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Abstract (Block 20)

-,?This final report covers 6 1/2 years of ARO-sponsored research into the
fundamental mechanisms of rotor vibrations. This research effort has spanned
several areas of vibration analysis including structural coupling, rotor-body
interaction, dynamic stall, and the computational problems associated therewith
(especially rotor trim). There were 16 graduate assistants with the project.
Four received doctor's degrees, eight received master's degrees, and four are
now working on degrees/ Publications from the project include -eight technical
papers, nine theses, two technical reports, four invited lectures, and eleven
presentations at student paper conferences. PThe main body of this report
consists of reprints of some of theitpapers ,' " e '
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EFFECT OF BLADE STRUCTURAL PARAMETERS ON HELICOPTER

VIBRATIONAL CHARACTERISTICS

1. INTRODUCTION

This document represents the Final Technical Report on two Army Research
Office Grants, DAAG-29-77-G-0103 and DAAG-29-80-C-0092, each of which is entitled
as per the title of this report. The first proposal was sent on 8 July 1976,
and the award began on March 1, 1977. This was to be a three-year proposal.
However, the principal investigator spent a summer at the Army Aeromechanics
Laboratory; and a no-cost extension was consequently granted to 30 June 1980
(a 40-month period). The second proposal was sent on 1 July 1979 and the
grant was awarded on 1 July 1980. Again, the grant period was initially three
years; but a no-cost extension was granted to 31 August 1983 (a 38-month
period). Thus, the two grants together span a period of 78 months, or 6 1/2
years.

Because of the continuing nature of the second grant, the Army Research
Office waived the Final Report for the first grant with the understanding that
a final comprehensive report would be submitted at the end of the second grant.
(Reference ARO letter dated 23 June 1980 DRXR0-PR, P-14585-E, P-17067-E.)
Therefore, this present document is the comprehensive report that covers the
entire period. This report treats the two grants as a single unit, and no
attempt is made to discriminate work done before July 1980 from work done
after July 1980.
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2. Statement of Problem

The major objectives of our research project have been as follows:

1) Discover the basic relationships between structural
parameters and the blade vibrational characteristics.

2) Determine the degree of sophistication that is required
to adequately model the more important mechanisms.

3) Develop efficient computational methods suitable to solving
the rotor trim and vibration problem.

Along these lines, our work has taken a "building block" approach to these
objectives. In other words, the statement of work in each proposal outlines
small research tasks, each of which studies a particular aspect in detail.
When two or more of these tasks are completed, the results are combined
together to produce the next level of analysis. At each step, the lessons
learned in the previous steps are used to simplify the analysis as much as
possible before combining with another analysis.

In the area of blade structural vibrations, two separate branches have
been pursued. One is the modeling of blade structural response. This has
progressed from rigid blade to elastic flap-lag to elastic flap-lag-torsion.
The second branch has dealt with problems of rotor-body coupling. Here, we
have progressed from a vertical model to vertical-roll-pitch to a complete
9-degree-of-freedom elastic fuselage. We have studied both modal and
finite-element approaches.

In the area of aeroelastic modeling, we have been working on the application
of simple dynamic stall models to improve the estimation of aerodynamic loads.
There are many sophisticated stall tools that do not lend themselves to practical
research calculations, but we have limited ourselves to methods that lend
themselves to linearization.

One area of our work that greatly expanded over original estimates is
the study of rotor trim methods. We have applied trim methods over the entire
spectrum of possible strategies. These include harmonic balance, numerical
integration, automatic pilot, Newton-Raphson, periodic shooting, and Floquet
techniques.

Finally, because of the close relationship between stability, vibration,
and transition matrices, we have studied efficient calculation and use of the
Floquet transition matrix. In all of the above areas, there is a strong
synergistic relationship among the areas. Each task has fed the other tasks
in terms of applications and solutions.
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3. Scientific Personnel and Degrees

In addition to the principal investigator, 16 students have worked on the
project during the past 6 1/2 years. Of these 16 students, 12 received advanced
degrees and three are still working on their degrees. Of the 12 degree recipients,
four took positions with the U. S. Army or helicopter industry, four took positions
in the U. S. aerospace industry, and four have continued here to work on more
advanced degrees. Below is a listing of these students.

Name Degree Date Present Status

Harry Woehrle M.S. 12-77 U.S. Army
Daniel Schrage D.S. 7-78 U.S. Army
Abraham Eipe D.S. 12-79 Douglas Aircraft
Amir Izadpanah M.S. 12-79 Working on D.S.
Byung Kim M.S. 5-80 Working on D.S.
Timothy Ko M.S. 5-80 Working on D.S.
Tom Hsu D.S. 12-80 Sundstrand
S-Y Chen D.S. 8-81 Kaman Aerospace
H-S Chen M.S. 12-81 MTS Corp.
Jon Rogers M.S. 5-82 U.S. Army
Dan Rudy M.S. 5-83 Emerson Space Div.
M-S. Huang M.S. 5-83 Working on D.S.
Tim Ryan M.S. 8-83 McDonnell Aircraft
James O'Malley M.S. 5-84 U.S. Army
Swami Karunamoorthy - Working on D.S.
Sirajul Iqbal Unknown
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4. Publications and Reports

Throughout this project, we have published the results of our research
in several media. First, we have published technical papers in refereed
journals and in conference proceedings. Second, we have produced Master's
and Doctoral theses. Third, we have published ARO interim reports. Fourth,
we have participated in the annual Robert R. Lichten paper contest. In the
eight years of this contest, Washington University students have won the
National Award four times. The most recent of these was for work on the
ARO grant. Below is a list of the pertinent publications.



Technical Papers

1. Schrage, D. P. and Peters, D. A., "Comparison of the Effect of Structural
Coupling Parameters on Flap-Lag Forced Response and Stability of a Heli-
copter Rotor Blade in Forward Flight," Army Science Conference, West Point,
New York, June, 1978.

Schrage, D. P. and Peters, D. A., "Effect of Structural Coupling Parameters
on the Flap-Lag Forced Response of a Rotor Blade in Forward Flight Using
Floquet Theory," Fourth European Rotorcraft and Powered Lift Aircraft
Forum, Stresa, Italy, September 1978; Vertica, Vol. 3, No. 6, June 1979.

2. Hsu, T-K and Peters, D. A., "Coupled Rotor/Airframe Vibration Analysis by
a Combined Harminic-Balance, Impedance-Matching Method," 36th Annual
National Forum of the American Helicopter Society, May 1980, JARS, Vol. 27,
January 1982.

3. Peters, David A. and Kum, Byung S., "Control Settings for a Trimmed, Stalled
Rotor by an Automatic Feedback System," AIAA Dynamics Spe<-islists' Conference,
Atlanta, Georgia, April 1981, AIAA Paper No. 81-0617-CP

Peters, D. A., Kim, Byung S., and Chen, H-S, "Calculatio Trim Settings
for a Helicopter Rotor by an Optimized Automatic Control " Journal of
Guidance and Control, 1983.

4. Peters, David A. and Izadpanah, Amir, "Helicopter Trim b; .,odic Shooting
with Newtn-Raphson Iteration," 37th Annual Forum of the American Helicopter
Society, New Orleans, Louisiana, May 1981, Paper 81-23.

5. Roger, Jon P., "Application of a Dynamic Stall Model to Dynamic Analysis of
Rotor Blades," Proceedings of the 38th Annual National Forum of the American
Helicopter Society, Proceedings of the 8th European Rotorcraft Forum, 1982,
Journal of the AHS, 1984.

6. O'Malley, James P., Izadpanah, Amir, and Peters, David A., "Comparison of
Three Numerical Trim Methods for Rotor Airloads," Ninth European Rotorcraft
Forum, Stresa, Italy, September 13-15, 1983; Vertica 1984.
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Theses

1. Srhrage, D. P., Effect of Structural Parameters on the Flap-Lag Forced
Response of a Rotor Blade in Forward Flight, Doctor of Science Thesis,
Washington University, May 1978.

2. Eipe, Abraham, Effect of Blade Flexibility, Structural Parameters, and Trim
Conditions on Rotor Loads, Doctor of Science Thesis, Washington University,
December 1979.

3. Izadpanah, Amir, Calculation of Helicopter Trim and Air Loads by the Method
of Periodic Shooting, Master of Science Thesis, Washington University,
December 1979.

4. Kim, Byung, Helicopter Rotor Trim by an Automatic Feedback System, Master
of Science Thesis, Washington University, May 1980.

5. Ko, Timothy, Use of Tapered, Twisted Finite Elements for Dynamic Analysis
of Helicopter Rotors, Master of Science Thesis, Washington University,
May 1980.

6. Hsu, Tung-Kuang, Coupled Rotor Airframe Vibration Analysis by a Combined
Harmonic-Balance, Impedance-Matching Method, Doctor of Science Thesis,
Washington University, August 1981.

7. Rogers, Jon P., Application of an Analytic Stall Model to Dynamic Analysis
of Rotor Blades, Master of Science Thesis, Washington University, May 1982.

8. Rudy, Daniel J., Three Interpretations of a Dynamic-Stall Model with
Applications to Rotor Blade Flapping Response, Master of Science Thesis,
Washington University, May 1983.

9. Huang, Ming-Sheng, Analysis of Helicopter Vibrations with Inplane Degrees
of Freedom, Master of Science Thesis, Washington University, August 1983.

Contractor Reports

1. Peters, David A. and Schrage, Daniel P., "Effect of Blade Structural Parameters
on the Flap-Lag Response of a Rotor Blade in Forward Flight," Interim Technical
Report No. 1, ARO Grant DAAG-29-77-G-0103, July 1978.

2. Peters, D. A. and Chen, H-S, "Optimization of Auto-Pilot Equations for Rapid
Estimation of Helicopter Control Settings, Interim Technical Report No. 1,
ARO Grant DAAG-29-80-C-0092, Novem r 1981.
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Invited Lectures

1. Peters, David A., "Some Mathematical Approaches for Prediction of Rotorcraft
Vibrations," presented at the ARO Rotorcraft Vibration Workshop, NASA Ames
Research Center, February 1978.

2. Peters, David A., "Some Aspects of Rotor Trim," presented at the ARO Workshop
on Unified Equations, February 1979.

3. Peters, David A., "Helicopter Research at Washington University, Flutter and
Dynamics Council, Denver, Colorado, November 1982.

4. Peters, David A., "The Importance of Steady and Dynamic Inflow on the
Stability of Rotor-Body Systems," ITR Methodology Assessment Workshop,
Ames Research Center, June 1983.

Lichten Presentations
1. Hsu, Tung-Kuang, "Effect of Rotor-Body Coupling on Helicopter Vibration,"

1979.

2. Kim, Byung S., "Helicopter Trim by an Automatic Pilot," 1980.

3. Ko, Timothy, "Use of Tapered, Twisted, Finite Elements for Rotor
Blades," 1980.

4. Chen, S-Y, "Dynamic Analysis of a Two-Bladed, Teetering Rotor on a
Flexible Pylon," 1980.

5. Roger, Jon, "Application of an Analytic Stall Model to Dynamic Analysis
of Rotor Blades," 1982.

6. O'Malley, James, "Application of Periodic Shooting to an Existing
Air Loads Program," 1982.

7. Izadpanah, Amir, "The Convergence of a Periodic Shooting Algorithm for
Rotor Trim," 1982.

8. Rudy, Daniel, "Three Interpretations of the ONERA Dynamic-Stall Model," 1983.

9. Ort, Jack, "Application of Hamilton's Law of Varying Action to Calculation
of the Floquet Transition Matrix," 1983.

10. Karunamoorthy, S., "Derivation of a Hierarchy of Elastic Blade Equations
for Helicopter Vibration Analysis," 1983.

11. Huang, M-S, "Analysis of Helicopter Vibrations with Inplane Degrees of
Freedom," 1983.

Also presented at the AIAA Student Conference, U.S. Air Force Academy,
Colorado Springs, April 14-15, 1983.
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5. Summary of Results

We here follow the suggestion of Reporting Procedures for Contractors and
Grantees of the U.S. Army Research Office, ARO Form 18, and present the major
results of our work in the form of reprints. Results not presented here appear
in the interim reports of these grants. The first of these showed that elastic
coupling could be used to lower inplane loads, pitch-flap coupling could be used
to lower flap loads, and pitch-lag coupling could then be used for stability
margins. The second of these Lnowed that rotor trim could be obtained by an
automatic pilot in only five rotor revolutions.

