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I. INTRODUCTION

Propagation characteristics of planar transmission lines for microwave and
millimeter-wave integrated circuits have been investigated in the past by many
authors. Two of the frequently used transmission media in the microwave fre-
quency range are the strip and slot lines while the fin-line 1s known to find
applications in the millimeter—wave range. Hybrid-mode analyses of uniform
lines of the above types [1] have been reported 1n the literature [2]. However,
the periodic-loaded version of these lines finds useful applications in many
devices, such as filters [3].

In this paper an approach for analyzing periodically loaded strip lines and
£in lines is presented. The network-analytical method is employed for the
formulation of an integral equation for the unknown electromagnetic fields [4]
and Galerkin's procedure is used to derive a numerical solution of this

equation. Numerical results present the passband and stopband properties.
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II. THE NETWORK FORMULATION OF THE PROBLEM

In this section we illustrate the network-analytical method of formulation
by analyzing the problem of fin lines with periodic stubs (see Fig. la),
although the method itself is applicable to the strip—line configuration
(Fig. l1b). The numerical results for both cases will be presented in the next
sectlon.

As a first step, we express the transverse (to z) fields in each region by
using the Fourier transéormation in the x-direction and Floquet harmonic repre-
sentation in the y~direction as follows:

ey 2 2 o« 2@ e

H(i)(x,y,z) ) 221 ng nz-w I(i) (z) h, (x,y) w

t 2mn gan %

i=1,2, 3 (regioas)

where

. ™ 1 -jB
elmn(x,y) - AP X {xoym cos Ym(x + A) - yojBn sin Ym(x + A} e 18y

e2m(x,y) - /%;% {xoj Bn cos Ym(x + A) - Y0 Va sin Ym(x + A)) e-:l BnY

hzmn(x,y) -z, x ezmn(x,y) (=1, 2)

2 - 2 2 o ar 2nx
K T B Yn " 72 ° 8n B0 )

1 (m=0)
n = Neumann's number #. (2)
2 (m#0)
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Figure la: Planar transmission lines with stubs - periodic-
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Here 80 is the propagation constant of the dominant harmonic in the Floquet

representation, and the vector mode functions e h satisfy the boundary

fmn’ " gmn
- conditions at x = A as well as the following orthonormal properties:
A P/2 *
A IP/Z em(x:y) .ez'm'n‘ (x,y) dxdy = 6221 6mv Gnnv (3)

Ei where § is Kronecker's delta and the symbol * signifies complex conjugate.

22!
Substituting (1) into Maxwell's field equations and applying the orthonormal
properties (3), we obtain the differential equations for Vi;; and Iiii,
(
dv(1)
__fmn _ jK_(i) z(1) I(i)
dz mn fmn ~ gmn
4
(4)
(1)
g PRCORNCI R EY
dz on Y gmn ' gan
- where
(1)
F 1) _ _ S L0 2%
- 1mn wE. € i) ° 2mn (€D)
N Or n
p -
b
L~
..
P -
pe (1 __1 W I
'. Ym z(i) s Kmn er K »
- fan

€ (reglom (2))
k = mJeouo , e(i) -1 . (5)

r 1 (otherwise)

The boundary conditions to be satisfied are expressed as follows:
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(1)
vzmn (dl) =0 (6)
(1) - (2) oy o
vzmn (+0) vlmn =0 Vemn (7)
(2) I € ) DU
an(-d2 + 0) vzmn( d2 0) (8a)
(2) o) = 3, _
Ilmn(-dz +0) Izmn( d2 0) (8b)
(3)
Vlmn(-dZ - d3) =0 9)
and
Hii)(x.y,+0) = Hiz)(x,y,-O) (10)
(in the aperture of z = 0)
where
A P/2
Ve = ®un(x',y') ce(x',y") dx'dy’ (11)
-A -P/2

and e(x,y) is the transverse electric field in the aperture at z = 0.
Solution of the differential equations (4) and imposition of the boundary

(1) (1)
gmn and Izmn in each regi:n; The
i

electromagnetic fields, in turn, can be obtained by substituting v2mn and

(1)
Lymn

(10), we may obtain the integral equation for the aperture field e(x,y), and

conditions (6) - (9) yield the unknowns V
into Equation (1).

