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ESTIMATION OF POSTERIOR PROBABILITIES
USING MULTIVARIATE SMOOTHING SPLINES AND

GENERALIZED CROSS-VALIDATION

Mig ael Agustin Villalobos

A thesis under the supervision of Professor grace Wahba

A nonparametric estimate for the posterior probabilities in the

classification problem using multivariate smoothing splines is proposed.

This estimate presents a nonparametric alternative to logistic discrimi-

nation and to survival curve estimation. It is useful in exploring proper-

ties of the data and in presenting them in a way comprehensible to the

layman.

The estimate is obtained as the solution to a constrained minimiznaton

problem in a reproducing kernel Hilbert space. It is shown that under certain

conditions an.estimate exists and is unique.

A Monte Carlo study was done to compare the proposed estimate with the

two parametric estimates most commonly used. These parametric estimates

are based on the assumption that the distributions involved are normal. The

spline estimate performed as well as the parametric estimates in most cases

where the distributions involved were normal. In the case of non-normal distri-

butions the spline performed consistently better than the parametric estimates.
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The computational algorithm developed can be used in the more general

context of estimating a smooth function .h, when we observe

= ,h + ej, =I,,, where ci's are independent, zero mean and finite vari-

ance random variables, Lt's are linear functionals, and the solution is known a

priori to be in some closed, convex set in the Hilbert space, for example, the set

of non-negative functions, or the set of monotone functions. This type of prob-

lem arises in areas such as cancer research, meteorology and computerized

tomography.

We also consider the estimation of the logarithm of the likelihood ratio by a

penalized likelihood method. Existence and uniqueness of an estimator under

certain conditions is shown. However, a data based method to estimate the

"correct" degree of smoothness of the estimator is not given.
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CAPER I

INTRODUCTION

1.1 Scope and Background.

Since the early work of Fisher (1938) considerable advances have been

made in the practical application of statistical classification techniques. Most of

N! the work in discriminant analysis for continuous variables is based on the

assumption that the distributions involved are multivariate Normal, however, in

the last ten years, nonparametric methods have received considerable atten-
-I

tion. mainly because of the availability of cheaper and faster computers.

In this work we will be concerned with the nonparametric estimation of the

posterior probabillties used in Bayesian discriminant analysis. The problem of

estimating these posterior probabilities is solved as a particular case of the

more general statistical smoothing problem of estimating a smooth function

subject to inequality constraints.

Wahba (1979b). introduced the multidimensional smoothing spline in the

statistical literature as a tool to model a smooth but otherwise unknown func-

tion. She devised the method of Generalized Cross-validation for choosing the

* parameter that controls the smoothness of the spline based on the data.

Wahba (1980) points out the need for a computational algorithm to solve

statistical smoothing problems with linear constraints. This need is also pointed

out by Wegman and Wright (1983), who, in the context of isotonic regression say:

Computational algorithm are clearly the stumbling block in further develop-
ment of the theory of isotonic splines. When such algorithms become available
we believe that smooth, order-preserving non-parametric estimators will sub-

or , - "4"" "% " " """ " * ' °""". - . ' ' ' ".- - . ". . " .•." % " . '
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stantially enhance the efficiency of estimation procedures currently in use.

In this thesis we demonstrate the feasibility of doing large multidimensional

smoothing problems with inequality constraints. The computational algorithm

developed here can be used in applications such as survival curve estimation,

logistic regression and the estimation of posterior probabilities. We examine

properties of the constrained smoothing spline by a Monte Carlo study.

We believe that the methods presented in this thesis will be useful for

exploring properties of the data and presenting them in a way comprehensible

to the layman.

In chapter 2 we will present the estimate of the posterior probabilities as

the solution to a constrained optimization problem In some suitable space of

"smooth" functions. We will describe the method of generalized cross-validation

for constrained problems to choose the smoothing parameter.

In chapter 3. we discuss the details of the actual computation of the spline

and a step by step algorithm Is given.

In chapter 4 some simulation results are presented to compare the spline

estimate of the posterior probabilities with the parametric estimates most com-

monly used. We also present an example with real data.

In chapter 5, the estimation of the logarithm of the likelihood ratio is con-

sidered using a Penalized Likelihood approach. The one dimensional results of

Silverman (1978) are extended to multiple dimensions and the existence and

uniqueness of an estimator under certain conditions is established.

Finally, in chapter 8 we present some concluding remarks and possible

dLrections for future research.

Most of the mathematical optimization background and functional analysis

results used throughout this work are presented in appendix Al. The listing of
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the documentation for the routines that estimate and evaluate the constrained

spline is given in appendix A2.

1.2 Conventions and Notation

Each symbol used is defined at its first occurrence. Vectors are usu-

ally denoted by lower case letters and no sub-tildes are used. Matrices are usu-

ally denoted by capital letters and are defined by giving their ith row and jth

column entry in parenthesis as in the following example:

"-' ~B := (6qj) i= 1, ....n ; j = 1,....,,

The expression above defines a matrix B as an n xm matrix with ith row and j3U

column given by bq.

The identity matrix of size n Xn is denoted by I, and Onm denotes an

r&Xm zero matrix. The subscripts n and m for I and 0 are dropped when it is

clear from the context of the expression what they should be.

The ia element (covariate) of an observations y will be denoted by

",(4) and all vectors will be column vectors, for example.

:. r~ (1)l

I (d)
If A is a matrix, then At denotes its transpose and A- 1 denotes its

inverse. The trace of amatrix A will be denoted by tr(A). If xis apoint in Rd

d
then II = <zz> is the Euclidean norm of z and <z,y > = z ()Y ().

If h is some function from R to R, then h(k) denotes the k t h derivative

and when k=1 or 2 we will simply write IC and h".

If f and g are members of some Hibert space H. the inner product of

f and g is written as <f ,g >H and the norm is written as If l!H The subscript H

* *:..*;-,.-*-.*-.-*-,.-..'-.--* t.. . . .At..C .
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is dropped when. from the context of the expression, it is clear where the inner

product or norm are computed.

Equation (2.3.4) refers to the 4 Ah numbered equation in section 3 of

chapter 2. In the text the equation is referred to as (2.3.4). Theorem (5.1.5)

refers to the 51h theorem in section 1 of chapter 5 and similarly for Lemmas

propositions and definitions.

L3 Previous work in nanparametric discriminant analysis

Consider k populations A1 ..... 4 and a d-dimensional random vector

X=(X(1),....X(d))t. Assume that the probability distribution of X given that it

comes from population Aj . j=l.....k is absolutely continuous with respect to

Lebesgue measure and let fj(z) denote the corresponding probability density

function for j=1.....k.

Suppose that a training sample Xj=A t, i-1...,m. from the population -4

is available for each j =,...,k. Given these training samples and the prior pro-

babillties j, j-1....k where 0 < qj < 1 forjl,...,k and

j =1

we want to estimate the posterior probabilities

P• . = q 1 3 ) Eq, j,(x) = P(Aj IX=x) j=1,...,.

The estimates of these posterior probabilities have a clear application in Bayes

discriminant analysis.

In this thesis we propose a class of optimization methods for estimating

( .(z). For simplicity of notation we will consider the case where we

have only two populations since the extension for more than two is straight-

.. . -
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forward.

" Most of the work in discriminant analysis (for continuous variables) is based

on Normality assumptions, usually with equal covariance matrices. For a sum-

mary of the work in discriminant analysis see Lachenbruch and Goldstein (1979).

Here we will only be concerned with nonparametric discriminant analysis.

Fix and Hodges (.951) are, to our knowledge, the first to consider the non-

parametric classification problem using a k-nearest neighbor approach. For

further references related to this paper see Lachenbruch and Goldstein (1979).

During the last 10 years there has been a development of classification

rules based on density estimates. These kinds of rules are important because of

the extensive research done in nonparametric density estimation. Another

feature that makes these kinds of methods attractive is a result by Glick (1972)

that says that an estimate of the non-error rate of an arbitrary rule based on

parametric or nonparametric density estimators is. in some sense asymptoti-

cally optimal provided that:

iJ(z) -" qf (z)

pointwise for almost all z in Rd. i= .... k, and

f~J'

Kernel, maximum penalized likelihood and orthogonal series density esti-

mates are among the most popular methods. All these density estimation

methods involve the choice of a parameter that controls the degree of smooth-

ness of the estimate. Several methods have been proposed to choose the

smoothing parameter, among these there are three which are readily comput-

able and objective. Two of these methods were suggested by Wahba (1977 and

1981b) and the third by Habbema, Hermans and Van den Broek (1974). In this
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last paper the authors estimate the densities for each population using a kernel

estimate. A complete description of kernel methods' can be found in Tapia and

- ,Thompson (1978).

The kernel estimate used in Habbema. Hermans and Van den Broek (1974)

is of the form:

for j=1....,k, where, as before d is the dimension of the vector z and k is the

number of populations. K is a multivariate normal kernel and the smoothing

parameters aj are estimated by maximizing what might be called the "cross-

* validation likelihood function":

Kajup jj (ZI)

where), is an estimate of fi computed as in (1.3.1) but leaving out the point

xI. For a detailed description of the algorithm to carry out this kernel discrim-

• . wnant analysis see Hermans and Habbema (1976).

Hermans and Habbema (1975) compare five methods for estimating poste-

rior probabilities using some medical data for which the true posterior probabil-

ity function is unknown. Four of these five methods are parametric and the fifth

one is the kernel method described above. The four parametric methods

involve:

(1) Multinormal distributions, equal covariance matrices, estimated parame-

ters.

(2) Multinormal distributions, equal covariance matrices, Bayesian or predic-

tive approach.
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(3) Multinormal distributions, unequal covariance matrices, estimated parame-

ters.

(4) Multinormal distributions, unequal covariance matrices. Bayesian or predic-

tive approach.

The nonparametric method is:

(5) Direct estimation of the density functions using a kernel method.

Later, Remme, Habbema and Hermans (1980) carried out a simulation

study to compare the performances of methods 1,3 and 5 above. Their simula-

tions show that the performance of the kernel method was either beqtter or as

good as the performance of other methods, except in the simulations with mul-

tinormal distributions with equal covariance matrices. It performed increas-

ingly well with increasing sample sizes, however, the improvement was very slow

in samples simulated from lognormal distributions.

Another nonparametric classification method is given by Chi and Van Ryzin

(1977). Their procedure is based upon the idea of a histogram density estimator

but bypasses the direct density estimation calculations.

In most of the references listed above the approach has been to estimate

each density separately and from this form an estimate of the posterior proba-

bilities. By the Neyman-Pearson lemma, we know that if we want to classify an

object as coming from one of two populations with densities f I and f 2. we

should base the classification on the likelihood ratio f I/f 2 and hence it would

be attractive- to have a method to estimate the likelihood ratio directly. Silver-

man (1978) considers the direct estimation of the log likelihood ratio for one

dimensional data. He assumes that g =Log (f 1/f 2) is in C2 (I), where I is some

interval containing all the observations. He finds the conditional log-likelihood

of g and penalizes it according to the smoothness of g using f(g,,)2 as the

,- - - - - - - - - -
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smoothing penalty functional. He estimates g by maximizing the p .i.lized log

likelihood and shows that the estimate is a cubic spline. However, he does not

give a data-based method to choose the smoothing parameter. In chapter 5 we

extend the result in Silverman (1978) to the d-dimensional case.

Van Ness (1980) studied the behavior of the most commonly used discrim-

Want analysis algorithms as the dimension is varied. He found that non-

parametric Bayes theorem type algorithms perform better than the parametric

(linear and quadratic) algorithms. He also found that the choice of the degree of

" smoothness must be done with great care or the performance of these non-

parametric algorithms can be very poor.

Anderson and Blair (1982) introduce penalized maximum likelihood esti-

mates in the context of logistic regression and discrimination. They obtain esti-

mates of the logistic parameters and a nonparametric splme estimate of the

marginal distribution of the regressor z. See also Anderson and Senthilselvan

(1980), who use penalty methods for the hazard function in one dimension.
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CHAFER 2

SPLINE ESTIMATES OF POSTERIOR PROBABILITIES

a1 Motivati

Let YI ., Y, n:=Il+n2 denote the combined sample from the two

populations A1 and A2 and define the random variable

if Y 4EA,
Z := iflA (2.1.1)

Let q, and q2 be the prior probabilities. Our objective is to estimate the poste-

rior probabilities

qifi
q fJ j= ,2.

Since PI + P2 = 1. it is enough to obtain an estimate p of p :=pI and then the

estimate of p2 is simply P2 = 1-p.

In applications the prior probabilities are usually unknown, and hence,

instead of estimating p we consider the estimation of

h = ifi+wd 2  (2.1.2)

where w 1= m/n and w2=n 2 / n. Then if F- is an estimate of h.

-; = (qI/ )

is an estimate of p.

We can think of the vector Z=(Z 1 ,...,Zn)t of zeroes and ones as noisy

observations on the values h(y/1),...,h (yn). To see this, note that, if we draw an

observation Y from the density fj with probability wj, j = 1,2, and Z is the
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random variable which is 1 or 0 according as j is I or 2, then

E(Zl Y=V) =

We will assume that-all we know about h is that it is a "smooth' function

such that 0!h!I. For example, in the one dimensional case recall that WL"

measures curvature and. hence, we could estimate h by minimizing:

Qx(h) := E () J2(h) (2.1.3)71 ,

subject to

0!9 O h (sj):9 1 i= 1 k ,

where J2 (h) = f(h' )2, and X is a parameter that controls the tradeoff between

closeness to the data, as measured by the first term in (2.1.3), and smoothness

as measured by J2. The points s,... , sk. should form a sufficiently fine mesh

so that a smooth function that satisfies the constraints at these points will

appear to satisfy them over a set S, where S is such that

2
F, fi > C> 0

for any V CS, and some given e>0.

In section 2 of this chapter we will define the class of functions H

where the minimization of (2.1.3) occurs. The function h in H which minimizes

(2.1.3) is a piecewise cubic spie (see Schoenberg. 1964).

The generalization of J2 in two dimensions is

J2 (h) f E dV(1) dy(2).

In two dimensions the minimizer of (2.1.3) is called a.thin plate spline (Meinguet,

1979) because of the analogy to minimizing the energy of a thin plate of innite

extent. The reader is referred to Wendelberger (1982) for a nice physical

interpretation of the piecewise cubic spline in one dimension and the thin plate

spline in two.
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In more than two dimensions the name thin plate spline does not seem

adequate and hence we will use the name Laplacian smoothing splines, sug-

gested by Schoenberg (see Wahba, 1979b). and adopted by Wendelberger (1982).

We can also consider a more general penalty functional than J 2 , that

is. we will consider a penalty functional Jm to be defined in the following section.

which involves the partial derivatives of total order m.

The problem of estimating h is only a particular case of the more gen-

eral problem of estimating a smooth function f when we have noisy observa-

tions on the values that f takes at certain points in Rd. or on the values of some

linear functionals L 1 ..... , applied to f., and we also know that f lies in

some closed convex subset of functions.

Following Craven and Wahba (1979), Wahba and Wendelberger (1980)

and Wahba (1982) we deal with this more general problem in the following sec-

tion

2.2 A general minimization problem

Th function space results in this section are given in Meinguet (1978) and

.4 Duchon (1976).

Let H(vn ,d) be the vector space of all Schwartz distributions for which all

the partial derivatives in the distributional sense of total order less than m are

square integrable over Rd. This definition is given by Meinguet (1978). The

space H(m,d) is called a generalized Beppo Levi space of order m over 1t

Adams (1975) calls this space a Sobolev space.

Let Ho(m ,d) be the space of polynomials on Rd of total degree less than m.

Then H 0(m ,d) is an M-dimensional subspace of H(m ,d), where
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M =(+d-1]

and let H(m,d) be the orthogonal complement of HO(m,d) in H(m,d), that

*is,

H(,n.d) = Ho(md) S H(m,d)

where "" Indicates direct sum (see for example Akhiezer and Glazman, 1961).

Let T = I.. . . t. , E , =1 .....M. be an M-unisolvent set, that is, a

set of M elements of Rd such that there exists a unique rocHo(m ,d) with

= Bj, P ER j = 1,....M. tj, CrM.

Lety =(V l,..~(d))'r cRd, f :Rd-R f CH(m4d). Let a=(a(1-),. .. ,ad)d

and define Ia! = a(j), a(j)Co 1 ..... 1. Define the differential operator
Jui

D' by-

If 2n > d, the space H(m,d). equipped with the inner product:

<f,g> =<,>0+<f ,9>i
where

and

A. <f, a()., M a(d)' <DafDag> )

can be shown to be a reproducing kernel Hilbert space (RKHS). that is, a Hilbert

space where the evaluation functionals are continuous.

Using the results of Duchon (1976) and Meinguet (1979) it can be shown (see

Wahba and Wendelberger. 1980 and Wendelberger, 1982), that the reproducing

kernel of H(mn,d) is given by:.

K(s,t)=Q(s,t) + P(s,t); s,t ER' (2.2.2)
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where

M M
Q(s,.t) -E,(s.t)- p (t)E (ti,.s)- pj ()E,,(t.tj)

, lJ1 (2.2.3)
+ E Pi(s)p,(t)E(t.tj*)

and

H
P(s,) = EA (SP(t) (2.2.4)

t-1

Here pi, j =1. ... ,M are the unique M polynomials in H0(m d) satisfying

1 f lt=j (.Pi', (j) 0 fi0 (2.2.5)

f' .. ET and En (s,t) st E Rd, is given by:

3.jjs-tjjl'-n(jjs-t11) id is eveE'(s't) ~~ ~ i dFlstl' is odd

where

d even

"=/r(/2-d)od

Let L,... ,1 ,,N,. .N,, be continuous linear functionals dedned in

H(md). Suppose that we observe zi=4.f +ej, i=1.....n Where c . . are

Independent zero mean random variables with variance covariance matrix given

by

V2D, 26ja
Swhere atm, i1,...,n and

I. i f i-j
0if i~j*

Here o2 is an unknown constant. The o7 are the relative weights of the measure-

meat errors ej. If the variances of ej are known to be the same, then we setIfo nw o ete te

I,"

% ...........................
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Ii = ... =Ora.

We will also assume that we know that the function f is in some closed con-

vex set C that can be well approximated by the set

CIS= :NjifSrj =. 1.....k

consisting of a finite intersection of half-spaces.

Our objective is to estimate the function f by solving

Problem A2.1:

Minimize over H(m.d)

1 X (;4f )2/ q2+)XJm (f) (2.2.6)

subject to

Njf !s- rj, jt 1...,.k. (2.2.7)
The penalty functional Jm (f) is given by-

Jrn )= E II,8l) (2.2.8)

join [a,!DfIIL-(a)

A "constrained Laplacian smoothing spline" is the function . that solves

problem (2:.2.1).

Clearly the problem of estimating the function h of section 2.1 is a particu-

lar case of problem (2.2.1) when L 4,NI ...... , . t are evaluation function-

al.

Since L and Nj are continuous linear functionals, by the Rlesz representa-

tion theorem (theorem Al.1) there exist functions m1 ... 77n and fl,... Ih

in the space H(m,d) such that'

1". !f = <i7.f > i =I.... (2.2.9)

N f = <,,f > j=...,. (2-2.1o)
The functions 7t and fj are called the representers of 4 and Nj. Any function f

.

a . . . ."
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in the Hilbert space H(md) can be written as a linear combination of

1i7. .n i . ... f .Pl .PM plus some functionp which is orthogonal

to each i. fj. andpg, that is.

M
f ~ b. ctji+ 1 + p (2.2.11)

for some vectors of constants c=(ci ... c) t , b(bl .... b,) t  and

I...... a)'. where

<iP> = = <PjP> = 0.
~~fori : =1...n. tj t =1....k and 1= . .

Substituting (2.2.9), (2.2.10) and (2.2.11) in (2.2.6) and (2.2.7) it is easy to

show that to solve problem (2.2. 1) one should take p=0, so that, the solution f,~

can be written as:

By proposition A1.3. 17 and f$ are given by:

ni(s)=4-(t)K(s,t)

f,(s)=N(t)K(s,t).
The subscript (t) indicates that the functional L, ( or Nj ), is to be applied to

what follows considered as a function of t.