The reprints given here represent summaries of the other major areas of
research. The first paper, by Tom Hsu, summarizes the work on rotor-body
coupling. The second paper, by Jon Rogers, summarizes the work on dynamic
stall. Finally, the paper by O'Malley, Izadpanah, and Peters summarizes the
trim studies.

i

J



Coupled Rotor/Airframe Vibration Analysis by a Combined
Harmonic-Balance, Impedance-Matching Method

T-KHsu* D.A. Peters
Gradu ate Student professor

Washington Unwuersity. St. Louis, Mo.

A coupled .otor/.krfue vibration analsi Is Petrform by fte .alehl of roersd fuelage lmpodaaein.
The rotor Impedance for b blades Is calculated froam the periodkic~fflcest equadom of a single Mbld In
forwad flight. Three flopping moes amo laaded, sad the equation Is solved by harmoele balame The Fuselage
impeace. Including structural dauplag. it calculated for 3 wtld-body end 3 elaic med" Is plump, redg, and
pltch. The remuins show that the effect of bub motion on roisr loads is greatest for relatively sliff roena and Is
amt well-approximated by lemped-mn. or purely imerthi rotormdes

Notation - Lock number
X inflow ratio

(bi -c no nd ineharonis o F ratio of distributed beam mass to total beam

a :slope of lift curve -advance ratio
AUelements of portion of I[Z) roooldt

b -number of blades (01 - control derivatives
-r conventional thrust coefficient, thrust/pirr 2R' (01 - vector of control variables

Cr.CL-Cu = vibratory portion of nondimensional thrust, 000@ - collectye and cyclic pitch, rad
roll, and pitch moment over oa. - azimuth angle, nondimensional time, 0 - 01

CT.CA C = Steady portion of thrust, roll, and pitch mo. = swashplate excitation frequency divided by Q
ment over oa W2(J - second and third flap frequencies, non-

IF! - vector of harmonics of Cr, CL, I dimensionalized by 0
9 = nondimensional acceleration of gravity, g1/02R 47 - frequency of "y" motion with "x" boundary

SP8.a mplunge, roll, and pitch structural damping condition, divided by Q; y~ vumL- plunge,
(a] - fuselage receptance pitch, roll x=cf-cantilevered, free
[H] = hub receptance a rotor speed, rad/sec
p = first flap frequency/fl

-s,, radius of gyration of fuselage in pitch, roll, Introduction
R ~ iie by rt R raiuE concept of performing a coupled rotor/airframe

~ veoor rica moin m .1. ration analysis by impedance matching goes back at
W=fuselage vetclmtomleast I5 years, Ref. 1. That reference points out two important

=-I nondimensional vertical motion facts. First, a coupled rotor/airframe analysis can be per.
= distance along fuselage, tail to nose, divided by formed in a rigorous manner by separate calculation of rotor

R and fuselage impedances followed by a match~ing of forces
- hub vertical displacement and displacements at the hub. Second, the rotor impedance

fuselage generalized coordinates, Eq. 3 need only be calculated for a single blade and ahen ap-
I l - vector of harmonics of t. cis, ac propriately transformed to apply to any number of blades.

I zod m vector of harmonics of *f* cr/ cro Ten years later, the method of impedance-matching (for-
[ZI m-rotor impedance mulazed a little differently from Ref. 1) was used to illustrate

-,~ =pitch angle of hub, fuselage, positive nose up, an important phenomenon.' Namely, rotor loads calculated
rad for a fixed-hub condition cannot always be applied as simple

=steady hub pitch angle, rad forcing functions to a fuselage model. The reason for this is
-~~ =roll angle of hub, fuselage, positive advancing that the resultant fuselage motions cause the hub to translate

side down, rad and rotate which, in turn, can alter the expected loads. This
alteration is not just a small correction, but can be an order-

Presented at the 36th Annual National Forum of the American of-magnitude change. The role of rotor impedance has been
Helicopter Society. Washington. D.C., May I9W0. futher studied by Hohenemseril with very interesting con-

'Presently at Sunstrand Corp.. Rockford. Illinois. clusions that pertain to fuselage design. In particular, he notes

25



26 T. HSU JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

that under certain conditions it may be desirable to tune a hub motions on rotor loads (i.e., the impedance). The ef-
fuselage frequency to the blade passage frequency in order to ficiency of the above procedure is one of the advantages of the
eliminate hub loads. Hohenemser outlines a method of harmonic balance approach. The calculation of [01 and I Z I
computing the complete rotor impedance by finite elements in Eq. (1) need be performed for a single blade only. Sub-
and transfer matrices. Numerical values of the effect of hub sequently, the corresponding matrices for a b-bladed rotor
motions on rotor loads are only given for simplified rotor can be found by elimination of all harmonics (i.e. rows and
models, however. Other work on the importance of hub columns) that are not integer multiples of b. (Complete details
impedance has appeared in the literature, for example Ref. 4; are in Ref. 5).
but this other work does not bear directly on the results The impedance matrix I Z) is the most critical item of the
presented hem. rotor analysis because it represents the crucial effect of hub

The interesting conclusions of Refs. 2 and 3 have raised motions on rotor loads. In Ref. 2, this rotor impedance in-
some fundamental questions about coupled rotor/body cludes the aerodynamic terms for a rigid, hovering rotor and
vibration analyses: the inertial terms for a rotor mass lumped at the hub (i.e. an

I) If hub motions have such a large effect on loads, why do infinitely rigid rotor). In the numerical results of Ref. 3.
present methods (which neglect this effect) show reasonable aerodynamic terms are not included; but the inertial terms are
correlation? found with the assumption that only one-half of the rotor

2) How sophisticated a blade model is necessary for a mass is lumped at the hub and that the remaining mass is
realistic model of rotor impedance? suspended on a spring of sufficient stiffness to model

a) Can aerodynamic terms be neglected due to the high correctly the first flapping frequency. One of the purposes of
frequency ( - 4/rev)? this present study is to compare the results calculated under

b) Can a constant-coefficient or hover approximation be these assumptions with results calculated from the complete,
used? aeroelastic rotor impedance.

c) How many blade modes are necessary? It should be noted here that the present method of
d) Must pitch-thrust, roll-thrust, and pitch-roll coupling calculation of rotor impedance has some experimental

be included? verification. Figure I shows data for rotor response due to
3) Which tmrs in the impedance matrix are most swashplate oscillation compared with harmonic-balance

responsible for the effects of hub motions on rotor loads? results, Ref. 6. The swashpate responses are sufficiently
It should be emphasized that the effects listed above similar to shaft responses to indicate that the present method

(aerodynamics, periodic coefficients, blade modes, coupling) is reasonably accurate in the frequency range of interest. The
have all been used previously in the calculation of the fixed- peaks in the curve are the resonances atp- 1.
hub loads; but these terms have been omitted in the
calculation of the rotor impedance. It is the purpose of this Fuselage Model
paper to study the modeling of rotor impedance and to answer The fuselage is modeled by 6 modes-a rigid-body and an
the above questions, elastic degree of freedom in each of the directions plunge,

Rotor Model pitch, and roll. The plunge model, shown in Fig. 2. is a
uniform beam with a lumped mass added at the center. TheThe rotor model used here is that of Ref. S but without beam deflection is expressed in terms of two comparison

reversed flow. The blade is assumed uniform and is described functions that multiply two generalized coordinates, t and t!
in terms of modal coordinates in flapping only. The periodic-
coefficient equations are solved by harmonic balance to give a w(It) =RZ(t) +R (j2- 14) 2 2f(1) (3)
solution of the form

where t is the hub motion, tf is 4 times the elastic tip
[FJ[Je1 +[{ZI(J (!) deflection, and 9 is the nondimensional distance along the

where IFI is the vector of the harmonics of loads, II is the
vector of controls, and ( I] is the vector of harmonics of hub
motions;" .. AA

b cr ,s

IFI- (40 101. 0 ' '.
IF-, - HARMONIC

{CL 1- SALANCE

{ a} tJ L .,O 0 WIND TUNNELb.C0 TESTS

L- .05-

0 1 2 3 4 5
a- ( i1. I Comparlso of theory (with revernd flow) sad eperltent

( J m a ( )for sw sh p 11 -- ii- -'-a p - 2.32. 7y - ,,% -.78.

L{} HUB

and where is plunge, a, is the roll angle, and a, is the pitch
angle of the hub. The matrix (0) represents the rotor loads
with a fixed hub, and the matrix I ZJ represents the effect of Fig. 2 Plump modd.
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beam. The nondimensional equations of motion are Impedance Matching

The combined rotor/fuselage vibrations may be obtained
I p1121 [1 0 i0 [t Crj bytbe matcintg of impedances from Eq. (1) with thoseof Eq.

8 (4) (6). This implies the matching of harmonics of both loads I F)ij i, r and displacements ( I at the interface. Therefore. we have
?.o 3 g L fJ OV IF) -101 (0) + IZ] CH I IFI (7)

where # is the ratio of distributed beam mass to total beam or
mass, a I, is the natural frequency of the fuselage when
cantilevered at the hub. Cr is the steady thrust required to IF) - (I- [Z] [H) - [91]91 (8)
support the fuselage, and j is the nodimensional acceleration

of gravity gZl'R. The parameters p and (JJ, completely Thus, the hub loads including blade motions. IF), are ob-
determinethe freenatural frequency of the fuselage, Of,. tan9ed from the f'ued-hub loads, 10 110, by the appropriate

use of fuselage receptance (NJ and rotor impedance (Z1. The
)9 j related hub motions (all harmonics) follow immediately from

Eq. (6).
The efficiency of the calculation in Eq. (8) should be em-

Structural damping is included by multiplication of the phasized here. First, we note that calculation of rotor im-

stiffness matrix by g, to obtain a damping matrix. pedance is by far the most difficult portion of the calculation.

Although Eq. (4) describes a beam model of the fuselage. Once [Z] and [0] are calculated for a given rotor, however,

the equations are completely analogous to those for the much changes in fuselage properties (H] can be made with only a

simpler model of two lumped masses connected by a spring, minor effort. Thus, large-scale investigations into the effects

as is used in Refs. 2 and 3. In fact, the fuselage impedance of of fuselage frequency can be performed with a very small

Ref. 2 is matched by p -. 94. g- .02. Thus. there is no fun- computational effort. When the coupled rotor-fuselage

damental difference between the vertical fuselage model of response is done in one computation, on the other hand, the

Refs. I and Z and that of this work. By extension, one may computational effort can become forbidding. Another ef-

also argue that the fuselage impedance used here should be ficient aspect of Eq. (8) is its potential for rotor trim. A given

little different from a single-mode impedance obtained from C. c,, and C (the ap portions of IF)) can be easily

more complicated, finite-element fuselage models, matched by solving Eq. (8) for 0. 8s, and 9c (the first three

The roll and pitch model used here is illustrated in Fig. 3 for terms of (1). This solution involves only the inversion of a

the case of pitch. The fuselage is considered rigid in pitch but 3 x 3 matrix.

connected to the rotor hub through a torsional spring. Only Coupled Response
rotational motions are included, and hub or fuselage lateral
motion is reasonably neglected. The resultant equations, We now apply the foregoing theory to the calculation of

although not given here, are exactly analogous to Eq. (4) with vibrations. To begin, we look at the coupled rotor-fuselage

a, (or a,) taking the place of f,; and CL (or Cm) taking the response of a system with the following baseline parameters.

place of CF. A lumped inertia at the hub includes tran-
smission mass and hub mass, but not blade mass or rotor Rotor: 4 blades, P, i.12, ,=2.5. ,4.5, y=8.
moment of inertia. Details of the model may be found in Ref. Cr. - .0144, CL -0 CL ., C -0, #A - .3. 6c, - .07.

