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RESONANCE FLUORESCENCE AND PHOTON TRAPPING OF
TWO ATOMS ON A METALLIC SURFACE

XI-YI HUANG, K. C. LIU AND THOMAS F. GEORGE
Department of Chemistry, University of Rochester,
Rochester, New York 14627

ABSTRACT

Surface-dressed optical Bloch equations are derived for
the purpose of evaluating the resonance fluorescence spectrum
of two interacting identical atoms near or adsorbed on a metal
surface. The derivation takes into account the influence of
reflected photons, dephasing due to atomic collisions, .the
linewidth of the driving laser field and the resonance exci-
tation of surface plasmons. A unique behavior of the surface-
modified fluorescence, not seen in analogous gas cell experi-
ments, is predicted. Under the appropriate circumstance, a
photon emitted from one of the two atoms can be trapped by
the two-adatom-surface system, and this is studied by means
of a theory which treats the atoms and their surface images
on the same footing.

INTRODUCTION

There has been interest during the past several years in the following

radiation effects at surfaces: (i) the anomalously high intensity of light
inelastically scattered from adsorbed molecules El] and (ii) the oscillatory
variation of the lifetime of an excited molecule fluorescing near an inter-
face due to interference effects between photon reflection and absorption at
a surface (2). These phenomena have motivated us to examine the fundamental
processes involved in surface-modified excitation of a laser-driven quantum

system, and for this purpose we have derived a set of surface-dressed optical
Bloch equations to evaluate the resonance fluorescence spectrum of a two-
level atom near or adsorbed on a metallic surface. In this paper, we shall
first review our work on resonance fluorescence of a single adatom [3-5] and
then make an extension to the case of two interacting identical atoms.

The second general topic in this paper is photon trapping. It is well
known that the radiation behavior of an atom in the presence of other
identical atoms is significantly different from that of the independent
atom when the interatomic distance is smaller than the wavelength of the
radiation (6,71. In this case the atoms are correlated via their inter-
action with the common radiation field and should be treated as a single
quantum-mechanical system -ith internal degrees of freedom (8]. It is
equally probable for a photon to be emitted or trapped. The emission pro-
cess is known as superradiance, where the intensity is proportional to the
square of the number of atoms (8]. When the atoms are close to a metallic
surface, the photon emitted from one of them can reach another one either
by direct transmission or through reflection from the surface, as illustrated
by FIG. 1. This situation requires that the atoms and their surface images
be considered on the same footing [9,10]. Using this procedure, we shall
consider the spontaneous emission from two adatoms on a metallic surface,
where it will be shown that a photon can be trapped within the two-adatom-
surface system under the appropriate circumstance.
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RESONANCE FLUORESCENCE

Resonance fluorescence resulting from the interaction of a two-level
system and- coherent radiation has been a subject of considerable interest
(11-131. The predicted shapes of the fluorescence spectrum have been veri-
fied experimentally (14). High-resolution experiments have reached such a
level of sophistication that higher-order effects such as the contribution

*of the finite driving laser linewidth [151, the atomic recoil (16] and
cooperative atomic interactions [17] can now be analyzed. In a different
context, the lifetime of an excited adspecies fluorescing near a gas-metal

* interface can be influenced substantially by the interference between photon
reflection and absorption at the surface. By placing a layer of dye mole-
cules on top of a number of layers of fatty acid which are on a metal
surface, it has been possible to observe the fluorescence lifetime of a
molecule at a fixed distance from a metal surface. [181.

The above work suggests that it would be interesting to investigate the
basic behavior of the surface-modified resonance light scattering spectrum
of a laser-driven two-level atom near or adsorbed on a metal surface. The
field emitted by the induced atomic dipole is reflected by the surface. The
reflected field can be expressed as EM(t) - U a 1 2 (t)f(d) + (t)f*(d),
wbere d is the distance between the alatom anA t e surface, I the
electric-dipole transition matrix elemnt between the adatoi s t at e s  i>
and IJ>, a. - li><jl is the adatomic transition operator, and f(d) is a
distance-d~e;ndent function which has been discussed elsewhere [2-5].
Accounting for the surface-reflected photons and the surface plasmon reso-

. nance, we can write the surface-dressed optical Bloch equations (SBE) in the
following form (using the rotating-wave approximation and the equilibrium
condition W(0) s-1, where W(t) a a2 2 (t) - a1 1 (t) is the population inversion
of the adatom):

