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ABSTRACT

It is shown that the size of the parametric bootstrap procedure of

Williams (1970) is biased upward. A bias-corrected version is shown to

* be better. The finite-sample performance -of this procedure in examined

and compared with that of Cox's (1961, 1962) test in a number of

examples. In some of these, the proposed test reduces to the

traditional optimal test.
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SIGNIFICANCE AND EXPLANATION

This paper proposes a procedure for testing non-nested families of

hypotheses which substitutes ray computing power for asymptotic

approximations. Given access to a modern computer, the procedure is

'1 practically universally applicable. Examples illustrating its small-

sample properties are provided, as are theorems on its asymptotic

behavior.
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A PARAMETRIC BOOTSTRAP PROCEDURE FOR TESTING
SEPARATE FAMILIES OF HYPOTHESES

Wei-Yin Loh

1. Introduction.

This paper considers the problem of finding general procedures for

testing separate families of hypotheses, separate in the sense that an

arbitrary member in the null cannot be obtained as a limit of members in

the alternative hypothesis. A fairly general test has been proposed in

two well-known papers by Cox (1961, 1962). It is based on the property

that, subject to regularity conditions, the normalized logarithm of the

ratio of maximized likelihoods behaves asymptotically like a standard

normal random variable.

Specifically, let (X1,*.*,Xn) be a random sample from a

distribution with density h(x) and consider testing the separate

families H0 : h(x) - f(x,O) vs. H : h(x) - g(x,w) where (OW) are

unknown, possibly vector-valued, parameters. Let 8, w be the maximum

likelihood estimates of 8, w respectively and

Tn - n Z log{g(xi,w)/f(xi,O)} 1.1)

Then, under H0  and subject to appropriate regularity conditions (e.g.

White, 1982),

z -12(T n - EATn + N(o, a2(e)) (1.2)
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for some a (2) > 0. In this paper N(U,o 2  denotes the normal

2
distribution with mean p and variance a . Under H1 , Z tends to

+ " almost surely. Hence large values of Z are evidence against H0 .

At nominal level a, Cox's (1961, 1962) test, denoted by +Cox,

rejects H0  if Z > z 1a(;), where z a is the N(0,1) a-quantile.

An obviously desirable property of 0X is that the probability

of a type I error, a,, converges to the nominal level as n

increases. However, no study seems to have been done on the asymptotic

behavior of the size of COX

A variant of +Cox' to which it is asymptotically equivalent under

the null hypothesis, has been suggested by Atkinson (1970). However

this was shown to be not always consistent by Pereira (1977). Some

authors have proposed tests based on statistics other than the

likelihood ratio. Epps, Singleton and Pulley (1982) use the empirical

moment generating function, and Shen (1982) and Sawyer (1983) derive

their tests from information theoretic considerations. None of these

tests appear to be superior to the others.

A common feature of the tests is that they all depend on some form

of asymptotic approximation, and so require various regularity

conditions for their validity. In an attempt to obtain a solution to a

problem where such conditions are absent, Williams (1970a,b) considers a

different approach which substitutes raw computing power for

asymptotics. Given the data, Williams (1970) proposes simulating the

distribution of Tn in (1.1) on a computer assuming that e = 0. The

null hypothesis is rejected at the nominal a level if the observed
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value of Tn is greater than the (1-a)-quantile of the simulated

distribution. We will call this procedure +PAR since it has been

named aparametric bootstrap* in other contexts by some authors (e.g.

Efron, 1982).

It seems pertinent to remark here that although the idea of using

computer simulation to obtain the critical values of a test statistic is

not widely practised at the present time, there are problems where no

better alternative exists. For example, when the hypotheses represent

location-scale families of distributions, the well-known uniformly most

powerful invariant test statistic is a ratio of multiple integrals whose

null distribution, exact or approximate, is unknown. However it can be

approximated to any desired degree of accuracy by Monte Carlo simulation

quite easily, especially as the null distribution is independent of the

unknown parameters.

