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THE EVOLUTION OF SPONTANEOUS AN) COHERENT
RADIATION IN THE FREE ELECTRON LASER OSCILLATOR

1. Introduction

A number of successful free electron laser oscillator experiments have been

reported. 1- 4 Simple considerations concerning the spontaneous radi-tion Ievel

indicated start-up times much shorter than those observed. 3 Since a number of

experiments utilizing shorter electron beam macropulses are being constructed or

planned, thus, there is concern that these forthcoming experiments may be unable

to reach saturation. A quantitative understanding of the growth of coherent

stimulated radiation from incoherent spontaneous emission is thus highly

desirable. Published papers on the FEL oscillator had either neglected the

spontaneous radiation 5-20, or had treated them separately from the stimulated

radiation. 13 Here we outline a classical theory of the spontaneous start-up of

the FEL oscillator in the cold, small signal regime. Our model is spatially one

dimensional and therefore lacks many important features such as transverse

gradients associated with the radiation and electron beam and diffraction

effects. In a one-dimensional model these effects can only be incorporated in an

approximate way by means of filling factors.

Theories5-28 of the free electron laser (FEL) have proceeded from a continuum

description of the electron dynamics, either fluid equations or the Vlasov

equation. For a proper description of the start-up of an FEL oscillator one must

take into account the fact that the electrons are discrete and initially

uncorrelated, since it is the acceleration radiation of individual electrons in

the wiggler that provides the initial fields. These initial fields are then

amplified by the collective gain mechanism associated with the continuum

description. This initial radiation, however, is effectively incoherent in a

device in which the electron density is small and the electrons are randomly

Manuscript approved May 23, 1983.
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distributed. Thus a statistical theory is required which is couched in terms of

objects bilinear in the fluctuating quantities so that ensemble averages are non-

zero, even when the ensemble average fluctuating current density Is zero.

The theory described in this work is one dimensional in space and treats the

electrons as governed by the relativistic equations of motion, and the

electromagnetic fields as governed by Maxwell's equations. This is valid whenever

the root mean square fluctuation 6N in the number of photons in the resonator is

small compared with che mean number of photons N. Certainly this is not true

initially, and in principle, one should treat the problem Initially by quantum

mechanics. Failure to do so implies an uncertainty in the initial phases of the

- -1/2
start up. Since one expects 0 N (N) if the electrons are randomly

distributed, the duration of the quantum regime will be short if classical theory

predicts for times short compared to that for saturation that the photon density

N =f d 3r (E 2+ 3 )/(4h wL) >> 1, where wL= 2 Y 2c kw is the laser frequency, and h

is Planck's constant.

This paper presents an analysis of the transition from the incoherent

radiation to the coherent radiation 2 9 in an FEb oscillator. The model of the FEL

oscillator is described in Sec. II. The equations governing the complex amplitude

of the radiation in terms of the particle trajectories are derived in Sec. Ill;

and the equations governing the particle trajectories in terms of the radiation

field are derived in Sec. IV. The results of Secs. Ill and IV are combined Inl

Sec. V to obtain the self-contained radiation dynamics equations. The equation

describing the dynamics of the radiation energy rate matrix is derived in Sec.

VI. The solution of the energy rate equation is obtained in Sec. VII. The three-

dimensional effects of the spontaneous radiation are incorporated into the one-

dimensional model through a filling factor in Sec. VI[I. The analysis of the FEL

2



oscillator start-up process is now completed. We examine a limiting case, in Sec.

IX, where the electron pulse length is long. In the final section, Sec. X, we

compare our numerical results with Stanford-s FEL oscillator data. Finally in this

section a number of possible methods are suggested to shorten the FEL oscillator's

start-up time.

3



11. FEL Oscillator Start Up Model

The schematic representation of the FEL oscillator model used in our analysis

is shown in Fig. 1. The resonator defined by plane reflectors at z = 0 and z = L

containQ the wiggler magnetic field located between z = Lo and z = Lo + LI. The

total resonator losses are modeled heuristically by a Q factor. The highly

relativistic pulsed electron beam enters the resonator from the left at z = 0 with

axial velocity v0 e z . Within the wiggler field the axial pulse velocity is

reduced slightly to v e . The electron beam pulses are spatially periodic withoz z

period Lb. Though Lb is arbitrary in the analysis, it is clear that for proper

matching between the beam and radiation pulses that, Lb should be approximately an

integer times 2voL/c. The radiation pulse in the wiggler field, when overlapping

with the beam pulse, can travel at a velocity slightly less than c, and the effect

is called laser lethargy. It, therefore, becomes necessary to slighty mistune

(shorten) the resonator length to optimize the interaction. This effect is fully

taken into account and is discussed in detail later. The axial profile of the

electron beam pulses are left arbitrary but have a characteristic length

Lb < < L b The entering electron beam is monoenergetic with no spread in either

the longitudinal or transverse velocities. The radiation pulse is assumed to

undergo little change in phase and amplitude during a single pass through the

resonator, i.e., low gain operating regime. The wiggler parameters are taken to

be fixed and space charge effects neglected. Finally the analysis is performed in

the small signal regime, i.e., to first order in the radiation field.

