ESTIMATION OF POSTERIOR PROBRBILITIES USING

MULTIVARIATE SMOOTHING SPLINE. . (U) WISCONSIN

UNIV-MADISON DEPT OF STATISTICS M A VILLALOBOS SEP 83
UNCLASSIFIED UWIS-DS-83-725 AR0-17339. 18-MA F/G 12/1

NN
EEESI N

w

NN
I I O
NN
HEENENN
L
.
I .
I N

| el LT
-

M j ,. " s f : ...-n.\uu- il : 4J ..1.‘.1. —— v
C T - - . . - -.u.\x O . - .
. k . .

=

|

==
==

Ayl
HEEE

m— 33 BI33223

|

14

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ll==
i
=y

o A et 0
CMEPAN .-- 5=y

.~ -
- RN oy

DEPARTHENT_OF "STATISTICS

University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

AD- P/3Y¢5L P

This research was supported by the Consejo Nacional de Ciencia y
Tecnologia-Mexico, by ONR under Contract No. N00014-77-C-0675, and

TECHNICAL REPORT NO. 725
" September 1983

ESTIMATION OF POSTERIOR PROBABILITIES
USING MULTIVARIATE SMOOTHING SPLINES AND
GENERALIZED CROSS-VALIDATION

by

Miguel Agustin Villalobos

by ARO under Contract No. DAAG29-80-K-0042.

ARE TH.

DTIC FILE copy

Approved for

A_NO.'TAC I PR S L
ClSlON, U.’\LLLS SO Lis.d, \u.J LY Crila L-dui-— JTATION,

83-11 o7 025

[BETETC

HYN

Dismbam.‘n

TJHE VIEW, OPINICNS, AMID MR FINCINAS ("')‘J’ PUED N T’- 'S RIPORT

ek Tt e g gy
. h ’ B

LY, OO LE

N . .
Dol s o i

o

5N

TR T

Pt e e,
.t P
., . v L
AP WY XV

=W

R ii

. _ ESTIMATION OF POSTERIOR PROBABILITIES
~ USING MULTIVARIATE SMOOTHING SPLINES AND
% GENERALIZED CROSS-VALIDATION

S |
R ;
- Miguel Agustin Villalobos !
A thesis under the supervision of Professor GRrace Yahba
;,_"“ |
o ' A nonparametric estimate for the posterior probabilities in the i
s ‘
.. classification problem using multivariate smoothing splines is proposed. ‘
This estimate presents a nonparametric alternative to logistic discrimi-
\ 1
nation and to survival curve estimation. It is useful in exploring proper- J
L . . : . . |
~ ugs of the data and in presenting them in a way comprehensible to the ;
2 —
4 The estimate is obtained as the solution to a constrained minimization |
Re i
: problem in a reproducing kernel Hilbert space. It is shown that under certain j
bl " ‘
L conditions an estimate exists and is unique. (‘—“\—-—————'—"”—_’_ |
b S A Monte Carlo study was done to compare the proposed estimate with the :
::: two parametric estimates most commonly used. These parametric estimates ‘
o are based on the assumption that the distributions involved are normal. The

spline estimate performed as well as the parametric estimates in most cases
where the distributions involved were normal. In the case of non-normal distri-
3 butions the spline performed consistently better than the parametric estimates.
°s

¥ ’ Accession For

s NTIS GRAXI K
= DTIC TAB 0 o
. Unannounced O & O
3 Justification_ .f:"
.:.l, &

By
| Distribution/ =
:.'j | _Availability Codes
[~ Avail and T e
\3‘ Disgt Spec 1al/°P -M}Emm:(:"ﬂ G
"4 ﬂl Approverd Y :

M A Tt S g it i At sl S ane Shumut dhene it Anst st vt Zhems dho s, S dece Bmeh e 4 o —~—r - ——
c‘\f_\.~_-.-_-_-___._-_-_.._._-..‘._~‘-‘._...-_-._.‘.__‘_..~.:?'~~\._‘._-..‘_-_“"'-'_7-.‘._.>..-.-\-‘?'V-‘v TTE IR T vy

. L - N - - T T)

i1

The computational algorithm developed can be used in the more general
context of estimating a smooth function h, when we observe
2; = Lih + &;, i=1,n, where &;'s are independent, zero mean and finite vari-
ance random variables, [;'s are linear functionals, and the éolution is known a
priori to be in some closed, convex set in the Hilbert space, for example, the set
of non-negative functions, or the set of monotone functions. This type of prob-
lem arises in areas such as cancer research, meteorology and computerized
tomography.

We also consider the estimation of the logarithm of the likelihood ratio by a
penalized likelihood method. Existence and uniqueness of an estimator under
certain conditions is shown. However, a data based method to estimate the

"correct” degree of smoothness of the estimator is not given

o e . L T, . LIRS i
i ol P BB SN

........

. ¥ -
..................

iv

Dedicated to

Rosalinda, Miguel Jr. and Karla

To my mother: To the memory of:

Ma. del Refugio Villalobos Carmen Bueno
Jose Luis Bueno
Manuel Villalobos

L SR A i A e . c AT e e TR TR T T TS T, - . tv"v'. ., b A) - .'_l.--;_'-'.

v
TABLE OF CONTENTS
... ii
... iv
... 1
1.1 Scope and background ...t 1
1.2 Conventions and notation S eebesasiessteneunnariatesetreitttaonannntnsns 3
1.3 Previous work in nonparametric discriminant analysis 4
2 Spline estimates of posterior probabilitiescccoeeeeiiiienns 9
2.1 MOUVALION -..cccicicnririiriirineneeiiiitiinteisestanensnssssesssstossssennennsnnannans 9
. 2.2 A general minimization problemccceeurmirninininiinnnnene. 1t
2.3 The choice of the smoothing parameterccccccocevimvcinnncnnens 22
3 The algcnthp ... 27
3.1 INtrodUCLION ..ottt seraetrsse s nransenassessssrseses 27
3.2 Restatement of the problemcccooiiiriimiviiiiiiiinnnnncniinnne. 28
3.3 The quadratic programming algorithmccccccuerueennninnnnenn, 30
3.4 The computation of the approximate GCVCcccccoevvuennnnee. 32
3.5 The step by step algorithmccourrveeenanee ceereeerneneaesesens 39
4. Monte Carlo experiments and examplescccooeeiiniiinciiinninnns 45
4.1 Comparison of linear, quadratic and spline discrimination
................. eeereressesesssnnsssentnatesesereanasenssensasrenartrertaaranesiesssissssnssssnsassenases B
4.2 Other simulation resultsccccciiiniiiiimciiiiicncnnan. 71
4.3 AN eXAMPIE ...ttt et et s e mr e s e e e 75

5.1 MOtivationcccccceeimniiiiiiinnmnmniniiieiece s 78
5.2 Existence and uniqueness of an estimatorc.... 80
B ComclUSEONcccooevnieciiiiireie et st s a8
6.1 SUMIMALYcooiiiieiiiriiinmmnreireiiiiitesisressssrissrsssnsnsnnnns a8
8.2 FULUF® WOTK ...oocoiiiiiiiiiiinie it ntene et snne s e e e enree e 80

o-nq-gg.n-hg.-'.-c'-..oog-------g.o.,.o_‘n Qoa

L Appendix Al: Some mathematical optimization results reereeniees 91

Appendix A2: Documentation for DSCOMP and DSEVAL 96

; DSCOMPcoviruiiiriniiienente st tirae e e ssesaste s seesessetensetessesessesassensenas 97
DSEVAL ...coooiiiriiiininmiitiitttttttieicssesssessstnnsesessssessensssssssassssesssisenees 107

Second and third level routinesccccceeiiiiiiiiiiiiiniie, 110

BIbEOFaPR1Ycoooiiiiiiiir e esse e s s 145

ASCRWPFE T | VYW RN

e @ St A Al

4

.{l‘l‘l..l.

<t
)

'''''
-

......................

CHAPTER 1

INTRODUCTION

1.1 Scope and Background.

Since the early work of Fisher (1938) considerable advances have been
made in the practical application of statistical classification techniques. Most of
the work in discriminant analysis for continuous variables is based on the
assumption that the distributions involved are muitivariate Normal, however, in
the last ten years, nonparametric methods have received considerable atten-
tion, mainly because of the availability of cheaper and faster computers.

In this work we will be concemgd with the nonparametric estimation of the

posterior probabilities used in Bayesian discriminant analysis. The problem of
estimating these posterior probabilities is solved as a particular case of the

more genseral statistical smoothing problem of estimating a smooth function

subject to inequality constraints.

Wahba (1978b), introduced the multidimensional smoothing spline in the
statistical literature as a tool to model a smooth but otherwise unknown func-
tion. She devised the method of Generalized Cross-validation for choosing the
parameter that controls the smoothness of the spline based on the data.

Wahba (1980) points out the need for a computational algorithm to solve
statistical smoothing problems with linear constraints. This need is also pointed
out by Wegman and Wright (1983), who, in the context of isotonic regression say:

Computational algorithms are clearly the stumbling block in further develop-
ment of the theory of isotonic splines. When such aigorithms become available
we believe that smooth, order-preserving non-parametric estimators will sub-

- e -~ -
.........

......................

stantially enhance the efficiency of estimation procedures currently in use.

In this thesis we demonstrate the feasibility of doing large multidimensional
smoothing problems with inequality constraints. The computational algorithm
developed here can be used in applications such as survival curve estimation,
logistic regression and the estimation of posterior probabilities. We examine
properties of the constrained smoothing spline by a Monte Carlo study.

We believe that the methods presented in this thesis will be useful for
exploring properties of the data and presenting them in a way comprehensible
to the layman.

In chapter 2 we will present the estimate of the posterior probabilities as
the solution to a constrained optimization problem in some suitable space of
"smooth” functions. We will describe the method of generalized cross-validation
for constrained problems to choose the smoothing parameter.

In chapter 3, we discuss the details of the actual computation of the spline
and a step by step algorithm is given.

In chapter 4 some simulation results are presented to compare the spline
estimate of the posterior probabilities with the parametric estimates most com-

monly used. We also present an example with real data.

In chapter 5, the estimation of the logarithm of the likelihood ratio is con-
sidered using a Penalized Likelihood approach. The one dimensional resuits of
Silverman (1978) are extended to multiple dimensions and the existence and

uniqueness of an estimator under certain conditions is established.

Finally, in chapter 8 we present some concluding remarks and possible

directions for future research.

Most of the mathematical optimization background and functional analysis

results used throughout this work are presented in appendix Al. The listing of

- - - - - . -
— A tmintalaa'm s a4 o _t,'.;'__,"'_;&._'_'.:_'_"..__l_.‘_'.:_’J

3
the documentation for the routines that estimate and evaluate the constrained

Yt i

spline is given in appendix A2.

1.2 Conventions and Notation

Each symbol used is defined at its first occurrence. Vectors are usu-

ally denoted by lower case letters and no sub-tildes are used. Matrices are usu-

ally denoted by capital letters and are defined by giving their i®* row and j%
column entry in parenthesis as in the following example:

B :=(by) i=1,...n;j=1,...m

The expression above defines a matrix B as an n Xm matrix with i¥® row and ;%
column given by b&;;.

The identity matrix of size nXn is denoted by J, and Q,,, denotes an
N XN zero matrix. The subscripts n and m for / and O are dropped when it is
clear from the context of the expression what they should be.

The i®® element (covariate) of an observations y will be denoted by
¥ (i) and all vectors will be column vectors, for example,

fy(1)
y=| . |
(d)
If A is a matrix, then A* denotes its transpose and A~! denotes its

inverse. The trace of a matrix A will be denoted by ¢r(4). If x is a point in R*

is]
It h is some function from R to R, then h®*) denotes the k% derivative

d
then ||z || = V<z,2> is the Euclidean norm of z and <z,y> = } z(i)y(3).
and when k=1 or 2 we will simply write ' and h"'.

It f and g are members of some Hilbert space H, the inner product of

f and g is written as <f,g >y and the norm is written as ||f {|y. The subscript H

L S

Lt wmataleiata ata

A Jhoech ' ieC R

is dropped when, from the context of the expression, it is clear where the inner
product or norm are com;iuted.

Equation (2.3.4) refers to the 4% numbered equation in section 3 of
chapter 2. In the text the equation is referred to as (2.3.4). Theorem (5.1.5)
refers to the 5 theorem in section 1 of chapter 5 and similarly for Lemmas

propositions and definitions.
1.3 Previous work in nonparametric discriminant analysis

Consider k populations A4;,...,4, and a d-dimensional random vector
X=(X(1),....X(d))t. Assume that the probability distribution of X given that it
comes from population 4; . j=1....k is absolutely continuous with respect to
Lebesgue measure and let f; (z) denote the corresponding probabiilty density
function for j=1.....k.

Suppose that a training sample X;;=z;;, 1=1,...,ny, ﬁom the population 4;
is available for each j=1,...k. Given these training samples and the prior pro-
babilities g5, j=1,....k where 0 < g; <1 forj=1,...k and

' K

we want to astimate the posterior probabilities
k
pi(z) = qu,-(z)/¢2194f¢(z) = P(4;|X=x) j=1,..k.

The estimates of these posterior probabilities have a clear application in Bayes
discriminant analysis.

In this thesis we propose a class of optimization methods for estimating
P1(z).....px(2). For simplicity of notation we will consider the case where we

have only two populations since the extension for more than two is straight-

LS SEAY SN
LN N

forward.

Most of the work in discriminant analysis (for continuous variables) is based
on Normality assumptions, usually with equal covariance matrices. For a sum-
mary of the work in discriminant analysis see Lachenbruch and Goldstein {(1979).

Here we will only be concerned with nonparametric discriminant analysis.

Fix and Hodges (1951) are, to our knowledge, the first to consider the non-
parametric classification problem using a k-nearest neighbor approach. For

further references related to this paper see Lacnenbruch and Goldstein (1979).

During the last 10 years there has been a development of classification
rules based on density estimates. These kinds of rules are important because of
the extensive research done in nonparametric density estimation Another
feature that makes these kinds of methods attractive is a result by Glick (1972)
that says that an estimate of the non-error rate of an arbitrary rule based on
parametric or nonparametric density estimators is, in some sense asymptoti-

cally opiimal provided that:
- -~ p
qifi(z) » qifi(z)
pointwise for almost all z in R%, i=1.....k, and
k.. p
f L% i L
Bt i=1

Kernel, maximum penalized likelihood and orthogonal series density esti-
mates are armong the most popular methods. All these density estimation
methods involve the choice of a parameter that controls the degree of smooth-
ness of the estimate. Severa;l methods have been proposed to choose the
smoothing parameter, among these there are three which are readily comput-
able and objective. Two of these methods were suggested by Wahba (1977 and
1981b) and the third by Habbermna, Hermans and Van den Broek (1974). In this

P IS GE W P U I - mids a—— e B o e S Mo M S Bom Ao) aladal ot

& e
_,f“ - last paper the authors estimate the densities for each population using a kernel
2

5 estimate. A complete description of kernel methods can be found in Tapia and
:;: N Thompson (1978).

A Y

. The kernel estimate used in Habbema, Hermans and Van den Broek (1974)
is of the form:

"2

- < . - _ (3 —— .) 1

f,-(z):(n,-o’f) 1 gl({ 5 (1.3.1)
‘ . i=] g

*,

X for j=1.....k., where, as before d is the dimension of the vector £ and k is the
g number of populations. K is a multivariate normal kernel and the smoothing
i parameters 0; are estimated by maximizing what might be called the "cross-

& validation likelihood function™:

: | M0

R ep=11F; (=)

K [l] . A : :

T where ‘.75 is an estimate of f; computed as in (1.3.1) but leaving out the point
Z;;. For a detailed description of the algorithm to carry out this kernel discrim-
¥ . inant analysis see Hermans and Habbema (1978).

L Hermans and Habbema (1975) compare five methods for estimating poste-
:j rior probabilities using some medical data for which the true posterior probabil-
ity function is unknown. Four of these five methods are parametric and the fifth
one is the kernel method described above. The four parametric methods

-E: involve:

W - (1) Multinormal distributions, equal covariance matrices, estimated parame-

4

* ters.

i -

(2) Multinormal distribﬁtions. equal covariance matrices, Bayesian or predic-

tive approach.

7

(3) Multinormal distributions, unequal covariance matrices, estimated parame-

ters.

(4) Multinormal distributions, unequal covariance matrices, Bayesian or predic-

tive approach.

The nonparametric method is:
(5) Direct estimation of the density functions using a kernel method.

Later, Remme, Habbema and Hermans (1980) carried out a simulation
study to compare the performances of methods 1,3 and 5 above. Their simula-
tions show that the performance of the kernel method was either better or as
good as the performance of other methods, except in the simulations with mul-
tinormal distributions with equal covariance matrices. It performed increas-
ingly well with increasing sample sizes, however, the improvement was very slow

in samples simulated from lognormal distributions.

Another nonparametric classification method is given by Chi and Van Ryzin
(1977). Their procedure is based upon the idea of a histogram density estimator

but bypasses the direct density estimation calculations.

In most of the references listed above the approach has been to estimate
each density separately and from this form an estimate of the posterior proba-
bilities. By the Neyman-Pearson lemma, we know that if we want to classify an
object as coming from one of two populations with densities f; and f2, we
should base the classification on the likelihood ratio f,/ f, and hence it would
be attractive to have a method to estimate the likelihood ratio directly. Silver-
man (1978) considers the direct estimation of the log likelihood ratio for one
dimensional data. He assumes that g=log (f,/ f2) is in Ca(I), where I is some
interval containing all the observations. He finds the conditional log-likelihood

of g and penalizes it according to the smoothness of g using f (g"")? as the
1

alataltataf e "nfataatatas v an Ao s Joaaa

smoothing penalty functional. He estimates g by maximizing the p. .ixlized log
likelihood and shows that the estimate is a cubic spline. However, he does not
give a data-based method to choose the smoothing parameter. In chapter 5 we

extend the result in Silverman (1978) to the d-dimensional case.

Van Ness (1980) studied the behavior of the most commonly used discrim-
inant analysis algorithms as thé dimension is varied. He found that non-
parametric Bayes theorem type algorithms perform better than the parametric
(linear and quadratic) algorithms. He also found that the choice of the degree of
smoothnesé must be done with great care or the performance of these non-

parametric algorithms can be very poor.

Anderson and Blair (1982) introduce penalized maximum likelihood esti-
mates in the context of logistic regression and discrimination. They obtain esti-
mates of the logistic parameteré and a nonparametric spline estimate of the
marginal distribﬁtion of the regressor z. See also Anderson and Senthilseivan

(1980). who use penalty methods for the hazard function in one dimension

PO S S Y

Kar e aing 2 A Parui ta e

LS

e

e aC Ol it e A ol Sl SRR St San i T A YA MUl pn s Sl S A Pe i SRS T SN v v en s by 2 }

9
CHAPTER 2
SPLINE ESTIMATES OF POSTERIOR PROBABILITIES
2.1 Motivation
Let Yy, ..., ¥, n:=n,+n; denote the combined sample from the two
populations 4; and A3 and define the random variable
Z; = ég %:j; (2.1.1)

Let g, and g3 be the prior probabilities. OQur objective is to estimate the poste-

rior probabilities

= 9f;
q1f1+q2f2

Since p; + pz = 1, it is enough to obtain an estimate]3 of p :=p, and then the

Pj j=12

estimate of ps is simply ﬁz = l—ﬁ.
In applications the prior probabilities are usually unknown, and hence,
instead of estimating p we consider the estimation of
h = wyf,
w,fy +waf2

where w,;=n;/ n and wa=ny/n. Thenif his an estimate of h,

(2.1.2)

(91/’”1)5
(g1/ wh + (g2/ wr)(1-h)

p=
is an estimate of p.
We can think of the vector Z=(Z,,....Z,)¢ of zeroes and ones as noisy

observations on the values A(y,),....h (¥,). To see this, note that, if we draw an

observation Y from the density f; with probability w;, j=1,2, and Z is the

A A . a i walatatatala . o tata_ata ala_al .

10

) random variable which is 1| or 0 according as j is 1 or 2, then
3 E(Z|Y=y) = h(y).
We will assume that-all we know about h is that it is a “smooth” function
such that Osh=<1. For example, in the one dimensional case recall that A"
measures curvature and, hence, we could estimate h by minimizing:

axh) = 25 (rw)=2)% + M) (21.9)
subject to
O<h(s;)s1 1i=1,...,k,

where Ja(h) = f (h")2, and A is a parameter that controls the tradeoff between
closeness t.b the data, as measured by the first term in (2.1.3), and smoothness
r as measured by J3. The points sy, . . . , S, should form a sufficiently fine mesh
- so that a smooth function that satisfles the constraints at these points will

appear to satisfy them over a set S, where S is such that

2
E‘ijj >e>0
=1 A .

:‘_:f for any Y €S, and some given e>0.

x| In section 2 of this chapter we will define the class of functionas H
- where the minimization of (2.1.3) occurs. The function h in H which minimizes
-‘_ (2.1.3) is a piecewise cubic spline (see Schoenberg, 1964).

The generalization of J3 in two dimensions is

| _rap) @noaye) |
¥ Jalh) = Q—Jﬁ][a(y(n)fa(wz))z-f | dv(ey(@).

In two dimensions the minimizer of (2.1.3) is called a thin plate spline (Meinguet,
1979) because of the analogy to minimizing the energy of a thin plate of infinite
extent. The reader is referred to Wendelberger (1982) for a nice physical

interpretation of the piecewise cubic spline in one dimension and the thin plate

spline in two.

-

11

In more than two dimensions the name thin plate spline doe.s not seem
adequate and hence we will use the name Laplacian smoothing splines, sug-
gested by Schoenberg (see Wahba, 1979b), and adopted by Wendelberger (1982).

We can also consider a more general penalty functional than J 2. that
is, we will consider a penalty functional J,, to be defined in the following section,
which involves the partial derivatives of total order m.

The problem of estimating h is only a particular case of the more gen-
eral problem of estimating a smooth function f when we have noisy observa-
tions on the values that f takes at certain points in R2, or on the values of some
linear functionals L;, . .., L, applied to f, and we also know that f lies in
some closed convex subset of functions.

Following Craven and Wahba (1979), Wahba and Wendelberger (1980)
and Wahba (1982) we deal with this more general problem in the following sec-

tion.
2.2 A general minimization problem

The function space results in this section are given in Meinguet (1978) and
Duchon (1976).

Let H(m,d) be the vector space of all Schwartz distributions for which all
the partial deri;atives in the distributional sense of total order less than m are
square integrable over R%. This definition is given by Meinguet (1978). The
space H(m,d) is called a generalized Beppo Levi space of order m over R%.
Adams (1975) calls this space a Sobolev space.

Let Ho(m ,d) be the space of polynomials on R? of total degree less than m.
Then Hy(m ,d) is an M-dimensional subspace of H(m,d), where

DI S WO, W PO S - WY TP, LIy S VP S s - a2 a PP PUSIP W S SR T U G DAY DR O UL VP U U U W

\m LB AL AR Are o en ot aes AR oAl o YA AN i oo e S dudt i it SR

................

and let Hy(m,d) be the orthogonal complement of Ho(m.d) in A(m,d), that
130

H(m.d) = Hyo(m ,d) ® H,(m ,d)
where ” @ " indicates direct sum (see for example Akhiezer and Glazman, 1961).

“Let Ty = £y,ty t; €RY, i=1....M. be an M-unisolvent set, that is, a

set of M elements of R% such that there exists a unique g€ Ho(m ,d) with

o(t;) = B;, B ER j=1,...M, t;ETy.

Let y=(y(1)....y(d))* €R®, f:R%-R feH(m d). Let a=(a(1),...,a(d))
and deflne |al := ga(j). a(j)€{0,1,....,m}. Define the differential operator
D® by: J
Doy = 1![Lf(y) (2.2.1)
j=1(3y(5))20)

If 2m > d, the space H(m,d), equipped with the inner product:

<f 9>y = <_f .g>°+<f 921
where

[
<f.9%= LS (t)g(t))]. tieTy

f=1

and

| |
S o <D°f .D°g>
S .9>1 |ap-mla(1)!. . ..a(@)] S D> pe
can be shown to be a reproducing kernel Hilbert space (RKHS), that is, a Hilbert

space where the evaluation functionals are continuous.

Using the results of Duchon (1976) and Meinguet (1979) it can be shown (see
Wahba and Wendelberger, 1980 and Wendelberger, 1982), that the reproducing
kernel of H(m ,d) is given by:

K(s,t)=Q(s,t) + P(s,t); s.teRd (2.2.2)

dacadedeiobeledadedetaldntn o odaito . Pesal. e o=

LR TR NS S P P NP U U S S ST S S Y J

BT T At T ea 70l Jadh AGui bt T Ari St crae ius Sreg ibeg oss Shelven o e ioen Sai e Dadr Dot aul et sl It aadit R I Lo i R S R R
............................... .. . ST =T -

13

where
u M
Q(s.t) = Em(s.t)— 3 pi(t) Em(t;.5)~ ij (S)Em(tvtj)
i=1 j=t
u (2.2.3)
+ Y pi(s)p; (£)Eqn(t;.t;)
ij=1
and
'{
P(st) = _Elpg- (s)p;(¢) . (2.2.4)
i=
Here p;, j=1,....M are the unique M polynomials in Ho(m ,d) satistying
pilt;) = [(1, g::g (2.2.5)
ty,....tg€Ty and E,,(s,£) 5.t €R3, is given by:
mlls =t |P™=%In(||s-£|l) if d is even
Em(st)=l5 |s—ti2"<¢ . itdis odd
where
(=1)8/2+1+m 4
5 = 22m=17d/2(pn — 1) (m—~-d/2)’ even
m=| I'(d/2-m) d odd.
22mpd/Ym —1)’ °
Let Ly, ...,Lx.Ny,...,N;. be continuous linear functionals defined in
H(m.,d). Suppose that we observe z; =L, f +¢;, i=1,...,.n. Where £,, . . . , &, are

independent zero mean random variables with variance covariance matrix given
by

o?DZ := 0*(6y0P).i.5=1,...n
where 0; <=, i=1,...,n and

0 if i#7"

Here 0 is an unknown constant. The o; are the relative weights of the measure-

6@‘-’{1 ifi=j

ment errors &;. If the variarices of £; are known to be the same, then we set

W PRPPR P T Y P PRl O T 1 Py WS s on s - & a2’ a2 m'a’aT e a’a

ES g |

............................

14

1=0,=...=0,.

We will also assume that we know that the function f is in some closed con-
vex set C that can be well approximated by the set

G = {f:NijTj,j=l,....k
consisting of a finite intersection of half-spaces.

Our objective is to estimate the function { by solving

Problem 2.2.1:

Minimize over H(m.'d)

-,ﬁ-ﬁ:ltz‘-—u Y2/ 024 AIm (S) (2.2.6)
subject to
Nif s, j=l..k (2.2.7)

The penalty functional J,, (f) is given by:

[.
Jm(f) = 'C'Z’:m [ﬁ] 1021 112 cuey (2.2.8)

A "constrained Laplacian smoothing spline” is the function f“ that soives
problem (2.2.1).

Clearly the problem of estimating the function h of section 2.1 is a particu-

lar case of problem (2.2.1) when L,, . . . , L,,N,,...., N} are evaluation function-
als.

. Since L; and N; are continuous linear functionals, by the Riesz representa-
tion theorem (theorem A1.1) there exist functions 7y, ... ,Nn and &;, . . . , &
in the space H(m,d) such that’

Lif =<n:.f> 1i=1,...n (2.2.9)

Nif =<&./> F=1..n (2.2.10)
The functions 7; and {; are called the representers of L; and N;. Any function f

.........

- f et e ST T e e - . R
T e P P P Il I R P A P e e e e e e, - - L . .
ettt ol e ol B SRl el ol A .L.L.(Ll 4..- t.‘- PR I SR W A R SRR VRO P o e abia e s a e t. a

15

in the Hilbert space H(m,d) can be written as a linear combination of
m.'. e Mn. &1, - .. Ex. Py, - . - . Pu Plus some function p which is orthogonal
to each 7). §;. and p;, that is,

x u
J =i§lcini + 1216.-& + 1}313@1 +p (2.2.11)
for some vectors of constants c=(c; ...,6n). b6=(b;,...b) and

d=(d,,.....dy)*. where

<n;.p> = <§5.0> =<p.p> =0,
fori=1,...,n; j=1,... .k andl=1,. M.