T$21 M -i2+iA iQ"(t)/2 0 It)1 M 0
• - Wlt) = in Mt -Y 1 -iY(t t) -1 1(1)

w 12 0 -in t)/2 -y2 -iA S1 2 t j 0

The phase-fluctuating Rabi frequency is t(t) - nexp[;i (t)], where
- (2/hl) 21Eo(tl and E(t) is written as an expectation value in a co-

herent stati of the laser field in terms of the phase factor *(t) and the
laser frequency wL as E(t) - E (t)exp[-w Lt + if(t)]; A - w - w is the
detuning, where w is the ada~omic transition frequency; y1 is he popula-
tion relaxation constant; and y- Y' + y , where y is the surface-free phase
relaxation constant and y S (2 )im2m f 1 21 is the surface-induced phase re-

laxation constant which has been evaluated by means of the Drude model [19]
for the metal medium, whereby the dielectric constant is expressed simply in
terms of the emission frequency, the inverse relaxation time and the plasma
frequency.

in the case of a weak driving field or large detuning, we can set W(t)
approximately equal to -1, i.e., the atom almost stays in its ground state.
The effects of the laser bandwidth y can be included by means of the phase-
diffusion model (20,21], <<(t )n+(j )>> - n2exp(-y It2-t1l ), where the
double bracket signifies an average over the stochasic ensemble and a stan-
dard quantum mechanical average. The power spectrum S(M) of scattered light,
giyen by the Fourier transform of the dipole-dipole correlation function
<<S (t)S12 (tl)>>, can be obtained analytically from the SBE [4]. This weak-
fie asecrum exhibits two peaks: the Rayleigh scattering peak at w- w L
and the fluorescence peak at w -W2 1 . The shape of the former is determined
mainly by yL, while the latter is strongly dependent on the adatom-surface
distance, such that the peak is raised and broadened as the adatom is brought
closer to the surface.



In the case of a strong driving field, Q2 + &2 >> 12 , if we set y
equal to zero we have again been able to obtain an analytic expression for
the power spectrum S (w), which now exhibits three peaks, in contrast to the
two-peak spectrum of the weak-field case 15]. The central peak at W = wL
corresponds to Rayleigh scattering. The lowest frequency peak at W- , -+
where 6 - A{(l+(Q/A)2]I/2 - 1}, corresponds to a three-photon process (bsorp-
tion of two laser photons and spontaneous emission of a photon). The highest
frequency peak at w-w + (A+6) is called the flourescence component of theL
spectrum. When the adatom-surface distance is very large, the (surface-free)
spectrum is symmetric, where the two side peaks have the same height (inten-
sity) and are lower than the central Rayleigh peak. When the adatom-surface
becomes smaller, the symmetry is destroyed due to the interference between
the incident laser field and the surface-reflected field.

The comparison with the pure gas-phase situation for the case of posi-
tive detuning is interesting, where the random collision interruption always
causes the fluorescence peak to be higher than the three-photon peak. For

the surface-modified process this does not always occur, since there is an
oscillatory distance dependence of the emission intensity due to the inter-
ference mentioned above. While the fluorescence component is generally
larger, the three-photon component is larger for some distances. This is a
unique behavior at a surface which has not been predicted for the usual gas-
phase situation (22].

We now extend our study to resonance fluorescence in a system of two
interacting two-level atoms, which has previously been analyzed for the gas-
phase situation (23-25] where a special interest is in the possible observa-
tion of an optical bistability in a many-atom system. While we have briefly
considered the resonance fluorescence of many interacting atoms near a metal
[261, here we want to concentrate on the particular case of two identical
two-level atoms near or adsorbed on a metal surface. We assume the distance
R between the two adatoms to be sufficiently small, i.e., R 9 2w/k where k is
the laser wavenumber, so that we can adopt the global dipole approximation
which eliminates the differences of the electromagnetic field exerted on the
two atoms. However, we must include the dipole-dipole interaction, derived
from the first-order dispersion forces, between the adatoms.

The resulting SBE take the following form as an extension of Eq. (1),
where i~j-1,2 label the two adatoms and h.c. stands for Hermitian conjugate:

iA A

(a12)i (- 21+ ) ) - + r w (a
12 -212 12i 2 i 12i 2 12j

Re[f(d)], 2 2 - f* (d)21i (21j (2)

Wi - -Y 1 (l+W) - [i(a )21)i + 2r 12(a 12 (a 12) + h.c.]