Using the Kuhn Tucker theorem we will give a simpler representation for

the solution to problem 2.2.1. but first we need to introduce more notation.

First rewrite link as

jAx a +PQ + d (2.2.12)

where f=( . ... t=(7i, ..... )7d. a=(ct 6 t)1 andp=(p, . . )

Define the matrices:
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[K1, K12]
K=

K 1=[K1 j: K12J. K2=[K2 : K2] and UL[U: Ul]'. Where K21=K4 and the

matrices K11, K 12 , K22, U1 and U2 are defined in Table 2.2.1.

S'TABLE 2.2.1

Matrix Dimension (i.j)element

K11  nXn L(,)(t)K(st) i1.n j=l.....n
K12  nxL (,)N cj)K(s,t i-.....n j1..L

LxL kj.g) jV()K(s.t) 1,.Lj.L
1  nxM N, K. j 1 ..

U2  LxM , i=.....L j=j.....M

.We will assume that the following two conditions hold:

Contdlon 2.2.1

S1 ..... .7, !.. ... are linearly independent.

Comltan 2.2.2

The rank of the matrix U1 is M.

For example, in the case where Lf =f(yi), i=l ...,n and Nf =f(Si),

J=1...,k. if the points .... .... sk are all distinct, condition2.2.1 will

be satisfied. To satisfy condition 2.2.2 we need that nl!M and that the points

y y..... n uniquely determine an interp~lating polynomial of degree m-I.

The following theorem gives a simpler representation for the solution to

problem 2.2. 1.

z2.1 Theorem

If conditions 2.2.1 and 2.2.2 hold, the solution to problem 2.2.1 is of the

form
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faA(t) = ECL(a)E,(s, t) + E ebN ()E.,(s,t) + Ed dL(t). (2.a13)
-, i1 j=1 =

where r..... rpm are the monomial polynomials of degree less than m given by

(t = t( 1)IA) .. t (d)A ), t ERd (2.2.14)
Here jIA() E 10,1,... $m- I (1L)+...+(dL) < i, 11...,M.

so that

[KI,: K12 la+Ud.

Nifn.x* [x2,: K2a+Uza.

Let P be a projection operator onto the space H 1(m.d), then;

Jm f,,x) = <Pf A,Plnx> = <77: f]a,[,r: f]a >

= ca M

Now we can write problem 22.1 as:

Minmize G(a.d) subject to g (2,d)sO, where

G(a,d) --4 [KI: K, 2]a+U- z D;{KI:K1] + U 2- ."

+ nactKa

g(a.d) = [K 2 1: K,]a + U2 a-r (2.2.15)

and D2 = d'ig (1/ f, ... t/ an). The Hessian of the quadratic form G(a,d)

F
p.,



-Z11 12 T13

21 22 .. 23

where • 2  12  -13- and:

=1= K11D;2K1 4.mAKl 1 2~ = K11D;2 K12+nm\K 1 2

T 1 = KZID; 2  K1-2K,2+nXK.J
= =2,;U Z U WD; 2 U,

It is easy to see that if conditions 2.2.1 and 2.2.2 hold the Hessian '- will be

positive dednits and hence the solution to problem 2.2.1 eidsts and is unique.

Now let -y be a k xl vector of Lagrange multipliers. By Kuhn-Tucker

theorem (Bazaraa and Shetty. 1979, theorem 4.3.6), we have that if (a.4) is the

solution to problem 2.2. 1. then the following holds:

VG(c) + Vg(;2)t-y 0 (2.2.18)

Ig a)= 0 (2.2.17),

(2.2.17)=*g (i.)t 9g (,) =0

and therefore

2

+ 24Kzz+ U Ir)t/ (K2a+ U -r)

:(ea Ut-w)l S (et+ ua-w)+t-tioK. (2.2.18)

where

.. /. positive. deint adhe th sluio topolm221eissadinqe
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-0q1

Also 9 ( a) can be written as

9( ) Il[k: Ok,,j[e+Ua-w] (22,19)
where It is a k xk identity matrix and On is a k xn zero matrix. Using (2.2.18)

and (2.2.19) the Kuhn-Tucker conditions become:

V- G(&a)+Vg (3,a)'7 = KSF-. + KSUd - KSw

+n kki + O'k(2.2.20)
4-n~~ X'z+ [k J.7= 0,

V G(& a) + Vdg(;)y = UtSUa + UtSKa

+ 1,~4 (2.2.21)""."-Utsw + Ut k =Y 0

9g( ) [Ilk O, I[Ka-+ Ua -W] 0 (2.2.22)
and

720.
Now, (2.2.20) implies that

{K,+SUa-Sw +n LX+ 7 =o. (2-2.23)

And (2.2.21) implies

0 [Sea+SUa-SW + k =o (2.2.24)

Then, using (2.2.23) and (2.2.24) we get that -nXU10 =. UtaO

-U-W + u =o (2.2.25)
and hence

.%1

" n(t) EiL .(.)K(s.t) + E 6j N(,)K(s,t) + EMdipc(t) (2.2.26)
Sil jul L-1

Substituting (2.2.2), (2.2.3) and (2.2.4) in (2.2.26) and grouping we obtain;

%I



Ink(t) = AsE(~)+ 6jNj(s)Em,(s,t)

,- + Z ( -4')pj(t) - Z (Uj;+Ui.g)Em(t,tg)M 
M

+ M (E+ UJlS)Em (t, tj)pl (t)

where dt is given by

n- k-
-~" = cj4,js)Em(t9,s) = bj Nj(s)Em(tS)

jul jul(2.2.27),'.+ ¢ch,)p(s)+ YbN-(,)pg(s).

Then by (2.2.25) we have that
k M.

jn,(t) = (L€.)E,,(s,t) + E bjNjc.)E ,(st) E4P(t)
juljul L=

where g=dt.-dj Let rpl, ..... ' be as in (2.2.14). Then irp il form a basis

M
for Ho(md), then, since Pi = 191i for some dMI., so that we can substi-

Jll

tute the basis [JoIM I by the numerically more convenient basis [ipO JIM=L. That is,

we can write:

il M

for some . .•.•. c1 )1 Rd . Therefore, the solution to problem 2.2.1 can be

written in the form (2.2.13).

Now let us deine the matrix

ST, 2 (2.2.28)

where T, and T2 are given in Table 2.2.2.

Upon replacing the matrices U1 , U2 and U by Tl, T2 and T respectively,

expressions (2.2.18) through (2.2.25) still hold with a instead of d and the condi-
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TABLE 2.2.2

Matrix Dimension (ij)element

Ell n x A(s)Lj(t)Em (s,t) i=l,....n j=l.....n
E 12  nxL A(S)N-m)Em(s~t) i1l.fl j1l..,L
E22 LxL Nt(3)Rj1(t)Em(s,t) i=l.....L j=l....L
T, nxM Lo 1  i=1....Mn j=1 .... M
T2 Lx M Ni oj i=l,....L j=l.....M I

tion Ut = 0 is replaced by the condition T' a = 0. Then we can rewrite prob-

lem 2.2.1 as:

Problem 2.2.2

Minimize G(a,d) subject to g (a,d):0 and Tt a =0, where now,

G(a. ) = '(Ela+Tlc-z)'D (Ec+Tld-z)+N tE - (2.2,29)

2 2TI

g(a,4) = E a+ T2 d-r (2.2.30)
where:

[Ell E12

E =[E21  E~zj'

El = [Ell : E1 2], E 2 = [E 2 1 : E22] and E 2 1=E12, Ell, E 1 2 and E2 are given in

Table 2.2.2.

Let N=n +c, since the rank of T is M, there exists an NxN matrix

Q = [QI: Q2] such that

r~ t] T = R %1] 2.2.32)
where R is an MxM upper triangular matrix, 0 is an N-MXM zero matrix and

Qi and Q2 are NAxM and NxN-M matrices. This is known as the Q-R decompo-

sition of T (see Dongarra, Bunch, Moler and Stewart, 1979).

Let e be the N -M dimensional vector such that L=Q2e, then, by (2.2.32)

we have 0 = Tt Q2e = T1r so that instead of solving problem (2.2.2) we solve



'the quadratic programming problem:

Problem 2.Z3

Minimize Gv(e ,d) subject to g (e ,d) 0, where:

G'(e ,i)= -{E 1 e + Tld-z)tD;?z(E 1Q2e + Tld-z)+n'Aet Q EQe (2.2.33)
2

and

g (e,d) E: 2Qe + T2d--r (2.2.34)

Then, if (a, ) solve Problem 2.2.3, (a,a) solve Problem 2.2.2, where a-Q 2 e.

For a given value of X we can solve problem 2.2.3 using any quadratic pro-

gramming routine. So far, nothing has been said about the choice of the

smoothing parameter. In the following section we describe the method that we

will use to choose a "good" value of X from the data.

1.4 The choice of the smoothing parameter

In real life problems the correct value of the smoothing parameter X is not

known. Wahba and Wold (1975), Craven and Wahba (1979) and Golub Heath and

Wahba (1979) have suggested the use of generalized cross-validation to estimate

A from the data in the unconstrained case. In the presence of linear con-

straints, Wahba (1980) and (1982) suggested the use of generalized cross-

validation for constrained problems.

Before describing the method of generalized cross-validation for con-

strained problems, which we will refer to as GCVC, we give a brief review of the

method of generalized cross-validation for unconstrained problems which will be

referred to as GCV.

- (9]
Let fx be the minimizer of



S. - , ' - r.* .

- L (4f;) 2 + Aim (f) (2.3.1)
VL (q ]

If A is a good choice, then, on the average, Lqf nX -Z9 should be small and thLs is

reflected in the ordinary crnss-velidation function V, (A) given by!

=

* Craven and Wahba (1979) and Golub, Heath and Wahba (1979) showed that

- 1 ____ ____(2.3.3)

weefn. is the minimizer of

- L. (_1 _z )2 + AJm(f) (2.3.4)

and a.t(A) is the (ii) entry of the nXn matrix A (A) satisfying

r .nA

A (A)z. (2.3.5)

The minimization of (2.3.2) with respect to A requires the solution of a

linear system of order n+M-1, n times for each different value of A, whereas the

mnmzation. of (2.3.3) requires the solution of one linear system of size n*"M to

dad f°iA and then one of size n to flnd a, (A) for each value of A.

Craven and Wahba (1979) and Golub, Heath and Wahba (1979) show that

from the point of view of minimizing the predictive mean square error given by

T(A) (= (4A- f )2 (2.3.6)

'' (A) should be replaced by the generalized cross-validation function V(A) given

by:

.o wth r t -r e th suin-



n -(I-A (A))z f12

, '%"°;V( ') = ';m~l [ -" qi ( '))2 " = [-tr (I -A4(,)1 '""

where

,(?) = -- ,w1-a )( .

They show that the minomizer of (2.3.7) estimates the minimizer of (2.3.6).

Wendelberger (1981) developed an efficient algorithm to compute the

minimizer of (2.3.4) estimating A by minimizing (2.3.6).

Now let C be any closed and convex set in H(m,d). ,k be the minimizer

_ [q
of QX(f) in C where Q\ is given in (2.3.4) and let fnx be the minimizer in C of

E (if-) 2 +AJ'm(f). (2.3:10)
tIL llq

The ordinary cross-validation function V, (A) is given by

- 00 -(L~fiJ ). -9)

It is obvious that V" (k) would b'e prohibitive to compute in most cases.

Wahba (1980) shows that given the data

rr[qJ... " r - [q ]L Z I, - I•qfn, zq, ...
the minimizer of W(I ) in C is f.\- that is,

[q]
%. [Z +6, ] = IA[z ] (2.3.11)

The notation .RA[z +6,] indicates that f, n is the minimizer in C of Q.&)

based on the data vector z +6q. where 6, .is given by:

, [q]

and InA [z ]is the minimizer in C of (2.3. 10) based on the data vector z.
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Using (2.3.11), Wahba (19a*a) shows that ordinary cross-validation can be

written as

= " (L InAZg 2  (2.3.12)

where

Lyf,'- [z]-Zq

is what Wahba calls the "differential influence" of zq when A is used.

The GCVC function is obtained by replacing 4, in (2.3.12) by the average

"differential influence", so that the GCVC estimate of X is obtained by minimuzing

WE fiZt)
2m

VC(X) = inl (2.3.13)

As we mentioned in section 2.2 we will assume that the convex set C can be

well approximated by the intersection of a fnite number of half spaces:

C.{ f : Nf -r. i =1 ..... }. (2.3.14)

Then, to evaluate VC(A) for a single.value of X we need to solve n quadratic pro-

gramming problems in nl+k-M variables. To avoid this, Wahba (1981) sug-

gested using the approximate generalized cross-validation function given by:

(2.3.15)

where

a , w (A ) = i- - , ., =
OZq



In the following chapter we discuss the algorithm to compute the minimizer
of (2.3.4) in the set Ck. estimating the value of A by minimizing (2.3.15).

-,.
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CHAP=E 3

THE ALGORITHM

M I Introduction.

The software written as part of this thesis was developed for the case where

the functionals L .  and N1.  N k are evaluation functionals. That is,

we want to minmize

WE f (O -i),+ X4,m(I)

subject to f (s)!Srt. for i= t,...,k. However, we present the algorithm in its

more general form, where the L and N are any continuous linear functionals.

Before solving problem (2.2.1) we solve the unconstrained problem estimat-

ng the value of A by generalized cross-validation. The software to solve the

unconstrained problem in the case where the 4 are evaluation functionals, was

developed originally by Wendelberger (1981) and can be obtained from Madison

Academic Computing Center (1981) or from IMSL (1983).

If the solution for the unconstrained problem satisfies all the constraints,

then that is also the solution to problem 2.2.1.

If this is not the case. we use the value of A obtained from the solution of

the unconstrained problem. say 9, as a starting guess for the "correct" A for

problem 2.2.1. In fact, since the imposition of constraints is in some sense a

kind of smoothing, it is natural to expect that an optimal A for the constrained

problem will be smaller than F,. Also, intuitively, the optimal X for the con-

strained problem, say A should not be "too far away" from A0 .

L



There are two important parts in the algorithm to compute the solution to

problem 2.2.1. One is the solution of a quadratic programming problem of size

-.. n+k -M for each value of X that we consider, and the other is the computation

of V,_C (A) given by (2.3.15). These two parts are the most intensive in terms of

computational effort and hence it is important to try to make them as efficient

as possible.

In section 3.2 we restate problem 2.2.1 to follow more closely the way in

which the actual computation is done. In section 3.3 we discuss the quadratic

. - programming routine employed. In section 3.4 the computation of the approxi-

mate generalized cross-validation function for constrained problems is dis-

cussed and in section 3.5 the step by step computational algorithm is presented.

3.2 Restatement of the problem

For computational convenience suppose that instead of observing z,

we observe the vector

20-
K/o.

and define the matrices:

rT fa
.. -. Tj r= D;tTI, r = LI

EI = D; 1 EllD;l, E' = D; 1 E1 2 ,

Er[Ei:EeJ. ~[E:Ez~and(3.2.1)

E, --t[I. v1 E' [E . n
where E11, E12 , E22, T, and T2 are given in Table 2.2.2.



p
F.

Following section 2.2 it is easy to see that problem 2.2.3 is equivalent

to

Problem 3.Z 1

Minimize

GUtzd =~.EgcL +Trr-z Efaq +Tj'd - z)+ n~aEva,

subject to

9"(a.,) =Ela+Td-r<O and T7va = 0.

Let Q =[Q QJ]' and R be the Q-R decomposition of T , that is.

r R

Let ev be the n +k-M dimensional vector such that ar=Q2 eq. Then, instead of

solving problem 3.2.1 we solve the equivalent

Problem 2

Minimize

= ~-EQs.+Tfrd-z) ftf e+Tald-z) +netQ~EQ 2e,

subject to

ga(e4) EIQze,+Tzd~sr. (3-23)

Then, if (e.,d) solve problem 3.2.2. (;.,) solve problem 3.2.1, where

and

is a solution to problem 2.2.3.

I
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Now.

&(e.) = [[jk'r: Tj z.J 1[EfQ2 T' -e zJ
+' 4 r QL . o,,,,)(,i

lea: d O (3.2.4)

= .N-[4 : dt1[ -[EIOQ: T,[

where -: is the Hessian and is given by:

r rQ&E.vE.Q + n.QSE Q2 ETa1 (3.2.5)

I TOrEIQ2 T0 @7eJ

Flnally, from (3.2.3) we write the term ff(e,d) defining the linear constraints

r e
•'(Oqd) = [EQ 2 : TZIM.

3.3 The quadratic programming algorithm

Let i.A(t), given by

KAM ,, = 4.Cc)E,,(, t) + *Gj jN(s)En (S.t) + F, aL(t) (3.3.:
i-l jul Lal

be the solution to problem 2.2.1 for a given value of X. Suppose that there are I

active constraints at the solution that correspond to NV(l), -• • , NV(L) where

;.T:= jw(l) ...... u(1) jcl I1.....kI (3.3.2)

If we solve problem (2.2.1) for some other value of X, say ', then we will get

H a possibly different set T' = J' (1). V (L)I corresponding to the active con-

straints at the solution. If A\ and A' are relatively close, it is likely that the sets T

and T' will either be the same or at least they will not be "too different".

I

,. ' ' . . - . .% . . - .- . ,, . . ' - - . . --*. . . _ -. _.. • . .-- -.. . . , .
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It is this feature of our problem that motivated the use of an "active set"

algorithm to solve the quadratic programming problem. The algorithm that we

used was developed by Gill, Gould, Murray, Saunders and Wright (1962). The idea

behind this algorithm is as follows.

If the correct active set of constraints were known a priori, then the solu-

tion to problem 2.2.1 would be the solution to a problem with equality con-

straints. There are several efficient algorithms for solving problems with equal-

ity constraints and, in fact, the presence of equality constraints actually

reduces the dimensionality in which the optimization occurs. Therefore, it is

desirable to apply techniques from the equality constrained case to solve prob-

lem 2.2.1. To do this, a subset of the constraints of the original problem, called a

"working set" of constraints, is selected to be treated as equality constraints.

Obviously, the ideal candidate for the working set would be the correct active

set. Since the correct active set is not available, the method includes pro-

cedures for testing whether the current working set is the correct one, and

altering it, adding or deleting constraints, if not.

In our problem, every time we solve the quadratic programming problem

2.2.4 for a given value of X. say K. we obtain a correct active set for that particu-

lar A. By the argument at the beginning of this section, this correct active set

will be a good starting guess for the correct active set for some other value of A

close to A' and therefore once we solved the problem for the rst time we can

L" expect very fast convergence with this active set algorithm. In fact, this was

what we observed in our Monte Carlr studies. In the cases where the active set

did not change from one value of lambda to the following, the quadratic pro-

gramming routine converged in one iteration. We will discuss this further in

chapter 4 where we will present the results of the Monte Carlo study.

pio
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The Fortran routine to solve the quadratic programming problem was

kindly provided by Nicholas I. M. Gould and is based in method 3 of Gill, Gould,

Murray, Saunders and Wright (1982).

