiency result in Theorem 2.1, where the threshold value of

7 is decreased from &l of (1.3) to &2 of (1.5) and the Slater con-

straint qualification (1.4) is replaced by the relaxed constraint qualifi-

cation (1.6). We also give in Corollary 2.3 a finite counterpart of the

threshold value &I of (1.3) when the Slater constraint qualification (1.4)

is replaced by the relaxed qualification (1.6) which renders infinite.
t1

Table 1 below gives a general outline of the relations between the various

sufficiency results derived here and elsewhere for exact penalty functions a

and indicates the key assumptions needed for the different results to hold.

. . .. .

- . .. " ° ,.°- . '' o-. " °° °°.- °% .. .. . . .. . • - . . .. . . . • •- . ' . - - ° .";"2" , , ,' , - ,: ".": ". . ::% " " . " ." . . ,'.'" i .° .'. . "..' -° . . o ... ".Pt -
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A priori solvability of min. prob. (1.1):

Assumed Not assumed

Al 
V+

S Al Han-Mangasarian

[6, Theorem 4.1 ]

CL

C~

IZangwill [11, p. 356]
• I , Theore l Theorem 3.1,, I

C C

Table 1: An outline of the key assumptions needed in the
various sufficiency theorems establishing that
each minimizer of an exact penalty function (1.2)
solves the minimization problem (1.1).

In Section 3 of the paper we show that the big-M method of linear

programing [1,9] is in fact equivalent to an exact penalty problem and

hence the threshold values of the penalty parameter developed in this work

apply to it as well as to a big-M formulation for convex programs. Such

threshold values do not seem to have been given for the big-M method for

linear programs.

We briefly describe now our notation. For a vector x in the

n-dimensional real Euclidean space Rn, x+ will denote the vector in Rn

4I~q

°" : :
b
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with components (x+) - max {xt 0), l,...,n. For a vector norm IIxil

on Rn lixil' will denote the dual norm on Rn, that is lixll' max xy,
n Ilyll

where xy denotes the scalar product -1 xt y1
" The Cauchy-Schwarz

inequality Ixyl I. Ixill Ilyll for x and y in Rn follows immediately

from this definition of the dual norm. For 1 < p, q < and I + 1. 1,
n 1.p q":n I

the p-norm IIXIIp:Z ( I Ixi IP) and the q-norm are dual norms in Rn. For

an mxn matrix A, A1 denates the ith row, while IAil denotes the matrix
i p

norm subordinate to the vector norm I1ll p, that is IIAIIp lmax lAxI
p~P,

The consistency condition IIAxIlp . IIAIIp Ixllp follows immediately from

this definition of a matrix norm. We shall also use 1111 to denote an

arbitrary vector norm and its subordinate matrix norm. A vector of ones in

*any real Euclidean space will be denoted by e. For a differentiable func-

tion g: Rn . Rm , Vg(x) will denote the m xn Jacobian matrix evaluated

at the point x in Rn. For a subset I c {l,....,m}, g1(x) or g,,,(x)

will denote those components gt(x) such that i E I. Similarly Vg1 (x)

will denote the rows (Vg(x))t of Vg(x) such that i I. The set of

vectors in Rn with nonnegative components will be denoted by R+.n

R+.?

-. * ~. - . - .. . .. . . . . . . . . . . . . . . . . . . . . . . .
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2. Exact Penalty Characterization Assuming Solvability of the Minimization

Problem

In this section we completely characterize solutions of the minimiza-

tion problem (1.1) in terms of minimizers of the exact penalty function

(1.2) for a single value of the penalty parameter exceeding the threshold

&2 . This is done under the assumptions that the minimization problem is

solvable and that it satisfies the relaxed Slater constraint qualification

(1.6). The necessity part of the following result Theorem 2.1 is an improve-

ment over both [6, Theorem 4.9] and Zangwill's Theorem [11, p. 356) both of

which require the Slater constraint qualification (1.4) instead of the

relaxed qualification (1.6) needed here. This is a simple but important

difference because it allows us to handle linearly constrained problems with

no constraint qualification, and because Zangwill's threshold value a,

becomes infinite under the relaxed constraint qualification (1.6). The new

sufficiency part of Theorem 2.1 again improves over Zangwill's sufficiency

result by using the relaxed Slater constraint qualification (1.6) instead of

the Slater constraint qualification (1.4), and the smaller threshold value

&2 instead of &1. It is interesting to note that the sufficiency part of

Theorem 2.1 for the threshold value &2 does not appear to have been given

before even under the Slater constraint qualification. Now we state our

result.