Finally, applying the remaining boundary conditions

implicitly for the unknown propagation constant 8 :

0
P/2 N .
Z E I-A I-P/Z {Ylﬂn By an(%>Y) TTAC AN AP S ST, Boan{%+¥) eZmn(x"y')}
. t(x',y') dx'dy' -0 (12)




where (x,y) lies in the aperture at z = 0 and

1 (1)
Yo" weo{-g-i-y cot ("mn dl)
mn

o e T Ve T T W T e e . .- .
S JLACIE Ul Wl G W SC PO O o Pr W W U T Wy S Aadta. o ’a o 8-

(2) _ . (3 (2) (3)
N CH vt e k' tan ("mn dz) tan (x d3)
(2) (2) (2) (3) 3)
Km %gn a0 ("mn dz) +e c " tan (k-7 dy)
1 (1 (1
Youn -“'-"-0- {xy," cot (‘mn d))
1 1 (2) (3)
K(Z) - &3 can (Kmn dy) tan (ky," dg)
3 + K(Z) mn mn }
- mn 1 2) 1 ) '
- 37)- tan (« d2) +7§7 tan (xm d3)
: mn mn
- ’ The formulation is rigorous up to this stage.
1 for the above equation is explained in the next section.
>
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The numerical computation
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III. NUMERICAL COMPUTATION AND RESULTS
Equation (12) can be expressed in an operator form as
F(x,y[x",7") ce(x’,y') = 0 (14)

where the dyadic operator Fe is given by

P/2

- A .
F(x,ylx',y)e=)Y [ J {Ylmn hlmn(x,y) elmn(x',y')

man -A ~P/2

*

+Y 2mn

2mn thn (x',y")} dx'dy’ . (15)

(x,y) e

The determinantal equation for the dispersion relation can be obtained by
applying Galerkin's procedure to Eq. (14). In this procedure, the unknown aper-
ture field e(x,y) is expanded in terms of the appropriate basis functions
fk(x,y) as follows:

N
e(x,y) = § a_ £ (x,y) (16)
. k 'k
k=1
where a, are the unknown coefficients. Substituting (16) into (14), using

*
fm(x,y) as test functions and taking inner products, we obtain a set of simulta-

neous equations for the unknown coefficients a :

L TeT

et

PO Y PR

K
M) [a] =0 . (17a)
That is,
- W -
My, My, eee Myl fa
Mo a,

e e a la At s .

(17b)




A P/2 N =
= . \J LTS ] ]
Mo ]_A I—P/Z zy x £ (x,¥) «{F(x,y[x",y') £ (x',y")} dxdy . (18)

The determinantal equation for the propagation constant 80 can be obtained by
setting the determinant of the coefficient matrix of Eq. (17) equal to zero,

i.e.,

det[M(Bo)] =0 . (19)

It remains only to select the basis functions fk(x,y). Before defining the

basis functions, we introduce three auxiliary functions:

P
1 (jx{ < W and ‘Yljijf)

LO (otherwise)

P
1 (el v and W, < Iyl <)

S.(x,y) =
Z(X y) (otherwise)
1 (W x| < W+ gand fyj<W)
33(x,y) =
0 (otherwise) (20)

The regions represented by these functions are shown in Fig. 2. The basis func-

\
tions to be used are defined by employing these auxiliary functions: |
|

fl(x,y) = X, X(x) e Sl(x,y) (21a)

-3 B_ ly

fz(z.y) = X5 X(x) e Sl(x,y) (21b)

£4(x,y) = x, sgn(y) X(x) e-j Po¥ S,(x,y)

+ ¥, sgn(x) cos fizizz-ﬁy x} (y) 85(x,y) (21c¢)
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£,(x.y) = x; san(y) XG0 e 1 s (x,9)
+ Yo sga(x) cos {ﬂl—"_,,—w-y x} Y(y) S3(x,y) (21d)
where
2n
8_1 = 80 T

and X(x) and Y(y) represent the x— and y-variations in the main- and stub-fin

lines, respectively. Three different functions are used for X(x) and Y(y),

viz.,
i) X(x) -% ,» Y(y) -% C: constant
1) xm =45, wy -
1
1 X 3 1 3
111) x(x)-7{1+|};,- b, Y(y)-w—1{1+ rﬁi } . (22)

We mention that the functions in (2lc) and (21d) are quite similar in character
to the junction basis functions that have been employed in scattering
problems [5}.