Substituting (2.2.9). (2.2.10) and (2.2.11) in (2.2.6) and (2.2.7) it is easy to

show that to solve problem (2.2.1) one should take o=0, so that, the solution f A
can be written as:

im]

n k M
Faa=Tem + _Z:lbi G + ‘Elauoz-
,. =
By proposition A1.3, 7; and £; are given by:

n:($)=Li)K (s .t)

£;(s)=Nj)K(s .t).
The subscript (t) indicates that the functional L; { or N;). is to be applied to

what follows considered as a function of t.
Using the Kuhn Tucker theorem we will give a simpler representation for

the solution to problem 2.2.1, but first we need to introduce more notation.

First rewrite] nA 28

. Far= ma +ptd (2.2.12)
'h’n £=(£l' T 'Eﬂ)""=(nl' LR -"7&)‘- O-_-(C‘ :bt)‘ Qndp=(plo e ,Pu)‘.

Define the matrices:

......... . LT e . . . «a s ot
Pl a . a PR . TGP I W OGP GG G 8. PG T

el ok i

_ [Ku KlZ]
_ T K2 K22
K1=[Ku : KlZ]- Kz--[Km . Ka] and U=[Ut1 : U‘g]‘ Where K21=Kt12 and the

matrices Ky, K2, K22, Uy and U3 are defined in Table 2.2.1.

TABLE 2.2.1
Matrix | Dimension {(i,j)element
. Kll nxno L‘ t K(s t) .i=1.....n j=l..n
K2 nxl hg;f‘?((g)) % i=1,...n j=1,...L
Ka LxL (,) j(t) i=1.....L j=1.....L
U, nxM i=1,...n j=1...M
U, LxM mj - i=l..L j=1...M

We will assume that the following two conditions hold:

Condition 2.2.1

M- :Nn> &1, . - ., & are linearly independent.

Condition 2.2.2

The rank of the matrix U, is M.

For example, in the case where L,f =f(%). i=1....n and N;f =;f(:,-).
j=1....) if the points y;, . . . ,¥Yn.81, - . . . Si are all distinct, condition 2.2.1 will

be satisfled. To satisty condition 2.2.2 we need that n=M and that the points
Y1 - - - »Ya Uniquely determine an interpolating polynomial of degree m-1.

The foliowing theorem gives a simpler representation for the solution to
problem 2.2.1.
22.1 Theorem

1f conditions 2.2.1 and 2.2.2 hoeld, the solution to problem 2.2.1 is of the

form

17

Far(t) = f:lciloi(a)Em (s.t) + ixbi]vj(s)Em(svt) + ‘f:ldzw (t). (2.2.13)
1= . J= =

where ¢,, . . . ,py are the monomial polynomials of degree less than m given by

ei(t) = (B . . g(g)ud), ¢ e RE (2.2.14)
Here u(iL) €§0,1,...m=14, u(1)+...+u(dl) <m, i=1,... .M.

Proof
Lifar = Lint : ¢la + Lip*d
so that
[
Llfnx
. =[K112K12 a.+U13.
,Lnfux
Similarly,
Nljnx
. = [K21 : Ka]a""Uz&
Ny Fna ‘

Let P be a projection operator onto the space H,(m ,d), then:

Im U.nk) = <anA-Pqu> =<[n:¢la.[n:¢la>
= a‘Ka.
Now we can write problem 2.2.1 as:

Minimize G(a,d) subject to g (a,d)<0, where

¢
G(ﬂ-,d.) = %{[KH:KIz]G"' Ula—Z} D;a{[KuIK]z]a+ Ula—z

(2.2.14)
+ha'Ka
g(a,d) = [Kp : Kxla+Usd—r (2.2.15)
and D;? = diag(1/ 0%, ... ,1/02). The Hessian of the quadratic form G(a.d)

"v_v.""

' BRI
A A
EAPEPL L

00 VALY,
R R R RV R B 4

LA

i

AL

“l

._.-.\1_3.‘:\0 s«

-

18

is given by:

B s
Il Il Il
8

8

e
(2]

Iil Isl
N -
b -

1 DIl Il

éll
él

o = woomwt T o .
where 25, =25, Z3,=Z{5 23=%4 and:

En = KuDg®Kn+ndKy Zi2 = KuDsiKiz4ndK2
313 = KuD;zUl Ea = KzID;zKlz'l'ﬂ.AKa
Sos = K21Dg%U, Ess = UiD;?U,
It is easy to see that if conditions 2.2.1 and 2.2.2 hold the Hessian = will be
positive definite and hence the solution to problem 2.2.1 exists and is unique. .

Now let ¥ be a kX1 vector of Lagrange multipliers. By Kuhn-Tucker

theorem (Bazaraa and Shetty, 1979, theorem 4.3.8), we have that if (a,d) is the
solution to problem 2.2.1, then the following holds:

vG(a,d) + Vg(a,d)ty = 0 | (2.2.16)
¥g(ad)=0 (22.17) -
720

(2.2.17) =g (a.d)frr*g(a.d) = 0
and therefore

6@d) = 6@+ 29 @D r'g(ad

3
= é_(Kla"'Ula—Z)‘D;z(Kla"' U]&‘Z)"‘%A'a Ka

+ %(Kz& Upd—r)yt (Kot Upd—r)
= %(xa+ Ud-w)t S (Ka+ Ud—w)+ "2—"&1(& (2.2.18)
where

''''''''''''''''''''''''''''''''''''

19

Dg? On
5= 10m |
Also g (@,d) can be written as
9(a.d) = [l : O][Ka+ Ud—w] (2.2.19)

where J; is a k xk identity matrix and G, is a kXn zero matrix. Using (2.2.18)
and (2.2.19) the Kuhn-Tucker conditions become:

Vo G(a,d)+V,g(a.d)ty = KSKa + KSUd — KSw

- I (2.2.20)
+nAKao + Q Onk =0,
V4G(ad) + Yug(ad)y = UtSUd + Ut SKa
[(2.2.21)
-UtSw + U‘[a,'; ¥v=0
¥g(ad) = [l : O [Ko+ Ud—w] = 0 (2.2.22)
and
7=20.
Now, (2.2.20) implies that
. Ry
SKa+SUd—Sw+nAa+ lo:h v}=0. (2.2.23)
And (2.2.21) implies
- [
U‘{SKa+SU3—Sw+IOI:k]7]=O (2.2.24)
Then, using (2.2.23) and (2.2.24) we get that —nAUta=0 = Uta=0
=>ULc + Utk = 0 (2.2.25)

and hence

- n . : k . M
Sar(t) = _zlci[«'(s)K(svt) + zlijj(:)K(s-t) + lzldcpz(t) (2.2.26)
= Jj= =

Substituting (2.2.2), (2.2.3) and (2.2.4) in {2.2.26) and grouping we obtain:

A

PR

| BT i

.,V
-t

s e R L e L.) . . . -
R S S LN T N R PN U RV RN R S S O W AT » - A J

Faa(®) = & L()En(5.6) + £ 6,Ny(5)Em(5.0)
i= J=1

+ 2 @ -adp(t) - 5 (U134 U (.0)
u - ~
+ 3 5 (U1 VD) En (b tymu(t)

i=lj=1
where d;’is given by

" n . k .
dy = 2 ciLi(s)Em(ths) = 2 ijj(s)Em(tl-s)
e g2 (2.2.27)
+ .Elci[a'(:)Pl (s)+ _zibjIVj(s)Pl (s).
is J=
Then by (2.2.25) we have that
- n . k N
Jaxt) = _Elcild(s)Em(S.t) + _Zlijj(s)Em(S.t)‘E dipi(t)
i = J= =]
where &:&-d,‘. Let @y, . . . ,@y be as in (2.2.14). Then {g;}&, form a basis
. M
for Ho(m .d), then, since p; =), ¥;;9; for some ¥y ,-".1 so that we can substi-
=1

tute the basis {p; !ﬂ.l by the numerically more convenient basis [(p;{ﬂl. That is,

we can write:

M M
Ydp = Ldie
isg t=1
for some (&,, ce ,&u)‘ €R®. Therefore, the solution to problem 2.2.1 can be

written in the form (2.2.13).
.

Now let us define the matrix

Tol ' (2.2.28)

where T; and T are given in Table 2.2.2.

7":[7'1

Upon replacing the matrices U;,U; and U by T,,T; and T respectively,

expressions (2.2.16) through (2.2.25) still hold with d instead of d and the condi- 1

L Attt ARt Mt Shasic thue (e et S SHR = LW e T, L RS L M S S AT A hd R AL

..........

21

TABLE 2.2.2
Matrix | Dimension (i.j)element
Fq nxn Ligs)Lij)Em (s, t) i=1,...,n j=1,...n
Ei2 nxL (:)I\i) ’::; S i=1.....n j=1,....L
Ean LxL ,,(,)1\} i(¢)Em (s, i=1,....L j=1,....L
T, nxM i=1....n j=1....M
T> LxM N,:p, i=1,...L j=1...M

tion Uta =0 is replaced by the condition Tta = 0. Then we can rewrite prob-

lem 2.2.1 as:

Problem 2.2.2

Minimize G(a,2) subject to g (a,d)=<0 and T*a =0, where now,

g(a,d) = Esa+Tod-r (2.2.30)
where:
_ (En E12]
T | Exzf
E; = [E“ : ElZ]- Ez = [Eal : Ezz] and E21=E‘12. Ell- Elg and E& are given in
Table 2.2.2.

Let N=n+k, since the rank of T is M, there exists an NX/N matrix
=[@,: @2] such that
[t
gz [15 (2.2.32)
where R is an MxM upper triangular matrix, O is an N—-M XM} zero matrix and
@1 and @ are NxM and VXN =M matrices. This is known as the Q-R decompo-

sition of T (see Dongarra, Bunch, Moler and Stewart, 1979).

Let e be the N—M dimensional vector such that @ =@ze, then, by (2.2.32)

we have 0 = T* @,e = T*a so that instead of solving problem (2.2.2) we solve

‘the quadratic programming problem:

Problem 2.2.3

Minimize G°(e,d) subject to g *(e,d) < 0, where:

G'(e.d)= %(E‘,Qge +T1d—2) D;3(E Qe+ Tid—2z)+niet Q4EQe (2.2.33)

and
g°(e,d) = E,Qme + Tod—r (2.2.34)
Then, if (e, d) solve Problem 2.2.3, (a,d) solve Problem 2.2.2, where a=Q.e.

For a given value of A we can solve problem 2.2.3 using any quadratic pro-
gramming routine. So far, nothing has been said about the choice of the
smoothing parameter. In the following section we describe the method that we
will use to choose a “good” value of A from the data.

1.4 The choice of the smoothing parameter

In real life problems the correct value of the smoothing parameter A is not
known. Wahba and Wold (1975), Craven and Wahba (1979) and Golub Heath and
Wahba (1979) have suggested the use of generalized cross-validation to estimate
A from the data in the unconstrained case. In the presence of linear con-
straints, Wahba (1980) and (1982) suggested the use of generalized cross-
validation for constrained problems.

Before describing the method of generalized cross-validation for con-
strained problems, which we will refer to as GCVC, we give a brief review of the
- method of generalized cross-validation for unconstrained problems which wiil be

referred to as GCV.

. (9]
Let f,\ be the minimizer of

o e el ol ol ool 2 e . PP U Sy U I AT WP W Al Yetaialata . az

- e L e W T Y T T Y T W T W N YL Y, T T T T T AT T e e Ty

. -

. g
..............

S (Lif ~2)2 + Am(S). 23.1)

1
T inling

.l9]
If A is a good choice, then, on the average, Ly f)\ —2, should be small and thus is
reflected in the ordinary cross-velidation function V, (A) given by:
. n g
VoW = L3 (2, Fna =22 (2.3.2)
ngan
Craven and Wahba (1979) and Golub, Heath and Wahba (1979) showed that

=1 [Lifux-zi]z
K Y cerren @9

where f,.,\ is the minimizer of

1) = L8 (s ~20% oF + Mim (1) (23.4)
and a;;(A) is the (¢,%) entry of the nxn matrix A(A) satistying
[.
Lyfar
. =AM (2.3.5)
Lnf.nx

The minimization of (2.3.2) with respect to A requires the solution of a
linear system of order n+M-1, n times for each different value of A, whereas the

minimization of (2.3.3) requires the solution of one linear system of size n+M to
find f,, and then one of size n to find a (A) for each value of A.

Craven and Wahba (1979) and Golub, Heath and Wahba (1979) show that

from the point of view of minimizing the predictive mean square error given by

nooo
T = L3 (LFar-Ls 2 (23.6)
i=]
V, (A) should be replaced by the generalized cross-validation function V(A) given
by:
- ‘t_‘;"““‘:.‘;.-;' k“‘;‘-_‘:L\i&»"l'_ 4;"L;-;{;Lu‘; .; b ;‘i‘ "L At a2 o A:“__L' . -A ot e 'a _a A . o '~A '.- P

o

B I T S L A el St RS LSl S st I i ain > Rdan e e Bt s aeL S S S S b e Bt et e i I SR
A ot e e e T s, N - P .. N . C . . - N . .

.........

1
—lI(71-4(A\)z |2
V()\)— 1 E (Ltan 2,,) 2(A -n li(A)zli

T a1 (1-a5(A))2

1 (23.7)
[;tru—A(x»]

where
1—ay (\)
-1 3a,00
nZ 1“71
They show that the minimizer of (2.3.7) estimates the minimizer of (2.3.8).

w;(A) =

Wendelberger (1981) developed an efficient algorithm to compute the
minimizer of (2.3.4) estimating A by minimizing (2.3.8).

Now let C be any closed and convex set in H(m,d), fn\ be the minimizer

el
of @A(f) in C where Q, is given in (2.3.4) and let f) be the minimizer in C of

3 (Lf~=)? + A (). (2.3:10)

"’i-hltq
The ordinary cross-validation function ¥, (A) is given by

Vo(A) = _E (qunk))2

ng=
It is obvious that ¥, (A) would be prohibitive to compute in most cases.

Wahba (1960) shows that given the data

[-[e] ¢
lzl, “ . ,zq_l'qunx'zq...l, coe a2y

()
the minimizer of @ (f) in Cis faa. that is,

.19}
Ialz+6,] = farl2] (2.3.11)
The notation fax[z+8,] indicates that f,, is the minimizer in C of @\(f)

.
'
P
-
).
e

based on the data vector z +8,, where &, is given by:

0]
6 = (0....,1,,,_{,&[z]—zq,....O)‘,

le]
and f,,,\[z] is the minimizer in C of (2.3.10) based on the data vector z.

..................
. -

Bentn . &’ 2D - -

25

Using (2.3.11), Wahba (198.a) shows that ordinary cross-validation can be

written as
n 7 — V2
Hy = L afazgs (23.12)
Rg=1 (1-ag(A))
- where
- Frolz +8g]=Lo Fral2]
() = et gl
ﬁ qum\ (=]-zq
& is what Wahba calls the "differential influence” of 2, when A is used.
:;_ The GCVT function is obtained by replacing a;q in (2.3.12) by the average
é “differential influence”, so that the GCVC estimate of A is obtained by minirmizing
. n
L3 (Lifi-2)?
VEQ) = "; - : (2.3.13)
(1--% aq(N)?
q=1
As we mentioned in section 2.2 we will assume that the convex set C can be
well approximated by the intersection of a finite number of half spaces:

Ce={S Nyfsr,i=1,.,k) (2.3.14)
Then, to evaluate V€ (A) for a single.value of A we need to solve n quadratic pro-
gramming problems in n+k —M variables. To avoid this, Wahba (1981) sug-

gested using the approximate generalized cross-validation function given by:

i—i (Li far—2z:)?
Vop(A) = —=— (2.3.15)
(1===3 ag (\))?

1
Mg=1

where

a-qq(A) = _a_qu.nAlz-

gz,

P NP IR SN S SRS e) PSP IRP PP Y S

PN SN VR WARPIIRY DI IR SR L

.wmwrrm*.ﬂ._r.w.-t—.‘ (AU NRICEE Sy Aos S 4 R CEghahs
A M Al 0 M A e e R A . R ; R

-:.'_' In the following chapter we discuss the algorithm to compute the minimizer

o of (2.3.4) in the set G, estimating the value of A by minimizing (2.3.15).

- AR LA s . . . - - .
anduiibabfamedens ot o0 2" ot L) -SRI TR GO A PUF D NE W WA SV R T G S, S D LAJ

-~

CHAPTER 3

THE ALGORITHM

3.1 Introduction.

The software written as part of this thesis was developed for the case where
the functionals L, . . ., L, and N,, . . . , N} are evaluation tunctionals. That is,
we want to minimize

1 n
;‘};.l(f (%)=2:)2 + Aa(S)
subject to f(s;)s7;, for 1=1,....k. However, we present the algorithm in its

more general form. where the L, and N; are any continuous linear functionals.

Before solving problem (2.2.1) we solve the gnconst.rained probiem estimat-
ing the value of A by generalized cross-validation. The software to solve the
unconstrained problem in the case where the [; are evaluat.'u;m functionals, was
developeil originally by Wendelberger (1981) and can be obtained from Madison
Academic Computing Center (1981) or from IMSL (1983).

If the solution for the unconstrained problem satisfles all the constraints,

then that is also the solution to problem 2.2.1.
If this is ‘not the case, we use the value of A obtained from the solution of
the unconstrained problem, say i, as a starting guess for the “"correct” A for

problem 2.2.1. In fact, since the imposition of constraints is in some sense a

kind of smoothing, it is natural to expect that an optimal A for the constrained

problem will be smaller than X, Also, intuitively, the optimal A for the con-

-
K
»
‘.

strained problem, say X should not be "too far away" from X,, .

- - - N . ‘. .. L R
IR TN Bt Tl T I I D TP G I NI S Bt B -t

el GEN A RS AN M ARG AR S St A s e e R R e . e s T e T T TN RS

............

~
~q
"

[7e
DJ'Ty, T°= [le]

28
o There are two important parts in the algorithm to compute the solution to
::-\.j problem 2.2.1. One is the solution of a quadratic programming problem of size
n+k —M for each value of A that we consider, and the other is the computation
of Vgp(A) given by (2.3.15). These two parts are the most intensive in terms of
::jf?] ' computational effort and hence it is important to try to make them as eflficient
7:::?' as possible.
Y In section 3.2 we restate problem 2.2.1 to follow more closely the way in
which the actual computation is done. In section 3.3 we discuss the quadratic
" programming routine employed. In section 3.4 the computation of the approxi-
= mate generalized cross-validation function for constrained problems is dis-
o cussed and in section 3.5 the step by step computational algorithm is presented.
- 3.2 Restatement of the problem
s
o For computational convenience suppose that instead of observing z,
«~ _:"
ol we observe the vector
N
rz l/ Oy
e zg=| .
. 20/ On
‘2 and define the matrices:

(3.2.1)

Efy =DJ'EnD;'. Ef =Dg' Eya,
Ef = [E%, - ER|. B =[E% : Exland
- E7
) E’ - Eg]'
i where Ey;, Ey3, Ez, T and T, are given in Table 2.2.2.

P taa 'A:_.;J,‘_-L.n_L,;‘..A.s,-;-',-‘_-_-_,_-.--AJ

b
&
-
i
h‘
-
)

Rl %

T T e T

-

v OGEE BT s A s s

L A e e ardh g e il B Bt Segitast Auw Mhaie St fon au gy SAme R AR e sudl A Y T T T
N PO J A RS PG alat s ol g LU .. ¥aloe A

Following section 2.2 it is easy to see that problem 2.2.3 is equivalent

to
Problem 3.2.1
Minimize
t
G’(a,.d) = %{Efa., +T‘1’d—z,] [E’i’a., +T{d - z,] + nia, L%,
subject to

9%aq.d) = Efa,+T2d—r<0 and T‘"a., =0.
Let @ =[@% : @4]* and R be the Q-R decomposition of T?, that is,

rQl Tc = r R
Q2 [0(7. +e=M)(M)
Let @, be the n +k ~M dimensional vector such that a,=@2e,. Then, instead of

. (3.2.2)

solving problem 3.2.1 we solve the equivalent

Problem 3.2.2
Minimize

C(eqd) = HETQue o+ TTd~2,) [E1Qee o+ TTd ~2,) +nhet Qb Qee,

subject to

§%(eqd) = EfQre,+Todsr. (3.2.3)
Then, if (€,.d) solve problem 3.2.2, (@,,d) solve problem 3.2.1, where

-

- - c
Gy = Q€0 = ||,
b

and

D;lc,

R P
n

R O O)
i

Ay o

is a solution to problem 2.2.3.

U P PEFRALTOE T W W VUL TIE TME VoA ST Yol WL WU N WG DU 1 UL SO s A S e R SO NP |

Mo M i Ml St M-S iR Y T L S asu-aar) . P ahan 4 Ty T Oy
. P . s i N - i LT - . Sl R . Pl A A

Now,

C’(e,,d)--—[lE"Qg rv]l]—z,] [[E‘,Qz r{|

-

Q4E’Q, 0(n+¢-n)(u) le,
t
+ nAlc, d HO(H)(nH:-M) [(3.2.4)
[
= -é—{cf; : d‘]E ¢d, - zf,{E’{'Qz: Txlrd']
where = is the Hessian and is given by:
(QLEF EFQ, + nAGHE?Q, QLEYTS 025

TT'EfQe TeTY |
Finally, from (3.2.3) we write the term §%(e,.d) defining the linear constraints

as:
[fe
7°(e0.d) = [E5Q:: 72|55

- 3.3 The quadratic programming algorithm

Let f,,,\(t). given by

- n . k. M.
Iar(t) = Zxcil'i(:)Em(svt) + L biNj)Em(s.t) + ‘2 dyp(t) (3.3.1)
i= i=1 =]
be the solution to problem 2.2.1 for a given value of A. Suppose that there are {

active constraints at the solution that correspond to Ny, - - ., Ny) where

=fw(1),...,v()icil,... k. (3.3.2)
If we solve problem (2.2.1) for some other value of A, say A, then we will get

a possibly different set T’ = {v' (1), . .. ,v' ({)] corresponding to the active con-

straints at the solution. If A and A’ are relatively close, it is likely that the sets T

and T' will either be the same or at least they will not be "too different”.

-
«

g

[T

31

It is this feature of our problem that motivated the use of an "active set"
algorithm to solve the quadratic programming problem. The algorithm that we
used was developed by Gill, Gould, Murray, Saunders and Wright (1982). The idea
behind this algorithm is as follows.

It the correct active set of constraints were known a priori, then the solu-
tion to problem 2.2.1 would be the solution to a problem with equality con-
straints. There are several efficient algorithms for solving problems with equal-
ity constraints and, in fact, the presence of equality constraints actually
reduces the dimensionality in which the optimization occurs. Therefore, it is
desirable to apply techniques from the equality constrained case to solve prob-
lem 2.2.1. To do this, a subset of the constraints of the original problem, called a
“working set” of constraints, is selected to be treated as equality constraints.
Obviously, the ideal candidate for the working set would be the correct active
set. Since the correct active set is not available, the method includes pro-
cedures for testing whether the current working set is the correct one, and

altering it, adding or deleting constraints, if not.

In our problem, every time we soive the quadratic programming problem
2.2.4 for a given value of A, say A', we obtain a correct active set for that particu-
lar A. By the argument at the beginning of this section, this correct active set
will be a good starting guess for the correct active set for some other value of A
close to A’ and therefore once we solved the problem for the first time we can
expect very fast convergence with this active set algorithm. In fact, this was
what we observed in our Monte Carln studies. In the cases where the active set
did not change from one value of lambda to the following, the quadratic pro-
gramming routine converged in one iteration. We will discuss this further in

chapter 4 where we will present the results of the Monte Carlo study.

VU P D WL PSP ST S G T S N SR SR gy BB mta a mimia o m & o e o

L24udl Jhdic gl e g 20 A S Shnd 4t I e S Al S it et Sl Seet ,——‘1

R

The Fortran routine to solve the quadratic programming problem was
kindly provided by Nicholas 1. M. Gould and is based in method 3 of Gill, Gould,
Murray, Saunders and Wright (1982).

3.4 The computation of the approximate GCVC

Let f,,,\ given by (3.3.1), be the solution to problem 2.2.3. Let

Nyq), - - - Nyq) correspond to the ! active constraints at the solution, thea

f na is also the solution to

Problem 3.4.1
Minimize
n
23 (LS ~2)%/ 0F + B2 (f)
2.5 2
subject to
NGy = 1oy, J=1 ... L
Here, as we will see later, there is a matrix A(A) such that:
[.
Llfnk,
o l=anz (3.4.1)
Lufnx

Recall now, that the approximate GCVC function is given by

',:;—i (Lifn)\—zi)2
Vap(A) = "11 - . (3.4.2)
(1=1-F 2 ()2

=1

where

Ogq (A) = %qum,. (3.4.3)

od Lame g ad - —— [EhdAtiis ¥ N Cal el s d Al . O Ll v T
Pl St e B e el MER i A A, Sl i e e T e " " < e, ISR IS A AP S M, T T
~ - PEREN . - L. ‘

3

After the quadratic programming problem has been solved, the numerator

of (3.4.2) can be computed easily. To find the denominator of me(A) we must

n
compute), ag.(A). which, by (3.4.1) is simply the trace of A(A).
q=1

In Theorem 3.4.1, we will give an expression for 4(A). Belore stating this
result, we must introduce some more notation. Let the matrices Ex(T), £ (T)
and To(T) consist of the rows and columns of the matrices Egs, E{, and T,
corresponding to the active set of constraints, that is, Ex(T) consists of rows
and columns v(l1),...,v({) of Ez EHB(T) consists of columns
v(1),...,v(l) of E{, and T»(T) consists of rows (1), . .. ,v(l) of T3 Also

define the matrices:

(1) = [Tﬁ) . E&(T) = ER(T),

(3.3.49)
E{(1) = [Ef : ER(D)|, ES(N) = [EH (D) : Ex(T)]

and

| En ERM
Fm = lzsl (M) Ea(D|

Where E{, and T{ are as defined in (3.2.1). Here we use the notation (T) to

emphasize the dependence on the set T of active constraints.

Now we can rewrite problem 3.4.1 as:
Problem 3.4.2
Minimize

C(a,.d) = %(E-’{'(T)a.# Tfd—2,) (ET (Ta+T{ ~2,)

(3.4.5)
+ nAatE?(T)a,

subject to

N Mdadacs)

gl " Lhat sut ol 3 Lavk At ot e g

e

K2

g(aqsd) = EZ(T)ag+ To(T)—r(T) = 0 (3.4.8)

where 7(T) = (ryqyy, - - -Tv(t))"

Let @;(T),Q@2(T) and R(T) form the Q-R decomposition of T9(T), that is,
they satisfy:

B - 5]
Here R(T) is MxM, O is (n+l-m)xM, @,(T) is Mx(n+l) and @y(T) is
(n+l-M)x(n+l). In the proof of theorem 3.4.1 we will assume that
QAT) E°(T)Q4(T) is positive definite. This will hold if conditions 2.2.1 and 2.2.2
hold (see Dyn and Wahba, 1982).

3.4.1 Theorem

Let f,‘;‘ be the solution to problem 3.4.1, then there exists a matrix 4(A)

such that
r -
Lifaa 2,
o l=am| .| : (3.4.5)
-~ z.“

qu

and it is given by:

AN = [, —nAQe(D|QeM (D) +n A W) Q)| @2(T)
where Q2(T) is obtained from the Q-R decomposition of T?(T), I, is the nxn

identity matrix and ¥ is given by:

(I, Ou
w — 0h ou .

Proot

(3.4.8) ={g(a,.d)1* {5 (a,s2)] = O and therefore we can write (3.4.5) as:

e leta . PP N - . . o . -, o .

