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EFFECT OF BLADE STRUCTURAL PARAMETERS ON HELICOPTER

VIBRATIONAL CHARACTERISTICS é

1. INTRODUCTION

This document represents the Final Technical Report on two Army Research
Office Grants, DAAG-29-77-G-0103 and DAAG-29-80-C-0092, each of which is entitled
as per the title of this report. The first proposal was sent on 8 July 1976,
and the award began on March 1, 1977, This was to be a three-year proposal.
However, the principal investigator spent a summer at the Army Aeromechanics ;
Laboratory; and a no-cost extension was consequently granted to 30 June 1980
(a 40-month period). The second proposal was sent on 1 July 1979 and the
grant was awarded on 1 July 1980. Again, the grant period was initially three
years; but a no-cost extension was granted to 31 August 1983 (a 38-month
period). Thus, the two grants together span a period of 78 months, or 6 1/2
years.

Because of the continuing nature of the second grant, the Army Research
Office waived the Final Report for the first grant with the understanding that
a final comprehensive report would be submitted at the end of the second grant.
(Reference ARO letter dated 23 June 1980 DRXRO-PR, P-14585-E, P-17067-E.)
Therefore, this present document is the comprehensive report that covers the
entire period. This report treats the two grants as a single unit, and no
attempt is made to discriminate work done before July 1980 from work done
after July 1980.
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2. Statement of Problem

The major objectives of our research project have been as follows:

1) Discover the basic relationships between structural
parameters and the blade vibrational characteristics.

2) Determine the degree of sophistication that is required
to adequately model the more important mechanisms.

3) Develop efficient computational methods suitable to solving
the rotor trim and vibration problem.

Along these lines, our work has taken a "building block" approach to these
objectives. In other words, the statement of work in each proposal outlines
small research tasks, each of which studies a particular aspect in detail.
When two or more of these tasks are completed, the results are combined
together to produce the next level of analysis. At each step, the lesgssons
learned in the previous steps are used to simplify the analysis as much as
possible before combining with another analysis.

In the area of blade structural vibrations, two separate branches have
been pursued. One ig the modeling of blade structural response. This has
progressed from rigid blade to elastic flap-lag to elastic flap-lag-torsion.
| The second branch has dealt with problems of rotor-body coupling. Here, we
have progressed from a vertical model to vertical-roll-pitch to a complete
9-degree—of-freedom elastic fuselage. We have studied both modal and
finite-element approaches.

In the area of aeroelastic modeling, we have been working on the application
of gsimple dynamic stall models to improve the estimation of aerodynamic loads.
There are many sophisticated stall tools that do not lend themselves to practical
research calculations, but we have limited ourselves to methods that lend
themselves to linearization. !

One area of our work that greatly expanded over original estimates is
the study of rotor trim methods. We have applied trim methods over the entire
spectrum of possible strategies. These include harmonic balance, numerical
integration, automatic pilot, Newton-Raphson, periodic shooting, and Floquet
techniques.

Finally, because of the close relationship between stability, vibration,
and transition matrices, we have studied efficient calculation and use of the
Floquet transition matrix. In all of the above areas, there is a strong
synergistic relationship among the areas. Each task has fed the other tasks
in terms of applications and solutions.
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3. Scientific Personnel and Degrees

In addition to the principal investigator, 16 students have worked on the
project during the past 6 1/2 years. Of these 16 students, 12 received advanced
degrees and three are still working on their degrees. Of the 12 degree recipients,
four took positions with the U. S. Army or helicopter industry, four took positions
in the U. S. aerospace industry, and four have continued here to work on more
advanced degrees. Below is a listing of these students.

Name Degree Date Present Status
Harry Woehrle M.S. 12-77 U.S. Army
Daniel Schrage D.S. 7-78 U.S. Army
Abraham Eipe D.S. 12-79 Douglas Aircraft
Amir Izadpanah M.S. 12-79 Working omn D.S.
Byung Kim M.S. 5-80 Working on D.S.
Timothy Ko M.S. 5-80 Working on D.S.
Tom Hsu D.S. 12-80 Sundstrand
S$-Y Chen D.S. 8-81 Kaman Aerospace
H-S Chen M.S. 12-81 MTS Corp.
Jon Rogers M.S. 5-82 . U.S. Army
Dan Rudy M.S. 5-83 Emerson Space Div.
M=-S. Huang M.S. 5-83 Working on D.S.
Tim Ryan M.S. 8-83 McDonnell Aircraft
James 0'Malley M.S. 5-84 U.S. Army
Swami Karunamoorthy - - Working on D.S.
Sirajul Igqbal - - Unknown
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4, Publications and Reports

Throughout this project, we have published the results of our research
in several media. First, we have published technical papers in refereed
journals and in conference proceedings. Second, we have produced Master's
and Doctoral theses. Third, we have published ARO interim reports. Fourth,
we have participated in the annual Robert R. Lichten paper contest. In the
eight years of this contest, Washington University students have won the
National Award four times. The most recent of these was for work on the
ARO grant. Below is a list of the pertinent publicatioms.




Technical Papers

1.

Schrage, D. P. and Peters, D. A., "Comparison of the Effect of Structural
Coupling Parameters on Flap-Lag Forced Response and Stability of a Heli-
copter Rotor Blade in Forward Flight," Army Science Conference, West Point,
New York, June, 1978,

Schrage, D. P. and Peters, D. A., "Effect of Structural Coupling Parameterc
on the Flap-Lag Forced Response of a Rotor Blade in Forward Flight Using
Floquet Theory," Fourth European Rotorcraft and Powered Lift Aircraft
Forum, Stresa, [taly, September 1978; Vertica, Vol. 3, No. 6, June 1979.

Hsu, T-K and Peters, D. A., "Coupled Rotor/Airframe Vibration Analysis by
a Combined Harminic-Balance, Impedance-Matching Method," 36th Annual
National Forum of the American Helicopter Society, May 1980, JAHS, Vol. 27,
January 1982.

Peters, David A. and Kum, Byung S., "Control Settings for a Trimmed, Stalled
Rotor by an Automatic Feedback System," AIAA Dynamics Spe-ialists' Conference,
Atlanta, Georgia, April 1981, AIAA Paper No. 81-0617-CP-

Peters, D. A., Kim, Byung S., and Chen, H-S, "Calculatio. ~ Trim Settings
for a Helicopter Rotor by an Optimized Automatic Control! . Journal of
Guidance and Control, 1983.

Peters, David A. and Izadpanah, Amir, "Helicopter Trim by  .1odic Shooting
with Newton-Raphson Iteration,” 37th Annual Forum of the American Helicopter
Society, New Orleans, Louisiana, May 1981, Paper 81-23.

Roger, Jon P., "Application of a Dynamic Stall Model to Dynamic Analysis of
Rotor Blades," Proceedings of the 38th Annual National Forum of the American
Helicopter Society, Proceedings of the 8th European Rotorcraft Forum, 1982,
Journal of the AHS, 1984.

O'Malley, James P., Izadpanah, Amir, and Peters, David A., "Comparison of
Three Numerical Trim Methods for Rotor Airloads," Ninth European Rotorcraft
Forum, Stresa, Italy, September 13-15, 1983; Vertica 1984.




Theses

1.

Sechrage, D. P., Effect of Structural Parameters on the Flap~Lag Forced
Response of a Rotor Blade in Forward Flight, Doctor of Science Thesis,

Washington University, May 1978.

Eipe, Abraham, Effect of Blade Flexibility, Structural Parameters, and Trim

Conditions on Rotor Loads, Doctor of Science Thesis, Washington University,

December 1979.

Izadpanah, Amir, Calculation of Helicopter Trim and Air Loads bv the Method

of Periodic Shooting, Master of Science Thesis, Washington University,

December 1979.

Kim, Byung, Helicopter Rotor Trim bv an Automatic Feedback Svstem, Master
of Science Thesis, Washington University, May 1980.

Ko, Timothy, Use of Tapered, Twisted Finite Elements for Dynamic Analysis
of Helicopter Rotors, Master of Science Thesis, Washington University,

May 1980,

Hsu, Tung-Kuang, Coupled Rotor Airframe Vibration Analysis by a Combined
Harmonic-Balance, Impedance-Matching Method, Doctor of Science Thesis,

Washington University, August 1981.

Rogers, Jon P., Application of an Analytic Stall Model to Dynamic Analysis
of Rotor Blades, Master of Science Thesis, Washington University, May 1982.

Rudy, Daniel J., Three Interpretations of a Dynamic-Stall Model with
Applications to Rotor Blade Flapping Response, Master of Science Thesis,

Washington University, May 1983.

Huang, Ming-Sheng, Analysis of Helicopter Vibrations with Inplane Degrees
of Freedom, Master of Science Thesgis, Washington Unive.sity, August 1983.

Contractor Reports

1.

Peters, David A. and Schrage, Daniel P., "Effect of Blade Structural Parameters
on the Flap~Lag Response of a Rotor Blade in Forward Flight," Interim Technical

Report No. 1, ARO Grant DAAG-29-77-G-0103, July 1978.

Peters, D. A. and Chen, H-S, "Optimization of Auto-Pilot Equations for Rapid

Estimation of Helicopter Control Settings, Interim Technical Report No. 1,
ARO Grant DAAG-29-80-C-0092, Novemter 1981.
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Invited Lectures

1.

Peters, David A., ""Some Mathematical Approaches for Prediction of Rotorcraft
Vibrations," presented at the ARO Rotorcraft Vibration Workshop, NASA Ames
Research Center, February 1978.

Peters, David A., "Some Aspects of Rotor Trim,"” presented at the ARO Workshop
on Unified Equations, February 1979.

Peters, David A., "Helicopter Research at Washington University, Flutter and
Dynamics Council, Denver, Colorado, November 1982.

Peters, David A., "The Importance of Steady and Dynamic Inflow on the
Stability of Rotor-Body Systems,” ITR Methodology Assessment Workshop,
Ames Research Center, June 1983.

Lichten Presentations

Hsu, Tung-Kuang, "Effect of Rotor-Body Coupling on Helicopter Vibration,"
1979.

Kim, Byung S., "Helicopter Trim by an Automatic Pilot,” 1980.

Ko, Timothy, "Use of Tapered, Twisted, Finite Elements for Rotor
Blades," 1980.

Chen, S-Y, "Dynamic Analysis of a Two-Bladed, Teetering Rotor on a
Flexible Pylon," 1980.

Roger, Jon, "Application of an Analytic Stall Model to Dynamic Analysis
of Rotor Blades," 1982.

0'Malley, James, "Application of Periodic Shooting to an Existing
Air Loads Program,” 1982.

Izadpanah, Amir, "The Convergence of a Periodic Shooting Algorithm for
Rotor Trim," 1982.

Rudy, Daniel, "Three Interpretations of the ONERA Dynamic-Stall Model,” 1983.

Ort, Jack, "Application of Hamilton's Law of Varying Action to Calculation
of the Floquet Transition Matrix," 1983,

Karunamoorthy, S., "Derivation of a Hierarchy of Elastic Blade Equationms
for Helicopter Vibration Analysis," 1983.

Huang, M-S, "Analysis of Helicopter Vibrations with Inplane Degrees of
Freedom,"” 1983.

*
Also presented at the AIAA Student Conference, U.S. Air Force Academy,
Colorado Springs, April 14-15, 1983.
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5. Summary of Results

We here follow the suggestion of Reporting Procedures for Contractors and
Grantees of the U.S. Army Research Office, ARO Form 18, and present the major
results of our work in the form of reprints. Results not presented here appear
in the interim reports of these grants. The first of these showed that elastic
coupling could be used to lower inplane loads, pitch-flap coupling could be used
to lower flap loads, and pitch-lag coupling could then be used for stability
margings. The second of these snuwed that rotor trim could be obtained by an
automatic pilot in only five rotor revolutions.

The reprints given here represent summaries of the other major areas of
research. The first paper, by Tom Hsu, summarizes the work on rotor-body
coupling. The second paper, by Jon Rogers, summarizes the work on dynamic
stall, Finally, the paper by 0'Malley, Izadpanah, and Peters summarizes the
trim studies.




Coupled Rotor/Airframe Vibration Analysis by a Combined
Harmonic-Balance, Impedance-Matching Method

Graduate Student
Washington University, St. Louis, Mo.

