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ABSTRACT

perturbation theorem for inverse stability inequalities is proven. As an

In the framework of Stummel's discrete approximation theory, a

application, the inverse stability of compact finite difference schemes
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SIGNIFICANCE AND EXPLANATION

The normal procedure in solving a continuously defined problem

numerically consists in applying a discretization first which reduces the
original problem to one which can be treated by numerical algorithms for
solving equation with a finite number of unknowns. A fundamental question
arising in this context is the convergence of the solutions of the discretized
problem to the solution of the original one.

In studying these kinds of gquestions, it has turned out that the various
different discretization procedures can be treated in a unified manner in the
abstract setting of the so-called discrete approximation theory which is also
used in this paper. The main point in proving convergence in the stability of
the discretization. This paper deals with methods in proving stability for
linear problems. As an application of the abstract result obtained, the
stability of finite difference aproximations for linear two-point boundary
value problem on not equally spaced grids is established, a topic which has

attracted the attention of a number of numerical analysts in the last few

years.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




ONR PERTURBATIONS OF STABILITY INEQUALITIES WITH AN APPLICATION

TO PINITE DIFFERENCE APPROXIMATIONS OF ODE'S

R. D. Grigorieff®*

7. Introduction. ‘The main part in proving the convergence of finite difference
approximations for boundary value problems consists in establishing suitable stability
ipequalities. One common method in proving such inequalities is to start from an often
comparatively simple a-priori-inequality which leads to the desired stability by a
perturbation argument. The purpose of this report is to give an abstract version of this
procedure in the framework of the discrete approximation theory introduced by Stummel
[10,11]. In this way it can be clearly recognized which properties of the problem give
rise to the stability inequalities. As a further consequence one obtains fairly simple
proofs of stability results used only very indirectly in the concrete context or being
even not found there (e.g. [9,12]).

As an application we establish the inverse stability of compact finite difference
approximations for linear m~th order two-point boundary value problems on nonuniform grids
in the maximum norm, which makes it easy to get the convergence of the schemes obtained in
[9,12). These stability inequalities have also been given in (4] using a different manner
of proof. The method developed in this report opens the possibility to treat also more
general schemes as well along with the associated eigenvalue problem. Moreover the
abstract result applies equally well to other discretization methods, e.g. to Galerkin and
quadrature methods, a fact which is mentioned only briefly here but which is wellknown to

those familiar with discrete approximations.

*Pechnical University of Berlin, Str. des 17. Juni 135, D-1000 Berlin 12,
West Germany

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




2. WNotatioms. Let a denumerable sequence Ao and normed spaces EE, 1€ Ao, be
given. The spaces are said to form a discrete approximation A(s,!l!l) if a linear map
Lim is defined on a linear subset of all sequences u‘e s,,\ e Ao, with range equal to
B and the property

Lim (u ,1 € Ao) =0 <= lu‘l +0 (Ve Ao)
{the same symbol is used here tc denote all the various norms on K, z‘). A sequence
u,.,e Ao, lying in the domain of Lim is said to be discretely convergent and we write

uw *u (1 e Ao)

if u is its image under the map Lim. By Ai’ A we denote final sections of

2

Ao' by A, A' subsequences of Ao' not necessarily the same at different ocurrences.
The convergence of a subsequence w,rv e A, to u e E 1is defined in the obvious manner:

u *u (v € A)s <=> vt ers v *u(ler), lu‘-v‘l +0 (1 @A)

By B‘ we denote the closed ball of radiua 1 in !‘. Let G‘, v e Ao, be subsets of

l‘. Then we introduce the limit set

Limsup G : ={uesx | AcA , u €6, 1eh u +u(teh).

1
The sequence G‘, v @ Ao, is said to be (locally) discretely compact, if each (bounded)
sequence u, eG L e AcAo, contains a convergent subseguence.
Let also Mr,ﬂrt) be a discrete approximation of normed spaces. A sequence of linear
mappings l.l H !l * rl, v e Ao' is said to be discretely convergent to a linear mapping
L:E +F, insymbols L +L (1€4A), if
u *u (4 el\o) =>Lu +L 1 e Ao).

The sequence Ll. 1 e Ao' is said to be consistent with L 1if

VueeE, u‘e!‘, 1 el\oxu‘ +*u, L‘\a‘ + La (ler).
The sequence L‘,l e Ao’ is sald to be discretely compact if the sequence
R(L‘), v e Ao, of ranges of L‘ is discretely compact. Sometimes we use the notation
E.tre {0}, to indicate the space E, and similarly for P, L etc.

