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THE EVOLUTION OF SPONTANEOUS AND COHERENT
RADIATION IN THE FREE ELECTRON LASER OSCILLATOR

I. Introduction

A number of successful free electron laser oscillator experiments have been
reported.l—b Simple considerations concerning the spontaneous radiation level
indicated start-up times much shorter than those observed.3 Since a number of
experiments utilizing shorter electron beam macropulses are being constructed or
planned, thus, there is concern that these forthcoming exper.ments may be unable
to reach saturation. A quantitative understanding of the growth of coherent
stimulated radiation from incoherent spontaneous emission is thus highly
desirable. Published papers on the FEL oscillator had either neglected the

5—20, or had treated them separately from the stimulated

spontaneous radiation
radiation.13 Here we outline a classical theory of the spontaneous start-up of
the FEL oscillator in the cold, small signal regime. Our model is spatially one
dimensional and therefore lacks many important features such as transverse
gradients associated with the radiation and electron beam and diffraction
effects. In a one-dimensional model these effects can only be incorporated in an
approximate way by means of filling factors.

'I‘heoriess—28 of the free electron laser (FEL) have proceeded from a continuum
description of the electron dynamics, either fluid equations or the Vlasov
equation. For a proper description of the start-up of an FEL oscillator one must
take into account the fact that the electrons are discrete and initially
uncorrelated, since it is the acceleration radiation of individual electrons in
the wiggler that provides the initial fields. These initial fields are then
amplified by the collective gain mechanism associated with the continuum

description. This initial radiation, however, is effectively incoherent in a

device in which the electron density is small and the electrons are randomly

Manuscript approved May 23, 1983.




distributed. Thus a statistical theory is required which is couched in terms of
objects bilinear in the fluctuating quantities so that ensemble averages are non-
zero, even when the ensemble average fluctuating current density is zero.

The theory described in this work is one dimensional in space and treats the
electrons as governed by the relativistic equations of motion, and the
electromagnetic fields as governed by Maxwell”s equations. This is valid whenever
the root mean square fluctuation 6N in the number of photons in the resonator is
small compared with the mean number of photons N. Certainly this is not true

initially, and in principle, one should treat the problem initially by quantum

mechanics. Failure to do so implies an uncertainty in the initial phases of the
start up. Since one expects SN ~ (ﬁ)l/2 if the electrons are randomly
distributed, the duration of the quantum regime will be short if classical theory
predicts for times short compared to that for saturation that the photon density
N = f d3r (EZ + Ez)/(éh wL) >> 1, where w = 2 Yzc kw is the laser frequency, and h
is Planck”s constant.

This paper presents an analysis of the transition from the incoherent

radiation to the coherent radiation29

in an FEL oscillator. The model of the FEL
oscillator is described in Sec. II. The equations governing the complex amplitude
of the radiation in terms of the particle trajectories are derived in Sec. IlII;
and the equations governing the particle trajectories in terms of the radiation
field are derived in Sec. IV. The results of Secs. IIl and 1V are combined in
Sec. V to obtain the self-contained radiation dynamics equations. The equation
describing the dynamics of the radiation energy rate matrix is derived in Sec.

VI. The solution of the energy rate equation is obtained in Sec. VII. The three-

dimensional effects of the spontaneous radiation are incorporated into the one-

dimensional model through a filling factor in Sec. VIII. The analvsis of the FEL




oscillator start-up process is now completed. wWe examine a limiting case, in Sec.

I1X, where the electron pulse length is long. In the final section, Sec. X, we
compare our numerical results with Stanford”s FEL oscillator data. Finally in this

section a number of possible methods are supgested to shorten the FEL oscillator’s

start-up time.




I1. FEL Oscillator Start Up Model

The schematic representation of the FEL oscillator model used in our analysis

is shown in Fig. 1. The resonator defined by plane reflectors at z = 0 and z = L

.

contains the wiggler magnetic field located between z = Lj and z = L0 + Lw. The

total resonator losses are modeled heuristically by a Q factor. The highly

relativistic pulsed electron beam enters the resonator from the left at z = 0 with

axial velocity v, e, Within the wiggler field the axial pulse velocity is

reduced slightly to Vos €5° The electron beam pulses are spatially periodic with

period Lb. Though Lb is arbitrary in the analysis, it is clear that for proper
matching between the beam and radiation pulses that, Ly should be approximately an
integer times ZVOL/C. The radiation pulse in the wiggler field, when overlapping
with the beam pulse, can travel at a velocity slightly less than ¢, and the effect
is called laser lethargy. 1It, therefore, becomes necessary to slighty mistune
(shorten) the resonator length to optimize the interaction. This effect is fully
taken into account and is discussed in detail later. The axial profile of the
electron beam pulses are left arbitrary but have a characteristic length

Eb <K Lb. The entering electron beam is monoenergetic with no spread in either
the longitudinal or transverse velocities. The radiation pulse is assumed to
undergo little change in phase and amplitude during a single pass through the
resonator, i.e., low gain operating regime. The wiggler parameters are taken to
be fixed and space charge effects neglected. Finally the analysis is performed in

the small signal regime, i.e., to first order in the radiation field.