D.A. Peters
Professor

A coupled rotor/sirframe vibration analysis is performed by the matching of rotor-and fuselage impedances.
The roior impedance for b biades Is caiculsted from the periodic-coefficient equations of s single blede in
torward flight. Three flapping modes are inciuded, and the equation is solved by harmounic balance. The fuseiage
{mpedance, including structursl damping, is calculated for 3 rigid-body and 3 elastic modes in plunge, rell, and
pltch. The results show that the effect of hub motions on rotor loads is grestest for relatively stll roters, and s
sot well-approximated by lumped-mass or purely inertisl rotor models,

Notation
(s}
5)y = cosine and sine harmonics of F
a =slope of lift curve
Ay = elements of portion of [Z)
] = pumber of blades
ol =conventional thrust coefficient, thrust/pxr?R*

Cr,C,.Cy =vibratory portion of nondimensional thrust,
roil, and pitch moment over oa.
Cr,C..Cy =steady portion of thrust, roll, and pitch mo-

ment over oa

{F} =vector of harmonics of Cr, C;, Cye

f § = nondimensional acceleration of gravity, g/Q?R

8,.8..8~» =plunge, roll, and pitch structural damping

Gl = fuselage receptance

(H} = hub receptance

P = first flap frequency/Q

PomoPot =radius of gyration of fuselage in pitch, rolt,
divided by R

R =rotor radius, m

w = fuselage vertical motion, m

We = w/R nondimensional vertical motion

2 =distance along fuselage, tail to nose, divided by
R

4 = hub vertical displacement

Z fuselage generalized coordinates, Eq. 3

{zd = vector of harmonics of 2, ag, a¢

(Ze] = vector of harmonics of 2, a,/, a.,

¥4 = rotor impedance

. =pitch angle of hub, fuselage, positive nose up,
rad

die = steady hub pitch angle, rad

a,,ay =roll angle of hub, fuselage, positive advancing

side down, rad

Presented at the 36th Annual National Forum of the American
Helicopter Society, Washington, D.C., May 1980.
*Presently at Sunsirand Corp., Rock(ford, Illinois.

v = Lock number

A = inflow ratio

P = ratio of distributed beam mass to total beam
mass

" = advance ratio

] = rotor solidity

(3] = control derivatives

{0) = vector of control variables

00.05,00  =collective and cyclic pitch, rad

' = azimuth angle, nondimensional time, ¢ = Q¢

@ = swashplate excitation frequency divided by

wy,aly =second and third flap frequencies, non-
dimensionalized by Q

=frequency of ‘‘y’* motion with ‘‘x’* boundary

@,
7 condition, divided by 9; y=uv,m,L—plunge,
pitch, roll x= ¢, /—cantilevered, free
Q = rotor speed, rad/sec

Introduction

HE concept of performing a coupled rotor/airframe

vibration analysis by impedance matching goes back at
least 15 years, Ref. 1. That reference points out two important
facts. First, a coupled rotor/airframe analysis can be per-
formed in a rigorous manner by separate calculation of rotor
and fuselage impedances followed by a matching of forces
and displacements at the hub. Second, the rotor impedance
need only be calculated for a single blade and ihen ap-
propriately transformed to apply to any number of blades.
Ten years later, the method of impedance-matching (for-
mulated a little differently from Ref. 1) was used to illustrate
an important phenomenon.? Namely, rotor loads calculated
for a fixed-hub condition cannot always be applied as simple
forcing functions to a fuselage model. The reason for this is
that the resuitant fuselage motions cause the hub to translate
and rotate which, in turn, can alter the expected loads. This
alteration is not just a small correction, but can be an order-
of-magnitude change. The role of rotor impedance has been
futher studied by Hohenemser® with very interesting con-
clusions that pertain to fuselage design. In particular, he notes

h
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that under certain conditions it may be desirable to tune &

fuselage frequency to the blade passage frequency in order to .

eliminate hud loads. Hohenemser outlines a method of
computing the complete rotor impedance by finite elements
and transfer matrices. Numerical values of the effect of hub
motions on rotor loads are only given for simplified rotor
models, however. Other work on the importance of hub
impedance has appeared in the literature, for example Ref. 4;
but this other work does not bear directly on the resuits
presented here.

The interesting conclusions of Refs. 2 and 3 have raised
some fundamental questions about coupled rotor/body
vibration analyses:

1) If hub motions have such a large effect on loads, why do
present methods (which neglect this effect) show reasonable
correlation?

2) How sophisticated a blade model is necessary for a
realistic model of rotor impedance?

a) Can aerodynamic terms be neglected due to the high
frequency ( ~4/rev)?
used;) Can a constant-coefficient or hover approximation be

¢) How many blade modes are necessary?

d) Must pitch-thrust, roli-thrust, and pitch-roll coupling
be included?

3) Which terms in the impedance matrix are most
responsible for the effects of hub motions on rotor loads?

It should be emphasized that the effects listed above
(aerodynamics, periodic coefficients, blade modes, coupling)
have all been used previously in the calculation of the fixed-
hub loads; but these terms have been omitted in the
calculation of the rotor impedance. It is the purpose of this
paper to study the modeling of rotor impedance and to answer
the above questions.

Rotor Model
The rotor model used here is that of Ref. § but without
reversed flow. The blade is assumed uniform and is described
in terms of modal coordinates in flapping only. The periodic-
coefficient equations are solved by harmonic balance to give a
solution of the form

(Fl=(0](0)+(Z]{z] 1)
where (F} is the vector of the harmonics of loads, {#] is the

vector of controls, and [z} is the vector of harmonics of hub
motions;

r -
{:}Cr "
o5
(Fl= {:}q b, (0= 0o [
{3)es '
9 o
e N\

{5
(2)= 4 {;}_’ r @
{5

and where 2 is plunge, a, is the roil angle, and a, is the pitch
angle of the hub. The matrix [#) represents the rotor loads
with a fixed hub, and the matrix {Z) represents the effect of

JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

hub motions on rotor loads (i.c., the impedance). The ef-
ficiency of the above procedure is one of the advantages of the
harmonic balance approach. The calculation of [8) and | 2Z)
in Eq. (1) need be performed for a single blade only. Sub-
sequently, the corresponding matrices for a b-bladed rotor
can be found by elimination of all harmonics (i.e. rows and
columns) that are not integer multiples of b. (Complete details
arein Ref. $).

The impedance matrix {Z} is the most critical item of the
rotor analysis because it represents the crucial effect of hub
motions on rotor loads. In Ref. 2, this rotor impedance in-
cludes the aerodynamic terms for a rigid, hovering rotor and
the inertial terms for a rotor mass lumped at the hub (i.c. an
infinitely rigid rotor). In the numerical resuits of Ref. 3,
aerodynamic terms are not included; but the inertial terms are
found with the assumption that only one-haif of the rotor
mass is lumped at the hub and that the remaining mass is
suspended on a spring of sufficient stiffness to model
correctly the first flapping frequency. One of the purposes of
this present study is t0 compare the results calculated under
these assumptions with resuits calculated from the complete,
aeroelastic rator impedance.

It should be noted here that the present method of
calculation of rotor impedance has some experimental
verification. Figure 1 shows data for rotor response due to
swashplate oscillation compared with harmonic-balance
results, Ref. 6. The swashpiate responses are sufficiently
similar to shaft responses to indicate that the present method
is reasonably accurate in the frequency range of interest. The
peaks in the curve are the resonancesatp& 1.

Fuselage Model
The fuselage is modeled by 6 modes—a rigid-body and an
elastic degree of freedom in each of the directions plunge,
pitch, and roll. The plunge model, shown in Fig. 2, is a
uniform beam with a lumped mass added at the center. The
beam deflection is expressed in terms of two comparison
functions that multiply two generalized coordinates, 2and 2,

w(R,1) =RL(t) +R (R~ 45)22,(1) 3

where 2 is the hub modon, £, is 4 times the clastic tip
deflection, and £ is the nondimensional distance along the

0
o 13 —— HARMONIC
< BALANCE
Ny 0 O WIND TUNNEL
e TESTS
518
™ 03
0 [ 2 3 4 )

Fig. 1 Comparison of theory (with reversed flow) and experiment
for swash-plate oscillation: p=2.32, ym 5, u= .78,
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beam. The nondimensional equations of motion are

1 2712 2 0 o 2 Cr
+ - E‘: @
20/ 1 z 0 & g 0

where o is the ratio of distributed beam mass to total beam
mass, &2, is the natural frequency of the fuselage when
cantilevered at the hub, Cy is the steady thrust required to
support the fuselage, and g is the nondimensional acceleration
of gravity 2/0°R. The parameters p and ¢, completely
determine the free natural frequency of the fuselage, Jp,.

9 _ .2
d}, = 9—_-5&“ (6})

Structural damping is included by multiplication of the
stiffness matrix by g, to obtain a damping matrix.

Although Eq. (4) describes a beam model of the fuselage,
the equations are completely analogous to those for the much
simpler model of two lumped masses connected by a spring,
as is used in Refs. 2 and 3. In fact, the fuselage impedance of
Ref. 2 is matched by p= .94, g=.02. Thus, there is no fun-
damental difference between the vertical fuselage model of
Refs. | and 2 and that of this work. By extension, one may
also argue that the fuselage impedance used here should be
little different from a single-mode impedance obtained from
more complicated, finite-element fuselage models.

The roil and pitch model used here is illustrated in Fig. 3 for
the case of pitch. The fuselage is considered rigid in pitch but
connected to the rotor hub through a torsional spring. Only
rotational motions are included, and hub or fuselage lateral
motion is reasonably neglected. The resultant equations,
aithough not given here, are exactly analogous to Eq. (4) with
a, (or ) taking the pface of &,; and C; (or Cy) taking the
place of Cr. A lumped inertia at the hub includes tran-
smission mass and hub mass, but not blade mass or rotor
moment of inertia. Details of the model may be found in Ref.
7.

The fuselage impedance for plunge, pitch, and roil is found
by substitution of the appropriate Fourier series for 2, 2, a.,
ag a,, ag, Cr, €y, and C,, into the hub equations followed
by a simple harmonic-balance solution.

(2 [H
{ ‘ = [ ] tFl ()
{2n]) {G]
Here, (4] and [G] are receptances (inverse of impedance).
As before, only integer-muitiple harmonics of the blade

number (5,20, ... ) are retained. Furthermore, higher
harmonics may be truncated as deemed appropriate.

Fig. ) Pitch-roil model.
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Impedance Matching
The combined rotor/fuselage vibrations may be obtained
by the matching of impedances from Eq. (1) with those of Eq.
(6). This implies the matching of harmonics of both loads { F)
and displacements (2} at the interface. Therefore, we have

IF)={8]1(8) +{Z]HIIF] m
or
(F)=(I-(Z)[H]) ~'16](6) ®

Thus, the hud loads including blade motions, [F), are ob-
tained from the fixed-hub loads, [#]{@1], by the appropriate
use of fuselage receptance { H] and rotor impedance {Z]. The
related hub motions (all harmonics) follow immediately from
Eq. (6)-

The efficiency of the calculation in Eq. (8) shouid be em-
phasized here. First, we note that calculation of rotor im-
pedance is by far the most difficult portion of the calculation.
Once [Z] and [#] are calculated for a given rotor, however,
changes in fuselage properties [F] can be made with only a
minor effort. Thus, large-scale investigations into che effects
of fuselage frequency can be performed with a very small
computational effort. When the coupled rotor-fuselage
response is done in one computation, on the other hand, the
computational effort can become forbidding. Another ef-
ficient aspect of Eq. (8) is its potential for rotor trim. A given
Cr. C,, and C,, (the a, portions of {F)) can be casily
matched by solving Eq. (8) for 8,, 95, and 8. (the first three
terms of (#]). This solution involves only the inversion of a
3 X 3 matrix.

Coupled Response

We now apply the foregoing theory to the calculation of
vibrations. To begin, we look at the coupled rotor-fuselage
response of a system with the following baseline parameters.

Rotor: 4 blades, P=1.12, w;=2.5, w;=45, =8,
Cr, = .0l44. CL -0, C,_ -0, CA' ’0, = -3. G.‘ = .07.
0=.07,a=5.73, A= 032, Cr=.0058, Cr/o =083

lea'e: ’.,. = .37, "‘_ = .14, ll.ln. - l.l&:’ﬂ-, G"' - |.53.
@ e = |.4Sd“, G‘lﬁ- = l0.0dc.. dﬂ -3.04.
(:I,'_ -4.47(1-!3, Se28m =8 = 02.

Frequencies with subscript ‘‘c’* denote cantilevered modes in
which the hub degree of freedom (i.e. 2, a,, Or a) is con-
strained but the remainder of the fuselage is free to move
elasticaily. Frequencies with subscript *“f** denote free modes
for which neither the hub nor the fuselage is fixed. For all of
the resuits to follow, the parameters are as above unless
otherwise noted.