- v e A ¥ VvV Ny T YT TTET W WY 8§ T % URUOUF W
B ey R B AL - - -

b
C(ag.d) =B(aqd) + 37(2,d)'F(2ed)
= HET (Ma+T{d-2,) (Ef (Na,+T7d-z,)
+ HES (Dag+ To(Td—r (1)) (B (Tag+ To(Td—r (1)
+ nAatE?(Ta, (3.4.8)

=%—(E”(T)a.,+ T(T)d—w)t (E%(T)a,+ T?(T)d-w)+n AatE%(T)a,

where w = (2 : 7(T)t). Now, write §(a,.d) as:

[q,. : 1,][E°(T)a,+ 7°(T)d] (3.4.9)
Then if we let ¥y = (74, ...,)¢ be a vector of Lagrange multipliers, problem

3.4.1 reduces to minimizing

Cla,.d) + {o,,, 1] {E”(T)a,+ T’('I')d—w]. (3.4.10)
Using (3.4.8) and differentiating (3.4.10) with respect to a,, d and 7. and equat-
ing to zero we obtain:

[
E'(ME(Ta+E/(T)T(T)d=E°(T)w+nAE(T)a,+E(T) 01:" l7=0 (3.4.11)
[
T T°(T)d+ T°(T)E°(T)a - T°(T)w+ To(T)¢ lol'l“l'y =0 (3.4.12)
and

[om : 1,][E°('r)a+7*'(r)d-w] = 0. (3.4.13)
Then, (3.4.11) implies that

[0
E(M(E(T)+nMp)ae+ T"(T)d—'w[L= 0. (3.4 14)

Equation (3.3.12) implies that

[
To(T)* {T”(T)d+E"’(T)a,-—w + lol':"-y] = 0. (3.4.15)

Then (3.4.13) and (3.4.15) imply that

IO A

i | “RAT(T)a, =0 = T*(Na, =0 (3.4.18)
5 and (3.4.13) and (3.4.14) imply

Y+nAlpaq =0

fow |
= y=fjy= —n)\{oh : Il.]a,

[
= [0}:‘]7 = [3"“]{0& : 1;](~n>\)a¢

[Cen Om
= IO‘" -11.?\1;

Now, using (3.4.17) and (3.4.14) we get

(3.4.17)

24

[
[E'G(T)m}\l,.ﬂ]a, = =-T7(T)d -IOIT 7+w

a,tw

[Onn Ou
=-T¢(T)d-l0h —‘nug

= [N +naba, = - Md+w. (3.4.18)
Let @,(T), @2(T) and R(T) be given by the Q-R decomposition of T9(T). Let
e be the n +l —M dimensional vector such that
a, = @2(MNe (3.4.19)
Then T9(T)Q2(T)e = T9(T)a, = 0. so that (3.4.18) is satisfied. Premulitiply-
ing (3.4.18) by @,(T)* we obtain: -
QAT (E*(T)4+nAF)ay, = —Q(T) T(T)d + Q2(T)w
= QaT)w
= QAT (E"(T)+nAW)Q2(T)e = @o(T)w
= & = [QN(EM+nAm) QD) Qo) w
and by (3.4.19)
a0 = QD[QT (EXM+nAM) QM| " @eDiw. (3.4.20)

Finally, by definition of A(A) we have

r

Llfnk

AANw = Lnf "= BYT)ag+ T(T)d
Nv(l)an

.IV v(l)fnx
Therefore,

I-A(AN)w = w=E%T)a,~T°(T)d
= niWa, (by3.4.18)

= RAWQT)|Qe(T) (B* (M) +nAW)Qe(T)| ™ @o(Tyw

Hence,

I-A(N) = RAWQe(D) QT (B +nAM) QT (1. (3.221)

Now that we have an expression for A(A) we can compute the denominator

of me (A) given by

2 2
1 & -1 -
[1-;3%0)] = [#(1 A(A))] :
Using (3.4.21) we get:

tr(I-4(N) = nw{oz(r)‘ WQa()[@2(T)* E°(T) Q2D +nAQx(T)! woz(r)]"L
(3.4.22)
= nJ\h\{A[Q-l-nM]'l},

where A = Q5(T)* WQ5(T) and & = Q,(T): E%(Y) QZ(T).

If we use (3.3.22) to compute £r(/—A(A)) for each different value of A we

must solve a linear system of size n+{—M, to avoid this, we use the following

LI SRR SUU HT YO S T S S o DA P VI W Py P Y

P L. [S S S U W S U WY Ty WPt

3.4.1 Proposition

The trace of the matrix /—A(A) is given by:

A"y (3.4.29)
i=] 1+nApi ' -

where Py, . . . ,Pn+i-u are the eigenvalues of the real symmetric generalized

eigenvalue problem:

AT = p; @1, i=1, ... , n+l-M, (3.4.24)
where I'y, . . . ,['p4i—u are the corresponding eigenvectors.

Proof

tr(I-4A\)) = nAh-{A[Q(ImAQ'lA)]'l}

= n)\h'{A(Ii-nA@“‘A)“‘b"}

= nhh{@'lA(l +nA¢"A)"}.

Now, let oy,, Pn4i-u be the eigenvalues of the generalized eigenvalue prob-
lem (3.4.24), then, &é7!Al =p,I;, i=1,...,n+l-M and hence
P1, - - - +Pnai—i are the eigenvalues of the matrix A, then it UDU™! is the
eigenvalue eigenvector decomposition of $-1a, with
D =diag(p,, . .. ,Pnei-i) We have: .

tr(I-4(\) = nAb-{UDU"(U[IHlAD]U'l]

= nAtr (D[+nAD]™Y)
+-N o
=nAi ——%
n [“,-gl 1+nAp,-

Therefore, the denominator of V5 (A) is given by

it Sl Al Sna B R g s . T — e Yy

RARYAAMEAS A A YL A YL AN AR At i s i A S A it R S e TR T e T W N Y . PR AP *}

i=m] 1+nMi

Using (3.4.23) to compute ¢r(/—A(A)) has the advantage that we only need

3 [Ler-aonpe= EPYE_B Y (3425

to solve the generalized eigenvalue problem when the set of active constraints

changes from one value of A to the next.

In the following section we present the step by step algorithm to compute
the Solution to problem 2.2.1 choosing the smoothing parameter A by general-

ized cross-validation for constrained problems.
3.5 The step by step algorithm

After the unconstrained problem has been solved we have an estimate of A,
say X, The algorithm to compute the constrained spline uses this value of A as a
starting point to get the estimate X that minimizes the approximate GCVC func-

tion. It X, = o the algorithm also requires the largest eigenvalue of the matrix
Q2 E{,Q; where Q; is obtained from the Q-R decomposition of T :

Ql T? = [R]
Q2|1 T lOF
This eigenvalue, call it p° is available from the routine that computes the uncon-

strained spline using Wendelberger's (1981) algorithm (see Madison Academic
Computing Center, 1981).

The step by step algorithm is as follows:
(1) Compute M = [m. +g-1]
(2) Compute U,

(3) Compute T given by (3.2.1).

. -'!'. CltA it .‘Ef"l.ﬁ'.—v‘.'r‘ Y
Tt L '.'.'.'.‘.‘- St o . Chay

PRI YU P P P A AL T I P P Ui i WAE WSV OL I S D T S S B St VN -‘j

~
....................................

ARSI, |

(4) Obtain Q-R decompositionof 77 .

lQ (R
d”=w-

(5) Compute E? given by (3.2.1)

(6) Compute the Hessian

+[nAZ2 Owyn+i-u)
17 0 vi-m)) Ouu

v —
L4

—
)

—_——

First compute

then compute

E2= Q4E°Q2
(7) Compute Matrix deflning linear constraints:

QPCONS = [E$Q2: T2]
(8) Compute matrix defining linear term in the quadratic form G,(e,,d)

QPLIMA = [ESQq: TS

(9) Compute linear term in G,(e,,d)
QPLIVE = zf,[EfQZ 7]

(10) Construct regular grid of values of A around X, in logarithmic units, in
increments of 0.1 (see details at the end of the step by step algorithm).
(11) For each value of A do the following:

@ : (11.1) Solve quadratic programming problem to obtain e, and d * using the

set of active constraints for the solution for the previous value of A as

initial guess.

41

(11.2) Compute residual sum of squares
(11.3) Compute denominator of approximate GCVC.

(11.3.1) 1f the set of active constraints for current value of A is the same
as for previous value of A go to step (11.3.8), otherwise continue

to step (11.3.2).

(11.3.2) Compute QR decox'nposit.ion of T°(T)
[ou(1) [R(T
axn|m = {F5)

(11.3.3) Get matrix $ given by (3.4.22).

(11.3.4) Compute A given by (3.4.22)

(11.3.5) Solve the generalized eigenvalue problem (3.4.24) to obtain
P1 - - Pa+l-M- ‘

(11.3.68) Compute denominator of Vg,p(k) given by (3.4.25).

(11.4) Compute V5p(A) and save.

(11.5) 1t me(}\) is smaller than V&, (previous A) then e,=ejandd=d"

(11.8) Next A

(12) Compute E, and b
[

C.g = Qé;,
b

(13) Get coeflicients of the spline ¢ bandd

[-

: c Dg cq
- d d

4

q

.

i

.

—

RETRE TR SR AN SN A R AL RNE A APt At Sl St v S S ¢ AR I Janc Bttt it s thesa i arib A el Tt T S o el Sl i AT SO TR B

— Py y
n ﬂ | RN
P P PRI |

42

In step (10) of the algorithm, the number of values of A for which we solve the
quadratic programming problem and evaluate V,g,,(}\) is gi(ren as an input
parameter (see documentation of routine DSCOMP in appendix A2). The user

can specify the number of values to the left (n;) and to the right (n,) of A,. We

recommend that 7n; be greater than m, since in all our simulation studies the
"minimizer” of Vg,p(}\) was to the left of A,.

Most of our simulations were done with n; = 15 and n, = 10. One should be
careful in choosing n; and n, because if the total number of values of A con-
sidered is too large the computation of the spline could be very expensive. As a
rule of thumb, and based only on our simulation study, we would suggest consid-

ering between 15 to 20 values to the left and between 6 and 10 to the right.

The grid of values of A is constructed as follows (in units of logarithm of A):

1t X,, < the grid is constructed in equally spaced intervals of size 0.1, that
is, the grid consists of the following values: log(X,)=0.1ny, ...,

log (X,)—0.1,10g(X,).log(R,)+0.1, . . ., log(A,)+0.1n,.

It X, =e then we use the sample size n and the largest eigenvalue p' from
the unconstrained problem to determine an upper bound for the values of A that
will be considered. This upper bound, call it A’is computed as

A =10%n+k)p’
and the values of A considered are from largest to smallest: log(A®),
log(A")-2.0, log(7A")-3.0, log(A")~4.0, (log (*)—4.0)-0.1,
(log(A*)=4.0)-0.2, . . ., (log(A")—4.0)—0.1(n;-3).

In step (11.1) we use the routine QPFC to solve the quadratic programming

probiem.

o al o me s ma s ALYttt et alta atatlall o aleiaiala s e o ate aTdTa AT a e

0
.........

< T Ve T We WIWN WS PO et AT g Bl i B0 LAl bl iy Trrrr T
S A A A AL M P - -

43

In step (11.3.5) we use the EISPACK routines REDUC, TRED1 and TQLRAT (see
Boyle, Dongarra. Garbow and Moler, 1977), to solve the generalized eigenvalue

problem.

The routines DSCOMP and DSEVAL to compute and evaluate the spline are
written in Ratfor in a VAX 11/750 under UNIX operating system. Ratfor is a
preprocessor which translates this language into portable Fortran. Both, the

Ratfor routines and the Fortran routines are available from this author.

All the computations are done in double precision, and the routines are
self-docurnented. In appendix A2 we list the ratfor source for routines DSCOMP
and DSEVAL. Routine DSCOMP is the routine that the user shouid call to solve
problem (2.2.1). We also give the listing of all the routines used by DSCOMP and
DSEVAL, except the routines to solve the quadratic programming problem. Rou-
tine DSEVAL evaluates the spline computed by DSCOMP at a set of points in R%.
The calling sequence for DSCOMP and DSEVAL as well as explanation of the vari-
ables that appear in the calling sequenc-e are listed as comments in the source

code.

As ‘we mentioned before, the algorithm is written for the case where
Ly,...,.L, and N, ...,N, are evaluation functionals, for example,
Lif =f(w).i=1,... ,nand N;f = f(s;), j=1,...,k.. It is assumed that
the n+k points are different so that the generalized eigenvaiue problem in step
11.3.5 can be solved. In the near future we plan to incorpcrate the handling of
replicates in the algorithm. One possible strategy to handle replicates is the fol-

lowing: suppose that we have m; replicates at the point ¥;, and denote them as

2i(1) - - - » Zi(n,). then take the average
ny
2 %)
o= I=
ny
and let 02 = 1/n;. Then use (%;,y;),i=1,...,n as the data with relative

LA el e e s i gt B Jenih Al Sk St aidl sl Judh Malih Al St Jonlt Sast e

44

weights (012, N ,a,f). The grid of points sy, . . ., s, can always be chosen so
that s; #y;,1=1, ... ,n j=1,... k.
In the example with real data in section 4.2 the replicates were handled

using the strategy mentioned above.

>

CHAPTER 4

MONTE CARLO EXPERIMENTS AND EXAMPLES

ﬁ:_j 4.1 Comparison of linear, quadratic and spline discrimination
h In this section we compare the performance of the two parametric models

most commonly used with the spline model.

o Design of the simulation study
h Our study is restricted to continuous bivariate data and to discrimination
- between two populations 4; and A;. The prior probabilities are taken to be

equal and so are the sample sizes for the training samples.

As in chapter 2, let Y;, ..., Y, n=n,;+n, denote the combined sample
from the two populations and define
Z = 1 if Y;€4,
—10 if K;EAz'
Then, since for the simulation study the priors and the sample sizes n, and n,

are equal, we have that

—1| V=] = f1(y) - -
Pl(Z=1|Y=y] OIS p(y) =h(y). (4.1.1)

The three models that we will consider are the following:

L- LINEAR: The densities f, and f, in (4.1.1) are assumed to be bivariate

Normal with possibly different means and the same variance

covariance matrix . The means are estimated by the sample
means and T is estimated by the pooled sample variance covari-
ance matrix. This gives rise to linear discriminant analysis which

is frequently applied. See for example BMDP (1975).

— P
R L T I

i
Qe

.
g

I W VN PN DY WA IPN P WPW VU V. DTS U TP DL WA Wy WS S Sy Sy S S e i S o S o S T

e it S Sesn M) . R e 3 - O andi SN e s S S S N . DR Y o 3 0y 0 4 Col S APt Sl St ALl i A A 4
Pt Il B . A . . B . At St e . et

." ."q

TR,

Raili® adiin~ SN oMl Sl il e MENAMEI AL APEL AL ML Sl AU S SuaR e can e SR dse st Save e S Ahe 2 B mir e w0 e e
. et . S e T . . f . RS Rl Bl

46

Q- QUADRATIC: The densities f; and f, in (4.1.1) are assumed to be bivariate
Normals with possibly different mean vectors and variance
covariance matrices I, and £;. The means are estimated by the
sample means and I, and I, are estimated by the sample vari-

ance covariance matrices.

S- SPLINE: The posterior probability p(y) in (4.1.1) is estimated directly by

n
L3 (2 -p)2 + Malp)
T =y
subject to
O<p(s;)s 1, j=1,... k,

where J(p) is given by (2.2.8) with m =2 and the smoothing
parameter A is estimated by generalized cross-validation for con-

strained problems as described in section 2.3.

The spline was computed as follows: First the unconstrained problem was
solved and an estimate f;, was obtained using Wendelberger's (198i) algo-
rithm. A regular grid of 15X15 points was constructed in the range of the data
and the unconstrained spline was evaluated at these 225 points. If the con-

straints were violated at some of these 225 points, then the constrained problem

was solved using X from the unconstrained problem as initial value for A for the
constrained problem. The set of points s,,...,S; at which the constraints
were enforced consisted of the subset of of the 225 points at which either

Jar>0.9or f35<0.1. In all our simulations we restricted k to be less than 100.

It would have been desirable to compare the spline model with the Kernel
model of Habbema, Hermans and Van den Broek (1974), unfortunately we could

not get their software.

Ty T

47

In each simulation, training data were generated to estimate the posterior
probability (4.1.1) according to each of the three models. We fixed the sample
size at n; = ny = 70. Also 100 additional data points were generated from each

population to serve as test data.

The IMSL (1982) routines GGNSM and GGUBS were used to simulate the data
from four different types of distributions. Using the notation N(uy.u2,011.022)
for the uncorrelated bivariate normal, the four types of distributions are given

in Table 4.1.
Density contours for each type of distribution are given in Figure 4.1.1

For each type of distribution four simulations were done. In each simula-
tion, 140 training and 200 test observations were generated and the values of six
measures of performance were calculated for each model. These values were
averaged over the four simulations and their standard deviations were com-
puted. For distribution type three siX more simulations were done with training

samples of size S0 for each group and three simulations with training samples of

size 90.
TABLE 4.1.1 ,
LSaanple I S

1 N220.0.1,1§ N2§2,0,1,1)
2 N2(0,0.1,1 N2(5,0,186,18) ' |
3 N2(0,0,1,1) %—Nz(1.5.-2.5,1.1)+-é-wz(1.5,2.5.1.1) |
s | éﬁvz(o,s.nn N2(0,0,18.16) |
|+ Lva(0.-5.1.1) ! ;

o2 8T A s a 4. % 4 a_ala . a%a o 4 —1_-mm-a _mo.mamlaa mmom tal e el s s A Al -_LA-_",LAA-JAJ-L-I.-A_‘A_I‘J

Density Contours

L T BT g e 2ot 2 Ae g 2hgh Shane thte Zeng st b e dct At e il it Rttt Siat St ot B it e S T Ry e e W e e
e e Y. . A T Sn .t A . I SN ST ST ETLT T T e . K

Distribution Type 1 Disfribution Type 2

) 00 ®

s

Distribution Type 3 Distribution
Type 4

Fiqure 4.1.1

—ye————

Measures of Performance

We use misclassification rate as a criteria for measuring how well each of
the three models performs. The simplest way of estimating misclassification
rate is by the proportion of training samples that are misclassified However,
this leads to an optimistic result, and unless the training sample is perfectly
representative of the population, the classifier will reflect peculiarities of the
sample at hand that do not exist in the population. The error rate calculated by
reclassifying the design set is known as "apparent error rate”. The "true error
rate” of a classifier is the expected error rate of this classifier on future samples

from the same population.

One of the advantages of a simulation study 1s that we can generate a test
sample from the same distribution of the training sample and get a better esti-
mate of the true misclassification rate from the proportion of test elements that

were misclassified.

Several authors like Gilbert (1968), Lachenbrook and Mickey (1968), Marks
and Dunn (1974), Goldstain (1975), Van Ness and Simpson (1976). Aitchison,
Habbema and Kay (1977) and Remme, Habbema and Hermans (1980) have

evaluated various discriminant analysis modeis.

We choose to use the same measures of perforriance that Remme,
Habbema and Hermans (1980) used to compare their Kernel model with the
linear and quadratic models. All this performance measures are computed on
the test sample.

Two kands of allocation rules are considered. One is the “forced allocation
rule” {FAR) which consists of allocating the test element to the population with

hugher posterior probabllity.‘ that is, the test element ¢ is allocated to A4, if

ﬁ(t)>0.5 and to Ap otherwise Thus kind of rule does not take into account

differences in the posterior probabilities between for example 0.55 and 0.95.

MW LAY WG R S S W S AT SR T W S R G U S S S S Y R e PSSP WA AP . AP ADNE, Y. S NP UL PSP

50

This lead us to the consideration of a "doubt allocation rule” (DAR). This alloca-
tion rule is as follows: allocate test element ¢ to population 4; iff)(t) is greater
than some prespecified threshold value 6>0.5; allocate ¢ to 4, if p(t)<1—-6 and

allocate ¢ to a ""doubt category” if 1—4 Sp?(t) < 6. The threshold value used in

our simulations is §=0.9.

We have two groups of performance measures. The first group is used to
compare the models L, Q and S among themselves, that is, without using the

knowledge of the true posterior probabilities. These first group of measures are:
P1. Percentage of test elements allocated to population of origin using FAR.
P2: Percentage of test elements allocated to population of origin using DAR.

P3:. Percentage of test elements allocated to population from which they did

not originate using DAR.

The following three measures compare each estimate of the posterior pro-
bability under the three models with the true posterior probability. These
measures are more adequate for evaluating the estimation of the posterior pro-

bability. These measures are:

P4: Percentage of test elements allocated to the same population with both the

true and the estimated posterior probability using (FAR).

PS: Percentage of test elements for which there is "strong agreement” between

true and estimated posterior probability using DAR (see bellow).

P6: Percentage of test elements for which there is "strong disagreement”
between the true and estimated posterior probabilities using DAR (see bel-

low).
Measures P5 and P8 are computed as follows. For each test element p(¢)

and ﬁ(t) were computed and the test element was allocated to one of the 9

ISP TP LI WO WP U G WA W S S Pt S S Y | P G A AU SR S S

R (Y

AR ot S Seae Jave 2ae |

L ARCRN g g Bt et St i Tt S PR it e it Yt T r—— P — T
..... SN - R Coe

51

categories in table 4.1.2 according to the values of p(¢) and p(£). Then, P5 is
the computed as the percentage of test elements that fall in classes ¢ {;, € 22 and

Cas- P8 is the percentage of test elements that fall in classes cay and ¢ 3.

TABLE 4.1.2
%a
P

[0001] (0109 [091.0]

[00.01] cll Ci2 Ci3
P (0.1.0.9) C2 C22 Ca3
(0.9.1.0] Cay Cox Ca3

Results

For each of the four types of distributions the average values of P1, P2, P3,
P4, P5 and P6 over the four simulations are given in tables 4.1.3 through 4.1.6.

The column labeled U.S. in these tables corresponds to the unconstrained spline.

This information is surnmarized in figures 4.1.2 through 4.8.7.

—

TABLE 4.1.3 ’

Distribution Type ! 4

Perf. ! _ Stan. Stan. | ; Stan. . Stan. :
| Measure | I Dev. S | Dev. | US. | Dev

Pl | 8250 | 258 £ 81.25 | 3.40 ' 8150 255

P2 | 6513 1.80 | 62.25| 3.01 | 61.00 | 274 |

P3 | 413 1.25 ' 350 20¢ . 275, 119

P4 97.75 | 119 | 96.88 | 075 | 9575 278 | 9625 & 222

P5 90.63 | 263 | 88.50 | 574 | 88.75 | 779 | 92.25 338

lpe | 000! 000 . 000! 000 i 000/ 0Q0 ' 0Q0' 0.00°

TABLE 4.1.4

Distribution Type 2

Perf. Stan. T Stan Stan. Stan.
| Measure L Dev. Q . Dev S Dev. | US ! Dev. |
P1 86.00 | 1.08 | 90.13 | 2.17 | 9238 1.03 | 92.38| 1.03
P2 4363 | 545 | 7938 | 278 | 70.00 | 9.60 | 68.25 | 8.23
P3 075 | 065 383 | 263 083 075 050 0.71
P4 8883 | 144 | 9725 1.19 | 9550 1.08 | 9550 | 0.82
P5 41.63 | 10.36 | 9588 | 0.48 | 76.75 | 10.90 | 75.38 | 11.12
_P§ 1751 0961 0501 0.71 1.50 | 0.91 1501 091

TABLE 4.1.5
Distribution Type 3

Perf. Stan. Stan. | i Stan. | . Stan.

| Measure L Dev Q@ | Dev. | S | Dev l US. | Dev. |

5 P1 69.25 | 2.40 | 84.50 | 2.12 | 86.25 ; 3.40 | B6. ool 2.61

- P2 368.38 | 248 | 52.38 | 3.17 | 68.13 | 3.79 i 64.5 | 6.18

5 P3 038 | 048 | 050 0.41 : 163 111 | 1.13| 085

. P4 7183 | 2.68 | 90.88 | 1.80 | 95.13 | 1.49 | 92.13 | B.i8

. P5 41.863 | 3.57 | 70.38 | 3.77 ' 86.38 | 3.97 | 73.50 | 19.67

g P§ 000 000 | 000 000 | 000! 0gg | 025 olsoj
X

l TABLE 4.1.6 |

Distribution Type 4

Pert. Stan. Stan.] Stan. | Stan.

| Measure L Dev. Q | Dev. | S Dev, | US | Dev. |

P1 53.25 | 5.01 | 88.13 ' 2.39 ' 92.13 225 , 9363 131

P2 28.13 | 5.12 | 60.25 507 | 80.63 | 1.60 | 81 25 | 1.50 |

P3 0.00 | 0.00 | 050 | 058 | 2.13 | 1.49 1.08 |

P4 51.50 | 4.80 | 91.38 | 2.63 | 94.38 | 0.85 9563 , 1.18

PS5 3525 | 2.50 | 55.63 | 6.57 | 73.25 | 3.93 ' 77.25 | 466

P& 0.00] 000 | 000 000 | 025! 050 | 000 00Q0

It is clear from this flgures that the linear mode! pertorms well only with
ll: . samples from distribution type 1, that is, when both samples come from bivari-
! ate normals with the same variance covariance matrix. Even in this case the
performance of the quadratic or the spline models is almost as good as the per-

formance of the linear model. When the samples are generated from two bivari-

ate normals with different variance covariance matrices, the quadratic model

53

o o
u: E
- e L
. ()

Q L

®
- @
' o
v [] B L
_:: c i
. ©
o L

Q It L Il I 1 1
. n
” o 1 2 3 4 s
" Distribution Typa

- Figure 4.1.2: Percentage of tast alamants classifiaed
corractly using Forcad Allocaticen Rula.
S--- Const. Splinme, Q- - Quadratic. L... Linear.

o !

. =]

- =

a o R

- ©

Q L

- ~

- a L

.]

. N

. Q.

. Q L

n
o o L o
- b g
L.

. a |
o m L
.- 8 L L L A L 1
% 0 1 2 3 4 5
f; Distribution Typa
- Figure 4.1.3. Parcaentaga of test alamants classifiad
" correctly using Ooubt Allocation Rula.

S--- Const. Spline, O@- - Quadrotic, L... Limear.

cevvewTewy SN e

54
n
-« -
\)
\
m } \
\
\
0
a A
. ~ b \
)
\
\
- r- ¢ \\
.."‘Pf'-'--a
Q L . 1 - L
Q 1 2 3 4 S
Otstribution Type
Figure 4.1.4. Percantage of tast alements classifiad
incorrectly using Doubt Allocation Rula.
S=-~ Canst. Spline, 0- -~ Quadratic, L... Linear.
Q
2
&:“““ggx;~\ 5 —
Q . T gem---- G
a B | R
Q -
@
-
e
a L L
o~
s L
©
. Q L 1 L ‘L
"
Q 1 2 3 4 S

= Distribution Typa
Figure 4.1.5. Percantage of taeast elamants classifiad to
samae catagory with truae ond aestimated P.P. (F.A.R.),
§-=-~ Canst. Spline. O~ - Quadratic, L... Linear.

DI PR P UL UL R, S W O W A D T S DAL UL S D LI . WP UL P U S UL SAV S

40 S0 60
L]
o

-l

30

0 1 2 3 4 S
Distribution Typae
Figure 4. 1.8. Paercaentage of tast alaemaents classified to
sama catagory with trua and estimatad P.P. (0.A.R.).
§S-=- Conat. Splina, Q- - Quadratic, L... Linaar.

P6

0.0
=g

0 1 2 3 4 S

Distribution Type
Figure 4.1.7. Percentaga of strong disagreaemant batwaan
true and estimataed Postaerior Probaobility (0.A.R.)
§S--~ Comst. Spline, Q- = Quadratic. L... Linear,

Ly

~ T

Rt T GV L S R N R T e ey

56

performed better than the spline as expected, however the spline was very
closed to the quadratic. In samples from distributions type 3 and 4 the spline
was consistently better than the quadratic. The difference between the spline

and the quadratic was larger when the doubt allocation rule was used.

The spline did particularly well in measures P4, PS5 and P8 which give a

better idea of how well the estimate approximates the true function.

From table 4.1.3 through 4.1.6 we can also see that in terms of classification
there is not too much difference between the unconstrained and the constrained
spline, being the performance of the constrained spline slightly better in most

cases.

In the case of distribution type 3, six more samples were generated to see
the effect of the sample size on the spline estimate. The first three simulations
were done with n; = ny = 25 and the last three with n; = ny = 45. The results
of these simulations together with the resuits for n; = np; = 70 are given in
tables 4.1.7 and 4.1.8 and summarized in figures 4.1.8 through 4.1.13. In all the
measures the spline performed better than the quadratic and linear models for

the three different sample sizes.

