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ABSTRACT

—> By employing a recently obtained error bound for differentiable convex
inequalities, it is shown that, under appropriate constraint qualifications,
a minimum solution of an exact penalty function for a single value of the
penalty parameter which exceeds a certain threshold, is also a solution of
the convex program associated with the penalty function. No a priori as-
sumption is made regarding the solvability of the convex program. If such

a solvability assumption is made then we show that a threshold value of the
penalty parameter can be used which is smaller than both the above-mentioned

value and that of Zangwill. These various threshold values of the penalty

parameter also apply to the well known big-M method of linear programming. <
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SIGNIFICANCE AND EXPLANATION

By lTumping constraints in a certain way into the objective function
to be minimized, constrained optimization problems can be solved as
simple unconstrained optimization problems. The principal contribution
of this work is to show the validity of this.approaéh without a priori
assuming that the constrained optimization problem is solvable and

without requiring the penalty parameter to take on more than one value.
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SUFFICIENCY OF EXACT PENALTY MINIMIZATION

0. L. Mangasarian

1. Introduction

Consider the convex program ";

(1.1) minimize f(x) subject to g(x) < 0

e Y P
o

where f: R" + R, g: R" + R® are convex functions on the n-dimensional i

real Euclidean space R". It is well known [11,6] that if (1.1) has a 3

DGR K5 A

solution X and if the constraints of (1.1) satisfy a constraint qual-

ification then the exact penalty function

(1.2) P(x,a):= f(x) + aeg(x), = f(x) +a ? max {0, gi(x)}

i=]

where e 1s a vector of ones in Rm, has a global minimum at X for each
value of a > G for some threshold value a. In [11, p.356; 2, Theorem 40]

it was shown that

f(x') - F(X) + 1

min - g, (x")
1<izm

(1.3) as= &1:-

where x] is any point satisfying the Slater constraint qualification

(1.4) g(xl) <0
In [6, Theorem 4.9] it was shown that

(1.5) a=a,:s= |||, = max u
o= lille = me

Sponsored by the United States Army under Contr. :t No. DAAG29-80-C-0041,
This material is based on work supported by the National Science Founda-
tion under Grant MCS-8200632.



where u 1s an optimal Lagrange multiplier for (1.1) provided that (1.4)
holds. A minor modification of the proof of [6, Theorem 4.9] which invokes
(10, Theorem 28.2] instead of [7, Theorem 5.4.8] extends (1.5) to the case

where a relaxed Slater constraint qualification holds, that is

(1.6) 911(x2) <0, gIz(xz) < 0 for some x2

where gI] is nonlinear and 9y is 1inear and I.I v 12 = {1,...,m}. In
2

contrast Zangwill's threshold (1.3) does not hold under the relaxed Slater
constraint qualification (1.6) but must be replaced by a different value
given by (2.2) below.

What is not well known and constitutes a principal concern of this work
are converses to the results stated above. In [11, p. 356; 2, Theorem 40]

Zangwill shows that if we assume a priori that the minimization problem (1,1)

has a solution, the Slater constraint qualification (1.4) is satisfied and
X minimizes the exact penalty function (1.2) for some o > a;, then X q
solves the minimization problem (1.1). Note the a priori assumptions that .
(1.1) is solvable and that it satisfies the Slater constraint qualification.

By contrast in [6, Theorem 4.1] without any a priori assumptions regarding >

the solvability of the minimization problem (1.1) or the satisfaction of a
constraint qualification it was shown that if (1.1) is feasible, that is

g(x) < 0 for some x, and if X minimizes P(x,a) for all values of

a >a for some &, then X solves the minimization problem (1.1). Note

the distinction between these two sufficient conditions for X to solve

o
T
"
P
R
3

the minimization problem (1.1). In Zangwill's result there are a priori

assumptions that (1.1) is solvable and that its constraints satisfy the

Slater constraint qualification, while the penalty function P(x,a) need
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be minimized for a single value of a > &' In (6, Theorem 4.1] no a priori
assumption regarding the existence of a solutfon to (1.1) is made, however

feasibility of (1.1) is assumed and X must be a solution to miq'P(x.a)
xeR
for a1l a > a for some o, in order for X to be a solution to (1.1).