2fd 21i12 2
+ U f, 1P21 (021Ya 12)j _ (a 2 1 )(a 1 2 ) i

f U2 a + (a 1 2  (a 1 2 )k - h.c.]. (3)

We have assumed a fully coherent laser field, such that YL- 0 and the Rabi
frequency is independent of time. The adatom dependence of this frequency
has been omitted as a consequence of the global dipole approximation. The
terms containing r1. account for the mutual interaction of the two adatoms
through their near aipole fields and exchange of photons, where the



R-dependent quantity r is the sum of the R-dependent damping It 1 2 and the.
frequency shift 0 1 2 (61? 1

The power spectrum of the scattered light ij given by the Fourier trans-
form of the sum of correlation functions g*g <[a 1t)]j[a1 2 (t+T)] ]> over i
and J, where gi is the geometric factor an& he i mit t - is takcn. Some
interesting features of the spectrum are the following: i) The three peaks
of the strong-field case are further split due to the adatom-adatom inter-
act4on. (ii) This interaction and the surface-reflected field lead to an
asymmetric spectrum, as discussed earlier in this paper for the single-adatom
case and in Ref. 27 for the surface-free case. (iii) Analogous to the single-
adatom case, the peak heights depend strongly on the adatom-surface distance
and resonance condition of the surface palsmons, where such dependence is
oscillatory due to the interference between the driving and reflected fields.

PHOTON TRAPPING

We consider two adatome A and B near a metal surface (see FIG. 1), where
the interactomic and adatom-surface distance are smaller than the radiation
wavelength, where the radiation corresponds to emission from A in an excited
state (we assume the intital excitation of A to be independent of subsequent
emission and absorption). The states of the adatoms and their associated
surface images can be expressed as (10]

l ±>x { I a>XB>X, ± IB~xla>x , (4)

where the subscript X is either A or B, the prime signifies the image, Li>
and 10> are the excited and ground adatomic states, respectively, and the +
and - signs correspond to the adatomic transition dipole oriented perpendi-
cular and parallel to the surface, respectively. We shall neglect the
diploe-dipole interaction between the two adatoms, since here we are not
interested per S in the frequency shift of the emitted photon [28]. Hence
the interaction Hamiltonian for the two adatoms is simply H - H + H_,
where .A(H) is the interaction Hamiltonian for A(B). Withnrthe epole
ayproximton, the diagonal matrix elements of H and % are zero, i.e.,

-QIHXIO.>XrX<OIIBO>X - 0, and the off-diagona elements equal the same
iite aoaunt A, i.e.,'x<IxlB>x - x<IHxIG>x - A.

We shall consider two cases for different dipole orientations. In the
first case, both dipoles are perpendicular to the surface, whereby the state
of the total system can be written as

Ixt > +~ > A Ig)3 B (5)>A*+>

where Ig>-= IMa>xla>,> represents the ground state of adatom X. The ground
state of -he total system is IG> - Ig>Ag>_, arad it is easy to verify that
the state Ix_> has a vanishing decay rate lince <GIH Ix > 0 0. Thus, if
the system is in the state lx->, the photon will be irnapped. In the second
case, both dipoles are parrallel to the surface, whereby the state of the
total system is

I.'> ," {IL_'jg> ± Ig>al*.? 3 -. (6)

Again, it can be shown that the state IX_> leads to photon trapping, i.e.,
j intlx. - 0.

............................. m ** . . . % - ,ow J.
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SUMMARY

Surface-dressed optical Bloch equations have been solved for the reso-
nance fluorescence spectrum of a two-level atom near or adsorbed on a metal
surface, taking into account the influence of reflected photons, dephasing. due to atomic collisions, the linewidth of the driving laser field and the
resonance excitation of surface plasmons. In the weak-field or large-
detuning limit, the spectrum exhibits two peaks, one corresponding to
Raleigh scattering and the other to fluorescence. In the case of a strong
field, there are three peaks: the central peak corresponding to Raleigh

-: scattering, the lowest frequency peak corresponding to a three-photon pro-
cess and the highest frequency peak called the fluorescence component of the
spectrum. The surface-free symmetry of the spectrum is destroyed for finite
adatom-surface distances due to the interference between the incident laser
field and the surface-reflected field. The nature of the asymnetry is dif-
ferent than that induced by collisions in a pure gas-phase system. The
spectrum for a system of two interacting two-level atoms is further split due
to the adatom-adatom interaction. A photon emitted by an excited adatom can
become trapped by the two-adatom-surface system, and this phenomenon has been
examined in terms of adatomic states and their surface images.
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