
AD-AI34 558 SOME EFFICIENT OANDOM NUMBER GENERATORS FOR MICRO I/|
COMPUERS(U WISCONSIN UNIV-MADISON MATHEMATICS
RESEARCH CENTER A THESEN ET AL. SEP 83 MRC-TSR-2562

UNCCASSIFIED DAAG29-80UC 0041 F/G 1211 NL

END*,EomElom1mlor I

111U-2o 12 .2
U.11 L~ L63 2 .

111& _2 1111. 111L

MICRO)COPY RILSOLUTION [ES1 CHARI
NATIONAL WWIT ALI0 T ANPANEO'1 A

MRC Technical Summary Report #2562

% SOME EFFICIENT

~RANDOM NUMBER GENERATORS
0FOR MICRO COMPUTERS

Arne Thesen
~and

Tzyh-Jong Wang

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

September 1983

(Received August 17, 1983) A

Approved for public releaseIC][FILE COPY°,,,,o.,,,,
OTIC FILE COPYDistribution unlimited

Sponsored by

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park
North Carolina 27709

83 11

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

SOME EFFICIENT RANDOM NUMBER GENERATORS
FOR MICRO COMPUTERS

Arne Thesen and Tzyh-Jong Wang

Technical Summary Report # 2562

September 1983

ABSTRACT 4-I
- The relatively slow speed and small word size of the current crop of se

micro-computers causes the efficient production of pseudo-random numbers on

these machines to be considerably more difficult than on larger computers. As

a consequence, some micro-computer-based algorithms are excessively time con-

suming, while other algorithms trade off speed against "randomness". To

alleviate this problem we present in this paper several families of pseudo

random number generators explicitly designed for use on micro-computers. Some

of these are adaptations of well known generators to the micro-computer

environment, others are new or lesser known algorithms designed to overcome

some of the restrictions intrinsic to the micro-computer's 8 bits environment.

For each generator the basic algorithm is discussed and a Pascal implementation

is presented. Values of coefficients leading to pseudo random number streams

with good statistical properties are recommended and an empirical evaluation of

the computational efficiency of the Pascal procedures is offered.,-_

AMS (MOS) Subject Classifications: 65C10, 68J10, 90-04

Key Words: Random number generators, Uniform distribution, Micro computers

Work Unit Number 6 - Miscellaneous Topics

Department of Industrial Engineering, University of Wisconsin-Madison,
Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

- -d

SOME EFFICIENT RANDOM NUMBER GENERATORS
FOR MICRO COMPUTERS

Arne Thesen and Tzyh-Jong Wang

I INTRDDJUCTIDN

The widespread availability of micro-computers has encouraged the
implementation of micro-computer based software that previously
was only avaliable on larger computers. Frequently this software

*is adapted from earlier designs for larger computers. In some
cases clever design and a heavy use of program and data overlays
is all that is needed to "shoe-horn" these large software pact-
ages onto smaller computers. In other cases, such as for the
class of algorithms'discussed here, a fundamental redesign of the
underlying algorithms may be required.

The most obvious reason for the failure of pseudo random
generators designed for larger computers to work properly on
micro-computers is the difference in word size (down from 32 bits
to 16 bits). However merely adjusting the algorithm to reflect
the reduced word size do not solve the problem. This is because:

1) The limited word size (16 bits) seriously limits the
number of unique integers that can be produced using
conventional congruential generators.

2) The relative speed of different arithmetic operations is
not the same on micro-computers as on larger
computers. This is because special purpose arithmetic
processors (such as the AMD 8158 or the 8087) are usually
not available. Instead, micro-computers usually perform
arithmetic by executing a long sequence of compiler
generated instructions. This causes integer addition to
be an order of magnitude faster than integer
multiplication, which in turn is yet another order of
magnitude faster than floating point arithmetic.

3) Real numbers are usually represented in a micro-computer
with greater precision than integers (4 bytes vs. 2
bytes).

During the research leading to this paper, we investigated the
performance of thousands of different procedures and/or
coefficients for micro-computer based generation of random
numbers. Most looked promising, but failed to perform well when
subjected to the tests discussed later in this paper. Those that
excelled in these evaluations are presented here.

All programs presented here are written in Fascal/MT+, a widely
distributed implementation of Pascal for micro- computers. Most
programs are written in Standard Pascal and should be portable to
other systems using 16 bit integers, however this claim has not
been tested.

*

Department of Industrial Engineering, University of Wisconsin-
Madison, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-
C-0041.

X X ~ Il= X N CDNq X DF<#T X DNS

Users of pseudo random number generators are concerned with the
"randomness" of the numbers generated as well as with the
programming and computational effort required to implement it.
Many tradeoffs are therefore made when a specific generator is
chosen for a given application. In this section we will briefly
discuss some of these.

A. Fundamental Properties

The sequence of numbers generated by a pseudo random number
generator is not a random sequence, rather, it is a repeating
fixed sequence of nulmbers that pass many reasonable empirical
test for "randomness". For example, a simple linear congruential
generator may generate the following repeating permutation of
the integers 0,1,2,..,14,15:

- -----------------------)(-------------------)-- -

The length of the repeating sequence is called the period of the
generator, and the (ordered) set of numbers generated in a period
is referred to as a cycle. The resolution of a generator is the
smallest possible difference between two unequal numbers produced
by the generator.