111. Reduced Wave Equation

We will represent the radiation field within the resonator by a superposition
of spatial modes, which are such that the tangential electric field vanishes on
the mirrors. The vector potential of the radiation field is written as

o imnt R
QR (z,t) = } an(t) sin (knz) e e, + c.c. (1)
n=1
where kn = mn/c = m/L, an(t) is the Fourier coefficient of the nth mode, and c.c.
denotes the complex conjugate. The vector potential of the linearly polarized

wiggler field is non-zero only in the interval LO <zX< LO + Lw and is taken to be
- . 9
éw (z) chos (sz) e, (2)

> =2 { ong : ; Al om
where kw hn/ﬂw, £, is the wiggler wavelength and !lw] >> JlR) The one

dimensional wave equation for A

R’ including a phenomenological loss term, is
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where the current density J will eventually be taken to be linear in

A

Ag» VT wL/Q’ W is the characteristic laser frequency, and Q is the quality

factor associated with the resonator. 1In the FEL the characteristic laser
2

frequency is Wy = {1 + aoz) Y v kw, where Bo =

2)—1/2
oz 0z z *

VOZ/C and Yor~ (1 - Roz

In (3) the Q is defined in the usual way such that in the absence of a driving
current the electromagnetic stored energy (proportional to |an(t)l2) decays like
exp (-“i t/Q). Note that in (3) it is assumed that all the significantly excited
longitudinal modes have the same Q.

The actual discrete beam density is

~a p——




0) ] (4)

and O is the cross sectional area of the electron beam and z (zoj’ t)

represents the axial orbit of the jth electron. At t=0 the initial axial position
of the jth electron is 2y lee., 2 (zOj
The fluid like beam density can be defined as

no(z,t) =< n(z,t) > (%)

where the bracket < > denotes the ensemble average of the enclosed quantity.
The ensemble average in (5) is over uncorrelated charged sheets (electrons).

Using (4) we note that the ensemble average of the density n(z,t) is

1 . ~ ~

Pl \ - = - =
< 5 ! §(z z (zoj,t) > f dzono(zo,O) §(z z(zo,t)) no(z,t) (6)
where no(zo,O) is the initial spatial density distribution of particles. The

fluctuating part of the density is given by n(z,t) - <n(z,t)>. The effective non-

linear driving current density is given by
= z + 7:
J (2,8) = J (7,0) + I, (z,t) (7a)
where JC is the coherent current driving the stimulated radiation (gain)
and Jinc is the incoherent contribution due to the discrete nature of the
electrons and is responsible for the spontaneous radiation (shot noise). The

coherent and incoherent current densities are respectively given by

{C= - lelwaC<n(z,t)> (7b)




i
|

and

{inc= - lelnginC(n(z,t) - <n(z,t)>] (7¢)
where

Voo S8 leléw(z)/yomoc = v, cos (sz) e (8)

is the wiggle velocity defined over the region LO z<L +L,

) w
lela / d 1 207V g 1 filling f i
v,= lela, (yomoc) and vy = ( v, /e ) . he usual filling factor associated
with the coherent radiation is FC = ob/or’ where op is the transverse areda of the

resonator radiation mode. The filling factor associated with the incoherent

radiation is written as Finc = /fm v¢. The term fn is a loss factor due to the
i

4
finite size of the mirror at z=L and is given by f =~ [2y . r /(1 + y 3 L]~
m om oW
where rm is the mirror radius. In obtaining fw we have taken the iacoherent
i
radiation divergence angle to be = (I/Yo + Bw). The origin of the second term in
the expression for Finc arises from the one dimensional statistics performed on
the uncorrelated particles. In Sec. VIII we show that this term is given hy
6/ 2 1 -1 -2

Fo= - 2 = + s the char: 'ristic lase
- ob(yo/yoz) (ALYOZ) where AL Qw( BOZ) Yoz is the characteristic laser
wavelength.

It should be emphasized that in our model the electrons are actually
represented by sheets of charge. The surface charge of ecach sheet is —|é|/ab and
the sheets (electrons) are taken to be uncorrelated.