4



Ill. Reduced Wave Equation

We will represent the radiation field within the resonator by a superposition

of spatial modes, which are such that the tangential electric field vanishes on

the mirrors. The vector potential of the radiation field is written as

M ) i ( n t ,

A R (z,t) = a (t) sin (kz) ex + C.c. (1)

n=I

where k = o /c = rn/L, an(t) is the Fourier coefficient of the nth mode, and c.c.

denotes the complex conjugate. The vector potential of the linearly polarized

wiggler field is non-zero only in the interval L < z < L + L and is taken to be

(z) = A cos e (2)

__w %. ( kw z)e (2

where kw = 2r/c w , £w Is the wiggler wavelength and A MwI >> JA R ) . The one-

dimensional wave equation for A R , including a phenomenological loss term, is

2 2

( 2 1 - V -) A N  (z,t) - J (z,t) (3)

1z c 2it 
c

where the current density J will eventually be taken to be linear in

t4' 
= wL/Q, c, is the characteristic laser frequency, and Q is the quality

factor associated with the resonator. In the FEL the characteristic laser

frequency Is + ) 2 v k where =v /c andy = (I 2)-/2
f oz oz oz w' oz oz oz oz

In (3) the Q is defined in the usual way such that in the absence of a driving

current the electromagnetic stored energy (proportional to Ja (t)l-) decays liken

exp (-i t/Q). Note that in (3) it is assumed that all the significantly excited

longitudinal modes have the same Q.

The actual discrete beam density is

5



n(z,t) = (z ol - (z(4)

b j=lojt)

and ab is the cross sectional area of the electron beam and z (z., t)

represents the axial orbit of the jth electron. At t=O the initial axial position

of the jth electron is Zoj , i.e., z (z oj, t=O) = z .' oj.

The fluid like beam density can be defined as

n (z,t) = < n(z,t) > (5)

where the bracket < > denotes the ensemble average of the enclosed quantity.

The ensemble average in (5) is over uncorrelated charged sheets (electrons).

Using (4) we note that the ensemble average of the density n(z,t) is

< a jV 5(Z - z (Z ojt) > = f dz n (z ,O) S(z - z(Zot)) n (z,t) (6)
0b j=1 00

where n (ZoO) is the initial spatial density distribution of particles. The

fluctuating part of the density is given by n(z,t) - <n(z,t)>. The effective non-

linear driving current density is given by

J (z,t) = J (z,t) + Jinc(Z't) (7a)

where J is the coherent current driving the stimulated radiation (gain)c

and J inc is the incoherent contribution due to the discrete nature of the

electrons and is responsible for the spontaneous radiation (shot noise). The

coherent and incoherent current densities are respectively given by

J = - lejv F <n(z,t)> (7b)

6
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and

J. - lelv F [n(zt) - <n(z,t)>I (
7c)

'inc -4 inc

where

leA W(z)/yomoc Vw cos (kwz) e (8)

is the wiggle velocity defined over the region ,0 < z < 10 + L ,
2 2 - 0 

Vw= leA w/(Yomoc) and -o 
= 

(I - v o/C)-. The usual filling factor associated

with the coherent radiation is Fc = Ob/0r, where o r is the transverse area of tht

resonator radiation mode. The filling factor associated with the incoherent

radiation is written as F. = /f V. The term f is a loss factor due to theinc m Ifn

finite size of the mirror at z=L and is given by fm =  [2y rm ( + (o %)LV-

where r is the mirror radius. In obtaining f we have taken the incoherentm m

radiation divergence angle to be - (/y 0 + flw). The origin of the second term in

the expression for F. arises from the one dimensional statistics performed on
inc

the uncorrelated particles. In Sec. VIII we show that this term is iven hv

Ob(YoYoz)6 )2 X t~oz-
- 

Yo-2
=  (YOZJ\ Yoz2 where = Zw(l + t ) - is the characteristic laser

wavelength.