Figure 3 shows the k - Bo diagram for a fin line with petiodic stubs.,
Computations have been performed for three different sets of basis functions
given in (22), but the deviations were found to be rather small because
Galerkin's procedure was used in the numerical computations. The curve for the
periodically loaded fin line (solid line) is lower than for the uniform fin line
without stubs (broken line) because of the inductive reactance of the serles
stubs. The passband and stopband regions, which are common in the dispersion

diagrams in periodic structures [6] and are applicable to filters, are clearly
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The k - By diagram for a periodic-loaded fin line.

€ " 2.2, dl = 0.094", d2 =
W = 0.0025", A = 0.047", wl
p =0.12"

(22), -===—-:

17

0.005", dy = 0.089",
= 0.01", & = 0.04",

: fin line with stubs using iil) in
uniform fin line (without stubs),
0: using 1) in (22), X: using ii) in (22).
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evident in Fig. 3. The first passband occurs in the frequency range when kp
satisfies 1.038 < kp < 2.800 and the first stopband 2.800 < kp < 2.931. It
should be noted that the higher—order stopbands will appear in the higher-
frequency range; however, since the higher-order (even) mode of the uniform fin
line (without stubs) can propagate in the range kp > 4.315, these higher stop-
bands have little significance.

Figure 4 shows the relative amplitude of the coefficlents of basis func-
tions fl and fz, which represent the n = 0 and n = ~1 harmonics, respectively,
at each point indicated in Fig. 3. These results show that the first stopband
is caused by the coupling between the n = 0 and n = -] harmonics.

Figure 5 shows the effect of the loading stubs on the normalized stopband
width Ak/kc, where Ak is the stopband width and kc is the center frequency. The
stub length £ is smaller than the quarter wavelength of the stub fin line, so
the series stubs have an inductive reactance; therefore, the longer the stub,
the widgr the stopband. The characteristic impedance of the fin line becomes
larger as the gap becomes wider [2]; therefore, the stopband becomes wider with
wider stubs, although the dependence on the stub width is relatively small.

Figure 6 shows the k - Bo diagram of the strip line with periodic stubs,
Again, the passband and stopband properties are observed in this case, with the
first passband ocrurring when 0 < kp < 1.228 and the first stopband when
1.228 < kp <1.286. The first higher-order mode of the main strip line appears
when kp = 2.289; therefore, the higher—order stopbands have no meaning in the
gsame way as the case of fin line.

Figure 7 shows the effect of the loading stubs. The characteristic ilmpe-
dance of the strip line becomes smaller as the strip becomes wider [4], but the
stubs are shunt-connected in this case. Therefore, the stopband, again, becomes

wider with wider stubs.
13
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The effect of the loading stubs of the fin line.
e " 2.2, d1 = (0.094", d, = 0.005", d3 = 0.,089",
W = 0.0025", A = 0.047", p = 0.12".
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Figure 6: The k - Bo diagram tor a periodic-loaded strip line. _
e - 8.875, dl = 11.43(mm), d2 = 1.27(mm), W = 0.3175(am),
A=6,35(mm), Wl = 0,3175(mm), 1 = 4(mm), p = 10(mm).
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A=6.35(mm), p = 10(mm).
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IV. CONCLUSIONS

A method of analysis for the strip line and the fin line with periodic
stubs has been presented, and the k - 80 diagtams‘for these structures have been
computed. It is found that the passband and stopband properties are generated
from the coupling between the n = 0 and n = ~1 harmonics. The effects of the

\

loading stubs have been determined numerically.
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