A primary purpose of this work is to combine the good features of these

éi
;
“
:
3
-

two results, namely the minimization of the penalty function for a single
value of the penalty parameter and without an a priori assumption that the
minimization problem has a solution. This is done in Theorem 3.1 where it
1s established that if for a single value of the penalty parameter a > &3
for a well defined &3. X minimizes the exact penalty function P(x,a)
over R", then X% is also a global solution of the minimization problem
(1.1). Although no a priori assumption regarding the solvability of (1.1)
is made in Theorem 3.1, both the relaxed Slater constraint qualification
(1.6) and a mild asymptotic constraint qualification (3.2) are needed in
order to invoke the recent [8, Theorem 2.1] absolute error bound for convex
differentiable inequalities which plays a key role in the derivation of
Theorem 3.1. Another result of this work is a two-way improvement o;

Zangwill's sufficiency result in Theorem 2.1, where the threshold value of

a is decreased from a&; of (1.3) to &, of (1.5) and the Slater con-
straint qualification (1.4) is replaced by the relaxed constraint qualifi-
cation (1.6). We a‘lsb give in Corollary 2.3 a finite counterpart of the
threshold value &1 of (1.3) when the Slater constraint qualification (1.4) ‘
is replaced by the relaxed qualification (1.6) which renders &] infinite.
Table 1 below gives a general outline of the relations between the various
sufficiency results derived here and elsewhere for exact penalty functions

and indicates the key assumptions needed for the different results to hold.

LN
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A priori solvability of min. prob. (1.1):
.
Assumed Not assumed

|
[
I, 2 g
N A Han-Mangasarian > | 3
s 8 » a
< - [6, Theorem 4.1] % 3
| = 2 |z
~N
—-. l g
= 13 Py
| o = | 2

3 (=]
e Zangwill [11, p. 356] @ o
3 I 2 T Theorem 3.1 § I =
> g heorem 2.1 -4 3
2| < |
&

Table 1: An outline of the key assumptions needed in the
various sufficiency theorems establishing that
each minimizer of an exact penalty function (1.2)
solves the minimization problem (1.1).

In Section 3 of the paper we show that the big-M method of 1inear
programming [1,9] is in fact equivalent to an exact penalty problem and
hence the threshold values of the penalty parameter developed in this work
apply to it as well as to a big-M formulation for convex programs. Such
threshold values do not seem to have been given for the big-M method for
1inear programs.

We briefly describe now our notation. For a vector x in the

n-dimensional real Euclidean space R", Xy will denote the vector in R"
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with components (x ), = max {xi, 0}, i=1,...,n. For a vector norm ||x||

[ ]
on R", ||x|| will denote the dual norm on R", that is ||x]'= max xy,
n ' llyll=1
where xy denotes the scalar product Z Xi¥i- The Cauchy-Schwarz
i=1

inequality |xy|§||x||'lly||. for x and y in R" follows immediately

from this definition of the dual norm. For 1 <p, q < and 1, % =1,

1 P

n 1
the p-norm ||x||p:- (i):] |xi|p)p and the q-norm are dual norms in R". For

an mxn matrix A, A, denstes the ith row, while llAllp denotes the matrix
norm subordinate to the vector norm ||-||p, that is ||A||p = lmax IIAxllp. X

] = ]
The consistency condition ||Ax||p < ||A|lp ||x||p follows immediately from T
this definition of a matrix norm. We shall also use ||+]| to denote an ]
arbitrary vector norm and its subordinate matrix norm. A vector of ones in 1
any real Euclidean space will be denoted by e. For a differentiable func- a

tion g: R" > R™, vg(x) will denote the mxn Jacobian matrix evaluated
at the point x in R". For a subset I < {1,....,m}, gI(x) or giel(x) 1
will denote those components 9 (x) such that 1el. Similarly Vgl(x) s
will denote the rows (Vg(x)); of vg(x) such that ieI. The set of -

vectors in R" with nonnegative components will be denoted by Rg. 3
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2. Exact Penalty Characterization Assuming Solvability of the Minimization

Problem

In this sectidﬁ we completely characterize solutions of the minimiza-
tion problem (1.1) in terms of minimiiers of the exact penalty function
(1.2) for a single value of the penalty parameter exceeding the threshold
&2. This is done under the assumptions that the minimization problem is
solvable and that it satisfies the relaxed Slater constraint qualification
(1.6). The necessity part of the following result Theorem 2.1 is an improve-
ment over both [6, Theorem 4.9] and Zangwill's Theorem [11, P. 356] both of
which require the Slater constraint qualification (1.4) instead of the
relaxed qualification (1.6) needed here. This is a simple but important
difference because it allows us to handle linearly constrained problems with
no constraint qualification, and because Zangwill's threshold value &1
becomes infinite under the relaxed constraint qualification (1.6). The new
sufficiency part of Theorem 2.1 again improves over Zangwill's sufficiency
result by using the relaxed Slater constraint qualification (1.6) instead of
the Slater constraint qualification (1.4), and the smaller threshold value
&2 instead of &]. It is interesting to note that the sufficiency part of