It is desirable to have a generator with as long a period as
possible. In addition, it is desirable to have a generator where
a cycle contains multiple occurrences of any one integer.
(Without this feature, the interval between like numbers in the
stream- will be equal to the cycle size for all numbers in the
stream.) Finally a generator of random integers should have a
resolution of one.

B. Computer language requirements

A competent computer programmer is able to implement any pseudo
random number generator in almost any higher level computer
language. Even so, higher level languages impose several
restrictions on the implementation of pseudo random number
generators. Among the more common problems are:

1. The value of local variables (such as seeds) might be
lost between calls to a procedure..

2. Access to individual bits or bytes of a variable might be
difficult.

3. Special purpose arithmetic or logical operations (such as
MOD or XOR) might not be available.

4. Parameter passing is frequently time consuming.

2-

In this paper we use Pascal/MT+ to illustrate how these
difficulties can be overcome.

The absence of static variables (1. above) is a nuisance but not
a serious obstacle. Without static variables, the user must give
a global scope to variables never used outside the generator.
This increases the probability of coding errors, but it does not
increase memory requirements or reduce computing speed. (In
Program 2 we show how static variables can be simulated in
Pascal /MT+).

Inability to access individual bits or bytes is a more serious
problem. Two of our procedures requ~ire such access. In Programs 4
and 7 we illustrate how this can be done in Standard Pascal using
variant records.

Program 2 requires the use of an "exclusive or" (XOR) operation.
This is an operation that usually is not implemented in higher
level languages. We chose to implement this function in embedded
machine code. While this is a feature supported by Pascal/MT+ and
many other Pascal compilers, it is not Standard Pascal, and the
resulting code is not universally portable. (However the logic
of the programs are clear and recoding of the algorithm should
not be difficult.)

C. Statistical Properties

Even though the streams of numbers generated by pseudo random
number generators are repeatable and therefore not random, our
intention is to use these numbers in lieu of truly random num-
bers. The generated streams must therefore exhibit the same
behavior as truly random numbers in the application of interest.

The concept of '"randomness" embodies many different statistical
properties, and a single statistical test is not available.
Instead, different statistical tests are required for different
properties. In the research reported here we operationalize the
concept of randomness by testing for the following properties:

1. Uniformity of distribution.
2. Randomness of sequence.
3. Absence of autocorrelation.

The specific tests used for each property are discussed in
Appendix I. Needless to say all the procedures and coefficients
presented in this paper yields pseudo random number streams that
pass all of our tests for "randomness".

The byte is the basic information building block in a micro-
computer. Two adjacent bytes are used to represent an integer and
four adjacent bytes are used to represent a floating point
number. As we will show in later sections it is quite practical
to construct random deviates of more complex types from a stream
of random bytes.

A. Truncated Integers

Most installations have available some procedures for generation
of pseudo random integers. It is therefore tempting to develop a
procedure that obtains random bytes by first using the higher
order and then the lower order byte of this integer. This is
extremely dangerous as a guarantee of randomness for an integer
does not extend to the bytes that make up that integer. In
particular the lower order byte of an integer generated using a
Linear Congruential (LC) generator (Section IV) is likely to
exhibit extremely poor statistical properties. However if the
multiplier is carefully chosen, it is possible to obtain a stream
of random bytes by returning the higher order byte (only) of a
random integer). In Program 1 we present such a procedure:

- ----------
function (lytelyte

(*tai the following declarations oust appear in the main progra
VM seed i record cas integer of

1: (int : integer);
2: (isbyte:byteadi bytt:bytel;

CONST
1IKLT z 1221; (other good values are: 2937, 393, 4199, 4293,)

b5in (9237,14789,15125,17245)
seed.int : MULT I sed.int +;
Rlyte := seed.sbyte;
if seed.int (0 then seed.inUt:seed.int+oaxintfl;

end;

Program : Randoe byte generator returning the most
significant byte of a random integer.

Note that the multipliers recommended for Program I are different
from the ones recommended for its two byte equivalent (Program
3). We will defer a discussion of LC generators until two byte
generators are discussed in the following section. Here we will
only point out that:

1) The procedure uses variant records to access the same
variable as both an integer variable and as two individual
byte variables.

2) The procedure is quite inefficient as one full byte
of information is discarded whenever a new byte is
generated.

3) The procedure is portable as only Standard Pascal features
are used.

4

B. A Tausworthe Generator

A more efficient approach to the generation of random bytes is
to use a procedure proposed by Tausworte[4] that operate directly
on bits to form a stream of random bits. This procedure has been
-shown to produce random number sequences that 1) have improved
statistical properties over LC generators, and (2) have an
arbitrarly long period independent of the word size of the
computer used.

Tausworthe generators are not in widespread use on large
computers. This could be because they are difficult to implement
efficiently in a higher order language, or because their improved
statistical properties are only marginally important on large
word size computers. On micro-computers the situation is quite
different. Here the improvement in period length and in
statistical properties is quite substantial, and, as we shall
see, well written Tausworte generators are no more time consuming
than other classes of generators.