To obtain an equation for an(t), the Fourier coefficients of the radiation
field, we first substitute (1) together with (7) and (8) into the wave cquation

(3). Taking an(t) to be a slowly varying function of time,

i.e., lén/anl K W there results on neglecting small terms




w

bt n . v n
- —_ = + c.c.
2inzl CZ [an(t) + 3 an(t)] sin knz e c.c

iw t

F.
inc

Ob j

= 4ﬂ|e|8w coe sz (

o~ 8

15(z-z(z‘oj,t)) - (F, ~F) n (z,£))

o(z = L)) 0 (L, + L, - 2) (9

where gw = vw/c is the normalized wiggle velocity, 0(x) is the usual Heaviside

unit step function, and the dot denotes a time derivative. By multiplying both

sides of (9) by sin k, z, integrating over z from O to L, and keeping the

appropriate resonant terms we obtain

- nlel v L 1k +k )z -iut
a (t) =5—a (t) + —qu é dz e

( inc ; §(z - z(zoj’t)) - (Finc_ Fc) no(z,t)]

e(z-Lo) o(Lo+ Lw - z).

(10)

To evaluate an(t), knowledge of the axial orbit, i.e., z(z

oj,t), is required.




IV. Particle Dynamics

The longitudinal particle dynamics are governed primarily by the
ponderomotive force resulting from the beating of the radiatiuin and wiggler field,
see for example Refs. 21-27. Keeping only the ponderomotive term which is

bilinear in éu and A, and neglecting space charge effects, we find that the axial

R

dynamics of the jth electron in the wiggler region, L0 <z X< LO + Lw is given by

14
o
¢
w

<

o
z + 2z
0] y mc - 3z C2

l.v

L OaL)e Az, )] A

z=z,
J

[o¥]

t

where v . is the axial electron velocity in the wiggler. By substituting (1) and
(2) into (11) and keeping the appropriate resonant terms on the right hand side of
(11) we obtain

o “if(k + k Jz-w t!
} an(t) e + c.c. |

oz - Lo) O(Lo+ L- z) (12)

where the right hand side of (12) is evaluated at z = Z(zoj,t) and we have made
use of the approximation (1 - BOZ) kn+ kw = 2 kw. Within the wiggler field the
axial electron velocity in the absence of the radiation field as determined by

conservation of energy is

2
Vop = Vo(l = 8,714, a3

where v, is the axial electron velocity prior to entering the wiggler field. The

trajectory of the jth electron prior to entering the wiggler field is




z(zoj,t) = Zy; ot (14)

where t < (Lo - zoj)/vo. Within the wiggler the trajectory of the jth electron is

(22

~ - <3
z(zoj,t) zoj,t) Sz(zoj,t) (15)

~

where z(o)(z Lt) =v z /v 4+ (l -v /v)L +v t is the unperturbed orbit
oj oz“0j ‘o oz' "o’ o oz

and $7 is the displacement due to the ponderomotive force. Equations (12) and
(15) are valid for times such that the particle is in the wiggler, i.e.,

~ .-z + L . Substi i 2) ¢
(Lo zoj)/v0 <t < (IO 70j)/v0 Iw/vOz Substituting (15) into (12) and

linearizing we find that the longitudinal displacement of the jth electron

satisfies

3 K -i(k + k -+ L - L~ -1 t
~ ( 'elbw Wy i n w)(zoj 0 0) 1un
sz (20.,t) ==l sr an(t) e e
J Yoo n=1
Zo'— Lo Lo— z .+ L;
+c.c. 0 J +e) a2 021 ¥ _ (16)
‘ v v
o o
> = = + - = - - i
where 802 voz/c, by Voz(kn kw) W Vozk u kn(l ﬁoz) is the frequency
mismatch, z° ., =v_z /v , L- =v L /v and L = v_ L /v . We now invoke the
0j 0z"0j" "o’ "o oz'o' "o w o w oz

low gain assumption by taking the coefficients an(t) to be constant during the
time the jth electron is within the wiggier region. Integrating (16) twice, using
the low gain assumption, and taking the initial conditions such that the relative
displiacement and relative displacement velocity are zero at the entrance to the

wipgpler, i.e., §2 = §z = 0 at t = (Ln— zoj)/vo, we find that

“i ¥k )(2Z o+ L= L)

'am<t)“ e




P

) -iy (L -z /v
) -1) e moo o) ° Y+ c.ec.

where expression (17) is valid for times such that (L0 - ch)/vo <

< [Lo + L; - ]/v0 and is zero prior to this time {nterval.

Zoj

jth particle within the wiggler field.

11

Expression (10)

together with (17) describes the linear, low gain, longitudinal dynamics of the




Radiation Dynamics
Substituting (15)

We now return to the evolution of the radiation field.