One aim in this paper is to compare the finite-sample performance

of #Cox and #PAR' with emphasis on (i) the extent to which the size

of the test, a exceeds the nominal a, and (ii) the power of the

tests. It is shown in section 2 that ci(* A) is never less than a.

In fact, an example is given in section 3 where 1for all
I (+PAR)

a and n. We also show that ai(C x ) can be either biased upward or

downward.

To reduce the bias in cS(+PAR ), a simple modification, f,, is

proposed in section 2. It is shown that if under H0, e is a

consistent estimator and the 1 - a quantile of Tn is a sufficiently

smooth function of 8 for each n, then as(f . ) is bounded above by

-3-
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1 + C for some > 0 which tends to zero as n + -. No explicit
n n

conditions on the limiting distributional behavior of Tn  are

assumed. Sections 3 and 4 contain examples comparing the different

tests*
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2. Improving on

Let Tn be given in (1.1). For each 0, a and n, define the

critical value c(O,a,n) such that

P (Tn > c(O,an)) - a . (2.1)

We assume for simplicity here that Tn is a continuous random

variable. Let c m(a,n) - sup c(Oan). if c (an) is known, the test
3 6 K

MT which rejects H0  if Tn > cm(an) is clearly level a. In

fact, under mild regularity assumptions, #LRT is asymptotically

optimal in terms of Bahadur efficiency (see e.g. Bahadur, 1971 or Brown,

1971). This does not, of course, imply that #LMT is necessarily most

powerful level a for finite n.

While c(O,a,n) can be approximated given 0, a and n, by

brute-force computer simulation if necessary, the computation of

c (an) presents a much harder problem. The parametric bootstrap
KA

*PA avoids this by having the rejection region: Tn > c(8,a,n).

Notice that since c(ean) 4 c (a,n), #PAR is at least as powerful as

4LRT . Our first theorem shows that this is obtained at a cost.

Theorem 2.1. For all a and n,

all(PAR ) - sup P1 (Tn > c(la,n)) ) a$6

A

Proof. sup P6 (Tn > c(O,a,n)) 0 sup P0 (Tn > c(an)) - a.
e e

The bias in the size of #PAR will be reduced if we use a critical

A A

value for Tn  that is greater than c(O,a,n). Assuming that e is a

consistent estimator of 0, this can be done in the following way. Let

I (0) be a 100(1-a ) confidence interval for 8 such that both its
n ..
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length and a tend to zero as n tends to infinity. The idea behind
* *

the test we will propose is to use c - c(1 ,a,n) as the critical

value of Tn, where e maximizes c(8,a,n) over I (e). of course,

this method is practicable only if 0 is known a priori for all

I (8). Section 3 contains examples where this is the case. For other
0

cases, 6 can at best be approximated with an "interval of

uncertainty" (01 ,82), which will contain 6 if it is assumed that

c(O,a,n) is unimodal in I (0). Making this assumption, the standardn

optimum-seeking methods like the Fibonacci and golden-section search can

be used. Given C' > 0, each of these two methods is known to produce

an interval of uncertainty, of length less than C', with a minimum

number of function evaluations; see e.g. Wilde (1964).

To approximate c(6 ,a,n), let I (8) - (81,82) and
" * a " * ;

S- -0. suppose first that <  1 <  82 . Then we may assume

without loss of generality that 8 < 81 - C < 62 + £< e2 , because if

this were not true, we could reduce the interval of uncertainty, and

hence C, by continuing the golden-section search. Let m1

* * * *

c(e ,a,n) - c(e - C, a,n) and m2 - cl0 2 + C, a,n) - c(82,a,n), and

define

c (O,a,n) - max {c(O ,a,n) + Imi • ) (2.2)
i-1,2

If 0 e 6 for some i - 1,2, we set mi = 0. Denote by * the

test which rejects the null hypothesis if T > c (8,a,n). Ifn

c(,a,n) is sufficiently smooth, an upper bound on the size of *. can

be obtained.

-6-
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Theorem 2.2.