3.4 The computation of the approximate GCVC

Let fX given by (3.3.1), be the solution to problem 2.2.3. Let

...... ......N,() correspond to the L active constraints at the solution, then

f is also the solution to

Problem 3.4.1

Minimize

(Lfzi)2/ a2 + 2n mf

subject to
" ~Nvj)=r-, j~t...t

*Here, as we will see later, there is a matrix A (X) such that:

A ()z (3.4.1)

Recall now, that the approximate GCVC function is given by

whereE (4 n-z 3..2

(3.4.2)

, , where

!'::•avq('\) - -' -Lqf nx l . (3.4.3)
• " . Oq
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After the quadratic programming problem has been solved, the numerator

of (3.4.2) can be computed easily. To find the denominator of (A) we must

compute E aq (A), which, by (3.4.1) is simply the trace of A(A).
qul

In Theorem 3.4.1, we will give an expression for A(A). Before stating this

result, we must introduce some more notation. Let the matrices E22(T), E'f2 (T)

and T2(T) consist of the rows and columns of the matrices E22, E' and T2 ,

corresponding to the active set of constraints, that is, E 22 (T) consists of rows

and columns v(1), .. (L) of E22, Ef 2 (T) consists of columns

*.:-.' '(i). .... vu(1) of E" , and T2(T) consists of rows v(t) ... ,v(1) of T2. ALso

define the matrices:

IT,

T'(T) = [T2(J. E 1 (T) = E 2 (T)'. (3.3.4)

Ef() =[E 1 : ~(T)1 E '(T) = rE& (T): E (T)]

and

r E, Ez 2(T)

E(T) = [E(T) E2(T)

Where Efi and T' are as defined in (3.2.1). Here we use the notation (T) to

emphasize the dependence on the set T of active constraints.

Now we can rewrite problem 3.4.1 as:

Problem 3.4.2

Minimize

C(ad) = JEl (T)a.+ Tgd -z,)* (El (T)a + T' -z,)
2 (3.4.5)

+ nAa.'E"(T)a.

subject to
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|.( E,d) =E 2(T)a,,+ T2(T) -r(T) = 0 (3.4.S)

where r (T) = (r,(1) ..

Let Q.I(T),Q 2 (T) and R(T) form the Q-R decomposition of TM(T), that is,

they satisfy:

f:: Q.(T)•

Here R(T) is MXM, 0 is (n+L-m)xM. QI(T) is Mx(n+L) and Q2 (T) is

(n+L-M)X(n+L). In the proof of theorem 3.4.1 we will assume that

Q2(T)'E'(T)Q2 (T) is positive definite. This will hold if conditions 2.2.1 and 2.2.2

hold (see Dyn and Wahba. 1982).

3.4.1 Theorem

Let f,, be the solution to problem 3.4.1. then there exists a matrix A(X)

*such that

= A() (3.4.5)

and it is given by:

A(A) = /,-n ?Q2(T)[Q2(T)'(E'(T)+n W)Q2(T)I-Q2(T)

where Q2 (T) is obtained from the Q-R decomposition of T(T), I, is the nxn

identity matrix and W is given by:

". (, 0 O rt

Prod

(3.4.6) =ctg(o.,d)1tP (o.,d)] =0 and therefore we canwrite (3.4.5) as:
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O(c,,d) =C(a.,d) + (c.,,d3'9 (,.,d)

- .L4E' (T)a,+ Tfd-z,) t (Ef(T)a,+ Td-z,)
2

+ 2-(E(T)a,+ T2(T)d-r (T))' (Es' (T)a,+ T2(T)d -r (T))

+ nAMaV(T)a, (3.4.8)

2- (E(T)a,+ T(T)d -w )t (EO(T) c,+ T(T)d -w) +n Xa4,(T)a.

where w (z r(T)t)t. Now,. write g(av.d) as:

Then if we let y = (7i . ,y) t be a vector of Lagrange. multipliers, problem

3.4.1 reduces to minimizing

C~ed) + r~O.~ I1][E(T)aq,+Tf(T)d-wj] (3.4.10)

Using (3.4.8) and differentiating (3.4.10) with respect to a,,, d and y. and equat-

ing to zero we obtain:
E (T)E (T)a +E (T) 7(T)d-E (T) w +n XE (T)a +E ( [OI r ?= on,:11

TI(T)' r(T)d+ T(T)Eg(T)a-7T(T)w + 7'(T)I [ 17 = 0 (3.4.12)

and

[Or " I: ]E(T)a+7(T)d-w] = 0. (3.4.13)

Then, (3.4. 11) implies that

i rolI
Eq(T) [Eucr)+n d.+ T 0+(T)d -wj]J 0. (3.4.14)

Equation (3.3.12) implies that

TIMT) {T(T)d+EU(T)a..-w + [rh ]7} 0. (3.4.15)

Then (3.4.13) and (3.4.15) imply that
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= = T(T)q = 0 (3.4.16)

and (3.4.13) and (3.4.14) imply

I L[o,,i -,,&.L ° j (3-.

7=7 = no ILI,.
-yI 1, 10 I : ILI(r a~

rcOm0,1 11(..?

roT b = - Tr(T)d-[ (-n A) a

= Q2(T)e (3.4.19)

Then Tg(T)Q 2 (T)e - T (T)a, = 0, so that (3.4.18) is satisfied. Premultiply-

ing (3.4.18) by Q a(T)t we obtain:

r E (T) = =-Q(T)t T(T)d + Q/(T) tW

= Tw(T) - +

= Q(T)t(E'(T)+mAW)Q 2 (T)e = Q((T)w

e.e.h n +1 -M diesoa vcr such that't

and by (3.4. (9)

= Q2(T) [Q 2(T)t(E(T)+nX W)Q2 (T)] Q2(T) t w. (3.4.20)

Finally, by definition of A (X) we have

I ( .. ... ..
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A = -, E'(T)a.+T(T)d.

Therefore,

=na. (by 3.4.18)

= mAWQ2(T) [Q2(T)t (E(T) +nA W) Q2(T)] 1 Q2(T)w

Hence.

I-A(A) = nAWQ2(T)[Q2(T) (EO(T)+nA W)Q2(T)I Q2(T)t. (3.4.21)

Now that we have an expression for A (A) we can compute the denominator

of V;, (A) given by

1-7Z~~ a..Lt 1r(I-A()

Using (3.4.21) we get:

tr (I-A (A)) = nAtT{2(T)' WQ2(T) [Q2(T) t E0 (T) Q2(T) +n A Q2(T)t WQ2(T)Ii

where A = Q2(T) t WQ2 (T) and f = Q2 (T)t E (T)Q2 (T).

If we use (3.3.22) to compute tr(I-A(X)) for each different value of A we

must solve a linear system of size n +L -M, to avoid this, we use the following
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3.4.1 Propostion

The trace of the matrix I-A (A) is given by:

where P1 .... Pn4-M are the eigenvalues of the real symmetric generalized

eigenvalue problem:

Ar, =p, 4r,. .= ... n,.+1-M. (3.4.24)
where 1 .. r,+-M are the corresponding eigenvectors.

.. (I -A(A)) n X

-= n4, +nA-1A)-1s-1

n,\4 -1,&i+nA4 -')1

Now, let p 1,p... + 1-M be the eigenvalues of the generalized eigenvalue prob-

lem (3.4.24), then, 4- 14r = pr, i=1 .... nv +L-M and hence

P1 .... PI,-M are the eigenvalues of the matrix 0-14 then if UDU - 1 is the

eigenvalue eigenvector decomposition of with

D =di p.,... Pn-j--H), we have:

t (I-A(A)) = nAt{UDU-i(U[I+nXD]U- 1

n n\tr(D[I+n,\fl11 )

Therefore, the denominator of V (X) is given by

* •* . • . 4
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Using (3.4.23) to compute tr(I-A(A)) has the advantage that we. only need

to solve the generalized eigenvalue problem when the set of active constraints

changes from one value of X to the next.

In the following section we present the step by step algorithm to compute

the solution to problem 2.2.1 choosing the smoothing parameter A by general-

ized cross-validation for constrained problems.

35 The step by step algorithm

After the unconstrained problem has been solved we have an estimate of A,

say ,. The algorithm to compute the constrained spline uses this value of A as a

starting point to get the estimate 9 that minimizes the approximate GCVC func-

tion. If A = b the algorithm also requires the largest eigenvalue of the matrix

Q2 Ell Q2 where Q2 is obtained from the Q-R decomposition of Tf:

I [Q1 Tr = [0I.
This eigenvalue, call it p is available from the routine that computes the uncon-

strained spline using Wendelberger's (1981) algorithm (see Madison Academic

Computing Center, 1981).

The step by step algorithm is as follows:

(1) ComputeM = d

(2) Compute d,

(3) Compute T given by (3.2.1).
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(4) Obtain Q-R decomposition of 7.

i:Q;

(5) Compute E" given by (3.2. 1)

(6) Compute the Hessian

- = + r -M)(M) O

First compute

IQE0EfQ2 Q'E04TO21 1 E 1 2  2 j'
[ rgEswjQ Ta' rT ]

then compute

-7 = Q&EwQ2

(7) Compute Matrix defining linear constraints:

QPCONS = [EIQ2 : T2 ]

(8) Compute matrix defining linear term in the quadratic form G(ew,d)

QPLIMA = [Q 2 :

(9) Compute linear term in G(e,d)

QPLIVE = Z tjEi'Q2 : To]

(10) Construct regular grid of values of A around A0 in logarithmic units, in

increments of 0.1 (see details at the end of the step by step algorithm).

(l 1) For each value of, do the following:

(11.1) Solve quadratic programming problem to obtain e:, and d' using the

set of active constraints for the solution for the previous value of A as

initial guess.

a -l-----, , -
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-(.1.2) Compute residual sum of squares

(11.3) Compute denominator of approximate GCVC.

(11.3.1) If the set of active constraints for current value of A is the same

as for previous value of X go to step (11.3.6). otherwise continue

to step (11.3.2).

(11.3.2) Compute Q-R decomposition of T(T)

P [J(T))

(11.3.3) Get matrix 0 given by (3.4.22).

(11.3.4) Compute A given by (3.4.22)

(11.3.5) Solve the generalized eigenvaue problem (3.4.24) to obtain

P 1 . .Pn+&-M-

(11,3,6) Compute denominator of 1;,(A) given by (3.4.25).

(11.4) Compute Vop(A) and save.

* (11.5) If 0p(A)is smaller than V,( previous X) thene, = e and = d

(l1.8) Next A

(12) Compute C, and

(13) Get coefficients of the spline r b and &

d d

6=

a a
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In step (10) of the algorithm, the number of values of A for which we solve the

qudratic programming problem and evaluate 1a,(X) is given as an input

parameter (see documentation of routine DSCOMP in appendix A2). The user

can specify the number of values to the left (74) and to the right (7-4) of ?o. We

recommend that nj be greater than t. since in all our simulation studies the

m nimizer" of 1 (X) was to the left of A0.

Most of our simulations were done with 7 = 15 and . = 10. One should be

careful in choosing ?h and 7. because if the total number of values of A con-

sidered is too large the computation of the spline could be very expensive. As a

rule of thumb, and based only on our simulation study, we would suggest consid-

ering between 15 to 20 values to the left and between 6 and 10 to the right.

The grid of values of A is constructed as follows (in units of logarithm of A):

If A0 <- the grid is constructed in equally spaced intervals of size 0.1..that

is, the grid consists of the following values: Log(& )-O. ,

:: Lo~~~1g ( )-0.1I ,lg ( ,),log(,,) +0. I .... 0g (&) +0.17n,.

If =o then we use the sample size it and the largest eigenvalue ," from

the unconstrained problem to determine an upper bound for the values of X that

will be considered. This upper bound, call it A is computed as

= 10 3 (n+k)p

and the values of A considered are from largest to smallest: Log(,)

log(X\)-2.0, log(X°)-3.0, log(X')-4.0, (Log (X')-4.0)-0. 1,

In step (11.1) we use the routine QPFC to solve the quadratic programming

problem.

.1
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In step (11.3.5) we use the EISPACK routines REDUC, TREDI and TQLRAT (see

Boyle, Dongarra. Garbow and Moler, 1977), to solve the generalized eigenvalue

problem.

The routines DSCOMP and DSEVAL to compute and evaluate the spline are

written in Ratfor in a VAX 11/750 under UNIX operating system. Ratfor is a

preprocessor which translates this language into portable' Fortran. Both. the

Ratfor routines and the Fortran routines are available from this author.

All the computations are done in. double precision, and the routines are

self-documented. In appendix A2 we list the ratfor source for routines DSCOMP

and DSEVAL Routine DSCOMP is the routine that the user should call to solve

problem (2.2.1). We also give the listing of all the routines used by DSCOMP and

DSEVAL except the routines to solve the quadratic programming problem. Rou-

tine DSEVAL evaluates the spline computed by DSCOMP at a set of points in Rd

The calling sequence for DSCOMP and DSEVAL as weU as explanation of the vari-

ables that appear in the calling sequence are listed as comments in the source

code.

As we mentioned before, the algorithm is written for the case where

L,... , and N 1, .... Nk are evaluation tunctionals, for example,

' -. 4-f =f (Vli), i= 1 .... n and Njf = f (si), jl .... kc.. It is assumed that

the nt+k points are different so that the generalized eigenvalue problem in step

11.3.5 can be solved. In the near future we plan to incorporate the handling of

replicates in the algorithm. One possible strategy to handle replicates is the fol-

lowing: suppose that we have 7L, replicates at the point yj, and denote them as

) . .r(), then take the average

,o4

Djue

and let a = I/,7. Then use (2jyi), i1, .... ,n as the data with relative
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weights (a,, a,2). The grid of points s 1, . sk can always be chosen so

In the example with real data in section 4.2 the replicates were handled

using the strategy mentioned above.
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CHAP-R 4

MONTE CARIO EXPERIMENTS AND EXAMPLES

4.1 Comparison of linear, quadratic and spline discrimination

In this section we compare the performance of the two parametric models

most commonly used with the spline model.

Design of the simulation study

Our study is restricted to continuous bivariate data and to discrimination

between two populations A, and A2 . The prior probabilities are taken to be

equal and so are the sample sizes for the training samples.

As in chapter 2, let Y1, ... , , =n +z, denote the combined sample

from the two populations and detne

0 if YEA 1

Then. since for the simulation study the priors and the sample sizes nj and n2

are equal, we have that

.. "f 1(y)F[Z=l I Y=:y] = f I()f2()=p y. h()l~/ 2y )  PI)= t ( . (4..1)

The three models that we will consider are the following:

L- LINEAR: The densities f I and / 2 in (4.1.1) are assumed to be bivariate

Normal with possibly different means and the same variance

covariance matrix Z. The means are estimated by the sample

means and E is estimated by the pooled sample variance covari-

ance matrix. This gives rise to linear discriminant analysis which

is frequently applied. See for example BMDP (1975).

I...
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-: Q- QUADRATIC: The densities fI and f 2 in (4.1.1) are assumed to be bivariate

Normals with possibly different mean vectors and variance

covariance matrices El and Z2. The means are estimated by the

sample means and E, and Z2 are estimated by the sample vari-

ance covariance matrices.

S- SPLINE: The posterior probability p (y) in (4. 1. 1) is estimated directly by

minmizing

p (y,))2 + AJ2(p)
-,-

subject to

0:p(sj) 1, j= 1.. .
where J2 (P) is given by (2.2.8) with 7nm=2 and the smoothing

parameter X is estimated by generalized cross-validation for con-

strained problems as described in section 2.3.

The spline was computed as follows: First the unconstrained problem was

solved and an estimate fnA was obtained using Wendelberger's (1981) algo-

rithm. A regular grid of 15X15 points was constructed in the range of the data

and the unconstrained spline was evaluated at these 225 points. If the con-

strants were violated at some of these 225 points, then the constrained problem

was solved using 9 from the unconstrained problem as initial value for A for the

constrained problem. The set of points s. ... , sk at which the constraints

were enforced consisted of the subset of of the 225 points at which either

ux >0.9 or f A <0.1. In all our simulations we restricted k to be less than !00.

It would have been desirable to compare the spline model with the Kernel

model of Habbema, Hermans and Van den Broek (1974), unfortunately we could

not get their software.
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In each simulation, training data were generated to estimate the posterior

probability (4.1.1) according to each of the three models. We fixed the sample

size at 7n 1 = iLz = 70. Also 100 additional data points were generated from each

population to serve as test data.

The IMSL (1982) routines GGNSM and GGUBS were used to simulate the data

from four different types of distributions. Using the notation N 2(4 1 s,', 1 1,C)

for the uncorrelated bivariate normal, the four types of distributions are given

in Table 4.1.

Density contours for each type of distribution are given in Figure 4.1.1

For each type of distribution four simulations were done. In each simula-

tion. 140 training and 200 test observations were generated and the values of six

measures of performance were calculated for each model. These values were

averaged over the four simulations and their standard deviations were com-

puted. For distribution type three six more simulations were done with training

samples of size 50 for each group and three simulations with training samples of

size 90.

I TABLE 4.1.1

1 I

2 N2 0.0,1,1 Nz(5,0,16,16)

3 N2(00,1, 1) .L-1 2(.5,-2.5,1,)+-NI 2(l.5,2.5,1,1)

4 --'I-2 (0,5,1, 1) N2(0,0,16,16)

[ + v- 2(0,-5 1, 1)
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Density Contours

Distribution Type 1 Distribution Type 2

Distribution Type 3 Distribution A2Type4

AZ

Figure 4. 1. 1

L @
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Measures of Performance

We use misclassification rate as a criteria for measuring how well each of

" the three models performs. The simplest way of estimating misclassification

rate is by the proportion of training samples that are misclassified However,

this leads to an optimistic result, and unless the training sample is perfectly

- representative of the population. the classifier will reflect peculiarities of the

sample at hand that do not exist in the population. The error rate calculated by

reclassifying the design set is known as "apparent error rate". The "true error

rate" of a classifier is the expected error rate of this classider on future samples

from the same population.

One of the advantages of a simulation study is that we can generate a test

sample from the same distribution of the training sample and get a better esti-

mate of the true misclassification rate from the proportion of test elements that

were misclassifled.

Several authors like Gilbert (1968), Lachenbrook and Mickey (1968), Marks

and Dunn (1974). Goldstain (1975). Van Ness and Simpson (1976), Aitchison,

Habbema and Kay (1977) and Remme, Habbema and Hermans (1980) have

evaluated various discrininant analysis models.

We choose to use the same measures of perfor-tance that Remme,

Habbema and Hermans (1980) used to compare their Kernel model with the

linear and quadratic models. All this performane measures are computed on

the test sample.

Two kinds of allocation rules are considered. One is the "forced allocation

rule" (FAR) which consists of allocating the test element to the population with

higher posterior probability, that is, the test element t is allocated to A 1 if

p(t)>0.5 and to A2 otherwise This kind of rule does not take into account

differences in the posterior probabilities between for example 0.55 and 095

o.



50

This lead us to the consideration of a "doubt allocation rule" (DAR). This alloca-

tion rue is as follows: allocate test element t to population A1 if p(t) is greater

than some prespecifled threshold value 6>0.5; allocate t to A2 if j(t)<1-6 and

allocate t to a "doubt category" if 1-6 ! (t) ! 6. The threshold value used in

our simulations is 6=0.9.

We have two groups of performance measures. The first group is used to

compare the models L, Q and S among themselves, that is, without using the

knowledge of the true posterior probabilities. These first group of measures are:

P1: Percentage of test elements allocated to population of origin using FAR.

P2: Percentage of test elements allocated to population of origin using DAR.

P3: Percentage of test elements allocated to population from which they did

not originate using DAR.

The following three measures compare each estimate of the posterior pro-

bability under the three models with the true posterior probability. These

measures are more adequate for evaluating the estimation of the posterior pro-

bability. These measures are:

P4: Percentage of test elements allocated to the same population with both the

true and the estimated posterior probability using (FAR).

P5: Percentage of test elements for which there is "strong agreement" between

true and estimated posterior probability using DAR (see bellow).

P: Percentage of test elements for which there is "strong disagreement"

between the true and estimated posterior probabilities using DAR (see bel-

low).

Measures P5 and P6 are computed as follows. For each test element P (t)

and p(t) were computed and the test element was allocated to one of the 9
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categories in table 4.1.2 according to the values of p(t) and j(t). Then, P5 is

the computed as the percentage of test elements that fall in classes c1 1, c and

c3 3. P8 is the percentage of test elements that fall in classes C31 and c 13-

TABLE 4.1.2

-7 P

F0,0,.o!1i moiao.9 ro.9..ol

[0.0,0.1] c11  C 1 C c3

. (0.1,0.9) c 21  C C2
[0.9,1.0] c 3 1  C C33

Remilts

For each of the four types of distributions the average values of P1, P2. P3,

P4. P5 and P6 over the four simulations are given in tables 4.1.3 through 4.1.6.