7. s m.07, a =5.73, ?, - .032, Cr- .0058, 'Cr/ , .083

The fuselage impedance for plunge, pitch, and roll is found
by substitution of the appropriate Fourier series for t, t, ae Fuselage: r.- .37, r I-.14, '/ -l.18i,,, i1 ,-1.53,

at, aa, CT, CL, and CW into the hub equations followed - 1.45ci, (4f,. - 10.0c ,., ;,fL -3.04,
by a simple harmonic-balance solution. '6 = 4 .4 7

d(d, 9- - g. - = .02.

Frequencies with subscript "c" denote cantilevered modes inr[ [H which the hub degree of freedom (i.e. t. *,. or a.) is con-
141 - [ 1] IFl (6) strained but the remainder of the fuselage is free to move

i L [01 ~ elastically. Frequencies with subscript "f" denote free modes

for which neither the hub nor the fuselage is fixed. For all of
Here, (HI and (G] are receptances (inverse of impedance). the results to follow, the parameters are as above unless

As before, only integer-multiple harmonics of the blade otherwise noted.
number (b.2b, ... ) are retained. Furthermore, higher The first results to be shown are the 4/rev components of
harmonics may be truncated as deemed appropriate. thrust, roll moment, and pitch moment versus the un-

constrained (free) roll and pitch frequencies J. and i,,
Figs. 4-6. Results are presented for p- 1.03, 1.06, 1.09, and
1.12. Also shown are similar curves, labelled "feedback
neglected." which give the fixed-hub loads. Several in.
teresting characteristics of these curves should be noted. First,
the effect of rotor-body diminishes as (if. (and &JI) become
large. Therefore, for this case, the rigid-body motion is not
playing a significant role. Second. the effect of coupling
dramatically increases as the flapping frequency increases.
This indicates that the rotor inertia plays an important roll.
but that the inertia is isolated from the 4/rev when p is very
close to 1.00. Third. the roll frequency greatly affects the
vertical loads. Cr. This implies that aerodynamic coupling is
vitally important and cannot be neglected. Fourth. the roll (or
pitch) moments show peaks when the roll frequency. jft (or
the pitch frequency. i .,) is near 3.7/rev; but they show

Fig. 3 Pitch-roll model. valleys when these frequencies are at 4.0/rev. Thus, as

-. ,i
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predicted in Ref. 3. Aiso noted are peaks at points for which be a good design choice.
if, or ajL is.3.7. Thus, with small damping, the pitch-roll The physical interpretation of this is as follows. First, as the
coupling is apparent (two peaks) while at large damping it is natural frequency approaches 4.0, the receptance of the

less noticeable (one peak). The phase behavior is aiso in- fuselage goes to infinity (for zero damping) as is the case with
tersting an shows that significant phase shifts do occur near all oscillators. Second. since H approaches infinity in

4/rev. (The phase here is taken as the arctangent of the sin4O equations (6) and (7), F must approach zero (as pointed out in

compone t divided by the cos4 component of CO. In Fig. 8, Ref. 3). However, even though the force goes to zero, the

we s the behavior of the fusel pitch angle for the ides- response does not go to zero. This can be seen from Eq. (1)
tsai range of frequencies. The curves reveal three important which shows that F-0 does not imply Z-0. Thus the zero

behaviors. First of all, the uncoupled analysis predicts a peak force and infinite receptance combine to create a finite

at tol =4.0 whereas the coupled analysis shows the peak at response. Also, the phase angle here is very important in that

al -3.7. This i indicative of the fact that the natural fuselage vibrations will be a combination of pitch and plunge.

frequency with the rotor is different from the frequency Thus, relative phasings are crucial. A final look at the effect
without the roi. Second. although the pitching moment is of damping is given in Fig. 9, which shows fuselage plunge

essentially zero at 4 l-4.0, aS s-.002. the response a amplitude versus pitch frequency. The importance of dam-

de -.7 T i i i d ca iv f-h .-. t that th o.t- a fuse.. - . . ..e vi r ti n wi ll b a c m i ato . p t h n l n e
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affect the 4/rev thrust response. There is a dramatic rise in
0.104/rev CT between w2, = 2.5 (about the lowest value physically
O.Wpossible) and w, -3.0. The effect at w., - 3.0 indicates a

response of the cyclic flapping mods at (wj, + 1). A second
peak is seen at w2, - 4.0 and indicates coupling with a coning

- - --mode. For w, > 3.0. the effect of hub motions is significant.
Figure 14 gives a more detailed account of how fuselage

2.*~ motions at various points along the beam are affected by aS2.
The large dissymmetries for w,,>2.5 indicate that pitch
moments are playing a dominant role. A near anti-node is
notedatt.whena,, is near 3.0.

Elements of Rotor impedance
0. 60Now that we have taken a general look at the effect of

rotor/body coupling on loads and vibrations, we are in a
position to determine which trm in the rotor impedance

- feeama n~.ematrix are the primary contributors to these effects. The roten
- fe~b fla..t~es impedance matrix (ZJ is a rather complicated array, and we

7 need to consider it in detail before going on. In general. [Z]
represents the response of every sine and cosine harmonic of
CT. CL. and C,4 to every sine and cosine harmonic of the
motions *. a, and a,. For simplicity, let us momentarily
consider only CT due to t for a b-bladed rotor. We will also

* neglect harmonics of order 3b and higher. This yields

as A A, A, A, A, a.

0. 3.03.5l1 A,, AiLA, ILL Ai
Fla. 13 4/rv ei etlal ud.arfme. at blade anr d d ~hla a, An1  A21 An, An AN a..&

flpwofouw f-1.8 02. i
b j A, m !in-A, ! J b,

curves about 2-0.5 indicates. for this case, the relative LJC-Am Ad, A,, A0  A" b
dominance of hub vertical terms over pitch team, since both b& C
effects add to give the vertical motion along the beam. (9)
Although not shown here, the vibratory pitch and roill
moments are virtually unchanged by 4A

So far, we have investigated the e7ect of the first blade where A 4 are the elements of I Z1. In general, elements with
flapping frequency and the effects of several fuselage zero subscripts are no relevant because higher harmnnic
parameters. We now look at the effect of the blade second motion has little effect on steady loads, and steady motions
flap frequency. w2. Fig. 13. (The third flap frequency. a,,, is (with the exception of a,) do not effect higher harmonic
varied as l.8 w2,.) The second flap frequency is seen to greatly loads.
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The dominant terms in Eq. (9) are those terms that relate not affect roll and pitch vibrations. Therefore. C, 1j* and
the various harmonics at the fundamental blade-passage CmIt, must not significantly contribute to the role of rotor
frequency, b/rev, impedance on vibrations. Also, the fact that roll and pitch

These terms are A,,, Aj,, A,,, and Aj,. For a purely frequencies do affect thrust indicates that C,,rsa and
constant-coefficient system, these terms would obey the C1r3/ad. are important terms. It further follows that the
equalities A,, aA,. Aj, - -A,,. For a periodic-coefficient vacuum approximation, which gives zero for these terms.
system, however, these equalities do not necessarily hold. The would not be adequate. Furthermore, this shows that not even
numerical results of our work have shown, however, that the the hover impedance, which also shows zero coupling, wouid
equalities are good approximations for b23 (rotors with 3 or be adequate to model this important thrust-roll-pitch
more blades). For two-bladed rotors, on the other hand, the coupling.
equalities are definitely not valid. These observations could There are two interesting aspects of Fig. 15 which bear on
lead one to believe that a constant-coefficient approximation the presentation of subsequent results. First, we note that
might be valid for calculation of rotor impedance when b - 3. Cu/j, and C.4t/:2 are comparable in magnitude to the
No such approximation is used here, however. We will say complementary terms C1 /ad and C3 /ad. Nevertheless, we
more about constant-coefficients shortly. have found that the t derivatives have negligible effect on roil

In order to gain a better understanding of the effects of and pitch whereas the a derivatives have a large effect on
rotor impedance, pertinent coefficients are defined in the thrust. The reason for this is that plunge magnitudes are
following manner. For example. for b-3 in Eq. (9), the generally much smaller than roll and pitch magnitudes.
relationship between 3/rev Cr and 3/rev t is summarized by Therefore, since the C,. and Cq derivatives with t have little
the following coefficient, effect or response, they will not be shown in subsequent

graphs. The second interesting aspect of Fig. 15 is the fact that

C ,It, - (Al, +Ajj +Ajl 42+A1) (10) Cuad.Cmjctda and CqJ/ad -CCu/ad. These ap-
proximate equalities have been found to hold for all

Similarly, the relationship between 6/rev Cr and 3/rev t is parameters and at all harmonics. Therefore, the two roll-
summarized as moment derivatives will not be shown in subsequent graphs,

as they may be inferred from the pitch-moment derivatives.

Crdlty 104  (A, +Al, +AJ 1 +A2s (11) One last note on Fig. 15 is the variation in curves with ,.
Curves linear with ;L imply an effect due to coupling terms of

Parallel definitions apply for other harmonics, for other the type ,ssinj or gcostk. Higher-order curvature represents
loadings (Cw and C,). and for other hub motions (a, and a.). the coupling effects of higher powers of is and higher har-
An interesting aspect of the coupling between different monics of 0. It is interesting that the pitch and roll
harmonics, as in Eq. (!1), is that such coupling would be derivatives, although constant with po, are not well ap-
identically zero in a constant-coefficient system. The results to proximated by a vacuum analysis. The error is 2047 for
follow, however, show that significant magnitudes can occur Cml,/ad and 50% for Cqw,/ad.
for such terms. Therefore, attempts at a constant-coefficient The five essential elements of the impedance matrix,
approximation for rotor impedance in forward fRight may not averaged as in Eq. (11), are shown in Fig. 16 for a
be valid in the presence of significant higher-harmonic loads, representative configuration for the 3/rev loads due to 6/rev
Thus, the tentative conclusion of this work is that a constant- motions and 6/rev loads due to 6/rev motions. The parabolic
coefficient approximation is valid for b a3 provided that characteristic of the thrust/roll couplings indicates the effect
2b/rev loads are negligible with respect to b/rev loads, of higher-harmonic periodic coefficients. The total effect of

Figure 15 provides a typical plot of the 3/rev impedance these terms on 3/rev response, however, is dependent on the
elements averaged as in Eq. (10). The solid lines are the exact amount of 6/rev motion of t, a,, and a,. The counterpart
values versus advance ratio, and the dashed lines are values derivatives, 6/rev loads due to 3/rev motions, are almost
calculated from inertial effects only (aerodynamics neglected identical.
as in a vacuum). The couplings between vertical and roll-pitch Figure 17 provides the impedance terms for 4/rev loads due

(CUlt, CqIWJ/t, Cr/ad, C/ad) are zero for the vacuum to 4/rev motion. The curves are qualitatively similar to those
calculation. Several interesting observations can be made for 3/rev, Fig. 15; but the magnitude of thrust/roll and
from this figure and comparisons with the results in Figs. 4- thrust/pitch coupling is larger for this case. Another dif-
14. First, as previously mentioned, the vertical frequency does ference between Figs. 15 and 17 is that the Cr,/t4 derivative is

., .0- . .- - - - - - - - -

.t3 . .. .

.1 '. . .t .| .,.

Fig. 15 . .en.s of impedance m.atrix.... .... corn -co

aomsp 1.5w -37 w, -83.-82
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much larger than its 3/rev counterpart and is not well- (!r/O going to infinity. (Vacuum curves on previous plots
approximated by the vacuum calculation. This increase in assume r/ o normalized on a nominal value of "a" which
aerodynamic effect is present despite a lower Lock number in remains constant in a vacuum). The curves that remain finite
Fig. 17 than in Fig. 15. as -O show entirely aerodynamic effects.