(ii). Suppose that (a) for each local maximum 8 of c(8,a,n) there

is 8 6(0) > 0 such that c(e,*,n) is concave for 8 e (0-26,e+26)
and, (b) with H0-probability one, I (0) contains at most one local

n

'- mxlumof c(O,a,n). Then C;%. ( + U if whenever 6 obtains

and 0 e I (e), we choose c in (2.2) so small that c < 6(e).

Proof. (i). Obvious.

(ii). The assumptions imply that for every 8,

P( rejects H0) C P8 (Tn > c(8,a,n), 8 e In (e))

+ Pee 8 n())

S,+a

n

Both assumptions in part (ii) of the theorem set conditions on the

smoothness of c(B,a,n). Condition (b) is necessary to ensure that the

search does not yield the 'wrong' local maximum. Although the local

maxima {e} are seldom known in advance, the sequential nature of the

search allows the experimenter to plot the points {(6(,C((Ja,n)}

at each stage and decide for himself whether the length C of the

current interval of uncertainty is small enough for stopping. Stopping

at any stage amounts to making assumption (a) of the theorem with

6(0) e C, if there exists 8 in the observed 1 (9).

-7-
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In the above discussion it is assume that c(B,a,n) can be

obtained exactly for any e selected by the search procedure. When

c(9,*,n) has to be estimated by computer simulation, its value will be

subject to Monte Carlo error. However, since this error can be made

arbitraily small by increasing the number of Monte Carlo replicates, we

assume it to be negligible here.

-8-
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3. Some examples permitting analytic solution.

In this section the superiority of #* is demonstrated in som

classical testing problems where analytic solutions are possible.

x mple 3.1. Testing a normal mean.

Let (Xl,...,Xn) be a random sample from N(IA,O2) -2 < j ( -,

2 > 0, and consider testing H0 : N(0,O 2 ) vs. H1  Nll). It is

easily seen from (1.1) that

T - .5(1 + log s-s 2+ )

2x
n

where x is the sample mean and 2 the maximum likelihood estimate of

0 Thus *pAR has the rejection region
2 -2 2 -

.5(1 + log s - a + x-2) > k 1 _(a)

where k (a) is the a quantile of T whi a obtains. We cana-"n

avoid the evaluation of ka (s) by rewriting the rejection region as

-2 2 -2 2x/B > k'. Now k' being the I - a quantile of x/a, is

" independent of s. So both PAR and * are equivalent to the t-

test, which is uniformly most powerful unbiased. It turns out that

.COX does not exist for this problem because T - E.T is of ordercxn an
-1
-n and hence the LHS of (1.2) converges to 0 in probability under

H0 .

Example 3.2. Testing a normal variance.

Let (Xi,...,Xn) be a random sample from N(U,a), - < P < ,

2a > 0. We consider testing the following hypotheses.

2 2
(a) H : a = 1 vs. H : a , 2

It can be verified that (1.1) gives Tn S2/4 + constant, where s2  is

2the maximum likelihood estimate of a • Since the distribution of Tn

-9-
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is independent of P, *PAR and *. are identical, and yield the

uniformly most powerful test.

An easy calculation shows that at the nominal a level,

rejects H0  if

2ns > n-1 + z_{2(n-1))6 (3.1)

The RHS is precisely the two-term Cornish-Fisher expansion for the
2 2

(1-a)-quantile X 1 1  of the Xn_1 distribution. Table 3.1 gives

some numerical values of the size of the test, aI(CO), for different
CI OCOX)

values of a and n. Numbers in parentheses give the ratio /. The

entries indicate that (*COX) is biased upward.

Table 3.1. Values of a and aI/a for
" I Cox

2 2
(H a = vs. H 2)0 1

a 5 10 20 100

.05 .070(1.4) .067(1.34) .064(1.28) .057(1.14)

.01 .032(3.2) .026(2.6) .022(2.2) .016(1.6)

.005 .024(4.8) .018(3.6) .014(2.8) .009(1.8)

2._2

(b) H0: a 1 vs. H 1 1/2.

As in (a), P and *. are both equivalent to the uniformly
PAR

most powerful invariant test which rejects for small s The rejection

region for *Cox is

2 {(2(n-1)) 1 2.(32

ns < n-i z 2 (3.2)

-10-
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Table 3.*2 shows that a I Cx in now biased downward; numbers in

parentheses again give (18 /Go* The reason for the many zeros in the

table is because the miS of (3.2) is negative or close to 0 for those

values of a and n.