In figures 4.1.14 to 4.1.33 we present, for one of the simulations for each

type of distribution, plots of the approximate generalized cross-validation func-

TABLE 4.1.7
Distribution Type 3, Sample Size : 50
Perf. Stan. Stan. Stan | Stan.
| Measure | L Dev Q | Dev S ‘_US |_Dev, |
P1 67.67 | 3.18 | 82.83 | 1.26 | B5.50 2 13 | 86.33 | 0.76
P2 3550 | 4.92 | 4983 | 1.26 | 70.83 | 10.79 | 88.50 | 11.76
P3 1.87 | 2.47 1.87 | 1.61 350 | 2781 317, 225
Pa 89.17 | 503 | 8767 | 0.76 | 91.00 | 2.18 | 92.17 | 3.82
P5 4450 | 1.73 | 6950 | 3.50 | 76.17 | 3.75 ,6 7967 | 293,
P8 0171 029 | 000, 000 | 000! 000 000! 000

Ll Y i o

L W e e e et e e, e L R T W el el

TABLE 4.1.8
Distribution Type 3, Sample Size : 90
Pert. Stan. Stan. Stan Stan.
| Measure L Dev. | O | Dev, S Dev, | US. | Dev, |
Pi 71.00 | 2.29 | 8487 | 284 | 85.00 | 1.50 | B85.50 | 0.50
P2 3683 | 238 | 5233 | 236 | $9.17 | 569 | 56.33 | 8.25
P3 033 | 0.29 1.17 | 029 1.17 | 0.29 0.83 | 0.29
P4 71687 | 1.28 | 93.00 | 0.50 | 93.33 | 289 | 94.17 | 2.7
P5 4550 | 3.77 | 7T3.67 | 407 | 7850 | 6.24 | 7850 | 7.28
) ud -] 000 | 000 0.00 | Q00 0.00 | 0.00 000 | 0.00

tion. contour plot of spline and quadratic estimates and the true posterior pro-
bability and surface plots for the true posterior probability and its spline esti-
mate. In the case of distribution types 3 and 4 we also present contour plots of
the quadratic estimate together with the true function.

In the plots of the generalized cross-validation function we use two different
symbols: "+" and "o" to indicate when the set of active constraints changes. If
for two consecutive values of A the symbol changes. this indicates that the set of
active constraints is different for those two values of A.

In the contour plots we use a solid line for the contours of the constrained
spline, dashed line (—=) for the contours of the true posterior probability and a
dash-dot line (-.-) for the contours of the quadratic estimate. The data is
presented in the same plot. A dark triangle in the contour plot indicates the
viewpoint for the surface plot.

- . “a et -.“. : i B - e e)
Al S AN laalaaataa St a2 e x

----- LSt e Al A S he ShAatiiieiae cha Jhdi Soan Aren Sae e Jve

o V-
LS = PREES

s o

Pl

P2

70 75 a0 8s 90

65

35 40 45 S0 S5 60 65 70 75

58

Cistribution Type 3

—5
s;
- -“_;:ﬁr' 8
a---"
i L
...... L
e
L L L L 1
40 S0 8o 100 120 140 160

Sample Size
Figure 4.1.8: Parcentaga of test elamants classifiad
correctly using Forced Allocation Rula.
§==- Const. Spline, 0= - Quadratic, L... Linaear.

Distribution Typa 3

40 60 eg 100 120 140 160
Sample Size
Figure 4.1.8. Percentage of taest elaments classifiad
correctly using Ooubt Alloccation Rula.
S--- Const. Spline. Q- - Quadratic, L... Liraar,

PR M A N S S AT MNP 2 R -~ — o -J

it g LA vl ad Ty .r TSy Y s T T
S AN At e ite St Yake "Rk b st Al i AR OO AL AL R A RN S .

P3

P4

Distribution Typa 3

n

™
o
m
woy
o
a
o

n

. -

o
0

. P

c
Q. I8 1 . 1 4 1
o

40 80 80 100 o120 . 140 160

Sampla Siza
Figure 4.1.180. Parcentage of tast elemants classifiad
incorractly using Ooubt Allocation Rula.
S--- Const. Spline, 8- - Qugdratic., L... Linear.

Oistributicon Type 3

Q
Q
n L -
m -
a | -7 TTTTmeee- n’!
-] _—"
&’
I
@
Q =
@
m -
~
O Leov s e e e e e L
[L
n L L I L 1 L
o
40 60 80 100 120 140 160

Sampla Siza

Figure 4.1.11. Percentagae of tast alemants classifiad to

same catagory with trua and estimaotad P.P. (F.A.R.D.
S--- Const. Splime., Q- - Quadratic, L... Linaar.

59

PS

P6

Oistribution Typa 3

Q
(<]
Qg L
@

s—

___—&-5 ——————

R oe--"7" Tt
Q -
[)
aQ L
n

oo Lo
Q ! i L L [LL
-

40 80 80 100 120 140 160

Sampla Sizae
Figurae 4.1.12. Parcentage of tast alamaents classifiad to
same category with true and aestimatad P.P. (0.A.R.).
S=== Const. Splire, G- - Quadratic, L... Linear.

Oistribution Typae 3

N

. B

Q

Q

D I

o

n h.

a

Q

c

n

e L

o

o .

d b n - - E'—'L 1 B
40 60 80 100 120 140 180

Sampla Sizae
Figure 4.1.13. Percentage of strong disagreaemant batwaan
true and estimatad Postarior Probability (0.A.R.)
S--- Const. Splime. G- - Quadratic, L... Linaar,

60

Ty .'..' LA A e i v gt —— —— Wﬁ'ﬁwﬁ"ff""i T T e T
i
:;; 61
= Q
a3 Q
2]
{ ~ o
o .
X o
- S F
. 4 * o
. 3 o
L J
LN
S~) °
3 ‘a .
> L)
g g °
. ™ - Q .
M o~
- L . o
. L o
o 0 ®0eg
‘- [=] i 1 L [l 1
.. N
. N
: -4.0 -3.5 -3.0 -2.5 -2.0 -1.8 -1.0
log (lambda)
» Figure 4.1.14: Approximate GCVC, Distribution
- type 1.
' ™ yy
B ~N P
- - °
- ™~ *
*
¥ = b .
N L
|
*»
(4] g 1 Il L [y 2 1
) |
g -3 -2 -1 g 1 2 3 4 5
A X1
. Figure 4.1.15: Constrained spline (—), true
. P.P. (- =) and data (+: sample 1, o: sample 2).

!,:-..‘___r___ — —— T T vy T T T Ll S S A ARSI G "’-""'-"".‘1
5 .
62
LT TR TR oy
Figure 4.1.16: True Posterior Prob.,
distribution type 1.

Figure 4.1.17: Constrained spline,
distribution tyne 1.

PRI TR VU WL P S S DA A S

ata % at s mtasr.nca.d

VCa (l ambda)

X2

1500 1600 1700 1800 1800 2000 2100

-10

R T————y — - Py

63
- O
Q
»
[~ P
o ©
»
-
o e
»
-
°.° e 8
e g ®a
i 1 L L)
-3.8 -3.0 -2.5 1.S -1.0 -0. 5

-2.0 -
log (lambda)
Figure 4.1.18: Approximate GCVC, distribution
type 2.

-10 -5 o} S 10 15 20
X1
Figure 4.1.19: Constrained spline (—), true
P, 2. (- =) and data (+: samnle 1, o: samnle 2).

Figure 4.1.20: True vosterior Prob.
distribution tyve 2.

Figure 4.1.21: Constrained soline
distribution tyve 2.

E
3
3

L._:..J_.,- tmtmdalom’a’n a'a‘aa & 2’ a »ia’'aa’e a’a . a’m’alala. e’ a 2

64

Figure 4.1.23: Constrained svline (—), true

P. P.(- =) and data (+:

Py) 2 [NV DL GNP ULy LT O Uil G S S

samvle 1,

N 8 i L]
N -
N ~N
. -
. -~ o
N 3 og |
I. ~ .
a3
a ol L
i o
-]
> g [-
'3 i o.
o.e .°o
-3 ® *
°.°.°.°
[-]
Q 1 s s 1 i
s
-4.0 -3. 5 -3.0 -2.5 -2.0 -1.8 -1.0
log(lambda)
Figure 4.1.22: Approximate GCVC, distribution
typve 3.
(-]
-« -
~N b
2 o F
N -
)
' -
'
(-] 1 1 - 1 1 L 1
1
-3 -2 -1 Q 1 2 3 4
X1

0: sample 2).

65

[-]
- -3
~N -

X2
0
T

~ -
[}
' >
!
[-] 3 2 Il 2 I L 1
]

-3 -2 -1 0 1 2 3 4

X1
Figqure 4.1.24: Constrained spline (—) and
true (- =).

Q
- -

" - -
- ™ - -
- - - - -

X2
0
L J
4
N
Y
'
LI}
\
\
\
\
L)
\
LI
v\
2

o - - - am— "
| - . - - ¢
----- 52_,‘ - ‘/
"'/I—’ ./'/
T - :”/
? dem A I 1 L. I |
-3 -2 -1 o 1 2 3 4

X1
Figure 4.1.25: Quadratic estimate (---) and
true (- -).

e - T ~ .. :
PRI PV W VA W VA0 W R TP T D I W D TP P Uk YU A Y

66

Bn B B & B

Figure 4.1.26: True posterior Prob.
distribution type 3.

O\

AT
A TS NS
0

\\\\“\‘\“

“‘ "
S
N — \“‘}\‘
——w, —_—awa
\\\ —w,

“

A

S

W
L)
27

S
&
L2

=

13N

N

NN
s,

v,

?‘\\‘\‘

s
)
&,

=

\
D)
2755

-

S —
N
.

AL

-,
L 7

‘\\‘\\\\
PIPETSSS
S3SSSE

L7

Figure 4.1.27: Constrained spline ,
distribution tyme 3.

VCa () ambda)

X2

1250 1350

1150

-6 -4 -2 O

=3 ® -]
L o -
. o
B] c
L 4
o »

3 - f-]

'] 'l ° ° ol. 8 hd ° .l 1

-4.0 -3.5 -3.0 -2.8 = =2.0 -1.8 -1.0
log(lambda))
Figure 4.1.28: Aprnroximate GCVC, distribution
tyve 4.

1 1 N

-8 -4 -2 o] 2 4] 8
X1

Figure 4.1.29: Constrained s»line (—), true

P.P.(- =) and data (+: sample 1, o: sample 2).

68

) ¥4

-6 -4 -2

-6 -4 -2

X1

Figure 4.1.30: Constrained spline (—) and

true (-~ =-).

NN /4

%
A
X

e
Lhgad

. N\ Txgss\
IR

A

-4

-2 o 2 4

X1

Figure 4.1.31: Quadratic estimate (---) and

true (- =).

Sssoea. =
Sw, - -

i \..
W

Z A

i
||‘{

it

547

e

— e,

i

L

L s

——

B
B

e —
s

Figure 4.1.32: True posterior Prob.,
distribution tyve 4.

NN
RN
\ \\\ NS

LR

Figure 4.1.33: Constrained spline,
distribution type 4.

70

Y

DASOA LS N Maa S e St eyt Syagea i Gl Suft i st S/t A S A S I e S B s T A e g MM A L

~ -,

. o

A

4.2 Other simulation results

In this section we present two examples that were generated from univari-
ate distributions and we give some computation times for the simulations of sec-

tion 4.1.

In our first univariate example, sample 1 was generated from a Normal dis-
tribution with mean zero and variance one, and sample 2 from a Normal distri-
bution with mean 1.5 and variance 1. In figures 4.2.1 and 4.2.2 we present the
unconstrained and constrained spline estimates, together with the quadratic

estimate, true posterior probability and data.

In the second univariate example, sample 1 was generated from
0.3N(0,0.25)+0.7N(0,18), and sample 2 from a N(0,0.25). The corresponding
plots are given in figures 4.2.3 and 4.2.4.

In fAgures 4.2.2, 4.2.3, 4.2.5, and 4.2.8 it is clear that for classification pur-
poses there is basically no difference between the unconstrained and the con-
strained splines, but certainly, we would not want to show a client a plot of an
estimated posterior probability that can take values greater than one or sraaller

than zero.

The time of computation of the spline depends on the sample size
n=n,;+ny the number of constraints &, the number of values of A to be con-
sidered for evaluation of the generalized cross-validation function and the
number of times that the active set of constraints changes from one value of A

to the next.

In table 4.2.1 we present the average C.P.U time used by the routine
DSCOMP to compute the spline in the simulations of section 4.1. In table 4.2.1
the colurnn labeled "ne” contains the average number of constraints enforced in

the simulations, the column labeled "%Time in G.E.P." contains the percentage

~

F U WA DV TP PG 0 U N S S - N, WP P R S Py Wi S PP SRR TV

-~

72
1.2

1 « O Hamlulef - -+
.a \
.6

Y
7
/

4

P(2=1

2 \
.o N -

-1-5 00 1-5 3-0
Y

Figure 4.2.1: Unconstrained spline (- - =),
quadratic (== —), true (=) and data.

nl=n2=40

1.2

1 <0 Huesiue] " +

X
EON\

9
-y o‘
1]
s \
[-A 2 \
.0 =
=205 .0 1.5 3.0

Y

Figure 4.2.2: Constrained spline (- - =),
quadratic (=— —~), true (—) and data.

n1=n2=40

DR WU W PRSI VPO Aandhanibas din d B 2 S PP A Yy

73

1.2
¥ 1.0

i _ .8

Y

o4

P (2=)

-80 -‘40 0- 4' 80

Figure 4.2.3: Unconstrained spline (- - -),
quadratic (= —), true (-—=) and data.
nl=n2=45.

1.2
1.0

4

P(2=1 | ¥Y)

-2
-0

-.-280 -40 0- 4- 80‘

Y

Figure 4.2.4: Constrained spline (- - -},
quadratic (=~ =--), true (-——) and data.

nl=n2=45.

et LR

.
b
- - .. R
LIPS S S G S, P T P DU ST SRR TR SVN L S A G

(e e i AR i e R I s e o —Tw W T—-‘Wﬁ-.:rw—,_'_“r‘_:t??q

R e it Bt e fars St g e Rt R AT 4R S B I - A I SRS Je - e g ———
|3 Y ~ PR LT S .

74

of time spent in the generalized eigenvalue problem and the column labeled
"%Time in Q.P.” contains the percentage of time spent in the solution of the qua-

dratic programming problem. .

TABLE 4.2.1
Dist. CPU time | ZTime in | %Time in
| Type n pe | (minutes) | G E P. QP
1 140 98 252.03 43.5 40.2
2 140 | 94 230.45 43.1 46.0
3 50 78 54.15 21.8 82.9
3 90 65 83.33 32.3 58.7
3 140 67 184.24 54.1 34.9
4 140 95 [293.11 47.5 417

From this table we can see that on the average 477% of the computation time
is spent on the solution to the generalized eigenvalue problem and 40% in the
solution of the quadratic programming problem except in the small sample
cases (n=50, 90). In the n =50 case 62.9% of the CPU time was spent in’the
solution of the quadratic programming probiem whilé only 21.67 of the time was
spent in the generalized eigenvalue problem. In the n =90 case, 56.7% of the
time was spent in the quadratic programming problem and 32.37% in the general-
ized eigenvalue problern. The reason for this is that the quadratic programming
routine works better when the number of constraints in the active set is small
compared with the number of observations. The algorithm to solve the general-
ized eigenvalue problem is an N3 algorithm, where n—MsN=<n+k —~M, there-
fore it would be very expensive to use the routine DSCOMP to compute the con-
strained spline for very large n. In our simulation study even with . =50 we got
pretty good resuits and in distributions type 3 and 4 the spline was consistently
better than the quadratic model for n =50, 80 and 140, however we do not
recommend its use for very smail n. In chapter 6 we will discuss a possible

alternative for large sample sizes.

WL SRV S R TR - PETO Ry. W I W S

Ml 4 S B wn s 2

D s ArReasieil s ves SRal St -Th ey L Jaui M b S Suni Sl St o . s —_—., r————y LA AR R SR et S B At aaa Sl aagn
Lt - - L R - . B A P -

75

4.3 An example

Here we apply our method of estimating the posterior probabilities to
some results of a psychological test of a group of 25 normal persous aud 25
psychotics. We obtained this set of data from Smith (1947). The psychotics will
be population A, and the normals 4. The two covariates are an unweighted
total score or “size” obtained by Penrose's method {(Penrose 1945) and a
weighted score related to shape.

In figure 4.3.2 we present the data and the contour levels for the spline
estimate (solid lines) of the probability that a given subject belongs to the
psychotic group given its particular measurements of size and shape. From this
figure it appears that the spline estimate gives a more accurate representation
of the data than _t.b.e quadratic estimate.

In figure 4.3.3 we present a view of the surface of the spline estimate
from the point indicated by a dark triangle in the contour plot 4.3.2. The

approximate generalized cross-validation function is given in figure 4.3.1.

S . e O]
P SIS TS S V. TSI T SO A T GO S D, PP O P P Y Y B e A P

76
Q
a
N
(-]
™~ 2 *
N
Q
~
§ 87T o
y o °
o Q
c 8T .
[- 9 -]
LT . °
> N o °
» L J
s | o °
o o
N °.) °.° °°.°.
o * ®
& kb L L » 9 N . N
o~
-2.8 -2.0 -1.5 -1.0 -0. 5 g.o 0.S 1.0
log (lambda)
Figure 4.3.1: Approximate GCVC.
n
N
S ™
™ 2 o Q
[N
<
&
° o
-]
o
3 " o
L) -] a A
! o 1 1 1 1 1)
] 10 20 ao 40 sgo 60 70

L SIZE
- Figure 4.3.2: Constrained spline (—) and
y quadratic (- -}. +: Psychotics, o: Normals.

- . ~ - . s - . - N N N - . N B N N
P A 0y e B a . e e " N h > o - 5 o o - ‘ = : . ' y "
ke - a - T P

77

M ThAn e anse e b A sute anh Bean b Jmen 4 b o

3.3

Figure 4.

constrained spline

S Y A

78

CHAPTER 5

PENALIZED LIKELIHOOD ESTIMATION

5.1 Motivation

In this chapter we extend the result given by Silverman (1978) to the d-

dimensional case.

As in chapter 2 let Yy, ..., ¥, n=n;+n, denote the combined samples

from the two populations and define

_|1if Y;e4,
Z =10t Y,e4, (5.1.1)
Let g, and g5 be the prior probabilities. Then, if we obtain a new observation Y

and we want to classify it as comming from A; or Az the Neyman-Pearson

lemma tells us that the classmcation rule should be based in the ratio

= g1/
qa2f2

Besides its application in the classification problem, the estimation of den-

T (5.1.2)

sity ratios lays open the possibility of constructing empirical versions of any
other procedure based on likelihood ratios.

We now derive the likelihood of 7 conditional on the observed values
2y, . ..,2qandyy, ..., Yn-

Note that

‘hf1(yi) - "'(yi)
1S ((w)+gafa(y) 14r(y)’

P(Z1%) = (5.1.3)

and similarly:

’ e o Bt IS Ant e auimw) . et
P A B T PR MG
P el [S Satatotat

R T R T W N S e e s
e, L . .

1
i i =Yi) T+ (yy) - (5.1.4)
So that if 2,, . .. ,2, are the observed values of Z,, .. ., Z,. the condi-

tional likelihood for r is given by

n ["('yi) z‘
= Tl] 5.1.5
Lir) il:Il 147 (y;) (5:19)
and hence, the log-likelihood is given by

logL(r) = if’,l[zilogr (yi)—log[1+r(yi)]}. (5.1.8)

A maximum likelihood approach to estimate r would be to maximize (5.1.8).
The fact that L () is undefined for negative values of 7(y;), while, for any © such
that 2; is zero, the likelihood increases as 7(y;) tends to zero can lead to com-
putational difficulties if the estimation of 7 is considered directly. To avoid this,
consider the estimation of the logarithm of 7 and let

g =logr. (5.1.7)
then the conditional likelihood L ° of g becomes

x
n exp[y(yi)]]
L) = il:II 1+explg (v;)]
and the log-likelihood is

logL®(g) = f} ziy(yi)-log[Hezp[g(yi)]}]- (5.1.8)

i=]

If we wanted to maximize (5.1.8), we could take

o ifz,-=1

g(w) = e ifz =0

To avoid this undesirable solution we should use the underlying assumption that

g is, in some sense, nc too rough. Therefore we should penalize the likelihood

according to the roughnessof g.

. W NIRRT U - . ey e TR TS T

nde M A -t

80

This device of penalizing for roughness has been used in different contexts
by Reinsch (1967), Good and Gaskins (1971) and other subsequent authors.

We will assume that the function g is in the reproducing kernel Hilbert
space H(m ,d) defined in section 2.2. The "penalized likelihood" estimate of g is
- the function that minimizes

Ix(g) = —logL"(g)+AJm(g). (5.1.9)
where Jp, is given by (2.2.8). In the particular case where m=2 and d=1, [,(g)
becomes

fl {log(1+ezz>[g(yi)])-zig(y,-)] +2f(g>

i=]
which is the expression that Silverman (1978) minimizes to estimate g.

5.2 Existence and uniqueness of an estimator

In this section we discuss the existence and uniqueness of the minimizer of
I\(g) in H(m ,d), and we characterize it as a Laplacian Smoothing Spline. The

optimization theoretic results needed here are given in appendix Ail.

As in chapter 2, let Ho(m ,d) be the space of polynomials of degree less
than m defined on R%, and let H,(m.,d) be the orthogonal complement cf
Ho(m ,d) in H{(m ,d).

First we establish the uniqueness of a minimizer of /,(g) in the following

5.2.1 Lemma

The minimizer gy in H(m ,d) of /5(g). if it exists is unique.

81

Proof

Let f € H(m ,d) and define

IMAENNCEAR AR
v o terle t T
P T TSP et e e

¢(t):=I\(g +if)
then, by proposition Al.4, we have that the ;% Gateaux variation of /,(g) in the

direction (f, . .., f)is given by

3 J
D@ 1) = SO im0
Note that J,(g) = ||Pg|l§ where P is a projection operator into the space

Hy(m .d), then, we compute the first and second Gateaux variations as follows:
d - d|& |]
2O == _Elzi[g(yi)ﬂf (3;)] = log(1+explg (v)+¢f (:)])

+ 9—{A<g +f g +tf >]
d

=& 0y J (w)explg (y:)+Lf (y:)]
—‘_glz,f(y,) 1+exp (g (y;)+tf (y:)]

+2A<S gD + 2NE<S . f >

And differentiating with respect to { again we obtain:

d? _ & f(yi)explg (y;)+tf (%))
;;?((t) - :él 1+ezp (g (y;)+tf (v)]

Finally, evaluating at t=0 we get:

+ 2A<f I >

n)2 .
R@y.n=EL (f’;l::[";[éf’)’i” + 20IPS |2

>0V% f € Hm.d),f #0.

Then, by proposition A1.§], is strictly convex, and hence, if it has a minimum, it

is unique.

. e . o n R R

P I S P R P Y Y i S U N AP I W S X e e e A

.....................

- Sl i S it o T ra— T —" e 1—1

82

We now establish sufficient and necessary conditions for the existence of a

minimizer of [, in the space Ho(m ,d).

5.22 Lemma
Let Ho(m ,d) be the space of polynomials of degree less than . dufined in

R%. The minimizer of /, exists and is unique if and cnly if ther> is no level curve

of an element of Ho(m ,d) that completely separates the samples.

Proof

Let g€ Ho(m). then, since J,(g) = 0.

I\(g) = é:l[log(ﬁezp [g (w:)1=2:9 (yi))-

Now, there exists a level curve of a polynomial that completely separates

the samples if and only if there exists g "€ Ho(™n ,d) such that

. - >0 ify'EAl ,
9 (w)= {<0 if y; €Az (5.2.1)

We first show the if part. Suppose that there is no g € Ho(m ,d) satistying (5.2.1),

then for all g € Ho(m ,d) there exists at least one y;, j=1, ..., 7 such that

_ J<0 ify;eaq,
9(%')*[>o if ;€47

Now,

I\(g) = 15::1 log (1+exp (9 (¥:)]~2:9 (yi)]

= log(1+exp (g (y:)]-2;g (y;)).
So, if yj€4; g(y;)<0 = Ix(g)s= as |glly>> and it y;€4

9(y;)>0 = Ix(g)= as ||g|ly,>= Therefore, by proposition Al.7 there exists

§€H°(m,d) that minimizes /,(g) in Ho(m .d) and by Lemma 5.2.1 such§ is

unique.

ol wE et e 2 TA s e la A Yata anateroa m '.:.J.,‘-J

rw*. A PRl Al S Nt Y SN A I A T~ b a i s, T et] Rt A Y N R Sy At AU A et A At b St Tt ArB et
P e e SR TN ATST AT AT NG X K . ; -

; We now show the only if part: assume that there is a unique §€Ho(m,d) that

minimizes /, and suppose that there exists g' that completely separates the

samples, that is, g° satisfles (5.2.1). Since 5 minimizes I, § maximizes

exp[-I(g)]

=sexp[-I\(g)] = ezp[~I\g)] ¥ g €Holm. d).

_ _ explg (v:)] exp[-g (v:)]
ezp[~i\(g)] = .,Il L+explg (u:)] ,‘I-.Io 1+exp[-g (¥)]
and looking at each term in the above expression we see that

exp[r]/ (1+exp[r]) goes trom O to é—when T goes from — to 0 and it goes to

1 when 7 goes from 0 to = and necessarily ezp[~/,(g)] < 1. Now, for arbitrary
¥>0 consider

' ezp [9g *(v:)] exp[—9g *(y:)]
exp(-/\(¥g)] = : ;
A qI:Il 1+ezp [8g “(v:)] =0 1 +exp[Bg "(1)]
Since g * satisfles (5.2.1) both products tend to 1 as ¥, so that for ¥

sufficiently large we have

ezp[~I\(Bg)] > ezp[-I\(9)].
which contradicts the assumption that g is the unique minimizer of Ag).
n

‘In Theorems 5.2.1 and 5.2.2 below, we establish conditions for existence and
uniqueness of the minimizer of /,(g) in H(m ,d) and characterize the solution

as a Laplacian smoothing spline.

. - - o
.........

(NPT SRS S DU N S S T S SR

A " ,"».":‘. ".. TRV e

C i e - e ot ot b Sl S S ., v BTN Shdh S

84
5.2.1 Theorem

The minimizer gy of /5(g) in H(m ,d) exists and is unique provided that
there is no level curve of a polynomial of degree less than m that completely
separates the samples.

Proof

Uniqueness follows from lemma 5.2.1. By lemma 5.2.2 we only need to show
that if the minimizer of I)\(g) exists in Ho(mm,d) then the minimizer exists in
H(m .d).

Any function ge€H(m.,d) can be written as g =go+g; where
go€Ho(m .d) and g€ H(m ,d). Now write] as

Ig) = ‘glog{ﬂ-ezw [g0(wi)+9 1(%-)]}

- g:lzi[go(yi)"'gl(yi)] + Allg4li?

= Algyl%,

so that if ||g]|+ => I\(g)- and by proposition A1.7 this implies that /) has

a minimum so it will suffice to show that /, attains a minimum in

H® = Hy(m ,d)®H;(m d),
where

Hi(m.,d) = {_qleHl(m,d) : lg /<K, for some K, > 0).

Let g€ H°, tor all y €R? we have

191(v)! = Kllg,ll = Ks. (5.2.2)
Again write g=go+g;. where now g, € H{(m.d), then, adding and sub-

n
tracting Y log (1+ezp[go(yi)]) from I, and using (5.2.2) we get:
i=

DAV S VL S S R P A . S P Y

85

o | . " I | | .
I(g)= Ylo [Heﬁgi;(?;l(tz;%yt)]} + I\(go) K3+ K3 (5.2.3)

Looking at an individual term in the summation in (5.2.3) note that

im)

1+exp(go(y:) +91(%)]]
L+exp(go(w)] | =0 524

g1(w) =0 = log

and it ¢,(%;) < 0, then

l91(%:)| = —g,(%) < K3

= 9,(%) > -K;
so that

log | Lr e g0y +9 1 (w)] | | 1+ezpgo(m)~Ka] | |
l 1+ezp[go(w;)] l 1+exp(go(v:)] |
-0 g{exp[-Ks](exp[Ks]ﬂxp[go(&)])1 (5.2.5)
1+exp(go(y:)] J -

> =K,y

then (5.2.4) and (5.2.5) imply that

2 g{ 1+explgo(y:)+91(%:)]]

= —nKj,. 526
= 1+explgo(w)] | 3 (526)
Hence, by (5.2.3) and (5.2.8) we have that
:.-'.:‘ , I\g) = I\(g0) + K,
< im I\(go)+K,
= = lm (g) = im L@+,
) = llglh'n !x(go)"'x‘ =
p since /5(gq) attains a unique minimum in Hy(m,d). Therefore, by proposition
- AL.7 [, attains a minimum in H(m ,d).
b
{ .
F Silverman (personal communication) has previously conjectured theorem
‘:f:_, 5.2.1 and has aiso noted a rather elegant property of the minimizer of [,(g): As

A-oo, 5;‘ tends to an element of the null space of J,,. so that for m =2, the

86

estimated log-likelihood ratio will be linear and for ™ =3 it will be quadratic.
Thus, the parametric estimate for muitivariate normals is included as a limiting

case. (Compare Wahba 1978 and also Silverman, 1982).

The following theorem characterizes the minimizer of /,(g) as a Laplacian
smoothing spline. The proof of this result is straightforward and foliows Wahba
and Wendelberger (1982) and section 2.2 of this thesis, and therefore is not given

here.