1. Algorithm

The basic procedure of a Tausworthe type generator is illustrated
in Figure 1:

B(i-p] Bi-r] Ili](B) Z ..X X x
S A

*

*--------

Figure I: Relationship betueen bits in a Tausuorthe sequence.

Here B) is defined as a sequence of bits, and the relationship
between individual bits in the sequence is defined as:

B[i] = BEi-r] XOR BEi-p]

where : i = any integer,
r , p = fixed integers with O<r<p.
XOR = the exclusive OR operator yielding 0 if the

terms are equal and 1 if they are not.

When r and p are properly selected (as primitive trimodals [6)).
the maximum period of the stream (BI is 2**p - 1.

2. Implementation

In Program 2 we present an implementation of a Tausworthe
algoritmn for the generation of pseudo random bytes. The
procedure is an adaptation of an algorithm presented by Lewis
and Payne E3]. To avoid the need to access individual bits, the
algorithm maintains 8 independent and parallel streams of bits,
and the exclusive OR operation is performed on all 8 bits (or one
byte) at once. Since each of the eight independent bit streams

5j

have a period of 2**p - 1 , the resulting stream of bytes will
also have a period of 2**p -1.

---- ------------ - -----)
function rbyt.(var f,s:integr) . byte

coast
p : 91; peinusla 97; q a 27;

ITable s Array (..981 of char; (This table holds the queue of bytes to)
var (operated upon at a later time)

procedkure lyteTable; (This is a programming trick to reserve space for, and initialize)
begin (a static table vithin a Pascal/lfl+ rocedure)

Mnline(9/1193/191/154i78/5151201189/74/73/179/189/651182/77/25/14/154/220/1951179140/178171281541lt/61112/209113011421151/222/18/241/10/136/137/176116/14879/1371155/51132/1741
174/90/175/128/ 2/9/137/1721I89168I1/37/125/206/70/641228/237/l92114716116 91203/240/1751
2391331 1131253170/ 1621701321I/A 1/1311239/207/69163/175122/19612491102/224/167/
oi; 0/0o0//0/0/0/0l0/oO/lO/OlO/l0/0l00) ;

function xorl firstsecond:char):byte; (Nachine code implementation of 190)
var
teep:bytf;

begin
inline(

13A I first I (8 LDA address 8)
147/ It NOV I A $)
$3A I second/ (LOA address 1)
$ / IOR A 1 1)
$32 I teep)I (I STA address 1)

xorixtemp;
end;
in,2 addr(ByteTable); I 3 points to start of the byte table)

if f (poinust then
fa=f.1

else
f :% 0

if s (painusi then
s :' s+1

elso
s :a 01rbyte :-. ICF] I

b'[lf:;xor(3A(tF ,SAIS)) ;
end;

Program 2: Random byte generator using a Tausvorthe algorithm.

The table ByteTable contains all entries in the bit streams
between the current bits and the ones lagged p positions from the
current ones. The pointer F points to the entry lagged p
positions as well as to the current entry in the table and the
pointer S points to the entry lagged p-q (=r) positions.

3. Remarks

Here we use several unique features of Pascal/MT+. Through the
use of the INLINE and ADDR functions we have reserved space (in
ByteTable) for a static table of bytes inside the generator.
This has the advantage that the user need not define the table as
a global variable in the main program. The INLINE function is
also used to implement the XOR operation. While this function
probably could be written in Standard Pascal, its efficiency is
greatly enhanced by the use of the 80'80 machine code XOR
instruction.

6

. IN..E..3..F... 1 (2 BV. _r 1....

A. The Linear Congruential Generators.

-The linear congruential (LC) algorithm is perhaps the best known
and most widely used procedure for computer generation of pseudo
random integers. This is not surprising as the algorithm is both
easy to understand and easy to code in almost any programming
language. Furthermore, for computers with a word size of 32 bits
or more, the resulting code is computationally efficient, and it
yields random number sequences that pass most reasonable tests
for randomness.

For micro-computers we are not so lucky. The smaller word size
and slower speed of these computers define limits both on speed
and "randomness" that are much less attractive than those found
on larger computers. It is therefore essential that designers and
users of micro-computer based LC algorithms fully understand how
these algorithms work and what their restrictions are. Designers
need this knowledge to optimize the performance of their
algorithms (apparently trivial changes can quadruple the count of
unique numbers generated), and users need this knowledge to
decide if an alternative algorithm should be used.

1. Algorithm

The Linear Congruential Generator produces a new random number
from the previous one through the following congruential
relationship:

I -- ----------------- S

Ui1MI (a$Ii]c)R od@
-----------------------------I

*here li] = the i-th number produced by the generator.
Ii+I] the (i41)-th number produced by the geerator.
aICe = constants.

Using this relationship, ICi+13 is computed as the remainder of
(a * Ili] + c) divided by m. For example, if a = 13, c=1, m=16
and I[3] = 7 then 143 is computed as the remainder of
(13-*7+1)/16 or E43 = 12.

An important feature of LC generators is the fact that each
period contains at most one occurence of each of the integers in
the range 0 - (m - 1). Therefore, the interval between any two
like integers is fixed, and, the maximum period is m.

The p-operties of LC generators have been extensively studied.
Knuth [23 provides guidelines for selecting the values for the
coefficients a, c and m and recommends specific values for large
computers. Recommended values for micro-computers are presented
later in this section.