2.1 Theorem (Exact penalty characterization of solvable convex programs)

Let f:Rn -R and g:Rn - Rm be convex functions on Rn. Let either
n m

(,)ERn X R+ be a Karush-Kuhn-Tucker saddlepoint of the minimization

problem (1.1), or let the relaxed Slater constraint qualification (1.6)

• .o. . . . . . . . .. . .-.
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hold and be a solution of (1.1). A necessary (sufficient) condition

for cRn to solve the minimization problem (1.1) is that i minimizes

P(x,a) over x in Rn for each (some) a > I1011. (> IIGII.) where

A
u C R is any (some) dual optimal multiplier for (1.1).

Proof (Necessity) By assumption or by [10, Theorem 28.2] there exists a

SuR+ such that (i,5) is a Karush-Kuhn-Tucker saddlepoint of (1.1).

For any other dual optimal multiplier 0, (,0) is also a Karush-Kuhn-
n

Tucker saddlepoint of (1.1) [4, p. 5]. Hence for x Rn and ot >uGh,

P(i,Q) - f(I) - f() + Gg() f(x) + Gg(x)

_ f(x) + Gg(x)+ _ f(x) + IIGII. Ilg(x)+Ill < P(x,Q)

(Sufficiency) Let Gu R+ be some dual optimal multiplier for (1.1).

Since (, ) is a Karush-Kuhn-Tucker saddlepoint for (1.1) it follows by

the necessity part of this theorem that for 0:" II11.

P(I ,0) - min P(x,)
xeRn

Let be a solution of min P(x,m) for some a > = .
xeRn

Hence

f(i) + aeg(i)+ > f(i) + aeg(i)+

and

f(R) + Oeg(i)+,> f(i) + Oeg(i)+

Addition of the last two inequalities gives upon noting that g(i)+ - 0

(a- 8)eg(i)+ < 0

.! .. " . " " . ..'" " " . " '" -" : -- " " " ." . ." ...'.- --: -. . . . . . . .- . . .
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5:.,

Since a > 8 this implies that g(R) 1. 0 and hence i is feasible for

(1.1). For any other feasible point x

f(x) - P(x,) _> P(Lci) - f(i). 0

.. The following corollary shows that under the Slater constraint qual-

ification the threshold value a2:- 1101. of Theorem 2.1 is smaller than

that of Zangwill's &I as defined in (1.3).

2.2 Corollary Let f:Rn * R and g:Rn ** Rm be convex functions on Rn,

let xI  be any point in Rn satisfying the Slater constraint qualification

g(x1 < 0, and let i be a solution of the minimization problem (1.1).

Then for any dual optimal multiplier G e Rm for (1.1)
+

f(x 1 ) - f( ; ) < f(x) f(R) + 1 

min - g(x 1 ) min - gi(x 1 )
, l<i<m l<i<m

S.. Proof Since is a solution of (1.1) and the Slater constraint qualifica-m
tion is satisfied it follows that R and some E R constitute a Karush-

Kuhn-Tucker saddlepoint for (1.1) and by [4, p. 5) so does (R,G).

Consequently

f() - f(i) + Qg() _ f(x ) +g ) f(x ) -lll ll min -g(x I )l<i<m

from which (2.1) follows. 0

We establish now another upper bound for the threshold value =2:= u ®

a. of Theorem 2.1 under the relaxed Slater constraint qualification (1.6).

S ..............•
o. . . . . . . . . . . . . . . .
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2.3 Corollary Let f:Rn * R and g:Rn 4 Rm be differentiable convex

" functions on Rn, let x2  be any point in Rn satisfying the relaxed

Slater constraint qualification (1.6), and let i be a solution of the

minimization problem (1.1). Then there exists a dual optimal multiplier
*; UER+ for 11) such thatm

(2.2 ix2). f(10 - -)T(2.2 Illl.< I~ll <_min -gi(x 2

ic1
ieli

mn -gt(x 2  1 xl) x( I
iI l  I(x)Ji(x)

where

(2.3) J(x) = {I1Ic12 , Alx=b I , Ae I lin. indep.J

and g, (x) = Ai x - b
2 2 2

Proof Since i is a solution of (1.1) and the relaxed Slater constraint
m

qualification is satisfied it follows that i and some 5eR+ constitute a

Karush-Kuhn-Tucker saddlepoint for (1.1). Since f and g are differen-

tiable it follws that

(2.4) Vf()+ai Vgi ()+ i21 AI 0, 5g(i)=O, g(i)<O, u>0
1 1 2 2

By the fundamental theorem on the existence of basic feasible solutions

m
[3, Theorem 2.11] it follows that there exists GeR+ such that (iu) is

a Karush-Kuhn-Tucker saddlepoint of (1.1) and

;i

".. . . -, ,,~~. . ........ ..i.. . . . . . . . . . . . . . . . . . . . . . . . . .." -.- . -



