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I. INTRODUCTION

Propagation characteristics of planar transmission lines for microwave and

millimeter-wave integrated circuits have been investigated in the past by many

authors. Two of the frequently used transmission media in the microwave fre-

quency range are the strip and slot lines while the fin-line is known to find

applications in the millimeter-wave range. Hybrid-mode analyses of uniform

lines of the above types [11 have been reported in the literature 12). However,

the periodic-loaded version of these lines finds useful applications 
in many

devices, such as filters [3].

In this paper an approach for analyzing periodically loaded strip lines and

fin lines is presented. The network-analytical method is employed for the

formulation of an integral equation for the unknown electromagnetic fields [41

and Galerkin's procedure is used to derive a numerical solution of this

equation. Numerical results present the passband and stopband properties.
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II. THE NETWORK FORMULATION OF THE PROBLEM

In this section we illustrate the network-analytical method of formulation

by analyzing the problem of fin lines with periodic stubs (see Fig. Ia),

although the method itself is applicable to the strip-line configuration

(Fig. Ib). The numerical results for both cases will be presented in the next

section.

As a first step, we express the transverse (to z) fields in each region by

using the Fourier transformation in the x-direction and Floquet harmonic repre-

sentation in the y-direction as follows:

t mn Imn. n t~yz) ' m0 =} I L zmhn(Xy
1 - 1, 2, 3 (regions)

where

e (XY)K XoTm cos Ym(X + A) y0 jBn sin ym(x + A) e n

(Xy) T I {x0j On cos ym(X + A) - YOm sin ym(x + A)) ee2mn(Xy = - K J

hn(X,y) - z0 x e n(xy) (- 1, 2)

2 2 2 m 2nw
K y +8 ' Ym' 2A O 0 +- -

1 (m- 0)
.n Neumann's number *. (2)

2 (m 0)

2
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Figure la: Planar transmission lines with stubs -periodic-

loaded fin line.
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(b)

Figure ib: Planar transmission lines with stubs -periodic-

loaded strip line.
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Here B0 is the propagation constant of the dominant harmonic in the Floquet

representation, and the vector mode functions e n , h satisfy the boundary

conditions at x ± ±A as well as the following orthonormal properties:

A P/2 ,
f f en(X'y)emn'(x,y)dxdy 6 6S (3)
-A -P/2 = In mm nn'

where 8£, is Kronecker's delta and the symbol * signifies complex conjugate.

Substituting (1) into Maxwell's field equations and applying the orthonormal

properties (3), we obtain the differential equations for 
V and I M

dV~i.. a J~nn (1) Z(1) W(i

dz "K ,n mnin

7. (4)

;;'"dI M)
o,.,_..: m n M i M ( ) V W i

dz J'mn Y.Imn .mn

where

n OCr M 2mn n

I, Io,

Y M() (i) v42 C<i) K2z

Knn r

C- i r (region (2))
r- ,. €( )  (5)

0 0 1 (otherwise)

The boundary conditions to be satisfied are expressed as follows:
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V (d ) -0 (6)
Imn I

(1) (2)- (+0) V (-0)-v (7)tmn Imn Imn(7

(2) (3)
V (d + 0) V (-d 0) (8a)

.mtn 2 +mn 2

(2) (3) (8b)
I .m (.4 2 + 0) I&n 2 82 b

(3)-
V (-d d3 )=0 (9)

and

(i) (2)
Ht (x,y,+O) =H (xy,-O) (10)

(in the aperture of z - 0)

where

A P/2 ,

S. n = f f etnm(x',Y').C(x,Y') dx'dy' (11)

-A -P/2

and e(x,y) is the transverse electric field in the aperture at z = 0.