The direct effect of Lock number can be seen in Fig. 18. It may be recalled that Figs. 4. 5, and 6 indicate a strong
The flapping frequency is the same as in Fig. 17. but only a effect of flapping frequency on the coupled rotor/fuselage
single, straight-line mode is used. Curves which approach as response. Figure 19a provides plots of impedance elements
as-y approaches zero indicate inertial effect. It should be versus flapping frequency for a 4-bladed rotor. Several in-
pointed out the Cr, refers to the fourth harmonic of Cr/ea. teresting conclusions can be drawn. First, the Cro/f.
Therefore, -f going to zero implies "a" going to zero and derivative is not a strong function of p in this frequency
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range. Therefore, the large effect of p on Cr in Fig. 4 must be dynamic interactions between aerodynamic and inertial terms.
attributed to the coupling terms Cr4/c, 4 and Cr 4 /as, which Calculations at higher values of p show that these interactions
are dependent on p. It must also be pointed out, however, that are strongly p-dependent even for p > 2. Similar conclusions
Cr,./l4 is stongly dependent on flap frequency at higher hold for phase angles. Fig. 19b.
values of p. Fig. 19c. In fact. for a single rigid mode and for a The final figure to be considered here is the effect of second
uniform blade. Cr/t4 drops to zero at p=2 (the blade flap frequency on the rotor impedance. Fig. 20. The
becomes an absorber) and increases dramatically beyond that. motivation here results from the strong effect of . seen in
Thus, analyses that assume a lumped rotor mass (pe-a) Fig. 13. There are several noteworthy points in Fig. 20. First.
cannot be expected to give accurate rotor impedance. Another we note the total inadequacy of the vacuum approximation.
interesting aspect of Fig. 19a is the complex behavior of The infinite peaks of that approximation (at w, = 3.0.
several elements of I Z] as p 's varied. This indicates complex w, 3.0. and w, = 4.0) are simply not realized in the presence
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,. 0 Jpresented here. The conclusions of these results are:
I € . I ' l) Hub motions can greatly affect hub loads with the most

:-sd , . / =,dramatic effects being for relatively stiff rotors.
. i.,d. .5 C .r 2) There is a very large affect of pitch and roll motions on
. &s,.,, ,, e, /,a. vertical response, but little effect of vertical motion on pitch
" ., , / % and roll response.

3) Stuctural damping in the fuselage plays a dominant role.
W ---- with as little as I% critical damping changing the entire

character of the fuselage vibrations.
.0 4) Higher-frequency flap modes can greatly affect the

coupled response and can alter the relative contributions of

.01. , , pitch and plunge motions..0 5) Vacuum, lumped mass, and hover approximations of
the rotor impedance are entirely inadequate.

.01 .00 6) A constant-coefficient approximation to rotor im-
pedance may be valid under certain conditions, but must be
used with caution when higher-harmonic loads are present,
due to significant cross-harmonic coupling.

SG) .7) The effects of Lock number, first flapping frequency,
and higher flapping frequencies are strongly interdependent

. I and depend upon a complicated balance of inertial and
.0I aerodynamic terms.
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Abstract

A dynamic analysis of a single-section model of helicopter blade is

performed including an analytic model of dynamic stall. This stall model,

a simplified version of the model introduced by Tran and Petot I , character-

izes the lift force on the blade section throughout both the linear and

non-linear regimes of angle of attack. The resultant, nonlinear blade

equations are solved by numerical integration for the periodic, forced

response. Perturbation equations, written for small disturbances about

this equilibrium, provide eigenvalue and stability information by means

of Floquet theory.
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Notation

a = linear static lift curve slope, per degree

a= linear static lift curve slope, per radian

a. - coefficients of the non-linear static lift curve polynomial1

b = blade element semi-chord, equal to c/2, m

c = blade element chord, m

= phase shift parameter

C = total lift coefficient, lift measured normal to free stream,z

C +Cz1 z2

C = lift coefficient in linear regime

C z= lift coefficient in non-linear regime

C = static lift coefficient in linear regime

C = static lift coefficient, approximate expression
z

C = actual static lift coefficient
z
0

AC = difference between the extended linear static lift coefficient
z

zz
(Cz and the actual static lift coefficient (C

d = blade element span, m

I = mass moment of inertia of blade section about center of
2 2

rotation, kg-M2 = mx

k = reduced frequency k E wb/Ox

k = ratio of semi-chord to radial position - b/x

k = blade flapping restraint spring, N-m/rad, Figure 5

M = Mach number
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m = mass of blade section, kg

p non-dimensional blade flapping frequency, per revolution,4 l+k/Q Iy

'41- apparent mass parameter, equation (2)

t time, sec

u() = unit step function

U = forward velocity of rotor center, m/sec

V = average blade element velocity, V = Qx, m/sec

x = distance from center of rotation, m

a = damping parameter, equation (2)

a = blade flapping angle, deg

y = Lock number based on equivalent blade damping, 8abdx3 /1

= natural frequency parameter, equation (2)

= parameter relating lift and airfoil pitch rate, equation (2)

= system eigenvalue

e = total aerodynamic angle of attack, deg

6 = mean angle of attack (collective pitch minus inflow angle), deg
0

6sOc = cyclic pitch, deg

= airfoil angle of attack at which lift departs from linearity, deg
cr

= amplitude of airfoil oscillation, deg

= time delay parameter, equation (2)

M local advance ratio at blade section, U/Qx

= equivalent advance ratio of uniform blade, U = .755

T M reduced time, T = Qxt/b

= azimuth angle, = t = kT

Q- rotor speed, rad/sec

w= airfoil frequency of pitch oscillation, rad/sec



iv

( ),( ) - 2 1/T (derivatives with respect to reduced time, 7)

()F periodic, forced response of ( )

( - perturbation to (

I.-.



Introduction

The phenomenon of dynamic stall is known to be important for the dynamic

analysis of helicopter rotors in forward flight, Reference 2. Consequently, a

great deal of effort has gone into the development of analytic methods that

will predict the behavior of both rotor lift and section pitching moment

during dynamic stall. The most general methods available are based on

tabulated data in a three-dimensional array (angle of attack, reduced pitch

rate, reduced pitch acceleration) with an appropriate correction for local

Mach number, References 3 and 4. Other methods of analysis have attempted to

replace the large arrays of tabulated data with analytic expressions. References

5, 6, and 7 outline a method in which dynamic stall is treated as in impulse

loading that occurs when stall is encountered and that decays following the

stall event. References 8 and 9 describe a method based on a dynamic (or

equivalent) angle of attack. The appropriate lift coefficient is chosen as

the smaller of two formulas, based on this equivalent angle. Similar work

has included a more detailed analysis to predict the onset of stall, Reference 10.

This work also includes a time delay factor to account for the finite time

required to shed vorticity.

Other work in dynamic stall has concentrated on the reduction of the large

volumes of lift and moment data (i.e. the three-dimensional tables) to compact

analytic expressions. In Reference 11, dynamic stall data is represented in

terms of 47 parameters that synthesize the measured data. In Reference 12, this

same method is extended (by the introduction of an equivalent angle of attack)

to include arbitrary time variations in pitching motions. The equivalent angle

of attack is based on Duhamel's integral with the Wagner function chosen as the

unit step response to pitch. The results indicate good agreement with

measurements.
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In Reference 1, an alternative method is introduced for the calculation

of dynamic stall; and that method is the subject of this paper. The model

in Reference 1 describes the lift and moment coefficients in terms of ordinary

differential equations. The equations are of first order in the linear

regime, and they are of third order in the nonlinear regime. They include

an analytic approximation to the static lift and pitching moment data as well

as 12 coefficients (6 for lift, 6 for moment) that are chosen based on experi-

mental data. These coefficients are identified as functions of angle of attack

by parameter identification applied to + 1* oscillations about each mean angle

of attack at various reduced frequencies. The resultant, identified equations

are used to simulate lift and moment for + 6* oscillations about various mean

angles of attack; and these show good correlation for angles of attack up to

230. Reynold's number effects are included implicitly (as in other stall models)

implicitly from the Reynold's number of the data base. Mach number can be

included in a similar manner or from a local Mach number correction. In

Reference 13, this stall model is applied to the dynamic response of a

helicopter blade including stability and forced response.

The work reported in this paper is part of a larger research effort to

study the stall model of Reference 1 in several ways. First, we wish to

study the dynamic characteristics of the stall model including the relative

importance of the parameters. Second, we wish to study the implementation

of the model on helicopter problems. Of particular interest is the ease with

which differential equations can be incorporated into conventional rotor

analyses. (Such equations are easily linearized to obtain conventional

stability information.) Third, we wish to study the physical basis of the

theory including its extension to include unsteady free stream, very large
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angles of attack, and plunge (as well as pitch) motions. This present

paper is based on the work in Reference 14 but addresses only the lift response

for a single, rotating blade section. This study of the sectional properties

provides the foundation for the continuing work being done with the model

(e.g. Reference 15) in which an entire blade is considered. Despite the fact

that the model in question has already been applied to an entire rotor blade

in Reference 13, we believe that much basic research still needs to be done

to better understand the model and to more consistently apply it to rotor

problems. We emphasize that the purpose of this paper is not to assess the

accuracy of the method with respect to other dynamic stall models. Rather,

the purpose of the paper is to study the basic behavior of this model, as

defined in References I and 13.
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Stall Model

The analytical stall model presented here is tha. of Reference i.

The model consists of three equations that relate the lift coefficient

of an airfoil to its angle of attack ac follows

* - * *
C + -AC mAC z + 6)e+ Ae(
z2. z

** -* -2 2-2 2 ~ F -
C z+ 2C +y~ ) Y z Y(1Uf [~C +C

C z I C C (

where C and C are the lift coefficients in the linear and non-linear
z1 z2

regions of angle of attack, e is the total aerodynamic angle of attack of

the airfoil, C is the static lift coefficient in the linear region ofzR2

angle of attack, &C is the difference between the extended linear lift2

curve (Cz, = aG) and the actual static lift curve (Cz ), and Cz is the

resulting total lift coefficient. The parameters A ,, C are

functions of blade angle of attack alone (for a given airfoil, Reynolds

number, and Mach number) and must be determined from wind tunnel tests by

parameter identification.

The parameters in equation (1) have direct physical interpretations

in terms of classical, unsteady aerodynamics, Reference 16. The parameter

is the time-delay parameter associated with the lift deficiency function.

It provides for changes in magnitude and phase of the lift. The parameter

represents lift due to pitch rate. The parameter A. is the apparent mass

term. The parameters in equation (2) are associated with the stall

phenomenon. In particular, 0< is a damping parameter: Y is the frequency
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of the stall response, and C is a phase shift parameter associated with the

stall response.

The above parameters have been identified for an OA212 airfoil at

0.3 Mach number, Reference 17. The static values (C , dC z, aACz/c:e)

are approximated in Reference 1 by polynomial approximations. The other

parameters are found as functions of mean angle attack from experimental

data at + 10 oscillations about each mean angle. (The identified parameters

are later verified by comparisons with data at + 60 oscillations.) Since

the tests were performed over a range of reduced frequencies, the resultant

parameters are independent of reduced frequency. Thus, k - Wb/.lx does not

enter explicitly into the equations. It only enters indirectly (for harmonic

excitation) through the C and e terms. Thus, the equations are applicablez

to arbitrary blade motion and not just simple harmonic motion.

The above stall parameters are represented by simplified functiorof e

that approximate the true, identified-values. These functions are given by

Reference 17.

>,= 0.2 (4)

5A -S/180 (5)

a- - [1 + 1. 43 6C z ] (6)

, 0.10 + 0.023 (e-13*) u(9 -13*) (7)

x 0. o5 / F (8)

= 2 - 5.1 tan-1 {l.21(e-130 )} u(e-130 ) (9)

The static lift curve of the 0A212 airfoil is presented in Figure 1.

The curve is defined in the linear region by the equation

C - 7.1 8 for e< e (10)z IS cr
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and in the non-linear region by the seventh order polynomidal

7

CZ = for 8 > acr 10*

where the a1 are given in Reference 17 as

a - 1.24
0

a I - 0.124

a 2 ' -0.0630597 (12)

a3 - 0.01395201

a 4 - -0.0017390851

a5 - 0.00012451913

a 6 - -4.6849257 x 10
- 6

a7 - 7.087973 x 10
- 8

As mentioned earlier, the above stall model(with the appropriate parameters)

has been applied to correlate large oscillation wind tunnel test data. The

results, given in Reference lare very encouraging. They show that the model

is indeed capable of describing the major dynamic stall characteristics of

airfoils.