It should be emphasized that in our model the electrons are actually

represented by sheets of charge. The surface charge of each sheet is -161/1 b and

the sheets (electrons) are taken to be uncorrelated.

To obtain an equation for an(t), the Fourier coefficients of the radiation

field, we first substitute (1) together with (7) and (8) into the wave equation

(3). Taking an(t) to be a slowly varying function of time,

i.e., I1 /a n << w , there results on neglecting small terms
n n n

7 .. . ...... . . .. ... ..h



-21 -"[;(t + - a (0 snkY +CC
2i n L 2 sin ze +cc

F.
=471ieI6 cos k z (Y O (zz'.t)) - (F. i- F ) n 0(z't))

O(z - L ) 0 (L + L - Z) (9)

where w v w/c is the normalized wiggle velocity, O(x) is the usuial Heaviside

unit step function, and the dot denotes a time derivative. By multiplying both

sides of (9) by sin km z, integrating over z from 0 to L, and keeping the

appropriate resonant terms we obtain

ideI v L i(k + k )z -iw t
(t -a(t) + k L fdze n w n

1 0

F.
inc ' 6(z - (z It)) - (F. - F ) n (zt)
a b j*l oj inc c o

e(z-LO) O(L + Lw - z). (10)

To evaluate a n(t), knowledge of the axial orbit, i.e., z(z .,~t), is requred.



IV. Particle Dynamics

The longitudinal particle dynamics are governed primarily by the

ponderomotive force resulting from the beating of the radiatiui and wiggler field,

see for example Refs. 21-27. Keeping only the ponderomotive term which is

bilinear in A and AR and neglecting space charge effects, we find that the axial

dynamics of the jth electron in the wiggler region, L < z < L + L is given by
- o w

v
z., tlel 2 oz ()v
Z(Z mc 2 t A(z). AR(,t)Il (11)

Z=z.

where voz is the axial electron velocity in the wiggler. By substituting (1) and

(2) into (11) and keeping the appropriate resonant terms on the right hand side of

(11) we obtain

" ei wk -i (k + k )Z- t)

(m O woP 2Y an(t) e + c.c.,
0 0 n1l

O(z - L) (L + L w- z) (12)

where the right hand side of (12) is evaluated at z = .(Zojt) and we have made

use of the approximation (I - oz) k n+ kw z 2 k w. Within the wiggler field the

axial electron velocity in the absence of the radiation field as determined by

conservation of energy is

9

v 0 w (1 - w /4), (13)OZ w -

where vo is the axial electron velocity prior to entering the wiggler field. The

trajectory of the jth electron prior to entering the wiggler field is

9



(z ojt) = zoj + 0 t (14)

where t < (L ° - z oj)/v . Within the wiggler the trajectory of the jth electron is

Z(z ojt) = z(°)(z jt) + S(z ojt) (15)

where z()(z ojt) = v oz Zoj./V + (I - Voz/Vo ) Lo + v ozt is the unperturbed orbit

and Sz is the displacement due to the ponderomotive force. Equations (12) and

(15) are valid for times such that tile particle is in the wiggler, i.e.,

(L - z j)/v ° < t < (L - z j )/v0 + Lw /v oz. Suhstituting (15) into (12) and

linearizing we find that the longitudinal displacement of the jth electron

satisfies

1e19 k -i(k + k )(z'.+ L - L') -in t
z zj,t) =_ ww a (t) e e 0 0 n

z .- 1. = - z .+ L"

+ c.c. 0 oJ 0 + t 0 oJ w- - ti (16)
v v
0 0

where 6Oz = voz/c, n = Voz (kn + k W) - an = v ozk w- c k n(1 - R oz) is the frequency

mismatch, zo = v z /V L= v 1 /v and L' = v L /v. We now invoke the
0, oz oj , 0 oz 0 W 0 w oz

low gain assumption by taking the coefficients an(t) to be constant during the

tir-e the jth electron is within the wiggler region. Integrating (16) twice, using

the low gain assumption, and taking the initial conditions such that the relative

displacement and relative displacement velocity are zero at the entrance to the

wiggler, I.e., Sz = z 0 at t = (L - z oj)/Vo, we find that

leIwk w - -i(k + k )(zj+ Lo - Lo )
rz(z .,t) = a (t) 2 

e
2Ym m m

10



e~~~~~~~~ ~ ~ ~ m i,( L0 1 ?m( -zO / + c.c. (17)

0

where expression (17) is valid for times such that (Lo0 - zoj)/v 0< t

(L + L' - z )/v and is zero prior to this time interval. Expression (10)

together with (17) describes the linear, low gain, longitudinal dynamic., of tile

jth particle within the wiggler field.