Theorem 2.1 for the threshold value &2 does not appear to have been given

before even under the Slater constraint qualification. Now we state our

vl

Y v
it

result,

P TN

2.1 Theorem (Exact penalty characterization of solvable convex programs)

Let f:R" +R and g:Rn + R™ be convex functions on R". Let either

(x,u) e R"><RT be a Karush-Kuhn-Tucker saddlepoint of the minimization

problem (1.1), or let the relaxed Slater constraint qualification (1.6)

. ‘.t """‘.'.' AL o PO PR « e 0 “ . s . .
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hold and X be a solution of (1.1). A necessary (sufficient) condition

for XeR" to solve the minimization problem (1.1) is that X minimizes
P(x,a) over x in R" for each (some) a > |lG]l (> [|G]l,) "where

iieRQ is any (some) dual optimal multiplier for (1.1).

Proof (Necessity) By assumption or by [10, Theorem 28.2] there exists a
ﬁeRT such that (x,u) 1is a Karush-Kuhn-Tucker saddlepoint of (1.1).
For any other dual optimal multiplier @, (X,4) is also a Karush-Kuhn-
Tucker saddlepoint of (1.1) [4, p. 5]. Hence for xeR" and o« > [ld]l,

P(X,a) = F(X) = £(X) + dg(X) < £(x) + dg(x) |
< f(x) + Gg(x), < £(x) + [[dll, l9Cx)ll; £ P(x,a) |

(Sufficiency) Let GeRT be some dual optimal multiplier for (1.1).
Since (x,u) 1is a Karush-Kuhn-Tucker saddlepoint for (1.1) it follows by
the necessity part of this theorem that for g:= ||G]|,

P(Xx,8) = min P(x,B)
xeR"

Let X be a solution of minn P(x,a) for some a > ||i]]_ = 8.
xeR

Hence

f(x) + aeg(x), > f(X) + aeg(x),
and

f(x) + Beg(x), > f(x) + Beg(x),
Addition of the last two inequalities gives upon noting that g(x) =0

(a-Bleg(x), < 0




A
A

Since a > 8 this implies that g(X) < 0 and hence X is feasible for

(1.1). For any other feasible point «x
f(x) = P(x,a) > P(X,a) = f(X). 0

The following corollary shows that under the Slater constraint qual-
ification the threshold value a,:= ||d||, of Theorem 2.1 is smaller than

that of Zangwill's &, as defined in (1.3).

2.2 Corollary Let £:R" >R and g:R" + R™ be convex functions on rR",

! be any point in R" satisfying the Slater constraint qualification

let x
g(x]) <0, and let x be a solution of the minimization problem (1.1).

Then for any dual optimal multiplier GeR': for (1.1)

(2.1) lafl, < 6l < fix) - £(3)  flx') - f(R) + 1, -
© = 1= min - g (X]) min - g.(x]) 1
: i : i
1<i<m T<i<m

Proof Since X 1s a solutfon of (1.1) and the Slater constraint qualifica-
tion is satisfied it follows that x and some Ue RT constitute a Karush-
Kuhn-Tucker saddlepoint for (1.1) and by [4, p. 5] so does (X,&).
Consequently

£(x) = £(X) + Gg(%) < F(x') + Gg(x') < #(x) - [ldl]; min - g (x))

1<i<m

from which (2.1) follows. o

We establish now another upper bound for the threshold value a,:=||d]|

of Theorem 2.1 under the relaxed Slater constraint qualification (1.6).

........
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2.3 Corollary Let f:R" +R and g:R" » R" be differentiable convex
functions on R". let x2 be any point in R" satisfying the relaxed
Slater constraint qualification (1.6), and let X be a solution of the
minimization problem (1.1). Then there exists a dual optimal multiplier
GeR) for (1.1) such that

2 -
ol < ol s £61=16)

2.2
(2.2) -9, (2)
‘ieI-l
g |
("Vf(X)”1 .jia_l___Lg_"ng](x)" ()< "Al(x)( I(x)AI(xQ |l
iely I(x)eJ(x)
where
(2.3) Ix) = {1|1c12, Apx=by, Ay Tin. indep.}

and g, (x) = A, x - b, .
I I,m L

Proof Since X is a solution of (1.1) and the relaxed Slater constraint
qualification is satisfied it follows that X and some ue RT constitute a
Karush-Kuhn-Tucker saddliepoint for (1.1). Since f and g are differen-
tiable it follws that