The column labeled U.S. in these tables corresponds to the unconstrained spline.

This information is summarized in figures 4.1.2 through 4.8.7.

TABLE 4.1.3

Distribution Type 1

Perf Stan. Stan. Stan
Measure L , Dev. I ev. I S Dev. !-U.S. Dev,

P 1 82.50 2.58 81.38 2.95 81.25 3.40 81,50 2.55
P2 65.13 1.80 65.13 1.38 62.25 3.01 61-00 2.74
P3 4.13 1.25 4.38 1.80 , 3.50 2.04 2.75 119
P4 97.75 1.19 96.88 0.75 95.75 2.78 96.25 2.22
P5 90.63 2.63 88.50 5.74 I 88.75 779 92,25 3.38
Ps , C 0.00 000 0.00 0.00 0,00 0.00 0.00

V=
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TABLE 4.1.4

Distribution Type 2

Perf. Stan. Stan. Stan. Stan.

P 1 88.00 1.08 90.13 2.17 92.38 1.03 92.38 1.03!
P2 43.63 5.45 79.38 2.78 70.00 9.60 68.25 8.23
P3 0.75 0.65 3.63 2.683 0.63 0.75 0.50 0.71
P4 88.63 1.44 97.25 1.19 95.50 1.08 95.50 0.821
P5 41.63 10.36 95.88 0.48 7675 10.90 75.38 11.12
P6 0.75 0.50 0.711 Q) .L 0. 71

TABLE 4.1 5

Distribution Type 3

Pert. Stan. j IStan. FStan. IStan'

Measur ~ L De S C) 1 -S Iev U. .
P 1 69.25 2.40 84.50 2.12 86.25 3.40 86.00 2.61
P2 36.38 2.46 52.38 3.17 I68. 13 I3.79 64.5 6.181
P 0.3 0.48 0.50 0.41 1.63 1.11 1.1 0.95

P4 71.63 2.86 90.88 1.80 I95.13 1.49 I92.13 1 8.18
P5 41.83 3.57 70.36 3.77 86.38 3.97 I73.50 i 19.67P6~ 0.0 0.00 0. 'o 00) .00 2

TABLE 4.1.6

Distribution Type 4

Perf. Stan. I Stan i IStan.I' Stan.

Measure L Dev. D ia)v. S ' Dev. U. S. Dev.

P 1 53.25 I5.01 88.13 2.39 92.'13 2.25 93.63 1.31
P2 28.13 5.12 60.25 5.07 80.63 1.60 81.25 1.06
P3 0.00 0.00 0.50 0.58 2.13 1.49 1.00 1.08
P4 51.50 4.80 91.38 2.63 94.38 0.85 95.63 1.18
P5 35.25 2.50 55.63 6.57 73.25 3.93 77.25 4.66

0.00 0.00 0.00 0.00 0.25 0.50 0.00 0.00

It is clear from this f~gures that the linear model performs well only with

samples from distribution type 1, that is, when both samples come fram bivari-

ate normals with the same variance covariance matrix. Even in this case the

performance of the quadratic or the spline models is almost as good as the per-

formance of the linear model. When the samples are generated from two bivari-

ate normals with different. variance covariance matrices, the quadratic model
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Figure 4.1.2s Percentage of test elements classified
correctly using Forced Allocation Rule.
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performed better than the spline as expected, however the spline was very

closed to the quadratic. In samples from distributions type 3 and 4 the spline

was consistently better than the quadratic. The difference between the spline

and the quadratic was larger when the doubt allocation rule was used.

The spline did particularly well in measures P4, P5 and P6 which give a

better idea of how well the estimate approximates the true function.

From table 4.1.3 through 4.1.6 we can also see that in terms of classification

there is not too much difference between the unconstrained and the constrained

spline. being the performance of the constrained spline slightly better in most

cases.

In the case of distribution type 3, six more samples were generated to see

the effect of the sample size on the spline estimate. The first three simulations

were done with n I = n2 = 25 and the last three with n1 = n 2 = 45. The results

of these simulations together with the results for 1 =n2 = 70 are given in

tables 4.1.7 and 4.1.8 and summarized in figures 4.1.8 through 4.1.13. In all the

measures the spline performed better than the quadratic and linear models for

the three different sample sizes.

In figures 4.1.14 to 4.1.33 we present, for one of the simulations for each

type of distribution, plots of the approximate generalized cross-validation tunc-

TABLE 4.1.7

Distribution Type 3, Sample Size: 50

Perf. Stan. Stan. Stan. Stan.Measure L Dev. 0 Dev. 3 Dev. U. S. iDev,

P1 67.67 3.18 82.83 1.26 65.50 2.16 86.33 0.7
P2 35.50 4.92 49.83 1.26 70.83 10.79 68.50 11.7
P3 1.67 2.47 1.67 1.61 3.50 2.78 1 3.17 2.25
P4 69.17 5.03 87.67 0.76 91.00 2.18 92.17 3.824 4 5 0 j1 . 7 3  6 9 5 0  3 . 0 6 1  ~?.? 29P5 0,2.9o 1.7 0.00 3.50 76. 17 3.75 7,9. 2.93,
P. 1 0,1 0 o.0 ooo 1 0o oo o I

• ; .: _ .. ... - , ; .. ; . _: . .. . .. .. .; . . . . . . .
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TABLE 4.1.8

Distribution Type 3, Sample Size: 90

Perf. Stan. Stan. Stan, Stant.
L Dev. 0 S Dev. U.S. Dev.

P1 71.00 2.29 84.87 2.84 85.00 1.50 85.50 0.50
P2 36.83 2.38 52.33 2.36 59.17 5.89 56.33 6.25
P3 0.33 0.29 1.17 0.29 1.17 0.29 0.83 0.29
P4 71.87 1.26 93.00 0.50 93.33 2.89 94.17 2.75
P5 45.50 3.77 73.67 4.07 78.50 6.24 78.50 7.28
Ps 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tion. contour plot of spline and quadratic estimates and the true posterior pro-

bability and surface plots for the true posterior probability and its spline esti-

mate. In the case of distribution types 3 and 4 we also present contour plots of

the quadratic estimate together with the true function.

In the plots of the generalized cross-validation function we use two different

symbols "+" and "o" to indicate when the set of active constraints changes. If

for two consecutive values of X the symbol changes. this indicates that the set of

active constraints is different for those two values of X.

In the contour plots we use a solid line for the contours of the constrained

spline, dashed line (--) for the contours of the true posterior probability and a

dash-dot line (-.-) for the contours of the quadratic estimate. The data is

presented in the same plot. A dark triangle in the contour plot indicates the

viewpoint for the surface plot.
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Distribution Type 3
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Figure 4.1.32: True posterior Prob.,
distribution type 4.

Figure 4.1.33: Constrained spline,
distribution type 4.
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4.2 Other simulation results

In this section we present two examples that were generated from univari-

ate distributions and we give some computation times for the simulations of sec-

tion 4. 1.

In our first univariate example, sample 1 was generated from a Normal dis-

tribution with mean zero and variance one, and sample 2 from a Normal distri-

bution with mean 1.5 and variance 1. In figures 4.2.1 and 4.2.2 we present the

unconstrained and constrained spline estimates, together with the quadratic

estimate, true posterior probability and data.

In the second univariate example, sample 1 was generated from

0.3N(0,0.25)+0.7N(O.16). and sample 2 from a N(OO.25). The corresponding

plots are given in figures 4.2.3 and 4.2.4.

In figures 4.2.Z, 4.2.3, 4.2.5, and 4.2.8 it is clear that for classification put-

poses there is basically no difference between the unconstrained and the con-

strained splines, but certainly, we would not want to show a client a plot of an

estimated posterior probability that can take values greater than one or smaller

than zero.

The time of computation of the spline depends on the sample size

n=n4I n.2 , the number of constraints k. the number of values of A to be con-

sidered for evaluation of the generalized cross-validation function and the

number of times that the active set of constraints changes from one value of A

to the next.

In table 4.2.1 we present the average C.P.U time used by the routine

DSCOMP to compute the spine in the simulations of section 4.1. In table 4.2.1

the column labeled "nc" contains the average number of constraints enforced in

the simulations, the column labeled "%Time in G.E.P." contains the percentage

LO
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of time spent in the generalized eigenvalue problem and the column labeled

"%.Time in Q.P.' contains the percentage of time spent in the solution of the qua-

dratic programming problem.,

TABLE 42.1

IDist. CPU time %Time in j%Time in

Tvo n _j= (mnts G. E.P !

I[.. 74e-J~LL L

1 140 98 252.03 43.5 40.2
2 140 94 230.45 43.1 46.0
3 50 78 54.15 21.6 82.9
3 90 65 63.33 32.3 56.7
3 140 67 184.24 54.1 34.9

!4 95 1293.11 475A 41.7

From this table we can see that on the average 47% of the computation time

is spent on the solution to the generalized eigenvalue problem and 40% in the

solution of the quadratic programming problem except in the small sample

cases (n=50, 90). In the n=50 case 62.9% of the CPU time was spent in the

solution of the quadratic programming problem while only 21.6% of the time was

spent in the generalized eigenvalue problem. In the n =90 case, 56.7% of the

time was spent in the quadratic programming problem and 32.3% in the general-

ized eigenvalue problem The reason for this is that the quadratic programming

routine works better when the number of constraints in the active set is small

compared with the number of observations. The algorithm to solve the general-

ized eigenvalue problem is an N 3 algorithm, where n-M--rN<n +k -M, there-

fore it would be very expensive to use the routine DSCOMP to compute the con-

strained spline for very large n. In our simulation study even with n=50 we got

pretty good results and in distributions type 3 and 4 the spline was consistently

better than the quadratic model for n =50, 90 and 140, however we do not

recommend its use for very small n. In chapter 6 we will discuss a possible

alternative for large sample sizes.

p.
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4.3 An example

Here we apply our method of estimating the posterior probabilities to

some results of a psychological test of a group of 25 normal persous aucd 25

psychotics. We obtained this set of data from Smith (1947). The psychotics will

be population A., and the normals A2. The two covariates are an unweighted

total score or "size" obtained by Penrose's method (Penrose 1945) and a

weighted score related to shape.

In figure 4.3.2 we present the data and the contour levels for the spline

estimate (solid lines) of the probability that a given subject belongs to the

psychotic group given its particular measurements of size and shape From this

figure it appears that the splme estimate gives a more accurate representation

of the data than the quadratic estimate.

In figure 4.3.3 we present a view of the surface of the spline estimate

from the point indicated by a dark triangle in the contour plot 4.3.2. The

approximate generalized cross-validation function is given in figure 4.3.1.

-- ]
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CHAPTER 5

PENALIZED LIKELIHOOD ESTIMATION

5.1 Motivation

In this chapter we extend the result given by Silverman (1978) to the d-

dimensional case.

As in chapter 2 let YI . , Y, n=n + 2 denote the combined samples

from the two populations and define

• " II if YEAI(Z 0 if Y EA 2  (5.1.1)

Let q I and q2 be the prior probabilities. Then, if we obtain a new observation Y

and we want to classify it as comning from A, or A2 , the Neyman-Pearson

lemma tells us that the classification rule should be based in the ratio

r qf 1  (5.1.2)

Besides its application in the classification problem, the estimation of den-

sity ratios lays open the possibility of constructing empirical versions of any

other procedure based on likelihood ratios.

We now derive the likelihood of r conditional on the observed values

z . zn and y 1 ,.  n.

Note that
": ~q If 1(yi) _r (y/i)(5.3

P(Zi 1+) = qf 1 (y+)+qzf 2 (y ) i+((5.13)

and similarly:

9"
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P(Z,=O Y =Yj) '+r(y,) (5.1.4)

So that if z1 .... z, are the observed values of Z. Z, the condi-

tional likelihood for r is given by

L(r) =. r(5,1.5)
and hence, the log-likelihood is given by

logL(r) = F, zlogr(yt)-log[ l+r( ) 1. (5.1.6)

A maximum likelihood approach to estimate r would be to maximize (5. 1.6).

" The fact that L(r) is'undeined for negative values of r(), while, for any i such

that zj is zero, the likelihood increases as r(y,) tends to zero can lead to com-

putational difficulties if the estimation of r is considered directly. To avoid this,

consider the estimation of the logarithm of r and let

g = log r. (5.1.7)
then the conditional likelihood L of g becomes

exp[g (j)]
L'(g) =T

and the log-likelihood is

logL°(g) [zig(yi)-log 1+ezp[g()] (5.1.)

If we wanted to maximize (5.1.8), we could take

if = t

- t-=) L if Z = 0'

To avoid this undesirable solution we should use the underlying assumption that

g is, in some sense, nc too rough. Therefore we should penalize the ikelihood

according to the roughness of g.
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This device of penalizing for roughness has been used in different contexts

by Reinsch (1967). Good and Gaskins (1971) and other subsequent authors.

We will assume that the function g is in the reproducing kernel HUbert

space H(m ,d) defined in section 2.2. The "penalized likelihood" estimate of g is

the function that minimizes

I,\(g) = -1ogL"(g)+AJ.(g), (5.1.9)
where Jm is given by (2.2.8). In the particular case where m-2 and d-1 ,A(g)

becomes

n- [og(t+e=p[g(y,)])-rg(y,) + Af(, ")2,

which is the expression that Silverman (1978) mininmzes to estimate g.

52 Existence and uniqueness of an estimator

In this section we discuss the existence and uniqueness of the minimizer of

Ix(g) in H(m,d), and we characterize it as a Laplacian Smoothing Spline. The

optimization theoretic results needed here are given in appendix A!.

As in chapter 2, let Ho(m,d) be the space of polynomials of degree less

than m defined on Rd , and let H 1(m,d) be the orthogonal complement cf

H0 (n,d) in H(m,d).

First we establish the uniqueness of a minimizer of I(g) in the following

5.2.1 Lemma

The minimizer gX in H(rn ,d) of IA(g), if it exists is unique.
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Proof

Let f EH( m d) and define

(t): =,Xdg + if)
then, by proposition A1.4. we have that the jt Gateaux variation of I4(g) in the

direction ..... f) is given by

-(g)( ..... ,f) = t -0.
dtJ

% Note that Jm(g) Jl ll where P is a projection operator into the space

H(m ,d), then, we compute the first and second Gateaux variations as follows:
V.

()= z" g(yi)+tf (YO) - log(t+exp[g (yi)+tf (O)])

"'.+ X<g +if ,g +tf >

=
d l

n f a ( (V)exp~g(y)+tf (yi)]

+2?<f ,g > + 2Xt <f J >

And differentiating with respect to t again we obtain:

_--_z(t) = lf(yi)exp[g(Vi)+tf(#)]
"- t~ [p~y)+tf (YO)]E , + 2X<f Jf>.

7dC2t) 2=1 1+e-p [g Yi)+tf (Y01
Finally. evaluating at t=O we get:

= f (y)2 ezp(g(y)] + 2XIIPf 21-:' i., t+exp[g(Vj)]

> 0 V f E H(md),f O.

Then, by proposition A1.5 IX is strictly convex, and hence, if it has a minimum, it

is unique.

%"U

-%e & afi ~ ~ - -. . - - - - - - - - -
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We now establish sufficient and necessary conditions for the existence of a

minimizer of I' in the space H0(m ,d).

5..2 Lemma

Let Ho(m ,d) be the space of polynomials of degree less than m du6.ned in

RI. The minimizer of 1A exists and is unique if and cnly if ther." is no level curve

of an element of H 0(rn ,d) that completely separates the samples.

Proof

Let gCHo(m.d), then, since J. (g) = 0,

= og(t+e-p [(yj) -z g(yi)

Now. there exists a level curve of a polynomial that completely separates

the samples if and only if there exists g "EHo(m d) such that

0 if yEA, (5.2.!)g *(Yi) = 0 if yj FA2"

We ftrst show the if part. Suppose that there is no g CH0 (m d) satisfying (5.2. 1),

then for all g EHo(m,d) there exists at least one yj, j= 1 ... n such that

{<0 if yj EA I
(Yj) >0 oif yjEA 2"

Now,

::: Ix( ) = og (t+.Tp[9 (y,)-zjg (y,)

,2! log(t +exp [g (y,)] -zjg (yi 1).

So, f y, A1. g(yj)<0 = 1x(g)-- as I IgIlgo -  and if y3jEA2,

.g(y)>0 =D1 .\(g)--= as jlglHHi.-- Therefore, by proposition Al.7 there exists

giEHo(m,d) that minimizes I4(g) in Ho(m,d) and by Lemma 5.2.1 such g is

unique.

. . . .
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We now show the only if part: assume that there is a unique gEHo(m ,d) that

minimizes 'X and suppose that there exists g • that completely separates the

samples, that is, g satisfies (5.2.1). Since g minimizes x, g mammizes

exp[-4.(g)]

=.*exp[-IxG)] a! ezp [-4(g)] V g 1EH 0 (m 4).
But

e [- ( ] = texp[g ()] -otexp[-(j)]

and looking at each term in the above expression we see that

exp [r]/(1+ezp [r]) goes from 0 to -whenr goes from - toO and it goes to

1 whenr goes from 0 to a and necessarily exp[-4(g)] < 1. Now, for arbitrary

6 >0 consider

ex,-/(ag') H ep[iOg•(Vi)] 0 _exp[-Og()]

Since g satisfies (5.2.1) both products tend to 1 as 1i--, so that for -6

sufficiently large we have

eZP [->;, x] > 16 1 -',(i]

which contradicts the assumption that 2 is the unique minimizer of I4(g).

In Theorems 5.2.1 and 5.2.2 below, we establish conditions for existence and

uniqueness of the minimizer of I4(g) in H(m ,d) and characterize the solution

as a Laplacian smoothing spline.

-mid'
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5.Z1 Theorem

The minimizer gx of 4X(g) in H(m,d) exists and is unique provided that

there is no level curve of a polynomial of degree less than n that completely

-' separates the samples.

Uniqueness follows from lemma 5.2.1. By lemma 5.2.2 we only need to show

that if the minimizer of I4(g) exists in Ho(mn,d) then the minimizer exists in

H(m ,d).

Any function g H(mr,d) can be written as g =go + gI where

gocHo(n,d) and gIEH1 (m ,d). Now write IXas

X(g ) t .I=g l e P g ( i + I Y 3l 'I
- 2z ;[go(g) +g1(Yi1 + XIIg 1II2

AIg jI2,

so that if jg III-.- = I.\(g)- and by proposition A1.7 this implies that I, has

a minimum so it will suffice to show that 1, attains a minimum in

H" = H(m,d)EH(m,d),
where

HI(md) = HI(n,d) " ,,gjK for some K> 01.
LetgEH, for ail /ER we have

Ig1(y) I K21Ig 1 1 1 K3. (5.2.2)

Again write g=go+g , where now g 1 E Hr(m,d), then, adding and sub-

tracting Log (I +ezp (go(yj) ) from 1A and using (5.2.2) we get:

.-. I

.- - - -.°± - - - -



85

1+e--p[g(y 2 )j

Looking at an individual term in the summation in (5.2.3) note that

0 o l 1  l+expgo(yJ )] [> o .lo t+exp[g o(Y0)g (

and if g1 (yi) < 0, then

Ig1(j)l = -g1(y,) < K3

.g 1(y) > -K 3

* ,so that

Sr I+s.Tp [go(,)+g I(yj)] r l+exp[g o( )-K3]1
log1  L.elo[go(g)] l°g[ i+exp[go(y1 )]

".'. _Jexp[-K3](exp[K3] +exp [g o(y,)])
= e (5.2.5)

> -K 3

then (5.2.4) and (52.5) impLy that

"::: log +pg°!)+ ( ]}> -nK 3. (52)

".'" ,-s l+exp:[go(%)]

Hence. by (5.2.3) and (5.2.6) we have that

Ixg) 2 Ix(go) + K4
--v lim IX(g) L, l- m I(go)+K 4

Sltn IX(go)+K 4 =

since IX(go) attain a unique minimum in Ho(md). Therefore, by proposition

Al.7 IX attains a minimum in H(n d).

