
AD A134 470 OPTIMAL MAINTENANCE POLICIES A GRAPHICAL ANALYSIS(U) 2 -
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL
OF SYSTEMS AND LOGISTICS P F DOUMIT ET AL. SEP 83

UNCLASSIFIED AFIT-LSSR-28-83 F/G 12/1 NL

mmhmhmhhmhhhlm

EI-EIIEIIIIII
IEEEEIhIhIhhI
EEIIEIIIhllEEE



1111 10 128 12.5

1111I.1111 11 1 .8

MICROCOPY RESOLUT1ION TEST CHART
WU H ILI



0A

A 3

II DTIC
ELECTE

f ~NOV 7 SI

Lu DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
-- W" I f SUrMS *--

I In Pub& 8b"3 8311 04 017

L..i Lr'
,

-



OPTIMAL MAINTENANCE POLICIESS
A GRAPHICAL ANALYSIS

Patrick F. Doumit, Captain, USAF
Barbara A. Pearce, Captain, USAF

LSSR 28-83

DTICS ELECTEe
NOV 7 1983J

B

DISTRIBTJrION STATEMENT A j
Approved for public zelease.

Distribution Unlimited



The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the Air Training Command,
the United States Air Force, or the Department of Defense.

'

A v

DLI.

DI ;t

- N MM N W



T1wrT.AqTTW.1)
SECURITY CLASSIFICATION OF THIS PAGE (Whn Dads Enterec)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIrNT*S CATALOG NUMBER

LSSR 28-83 _b - '/V70
4. TITLE (Me Subtitle) S. TYPE OF REPORT a PERIOD COVERED

OPTIMAL MAINTENANCE POLICIES: Master's Thesis
A GRAPHICAL ANALYSIS 6. PERFORMING ORO. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBMER(s)

Patrick F. Doumit, Captain, USAF
Barbara A. Pearce, Captain, USAF

9. PERrORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

School of Systems and Logistics
Air Force Institute of Technology, WPAFB 0R
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of Communication, September 1983
AFIT/LSH, WPAFB OH 45433 11. NUMBEROF PAGES113

14. MONITORING AGENCY NAME & ADDRESS(Il different from Controllin4 Office) IS. SECURITY CLASS. (of thin report)

UNCLASSIFIED
IS.. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

1S. OISTRIBUTION STATEMENT (of thla Report)

Approved for public release; distribution unlimited

V7. DISTRIBUTION STATEMENT (of the abstract entered in Slock 20. If different from Report)

IS. SUPPLEMENTARY NOTES

2jyteemi-M l'k me aw MR jm

A& Eom Isawww W Tsabaanion 1  *5 I E
NugbaFu ma as~g 45M

IS. KEY WORDS (Continue on reverse aide if necesar' end identify by block number)

Preventive maintenance
Motor oil replacement
Total Time on Test (TTT) Transform
Probability maintenance models
Graphical analysis

20. ABSTRACT (Continue on revers side it neceajry and identify by block number)

Thesis Chairman: Carlos M. Talbott, Jr., Major, USAF

DD IO 1473 OITION OF I NOV S5IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whten Date Entered)



IUncLASST FTIED
SRQUftITY CLASSIFICATION Of THIS PAGI(When Daa Enterme.

Probability maintenance models can be categorized according to
three types of uncertainty: 1) uncertainty regarding when the
next failure will oaCur is present for all stochastically failing
components; 2) uncertainty regarding the component's present con-
dition, good or .failed, is present for some components; and 3)
uncertainty regarding the component's underlying failure distri-
bution is present in most real-world applications. Unfortunately,
application of most models requires exact knowledge of the under-
lying failure distribution; however, graphical techniques, such as
Total Time on Test (TTT), estimate optimal maintenance intervals
based on empirical data; thus, they eliminate error resulting
from type three uncertainty. The authors apply a TTT model to
estimate optimal motor oil replacement intervals under conditions
of three types of uncertainty. Their conclusions are: 1) There
is no significant difference between synthetic (Stauffer and
CONOCO) and petroleum motor oil lifetimes; 2) determining optimal
oil replacement intervals requires application of a model more
complex than the one applied; and 3) models that optimize an
objective function without constraint are often not realistic.
Thus, the authors develop and propose models that address three
types of uncertainty and allow constraints (cost, availability,
or failure risk) to be imposed on the model objective.

UNCLASSI FI ED
56Cu4ATY CLASSIFICATION Of' THIS P&AOShCme Date Entered)



LSSR 28-83

OPTIMAL IAINTENANCE POLICIESS

A GRAPHICAL ANALYSIS

A Thesis

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

By

Patrick F. Doumit, BA Barbara A. Pearce, BA
Captain, USAF Captain, USAF

September 1983

Approved for public releasel
distribution unlimited



This thesis, written by

Captain Patrick F. Doumit

and

Captain Barbara A. Pearce

has been accepted by the undersigned on behalf of the fac-
ulty of the School of Systems and Logistics in partial ful-
fillment of the requirements for the degree of

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT

Date: 28 September 1983

COMM ITTEE CHAIRMAN

READER

ii



ACKN.OWLEDGEMIENTS

Wde offer a special thanks to Carl Talbott for his expert

guidance and assistance; Dick Lee, George Morris, and Tom

Bowen for providing us the data; and especially Rita Dounilt

for her encouragement and support.



TABLE OF CONTENTS

CHAPTER Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . .. 1

I s s u e . . . a a a . . . . . . . . 1 *

Problem Statement ...... . . . . . . . 3

Scope . .. . 0. . .. . . . . . . . . . . . . . 4

Research Question ....... . . . . . 6

11. LITERATURE REVIEW .... . . . . . . . .. . 7

Reliability Theory .............. .. . 7

Maintenance Policies .... . . . . . .. . 10

Replacement Models . ............ . . 11

Inspection Models .... . . . . . . .. . 14

Blind Replacement Model ........... . . 15

Summary . . .. . . . . . . . . . . . . . . 17

I I I. METHODOLOGY ..... . . . . . . . . . . . . 20

Total Time on Test Process. . . . . .. . 20

The Bergman Model ............. . 22

The Talbott Model .... . . . . . . .. . 26

Data Application . . . .... ... 27

IV). DA TA A?4i.YS S e. .... . . . .. .... 29

Data Collection . . . . . . ......... 29

Statistical Analysis . . . . . . . . . . . . . 31

Total Time on Test. . . . . ............ 32

iv



CHAPTER Page

Summary . . . . . . . . . . . . . . . . . . 34

V. MODEL ANALYSIS. .. . . . . . . . . . . . ... 35

Blind Replacement Model ............... . . 35

Application of the Talbott Model. . . . . . 39

Proposed Methodology .... .......... . . . 41

Summary . . . . . . . . . . . . . . . . . . 49

VI. CONCLUSIONS AND RECOM1ENDATIONS . . . . . . . 51

Research Question and Conclusions . . . . . 51

Recommendations for Further Research .......... 53

APPENDIX Page

A. TTT PROCESSES FOR AN IFR DISTRIBUTION . . . . 54

B. EXAMPLE TTT PROCESSES FOR EXPONENTIAL AND
DFR DISTRIBUTIONS . . ............. . 56

C. EXAMPLE TTT PLOTS . . . . . . . . . . ....... 58

D. CRITERIA FOR FAILED OIL .................. . 60

E. LUBRICANT LIFETIME DATA ................ 68

F. WILCOXON-RANK SUM STATISTICAL
ANALYS IS . . . . . . . . *. . . . . . .. . .. 76

6. FORTRAN PROGRAM . . . . . . . . . . . . . . . . . 84

H. TTT RESULTS: ALL OILS COMBINED .... .. . 88

I. TTT RESULTS: STAUFFER SYNTHETIC OIL . . . . . 93

J. TTT RESULTS: MINERAL OIL . . . . . . . .. . 96

K. TTT RESULTS: CONOCO SYNTHETIC OIL .......... . 100

SELECTED BIBLIOGRAPHY . . . . . . . ........ . . . 103



CHAPTER I

INTRODUCTION

In recent years delivering systems that perform
adequately for a specified period of time in a
given environment has become an Important goal for
both industry and government. In the space
program, higher system reliability meant the
difference between life and death. In general, the
cost of maintaining and/or repairing electronic
equipment during the first year of operation often
exceeds the purchase cost, giving impetus to the
study and development of reliability techniques
4:6093.

Sound maintenance policies have their roots in

reliability theory. From reliability theory, probability

models have been developed for selecting optimum maintenance

actions. In this context, maintenance actions include

replacement, repair, and inspection. The purpose of this

research project is to apply a theoretical preventive

maintenance model using graphical solution techniques to an

empirical data set to determine optimum replacement

intervals for synthetic and petroleum motor oils.

Issue

Preventive maintenance Is defined as follows:

Equipment maintenance actions performed on a
periodic basis, according to a specific set of
instructions and a predetermined time schedule.
The objective is to protect equipment capability
and investment by removing the c~uses of failure
and making adjustments to compensate for normal
wear before failure occcurs [12:535].



In other words, preventive maintenance is considered as

those actions designed to preclude failure and enhance

system, subsystem, or component performance. On the other

hand, corrective maintenance can be considered as those

actions designed to restore a system, subsystem, or

component and to enhance performance after failure has

occurred. Further, the authors consider an optimum

maintenance strategy as one that maximizes or minimizes the

objective function of the maintenance policy, such as

availability or cost. Thus, an optimum maintenance strategy

could be either preventive or corrective.

Preventive maintenance policies can be categorized

according to uncertainty about failure. This project

addresses three types of uncertainty. The first two types

are defined here, and the third type will be discussed as

part of the problem statement.

1. Type one uncertainty exists when there is d .ubt
regarding the component's life (i.e., when the next
failure will occur). This type of uncertainty is
present for all components demonstrating stochastic
failure patterns.

2. Type two uncertainty exists when there is doubt
regarding the present condition of the component
(i.e., whether the component is good or failed).
The presence of this type uncertainty depends on the
nature of the component.

In cases where only type one uncertainty is present, and the

component's condition, good or failed, is known at any point

in time, either a planned replacement or repair policy may
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be optimal. In cases where both type one and type two

uncertainty are present, and the component's condition is

not known with certainty, either a planned inspection or

what Talbott (11) has termed the "blind replacement* policy

may be the optimum preventive maintenance strategy.

However, depending upon the component's failure pattern and

the pay-offs associated with maintenance actions versus

failure, preventive maintenance may make no sense. The

optimum policy may be to take no action until failure and

then perform corrective maintenance.

Problem Statement

While theoretical probability models exist for

selecting optimum maintenance policies, these techniques are

often not adaptable to real-world preventive maintenance

policies; thus, they receive little recognition in Air Force

maintenance policies. A significant shortcoming of most

probability models is that they require rather explicit

knowledge of the component's underlying failure

distribution.

All statistical procedures require an unbiased

sample of a population. To the extent that the sample does

not exactly model the population, a potential for error

exists when drawing conclusions based on sample data. When

this sample is component failure data, the error Is a direct

result of the type one uncertainty present in all stochastic

3



processes. Additionally, if in order to apply a particular

methodology, one must be able to describe the sample data in

terms of some theoretical distribution, then further

potential for error exists when drawing conclusions based on

the theoretical distribution. This second source of error

is a direct result of the extent to wh.z, the theoretical

distribution does not exactly describe the sample data.

Even when ample failure data is available, if failure

patterns do not fit theoretical failure distributions, most

probability models cannot reasonably be applied. Hence, the

problem becomes one of development and application of sound

maintenance strategies that addresses a third type of

uncertainty: uncertainty about the underlying failure

distribution of the component. Thus, type three uncertainty

exists when there is doubt regarding the failure

distribution of the component.

SCODe

The authors believe an appropriate solution to this

problem is to apply graphical solution techniques to

preventive maintenance models. If a particular methodology

does not require knowledge of the theoretical distribution,

error resulting from type three uncertainty is eliminated.