Let Ep. Om. @1, - . . , Py be as in section 2.2.

5.2.2 Theorem

The minimizer gy of /x(g) in H(m ,d) if it exists is of the form

i) = $EBnw) + £ dey(w),
= J=

where the vectors ¢ = (ch,,En)‘ and d = (&1, .. .,dg)t are the solution

to the following non-linear optimization

Problem

Minimize

n
PN [log
iml
n n M
- izl[zi LZIE,.. (yiy;) + _Zld-jfﬁj (yi)]] + Act Ec
= = JS
subject to T*c = 0, where now,

n M
1+exPL2 C;j Em (yi y;) + 2 d;9; (yi)]]}
= 7=l (5.2.7)

E = [E’,,.(y,-.yj)] i;—-l, ... J=1,...n

and T := [¢,-(y,~)] i=1,...,n; j=1, ... M.

..............

LI

T ...

87

Note that the matrix E above corresponds to the matrix £, of section 2.2 and

the matrix T correspo:ids to the matrix T, of the same section.

To find the estimate of g for a given value of A we must solve a nonlinear
optimization problem in n —M variables but there is still the problem of choos-
ing the value of the smoothing parameter.

Since the conditional distribution of Z; given Y;=y, is binomial(l,p)
wherep = P(Z;=1| Y;=y). then

E[Z | Yi=y] = —h@)]

1+explh(y;)]"
so that an ordinary cross-validation estimate of A would be the value of A that

minimizes

1 & el gl
T.);l exp(gy (yq)]/ {1 +explgn (¥g)]} = 24| . (5.2.8)

Al
where g, is the estimate of g obtained by minimizing (5.2.7), but leaving out

+the q"‘ observation. Obviously (5.2.8) would be prohibitive to compute since for
each value of A we must solve n nonlinear programming problems in n—M vari-

ables.

Wahba (personal communication) suggested that by minimizing /(g) in a
subspace of H(m ,d) consisting of tensor product B-splines we might be able to
get some computational simplifications.

Recently, O'Sullivan (1983) has developed a numerical algorithm together

with a generalized cross-validation estimate of A which is suitable for use with

I\g)

»

3,

WVERANVEWEY - 4

Ry - 419

(S - VAP BV KR

TR . Nk il ke R ——
............... LR -

88
CHAPTER 8

CCNCLUSION

6.1 Summary

We have introduced a nonparametric estimate for the posterior proba-
bilities in the classification problem. The smoothing parameter of the estimate
is determined from the data by the method of generalized cross-validation for
constrained problems.

Our Monte Carlo experiments attest to the accuracy of the approxi-
mate generalized cross-validation function to choose the smoothing.parameter.
Through this simulation experiments we compared the spline model to esti:.nat.e
posterior probabilities with two parametric models which are very commonly
used: the linear model, which is based on the .a.ssu.mpt:ion of Normality with the
same variance-covariance structure for the popuiatiuns invoived, and the qua-
dratic model which is based on the assumption of Normality with possibiy
different variance-covariance structures. The linear model performed well only

when the sampies were generated from Normal distributions with the same
variance-covariance matrix. The spline model performed almost as well as the
quadratic model with samples generated from Normal distr.ibutions with the
same or different variance-covariance matrices, and its performance was con-
sistently superior to that of the quadratic model for samples gerierated from
non-Normal distributions.

It can be seen that this method presents a nonparametric alternative
to logistic discrimination as weli as to survival curve estimation. In logistic

regression h(y) is modeled as the logistic function

P ~

A T D Ty TR R T T et ettt ks St Mun Shute et g St Sathe Sheve St dsor o
At e T e e R R R Taa R T N R R T AP et

d
exp aon‘.Iaiy_(i)
h(y) = — (6.1.1)
1 + explag + 3 Oliy(i)]
i=l
where y =(y(1),...,y{2)) azd the parameters ag, . . . , g are estimated, e.g. by

maximum likelihood. See for example, Cox (1968), Day and Kerridge (1967),
Anderson (1972), and Anderson and Blair (1982). Here the discriminant func-
tions will be hyperplanes. In survival curve estimation suppose ¥ is a “dose” and
h(y) is the probability that a subject survives given a “dose” iy. One "observes”
that subject i has “dose” y;. and then one observes a résponse. which is z;=1 if
the subject survives and z; =0 if the subject dies. In logistic survival curve esti-
mation, a function of the form (8.1.1) is fitted to the data (2;,y;). however it is
clear that the constrained spline estimate provides a nonparametric alternative.

The algorithm developed to estimate the posterior probabilities can be

used to solve the more general
Problem 6.1.1

Given z; = f(y;), i=1,...,n, find far € H(m,d) to ninimize

i ;I?U (¥:)=2:)% + nAJpn (f)

. in1 0
subject to

'rJ- Sf(SJ)SR. J=1, “ e ,k.
The subroutines to solve problem 6.1.1 are listed in appendix A2. They allow
different measurement error variances, any dimension between 1 and 6 and any

value of m satisfying 2m —d > 0.

Finally, the problem of estimating the likelihood ratio is also considered. A
penalized likelihood estimator is given and conditions for existence and unique-
ness of such an estimator are given however, no data-based method to choose

the smoothing parameter is provided.

R T R T P T O UE T ._...__J

vy

Do

- Chiuas) O £} e 3 . . - . - B - M TR - < - ity . - - A A 1 A Aad ‘R i el B - P § = LAl) 'T

s

L
B .l l‘.“l [

90

8.2 Future work

s

The results presented in the previous chapters are new and quite promis-
ing. There is no doubt that there are many interesting research problems in

this area. For example, we believe that convergence rates may be established

s 2 kg o BJEC JASr e e
it Yy N
Lo . .
s a . P S

using the results of Wahba (1979a) and Cox (1982).

More simulation studies are desirable to study the eflect of different sample

sizes in the spline estimate.

We t.hmk that the methods outlined in chapters 2 and 3 can be extended to
analyze large data sets following Bates and Wahba (1983).

We plan to incorporate the handling of replicate observations in the algo-
rithm as well as the possibility of enforcing linear constraints not only on the
values of the function but also on the values of the derivatives of the function.

This would allow, for example, enforcing monotonicity constraints.

A p

i o

Ty
’

P

n

Tl . -
IR o
PRI el e

i
r . .l
PPN

')

A

bttt B AN B R
« -4l

PR

C -) .) . L. D i . ~ .
L) o 9 . N IR UAAY WY L PSPPSRI T P S R v NP W . LIPS WAL NS DR PNy Ny _—J

-A134 518

UNCUASSIFIED

ESTIMATION OF POSTERIOR PROUBHREILITIES USING
MULTIYARIATE SMOOTHING SPLINE. . (U) WISCONSIN
UNIY-MADISON DEPT OF STRTISTICS M A YILLALOBOS SEP 83
UWIS-D5-83-725 ARD-17339. 10-MA F/G 1.

e e . el
- S P N L AR A RS

W 12

o bl
.m AQ

B RS

E

1.6

E
>

\

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

90

Acknowledgments

I am forever indebted to my wife Rosalinda and my children
Miguel and Karla t&r their love, patience and support throughout my gra-
duate studies.

Special thanks to my mother and sister for their long-distance
support and encouragement.

I express my gratitude to my advisor, Professor Grace Wahba
for her ideas, guidance, encouragement and understanding. I thank the
thesis readers, Sue Leurgans and Douglas Bates and the flnal exam com-
mittee members, David.DeMet.s and Brian Yandell for their helpful com-
ments. Thanks also to the students and staff of the Department of Statis-
tics.

For financial support [thank the Consejo Nacional de Ciencia y
Tecnologia - Mexico, and the Department of Statistics of the University of -

Wisconsin.

.....
..................
.............................

L 4t ar ar o

L e e o

APPENDIX A1
SOME MATHEMATICAL OPTIMIZATION RESULTS

In this appendix we present some of the properties of Hilbert spaces and
some results in mathematical optimization theory that are used in this thesis.
We do not present the proofs of these results because they can be found in
several books. The results on Hilbert space can be found in Akhiezer and Glaz-
man (1961) and Aubin (1979). For results on reproducing kernel Hilbert spaces,
see Aronszajn (1950). The optimization theoretic results can be found in books
such as Luenberger (1969), Ortega and Rheinboldt (1970), and Daniel (1971).

A useful summary of important results relevant to this thesis can be found
in the two appendices of Tapia and Thompson (1978). They present proofs of
results that cannot bé easily found in standard analysis texts.

Review of Hilbert space properties

Throughout this appendix let A denote a Hilbert space of functions that
map R®+R Let H® be the dual of H, that is, the vector space of all bounded
functionals from H into R

A functional L:H-+R is said to be bounded if there exists a constant C such
that |Lf |<Cl|f ||y for all f €H. A functional L:H -R is said to be continuous

at f€H it {_{"]CH and fp*f => Lf*-+Lf. L is said to be continuous in

SCH if it is continuous at each point in S'.

A SRS G e T S WP S _ o TLe

.................

X

... v ..
AR AN R A

92

Al.1 Proposition .

e
O s

: If L is a linear functional defined on A, then the following are equivalent:

(i) L is bounded
(#) L is confinuous in H
(4i) L is confinuous atf one point in H.

0
Lt

- o
o

b2 Al.1 Theorem (Riesz representation)

It LEH®, then there exists a unique f; €H such that

e
LA

.

moreover, the vector space H ° becomes a Hilbert space with inner product

-+ MROW)
LN
¢ LHLHAI

= oy

<L'G>H' = <fL,fc>H L, GEH..
A1.1 Definition
A Hilbert space H(U) of tunctions defined on a set UCR? is said to be a repro-

ducing kernel Hilbert space (RKHS) if there exists a reproducing kernel K(-,-)
functional defined on UXU such that

23 Sk e,

o o

)

(1) K(-8)eH(U) W teU
and

(#) f(t)=<f .K(-.t)> W fe€H(U)and v tel.

PO

Lad,

A1.2 Proposition

H(U) is a RKHS it and only if tor all ¢€ U the point evaluation at ¢ is con-
p: tinuous, that is, if and only if there exists & such that

| 17(8)1 s Gl & 1 €H(D).

""""" - a*" . S e T_a T4 PO A S R - . - -~ - . - - s) - . R -) . -
e et R A A AL P, EAGA B L UL SN . N
" .y . Y . R TP A P D I S I e - P T T S R . R . . -
_ ha - N 2 8 Al atat ittt atata ia ol

. Al1.3 Proposition

Let L be a continuous linear functional defined in the reproducing kernel
Hilbert space H(U). and consider the kernel K(s,t), as a function of t, then
LK(s.t) =n(s) where 7 is the Riesz representer of L.

Convexity and differential characterizations
Al1.2 Definition

Let S be a closed convex subset of H and consider L: H-+R. Then
(i) Lis convez on Sil
tLf +{1-t)Lg = L(tf +(1-t)g) Wte[0,1] and VS, g€ES.
(&) Lis strictly convez in S if
tLf + (1-t)Lg > L(¢f +(1-t)g) wite(0,1)and Vf,gE€S, f #g. -

Al.3 Definition
Let L: H+R Given w;, . . . ,wp, and f €H, by the n?* Gateaux variation of
L at f in the directions wy, . . . , w, is given by

Lf (w1, . o) = B HLO0S +ton)(@n, - . Onr)

=L)@y, - . L winy)
with L(O)f =Lf. it LWf €H"’, the Riesz representer of L“)f is denoted by
VLf and iscalled the gradient of L at f, that is,

LO(f) (o) = <VLf w> W wEH.

Al.4 Proposition

1 &(¢) = L(f +tw) then $™)0) = L®)(f Yw, . . .,).

94

Al.4 Definition -

Let S be a convex subset of /. By the cone tangent to S at f we mean

Q(f) = jweH : 3£>0, such that f+tw€S}.

Suppose that L is twice Gateaux differentiable in S, then L" is said to be posi-
tive semidefinite relative to S if for each f €S we have

I'(f)ww) 20 Veel(s).
We say that L is positive deflnite relative to S if

I'(f)ew)>0 YoeQ(f), w=0.

Al1.S Proposition
Assume that L: H-+R?® is twice Gateaux differentiable in a cloed convex
subset S of H. Then:
(i) L isconvexinS <= L" is positive semidefinite relative to S
(i) Lis sfrictly convex in S if L” is positive definite relative to S.
Optimization problems in Hilbert space

We now consider the existence and uniqueness of a solution to

RLEISON: -

Problem Al.1

Minimize Lf subjectto f € S.
Al.8 Proposition

It L is strictly convex and S is closed and convex, then problem Al.1 has at

most one solution.

......

S
o L % o+ i EA R I
PAa Y v e TN R IS

b+ 2w 2wy a4 BN A R 4 71 & 4 SVl Hh A Nl M

95

Let S be a closed convex subset of H. If L: S-+Ris convex in S. continuous

inS and if {f*{CS and ||f™l|* > a L(f™)»», then, problem Al.1 has at
) least one solution.

§ Al1.7 Proposition
}

Ty

v B

- . ~ . st T L e
. - . - W . - . LT aaay
- S R TR R S e Ay
LA R T N e A YU s “g“-'k‘\. - DRI P VRIS 595] FUFUN LI

e e e et e e e e il e St

APPENDIX A2
DOCUMENTATION FOR DSCOMP AND DSEVAL)

In this appendix we list the documentation for routines DSCOMP which com-
putes the spline with linear constraints and DSEVAL which evaluates the spline
at some set of points provided by the user. We also list here all the routines
needed to compute the spline, except the routines to soive the quadratic pro-

gramming problem. These toutines are coded in Ratfor (see Kernighan and
Plauger, 1978).

2
o
Y

PREE ot 9L e

o ab T

[adiad o

R0 PR PP e

A

ol e B v

7.;‘._:.. \;J_. -

(o0 i on i A Wt want gl Sngi A S C P el AR PR AL ML i A L At

- ¥

97

BRARRRRRBRRRRRRARARERRARARARAARRRRRRRRRRRARARAAARERAR AR RARAAAARRRAR

* DSCOMP *
f****i****i'*****i**i************it****i**********i****t******ti**i

subroutine dscomp(x,ldx,dim,nobs,s,lds,ncons,z,m,bl,bu,isigma,
sigma,bigeig,zero,finity,indlam,lamvec,nvalle,
nvalri,nvalam,isave,istart,istate,nactiv,itmax,
ioptv,igpout,iactch,wmach,powers,ldp,bigm,coef,
hhat,voflam,thetam,iwork,liwork,work,lwork,ierr)

double precision x(1ldx,1),s(1ds,1),z(1),finity,zero,bigeig,sigma(l),

bl(l),bu(l),coef(l),hhat(l),wmach(15),voflam(l),
bigeig,lamvec(nvalle+nvalri+l) ,thetam,work(l)

integer ldx,lds,m,dim,istate(l),nobs,ncons,lwork,istart,isigma,
liwork,iwork(1l),itmax,nvalam,istate(l),nactiv,isave,
ioptv,nvalle,nvalti iactch(1l) ,indlam,powers(1dp,1),1dp,bigm

1mplicit: double precision (a-h,o0-2)
$ This routine computes a thin plate spline with linear constraints
as the solution to the following problem

minimize:

nobs 2 2
SWM (z(i) - h(x(i)) /(sigma(i)) + lambda * J (h)
i=1 m

subject to

bl(l) .le. h(s(l)) .le. bu(l)
bl(2) le. h(s(2)) .le. bu(2)'

bl (ncons) .le. h(s(nc.:ons)) .le. bu{ncons)

b Double (1dx,nobs) .
Array containing the abscissas of the points at
which observations are. The rows of this matrix
correspond to the dimension of the space, and
the columns to the number of observations.
For example x(2,100) is the second coordinate
of the 100th point.

1dx Integer constant or variable.
On input ldx must contain the leading dimension
of array x as defined in the dimension statement
in the main program. ldx should be greater than
or equal than the dimension of the space.

e s g i N W gl N N N s N N N e N s R A A N N G N s G e e e

e . R T .
" M_‘J_A‘AA“AJ--;L-l,JAJAlALJ

| VLI,

oWl

>

£F

L 2 3 38 22D

98

dim Integer constant or variable.
Dimension of the space.

nobs Integer constant or variable.
Contains the numbei of obse.vations for this problem.

s Double (1ds,ncons)
Array containing the points at which the linear
constraints are enforced. For example, s(2,100)
denotes the second coordinate of the 50th point
where constraints are enforced.

1ds Integer variable or constant.
Leading dimension of the array s. lds should be
greater than or equal to the dimension of

the space.

ncons Integer variable or constant.
Number of linear constraints being enforced.

z Double (nobs) .
Vector of observations at the points in x.

m Integer variable or constant.
Degree of smoothing for the spline. If the
dimension of the space,dim is smaller than 4
then 2 .le. m .le. 7. If dim= 4 thenm = 3, 4
or 5. If dim= 5, m = 4 or S. If dinm= 6, m=4.

bl Double (nobs + 2*ncons) .
Vector containing the lower bounds for the
constrained spline in the last ncons positions.
The first nobs+ncons positions are used by the
quadratic programming routine.

bu Double (nobs + 2*ncons).)
Vector containing the upper bounds for the
constrained spline in the last ncons positions.
The first nobs+ncons positions are used by the
quadratic programming routine.

isigma Integer variable or constant.
Indicates whether or not relative weights for
approximate errors on the observed values are
to be specified. See sigma below.

isigma = 1 - relative weigths are not specified
and assumed to be all equal to 1.
isigma = 0 - relative weithts are specified in

sigma.

L E B & K R L F R E R R %X B E E E_E R X E X X E R X B L X R 2 N R F X N _§ N N & X L K X § X R ¥ R X

..... T e e A A T et
- - . ety e Ve . - e - - - . - o LT T et . - . - - - - . . - o

g WAL PR LR G LR e T, T T i STt PR

. B o FIPL PG PV G S WA S il Sl VI SO Yl VL . Sy

o'ttt

4
L4
'
'
L
4
4
4
L 4
$
'
L4
$
'
4
4
$
$
$
'
$
L4
4
4
.
4
4
'
$
4
4
4
L 4
#
’
L4
4
L 4
L 4
$
'
#
4
’
L4
4
L 4
$
#
¢
$

sigma

bigeig

indlam

lamwvec

nvalle

nvalri

If isigma different from 1 and 0, isigma = 1 is
assumned. ,

Double (nobs). - -

Array of size at least nobs specifying the relative
weights for approximate errors on the observed -
values. If sigma = 1 then sigma is not used and
need not be dimensioned in the calling program.

Double precision variable.

If lambda for unconstrained problem is infinity, -
bigeig should contain the largest eigenvalue
obtained when the unconstrained problem was solved
If lambda for the unconstrained problem is finite
bigeig is not referenced.

Integer variable.

On return, indlam will contain a number such
that lamvec(indlam) = log of the estimate of the
smoothing parameter lambda.

Double (nvalle + nvalri + 1). .

On entry: lamvec (1) should contain the estimate of
lambda that minimizes the generalized
cross-validation function for the uncons-
trained problem. If this value is infinity
then lamvec(l) should be set to -1.d0.

-‘On return:lamvec will contain a grid of values in

units of log of lambda where the generalized
cross—validation function for constrained
problems was evaluated. Also, lamvec(indlam)
will contain the log of the value of lambda
that minimized the GCWC function.

Integer variable.
On entry nvalle should contain the number of values
smaller than lamvec(l) at which GCWC i{s to be evaluated.

Integer variable.
On entry nvalri shoud contain the number of values
larger than lamvec(l) at which GCVC is to be evaluated.

- If both nvalle and nvalri are less than or equal to

zero then nvalri and nvalle are set to 1S.

If lanwvec(l) = 0.40 then nvalle should be equal to zero.

If lamvec(l) = -1.40, that is the estimate of lambda
from the unconstrained problem is
infinity, then nvalri should be zero.

Sttt P
e e e e S e T L et ESIR I . . S
PIPEE AL WO WUl Wil PP W WY T, 1 Wiy W Y W VI T Py TP R P L

X

? &
“a’a

i-¥
AP

W

g% -
«
-

'.'_r"_;."i g

-,

AR

. ".‘

o

s ogim ags W0 s 2l s gts U wis i 0 N0 g s s W N i s G Y W G s W OB s s s W s Wi s ie B UE Wis s Wi Wi U A U0 U6 g Gk Y WS Y Y

nval am

isave

istart

istate

100

Integer variable.
On return nvalam will contain the number of values of
lambda at which V(lambda) was evaluated.

Integer variable or constant.

Specifies whether or not various intermediate results
computed by dscomp are to be saved or restored from

file. If two or more problems are to be solved with

the same dim, m, x, S, and sigma, i. e., changes only

in 2, some of the computations can be bypass for

the second and subsequent problems by savine itermediate
results computed for the first problem.

isave = 1 - Do not use any intermediate resvu saved
and save results computed on fil

isave =-1 - Use intermediate results saved o1 ..le.

isave different from -1 and 1 - Do not use any intermi-
diate results saved and do not save any
results computed on file.

Integer variable or constant.

Indicates whether or not an initial guess for the points
at which the the constraints will be active for the
value of lambda that minimizes GCWC will be given.

istart = 1 - Guess for set of active constraints is
specified in the vector istate (see bellow).

istart different from 1 - No initial quess is given.

It is recommended to use istart = 1 and use the set of
points where the constraints are most seriously violated
as the initial guess (see istate).

Integer (nobs + 2*ncons).

On entry: The last ncons positions of this array
indicate the initial guess for the set of
active constraints,

On return:The last ncons positions of this array indicate
the set of active constraints at the solution.

istate (nobs+i) = 0 - ith. linear constraint not active.

{state (nobs+i) = 1 - ith. linear constraint active at
its lower bound.

istate (nobs+i) = 2 - ith. linear constraint active at
its upper bound.

.....

101

nactiv Integer variable.
On entry: The number of active constraints in the initial
guess (if istart=l).

On return: The number of active constraints at the
solution.

Integer variable.

Maximum number of iterations for the quadratic
programning problem. If itmax less than or equal zero
then itmax is set to 100,

Integer variable or constant. -

Indicates whether or not optimization of the generalized
cross-validation function for constrained problems is
desired.

ioptv = 1 - Optimization of V(lambda) is desired.
ioptv .ne. 1 - Optimization of V(lambda) not desired.

Integer variable or constant.
Controls printing for quadratic programming routine.
igpout = 0 - Nothing is printed by gpfc.
= 2 - One line of output for each quadratic .
programming problem solved.
>10 - Almost all relevant information is

printed for debugging purposes.

Integer (nvalle + nvalri + 1).

If optimization of V(lambda) is requested then this
array indicates for each value of lambda tried whether
or not the set of active constraints changed and whether
or not the quadratic programming problem for each value
of lambda had a solution. If for a specific value of
lambda, say, lamvec(j) thw quadratic programming problem
did not have a solution then iactch is set to:

inform = 2 - The problem appears to be infeasible.
inform = 4 - Too many iterations have been perfomed.

inform = 5 - Too many iterations have been performed
without changing the solution. The
degeneracy is unresolved.

inform = 6 - An active constraint has become infeasible
The constraints are likely to be very badly
scaled. Try a different starting point.

L L A E K L R B ¥ ¥ ¥ X X N L L R K K K R L R E L 2 K _E L B % R % R R _B K R ¢ B R B X R L 2 R R _J K N J

FRE P VR T O W PN VR VPR PR PR PR v 'A--'"L-L~.;.4--‘\-~'."-1‘_Aj

$
$
$
$
$
4
$
$
$
$
$
#
$
#
$
#
$
$
$
$
#.
B
$
$
#
$
$
$
$
$
$
$
4
$
4
#
L 4
L
L 4
$
-y
$
$
$
$
4
$

wmach

powers

1dp

bigm

coef

102

If lamvec (j) is not any of the above numbers then
lamvec (j) will be either zero or one. When, say
lamvec (j) = 1 and lamvec (j+1) = 1, this means that
changing from the jth. value of lambda to the next one
did not change the set of active constraints. If
lamvec(j)=1 and lamvec(j+1)=0, then the active set of
constraints changed. :

Double (15).
Machine dependent constants required by the quadratic
programming routine qpfc.

wmach(l) - Base of floating point arithmetic

wmach(2) - No. of base wmach(l) digits of precision.
wmach(3) - Floating point precision.

wmach(4) - sqrt(wmach(3)). .

wmach(5) - Smallest positive floating point number.
wmach(6) - Sqrt(wmach(5)).

wmach(7) - Largest positive floating point number.
wmach(9) - Sqrt (wmach(7)).

wmach(10) - Standard file number for the input stream.
wmach(ll) - Standard file number for the output stream.

Integer (1ldp,bigm).

On return powers(i,j) contains the power at which the
ith. component in dim-space is raised, corresponding to
the jth. d-coefficient.

For example, if m=3 and d=2, powers would be given by:

00011 2
01 2010

Integer variable or constant.

Specifies leading dimension of the array powers as
defined in the dimension statement of the calling
program. ldp should be larger than or equal to dim.

Integer variable.
On return bigm will contain the number of
d-coefficients of the spline.
(dim + m -1)!
bigm = .
(dimi* (m-1)1)

Double (nobs + ncons + bigm).

On return: coef will contain the coefficients of the
spline. The coefficients will be arranged
as follows:

| e |

i - PP W S e e A e B e e ndBa,

L A A KL L L X X F K K L L X R L X L X & K X 2 R K R X L KL _§ R N F & 2 L 2 K ¥ L R L L X R L X R X K ¥]

hhat

voflam

iwork

liwork

work

lwork

coef = | b |
d

where ¢ is an nobs dimensional vector that
will contain the coefficients of the spline
corresponding to the points where the obser-
vations were taken. b is an ncons dimensional
vector containing the coefficients of the
spline corresponding to the points where the
constraints are enforced. d is a bigm
dimensional vector containing the coefficients
of the polynomial part of the spline.

Double (nobs).
On return, hhat will contain the estimate of the function

. h at the sample points x.

Double (nvalle+nvalri+l).

If optimization of V(lambda) was requested voflam
will contain the value of V(lamda) at the values of
lambda in lamvec.

A negative value of voflam(j) means that the quadratic
problem could not be solved for the lambda=lamvec(j),
see also iactch.

Double precision variable.
On return thetam will contain the constant that
multiplies E ,

m

Integer (liwork).
Integer work array of dimension at least liwork.

Integer variable.

On entry iwork specifies the dimension of the array
iwork. liwork should be greater than or equal to
ntotal + 2*ncons.

Double (lwork).
Double precision work array of dimension lwork.

Integer variable or constant.
On entry lwork specifies the dimension of work.

lwork .ge. ntotal#*(2*ntotal+2*bigm+nobs+ncons+2)+
mmbigm* (nmbigm+2)+maximum(nnnl,nnn2)

where ntotal=nobs+ncons
mmbigm=ntotal-bigm
nnnl=ntotal®* (ntotal+ncons+10) +
ncons* (ncons+5) + 2

2 ol ol D W T S P NP S S VU, SO S U S U LY

* RN EE

A'l.l.“
Y atata st

..........

104

nnn2=ntotal* (3*ntotal+l)

ierr Integer variable.
On return ierr will contain an error code.

ierr=0 - No errors occurred.

ierr>0 - Error(s) in input parameters occured.
ierr is a number of the form
abcdefg, where each digit is either
zero [no error occured] or one
[some parameter(s) value(s) is (are)
invalid], as follows:

a=] - Invalid combination of m and dim.
b=l - Ncons < 1.

c=]l - nobs+ncons-bigm < 1.

d=]l - Either 1ldx<dim or 1lds<dim or ldp<dim.
e=] - gigma(i) .le. O for some i.

f=] - lwork smaller than required.

g=1 ~ liwork smaller than required.

ierr<0 - Errors in the solution of the problem
independent of the quadratic programming
problem occured:
ierrs-10 - Values for nobs,ncons,bigm in
first record of matrix-file do
not agree with current values.
ierr=-11 - Insufficient data in matrix-file.
ferr=-20 - Matrix b=Q ' * E(1) * Q
2 2
is not positive definite. This
may be caused by replicates in
the original data set.

err=0

LY X L L L L X T T B L F ¥ ¥ & 2 L & E K L & X X X R L X L X K X L N 1 L _R_L J

call dsbigm(dim,m,bigm)
$

$ compute thetam .