The first results to be shown are the 4/rev componeats of
thrust, roll moment, and pitch moment versus the un-
constrained (free) roll and pitch frequencies &, and dpy,,
Figs. 4-6. Results are presented for p=1.03, 1.06, 1.09, and
1.12. Also shown are similar curves, labelled *‘feedback
neglected,” which give the fixed-hub loads. Several in-
teresting characteristics of these curves should be noted. First,
the effect of rotor-body diminishes as i, (and g ) become
{arge. Therefore, for this case, the rigid-body motion is not
playing a significant role. Second, the effect of coupling
dramatically increases as the flapping frequency increases.
This indicates that the rotor inertia plays an important roll,
but that the inertia is isolated from the 4/rev when p is very
close to {.00. Third, the roll (requency greatly affects the
vertical loads, Cr. This implies that aerodynamic coupling is
vitally important and cannot be neglected. Fourth, the roll (or
pitch) moments show peaks when the roll frequency, J, (or
the pitch frequency, J,.) is near 3.7/rev; but they show
valleys when these frequencies are at 4.0/rev. Thus, as




’
2
L]
"
(-]
-
.
[ ]
3
i
0.0 Eem
1.5 2.3 3.5 L2 5.3
A " A b, A A " A A 2 @
2.0 3.0 «.0 s.0 6.0 “n

Fig. 4 4/rev vertical loads ne & functien of plich (and roll) frequency;
1) through 4) refer to p=1.03, 1.06, 1.09, aad 1.12 respectively;
dng =1.18dp,.

0.5

3

Anplitude of ¢, x 107
e
&

-323

0.0 @m
1.5 2.3 3.5 ».5 5.3
. S TN U i A A " U] ;"L

2.9 3.0 4.0 8.0 6.0

Fig. S 4/vev roll loads as s function of piich (and roil) frequency; 1)
through 4) refer (0 p=1.03, 1.06, 1.09, and 1.12 respectively;
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predicted in Ref. 3, designing right on a biade-passage
frequency does lower hub loads. However, as we shall see
later, this does not necessarily mean a lowering of fuselage
vibrations.

We now look at the effect of damping on these resuits.
Figure 7 gives C), versus u, at p=1.12 for two values of
structural damping g. (Percent critical damping is roughly g/2
for these cases.) Magnitude and phase are both piotted.
Several things are noteworthy. First, we see that with only
.002 damping, the pitch moment goes to zero, at uj, =4.0 as
predicted in Ref. 3. Also noted are peaks at points for which
Spm OF dg is 3.7. Thus, with small damping, the pitch-roll
coupling is apparent (two peaks) while at large damping it is
less noticeable (one peak). The phase behavior is also in-
teresting and shows that significant phase shifts do occur near
4/rev. (The phase here is taken as the arctangent of the sindy
component divided by the cos4y component of Cy,). In Fig. 8,
we see the behavior of the fuselage pitch angle for the iden-
tical range of frequencies. The curves reveal three important
behaviors. First of all, the uncouplied analysis predicts a peak
at dy, =4.0 whereas the coupled analysis shows the peak at
@pe=3.7. This is indicative of the fact that the natural
frequency with the rotor is different from the frequency
without the rotor. Second, although the pitching moment is
essentially zero at dy, =4.0, g, =.002, the response at
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pw = 4.0 is very high. Therefore, setting C, to zero by tuning
to 4/rev does not minimize vibrations and would probably not
be a good design choice.

The physical interpretation of this is as follows. First, as the
naturai frequency approaches 4.0, the receptance of the
fuselage goes to infinity (for zero damping) as is the case with
all oscillators. Second, since H approaches infinity in
equations (6) and (7), F must approach zero (as pointed out in
Ref. 3). However, even though the force goes to zero, the
response does not go to zero. This can be seen from Eq. (1)
which shows that F=0 does not imply Z=0. Thus the zero
force and infinite receptance combine to create a finite
response. Also, the phase angle here is very important in that
fuselage vibrations will be a combination of pitch and plunge.
Thus, relative phasings are crucial. A final look at the effect
of damping is given in Fig. 9. which shows fuselage plunge
amplitude versus pitch frequency. The importance of dam-
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ping and the strong coupling between pitch and plunge are
clearly evident. Thus, the result without the effect of hub
mations on loads is inadequate.

The preceding results have centered on the effect of pitch
and roll frequency. We now turn to the effect of vertical (or
plunge) frequency, Jj,. Figure 10 shows the 4/rev Cr asa
function of J,,. The large differences between curves with and
without the *‘feedback'* ofhub motions is due primarily to the
effect of pitching and roll frequency, as seen previously in
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Fig. 4. However, the effect of elastic, vertical motions is also
seen to be significant, as indicated by the local decrease in Cr
near J,, = 4.0. Two curves with feedback are shown. The solid
curve corresponds to 94% of the fuselage mass distributed
along the beam and 40% lumped at the hub. The phase angle
is fairly constant in either case. Figure 11 shows the vertical
hub motion for the same parameter range. As might be ex.
pected, the hub motion is greater when less mass is lumped at
the hub. Although C, shows a minimum near Jy, =4.0.2

shows a pronouned peak at by, =4.0. Figure 12 gives the total
vertical motion along the fuselage versus J, - (2=.5 is the
hub). The cucrve for W, = 4.0 is dashed simply for clarity. The
curves show that not only does the hub motion peak near
Jp, 4.0, but the tip motion also peaks. The symmetcy of the
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curves about £=0.5 indicates, for this case, the relative
dominance of hub vertical terms over pitch terms, since both
effects add to give the vertical motion along the beam.
Although not shown here, the vibratory pitch and roll
moments are virtually unchanged by Jj,.

So far, we have investigated the eﬁm of the first blade
flapping frequency and the effects of several fuselage
parameters. We now look at the effect of the blade second
flap frequency, w,, Fig. 13. (The third flap frequency, w,, is
varied as 1.8 w,.) The second flap frequency is seen to greatly
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Fig. 14 Fuselage vertical motion a¢ a function of biade second and
third flsp mode frequency; w; = 1.3 ;.

affect the 4/rev thrust response. There is a dramatic rise in
4/rev Cy between w, = 2.5 (about the lowest value physically
possible) and w; =3.0. The effect at w, =3.0 indicates a
response of the cyclic flapping modes at (w; +1). A second
peak is seen at w, = 4.0 and indicates coupling with a coning
mode. For w; > 3.0, the effect of hub motions is significant.
Figure 14 gives a more detailed account of how fuselage
motions at various points along the beam are affected by w,.
The large dissymmetries for w,>2.5 indicate that pitch
moments are playing a dominant role. A near anti-node is
noted at £ = .8 when w, is near 3.0.

Elements of Rotor Impedance

Now that we have taken a general look at the effect of
rotor/body coupling on loads and vibrations, we are in a
position to determine which terms in the rotor impedance
matrix are the primary contributors to these effects. The rotor
impedance matrix { Z] is a rather complicated array, and we
need to consider it in detail before going on. In general, {Z]
represents the response of every sine and cosine harmonic of
Cy, C;. and Cy, to every sine and cosine harmonic of the
motions 2, a,, and a.. For simplicity, let us momentarily
consider only Cy due to £ for a b-bladed rotor. We will also
neglect harmonics of order 3b and higher. This yields

a, Aw Ag Au Aay A a,

a A Ay Ay Ay Ay a
ay = | Ax Ay Ay Ay Ay a
b, A Ay Apn Ay A b,
bn Jc, L Aw Au Aq Ay Au biu Js

L)

where A, are the eiements of (Z]. In general, elements with
zero subscripts are not relevant because higher harmonic
motion has litte effect on steady ioads, and steady motions
(with the exception of a.) do not effect higher harmonic
loads.
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The dominant terms in Eq. (9) are those terms that relate
the various harmonics at the fundamental blade-passage
frequency, b/rev.

These terms are A, A, Ay, and A,,. For a purely
constant-coefficient system, these terms wouid obey the
equalities 4,, =A,;, Ay; = —A,;. For a periodic-coefficient
system, however, these equalities do not necessarily hoid. The
numerical resuits of our work have shown, however, that the
equalities are good approximations for b2 3 (rotors with 3 or
more blades). For two-bladed rotors, on the other hand, the
equalities are definitely not valid. These observations couid
lead one to believe that a constant-coefficient approximation
might be valid for calculation of rotor impedance when b 3.
No such approximation is used here, however. We will say
more about constant-coefficients shortly.

In order to gain a better understanding of the effects of
rotor impedance, pertinent coefficients are defined in the
following manner. For example, for b=3 in Eq. (9), the
relationship between 3/rev Cr and 3/rev 2 is summarized by
the following coefficient,

Cry/2y =V 15 (A + A} + A} +4%) 10

Similarly, the refationship between 6/rev Cr and 3/rev 2 is
summarized as

Cre/2s mV 15(A3, +AY + A%, +A%) (n

Parailel definitions apply for other harmonics, for other
loadings (Cy, and C,), and for other hub motions (o, and a).
An interesting aspect of the coupling between different
harmonics, as in Eq. (11), is that such coupling would be
identically zero in a constant-coefficient system. The results to
follow, however, show that significant magnitudes can occur
for such terms. Therefore, attempts at a constant-coefficient
approximation for rotor impedance in forward flight may not
be valid in the presence of significant higher-harmonic loads.
Thus, the tentative conclusion of this work is that a constant-
coefficient approximation is valid for b23 provided that
2b/rev loads are negligible with respect to b/rev loads.

Figure 15 provides a typical plot of the 3/rev impedance
elements averaged as in Eq. (10). The solid lines are the exact
values versus advance ratio, and the dashed lines are values
calcuiated from inertial effects only (aerodynamics neglected
as in a vacuum). The couplings between vertical and roll-pitch
(C3/25, Cua/2y. Cr3/ay, Cry/ay) are zero for the vacuum
calculation. Several interesting observations can be made
from this figure and comparisons with the results in Figs. 4-
14, First, as previously mentioned, the vertical frequency does

Fig. 1S Elements of impedance matrix, 3/rev com. %
ponents; p=1.15, 0y = 3.7, w; = 8.8, a=8.2.

not affect roll and pitch vibrations. Therefore, C;,/2; and
Cye/2; must not significantly contribute to the role of rotor
impedance on vibrations. Also, the fact that roll and pitch
frequencies do affect thrust indicates that Cp/a, and
Cp/a. are important terms. It further follows that the
vacuum approximation, which gives zero for these terms,
would not be adequate. Furthermore, this shows that not even
the hover impedance, which also shows zero coupling, wouid
be adequate to model this important thrust-roll-pitch
coupling,

There are two interesting aspects of Fig. 15 which bear on
the presentation of subsequent results. First, we note that
Cy/2; and C,y/2 are comparable in magnitude to the
complementary terms Cry/a,; and Cry/a.y. Nevertheless, we
have found that the 2 derivatives have negligible effect on roll
and pitch whereas the a derivatives have a large effect on
thrust. The reason for this is that piunge magnitudes are
generally much smaller than roll and pitch magnitudes.
Therefore, since the C, and C,, derivatives with Z have little
effect or response, they will not be shown in subsequent
graphs. The second interesting aspect of Fig. 15 is the fact that
Cu/l!u -CMJ/ad and Cy)/au -CIJ/“rJ' These ap-
proximate equalities have been found to hold for ail
parameters and at all harmonics. Therefore, the two roil-
moment derivatives will not be shown in subsequent graphs,
as they may be inferred from the pitch-moment derivatives.

One last note on Fig. 15 is the variation in curves with x.
Curves linear with u imply an effect due to coupling terms of
the type usiny or ucosy. Higher-order curvature represents
the coupling effects of higher powers of x and higher har-
monics of y. It is interesting that the pitch and roil
derivatives, although constant with x, are not well ap-
proximated by a vacuum analysis. The error is 20% for
CMJ /gy and 50% for CM’ /ay;.

The five essential elements of the impedance matrix,
averaged as in Eq. (11), are shown in Fig. 16 for a
representative configuration for the 3/rev loads due to 6/rev
motions and 6/rev loads due to 6/rev motions. The parabolic
characteristic of the thrust/roll couplings indicates the effect
of higher-harmonic periodic coefficients. The total effect of
these terms on 3/rev response, however, is dependent on the
amount of 6/rev motion of ¢, a,, and a.. The counterpart
derivatives, 6/rev loads due to 3/rev motions, are almost
identical.

Figure 17 provides the impedance terms for 4/rev loads due
to 4/rev motion. The curves are qualitatively similar to those
for 3/rev, Fig. 15; but the magnitude of thrust/roll and
thrust/pitch coupling is larger for this case. Another dif-
ference between Figs. 15 and 17 is that the Cr, /2, derivative is
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much larger than its 3/rev counterpart and is not well-
approximated by the vacuum calculation. This increase in
aerodynamic effect is present despite a lower Lock number in
Fig. 17 than in Fig. 15.