Graphical techniques do not require fitting a theoretical

distribution to the component's failure distribution; hence,

they eliminate error associated with type three uncertainty.

4



The particular graphical technique we will use is the total

time on test (TTT) transform which Bergman (3s467-469) has

already adapted for a preventive maintenance policy known as

the age replacement model.

According to Talbott (11), techniques for adapting

the TTT transform to other preventive maintenance policies

have yet to appear in the literature but are currently under

investigation. Additionally, application of these solutions

to real-world situations using an empirical data set remains

to be demonstrated. One particular maintenance model,

termed the blind replacement model, proposes replacement of

components at planned intervals without knowledge of

component condition (6s190-192). Talbott (10:16) is

developing a graphical solution technique for this

maintenance model. We believe application of this technique

to an empirical data set will demonstrate the validity of

using graphical solutions for developing real-world

maintenance strategies.

A disadvantage of TTT analysis is that it probably

will not identify the truly optimal solution. The nature of

this technique is to select from the observed failure data,

the data point that is most optimal among all the data

points for the preventive maintenance task. Thus, unless

there is an observed failure at the optimal preventive

maintenance interval, the model will not select the optimal

interval, but rather, the data point closest to it. In

5



other words, the model considers the empirical data set as a

finite set of potential replacement intervals from which the

optimal interval can be selected. We will elaborate on this

disadvantage as we discuss the TTT methodology. Hoever, in

the interest of simplification, we will continue to address

the interval selected by TTT analysis as optimal even though

it may not be truly optimal.

Our empirical data base for this investigation is

synthetic and petroleum lubricant-lifetime data made

available by the Technical Support Center, Pensacola Naval

Air Station, FL. This data base is part of a joint-service

test of DOD vehicles to determine the merits of both types

of lubricants. Application of the blind replacement model

using graphical solutions should yield optimal oil

replacement intervals for synthetic versus petroleum motor

oils.

Research Question

Can the blind replacement model be applied to an

empirical data set using TTT transform graphical solution

techniques to determine optimal replacement intervals for

synthetic and petroleum motor oils?
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CHAIPTER II

LITERATURE REVIEW

This chapter presents a brief look at the

development of optimal maintenance policies based on

reliability theory. Barlow and Proschan (2#84) categorize

maintenance policies as replacement policies and inspection

policies. The topics covered in this chapter are

reliability theory, maintenance policies in general,

replacement models, inspection models, and the blind

replacement model. Discussion of the TTT transform

graphical technique and its application to maintenance

policies is reserved for Chapter Three, Methodology.

Reliabil1ty Theory

Barlow and Proschan (2s6) define reliability as *the

probability of a device performing its purpose adequately

for the period of time Intended under the operating

conditions encountered." Similarly, Hillier and Lieberman

(4t594) state that

reliability, R(t), Is the probability that a device
performs adequately over the Interval (O,t). In
general, it is assumed that unless repair or
replacement occurs adequate performance at time t
implies adequate performance during the interval
(0,t). The device under consideration may be an
entire system, a subsystem, or a component.

Same probability models of reliability consider

7



devices to be in one of two conditions: good or failed. For

an individual component, this condition can be denoted by a

random variable XI, such that I 1 if the i th component
th

is good and X I- 0 if the i component is failed. Thus, X i

is a binary random variable defined as;

I s if device I does not fail during (O,t)
Xi(t) -

0, if device i does fail during (Ot)

Therefore, the probability of a device not failing during

the interval (O,t) can be expressed as P(X.(t)=1) or P(Xil)1

(4:595).

The common probability functions used in reliability

theory treat system condition as a function of time. The

function f(t) represents the failure probability density

function (pdf)--that is, the probability of failure at time

t; and F(t) represents the cumulative failure pdf--that is,

the probability of failure within the interval (O,t). The

function R(t) represents the survival distribution or

reliability distribution and is the probability of survival

throughout the interval (O,t); hence,

R(t) - P(X-1) - I-F(t) (2.1)

The hazard rate, r(t), sometimes referred to as the

instantaneous failure rate, is the conditional probability

that a device surviving to time t will fail at time t.

8



Therefore, it is the ratio of the probability of failure at

time t to the probability of survival throughout the

interval (09t)1 hence,

r(t) - f(t)/R(t) (2.2)

For many devices, the hazard rate tends to Increase as the

device gets older due to deterioration associated with age.

Devices having hazard rates that remain constant or increase

with age are said to have an increasing failure rate (IFR).

For some devices, the hazard rate tends to decrease as the

device gets older due to a possible *work hardening"

phenomenon that occurs during early life. Devices having a

hazard rate that remains constant or decreases with age are

said to have a decreasing failure rate (DFR). Devices

having an exponential failure distribution have a random or

poisson failure rate that is constant throughout time;

hence, the exponential distribution is both IFR and DFR and

represents a natural boundary on the survival probabilities

of the IFR and DFR distributions (4:605-606).

Since R(t) is a continuous function which cannot

assume negative values, the mean value of X (expected

condition of the device) is represented by the following

expression (5s57):

E(x) - $ R(x)dx (2.3)
00

E



Furthermore, failure distributions represent

probability models of the length of life of a component or

system. Typical failure density functions popular in the

literature are the exponential, the gamma the Weibull, the

normal, and the lognormal. The exponential distribution has

limited utility (albeit wide application) because of its

underlying property that previous use does not impact future

life. In other words, a new device has the same probability

of failing within the next time interval as an old device.

For devices having exponential failure distributions, the

future life distribution of the dovif remains unchanged as

long as the device has not failed yet. Therefore, devices

having exponential failure distributions essentially do not

age (219-15).

Maintenance Policies

For some devices, failure during operation is

undesirable because it is too costly or dangerous. In these

situations, it may be wise to employ a maintenance policy

that incorporates planned replacement/inspection of good

devices. Barlow and Proschan (2s84) define an optimum

maintenance policy as one "that minimizes total cost,

maximizes availability, or in general attains the best value

of the prescribed objective function.'

Central to the development of maintenance policies

is renewal theory. A renewal process may be thought of as

10



any process that returns a device to a good-as-new

condition; this includes both replacement and repair to a

good-as-new condition. The renewal reward theorem states

that the average long-term reward is equal to the expected

reward in a renewal cycle divided by the expected cycle

length. Mathematically, this is expressed as:

E(x/cycle)
E(x) - -(2.4)

E(cycle length)

Here X represents same form of reward or payoff which can be

positive, such as availability, or negative, such as

down-time or cost. The objective function then becomes

maximization of a positive long-term reward or minimization

of a negative long-term reward (7:53).

In this research project, we will use the term

cS1 to signify any negative reward, and profit for any

positive reward. Also, the terms renewal and replacement

are used interchangeably, such that replacement refers to

either physical exchange of a device or repair to a good-

as-new condition.

Reol-acement Models

Preventive maintenance policies are categorized by

Barlow and Proschan (2t84) as either replacement type or

inspection type policies. Replacement policies attempt to

balance the cost of failure occurring during operation of

11



the device against the cost of planned replacement. The

following assumptions make application of a replacement

policy reasonable: 1) cost of replacing a good device is

less than cost of the device's failing; 2) detection and

replacement of failed devices is instantaneous; and 3) the

probability of failure is increasing with age. In the

Barlow and Proschan models, C(t) represents the expected

long-term cost incurred during the interval (Opt); C1

represents the cost of device failure to include cost of

replacing the failed device; and C2 denotes the cost of

replacing a good device. NI(t) represents the expected

number of failures occurring during the interval (O,t),

while N2 (t) represents the expected number of replacements

of good devices. The basic replacement model can then be

expressed ass

C(t) - C1N1(t) I C2N2(t) (2.5)

Here, the objective is to minimize C(t) for a finite time

span or minimize )im oC(t)/t for an infinite time span

(2s84-85).

The most caomon replacement model is the age

replacement model which proposes replacing devices at

failure or at age T, whichever occurs first (where T is

assumed to be a constant). Barlow and Proschan show that if

the underlying failure distribution is continuous, then

determining an optimum age of replacement requires exact

12



knowledge of the failure distribution. Unfortunately, in

actual practice, the failure distribution, F, may not be

known. However, if the failure distribution, F, is known

exactly, the optimum age of replacement for an infinite time

span is that value of T which yields the minimum value for

C(T) in the following equation (2s85-86).

CF(T + C2 R(T)C MT -2 -----.. .

T (2.6)

This equation can be derived mathematically from

equation 2.5 and is equivalent to the mathematical

expression of the renewal reward theorem (equation 2.4)

where:

C(T) - expected long-term cost at time T

C1 F(T) - failure cost multiplied by the probability
of failure within the interval (O,T)

C2 R(T) - planned replacement cost multiplied by the
probability of survival throughout the
interval (O,T)T

R(xldx - the expected value of the cumulative survi-
0 val pdf where R(x) is bounded by 0 and T

(equation 2.3)

Hence, CIF(T) + C2*RT - E(cost per cycle), and
T
R(x)dx - E(cycle length) (2t85-86).

0

Regarding finite time spans, Barlow and Proschan

(2s93) show that if F is known and continuous, then there

exists an age of replacement for any finite time span (0,T);

13



however, no general formula exists for determining an

optimum age replacement policy.

A second type o4 replacement policy is block

replacement, which proposes replacing devices at calendar

times KT (K - 1,2...), independent of component failure

historyl devices are also replaced at failure. Block

replacement policies have an advantage over age replacement

in that they eliminate the administrative burden of tracking

device age. However, the disadvantage of a block

replacement policy is that it throws away useful life. In

comparing block and age replacement policies, Barlow and

Proschan show that with block replacement, more unfailed

devices are removed, more useful life is wasted, and the

total number of both failed and good device removals is

greater than with age replacement; however, the expected

number of failures is less for block replacement policies

(2:67,95).

Inspection Models

As stated earlier, a basic assumption of replacement

policies is that detection and replacement of a failed

device are instantaneous. Thus, replacement models assume

that the condition of the device (failed or good) is known

at any point in time. When type two uncertainty exists

(i.e., the condition of the device cannot be determined

instantaneously), replacement policies cannot logically be

14



applied; and inspection policies, which make up the second

major category of maintenance policies, are more suited for

these items (11).

Inspection policies attempt to balance the cost of

failure occurring during operation of the device against the

cost of planned inspections. The following assumptions make

application of an inspection policy re', sonable: 1) the

condition of the device can be determined only through

inspection; 2) inspection is non-destructive; 3) the device

cannot fail during inspection; 4) inspection involves

a fixed cost, C1 ; and 5) the time elapsed between system

failure and discovery of failure at the next inspection

costs C2 per unit of time. As with the age replacement

model, Barlow and Proschan apply a mathematical model to

describe the relationship between the expected long-term

cost C(t) and CI and C2. They define an optimum inspection

procedure as a *specification of specific checks Xs

X2 i X 3 ... * for which C(T) is minimized; and they show

that if the failure distribution, F$ is known and continuous

with a finite mean, then an optimum inspection schedule must

exist (2:107-108).

Blind Replacement Model

Radner and Jorgenson (6:184) categorize maintenance

models according to sources of uncertainty. One source of

uncertainty occurring with all maintenance policies

15



developed for stochastically failing devices is predicting

when a failure will occur (type one uncertainty). A second

source of uncertainty is knowing the condition of the device

(good or failed) at any point in time without inspection

(type two uncertainty). Barlow and Proschan apply

replacement models to cases where only type one uncertainty

is present and apply inspection models to cases where both

type one and type two uncertainty are present. Similarly,

Radner and Jorgenson propose a category of preparedness

models for situations having both types of uncertainty.

Preparedness models include but are not restricted to the

typical inspection type models addressed by Barlow and

Proschan. For example, one assumption Barlow and Proschz

make regarding inspection models is that inspection is

nondestructive. However, in some situations, inspection may

cause the device to fail. This is true of any device that

must be expended in order to determine if the device is

still good, such as munitions which must be fired to

determine if they still work but clearly will not work again

after they have been fired. For devices falling in this

category, planned inspection makes no sense, and the optimum

policy would be to replace at a planned interval. However,

these devices do not meet the requisites of Barlow and

Proschan's replacement policies since both type one and

type two uncertainty are present.