V.

together with (17) into (10), introducing coefficients bn(t) = knan(t), and
the expression for the time rate of change of the

expanding the delta functions,

Fourier coefficients is given by

(18)

. v .
= - = + +
bn(t) 2 bn(c) Sn(t) Rn(t)
where
nlelv F L + L ik +k )z - iw.t
w inc o w n % n
S (t) = i — dz e
Y L
o]
(5 8- ,t) ~ o0 (z,0)) (19a)
b 0j’ blot*? ’
j=1
nlel vF. LtL, ik + k)z - dut
R () = ———— { dz e n (z,t) (19b)
‘o

and GZ(zoj,t) is given by (17). On the right hand side of (18), the first term
represents the resorator loses, §n(t) represents the spontaneous or incoherent
radiation term, and the stimulated or coherent radiation is represented by
Substituting the linearized, low gain, longitudinal orbit of the jth

Rn(t).
particle within the wfggler field given by (17) into (6) the stimulated term in

(18) can be expressed as

(20)

t~ 8

. Gnm(t) bm(t)

Rn(t) =

m




where
2 2 -
t wlel®v "k F_ i(p = p )t i(k -k (L - L)
¢ (v = w Ce M m _nmito o -2
nm 2y m cL Hm
oo
L+L°-vt ik =k I _z /v
() W n m’ oz
f dz n (z ,0) e
o
L -vt
o o

1um(t - (L0~ zo)/vo)
{1+ [ty (t = L~z )/v) - 1] e } (21)

where L. =L v /v =~ L . The time rate of change of the Fourier amplitude given
W w o oz w

in (18) can therefore be put into the form

T's

NORENORINEN(ROEE E NN (22)

where §n(t) is the spontaneous radiation source term, 5nm(t) b, (t) represents the

dielectric response or gain, 6nm is the Kronecker delta, and (v/2) Gn bm(t) is

m

the loss term due to the finite Q of the resonator. The matrix Q defined by the

c¢lements Gnm(t) will be referred to as the gain matrix.




VI. Derivation of Energy Rate Equation

The total ensemble average electromagnetic energy within the resonator is

Wwo(t) = d3r <E® o+ BZ>/8n = <b b > (23a)
em J < ~ A n

vol n

and the electromagnetic power flowing axially within the resonator is

c € N *
P (z,t) =5 [ dACE xB > = Y <b b >
~em 4q J ~ ~ 16 ‘- n m
area n,m=1
-i(k = k )(z - ct) itk = k )(z + ct)
[e n " - e n " e + c.c. (23b)

! Z

where the bracket < > denotes the ensemble average over uncorrelated sheets
(electrons) of the enclosed quantity. From (23a) and (23b) it is clear that the

quantity of real interest is the energy density matrix ¢ defined by the elements
< * 24
tnm(t) = bn(t) bm (). (24)

Tn terms of the energy density matrix in (24), the total electromagnetic energy,

Wom» and the electromagnetic power, gem(z,t), are
gl w©
. _R \
Wo(t) = 5 e (t) (25a)
cm 4n . nn
n=1
and
] oty - cop t e (o—i(kn - km)(z - ct)
~em ’ L6n x “am i
n,m=}

i(kn - km)(z + ct) .
~ e ) e+ c.c. (25b)




energy density matrix. Writing (22) in

We now derive the rate equation for the

vector notation yields

B (r) =§ (&) + [ (£) -3 L] B(O) (26)
where 1 is the unit matrix. Solving (26), with initial condition b(0) = 0,
we obtain
t -1
b (t) = [ X ()X “(t7) s(t7) dt~” (27)
0
where X (t) is defined by the equation
L) = [¢)-51]%(® (28)
with initial conditions X(0) = [. The energy density matrix is
(29)

g (1) = < (o) () >
2 >/2 and the superscript H denotes the

where Trace (g) = (oRL) - f d3r CE™+ B
Using (27) together with (29) we find that g (t) satisfies

Hermitian conjugate.

the rate equation
(30)

§ () =[G (t) —vI)lg () +7F (r)+1u.c.

t
where ¥ (1) = [ <3 (o) $1 > @ xTen” ae

It can be shown

and H.C. dgnotes the Hermitian conjugate of the preceding terms.