11



V. Radiation Dynamics

We now return to the evolution of the radiation field. Substituting (15)

together with (17) into (10), introducing coefficients bn (t) = k a (t), and

expanding the delta functions, the expression for the time rate of change of the

Fourier coefficients is given by

(t) = - Y b (t) + S (t) + R (t) (18)
n 2 n n n

where

lelvL + L i(kn+ kw)z - iwnt
S (t) Lvf dz e
n L b L

0

( g 6(z-£ (z .,t)) - bn )) (19a)
(Z oj bo(z ,)j=l

Rilel Vw F L + Lw i(kn+ kw )z - iwntL wc f o wdz e n wn (z)(9b

nzt) L L 0

0

and 6z(z .,t) is given by (17). On the right hand side of (18), the first termoJ

represents the resonator loses, S (t) represents the spontaneous or incoherent

radiation term, and the stimulated or coherent radiation is represented by

R n(t). Substituting the linearized, low gain, longitudinal orbit of the jth

particle within the wiggler field given by (17) into (6) the stimulated term in

(18) can be expressed as

Rn(t) = e nm(t) bm(t) (20)

m- 1

12



where

t ,le ie2v 2k F i(In - m)t i(kn-km)(L o - L) -2w C n n 0 0 2

Gnm(t) 2ym ocL e e Pm

L + L' -v t i(k - k )v z/v
o f w o dz no(z,O) eozo o

L -v t
o O

i4 m(t - (L - z )/v )
+ [im(t - (Lo - Z)/V) - 1] em (21)

where L = L v /v o L . The time rate of change of the Fourier amplitude given

in (18) can therefore be put into the form

n (t) = S'(t) + (Gnm(t) - . nm) bm(t) (22)
M-1

where Sn (t) is the spontaneous radiation source term, G rm(t) bm(t) represents the
n n

dielectric response or gain, 6 is the Kronecker delta, and (v/2 ) 6 b (t) isnm nm m

the loss term due to the finite Q of the resonator. The matrix G defined by the

elements G nm(t) will be referred to as the gain matrix.

13



VI. Derivation of Energy Rate Equation

The total ensemble average electromagnetic energy within the resonator is

W (t) d d3r K E 2 + B 2 >/87 R < b b > (23a)
em -~n n

and the electromagnetic power flowing axially within the resonator is

Pc dA <E x ca> R < *,em(z't) T4 -- T0 >1 111n= Kb b

-i(k n- k II)(z - ct) i(k f- k m)(z + ct)
n m e ne ~ + C.C. (23b)

where the bracket K > denotes the ensemble average over uncorrelated sheets

(electrons) of the enclosed quantity. From (23a) and (23b) it is clear that the

quantity of real interest is the energy density matrix , defined by the elements

nm (t) =Kb n(t) b in(t)>. (24)

In terms of the energy density matrix in (24), the total electromagnetic energy,

IWem' and the electromagnetic power, 1)P(z,t), are

14 (t) (r- ~ t) (2Sa)
em 4 i fil

and

C 0 R-i(k - k m)(Z- ct)

P~? (z't) - --- ~ m(t) (e '

i(k n- k m)(z + ct)

e e 14+ c.C. (25b)



We now derive the rate equation for the energy density matrix. Writing (22) in

vector notation yields

(- (t ) +bit)( (26)

where I is the unit matrix. Solving (26), with initial condition h(O) = 0,

we obtain

t -

(t) = f X (t) X (t') (t') dt" (27)

0

where X (t) is defined by the equation

= i ) [(t ) t i I X (t) (28)

with initial conditions X(O) = I. The energy density matrix is

_ (t) = < b(t) b (t) > (29)

where Trace ( RI) I f d 3r < E 2+ 2 >/2 and the superscript It denotes the

Hermitian conjugate. Using (27) together with (29) we find that ( it) satisfies

the rate equation

it) = [ (t) - v I] (t) + S (t) + Il.C. (30)

where Y, (t) = f < S- (t) Si (C) > (X (t) x(t')) I t dt"
= 0

and 1t.C. denotes the Hermittian conjugate of the preceding terms. It can be shown

15



that the ensemble average of Sn(t) S (t) can be expressed asm

9

( lt v -2 2 1e nt -tp ' i(k km )(L- ,)< q (t) S (t-) > - w -ine n n nro e ( n  L -

n m0

1, + L' -v t
o w 0 i(k - k )vozoiv

Sdzn(z ,0) e n OZ o

1L -v t.
o 0

o(z o - L + v t') O(L + . "-z - v t') (31)0 0 O W 0 0

!3y noting the limits of integration as weli as the arguments of the Heaviside

functions In (31), it is clear that tile ensemble average < So (t) S in(t) > is non-

zero only for t - t' < L /v , i.e., when there is an electron sheet in the

wiggler. It can be shown that in this interval X (t) (t) _ if t 2 gain pr

pass Is somewhat less than unity. Hence the source term of the energy rate Eq.