Radner and Jorgenson developed a preparedness model

16



for devices having an arbitrary distribution of times to

failures which Talbott (11) has termed the "blind

replacement" model. Blind replacement proposes renewing a

device at age or time T without knowledge of the condition.

Assumptions for the blind replacement model are 1) the cost

of replacement is less than cost of inspection or inspection

is an unreasonable option, and 2) the probability of failure

is increasing with age. If A(T) represents the average

long-term profit (availability, in this case); T, the time

between replacements; and k, the time to replace, then AT)

can be expressed in terms of reward renewal theorem

(equation 2.4) as:

T

0 (2.7)
A(T) =-----------

T+ K

Here, the numerator of the above equation represents the

mean life in a renewal cycle; and the denomonator represents

the time between replacements plus time to replace, which is

cycle length. The objective function then is to maximize

AT) (6:190-192).

Summary

Two important requisites exist for all the

maintenance policies presented thus far. First, the failure

distribution must be known; and second, it must be IFR, but

17



not exponential. Although Barlow and Proschan provide

several mathematical proofs of the requisite for an IFR

failure distribution, it is intuitive that devices having

purely exponential or DFR distributions are not reasonable

candidates for preventive maintenance. Since devices having

purely exponential failure distributions essentially do not

age and have a constant hazard function throughout time,

then clearly, replacing a good device will not impact the

probability of failure within the next time interval; in

other words, the new device would have the same probability

of failing as the old. For devices having non-exponential,

DFR failure distributions, planned replacement of a good

device actually increases the probability of failure within

the next time interval since the new device would have a

greater probability of failure than the old. Therefore, an

underlying assumption of all preventive maintenance policies

discussed in this project is that their application is

reasonable only if the device has a non-exponential, IFR

failure distribution.

A major drawback of all the maintenance models

presented thus far is that determining an optimum

replacement/inspection strategy requires an exact

description of the underlying failure distribution, F, in

terms of some theoretical failure distribution such as a

gamma or Weibull. As stated earlier, in actual practice,

the failure distribution may not be known or may not

18
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reasonably fit a theoretical distribution. This fact alone

makes application of theoretical maintenance policies

difficult for most real-world preventive maintenance

situations. Thus, these models could be made more useful if

they could be adapted to data analysis techniques employing

empirical distributions. One such technique is a graphical

technique using total time on test transform, which is the

subject of the next chapter.
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CHAPTER I I I

METHODOLOGY

This chapter presents the total time on test

methodology for analyzing observational data to determine

optimal maintenance intervals. This technique was described

by Barlow and Campo (1:451) as an effective means of

analyzing failure data. In 1977, Bergman (3:467-469)

adapted Barlow and Proschan's age replacement model to TTT

analysis techniques. Also, Talbott (10:16) is currently

adapting Radner and Jorgenson's blind replacement model for

TTT analysis. In describing the development of the TTT

transform technique, this chapter will cover the TTT process

in general, the Bergman model, the Talbott model, and data

applicat ion.

Total Time on Test Process

The total time on test (TTT) process was presented

by Barlow and Campo in 1975 as a method of analyzing data

that is useful for describing failure probability. An

explanation of this process follows.

1. t(i) is a value from an ordered set of life

observations from distribution F such that t(1 ) S t(2 )

t(3 ) 1 ... i t(n) . Since t(1 ) represents the life of the

first deoice that failed, and t(2) the life of the second,
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otc., then it follows that n devices all lived t (1) units

of time, n-1 devices lived t (2). units of time, and only one

device lived t (n) units of time. Thus t(j) represents the

lif* of the ith device in the ordered set of n lifetimes,

where t (0 ) -0.

2. T I is the total time on test statistic and

represents the life generated by the n devices in the

interval (t(0 )st(j) ), where a portion of the n devices

survived throughout the interval and the remainder

failed during the interval. Whore T0 0, then TIis

defined mathematically as,

3. U1 IIs the scaled total time on test statistic

and is equal to the ratio of T I to Tn* Thu%, U 1 represents

the proportion of the total life generated by the n devices

during the interval (t (O),tci)).

4. i/n Is the ratio of I to n and represents the

proportion of the devices that have failed by point in time

t oThus, it Is approximately equal to the probability

that an item fails within the Interval tOl).

5. The TTT plot is the graphical representation of

the MT process where U I Is plotted against i/n. Therefore,
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each point on the TTT plot relates the proportion of the

total life generated by time t(i) to the probability that a

device fails by that time. Necessarily then, at the final

point where i1n, U i - i/n - 1 (1:452-457; 11).

Barlow and Campo (1:455) further show that if the

data points on the TTT plot are joined by line segments,

when n is sufficiently large, this function will approximate

a curve. The curve will be concave for IFR distributions, a

straight line for purely exponential, and convex for DFR

distributions. Our examples of these functions are given in

appendices A through C of this report.

The Beroman Model

Bergman made a major breakthrough in the application

of probability based maintenance strategies to real-world

scenarios by adapting Barlow and Proschan's age replacement

model to TTT transform analysis. This method provides a

useful means of estimating the optimum age replacement

interval when only observational data is available, and the

device's underlying failure distribution is not known with

certainty or cannot be fitted to an empirical distribution.

The model assumes a cost C is associated with component

replacement and an additional cost C+K Is associated with

failure. If we let K=i, then from equation 2.6, the optimum

age of replacement is that value of T which yields the

minimum value for C(T) in the following equation:
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(C.1)(F(T)) + C(R(T))

$Txd (3.2)

Since R(T - 1-F(T), the numerator of the above equation can

be reduced mathematically to C+F(T). Also since F n(T) is an

empirical distribution of n observations that approaches the

theoretical FMT as n approaches infinity, then

FM -T 1 ~iF M. Further, since t~j represents one

observation from that empirical distribution, then (using

*'- to represent *is approximately equal to*)

FMT & F nT MA F.~ i when n is sufficiently large. And

necessarily, CMT A C n(M A C n(t(i) ). Hence,

CMT - ------ ---- FCgt() (

SRxdx (t)d

Since T i represents the cumulative life generated by the

n components ovier the interval (t(0 ),t(j)) and since

oSm R(x)dx represents the expected value of the cumulative

survival pdf over that same interval, then for the empiri-

cal data set, n A(x)dx =nT,/n. Also, since t (i) repre-

sents one data point In the empirical cumulative failure pdf,

F n(T)p then necessarily, Fn(t(i)) is the probability of

failure within the interval (t(,),t(W) and is therefore

approximately equal to i/n. Thus from equation 3.3, it can
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be shown that,

C 4 Fn(t(,)) C * i/n

C (t( )) - ; -- (3 4)n~~~~~ TI/ (n)T n (i n )

And finally, since Ti/T n - U i, then from equation 3.4,

C + i/n I C + i/n
C (t(i)) ------------- ------ X --------- (3.5)

1/n (Tn) U i  Tn/n U i

Thus,

1 C + i/n

C(T) A Cn(T) a C n(t(i) n X--- --/n (3.6)
T n/n U.

Note that the first part of the expression on the right

hand side is a constant fixed by the sample, and the

second part is the only part that is variable. Since the

objective is to minimize long-term costs, this is equivalent

to maximizing the reciprocal of Cn(t(i)). Therefore the

objective becomes maximizing the reciprocal of the variable

portion of the right hand side of equation 3.6. Hence,

U i

min C(T) -> max (3.7)
C + i/n

For a particular value of 1, plotting -C on the X-axis of

the TTT plot yields a distance from -C to i/n that equals C

+ i/n. If a line is drawn from -C on the X-axis to the TTT
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data point corresponding to that value of I, that line is

defined by its slope which is equal to Ui/(C + i/n). For

each line that can be drawn in this fashion, at least one

line will be tangent to the function and will have a slope

that is greater than or equal to the slope of any other

line that can be drawn. Thus, that line defines the value

of I (call it I*) that maximizes Ui/(C + i/n) for a given

value of C. The optimal replacement interval then is the

value of t(i ) defined by i* (3:467-469; 8:9-10).

As stated earlier, the disadvantage of TTT analysis

is that it probably will not identify the truly optimal

solution. Since the technique selects the value of t(i)

defined by the point of tangency, it can consider only the

observed lifetimes as candidates for the replacement

interval. If the truly optimal solution is not a value of

t(i), the point of tangency will be the t(i ) closest to the

truly optimal interval.

Additionally, if the distribution is purely

exponential, the TTT function will be a straight line, and

If it is DFR, the function will be convex. In either of

these two cases, the point of tangency will be the last data

point on the TTT plot. Hence, the model should be

interpreted for purely exponential and DFR distributions as

having an optimal strategy of replacing only at failure.

Our examples of IFR, purely exponential and DFR
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distributions art given in At-tachments A through C of this

report.

The Talbott Model

From Bergman's insight, Talbott (10:16) is adapting

Radnor and Jorgenson's blind replacement model to TTT

analysis techniques. Using a process similar to Bergman's,

Talbott shows that as n approaches infinity, the empirical

distribution approaches the theoretical distribution. Thus,

from equation 2.7, he shows that

T t(i)5R(x)dx R Rxd

T+ k t(i)+ k

Since n i(x)dx represents the expected value of the

cumulative survival pdf over the interval (t(O)stci)).

then for the empirical data set, 5 t,%)dx - Ti/n. Also

since U. - T /Tn9 then from equation 3.8 we have,

ACT ~/n (T n/n)U i
AM -------------------- -----

T n/n U1
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Therefore,

T n/n U iA(T) An(t(i) )  - X (3.10)

t(n). t(i)/t(n) K/t(n)

Since the first part of the right-hand expression is fixed

by the sample and is therefore constant, the second part is

the only part that is variable. Hence, if the objective is

to maximize the long-term reward, then,

U.

max A(T) => max -------- i (3.11)t(i)/t(n) + k/t(n)

By plotting -k/t (n) on the X-axis of the TTT plot, the value

for i* can be found using the same techniques as in

Bergman's model. Thus the optimum blind replacement

interval is the value of t(i) defined by i*. However,

one problem is that there is some question as to the

interpretation when i* = n (i.e., do not replace or replace

at t ( )) (I1).

Data Application

Applications of Talbott's adaptation of the blind

replacement model requires observational failure data. Our

empirical data set for this investigation is synthetic and

petroleum lubricant-lifetime data which has been made

available by MEEP Project H79-IC. This data base is part of

a joint service test of DOD vehicles to determine the merits
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of both types of lubricants. Application of the blind

replacement model using graphical solutions should yield

optimal oil replacement intervals for synthetic versus

petroleum motor oils.
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CHAPTER IV

DATA ANALYSIS

This chapter examines the procedures used to collect

and analyze the oils comprising the data base for this

research. It also discusses the method for determining K,

the time required to replace failed oil.

The original motivation for the data collection

effort was to determine if there were any advantages to

using synthetic lubricants in DoD vehicles. Air Force

Systems Command (AFSC) was tasked to perform a field

evaluation to determine if using synthetic engine oils

provided improved performance, greater reliability, and

lower vehicle operating costs (9:1).

Data Collection

Oil sample data for the field evaluation was

collected over a three-year period (1979-1981) through the

Management and Equ ment Evaluation Program (MEEP) Project

H79-1C. The test included approximately 450 general purpose

vehicles from twelve Air Force bases throughout the country.

The large number of vehicles and the wide cro.s-section of

bases should provide a relatively unbiased sxmple of Air

Force vehicles. The lubricants selected for t:.e program

were MIL-L-46152 Qualified Products List (QPL) products.
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Three different types of lubricants were evaluated:

Stauffer's synthetic oil, a standard stock listed mineral

based oil, and CONOCOs synthetic oil. To insure

consistency in determining oil failure, oil samples were

taken at regular intervals and sent to the Joint Oil

Analysis Program (JOAP) Laboratory at the Naval Air Station,

Pensacola, Florida for testing. Oil filters were changed

each 6,000 miles or 12 months of operation, whichever came

first. Thp personnel at the JOAP Laboratory made

recommendations based on their findings whether or not to

change oil/filter at more frequent intervals or to continue

with routine sampling (9:1-6).