It should be noted here that the polynomial in equation (11) diverges

for E > 30, as seen in Figure 1. Therefore, for the work presentee. here,

C is held constant at 0.126 for e9 26 ° .
zS

Equations (1)-(3) comprise a description of dynamic stall that is

amazingly simple to use. The model is composed of differential equations that

describe lift in a context similar to the manner in which the other differential

equations describe blade motions. C and C are always present (no switching
z 1 z2

on or off is necessary); butlin the linear regime &C is zero so that C has
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no excitation (it decays to zero on its own). Similarly, the C equationzi

is always operative; but in the unstalled regionit becomes a linear

equation. It is the ease of utility of this model that provides the

motivation to study it.
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Verification and Simplification of Stall Model

The first step in the present application of the stall model to rotor

dynamic analysis is to verify the validity of the model by reproduction of

the previously published lift hysteresis loops. Thus the stall model,

equaciortmOMhas been transformed into a computer code that uses a

Runge-Kutta method of numerical integration for solution. Figure 2 shows the

results of this analysis in the form of C versus 9 . The mean angle of
z

attack, oscillatory angle of attack, and blade parameters were chosen to match

the examples given in Reference 1 in order to facilitate the comparison. The

results of our computations generally duplicate the published data of Reference 1

for mean angles of attack of 118 or less. The hysteresis loops tend to take on

an ellipsoidal appearance when angle-of-attack excursions do not exceed the

static stall angle of attack. As slightly higher mean angles of attack are

encountered, the loops tend to take on figure eight shapes; and at mean angles

of attack well above stall, the loops are more erratic. For mean angles of

attach between 120 and 14*, however, oscillations appear in the return portion

of the present lift curves; and these are not found in the published data of

Reference 1. Numerical convergence tests on the solution have revealed that

these oscillations do indeed occur from the correct numerical solution of

equations (i)-(3). However, if a relatively course step size is used in the

integration, the oscillations are effectively filtered out of the response;

and the smooth curves of Reference 1 appear. We have verified this by

numerical experiments with validated integration codes. It may be that such

an unconscious filtering occurs in Reference 1, thus explaining the lack of

oscillations in those results.
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The oscillations in the return strokes of Figure 2 are rather interesting

from a theoretical standpoint in that similar oscillations appear in some

experimental data, such as that reported in Reference 12. In other frequency-

response tests, however, data are often averaged over many hysteresis loops.

This averaging (along with the frequency-response characteristics of

instrumentation) sometimes can mask such oscillations. Thus, they do not

always appear in published data. However, the presence of these oscillations

in the data of Reference 12,and in the model of Reference 1, may indicate

that the oscillations in Figure 2 represent a true simulation of a physical

phenomenon.

The next step in the research reported here, is to study the stall

model for possible simplifications. A natural candidate for simplification

is the elimination of some of the time derivative terms involving 9 and e

(apparent mass and angular rate terms). These terms are good candidates for

elimination on at least two counts. First, they are almost always eliminated
**

in simplified rotor-blade analyses; and, second, their retention (especially E)

results in a cumbersome complication in the state variable equations for rotor

flapping. Therefore, it is useful to study the effects of 4 and G terms on

the stall model. In the first study, the lift hysteresis loops are generated

with A, C c' in equations (1) and (2) (no ore terms). Figure 3

shows C versus e for e - 60 and at four typical mean angles of attack. Thez

resulting plots are not at all similar to the original results presented in

Figure 2. Therefore, the stall model is oversimplified by elimination of all

three parameters. Further investigation, however, shows that setting only

the parameter A to 0 produces a much smaller effect on the hysteresis loops.

An example is given in Figure 4 which gives C versus e with the .= 0,z
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k - .05. Similar runs have been made for 0 < e.-< 170 and .05 1- k S .15.

These all show that 4 can be deleted from the stall model without a major

change in the response. One might argue that unly the e should be removed
*

from equation (1) with A remaining on the I term. As it turns out,

however, -4 is only 12% of the total a term (A i ) so that either

approximation would be valid, although including the 9 will be slightly

more accurate. In the remainder of this paper, the stall model of Tran and

Petot, equations (l)-(3), will be used with the parameter A set to zero.

This will be referred to as the "simplified stall model."
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that the typical section in Figure 5 is at the 3/4 blade radius. Thus, we have

the definitions

-el .sX

where//A is the dynamic equivalent to the advance ratio of a uniform blade,

and A is the local advance ratio at the blade section.

The above definitions give flapping equations of the following form.

(Details are given in Reference 14.)

2 1  e,___

Several aspects of equation (15) are noteworthy. First, the equation

results directly from Newton's laws applied to the blade moael in Figure 5with

2
lift given by the lift coefficient multiplied by 1/2 o(V + U sin ) Second,

the equation is written in terms of reduced time, 'L , rather than in terms of

real time, t, or azimuth angle, * . The transformation from Z to either t

or \F is easily made, however, by the definitions of these parameters.

We have followed the suggestion of References (1) and (13) in using only the

mean portion of velocity,--t , in the reduced time. (For further discussion or

this assumption see Reference 15.) Note that the definition of k in equation

(16b) is independent of any frequency. It is simply a measure of the ratio of

blade chord to radial position. A final comment on equation (15) is with

respect to the parameters "a" and "a". The parameter a is the nominal !ift-

curve slope used in the definition of , with one alteration. In %( , we use



Rotor Blade Model

The rotor blade model used in the dynamics application of the simplified

stall model is presented in Figure 5. The model consists of a single blade

section located at a radial position x from the center of rotation. A single

blade section is used to facilitate investigation of the model. Since any

blade can be considered as a composite of such sections, this analysis forms

the foundation for future work with an entire blade, for example Reference 15.

Three virtual forces act on the blade element: 1) the centrifugal force, F3,

2) the D'Alembert Force, mx, and 3) the normal lift force, L, which is a

function of angle of attack, 9 , and reduced time, t. The blade is allowed

to flap with angle, /3 , and is restrained in the flapping direction by a root

spring, ka . The angular velocity of the blade element about the hub is -a.

Physical dimensions of the element are c (the chord), d (the span), and b

(the semi-chord).

Obviously, the model depicted in Figure 5 is far from an actual helicopter

rotor blade. However, please recall that we wish to study the behavior of the

stall model for a typical section. It follows, that we would like the model

in Figure 5 to be the dynamic equivalent of a uniform rotor blade. This will

give the most realistic response and the most valuable comparisons. Dynamic

equivalence in hover is obtained by the definitions

Although this Y may look cosmetically different from the conventional

definition of Lock number, it is actually the exact dynamic equivalent.

Similarly the best forward-flight equivalence is found under the assumption
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that the typical section in Figure 5 is at the 3/4 blade radius. Thus, we have

the definitions

-i 3

where/A is the dynamic equivalent to the advance ratio of a uniform blade,

and /1 is the local advance ratio at the blade section.

The above definitions give flapping equations of the following form.

(Details are given in Reference 14.)

-3 -k /3 -9C

Several aspects of equation (15) are noteworthy. First, the equation

results directly from Newton's laws applied to the blade model in Figure T with

lift given by the lift coefficient multiplied by 1/2/0(V + U sin+ )2. Second,

the equation is written in terms of reduced time,'Z , rather than in terms of

real time, t, or azimuth angle, 4-. The transformation from Z to either t

or 4J is easily made, however, by the definitions of these parameters.

We have followed the suggestion of References (1) and (13) in using only the

mean portion of velocity,--Y , in the reduced time. (For further discussion of

this assumption see Reference 15.) Note that the definition of k in equation

(16b) is independent of any frequency. It is simply a measure of the ratio of

blade chord to radial position. A final comment on equation (15) is with

respect to the parameters "a" and "a". The parameter a is the nominal lift-

curve slope used in the definition of , , with one alteration. In 'y , we use
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"a" as "per radian" to conform with conventional definitions. In the

denominator of equation (15), however, we use "a" as "per degree". This

effectively converts /3 to degrees in the equation.

The simplified stall model enters equation (15) in that

"C (0, t ) - C + C " is described by equations (l)-(3), the stall model

under investigation. Of importance here is the fact that C is a function of

and 4 which, in turn, are functions of / and /S. In particular, the

total aerodynamic angle of attack and its derivative can be approximated by

the expressions

'iiAksin Co T

e e 6 kcoskr - 1 ksinkr - + usin(kT)

(1 + Psin(kT))

where we have assumed tan e -e in determining the angle of attack due to /S

(This assumption breaks down, however, for 'J > .3 as is discussed in

Reference 15.) Equation (17) implies more than just a coupling between the

/3 and C equations. It also implies a nonlinearity in the system beyondz

the loss of lift in stall. To be precise, we recall that some of the

coefficients of the Cz equation ( S ? a"4  ) depend explicitly

on e , equations (6)-(9). Equation (17), therefore, implies more than

just a time variation of these parameters; it also implies a nonlinear

dependence with eS
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One will also notice that the induced flow does not appear explicitly

in equation (17). Recall, however, that we are dealing only with a single

section. Thus, any radial variation of induced flow does not enter the

problem. It follows that the induced flow can be considered as part of

~Ge Is and @ C with no loss of generality. The values of eS and 9

used in this present analysis are based on approximate trim formulas

developed in Reference 14, which are based on a harmonic balance of the

flapping equations in the unstalled regime with G5 and (9 chosen so as

to set the first-harmonic flapping to zero. For small k, these formulas are

well approximated by

go 10-1A SOo (20

In the results presented here, the quasi-steady version of equation (20)

is used (k - 0) with little loss of accuracy. It is emphasized, however,

that equations (19) and (20) do not eliminate cyclic flapping when the blade

section is stalled. A discussion of trim under stalled conditions is given

in Reference 15.

Before proceeding to numerical results, there are some aspects of the

theory of Reference (1) that need further comment. First, the model of

Reference 1 does not distinguish between angle of attack due to blade pitch

and angle of attack due to vertical velocity components. Both are treated

identically in equations (17) and (18). It is evident from Reference 18,

*however, that these ought to be treated differently in the G term.



-15-

Reference 18 convincingly shows that e should only include the rotation of

the airfoil with respect to the air mass. Thus, only the geometric pitch

rate should be included. Furthermore, Reference 18 shows that the component

of ._ along the blade, -L-S irl/3 , should also be included. Thus, a more

consistent 9 would be

A second aspect of the model of Reference (1) is that the theory and experi-

ments of Reference 1 are for a constant free stream, although the authors suggest

that the theory may be extended to unsteady free stream by use of the average

velocity (in defining reduced time) and by implementation of the unsteady veloc-

2
ity in both the lift expression, C z(V + U sinY ) , and in the angle of

attack. Again, however, the linear, unsteady aerodynamic theory in Reference 19

shows that this is not the best way to extend unsteady aerodynamics to the case

of oscillatory free stream. (In particular, extension to unsteady free stream

must be done for the circulation equations and not for lift coefficient.)

Nevertheless, in the work here we apply the stall model in exactly the way

suggested in Reference 1. The errors introduced by the above anomalies are

treated in Reference 15 and in ongoing research. A third aspect of the Tran
**

and Petot model deals with the apparent mass terms. If A ) is retained in

the equations, then G introduces /S , as can be seen by inspection of

equation (18). This necessitates an extra state variable, / , in the system

equations. Thus, there is an advantage to neglect this term as we have done.

As a final coment on the model of Reference 1, we note that the model is

identified for a nonrotating airfoil. One might expect differences in the lift

for rotating and nonrotating airfoils in the same way that Loewy's theory

differs from Theodorsen's (as function of thrust and number of blades), Reference 20.