Table 3.2. Values of as and ai/a for #O

(H0  (Y 1 vs. H1  cy2 .5

a 5 10 20 100

.05 0(0) .009(.18) .024(.48) .040(.8)

.01 0(0) 0(0) 0(0) .005(.5)

.005 0(0) 0(0) 0(0) .002(.4)

2 2
(c) H0 :Y 4 1 vs. H1  > 1.

-2 2Let a be the maximum likelihood estimate of ar under His' i

22 ~2 20,1. Then 0 min(s , 1) , CF1 = max(s I1) and

T n- {.5(s -_1) - log s) sgn(s -_1)

2the latter being an increasing function of s . Hence * rejects
PAR

2 > 22H0  at nominal level a if ns 00X which reduces to

ns 2> X2if s 2 1

2 2
n > Xn~,~ if a < 1

2
Clearly for a-values satisfying Xfl..1,1-a >n, *PAR yields the

uniformly most powerful level a test. This will be the case for the

levels used in practice. Otherwise, * rejects H0  regardless ofPAR0

the data. Therefore



"a if Xn

',-'." aI ( 0pAR )-I - 1Rotherwise

Since for fixed 1/2 < a < 1,

V X 0 (/2) as v m (3.3)V, 1-0

we conclude that PAR is not even asymptotically level a for

a e (.5,1).

^22
To derive *,, let the interval with endpoints 0; exp(± n "1'k )n

be a confidence interval for 0 under HO such that k + -, andn

• .'2 k + 0 as n + . The rejection region for * then has the form
n

2 22 2 2 1/2
ns > 0 xl- 1  where 0 min{s exp(n k ),11. Hence *.*0 X.1- 0 n

rejects H0  if

2 2 2 I/2(ns >X and s exp(n k) 1}
.,.:.,n { 2 > X -1,1- n

or

{n exp(-n 2kn) 1 k > X , and a2 exp(n /2k 1

'' Clearly, at the usual levels of a (< 1/2), +* is also uniformly most

*... powerful level a for sufficiently large n. Unlike #PAR however,

(3.3) and the conditions on kn imply that +i C*.) *a as n + w for

all 0 < a < 1.

It is noted that #Co is not valid in the present situation

because the LHS of (1.2) does not converge to a normal distribution.

"_2
This is partly due to the fact that ( 1) is not asymptotically

normal (cf. White, 1982).

Similar results to (c) carry over to the problem of testing

H : N(0,1), e < 80 vs. Hi: N(8, 1), e > e . The next example shows0 0 10

at its worst.

-12-
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Example 3.3. Testing the location of an exponential distribution.

Let (Xl..*Xn) be a random sample from the exponential

distribution with density exp(O-x), x > 0, and consider testing

H . 0 ) 0 vs. H 8 < 0. The maximum likelihood estimators of 60
A + A

under H0 and H1 are ; = -1 1 x 1) respectively, where 1(1)

is the smallest order statistic and x- min(x,O), x - max(x,0). An

easy calculation yields ( -x11 if x1 ) 0

Tn
T - X(1) i X(1)m if X (1) < 0

Since P8 (( 1 ) < e - n log(I-a)) - a, 0PAR rejects H0  if X(1) < 0

or X11) < 0 - n 1 log1l-a). Substitution for 80 shows that for all

values of X )1, at least one of these two inequalities is satisfied.

Hence +PAR rejects H0 with probability one for all a and n.