Silverman (personal communication) has previously conjectured theorem

5.2.1 and has also noted a rather elegant property of the minimizer of Ix(g): As

X--., gx tends to an element of the null space of J,, so that for m =2. the

* -m
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estimated log-likelihood ratio will be linear and for m =3 it will be quadratic.

Thus, the parametric estimate for multivariate normals is included as a limting

case. (Compare Wahba 1978 and also Silverman. 1982).

The following theorem characterizes the minimizer of iX(g) as a Laplacian

smoothing spline. The proof of this result is straightforward and follows Wahba

and Wendelberger (1982) and section 2.2 of this thesis, and therefore is not given

here.

Let Em, I rpl, ... *olbe as in section 2.2.

5.Z2 Theorem

The minimizer gx of 4x(g) in H(m ,d) if it exists is of the form

g~)= E c1 E,(.y~ +Mip,~
i-l jul

where the vectors c = (ch 1 .  and d = (i .. . , d/)' are the solution

to the following non-linear optimization

Problem

Minimize

F, og l+exp ciE. (yi.yj) + F)
(5.2.7)

n M
E En(i-Y + E drpj(i()] + XC tEc

subject to Tt= 0, where now.

*E [Enm(YiMY)) i 1, n; I... n

and n:(o(~ i . ; j=l,.,M.
9E

9 -' - ''" -'v ., -'' , - .. ... " ". - " - " " " , ' " "- - ",.-- i . .
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Note that the matrix E above corresponds to the matrix Ell of section 2.2 and

the matrix T corresponds to the matrix T 1 of the same section.

To find the estimate of g for a given value of A we must solve a nonlinear

optimization problem in n -M variables but there is still the problem of choos-

ing the value of the smoothing parameter.

Since the conditional distribution of Z given Y =y/ is binom il (1,p)

wherep = P(Z 1 I ,=), then

exp[h (y)]
E[Z4 1 + lexp[h (Vj)]

so that an ordinary cross-validation estimate of X would be the value of A that

minimizes

.th qx L4X Y,] 12, (5.2.8)

where g is the estimate of g obtained by minimizing (5.2.7). but leaving out

-.the qt observation. Obviously (5.2.8) would be prohibitive to compute since for

each value of A we must solve n nonlinear program ming problems in n -M vari-

ables.

Wahba (personal communication) suggested that by minimizing I.(g) in a

subipace of H(m d) consisting of tensor product B-splines we might be able to

get some computational simplifications.

Recently. O'Sullivan (1983) has developed a numerical algorithm together

with a generalized cross-validation estimate of A which is suitable for use with

" I4(g).

.,.. . .. . . . . .

..b. . . . . .
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CHAPFER 6

CCNCLUSION

6.1 Summary

We have introduced a nonparametric estimate for the posterior proba-

bilities in the classification problem. The smoothing parameter of the estimate

is determined from the data by the method of generalized cross-validation for

constrained problems.

Our Monte Carlo experiments attest to the accuracy of the approxi-

mate generalized cross-validation function to choose the smoothing parameter.

Through this simulation experiments we compared the spline model to estimate

posterior probabilities with two parametric models which are very commonly

used: the linear model, which is based on the assumption of Normality with the

same variance-covariance structure for the popuiauLLns involved, and the qua-

dratic model which is based on the assumption of Normality with possibly

different variance-covariance structures. The linear model performed well only

when the samples were generated from Normal listributions with the same

variance-covariance matrix. The spline model performed almost as well as the

quadratic model with samples generated from Normal distributions with the

same or different variance-covariance matrices, and its performance was con-

sistently superior to that of the quadratic model for samples generated from

non-Normal distributions.

It can be seen that this method presents a nonparametric alternative

to logistic discrimination as well as to survival curve estimation. In logistic

regression h(y) is modeled as the logistic function
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r-- ep ao+  a.y YM

1 + exp l o + ay (i)

where =(y(i),..., (:)) "rd t.a parameters a0, .... ad are estimated, e.g. by

maximum likelihood. See for example, Cox (196), Day and Kerridge (1967),

Anderson (1972), and Anderson and Blair (1982). Here the discriminant func-

tions will be hyperplanes. In survival curve estimation suppose y is a "dose" and

.h(y) is the probability that a subject survives given a "dose" y. One "observes"

that subject i has "dose" y, and then one observes a response. which is zi = 1 if

the subject survives and zi=O if the subject dies. In logistic durvival curve esti-

mation, a function of the form (6.1.1) is fitted to the data (z,,yj), however it is

clear that the constrained spline estimate provides a nonparametric alternative.

The algorithm developed to estimate the posterior probabilities can be

used to solve the more general

Problem 6.1.1

Given zi f (y/i), 1 .... L, find inx E H(mr,d) to ninimize

>-(f (Vj)-zj)2 + flJm (f)

subject to

The subroutines to solve problem 6. 1. 1 are listed in appendix A2. They allow

different measurement error variances, any dimension between 1 and 6 and any

value of m satisfying 2n -d > 0.