15




*
that the ensemble average of Sn(t) Sm(t) can be expressed as

. o In'e'v TR 0 iut -iy t® i(k - k )L - LY
<3S () Sm (L") > = | w ) nce e n o m o n m O O

Al - L+ i + L - - .
((z0 Io vot ) O(L0 v "% vot ) 3

8y noting the limits of integration as well as the arguments of the Heaviside
~ ~%
functions in (31), it is clear that the ensemble average < Sn(t) Sm(t) > is non-
zero only for t - t7 Lw/voz’ i.e., when there is an electron sheet in the .
s , -1 . . .
wiggler. It can be shown that in this interval X (t) X (£7) = I if ti> pain per
pass s somewhat less than unity. Hence the source term of the energy rate Eq.
(30) is simplified to
t

Y () = [ <3y § e > dee. (32)
z 5

The elements of (32) take the form

2
') Al (3 — . — . - -
. nlel Yu © Pinc l(“n ”m)t l(kn km)(ho L”)
Vo(t) = i( ) e ¢
la L o
nm b
(33)
L+ L -vt . : _ _
W l(kn km)vozZ Al -1 1“m(t (Lo zo)/v“)
[ dz_n (z ,0) e I (1 - ¢ Y.
o' o m
L -vt
o o

This completes our formal derivation of the energy rate equation given by (30),




VII. Reduced Energy Rate Equation

Due to the complicated structure of both the gain matrix (21) as well as the
spontaneous source matrix (33), it is convenient to further reduce these terms to
a more manageable form. To this end we define a time variable tys such that ty is
the time that the center of the Nth electron pulse enters the wiggler field, that

is

ty = ((N - 1) Lb + LO)/V0 (34)

where N is a non zero positive integer. During the electron pulse propagation

through the wiggler field, the independent time variable is

where 0 < ¢ < Lw/voz. To simplify the gain matrix and spontaneous source matrix

in (21) and (33) we note that these matrices involve integrals of the general form

+ L7-
Lo 1w Vot i(kn— km)vozzo/vo
Inm(t) = f dz n \zo) e Pnn(t,zo). (3%)

The generic integral in (35) can be evaluated for two representative electron

pulse shapes of characteristic width lb ziven
-k =k )Y (N=-1v L /v
n m oz b o
Lttt 1) = an[cv+ T, - (N—l)Lb]nolb e P am (36)
where
((k -k ) g /4)?
- (k- )
i%_ e n m b , Gaussian profile
p__= (37a,b)
o sin((k_- k ) 2,/2)
n n b square profile
— , : .
(k =k ) /2

17




The expression in (37a) is for a Gaussian electron beam pulse shape, i.e.,

-2 2, /1,)"
no(zo) = no e (38a)

while the expresssion in (37b) is for a square pulse shape, i.e.,

n_, -2./2 <z <1,/2
n (z) = ° b ° b, (38b)

o, otherwise.

Using the result contained in (36), together with (34), both the gain matrix and

the spontaneous source matrix can be reduced to

2
G (t.+ 1) = 1 ER EE— 8 2 kcF e i(kn km)(N-l) Lb
nm- N 8 L AP w c
a_p iy - u)d) iy 1
== T N+ pr-e ™) (39a)
m
um
and
2 2 -i(k = k_ ) (N=1) 1
(t 4y =ir b "o 2.2 TR Ml Y “b
“onm N t 4 L Lch w inc
P QTR THD B ¢ ip 1
nm nm n m (l_em) (39b)
um
where

_ _ - _ -1
a = exp (-i(k_ k(1 RDB, Lo)

2
and wp = énlelzno/mo i{s the peak beam plasma frequency. In obtaining (39a) and

(39b) we replaced Vg /v0 by £

b b’
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In the absense of "laser lethargy” exact resonance between the electron beam
pulses and the radiation pulses occur when the mirror separation is equal to
Lb/(Zso) where Bo is the normalized axial pulse velocity outside the wiggler
field. This condition implies that the round trip of the radiation pulse, {f it
were traveling at c, equals the beam pulse period. However, since the radiation
pulse velocity, in the wiggler region when overlapping with the electron pulse, is

slightly less than c, it is necessary to have the mirror separation slightly less

than (Lb/ZSO) for optimum overlap of the beam and radiation pulses.s_lg With this
in mind we define the mirror separation to be
= + /
L=1L +3SL (40)

where Lmz Lh/(ZB)) > JsLl.  In (38) and (39) the only term sensitive to slight
<

variations in the mirror separation is the common leading term exp (—i(kn— km)