_: _ . .. . - . . . ,. - - .. . ....
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However, there is nothing in the theory to imply that the parameters could not

be just as well identified for a rotating airfoil. Thus, we proceed with the

study and apply the parameters of equation (4)-(9) to a rotor-blade section.
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Time History Solutions

The combined set of simplified-stall-model and blade-dynamic equations

form a fifth-order system (2nd order /8 , 1st order C , 2nd order C )Zl z2

State variables are introduced into this system (y, "/3 , Y2 - Y3 " z

y 4  Cz2 ' Y5 - Z2) and the resulting equations are solved by use of a

predictor-corrector numerical integration. The time history is begun with

zero initial conditions and is continued over a sufficient number of cycles

to ensure that all transients have decayed. (Usually, six to ten cycles are

sufficient to obtain convergence.) The forced response of the combined

stall-model, blade-dynamics system is calculated initially for the following

baseline parameters

M - 0.30, k - 0.05, Y- 6.0, p - 1.0, ,- 0.20 (22a-e)

The choice, k - .05, implies b/x - .05. Later on, variations will be made

in /A and k. The pitch angle ec is specified as 100 so that the airfoil

will oscillate well into the linear and non-linear portions of the lift curve.

Thus, the effect of dynamic stall on the response of the airfoil can be seen.

Figure 6 presents the results for the combined stall-model, blade-dynamics

system with the above baseline parameters. In Figure 6a, the lift coefficient

is plotted versus 9 . A typical "figure 8" plot is obtained. However, in

contrast to the earlier plots, this curve is complicated by the fact that e

includes blade flapping contributions and is not purely simple harmonic.

Figure 6b presents the blade flapping response. The response for an analysis

wT.thout stall is also given for comparison. We notice that the unstalled

rotor is almost exactly trimmed (no once-per-rev in ,5 ) whereas the stalled

blade is not completely trimmed. (There is a significant once-per-rev component.)

This results from the fact that we are using approximate trim formulas.
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The average value of /S for the unstalled case is .13 radians, and the average

value for the stalled case is .10 radians. This drop in 4 can be attributed

to the overprediction of lift by the linearized model. Figure 6c depicts the

variation of e with azimuth angle for both the stalled and unstalled models.

For the unstalled case, the variation in (9 is completely due to (% and c ,

e t '49 , since /3 has little unsteady component.

For the stalled case, O and (9 remain the same, but the cyclic flapping

adds another + 20 to the angle of attack yielding 5 = !Go (even deeper

into stall). An interesting aspect of the curves in Figure 6 is the 900 phase

lag between stall and the drop in flapping. Under unstalled, trimmed conditions,

the variations in 9 exactly counter the variations in free stream to give a

uniform lift and uniform /S . When stall is introduced, however, there is a

large drop in C at the maximn 9 . (Compare linear and stall models inz

Figure 6a.) Figure 6c shows that this drop occurs nearly at 4' - 2700, when

e9 is maximmi . The resultant drop in /5 , however, occurs about 90* later

at Y - 360*. This is the well-known gyroscopic effect that causes the tip

path of a rotor to respond 90. out of phase with the lift. Similar analyses

have been performed over a range of advance ratios, /A , and nondimensional

semi-chord, k. These all show the same general trends as in Figure 6, Reference 14.

In the above paragraphs, we considered the forced response of the coupled

stall model and rotor model. We now wish to turn to another aspect of dynamic

analysis that is very important, the calculation of transient response

characteristics. First, we will treat transient response in hover, /A - 0.

Although this may seem somewhat less interesting than the transient response

in forward flight, it forms the foundation necessary to understand the forward

flight transients (as investigated in the next section). To begin, we give

the blade an initial angle of attack with /9 A , C Z C 2and tz2 all set

to zero; and we solve numerically to investigate the transient build-up of lift
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and coning. Figure 7 presents such results for three different step inputs.

First, Figure 7a gives results for 9. - 10*. (Since no stall occurs for

e 4 10*, this figure is typical of all lower values of (9 .) A typical,

linear transient response is observed with a decay near the expected value,

ek'/16* At a higher angle of attack, however, (O - 12* in Figure 7b),

the transients do not completely decay. Instead, there is a small limit cycle

that remains. This indicates a mild instability in the coupled stall-flap

equations. When the blade stalls, /S begins to drop which changes the angle

of attack causing an increase in lift. The flapping angle, . , consequently

responds causing a new stall cycle. Figure 7c shows that this stall instability

is more pronounced at 9 o - 14* (a larger limit cycle). Reference 14 provides

simultaneous plots of C and C which can be used with Figure 7 to obtain a

more complete picture of the coupled lift-rotor instability.
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Eigenvalue Analysis of Linearized Equations

To investigate the model behavior further, both in hover and forward flight,

we wish to write perturbation equations that will describe the coupled rotor-

stall model. On the surface, one might wonder why a linearized perturbation

analysis is necessary when one already has the numerical solution of the

differential equations. Dynamic analysis over the years, however, has shown

again and again that brute-force, numerical solutions of differential equations

do not provide the insight of linearized eigenvalue analysis. An eigenvalue

analysis provides specific damping, frequency, and mode shape data that is

indispensable for the understanding of dynamic phenomena. It is for this

reason that the analog and digital response programs of the 
1960's gave way

to linearized Floquet analysis techniques in the 1970's, Reference 21. It was

simply impossible to efficiently extract the necessary insight from time

histories alone. Thus, dynamic analysis must encompass eigenvalue analysis

as well as forced response.

For the model considered in this paper, the perturbation equations must

be written about a periodic equilibrium that describes the forced response.

In other words, the perturbation equations describe how the system behaves when

it is perturbed away from the normal position. (This is exactly the kind of

information that is necessary to study gust response, rotor-body stability,

or control derivatives of a helicopter.) In order to obtain these equations,

we substitute the following perturbation expansions into equations (1), (2)

and (15) where subscript F implies the periodic, forced response of each

variable and subscript P implies the infinitesimal perturbation value.
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(4f) (Z30~
C ,- c, + ce,'> (23sO

As a result, each of the paiameters that depend upon eiplicitly also

takes on expansions.

M - + Oj'}p (2+ 6

Substitution of equations (23) and (24) into equations (1), (2), and

(5) yields a set of ( )F terms which by definition cancel since ) F is the

forced solution. The remaining terms yield a set of linear differential

equations in ( )P quantities. Nonlinear terms in ( ) are automatically

eliminated due to the infinitesimal nature of the perturbation quantities,

( )P. Some ( )F terms remain, however, as coefficients of the ( )p quantities.

This introduces additional periodic coefficients in the equations. A similar

perturbation process is performed in Reference 13 to obtain linearized

periodic-coefficient equations. However, several of the perturbation terms

have been inadvertently omitted in Reference 13. For example, in the C
z

equation the perturbation of the Se term should be
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The (F ( )F term is not part of the perturbation equations, the ( )P( term

is negligible, but the second and third terms are the perturbation quantities.

Equations (6) can be used to express ()p in terms of the perturbation

quantity, (A)p,

where

The term ( )F is omitted from Ri and SN1 in equation (11) of Reference 13.

Similarly, terms involving (9)p and (C)p are omitted from the C equation in

Reference 13. The correct perturbation equations, given in Reference 14,

contain these necessary terms.

Results of Eigenvalue Analysis

We now apply the linearized equations obtained in Reference 14 (as

described above) to study the behavior of the coupled stall-model, flapping

eigenvalues. We emphasize here that, due to the coupling of flapping and

lift, the eigenvalues and eigenvectors of the system represent coupled modes

with A , Cz1 and Cz2 all participating. Nevertheless, one of these three
1 2

is usually predominant so that each mode can be identified. To begin, we

examine the case 1 - 0. For this case, the equilibrium values ( )F are

constantwhich results in a set of constant-coefficient equations. The

eignevalue analysis of these equations results in the root locus plot of

Figure 8. For 00 (o < 100, the equations are completely linear and

the classical, rigid-blade eigenvalues are obtained. The real part of the
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flapping eigenvalue (- h) is the flap damping and the imaginary part of

the eigenvalue ( 6) J- / z ) is the damped flap frequency. Eigenvalues

also exist for the C and C equations. These are plotted in Reference 14.zI  z2

As 9, is increased beyond l0*, the frequency and damping of the flapping modes

decrease due to the smaller slope of C , as seen in Figure 1. By (5, = 120,z s
the damping is nearly neutrally stable. It is this neutral stability that is

manifested in Figure 7bA At Go - 130, full stall is encountered and the

flapping eigenvalues make an abrupt change of direction. They quickly become

unstable. It is this instability that is manifested in Figure 7c as a strong

limit cycle. Thus, we see that the time history behavior is in agreement

with the perturbation eigenvalues.

We next turn to the eigenvalue analysis in forward flight. Here, the

equilibrium quantities (4)F9 (WF, (CZl)F, and (C z2)F are periodic. They are

stored in files, based on the forced response, and then passed to the periodic

coefficients in the Floquet analysis. Figure 9 presents results for the

entire system as a function of advance ratio for an unstalled case. The real

part of each eigenvalue is plotted. The C eigenvalue is the damping of thez2

stall mode. Because the blade is unstalled, this stall eigenvalue is uncoupled

from the system and remains fixed at - = --. 10. There is a significant

amount of coupling, however, between the transient behavior of C and thatz1
of A • The flapping eigenvalue splits into two branches at /4 - 0.79. This

is typical of periodic-coefficient systems, e.g. Reference 21.

Figure 10 presents the effect of higher collective pitch on the damping

at /4 - 0.25. At &o - 60, the blade begins to experience significant

stall on the retreating side. Because of this, the flapping and stall eigen-

values begin to interact with each other in a marked way. Both eigenvalues split,



-24-

and the flap damping decreases to about 1/2 of its original value at

go - 80. The type of damping calculation provided in Figure 10 is possible

because of the ease of implementation of the stall model of Reference 1 and

because of its amenability to linearization.

Summary and Conclusions

The dynamic response of a single section of rotor blade has been calculated

including an analytic stall model developed in Reference 1. In this present

research, the model is verified and simplified; and the resultant flapping-

stall equations are solved both by time history methods and by linearized,

eigenvalue analysis. The conclusions of these dynamic analyses are:

1) The simplified stall model can be incorporated into a rotor dynamic

analysis by the addition of three state variables at each section.

(Four are required for the complete stall model.) One such typical

section is analyzed here.

2) The coupled blade-aerodynamic equations for a single section are easily

analyzed for time history or for eigenvalue analysis, the latter being

effected by a straightforward linearization.

3) The perturbation eigenvalue analysis gives results with direct physical

interpretation with respect to the time history solution.

4) Further research is necessary to understand how to correctly apply the

model to an entire blade with unsteady free stream and with both pitch

and plunge motions.
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ABSTRACT

Most rotor air loads programs are trimmed by an iterative
process with two steps per iteration. in the first step, controls
are guessed and the equations are integrated in time until all
transients are decayed. in the second step, the controls are
improved based upon the difference between the desired hub loads
(thrust, propulsive force, side force) and the computed loads. As
an alternative to numerical integration, however, recent papers have
suggested a procedure called periodic shooting. The numerical
shooting procedure can be used sequentially in the above, 2-step
process; or it can be used in parallel with the control strategy as
a unified trim method.

In this paper, these three trim methods (conventional,
sequential shooting, parallel shooting) are applied to production-
version rotor air loads programs. The convergence and efficiency of
the methods are studied, and the converged results are compared with
wind-tunnel data.

1. Introduction

Any calculation of rotor air loads requires the periodic
solution to the rotor aeroelastic equations with a known set of
control settings. Similarly, most dynamic stability calculations
are based on perturbation equations written about a periodic
equilibrium position. Therefore, calculation of rotor control
settings and periodic response is a fundamental aspect of rotor
analysis.

This calculation is not at all trivial, however. Even when
the controls are known, it is not always easy to solve for the
periodic solution. This is especially true when one or more system
modes has small damping. In fact, however, the rotors controls are
not known. Instead, what is known is the lift force, propulsive
force, and side force desired for a flight condition. The pilot
controls, therefore, also appear as unknowns in the problem.