Oil was considered failed when certain established

baseline factors were exceeded. Factors included various

levels of metal content, changes in viscosity, and failure

of a blotter test. Baseline data provided by the personnel

at the JOAP Laboratory for determining failure of each type

of oil is in Appendix D.

The entire set of raw data was provided by the JOAP

Laboratory for this research. To maintain an unbiased

sample, we collected only one instance of oil failure per

vehicle in the test, although many of the vehicles

experienced more than one oil change recommendation. To

have collected more than one lifetime per vehicle would have

biased our analysis in favor of those vehicles with short

oil lifetimes. Data was compiled in terms of several
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factors as shown at Appendix E.

Although we received the raw data for approximately

450 Air Force vehicles, a thorough examination of the data

revealed several problems which significantly reduced the

total number in our research sample. For example, in many

cases, an accurate number of miles between oil changes could

not be determined. Some oil was not changed when failure

was apparent and a recommendation was made. In some cases,

the wrong type of oil was added to the engine crankcase,

invalidating the test. Also, two bases were removed from

the project due to engine problems and the use of improper

oil. After discarding the samples we felt were inaccurate,

the total number of cases remaining was 116. While this

number is certainly not as large as originally anticipated,

we consider it a fair cross-section of oil types and bases.

Statistical Analysis

Prior to performing the TTT analysis, we ran several

Wilcoxon-Rank Sum (Mann-Whitney) tests on the data set.

This test is a nonparametric technique for testing the null

hypothesis that the probability distributions associated

with two populations are identical. We made comparisons for

three factors: oil type, vehicle make, and utilization and

mileage. Based on an alpha value of .05, in only two cases

could we conclude that the populations were significantly

different. The failure distribution for vehicles having low
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utilization and low mileage was significantly different from

both the distribution for vehicles having high utilization

and high mileage and the distribution for vehicles having

low utilization and high mileage. These two tests resulted

in two-tailed probability values of .0097 and .0105,

respectively. However, there was no significant difference

between the failure distributions based on oil types vehicle

make, or the other utilization and mileage categories.

Based on these results, we eliminated the low

utilization/low mileage vehicles from the data set and

retested for significant differences between oil types and

vehicle makes. Again, we were unable to find significant

differences among any of the failure distributions.

Finally, we tested only the vehicles having low

utilization/low mileage for significant differences based on

oil type and vehicle make. Again, we found no significant

differences. Thus, based on our sample data, we have no

evidence that either oil type or vehicle make significantly

affects the propensity of motor oil to fail. Results of

these tests are shown at Appendix F.

Total Time on Test

To demonstrate the Blind Replacement model using

graphical analysis, a value for replacement time K must be

established. We estimated one day as the approximate time

required to turn a vehicle into the motor pool, change the
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oil and filter, and return it to service. Since the life

cycle length in the blind replacement model is expressed as

replacement interval plus replacement time, (T+K), T and K

must have the same unit of measure. Also, since it is

desirable to express the replacement interval in miles,

which is the common unit of measure for oil life, in order

to maintain consistent units of measure, K should also be

expressed in miles. Therefore, one day is translated into

miles by dividing the total miles driven in the test by the

number of days in the test to obtain an estimate of miles

per day. Thus, replacement time is being measured as the

expected number of miles that cannot be driven when the oil

is being replaced. Using this technique, the following

values for K were obtained:

All Oils Combined = 24.83
Stauffer Synthetic Oil = 20.92
Mineral Oil = 28.30
CONOCO Synthetic Oil = 25.46

We developed the FORTRAN computer program shown at

Appendix 6 to perform the TTT analysis. Using the computed

values for K, we applied our data set to this program and

found the following replacement intervals provide maximum

availability of good oil:

All oils combined (Appendix H) = 1971 miles
Stauffer (Appendix I) = 1139 miles
Mineral oil (Appendix J) - 2039 miles
CONOCO (Appendix K) = 2624 miles
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Unfortunately, in all four cases, the value of -K/t(n) is s0

small, that when graphed, it ca hardly be distinguished

.from the origin. Thus, the TTT plots in Appendices H

through K do not provide very good illustrations of the TTT

process.

Summary

Based on the tests performed, we conclude that the

failure probability distributions are not significantly

different for the three types of oils tested. However,

since the TTT transform can select the optimal interval from

only the observed data points, it would not select the same

replacement interval for all three type oils unless each

happened to have an oil change point of the same mileage and

the value for K in each sample allowed that interval to be

selected. For this reason, any interpretation of the

differences in the intervals should be approached with

caution. It should also be noted that the optimal interval

selected is for the prescribed objective only--specifically,

to maximize the availability of good oil. If the decision

maker has other objectives, these intervals would no longer

be optimal since use of the blind replacement model would be

inappropriate.
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CHAPTER V

MODEL ANALYSIS

While analyzing the results of this project, we

noted major difficulties in our application of the Talbott

model and weaknesses in the original Radner-Jorgenson

formulation In terms of its real-world applicability. In

this chapter, we will describe the weaknesses of the Blind

Replacement model, explain how the Talbott model was

misapplied for our data set and then present a proposed

methodology for overcoming some of these problems.

Blind Replacement Model

The weaknesses of the blind replacement model can

best be described in terms of Markov states. As stated

earlier, type two uncertainty exists when there is doubt

regarding the present condition of the device. Thus, as a

device operates under conditions of type two uncertainty, it

can be in any one of four possible states:

1. Good time - That time during which the device is
in operation in an unfailed condition.

2. Bad time - That time during which the device is
In operation in a failed condition.

3. Corrective maintenance - That time during which
a failed device Is being replaced.

4. Preventive maintenance - That time during which
an unfailed device is being replaced.
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In terms of the life cycle, at any point in time

during the replacement interval T, the device is in either

state one or state two; throughout the replacement time K,

the device is in either state three or state four. Since a

device can be available only when it is in state one, when T

equals T*, the probability of being in state one versus any

other state is maximized. Hence, blind replacement

emphasizes state one at the expense of all the other states

combined. Therefore, the probability of being in states

two, three, and four is minimized unconstrained with respect

to each other as if they were a single state. Since there

cannot be a direct transition from state one to state three,

only the conditions for states two or four can takt a device

out of state one. Thus, blind replacement assumes an equal

preference for entering states two and four and further

assumes that they both have the same intrinsic value in the

mind of the decision maker. In other words, one must be

able to say, "I would like the device to be available; but

if it must stop being available, it makes no difference

whether this is because it is staying in operation in a

failed condition or because it is undergoing preventive

replacement." Thus, where most models assume a cost of

failure that is greater than the cost of replacement, the

Radner-Jorgenson model Implicitly assumes these costs are

equal or of no concern.
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Radner and Jorgenson specifically developed their

model for devices (such as munitions) being kept in storage

under conditions of type two uncertainty for use during an

emergency. Here, the objective is to maintain the device in

a state of operational readiness (state one) as much of the

time as possible. Hence, states one and two constitute

times that the device is in storage, not in operation. For

this scenario, there may be little difference between

failure and replacement costs. When the emergency hits, the

cost of not having the device operationally ready is the

cost of not being in state one. This cost is incurred

regardless of which of the other three states the device is

in; hence, it is not a failure cost. The only failure cost

is the cost of the type two uncertainty, which is inherent

in the problem to begin with. When the device is in state

three or four, the device is known to be not available to

respond to the emergency. Thus, the cost of failure is the

cost of not having known the device to be failed.

Where this information has appreciable value, the

blind replacement model should not be applied. Such a

situation exists in the case of a munition device being

"stored" on another piece of operational equipment, such as

an aircraft ejection seat cartridge. Here, the cost of

failure is possible loss of life since, knowing the device

to be failea, one would not fly the aircraft. Thv situation

also exists for munitions on alert if, for planning
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purposes, it is considered advantageous to reduce type two

uncertainty at the expense of availability.

Another problem with application of the blind

replacement model is most evident when there is a very small

value for K relatlve to t(n). Necessarily, as K

approaches 0, T approaches t(1 ) . In fact, if K - 0, any

value for T, where 0 1 T ( t(1) will provide 100Y avail-

ability. Therefore, with a very small value for K, maximum

availability is realized when T = t (1. In this situation,

all but one of the devices will be replaced while they still

have life, and this could be costly. Thus, there is another

cost involved: the cost of discarded life.

In a minimum cost model, not accounting for

discarded life biases the model toward an earlier

replacement interval. The greater the difference between

failure and replacement costs, the relatively less expensive

will be the discarded life, but the more discarded life will

be incurred. However, if failure and replacement costs are

relatively close, discarded life becomes relatively

expensive but rarely occurs. Thus, when minimizing costs,

even though the bias exists, the very nature of the model

will constrain the significance of discarded life costs. On

the other hand, when the objective of the model is to

maximize availability, the model will discard life

unconstrained. If the device is relatively inexpensive and

K is relatively large, discarded life costs will be minimal.

38



However, if the reverse Is true, discarded life could be

quite significant, and the costs should not be ignored.

In conclusion, the Radner-Jorgenson and the Talbott

models appear to be valid when applied strictly to the

scenario for which they were developed; however, they appear

to be weak in terms of real-world applications. The

inherent problem with blind replacement is not in the

Radner-Jorgenson formulation but, rather, in the objective

function. Any model that maximizes availability without

constraint is not a very useful model in our opinions. To

the extent that there is a preference for entering state

four versus state two or that discarded life is a concern,

maximizing availability without constraint is not realistic.

In other words, costs must truly be irrelevant for this

objective to make sense, and we doubt this is often the

case.

Apolication of the Talbott Model

The application of the Talbott model in this

research project for finding an optimal oil replacement

interval was inappropriate since engine oil does not

constitute a device in storage waiting to respond to an

emergency, and there are real costs associated with failure

and discarded life which probably should not be ignored.

Hence, the optimal replacement interval is only valid if the

objective is to maximize availlability of the good oil and
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there is no concern for the cost of operating an engine on

Obad" oil or for the cost of discarding good oil due to

early replacement.

What would be an appropriate model for oil

replacement is a question the authors are unable to answer.

There are several problems associated with engine oil that

make application of an appropriate replacement model

complex. First, as oil transitions from state one to state

two, failure costs are not incurred all at once; they are

accumulated as the engine continues to operate on failed

oil. Second, this accumulation of failure costs is probably

not linear since operating an engine on failed oil will

probably aggrevate engine damage in a nonlinear fashion.

Thus, the cost of operating a vehicle for a mile on oil that

Just failed is probably less than the cost of operating a

vehicle for a mile on oil that has been failed for a long

time. Finally, this process of how failed oil damages an

engine over time is probably stochastic and is, therefore,

represented by some theoretical probability distribution.

So, even If one were to obtain an unbiased sample of this

process, the issue of how to address the type three

uncertainty associated with this theoretical distribution

would still be a problem. Thus, considering the

Intractability of accounting for failure cost, proposing an

appropriate model for determining an optimal oil replacement

interval presents a dilemna the authors have been unable to

40



resolve.

Proposed Methodolooy

As stated earlier, type three uncertainty exists if

the underlying failure distribution is not known with

certainty. Both models that have been developed to address

this type uncertainty, Bergman's and Talbott's, are somewhat

limited in terms of real-world applications since neither

considers the cost of discarded life and both maximize an

objective function without constraint. The Bergman model

minimizes cost without regard for availability, and the

Talbott model maximizes availability without regard for

cost. Therefore, the authors propose two models termed

model one and model two which allow the decision maker to

constrain the objective function. Both replacement models

one and two address three concerns which the authors

consider appropriate for most real-world scenarios. These

concerns are cost, availability, and risk of failure. When

the decision maker selects one of these concerns as the

objective, the other two may remain in the model as

constraints. We will address replacement model two first.