(N—l)Lb). Substituting (40) into (39a) and (39b) and assuming §L small we find

that the gain and source matrix elements become

24 — _
G (t, + )=l _QE " BZka e-lﬂ(nm>(.\1 l)SL/Lm
'nm" N T 8 L Y, » W ¢ %m Pam
ei(Un' )t iumr
1+ -1 )
2 [ (1umT ) e (41)
Y
and
0 2| |'2 2
. mle nv
> 2 2in(n-m) (N~1)SL/L
) R L X
com (B ™) T o A Pam M ine © m
i(u - wu )t sin /2
e ™ M eiumr/Z (‘_“J%FT—J- .
u 1/
n
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The rate of change of the field energy density matrix given in (30), together
with the expressions for 6nm and Snm in (41) and (42), can be still further
reduced by invoking the low gain per pass approximation. The low gain per pass
assumption implies that g changes slightly during a single pass of the radiation
pulse. Hence, by taking g(tN+ 1), where 1 £ Lw/voz’ to be nearly equal to g (tN)
on the right hand side of (30), we can integrate (30) together with (41) and
(42). Doing this we find that the elements of g at time tN+ r are given

approximately by

enm(tN+ ) = (1L - v 1) enm(tN) + Snm(tN’T)

*
+ 3 .
3 (g () £y * € gt Cmg (Epr© 43)
where
T
G (tg,1) = [ G (g 17)dr”
g ow’ 217 (n=m) (N-1)6L/1
ST T TP I ™ (1) (4ba)
37 T Y, ew W Fe® % m Pam BT a
and

T
Sty ™) = ({ RO i.c.)dr”

o
zb wzlelzn v 2ig(n-m)(N-1)8L/L
b ow 2 m
2L

44
Lob inc © %m Pnm hnm(T) (44b)

where
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3 ixl X
T . 1 m .
4 1) = —— ‘e 1 + —) sin x
‘nm( 2 ( X ) n
X X n
m
i(x - x ) sin(x -~ x ) 2ix
n m . n no n o, ,
—e X - X_ e , (45a)
n* x =X m
n m
and
"
' ) 2 2
h (1) = — § sin” x + sin” x_ - sin” (x - x ) (45b)
nm X X n m n n
nm
-{ 'sin x_¢cos x - sin x_ ¢os x - sin (x - x ) cos(x -x )
n n m m n m non
and x = /2 = [v._k =k (1 = v /[c))/2. Note that since h is Hermitian, so
n Yn / ! 0z W . n( oz )] nm G
is the spontaneous source matrix Snm in (44b). The fact that Snm is Hermitian is

simplv a consequence of the fact that - by definition is Hermitian, (sce
3 ; \
(24)). Setting r = Lw/v7/ in (43) pgives the enervy density matrix after the
oz 3 \
beam pulse has tranversed the wiggler. The results obtained by numerically

solving (43) for various experimental parameters will be presented later.
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VIIL. Spontaneous Radiation Source Term

The spontaneous radiation source term in (44b) hos been obtained from a one
dimensional analysis of the wave equation. Because of the one-dimensional
character of the analysis the spontaneous source term does not properly represent
the incoherent radiation source. A proper three-dimensional treatment of the
spontaneous radiation is necessary to properly consider the statistics of discrete

uncorrelated particles as well as to separate the "velocity” and "acceleration’

. : : : €
(radiation) electromagnetic flelds.B)

The present one dimensional treatment
represents the electrons as uncorrelated charged sheets and not as point
particles. To correct for the one-dimensional limitations of our analysis of the
spontaneous source term we have included in the incoherent current density (7c), a
filling factor which contains the term /¢. . This term is included so that the
total emitted spontaneous radiation agrees with the well known value obtained from
Larmor”s formula. We have justified this procedure by performing a proper three-
dimensional treatment of the spontaneous source term; this three-dimensional
analysis will be published elsewhere. To obtain the factor £ in the spontaneous
source term, i.e., in the filling factor Finc’ we compare the total emitted
radiation energy from (43) with that obtained from Larmor”s formula with the loss
terms fm set equal to unity and v = 0. From (43), the diagonal elements

of

r satisfy

where we have used the expression for \n in (44b) and are considering a square
nm

shaped electron beam pulse, i.e., p 1. We now want to compare (46) with

an

- : . : : 3
Larmor”s radiative formula. The total instantaneous power rad\atodj) from a

single particle is
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L 2 fe2 .
R L R R 1) (47)

The velocity of a single particle in the wiggler is v = Voz €, + v, cos

(kwvozt) e . Using (47) we find that the total energy radiated during a time

1 < Lw/voz’ by a beam pulse consisting of anoob particles, is
6
2y
L _ 1 lel 0 . 2
Nem =3 3 5 RN (802 kwvw) Te (48)
Yoz {

The total spontaneous electromagnetic energy within the resonator is given by

(25a3) with oR replaced by oy Substituting (46) into (25a) gives

g, L o t {L /v
V(g + 1) = % - 1 dn | a ¥ °?
' K 1 0
o]
Zib nzlelznovw“ 5 sin p_ 1
(5 o ow . n
L Lo Finc \ u * wem(tN) (49)

b n

where we have approximated the sum by an integral. Integrating (49) over 1 and n

gives

2
Wo(t, + ) =W (t,) + 2 el "olo% P2 (50)
em' N r em" N 2 ¢ (1 - 807) inc T°
Comparing (48) and (50) we find that, for fm =1,
Y g
P28 D (51)
inc C Yos (x )2
LYz
2
where } is the laser wavelength, AL= Zw/(l + Roz) Yoz *
L
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IX. Long Beam Pulse Limit