To derive *, we use the fact that under H0 ,
-1

(X(1) + n log a nX (1 ) is a 100(1-a )% confidence interval for 8,

where a + 0. Using this #* has the rejection region
n -1an}+ -1

X (1) < 0 or X (1) < {X1 + n 1 log a -n n log(l-a)

This reduces to

-1 -1
X1) < min{-n - 1 log(l-a), -n log a n

or -1 -1 -1

{X(1) > -n log an and -n "1 log an < -n log(I-a)}
* -1

Let na be the greatest integer n satisfying -n log a <a n
-1

-n log(1-a). If n < na , 0* rejects H0  with probability one

regardless of the data. On the other hand, if n > na, * rejects
-1

H0 whenever X < -n log(l-a). This coincides with the rejection

0 

-1 3 -



region of the uniformly most powerful level a teat. Therefore we have

-afor all n > n a and all a. As in part (c) of the earlier

example, * in inapplicable here.Cox

I-14



4. Three examples considered in Cox (1962).

We consider in this section three examples in Cox (1962) where

analytic solutions for the level and power of the tests are not

available. The comparisons are therefore based on Monte Carlo

simulation. Only the nominal level of a - .05 is investigated.

Although the procedure #* as described in section 2 is

computationally quite easy to apply on any one data set, a Monte Carlo

evaluation of its performance using, say, 104 simulated data sets can

be a time consuming task. To reduce this effort, the following

modification of ** is adopted here. In the first stage, after

deciding on the parameter-ranges of interest, a grid of between 20

to 30 8-values is selected. For each selected 8, the critical value

c'(0,*,n) of n/2T is approximated on a computer by simulatingn

10,001 values of n/2 T and setting c°(8,a,n) to be the 9 ,50 1stn

ordered value. The points {(,c'(0,a,n))J are then smoothly

interpolated with a cubic spline to yield an approximation c (e,c,n)

to c'(8,a,n). This curve is stored for use in the second stage, where

for each desired member of the null or alternative hypotheses, 
104

sets of pseudo-random samples of size n are simulated. For each set,

the values of n/2 T 8 and the predetermined confidence interval

I (8) are computed. Finally the test ** is said to reject the nulln

hypothesis for that data set if

n 2 T > c (8,a,n) S max{c (8,a,n) : 8 e I (0)) on s n

Note that because ca is a cubic spline, this maximization is quite

trivial. With this modification, the computer evaluation of *, can be

-15-
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M done very quickly.

To achieve maximum correlation in the results, the same simulated

data sets were used to assess *Cox The standard errors in the

resulting probabilities of rejection are roughly about .002.

Because #PAR does not permit a similar modification, its

evaluation is included only in Example 4.1. There, for each of 103

." sets of pseudo-random samples, 201 bootstrap samples were simulated to

obtain c'(8,c,n). The standard error of the results for #PAR is

therefore at least .008.

All the computations were done on a VAX 11/750 computer. Pseudo-

random numbers were generated via the International Mathematical and

Statistical Library, and the FORTRAN program in Forsythe, Malcolm and

Moler (1977, Chap. 4) used to fit cubic splines.

Example 4.1. Lognormal versus Exponential.

Let (X,,...,Xn ) be a random sample from a distribution with

density h(x) and consider testing

H : h(x) - f(xiz,) vs. H " h(x) - g(xb)

.4 where x > 0, and

.y )1/ 2 2
f f(x,,a) - {xo(2w) exp(-(log x /(2c2)}

g(x,b) - b "1 exp(-x/b) .

Jackson (1968), Atkinson (1970) and Epps, Singleton and Pulley (1982)

have also considered this problem. We will use #ESP to denote the

latter test in the sequel. From Cox (1962), the nominal level a

rejection region for Cox is

S- log X + 2 /2 > n 1/231.(exp( 2 ) - 1 - 2 _ /2} (4.1)

-16-
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&2 -1 A2 A £

where a n E(log X 1 - and i -n E log X1 . Also,
A A

T nT- log a + p - log X + (log (2w) - 1)/2n

To understand the relative merits of * and #., the following
*Cox

remarks may be helpful. First note that the problem is invariant under

scalar multiplication and both #Co and Tn are scale invariant.