Replacement model two is appropriate for situations

having all three types of uncertainty. To illustrate

application of this model, we recall the example of the

aircraft ejection seat cartridge. An appropriate

application in this example might be to minimize cost,
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constrained by an acceptable level of risk for being in

operation in a failed state (state two). Furthermore, in

the example of munitions on alert, it might be more

realistic to address availability as a constraint, not an

objective. Thus, an appropriate application might be to

minimize cost, constrained by a required level of readiness

to meet mission requirements. Here, where availability

operates as a constraint, the cost of not having known the

device to be failed is minimized over the long run. By

knowing the availability constraint, the decision maker

always knows the expected number of devices in the readiness

state (state one) and can plan accordingly.

In the model two formulation, T represents the re-

placement interval; C(T) is the expected long term cost;

C, is the cost of device failure to include cost of

replacing the failed device; and C2 is the cost of replac-

ing a good device. Since discarded life is the cumulative

life within the interval (T,oo), the expectation for the

percent of the total life discarded can be expressed as:

00
R(x)dx

E(x) (5.1)
00
R(x)dx

Where cost of discarded life is measured as the cost of re-

placement multiplied by the expected percent of the total
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life discarded, then cost of discarded life equals
00 00

C2 E T$ R(x)dx/ 0 R(x)dxl. Further, in accordance with

renewal reward theorem, the objective of a minimum cost

model is to minimize expected costs per cycle divided by the

expected cycle length (i.e., minimize cost per unit of life

such as dollars per operating hour). Hence, similar to

Barlow and Proschan's age replacement model, the optimum

replacement interval for minimizing cost is that value of T

which yields the minimum value for C(T) in the following

equation:

CIF(T) + C2 R(T)[ T5 R(x)dx/ O t° R(x)dx ]

CMT = - -(5.2)
T

I R(x)dx
0

For maximizing availability, the optimum replacement

interval is found using the Radner-Jorgenson formulation,

which maximizes the expected life over the expected cycle

time of T + K; specifically,

T
O R(x)dx

AMT = -- (5.3)
T + K

For minimizing risk of failure, we let Z(T)

represent expected long term risk of the device being in
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state two. Since the objective is to minimize the expected

time in a failed condition over the expected cycle time, the

optimum replacement interval is that value of T which

minimizes Z(T) in the following equation,

TtF(xldx

0
Z(T) = (5.4)

T + K

Minimizing Z(T) unconstrained would not make sense since it

would necessarily drive a replacement interval of T = 0,

where the expected risk would also be 0.

In order for the model to address type three

uncertainty (i.e., uncertainty regarding the underlying

failure distribution), we apply same lessons learned from

total time on test methodology. As stated earlier,

t(i) represents a data point in the ordered set of life

observations; T. represents the accumulated life at

point in time t(i); and n represents the number of

observations. Then, we let g represent a cost per unit of

life constraint; 1. represent an acceptable level of risk for

the device being in state two; a represent an availability

constraint in terms of the probability of the device being

in state one; B. represent the accumulated time in state

two; and D i represent the accumulated life discarded by

preventive replacement. Then for any value of T = t
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i

B i  = ( i) -t(j)) (5.5)

j-i

n

D i  (t(j) - t(i)) (5.6)

j=i+1

T+K - t M)+K (5.7)

Since T /n equals the accumulated life for the n components

divided by the number of components, it necessarily equals

the expected life for the empirical data set and will

approximate the mean of the theoretical probability

distribution when n is sufficiently large. Thus, for any

value of T = t(i),

TTR(x)dx = n(T/n (5.8)

0o n± 00i/1

And similarly,

o $ ( x dx = nI Tn/n (5.9)

00S R(x)dx = Im D./n (5.10)

S F(x)dx = n_ _Bi/n (5.11)
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Also, since F(T) - lrn F n(T), then when n is sufficiently
n-aoO

large, F(T) 1 F C T) 1 Fn(ti ). And similarly,

R(T) ! R ti) AMT A Cnti))C()ACnti);ad

Z(T) A Z (t()) Further, since t~j represents one data

point in the empirical cumulative failure distribution,

F (T), then necessarily Fn~t(i) ) is the probability of

failure within the interval CtCO)It~l) ) and is therefore

approximately equal to i/n. Similarly, R C t Ci)~ 1-Cl/n).

Thus from equation 5.2,

C (t & C Cl(/n) 4 -C -i/n)]CD.i/T)
CC M() -.J----- -------------- -

T /nC(. 12)

C i) +- C(n-i)CD./T n

T.i

And fromn equat'ion 5.3,

T /n T.

nt(ti) + K n~tC,)K)

And from equation 5.4,

B./n B.

ni (*i K n~t l+K)

Therefore, we can conclude that:
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min C(T) min C 1 (1) + C2 (n-i)(Di/Tn)

T.

T
max A(T) -> max ------- (16)

n(t (i)+K)

B.
min Z(T) -) min -------- (5.17)

n(t (i)+K)

Thus, the value of t(i ) that minimizes C(T) where

B i/Cn(t(iK)] z and Ti/n(t(i) +K)] > a is the replacement

interval that minimizes long term costs subject to the

probability of the device being In state two not exceeding z

and probability of the device being in state one being

greater than or equal to A. Likewise the value of t(i ) that

maximizes A(T) where Zfn(t(i)) ( A and Cn(t(i) ) ( c is the

replacement interval that maximizes availability subject to

probability of the device being in state two not exceeding z

and cost per unit of life not exceeding q. Either of these

solutions can be found using a simple iterative computer

program. Also, note that finding the value of t(i) that

maximizes A(T) where there are no constraints established

for cost and risk of failure is equivalant to finding the

optimal replacement interval using the Talbott model. Thus,

we now formulate replacement model one.

Replacement model one is appropriate for situations

having only type one and type three uncertainty. The major
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distinction in this scenerio is that since there is no type

two uncertainty (i.e., uncertainty regarding the present

condition of the device), a device would not stay in

operation in a failed condition; therefore, there is no

state two. Hence, the optimum replacement Inteval for

maximizing availability is that value of T which maximizes

the expected life over the expected cycle time in the

following equation:

T
R(x)dx

A(T) = (5.18)
T
R(x)dx + K

Here, maximizing AT) unconstrained would not make sense

since it would necessarily drive a replacement interval of T

equal to infinity. For minimizing risk of failure, the

optimum replacement Interval is simply that value of T that

minimizes F(T). The minimum cost formulation is identical

to the formulation for replacement model two (Equation 5.2).

Therefore, we can conclude:

C (i) + C (n-i).D./T n .

min C(T) n--- ---------- ------- 5.1p)
T.I

T.
max AT) - max (5.20)

T* + nK
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min F(T) -> min i/n (5.21)

Thus, the value of t(i) that minimizes C(T) where

T /(Ti +nK) > A and F(T) J Z is the replacement interval that

minimizes long term costs subject to the probability of the

device being in state one not being less than a and the risk

of failure not exceeding Z,. S:milarly, maximum availability

and minimum risk solutions can be found as well. Further-

more, finding the value of t(i) that minimizes C(T) where

&- and A = 0 is similar to finding the optimal

replacement interval using the Bergman model. The only

di(ference is that the Bergman model does not account for

discarded life.

Summary

Achieving the best value for a prescribed objective

function, unconstrained by any other factors, may not be a

realistic goal for many real-world preventive maintenance

scenarios. This is particularly true when availability

(readiness) or risk of failure are viable concerns, as they

often are in the Air Force. Under conditions of type two

uncertainty (i.e., uncertainty regarding the present

condition of the device), maximizing availability without

constraint can lead to several problems, as discussed

earlierl and minimizing risk of failure without constraint

may not be prudent. In the absence of type two uncertainty,

neither maximizing availability nor minimizing risk of
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failure makes any sense as an unconstrained objective

function. Hence, we believe models that allow the decision

maker to impose constraints on the objective function are

far more realistic.

Identifying an appropriate model for selecting an

optimal oil replacement interval remains a dilemna. Due to

the complex nature of motor oil failures, none of the models

addressed in this project appear to be appropriate. We

believe selecting an optimal preventive maintenance interval

for motor oil requires development and application of a

sophisticated maintenance model, far more complex than the

ones addressed in this project.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to draw conclusions

from this research project and make some recommendations for

further research and study.

Research Question and Conclusions

The research question for this project was, *Can the

blind replacement model be applied to an empirical data set

using TTT transform graphical solution techiques to

determine optimal replacement intervals for synthetic and

petroleum motor oils?" Our answer is no. The major reason

is that motor oils do not meet the assumptions of the blind

replacement model since they are not in storage waiting to

respond to an emergency. Also, we believe there are viable

cost concerns associated with replacing motor oils.

Specifically, there are real costs resulting from operating

an engine on failed oil and discarding life of good oil.

Moreover, these costs probably should not be ignored when

selecting oil replacement intervals. Since blind

replacement maximizes availability without regard for cost,

we consider it an inappropriate model for determining

optimal replacement intervals for motor oils. Therefore, we

cannot recommend the replacement intervals determined in
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this research project for real-world applications.

In addition to the above, the authors draw the

following conclusions based on the data and analysis of this

research project.

1. When comparing synthetic (CONOCO and Stauffer)

and petroleum (mineral) motor oils, the type of oil used in

an Air Force general purpose vehicles does not significantly

affect the propensity of the oil to fail. In other words,

there is no significant difference between these three types

of motor oils in terms of probability of oil failure.

2. In our opinions, due to the complex nature of

oil failures, application of an appropriate model for

determining optimal replacement intervals requires selection

of a fairly complex preventive maintenance model.

3. Both the Radner-Jorgenson blind replacement

model and the Talbott adaptation of this model to TTT

transform techniques appear to be valid when applied

strictly within the scenario for which they were developed.

However, we believe their objective of maximizing

availability without constraint makes them inappropriate for

many real-world applications.

4. The TTT transform technique appears to be a

viable approach for determining optimal replacement

intervals when the underlying failure distribution is not

known with certainty since it eliminates error resulting

from type three uncertainty.
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5. Preventive maintenance models that achieve the

best value of a prescribed objective function, unconstrained

by any other factors, may not be appropriate for many

real-world preventive maintenance scenarios.

Recommendations for Further Research

The authors recommend the following areas for future

research and study:

1. Development and demonstration of preventive

maintenance models for motor oils and devices having similar

complex failure patterns.

2. Further adaptations of mathematical models to

TTT transform techniques or other methodologies that

eliminate error resulting from type three uncertainty.

3. Further development and demonstration of

preventive maintenance models that allow constraints to be

imposed on the objective function.

4. Greater focus in the arena of reliability theory

toward demonstration of preventive maintenance models in

terms of their real-world tractability and applications.
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APPENDIX A

TTT PROCESS FOR AN IFR DISTRIBUTION
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TTT PROCESS FOR AN IFR DISTRIBUTION

EXAMPLE: Consider a set of five components where one fails

after 5 hours of operation, one after 9 hours, one after 12

hours, one after 14 hours, and one after 15 hours. The

ordered set of life distributions is then expressed as

(5, 9, 12, 14, 15). From equation 3.1, T i is computed for

each component where n = 5 as follows:

i

T i =-T" (5 - j + 1) (t(i) -t(i-1) )

j=1

T = (5 - 1 + 1) (5 - 0) = 25

T = (5 - 2 + 1) (9 - 5) + 25 = 41

T 3 = (5 - 3 + 1) (12 - 9) + 41 = 50

T 4 = (5 - 4 + 1) (14 - 12) + 50 = 54

T 5 = (5 - 5 + 1) (15 - 14) + 54 = 55

And U i can be computed as Ti/Tn; hence,

i t (i) Ti U i  i/n

1 5 25 (5 components live 5 hours) .45 .2

2 9 41 (4 components live another 4 hours) .75 .4

3 12 50 (3 components live another 3 hours) .91 .6

4 14 54 (2 components live another 2 hours) .98 .8

5 15 55 (1 component lives another hour) 1.00 1.0

TTT plot for this distribution is given at Attachment C.
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EXAMPLE TTT PROCESSES FOR EXPONENTIAL AND DFR DI STRI BUTI ONS
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EXAMPLE TTT PROCESSES FOR EXPONENTIAL AND DFR DISTRIBUTIONS

Example Exponential distribution:

i t() T i  U i  i/n

1 3 15 .2 .2

2 6.75 30 .4 .4

3 11.75 45 .6 .6

4 19.25 60 .8 .8

5 34.25 75 1.0 1.0

Example DFR Distribution:

i t(i) Ti Ui i/n

1 1 5 .05 .2

2 3.5 15 .15 .4

3 8.5 30 .30 .6

4 23.5 60 .60 .8

5 63.5 100 1.00 1.0

TTT plots for these distributions are given at Attachment C.
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EXAMPLE TTT PLOTS

58



EXAMPLE TTT PLOTS

1.0 t_ U
IFR Distribtion +
(From Appendix A) +

+

•.5 Z"- /

+

7 +

--- i/n

-1.0 -.5 0 .5 1.0
-C

1.0 + U.

