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I. INTRODUCTION

The aims of the research, as carried out during the years of the contracting

period, have been threefold:

1. To explain the speed of convergence of the preconditioned conjugate gradients

method (for the symmetric positive definite case).

2. To construct fast iterative methods for sparse linear systems with nonsymmetric

matrices.

3. To develop user-oriented software for the methods mentioned in the previous

two points.

As may appear from section 2 and 3, considerable progress has been made with respect -

. to all the above listed points. The results which have been obtained have all been

published recently or they have been submitted for publication. Major part of the

research has also been published in the form of a Ph.D.-thesis [31.

In section 2 we present an overview of the results obtained for the symmetric

positive definite case and in section 3 we introduce the results for the nonsym-

metric case. L

2. SYMMETRIC POSITIVE DEFINITE MATRICES

In this case we consider the conjugate gradients (cg) method for the iterative

solution of K-I Ax - K-I b, where Ax - b is the linear system to be solved and K -

is a preconditioning matrix. For a description of this method see Ill.

In 13, chapter 2] an analysis of the convergence behaviour of the cg method is

presented, which exploits its relationship to the Lanczos method. This analysis

leads to an expression for the residual in terms of the Ritz values (i.e. the

eigenvalue approximations generated by the Lanczos method). -
It has been observed, e.g., by Concus et al. [41, that in many relevant

situations the convergence behaviour appears to be much better than might be

*" expected from upperbounds involving only the condition number of K A. This so-

called superlinear convergence behaviour can, even for rather dense spectra, be

fairly well explained by our upperbounds (see 13, chapter 2]), which take advantage -

of the relative separation of the smallest eigenvalues.

For a specific example of the preconditioned method it is shown that the sepa-

ration of only the four smallest eigenvalues is sufficient to explain the actual

[.q-



observed convergence behaviour. This contrasts with the widespread belief that it

is the clustering of the eigenvalues that causes the fast convergence.

It is one of the purposes of [3, chapter 31 to show that for a class of model

K problems (i.e., the discretised Poisson equation) the preconditioning of A should

*. always give a more favourable eigenvalue distribution, in particular with respect

to the smallest eigenvalues.

In view of the dependence of the convergence behaviour of cg upon the separation

of the smallest eigenvalues of the operator, we also comment in [3, chapter 31 on

certain modifications of the ICCG method, which have been proposed in litterature

(e.g., see [51).

In [21 a family of incomplete decompositions is presented, to be used as pre-

conditioning matrices for the cg method. The question which member of this family

leads to optimal results (with respect to efficiency) remains unanswered. However,

the results of numerical experiments given in [21, may help in the choice.

For the simplest types of incomplete decomposition Eisenstat [61 has shown that

the preconditioned cg algorithm can be implemented in such a way that the number

of arithmetical operations per iteration is almost the same as for the unprecon-

ditioned cg algorithm. This makes the use of these decompositions even more attrac- 7

tive.

The use of incomplete decompositions on vector computers gave some problems, since

they do not automatically lead to vectorizable algorithms [7,81. Only with the

help of laborious permutations the efficiency of this algorithm, as compared with

other algorithms, can be restored [8,9]. In [10, 11] a simple variant of the incom-

- plete decomposition algorithm is introduced which admits full vectorization without
,..notable loss in the number of iterations and instability.

Software for the preconditioned cg algorithm is available in the program

library ACCULIB [12,131.

Remark. For the actual computation of the extreme eigenvalues of the preconditioned

operator we have used a generalized Lanczos scheme. This scheme has been developed

as a side-product of the research and has been described in [14].
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3. NONSYMMETRIC MATRICES

Here we consider the use of the complex Chebyshev Iteration method for the

solution of K-IAx - K-Ib, where K- 1 is a suitable preconditioning matrix for the i

linear system Ax - b. This method converges if K-1 A has all its eigenvalues in

the right half plane [151.

In [16,181 we study the effects of preconditioning on the Chebyshev Iteration .

method, when applied to linear sytems that arise from discretisation by finite

differences of the p.d.e.

- (aux)x' - (bu)y' + du' + eu' + cu = f
xx yy x y

2
over a rectangular domain in R , with Dirichlet boundary conditions and with

a(x,y) > 0, b(x,y) > 0, c(x,y) > 0

Different preconditionings K -! are considered, most of them are based upon

incomplete decomposition of A. For some typical examples it is shown that the latter

type of preconditioning leads to a highly competitive iterative method as compared

to a number of other methods. For many relevant situations we are able to prove

that K 1A has all its eigenvalues in the right half plane.

Special problems may be encountered when the coefficients d(x,y) or e(x,y)

in the p.d.e. assume large values. It then often appears that the factors L and U

of the incomplete decomposition are very ill-conditioned, whereas A is fairly well- j
conditioned. In [16,17,3: chapter 4] we show how the ill-conditioning of the factors

can be remedied by certain modifications of the incomplete decomposition algorithm.

These modifications involve either a single parameter a or simply replace the

* diagonal elements of L and U by values that guarantee well-conditioning.

We can prove that for a class of problems there are values of o0 (depending on

the operator), such that K- A has all its eigenvalues in the right half plane for

o > a0 ' An unsolved problem remains the experimental observation that the smallest

value of a which gives well-conditioned factors is also optimal with respect to

the speed of convergence.

Analogously to the preconditioned cg method (see section 2) the complex Chebyshev

Iteration method can be formulated in such a way that for the most relevant precon-

ditionings, the preconditioned iterations require only little more computer time

than the unpreconditioned iterations (see [161).

Variants of the incomplete decomposition preconditionings that admit full vecto-

rization on vector/parallel processors, can be easily constructed as is shown in
110,111].".
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Software for the preconditioned complex Chebyshev Iteration method is avai-

lable in the program library ACCULIB [131.
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