(30) is simplified to

t

(t) f < S(t) S (t-) > dt. (32)
0

The elements of (32) take the form

9

ITIe v 2 F2 i(t - 11 )t i(k - k )(1,(- 1")
(t) L e I In 0 m 1)

Dm b

(33)

1, + L' -v t
o w o i(k n- k )v oz Z/V - i, n(t - (Lo- zv)/v)~dz nzo,0) e n m OZ 0-l - io o

o 0 1 m
b-v t
0 0

This completes our formal derivation of the energy rate equation given by (30).

16



VII. Reduced Energy Rate Equation

Due to the complicated structure of both the gain matrix (21) as well as the

spontaneous source matrix (33), it is convenient to further reduce these terms to

a more manageable form. To this end we define a time variable tN, such that tN is

the time that the center of the Nth electron pulse enters the wiggler field, that

is

t = ((N - 1) L + L )/V (34)
N b o)

where N is a non zero positive integer. During the electron pulse propagation

through the wiggler field, the independent time variable is

t t N+ T

where 0 < r < /voz . To simplify the gain matrix and spontaneous source matrix

in (21) and (33) we note that these matrices involve integrals of the general form

L + I'-v to w oik n k)oz/V

(t) = f dz n (z ) e F (t,z )- (35)
nm0 0 0 nM 0nnL -v t

o 0

The generic integral in (35) can be evaluated for two representative electron

pulse shapes of characteristic width Zb given

I n(t N+ T) = Fnm[tq+ T' - (N-l)L1no b e -(k-On m (36)

where

v- -((k n- kin) £b4)
(e , Gaussian profile

2- e0nm-= (37a b)sin((k - km ) Z /2)

(kn km) b/2 square profile.

17



The expression in (37a) is for a Gaussian electron beam pulse shape, i.e.,

-(2 Zo/b)

n 0(z) = no e (38a)

while the expresssion in (37b) is for a square pulse shape, i.e.,

no, -b/2_ o< £b/2,

n (z ) = 2 b / b (38b)
0, otherwise.

Using the result contained in (36), together with (34), both the gain matrix and

the spontaneous source matrix can be reduced to

t 2 -i(k -k )(N-I) 1b

a' (t+~= b "'b 2 k F m b
nm N S) L y Y w w c

anmpnm i(P n - Pm r iWmT

2e l + (ivtm - 1) e m (39a)
Om

and

T i - b b mo  
2 F2  -i(k n- kin) (:-1) LbT) - w- inc e

nm (tN 4 L Lob

nmnm e i(Pn - Pm
) 

T imT (39b)

where

Onm = exp (-i(k -k )(l-o )B1 L)

and wb  = 4Tle1 2 no/m is the peak beam plasma frequency. In obtaining (39a) and

(39b) we replaced voz zb/V by b"

18



In the absense of "laser lethargy" exact resonance between the electron beam

pulses and the radiation pulses occur when the mirror separation is equal to

Lb/(23o) where $o is the normalized axial pulse velocity outside the wiggler

field. This condition implies that the round trip of the radiation pulse, if it

were traveling at c, equals the beam pulse period. However, since the radiation

pulse velocity, in the wiggler region when overlapping with the electron pulse, is

slightly less than c, it is necessary to have the mirror separation slightly less

than (L b/2 o ) for optimum overlap of the beam and radiation pulses.
5 - 19 With this

in mind we define the mirror separation to be

L = L + SL (40)m

where L- Lb/(2 o) > > 16LI. In (38) and (39) the only term sensitive to slight

variations in the mirror separation is the common leading term exp (-i(k - km)