Therefore the problem can be reduced by restricting to scale invariant

tests. It can be verified that for each ao, the uniformly most

powerful invariant test of the smaller null hypothesis H' t h(x) -
0

f(x,ya 0) vs. H I rejects H' if
-1 + A2 2

S(o 0 ) (-) log a0  + a /(2°0) - l I

is too large. Since the LHS of (4.1) is equal to Sn 1 ) , we see that

#COX is an approximation to the uniformly most powerful invariant test

. for 00 - 1. The value a - I is in some sense least favorable because

under H0,

BT + log a -a 2/2 + constant, as n'-

and the limit is maximized at o - 1. On the other hand, T - S (a) .
n n

.5 log (2w) - 1 as n + -. Therefore, since #, and P reject for

large values of Tn, they also approximate the uniformly most powerful

invariant test, but by first estimating the unknown o0 with a. These

observations suggest that #CX* , #P and #* would all be reasonable

for large n.

We investigated the performance of these tests by Monte Carlo

simulation for n - 20. Table 4.1 presents the results for the

probability of a type I error, a The figures for # ES P  are quoted

from Epps, Singleton and Pulley (1982). Two spline-fitted curves ca

-17-
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are used, one to obtain the first two rows of Table 4.1, and another for

the remaining rows. The first curve is based on a grid of twenty-five

equally spaced values of log a centered at log(.007). The second

*. curve, shown in Figure 4.1, uses a grid of thirty-one equally spaced

• log a values centered at 0. The spacing of the grid points for both

curves is (2n) / 2 log log n. In the computations for #,, we took the- i
interval with endpoints log ( + (2/n) loglog n as the confidence

interval I (e) for log a. Table 4.2 shows the powers of the four
n

tests. The data indicates that besides having very low power, #Cox has

size in excess of 0.4. *, appears to control the significance level

quite well, with only slight loss of power compared to PAR

Table 4. 1. Prob (Type I error) for H0 : lognormal

vs. H1 : exponential, a - .05, n - 20.

a *ZSPm PAR

0.005 .4056 ? 0 0

0.01 .1229 ? 0 0

0.5 .0172 .066 0 0

1.0 .002 .066 .049 .0206

1.414 .0001 .066 .061 .0497

2.0 .0001 .066 .024 .0127

%t

From Epps, Singleton and Pulley (1982).
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Tables 4.3 and 4.4 show the corresponding results with the roles of

the hypotheses interchanged. Now PAR and * are the same tests

because the distribution of Tn is invariant over H0 : exponential.

The powers of #Co and f* appear comparable.

Table 4.3. Prob (Type I error) for H0 : exponential

vs. H1 : lognormal, a- .05, n- 20.

#COX 8 P fPAR'+*

.0587 .105 .0517

tFrom Epps, Singleton and Pulley (1982).

Table 4.4. Power of tests for H0 : exponential

vs. H1 : lognormal, a - .05, n - 20.

'! t

#Cox OESP fPA.'O*.1
0.5 .9999 .9999

1.0 .4014 .22 .3713

1.414 .5482 .60 .5297

2.0 .8951 .8885

From Epps, Singleton and Pulley (1982).
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Example 4.2. Poisson versus Geometric.

Let Xi,.**OXn) be a random sample from a distribution with

probability function h(x). We wish to test H0 s h(x) - Xexp(-X)/x!

x x+1
vs. H1 a h(x) / B/(1+B)+, where x - 01,2,... in either case.

The maximum likelihood estimators X and 0 are both X and Tn -

-1
n I log X i + X - (1+X)log(1+X). Cox (1962) showed that # ox has

the rejection region
_I

E log XiI - n fX) > z 1 Q{nvf(X))

where tf and vf are functions defined therein. A short table of

values of these as well as other needed functions are given in Cox

(1962). We obtained other values by spline interpolation.

With n - 20, a grid of 20 X/2-values was used to construct the

spline-smoothed curve c5 s The confidence interval

. ,(., - C - n-"2loglog n 2 .'+ n " log log n) (0, ) for !/2

was used in the computations for *. Table 4.5 presents the results.

Corresponding results with the hypotheses interchanged are shown in

Table 4.6. Here the confidence interval for M/2 used was

/ (2- (/- n " loglog n(1+,o , 1 2+ r- 1/2 loglog n (1+^)-'2n

nl (0,-). It is clear from the tables that, for the parameter values

considered, #Co and #* are practically equal in performance. For

values of A and B closer to 0, however, the discrete nature of

Tn will progressively cause #Co and *, to have arbitrarily low

power, and some sort of randomization will be necessary.