$ ’ .

if (bigm = 0) call dsteta(dim,m,thetam)
ntotalsnobs+ncons

rmbigmentotal-bigm

$

allocate work storage
#

nl=l

..............................

n2=ntotal *bigm+nl
n3antotal *bigm+n2
néd=bigm+n3
nSantotal®*ntotal+nd

né=bigm+n5

n7=total*ntotal+né

n8=rmbigm*rmbigm+n7

n9snobs*ntotal+n8

nlO=ncons*ntotal+n9

nllsntotal+nl0

nl2sntotal+nll

nmls=ntotal* (ntotal+ncons+l0)+ncons* (ncons+S)+2
nnn2sntotal* (3*ntotal+l)

lwksmax0 (nnnl,nnn2)

liwk=ntotal+2*ncons

' .
minimum dimension of work

#
minwk=nl2+lwk
iflag=0
if (isigma t= 0) isigma=l
if (isigma 1= 1) {
do i=l,nobs
if(sigma(i) <= 0.d40)
iflag=l

if (liwork < liwk) ferr=1
if (lwork < minwk) ierr=ierr+l0
if (iflag == 1) ierr=ierr+100
if (1ax < dim | 1ds < dim | 1dp < dim) ierr=ierr+1000
if (rmbigm <= 0) ierr=ierr+10000
if (ncons < 1) ierr=ierr+100000
if (bigm == 0) ierr=ierr+1000000
if (ierr > 0) return
if (itmax <= Q) itmax=100
if (loptv. != 1) ioptv=0
if (iabs(isave) i= 1) isave=0
if (iscart = 1) istart = 0
if (nvalri+nvalle <= 0) {
if (lamvec(l) < -0.5d0)({
nvalri=0
nvalle=30

else {
{f (lamvec(l) <= 0.40) {
nvalri=30
nvalle=0

else {
nvalri=l5

-

Al

'''''''''

..........
....................

106

nvalleslS -
}
}

set machine constants

o W Y

call dsmach(wmach)

zero=wmach (5)

finity=wmach(9)

nvalamenvalle+nvalri+l

call dscom2 (x,1dx,dim,nobs,s,lds,ncons,z,m,bl,bu,isigma,sigma,
bigeig,zero,finity,indlam,lamvec,nvalle,nvairi,
nvalam,isave,istart,istate,nactiv,itmax,ioptv,igpout,
iactch,wmach,powers,ldp,nactiv,coef,hhat,
voflam,thetam,ntotal ,nmbigm,bigm,work(nl) ,work(n2),
work(n3) ,work(nd) ,work(nS) ,work(né) ,work(n7),
work (n8) ,work(n9) ,work(nl0) ,work(nll) ,work(nl2),
lwk,iwork,liwork,ierr)

ierr=—ierr

return

erd

o G AP W O PR W S W WP PP PSPPI

COAETY B VoUE T Sl ST WAy WA

Ty T T T . e

D R S S B, S

107

RERRRRANRRRARRRERRRNRARRAARREANRRARARAARRAANRRRNRERRRAARRRAEN SN Adhd

* DSEVAL *
RRRRRRARNARAARARRAARARRARRRAARRERRARRRRARARARRRARRARRARARRR SRR s dh

subroutine dseval (x,1dx,dim,m,nobs,s,lds,ncons,xtab,1dxtab,
ntab,coef ,powers,ldp,hofxta,ierr)
double precision x(1dx,l),s(1ds,l),xtab(1ldxtab,1),coef (1),
hofxta(l),p(6) ,hxta
:nteger dim,nobs,1dx,1ds,1dxtab, ntab,powers(1dp,1) ,ierr,m,bigm

This routine evaluates the spline h, computed by dscomp
at the set ntab points in xtab. The resulting values of
- # the spline are put in hofxta.

x Double (1dx,nobs) .
Array containing the abscissas of the points at
which observations are. The rows of this matrix
correspond to the dimension of the space, and the
columns to the number of observations. For example
x(2,9) is the second coordinate of the 9th point.

ldx Integer constant or variable.
On input 1dx must contain the leading dimension of
array x as defined in the dimension statement in
the main program. 1dx should be greater than or
equal to the dimension of the space.

dim Integer constant or variable.
Dimension of the space.

nobs Integer constant or variable.
Contains the number of observations for this problem.

s Double (1ds,ncons)
Array containirq the points at which the linear
constraints are enforced. For example, s(2,100)
denotes the second coordinate of the 50th point
where constraints are enforced.

1ds Integer variable or constant.
Leading dimension of the array s. 1ds should
be greater than or equal to the dimension of
the space.

DOL

ncons Integer variable or constant.
Number of linear constraints being enforced.

m Integer variable or constant.
Degree of smoothing for the spline. If the
dimension of the space,dimis smaller than 4
then 2 .le. m .le. 7. Ifdim= 4 then m =

o,

L A X & K R ¢ % &R B B X ¥ X % R R R Z X R X N X R R E X KX R R _RE K K K ¥R ¥ I

> T S e . P P R Nt STy e N Lt -
B SRPP VN SPRE RE TP AP R) PP S VAT O S R - PP L S S S SR P 0. S TR, S,)‘-L\A'-A\;n-n-,;]

TEPTY TN

-

X B B 2t Ao

1
»
»
»
b

4
$
L4
'
4
$
4
4
4
L 4
#
4
i
4
L4
4
$
4
L4
4
L 4
'.
$
4
#
4
4
#
'
4
4
4
4
4
$
'
$
4
$
$
4
$
'
$
4
L 4
4
#
4
$
'

1dp

bigm

‘hofxta

thetam

W EFT LT TOVOTE T T TR TE AT TR
Lt e et P YA N

108

3, 4or 5. Ifdim= S, m = 4 or 5. Ifdim= 6
m= 4,

Integer (1ldp,bigm).

On entry powers(i,j) should contain the power at which
the ith. component in dim-space is raised, corresponding
to the jth. d-coefficient. This matrix is computed by
dscomp

Integer variable or constant.

Specifies leading dimension of the array powers as
defined in the dimension statement of the calling
program. 1ldp should be larger than or equal to dim.

Integer variable.
On return bigm will contain the number of d-coefficients
of the spline.

(dim + m -1)!

bigm = .
(dimi* (m-1) 1)

Double (nobs + ncons + bigm).

On entry coef should contain the coefficients of the
spline as obtained by dscomp. The coefficients should
be arranged as follows:

|
coef = |
|

where c is an nobs dimensional vector that
will contain the coefficients of the spline
corresponding to the points where the obser-
vations were taken. b is an ncons dimensional
vector containing the coefficients of the
spline corresponding to the points where the
constraints are enforced. 4 is a bigm
dimensional vector containing the
coefficientsof the polynomial part of the
spline.

Double (ntab).
On return, hofxta will contain the estimate of the
function h at the ntab points in xtab.

Qo0

Double precision variable.
On return thetam will contain the constant that
multiplies E .

m

THT TR T T AN TOTAEY LY A, L,
L e St .

{ A

-.' PR A A A

1%

109

ierr Integer variable.
On return ierr will contain an error code.

ierr=0 - No errors occurred.

ierr is a number of the form

abc, “here each digit is either
zerd N0 error occured] or one
(some parameter(s) value(s) is (are)
invalid], as follows:

or ldxtab < dim.
b=l - nobs+ncons-bigm < 1.

Get bigm

all dsbigm(dim,m,bigm)

R AL X £ R L 2 R E & R L X % K ¥ ¥ ¥ ¥ § ¥]

Get thetam

L L _E]

if (bigm 1= 0) call dsteta(dim,m,thetam
ntotal=nobs+ncons)
nmbigmentotal-bigm
if (1dx<dim | 1ds<dim | 1dxtab<dim | 1dp<dim) ierr =1
if (rmbigm <= 0) ierr = lerr+l0
if (bigm == 0) ierr=ierr+100
if (lerr |= 0) return :
do j=1,ntab {

do i=1,dim{

p(i)=xtab(i,])

$ Evaluate spline at point p
call dshofp(p,x,1dx,dim,nobs,s,lds,nccis,ntotal ,m,thetam,
bigm,powers,1dp,coef hxta)
hofxtalj)=hxta

return
end

ierr>0 ~ Error(s) in input péraneters occured.

c=1l - Invalid combination of m and dim.

a=] - Either ldx<dim or 1ds<dim or ldp<dim

RS ek il Tt stath sl il Ml it s S A A AR e S N AT R A A e S R AR -'1

110

ARARRRERRRRRRRERRRNRRRARRRRERRRAARRRRARRARRRRNNRRRANARRARA RN AT AR

* DSBIGM *

ERRRANERARRRRRNRRANRRANRARANRARAANNRNARRARAARRRARRARRRRAARNER AN AR

subroutine dsbigm (dim, m, bigm)

get bigm for dim,m if legal. if illegal, bigm
is set to zero. legal values of dim and m are:

dim 1 2 3 4 5 6
yes yes yes no no no
yes yes yes yes yes no
yes yes yes yes yes yes
yes yes yes yes no no
yes yes yes no no no
yes yes yes no no no

L A & & 2 L X K 2 X X 1 J
~Nounmesewns

implicit integer (a-2z)

dimension mtab(36)

datamtab/ 2, 3, 4, S5, 6, 7,
3’ 6' 10' 15’ 21' 28'
4, 10, 20, 35, 56, 84,
0, 15, 35, 70, 0, O,
0, 21' “' 0, O' 0'
o, 0,8, 0 0 0/

$

if (dim .lt. 1 .or. dim .gt. 6) go to 13
if (m .1t. 2 .or. m .gt. 7) go to 13
l=6*dim+m-~-7

bigm = mtab(l)

return

error return

13 bigm = 0

return

end

ARRRNRARNEARRRNRARRNARERRAARARARAREAARAREAARRARAAARANRRRARSA A AR RANNS

* DSCBD *

ARRRARREBARRRRAARNRAR AN RANRRA AN AL AN AARARARRRARAAAAARARR RN A AAAR

subroutine dscbd (ntotal ,nobs,nmbigm,bigm,coef,tsigqr,

qgrtsia,work,isigma,sigma)

double precision coef(ntotal) ,tsigqr(ntotal ,bigm),qrtsia(bigm),
work (1) ,sigma(nobs)

integer ntotal,nobs,mmbigm,bigm,isigma

L 4

Obtain vector of coefficients of the spline

L

$ l el

......

~ - v T YW T W Ty T W oW e e e oTmemeem o r om0 T AT ANT Gty T e W e T LTRSS S TNYTRY T T A Y e T e e ™M T LT e T o T e T e T e T
L e e R e) PR S . . .

o iGN T e N

- ' 111

A\] . .
b $ coef = | b |
N $ KN
N # Recall that the vector coef contains the solution
N # to the lower dimensional problem (ntotal - bigm)

H :
A : Zeroces to first bigm pos. of work
' do i=1,bigm
- work(1)=0.40
" : Copy coef into work(bigm+l)
. call dcopy(ntotal ,coef,l,work(bigm+l),1)
N]
s # get
2 '
. $ l el
: | | =Q *coef=|Q Q [*work
” $ | b 2 11 2|
N '
N job = 10000
N call dqrsl(tsigqr,ntotal,ntotal ,bigm,qrtsia,work,coef,
- : dmy ,dmy ,dmy ,dmy, job ,info)

" Copy last bigm elements of work into

: 3 last elements of coef

> 3
- :all dcopy (bigm,work (ntotal+l),1,coef (ntotal+l),l)
$ Rescale by sigma if sigmai's were

read
" $
-, if (isigma == 1)

return
else {
do i=l,nobs
coef (1) =coef (1) /sigma(i)

’ return
< ond
]
3

AR RARANRARAARARRARAAARRRAANARAN AR AR ANRRRRRARNRERARRRRA AR RN A D
B . DSCOLE *
RARAARRERRAARRAAR AR ARANBNRAARAANARRRARARRNRRN R AR AAR AN RN R AAN

subroutine dscole(j,cje,ntotal,x,1dx,nobs,s,lds,ncons,m,pi,pj,
dim,thetam)

double precision x(1dx,1),s(1lds,1),pi(dim),pj(dim),thetam,cje(l)

integer j,ntotal,ldx,lds,dim

#

Compute lower diagonal elements of the jth column of E

0°e"a% "6

d
&
.
%
4
.
[4
<

112

and put in vector cje.

If j <= nobs retrieve jth sample point

: else retrieve the (j-nobs) grid point in s
i

£ (j <= nobs) {
do i=],dim
pi(1)=x(1,3)

else {
do i=l,dim
pi(1)=s(i,j-nobs)

if (j<=nobs)

jl=l
else
- jl=j-nobs
do i=j,nobs {

do il1=1,dim

pi(il)=x(il,i)

] Obtain E(pi,pj)

. call dseij(pi,pj,dim,m,cje(l))

cje(i)=cje(i)*thetam

}
do i=jl,ncons {
do il=],dim
pi(il)=s(il,i)
il=i+nobs
call dseij(pi,pj,dim,m,cie(il))
cje(il)=cje(il) *thetam

return
end

ARRRERVRERARRAREERRARRNARNRARANAARRRRENARRRRRRR ARSI RARANAERRANNRANS

* DSCM2 *
ARARFVREARARARRRANRNBRRERAARAN RSN RANRANRESRAREARRARRA AN RN NN

subroutine dscom2 (x,1dx,dim,nobs,s,1ds,ncons,z,m,bl,bu,isigma,sigma,
" bigeig,zero,finity,indlam,]l amvec,nvalle,nvalri,
nvalam,isave,istart,istate,nactiv,itmax,ioptv,igpout,
iactch,wmach,powers,ldp,nactiv,coef,hhat,
vofl an,thetam,ntotal ,nmbigm,bigm,tsigma,tsigqr,
grtsia,esigma,qrtsil, hessl, hess2,qpl ima,qpcons,qplive,
. eigen,work,lwork,iwork,liwork,ierr)
double precision x(1ldx,nobs),s(1ds,ncons),finity,zero,bigeig,
sigma(l),bl(1),bu(l),coef(l) ,hhat(l), voflam(l),
thetam,tsigma(ntotal,l),tsigqgr(ntotal,l) ,qrtsia(l),
esigma(ntotal,l) ,qrtsil(l),hessl (ntotal,l),

-, LA i biptd . L PR
vt 2t i D S e S L U AR AT AR S A s SRS S A AU A G A AR AN AR AR RS BAEAE AN AR AR
,

iTeTATE A LR W W W

113

hess2 (rmbigm, 1) ,qplima(nobs,l),
gpcons(ncons,l) ,qplive(l) ,eigen(l),
. work(1)
integer ldx,lds,m,dim,istate(l),nobs,ncons,lwork
liwork,iwork(l),itmax,istart,isigma,isave,
ioptv,nvalle,nvalri,istate(l),nactiv,
powers(ldp,1) ,1dp,bigm,iactch(l),

T ELEFTY 6 &S Sum—n
»

indlam,ntotal ,nmbigm
$
logical start
#

$ Second level routine to compute a thin plate spline with linear
constraints as the solution to the following problem

minimize:
nobs 2 2
SWM (z(1) - h(x(i)) /(sigma(i)) + lambda * J (h)
i=] m
subject to

bl(l) .le. h(s(l)) .le. bu(l)
bl(2) Jde. h(s(2)) .le. bu(2)

bl (ncons) .le. h(s(ncons)) .le. bu(ncons)

For a description of the variables and arrays see comments in
dscomp.r

Get powers of polynomials

L L 2 L X L §F F ¥ F B & & X & X L X ¥ ¥ !

3
3

rmbsrmbigm

nprinl=min0 (20,ntotal)
nprin2=min0 (10,nobs)
nprin3=min0 (10,ncons)

call dspoly (dim,m,powers,ldp

Scale z data by l/sigma if necesary

f (isigma == 0) call dszdis (z,nobs,sigma)

L L Mok K A 1 |

If matrices previously saved read them,

..............

114

' skip computations and go to 100
$
if (isave == -1) {
open (l,file='splmatrix',form='unformatted’)
rewind (1)
call dsrdl (ntotal,nobs,ncons,bigm,dim,nmbigm,hessl, hess2,gplima,
qpcons,tsigqr,qrtsia,esigma,ierr)
if (ierr != 0) return
go to 100

Form tsigma

1 dstsig(x,1dx,s,1ds,powers,1dp,tsigma,ntotal ,bigm,nobs,ncons,
dim,isigma,sigma)

Copy tsigma in tsigqr

j=1,bigm
call dcopy (ntotal,tsigma(l,j),l,tsigqgr(1,3),1)

Form QR decomposition of tsigma

ob =0
call dagrdc{tsiggr,ntotal ,ntotal ,bigm,qresia,jpve,work,job)

Form esigma

$

call dsesig(esigma,ntotal,nobs,ncons,isigma,sigma,x,1dx,
s,1ds,work,thetam,dim,m)

$

$ Form hessl

$

call dshesl (hessl,ntotal ,nmbigm,nobs,tsigqr,qrtsia,tsigma,bigm,
esigma,work)

$

$ Form hess2 = Q ' * E * Q

2 2

$

call dsqtaqitsigqr,ntotal,ntotal ,bigm,qrtsia,esigma,ntotal,
hess2,nmbigm,work(1l) ,work(ntotal+l))

L 4

Compute gpcons (matrix of linear const.)

$

call dscons(gpcons,ncons,ntotal ,nobs,tsigma,bigm,tsiggr,qrtsia,
nmbigm,esigma,work)

$

4 Compute gplima (matrix that post-multiplies

$ zsigma to obtain linear term in quadratic

$ function. Also, hhat is obtained by

$ multiplying gplima*coef

Rt it Ahath Shaint St Shege 8

115

' .
call dslima(gplima,nobs,ntotal ,bigm,nmbigm,tsigma,tsigqr,
grtsia,esigma,work)
#
Write intermediate results if required
if (isave ==]1) {
. open (1,file='splmatrix’',form='unformatted’)
R rewind (1)
» call dswrtl (ntotal,nobs,ncons,bigm,dim,nmbigm, hessl,
P | hess2,qpl ima,gpcons, tsigqar ,qrtsia,esigma)
- '
100 continue
F -]
- $ ' Compute gplivesvector defining linear term
call dslive(gplive,ntotal,z,nobs,qplima)
$
Pind coefficients of spline doing optimization
with respect to lambda if necessary

if (istart ==])
start = .true.
else
start = .false.
nnnl=ntotal* (ntotal+ncons+9}+ncons* (ncons+3)+1
nnn2=ntotal* (ncons+3)+1
lwk=max0 (nnnl,nnn2)
liwk=ntotal+ncons
call dssolv(hessl,ntotal ,hess2,nmbigm,bigm,qplima,qplive,gpcons,ncons,
nobs,tsigma,qrtsil,lamvec,voflam,indlam,coef,ioptv,igpout,
nvalle,nvalri,nvalam,zero,finity,bl,bu,start,istate,iwork,
iwork (ncons+l) ,iactch,wmach,bigeiqg,itmax,hhat,z,esigma,
nactiv,eigen,work,ierr)
if (ierr != 0) return

obtain final coefficients of spline
and put again in vector coef in the
form:

QU0

|
coef = |
|

all dscbd(ntotal,nobs,nmbigm,bigm,coef,tsigqgr,qrtsia,work,isigma,sigma)
Multiply z values by sigma if sigma was read

L X B Nl X K K § R L X |

if (isigma == 0) call dszmus(z,nobs,sigma)
return
end

116

ARRRBERARRARRRRNRARRERARRNRANARRRRRRRRRRANARNRRRRNARR A AN A AR AR AR A Ad

* DSCONS *
ARBRRRARRRRRRRRRARRRRRNARRRRRRRARRERARA AN RAARRAARRNAAN AR AR AR Rr

subroutine dscons(gpcons,ncons,ntotal,nobs,
- tsigma,bigm,tsigqr,qrtsia,nmbigm,esigma,work)

. double precision gpcons(ncons,ntotal) ,tsigma(ntotal,bigm),
: tsigqr (ntotal ,bigm) ,qrtsia(biqm),
K esigma(ntotal ,ntotal) ,work(l)
; integer ncons,ntotal,nobs,bigm,nmbigm
; $
h # Compute matrix gpcons which defines linear constraints
N L 4
(- $ I 1E |1
2 $ 1Q '* 12| |
- # 12 IE ||
P $ gpecons = | | 22] |
4 | |
$ I I
$ I 2 I
$
job=01000
i 2=mmbigm+1
i3=bigm+l
do i=l,ncons {
il=nobs+i
$
Compute
$ Q 'l
111
$ work = | | * jlst. col. of esigma
1Q 'l
1 21
#
#

call dqrsl (tsigqr,ntotal,ntotal ,bigm,qrtsia,

esigma(l,il),dmy,work(l) ,dmy,dmy,dmy,
job,info)

#
$ Copy last nmbigm elements of work into
$ first nmbigm columns of ith. row of gpcons
#

call dcopy(mmbigm,work(i3),1,gpcons(i,1) ,ncons)
Copy ilst row of tsigma into last
$ bigm columns of ith row of gpcons
$

call dcopy(bigm,tsigma(il,l),ntotal ,gqpcons(i,i2) ,ncons)
return
end

PR x‘.v‘xl

P WL P W . WP Ay Y I TR A S A I L U W WU G UYWAY T ST U T W G T W W L S U G S)

VYTV
A T

AR s~

TR

117

ARARRRRRRRARNRRARRRRRAARRRERRRRARRRRARARARERRLRNARRENRR RN RARAA N RN

* DSEIGE .

RRRBRRARBRAEREARNRRERARARRAAARRARRAAARARRARAAAANRSRRR AR AR bbb h R hddd

subroutine dseige(ntlmm,a,b,eigen,work,ierr)
double precision a(ntlmm,ntlmm),b(ntlmm,ntlmm),eigen(l),work(1)
integer ntlmm,ierr

Solve generalized eigenvalue problem

#

a*PHI =EIG * b * PHI

v v

$

to get the neig positive eigenvalues of
$ -1

$ b *a

ierr=0

nl=}l

n2=ntlmm+l

call reduc(ntlmm,ntlmm,a,b,work(n2),ierr)

if (ierr == 7*ntimm+l)

b is not positive definite
return

call tredl (ntlmm,ntlmm,a,eigen,work(nl),work(n2))

call tqglrat(ntlmm,eigen,work(n2),ierr)

if (ierr > 0) {

iili=ierr-1
print #,' !
print *,'#%*ker In routine dseige, only eigenvalues 1 to ',iiii
print =,°* are correct'
for (i=ierr;i<=ntlmm;i=i+l)
eigen(i)=0.0d0
ierr=0
return
end

AERRRERRRARARRTAERNRAARRRRARRNRARRRRRNAAANANRNALERENARRAREAEAR AR

* DSEIJ *
ARBARBANRARARRARRERANIRANRIRRRRAANRRARANERAANRRARERRRRAARAARANRAR RN

subroutine dseij(pi,pj,dim,m,eiy)
double precision pi (dim),pj(dim) ,eij
integer dim,m

implicit double precision (a~h,o-2)
$

Compute
$ | |2m-dim | |
$ e(pi,pi) = lp-p | Inip-p | {f dim is even,

[S T WP Wl WS WP PR W PR PRIy v e, o P PSP G N VU PO G WP OU 1R Y WG Wi SN |

VTR T NS NN T R,) o e e T T T v . - . - et T, o - . s v S i hadtt Shebtd
....... AR B A SISO e T~ ARSI IR 1

118

i 35l ST
| |2m~dim

= |p-pl if dim is odd.
i 3|

to (1,2,3,4,5,4) ,dim

!8 L X K R K X J

[]

mum2¥m-1
s=dabs(pi (1)-pj(1))
eij=s**mu
return
2 mu=m~-1
S s=(pi(1)-pj(1))**2 + (pi(2)-pj(2))**2
g if (mu ==)
eij=0,.5d0*dlog (s) *s
else
eij=0,5d0*dlog (s) *s**mu
return
3 mu=2*m-3
s=(pi (1)-pj (1)) **2+ (pi(2)-pj(2))**2+ (pi(3)-pj(3))**2
if (mu == 1)
eij=dsqrt(s)
else
eij=dsqrt (s) **mu
. return -
- 4 mu=m-dim/2
s=(pi(1)-pj(1))**2
do i=2,dim
s=s+(pi (1) -p] (1)) **2
if (mu == 1)
» eij=0.5d0*dlog (s) *s
-~ else
. eij=0,5d0*dlog (s) *s**mu
ay return
5 mu=2*m=-5
s=(pi (1)-pj (1)) **2
5 do i=2,dim
o s=o+ (pi (1) -pj (1)) **2
- {f (mu == 1)
- eij=dsqrt(s)
N else
eij=dsqrt(s) **mu
2 return

.....
........

...................

119

ARRERRARRARRRNRARARNERRERNARARARRANNRRNRARAARARRLRAARRAASRRAN Ao

* DSESIG *

.ﬁi’.tﬁ.ﬁ*ﬁtﬁﬁ"iiti*tﬁ**ii*t******f***ii***i*;****t*iﬁt*t*i**i***f

subroutine dsesig(esigma,ntotal,nobs,ncons,isigma,sigma,
x,1dx,s,1ds,work,thetam,dim,m)

implicit double precision (a-h,o~2)

double precision esigma(ntotal ,ntotal) ,sigma(nobs) ,x(1dx,l),
s(1lds,1l) ,work(l) ,thetam

integer ntotal,nobs,ncons,isigma,ldx,lds,dim

$

Compute:

g
L

j=1,ntotal {
Get lower diagonal elements of jth. column of E

1'1&"i}ﬂ’ﬂhi&‘h!ﬁﬂb(ﬁlﬁ!ﬁ

nwl=dim+l
call dscole(j,esigma(l,j) ,ntotal,x,1dx,nobs,s,lds,
ncons,m,work(l) ,work(dim+l) ,dim,thetam)
if (isigma == 0) {
if (j <= nobs)
jl=nobs+l
else
jl=ntotal+l
for (imj; i<=nobs; i=i+l) {
esigma(i,j)=esigma(i,j)/(sigma(i) *sigma(j))

for (i=j1; i<=ntotal; i=i+1){
esigma(i,j)=esigma(i,j)/sigma(j)

}
}
$
$ Copy lower diagonal elements into upper diag.
$
do j=2,ntotal

do i=l,j~-1

esigma(i,j)=esigma(j,1)

return

end

PGP L Py LIPS P Aon e

A Sitie A Yt e Wi AR AR i M Sl

--------------------- St . o

120

RERRRRAARRRARARSRRRRANENBERRRRBERARRRNRARRNNRAANNRRAAR AR R Ao RAd

* DSGETA *

ARV ERRBARRNARBAERARRARNRARRRRRRRAREARARRASARARAARURARARANRANRARA AR

subroutine dsgeta(a,nobs,ntlmm,ntl,bigm,tsigma,qrtsla,workv,workm)
double precision a(ntlmm,ntlmm), tsigma(ntl,bigm),qrtsla(bigm),
workv(ntl) ,workm(ntl,ntl)
integer nobs,ntlmm,ntl,bigm
$
Compute matrix a=Q ' *# VvV # Q
2 2

L

Form V put in workm
$
do j=1,ntl {
do i=1,ntl {
if (i==j & i<=nobs)
workm(i,j)=1.0d40
else
workm(i,j)=0.0d40

}

call dsqtaq(tsigma,ntl,ntl,bigm,qrtsla,workm,ntl,a,ntlmm,
workv,workm)

return

end

ARARBARRRARRRARRRNERRRRRARRRRRARSRRABRAREAARARRERARAAARAARR SRR AR AN

* DSGETB *

FRRRNANRRRRARRARAARAAARNRERRRRARNSRRRARRARRNERRAARRARAAAAAAEARRR R NE

subroutine dsgetb(b,ntotal ,nobs,ntl,ntlmm,bigm,
esigma,tsigma,grtsla,workv,workm,
istant,nactiv)
double precision b(ntlmm,ntlmm) ,esigma(ntotal,ntotal),
tsigma(ntl,bigm) ,qrtsla(bigm) ,workv(1l),

workm(ntl ,ntl)
integer ntotal,nobs,ntl,ntlmm,bigm,istant(l),nactiv
Compute
$

b=Q ' *E@) *Q
2 2

$

$

#

L

3 Copy rows and cols. of esigma that
L correspond to active constraints in
$. workm, column by column

$

do

j=1,nobs {

Pt MF Sl

a8 a4

LIV R it 4

A

.......
PR -

121

call dcopy (nobs,esigma(l,j),1,workm(l,3),1)
il=nobs
do i=nobs+l,ntotal {
if (istant(i-nobs) I= 0) {
{1=i1+1
workm(il,j)=esigma(i,3)

}
} _
jl=nobs
do j=nobs+l,ntotal {
if (istant(j-nobs) = 0) {
ji=ji+l
call dcopy(nobs,esigma(l,j),1,worlmn(1,j1),1)
11=nobs
do i=nobs+l,ntotal {
if(istant(i-nobs) 1= 0) {
i1=il+1
workm(il,jl)=esigma(i,j)

Compute b

call dsqtaq(tsigma,ntl,ntl,bigm,qrtsla,workm,ntl,b,ntlmnm,
workv ,workm)

o s W

return
end

BAEERAARARVARSARBRERRRRRRRARNRARAARRRRNRRAAARNASANRCARAAANEAA AR AAS

hod DSGRIA *

AERARANRANRERAARERARRERARARANRAAARANERRRRRARARRRRRRANARARAAAASA bR

subroutine dsgrla(lambxda,lamvec,nvalle,nvalri,nvalam,
bigeig,ntotal,zero)

double precision lambda,lamvec(l),bigeig,zero

integer nvalle,nvalri,nvalam,ntotal

$

Construct reqular grid around lambda (from unconstrained

problem) .