(N-I)Lb). Substituting (40) into (39a) and (39b) and assuming 61, small we find

that the gain and source matrix elements become

i t i b 2 2i7(n-m)(N-1)SL/L
+w k c F a e

nmN 8 L YO w w c nm nim

ei(Ln -  
lJm)T tl-i T

2 (I + (iPm - ) e T 
(41)

mm

and

9 2

T -iel n v 2i
\ (t,+ r) b o w ( ( F/ m
nm L . oh nm nm in e

i(P n- Pm)r i T/2 sin J nT/ 2

T e e m (/( 2
ST/2 (42)
n
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The rate of change of the field energy density matrix given in (30), together

with the expressions for Gi and n in (41) and (42), can be still further

reduced by invoking the low gain per pass approximation. 
The low gain per pass

assumption implies that F changes slightly 
during a single pass of the radiation

pulse. Hence, by taking ,(tN+ T), where T < Lw /voz, to be nearly equal to & (tN)

on the right hand side of (30), we can integrate (30) together with (41) and

(42). Doing this we find that the elements of F at time + T are given
- tN

approximately by

nmCtN+ -) =(I - v I) Enm(tN ) + Snm(tN,?)

nm (tN TT)nm (tN om tN' T

+ Y IGn (tN,T) F£m(tN) + n£(tN) Gmi (tN,) .-43)

where

T
G t NT) = nm(tN + 

[')dT'
nm N'nm

0

-i b 'b 2 21r(n-m)(N1)6L/L(-I£ 'm w
2 k c F ce ma n gnm(r) (44a)

32 L y o w c nm Pnm n

and

T

Sn (tT) f=
+ T') + H.C.)dT'

0

2rle 2n 2 2i(n-m)(N-1)SL/L U

_____e__ow Fin e %nm 0nm hnm (4h

2L. Lab in

where
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3 Lx x
r) e (I + sin x
I- 2 X n

n Ill

t(x- xm) sin(x- x) 2 x
-e x - x e (4T)

n x - x i
n 1m

'Ind

h (I n x+silx -sin (x-x
nm - x , n n m -1 11

in m

-t sin x cos x -sin x cos x - sin (xn-x ) co (xI-x I.
in in in m Ti in i

and x= nT = vozkw - ckn (I - v z /c)11/2. Note that since hnI is lermitian, so

is the spontaneous source matrix in (44b). The fact that Snm is liermiti, in i;

simply a consequence of the fact that , by definition is Ilermitian, (see

(24)). Setting r = L /v in (43) gives the energy density matrix after the Nth

beam pulse has tranversed the wiggler. The resu It, obtained by Iminerica I lv

solving (43) for various experimental pairameters wi 11 be presented later.
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V I I. Spontaneous Radiat ion Source Term

The spontaneous radiation source term in (44h) hos been obtained from a one

dimensional analysis of the wave equation. Because of the one-dimensional

character of the analysis the spontaneous source term does not properly represent

the incoherent radiation source. A proper three-dimensional treatment of the

spontaneous radiation is necessary to properly consider the statistics of discrete

uncorrelated particles as well as to separate the "velocity" and "acceleration"

(radiation) electromagnetic fields. 3 0 The present one dimensional treatment

represents the electrons as uncorrelated charged sheets and not as point

particles. To correct for the one-dimensional limitations of our analysis of the

spontaneous source term we have included in the incoherent current density (7c), a

filling factor which contains the term /q. . This term is included so that the

total emitted spontaneous radiation agrees with the well known value obtained from

Larmor's formula. We have justified this procedure by performing a proper three-

dimensional treatment of the spontaneous source term; this three-dimensional

analysis will be published elsewhere. To obtain the factor F in the spontaneous

source term, i.e., in the filling factor F. , we compare the total emittedinc

radiation energy from (43) with that obtained from Larmor's formula with the loss

terms f set equal to unity and v = 0. From (43), the diagonal elements
m

of F satisfy

2 2 n 2
z T lel n v -sin 11 T(tN + r) = 

2 -- F n (46ho w F2 n (46)

nn t2 ab Fnc Wn

where we have used the expression for in (44b) and are considering a square

nm

shaped electron beam pulse, i.e., p n= 1. We now want to compare (46) with

Larmor-s radiative formula. The total instantaneous power radiated 3 0 from a

single particle is
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L 2 Jej 2  .2
P 3 3 f O(v - ( v X~ '). (47)em 3 3 o~

c

The velocity of a single particle in the wiggler is v = v e + v cos

(kw voz t) ex. Using (47) we find that the total energy radiated during a time

T < Lw /v, by a beam pulse consisting of Zbno(b particles, is

2 6
wL _ I 2 a
em 3 c 2 'bnob o kV )2 (

Yoz

The total spontaneous electromagnetic energy within the resonator is given by

(25a) with aR replaced by ab Substituting (46) into (25a) gives

eb 'w ozemt , + T) -4.4 dn dTc
1 

2 2[e2 2
2zb T ll2n0v w2 2 sin PnT

o w +2 + W (t) (49)
L L ob Inc n em N

where we have approximated the sum by an integral. Integrating (49) over T and n

gives

2

(t + t w (t ) + -1 lel 2  Zbnv 2 (50)
em N em N 2 c (I - o ) Inc

Comparing (48) and (50) we find that, for f = 1,m

2 'O 6 a b
F n r -" 6 -- )2 (51)