3. The perturbation theorem. Let A(EIE ), A(F,Ir ), ac'd, nc“-”), § = 1,2, be

discrete approximations of normed spaces. let

-2-
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L‘(j) s l‘ > )‘, I‘(j) 3 l‘ > G‘(j), T e Ao u{o}, j=1,2

be linear mappings. We wish to conclude that the stability inequality

(2) (2)
(1) Yzlu‘l < II’.‘ u‘I +« II‘ u‘|, u, e l‘, 1 @ Az
holds if the inequality
1 (1)
(2) Yy lu‘l < IL‘ u‘l + lll‘ ull, u, ] !‘, v e A,

is known to hold. Here Tye LD denote positive constants independent of u, and 1.

Por brevity we set

K 3 l:.‘")

(2)
. - L ,:eAOU{o).

(3) Let (2) and the following conditions be fulfilled:

(1) ‘!.1:. sequence ‘t' T e A°, 8 discretel ct and convergent to K
(ii) The_sequence lll“)(ll‘) is locally discretely compact

(111) The_gequence (L'“), Il‘")) is consistent with (L“), uu))

(iv) n‘u) »> H(z)(l e Ao)

(v) (w,g) @ Lim sup (x‘(n‘).c(") N Lim sup (L‘(". u‘"))(l‘) =)
Zu €k L("u - w, II(”n -

(vi) L5 =0, WPy a0 o u=o0.

9

Then inequality (1) holds.
Proof. Suppose (1) not to hold. Then there exist a subsequence A C Ao and elements

uw ex,1e A, such that

(2)
t

(2)

(4) lu‘l =1L 1

n"O,H u‘*o(\eA).

Because of the assumption (i), we choose A such that algo

K‘u‘ +wi(Le@])

for some w € P. We now distinguish two cases.
First case: The sequence H‘“,ul, t €A, is bounded. Then, since (ii) is assumed,
without loss of generality

1
H‘( )u‘ + g1 e

for some g € G“). with (w,g) given in this way we can find a u with

(s) tMuew, Vg,




Now choose a consistency sequence ¥y eA, f.e.

¥, *u, l’.‘“)y‘ + l.(”u, ll‘(”yl »> ll(”n (e ).

Replacing u in (2) by ¢ -y, one obtains

(2) (1)
Y,lu‘-'y‘l < IL‘ u, + K‘u‘ Ll

1

(1)
ull + lll‘ (u‘-y‘) 1 +0 (» eA)

which shows the convergence u +u (v € A). Prom this, (4) and (1), (iv)

LE DI ¢}

> -
K‘n‘ ) O v, 1 1

u=0 (1 e4)
and so, because of (5), we conclude L2y - 0, which gives u = 0. But as a consequence

of (4) it is seen u ¥ 0 and we have reached a contradiction.

1)

Second case: The sequence H‘ u .t € A, is unbounded. By renorming u_ and if

t
necessary passing to a subsequence which we continue to denote by A we obtain a sequence
a, e l‘ such that

(2) (2)

1
(6) Iu‘l + 0, L‘ u, +0, "l m

u +0, lll‘ u‘l =1 (1 eA).

We now proceed in the same way as in the first case, this time knowing g ¢ 0. Since g =
¥ ana u=o0 this establishes the desired contradiction.

4. Special cases. The following specialization of theorem (3) is taylored to the
treatment of an ordinary differential operator under two different sets of boundary
conditions (see (1,2,4,7]). By N(L) we denote the kernel of the mapping L.

(7) Let linear mappings

*
L‘ H B‘ !‘, H‘

1 .
H ‘1 + G, @ AO [°}¢ 3 1,2

be gilven such that with a constant 71 >0

)

(8) 71'“1' < lx.‘u‘l + In‘ u‘l, u e, e A1

holds and let the following conditions be satisfied:
(1) dim N(L) = Aim G ¢ =

(11) The restrictions H(j)IN(L), J = 1,2, are_injective

(111) The sequence (I-,-H‘“’

2) , (2)

), v @ Ao' is consistent with (L,H“))

(iv) LN

Then there exists 12 > 0 such that

(2)
u‘l, u, e l‘, T e Az .

(e Ao).

(3) Yzlull < ll.lull + IH‘

-l




Proof. We take x.‘“’ - x.‘m, G -c‘(" -c“”- 6" e .y, K =0, K=0 in

(3) with the discrete convergence in A(G,HG‘) to be the convergence in G. Then (3)(41)-
(iv),(vi) hold. But also (3) (v) is satisfied since w = 0 and ll(" is surjective on
N(L) due to the assumptions (7)(i),(ii).