-21-
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Table 4.5. Prob (Type I error) and power

for H0 : Poisson vs. H, : Geometric, a- .05, n -20.

Prob (Type I error) Power

"cox ___ _ _cox _ *

.30 .0527 .0309 .30 .199 .156

.45 .0488 .0452 .45 .272 .261

.60 .0478 .0475 .60 .362 .360

.75 .0431 .0427 .75 .453 .450

.90 .0427 .0398 .90 .543 .533

Table 4.6. Prob (Type I error) and power for

H0 : Geometric vs. H, : Poisson, a = .05, n - 20.

8 Prob (Type I error) A Power

#'cox *cox

.30 .0039 .0040 .30 .0185 .0190

.45 .0111 .0137 .45 .0800 .0895

.60 .0182 .0250 .60 .165 .201

.75 .0200 .0315 .75 .254 .321

.90 .0241 .0397 .90 .351 .435

Example 4.3. Quantal response.

Let (X, ...,Xk) be independently binomially distributed with

indices nl,... nk  and parameters f1 (Y) ,.••,fk(y) under H0  and

9110I,...,gk(8) under H1, where f (y) 1 -exp(-yxj) and g() =

I - exp(-Oxj) - 8xj.exp(-Oxj) for a set of "dose levels" x

H0  and H1  have been called the "one-hit" and "two-hit" hypotheses

-22-
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respectively. Following the example in Cox (1962), we chose 5 dose

levels with x1 - .5, x2 - 1, x3  2, x4 - 4 and x5  S 8. Also, we

took n i - 30, i 1

The maximum likelihood estimators y and B were computed

iteratively using the algorithm in Thomas (1972). In the computation

for #* we used as a confidence interval for y the intersection

with (0,-) of the interval with endpoints y t 2 loglog n(ni(y))

where i(Y) - E f (Y)2/{fj(y)(1 _ fj(y))} is the information for Y.

Table 4.7 presents the results of the simulation. Corresponding results

with the hypotheses interchanged are shown in Table 4.8. As in the

preceding example, fCo and ** appear quite comparable, with the

latter keeping the significance level slightly better.

Table 4.7. Prob (Type I error) and power for

H0 : One-hit vs. H1 : Two-hit, a - .05, ni - 30.

y Prob (Type I error) B Power

Ocox f 4co x

.05 .0406 .0474 .10 .252 .327

.10 .0465 .0444 .50 .897 .890

.50 .0436 .0414 1.0 .839 .830

1.0 .0440 .0477 1.5 .704 .696

-23-
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Table 4.8. Prob (Type I error) and power for

H0o Two-hit vs. H, One-hit, a .05, n1  30.

B Prob (Type I error) y Power

Ocox 0, cox

.10 .0651 .0478 .05 .724 .677

.50 .0535 .0418 .10 .856 .815

1.0 .0519 .0411 .50 .848 .827

1.5 .0461 .0394 1.0 .645 .634
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5. Concluding remarks.

We have proposed here a test of separate families of hypotheses

which requires very different assumptions from those for tests based on

asymptotic normality of the test statistics, and showed in a series of

examples that it is quite reasonable. The following points however

should be mentioned. First, it is obvious that the results in section 2

remain true if any consistent estimator 8 is used instead of the

maximum likelihood estimator. Further, although these results do not

require conditions on the estimator w in (1.1), it is intuitively

plausible that if high power is to be achieved for *,, w should at

least be consistent. This condition is satisfied in all the examples.

It will be noticed that in the examples, we always have the

critical value c(e,a,n) such that it is either independent of 8 or a

function of a one-dimensional component of 8. In situations where this

is not so, the practical implementation of f, can be difficult, since

we have to search for the maximum of a function in high dimensional

space. In contrast, O does not have the same computationalCox
problem. However, as we saw in Example 4. 1, the size of fCox may not

be close to its nominal level, and this phenomenon may worsen in higher

dimensions.
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