In general, there are three categories of methods to solve
for the periodic rotor response. These are: 1) Numerical
Integration, 2) Periodic Shooting, and 3) Harmonic Balance. There
are also three categories of methods for finding the control
settings. These are: 1) Automatic Pilot, 2) Newton-Raphson,
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and 3) Algebraic Control Equations. Each of the three response
methods (1,2,3) is particularly suited for one oi the three controi
methods (1,2,3) In the sense that they are compatible for
application in a parallel strategy. For Iample. numerical
integration and automatic pilot are applied in leference 1; Shooting
and Nevron-Raphson are applied in Reference 2; and Harmonic Balance
with Algebraic Concrol Equations in applied in Reference 3.

Despite this compatibility, however, most production version
air loads programs use numerical integration coupled with Newton-
Raphson (a rather incompatible combination). The purpose of this
paper is to compare three methods: 1) the conventional numerical
integration with Newon-Raphson, 2) the sequential application of
periodic shooting with Ne ton-Raphson, (without capitalizing on their
compatibility), and 3) the parallel application of the two methods.

2. Background

2.1 The Transition Matrix

The first step in solution of a system of linear differencial
equations is the determination of the transition matrix [P]. Given
a set of n linear equations of the form

(i }- [A(t)] (x }+ b(t) (1)

where A(t) and b(t) are periodic with periodT, the transition
matrix, (0], is defined such that, for b(t) - 0,

x(W) = [(W)] x(0)} 0 < t < (2)

This further implies that

(A -[l] (3)

In practice [01 can be found by numerical integration of equation
(1) with b(t) - 0. ?or nonlinear systems, the equation of state
will have the form

{i(t)l - {F(x,t)} (4)

It is often helpful to linearize these equations around a nominal or
periodic equilibrium position {x p. This solution solves the
equations

(ip} 1F(Xp~ (5a)

p I p 0

(x p(O)} - Xp(0 } (5b)

Now, we write equations for perturbations about x p(t).

X() - X p) + S() (6)

where higher powers of Sx are negligible compared to 6 x. Now if
F(x,t) is smooth enough to have a Taylor series representation, then

af
(F(xt)}" (F(xptp)} [-] (6x(t)} (7)

p
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This leads to the equations

[tX -1 ~x (8)
xj X-Xp

Then the transition matrix [V(t)] can be found from sequential
perturbations of each element of (x(O)} by a small amount, say a
away from (x (O)}. The resultant perturbed initial conditions can
be used in Equation (4a), and integration througk one period gives a
solution (x(t)} from which (x(t)} may be obtained by

{6x(t)} - {x(t)} - {X p(t)} (9a)

{x(t) - ix Ct)} + {6x(t)} (9b)

The transition matrix may be formed by dividing the {6x} columns by i
and assembling them in (1 such that

ix()} - {x pt) } * [0(t)] {dx(O)} (10)

as in Equation (7).

2.2 Periodic Shooting

The method prescribed here, periodic shooting, utilizes the
transition matrix (] to find a periodic solution in a direct way.
The first step in this procedure (once [f] is known) is to integrate
Equation (1) through one period with zero initial conditions but
with {b(t)} retained. The resultant, non-periodic solution will be
called {xf.

It follows from linearity that the general solution to
Equation (1) is

{x(t)} - {xf(t + CO(t)] {x(O (11)

Now a periodic solution, { x(O) } - {X(T can be immediately achieved
from the initial conditions

{x(T)} {xf(r)} [r)I {x(O)} - {x(0)I

{x(O)} (I - O(r)] - {Xf(t)}

-1
{x(O)} - [I - O(T)] {xf(T)} (12)

The resultant periodic solution is obtained from substitution of
Equation (12) into Equation (11). The calculation in Equation (12)
is called "periodic shooting" because the initial conditions are
"aimed" so as to hit the target {x(t)) - fx(O)}. We should mention
here that the calculation in Equation (12) is conceptually identical
(but computationally much simpler) than the method described in
Reference (4).

In the case of a nonlinear system, Equation (5a), the
procedure is similar to that outlined above. For example, estimated
initial conditions, {xE(0)}, can be assumed and an integrated
solution found (x (t)}, that is not periodic but is a first estimate
of {x ). Thus thl initial conditions can be modified in an attempt
to make {xE} periodic.
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p()1 = ,- 1" ). -(0o)} (3)

The procedure can then be repeated with z (0) generating a new
estimate xi,(t). Thus, the above algorithi can be ucilized to find
the periodic solution X (t) to a nonlinear system. it should be
noted that this is equivilent to a modified Newton-aaphson procedure
to find the initial conditions that will result in a periodic
solution.

Thus, the above method and time-vise integration (until all
transients decay) stand as two alternative methods for the periodic
response. The third method, harmonic balance, is not treated in
this paper. Now, the complete rotor trim involves calculation of
control settings and periodic response. Three possible means of
effecting trim are outlined below.

CONtRlL IRAYtO?

GUSCNOLS

,< , INTEGRATE UNTIL ALL
7TRANSIENTS DECAY

WIHN YES

<,EREGI)
\t EXIT

VARY CONTROLS 0 Y NCIO CALCULATE CHANGE IN
FORCES I

I.
I 0 INVR

DITA0 KGUM~

Figure 1. Flow Chart for Comnentional Method

2.3 The Conventional Method

This is a method which uses a Newton-Raphson iteration
procedure for convergence on controls (called control strategy) and
integrates through time until a steady-state solution is found for
the given initial conditions. A flow chart of this method is shown
in Figure 1. It can be seen that, first, the controls are guessed.
Second, the equations are integrated in time until a periodic
solution is obtained (until all transients decay). Third, the
forces are found. If they are within a certain error criteria, the
program stops. If not, each control is perturbed; and, for each
perturbation, integration in time is performed until transients
decay. Fourth, a partial-derivative matrix is formed and new values
for controls are found using a modified Newton-Raphson procedure.

(81 -F (14)
new Old desired actual
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In some airloads programs only an approximate version of
.-L

La/ i a is used. Approximations include: i) neglect of
dialo"I terms, 2) closed form approximations, and 3) pseudo
inverses. Th ese approximations may save computation for each
iteration, but at the possible expense of requiring more total
iterations.

SSCONTROLS. GU INITI CONITIONS

II I

EALCULATE FINAL CONDITIONS]I: i BY INTEGATHO
CLATE EORCE

EXIT I T YEYES EI[lSuT

NO NO

VARY CONTROLS ONE BY CUI
AND CALCULATE S VARY INITIAL CONDITIONS

CHAEIN FORC ONE BY ONE AND INTEGRATE

I 1
I ARTIALERIVATVES1 FOR ARALDERVATIVS

AND AND INVERT

OBA E UESS OF OBTAIN NEW GUESS OF _____

CONTROLS TIAL CONDITIONS

Figure 2. Flow Chart for Sequential Method

2.4 The Sequential Method

In the sequential method of periodic shooting, the right
block in Figure 1 is replaced by the shooting algorithm described
previously. This is depicted in Figure 2. A convergence criteria
must be applied to the shooting algorithm. This is done as follows.
A solution is considered to be converged when the error between each
of the state variables at T - 0 and T - 2V is less than some chosen
value. Thus,every time the block diagram calls for a periodic
solution (i.e., at every control perturbation), a new convergence is
required on initial conditions.
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Figure 3. Flow Chart for Parallel Method

2.5 The Parallel Method

In this method the iterations on control variables and
initial conditions in Figure 2 are combined into one scheme that
iterates simultaneously on controls and periodicity. The procedure
is similar to the former algorithm except that a single partial
derivative matrix is obtained that includes the changes in forces
and periodicity with respect to control settings and initial
conditions. The flow chart for this refined method is given in
Figure 3. Here, we have capitalized on the fact that both
strategies (controls and periodic solution) are Nevton-Raphson
procedures. Thus, it makes sense to combine these into a single
Newton-Rapheon scheme with both controls and initial conditions as
unknowns.

3. Application to Production Program

3.1 Discussion of Rotor Loads Basis

A test of the above described methods is provided by
application to a rotor loads and performance analysis that has been
developed as a subrouting for use within the AVRADCOM, Applied
Technology Laboratory (ATh) V/STOL Preliminary Design Program. The
importance of an efficient iteration method within a preliminar7
design process becomes evident as the analysis is permitted to allow
more and more design variables to be considered. The basis for the
applied rotor analysis is documented in the cited References 5, 6.
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The basic equations are for a rigid hinged blade with hinge offset.
Only flapping dynamics are considerea. Calculation of the rotor
loads requires the airfoil section lift and drag characteristics as
well as the resultant velocity. The airfoil section characteristics
are provided for section angles of attack from -i80* to 180* for
.mach numbers from 0. to 1.0. The use of basic steady airfoil lift
and drag measured as a result of 2- dimensional transonic wind

tunnel tests is done with confidence along most of the rotor blade
span. However, three separate adjustments are required to account
for air flow and blade motion which can become significant depending
upon the rotor operating regime. The first of these adjustments is
a so-called tip relief model, derived in Reference 7, which accounts
for the reduced compressibility existing in the 3-dimensional flow
near the tip of a lifting surface. The tip relief model is based
upon the potential representation of the thickness effect of an
airfoil by a source-sink distribution. The thickness effect can be
thought of as a qualitative explanation for tip relief in the sense
that 2-dimensional flow requires greater displacement in a
perpendicular direction than 3-dimensional flow about a finite tip.
Therefore, there results a relief in the flow about the tip as
compared to the 2-dimensional flow. The potential function is
formulated for a finite wing by subtracting the functions for
complementary wings on both sides from the function for an infinite
wing (2-dimensional airfoil). Formulation in this manner relates
the velocity on the 2-dimensional airfoil to that on the finite
wing.

The second adjustment to the 2-dimensional airfoil data is
intended to account for the radial flow conditions that exist on a
rotor blade due to its yawed position present for much of the
azimuthal circuit. The significant features of this method
(Reference 8) include an estimate for the increased skin friction
drag due to the use of the resultant velocity acting at a yaw angle
to the blade element and a stall delay due to an increased lift
capability evidenced in yawed flow experiments on various wings.

The third adjustment to the basic wind tunnel tested airfoil
data is an approximation of the stall hysteresis with lift overshoot
that occurs as a result of an airfoil oscillating near stall. The
cyclic pitch variation required by a conventi iial rotor system
causes this unsteady airfoil characteristic to have a significant
effect upon calculations when the operating condition allows
appreciable stall. The formulation, detailed in Reference 8, is
based upon tests of four airfoil sections from 6% to 12% thick.
Derived from these tests are the stall delay angles as a function of
a dimensionless parameter, -/ 2V (analogous to the reduced
frequency parameter) where C - blade chord and V a local velocity.

Linear functions have been developed for a stall delay arameter
which depend on the airfoil thickness, Mach number, V
parameter, and whether it is lift or moment stall vhich is being
examined. The moment stall formulation is used to determine the
unsteady drag coefficient. Reference 9 shows this to be a good
approximation.

The non-dimensional integral expressions for the three rotor
forces (thrust along rotor shaft, and propulsive force and side
force, perpendicular to each other and the rotor shaft) are derived
from the resolution of the airfoil force coefficients as they vary
along the rotor blade. The integral spans the distance from the
root cutout r to the tip (1). Tip losses, or the approximation of
the loss of lift due to the finite blade, are approximated by
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setting lift - 0.0 at r - 1 ana assuming a iinear variation in the
lift from r - .97 to 1 .1 The drag force coefficient used at
r - 1 is that which has been -a1culaced as a result of applying the
above summarized tip relief method at lift - 0.0.

3.2 Application of Iteration Nothoas
The appication of the procedure sumsarized wi-ve requires an

iteration method to solve for the required rotor forces and the
accor anying steady-state rotor blade maotion. Specifically, the ATh
V/ST -L. freliminary Design Progras requires rotor torque and tip
pach-plane inclination when given the rotor forces. The iteration
method must provide convergence of magnitude and direction upon the
resultant of rotor lift, propulsive force and side force (Figure 4).
This is done by adjusting collective pitch (e ). longitudinal cyclic
angle (6 ), and lateral cyclic (e ). Steady state blade flapping
magnitudi and velocity mast be attluned. Three methods of iteration
have been applied to investigate the relative efficiency of each in
achieving convergence through the variation of the Live variables.