Exponential Distribution +
(From Appendix B) +

•.5+ --...+

.5+

+

-+-+--+-+ - -- +- - +-+ -+-+-+ -+- i/n

-1.0 -.5 0 .5 1.0
-C

1.0 + U.

DFR Distribution +
(From Appendix 8) +

+
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CRITERIA FOR FAILED OIL
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STAf' :- SL-2100

T .-'ATRE " VrSCSTyr LOW LILIT HIGH LIMIT0?. _TWJ ATIE (L5 TV (I13
, nLL .__ _

68 125.T5 91.22 15T.1 ---- _ _

69 122.40 91.80 153.00

70 119.18 89.39 L18.9

71 116.10 87.08 14-.13

T2 113.34 85.01 141.68

73 110.29 82.72 137.86

74 107.55 80.66 134.44

75 104.91 78.68 131.14

76 102.37 76.78 127.96

TT 99.93 74.95 124.91

78 97.57 73.18 121.96

79 95.30 71. 8 119.13

80 93.11 69.83 116.39 -.,• _ |

81 91.00 68.25 113.75

82 88.95 66.71 111.19

83 86.98 65.24 108.73

84 85.08 63.81 106.35

85 83.24 62.43 104.05

*Use 103 scale on ly vith '-auffer SE-210 3 .Oils.

17 Jn 198( /Griffin L. 3

AF 3126 GENERAL PURPOSE te-zio-A- .. ... .
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STAUFFER SL-2100

Military
Batch Original "Specification

9751 H-1-1 Values Limits

Gravity, OAPI 26.6 27.1 1
Flash Point (OF) 425 450 50
Viscosity I 210OF (cs) 14.32 14.02 T O.S
Viscosity I 100OF 88.1s 84.95 ! 15.0
Apparent Viscosity 9 OOF (cp) 1640 1520 4 2400
Viscosity I OOF (cs) 2537 2300 Report
Viscosity Index 180 182
Pour Point (OF) -45 -45
Stable Pour Point (OF) -25 -25
Total Base Number-D664. mgKOH/g 6.08 6.02
Total Base Number-DZ396, mgKOH/g 6.48 6.32
Total Acid Number-D664, mgKOH/g Z.75 2.81
Sulfated Ash, 1 1.02 0.99 0.90-1.20

CRC L-38 Crankcase Oil Oxidatibn Test

Bearing weight loss (mg)

Top half 13.5 16.2
Bottom half 17.4 15.9 -

Total 30.9 32.1 440.0

Varnish Deposits 59.3 59.4

Piston Skirt Varnish 9.6 9.6 *9.0
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c: ioo :If-60o

DfERATURE VISCCSITY' LOW LIMIT 4I^ L:j7T
OF TRUE VALUE (25% 7V) (25% TV)

68 102.4T T6.35 lp8.09

69 99.60 74.70 124.50

70 96.85 72.64 I _._6

71 94.21 70.66 j 17.76

72 91.68 68.76 i11_.60

73 89.25 67.24 11!.56

74 86.92 65.i9 178.65
T5 84.67" 63.50 105.34

76 82.52 61.39 1C2.15

T7 80.44 60.33 100.55

78 78.45 58.54 98.06

79 76.52 56.64 9.L0o

80 74.67 56.00 93.34

81 _ 72.89 54.67 91.11

82 71.17 53.38 88.q6

83 69.51 52.13 56.89

84 67.90 50.93 _ .88

85 66.36 49.T7 32.95

IT an !93O/or fin L. Jones

'Use 102 scale on!y "ih onoco DN-600 oiLs.

AF 3126 . GENERAL PURPOSE ,az .jo. .
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APPENDIX E

LUBRICANT LIFETIME DATA



SYMBOL TABLE

Vehicle make:

AMC - Anerican Motors Corporation
CHEY - Chevrolet
DOD - Dodge
FORD - Ford
IHC - International Harvester Corporation
OLDS Oldsmobile
PLYM - Plymouth

Vehicle Type:

AMB = Ambulance
C/A = Carry-all
CJ7 = Jeep
M/S = Multi-step
P/U = Pick-up
Pan - Panel truck
S/P - Special purpose
S/V = Step van
SON - Sedan
SW = Station wagon
TRAC - Tractor
I Ton = One ton truck
1.5TN - 1-1/2 ton truck
4X4 - Four-wheel drive truck

Usage Code:

A - High utilization/low mileage
B - High utilization/high mileage
C - Lo utilization/low mileage
D - Low utilization/high mileage
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LUBRICANT LIFETIME DATA

STAUFFER

START END OIL TEST AVGMAKE MODEL USE VEHICLE ENG MILES MILES LIFE DAYS MPD

GRAND FORKS AFB
CHEY C/A B 791737 350 44516 48512 3996 85 47.01

OFFUTT AFB

MINOT AFB

LACKLAND AFB
AMC SON D 762826 232 28114 34081 5967 220 27.12DODG P/U C 764048 225 23286 30259 6973 402 17.35AMC SW A 785344 200 50426 56651 6225 193 32.25AMC SDN D 788302 232 10535 25535 15000 442 33.94

RANDOLPH AFB
IHC TRAC 8 724309 392 83212 89272 6060 310 19.55IHC M/S A 732296 345 54835 60467 5632 204 27.61FORD P/U A 761781 1900 25220 33194 7974 422 18.90AMC SW B 762448 232 39469 48384 8915 305 29.23
DODG P/U C 770149 318 4544 5251 707 330 2.14CHEY P/U B 781244 250 39335 42231 2896 294 9.85CHEV P/U C 781247 250 13779 19063 5284 440 12.01FORD SW B 785346 200 39725 48238 8513 224 38.00
AMC SON B 788305 232 16493 26925 10432 361 28.90
PLYM SON B 789172 225 48537 54752 6215 84 73.99

GEORGE AFB
CHEV S/V C 761615 350 27175 32709 5534 339 16.32IHC I.5TN A 771097 345 10003 15554 5551 244 22.75DODG P/U A 780446 318 23216 26309 3093 187 16.54DODG P/U A 780452 318 14853 18137 3284 245 13.40CHEY PAN A 783521 250 29246 34569 5323 289 18.42FORD I.5TN A 785850 300 17445 21467 4022 200 20.11PLYM SON B 789080 225 33106 38055 4949 93 53.22
DODG 1 TON A 789357 360 11639 18660 7021 336 20.90
DODG PAN A 792534 318 11396 13367 1971 134 14.71
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MYRTLE BEACH AFB
AMC AMB C 760278 360 2445 3584 1139 527 2.16
DODG PAN A 792473 225 2604 11413 8809 586 15.03

HANCOCK FIELD
AMC SDN A 733165 304 55928 59672 3744 375 9.98
CHEV P/U C 740738 350 58785 62747 3962 385 10.29
FORD P/U A 751429 300 35068 43936 8868 497 17.84
FORD P/U A 751430 300 29419 33403 3984 381 10.46

PETERSON FIELD
CHEV P/U A 742105 350 46519 52898 6379 320 19.93
DODO P/U B 780139 225 23147 28117 4970 209 23.78
DODG P/U C 780141 225 7639 11715 4076 383 10.64
CHEY M/S B 784570 292 10645 13244 2599 267 9.73
PLYM SW B 785110 225 49242 56395 7153 62 115.37

USAF ACADEMY
PLYM SDN A 788159 225 15345 28276 12931 233 55.50
FORD SDN B 795660 200 12535 29364 16829 241 69.83
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MINERAL

START END OIL TEST AVG
MAKE MODEL USE VEHICLE ENG MILES MILES LIFE DAYS MPD

GRAND FORKS AFB
CHEV C/A L 791753 350 43211 49814 6603 62 106.50

OFFUTT AFB
CHEV M/S A 722544 350 42094 44133 2039 128 15.93
CHEY M/S A 753606 350 41759 49110 7351 195 37.70

MINOT AFB
CHEV C/A C 740088 454 164995 170078 5083 403 12.61
CHEV C/A C 744124 454 163183 168057 4874 252 19.34
CHEV C/A B 760519 350 117567 133079 15512 214 72.49
CHEV C/A B 791755 350 37750 43697 5947 86 69.15
CHEY C/A B 791764 350 49380 53237 3857 20 192.85
CHEV C/A B 792709 350 16038 24616 8578 184 46.62
CHEV C/A B 793380 350 17765 28147 10382 149 69.68
CHEV C/A B 793381 350 27407 39101 11694 158 74.01
CHEV C/A B 793383 350 30919 39775 8856 116 76.34

LACKLAND AFB
DODG C/A C 755338 318 64995 68712 3717 126 29.50
CHEV AMB A 760113 350 49704 55002 5298 405 13.08
AMC SDN B 762919 232 45238 53343 8105 267 30.36
CHEY P/U A 781259 250 22498 30926 8428 269 31.33
DODG P/U C 782261 225 17169 22578 5409 247 21.90
AMC SON C 788418 232 5603 11205 5602 470 11.92
CHEV P/U B 794279 2300 9171 17362 8191 298 27.49

RANDOLPH AFB
CHEY M/S A 734641 350 52768 56410 3642 140 26.01
CHEV C/A B 770785 350 43730 47060 3330 113 29.47
CHEY P/U B 781245 250 19425 35145 15720 506 31.07
CHEV P/U B 781246 250 28093 35474 7381 371 19.89
FORD SW B 787738 200 37805 43587 5782 89 64.97
AMC SDN A 788657 232 15792 28178 12386 431 28.74
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GEORGE AFB
CHEY S/V B 761619 350 36339 39661 3322 170 19.54
CHEV S/V B 761622 350 41330 46108 4778 147 32.50
IHC 1.5TN A 771098 345 29456 35872 6416 206 31.15
DODO P/U A 780447 318 23776 29663 5887 222 26.52
FLYM SDN 8 789081 225 34206 37540 3334 133 25.07
DODG 1 TON A 789358 318 7151 14730 7579 337 22.49

MYRTLE BEACH AFB
OLDS A1B C 730453 455 59300 66539 7239 258 28.06
CHEY M/S A 742721 250 41526 46168 4642 511 9.08
DODO P/U C 754213 318 14264 17984 3720 276 13.48

HANCOCK FIELD

PETERSON FIELD
CHEV M/S B 722632 350 53882 59038 5156 235 21.94
FORD P/U C 761807 1900 31590 41858 10268 387 26.53
DODS 4X4 B 770077 225 4708 10049 5341 357 14.96
PLYM SW B 785109 225 40787 55673 14886 558 26.68
FORD SDN B 783768 400 40832 46272 5440 91 59.78

USAF ACADEMY
CHEV S/P A 683520 250 62503 66641 4138 299 13.84
DODG P/U A 780131 225 19908 25351 5443 240 22.68
DODG P/U A 790861 225 6773 18544 11771 231 50.96
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CONOCO