A limiting case which can be fully evaluated analytically {s that of a long
pulse beam, i.e., gb S L. Though this limit {s not necessarily directly
applicable to either planned or completed pulsed beam FEL oscillator experiments
it does represent an interesting limit of the more realistic configurations. If
the electron pulse widths are comparable but somewhat less than the mirror
separation, L, the gain matrix as well as the spontaneous source matrix in (44a)
and (44b) approach a diagonal form. This can be seen by noting that

for ¢ E L, the matrix defined by °am and used in (44a) and (44b)

b
approachs (/2/2) Gnm for a Gaussian beam pulse and 6nm for a square shape beam
pulse where §_ _ is the Kronecker delta. The diagonal form of (44a) and (44b) is
reasonable in this limit, since it is the off diagonal elements, in particular the
term exp (2wi(n—m)(N-1)6L/Lm), which are responsible for the laser lethargy effect
and when the beam width is sufficiently long this effect is unimportant. 1In this
limit a single longitudinal mode analysis would suffice.

Therefore, the energy rate equation in (43) together with (44a) and (44)),

for long beam pulses, takes the form
+ = - +g +
€anityt U (L =vr+g (1)) enn(tN) S n T (52)
where the diagonal gain and source matrix elements are respectively

~ *
= + +
gnn(r) Gnn(tN+ 1) Gnn(tN 1)

L sin x_ 2
1 5 % 2 3 n

"% Ty S ke F T 5 (—————x ) (53a)

o n

n lel novw 2 sin xn 2 2
Snn(T) i Lo Finc(__;—_—) T (53b)

b n
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and X, = unr/Z. In obtaining (53) we have assumed a square pulse shape. Note

that in gnn(r) and Snn(r), 1 ranges from O to Lw/voz' Since €nn changes little

from pulse to pulse we may transform (52) into a first order temporal differential

equation. Since ty,, =t + Lb/vo, (52) can be written as
de  (t)
nn _ oz o
T {8nn/At v} snn(t) + Snn/At (54)

where At = 2L /v , & and S_ are to be evaluated at 1 = L /v and we have
b o nn nn w oz
replaced the discrete time parameter ty with the continuous parameter t.

Intregrating (54) yields

s (g = vat  )t/ac
e, (£) = — (e -1) (55)
g~ VAt

nn

where enn(t=0) = 0. For times less than a growth time, i.e.,

t < At/(gnn—vAt),

e, () =S_(t/ac + (5 _-vae)e’/2aed). (56)
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X. Numerical Illustrations, Experimental Comparison and Discussion

Our numerical illustrations are airected towards a comparison of the FEL

oscillator experimental results reported in Ref. 4. 1In addition, we suggest
' methods, which could substantially shorten the'osciltator start-up time.

The parameters of Stanford”s FEL oscillator is given in Table I. 1In the FEL
oscillator experiment a helical wiggler field was used. Since the present
analysis assumes a linear wiggler it becomes necessary to multiply Bw in Table 1
by Y2 in order to be consistent. The peak power within the resonator as a
function of the number of beam pulses that have passed through the resonator is
shown in Fig. 2 for six values of the resonator mismatch length §L = Lm —Lb/280.
Figure 3 shows the asymptotic gain as a function of §L. The mirror mismatch &L =
- 1.1 x 10'3 cm corresponds to maximum gain but not maximum satruated power.

Maximum saturated power occurs for §L between O and -1.1 x 1073 cm. The range

in 8L for nonzero gain is - 3.0 x 1073 cm < §L < 0, in fair agreement with the
experimental range of 2.5 x 10_3 cm. The maximum calculated multi-mode (finite
beam pulse) power gain is 0.16 whereas the single mode (continuous beam) yields a
value of 0.25. Finite beam pulse effects therefore reduce the linear gain by
approximately 60%. The maximum experimental gain i{s 0.10.

Figure 4 shows the spatial distribution of the electron pulse (square) and
the radiation power pulses at the entrance and exit of the wiggler for L = - 1.0
X 10_3 cm. Upon entering the wiggler the radiation pulse slightly lags the beam
pulse, while exiting the wiggler the two are completely overlapped. The
asymptotic energy spectrum of the radiation, Fig. 5, is narrower and shifted with
respect to the spontaneous radiation spectrum.