-10-

{2 (2.5) Vf() + +^ 1 OI(+)AI(R) A O, uidiui(R) 0

where I(R) belongs to J(R) as defined by (2.3). Hence

(2.6)I u T -

M2.6) uI(i) -(Vf() + ^ Vg1 (R))AT (A I())AIM

Consequently

(2.7) Jl(Rl I  (lvflR)ll] + 1101 IIIIIVgI (i)II)IIATI(R)CAIcR)AT(I ill

From the saddlepoint property we have that

f(R)<f(x2 + i (x2) +u i(.)g(.)x 2)<f(x2) -IIGill mn -gi(x 2 )
I11Rgi -11 l

Hence

2(2.8) IlaIu I1 < f x 2)-f
1 1 min -gi(x)

iI 1

Combining (2.7) and (2.8) gives

"%".,. ,,l f(x2 - f(R)., Ilallca <_ IIullj <fx) 2
" = m i n -g i ( x 2 )

) -f(
mmx Tg( T

+ (Ilvf~II1 + f x IN,~ 1R I I,) lA I M)(A IcR)AI (R))Il

-; lmInequality (2.2) follows from the above upon replacing the last term by its

maximum over all feasible x. 0

It is evident that the last term in (2.2) may be difficult to compute

because of its combinatorial aspect. However if there are only a few linear

-,.°
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constraints, or if the point x is interior to most of the linear con-

straints, in which case these constraints can be lumped with the nonlinear

constraints, it may not be too difficult to compute the bound of (2.2).

Obviously since i is unknown beforehand, f(R) must be replaced by a

lower bound (as must be done for Zangwill's bound &)and IIVf(i)111  and

11Vg1 (i)I11, by upper bounds in (2.2).

I-4

.. I
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r •. -



-12-

3. Exact Penalty Characterization Without Assuming Solvability of the

Minimization Problem

In this section we characterize solutions of the minimization problem

(1.1) in terms of minimizers of the exact penalty function (1.2) without any

% .- a pr'iori assumption regarding the existence of solutions to (1.1) as was the

case in the previous section. We do however need the relaxed Slater con-

straint qualification (1.6) and a mild asymptotic constraint qualification

(3.2) below, which is automatically satisfied if all the constraints are

linear. It is interesting to note that the threshold value a3  of the

penalty parameter in Theorem 3.1 below exceeds or equals the threshold value

ca: II511 of Theorem 2.1.

3.1 Theorem (Exact penalty characterization of feasible convex programs)

Let f:R n -- R and g:Rn -* Rm be differentiable convex functions on Rn.

Let the relaxed Slater constraint qualification (1.6) hold, let

(3.1) 018:= sup {Ilvf(x)lllg(x)<01 < =
x

and let the following asymptotic constraint qualification [8] hold:

For each nonempty I c {l, .... ,ml and each sequence of points

{x } such that: g(xi)1O, gI(x )=0 and VgjEI(x ) are linearly

independent, each accumulation point (7-gI, ,i ) of the

sequence {Vgjio (x )/lIvgjio (xi)1, VgIl (x ), vg2 (xi)} satisfies

(3.2)ic 0 jI12
VgI z>0, Vgi ;>0, Vgi z>O for some zeRn

0 12
where 10 u I1 u 12 is a partition of I such that the sequence

{Vgj(x Is unbounded for J c I0 and bounded for j c 1 ,

gJ6 10 uiI  is nonlinear and gj1I is linear.a2
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A necessary (sufficient) condition for x Rn to solve the minimization

problem (1.1) Is that i minimizes P(x,a) over x in Rn for all

a >&3 (some a>Y 3) where

(3.3) 3: 0 sup llIw1l.lg(p).<O. w1 >o, g1 (p)., jw1Vg1(p)11 1,
wpI

Vgji(p) lin. nd., Ic{l,....,m))

* .! Proof We first note that the finiteness of &3 is ensured by the asymp-

* totic constraint qualification [8, Theorem 2.1].

(Necessity) Let i be a solution of (1.1) and let ueR+ be an

optimal dual multiplier for (1.1). We will show that &3 > IEUI and

hence by the necessity part of Theorem 2.1, i minimizes P(x,ca) for

a > &3. If Vf() - 0 we take - 0 and evidently a3 IIll 0.