2. Implementation

To minimize computational effort, m is chosen to be the largest
integer that the computer can represent + 1 (2**15 or 32768 on
most micro-computer systems). This has the advantage that the Mod
operation in the Linear Congruential relationship is performed
automatically when the term (a * Ii] + c) is formed.

To minimize the importance of the initial seed, we wish the
generator to generate all non negative integers less than m. It
can be shown (Knuth [23) that this is always possible if c and a
are chosen according to certain rules. Note however that no
guarantees are made regarding the statistical properties of the
resulting number sequence. One family of generators satisfying
these rules are:

------------------------- *
Sl[i4):=-a I Ili] +) Hod 32768
-----------------------------S

where a = k$4 +I Ck=0,1,2,....]

A Pascal implementation of this generator is given in Program 3:

function unifjlcq (var seed : integer) :integer;
--------------- ------------Const

MILT 3993 (recommended values are: 599, 1813, 2125, 2633, 3993, 4773 5225)
begin (5737, 5995, 6061, 7149,11097,11245,12217, 20377%25621)

seed := multiplier I seed + 1;
if seed < 0 then seed := seed + maxint +1;
uniflcq :: seed;

end;

Program 3: Congruential generator

A total of 8192 different values for a can be chosen for this
generator. Some of these yield "good" sequences, while others
yield "bad" sequences. For example, the following sequence is
generated if a is one:

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14- . ..-32766-32767-0-1-2...

This sequence clearly has a period of m. However, it will not
pass any reasonable test for randomness.

As we are not aware of any method for predicting a priori which
values of a will result in "good" sequences and which values will
result in "bad" sequences, we conducted empirical tests on the
output produced by all of the 8192 possible values of a. Some of
the values of a that were found to yield statistically "good"
sequences are listed in the program. The reader is cautioned
against using other values of the multiplier as most other values
were found to fail at least one of the tests discussed in Appx.I.

8

3. Remarks

A certain degree of simplicity and computational efficiency
appears to be gained when c is set equal to zero. However, we
should point out that generators of the form

I ------------------------- S
I it+I =(a I lti])Nod 3278

have only one fourth of the period of the recommended mixed
generator. As a consequence the generator now produces two
mutually exclusive sets of (odd) random integers. The actual set
produced in any one run depends on the initial seed chosen for
that run. Furthermore, as we show in the evaluation section the
elimination of the constant c has no significant impact on the
speed of the resulting procedure.

B. A Tausworthe generator.

In section III we showed that a random byte could be d-veloped
from eight parallel random bit streams using a T: 'orthe
generator. Since this algorithm was not constrained by i word
size of the computer used, we can easily extend it to g rate a
random integer from sixteen parallel streams of random b! z. Due
to the simplicity of this extension we do not provide a rogram
listing here. However data for the performance of the ting
algorithm is provided in the evaluation section(as Progi 4a).
Here we chose instead to present an algorithm that illustrates
how we can "build" a random integer from two random (Tausworthe)
bytes. (This concept is extended in a later section to the
construction of floating point numbers.) As shown in Program 4,
the key to this algorithm is our ability to use a variant record
to represent two adjacent bytes as both two individual bytes and
a single integer:

--------------)
Function Unif:lnteger;*

type
inteqertype z Record

case integer of
I : 10nelord : Integer);
2 : (sbyte : Byte

e sbyte ;Byte);end;

var
i:IntegerType;

Place Function RBYte right here)

begin
I.SByte := RByte;
i.NSByte :X Rlyte;

end;

Program 4: Building a random integer from random bytes.

9

The resulting random number stream has good statistical
properties and it has a period of 2**p-I. This period can be
substantially ex:tended if the two independent generators have
periods that are relative prime (but we have not evaluated how
this affects the statistical properties of the resulting random
number stream).

C. Shuffle Generators

Shuffle generators combine two or more independent generators to
produce a single random number stream with (hopefully) improved
statistical properties. Of course this improvement (if any) comes
at the cost of reduced computational efficiency. Many elaborate
shuffling algorithms have been proposed. The key to success for
any of these is the requirement that the driving generators must
have periods that are relative prime.

The shuffle algorithmn presented here is adapted from Knuth [2].
As shown in Figure 2, the algorithm maintains an internal table
of pseudo random numbers. Whenever a random number is requested,
a random index. is generated, and the random number stored at the
corresponding location in the table is returned. This entry is
then replaced by a new entry using the second random number
generator.

STEP I. Set table index.

i (-Random index, using generator I

STEP II. Get value stored at this location.

I (- Tablelil

STEP III. Replace this value.

Tableti) (- Random integer, using generator 2.

Figure 2: knuth's Shuffle Algorithm.

The resulting procedure (Program 5) produces random number
streams of quite (Knuth says exceptionally) long periods.
Unfortunately this procedure is rather slow due to the fact that
we now must perform additional operations to make sure that the
two driving generators have periods that are relative prime. It
is likely that the procedure can be speeded up by replacing one
of the generators by a Tausworte generator such as the one
presented in Program 2.However this would reduce the portability
of the procedure.