FEquation (43) suggests that one can roughly compute the relationship between

Pys the peak power in the resonator after the Nth pulse, to P the power emitted

o

spontaneously, by assuming a constant average gain per pass g. An elementary




)N

calculation yields when N > 1 and g << 1, PN/P0 =N=-1+ (1 + = N + exp
(gN). Clearly when gN >> 1 the result is very sensitive to small changes in g and
N. 1f one takes the experimental values corresponding to the maximum obscrved
final power of Py = 2.7 x 107 W within the resonator, N = 540 and the computed
spontaneous power of P, = 6.5 x 10.'2 W, one finds that g = 0.037. The
experimental value of linear gain is 0.067. Tn view of the sensitivity to chanpes
in N and g the results are not inconsistent. Moreover this effective value of g
is smaller than the linear gain predicted by the present model which is reasonable
since non-linear effects and initial beam thermal effects must lower the pain.
Unfortunately the currently available data is inadequate to make other detailed
comparisons with this small-signal theory.

Our analysis suggests possible ways to substantially shorten the oscillator
start—up time while maintaining high saturated power levels. The first approach
takes advantage of the fact that the maximum linear pgain and maximum saturated
power occur for different values of §L, which we will respectively denote
by SLI and GLZ. By slightly increasing the frequency of the R.F. acceleratinyg
field, DI during the start-up period, i.e., decreasing the beam pulse
separation, the value of &L, could be varied from an initial value of SL, to the

1

value of §L thus, decreasing the start-up time while maintaining high final

b2

—¢
power levels. The required fractional increase in m‘c is &L, - SLGI/L = 10 >
acce 2

1 b
for the parameters of Ref. 3 and 4. The same cffect may also be realized by
simply changing (increasing) the mirror separation during the start-up period.
Another possible method of decreasing the start-up time would be to simply
increase that part of Finc dssociated with mirror losses, i.e., Increase fpe  This
could be accomplished by increasing the effective size of the mirror located at 2
= L. The additional extension of the mirror would necessarily have a different
curvature. This last approach should make it possible to contain a far larger

portion of the incoherent radiation.
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Table I: FEL Oscillator Parameters at Stanford University

Beam Parmeters

Beam Energy, (Yo— 1) moc2
Total Gamma, Yo
Axial Gamma, Yoz
Peak Current, Ip
Pulse Width, Qb

Pulse Separation, Ly

Beam Radius, ry

Wiggler Parameters

Wiggler Wavelength, Rw
Wiggler Amplitude (helical), By = 2n Aw/zw

Wiggler Length, L,

Resonator and Radiation Parameters

Resonator Length, L
Resonator Losses (round trip)

Radiation Wavelength, AL

Spot Size, rj

Beam Filling Factor, F,

Incoh. Rad. Loss Factor, fm

2
Rayleigh Length, nrO/XL

43 MeV
85

69

1.3 A
1 mm
25.4 ﬁ

0,25 mm

3.3 cm
2.3 kG

5.3 m

12.7 m
1.5%

3.3 um
0.167 cm
0.017
0.095

2.7 m




107+ SL=-0.00! cm

SL=-0.002 cm
= g = 0164 g, = 0.7
C 108
¢ r SL=-0.0005 cm
z g = 0.135
5 SL=-0.0015 cm

g, = 0.153

SL=0
g =0

SL+-0.0025 cm
g _=0.063

INSTANTANEOUS PEAK POWER
o

lo—' i —1 1
0 50 {00 150 200

NUMBER OF PASSES

Fig. 2 Peak power of the radiation pulse as a function of the number of passes

for Stanford FFL oscillator experiment with various detuning

parameters SL.
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RADIATION POWER (RELATIVE UNITS)

Fig.

RADIATION PULSE
AT t=t +L_/v
RADIATION N "W TZ0
PULSE

AT t=t,

|
| ELECTRON
r///BEAM PULSE

|
|
|
|
I
|
|

&~

Ll

AXIAL DISTANCE RELATIVE TO THE ELECTRON PULSE

Radiation pulse power relative to the spatial profile of the electron

pulse (square) at the entrance of the wiggler (t = tN) and exit of wiggler

(t =ty + Lw/Vzo)’ where 11 >> 1 denotes the electron pulse number for the

Stanford FEL oscillator experiment with §L = -1.0 x 10_3cm.
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ENERGY (RELATIVE UNITS)

Fig.

STIMULATED RADIATION SPECTRUM

SPONTANEOUS
RADIATION
SPECTRUM

L
- 0 4

[KyVor~ckli=B,, ] Ly 72V,

v

5 Asymptotic energy spectrum of the radiation pulse for the Stanford FEL

oscillator experiment with §L = -1.0 x 10—3cm.
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