The next specialization of (3) is motivated by the wish to start from an a-priori

]
inequality for the operator Ll( ), and so obtain a stability inequality for the operator

Lt(z) differing from L‘“) by “lower order terms”.

{12) Let the following conditions be satisfied:

1) Ec G‘(”, v e Ao {0}, a1 aically and topologically, and the s nce of

natural inbeddings J B * G‘“), v e Ao, is discretely compact and convergent to the
natural imbeddiny J : B + G“)
(11) The sequence X , 1 & Ao, is discretely compact and convergent to K
(111) The_ sequence L‘“), 1 e Ao' is consistent with 1!l
(iv) .'I‘ul + gq, Ll(”u‘ +w(t@A)=> ueE: L("u =w, Ju= g
v n M euPen)
(2) (2)

(vi) L u=0,M u=0m=yuy=0,

If the a-priori inequality

(1)
(13) Y1Iu‘l < IL‘ u‘l + IJ‘u‘I, w, e 8‘, Te Ai'

holds with some Yy > 0, then also (1) holds with gome constant Y, > 0.

Proof. Conditions (3)(i), (iv)~ (vi) directly correspond to (12)(ii), (iv)=(vi). Since

w M.

' .1‘ and J‘, 1 e Ao, is discretely compact, (3)(ii) is satisfied. The

consistency (3)(1ii) follows from (12){iii) and the convergence Jl + J assumed in
(12)(1).

It should be remarked that the condition Ju = g in (12)(iv) is only notational since it
only distinguishes the element u € E and its imbedding into G“).

The last specialization of theorem (3) we give is connected with the study of

discretizations of equations of the second kind with a compact operator.

o




(14) Lot the following conditions be gatisfied:
(1) Y‘ lu‘l <1 n\“l" u el‘, 1 ¢A1 with some ’f‘ >0
(11) L+ B+ ¥ is surjective
(111) The sequence K vt e Ao, is discretely compact and convergent to X
{iv) (L=K)u = 0 => y =0
(v) The sequence L‘, T e Ao' is consistent with L.
Then, for some 72 >0,
’12 |u1| <t (LI-K‘)u‘I, u, e l‘, T e l\z .

Proof. We apply theorem (3) with L‘“) g = L‘, H1(” - H‘(Z)

1 =0, 1eh {0}. 1t is
easy to check that all assumptions of (3) are satisfled.

S. An application. In this section we wish to show how the convergence theorem contained
in {9,12) can be dsrived from the results of this note. Incidentally, we establish a
stability inequality which has been looked for in [12, p. 743).

In [9,12) compact, implicit difference schemes have been derived for a single m-th order

differential equation

( (

(16) taee) 1 = a™e) ¢ ] a(ern
i<m

“(t), t e (A,B],

with boundary conditions V - -

[} \Y
(11 ' Pu s = Vg v Py = .iq)uu)(“ +J biq)uu)(ﬂ) -cl@

i=0 i=0
for @q= 0, «co, m = 1. These schemes are of the form 3
n
(18) Lu (t) s -120 Px, 1% (Exey) = Lyflty) s -521 B 4t Tk, 3
(q) -yl (q) - (@ ()
(19) llh u, ot v [uhl + \)h l\lh] c + Cu'h[f] + <:\,’h {f£)

whexre X = 0, ..., B, q= 0, .so, m~ 1 and

m
v w1 {(i-m -1)
5 Dy el AP 0 mr+n I v Voo a)n *
Yo n Lo M Tt 1o TLewtth

(qQ)

1] a
j-‘ !

(q) -
Cu'h[!l 1 =R e + an'u)

and v(q)' c(q)

h voh defined analogously. Here Di denotes the forward difference quotient
[

-



belonging to the underlying nonuniform grid

fht-{tj,j-o, 1, ...,nlto-h,tn-n,t -tj#h’,j-o,...,n-i}

and R the distance t__y-t, while (J), means the positive part of j. The meaning of

bad)

the points < is described in the papers cited.

x,3’ Ejt“
One of the main results in (9,12]) is that the difference operators can be chosen in such a
way that the resulting approximations are exact for polynomials up to a certain degree and
the coefficient of Ih, Upe Vo ch are bounded for h + 0 where the normalizing

condition

J
(20} 321 B,y = 1r k=0 cccyn-m

has been imposed. For the purposes of this section it is sufficient to assume

(21) max { Iy pte) - xhx.p(rxbl, X =0, .cco n ~m} + 0 (he0)

{q)

{(q)
P e - 5 P ip) - ;%) 1wplt + 0
(22) (h + 0).
1P tp1 = v P el - e[ p1l + 0

for polynomials p of degree < m and that

(@ (@ (@ qlq)
{23) Bk,j' Yl'“l Y].,\" Bj'u' Bj'\‘ 0(1), h + 0.