10t

------- -----------------------
function shuffle Ivar table :array 10-.127] of integer;

var generator integer
var selector integerequest :in teger 0 : initialize the table

I:request value otu
._:integer

---)
var

index : integer

function DO-GENERATE(var seed:integer ; :integer
Const

Multiplier 5737 (see table I for other recommended values)
begin

seed seed I multiplier + I
if seed (0 then seed :=seed + gaxint + I

DO GENERATE :=seed
end ;

function DO-SELECT~var seed:integer ; :integer
Const

Multiplier 6061 (see table I for other recommended values)
var

valid :boolean
begin

valid false
*hile not valid do

bgnseed :=seed I multiplier + I
if seed (0 then seed seed + maxint + I
valid :=seed (32749 ; force period to be

32749-- sax prime 1<32768
end;DO SELECT :zhilseed)

endbegin (main)
case request of
I request a value
begin
inidex := DO SELECT~seetor, s multiplier)
shuffle :=lable~index) ,
tablelEindex) := 006ENERATE(generator,g multiplier);
e nd ;0: (initialize the table1

for index :z 0 to 127 do
tablelindex] :~DO SENERATflgenerator~g multiplier);

end ;Cof case
end ;(gain)

Program 5: Sample Pascal procedure for table shuffling.

V FLOdT ING F INT GENERATR S

A. Conventional procedures

Real valued random deviates are readily obtained from integer
deviates by mode conversion (from integer to real) and by scaling
(from 0.0-32767.0 to 0.0-1.0). One such procedure is illustrated
in Program 6.

var
seed:integer;

function u2125 :real;

begin
seed :: 2125 1 seed * 1;
if seed (0 then seed :z seed + saxint *!;
u2125 :- seedt3.054648E-5;

end;

Program 6: Pascal procedure for uniformly distributed deviates on 0.0-1.0.

This is an acceptable procedure for large computers. However two
serious problems restricts its usefulness for micro-computers:

1) Floating point arithmetic is particularly slow on most
micro-computers. Program 6 is about 4 times slower than
.ts integer counter part. It would be even slower if
we divide by 32,768 instead of multiply by its inverse.

2) Most micro-computer languages use four bytes to store a
floating point number while they use only two bytes to
store an integer. Program 6 has inherited the cycle
and period restrictions of our two byte integer
generators.

In the following section we present a new approach to generation
of floating point random numbers that overcomes these problems.

B. A Construction Algorithm for Floating Point Deviates.

1. Algorithm

A random variable u on [0-1] can be expressed as a function of a
random exponent e and a random mantissa m as follows:

m e
u=--- *2

M

where u = random variable on [0-13
e = random variable drawn from the distribution:

PrCe = i I = 2 i = 0,1,2,..

M a constant
m Uniformly distributed random variable on I M/2,M).

12

An algorithm based on this notational convention is presented in
Figure 3 (the algorithm is discussed in more detail in 15)):

1. INITIAL ASS16NIIENTS

0 =0 (Correct value if u)>1/2)
a U(0,II) (Uniform deviate on 0-Nl)

11. IS ADDITIONAL WORK REQUIRED?

If a >= M12 (this happens half the time)
t hen goto step IV
else m =m + N/2.

111. ADJUST EXPONENT

A. Draw random byte(s) until a nonzero byte is found:

k aRandomByte
while k =:0 (this happens with a probability of 1/256
9ee- 8
k :RandomByte.

3. Scan the byte for the first nonzero bit:

while k (128
k k 8 2
e: e-i1.

IV. RANDOM VARIABLE IS u =f(e,m)

Figure 3: Algorithm for generating *

The algorithm starts out by assigning a value of zero to the
exponent (defining a number on E0.5-1.03) and a random value to
the mantissa. A check is made to see if the resulting mantissa
has a valid value (there is a 50% probability that this is true).
If so, the algorithm stops as a valid number has been produced.

If the mantissa is not valid (i.e. its first bit is not one),
then 11/2 is added to am to make it valid, and a procedure for
generating a random exponent is entered. This procedure is based
on the premise that the number of zeroes preceding the first one
in a random stream of bits follows the geometric distribution
with p = 0.5. Random bytes are drawn uintil a nonzero byte is
found. This byte is then scanned until the first nonzero bit is
found. The resulting exponent is computed as the negative value
of eight times the number of zero valued bytes plus the number of
consecutive zero valued bits in the last byte.

2. Implementation

Our implementation of the algorithm is based on the conventions
for representation of floating point numbers adopted by the AMD
9511 (OR INTEL 8231A) hardware floating point unit 11J:

137-

bit 31 2928 25 24 23 16 15 9 7 0

sign sign value of ' mantissa
of of ' of exponent !eost signif! !least si nif'

iantissaexpofent! . !iCant byte !icant byeI
-- 4-------,----------------------

Figure 4: AMD 9511 convention for floating point notation

For numbers between zero and one the sign bit of the mantissa is
zero. The sign bit of the exponent is one if the number is less
than 0.5 and zero otherwise. In Table I we show how the values
of e and m are encoded in the four bytes representing a number in
the range 0-1. The correspondence in behavior between a and bl
and m and b2:b3:b4 is observed.