The direct effect of Lock number can be seen in Fig. 18.
The flapping frequency is the same as in Fig. 17, but only a
single, straight-line mode is used. Curves which approach «
as y approaches zero indicate inertial effects. It should be
pointed out the C, refers 10 the fourth harmonic of Cr/ca.
Therefore, y going to zero implies ‘2’ going to zero and
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C‘r/oa going to infinity. (Vacuum curves on previous plots
assume Cr/0a normalized on a nominai value of "*a’* which
remains constant in a vacuum). The curves that remain finite
as y~0 show entirely aerodynamic effects.

It may be recailed that Figs. 4, 5, and 6 indicate a strong
effect of flapping frequency on the coupled rotor/fuselage
response. Figure 19a provides plots of impedance ciements
versus flapping frequency for a 4-bladed rotor. Several in-
teresting conclusions can be drawn. First, the C,/2,
derivative is not a strong function of p in this frequency
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range. Therefore, the large effect of p on C; in Fig. 4 must be
attributed (o the coupling terms Cr,/a,, and Cr¢/a., which
are dependent on p. [t must also be pointed out, however, that
Cr /8, is stongly dependent on flap frequency at higher
values of p, Fig. 19¢. In fact, for a single rigid mode and fora
uniform blade, Cr,/2, drops to zero at pm2 (the blade
becomes an absorber) and increases dramatically beyond that.
Thus, analyses that assume a lumped rotor mass (p=oo)
cannot be expected to give accurate rotor impedance. Another
interesting aspect of Fig. 19a is the complex behavior of
several elements of {Z] as p ’s varied. This indicates complex

dynamic interactions between aerodynamic and inertial terms.
Calculations at higher values of p show that these interactions
are strongly p-dependent even for p> 2. Similar conclusions
hold for phase angles, Fig. 19b.

The final figure to be considered here is the effect of second
flap frequency on the rotor impedance, Fig. 20. The
motivation here results from the strong effect of w, seen in
Fig. 13. There are several noteworthy points in Fig. 20. First,
we note the total inadequacy of the vacuum approximation.
The infinite peaks of that approximation (at w,;=13.0,
w, =3.0, and w; =4.0) are simply not realized in the presence
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of aerodynamic damping. This is a companion result to that
of Fig. 7. The earlier figure shows that results without
structural damping are invalid, and Fig. 20 shows that resuits
without aerodynamic damping are invalid, even when w; is
not directly at a resonance point. On the other hand, despite
the large effect of damping, the resonance and antiresonance
effects of higher modes are still clearly seen in the results,
although diminished. Thus, higher modes play a large role in
rotor impedance.

Conclusions
Detailed caiculations of rotor impedance in flapping only
have been calculated for a wide range of rotor parameters.
These impedances have been used to calculate the coupled
rotor/airframe response of helicopters. The theory, and
several hundred figures showing the resuits, can be found in
Ref. 7. A few of the more interesting curves have been
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presented here. The conclusions of these results are:

1) Hub motions can greatly affect hub loads with the most
dramatic effects being for relatively stiff rotors.

2) There is a very large affect of pitch and roll motions on
vertical response, but little effect of vertical motion on pitch
and roll response,

3) Stuctural damping in the fuselage plays a dominani role,
with as little as 1% critical damping changing the entire
character of the fuselage vibrations.

4) Higher-frequency flap modes can greatly affect the
coupled response and can alter the relative contributions of
pitch and plunge motions.

$) Vacuum, lumped mass, and hover approximations of
the rotor impedance are entirely inadequate.

6) A constant-coefficient approximation to rotor im-
pedance may be valid under certain conditions, but must be
used with caution when higher-harmonic loads are present,
due to significant cross-harmonic coupling.

7) The effects of Lock number, first flapping frequeacy,
and higher flapping frequencies are strongly interdependent
and depend upon a complicated balance of inertial and
aerodynamic terms.
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Abstract

A dynamic analysis of a single-section model of helicopter blade is

performed including an analytic model of dymamic stall. This stall model,

1 a simplified version of the model introduced by Tran and Petotl, character-

izes the lift force on the blade section throughout both the linear and
non-linear regimes of angle of attack. The resultant, nonlinear blade
equations are solved by numerical integration for the periodic, forced
response. Perturbation equations, written for small disturbances about

this equilibrium, provide eigenvalue and stability information by means

of Floquet theory.




ii
Notation
a = linear static lift curve slope, per degree
a = linear static lift curve slope, per radian )
a; = coefficients of the non~linear static lift curve polynomial
b = blade element semi-chord, equal to ¢/2, m
c " = blade element chord, m
¢ = phase shift parameter
Cz = total lift coefficient, lift measured normal to free stream,
Cz + Cz
1 2

= 1ift coefficient in linear regime

= 1lift coefficient in non-~linear regime

= gtatic lift coefficient in linear regime

= gtatic lift coefficient, approximate expression
= actual static 1lift coefficient

= difference between the extended linear static 1lift coefficient

(Cz ) and the actual static lift coefficient (Cz )
2 o

= blade element span, m
= mass moment of inertia of blade section about center of
rotation, kg-m2 = mx2
= reduced frequency k = wb/fx
= ratio of semi-chord to radial position = b/x
= blade flapping restraint spring, N-m/rad, Figure 5 |

= Mach number
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m = mass of blade section, kg

P = non-dimensional blade flapping frequency, per revolution,v l-i-kB/S'ZZI“7
A = apparent mass parameter, equation (2)

t = time, sec

u(6) = ynit step function

U = forward velocity of rotor center, m/sec

= gaverage blade element velocity, V = 0x, m/sec

= distance from center of rotation, m

= damping parameter, equation (2)

= blade flapping angle, deg

= Lock number based on equivalent blade damping, 80§bdx3/Iy

= natural frequency parameter, equation (2)

= parameter relating lift and airfoil pitch rate, equation (2)

= gystem eigenvalue

= total aerodynamic angle of attack, deg

= mean angle of attack (collective pitch minus inflow angle), deg

= cyclic pitch, deg
= girfoil angle of attack at which 1lift departs from linearity, deg

= amplitude of airfoil oscillation, deg

= time delay parameter, equation (2)

= local advance ratio at blade section, U/(x

= equivalent advance ratio of uniform blade, u = .750
= reduced time, T = Oxt/b

= azimuth angle, ¥ = {Qt = kt

= rotor speed, rad/sec

= airfoil frequency of pitch oscillation, rad/sec
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* k%

(), ) = 3/3rt, 82/312 (derivatives with respect to reduced time, T)
g = periodic, forced response of ( )

(Jp = perturbation to (




Introduction

The phenomenon of dynamic stall is known to be important for the dynamic
analysis of helicopter rotors in forward flight, Reference 2. Consequently, a
great deal of effort has gone into the development of analytic methods that
will predict the behavior of both rotor 1ift and section pitching moment
during dynamic stall. The most general methods available are based on
tabulated data in a three~dimensional array (angle of attack, reduced pitch
rate, reduced pitch acceleration) with an appropriate correction for local
Mach number, References 3 and 4. Other methods of analysis have attempted to
replace the large arrays of tabulated data with analytic expressions. References
5, 6, and 7 outline a method in which dynamic stall is treated as in impulse
loading that occurs when stall is encountered and that decays following the
stall event. References 8 and 9 describe a method based on a dynamic (or
equivalent) angle of attack. The appropriate 1lift coefficient is chosen as
the smaller of two formulas, based on this equivalent angle. Similar work
has included a more detailed analysis to predict the onset of stall, Reference 10.
This work also includes a time delay factor to account for the finite time
required to shed vorticity.

Other work in dynamic stall has concentrated on the reduction of the large
volumes of lift and moment data (i.e. the three-dimensional tables) to compact
analytic expressions. In Reference 11, dynamic stall data is represented in
terms of 47 parameters that synthesize the measured data. In Reference 12, this
same method is extended (by the introduction of an equivalent angle of attack)
to include arbitrary time variations in pitching motions. The equivalent angle
of attack is based on Duhamel's integral with the Wagner function chosen as the
unit step response to pitch. The results indicate good agreement with

measurements.
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In Reference 1, an alternative method is introduced for the calculation
of dynamic stall; and that method is the subject of this paper. The model
in Reference 1 describes the lift and moment coefficients in terms of ordinary
differential equations. The equations are of first order in the linear
regime, and they are of third order in the nonlinear regime. They include
an analytic approximation to the static 1lift and pitching moment data as well
as 12 coefficients (6 for lift, 6 for moment) that are chosen based on experi-
mental data. These coefficients are identified as functions of angle of attack
by parameter identification applied to + 1° oscillations about each mean angle
of attack at various reduced frequencies. The resultant, identified equations
are used to simulate lift and moment for + 6° oscillations about various mean
angles of attack; and these show good correlation for angles of attack up to
23°. Reynold's number effects are included implicitly (as in other stall models)
implicitly from the Reynold's number of the data base. Mach number can be
included in a similar manner or from a local Mach number correction. In
Reference 13, this stall model is applied to the dynamic response of a
helicopter blade including stability and forced response.

The work reported in this paper is part of a larger research effort to
study the stall model of Reference 1 in several ways. First, we wish to
study the dynamic characteristics of the stall model including the relative
importance of the parameters. Second, we wish to study the implementation
of the model on helicopter problems. Of particular interest is the ease with
which differential equations can be incorporated into conventional rotor
analyses. (Such equations are easily linearized to obtain conventional
stability information.) Third, we wish to study the physical basis of the

theory including its extension to include unsteady free stream, very large
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angles of attack, and plunge (as well as pitch) motions. This present
paper is based on the work in Reference 14 but addresses only the lift response
for a single, rotating blade section. This study of the sectional properties
provides the foundation for the continuing work being done with the model
(e.g. Reference 15) in which an entire blade is considered. Despite the fact
that the model in question has already been applied to an entire rotor blade
in Reference 13, we believe that much basic research still needs to be done
to better understand the model and to more consistently apply it to rotor
problems. We emphasize that the purpose of this paper is not to assess the
accuracy of the method with respect to other dynamic stall models. Rather,
the purpose of the paper is to study the basic behavior of this model, as

defined in References 1 and 13.




Stall Model

The analytical stall model presented here is that of Reference 1.
The model consists of three equations that relate the lift coefficient
of an airfoil to its angle of attack as follows

* -
C, +XC, =AC, + (Aaké) § +.48"
1 1 Z

% — -2 2 -2 2 — dc,
C +2 + - - —_—
z, uyczz Yy (1+a™) sz Y (1+a™) ACz +C %8 8

where Cz1 and sz are the 1lift coefficients in the linear and non~linear
regions of angle of attack, © is the total aerodynamic angle of attack of
the airfoil, CZR is the static lift coefficient in the linear region of
angle of attack, dcz is the difference between the extended linear lift
curve (sz = 38) and the actual static lift curve (Cz ), and Cz is the
resulting total lift coefficient. The parameters X,A'(,).S,d, v, & are
functions of blade angle of attack alone (for a given airfoil, Reynolds
number, and Mach number) and must be determined from wind tunnel tests by
parameter identification.

The parameters in equation (1) have direct physical interpretations
in terms of classical, unsteady aerodynamics, Reference 16. The parameter
is the time-delay parameter associated with the 1ift deficiency function.
It provides for changes in magnitude and phase of the lift. The parameter
represents lift due to pitch rate. The parameter A is the apparent mass
term. The parameters in equation (2) are associated with the stall

phenomenon. In particular, o< is a damping parameter: Y' is the frequency

(1
)
(3)
1
A
S
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of the stall response, and C is a phase shift parameter associated with the
stall response.
The above parameters have been identified for an 0A212 airfoil at

0.3 Mach number, Reference 17. The static values (Cz . Acz, aACz/cDG)

R
are approximated in Reference 1 by polynomial approximations. The other
parameters are found as functions of mean angle attack from experimental
data at + 1° oscillations about each mean angle. (The identified parameters
are later verified by comparisons with data at + 6° oscillations.) Since
the tests were performed over a range of reduced frequencies, the resultant
parameters are independent of reduced frequency. Thus, k = wb/9x does not
enter explicitly into the equations. It only enters indirectly (for harmonic
excitation) through the Ez and Ei terms. Thus, the equations are applicable
to arbitrary blade motion and not just simple harmonic motion.

The above stall parameters are representéd by simplified functiomsof &

that approximate the true, identified.values. These functions are given by

Reference 17.