(2.4) vf(x)+u, Vg, (x)+u, A, =0, ug(x)=0, g(x)<0, u>0
L7 I,'T, - =

By the fundamental theorem on the existence of basic feasible solutions
(3, Theorem 2.11] it follows that there exists ue RT such that (Xx,u) is

a Karush-Kuhn-Tucker saddlepoint of (1.1) and

.“‘L'
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where I(x) belongs to J(x) as defined by (2.3). Hence
(2.6) G, 5y = =(VF(X) + G, Vg, (X))AT =1 (A; <iAT 2y)]

I(x) I I I(x)'"I(x)"1(x)
Consequently

(2.7) ”GI(,‘()”] S (”Vf(i)”] + ”GI] ”1”V911 (i)“])||A}(§)(AI(§)A}(§))-1”]

From the saddlepoint property we have that

- 2 A 2 A 2 2 n 2
FR) < FOE) +8p g1 (%) #5995y (IS FE) - Jldy 1l min - gy (x°)
11 1 ieIl
Hence
2 -
(2.8) lag Il g £ )=fO)
11 min - g,(x°)
1511
Combining (2.7) and (2.8) gives
2 -
- ~ f - f
lall, < Nl g £eEL=FE)
min - gi(x )
ieI]
S GUGIIRR O] A P
1 min _gi(XZ) I] 1 I(X) I(X) I(X) 1
ieI]

Inequality (2.2) follows from the above upon replacing the last term by its

maximum over all feasible x. g

It is evident that the last term in (2.2) may be difficult to compute

because of its combinatorial aspect. However if there are only a few linear

. L . B - .“.“'.'.‘, - L . . . .
T R P S RS .o ) .
.............. . .

- LA S AR S N A P i i R . N . . . . . .
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constraints, or if the point x2 is interior to most of the linear con- :

straints, in which case these constraints can be Tumped with the nonlinear

S
v
LN
.

constraints, it may not be too difficult to compute the bound of (2.2).

Obviously since X 1is unknown beforehand, f(x) must be replaced by a y
lower bound (as must be done for Zangwill's bound a,) and lve(x)]l, and i

IIVQII (x){ly» by upper bounds in (2.2).
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3. Exact Penalty Characterization Without Assuming Solvability of the

Minimization Problem

In this section we characterize solutions of the minimization problem
(I.i) in terms of minimizers of the exact penalty function (1.2) without any
a priori assumption regarding the existence of solutions to (1.1) as was the
case in the previous section. We do however need the relaxed Slater con-
straint qualification (1.6) and a mild asymptotic constraint qualification
(3.2) below, which is automatically satisfied if all the constraints are
linear. It is interesting to note that the threshold value &3 of the
penalty parameter in Theorem 3.1 below exceeds or equals the threshold value

ay:= [|u]l, of Theorem 2.1.

3.1 Theorem (Exact penalty characterization of feasible convex programs)
tet f:R" +R and g:R" +R" be differentiable convex functions on R".

Let the relaxed Slater constraint qualification (1.6) hold, let
(3.1) 0#B:= sup {||Vf(x)||.l |g(x)§0} <

X
and let the following asymptotic constraint qualification [8] hold:

For each nonempty Ic<{l,....,m} and each sequence of points
{xi} such that: g(xi)io, gI(xi)so and ngel(xi) are linearly
independent, each accumylation point (VEIO.WI],VQ'IZ) of the

sequence {ngd()(xi )/||ngelo(xi)||, Vgll(xi), Vglz(xi)} satisfies

(3.2)
Vg, 2>0, VEI]z >0, Vg; z>0 for some zeR"
0 2

where Iou I] U I2 is a partition of I such that the sequence

{ng(xi)} is unbounded for jeIo and bounded for je I],

gjeIOlJI

is nonlinear and gjel is linear.
2

1




p A necessary (sufficient) condition for XeR" to solve the minimization

R problem (1.1) is that x minimizes P(x,a) over x in R" for all
% a>a, (some a>a,) where

5 - 3 — 3

5 (3.3) ay:= BwsgpI {lwll.|9(P) <0, wy>0, g;(p) =0, |lw;g; ()]l = 1,
i Py

:: vgJEI(p) ]iﬂ. iﬂd.. IC{]......N}}

Proof We first note that the finiteness of &3 is ensured by the asymp-
totic constraint qualification [8, Theorem 2.1].