L oz

where XL is the laser wavelength, L= £ /( + 2
LL w oz oz
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IX. Long Beam Pulse Limit

A limiting case which can be fully evaluated analytically is that of a long

pulse beam, i.e., Zb ( L. Though this limit is not necessarily directly

applicable to either planned or completed pulsed beam FEL oscillator experiments

it does represent an interesting limit of tile more realistic configurations. If

the electron pulse widths are comparable but somewhat less than the mirror

separation, L, the gain matrix as well as the spontaneous source matrix In (4 4a)

and (44b) approach a diagonal form. This can be seen by noting that

for Zb < L, the matrix defined by pnm and used in (4 4a) and (44b)

approachs (V1/2) 6 for a Gaussian beam pulse and 6 for a square shape beamnm nm

pulse where 6 nm is the Kronecker delta. The diagonal form of (4 4 a) and (44b) is

reasonable in this limit, since it is the off diagonal elements, in particular the

term exp (21i(n-m)(N-l)5L/L ), which are responsible for the laser lethargy effect

and when the beam width is sufficiently long this effect is unimportant. In this

limit a single longitudinal mode analysis would suffice.

Therefore, the energy rate equation in (43) together with (4 4 a) and (44b),

for long beam pulses, takes the form

Cnn (tN+ T) -(1 - v T + gnn(T)) E nn(tN) + S )nn (52)

where the diagonal gain and source matrix elements are respectively

Snn(T) =Gnn(tN+ i) + Gnn(tN+ T)

2

I - b 2 2 3 sin x 2

6 L Y w kc FCT a n n (53a)

Snn(T) L - La F inc( X ) (53b)
24n
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and x = n T/2. In obtaining (53) we have assumed a square pulse shape. Noten

that in gnn(r) and S nn(T), r ranges from 0 to Lw /v Since c changes little

from pulse to pulse we may transform (52) into a first order temporal differential

equation. Since tN+1 tN + L b/Vo (52) can be written as

dE (t)
nn -gnn /At - vj cnn(t) + S /At (54)
dt nn

where At = 2Lb/Vo'inn and Snn are to be evaluated at T = Lw /voz and we have

replaced the discrete time parameter tN with the continuous parameter t.

Intregrating (54) yields

enn WS n (e (gnn
- 

VAt )t/At -)(5
cnn(t) _ nn no 0 -1) (55)

gnn- vAt

where nn(t=O) = 0. For times less than a growth time, i.e.,

t < At/(g'nn- VAt),

c(t) = Snn(t/At + (nn-VAt)t 2/2t 2). (56)
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X. -Numerical Illustrations, Experimental Comparison and Discussion

our numerical illustrations are 'itrected towards a comparison of the FE!.

oscillator experimental results reported in Ref. 4. In addition, we suggest

methods, which could substantially shorten the oscillator start-up time.

The parameters of Stanford's FEL oscillator is given in Table 1. In the FE1,

oscillator experiment a helical wiggler field was used. Since the present

analysis assumes a linear wiggler it becomes necessary to multiply B w in Table I

by V2 in order to be consistent. The peak power within the resonator as a

function of the number of beam pulses that have passed through the resonator is

shown in Fig. 2 for six values of the resonator mismatch length 61, = L m-L b/2 0

Figure 3 shows the asymptotic gain as a function of 6L. The mirror mismatch 61.

- 1.1 x 10- cm corresponds to maximum gain but not maximum satruated power.

Maximum saturated power occurs for 6L between 0 and -1.1 x 10- cm. The range

in 6L for nonzero gain is - 3.0 x 10- cm < 6L < 0, in fair agreement with the

experimental range of 2.5 x 10- cm. The maximum calculated multi-mode (finite

beam pulse) power gain is 0.16 whereas the single mode (continuous beam) yields a

v~alue of 0.25. Finite beam pulse effects therefore reduce the linear gain by

approximately 60%. The maximum experimental gain is 0.10.