A=0.2 4
A = 57r/180 (5)
§ = i_ce.;x ~ A5 1+ 1.43 ac)] (6)
¥ = 0.10 +0.023 (6-13°) u(® -13°) N
X = O.O85/ 1 (8)
€ =2-5.1c¢tan"t {1.21(e -13°)} u(®-13°) 9

The stazic 1ift curve of the 0A212 airfoil is presented in Figure 1.

The curve ig defined in the linear region by the equation

0 <6, (10)
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and in the non-linear region by the seventh order polynomidal

7
c, = z a, (8-100" for 8 >0 _ =10° (11)
S =0

where the a, are given in Reference 17 as
a = 1,24
a = 0.124
= -0.0630597 (12)
= 0.01395201
= -0.0017390851
= 0.00012451913

= -4.6849257 x 10~°

= 7.087973 x 10~8

As mentioned earlier, the above stall model (with the appropriate parameters)
has been applied to correlate large oscilllation wind tunnel test data. The
results, given in Reference l,are very encouraging. They show that the model
is indeed capable of describing the major dynamic stall characteristics of
airfoils.

It should be noted here that the polynomial in equation (1ll) diverges
for @ > 30°, as seen in Figure 1., Therefore, for the work presented here,
Czs is held constant at 0.126 for © 2 26°,

Equations (1)-(3) comprise a description of dynamic stall that is

amazingly simple to use. The model is composed of differential equations that

describe lift in a context similar to the manner in which the other differential

equations describe blade motions. Cz and Cz are always present (no switching
1 2
on or off is necessary); but,in the linear regime ,ACZ is zero so that Cz has
el
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no excitation (it decays to zero on its own). Similarly, the Cz equation
1

is always operative; but,in the unstalled region,it becomes a linear

equation. It is the ease of utility of this model that provides the

motivation to study it.
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Verification and Simplification of Stall Model

The first step in the present application of the stall model to rotor

dynamic analysis is to verify the validity of the mndel by reproduction of

the previously published 1ift hysteresis loops. Thus the stall model, 3
equacionsGFG%has been transformed into a computer code that uses a

Runge-Kutta method of numerical integration for solution. Figure 2 shows the
results of this analysis in the form of Cz versus © . The mean angle of

attack, oscillatory angle of attack, and blade parameters were chosen to match
the examples given in Reference 1 in order to facilitate the comparison. The
results of our computations generally duplicate the published data of Reference 1
for mean angles of attack of 11° or less. The hysteresis loops tend to take on
an ellipsoidal appearance when angle-of-attack excursions do not exceed the
static stall angle of attack. As slightly higher mean angles of attack are
encountered, the loops tend to take on figure eight shapes; and at mean angles

of attack well above stall, the loops are more erratic. For mean angles of
attach between 12° and 14°, however, oscillations appear in the return portion

of the present 1lift curves; and these are not found in the published data of
Reference 1. Numerical convergence tests on the solution have revealed that
these oscillations do indeed occur from the correct numerical solution of
equations (1)-(3). However, if a relatively course step size is used in the
integration, the oscillations are effectively filtered out of the response;

and the smooth curves of Reference 1 appear. We have verified this by

numerical experiments with validated integration codes. It mav be that such

an unconscious filtering occurs in Reference 1, thus explaining the lack of

oscillations in those results.
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The oscillations in the return strokes of Figure 2 are rather interesting
from a theoretical standpoint in that similar oscillations appear in some
experimental data, such as that reported in Reference 12. In other frequency-
regsponse tests, however, data are often averaged over many hysteresis loops.
This averaging (along with the frequency-response characteristics of
instrumentation) sometimes can mask such oscillations. Thus, they do not
always appear in published data. However, the presence of these oscillations
in the data of Reference l2yand in the model of Reference 1, may indicate
that the oscillations in Figure 2 represent a true simulation of a physical ]
phenomenon.

The next step in the research reported here, is to study the stall

model for possible simplifications. A natural candidate for simplification

is the elimination of some of the time derivative terms involving Ef and 45
(apparent mass and angular rate terms). These terms are good candidates for
elimination on at least two counts. First, they are almost always eliminated
in simplified rotor-blade analyses; and, second, their retention (especially é;)
results in a cumbersome complication in the state variable equations for rotor
flapping. Therefore, it is useful to study the effects of E; and 2; terms on
the stall model. In the first study, the lift hysteresis loops are generated
with 13,25, $=C in equations (1) and (2) (no Z; or 2; terms). Figure 3
shows Cz versus © for &a=6° and at four typical mean angles of attack. The
resulting plots are not at all similar to the original results presented in
Figure 2. Therefore, the stall model is oversimplified by elimination of all
three parameters. Further investigation, however, shows that setting only

the parameter 4 to 0 produces a much smaller effect on the hvsteresis loops.

An example is given in Figure 4 which gives Cz versus & with the & = 0,
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k = .05. Similar runs have been made for 0 < ©,< 17° and .05 < & < .15.
These all show that Q can be deleted from the stall model without a major
change in the response. One might argue that unly the 2; should be removed
from equation (1) with .4 remaining on the éa term. As it turns out,
however, .A 1is only 12% of the total & tern (AN+*$) so that either
approx;mation would be valid, although including the é? will be slightly
more accurate. In the remainder of this paper, the stall model of Tran and

Petot, equations (1)-(3), will be used with the parameter -4 set to zero.

This will be referred to as the "simplified stall model."
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that the typical section in Figure 5 1s at the 3/4 blade radius. Thus, we have

the definitions

3 - o - 3 3
- = {
A= A% M= ax, M A
where//A is the dynamic equivalent to the advance ratio of a uniform blade,
and})x is the local advance ratio at the blade section.
The above definitions give flapping equations of the following form.
(Details are given in Reference l4.)

* % 2 Y 2 Go(e,T) — \Z ,
2R = = k -—-—-—-—(I—i— fsin.kT, s )
Several aspects of equation (15) are noteworthy. First, the equation
results directly from Newton's laws applied to the blade moael in Figure § with
i
lift given by the lift coefficient multiplied by l/Z/O(V + U sin¥)”. Second,
the equation is writtem in terms of reduced time, T , rather than in terms of

real time, t, or azimuth angle, V¥ . The transformation from T to either t

or V¥ 1is easily made, however, by the definitions of these parameters.

=R, k= X, YEhDoaT e

We have followed the suggestion of References (1) and (13) in using onlv the
mean portion of velocity, XX, in the reduced time. (For further discussion of
this assumption see Reference 15.) Note that the definition of k in equarion
(16b) is independent of any frequency. It is simplv a measure of the ratio of

blade chord to radial position. A final comment on equation (15) is with

", ;e
.

respect to the parameters "'a" and "a The parameter a is the nominal lift-

curve slope used in the definition of \! , with cne alteration. In \' , we use
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Rotor Blade Model

The rotor blade model used in the dynmamics application of the simplified
stall model is presented in Figure 5. The model consists of a single blade
section located at a radial position x from the center of rotation. A single
blade section is used to facilitate investigation of the model. Since any
blade can be considered as a composite of such sections, this analysis forms
the foundation for future work with an entire blade, for example Reference 15.
Three virtual forces act on the blade element: 1) the centrifugal force, F3,
2) the D'Alembert Force, ﬁz, and 3) the normal lift force, L, which is a
function of angle of attack, © , and reduced time, T . The blade is allowed
to flap with angle, /3, and is restrained in the flapping direction by a root
spring, kg . The angular velocity of the blade element about the hub is «a.
Physical dimensions of the element are ¢ (the chord), 4 (the span), and b
(the semi-chord).

Obviously, the model depicted in Figure 5 is far from an actual helicopter
rotor blade. However, please recall that we wish to study the behavior of the
stall model for a typical section. It follows, that we would like the model
in Figure 5 to be the dynamic equivalent of a uniform rotor blade. This will
give the most realistic response and the most valuable comparisons. Dynamic

equivalence in hover is obtained by the definitions

Y{-‘-' 8/05 bdx/l—f , P‘_:\/ i-f- :—r (\Sna,b\’

Although this YA may look cosmetically different from the conventional
definition of Lock number, it is actually the exact dynamic equivalent.

Similarly the best forward-flight equivalence is found under the assumption
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that the typical section in Figure 5 is at the 3/4 blade radius. Thus, we have

the definitions

3L - _ 4 - 32 7
A= 40X //L4‘— SLX //L( ‘f//[

where//A is the dynamic equivalent to the advance ratio of a uniform blade,
and})x is the local advance ratio at the blade sectionm.
The above definitions give flapping equations of the following form.

(Details are given in Reference 1l4.)

* ¥ 2

/3 wész = ‘g/k Q—(Eﬁ\@*/’s‘““\z (s

Several aspects of equation (15) are noteworthy. First, the equation
results directly from Newton's laws applied to the blade model in Figure 5 with
lift given by the lift coefficient multiplied by l/Z/O(V + U sinkv)z. Second,
the equation is written in terms of reduced time, ‘T , rather than in terms of
real time, t, or azimuth angle, 4/. The transformation from T to either t

or ¥ 1is easily made, however, by the definitions of these parameters.

T=r, k= X, Y= AT-2T e

We have followed the suggestion of References (1) and (13) in using onlv the
mean portion of velocity, S1X, in the reduced time. (For further discussion of
this assumption see Reference 15.) Note that the definition of k in equation
(16b) is independent of any frequency. It is simply a measure of the ratio of
blade chord to radial position. A final comment on equation (15) is with

1t non

respect to the parameters ''a" and "a'". The parameter a is the nominal lift-

curve slope used in the definition of \/ , with one alteration. In Y' , we use




a" as "per radian" to conform with conventional definitions. In the

denominator of equation (15), however, we use "a" as "per degree". This

effectively converts B to degrees in the equation.

The simplified stall model enters equation (15) in that
"Cz( et)s= Czl + sz" is described by equations (1)-(3), the stall model
under investigation. Of importance here is the fact that Cz is a function of
& and é wt.xich, in turn, are functions of 2 and /,3 . In particular, the

total aerodynamic angle of attack and its derivative can be approximated by

the expressions

S =S, +& Sin (kt\':- & cos (kT

J:,g Jk + 7 Bcos (kT G \
| £ 7 s (kT

3 - eskcoskt - ecks:l.nk‘t -

[ *8/% + uBcos(kr) - ggksin(kt)]
1 + usin(kr)

. [E’écosgkq + gzgkcosszﬂ ] (e \

(1 + usin(kt))>

where we have assumed tan © = © in determining the angle of attack due to /3 .
(This assumption breaks down, however, for /M— > .3 as is discussed in
Reference 15.) Equatién (17) implies more than just a coupling between the

/3 and Cz equations. It also implies a nonlinearity in the system beyond

the loss of lift in stall. To be precise, we recall that some of the
coefficients of the C, equation ( 5, ?, o and a ) depend explicitly

on © , equations (6)-(9). Equation (17), therefore, implies more than

just a time variation of these parameters; it also implies a nonlinear

dependence with /A3 .

. ] N 7 : 1




One will also notice that the induced flow does not appear explicitly
in equation (17). Recall, however, that we are dealing only with a single
gsection. Thus, any radial variation of induced flow does not enter the
problem. It follows that the induced flow can be considered as part of
S0, &5, and ©. with no loss of generality. The values of S and ©
used in this present analysis are based on approximate trim formulas
developed in Reference 14, which are based on a harmonic balance of the
flapping equations in the unstalled regime with €95 and & chosen so as
to set the first-harmonic flapping to zero. For small k, these formulas are

well approximated by

Ss = ~FH4 (14)

o, - {. Ao - Bk 5o) 4 Gy @)

In the results presented here, theAquasi-steady version of equation (20)

is used (k = 0) with little loss of accuracy. It is emphasized, however,
that equations (19) and (20) do not eliminate cyclic flapping when the blade
section is stalled. A discussion of trim under stalled conditions is given
in Reference 15.

Before proceeding to numerical results, there are some aspects of the
theory of Reference (1) that need further comment. First, the model of
Reference 1 does not distinguish between angle of attack due to blade pitch
and angle of attack due to vertical velocity components. Both are treated
identically in equations (17) and (18). It is evident from Reference 18,

*
however, that these ought to be treated differently in the © term.
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Reference 18 convincingly shows that éb should only include the rotation of
the airfoil with respect to the air mass. Thus, only the geometric pitch
rate should be included. Furthermore, Reference 18 shows that the component
of .\ along the blade, -S.Sin A , should also be included. Thus, a more

*
consistent & would be

& = S, kcos(kD) - Sk sin (kD) + A/ (21

A second aspect of the model of Reference (1) is that the theory and experi-
ments of Reference 1 are for a constant free stream, although the authors suggest
that the theory may be extended to unsteady free stream by use of the average
velocity (in defining reduced time) and by implementation of the unsteady veloc-
{ty in both the lift expression, cz(v + U sin¥y )2, and in the angle of
attack. Again, however, the linear, unsteady aerodynamic theory in Reference 19
shows that this is not the best way to extend unsteady aerodynamics to the case
of oscillatory free stream. (In particular, extension to unsteady free stream
must be done for the circulation equations and not for 1ift coefficient.)
Nevertheless, in the work here we apply the stall model in exactly the way )
suggested in Reference 1. The errors introduced by the above anomalies are
treated in Reference 15 and in ongoing research. A third aspect of the Tran
and Petot model deals with the apparent mass terms. If ,Ats is retained in
the equations, then 2; introduces fZ? , a8 can be seen by inspection of
equation (18). This necessitates an extra state variable, 25 , in the system
equations. Thus, there is an advantage to neglect this term as we have done.