--------------------,-----------------------, - ...
' I !Q ! a !bl ! b2 ! b3,b4'
--- ------ 4------ -------- ---- -------

!1.0)x>:0.5 ' 0 !16,777,215-8,388,608 ! 0 !128-255! 0-255
#-- ------------------------------
!0.5)x>:0.25 !-1 !16,777,215-8,388,608 !127!128-255! 0-25 !
-------------------------- I---------------- ------.-

!0.25)x):0.125 !-2 !16,777,215-8,38,608 !24!128-255! 0-255 !
---------------- 4-------------- ---- --- ---- -------

!0.125)x)=0.0625 !-3 !16,777,215-8,388,608 !125!128-255! 0-255 !
.--.......... 4-4-- --- ----- -----

!0.0625x>=0.03125!-4 !16,777,215-8,388,608 !124!128-255! 0-255 !
-----------------.---------------------------- -----

Table 1: Values of individual bytes for numbers on EO-13

Our implementation of an algorithm exploiting this data structure
is shown in Program 7.

3. Discussion

While a fixed number of random bytes are always used to generate
a random mantissa, the number of bytes n used to generate a
random exponent is itself a random variable. It can be shown that
the distribution of n is:

i
P(n:i) = 255 S (1/256) /2 for i : ,213,...

and the expected value of n is 128/255 = 0.5019607.

The procedure is driven by the two independent random byte gene-
rators RBytel and RByte2. In our performance tests we used both
the simple truncated integer procedure presented in Program 1,
and the more efficient (but not as portable) Tausworthe generator
presented in Program 2. When Program 1 was used then Programs 6
and 7 were equally fast (but Program 7 has better resolution and
a longer period). When Program 2 was used, then Program 7 was
faster than Program 6 and of course it still yielded numbers with
better statistical properties.

14

function uniform :real*

tVrealtypet
reord (variant record for byte access)

cae integer of
I: (unil : real); (The variable me want)

2: (exponent : byte; (exponent and sign bits)
l I byte; (most significant byte of mantissa).2 : byte;

o3 : byte); (least significant byte of mantissa)
end;

var
k 3 byte;
a : realtype;begin
with u do
begin

4l := RBytel; (a separate byte generator is assumed)
.2 :z Rlytel;
e3 :2 RBytel;
exponent sO; (proper value for 0.5 (u (1.0
begin (In then (by convention the ost significant)begin (bit I in ml must be I}

@l :z al * 128;
exponent 3z 12f;
k s: RByte21
While k z 0 dobeginexponent :- exponent -8;

k :2 RByte2;
end;*

if k (128 then begin
if k)z 64 then exponent :- exponent -1
else if k >: 32 then exponent := exponent -2

else if k): 16 then exponent :- exponent - 3
else if k)-- 8 then exponent ": exponent -4

else if k)z 4 then exponent :2 exponent -5
else if k >- 2 then exponent :a exponent -6

else exponent := exponent - 7
end;

uniform :z unif;
end;

end;

Program 7: Pascal/NT+ Implementation of uniform random number
generator using AND 9511 floating point notation.

15

% 00. .. 0
.

M

VI- EVALUATION

All the generators presented here were subjected to extensive
performance tests. This included statistical tests for
distribution, sequence and autocorrelation as well as timing
-tests for computational efficiency. The statistical tests used
for this purpose are summarized in Appendix I. All generators
presented here passed all statistical tests. A further discussion
of statistical test results is therefore omitted. The results of
the timing tests differed substantially for the different
generators. These are summarized here together with other
important intrinsic performance characteristics.

The timing data presented below was obtained by measuring the
time required to generate 32,0C random numbers on a Sierra Data
Sciences single board computer running at 4mz under the Turbodos
operating system (a CP/M dialect).

The reader is warned against reading too much into minor
differences in execution times. Such differences are as likely to
be caused by differences in programming styles and data transfer
methods as by intrinsic algorithmic performance differences. For
example we found that the Tausworthe byte generator (Program 2)
performed three to four seconds faster in our tests when the
resulting byte was maintained as a global variable rather than
returned through the function.

A. Byte generators

The performance of our two byte generators is summarized in Table
2. While the Tausworthe generator was slightly slower than the LC
generator, we have confirmed the fact that this difference is
primarily due to differences in data transfer methods and not due
to differences in algorithmic design. The most important differe-
nce between the generators is therefore the fact that the
Tausworte generator has a substantially longer period than the LC
generator. However this improvement in performance is gained at
the cost of not using Standard Pascal.

---------------------- -------------------------- - -----

* a I ' 'INTERVAL!
PRO-! GENERATOR !APPRO.!RESO- !BETNEEN !ARGUMENT' !STANDARD!
GRAN! RANGE 'PERIOD !LUTION!LIKE ! PASSED !RELATI! PASCAL

* ''' !NUMBERS ' ' SPEED'
-.-+------------------..---........---......---...-.-.-

I I !Truncated integ' 0-255 ' 21115 ! I ! random ! no ! 12' ! yes !
* - --- --- -

2 Tausuorthe byte! 0-255 21198 ! I ! random yes 1 16" ! no
*-----------4-------- ------- +----------------4- 4------------------ - ---

Table 2: Relative Performance of Random Byte Generators.