Finally, the problem of estimating the likelihood ratio is also considered. A

penalized likelihood estimator is given and conditions for existence and unique-

ness of such an estimator are given however, no data-based method to choose

the smoothing parameter is provided.

~~~~~~~~.................... "",---- ,..."...................•. ._. , --"-' -.---.----.
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6.2 Future work

The results presented in the previous chapters are new and quite promis-

ing. There is no doubt that there are many Interesting research problems in

this area. For example, we believe that convergence rates may be established

using the results of Wahba (1979a) and Cox (1982).

More simulation studies are desirable to study the effect of different sample

sizes in the spline estimate.

We think that the methods outlined in chapters 2 and 3 can be extended to

analyze large data sets following Bates and Wahba (1983).

We plan to incorporate the handling of replicate observations in the algo-

rithm as well as the possibility of enforcing linear constraints not only on the

values of the function but also on the values of the derivatives of the function.

This would allow, for example, enforcing monotonicity constraints.
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APPEDIXAl

SOME MATHEMATICAL OPTIMIZATION RESULTS

In this appendix we present some of the properties of Hilbert spaces and

some results in mathematical optimization theory that are used in this thesis.

We do not present the proofs of these results because they can be found in

several books. The results on Hilbert space can be found in Akhiezer and Glaz-

man (1961) and Aubin (1979). For results on reproducing kernel Hilbert spaces,

see AronszaJn (1960). The optimization theoretic results can be found in books

such as Luenberger (1969). Ortega and Rheinboldt (1970). and Daniel (1971).

A useful summary of important results relevant to this thesis can be found

in the two appendices of'Tapia and Thompson (1978). They present proofs of

results that cannot be easily found in standard analysis texts.

eview at Hilbert amee propertie

Throughout this appendix let H denote a Hilbert space of functions that

map R'1-'R Let H* be the dual of H. that is, the vector space of all bounded

functionas from H into R

A functional L:H-Ris said to be bounded if there exists a constant C such

that ILf ICIIfJIJN for all fCH. A functional L:H-'R is said to be continuous

at f EH if { RICH and f,-.f mo LfI-Lf. L is said to be continuous in

SCH if it is continuous at each point in S.
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Al. 1 P"Mositlon

If L is a linear functional defined on H, then the following are equivalent:

(i) L i boun&d

(U) L is conitinuous in H
(iii) L i contini ous at one point in H.

Al. 1 Tbhearem (Rleu z rep ~eatabion)

I L d 1. then there exists a unique A. cH such that

LI = <f LI > Vf cH,
moreover, the vector space H " becomes a Hilbert space with inner product

-. <L'G>H" = <fILIG>H 'VL, GEH*.

Al.1 DeflniUon

A Hilbert space H(U) of functions defined on a set UcR' is said to be a repro-

ducing kernel Hilbert space (RKHS) if there exists a reproducing kernel K(-,-)

functional defined on Ux U such that

(i) K(.,t)cH(U) V tcU
and,

(ii) f(t) = <fK(.,t)> V f.H(U) and V/t1U.

A1.2 Propation

* H(U) is a R tif and only if for all t EU the point evaluation at t is con-

tinuous, that is, if and only if there exsts Cg such that

J'(t)jU SglF.* .f .-l.H (U).
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A1.3 -nopa-on

Let L be a continuous linear functional defined in the reproducing kernel

HMbert space H(U). and consider the kernel K(st), as a function of t. then

*-1,KL(st) = iv(s) where 71 is the Riesz representer of L.

!--Convexity and dirismtW charmcterizations

A1.2 DeftlUm

Let S be a closed convex subset of H and consider L: H-R. Then

(i) L iscovexan S if
tLf + 'I-t)Lg a! L(tf (1-t)g) V4tCC0,J and Wf, 91ES.

(U) L U shctly convex in S if
.% .•:-tLf + (1-t)L9 > L(tf (1-t)g) V t C(01) and V / , g cS, f ;& .

A1.3.Definition

Let L: H- R Given w .. cis, and f H, by the n th Gateaux variation of

L at f in the directions .... w is given by

L(R)f (wi... ,) = in -P&L ')(f+tu)( i . ... _1t -.0 t

with L(O)f = Lf. It L(')f C H, the Rleuz representer of L( 1)f is denoted by

VLf and is calied the gradient of L at f that is,

• .. "" /( )0)(w) <VLf' cj> V ,' EH.

- * A1.4 Propai~Ua

.°'-"It -6(t) =L f +tci) then, 4(')(0) =L('L)(f )(c .. u).

:. . . . .. . . . . . . . . . . . . . . . . '

* . *...
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AI.4DAumDitio

Let S be a convex subset of H By the cone tangent to S at f we mean

OU I{rH: t>, such that f +t cESI
Suppose that L is twice Gateaux differentiable in S, then L" is said to be posi-

- tive semidefinite relative to S if for each f CS we have

"(f)(cj,c)! 0 VciO(f).

We say that L" is positive definite relative to S if

V• z,(.f)(w,w) > o 'V aCJE(f ), (1 4o.

A1.5 Propostion

Assume that L: H-R is twice Gateaux differentiable in a closbd convex
subset S of H. Then

(i) L is convex in S <* L' is positive semidefinite relative to .

(ii) L is strictly convex in S if L" is positive definite relative to S.

Opmizaoprblems in HUbert space

We now consider the existence and uniqueness of a solution to

Problem Al.I

Minimize Lf subject to f e S.

AL.S Proposition

If L is strictly convex and S is closed and convex, then problem Al. 1 has at

most one solution.

[-'p

-1

• o. ... . . - . . ..-. o - .. - -.. + . .. +
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A1.7 ProposUan

Let S be a closed convex subset of H. If L: S- Ris convex in S. continuous

in S and if %I , CS and otN ' L(f ca ) -L(o,. then. problem A1.1 has at

least one solution.

p

.. ~ .



96

APFENIXAZ

DOCUMENTATION FOR DSCOMP AND DSEVAL

In this appendix we list the documentation for routines DSCOMP which com-

putes the spline with linear constraints and DSEVAL which evaluates the spline

at some set of points provided by the user. We also list here all the routines

needed to compute the spline. except the routines to solve the quadratic pro-

gramming problem. These routines are coded in Ratfor (see Kernighan and

Plauger. 1976).
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subroutine dscomp(x,ldx,dim,nobs,s,lds,nconsz,mbl ,buisigma,
sigma,bigeig ,zero,finity, indlam,lamvec,nvalle,
rvalri ,nvalam,isave,istart,istate,nactiv,itmax,
ioptv,i pout,iactch,wmach,powers,ldp,bigm,coef,
hhat ,voflam,thetam, iwork,liwork,work r, ierr)

double precision x(ldx,l),s(lds,l),z(l),finity,zero,bigeig,sigma(l),
bl(l) ,bu(l) ,coef (1) ,hhat(l) ,wmach(15) ,voflam(l),
bigeig,lamvec (nvalle+nvalri+l),thetam,work (1)

integer ldx,lds,m,dim,istate(l) ,nobs,ncons,iwork,istart,isigma,~~liwork, iwrk (l), itowx,nval am, istate (i),nactiv, isave,

ioptv,nvallenvalri,iactch(l) ,indlam,powers(ldp,l),ldp,bigm

implicit double precision (a-h,o-z)
# This routine computes a thin plate spline with linear constraints
# as the solution to the following problem

# minimize:

# nobs 2 2
# 1 (z(i) -h(x(i)) /(sigma(i)) + lambda * J (h)
# i-l m

# subject to
hi(1) .1e. h(s(1)) le. bu(1)

# bl(2) .le. h(s(2)) .le. bu(2)

# bl(ncons) .le. h(s(ncons)) .le. bu(ncons)I
I
# x Double(ldx,nobs).
# Array containing the abscissas of the points at
# which observations are. The rows of this matrix
# correspond to the dimension of the space, and
# the columns to the number of observations.
# For example x(2,100) is the second coordinate
# of the 100th point.#
# ldx Integer constant or variable.
# On input ldx must contain the leading dimension
# of array x as defined in the dimension statement
# in the main program. ldx should be greater than
* or equal than the dimension of the space.

4 "-', .r- -. ,.. .- ," . . . .. . . . . ,. . - . . . . . :.- . . . . . ,. .. - .
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* dim Integer constant or variable.
# Dimension of the space.

# nobs Integer constant or variable.
# Contains the number of obskLvations for this problem.

# Double (lds,ncons)
# Array containing the points at which the linear
# constraints are enforced. For example, s(2,100)
# denotes the second coordinate of the 50th point
# where constraints are enforced.

# lds Integer variable or constant.
# Leading dimension of the array s. lds should be
# greater than or equal to the dimension of
# the space.

# ncons Integer variable or constant.
# Number of linear constraints being enforced.
#
# z Double (nobs).
# Vector of observations at the points in x.

# m Integer variable or constant.
# Degree of smoothing for the spline. If the
# dimension of the space,dim is smaller than 4
# then 2 .le. m .le. 7. If dim 4 then m - 3, 4
# or S. If dim- 5, m - 4 or 5. If din 6, m-4.

# bl Double (nobs + 2*ncons).
# Vector containing the lower bounds for the

constrained splin. in the last ncons positions.
# The first nobs+ncons positions are used by the
# Iquadratic programming routine.
#
# bu Double (nobs + 2*ncons).
# Vector containing the upper bounds for the
# constrained splin. in the last ncons positions.
# IThe first nobs+ncons positions are used by the
# quadratic programing routine.

# isigma Integer variable or constant.
# Indicates whether or not relative weights for
* approximate errors on the observed values are
# to be specified. See sigma below.

# isigma a 1 - relative wigths are not specified
# and assumed to be all equal to 1.
# isigma - 0 - relative weithts are specified in
# sigma.

"... ..".. .. . . . . .*:;.,-.. .' -, . ,..-: , i .. . . . ., 
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If isigma different from 1 and 0, isigma 1 is
assumed.

sigma Double (nobs).
* Array of size at least nobs specifying the relative
* weights for approximate errors on the observed
* values. If sigma - i then sigma is not used and
I" need not be dimensioned in the calling program.

" bigeig Double precision variable.
If la bda for unconstrained problem is Infinity,

,* bigeig should contain the largest eigenvalue
- obtained when the unconstrained problem was solved

If luamda for the unconstrained problem is finite
bigeig is not referenced.

iM1lm Integer variable.
On return, indlam will contain a number such
that lamvec(indlam) - log of the estimate of the
smoothing parameter lambda.

1* Double (nvalle + nvalri + 1).
On entry: lamvec (1) should contain the estimate of

lambda that minimizes the generalized
cross-validation function for the uncons-
trained problem. If this value is infinity

* then lawvec(l) should be set to -l.dO.
-. -On return:lmvec will contain a grid of values in
* units of log of lambda where the generalized

croes-validation function for constrained
problems was evaluated. Also, lamvec(indlam)
will contain the log of the value of lambda
that minimized the LWW function.

nvalle Integer variable.
On entry nvalle should contain the number of values
smaller than lamnvc(l) at which QCV' is to be evaluated.

nvalri Integer variable.

On entry nvalri shoud contain the number of values
larger than lamvec(l) at which GM is to be evaluated.

If both nvalle and rvalri are les than or eq l to
zero then nvalri and nvalle are st to 15.

If lmvec(l) - O.dO then nvalle should be equal to zero.
If lamvec(l) - -l.dO, that is the estimate of lambda

from the unconstrained problem is
infinity, then nvalri should be zero.
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. nvalam Integer variable.On return nvalum will contain the number of values of3 * lambda at which V(lambda) was evaluated.

*!isave Integer variable or constant.
Specifies whether or not various intermediate results

* computed by dscomp are to be saved or restored from
* :file. If two or more problems are to be solved with
* .. the sane dim, m, x, s, and sigma, i. e., charges only
, in z, some of the computations can be bypass for
*' ithe second and subsequent problems by savin. itermediate
-- results cmputed for the first problem.

* Isave - 1 - Do not use any intermediate resu saved
.. and save results computed on fil

". isave -1 - Use intermediate results saved ot ... le.

-- Isave different from -1 and 1 - Do not use any intermi-
*diate results saved and do not save any
-* results computed on file.

istart Integer variable or constant.
- Indicates whether or not an initial guess for the points

at which the the constraints will be active for the
-* value of lambda that minimizes GC' will be given.

* istart - 1 - Guess for set of active constraints is
'. specified in the vector istate (see bellow).

* istart different from 1 - No initial guess is given.
*..It is recommended to use istart - 1 and use the set of

I points where the constraints are most seriously violated
I as the initial guess (see istate).

istate Integer (nobs + 2*ncons).
*On entry: The last ncons positions of this array

indicate the initial guess for the set of
active constraints.

On return:The last ncons positions of this array indicate
the set of active constraints at the solution.

istate (nobe+i) - 0 - ith. linear constraint not active.

* istate (nobe+i) = 1 - ith. linear constraint active at
its lower bound.

Istate (nobe+i) = 2 - Ith. linear constraint active at
Its upper bound.

*44!

..... . . . . . . . . . . . . . . . . . .
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Q#

# nactiv Integer variable,
- On entry: The number of active constraints in the initial
# guess (if istart1).

# On return: The number of active constraints at the
# solution.

# itmax Integer variable.
# Maximum number of iterations for the quadratic
# programming problem. If itmax less than or equal zero
# then itmax is set to 100.

# ioptv Integer variable or constant.
# Indicates whether or not optimization of the generalized
# cross-validation function for constrained problems is
# desired.
#
# ioptv I 1 - Optimization of V(labda) is desired.

# ioptv no. 1 Optimization of V(lambda) not desired.

# iqpout Integer variable or constant.
# Controls printing for quadratic programming routine.
# iqpout - 0 - Nothing is printed by qpfc.
# - 2 - One line of output for each quadratic
# programming problem solved.
# >10 - Almost all relevant information is
# printed for debugging purposes.

# iactch Integer (nvalle + nvalri + 1).
# If optimization of V(lambda) is requested then this
# array indicates for each value of lambda tried whether
# or not the set of active constraints changed and whether
# I or not the quadratic programming problem for each value
# of lambda had a solution. If for a specific value of
# lambda, say, lauvec(j) thL quadratic programming problem
# did not have a solution then iactch is set to:

# inform , 2 - The problem appears to be infeasible.
#inform 4 Too many iterations have been perfomed.

# inform - 5 - Too many iterations have been performed

without changing the solution. The
# degeneracy is unresolved.

# inform - 6 - An active constraint has become infeasible
# The constraints are likely to be very badly
# scaled. Try a different starting point.

|°I

-S"I
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"*.-If lamvec (j) is not any of the above numbers then
* :lamvec (j) will be either zero or one. Vhen, say
* lamvec (j) - 1 and lamvec (j+l) - 1, this means that

changing from the jth. value of lambda to the next one
*did not change the set of active constraints. If
* :lanvec(j)-1 and lamvec(j+l)-O, then the active set of

- * constraints changed.

* rzach Double (15).
*- Machine dependent constants required by the quadratic

programuing routine qpfc.

*.wiach(l) - Base of floating point arithmetic
* i mach(2) - No. of base wmach(l) digits of precision.
* l mach(3) - Floating point precision.
Swmach(4) - sqrt( mach(3)).
* wreach(5) - Smallest positive floating point number.

wreach(6) - Sqrt(mach(5)).
,mach(7) - Largest positive floating point number.

wmach(9) - Sqrt (wmach(7)).
*wach(10) - Standard file number for the input stream.

Iwsiach(ll1) - Standard file number for the output stream.

* powers Integer (ldp,biqm).
- On return powrs(i,j) contains the power at which the
*." ith. component in dim-space is raised, corresponding to
"* the jth. d-coefficient.

*-For example, if m-3 and d-2, powers would be given by:PI
-0 0 0 1 1 2
•0 1 2 0 1 0

* ldp Integer variable or constant.
* Specifies leading dimension of the array powers as

defined in the dimension statement of the calling
program. ldp should be larger than or equal to dim.

bigm Integer variable.
On return bigm will contain the number of
d-coefficients of the spline.

*(dim + m -1)1
-" ' bigmo:::(dim I* (m-1) 1)

".coef Double (nobs + ncons + bigm).
".,On return: coef will contain the coefficients of the
* spline. The coefficients will be arranged

as follows:
Ic

• . . . . . . .. N .
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* coef nblI
* Idi

where c is an nobs dimensional vector that
1will contain the coefficients of the spline

corresponding to the points where the obser-
*vations were taken. b is an ncons dimensional

vector containing the coefficients of the
*spline corresponding to the points where the

constraints are enforced. d is a bigm
* dimensional vector containing the coefficients

of the polynomial part of the spline.

hhat Double (nobs).
*On return, hhat will contain the estimate of the function

h at the sample points x.

voflam Double (nvalle+nvalri+l).
*If optimization of V(laubda) was requested voflam

will contain the value of V(lamda) at the values of
*lambda in lamvec.

A negative value of voflam(j) means that the quadratic
Iproblem could not be solved for the lanbda-lamvec(j),

see also iactch.

thetam Double precision variable.
*On return thetam will contain the constant that

multiplies E
* m

Iwork Integer (l1iwrk).
Integer wrk array of dimension at least liwork.

liwork Integer variable.
*On entry iwork specifies the dimension of the array

iwork. liwork should be greater than or equal to
*ntotal + 2*ncons.

work Double (lwork).
Double precision work array of dimension lwork.

lwork Integer variable or constant.
I On entry lwork specifies the dimension of work.

Slwork .ge. ntotal* (2*ntotal+2*bim+nobs+ncons+2)+
I mrbigm* (nbig+2) +max imum (nnnl, nnn2)

* where ntotal-nobs+ncons
* rnnbigm-ntotal-bigm
*.# nnnlntotal* (ntotal+ncons+l0) +
*- ncons* (ncons+5) + 2

NI

, 1
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* nnn2=ntotal* (3*ntotal+l)

ierr Integer variable.
On return ierr will contain an error code.

ierr-O - No errors occurred.

# ierr>O - Error(s) in input parameters occured.
# ierr is a number of the form
# abcdefg, where each digit is either
# zero (no error occured] or one
# [some parameter(s) value(s) is (are)
# invalid], as follow:

# a-1 - Invalid combination of m and dim.
#b-1 -N;cons < 1.
# c-1 - nobs+ncons-bigm < 1.
# d-l - Either ldx<dim or lds<dim or ldp<dim.
# e-1 - sigma(i) .le. 0 for some i.
# f-1 - lwork smaller than required.
# gal - liwork smaller than required.

# ierr<O - Errors in the solution of the problem
# independent of the quadratic programming
# problem occured:

# Ierr-lO - Values for nobs,ncons,bigm in
# first record of matrix-file do
# not agree with current values.

# ierr-l - Insufficient data in matrix-file.
#
# ierr-20 - Matrix b-Q ' * E(1) * Q
# 2 2
# is not positive definite. Ihis
# may be caused by replicates in
# the original data set.

Ierr-O

call dsbigm(dim,m,bigm)

# compute theta.

if (bigm 1- 0) call dsteta(dim,m,thetam)
ntotal-nobs+ncons
r" bigm-ntotal-bgm

# allocate work storage

nl-1

".-
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n2-ntoal*big$.nl
n3-total*bigu~n2
n4-bigm+n3
n5-ntotal*ritotal+n4
Mbigw~n5
n7antotal*ntotal+n6
nsqubigm*ulbigm.n7
n9-nobs*ntotal+n8
nlOw nco nsntotal+n9
null-total+nl0
nl2-ntotal~nl
nmluntotal* (ntotal+ncons44 0)+ncons* (ncons+5 )+2

1ldc-maxO (nmnl,nnn2)
1i~dc-ntota1+2*ncons

# mini== dimension of work

mirnuk-nl2+lwk
iflag-O
If (isigma 1- 0) isigma-i

do i-1,nobs
If (sigum(i) <- 0.dO)

iflag-i

if (1iwork < 1iwdc). ierr-1
if (1itork < uainwk) ierr-ierr+10
if (itlag - 1) lorr-ierr+100
if (ldx < dim I ids < dim I ldp < dim) ierr-ierr+1000
If (robigm <- 0) ierr-iorr+10000
If (ncons < 1) ierr-ierr+100000