' (Necessity) Let X be a solution of (1.1) and let ieR: be an
optimal dual multiplier for (1.1). We will show that a, > |ufl, and

"_{ ‘.- ‘A. ¢

hence by the necessity part of Theorem 2.1, X minimizes P(x,a) for

Y- "4 "-

@208 If VF(x) =0 we take u = 0 and evidently a, > [|il|, = 0.
X Suppose now Vf(Xx) # 0. Take u = (EL, GK) where EL >0 and corre-
sponding to “"basic" gjeL(i) = 0 such that VgJGL(i) are linearly in-
dependent and '-‘K = 0. Hence by the Karush-Kuhn-Tucker conditions [7]

s

- vF(X) + @ Vg, (X) = 0

" LU

M)

By

% and consequently

VQ X " s

- VF(x 1 L 1

Hence by the definition (3.3) of a; and the definition (3.1) of B8

2 i I3l

- - L Y - -

o, a > = > u =2 .

: 3-Bllmﬂ]’]—”, Bm-ll o =2 3

(Sufficiency) Let x be a solution of min P(x,a) for some a > &3.
Y xeRN

1 We first show, by contradictfon, that g(x) < 0. For if x 1{s infeasible,
"

L e . . Lo
. ot DI - e
............ ;
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then by [8, Theorem 2.1] there exist a feasible p(x) such that

- - a4 - G4 -
(3.4) I%-p(X)l, & g Na(X), ]I} = 5 eq(X),
Then for a > a,

f(p(x)) = P(p(x),a)
> P(X,a) (Since X minimizes P(x,a) over xeR")
= f(x) + aeg(x),
> f(x) + Bl|x-p(x)|l, (By (3.4), a>a, and g(x), #0)
2 £(%) + [[or (Gl 1% -p(R)ll,  (By (3.1))
> f(x) - vf(p(x)) (x- p(X)) (By the Cauchy-Schwarz inequality)
> f{p(x)) (By the convexity of f)

which is a contradiction. Hence g(x) < 0 and Xx is feasible. For any

other feasible x and a > &3
f(x) = P(X,a) < P(x,a) = f(x)
and hence x solves (1.1). 0

Obviously the threshold value &3 given by (3.2) is difficult to
compute in general. However besides providing an existence result for the
minimization problem (1.1), it is useful to know that such a threshold
value exists and to know how it depends on the problem parameters, espe-
cially when one is engaged in an unconstrained exact penalty function
minimization either on R", as a substitute for the original constrained

optimization problem, or on R] as part of an iterative method [5].
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4. An Application: The Big-M Method for Convex Programs

In linear programming, a well known method [9, 1] for solving a
linear program without an explicit phase I procedure is to add nonnegative
artificial variables to the constraints and then add a penalty to the
objective function involving the artificial variables. If the penalty
parameter is “sufficiently large", then the artificial variables will be
driven to 2ero and an optimal solution will be obtained, if one exists.

In this section we will make the “"sufficiently large" concept precise by
using the results of the two previous sections and extend the idea of the
big-M method to convex programs. We first state a simple 1emma whose

elementary proof we omit.

4.1 Lemma Let f:R" +R, g:R" + R™ and let o > 0. Then the problems

(4.1) min f(x) + aeg(x), =: min P(x,a)
xeR xeR"
(4.2) min  f(x) + cez s.t. 9(x)<2z,220
(x.z)eR"+m

are equivalent in the following sense: For each solution X of (4.1),
(x, 2:= g(x),) solves (4.2), and for each solution (X,Z) of (4.2), x
solves (4.1).

The formulation of (4.2) is the big-M formulation and is used in
1inear programming because it is easy to obtain a feasible point for it by
taking any x in R" and z:= g(x),. Formulation (4.2) can be used also
for the very same reason in convex programming. Theorem 2.1 tells us that

i1f we know a priori that problem (1.1) has a solutfon, f and g are

convex and the relaxed Slater constraint qualification (1.6) is satisfied
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P4

4
then the penalty parameter o of the big-M formulation (4.2) must satisfy ' i
i

a> &2:= ||lu]|], where U is any optimal dual multiplier to (1.1). Note

-

that if g is linear, then the relaxed Slater constraiht qualification
(1.6) is satisfied by any feasible point x. If we have no a priori know-
£ ledge that (1.1) is solvable, but that it is merely feasible, that f, g
are differentiable and convex, and that (3.1) and the constraint qualifi-
cations (1.6) and (3.2) are satisfied then the penalty parameter o of the
big-M method (4.2) must satisfy a > &3 where &3 is defined by (3.3).
Note that if g is linear then (1.6) and (3.2) are automatically satisfied,

"’.'l.'..‘.'.".{‘

- and if in addition f 1is nonconstant and linear, then (3.1) is also automat-

ically satisfied.

I-.
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