B. Integer generators

The performance of our integer generators is summarized in Table
The standard LC generator (Program 3) performed faster than

any of the other generators. However the period for this

16

generator (32768) is so short that we hesitate to recommend its
use in lengthy simulations. Program 3a is a standard LC generator
with c set equal to zero. Data for this generator is included to
illustrate the fact that the omission of c reduces the period of
a generator without improving its speed. The two Tausworthe
generators were slower than the LC generators. Again we verified
the fact that the speed difference between these two algorithms
was only caused by differences in data transfer methods. Finally
the shuffle algorithm was about three times slower than the LC
generator. However this generator has a substantially longer
period and is written in Standard Pascal, it might be the
generator of choice for users without access to Pascal/MT+.

--- --------------------- ------------.---4. - 4. - 4. - 4. - 4 - 4. - 4
I I E T 'INTERVAL! LON !

PRO-! GENERATOR ' 'APPROI.'RESO- 'BETNEEN ' ORDER ' 'STANDARD!
iGRAMI i RANGE 'PERIOD !LUTIONLIKE BYTE !RELATI! PASCALI !NUMBERS !'RANDOM'! SPEED!

---------------------- I------------- -4. ------ - --------- -----

! 3 ! LC6 (I-a-l+l) ! 0-32767 ! 21115! 1 ! 28115! no ! 156 ! yes !
4---4. - . - - - 4.

3a K=24838K ! 1-32767 ! 28113 ! 4 ! 28113 ! no ! 15" ! yes '
--4--------I

4a T Tausu. 2 bytes '0-32767 ! 28896 ! I ! random ! yes ! 31a ! no
4-.----------.---------------------------- ------------------

4 ' Tause. Integer 5 0-32767 ! 28197 ! I ! random ! yes ! 23' ! no !
#-+-- -----

5 TABLE SHUFFLE ' 0-32767 ! 2130 ! I ! random ! yes 5 45' ! yes !
4-------------------- ------ - -4. ----------- -------- --- ---

Table 3: Relative Performance of Integer Generators.

C. Floating Point Generators

The performance of our floating point generators is summarized in
Table 4. We note that the fastest generator is our implementation
of the construction algorithm using the nonstandard Tausworthe
byte generator (Program 7a). However the implementation of this
procedure using Standard Pascal (Program 7) was as fast as the
conventional LC based generator and it exhibited substantially
better statistical properties.

*- + --.4.---4. 4. -.-.4.
* a a a !INTERVAL! LON ' I a

i PRO-! GENERATOR ' !APPROI.!RESO- 'BETNEEN ORDER ' 'STANDARD!
* GRAM' a RANGE !PERIOD !LUTION!LIKE S BYTE 'RELATI! PASCAL
a a a a a !NUMBERS !"RANDON! SPEED!
- 4.------------------ 4 4 ..---------- -- 4...

6 U: I 18 !.0000 - !32767 !218-15! 28115 ' no ' 57' m yes
0.0000306 !0.9999694! ! max ! S S

-------------------------€ ... 4. •...•.. .€. ..----------.. - . - . - -- 4- . . --..€. . .4.

6a U I/32676 !.0000 - ! 32767 !288-15! ! 5 5 yes
a!0.9999694! ! max ! 28815 72" !
*--------------------.------ # ------------------ 4 - 4- .-------

7 UzF(e,m)4Progl 5 .0 - I.0!))28136!2$8-23! random S yes 57' yes
a a a max

*--+----------------------4.-----------------4. - 4 - 4. - . - 4- - -----

7a S UxFle,m)IProg 2! .0 - I,0!)2836!281-23! random S yes 5 45' no
max !

-- 4.------------------4.------------- - # - - - -------

Table 4: Performance of Floating Point Generators.

17

VI I - 3 tI. MMA V

This paper presents the findings of an extensive evaluation of
thousands of different combinations of algorithms and constants
for micro-computer based random number generators. All of the
generators presented here have been shown to pass reasonable
tests for uniformity of distribution, randomness of sequence and
absence of auto correlation. In addition each generator dominate
the others in at least one of the dimensions of speed, period and
portability.

We had expected to observe a tradeoff between speed and
"randomness" , however no such relationship was observed. In fact
the fastest generator of floating point numbers also exhibited
the longest period. We also had expected to observe a strong
relationship between programming style and computational
efficiency. This expectation was confirmed. Clever use of
nonstandard language !.%tures do improve speed. Likewise the
manner in which data ir. transferred to and from the procedures
has a significant (15% upi to 30%) effect on relative performance.

However, we feel that toe most important lesson to be learned
from this study is the fect that te were completely unable to
predict in advance whether or not . given algorithm would exhibit
good or bad statistical properties. The likelihood of improving
an algorith through ad hoc changes are slim at best.

18

I. Intel Corp., 8231A Arithmetic Processing Unit, Preliminary Data

Shoot, 1981.

2. Knuth, The Art of Computer Programming. Addison-Wesley, 1969.

3. Lewis, T.G. and Payne W.H. Generalized Feedback Register
Pseudorandom Number Generator. JACM vol.20,No 3. July 1973.
pp.456-468.