As a final comment on the model of Reference 1, we note that the model is
identified for a nonrotating airfoil. One might expect differences in the lift

for rotating and nonrotating airfoils in the same way that Loewy's theory

differs from Theodorsen's (as function of thrust and number of blades), Reference 20.
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However, there is nothing in the theory to imply that the parameters could not
be just as well identified for a rotating airfoil. Thus, we proceed with the

study and apply the parameters of equation (4)-(9) to a rotor-blade section.
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Time History Solutions

The combined set of simplified-stall-model and blade-dynamic equations

form a fifth-order system (2nd order /3, lst order C, » 2nd order c, ).

1 " 2
State variables are introduced into this system (y1 R ¥, " A, vy = cz .
1
Y, - Cz » Y5 = E; ) and the resulting equations are solved by use of a
2 2

predictor-corrector numerical integration. The time history is begun with
zero initial conditions and is continued over a sufficient number of cycles
to ensure that all transients have decayed. (Usually, six to ten cycles are !
sufficient to obtain convergence.) The forced response of the combined

stall-model, blade-dynamics system is calculated initially for the following

baseline parameters

M =0.30, k = 0.05, Y=6.0,p=1.0,d=0.20 (22a-e)

The choice, k = .05, implies b/x = .05. Later on, variations will be made

in ‘/7 and k. The pitch angle ©, 1s specified as 10° so that the airfoil

will oscillate well into the linsar and non-linear portions of the lift curve.

Thus, the effect of dynamic stall on the response of the airfoil can be seen.
Figure 6 presents the results for the combined stall-model, blade-dynamics

system with the above baseline parameters. In Figure 6a, the 1lift coefficient

is plotted versus © . A typical "figure 8" plot is obtained. However, in

contrast to the earlier plots, this curve is complicated by the fact that <

includes blade flapping contributions and is not purely simple harmonic.

Figure 6b presents the blade flapping response. The response for an analysis

w.thout stall is also given for comparison. We notice that the unstalled

rotor is almost exactly trimmed (no once-per-rev in /3 ) whereas the stalled

blade is not completely trimmed. (There is a significant once-per-rev component.)

This results from the fact that we are using approximate trim formulas.
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The average value of /2 for the unstalled case is .13 radians, and the average
r value for the stalled case is .10 radians. This drop in A can be attributed
t to the overprediction of lift by the linearized model. Figure 6c depicts the
variation of © with azimuth angle for both the stalled and unstalled models.
For the unstalled case, the variation in & is completely due to & and &c ,
§ - Jm = t4° , since /3 has little unsteady component.
For the stalled case, ©; and . remain the same, but the cyclic flapping
adds another + 2° to the angle of attack yielding é = £6° (even deeper
into stall). An interesting aspect of the curves in Figure 6 is the 90° phase
lag between stall and the drop in flapping. Under unstalled, trimmed conditioms,
the variations in © exactly counter the variations in free stream to give a
uniform lift and uniform /4 . When stall is introduced, however, there is a
large drop in Cz at the maximum © . (Compare linear and stall models in .
J Figure 6a.) Figure 6c shows that this drop occurs nearly at ¥ = 270°, when
© 1is maximum. The resultant drop in /3 , however, occurs about 90° later

at W = 360°. This is the well-known gyroscopic effect that causes the tip

path of a rotor to respond 90° out of phase with the 1lift. Similar analyses
have been performed over a range of advance ratios,//‘ , and nondimensional
semi-chord, k. These all show the same general trends as in Figure 6, Reference 14.
In the above paragraphs, we considered the forced response of the coupled
stall model and rotor model. We now wish to turn to another aspect of dynamic
analysis that is very important, the calculation of transient response
characteristics. First, we will treat transient response in hover, /U = 0.
Although this may seem somewhat less interesting than the transient response
in forward flight, it forms the foundation necessary to understand the forward
flight transients (as investigated in the next section). To begin, we give
the blade an initial angle of attack with A , /g., c_ , Cz , and 8 all set

z z
1 2 2
to zero; and we solve numerically to investigate the transient build-up of 1lift
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and coning. Figure 7 presents such results for three different step inputs.
First, Figure 7a gives results for &, = 10°. (Since no stall occurs for
© < 10°, this figure is typical of all lower values of & .) A typical,
linear transient response is observed with a decay near the expected value,
e-kvl/l6. At a higher angle of attack, however, ( O, = 12° in Figure 7b),
the transients do not completely decay. Inétead, there is a small limit cycle
that remains. This indicates a mild instability in the coupled stall-flap
equations. When the blade stalls, /4 begins to drop which changes the angle
of attack causing an increase in lift. The flapping angle, 73 , consequently
responds causing a new stall cycle. Figure 7c shows that this stall instability
is more pronounced at ©,= 14° (a larger limit cycle). Reference 14 provides
simultaneous plots of Cz and Cz which can be used with Figure 7 to obtain a

1 2
more complete picture of the coupled lift-rotor instability.

e
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Eigenvalue Analysis of Linearized Equations

To investigaté the model behavior further, both in hover and forward flighe,
we wish to write perturbation equations that will describe the coupled rotor-
stall model. On the surface, one might wonder why a linearized perturbation
analysis 1s necessary when one already has the numerical solution of the
differential equations, Dynamic analysis over the years, however, has shown
again and again that brute-force, numerical solutions of differential equations
do not provide the insight of linearized eigenvalue analysis. An eigenvalue
analysis provides specific damping, frequency, and mode shape data that is
indispensable for the understanding of dynamic phenomena. It is for this
reason that the analog and digital response programs of the 1960's gave way
to linearized Floquet analysis techniques in the 1970's, Reference 21. It was
simply impossible to efficiently extract the necessary insight from time
histories alone. Thus, dynamic analysis must encompass eigenvalue analysis
as well as forced response.

For the model considered in this paper, the perturbation equations must
be written about a periodic equilibrium that describes the forced response.

In other words, the perturbation equations describe how the system behaves when
it is perturbed away from the normal position. (This is exactly the kind of
information that is necessary to study gust response, rotor-~body stability,

or control derivatives of a helicopter.) 1In order to obtain these equations,
we substitute the following perturbation expansions into equations (1), (2)

and (15) where subscript F implies the periodic, forced response of each

variable and subscript P implies the infinitesimal perturbation value.
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Cg. = (CEBF + (Ce,\P (230\

(23b)

Cz.& = (C;—z P + (CE&BP (25 \
A = (/53.-— + (/gBP ‘

e = (e + (&)p (234)

As a result, each of the pa.ameters that depend iupon O Amplicitly lalso ]

takes on expansions.
5= (O (S 24
v = (V\F . (\7)? (248
g = (D), + (D), @4

Substitution of equations (23) and (24) into equations (1), (2), and

(5) yields a set of ( )F terms which by definition cancel since ( )F is the
forced solution. The remaining terms yield a set of linear differential
equations in ( )P quantities. Nonlinear terms in ( )P are automatically
eliminated due to the infinitesimal nature of the perturbation quantities,

( )P' Some ( )F terms remain, however, as coefficients of the ( )P quantities.
This introduces additional periodic coefficients in the equations. A similar
perturbation process is performed in Reference 13 to obtain linearized
periodic~coefficient equations. However, several of the perturbation terms
have been inadvertently omitted in Reference 13. For example, in the Cz

1
*
equation the perturbation of the {o term should be

[(e v(8)e] [(BY +(&),] =

()£ (SVr + (8)e (S)p +(D)p (B)e + () (&)p 2s)
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The ( )F( )F term is not part of the perturbation equations, the ( )P( )P term
is negligible, but the second and third terms are the perturbation quantities.
Equations (6) can be used to express (8)P in terms of the perturbation

quantity, (A)P.

(8 = -%o (1-43) %D—é; =§(9\P (264)
where
©, = (A)p R + T (BYp cos (£T) 2oh)

| T /}7 sint (&£7T)

*
The term ($).(@).. is omitted from Ry and S,, 1in equation (11) of Reference 13.
P F 1 Nl
Similarly, terms involving (\7)P and (E)P are omitted from the C2 equation in
2
Reference 13. The correct perturbation equations, given in Reference 14,

contain these necessary terms.

Results of Eigenvalue dnalysis

We now apply the linearized equations obtained in Reference 14 (as
described above) to study the behavior of the coupled stall-model, flapping
eigenvalues. We emphasize here that, due to the coupling of flapping and
lift, the eigenvalues and eigenvectors of the system represent coupled modes
with A s sz and sz all participating. WNevertheless, one of these three
is usually predominant so that each mode can be identified. To begin, we
examine the case‘/A = 0. For this case, the equilibrium values ( )F are
constant,which results in a set of constant-coefficient equations. The
eignevalue analysis of these equations results in the root locus plot of

Figure 8. For 0° ¢ &, < 10°, the equations are completely linear and

the classical, rigid-blade eigenvalues are obtained. The real part of the
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flapping eigenvalue (‘%i k) is the flap dampingiand the imaginary part of
the eigenvalue ( Tk, )l- (ﬁﬂé\z ) is the damped flap frequency. Eigenvalues

also exist for the Cz and Cz equations. These are plotted in Reference 14.
1 2
As €9° is increased beyond 10°, the frequency and damping of the flapping modes

decrease due to the smaller slope of Cz , as seen in Figure 1. By Qg = 12°,

s
the damping is nearly neutrally stable. It is this neutral stability that is

gsa weak hat Cycle

manifested in Figure 7bA At ©4 = 13°, full stall is encountered and the
flapping eigenvalues make an abrupt change of direction. They quickly become
unstable. It 1is this instability that is manifested in Figure 7c as a strong
limit cycle. Thus, we see that the time history behavior is in agreement
with the parturbation eigenvalues.

We next turn to the eigenvalue analysis in forward flight. Here, the
equilibrium quantities OB)F, (G»F, (Cz )F’ and (Cz )F are periodic. They are

1 2
gtored in files, based on the forced response, and then passed to the periodic

coefficients in the Floquet analysis. Figure 9 presents results for the
entire system as a function of advance ratio for an unstalled case. The real
part of each eigenvalue is plotted. The sz eigenvalue is the damping of the
stall mode. Because the blade is unstalled, this stall eigenvalue is uncoupled
from the system and remains fixed at —=<=-—.10., There is a significant
amount of coupling, however, between the transient behavior of Czl and that
of /3 . The flapping eigenvalue splits into two branches at’j: = 0.79. This
is typical oi periodic~coefficient systems, e.g. Reference 21.

Figure 10 presents the effect of higher collective pitch on the damping
at /}r = 0.25. At O, = 6°, the blade begins to experience significant

stall on the retreating side. Because of this, the flapping and stall eigen-

values begin to interact with each other in a marked way. Both eigenvalues split,
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and the flap damping decreases to about 1/2 of its original value at
©, = 8°. The type of damping calculation provided in Figure 10 is possible
because of the ease of implementation of the stall model of Reference 1 and

because of its amenability to linearization.

Summary and Conclusions

The dynamic response of a single section of rotor blade has been calculated
including an analytic stall model developed in Reference 1. 1In this present
research, the model is verified and simplified; and the resultant flapping-
stall equations are solved both by time history methods and by linearized,
eigenvalue analysis. Thea conclusions of these dynamic analyses are:

1) The sigglified stall model can be incorporated into a rotor dynamic
analysis by the addition of three state variables at each section.
(Four are required for the complete stall model.) One such typical
section is analyzed here.

The coupled blade-aerodynamic equations for a single section are easily
analyzed for time history or for eigenvalue analysis, the latter being

effected by a straightforward linearization.

The perturbation eigenvalue analysis gives results with direct physical
interpretation with respect to the time history solution.