$

if (lambda <= zero) {
if (lanbda <= -0,5d0) {
nvalamenvalle+l
lamvec (nval am) =dlogl0 (ntotal*bigeig*1.d3)
lamvec (nvalle) =lamvec (nvalam)~-2.40
lamvec(nvalle-l)=lamvec (nvalle)-1.40
lamvec (rvalle-2)slamvec(nvalle)-2.40

PRI

P iCIr N -

R R T T T T T Ty N T e Ty ey e s e L A
L . - - D <SS Lo -t N N - LT .

(s

122

for (imnvalle-3; i>=l; i=i-1)
lamvec(i)=lamvec (i+1)-0.1

}
else (
nvalamsnvalri+l

lamvec (1)=dlogl0(2ero)

for (i=2; i<snvalam; i=i+l)
} lamvec (i)=lamvec(i-1)+0.1

else {

rvalapsnvalletnvalri+l

{lerwalletl

lamvec(il)=dloglO (lambda)

for (i=i1+l; i<snwalam; i=i+l)
lamvec(i)=lamvec(i-1)+0.1

for (i=il-1l; i>=]l; i=i-l)
lamvec(i)=lamvec(i+1)-0.1

return
end

REBRARB AV ARBARARVRAEARANRARRANANNRNARARRNARENRFREREERRRERRRSDR RN NRN

* DSHE1l *
B T o e o]

subroutine dshell (hessl, ntotal,tsigqr,ldt,esigma,bigm,nobs,
qrtsia,workv,workm)
double precision hessl (ntotal,ntotal),tsigqr (ntotal,bigm),
esigma(ntotal ,ntotal) ,qrtsia(bigm) ,workv(ntotal),

workm (ntotal ,ntotal)
integer ntotal,ldt,bigm
$
$# Form upper left hand corner of hessl
#
$ Form:
] |IE E E E | IE |
$ 111 11 121 | 11|
workm = | =] | *|E E |
IE E EE |- |E |] 11 12|
$] 21 11 21 21| | 211
$
do i=],ntotal {(
do j=i,ntotal {
workm(i,j)=ddot (nobs,esigma(i,1),ntotal ,esigma(l,j),l)
workm(j,i)=workm(i,3)
}
L

- v v W

e P T

PARAC Y

4, 2 -.:'

.

A
2
.
.

-

......

123

4 Obtain:

#

Q' * workm * Q

$ 2 2

$

call dsqtaq(tsigqgr,ntotal,ntotal ,bigm,qrtsia,workm,ntotal,
hess], ntotal ,workv,workm)

return

end

RRNRARERARARRRRERARNAARARARRNRRARRRANRRRARAANRERRAARARA RN A RN A S

* DSHE12

*

ARRRBRRNARARARANEARAANRERRRBAAANARANRANRARAAAERAARAERA AR AR bR bR b kb kit

subroutine dshel2(hessl,ntotal,tsigqr,esigma,bigm,nobs,nmbigm,
qrtsia,tsigma,workm)

double precision hessl (ntotal ,ntotal) ,tsigqgr(ntotal,bigm),
esigma(ntotal ,ntotal) ,qrtsia(bigm),
tsigma(ntotal,bigm) ,workm(ntotal ,bigm)

integer ntotal,bigm,nobs,nmbigm

3

Compute upper right hand corner of hessl =

]
] 1B |
Q'* | 11| *T
] 2 1B | 1
| 21]
Form
#
1B |
{11] » T
IE | 1
| 21|
#
put in workm
do j=1,bigm {
do i=l,ntotal {
workm(1i,j)=ddot (nobs,esigma(l,1),1,tsigma(l,j),1)
}
}
$ Multiply by
$ 1Q *I
§ D
iQ 'l
$ | 2

JRUSNL P S

.U

124

job = 01000

do j=1,bigm
call dqrsl (tsigqr,ntotal ,ntotal ,bigm,qrtsia,workm(l,3),
dunmy ,workm(1,3) ,dummy,dummy ,dunmy, job,info)

|
Put last nmbigm rows of workm which
$ contain hesl2 into upper right hand
$ and lower left hand corner of hessl
j2=bigm+1
do j=1,bigm {

j1=rmbigm+]

call dcopy(mmbigm,workm(j2,j),1,hessl(1,31),1)

call dcopy(rmbigm,workm(j2,3),1,hessl(jl,1),ntotal)
return
end

RARRRRBARNERNARNANARARANRRRRRRARRARAARARARRRRRARARRRAARERAR AR AN RAAS

* DSHE22 *
Ll D g L L T T ey T O A e

subroutine dshe22 (hessl,ntotal,nobs,bigm,nmbigm,tsigma)
double precision hessl (ntotal,ntotal) ,tsigma(ntotal,bigm)
integer ntotal,bigm,nmbigm,nobs

.
N : Compute lower right hand corner of hessl =
' " XY

11

$
#
do j=rmbigm+l,ntotal {
do i=j,ntotal {
hessl (i,j)=ddot (nobs,tsigma(l,i-nmbigm),1,tsigma(l,j-nmbigm),1)
hessl(j,i)=hessl(i,j)

}

return
end

RRRRRRARRRNERR BRI RARANRAARAIRRARRRARRRARRRARARARLEERRARARANRRRR AR R AN A

* DSHEMU "
ARAREAARRRANRRARAARARAARRRARAARARRRARNRRRARANRTARRARRRRR TR AT RN A AR

subroutine dshemu(n,jthcol ,hessl, hess2,ntotal ,nmbigm,lambda,y,hy)

g double precision y(l),hy(1l) ,hessl (ntotal,l) hess2(nmbigm,1l),lambda,
lamnob

integer n,jthcol ,ntotal,nmbigm

common /block/nobs

8 125
(
.;;? ' Note hessl (ntotal,ntotal),
B # hess2 (rmbigm,nmgigm)
3 H
- $# Multiply hessian times vector y or recover jth column of hessian
$
$ '
Y L4 n number of elements in y
$
o $ jthcol 1If jthecol = 0, hy will contain the product
. # hessian*y
. If jthool > 0, hy will contain the jth column
. # of the hessian
2N $
-] hessl Double (ntotal,ntotal).
- # First part of hessian for spline problem.
e hess2 Double (nmbigm,nmbigm).
N Second part of hessian which gets multiplied
. $ by lambda.
. $ ntotal Integer variable.
:_ Row dimension of hessl.
% $
o # mmbigm Integer variable.
Row dimension of hess2.
-
" lambda Double Precision variable.
. $ Current value of lambda.
R]
"] $ Y Input vector required to compute hessian*y
~ $ when jthcol = 0,
’ #
. # hy Output vector containing jth-col of hessian or
e $ hessian*y depending on value of jthcol
- $
% lamnob=nobs*lambda
s if (jthcol == 0) {
compute hessian*y put in hy
'_\: do j-l,mbigm {
. hy(j) =ddot (ntotal ,hessl(l,3),1,y,1)+
| lamnob*ddot (rmbigm,hess2(1,3),1,y,1)
do j=rmbigm+l,ntotal {
‘ . } hy(j)=ddot (ntotal ,hessl(1,3),1,y,1)
o }
. else {
call dcopy(ntotal hessl(l,jthcol),l,hy,1)
: if (jthcol <= nmbigm)
- } call daxpy(nmbigm,lamnob,hess2(1,jtheol),l1,hy,1)
A

ol return

4 l- .,
»

At Sl Sadl S i S S P g A
Y

M A

ST TR

126

P

b

end

ARRNBRARRARRRRRARRARARRRRRRARARSNRRNARRRRNRRANRERRR RN AR AR RN AR

* DSHES1 *
BRARDARBARRBRARRRRNBANARRARRRARBRERARRRARARRRRRBENRREANARNRA ARl

subroutine dshesl (hessl,ntotal,nmbigm,nobs,tsigqr,qrtsia,tsigma,
bigm,esigma,work)

double precision hessl (ntotal,ntotal) ,tsigqr (ntotal ,bigm),
grtsia(bigm) ,tsigma(ntotal,bigm),
esigma(ntotal ,ntotal) ,work(1)

integer ntotal,bigm

Campute hessl

#

] Form first nmbigm X nmbigm of hessl

$

nwlsntotal+l

call dshell (hessl,ntotal,tsigqr,ntotal,esigma,bigm,nobs,qrtsia,

work (1) ,work(nwl))
#

$ FPorm upper right hand corner of hessl

call dshel2(hessl,ntotal,tsigqgr,esigma,bigm,nobs,nmbigm,qrtsia,
tsigma,work)

#

$ Form lower right hand corner of hessl=T '*T
$: 1 1
’ .

call dshe22 (hessl,ntotal ,nobs,bigm,nmbigm,tsigma)

return

end

BRBENRRRNARRRARRNARARRAAARRRARRANRRRRNRRAARRRRLLANREERRA RN A AR RA R AS

* DSHOFP *
T T e L s

subroutine dshofp(pl,x,1dx,4im,nobs,s,lds,ncons,ntotal ,m,
thetam,bigm,powers,1dp,coef ,hofp)

double precision pl(6),x(1dx,1),s(1ds,l),thetam,hofp,tl,t2,t3,
pZ(G),coef(l),eij,ptod

integer 1dx,lds,ncons,ntotal,bigm,1dp,powers(ldp,bigm) ,dim

$

This routine evaluates the spline h at the point pl.

$

$# h(pl)=thetam * (tl + t2) + t3

$

e T g .

where:
4 nobs

-y - PO T |

N A AP

....................

127

tl=s SIM coef(i)*e(x ,pl)
i=] i

ncons
t2 = SIM coef(nobs+i) *e(s ,pl)
i=] i

bigm
t3 = SIM coef(ntotal+i)*phi (pl)
i=1 i

e(p2,pl) = t**(2%m-dim) - if dim is odd
= tr*(2%n-dim) *1n(t) if dim is even

t=1||l p2-pl Il.

Compute tl

HA X X XX L K ¥ R ¥ F X & § R X K X X X]

1 =0.40
j=1,nobs {
do i=]1,dim
p2(i)=x(i,]j)
call dseij(pl,p2,dim,m,ei])
tl=stl+coef (j) *elj

8

}
$
$ Compute t2
#
t

do j=1,ncons {
do i=l,dim
p2(i)=s(i,j)
call dseij(pl,p2,dim,m,eij)
t2st2+coef (nobs+j) *eij

Compute €3
t3=0.d0
do j=1,bigm {
prod=1.0d0
do i=1,dim {
ip=powers(i,j)
prod=prod* (pl (1) **ip)

t3=t 3+coef (ntotal+j) *prod

}
hofp=thetam * (tl + t2) + t3
return

e W Y~

.

@ e e e T s e . T S
P T, WP Wiy T T T, Py i W WA T LY Y SR TR N VR N YR DR P S T

it PR - UL Dy S S

denladas

.......

128

end

BERRRARRRRARARARRRRARNANRREARARRRERRRRRRRRARR AR NR AR Rk b kh bR id

* DSLIMA *
BARRARBRRERBARRBRABRRRARRNRENRRRAARRERAARRENARARRR RN AR AR TR Rhhd

subroutine dslima(gplima,nobs,ntotal,bigm,nmbigm,tsigma,
tsiggr,qrtsia,esigma,work)
double precision gplima(nobs,ntotal) ,tsigma(ntotal,bigm),
tsigqr (ntotal ,bigm) ,qrtsia(bigm),
esigma(ntotal ,ntotal) ,work(l)
integer nobs,ntotal,bigm,nmbigm

#

$

§# Compute matrix gplima which defines linear term
$

$ | IE ||
$ 1Q **| 11} |
$ 2 IE |1
$ gplima' = | 21 |
] |
I T° I
] 1 |
#

#

§ob=01000

i 1=rmbigm+1

1 2=bigm+l

do i=l,nobs { :

call dqrsl (tsiggr,ntotal ,ntotal ,bigm,grtsia,
esigma(l,1i) ,dmy,work(l) ,dmy,dmy,dmy,
job,info)
call dcopy(rmmbigm,work(i2),1,gplima(i,1),nobs)
call dcopy(bigm,tsigma(i,l) ,ntotal,gplima(i,il), nobs)
}
return
end

RRARBRANRRARANRRBARRARRRRANAURRRRRTANRREY: SRR RAARARRARAARRRR RN RN

* DSLIVE *
AEBANRERAANRARARENRRRARANAERRARRRARRRRRRRRRNY R >R R AR ARk

AP .4 ThENg nt e utn

subroutine dslive(gplive,ntotal,z,nobs,qgplima)