4. Tausworte,R.C., Random Numbers Generated by Linear Recurrence,
Modulo Two, Math. Comput. 19 (1965) 201-209.

5. Thesen, Arne., An Efficient Generator of Uniformly Distributed
Random Deviates Between Zero and One. Technical Report.
Mathematics Research Center, University of Wisconsin-Madison,
1983.

6. Zierler, Niel and John Brillhart, On Primitive Trinomials
(Mod 2), Information and Control, Vol 13 pp 541-554. 1968.

19

AF'FEID I X I x S-T T I ST I CAL_ T E T .

All procedures listed in this paper, when used with recommended
parameter values, produce streams of numbers that will pass the
following statistical tests. (Streams produced using other
parameter values are likely to fail these tests.)

A. Distribution.

The range of numbers produced by a generator is divided into 128
equal subranges. A stream of 4100 numbers is then generated and a
frequency count of observed values in each subrange is developed.
These empirical counts are then compared to the expected counts
(410:)0/128). A two sided Chi-square test is used to test the
hypothesis that the observed errors in each interval are
reasonable errors that could have occurred if the original data
were drawn form the uniform distribution.

This procedure was replicated ten times. All generators presented
here failed this test at most once on the 95% level.

B. Sequence.

A run test was used to test the hypothesis that the numbers
generated for the above distribution test appeared in random
order. Specifically we accepted the hypothesis that a generator
produced integers in a random sequence if no more than one of the

ten streams failed the following test on the 95% level.

1. Define a run of length n to be a sequence such that:

x[1]3 < x2] ... x~n] > xn+1

The sequence 89-456-893-05 is a run of length three.

2. Scan the set of numbers sequentially to determine the
length of individual runs. (Discard the run terminator
x>[n+1], do not include it in the next run!) The sequence
234-564-234-453-789-990-78 has two runs; one of length
two (234-564-234) and one of length three (453-789-990:-
78) .

3. Develop a 6-bin histogram counting the number of runs
of length 1, 2, 3, 4, ,5 and 6 and more.

4. Use a chi-square test to compare the observed
distribution of run lengths to the expected distribution:

*------------- ---------------- 4----------- -----------
Ran length ' I 1 2 1 3 4 ! 5 !&or sore

*------------------------4-----------------4------------4
'Probability 1/2 11/3 1 118 1/30 1 1/144 ! 1/720
------------- - ------4 - - --------------- 4

C. Autocorrelation

A good pseudo random number generator should have the feature

that the value of the next number to be generated can not be
predicted from the values of previously generated numbers. If
this feature is present then we cam consider the random number
stream to be a stationary time series with a constant mean and
variance, and a unit autocorrelation matrix.

In our test for the absence of auto correlation, we estimated the
autocorrelation and partial auto correlation matrices (for the
first 128 lags) for the ten streams generated for the
distribution test above.

The hypothesis of no autocorrelation was accepted if no
systematic patterns such as autoregressive or moving average were
observed from the error adjusted correlogram for any of the
streams evaluated.

~21

SECURITY CLASSIFICATION OF THIS PAGK (Ufmag Doe Entev_________________

REPORT DOCUMENTATION PAGE BEFORE COKPLETING FORM
0. MXORUMBE 2. GOVT ACCESSION NO. 3. RIECiPIENT'S CATALOG NUMBER

#2. 6 IL 5A~S1010 . TYPE OF REPORT A PERIOD COVERED

Some Efficient Random Number Generators Summary Report - no specific
for Micro Computers reporting period

S. PERFORMING ORO. REPORT NUMBER

7. AIJTHQR(e) S. CONTRACT OR GRANT NUMBER(@)

Arne Thesen and Tzyh-Jong Wang DAAG9-B-C-0041

6. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of Work Unit Number 6 -

610 Walnut Street Wisconsin Miscellaneous Topics
Madison. Wisconsin 53706 _____________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office September 1983
P.O. Box 12211 I1S. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 21
T4. ONIT0RING AGENCY NAME 0 ADDRES30I differen hos Coinerollhaj Offie) 1S. SECURITY CLASS. (of this rePont)

UNCLASSIFIED
15. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

14. -DISTRIBUTION STATEMENT (of this RApt)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the. abstract entered In block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue On M~vee cWds OfnOC08eaiy id dIdnfY by block numb.,)

Random number generators, Uniform distribution, Micro computers

20. ABSTRACT (Conthwa. on revee od@ It n~c..amvY end idmintY bF block mmbdr)
The relatively slow speed and small word size of the current crop of micro-

computers causes the efficient production of pseudo-random numbers on these
machines to be considerably more difficult than on larger computers. As a
consequence, some micro-computer-based algorithms are excessively time consuming,
while other algorithms trade of f speed against "randomness". To alleviate this
problem we present in this paper several families of pseudo random number
generators explicitly designed for use on micro-computers. Some of these are

adaptations of well known generators to the micro-computer environment, others

DI j0My 1413 EDITION OF1 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ABSTRACT (continued)

are new or lesser known algorithms designed to overcome some of the restrictions
intrinsic to the micro-computer's 8 bits environment. For each generator the
basic algorithm is discussed and a Pascal implementation is presented. Values
of coefficients leading to pseudo random number streams with good statistical
properties are recommended and an empirical evaluation of the computational
efficiency of the Pascal procedures is offered.

I

IOT
IME