Further research is necessary to understand how to correctly apply the

model to an entire blade with unsteady free stream and with both pitch

and plunge motions.
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ABSTRACT

Most rotor air loads programs are trimmed by an iterative
process with two steps per iteration. 1In the first step, controls
are guessed and the equations are integrated in time until all
transients are decayed. In the second step, the controls are
improved based upon the difference between the desired hub loads
(thrust, propulsive force, side force) and the computed loads. As
an alternative to numerical integration, however, recent papers have
suggested a procedure called periodic shooting. The numerical
shooting procedure can be used sequentially in the above, 2-step
process; or it can be used in parallel with the control strategy as
a unified trim method.

In this paper, these three trim methods (conventional,
sequential shooting, parallel shooting) are applied to production-
version rotor air loads programs. The convergence and efficiency of
the methods are studied, and the converged results are compared with
wind~tunnel data.

1. Introduction

Any calculation of rotor air loads requires the periodic
solution to the rotor aeroelastic equations with a known set of
control settings. Similarly, most dymamic stability calculations
are based on perturbation equatisus written about a periodic
equilibrium position. Therefore, calculation of rotor control
gettings and periodic response is a fundamental aspect of rotor
analysis.

This calculation is not at all trivial, however. Even when
the controls are known, it is not always easy to solve for the
periodic solution. This is especially true when one or more system
modes has small damping. In fact, however, the rotors controis are
not known. Instead, what is known i{s the lift force, propulsive
force, and side force desired for a flight condition. The pilot
controls, therefore, also appear as unknowns in the problem.

In general, there are three categories of methods to soive
for the periodic rotor response. These are: 1) Numerical
Integration, 2) Periodic Shooting, and 3) Harmonic Balance. There
are also three categories of methods for finding the control
settings. These are: 1) Automatic Pilot, 2) Newton-Raphson,
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and 3) Algebraic Control Equations. Each of the three response
aethods (1,2,3) is particularly suited for one of the chree controi
methods (1,2,3) in the sense that cthey are compatible for
applicacion in a parallel strategy. For axample, numerical
intagration and automatic pilot are applied in Reference .; Shooting
and Newton-Raphson are applied in Referancs 2; and Harmonic Balance
with Algebraic Control Equations is applied in Reference 3.

Despite this compatibility, however, most production version
air loads programs use numarical integracion coupled with Newtom-
Raphson (a rather incompatible combinacion). The purpose of chis
paper is to compare three methods: 1) the counventional numerical
integration with Newton-Raphson, 2) the sequential application of

periodic shaoting with Newton-Raphson (without capitalizing on their
compatibility), and 3) the parallel application of the two methods.

2. Background
2.1 The Transition Matrix
The first stap in solution of a system of linear differencial

equations is the determination of the transition matrix [¢]. Given
a set of n linear equations of the form

{x}= [A(t)] {x }+ b(L) )

where A(t) and b(t) are periodic with period,t, the transition
natrix, [9], is defined such that, for b(t) = 0,

x(t) = [ ()] {x(0)} 0<ter (2)
This further implies that
[$1 = (A] (o] (3)
In practice [¢] can be found by numerical integration of equation

(1) with b(t) = 0. For nonlinear systems, the equation of state
will have the form

{x(e)} = {F(x,t)} (4)
It i3 often helpful to linearize these equations around a nominal or
periodic equilibrium position {x_}. This solution solves the
equations P
{xp}- 1F(xp.:)} (5a)
0)} = 5b
{xp( )} (xp(t)} (5b)
Now, we write equations for perturbations about xp(t).
x(t) = xp(t) + sx(t) (&)

where higher powars of 5x are negligible compared to &x. Now if
F(x,t) is smooth enough to have a Taylor series representation, then

af
(P(x,t)} = {F(x_,t )} + [—2]  {6x(t)} 7
P P ax
1 {xex
P




This leads to the equations

e OEg L

{6% ;= [—] {gx} (8)
™,

X=X

J P

Then the transition matrix {¢(f)] can be found from sequential

perturbations of each element or {x(0)} by a small amounc, say &

avay from {x_(0)}. The resultant perturbed initial conditions can

be used in Eauation (4a), and integration througl one period gives a

solution {x(t)} from which {6x(t)} may be obtained by

{6x(t)} = {x(v)} - {x (&)} (9a)
or . P
{x(t)} = txp(t)} + {8x(t)} (9b)

The transition matrix may be formed by dividing che {le columns by 2
and assembling them in [¢] such that

{x(c)} = {xp(t)} + [o(e)] {8x(0)} (10)
as in Equation (7).

2.2 Periodic Shooting

The method prescribed here, periodic shooting, utilizes the
transition matrix [¢] to find a periodic solution in a direct way.
The first step in this procedure (once [¢] is known) is to integrate
Equation (1) through one period with zero initial conditions but
with {b(t)} retained. The resultant, non-periodic solution will be
called {xf}.

1t follows from linearity that the general solutiom to
Equation (1) is

@)} = G (e} + [9(0)] {x(O} (an

Now a periodic solution, { x(0) } = {x(t)} can be immediately achieved
from the initial conditions

{x(2}={=x ()} + [(D)] {x(0)} = {x(0)}
(O} (T = ()] = {xg(D)}
X0} = [T = o] {xg (D)} (123

The resultant periodic solution is obtained from substitution of
Equation (12) into Equation (l1). The calculation in Equation (l2)
is called "periodic shooting" because the initial conditions are
"aimed" so as to hit the target {x(7)} = {x(0)}. We should mention
here that the calculation in Equation (12) is conceptually identical
(but compuctationally much simpler) than the method described in
Reference (4).

In the case of a nonlinear system, Equation (5a), the
procedure is similar to that outlined above. For example, estimated
initial conditions, {x_,(0)}, can be assumed and an integrated
solution found (x_.(t)}, that is not periodic but is a first estimate
of {x }. Thus theé initial conditions can be modified in an attempt
to maRe {xE} periodic.
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The procedure can then be repeated with x (0) generating a new
estimate x.(t). Thus, the above algorit can be ucilized to find
the periodfc soluction x_(t) to a nonlinear system. It should be
noted that this is equivglen: to a modified Newton=-Raphson procedure
to find the initial conditions that will result in a periodic
solution.

Thus, the above method and time-wise integratiom (until all
transients decay) stand as two aiternative methods for the periodic
response. The third method, harmounic balance, is not treated in
this paper. Now, the complete rotor trim involves calculation of
control sactings and periodic response. Thres possible means of
effecting trim are outlined below.

CONIROL SIRAIEGY

v cuess contRots |

_—[ INTEGRATE UNTIL ALL

{__ CALCULATE FORCES _l—q TRANSIENTS DECAY

VARY CONTROLS ONE BY ONE
£940 CALCULATE CHANGE IN

FORCES .
H

FORM PARTIAL OERIVATIVES
ANO INVERT

1

OBTAIN NEW GUESS
Of CONTROLS

Figure 1. Flow Chart for Conventional Method

2.3 The Conventional Method

This is a method which uses a Newton—-Raphson iteration
procedure for convergence on controls (called control strategy) and
integrates through time uncil a steady-stata solution is found for
the given initial conditions. A flow chart of this method is shown
in Figure 1. It can ba seen that, first, the controls are guessed.
Second, the equations are integrated in time until a periodic
solution is obtained (until all transients decay). Third, the
forces are fouud. If they are within a certain error criteria, the
program stops. If not, each coatrol is perturbed; and, for each
perturbation, integration in time is performed until transients
decay. Fourth, a partial-~derivative matrix is formed and new values
for controls are found using a modified Newton-Raphson procedura.

F. -1
i
{G}n.' ® {e%ld + [aml {Fdnsired - Fac:uaf (1%)
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In some airloads programs omnly an approximate version of
[5F./30 .1 ' is used. Approximations include: 1) neglect of
diagonail terms, 2) closed form approximations, and 3) pseudo
inverses. These approximations may save computation for eachn
iteration, but at the possible expense of requiring more total

iterations.

e —————————

CONIROL SIRANGY PERIODIC SHOQIIING

[ GuEss conTROLS

1
4

{ CALCULATE FORCES

| cuess mra conoimions {
CALCULATE FINAL CONDITIONS
BY INTEGRATION

FRLL

s ne/

VARY CONTROLS ONE BY
ONE AND CALCULATE
CHANGE IN FORCES

i i

FORM PARTIAL OERIVATIVES FORM PARTIAL DERIVATIVES
AND INVERT AND INVERT

‘E—————
OBTAIN NEW GUESS OF
INITIAL CONODITIONS

VARY INITIAL CONDITIONS
ONE BY ONE AND INTEGRATE

OBTAIN NEW GUESS OF
CONTROLS

Figure 2, Flow Chart for Sequential Method

2.4 The Sequential Method

In the sequential method of periodic shooting, the right
block in Pigure 1 is replaced by the shooting algorithm described
previously. This is depicted in Figure 2. A convergence criteria
must be applied to the shooting algorithm. This is done as follows.
A solution is considered to be converged when the error between each
of the atate variables at Y = 0 and ¥ = 27 is less than some chosen
value. Thus,every time the block diagram calls for a periodic
solution (i.e., at every control perturbation), a new convergence is

required on initial conditioms.

i e e oo b e .
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Figure 3. Flow Chart for Parallal Method

2.5 The Parallel Mathod

In this method the iterationa on control variables and
initial conditions in Figure 2 are combined into one scheme that
iterates simultanecusly om controls and periodicity. The procedure
is similar to the former algorithm except that a single partial
derivative matrix is obtained that includes the changes in forces
and periodicity with respect to control settings and inicial
conditions. The flow chart for this refined method i3 given in
Figure 3. Here, we have capitalized on the fact that both
stratagies (controls and periodic solution) are Newton-Raphson
procedures. Thus, it makes sense to combine these into a single
Newton-Raphson scheme with both controls and initial conditions as
unknowns.

3. Application to Production Program
3.1 Discussion of Rotor Loads Basis

A test of the above described methods is provided by
application to a rotor loads and performance analysis that has been
developed as a subrouting for use within the AVRADCOM, Applied
Technology Laboratory (ATL) V/STOL Preliminary Design Program. The
importance of an efficient iteration method within a preliminary
design process becomes evident as the analysis is permitted to allow
more and more design variables to be considered. The basis for the
applied rotor analysis is documented in the cited References 5, 6.




F Y

The basic equations are for a rigid hinged blade with hinge offset.
Only flapping dynamics are considereda. Calculation of the rotor
loads requires the airfoil section lift and drag characteriscics as
well as the resultant velocity. The airfoil section characteristics
are provided for section angles of attack from -180° to 180° for
Mach numbers from 0. to 1.0. The uae of basic steady airfoil lift
and drag measured as a result of 2~ dimensional tramsonic wind

tunnel tests is done with confidence along most of the roctor blade
span. However, three separate adjustments are required to account
for air flow and blade motion which can become significant depending
upon the rotor operating regime. The first of these adjustments is
a gso-called tip relief model, derived in Reference 7, which accounts
for the reduced compressibility existing in the 3-dimensional fiow
near the tip of a lifting surface. The tip relief model is based
upon the potential representation of the thickness effect of an
airfoil by a source-sink distribution. The thickness effect can be
thought of as a qualitative explanation for tip relief in the sense
that 2-dimensional flow requires greater displacement in a
perpendicular direction than 3-dimemnsional flow about a finite tip.
Therefore, there rasults a relief in the flow about the tip as
compared to the 2-dimensional flow. The potential function is
formulated for a finite wing by subtracting the functions for
complementary wings on both sides from the function for an infinite
wing (2-dimensional airfoil). Formulation in this manner relates
the velocity on the 2-dimensional airfoil to that on the finite
wing.

The second adjustment to the 2-~dimensional airfoil data is
intended to account for the radial flow conditions that exist on a
rotor blade due to its yawed position present for much of the
azimuthal circuit. The significant features of this method
(Reference 8) include an estimate for the increased skin friction
drag due to the use of the resultant velocity acting at a yaw angie
to the blade element and a stall delay due to an increased lift ]
capability evidenced in yawed flow experiments on various wings.

The third adjustment to the basic wind tunnel tested airfoil
data is an approximation of the stall hysteresis with lift overshoot
that occurs as a rasult of an airfoil oscillating near stall. The
cyclic pitch variation required by a conventicual rotor system
causes this unsteady airfoil characteristic to have a significant
effect upon calculations when the operating condition allows
appreciable stall. The formulation, detailed im Reference 8, is
based upon tests of four airfoil sections from 6% to 12X thick.
Derived from thege tests are the stall delay angles as a function of
a dimeusionless parameter, yﬁa72V ](analogous to the reduced
frequency parameter) where C = blade chord and V = local velocity.
Linear functions have been developed for a stall delay parameter
which depend on the airfoil thickness, Mach number, 465§2vl
parameter, and whether it is lift or moment stall which is being *
examined. The moment stall formulation is used to determine the
unsteady drag coefficient. Reference 9 shows this to be a good
approximation.