START END OIL TEST AVG
MAKE MODEL USE VEHICLE ENG MILES MILES LIFE DAYS MPD

GRAND FORKS AFB

OFFUTT AFB

MINOT AFB
CHEY C/A C 744121 454 159156 164482 5326 293 18.18
CHEY C/A B 760516 350 133095 139086 5991 106 56.52
CHEV C/A B 791757 350 56977 61031 4054 54 75.07
CHEY C/A B 791762 350 36924 40912 3988 82 48.63
CHEY C/A B 793387 350 14252 20337 6085 308 19.76
CHEY C/A B 793388 350 31466 37194 5728 88 65.09

LACKLAND AFB
DODG C/A A 750870 318 51827 69226 17399 602 28.90
DODG P/U D 764049 225 37162 47983 10821 267 40.53
CHEV P/U A 781235 250 28602 38397 9795 351 27.91
CHEV P/U A 781261 250 12671 23916 11245 428 26.27
AMC SW B 785432 200 56456 65300 8844 138 64.09

RANDOLPH AFB
FORD P/U B 761774 1900 46601 56756 10155 216 47.01
CHEV C/A B 770428 350 65402 70377 4975 116 42.89
CHEV P/U B 781248 250 17146 25590 8444 318 26.55
FORD SW B 785347 200 52692 61004 8312 270 30.79
PLYM SDN B 789173 225 63092 75892 12800 147 87.07

GEORGE AFB
DODG P/U 8 780442 318 30767 33391 2624 188 13.96
DODG P/U B 780460 318 27207 30688 3481 122 28.53
FORD SW B 787944 302 26953 32057 5104 164 31.12
PLYM SDN B 789079 225 33043 39500 6457 139 46.45

MYRTLE BEACH AFB
DODG P/U C 754212 318 14202 18118 3916 472 8.30
AMC CJ7 C 789616 258 16862 21165 4303 322 13.36

HANCOCK FIELD
FORD SDN B 714579 302 94743 98742 3999 112 35.71
AMC SDN A 733260 304 49598 57033 7435 633 11.75
FORD P/U A 751427 300 33875 37462 3587 220 16.30
DODG P/U A 754106 318 26777 33360 6583 577 11.41
CHEV P/U A 771056 300 12532 18636 6104 545 11.20
PLYM SW B 785038 225 19386 27894 8508 152 55.97
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PETERSON FIELD
CHEV M/S 8 722548 350 56406 63370 6964 296 23.53
AMC SDN 8 733766 304 47214 55909 8695 495 17.57
FORD P/U A 753204 300 39135 44267 5132 552 9.30
CHEV N/S B 784568 292 19114 27352 8238 278 29.63
CHEV N/S A 784569 292 18250 24779 6529 231 28.26

USAF ACADEMY
IHC N/S A 731969 345 64510 71333 6823 323 21.12
FORD S/P A 750245 318 43688 47660 3972 184 21.59
DODO P/U A 790858 225 6934 14413 7479 177 42.25
FORD SDN B 795659 200 12161 18434 6273 95 66.03

TOTAL OIL LIFE: 776275
TOTAL TEST DAYS: 31267
AVERAGE MILES PER DAY: 24.83
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WILCOXEJN-RNK SUMl STATISTICAL ANALYSIS
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WILCOXON-RANK SUM STATISTICAL ANALYSIS

The first test compared populations using the entire

data set. Note: The two-tailed probability (P) values are

compared to alpha = .05/2 - .025.

TEST ONE

Factor: Oil Type

OIL TYPE NUMBER 2-TAILED P

STAUFFER 37 .2977
MINERAL 42

STAUFFER 37 .1583
CONOCO 37

MINERAL 42 .7162
CONOCO 37

Factor: Make of Vehicle

MAKE NUMBER 2-TAILED P

AMC 14 .1240
CHEVROLET 46

AMC 14 .0622
DODGE 24

AMC 14 .3989
FORD 17

AMC 14 .3426
IHC 5

AMC 14 .9333
OLDSMOBILE I

AMC 14 .7813
PLYMOUTH 9

CHEVROLET 46 .3790
DODGE 24
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CHEVROLET 46 .5986
FORD 17

CHEVROLET 46 .6115
IHC 5

CHEVROLET 46 .6383
OLDSMOBILE I

CHEVROLET 46 .1014
PLYMOUTH 9

DODGE 24 .2040
FORD 1?

DODGE 24 .4476
IHC 5

DODGE 24 .5600
OLDSMOBILE 1

DODGE 24 .0785
PLYMOUTH 9

FORD 17 .8795
IHC 5

FORD 17 .8889
OLDSMOBILE I

FORD 17 .3666
PLYMOUTH 9

IHC 5 .3333
OLDSMOBILE I

IHC 5 .2398
PLYMOUTH 9

OLDSMOBILE 1 1.0000

PLYMOUTH 9

Factor: Utilization of Vehicles

USAGE CODE NUNBER 2-TAILED P

HI UTE,LO MI 41 .5279
HI UTEHI MI 54

HI UTE,LO MI 41 .0286
LO UTE,LO MI 18
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HI UTE,LO MI 41 .1306
LO IJTE,HI MI 3

HI UTE,HI MI 54 .0097
LO UTE,LO MI 18

HI UTEHI MI 54 .1560
LO UTEHI MI 3

LO UTE,LO MI 18 .0105*
LO UTEqHI MI 3
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TI" TWO

Test two excludes those observations with Usage code

C (low utilization/low mileage).

Factor: Oil type

OIL TYPE NUMBER 2-TAILED P

STAUFFER 30 .4926
MINERAL 34

STAUFFER 30 .2879
CONOCO 34

MINERAL 34 .7779

CONOCO 34

Factor: Make of Vehicle

MAKE NUMBER 2-TAILED P

AMC 11 .0296
CHEVROLET 40

AMC 11 .0590
DODGE 17

AMC 11 .0712
FORD 16

AMC 11 .0517
IHC 5

AMC 11 .7103
PLYMOUTH 9

CHEVROLET 40 .8753
DODGE 17

CHEVROLET 40 .9855
FORD 16

CHEVROLET 40 .9581

IHC 5
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CHEVROLET 40 .1-620
PLYMOUTH 9

DODGE 17 .7898
FORD 16

DODGE 17 .?3?6
IHC 5

DODGE 17 .2409
PLYMOUTH 9

FORD 16 .7190
INC 5

FORD 16 .3014
PLYMOUTH 9

IHC 5 .2398
PLYMOUTH 9
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TEST THREE

Test three includes only those observations with

Usage code C (low utilization/low mileage).

Factor: Oil Type

OIL TYPE NUMBER 2-TAILED P

STAUFFER 7 .3357
MINERAL 8

STAUFFER 7 1.0000
CONOCO 3

MINERAL 8 .4970
CONOCO 3

Factor: Make of Vehicle

MAKE NUMBER 2-TAILED P

AMC 3 .7143
CHEVROLET 6

AMC 3 .8333
DODGE 7

AMC 3 .5000
FORD 1

AMC 3 .5000
OLDSMOBILE 1

CHEVROLET 6 .2343
DODGE 7

CHEVROLET 6 .2857
FORD I

CHEVROLET 6 .2857
OLDSMOBILE I

DODGE 7 .2500
FORD 1
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DODGE 7 .2500
OLDSMOBILE I

FORD 1 1.0000
OLDSMOBILE 1
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APPENDIX G

FORTRAN PROGRAMl
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PROGRAM BLIND
C
C APPLICATION OF THE TALBOTT MODEL
C
C PEARCE AND DOUMIT; SEP 1983
C
C
C SYMBOL TABLE
C
C REAL:
C FAIL - OBSERVED LIFETIMES (UNORDERED)
C LIFE(I) - OBSERVED LIFETIMES (ORDERED)
C T(1) - CUMULATIVE LIFE AT POINT IN TIME LIFE(I)
C TAN - VALUE OF LIFE(I) DEFINED BY POINT OF TANGENCY
C (THE OPTIMAL INTERVAL)
C U(I) - TTT SCALED STATISTIC; T(I)/T(N); Y-AXIS
C VARIABLE
C X(I) - LIFE(I)/LIFE(N); X-AXIS VARIABLE
C SL(I) - SLOPE OF THE LINE CONNECTING K/LIFE(N) TO
C THE TTT DATA POINT
C MSL - MAXIMUM VALUE OF SL(I)
C K - TIME TO REPLACE
C C - CRITICAL TTT POINT: K/LIFE(N)
C B,E,O,VW,Y,Z,WW,ZZ - RANDOM REAL VALUES
C
C INTEGER
C I - OBSERVATION NUMBER
C N,J- INDICES
C
C FILES
C DATA - INPUT DATA FILE CONTAINING OBSERVED OIL LIFES
C AND OTHER DESCRIPTIVE DATA
C TRACK - OUTPUT REPORT FILE
C
C
C INITIALIZE PROGRAM
C

REAL FAIL,LIFE(150),T(150),TAN,U(150),
$ X(150),SL(150),MSL,K,C,W,WW,Y,
$ ZZ,Z,B,EO,V

INTEGER l,NJ
OPEN (1O,FILE='DATA')
OPEN (11 ,FILE='TRACK")
REWIND 10
REWIND 11

C
C
C READ IN VALUES FOR N AND K
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C
READ( 10 ,*)N,K
WRITE (11,800)
WRITE (11,820)N,K
WRITE (11,810)

C
C
C READ IN ANdD ORDER LIFETIMES
C

READ( 10 ,*)O,BZ,W,YV,E,WWI,ZZ ,LIFE( 1)
DO 20 1=2,N
READ(10,*)O,B,Z,W,Y,VE,ZZ,YYFAIL
LIFE( I)=FAIL
DO 10 J1-,I-1

IF (LIFE(I-J) .GT. FAIL) THEN
LIFE( I-J+ )=LIFE( I-J)
LIFE( I-J)=FAIL

ELSE
GO TO 20

END IF
10 CONTINUE
20 CONTINUE

C--K/LI FE(N)
C
C
C COMPUTE TTT STATISTIC
C

T(1 )=LIFE( I)*N
DO 30 1=2,N

TC I)=( (LIFE(I) -LIFE( I-1) )*(N-1+1. )) +T( 1-1)
30 CONTINUE

C
C
C COMPUTE AXIS VARIABLES AND FIND MAX SLOPE
C

MSL=0.
DO 40 11I,N

U( I)=T( I)/T(N)
XCI )=LIFE( I)/LIFE(N)
SL(I )=U( I)/(C+X(I))
WRITE(il ,920)I ,LIFE(I) ,T(I) ,U( I) ,X(I) ,SL( 1)
IF (SL(I) .GT. MSL) THEN

MSL=SL( I)
TANLIFE( I)

END IF
40 CONTINUE

WRITE( 11 ,730)TAN
C
C
C FORMAT STATEMENTS
C
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600 FORMAT(///T2O,'T0TAL TIME ON TEST'//)
610 FORMT(//T3''TS'LIFE,T19'T'T28'Ul',

$ T34r'X(I)'qT43'-SL'/)
820 FOU'WT(' W-0139' K-'F6.2)
920 F0W'MT(T2,I3,T7,F6.0,Tl7,F7.0,T26,F5.3,T31 ,F7.3,

$ T409F8.6)
930 FORMT(//'0PTI'AL INTERVAL IS '9F6.09' MILES')

STOP
END
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APPENDIX H

TTT RESULTS: ALL OILS COMBINED



TOTAL TIME ON TEST

ALL OILS COMBINED

1,-116 K- 24.83

I LIFE(U) T(I) U(i) X(I) SLOPE

1 707. 82012. .106 .041 2.511747
2 1139. 131692. .170 .065 2.536171
3 1971. 226540. .292 .113 2.544076 *
4 2039. 234224. .302 .117 2.543702
5 2599. 296944. .383 .149 2.536574
6 2624. 299719. .386 .151 2.536115
7 2896. 329639. .425 .166 2.529537
8 3093. 351112. .452 .178 2.524073
9 3284. 371740. .479 .189 2.518103