Solution of the differential equations (4) and imposition of the boundary
'" "~(i (i)In ec ein h

conditions (6) - (9) yield the unknowns V and I in each region. The

electromagnetic fields, in turn, can be obtained by substituting V i and

I(i) into Equation (1). Finally, applying the remaining boundary conditions

(10), we may obtain the integral equation for the aperture field e(x,y), and

implicitly for the unknown propagation constant 8O:

A P/2 ,

I I f f N1mn hImn(xy) eImn(X'I y' ) + Y2mn h2mn(xy) e (x Y')}
a n -A -P/2

- e(x',y') dx'dy' -0 (12)

6
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where (x,y) lies in the aperture at z - 0 and

Yimn we fO 3 cot (Kmn dj)

mn

c (2) _ tar,2 d) tan I(e(3) d)
TU, (2) (2) (3) (3)

IC (2 IC n tan (K d + C K tan (c d
- mr -. 2 rc c

y 'c (1) co dz
[-. 2mn'' " l mn co -mnd)

'ft1 1(2) (3)
-2- - !an c d ) tan ( a)n d3)

(2) (3) amn
+ K(2) mn } . (13)""mn 1 ((2) 1 (3)d3

T tan d ) + C3 tan 3
27) (3 ta n 3 d

an an

The formulation is rigorous up to this stage. The numerical computation

for the above equation is explained in the next section.
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III. NUMERICAL COMPUTATION AND RESULTS

Equation (12) can be expressed in an operator form as

F(x,ylx',y').c(x',y') - 0 (14)

where the dyadic operator F• is given by

- A P/2 .

F(x,ylx',y')-- I f {Yl h (xy) e (x', y' )
m n -A -.P/2

+ Y2mn h2 m n (x y) e 2mn(x'y') } dx'dy'. (15)

The determinantal equation for the dispersion relation can be obtained by

applying Galerkin's procedure to Eq. (14). In this procedure, the unknown aper-

ture field e(x,y) is expanded in terms of the appropriate basis functions

fk(xy) as follows:

N

,(x,y) ak f(xy) (16)
• .- k-l

where ak are the unknown coefficients. Substituting (16) into (14), using

f (Xy) as test functions and taking inner products, we obtain a set of simulta-

neous equations for the unknown coefficients ak:

[MJal - 0 • (17a)

That is,

M11 M12 • IN a1

' 2 1  • a2
• =0 (17b)

8NNLN
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where

A P12 *
i - f Z0 x fm(x,y).(F(x,ylx',y'),fk(x',y')} dxdy (18)

-A -P/2

The determinantal equation for the propagation constant 80 can be obtained by
0

setting the determinant of the coefficient matrix of Eq. (17) equal to zero,

' " i.e.,,

det[M(B0)] - 0 . (19)

It remains only to select the basis functions fk(x,y). Before defining the

basis functions, we introduce three auxiliary functions:

(-)(Ixi < IjW and Ny <  2
0 (otherwise)

p (lxi <Wand W -7

S2(x-y) ' (otherwise)

S0 (otherwise) (20)

The regions represented by these functions are shown in Fig. 2. The basis func-

tions to be used are defined by employing these auxiliary functions:

fI(x,y) - x0 X(x) e
- 8 ~ S (X.y) (21a)

f2 (x,y) - x0 X(x) e•JY Sl(X,y) (21b)

- f3 (x,y) x x0 sgn(y) X(x) e-j80y S2(x,y)

+ Y0 sgn(x) cos [2TW) x} Y(y) S3 (x,y) (21c0

9
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Figure 2: Regions represented by Equation (20).
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f4 (x,y) x0 sgn(y) X(x) e
- s - ,y S2(x,y)

yo -t-( + x} Y~)S 3(xy)(2d

+ Yo sgn(x) cos Y(y) (21d)

where

P-1. -B 0 2:

and X(x) and Y(y) represent the x- and y-variations in the main- and stub-fin

lines, respectively. Three different functions are used for X(x) and Y(y),

viz.,

C C
i) X(x) = ; , y C: constant

W
ii) X(x) L Y(y) IL

S=W Y = I

S3 3

iii) X(x) . 1 + , Y(y) {1+ } • (22)

We mention that the functions in (21c) and (21d) are quite similar in character

to the junction basis functions that have been employed in scattering

problems [5).