The non~dimensaional integral expressions for the three rotor
forces (thrust along rotor shaft, and propulsive force and side
force, perpendicular to each other and the rotor shait) are derived
from the resolution of the airfoil force coefficients as they vary
along the rotor blade. The integral spans the distance from the
root cutout v to the tip (l). Tip losses, or the approximation of
the loss of 1¥ft due to the finite blade, are approximated by

58-7




secting lift = 0.0 at_r = | ana assuming 3 linear variation in the
iift from r = .97 tor = '. The drag force coefficient used at

r = 1 is that which has been ~alcuiated as a result of applying che
above summarized tip relief method at lift = 0.0.

3.2 Application of ltaration Methods

The application of the procedure summarized aiove requires an
iteracion method to solve for the required rotor forces and che
accor ‘anying steady-state rotor blade motion. Specifically, che ATL
V/STuL Preliminary Design Program requirss rotor torque and tip
pacth-plane inciination whem given the rocor forces. The itaration
mechod must provide convergence of magnitude and direction upon the
resultant of rotor lift, propulsive force and side force (Figure 4).
This is done by adiusting collective pitch (§ o)‘ longitudinal cyclic
angle (0 ), and laceral cyclic (6 ). Steady state blade flapping
magnitudd and velocity must be attSined. Three methods of iteration
have been applied to investigate the relative efficiency of each in
acbieving convergence through the variatiom of the {ive variables.
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Figure 4. Force Vectors
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Figure 5. Step by Step Conventional Method

1) Step by step conventional method: This first method
(Figure 3) steps through each one of the variables, insuring
convergence within a specified tolerance before proceeding to the
next variable. Steady State flapping is calculated first and then
© 1is incremented toward the resultant vector magnitude convergenre.
T8tal force is not integrated until a4 steady state flapping is
achieved. When the force magnitude is converged, ®_ is incremented
toward the vector direction required. The vector mggnitude is then
checked and then reiterated until it again is converged. This
procedurs is repeated until both magnitude and direction are
correct. At this point, &€ 1is incremented and when the results of
this perturbation are avaiiable. tests are made to check the
previously achieved convergence on& and© . If this test shows
non-convergenca the procedure is repgaced fZom the point of
non-convergence. Extrapolation and interpolation are accomplished
in small enough linear steps so as to approximate the
non-linearities of the problem. When enough consistent
perturbations have been accomplished, the step by step procedure is
deviated upon, in that when one control is incremented, enough is
known about the sensitivities so that the other controls can be
changed at the same time. Thus the off-diagonal terms (coupling
terms) of the inverse matrix can be included. Upon changing es:

0 =9 + @ -0 X -8 )/ @ -a ) (15)
o o1 bW FTI 02 o1 FTl FT2

Upon changing eb:

= p ) (16)

° 2 1

1 LT

8 =8 + @ ~a. )0 -8 )@
0 DWY LT1 oy o
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Figure 6. Newton-Raphson Sequential Method

2) Sequential Newton-Raphson: This method (Figure 6)
requires the establishment of a matrix of slopes representing the
gensitivity of the rotor forces to the isolated perturbaiion of each
of the control variables. This matrix is applied, through
inversion, to the Newton-Raphson equation to achieve simultaneous
convergence. The method is termed Sequential because each
perturbation requires first the convergence of flapping displacement
and velocity. Flapping convergence is achieved through periodic
shooting with the first perturbation being the value found from
numerical integration. If an accurate first estimate is possible
for the flap motion, numerical imtegration will yield a periodic
solution within two revolutions for a practical articulated rotor.
For tue two variables included in this problem, sequential periodic
shooting would require four rotor revolutions to establish the
required matrix and then another (minimum) to converge, for a total
of five revolutions. Because convergence is tested for every
perturbation, the Newton~Raphson sequential integration (conventional
method) 1is superior, in this application, to the Newton-Raphson
sequential shooting technique. Sequential shooting would be
advantageous for more blade motion degrees of freedom. When all the
control variables are perturbed and the simultaneous solutiom of all
the variables does not result in convergence, two variations of
matrix update are posgible. The first variation checks to see which
parameter is furthest from convergence and then allows a
perturbation of this single variable in order to update only the one
affected matrix column. A nevw estims-.on is then made for all the ;
variables and convergence is retested. The second variatiom
requires perturbation of each of the variables when convergence is
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not achieved, thus resulting in a .ompletely updated matrix. This
second variation is the procedure for which results are presencted.

V/OMR MAT ALPHAS CLR/S CXR/s
0300 0.779 -3%.000 0.0715  0.008360

CONTROL POSITION (deg)

.
ROTOR REVOLUTIONS

Figure 7. Newton-Raphson Parailel Shooting

3) Parallel Newton-Raphson shooting: This method (Figure 7)
extends the sequential method to include in the Newton-Raphson
formulation, the periodic blade motion variables. Isolated
perturbation of each of the variables is used to construct a
combined matrix of slopes representing the sensitivity of both the
forces and periodic blade wotion. The term "parallel" then, refers
to the fact that the periodic blade motion is being iterated upon at
the sane time as the integrated force magnitude and direction.

3.3 Method of Application

Each of the above three methods has been used, on an equal
basis, in conjunction with the rotor loads and performance method
summarized above. An equal basis of comparison is assured by the
use of the same aestimates for the starting values of the control
variables. For each series of calculations (each rotor shaft angle
at a particular advance ratio) the first point uses the estimates
for control angles and blade motion based on a closed form solution.
The subsequent points use this same closed form solution for the
angles, but the estimate is modified based on the differences
between the initial values and the converged values for the previous
point. Improvements to this scheme would include extrapolating the
converged controls (angles and blade motion) based on the previous
two values. The convergence criteria is the same for all cases: 11X
of resultant force magnitude; 1% of resultant force direction; 10%
of rotor side force; 1% of blade flapping angle and velocity (except
for small angles the tolerances for which 1is .00l radians). These
convergence criteria are small enough such that a consistent set of
data can be calculated. Overall rotor performance is relatively
ingensitive to side force, so the larger tolerance is acceptable.
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Each perturbation includes a toierance test on avery required
variable, so eacn time a perturbation is required, the controi is
percturbed in the direction toward convergence. Each time the
controls are calculated as a result of the compiete marrix update,
cthey are saved to be used with their previous councerparts to
predict the next value used during the subsequent perturbations. An
important consideration during calculation for cases near the
analytical 1ift limit for the rotor is to limit the extrapolated
controli predictions in order to avoid a condition too far imto stail
(beyond the required condition). The two Newton-Raphson methods
which produced the results shown here do not include specific tests
to contend with predictions which overshoot the target and end up
too far into stall. This would be a problem only if the predicted
controls required calculations in the area of the second 1ift rige
ac vary high angles of attack, since the slopaes would indicate
iterations to even higher angles of attack. The overshoot at
conditions near "max " lift is most critical for the step-by-step
conventional method since convergence is accomplished for each
individual control variable (its related force, direction, or
motion) while the remaining variables are held constant. This means
that, if, for some reason, the combinacion of controls becomes
unreasonable, a false indication of 1lift required being greater than
1ift available will result. For this reason some checks are
required which result in a restart at a more reasonable value for
the step~-by-step method.

4. Results

4.1 Preliminary Investigations

Before pioceeding to the results for a production airloads program,
it 13 interesting to compare results for a research oriented
response problem as given in Referemce 2. Three separate
assumptions can be established for a compariscn of periodic shooting
with numerical integratica (solution of equations of motion until
tranients decay). Figure 8 illustrates the boundaries established
when these assumptions are coupled to a knowledge of the stability
of problem. For the sake of comparison, it is assumed that each
method starts with a first guess of the initial conditions (often
zexro), having an error, E . Each method must then be pursued until
a desired error, E is reached. It is also assumed that the
equations are nonlinear so that the shooting method requires several
iterations. For the controls known case, Figure 8 shows that for
102 damping, such as is typical of articulated rotors with dampers,
direct numerical integration is always preferred, even for only one
degree of freedom. For hingeless rotors, however, for which as
little as 12X damping is typical, direct integration is superior only
when more than 16 degrees of freedom ars present. For damping less
than 0,12, as 18 typical in stability work, direct integratiom is
generally inferior to the present mithed of periodic shooting.
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Figure 8. Comparison of Numerical Integration and Periodic Shooting

For the case when the controls are not known, the above
comparison must be modified to include the fact that controls and
initial conditions are found simultaneously by the combined Newton-
Raphson shooting method, but are found sequentially when Newton-
Raphson 1is coupled with direct integration. Figure 8 shows for the
comparison betwezn shooting and direct integration becomes more
favorable for periodic shooting when the controls must be found.
For typical articulated rotors (damping 10%) shooting is superior ifor
less than 10 degrees of freedom and for typical hingeless rotors
(damping 1%)shooting is superior for less than 100 degrees of
freedom. Thus there is a great potential advantage of the shooting
method over numerical integration even fcr large problems.

Finally, it might be argued that the potential advantage of
direct integration would increase if direct integration were used
with only an estimated set of partial derivatives. However, as seen
in Figure 8, even for estimated derivatives, it has been found that
there is still a favorable trade-off between shooting and
integration.

“"hus, the relative advantage of shooting is enhanced for
systees with low damping. For unstable systems, (damping less than
0.0) direct integration cannot be used and so, periodic shooting (or
some other method) is necessary.
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4.2 Direct Applicacions

In order to provide a comparison of the relacive arfficiencies
of the iteration procedures which would be indicative of what is
required to undertake a complete rotor loads and periormance
analysis, calculations nave been made of an advanced rotor design
_ for which wind tunnel data is available (References 10, 11, 12).

1 The simulation of che rectangular planform rotor (baseiine) requires
the ability to include three airfoil data tables with interpolacion
between adjacent ones to reprasent transition section
characteristics (Figure 9). The airfoil data tables consist of data
‘ measured in a tranmsonic wind tunnel at Reynolds numbers which are

E representative of the full scale rotor test.
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Figure 9. Blade and Tip Geometry

Figures 10, 11 and 12 illustrate the range of rotor test
conditions and the number of points which were calculated to provide
a comparison. The actual reported test point values (lift, drag,
side force and shaft angle) are used as the calculated trim valves.
This not only exercises the trim procedures to the maximum possible
extent for this analysis, but also insures the calculation of the
actual rotor condition as measured in the test. Although the
calculated value of the relative rotor power does not, in all cases,
correlate well with the test value, the trends are quite
representative for the range from the autorotative to the propulsive
state of the rotor.
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Correlation can be obtained through the adjustment of prorfile
drag and inflow velocity. The profile drag increment would account
for the differaences between the wind tunmnel airfoil and che full
scale section (small imperfections). The inflow velocity varible
adjugtment can be used (Refarences 13, 14) to adjust the slope of
the variacion of relative rotor powar with advance ratio. Through
the comparison of the analysis with the full range of the test
results, it is insuraed that the trim iteration methods are exercised
to their useful limits. The tast results represent a helicoptar
rotor at its maximum lift and propulsive force limits (within che
power required limit of the test facility) for a wide range of
inflow conditions.

A summary of the rotor revolutions required for each case is
shown in Figure 13 for a comparison of each of the trim iteration
methods. It is apparent that for this analysis, the Newton-Raphson
and Shooting methods are superior in an overall reliability and
efficiency sense. However, it is interesting to note that the
parallel shooting method faila to converge at some isolated cases
for a very high 1lift condition, where the other two methods are
successful.

rotor 40 i
REVOLUTIONS
20 «

20 4

Figure 13. Summary of Convergence
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5. Conclusions

The shooting method can be applied to am existing airloads
program with a moderate amount of program changes. Many airloads
programs are set up to remain in the azimuth loop until biade motion
transients decay. This loop must be interrupted to allow only one
revolution per perturbation and the resulting partial derivative
then added to the matrix for the Newton-Raphson method.

For this example, parallel shooting is superior to the
conventional method for about 50% of the cases. This is consistent
with earlier estimates for a system with 1 Degree of Freedom and

14% damping.

The use of an approximate Partial Derivative Matrix is not
satisfactory and requires an average of 2 - 8 times as many
iterations zs when ugsing the full matrix.

No unusual convergence problems were eancountered. The parallel
shooting method and the conventional method gemerally failed to
converge for the same cases (about 6% of the time).

The sequential application of shooting is generally much less
efficient than the parallel application, requiring 3 to 4 times as
many rotor revolutioms.

The periodic shooting technique can be successfully applied to
a rotor airloads program which includes detailed aerodynamics and
dynamic stall, to calculate the full range of performance of an
advanced technology operational helicopter rotor.
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