double precision gplive(ntotal),z(nobs) ,qplima(nobs,ntotal)
integer ntotal,nobs

$

Compute -z'*plima = linear term in quadratic function

$
do i=],ntotal

Lo 4

'-A'-. - a T ‘Q’ - - . .
- P T Y - - . b : LT - o . .
VR U TR TG TR Ty Ve V.0 G0 T U W W S0 WP WP L TP R DY I S - m

~~~~~~~ T STy i R e T e TR T Y TR TN T T ARG EOTAVELEIY LY UOR e TRTR T

— ek o Ao 3 LY LI WP WP D




-

129

gplive(i)=-ddot(nobs,z,1,qplima(l,i),1)
return
end

AARARERANRRARRRRRARRRRRERRARRRBRAARARRRANRRRRRAERANRAAAA R AR RN hAdd

: DSIMIN *
ARRARRRERARRRARARARARARRANARRARAAARRRRARNERRRR RN ARARRRRR R AR NAR  bddd

subroutine dslmin(voflam,nvalam,lminin)
double precision voflam(nvalam)
integer lminin(nvalam)
# This routine determines for which indices
# in voflam there is a local minimum and sets
# the corresponding entry of lminin to 1
# .
if (nvalam <= 3) return
if (voflam(l) < voflam(2) & (voflam(l) > 0))
Iminin(l) = 1
else
Iminin(l) = 0
if ((voflam(nvalam)<voflam(nvalan-1)) & (voflam(rwalam) > 0))
Iminin(nvalam) = 1
else
lminin(nvalam) = 0
do i=2,nvalam-1l {
if ((voflam(i)<=voflam(i-1))&(voflam(i)<=voflen(i+l))&(voflam(i)>0))
Iminin(i) = 1
else
Iminin(i) = 0

return
end

ARARARRANRNRRRRRRRRRERRARRARRRARARRRRRRARNAARRARARARRARRAARR AR RN R R AR

* DSMACH *

RBARERARRBARANRNRARRARRRRARARRRANRRNRAARRRAANARARRAAARRARA AR

subroutine dsmach( wmach )
double precision wmach(15)

#

# mchpar must define the relevunt machine parameters as follows.

$ wmach(l) = nbase = base of floating-point arithmetic.

# wmach(2) = ndigit = no. of base wmach(l) digits of precision.
$ wmach(3) = epsmch = floating-point precision.

$ wmach(4) = rteps = sqgrt(epsmch).

wmach(5) = flmin = smallest positive floating-point number.
$ wmach(6) = rtmin = sqrt(flmin).

$ wmach(7) = flmax = largest positive floating-point number.




130
# wmach(8) = rtmax = sqrt(flmax).
$ wmach(9) = undflw = 0.0 if underflow is not fatal,+ve otherwise.
# wmach(10) = nin = standard file number of the input stream.
$ wmach(ll) = nout = standard file number of the output stream.
#
double precision dsqrt
nbase = 2
ndigit = 56
wmach(l) = nbase
wmach(2) = ndigit

wnach(3) = wmach(l)**(1 - ndigit)
wnach(4) = dsgrt(wmach(3))
wmach(5) = wmach(l)#**(-128)
wnach(6j) = dsqrt(wmach(5))
wnach(7) = wmach(l)**126
wmach(8) = dsqrt(wmach(7))

wmach(9) = 0.0
nin =5
nout = 8
wmach(10) = nin
wmach(1ll) = nout
return

end

************i**t***********t**********ﬁ*****i**********************

* DSPOLY *
**************9&***************i***********************************

subroutine dspoly (dim,m,powers,1dp)

# Record powers of polynamials.
#
integer powers(ldp,l),pl,p2,p3,p4,pS,p6,dim,m,1dp,count
#
count=0
if (dim == 1) {
do pl=0,m~1 {
count=count+1l
powers(1l,count)=pl
} return
if (dim == 2) {
do pl=0,m-1
do p2=0,m-1-pl {
count=count+l
powers(1l,count)=pl

powers(2,count) =p2

A" g L Lt R a0 A M At i Aniase 0 e eaicive S a-m st et Ee dhel LI TINL JNNE JRNE R




T T R Y T

131

} return
if (dim == 3) {
do pl=0,m-1
do p3=0,m-1-pl-p2 {

count=count+1l
powers(1l,count)=pl
powers(2,count) =p2
powers(3,count)=p3

return

}
if (dim == 4) {
do pl=0,m-1
do p2=0,m-1-pl
do p3=0,m-1-pl-p2
do p4=0,m-1-pl-p2-p3 {
count=count+l
powers(1l,count)=pl
powers (2,count)=p2
powers(3,count)=p3
powers(4,count) =p4

return

if (dim == S) {
do pl=0,m-1
do p2=0,m-1-pl .
do p3=0,m-1-pl-p2
do p4=0,m-1-pl-p2-p3
do p5=0,m-1-pl-p2-p3-p4 {

count=count+l
powers(1l,count)=pl
powers(2,count) =p2
powers(3,count) =p3
powers(4,count)=p4
powers (5, count) =p5
}
return
}
if (dim == 6) {
do pl=0,m-1
do p2=0,m-1-pl

do p3=0,m—-1-pl-p2
do p4=0,m-1-pl-p2-p3
do p5=0,m-1-pl-p2-p3-p4
do p6=0,m-1-pl-p2-p3-p4-p5 {
count=count+1
powers(1l,count)=pl
powers(2,count)=p2

rfv'.“.-"-*rﬂ“““-i o sa

PR TP S W W PP U S S Sy P UL L. S &

R W S S

At A PSS A‘_LAAA¥‘A“LA'L.LJ




| Sadl gt L O
- e A
o .

132

powers (3,count) =p3
powers(4,count) =p4
powers(5S,count) =p5
powers(6,count) =p6
}
| return
end

RERRRERERARBERRARRRRARRRRARARAANRAERARRARARAREAREAAAAAEARAA AR ARA AR

* DSQTAQ *
B T Y T Py e oo e

subroutine dsgtaq(t,ldt,n,m,qraux,a,lda,q2taq2,ldgaq,workv,workm)

double precision t(1ldt,m),qraux(m),a(lda,n) ,workv(n),
g2taq2(ldgaq,n—m) ,workm(1da,n)

integer 1dt,n,m,lda,ldqaq

$ .

# This routine forms the product

Q *l

1| *AlQ Q[=Q"*A*Q
Q 'l 11 2]

121

and stores Q ' * A * Q
2

in the matrix g2tag2.
To save storage the matrix a can also be used as workm
in which case on return a is destroyed

Get
workm=Q "' *a

C L E K L 2 K L & ¥ £ B L 2 R _L_ L J

job=01000
do j=1,n
call dqrsl(t,ldt,n,m,qraux,a(l,j) ,dmy,workm(1,3j) ,dmy,dmy,
dmy, job,info)

Post-multiply the last 1~-m rows by Q
2

and put in Q'AQ, this is done by
premultiplying the last n-m columns of
workm' by Q' anc then taking the last
n-m rows of the resulting matrix

L X R 2 R X X

§

,‘.: “‘-."‘; N - - - RS - - et - “ o . .- T . . N - . - j
P, itnn, o e S ‘- PP UL YU I U DRI G Ui P WA T UL i WD % Sy g S IR




o .
hode 0 .': "l"'_,

.t;;’fll"./

-

........

133

for (ism+l; i<=n; i=i+l) {

il=i+m
$ copy ith. row of workm to
# workv (= ith.col. of workm')
call dcopy(n,workm(i,l),1da,workv.l)
$ put Q'*ith row of workm in workv
call dqrsl(t,ldt,n,m,qraux,workv,dmy,workv,dmy,dmy,dmy,job, info)
$ copy last n-m els. of workv to (i-m)th col.
$ of q2taq2
nminmen-m+l
call dcopy(mminm,workv(mt+l),l,q2taq2(1,i-m),1)
return
end

BRNBRNRRARRRRRENRRREANRARBAARARARRARERNARRANAREREAAARAAARARA RNk b

* DSRDL *
RAARRARARRERDRARRAAARRENRARRRRRRRARRRRARAER AN RRARANNRR AR bRk hbdd

swroutine dsrdl (ntotal ,nobs,ncons,bigm,dim,nmbigm,hessl,
hess2,qpl ima,qpcons, tsigqr ,qrtsia,
esigma,ierror)

double precision hessl (ntotal,ntotal) ,hess2(nmbigm,nmbigm),
qplima(nobs,ntotal) ,gpcons(ncons,ntotal) ,
tsiggr (ntotal ,bigm) ,qrtsia( bigm) ’
esigma(ntotal ,ntotal) .

integer ntotal,nobs,ncons,bigm,dim,ierror

#

# Read intermediate results from file associated to unit 1

$ If first input record does not agree with the values from
# the calling program ierror is set to 10 and nothing is done

# If there is insufficient data in file ierr is set to 11
# and the routine returns at that point
read (1,end=100) nt,no,nc,mbig,nd
if (no != nobs | nc = ncons | mbig != bigm | nd != dim){
ierror = 10
return

}

mmbigmentotal-bigm

read (1,end=100) ((hessl(i,j),i=1,ntotal),j=1,ntotal)
read (1,end=100) ((hess2(i,j),i=1,nmbigm),j=1,nmbigm)
read (1,end=100) ((gplima(i,j),i=1,nobs),j=1,ntotal)
read (1,end=100) ((gpcons(i,j),i=1,ncons),j=1,ntotal)
read (1,end=100) ((tsiggr(i,j),i=1,ntotal),j=1,bigm)
read (l,end=100) (qrtsia(i), 1-1 (bigm)

read (1,end=100) ((esigma(i,j) 1-1 ,ntotal) sj=1,ntotal)
ierror = 0




134

return

#

# error return - insufficient data
#

100 ferror = 11

return

end

RERBRRARRRAARRRRANRERLERRRRAAERANERLAREAARRRAARAEERRAA AN A e RR bk hhhh b dd

* DSRIS *
RARRRARAAARARARNNRRARRARRAARAARERANARAARAARRARARARRARAARRAAR R AR A A RAhRh

subroutine dsrds(x,ldx,dim,nobs,s,lds,ncons,z,m,nvalam,istate,
nactiv,iactch,powers,l1dp,bigm,coef hhat,
voflam,lamvec)

double precision x(ldx,1),s(1ds,l),z(1l),coef(l) ,hhat(l),

voflam(l) ,lamvec(l)
integer 1dx,dim,nobs,lds,ncons,m,nvalam,istate(1) ,nactiv,iactch(l),
powers(1dp,1),1dp,bigm
$

# Read solution obtained by dscomp in file splsol
¢ '
open (3,file='splsol’,form='unformatted’)

rewind (3)

read (3) dim,nobs,ncons,m,bigm,nvalam,nactiv,thetam
read (3) ((x(i,j),i=1,dim),j=1,nobs)

read (3) ((s(i,j),i=1,dim),j=1,ncons)

read (3) (z(i),i=1,ncbs)

read (3) (istate(i),i=nobs+ncons+l,nobs+2*ncons)
read (3) (lactch(i),i=1,nvalam)

read (3) ((powers(i,j),i=l,dim),j=1,bigm)

read (3) (coef(i),i=1,nobstncons+bigm)

read (3) (hhat(i),i=l,nobs)

read (3) (voflam(i),i=1,nvalam)

read (3) (lamvec(i),i=l,nvalam)

return

end

NRANBRANRRERARAREARARRRRRRERRAREAAREANRRRARARRANBSAAARREERRA AR AR RAR

» DSSOLV *

AERRRRRARARRRNARARRRARAARARRRRRRRRRAAARARARNRRARNAAARARARR SRR AR AR AAR

subroutine dssolv(hessl,ntotal, hess2,nmbigm,bigm,qpl ima,
gplive,gpcons,ncons,nobs,tsigma,
grtsil,lamvec,voflam,indlam,coef,ioptv,igpout,
nvalle,nvalri,nvalam,zero,finity,bl,bu,
start,istate,istant,iwork,iactch,
wmnach,bigeig,itmax, hhat,2z,esigma,nactiv,eigen,
work,ierr)




AR ot Tt i S WA v Rtie e i, Mast i i A A L AN gL s e et A S A SN s e s e

135

external dshemu
common /block/nobser
logical start
integer ntotal ,nmbigm,bigm,ncons,nobs,ntotal,indlam,ioptv,iqpout,
nvalle,nvalri,nvalam,istate(l),istant(l),iwork(l),
jactch(l) ,itmax,nactiv
double precision hessl (ntotal,l),hess2(nmbigm,1),qplima(nobs,ntotal),
gplima(nobs,ntotal) ,qplive(ntotal),
tsigma(ntotal ,bigm) ,qrtsil (bigm) ,1amvec(nvalam),
voflam(nvalam) ,coef (ntotal) ,zero,finity,
bl (ncons+ntotal) ,bu(ncons+ntotal) ,wmach(15),
bigeig,hhat (nobs) ,z(nobs) ,esigma(ntotal ,ntotal),
. work(1l) ,vnum,lambda,eigen(l)
# This routine solves the actual problem optimizing with respect to
# lambda if necessary. The routine gpfc is cilled from this routine
#
ierr=0
lambda=lamvec(l)
if (ioptv == 0) {
nvalle=0
- nvalri=0
nval an=1
lamvec(1)=dloglO (1ambda)

else
Construct regular grid of values of log(lambda)
call dsgrla (lambda,lamvec,nvalle,nvalri ,nvalam,bigeig,ntotal ,zero)
meglvl=igpout
msglvg=igpout
maxact=ncons
n=ntotal
nclin=ncons
nctotl=n+nclin
liwork=nctotl
lwork=n*n+8*ntnclint (nclintl)* (nclintl)+n* (nclintl)+l
nfree = n
featolswmach(4)

set coef to initial quess
(Recall that work(l) is used as coef
to have in coef a minimum at every stage

i=1,n
work (1) =0.1d0

initialize istant

L X ] 8.““‘

do i=1,nclin
istant (i)=-1

"
D
)
;
r
)

|

‘»
'r
b
[
i

k M )
........... T . I SO * L e L. N ) -
entobtatntolt odobababnd oot olin balotedobe botos e  shes o .° & 2. & o o o 2 & O & a o . PO - Al ot - ‘




. 0
»

T TTY wer
- T )

L)

FATR AP

- ———~—
Y ‘rte

-

i
e

L X K LA A & X ]

136

] initialize first n rows of bl,bu and istate
$
do i=1,n {
bl(i)=-finity
bu(!)= Zinity
} istate(i)=0
.
for each value of lambda in lamvec solve
$ quadratic programming problem and evaluate
$ generalized cross-validation
{actch(nvalam)=0
© viant=finity
nobser=nobs
for (ival=nvalam; ival>=l; ival=ival-l) {
mwO=ntotal+l
nwlsncons+nwO
nw2sntotal+ncons+nwl
lambda=10.d0%**1amvec(ival)

call @fc(dshm,hessl,hessz,ntotal,nmbigm,lanbda,statt iter,itmax,

1iwork,lwork,msglvl ,msglvg,maxact,n,nclin,nctotl ,nclin,
inform,nactiv,nfree,1state,iwork,finity,finity,featol,
qgpcons,work (nw0) ,bl,bu,work (nwl) ,gplive,work,work(nw2),
wmach)
if (inform > 0) {
voflam(ival)=-1.0d0
if (inform == 200) inform=5
iactch(ival)=inform+l
} next
if (nvalam == 1) {
call dcopy(n,work,l,coef,l)
indlam=1
break

}

ntlsnobs+nactiv
ntlmmentl-bigm
nwlsnwO+ntlmm*ntlmm
nw2snwlsntlmm*ntlmm
vnu=0.d0

Compute summ of squares of the
residuals to form numerator of
Cross-validation function

do i=1,nobs {
compute hhat(z(i) put in work(nwO+i-l)

work (nwC+i-1)=ddot (ntotal ,qplima(i,1) ,nobs,work,l)




e L ol ot an e i et e A S B e Acii SieC IR LI ) LA AR A AR drihd S At i et v R At

137

temp=work (nwO+i-1)-z (1)

viunsvnumttemp¥ temp
) }.
$ Compute generalized cross-validation
$

call dsvofl (voflam(ival),lambda,vnum,ntotal,bigm,nobs,ncons,nmbigm,
qpl ima,qpcons,esigma,tsigma,qrtsil,istate,istant,
nactiv,ntl,ntlmm,idifer,neig,eigen,work (nw0) ,work(nwl),
work (nw2) ,ierr,iwork)

if (ierr != 0) return

If set of active constraints changed, change
the value of iactch(ival) ‘

L X 5 3

if (idifer == 1 g ival < nvalam) {
if (lactch({ival+l) == 0)

jactch(ival)=l .
else _
iactch(ival)=0
: }
] ' Set start to .true. to use current set of
# active constraints as quess for next value
: of lambda .
start=,true.
' .
# If current value of v(lambda) is smaller
# previous one, store current value of ival
] in indlam and current solution in coef
#
if (voflam(ival) < vlant) {
viant=voflam(ival)
call deopy(n,work,l,coef,l)
} indlar=ival
#
¥ Go to solve gq.p. problem for rext value
, of lambda
$ Compute hhat
$
do i=],nobs
hhat (1) =ddot (ntotal ,qplima(i,l) ,nobs,coef,l)
return

ond

s a8ttt LT, Y . s te Ta Tt L ~ . . | ! -
n B A A S S e ot g e R P WL WU S WY - P ] e ————— 'A);‘JAEAQ—AL-_.J




138

ARRRRRERRANERRARNNRRARNANRRANRRARNRRRERAANRRAARENRNNARARARRRARAR AR

- * DSTETA *
:{ RARERRERRRAARERRARAAERARRRRERRAENIERARRRLEARRARRRAARRIR AR NAA AR hdd

subroutine dsteta (dim,m,thetam)

get theta sub m for dim,m

L L K X L J

integer dim,m

double precision thetam

integer rtab(36),p

double precision pi

data pi / 3.1415926535897932384640 /

data rtab / 12, =240, 10080, -725760, 79833600, ~12454041600,
8, -128, 4608, -294912, 29491200, -4246732800,
-8, 96, -2880, 161280, -14515200, 1916006400,
1, 64, -1536, 73728, 1, 1,
1, -64, 1152, 1, 1, 1,
1, 1, 768, 1, 1, 1/

]

l=6%im+m-7

p = dim/2

thetam = 1.0d0 / (dfloat(rtab(l)) * (pi**p))
return

end

..............

................
.....................




..................................

139

mii*i"t.*ﬁit**ii*t**itt‘ﬁi*t****ﬁ**t****ﬁt**i**t******t****t*i*

* DSTSIG *
ARNRARARRAAR RN A AARABRARNERRAARAANCRNRARRARRAANRAARAARARRRRRRA RN

subroutine dstsig(x,1dx,s,1ds,powers,1dp,tsigma,ntotal,bigm,

- nobs,ncons,dim,isigma,sigma)
- double precision x(1ldx,nobs),s(lds,ncons),
sigma(nobs), tsigma(ntotal,bigm)
} integer 1ldx,lds,dim,ncbs,isigma, powers(ldp,bigm),ldp,bigm,
¢ ntotal ,ncons
$
' # Compute:
$ ISIGMA O] T |
'\-f $ tsigma = | 1111
e $ | 11 2]
s $
" $
do 1=1,bigm {
do j=1,nobs {
prod=1.0d0
do i=1,dim {
ip=powers(i,l)

if (ip == 0) next
} prod = prod*(x(1i,3))**ip
$ divide by siqma if needed
if (isigma == 0) prod=prod/sigma(j)
tsigma(j,l)=prod

do j=1,ncons {

prod = 1,040

do i=l,dim {
ip=powers(i,l)
if (ip == Q)
. hext
else

prod=prod*(s(i,])) **ip

tsigma (nobe+j,l)=prod
}

return
end




A o gk 00 Tt At i e i e e R aci TeC LIS A A I SR

R K

140

NHRANRBARRRBAARRRARRARRERRERAREANREARANRERASRERARARARR AR RS RN A dd

* DSVOFL *

ARRARRARRRARNRRARARRNAAAARRRRRNRAANRRNAAAREARERARARNARAARR AR AN NNy

subroutine dsvofl (voflam,lambda,vnum,ntotal,bigm,
nobs,ncons,nmbigm,qpl ima,gpcons ,esigma,
tsigma,grtsil,istate,istant,nactiv,ntl,ntlmm,
idifer,neig,eigen,b,a,work,ierr,iwork)
double precision voflam,vnum,qplima(nobs,ntotal),
gpcons (ncons,ntotal) ,esigma(ntotal ,ntotal),
tsigma(ntl,bigm) ,qrtsil (bigm) ,eigen(l),
b (ntlmm,ntlmm) ,a (ntlmm,ntlmm) ,denom,
lambda,lam,work (1) ,eigi
integer ntl,ntlmm,ntotal,nobs,ncons,nmbigm,nactiv,neig,iwork(l),
. istate(l),istant(1) ,bigm

# Compute generalized cross-validation function for
# constrained problems

#

lam=lambda

idifer=0

$ .

# Check if active constraints changed
and update istant if necessary

$

do i=l,ncons {
if (istate(ntotal+i) = istant(i)) {

istant (i)=istate(ntotal+i)
idifer=l
}
1
$ If constraints did not change skip
generalized eigenvalue problem
$
if (idifer == 0) go to 100
#
$ Recover T(l) from gplima and gpcons
) and put in tsigma
$
do j=1,bigm {
call dcopy(nobs,qplima(l,nmbigm+j),1,tsigma(l,j),1)
i1l=nobs

do i=l,ncons {
if (istant(i) 1= 0) {
i1=i1+1
call dcopy(bigm,qpcons(i,nmbigm+l) ,ncons,tsigma(il,1),ntl)

L g

Obtain Q-R decomposition of tsigma

« e e . . .
. - - - -~ T . o e . -~ LT, - - . LR . . tL . ) . 3 N " ¥
\ P TR T S T SRR S S WA DI W VAT S Tt WA A S TP [P S e . ) A, W S SR S LIPS VR R Y Y W




L e "B "B e b gt e et At St Shagt Do Mgy L S0 i S i MER e LN N R RN . Dl Elied I ‘TV'T
...................... [P A o o ) . . ) “ ’ B

141

> $ which contains T(1)
: #

job = 0
call dgrdc(tsigma,ntl,ntl,bigm,qrtsil,jpvt,work,job)

Compute

b=Q ' *E(1) *Q
2 2

g Y X ¥ X K

11 dsgetb(b,ntotal ,nobs,ntl,ntlmm,bigm,esigma,tsigma,
qrtsil,work(l) ,work(ntl+l) ,istant, nactiv)

Get

a=Q'*vV*Q
2 2

1 dsgeta(a,nobs,ntlmm,ntl,bigm,tsigma,grtsil,work,
work(ntl+l))

Solve generalized eigenvalue problem

" call dseige(ntlmm,a,b,eigen,work,ierr)
i1f (ierr == 7™ntlmm+l) {
b is not pos. def. ierr=20

: ierr=20
: : return
}
#
L .
$ Note: eigen has the eigenvalues
$ of -1
# ‘ B *A
- in ascending order
|
100 continue
$
$ campute denominator of voflam:
$ denom = (1/nobs) trace(I-A(lambda))
$ ntlmm
# = (lambda* (SUM
$ is=]
] 2
: ((eigen(i)/(1+nobs*lambda*eigen(i)))
$
]
denom=0.d0
4 First compute trace(I-A(lambda))




Y

AR TMEAA AN A R A RS i i ot Bt et e . ‘-7‘.,”‘~ﬁ‘*l'4..“‘ﬂ - 8 —v

142

neig=0
do i=1,ntlmm {
eigiseigen(i)
if (eigi > 0.0d0) {
nejig=neig+l
) denom=denom+eigi/ (1.0d0+dfloat (nobs) *1lam*eigi)

neigsnumber of positive eigenvalues

B N G

denom = ((denom*lam)/dfloat (nobs) ) *denom*1am
voflam=vnum/dencm

return

end

BARRANARRNRAARRNERARRRARRRRRARIRARAAAAERARRRRLARRARNARRREARAR AR RAR

* DSWRT1 *

FEARRARRRRANARNRARANARARRRAARRRARRARERR AR RANNNARSAARRRA AN ARRN AR REN

subroutine dswrtl (ntotal,nobs,ncons,bigm,dim,nmbigm, hessl,
hess2,qpl ima,qpcons, tsigqr ,qrtsia,
esigma)

double precision hessl (ntotal ,ntotal) ,hess2 (rmbigm,nmbigm),
qpl ima(nobs,ntotal) ,qpcons (ncons,ntotal) ,
tsigqr (ntotal ,bigm) ,qrtsia(bigm),
esigma(ntotal,ntotal)

:nteger ntotal ,nobs,ncons,bigm,dim,rmbigm

§ Write intermediate results from file associated to unit 1
$

HE

write (1) ntotal,nobs,ncons,bigm,dim
mbigmentotal-bigm )

write (1) ((hessl(i,j),i=1,ntotal),j=l,ntotal)
write (1) ((hess2(i,j),i=1,nmbigm),j=1,nmbigm)
write (1) ((gplima(i,j),i=l,nobs),j=l,ntotal)
write (1) ((gpcons(i,j),i=l,ncons),j=l,ntotal)
write (1) ((tsiggr(i,j),i=1,ntotal),j=1,bigm)
write (1) (qrtsi»(!),i=]1,bigm)

write (1) ((esigma(i,j),i=l,ntotal),j=1,ntotal)
return

end

WL W L DN DRI SILY W G - 2. - SPLPEe P V-y




l*“‘v-{‘rl—gr—. oy

R

PR I W ST S AU T ) 2 NP s A WRPIP DS S AT WU W T TPV W AT . PP

143

**t'iﬁﬁﬁii*fi******i******i****t**************************f********

» DSWRTS .

BRRRAAR R R RN R AR RN R AR RN RAN A AR RRA N AR RRARRA RN N AR RANAR AR RAARAARE AR A A d

subroutine dswrts(x,ldx,dim,nobs,s,lds,ncons,z,m,nvalam,istate,
nactiv,iactch,powers,1dp,bigm,coef,hhat,
voflam,lamvec)

double precision x(1dx,1),s(1ds,1),z(1),coef(l) ,hhat(l),

voflam(l),lamvec(l)
integer 1dx,dim,nobs,lds,ncons,m,nvalam,istate(l),nactiv,iactch(l),
powers(1dp,1) ,1dp,bigm
#

# Write solution cbtained by dscomp in file splsol
#

open (3,file='splsol’,form='unformatted’)

rewind (3)

write (3) dim,nobs,ncons,m,bigm,nvalam,nactiv,thetam
write (3) ((x(i,j),i=1,dim),j=1,nobs)

write (3) ((s(i,j),i=l,dim),j=1,ncons)

write (3) (z(i),i=1,nobs) ) .
write (3) (istate(i),i=nobs+ncons+l,nobs+2*ncons)
write (3) (iactch(i),i=l,nvalam)

write (3) ((Powts(i'j) si=1,dim) :j’l'biqm)

write (3) (coef(i),i=l,nobs+ncons+bigm)

write (3) (hhat(i),i=l,nobs)

write (3) (voflam(i),i=l,nvalam)

write (3) (lamvec(i),i=l,nvalam)

return

end

AAARARRARERRRARRRNAADARARRAARAAARRRRAREANANRREANAARARARNRRAR RN AN AN

* DSZDIS *

ARRRRARRRARR A AR AL RARRRNAANRRAARARTLIRAAAARRARARARRAREANRRA AR AR d b hd

subroutine dszdis (zdata,nobs,sigma)
#
jraadt goale zdata values wwane
geeres dszdis divides zdata by sigma wwwew
$ .
implicit double precision (a-h,o-2)
dimension ydata(l),sigma(l)
$
$
grarer divide by sigma *waws
do i=]1,nobs

ydata ({)=ydata(i)/sigma(i)
return
end

.

cadada s alkha ‘_J




"

P PRI Yo . V.

R 20 Ve iini S S e SURINJRRCL I AR N - L

144

AARRARRRRRANERRARERRARRNRAANBARAARRERAEARRRANNRRAARARRAA AN AL R R b bd

* DszZMus *
B E L T e e L T T e e e

subrautine dszmus (zdata,nobs,sigma)
$
jantr* coale zdata values Wihaks
#****% dgomus multiplies zdata by sigma ###ws
$ _
implicit double precision (a-h,o~2)
dimension zdata(l),sigma(l)
L
$
gaerad multiply by sigma wwaws
do i=l,nobs

zdata(i)=zdata(i) *sigma(i)
return
erd

. . . - .- oo R
PP UL I G WDy V. VU . Gy SRy TPy Rty e adessbemafeanabenionde P A P PO WP s

b




145

BIBLIOGRAPHY

Adams, R A (1975). Sobolav Spaces, Academic Press .

Aitchison, J., Habbema, J. D. F., and Kay, J. W. (1977). A critical comparison of
two methods of statistical discirimination, Applied Statistics 26. pp.
15-25.

Akhiezer, N. I. and Glazman, 1. M. {1961). Theory of Linear Operators in Hilbert
Space, Wol. 1, Frederick Ungar Publishing Co. .

Anderson, J. A (1972). Separate sample logistic discrimination, Piometrika 59,
1, pp. 18-35.

Anderson, J. A and Senthilselvan, A (1980). Smooth estimates for the hazard
function, Journal of the Royal Statistical Society, Series B 42. 3, pp.
322-327.

Anderson, J. A and Blair, V. (1982). Penalized maximum likelihood estimation
in logistic regression and discrimination, Biomsetrika 69, 1, pp. 123-136.

Aronszajn, N. (1950). Theory of reproducing kernels Transactions Americen
Mathematical Society 56, pp. 337-404.

Aubin, J. P. (1979). Applied Functional Analysis, John Wiley and Sons, New York.

BMDP, (1975). Piomaedical Computer Programs, University of California Press,
Berkeley and Los Angeles.

Bates, D. and Wahba, G.(1983). Computational methods for generalized cross-
validation with large data sets. In Treatmeant of /ntegral Equations by
Numaerical Hethods, C. T. H. Baker and G. F. Miller, eds. Academic
Press, London , pp. 263-296.

Bazaraa, M. S. and Shetty, C. M. (1979). Nonlinear Programming Theory and
Algorithms, John Wiley & Sons, New York.

Boyle, I. i, Dongarra, J. J., Garbow, B. S., and Moler, C. B.(1977). Matrix eigen-
system routines - EISPACK guide extension. In Lecturs Notes in Com-
putar Science, G. Goos and J. Hartmanis eds. Springer-Verlag, New
York .

Chi, P. Y. and Van Ryzin, J.(1977). A simple histogram method for non-
parametric classification . In Classification and Clustering, J. Van
Ryzn, ed. , pp. 395-421.

Cox, D.(1982). Convergence rates for multivariate smoothing spline functions.
Mathematics Research Center, UW-Madison, TR§#2437 .




s

(
g
:

146

Cox. D. R(1968). Some procedures connected with the logistic qualitative
response curve. In Research Papers in Statistics, F. N. David, ed. John
VWiley & Sons, New York , pp. 55-71.

Craven, P. and Wahba, G (1979). Smoothing Noisy Data with Spline Functions.
Numerisch Mathernatic 31, pp. 377-403.

Daniel, J. W. (1971). The Approzimate Minimization of Functionals, Prentice-
Hall .

Day, N. E. and Kerridge, D. F. {1967). A general maximum likelihood discrim-
inant., Biomaetrics 23, pp. 313-323.

Dongarra, J. I., Bunch, I. R, Moler, C. B, and Stewart, G. W. (1979). Linpack
Users’ Guide, Society for Industrial and Applied Mathematics, Philadel-

phia.
Duchon, J {1978). Interpolation des fonctions de deux variables suivant le prin-
cipe de la flexion des plaques minces, R. A /. R. 0. Analyse Numerigue
10, 12, pp. 5-12.

Dyn, N. and Wahba, G. {1982). On the estimation of functions of several vari-
ables from agrega.ted data, S/AM Journal of Mathematical Analysis 13
pp. 134-152.

Fisher, R. A (1936). The use of multiple measurements in taxonornic problems.
Annals of Eugenics 7, pp. 179-188.

Fix, E. and Hodges, J. 1.{:951). Discriminatory analysis, nonparametric discrimi-
nation: consistency properties. Report No. 4, Project No. 21-49-004.°
USAF School of Aviation Medicine, Brooks Air Force Base, Texas .

Gilbert, E S (1969). The effect of unequal variance-covariance matrices on
Fisher's linear discriminant tunction, Biametrics 25, pp. 505-515.

Gill, P. E,, Gould, N. L. M, Murray, W., Saunders. M. A., and Wright, M. H(1982)
Range-space methods [or convex quadratic programming. R. SOL
B2-14, Systems Optimization Laboratory, Department of Operauons
Research, Stanford University .

Glick, N. (1972). Sample-based classification procedures derives from density
estimators. , Journal of the Amarican Statistical Association 67, pp.
116-122.

Goldstein, M. (1975). Comparison of some density estimate classification pro-
cedures, Journal of the American Statistical Association 70, pp. 686-
669. ~

Golub, G., Heath, M., and Wahba, G. (1979). Generalised cross validation as a
method for choosing a good ridge parameter, Technometrics J1. pp.
315-224.




147

Good, 1. J. and Gaskins, R A (1971). Non-parametric roughness penalties for
Probality Densities, Biometrika 58, pp. 255-277.

Habbema, J. D. F.,, Hermans, J., and Van den Broek, K(1974). A stepwise
discriminant analysis program using density estimation. In COMPSTAT
1974, Proceedings in C(Computational Statistics, G. Bruckmann,
ed. Physica Verlag, Wien. ,

Hermans, J. and Habbema, J. D. F. (1975). Comparison of five methods to esti-
mate posterior probabilities, EDVin Medizin and Biologie 6, pp. 14-19.

Hermans, J. and Habbema, J. D. F. (1976). Mzmual Jor the ALLOC Discriminant
Analysis Programs, Department of "Medical Statistics University of
Leiden, Netherlands.

IMSL, (1983). /MSL Librgries, Edition 10 (To appear), International Mathemati-
cal and Statistical Libraries, Inc., Houston, Texas.

Kernighan, B. W. and Plauger, P. J. (1976). Software Tools, Addison-Wesley .

Lachenbruch, P. A and Mickey, M. R. (1968). Estimation of error rate in
discriminant analysis, Technometrics 10, pp. 1-11.

Lachenbruch, P. A. and Goldstein, M. (1979). Discriminant analysis, Piometrics
35, pp. 69-85. -

Luenberger, D. G. (1969). Optimization by Vector Space Methods, John Wiley
and Sons, Inc., New York.

Madison Academic Computing Center, (1981). Multi-dimensional  Spline
Smoothing Routines, University of Wisconsin, Madison, Wisconsin.

Marks, S. and Dunn, 0. J. (1974). Discriminant functions when covariance
- matrices are unequal, Journal of the American Statistical Association
.. 89, pp. 555-559.

Meinguet, J.(1978). Multivariate interpolation at arbitrary points made simple..
Report No. 118, Institute de Mathematique Pure et Appliquee, Univer-
site Catholoque de Louvain (to appear in A. Agnew. Math. Phys.) .

Meinguet, J.(1979). An intrinsic approach to multivariate spline interpolation at
arbitrary points.. In Proceedings of the NATO Advanced Study /nsti-
tute on Polynomial and Spline Apprarimation, B. Sahney ed. Calgary .

- Ortega, J. M. and Rheinbold, W. C. (1970). /terative Solutions of Non-linear
‘ Egquations in Several Variables, Academic Press .

Penrose, L. S. (1945). Discrimination between normal and psychotic subjects by
revised examination, /. Full. Canad. Psychal. Ass. 5, pp. 37-40.

Reinsch, C. H. {1967). Smoothing by spline tunctions 1, Numerische Mathematik
10, pp. 177-183.




e : 148
Remme, J., Habbema, I. D. F, and Hermans, J. (1980). A simulative com-

parison of linear, quarratic and kernel discrimination, Journal of Sta-
tistical Comp. and Simulation 11, pp. 87-105.

Schoenberg. 1. J. (1964). Spine functions and the problem of graduation,
Proceedings of Natioral Academie of Sciencaes 52 4, p» 947-950.

v -

. v

L} B .
. FY TR

DR R N 2 ah o%
AR
'

: LT
. el

Silverman, B. W. (1978). Demnity ratios, empirical likelihood and cot death,
Applied Statistics 27, |p. 26-33.

Silverman, B. W. (1982). On te estimation of a probility density function by
. the maximum penalizd likelihood method, The Annals of Statistics 10,
3, pp- 795-810.

Smith, C.AB. (1947). Some eamples of discrimination, Annals of Fugenics 13,
pp. 272-282.

Tapia. R A. and Thompson, J.R (1978). Nonparametric Probability Density
Estimation, John Hoplins University Press, Baitimore.

Van Ness, J. W. and Simpson, C (1976). On the eflects of dimension in discrim-
inant analysis, Technonetrics 18, pp. 175-187.

VanNea. J. W. (1980). On :he dominance of non-parametric Bayes rule
discriminant algorithns in high dimensions, Pattern Recognition 12,
pp. 355-368. -

Wahbe, G. and Wold, S. (1975) A completely Automatic French Curve: Fitting
Spline Functions by Coss Validation, Communications in Statistics 4,
* pp. 1-17.

Wahba, G.{1977). Optimal smoahing of density estimates. In Classification end
Clustering, J. Van Ryzn, ed. Academic Press, New York , pp. 423-458.

Wahba, G. (1978). Improper prors, spline smootﬁmg and the probiem of guard-
ing against model errvs in regression., J. Roy. Stat. Soc. B. 40, 3, pp.
384-372.

Wahba, G.(1979a). Convergene rates of thin plate smoothing splines. In
Smaoothking - Techniquss for Curue Estirmnation. Lecture Notes in
Mathamatics No. 752 Th. Gasser and M. Rosenblatt, eds. Springer-
Verlag, New York , pp.233-245.

Wahba, G. (1979b). How to srmwoth curves and surfaces with splines and cross-
validation, Proceeding of the 24th Design of Ezperiments Conference,
U. S. Army Rasearch {ffice, Rep. 79-2, pp. 167-192.

Wahba, G. and Wendelberger, | (1980). Some new mathematical methods for
varitional objective amlysis using spline and cross-validation, Monthly
Weather Review 108, & pp. 1122-1143.

o d




R N T T R T W W T T T g e e e d
LRI S N e e . °

3 149
o : Wahba, G.(1980). Ill posed problems: numerical and statistic2! methods for

- mildly, moderately and severely ill posed problems with noisy data.
Statistics Dept., UW-Madison. TR#585, to appear in the Proceedings of
the nternational Conference on /U Posed Problems, M. Z. Nashed, ed. .

Wahba, G.(1981a). Cross validation and constrained regularization methods for
mildly ill posed problems. Statistics Dept., UW-Madison, TR#629 .

Wahba, G. (1981b). Data-based optimal smoothing of orthogonal series density
estimates, Annals of Statistics 9, pp. 146-156.

Wahba, G.(1982). Constrained regularization for ill-posed linear operator equa-
tions, with applications in meteorology and medicine. In Third Purdue
on Statistical Decision Theory, Wl 2, S. S. Gupta and J. O.

Berger, eds. Academic Press, New York . pp. 383-418.

Wegman, E. J. and Wright, 1. W. (1983). Splines ‘in statistics, Journal of the
Amaerican Statistical Association 78, 382, pp. 351-3865.

Wendelberger, J.(1981). The computation of Laplacian smoothing splines with
examples. Statistics Dept., UW-Madison, TR#648 .

Wendelberger, J.(1982). Smoothing Noisy Data with Multi-dimensional Splines
and Generalized Cross-validation. Ph D. Thesis, Department of Statis-
tics, University of Wisconsin. Madison .

. YT e N A N R, A
LN P . e o e

TR A gt A SR e
AR P
L dae, L te tL . ..'.‘l 0 .'-

,_
2 2
S




R I e A e e A R - ST

ii' Unclassified _

“.': R Y T LML Sl AT IN DT Te T b nre: Lmas Entered

T z -~ ' STRUCTION

A REPORT DOCUMENTATION PAGE | emimaRicTons
- . REPSRT NUMELA 2. GOVT ACZESSION NO| 3 HECZIPIENT'S CATALOGC NuwMoER

2 Technical Report No. 725 Y VA

- 4. TITLE (and Subtttle) S. TYPE OF REPORT & PERIOD COVERED
] ESTIMATION OF POSTERIOR PROBABILITIES USING Scientific Interim

b MULTIVARIATE SMOOTHING SPLINES AND GENERALIZED t PERFOAMTG ORG REPORT RUVBER

ra]
.

-~ : CROSS-VALIDATION

7. AUTMHOR(e) 8. CONTRACT OR GRANT NUMBER(s)

ONR N00014-77-C-0675
ARO DAAG29-80-K-0042

rrwr ey
.

Miguel A. Villalobos

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Statistics '
University of Wisconsin, 1210 W. Dayton St.

Cad
‘

-
> Madison, WI 53706
- 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
é. Office of Naval Research, Arlington, VA September 1983
n Army Research Office, Research Triangle Park, N.CJ73 wuwser of Faces
B 155
;< 14. MONITORING AGENCY NAME &8 ADDRESS(I{ different from Controlling Office) 15. SECURITY CL ASS. (of this report)
% Unclassified
1Sa.
F - ggEELDAS‘S-IEFICATION/ DOWNGRADING

'\ DISTR!BUTION STATEMENT (of thie Report)

LA

™~ 3 el
l"""""
a et P

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If diflerent from: Report)

.

]

ey
[}

| SOMACONDY

18. SUPPLEMENTARY NOTES

'9. KEY WORDS (Continue on reverse side 1l necessary and Idantify by dlock number)

- constrained smoothing splines; generalized cross validation; thin plate
- splines; posterior probabioities; classification

20. ABSTRACT (Continue on reverse silde if necessary and Identity by block nunber)

see attached

" DD , 535, 1473  eoimon oF 1 noves s oesoLeTE .
: $/N 0102-LF.014.6401 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (%hen Date Entered)

- e~

~ 4 ¥ - et TR P L T .- "
Sadintadadadasndndadols e et niades ottt aioadas




..............
------

T e
PRI/ S e e |

ABSTRACT

A nonparametric estimate for the posterior probabilities in the

‘J '
P DU Py Ve

classification problem using multivariate smoothing splines is proposed.

o

This estimate presents a ncnparametric alternative to logistic discrimi-

nation and to survival curve estimation. It is useful in exploring proper-

SV S N

ties of the data and in presenting them in a way comprehensible to the
layman.

The estimate is obtained as the solution to a constrained minimization

problem in a reproducing kernel Hilbert space. It is shown that under certain

conditions an estimate exists and is unique.

A Monte Carlo study was done to compare the proposed estimate with the
two parametric estimates most commonly used. These parametric estimates

are based on the assumption that the distributions involved are normal. The

spline estimate performed as well as the parametric estimates in most cases
where the distributions involved were normal. In the case of no'n-normal distri- o

butions the spline performed consistently better than the parametric estimates. ' i

The computational algorithm developed can be used in the more general
context of estimating a smooth function h, when we observe
z; = Lih + g, i=1,n, where &;'s are independent, zero mean and finite vari-
ance random variables, L;'s are linear functionals, and f.he solution is known a *
priori to be in some closed, convex set in the Hilbert space, for example, the set

of non-negative functions, or the set of monotone functions. This type of prob-

lem arises in areas such as cancer research, meteorology and computerized

tomography.

We also consider the estimation of the logarithm of the likelihood ratio by a

penalized likelihood method. Existence and uniqueness of an estimator under

certain conditions is shown. However, a data based method to estimate the

“correct” degree of smoothness of the estimator is not given j

ORI VRPIPR IR Wy S Wi AT I S TR AT NP U PR TR Ui WAL W T el IR A P~ V. CL . ST N W S ST WINPT W ¥ PR Aasat.s




T ——T

T MR AL AL IL S o o
e

TP T T T

T

é‘
13
.

d N
-
.

p

ﬁ' > %'{"&

AT

i

" !
RN

e
RN g