Suppose now Vf(i) 0 0. Take 5 - (UL9 uK) where 5L > 0 and corre-

sponding to "basic" g are linearly in-

dependent and uK 0. Hence by the Karush-Kuhn-Tucker conditions [7]

Vf(M + LVgL(; M 0

and consequently

IJ L

'o79

Hence by the definition (3.3) of &3 and the definition (3.1) of 0

-> 0 II lVf (R)1 II 0 IlVf( )ll a, IIIlcs 00

(Sufficiency) Let j be a solution of min P(x,a) for some a > &3"
x4Rn

We first show, by contradiction, that g(i) 0 0. For if E is infeasible,

• "- * r . " * 4. " ". . . " •,- . ° ,. , . . °-.. . . . . . . .
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then by [8, Theorem 2.1] there exist a feasible p(i) such that

(3.4) Ili - p(M)II <Ig( )+llI - -e

Then for a> 3

f(p(M)) - P(p(P),t )

_ P(P,) (Since minimizes P(x,a) over x eRn)

f(i) + aeg(i)+

> f(i) + lli-p(i)II (By (3.4), c>a 3 and g(i)+#O)

> IM + IIVf(p(x))lI II;-p(i)ll. (By (3.1))

> f(s) - Vf(p(i)) (i-p(i)) (By the Cauchy-Schwarz inequality)

> f(p(i)) (By the convexity of f)

which is a contradiction. Hence g(x) ; 0 and i is feasible. For any

other feasible x and a > 3

f() - P(ia);_ P(xa) - f(x)

and hence i solves (1.1). 0

Obviously the threshold value &3 given by (3.2) is difficult to

compute in general. However besides providing an existence result for the

minimization problem (1.1), it is useful to know that such a threshold

value exists and to know how it depends on the problem parameters, espe-

cially when one is engaged in an unconstrained exact penalty function

minimization either on Rn, as a substitute for the original constrained

optimization problem, or on RI as part of an iterative method [5].

%, -. ~ , "% .- ,., "..." .... ........... ... .. ". . . . .. .. -.. . ....

_% -. ., .>'. .. . .
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4. An Application: The Big-N Method for Convex Programs

In linear programing, a well known method [9, 1] for solving a

linear program without an explicit phase I procedure is to add nonnegative

artificial variables to the constraints and then add a penalty to the

objective function involving the artificial variables. If the penalty

parameter is "sufficiently large", then the artificial variables will be

driven to zero and an optimal solution will be obtained, if one exists.

In this section we will make the *sufficiently large" concept precise by

using the results of the two previous sections and extend the idea of the

big-M method to convex programs. We first state a simple lemma whose

elementary proof we omit.

4.1 Lemma Let f:Rn -PR, g:Rn _ Rm and let a >0 . Then the problems

(4.1) min f(x) + oteg(x)+ -: min P(x,x)
xeRn  xeRn

(4.2) min f(x) + aez s.t. g(x) I z, z > 0

(x,z)eRn
+m

M

are equivalent in the following sense: For each solution R of (4.1),

(j, !:- g(i)+) solves (4.2), and for each solution (i,i) of (4.2), i

solves (4.1).

The formulation of (4.2) is the big-M formulation and is used in

linear programming because it is easy to obtain a feasible point for it by

taking any x in Rn and z:- g(x)+. Formulation (4.2) can be used also

for the very same reason in convex programming. Theorem 2.1 tells us that

if we know a priori that problem (1.1) has a solution, f and g are

convex and the relaxed Slater constraint qualification (1.6) is satisfied

"- 7
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then the penalty parameter a of the big-N formulation (4.2) must satisfy

a> 2 :-Ila11. where a is any optimal dual multiplier to (1.1). Note

that if g is linear, then the relaxed Slater constraint qualification

(1.6) is satisfied by any feasible point x. If we have no a priori know-

ledge that (1.1) is solvable, but that it is merely feasible, that f, g

are differentiable and convex, and that (3.1) and the constraint qualifi-

cations (1.6) and (3.2) are satisfied then the penalty parameter a of the

big-N method (4.2) must satisfy a > & 3where & 3 is defined by (3.3).

Note that if g is linear then (1.6) and (3.2) are automatically satisfied,

and if in addition f is nonconstant and linear, then (3.1) is also automat-

ically satisfied.
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assumption is made regarding the solvability of the convex program. If such

a solvability assumption is made then we show that a threshold value of the

penalty parameter can be used which is smaller than both the above-mentioned

value and that of Zangwill. These various threshold values of the penalty

parameter also apply to the well known big-M method of linear programming.
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