Figure 3 shows the k - B0 diagram for a fin line with periodic stubs.

Computations have been performed for three different sets of basis functions

given in (22), but the deviations were found to be rather small because

Galerkin's procedure was used in the numerical computations. The curve for the

periodically loaded fin line (solid line) is lower than for the uniform fin line

without stubs (broken line) because of the inductive reactance of the series

stubs. The passband and stopband regions, which are common in the dispersion

diagrams in periodic structures (6] and are applicable to filters, are clearly

11
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Figure 3: The k - 00 diagram for a periodic-loaded fin line.

- r "2.2, d 1 I 0.094", d 2 =0.005", d 3 - 0.089",
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- (22), -...... : uniform fin line (without stubs),

I O: using i) in (22), X: using ii) in (22).
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evident in Fig. 3. The first passband occurs in the frequency range when kp

satisfies 1.038 < kp < 2.800 and the first stopband 2.800 < kp < 2.931. It

should be noted that the higher-order stopbands will appear in the higher-

frequency range; however, since the higher-order (even) mode of the uniform fin

line (without stubs) can propagate in the range kp > 4.315, these higher stop-

bands have little significance.

Figure 4 shows the relative amplitude of the coefficients of basis func-

tions f and f2, which represent the n - 0 and n = -1 harmonics, respectively,
1I 2

at each point indicated in Fig. 3. These results show that the first stopband

is caused by the coupling between the n - 0 and n - -1 harmonics.

Figure 5 shows the effect of the loading stubs on the normalized stopband

width Ak/kc, where Ak is the stopband width and kc is the center frequency. The

stub length I is smaller than the quarter wavelength of the stub fin line, so

the series stubs have an inductive reactance; therefore, the longer the stub,

the wider the stopband. The characteristic impedance of the fin line becomes

larger as the gap becomes wider [21; therefore, the stopband becomes wider with

wider stubs, although the dependence on the stub width is relatively small.

Figure 6 shows the k - B0 diagram of the strip line with periodic stubs.

Again, the passband and stopband properties are observed in this case, with the

first passband ocourring when 0 < kp < 1.228 and the first stopband when

h." 1.228 < kp <1.286. The first higher-order mode of the main strip line appears

when kp - 2.289; therefore, the higher-order stopbands have no meaning in the

same way as the case of fin line.

Figure 7 shows the effect of the loading stubs. The characteristic impe-

dance of the strip line becomes smaller as the strip becomes wider [41, but the

stubs are shunt-connected in this case. Therefore, the stopband, again, becomes

wider with wider stubs.

13
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i0 -3

(A) (B) (C) (D)

Points indicated in Fig.3
Figure 4: The relative amplitude of coefficients of basis

functions fl and f2.
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Figure 5: The effect of the loading stubs of the fin line.

2.2, d 0.094", d - 0.005", d W 0.089"

r 223

W 0.0025", A -0.047", p -0.12".
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of main strip line
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0
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7r 227r

Ro P
Figure 6: The k - 8odiagram~ tor a periodic-loaded strip line.

Cr -8.875, d 1 - 11.43(imo), d 2 - 1.27(mm), W -0.3175(mm),

A -
6 .35(m)l, W1  0.3175(mm), 1 4(mm), p -1Q(mm).
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Figure 7: The effect of the loading stubs of the strip line.

Er 8.875, d1  11.43(mm), d2  1.27(mm), W -0.3175(mm),

A -6.35(n)., p -10(mm).
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IV. CONCLUSIONS

A method of analysis for the strip line and the fin line with periodic

stubs has been presented, and the k - 80 diagrams for these structures have been

computed. It is found that the passband and stopband properties are generated

from the coupling between the n - 0 and n - -1 harmonics. The effects of the

loading stubs have been determined numerically.

18
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