Figure 4 shows the spatial distribution of the electron pulse (square) and

the radiation power pulses at the entrance and exit of the wiggler for 6L = - 1.0

x 10 -3CM. Upon entering the wiggler the radiation pulse slightly lags the beam

pulse, while exiting the wiggler the two are completely overlapped. Thle

asymptotic energy spectrum of the radiation, Fig. 5, is narrower and shifted with

respect to the spontaneous radiation spectrum.

Equation (43) suggests that one can roughly compute the relationship between

p Othe peak power in the resonator after the Nth pulse, to P 0 9 the power emitted

spontaneously, by assuming a constant average gain per pass g. An elementary
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calculation yields when N >> I and g << 1, PN/Po = N - 1 + (1 + g)N N + exp

(gN). Clearly when gN >> I the result is very sensitive to small changes in g and

N. If one takes the experimental values corresponding to the maximum observed

final power of PN = 2.7 x 107 W within the resonator, N = 540 and the computed

-9
spontaneous power of PO = 6.5 x 10- W, one finds that g = 0.037. The

experimental value of linear gain is 0.067. In view of the sensitivity to changees

in N and g the results are not inconsistent. Moreover this effective value of -g

is smaller than the linear gain predicted by the present model which is reasonable

since non-linear effects and initial beam thermal effects must lower the gain.

Unfortunately tile currently available data is inadequate to make other detailed

comparisons with this small-signal theory.

Our analysis suggests possible ways to substantially shorten the oscillator

start-up time while maintaining high saturated power levels. The first approach

takes advantage of the fact that the maximum linear gain and maximum saturated

power occur for different values of 6L, which we will respectively denote

by 5L1 and 6L 2 . By slightly increasing the frequency of the R.F. accelerating

field, w ace, during the start-up period, i.e., decreasing the beam pulse

separation, the value of L, could be varied from an initial value of 1, to the

value of 6L 9 , thus, decreasing the start-up time while maintaining high final

power levels. The required fractional increase in wac e is SL I- L/ -6

for the parameters of Ref. 3 and 4. Tile same effect may also be realized by

simply changing (increasing) the mirror separation during the start-up period.

Another possible method of decreasing the start-up time would be to simply

increase that part of Finc associated with mirror losses, i.e., Increase f M. This

could be accomplished by increasing the effective size of the mirror located at z

= L. The additional extension of the mirror would necessarily have a different

curvature. This last approach should make it possible to contain a far larger

portion of the incoherent radiation.
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Table 1: FEL Oscillator Parameters at Stanford University

Beam Parmeters

9
Beam Energy, (y 0- 1) moC 43 MeV

Total Gamma, y 85

Axial Gamma, yoz 69

Peak Current, 1 1.3 A
P

Pulse Width, Xb I mm

Pulse Separation, Lb 25.4 m

Beam Radius, rb 0.25 mm

Wiggler Parameters

Wiggler Wavelength, X 3.3 cm

Wiggler Amplitude (helical), B = 2 1 A /Z 2.3 kG
W w w

Wiggler Length, Lw  5.3 m

Resonator and Radiation Parameters

Resonator Length, L 12.7 m

Resonator Losses (round trip) 1.5%

Radiation Wavelength, XL  3.3 om

Spot Size, ro  0.167 cm

Beam Filling Factor, F c 0.017

Incoh. Rad. Loss Factor, fm 0.05

Rayleigh Length, nr2 /XL 2.71 n
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10' 8L,- -0.001 cm BL.-0.002 cm
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NUMBER OF PASSES

Fig. 2 Peak power of the radiation pulse as a function of the number of passes

far Stanford FF1 oscillator experiment with various detuning

parameters 8L.
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RADIATION PULSE
AT t = t+L W/vz

RADIATION N W ZO

f PULSE
AT t tN

> ELECTRON
BEAM PULSE

4C.IJ

w

0
oI

z
0
I--

4

AXIAL DISTANCE RELATIVE TO THE ELECTRON PULSE

Fig. 4 Radiation pulse power relative to the spatial profile of the electron

pulse (square) at the entrance of the wiggler (t = tN) and exit of wiggler

(t = tN + Lw/Vzo), where N >> I denotes the electron pulse number for the

Stanford FEL oscillator experiment with 6L = -1.0 x 10-3cm.
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STIMULATED RADIATION SPECTRUM

U) SPONTANEOUS

RADIATION
SPECTRUM

I,-
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w

w

-7 0 w"
[kwVoz-ck(I-3OZ )] LW/2 Voz

Fig. 5 Asymptotic energy spectrum of the radiation pulse for the Stanford FEL

-3
oscillator experiment with 6L = -1.0 x 10 cm.
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