" TI' / .FT% % TI SYMT.,, /\ I
i I

I
H = = YI=

I Y

I I II'

'It

I" r w ow W
I II

I ~DWY

LONGITUDINAL FORCES LATERAL FORCES

Figure 4. Force Vectors
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Figure 5. Step by Step Conventional Method

1) Step by step conventional method: This first method
(Figure 5) steps through each one of the variables, insuring
convergence within a specified tolerance before proceeding to the
next variable. Steady State flapping is calculated first and then
e9 is incremented toward the resultant vector magnitude convergenr e.
T~tal force is not integrated until a steady state flapping is
achieved. When the force magnitude is converged, a_ is incremented
toward the vector direction required. The vector - gnitude is then
chocked and then reiterated until it again is converged. This
procedure is repeated until both magnitude and direction are
correct. At this point,& is incremented and when the results of
this perturbation are avaiiable, tests are made to check the
previously achieved convergence onog and49 . If this test shows
non-convergence the procedure is repuated fsrom the point of
non-convergence. Extrapolation and interpolation are accomplished
in small enough linear steps so as to approximate the
non-linearities of the problem. When enough consistent
perturbations have been accomplished, the step by step procedure is
deviated upon, in that when one control is incremented, enough is
known about the sensitivities so that the other controls can be
changed at the same time. Thus the off-diagonal terms (coupling
terms) of the inverse matrix can be included. Upon changing e :

oI a6 (a DW - OaFT 1 (0 2  Ol)/01 (FT 1 - a FT 2) (5

Upon changing e :
c

0o 0 +o (a DW7 -aLT 1)Me 02 - 6 0 1/(aLT2 -'1LT 1 (16)
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* : (,- - -.: )(8 - )t(L. - LE) (17)

"shere 1 and 2 are from magnituCe or direction converged conditions.
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..... ......

-3.---------------.----

Figure 6. Newton-Raphson Sequential. Method

2) Sequential Nevton-Raphson: This method (Figure 6)
requires the establishment of a matrix of slopes representing the
sensitivity of the rotor forces to the isolated perturbadion of each
of the control variables. This matrix is applied, through
inversion, to the Newton-Raphson equation to achieve simultaneous
convergence. The method is termed Sequential because each
perturbation requires first the convergence of flapping displacement
and velocity. Flapping convergence is achieved through periodic
shooting with the first perturbation being the value found from
numerical integration. If an accurate first estimate is possible
for the flap motion, numerical integration will yield a periodic
solution within two revolutions for a practical articulated rotor.
For tie two variables included in this problem, sequential periodic
shooting would require four rotor revolutions to establish the
required matrix and then another (minimum) to converge, for a total
of five revolutions. Because convergence is tested for every
perturbation, the Newton-Raphson sequential integration (conventional
method) is superior, In this application, to the Nevton-Raphson
sequential shooting technique. Sequential shooting would be
ahvantageous for more blade motion degrees of freedom. When all the
control variables are perturbed and the uimoltaneous solution of all
the variables does not result in convergence, two variations of
matrix update are possible. The first variation checks to see which
parameter is furthest from convergence and then allows a
perturbation of this single variable in order to update only the one
affected matrix column. A new estims....on is then made for all the
variables and convergence is retested. The second variation
requires perturbation of each of the variables when convergence is
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not achieved, thus resulting in a ompletely updated maz:ix. This
second variation is the procedure for which results are presented.

V/OMR MAT ALPHAS CLR/S CuR/S
0.300 0.779 -5.000 0.0715 0.0G360

7 .... ........... . .................. ............. . . ..

z 4 - ...................... ... - .... .I -..--...

3 ..... ........... . ............... .... ......... . . . ................ ....... ......... ......

Z .....

26

- C
-I.................. - . ......... ... - --.. ......

.-

ROTOR REVOLUTIONS

Figure 7. Newton-Raphson Parallel Shooting

3) Parallel Newton-Raphson shooting: This method (Figure 7)
extends the sequential method to include in the Newton-Raphson
formulation, the periodic blade motion variables. Isolated
perturbation of each of the variables is used to construct a
combined matrix of slopes representing the sensitivity of both the
forces and periodic blade motion. The term "parallel" then, refers
to the fact that the periodic blade motion is being iterated upon at
the same t;ime as the interitated force magnitude and direction.

3.3 Method of Application

Each of the above three methods has been used, on an equal
basis, in conjunction with the rotor loads and performance method
summarized above. An equal basis of comparison is assured by the
use of the same estimates for the starting values of the control
variables. For each series of calculations (each rotor shaft angle
at a particular advance ratio) the first point uses the estimates
for control angles and blade motion based on a closed form solution.
The subsequent points use this same closed form solution for the
angles, but the estimate is modified based on the differences
between the initial values and the converged values for the previous
point. Improvements to this scheme would include extrapolating the
converged controls (angles and blade motion) based on the previous
two values. The convergence criteria is the same for all cases: 1%
of resultant force magnitude; 1Z of resultant force direction; 10%
of rotor side force; 1% of blade flapping angle and velocity (except
for small angles the tolerances for which is .001 radians). These
convergence criteria are small enough such that a consistent set of
data can be calculated. Overall rotor performance is relatively
insensitive to side force, so the larger tolerance is acceptable.

58-11



Each perturbation includes a tolerance test on every required
variable, so eacn time a perturbation is required, the control is
perturbed in the direction toward convergence. Each time the
controls are calculated as a result of the compiete matrix update,
:hey are saved to be used with their previous counterparts to
predict the next value used during the subsequent perturbations. An
important consideration during calculation for cases near the
analytical lift limit for the rotor is to limit the extrapolated
control predictions in order to avoid a condition too far into stall
(beyond the required condition). The two Newton-Raphson metnods
which produced the results shown here do not include specific tests
to contend with predictions which overshoot the target and end up
too far into stall. This would be a problem only if the predicted
controls required calculations in the area of the second lift rise
at very high angles of attack, since the slopes would indicate
iterations to even higher angles of attack. The overshoot at
conditions near "maximum" lift is most critical for the step-by-step
conventional method since convergence is accomplished for each
individual control variable (its related force, direction, or
motion) while the remain-n variables are held constant. This means
that, if, for some reason, the combination of controls becomes
unreasonable, a false indication of lift required being greater than
lift available will result. For this reason some checks are
required which result in a restart at a more reasonable value for
the step-by-step method.

4. Results

4.1 Preliminary Investigations

Before pvoceeding to the results for a production airloads program,
it is interesting to compare results for a research oriented
response problem as given in Reference 2. Three separate
assumptions can be established for a compariscu of periodic shooting
with numerical integratiGn (solution of equations of motion until
tranients decay). Figure 8 illustrates the boundaries established
when these assumptions are coupled to a knowledge of the stability
of problem. For the sake of comparison, it is assumed that each
method starts with a first guess of the initial conditions (often
zero), having an error, 9 . Each method must then be pursued until
a desired error, E is rea;&ed. It is also assumed that the
equations are nonlinear so that the shooting method requires several
iterations. For the controls known case, Figure 8 shows that for
10% damping, such as is typical of articulated rotors with dampers,
direct numerical integration is always preferred, even for only one
degree of freedom. For hingeless rotors, however, for which as
little as 1% damping is typical, direct integration is superior only
when more than 16 degrees of freedom are present. For damping less
than 0.1%, as is typical in stability work, direct integration is
generally inferior to the present mathed of periodic shooting.
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Figure 8. Comparison of Numerical Integration and Periodic Shooting

For the case when the controls are not known, the above
comparison must be modified to include the fact chat controls and
initial conditions are found simultaneously by the combined Newton-
Raphson shooting method, but are found sequentially when Newton-
Raphson is coupled with direct integration. Figure 8 shows for the
comparison between shooting and direct integration becomes more
favorable for periodic shooting when the controls must be found.
For typical articulated rotors(damping 10) shooting is superior for
less than 10 degrees of freedom and for typical hingeless rotors
(damping 1Z)shooting is superior for less than 100 degrees af
freedom. Thus there is a great potential advantage of the shooting
method over numerical integration even fcr large problems.

Finally, it might be argued that the potential advantage of
direct integration would increase if direct integration were used
with only an estimated set of partial derivatives. However, as seen
in Figure 8, even for estimated derivatives, It has been found that
there is still a favorable trade-off between shooting and
integration.

'hue, the relative advantage of shooting is enhanced for
systems with low damping. For unstable systems, (damping less than
0.0) direct integration cannot be used and so, periodic shooting (or
some other method) is necessary.
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4.2 Direct Aoplicac±ons

In order to provide a comparison of the relacive efficiencies
of the iteration procedures which would be indicative of what i.s
required to undertake a complete rotor loads and performance

analysis, calculations have been made of an advanced rotor design
for which wind tunnel data is available (References 10, 11, 12).
The simulation of the rectangular planform rotor (baseline) requires
the ability to include three airfoil data tables with interpolation
between adjacent ones to represent transition section
characteristics (Figure 9). The airfoil data tables consist of data
measured in a transonic wind tunnel at Reynolds numbers which are
representative of the full scale rotor test.

/c 013 - 0.095 - I4 CHOR SWEEP 3r
009 R 0 18 R 0.46 R 0.8 R )REAING- G SffP 37

a 0 59 R I I I, RI

-I - I[ SWEPT TAPERED 30"

SC-1013-,R6 SC-1095-RB SC-1095 TAPER RATIO 0.6

NOMINAL TWIST RATS IS -100 20

-,,S
S6

- 4

z
TAPERED

2. TAPER RATIO 0 6

RECTANGULAR

955 R R
0 2 .4 6 .8 1.0

NONOIMINSIONAL RADIUS

Figure 9. Blade and Tip Geometry

Figures 10, 11 and 12 illustrate the range of rotor test
conditions and the number of points which were calculated to provide
a comparison. The actual reported test point values (lift, drag,
side force and shaft angle) are used as the calculated trim valves.
This not only exercises the trim procedures to the maximum possible
extent for this analysis, but also insures the calculation of the
actual rotor condition as measured in the test. Although the
calculated value of the relative rotor power does not, in all cases,
correlate well with the test value, the trends are quite
representative for the range from the autorotative to the propulsive
state of the rotor.
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Correlation can be obtained through the adjustment of profile
drag and inflow velocity. The profile drag increment would account
for the differences between the wind tunnel airfoil and the full
scale section (small imperfections). The inflow velocity varible
adjustment can be used (References 13, 14) to adjust the slope of
the variation of relative rotor power with advance ratio. Through
the comparison of the analysis with the full range of the test
results, it is insured that the trim iteration methods are exercised
to their useful limits. The test results represent a helicopter
rotor ac its maximum lift and propulsive force limits (within the
power required limit of the test facility) for a wide range of
inflow conditions.

A summary of the rotor revolutions required for each case is
shown in Figure 13 for a comparison of each of the trim iteration
methods. It is apparent that for this analysis, the Newton-Raphson
and Shooting methods are superior in an overall reliability and
efficiency sense. However, it is interesting to note that the
parallel shooting method fails to converge at some isolated cases
for a very high lift condition, where the other two methods are
successful.
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Figure 13. Summary of Convergence
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5. Conclusions

The shooting method can be applied to an existing airloads
program with a moderate amount of program changes. Many airloads
programs are set up to remain in the azimuth loop until blade motion
transients decay. This loop must be interrupted to allow only one
revolution per perturbation and the resulting partial derivative
then added to the matrix for the Newton-Raphson method.

For this example, parallel shooting is superior to the
conventional method for about 50% of the cases. This is consistent
with earlier estimates for a system with 1 Degree of Freedom and
14% damping.

The use of an approximate Partial Derivative Matrix is not
satisfactory and requires an average of 2 - 8 times as many
iterations as when using the full matrix.

No unusual convergence problems were encountered. The parallel
shooting method and the conventional method generally failed to
converge for the same cases (about 6% of the time).

The sequential application of shooting is generally much less
efficient than the parallel application, requiring 3 to 4 times as
many rotor revolutions.

The periodic shooting technique can be successfully applied to
a rotor airloads program which includes detailed aerodynamics and
dynamic stall, to calculate the full range of performance of an
advanced technology operational helicopter rotor.
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