If (bigin - 0) ierr-iorr+1000000
if (i~rr > 0) return
if (itinu <- 0) itM-100
If (ioptv 1- 1) ioptv-0
if (labs~isave) 1- 1) isave-0
If (iseart 1- 1) istart - 0
if (nvalri+nvalle <- 0) {

if (lamvec (1) < -0. 5d0)(
*rival ri-C

nvallein30

* else(
if (lanvec(1) <- 0.dO)

rival ri-30
iwalle-0

elme
rivairi-iS
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nvallel15

# set machine constants

call daach (wwch)
zero-wach (5)
finitymach (9)
rwalanwnalle-nvalri+l
call ducon2(x,ldx,dbn,nobs,s,lds,ncons,z,m,bl,bu,isigma,sigma,

bigeig ,zero,finity, indlan,1auvec,nvalle,rwalri,
nvalanisave,istart, istate ,nactiv, itm,ioptv, iqpout,
iactch ,wuach ,powers ,ldpnactiv ,coef ,bhat,
voflan,thetamnntotal ,nmbigi,bigm,ork (ni) ,wrk (n2),
work(n3) ,wrork(n4) ,work(nS) ,wrk(n6) ,wrk(n7),
work(n8),work(n9) ,work(nlO) ,wrk (nil) ,wrk(nl2),

ierr-ierr
return
end,
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* D6EVAL *

subroutine dseval (x,ldx,dim,mnobs,sids,ncons,xtab,ldxtab,
ntab,coef,powers,ldp,hofxta, ierr)

double precision x(ldx,1),s(lds,l),xtab(ldxtab,i),coef(l),
hofxta (1) ,p(6) ,hxta

integer dim,nobs,ldx,lds,ldxtab,ntab,powers (ldp, 1),ierr ,m,bigm

# This routine evaluates the spline h, computed by dscomp
# at the set ntab points in xtab. The resulting values of
# the spline are put in hofxta.

: x Double(ldx,nobs).
# Array containing the abscissas of the points at
#. which observations are. The rows of this matrix
# correspond to the dimension of the space, and the
# columns to the number of observations. For example
# x(2,9) is the second coordinate of the 9th point.

# ldx Integer constant or variable.
# On input ldx must contain the leading dimension of
# array x as defined in the dimension statement in
# the main program. ldx should be greater than or
# equal to the dimension of the space.

# dim Integer constant or variable.
# Dimension of the space.

# nobs Integer constant or variable.
# Contains the number of observations for this problem.

S s Double (Uds,ncons)
# Array containirct the points at which the linear
# constraints are enforced. For example, s(2,100)
# denotes the second coordinate of the 50th point
# where constraints are enforced.

# lds Integer variable or constant.
# Leading dimension of the array s. lds should
# be greater than or equal to the dimension of
# the space.

# ncons Integer variable or constant.
# Number of linear constraints being enforced.

# m Integer variable or constant.
# Degree of smoothing for the spline. If the
# dimension of the space,dimis smaller than 4

then 2 .le. m .le. 7. Ifdim- 4 then m-
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3, 4 or 5. Ifdin 5, m =4or 5. Ifdim- 6
m 34.

powers Integer (ldpbigm).
On entry powers(i,j) should contain the power at which
the ith. component in dim-space is raised, corresponding
to the jth. d-coefficient. This matrix is computed bydwomp.

ldp Integer variable or constant.
Specifies leading dimension of the array powers as
defined In the dimension statemnt of the calling
progrm. ldp should be. larger than or equal to dim.

bigm Integer variable.
On return bigm will contain the number of d-coefficients
of the spline.

(dim + m -1)1
big =

(diml* (m-1) 1)

coef Double (nobs + neons + bigm).
On entry coef should contain the coefficients of the
spline as obtained by dscomp. The coefficients should
be arranged as follow:

Ici
coef I b I

Idi

where c is an nobs dimensional vector that
will contain the coefficients of the spline
corresponding to the points where the obser-
vations were taken. b is an ncons dimensional
vector containing the coefficients of the
spline corresponding to the points where the

*" constraints are enforced. d is a bigm
* dimensional vector containing the
* coefficientsof the polynomial part of the
* :spl ie.

hofxta Double (ntab).
On return, hofxta will contain the estimate of the
function h at the ntab points in xtab.

thetam Double precision variable.
On return thetam will contain the constant that
multiplies E

K .• .. o . *, - . . - . - .
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ierr Integer variable.

SOn return ierr will contain an error code.

# ierr-O - No errors occurred.

#i err>O - Error(s) in input parameters occured.
# ierr is a number of the form
# abc, *Aere each digit is either
# zero Lao error occured] or one
# Eame parameter(s) value(s) is (are)
# invalid], as follows:

# a-i - Either ldx<dim or lds<dim or ldp<dim
# or ldxtab < dim.
# bol - nobe+ncons-bigm < 1.
. c-l - Invalid combination of m and dim.

9I

# Get bigm

call dsbigm(dim,m,bigm)

# Get thetam

if (big. 1- 0) call dsteta(dimm,thetm)
ntotal-nobi+ncons
.mbigu ntotal-big.
if (idx<dla I lds<dim I ldxtab<dim I Idp<dim) ierr 1 1
If (mbigm <- 0) ierr - ierr+l0
if (bigm - 0) lerr-ierr+100
if (ierr 1- 0) return
do Jil,ntab (

do i-1,dim(
p(i)-xtab(ij)

# Evaluate spline at point p
call dshofp(p,x,ldx,dim,nobs,s,lds,nco,s,ntotal ,m ,thetam,

btgm,powers,ldp,coef,hxta)
hofxta (J).hxta

return

an.
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* D6BIG4

subroutine dubigm (dim, m, bigm)

# get bigm for dim,m if legal. if illegal, bigm
# is set to zero. legal values of dim and m are:

# n dim 1 2 3 4 5 6
# 2 yes yes yes no no no
# 3 yes yes yes yes yes no
# 4 yes yes yes yes yes yes
# 5 yes yes yes yes no no
# 6 yes yes yes no no no
# 7 yes yes yes no no no

implicit integer (a-z)
dimension mtab(36)
data mtab/ 2, 3, 4, 5, 6, 7,

3, 6, 10, 15, 21, 28,
4, 10, 20, 35, 56, 84,
0, 15, 35, 70, 0, 0,
0, 21, 56, 0, 0, 0,
0, 0, 84, 0, 0, 0/

#
if (dim .1t. 1 .or. dim .gt. 6) go to 13
if (m .lt. 2 .or. m .gt. 7) go to 13
1 - 6*dI + m,- 7
big. - mtab(1)
return

• # error return
13 bigm = 0
return
endi-

S~DSCBD *

subroutine dscbd (ntotal ,nobs,rnmbigm,bim,coef,tsigqr,
qrtsia ,work,isigma,sigma)

double precision coef(ntotal) ,tsigqr(ntotal,bgm) ,qrtsia(bigm),
work(l) ,sigma(nobs)

integer ntotal ,nobs,rnbig.,bigm,isigma

# Obtain vector of coefficients of the spline

'I



# coefibI
-. # Id

# Recall that the vector coef contains the solution
# to the lower dimensional problem (ntotal - bigm)

# Zeroes to first bigm pos. of work

do iinl,big.

# Copy coef into work(bign*l)

call dcopy(ntotal,coef,l,work(bigmnl) ,l)

# got

# cd

# Ib 2 1i 21

job - 10000
call dqrsl (tsigqr ,ntotal ,ntotal ,bigm ,qrtsia ,wrk ,coef,

duuysdiy,dauy,dmry, job info)

# Copy last big. elements of work into
# last elements of coef

call dcopy(big,work(ntotal+l) ,l,coef (ntotal+l) ,l)

# Rescale by sigma if sigmai's were
# read

if (isigma - 1)
return

Olga(
do i-l,nobs

coef(i)-coof(i)/sigua(i)

return
end

* DSCOE

subroutine dscole(j cjentotal ,xldxtnobs~s lds,nconspmppi pj,
dim,thetau)

doub~le precision x(ldx,l),,s(lds,1),pi(dim) ,pj (dim) ,thetam,cje(l)
integer J ,ntotal ,ldx ,ida,d im

# Compute lower diagonal elements of the jth column of E
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# and put in vector c.

# If J <- nobs retrieve jth sample point
# else retrieve the (i-fobs) grid point in s

if (j <- nobs)
do iinl,dlim

Aj (i) -x (I j)

else
do i-1,diin

p1 (i)-s(i,j-nobs)

If (j<innobs)
11-1

else
j -jl-nobs

do isj,nobs{
do ilu1,dim

* Obtain E(pi,pj)
call ds9ij(pi,pj,dm,m,cje(i))
cje(i)'mcj.(i) *thetin

do iinJl,ncons{
do il-,dim

ilni+nobs
call dueij (pi,pj,dizn,m,cje(il))
cje(il)-cje(il) *theta

return
* end

* DSCC42

subroutine dacou2 (x,ldx,dizn,nobi,s,lds,ncons,z,m,bl,bu,isigma,sigma,
big~ig,zro,finity,indla,lavec,nvalle,nvalri,
nvalm,isav,istart, istat,nactiv,itmax, ioptv,iqpout,

-' I ~actch ,wmach ,powrs ,ldp,nactiv ,coef ,hat,
voflan,thetan,ntotal ,nmbigm,bigm,tsigma,tsigqr,
qrtsiaesiguia,qrtsil ,hessl,hess2,qp1ima,qpcons,qplive,
*igen,work,lork ,iwork,1 iwrk, ierr)

double precision x(ldx,nobs) ,s(lds,ncons) ,finity,zero,bigeig,
sigzna(l),bl(1),bu(I),coef(l),hhat(l), voflam(l),
thetam,tsigina(ntotal,l) ,tsigqr(ntotal,l) ,qrtsia(l),
esigma(ntotal,l) ,qrtsil (1),hessl(ntotal,l),
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hess2 (nmbigm,l1) , qpl ima (nobs,1) ,
qlPcons(ncons,1) ,qplive{1) ,eigen(l),
work(l)

integer ldx,lds,m~diinistate(1) ,nobs,ncons,lwork,

loptv~nvalle,rvalri ,istate (1),nactiv,
powrs(ldp,l) ,ldp,bigm,iactch(l),
indlmntotal ,ibigm

logical start

# Second level routine to compute a thin plate spline with linear
# constraints as the solution to the following problem

# minimize:

# robs 2 2
# SUMt (z(i) - h(x(i)) /(sigzna(i)) + lambda * J (h)
# i-i m

# subLject to

# bl (1) .le. h(s(1)) .1e. bu(l)
# bl (2) .1e. h(s(2)) l1e. bu(2)

#

# bl(ncons) .1e. h(s(ncons)) le.. bu(ncons)

# For a description of the variables and arrays see comments in
# duccup.r
#

# Get powers of polynomials

nt-ntotal
nobrbiqm
nprinluminO (20,ntotal)
nprWn2.inO (lO,nobs)
nprin3uminO (lO,ncons)
call dspoly (dim,m,powrs,ldp)

# Scale z data by I/sigma if necesary

if (isigma -0) call dszdis (z,nobs,sigma)

I If matrices previously saved read them,
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* skip comnputations and go to 100

if (lsav~e -- 1)
open (1,file-'splmatrix' ,form- Lnformatted')
rwind (1)
call dardl (ntotal ,nobs,ncons ,bigm,dim,rmnbgm,hessl ,hess2,qpl ima,

qpcons,tsigqr ,qrtsia ,esigma,ierr)
if (ierr 1- 0) return
go to 100

# Form tsigma

call dstsig (x,ldx,s,ldspowers,ldp,tsigma,ntotal ,bigiu,nobs,ncons,
diA,isigma,sigma)

# Copy tsigma in tsigqr

do Jml,bigm
call dcopy (ntotal,tsigma(1,j) ,l,tsigqr(1,j) ,l)

# Form QR decomposition of tsigma

job - 0
call. dqrdc (tsigqr ,ntotal ,ntotal ,bigm ,qrtsia, jpvt ,work, job)

# Form esigma

call dsesig (esigma ,ntotal ,nobs ,zcons, isigma ,sigma ,x ,ldx,
s,lds,work ,thetau,dim~m)

# Form hesal

call dshesl (hessl ,rtotal ,nmbigm ,nobs ,tsigqr ,qrtsla, tsigma ,bigm,
esigaa,work)

# Form hess2- Q'*E *Q
# 2 2

call dsqtaqltsigqr ,ntotal ,rtotal ,bigm,qrtsia ,esigmantotal,
hess2,ruubigm,work(1) ,work(ntotal+l))

# Compute qpcons (matrix of linear const.)

call dacons (qcoas ,ncons ,ntotal ,nobs ,tsigma ,bigm, tsigqr ,qrtsia,
runbigmn,esigma ,work)

# Compute qplima (matrix that post-multiplies
# zsigma to obtain linear term in quadratic
# function. Also, hhat is obtained by
# mul tiplying pl ima*coef



call dsl ine (qplima ,nobs ,ntotal ,bigm,nbigm, tsigma, tsigqr,
qrtsia ,esigma ,work)

# Write intermediate results if required

if (isave -1)
open (1,file-'splmatrix' ,form-'unformatted')
rewind (1)
call dswrtl (ntotal ,nobs ,ncons ,bigm,dim,nmbigm ,hessl,

hess2,qplima,qpcons,tsigqr ,qrtsia ,esigma)

100 continue

# Compute qplive-vector defining linear term

call dslive(qplive,ntotal ,z,nobs,qplma)

# Find coefficients of spline doing optimization
# with respect to lambda if necessary

if (istart -1)

start - .true.
else

start - .false.
nnnl-ntotal* (ntotal+ncons-9 ) +ncons* (ncons4-3 ) +
nnn2-ntotal* (ncons+3 )+1
liuc-iacO (ninnl,nnn2)
liwk-cntotal+ncons
call dssolv (hesal ,ntotal ,hess2nmbigm ,bigm ,qpl ima ,qpl ive .qpcons ,ncons,

nobs,tsiguza,qrtsil,lauvec,voflam,indlam,coef,loptv,iqpout,
nvalle,nvalri ,nvala,zero,flnity,bl,bu,start,istate,liwrk,
iwork(ncons+l) ,iactch,wmach,bigeig,itmax ,hhat,z,esigma,
nactiv,eigen ,work,lerr)

if (ierr 1- 0) return
#
# obtain final coefficients of spline
# and put again in vector coef in the
# form:

# coef I

call dscbd (ntotal ,nobs,nbgm ,bigm,coef, tslgqr ,qrtsia ,work, isigma ,sigma)

I Multiply z values by sigma if sigma was read

if (isigma -0) call dsznus(z,nobs,sigma)
return
end
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subroutine dacons (cpcons ,ncons ,ntotal ,nobs,
.tsigua,bign, tsigqr ,qrtsia,nmbigm,esigma ,work)

double precision qpcons(ncons,ntotal) ,tsigma(ntotal,bign),
tsigqr (ntotal ,bigm) ,qrtsia (bigin),

integer ncons ,ntotal ,nobs ,bigm ,nhnbigin

# Compute matrix qpcons Qdich defines linear constraints

*I E I I
-. IIQ1*1 121 1

1 12 JEll
* pcons- 1 1 221 1
*I I
I I T'

4 11 2

job-01000

i 3-bigzn+l
do iml,ncons(

i-l-nobs+i

# Compute

# work -I I*ilst. col. of esigna
# IQI

call dqrsl (tsigqr ,ntotal ,ntotal ,bigm ,qrtsia,
esigma(l,il) ,dzy,ork(l) ,dmy,dzny,dmy,
job, info)

# Copy last nmbigm elemnts of work into
# first nmbigm columns of ith. row of qipcons

call dcopy(rzbigm,ork(i3) ,l,qpcons(i,l) ,ncons)

# Copy ilst row of tsigma into last
# bigm columnns of ith row of qpcons

call dcopy(bigm,tsigma(il,l),ntotal,qpcons(i,i2) ,ncons)

return
end



* ODSEIGE

subroutine dseige (ntliu,a ,b~eigen ,work,ierr)
double precision a(ntlimnim),b(ntlm,ntlm),eigen(1) ,work(1)
integer ntlmmu,ierr

# Solve generalized elgenvalue problem

# a*PHI -EIG * b *PHI

# to get the neig positive eigenvalues of

# b *a

ierr-O
ni-i

* n2-ntlau~l
call reduc (ntluu,ntluu,a ,b ,work(n2) ,ierr)
if (ierr - 7*ntlum+1)
# b Is not positive definite

return
call tredi (ntlnu,ntlmu,a,eigen,work(nl) ,wrk(n2))
call tqlrat(ntlu,eigen,work(n2) ,ierr)
if (ierr > 0)

iiii-ierr-l
print ,

print ', "'In routine dseige, only elgenvaluss 1 to 1,iiii
print *' are correct'
for (i-ierr gi<-ntlmm;i-i+l)

eigen (i) -0. OW

ierruO
return
end

* DSEIJ*

subroutine dseij (p1 ,pj ,dim,i,eij)
double precision p1 (dim) ,pj (dim) ,eij
Integer dimn,m
implicit double precision (a-h,o-z)
#
# Compute
# I 12&-dim I
# e(pi,pj) - p -p I inip -p I if dim is even,
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* I 12m-dim
- p I if dim is odd.

go to (l,2,3,4,5,4),din

1 mu-2*m-1
s-dabs(pi(1)-pj(l))
eijms**u
return

2 mi-nw-
s-(pi(1)-pj(l))**2 + (pi(2)-pj(2))**2
if (MU - 1)

eij-O. 5d0'dlog (s) *s
else

ei)-0.5dO*dlog (s) 's*mu
return

3 u-2m~-3

if (u - 1)
eij-dsqrt (s)

else
*ij-duqrt (s)**u

return
4 u-.-diin/2

s- (pi (l)-pj (1)) **2
do 1in2,dim

if (mu - 1)
ei j-0.5dO*dlog (s)*

else
. J-O. 5d0*dlog (s) *s**mu

return
*5 u-2*-5

do iin2,dim

if (mu - 1)
eij-dsqrt (a)

* . else
eij-dsqrt(s) **mu

return
end
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* DSEIG*

subroutine dassig (esigma ,ntotal ,nobs ,ncons 1 sigma .sigma,
x ,ldx a ,lds,wrk,tetm,dim,m)

Implicit doub~le precision (a-h,o-z)
double precision esigma(ntotal,ntotal) ,sigma(nobs) ,x(ldx,l),

integer ntotal ,nobs ,ncons, isigma, ldx ,lds ,dim

# Compute:

# ISIQ4A E SIGMA SIGMA E

# esigtaI

# E SIGMA E
# 21 22

do J-1,ntotal{
# Get lower diagonal elements of jth. columnn of E

nwludizi~l
call dscole(j,esigma(1,j) ,ntotal,x,ldx,nobs,s,lds,

ncons,m,work(1) ,wrk (din~l) ,dim,thetam)
if (isigma - 0){

If (j <- nobs)
jlnobs+1

else
jl-ntotal+l

for (i-J; i<-nobs; i-i+l)
esigma(i,j) esigzna(i,j)/(sigma(i)*sigma(j))

for (i-Jl; i<mntotal; i-i+1)(
esigma(i,j)-esiguaa(i,j)/sigma(j)

* Copy lower diagonal elements into upper diag.

L do Jin2,ntotal
do i-1,J-l

esigma (i ,j) "sigma (J,i)
return
end
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* DSGETK

subroutine dageta (a ,nobs ,ntlauntl ,bigm,tsigma ,qrtsl a ,wrkv ,wrkn)
doubl1e precision a(ntlau,ntlu.), tsigmua(ntl,bigm) ,qrtsla(bigu),

integer nobs,ntlumntl ,bigm

# Compute matrix a -Q '*V * Q
# 2 2

# Form V put in wrkn

do Jml,,ntl
do i1l,ntl{

if (inj &i<inobs)

else

call dsqtaq (tsigma,ntl ,ntl ,bigmqrtsla ,worlq,ntl ,a ,ntlum,
workv ,worlau)

return
and

* DSGMT

subroutine dsgetb (b,ntotal ,nobs ,ntl ,ntlnunbigm,
esigma, tsigna ,qrtsl a ,wrkv ,workiu,
istant ,nactiv)

doubile precision b(ntlm,ntlu) ,esigma(ntotal,ntotal),
tsigma (ntl ,bigm) ,qrtsla (big.) ,wrkv (1),

integer ntotal ,nobs,ntl ,ntlmm,bigm, istant (1),nactiv

# Compute

# bQ ' E(l) *
# 2 2

# Copy rows and cols. of esigma that
# correspond to active constraints in
# worka, column by columln

do Jmlnobs(

A- *.- 7
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call dcopy (nobs,esigma(l,j) ,1,worlu(l,j) Il)
Ilanobs
do I-nobs~l,ritotal

If (istant(i-nobs) 1- 0)
11-11+1

jl1wbs
do J-nobs+i,ntotal(

If (istant(j-nobs) 1- 0)
jl-jl+1
call dcopy(nob,esigma(1,j) ,l,worlan(,jl) ,1)
1l-nobs
do i-nob~i,ntotal(

ifistant(i-nobs) 1- 0){
11-11+1

# Compute b

call dsqtaq(tsigma,ntl,ntl,bigm,qrtsla,wrk,ntl,b,ntlzu,
workv ,wrkau)

4 return

subroutine dugrla (lanbda,lmvec ,nvalle,nvalri ,rwalam,
bigeig ,ntotal ,zero)

dou~ble precision lambda,lanvec(l) ,bigeig,zero
* integer nvalle,rwalri,nvalan,ntotal

# Construct regular grid arounad lambda (from unconstrained
# problem)

If (lambda <- zero)(
If (lmba <- -O.5d0)(

rvalam-nvalle+l
lamvec(nvaln) -dioglO (ntotal*bigeig*l.d3)
lauvec (nvalle) -lavec (rivalam)-2.dO
lanvec(rwalle-l)-lawvec(nvalle) -l.dO
lavec(rwalle-2)lavec(nvalle) -2.dO
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for (i-nvalle-3; iD-1; i-i-1)
lamvec(i)lamw(i+1)-0.l

elme
nvala.-naiLri+1
luavec (1)-dioglO (zero)
for (L-2; iinwala 1-1+1)

lazavec Mi -linwc (i-1) +0.* 1

else
iwal uz-nvalle*nval ri+1
ilarwall**1
lavec (ii) -dioglO (lambda)
for (1-11+1; i<-nvalua; 1-1+1)

lamvec(i)lanvec(i-.)+0.l
for (i-il-i; i>-1; i-I-i)

lauvec(i)1.wamec(i+1)-0. 1

return
u*nd

* DSHE11

subroutine dia.11 (htssl,ntotal ,tsigqr ,ldt,esigma ,big. ,nobs,
qrtsia ,wrkv ,worka)

double precision hessl(ntotal,ntotal) ,tsigqr(ntotal,bigu),
esigma (ntotal ,ntotal) ,qrtsia (big.) ,workv (ntotal),

-~~worku(ntotal ,ntotal)
integer ntotal ,ldt,bigm
#
# Form upper left hand corner of hessi
#
# Formn:

* E E E E I EIE
# 1 11 11 11 121 1 111
# workwa I i- *E El1
# lE E E El I E I 1I11 121
# 1 21 11 21 211 1 211

do i-1,ntotal(
do J-i,ntotal(

woI~ ~ )(o~oseim~ilttleim~~)l
*ok~~)armij

PON
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* Obtain:

*2 2

call dsqtaq(tsigqr ,ntotal ,ntotal ,bigm,qrtsia ,woriu,ntotal,
hesal,ntotal ,wrkv ,workm)

* return
and

* ~DSE12

subroutine dshel2 (hesal ,ntotal ,tsigqr ,esigna ,bigm ,nobs ,rsnbigrn,
qrtsia ,tsigna,workm)

doulie precision hessi (ntotal ,ntotal) ,tsigqr (ntotal ,bigm),
esigma(ntotal ,ntotal) ,qrtsia (big.),
tsiguia(ntotal ,bigm) ,worla(ntotal ,bigm)

Integer ntotal ,big,nobs,iubigm

# Compute upper right hand corner of hessi

# Q ~111* T
# 2 tEl1 1
# 1 211

# E
# 1K 11I

# 1 211

# put in wrkm

do J1l,bigm
do i-1,ntotal

* Multiply by

* 121
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job -01000

do Jml,bigm
call dqrsl (tsigqr ,ntotal ,ntotal ,bigm,qrtsia ,worlo(l,j),

diumy,wrkmn(1,j) ,dizuny,diumy,duiuny, job,ino

# Put last ruibigm rows of wrk kbtich
# contain hesl2 into up~per right hand
# ad lower left hand corner of hessi

J2-bigm+l
do J-lbigm

jluuubign+j
call dcopy(runbigm,orkn(j2,J) ,l,hessl(l,jl),l)
call dcowy(rbigzi,worka(j2,J) ,l,hessl (jl,1) ,ntotal)

* return
end

* DSHE22

subroutine dshe22 (hessl, ntotal ,nobs ,bigi,nbigm, tsigma)
double precision hesal (ntotal,ntotal) ,tsigma(ntotal,bigm)
integer ntotal ,bigm,raubigm,nobs

# Compute lower right hand corner of hessl

# TI*T
# 1

do Jinrubigul,ntotal
do iinJ,ntotal (

hessl(i,j)-ddot(nobs,tsigma(l,i-mbigt) ,l,tsigma(l,j-rbigu) ,l)
hessl(j,i)-hessl (i,j)

return
end

* DSHDIU*

subroutine dshemu (n ,jthcol ,hessl, hess2, ntotal ,ninbigm, lambda ,y,hy)
double precision y(1) ,hy(l) ,hessl(ntotal,l) ,hess2(runbigm,l) ,lambda,

lamnb
integer n,jthcol ,ntotal ,nrnbigm
catunon /block/nobs
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# Note hessl (ntotal ,ntotal),

# hess2 (rmbigm,nmgigm)

# Multiply hessian times vector y or recover jth column of hessian

# n number of elemnts in y

# jthcol If jthcol - 0, hy will contain the product
# hessian*y
# If jthcol > 0, hy will contain the jth column
# of the hessian

# hessl Double (ntotal,ntotal).
# First part of hessian for spline problem.
# hess2 Double (rmbigm,rubigm).
# Second part of hessian %hich gets multiplied
# by lambda.

# ntotal Integer variable.
# Row dimension of hessl.

# rubig. Integer variable.
# Row dimension of hess2.

. I lambda Double Precision variable.
# Current value of lambda.

# y Input vector required to compute hessian*y
# when jthcol - 0.
# hy Output vector containing jth-col of hessian or

# hessian*y depending on value of jthcol

lamnob-nobs*lambda
if (Jthcol - 0)
* campte hessian*y put in hy

do j-l,mbim {
hy(j)-ddot(ntotal,hessl(l,j) ,1,y,l)+

lamnob*ddot (rubigm,hess2 (1, j), l,y, 1)

do J-roign*1,ntotalf
hy(j)-ddot(ntotal,hessl(lj) ,l,y,l)

else (
call dcopy(ntotal,hessl(l,jthcol) ,l,hy,l)
if (jthcol <- nubigm)

call daxpy(rmbigm,lamnob,hess2(l,jthcol),1,hy,l)

return

,~~~~..... .: . ..: :: ' ... ,................ .
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aid