We are going to prove the following two stability inequalities.

(24) Under the conditions (20)-(23) thers exists a constant Y > 0 such that for all

sufficiently small h and all grid functions v,

] =1
R A A A S A

(25) Agsume (20-(23) to hold and let (16), (17) be injective. Then there exists a
congtant Y > 0 guch that for all sufficiently small h and all grid functions wu,

n o1 (@
Y*Zo k-o,,ff,n-il Dl“h(tk)' < qzo l Hh uhl + k'O,?’f,n-ll I'h“h(tk)l.

-7=




There are no restrictions made on the mesh ratios of the grids T,. It is evident that
the convergence results contained in (9,12] are an immediate consequence of (24), (25),
one even cbtains the slightly more general result that the m ~ th order difference
quotients are also convergent.

In preparation for the proof of (24, (25), we rewrite the difference operator L, in the

form
n

(26) L, (t) = 120 %, 1Py ) k=0, oy m - m,

with certain coefficients “k,l‘ Inserting successively p(t) = t", L =0, ¢e., m, into
(21), it is seen that (21) is equivalent to (o- t = 1)

270 max { fa, ;=0 (6 )l k=0, ccop m - B} +0 (he0), 1 =0, .0o, m

We will now apply proposition (12) to prove (25). The continuous probleam (16), (1’ its

into the general setting by taking

1) (2) u

£=c*,p), r=cirsl, ¢V = c™ a1, 62 <o

and defining

(2) } (m=1)

M : c-[l,bl u* (ll(o U, seey N w e’

The indexed terms are defined as discrete analogs. We write h lnstead of 1 as

index. For u, a grid function we introduce the norms

]
lnhl. s = 2 max { IDjuh(tk)l, X=0, ¢eee,n =1}, t=m=~1, m
=0

Then 'h' G(” are taken as the vector space of grid functions on T, equipped with the

h

norm l'l.. 1«3 respectively. F, is taken to be the vector space of grid functions

| ]
v defined for e k=0, ¢ceo n = m, normed by

v ! : = max {l'h(t)t”' X=0, eeo,n-m}).

ho
(2)_-

Pinally n. The spaces defined so far are easily shown to form discrete

approximations (see{6]). Bvidently, L, maps & ~+ 7P,
1) (2)

Tk Ty
(o) (1)

Y m w e g e T ) e .




s b TS e ...

We are now going to check all the conditions listed in (12). Condition (i) is proved in

{6, theorem 1], 8Since K = 0, !h = 0 condition (ii) is trivially satisfied. The
consistency (iii) follows from (27) and the fact that, for each u € E and j =0, ...,
m,

max { IDju(tk) - u(j)(tk) }le X =0, <., n = 3} + 0 (h+0),

2
For the same reason, the sequence H; ) is consistent with M(z).

structure of H;Z) we have

Moreover, due to the

m}“z’uhl <Tigl,w ex,
)

with T independent of u, and h, i.e. the stability of the sequence Méz .
Consistency and stability together imply (v). Condition (vi) is among the assumptions of

(25). Taking (27) into account for i = m it follows that |uk n| > a > 0 for
,

sufficiently small h and hence using the triangle inequality

a Dol <lnu 1+ 12-. a, ; Dwd .

Because of (27), the « are uniformly bounded and we obtain for sufficiently small h

k,i
% l“h'n <! r'h“hlo +T l“hlm-1’ Y, € B,
which is the a-priori inequality (13). It remains to show (iv). Assume
. 1) 1
(28) su s g o) in ac'", melV)
(29) Lh“h + w (h+0) in A(?,ﬂrh).

From (28), taking (27) into account,
(i)
I a . Du+ § au
i<m 4 1% i<m *
Then using (27) for i = m and the convergence (29) we obtain

(i)

(h+0) in A(F,HFh).

(30) D +w- Y anu
m“h iom i
The convergence in (28) and (30) together imply

(h+0) in A(r,nrh).

u + u (h*0) in A(!,H!h)
and hence from (30) the desired result (iv), i.e. Lu = w, follows. Since all assumptions

of (12) have been verified, the stability inequality (1) holds, which is just (25) in our

special case.




The proof of (24) is contained in the proof of (25) if the boundary conditions "(q) are

taken to be the initial conditions specified in (24). Of course for the initial value

problem the uniqueness assumption made in (25) is satisfied.
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