10 3322. 375806. .484 .191 2.516742
11 3330. 376654. .485 .191 2.516406
12 3334. 377074. .486 .192 2.516212
13 3481. 392362. .505 .200 2.508446
14 3587. 403280. .520 .206 2.502581
15 3642. 408890. .527 .209 2.499335
16 3717. 416465. .536 .214 2.494613
17 3720. 416765. .537 .214 2.494410
18 3744. 419141. .540 .215 2.492656
19 3857. 430215. .554 .222 2.484035
20 3916. 435938. .562 .225 2.479395
21 3962. 440354. .567 .228 2.475614
22 3972. 441304. .568 .228 2.474747
23 3984. 442432. .570 .229 2.473646
24 3988. 442804. .570 .229 2.473258
25 3996. 443540. .571 .230 2.472440
26 3999. 443813. .572 .230 2.472117
27 4022. 445883. .574 .231 2.469532
28 4054. 448731. .578 .233 2.465807
29 4076. 450667. .581 .234 2.463160
30 4138. 456061. .587 .238 2.455517
31 4303. 470251. .606 .247 2.435388
32 4642. 499066. .643 .267 2.396871
33 4778. 510490. .658 .275 2.382312
34 4874. 518458. .668 .280 2.372083
35 4949. 524608. .676 .284 2.364028
36 4970. 526309. .678 .286 2.361722
37 4975. 526709. .679 .286 2.361153
38 5083. 535241. .689 .292 2.348668
39 5104. 536879. .692 .293 2.346210
40 5132. 539035. .694 .295 2.342841
41 5156. 540859. .697 .296 2.339879
42 5284. 550459. .709 .304 2.323993
43 5298. 551495. .710 .305 2.322243
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44 5323. 553320. .713 .306 2.319036
45 5326. 553536. .713 .306 2.318640
46 5341. 554601. .714 .307 2.316607
47 5409. 559361. .721 .311 2.307251
48 5440. 561500. .723 .313 2.302936
49 5443. 561704. .724 .313 2.302508
50 5534. 567801. .731 .318 2.289399
51 5551. 568923. .733 .319 2.286929
52 5602. 572238. .737 .322 2.279405
53 5632. 574158. .740 .324 2.274924
54 5728. 580206. .747 .329 2.260525
55 5782. 583554. .752 .332 2.252426
56 5887. 589959. .760 .338 2.236704
57 5947. 593559. .765 .342 2.227743
58 5967. 594739. .766 .343 2.224721
59 5991. 596131. .768 .344 2.221032
60 6060. 600064. .773 .348 2.210334
61 6085. 601464. .775 .350 2.206425
62 6104. 602509. .776 .351 2.203407
63 6215. 608503. .784 .357 2.185741
64 6225. 609033. .785 .358 2.184144
65 6273. 611529. .788 .361 2.176380
66 6379. 616935. .795 .367 2.159277
67 6416. 618785. .797 .369 2.153310
68 6457. 620794. .800 .371 2.146637
69 6529. 624250. .804 .375 2.134873
70 6583. 626788. .807 .378 2.126035
71 6603. 627708. .809 .380 2.122731
72 6823. 637608. .821 .392 2.086938
73 6964. 643812. .829 .400 2.064730
74 6973. 644199. .830 .401 2.063314
75 7021. 646215. .832 .404 2.055671
76 7153. 651627. .839 .411 2.034767
77 7239. 655067. .844 .416 2.021291
78 7351. 659435. .849 .422 2.003871
79 7381. 660575. .851 .424 1.999204
80 7435. 662573. .854 .427 1.990735
81 7479. 664157. .856 .430 1.983793
82 7579. 667657. .860 .436 1.968021
83 7974. 681087. .877 .458 1.908468
84 8105. 685410. .883 .466 1.889634
85 8191. 688162. .886 .471 1.877362
86 8238. 689619. .888 .473 1.870635
87 8312. 691839. .891 .478 1.859999
88 8428. 695203. .896 .484 1.843394
89 8444. 695651. .896 .485 1.841097
90 8508. 697379. .898 .489 1.831827
91 8513. 697509. .899 .489 1.831096
92 8578. 699134. .901 .493 1.821494
93 8695. 701942. .904 .500 1.804272
94 8809. 704564. .908 .506 1.787640
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95 8844. 705334. .909 .508 1.782531
96 8856. 705586. .909 .509 1.780759
97 8868. 705826. .909 .510 1.778961
98 8915. 706719. .910 .512 1.771847
99 9795. 722559. .931 .563 1.649218
100 10155. 728679. '.939 .584 1.604370
101 10268. 730487. .941 .590 1.590693
102 10382. 732197. .943 .597 1.576951
103 10432. 732897. .944 .600 1.570911
104 10821. 737954. .951 .622 1.525019
105 11245. 743042. .957 .646 1.477763
106 11694. 747981. .964 .672 1.430589
107 11771. 748751. .965 .677 1.422714
108 12386. 754286. .972 .712 1.362210
109 12800. 757598. .976 .736 1.324024
110 12931. 758515. .977 .743 1.312223
111 14886. 770245. .992 .856 1.157806
112 15000. 770815. .993 .862 1.149871
113 15512. 772863. .996 .892 1.114933
114 15720. 773487. .996 .904 1.101092
115 16829. 775705. .999 .967 1.031589
116 17399. 776275. 1.000 1.000 .998575

OPTIMAL INTERVAL IS 1971. MILES
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APPENDIX I

TTT RESULTSt STAUFFER SYNTHETIC OIL
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TOTAL TIME ON TEST

STAUFFER SYNTHETIC OIL

N- 37 K- 20.92

I LIFE(1) TCI) U(1) X(I) SLOPE

1 707. 26159. .115 .042 2.664454
2 1139. 41711. .184 .068 2.666203 *

3 1971. 70831. .312 .117 2.636466
4 2599. 92183. .406 .154 2.608756
5 2896. 101984. .449 .172 2.592258
6 3093. 108288. .477 .184 2.578360
7 3284. 114209. .503 .195 2.562183
8 3744. 128009. .564 .222 2.520899
9 3962. 134331. .592 .235 2.500607
10 3984. 134947. .595 .237 2.498274
11 3996. 135271. .596 .237 2.496791
12 4022. 135947. .599 .239 2.493132
13 4076. 137297. .605 .242 2.484702
14 4949. 158249. .697 .294 2.360817
15 4970. 158732. .699 .295 2.358059
16 5284. 165640. .730 .314 2.315033
17 5323. 166459. .733 .316 2.309500
18 5534. 170679. .752 .329 2.278101
19 5551. 171002. .753 .330 2.275449
20 5632. 172460. .760 .335 2.261967
21 5967. 178155. .785 .355 2.205935
22 6060. 179643. .791 .360 2.190341
23 6215. 181968. .802 .369 2.163541
24 6225. 182108. .802 .370 2.161739
25 6379. 184110. .811 .379 2.132915
26 6973. 191238. .843 .414 2.027329
27 7021. 191766. .845 .417 2.019069
28 7153. 193086. .851 .425 1.995561
29 7974. 200475. .883 .474 1.859160
30 8513. 204787. .902 .506 1.779199
31 8809. 206859. .911 .523 1.736954
32 8868. 207213. .913 .527 1.728378
33 8915. 207448. .914 .530 1.721237
34 10432. 213516. .941 .620 1.514480
35 12931. 221013. .974 .768 1.265186
36 15000. 225151. .992 .891 1.111343
37 16829. 226980. 1.000 1.000 .998758

OPTIMAL INTERVAL IS 1139. MILES
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APPENDIX J

TTT RESULTS: MINERAL OIL
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TOTAL TIME ON TEST

MINERAL OIL

N- 42 K- 28.30

I LIFE(I) T(1) U(I) X(I) SLOPE

1 2039. 85638. .292 .130 2.221569
2 3322. 138241. .472 .211 2.212839
3 3330. 138561. .473 .212 2.212678
4 3334. 138717. .473 .212 2.212534
5 3642. 150421. .513 .232 2.197878
6 3717. 153196. .523 .236 2.193600
7 3720. 153304. .523 .237 2.193390
8 3857. 158099. .539 .245 2.182234
9 4138. 167653. .572 .263 2.158030
10 4642. 184285. .629 .295 2.116128
11 4778. 188637. .644 .304 2.104809
12 4874. 191613. .654 .310 2.096147
13 5083. 197883. .675 .323 2.076222
14 5156. 200000. .682 .328 2.068886
15 5298. 203976. .696 .337 2.053762
16 5341. 205137. .700 .340 2.048911
17 5409. 206905. .706 .344 2.040725
18 5440. 207680. .708 .346 2.036756
19 5443. 207752. .709 .346 2.036345
20 5602. 211409. .721 .356 2.013672
21 5782. 215369. .735 .368 1.987840
22 5887. 217574. .742 .374 1.972545
23 5947. 218774. .746 .378 1.963508
24 6416. 227685. .777 .408 1.894765
25 6603. 231051. .788 .420 1.868555
26 7239. 241863. .825 .460 1.784814
27 7351. 243655. .831 .468 1.770748
28 7381. 244105. .833 .470 1.766836
29 7579. 246877. .842 .482 1.740391
30 8105. 253715. .866 .516 1.672923
31 8191. 254747. .869 .521 1.662153
32 8428. 257354. .878 .536 1.632102
33 8578. 258854. .883 .546 1.613003
34 8856. 261356. .892 .563 1.577633
35 10268. 272652. .930 .653 1.420117
36 10382. 273450. .933 .660 1.408677
37 11694. 281322. .960 .744 1.287027
38 11771. 281707. .961 .749 1.280378
39 12386. 284167. .969 .788 1.227575
40 14886. 291667. .995 .947 1.048772
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41 15512. 292919. .999 .987 1.010846
42 15720. 293127. 1.000 1.000 .998203

0PTIMAL INTERVAL IS 2039. MILES
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APPENDIX K

TTT RESULTS: CONOCO SYNTHETIC OIL
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TOTAL TIME ON TEST

CONOCO SYNTHETIC OIL

N- 37 K- 25.46

I LIFE(I) T(I) U(I) X(I) SLOPE

1 2624. 97088. .379 .151 2.488901
2 3481. 127940. .499 .200 2.478203
3 3587. 131650. .514 .206 2.475240
4 3916. 14?836. .558 .225 2.461387
5 3972. 144684. .565 .228 2.458305
6 3988. 145196. .567 .229 2.457170
7 3999. 145537. .568 .230 2.456208
8 4054. 147187. .575 .233 2.450565
9 4303. 154408. .603 .247 2.422902

10 4975. 173224. .676 .286 2.352868
11 5104. 176707. .690 .293 2.339815
12 5132. 177435. .693 .295 2.336699
13 5326. 182285. .712 .306 2.313546
14 5728. 191933. .749 .329 2.265792
15 5991. 197982. .773 .344 2.235034
16 6085. 200050. .781 .350 2.223638
17 6104. 200449. .782 .351 2.221166
18 6273. 203829. .796 .361 2.198017
19 6457. 207325. .809 .371 2.172257
20 6529. 208621. .814 .375 2.161825
21 6583. 209539. .818 .378 2.153595
22 6823. 213379. .833 .392 2.116207
23 6964. 215494. .841 .400 2.094069
24 7435. 222088. .867 .427 2.021896
25 7479. 222660. .869 .430 2.015219
26 8238. 231768. .905 .473 1.904982
27 8312. 232582. .908 .478 1.894706
28 8444. 233902. .913 .485 1.875762
29 8508. 234478. .915 .489 1.866278
30 8695. 235974. .921 .500 1.837910
31 8844. 237017. .925 .508 1.815021
32 9795. 242723. .948 .563 1.678721
33 10155. 244523. .955 .584 1.631367
34 10821. 247187. .965 .622 1.547879
35 11245. 248459. .970 .646 1.497313
36 12800. 251569. .982 .736 1.332243
37 17399. 256168. 1.000 1.000 .998539

OPTIMAL INTERVAL IS 2624. HILES
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