subroutine dahesi (hessl,ntotal ,rmibigm,nobs,tsigqr ,qrtsia ,tsigma,
big. ,esigma ,work)

double precision hessi (ntotal ,ntotal) ,tsigqr (ntotal ,bigiu),
qrtsia (bigm) ,tsigna(ntotal,bigm),
*sigma(ntotal,ntotal) ,work(l)

integer ntotal ,bigm

# Compute hessi

# Form first rinbigm X nuibigm of hessi

rluntotal+l
call dshell(hssl,ntotal ,tsigqr ,ntotal ,.sigma,bigm,nobs,qrtsia,

# Form upper right hand corner of hessi

call dshel2 (hessl,ntotal ,tsigqr ,esigma ,bigm,nobs,rwbigm,qrtsia,
tsigma,work)

# Form lower right hand corner of hessl-T '*
# 11

call dshe22 (hessl,ntotal ,nobsbigm,mbigzu,tsiqma)
return
end

* ~DaoWP*

subroutine disiofp(pl,x,ldx,dim,nobs,s,lds,ncons,ntotal ,m,
thetam,bigm,powers ,ldp,coef ,hofp)

double precision p1(6) ,x(ldx,l),s(lds,l),thetam,hofp,tl,t2,t3,
p2(6) ,coef(l) ,eij ,prod

integer ldx,lds,ncons,ntotal ,bigi,ldp,powers(ldp,bigm) ,dim

# This routine evaluates the spline h at the point p1.

# h(pl)-thetam * (ti + t2) + t3

# where:
* nobs
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* tim SUM4 coef(i)*e(x ,pl)

# t2 - Sf14 coef(nobs+i)*e(s ,pl)
# i-i

# bigm
# t3 - SU14 coef(ntotal+i)*phi (p1)
# i-i

# and
# *(p2,pl) - t**(2*m-dim) . if dim is odd
# - t**(2*m-dim)*1n(t) if dim is ee

t t- Ip2 - pi

# Compute tl

tl O.dO
do Jinl,nobs

do iil,dim
p2(i) -x (i,j)

call dshi (pl,p2,dim,m,eij)
tlintl~coef(j) *@i)

# Compute t2
* #

t2 - O.dO
do Jinl,ncons

do inl,dim
p2 (1) -s(1i,j)

call dseij (pl,p2,dim,m,eij)
t2-t2+coef (nobs+j) *j

I Compute t3

t3-O.dO
do Jil,bigm(

prod-i. OdO
do il,dim{

*prod-prod* (pl (i)**ip)

t3-t3+coef (ntotal+j) *prod

hofpwheta (tl + t2) + 03
return
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end

* DSLIMA

subroutine dsl ima (pl ima,nobs ,ntotal ,bigzn,runbigm, tsigma,
tsigqr ,qrtsia ,esigma ,work)

double precision qplima(nobs,ntotal) ,tsigma(ntotal,bigm),
tsigqr(ntotal,bigu) ,qrtsia(bigm),
esigma (ntotal ,ntotal) ,work (1)

integer nobs,ntotal ,bigmnmbign

# Compte matrix qplima which defines linear term

# I IE II
# 1Q 1*1 ill I
# 1 2 IE I I
# qpl ima 1 211 1

I I 1 Im~

i 2-bignt44
do i-l,nobs

call dqrsl (tsigqr ,ntotal ,ntotal ,bigm ,qrtsia,
esigma(1,i) ,dmy,work(1) cdW,dmy,dmy,
job,info)

call dcopy(ruibigm,ork(i2),1,qplima(i,l),nobs)
call dcopy(bigm,tsigma(i,l) ,ntotal,qplima(i,il) ,nobs)

return
end

* DSLIVE*

subroutine dslive(qplive,ntotal ,z,nobs,qipl ine)
double precision qplive(ntotal) ,z(nobs) ,qplima(nobs,ntotal)
Integer ntotal ,nobs

# Compute -z'*qplima =linear term in quadratic function

do i-l,ntotal
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qplive(i)-ddot(nobs,z,l,qplima(l,i) ,l)
return
end

************************************************************* ****

subroutine dslmin (voflam,nvalam,lminin)
double precision voflam(nvalam)
integer lminin (rvalam)

# This routine determines for which indices
# in voflam there is a local minimum and sets
# the corresponding entry of minin to 1

if (nvalam <- 3) return
if (voflam(l) < voflam(2) & (voflam(1) > 0))

iminin(l) - 1
else

lminin(l) - 0
if ((voflam(nvalam)<voflam(nvalam-1)) & (voflam(nvalan) > 0))

Iminin(nvalam) - 1
else

lminin(nvalam) - 0
do i-2,nvalam-1 [

if ((voflam(i)<-voflam(i-l))&(voflam(i)<-voflrm(i+l))&(voflam(i)>0))
lminin(i) - 1

else
lminin(i) - 0

return
end

.* l tH *

subroutine dsmach( wmach )
double precision wmnach (15)

# mchpar must define the relevwnt machine parameters as follows.
# wmach(l) - nbase - base of floating-point arithmetic.
# wmach(2) - ndigit - no. of base wmach(l) digits of precision.
# wmach(3) - epsmch - floating-point precision.
# wmach(4) = rteps = sqrt(epsmch).
# wnach(5) - fimin - smallest positive floating-point nunber.
# wmach(6) - rtmin - sqrt(flmin).
# wmach(7) - flmax - largest positive floating-point number.
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* wmach(8) - rtmax - sqrt(flmax).
wm~ach(9) = undflw - 0.0 If underfiow is not fatal,+ve otherwise.

* wrnach(10) = nin - standard file numnber of the input stream.

* wiach(ll) - nout - standard file number of the output stream.IIdouble precision dsqrt

ndigit - 56
wmach(l) - nbase
wm~ach(2) - ndigit
wnach (3) - wmaach(l)**(l -ndigit)

wmuach(4) - dsqrt(wmaach(3))
wm~fach(5) - waach(l)**(-128)
wmach(6) - dsqrt(viuach(5))
wnach (7) - wmach(l)**126
'mtach(8) - dsqrt(wanach(7))

%mach(9) - 0.0
nin W 5
flout - 8
wrmach(l0) - nin
wmacki(ll) - flout
return
end

* DS6LY*

subroutine dspoly (dim,m,powers,ldp)

# Record powers of polynomials.

integer powers(ldp,l) ,pl,p2,p3,p4,p5,p6,dimem,ldp,count

count-0
i f (dim - 1)

do pl-O,m-l
coLt-coLEnt+l
powers(l,count) -p1

return

if (d im - 2)(
do pl-0,m-l

do p2-0,m-l-pl f
coixnt-count+l
powers(l,count) -pl
powers(2,count)-p2
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return

if (d im - 3)
do pl-0,m-1

do p2-0,m-1-pl
do p3-0,m-1-p1-p2

count-count+1
powrs (1,coumt) -p1
pow#rs (2 ,co'xht) -p2
powers (3,count) -p3

return

if (dim - 4)
do pl=,m-1

do p2-0,m-1-pl
do p3-0,z-1-pl-p2

do p4,u-1-pl-p2-p3f
count-count+1
powrs (1, count) -p1
powers (2,courit) -p2
powrs(3 ,couzit) -p3
powrs(4 ,count) -p4

return

if (dim - 5)
do pl-O,m-1

do p2-0,m-1-pl
do p3-0,m-1-pl-p2

do p4-0 ,m-1-pl.-p2-p3
do pS-0,m-1-pl-p2-p3-p4{

ootnt-count+1
powrs(1,cotit) -p1
powrs (2,coizit) -p2
powers(3,count) -p3
powrs(4 ,coIunt) -p4
powrs(S,count) -p5

return

if (dim - 6)
do p1-0,m-1

do p2-0,m-1-pl
do p3a,m-1-pl-p2

do p4-0,m-1-pl-p2-p3
do p5. Wm-l-pl-p2-p3-p4

do pE-0,m-1-pl-p2-p3-p4-p5
comt-coLunt+1
powers (1,cotit) -p1

r. powirs (2,count) -p2
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powers (3,count) -p3
powers(4,count) -p4
powers(5,count) -p5
powers (6,count) -p6

return
}

end

* *DS r

subroutine dsqtaq(t,ldt,nm,qrawc,a,lda,q2taq2,1dqaq,workv,workm)
double precision t(ldt,m) ,qraux(m) ,a(lda,n) ,workv(n),

q2taq2 (ldqaq,n-m) ,wrkm (ida,n)
integer ldt,n,m,lda,ldqaq

# This routine forms the product

* IQ 'l
* IlIl*AIQ QI''*A*Q

S I ' I 21
121

# and stores Q ' * A* Q
# 2 2

# in the matrix q2taq2.9
# To save storage the matrix a can also be used as workm
# in which case on return a is destroyed

.Get

woran'Q' *AI
job-01000
do j-l,n

call dqrsl (t,ldt,n,m,qraux,a(l,j) ,dmy,workm(l,j) ,dmy,dmy,
dmy,job,info)

# Post-multiply the last -i-m rows by Q
# 2
# and put in Q'AQ, this is done by
# premultiplying the last n-m columns of
# workm' by Q' and then taking the last
# n-m rows of the resulting matrix
#
rmizm-n-m

... . . , . - -.
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for (i-u*1l; i<-n; i-i+1)
ili-iiu

# copy ith. row of wrka to
# workv(- ith.col. of wrka')

call dcopy(n,wrkn(i,l) ,1da,workv.l)
# put Q'*ith row of wora in workv

call dqrslCt ,ldt ,n,rn,qraux,workv ,dzuyorarkv dmyduyduiy,job,info)
# copy last n-rn els. of workv to (i-n)th col.
# of q2taq2

call dcopy(rmiru,wrkv(u~l) ,1,q2taq2(l,i-n) ,l)

return
end

* DSRDl

subroutine dsrdl (ntotal ,nobu ,ncons ,bigrn,d lm~uubigr,hessl,
hess2,qpllza,qpcons,tsigqr,qrtsia,
esigma, jerror)

double precision hessi (ntotal ,ntotal) ,hess2 (rmbigr,nrbigr),
qplima(nobs,ntotal) ,qpcons(ncons,ntotal),
tsigqr(ntotal,bign) ,qrtsia(bign),
esigma (ntotal ,ntotal)

integer ntotal ,nobs ,ncons ,bigrn,d im, ierror

# Read intermediate results from file associated to unit 1

# If first input record does not agree with the values from
# the calling program ierror is set to 10 and nothing is done

# If there is insufficient data in file ierr is set to 11
# and the routine returns at that point

read (1,endulOO) nt,no,nc,ubig,nd
if (no I- nobs Inc I- ncons I ibig I- bigrn I nd I- dimn){

ierror - 10
return

rmbigm-ntotal-bigm
read (1,end-100) ((hessl(i,j) ,isl,ntotal) ,J-lntotal)
read (l,end-10O) ((hess2(i,j),itl,ruabigm),j-,nmbigm)
read (l,endlOO0) ((qplima(i,j) ,i-1,nobs) ,J-1,ntotal)
read (l,endinl00) ((qpcons(i,j) ,i-l,ncons) ,j-l,ntotal)
read (l,endnl00) ((tsigqr(i,j) ,i-l,ntotal) ,J-1,bigm)
read (l,endu'l00) (qrtsia(i),i=1,bigm)
read (l,endu'lO0) ((esigmA(i,j) ,I-1ntotal) ,J-lntotal)
ierror - 0
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return

# error return -insufficient data

100 ierror -11
return
end

* DSRtS

subroutine dsrds(x,ldx,dim,nobs,s,lds,ncons,z,m,nvala,istate,
riactiv, iactch,powers,ldp,bigm,coef,hhat,
voflam,lawvec)

double precision x(ldx,1),s(lds,l),z(1),coef(1),hhat(1),
voflan(l) ,lazivec(1)

integer ldx,dlm,nobs,lds,ncons,i,nvala,istate(l) ,nactiv,iactch(1),
powers(ldp,l) ,ldp,bigm

# Read solution obtained by dacosup in file spisol

open (3,file-'splsol' ,foru-'wiformatted')
rewind (3)
read (3) dim ,nobs ,ncons ,m ,bigmnvalau,nactiv ,thetan
read (3) ((x(i,j),-,dim),J-,nobs)
read (3) ((s(i,j),i-,din),J-,ncons)
read (3) (z M), i-1, nobs)
read (3) (istate(i),imnxo+nicons.1,nobs+2*ncons)
read (3) (iactch(i),i-1,nvalam)
read (3) ((powrs(1,J) ,i-l,dim) ,J-l,bigmn)
read (3) (coef(i) ,i-l,nobs~ncons+bigm)
read (3) (hhat(i),i-1,nobs)
read (3) (voflam(i),.i-,nvalaz)
read (3) (lanvec(i),i-1,nvalam)
return

* DSSOLV*

subroutine dssolv (hessl,ntotal ,hess2,nmbigm,bigm,qpl lma,
qpl ive ,qpcons ,ncons ,nobs, tsigma,
qrtsil ,lamvec,voflam, indlam,coef, ioptv, iqpout,
nvalle,nvalri ,nvalam,zero,finity,bl,bu,

mwh,bigeig ,itznax,hhat ,z,esigma,nactiv,eigen,
work ,ierr)
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external dsheuu
cannmon /block/nobser
logical start
integer ntotal ,rubigm,bigm,ncons ,nobs ,ntotal, indiam, ioptv ,iqpout,

nvalle,nvalri,nvalam,istate(l) ,istant(l) ,iwork (1),

dobeprecision hessl(ntotal,l) ,hess2(mubigm,l) ,qpllima(nobs,ntotal),
qplima(nobs,ntotal) ,qplive(ntotal),
tsigma(ntotal,bigm) ,qrtsil (bigm) ,lanvec(nvalam),
voflan(nvalam) ,coef(ntotal) ,zero,finity,
bl (ncons+ntotal) ,bu(ncons+ntotal) ,wnach(15),
bigeig ,hhat (nobs) ,z (nobs) ,esigma (ntotal ,ntotal),
work(l) ,vnuz,lambda,eigen(l)

# This routine solves the -actual problem optimizing with respect to
# lambda if necessary. The routine qpfc is c- Iled from this routine

ierr-O
laubdamlavec (1)
if (ioptv - 0)

nvalle-O
nvalri-O
ralm-
lanvec (1) )idloglO0 (lambda)

else
# Construct regular grid of values of iog(lambda)

call degrla (lambda ,lauvec,nvalle ,nvalri ,nvalam,bigeig ,ntotal, zero)
mglvl-iqpout
moglvq-iqpout
maxact-ncons
n-ntotal
ncl in-ncons
nctotl-r~nclin
1 iwrkictotl
1'crk-n*n*8*n~nclin+ (nclin+l)* (nclin+l)+n* (nclin+1)+l
nfree - n
feato1-daach (4)

# set coef to initial guess
# (Recall that work(l) is used as coef
# to have in coef a minimumi at every stageI. do i-1,n

# initialize istant

do i-1,nclin

istant (i) -1

L#
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* initialize first n rows of bl,bu and istate

do i-l,n
bi (1) -- f inity

istate(i)-0

# for each value of lambda in lamvec solve
# quadratic programming problem and evaluate
# generalized cross-validation

iactch (nvalmn) -O
viant-finity
nobser-nobs
for (ival-nvalm; ival>=l; ivalmival-l){

nwO-ntotal+l
nwl-ncons+nvw0
nw2-ntotal+ncons+nwl
lazabdailO.dO**lmwec(ival)
call qfc(dshuau,hessl,hess:2,ntotal ,nmbigm,lambda,start,iter,itmax,

liwork,lcrk,msglvl,msglvq,maxact,n,nclin,nctotl ,nclin,
inforu,,nactiv,nfree ,istate,iwork,finity,finity,featol,
qpcons,work (rw0) ,bl ,bu,work (nvl) ,qpl ive,work,work (nw2) ,
wmach)

if (inform > 0)
vofl am(ival)n-. OdO
if (inform - 200) inform-5
iactch (ival) -inform~l
next

If (nal -l1)
call dcopy(n,ork,l,coef,l)
indlam-l
break

ntl-nobsnactiv
ntliw'mntl-bigm
nwlunw04tntluu*ntlnu
nw2-1wlntluzntlim
vnwm-0.dO

* Compute sum of squares of the
* residuals to form numerator of
* Cross-validation function

do i-l,nobs {

* compute hhat(z(i) put in work(nwO+i-l.)

wokIIil-dtnoa~qlm~~)nb~okl
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tumpworl(nrwoii-1) -z (I)
vflvsuIflN4temp*temp

* Compute generalized cross-validation

call davofi (vofi.,( ival) '1ambda ,vnu,ntotal ,bigm,nobs ,ncons ,mbigm,
qplima,qpcons,esigm,tsigza,qrtsil ,istate,istant,
nactiv,ntl,ntzu,idifer,neig,eigen,wrk(w) ,work(nw1),
wrk(nw2) ,ierr,iwrk)

If (iorr 1- 0) return

# If set of active constraints changed, change
# the value of iactch(Ival)

If (idifer - I G ival < nvalam)f
if (iactch(ival+l) - 0)

iactch( ival) -1
else

iactch( ival) -O

# Set start to .true. to use current set of
# active constraints as guess for next value
# of lambda

start-. true.

# If current value of v(lanbda) is smaller
# previous one, store current value of ival
# In indlam and current solution in coef

if (voflam(ival) < vlant){
vlant-voflam(ival)
call dcopy(n,lork,l,coef,l)
indlmival

* Go to solve q.p. problem for next value
* of laobda

# Compute hhat

do i-l,nobu
hhat(i)-ddot(ntotal,qplina(i ,l) ,nobscoef,l)

return

. . .d
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• . DSTET *

subroutine dsteta (dlm,m,thetam)

# get theta sub m for dlm,m

integer dim,m
double precision thetam
integer rtab(36) ,p
double precision pi
data pi / 3.14159265358979323846d0 /
data rtab / 12, -240, 10080, -725760, 79833600, -12454041600,

8, -128, 4608, -294912, 29491200, -4246732800,
-8, 96, -2880, 161280, -14515200, 1916006400,
1, 64, -1536, 73728, 1, 1,
1, -64, 1152, 1, 1, 1,

-. " 1, 1, 768, 1, 1, 1

1 - 6*diu + m - 7
p - di/2
thetam 1.OdO / (dfloat(rtab(1)) * (pi**p))
return
end
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* n~DMIa

subroutine dstsig (xldx ,s ,lds,powers,ldp,tsigma ,ntotal ,bigm,
nobs,ncons,diu,isigma,sigma)

double precision x (ldx,riobs) ,s (lds,ncons),
sigma(niobs), tsigma(ntotal,bigm)

integer ldx,lds,dm,nobs,isigma, powrs (ldpbigm) ,ldp,bigmn,
zntotal ,ncons

# Compute:
# ISIQ4A 01IIT I
#*tsigma*I i

*10 11 IT I
# I 1 121
#
do linlbigm

do J-lnobs{
prod-i. OdO
do i-l,dla

ippiwers( I,1)
If (ip - 0) next
prod - prod(x(i,j))**ip

* divide by sigma if needed
if (isigma - 0) prod-rprod/sigma(j)
tsigma(j,l) -prod

do J-l,ncons
prod - 1. OdO
do iinl,dim

ipopiwrs(i,l)
if (1pm 0)

.next
else

prod-prod*(s(i,j) )*Lp

tsigmza (nobej,l)-prod

return

en
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* DSWVFL

subroutinie dsvofl (voflai, laubda ,vnua,ntotal ,bigm,
nobs ,ncons ,rubign ,qpl ima ,qpcons ,esigma,
tsigma,qrtsil ,istate ,istant,nactiv ,ntl ,ntlmu,
idifer ,neig,eigen,b,a,work, ierr,iwork)

double precision vofim ,vuuu,qpljmna (fobs ,ntotal),
qpcons (ncons ,ntotal) ,esigna (ntotal ,ntotal),
tsigma(ntl,bigm) ,qrtsil(bigm) .eigw2 (1),
b (ntlu,ntlm) ,a (ntlzm,ntlnu) ,denom,

integer ntl ,ntau ,ntotal ,nobs ,ncns ,rubigm,nactiv ,neig, iwrk (1),
istate (1),istant(1) ,bigm

# Compute generalized cross-validation function for
# constrained problems

lanm-lambda
id if erO

# Check if active constraints changed
# and update istant if necessary

do i-lnconsf
if (istate(ntotal+i) I- istant(i))f

istant (i) -istate (ntotal+i)
Id if er-i

# If constraints did not change skip
# generalized eigenvalue problem
#
if (idifer -0) go to 100

# Recover T(l) from qplima and qpcons
# n-A put in tsigma

do J-l,bigm(
call dcopy(rvbs,qplima(l,rmbigm~j) ,l,tsigma(l,j) ,l)

il-nobs:
do i-l,nconsf

If (istant(i) 1- 0)
il-il+l
call dcopy(bigm,qpcons(i,nmbIgm44l) ncons,tsigia(11,1) ,ntl)

* Obtain Q-R decomposition of tsigma
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* which contains TMl

*job 0
call dqrdc (tsigma,ntl,ntl ,bigm,qrtsil ,jpvt ,hwrk ,job)
#
# Comnpute

# b -Q'*E(l)*Q
# 2 2

call dsgetb(b~ntotal ,nobsntl ,ntlmmbigmesigua,tsigma,

# Get

# a=Q'VQ
# 2 2
#
call dsgeta (a,nobs,ntlzi,ntl ,bigz,tsigma,qrtsil ,work,

wokntI)

# Solve generalized eigenvalue problem

call dseige(ntlm=,a,b,eigen,work,ierr)
if (ierr - 7*ntlin..l) [
# b is not pos. def. ierrn2O

ierr-20
return

# Note: elgen has the elgawvalues
# of -1
# B *A
# in ascending order

100 ontinue

# compute denominator of voflam:

# denom - (1/fobs) trace(I-A(laibda))
# ntlnm
# ~(labda* (SUM4
# i-1
# 2
# ((eigen(i)/(l+nobs*lambda*eigen(i)))

denmO0.d0
* First comute trace(I-A(labda))
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neig-O
do iil,ntlm

*igi-.igen (i)
If (eigi > O.OdO)

rw1jg-neig+l
dencxi-denoxm+ig/ (l. OdO+dfloat (nobs) *lamheig i)

# neig-niuber of positive elgenvalues
#
denom - ((denamlam)/dfloat(nobs) ) denom*lam
veflam-numdeom
return

* ~DvRrl

subroutine dswrtl (ntotal ,nobs ,neons ,bigm ,dim ,rubigm ,hessl,
hess2,qplirna,qpcons,tsigqr ,qrtsia,

,hss(unbglmznbgz)
double precision esnttlnoa)hs2rbimmig ,

qpl ina (nobs ,ntotal) ,qpcons (ncons ,ntotal),
tsigqr(ntotal,bigm) ,qrtsia(bign),
esigma (ntotal ,ntotal)

integer ntotal ,nobs ,ncons ,bigm ,d im,rmbigm

# Write intermediate results from file associated to unmit 1

writ. (1) ntotal,nobs,ncons,bigm,dim
rubigm-ntotal-biga
write (1) ((hossl(i,j) ,I-1,ntotal) ,J'l,ntotal)
writ* (1) ((hess2(i~j) ,i-l,ribigm) ,Jil,rmbigm)
write (1) ((lima(i,j) ,i-l,nobs) ,Jil,ntotal)
writ. (1) ((qpcons(i,j) ,i1l,ncons) ,Jil,ntotal)
write (1) ((tsigqr(i,j) ,i-l,ntotal) ,j1l,bigm)
write (1) (qrtsiAfl),iml,bigm)
'write (1) ((esigma(i,j) ,i-l,ntotal) ,J-l,ntotal)
return
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* DSWRTS*

subroutine dswrts(x,ldx,dim,nobs,s,lds,ncoispztminv alamistate,
nac-tiv ,iactch ,powers,ldp,bigm,coef,hhat,
voflan ,lamvec)

double precision X(ldx,l),S(lds,l),z(l) ,coef (1),hhat(l),
voflam(l) ,lamvec(l)

* integer ldx,dim,nobs,lds,ncons,m,nvala,istate(l) ,nactiv,iactch(l),
powers(ldp,l) ,ldp,bigm

# Write solution obtained by dscomp in file spisol

open (3,file-'splsol' ,form-'wnformatted')
rewind (3)
write (3) dizu,nobs,ncons,m,bigm,nvalam,nactiv,thetam
write (3) ((x(i,j) ,i-l,dim) ,j-l,nobs)
write (3) ((s(i,j) ,l-l,dim) ,j-l,ncons)
write (3) (z (i) ,i-, nobs)
write (3) (istate (i) ,i-nobs+ncons+l ,nobs+2*ncons)
write (3) (iactch(i),i-,nvalam)
write (3) ((owrs(i,j) ,i-l,dim) ,J1,bigm)
write (3) (coef(i),i-1,riobs+ncons+bigm)
write (3) (hhat(i),i-l,nobs)
write (3) (voflan(i) ,i-1,nvalam)
write (3) (lauvec(i),i-l,nvalam)
return
end

* DSZDIS

subroutine dszdis (zdata,nobs,sigma)
# Sscale zdata values

*~*dszlis divides data by sigma

implicit double precision (a-h,o-Z)
dimension ydata(l),sigma(l)

****divide by sigma **
do i-lnobs

return
end
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* IDSZMUS

subroutine damus (adata,nobs,sigma)

****** scale zdata values *****

.***** dsmnus multiplies zdata by sigma *****
k'-_ #

implicit double precision (a-h,o-z)
dimension zdata(1) ,sigma(1)
#

-"**** multiply by sigma *****
do i-l,nobs

. zdata (i zdata (i) *sigma (i)
- return

end

a
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ABSTRACT

A nonparanetric estimate for the posterior probabilities in the

classification problem using multivariate smoothing splines is proposed.

This estimate presents a nerparametric alternative to logistic discrimi-

nation and to survival curve estimation. It is useful in exploring proper-

ties of the data and in presenting them in a way comprehensible to the

layman.

The estimate is obtained as the solution to a constrained minimization

problem in a reproducing kernel Hilbert space. It is shown that under certain

conditions an estimate exists and is unique.

A Monte Carlo study was done to compare the proposed estimate with the

two parametric estimates most commonly used. These parametric estimates

are based on the assumption that the distributions involved are normal. The

spline estimate performed as well as the parametric estimates in most cases

where the distributions involved were normal. In the case of non-normal distri-

butions the spline performed consistently better than the parametric estimates.

The computational algorithm developed can be used in the more general

context of estimating a smooth function b. when we observe

= Lth + ej, i=l,n. where ci's are independent, zero mean and finite vari-

ance random variables, Lq's are linear functionals, and the solution is known a

priori to be in some closed, convex set in the Hilbert space, for example, the set

of non-negative functions, or the set of monotone functions. This type of prob-

lem arises in areas such as cancer research, meteorology and computerized

tomography.

We also consider the estimation of the logarithm of the likelihood ratio by a

penalized likelihood method. Existence and uniqueness of an estimator under

certain conditions is shown. However, a data based method to estimate the

"correct" degree of smoothness of the estimator is not given.
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