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* medium with memory. Its homogenization is carried out in two particular cases
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SIGNIFICANCE AND EXPLANATION

Nonlinear heat flow in a heterogeneous material is considered. In this

model, the Internal energy and heat flux depend upon the history of the

temperature and the gradient of the temperature respectively.

The heat conservation law leads to a Nonlinear Volterra Integro-

differential equation with appropriate boundary conditions. This problem is

solved under physically reasonable assumptions and its homogenization is

investigated: introducing a small parameter e measuring the "tightness" of

the heterogeneity of the medium (typically we assume £-periodicity for the

physical parameters), the stability of the model is studied (as e goes to

zero) and the homogenized (ideal) limit medium is characterized in some cases,

including the linear one.

LI%

The responsibility for the wording and views expressed in the descriptive

summary lies with MRC, and not with the authors of this report.
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HOMOGENIZATION FOR A VOLTERRA EQUATION

Hedy Attouch and Alain Damlamian

I. Introduction

In a heterogeneous medium with memory, a model for the heat equation (see

. Nohel [1]) is

- (1.1)tdiV Q" h,

where hI is a given diffused source term, F is the internal energy, Q is

the heat flux. The latter are assumed to be functionals of the temperature

distribution u with "memory":

( (1.2) (t,x) - bo(x)u(t,x) + ft O(x,t-s)u(s,x)ds

Q(t,x) -c (x)o(x,Vu(t,x)) +

* (1.3)

+ ft Y(x,t-8)o(x,Vu(s,x))ds

'"*" Equation (1.1) is considered on the product Q x (-a,T), where Q is a

bounded regular domain in R (or N), the function a : X x + RN,

(x,r) + o(x,r) represents a nonlinear flux law. Its dependence upon x

specifies the heterogeneity of the medium. Similarly b0 (x), O(x,t), c0(xl,

y(x,t) characterize the spatial heterogeneity of the other thermodynamical

parameters.

To equation (1.1) are added boundary and initial conditions which will be

specified later.

-. The questions considered here are:
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- under what suitable set of hypotheses is equation (1.1) well-posed

(existence and uniqueness);

- under what further conditions can one treat the corresponding homogenization

problem; in other words, if all the parameters involved (a,bof,,CoeY) depend

upon another variable e measuring the "tightness" of the heterogeneity of

the medium (typically b0(x) = b0 ( ) where b0 (y) is periodic), can one find

a limit problem whose solution would be the limit of the solutions u , and

whose structure would be similar to (1.1), (1.2), (1.3)?

We will give positive answers to both questions in particular cases

only: in one case the nice method of Crandall-Nohel [1] applies and

homogenization follows (13, the splitting case); in 14, we deal with the

general situation for which existence and uniqueness is proved via local

monotonicity and global estimates; in §5 we treat the homogenization for the

linear case via the Laplace transform.

A first approach to this type of problem appeared in Raynal [1].

II. Reformulation of the problem as a Volterra equation.

Let * denote the usual convolution with respect to t on [0,+[.

-As "initial" condition, we assume the history of the medium to be known

- for t negative. One can then rewrite (1.1), (1.2), (1.3) as:

(2.1) [b0u + O*u] + div (-c0 a + y*a) = h

• where a stands for O(OVu(-,.) and the right hand side h includes the

history of the system up to time zero.

It is customary to define

(2.2) c(x,t) = c(X) - y(x,s)ds02.0

and to assume that c(x,t) and b0(x) are strictly-positive valued (a

physical condition). With these notations (2.1) can be written as:
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(2.3) b U, - div {(c*a), - h,- B0 u- ,*u0x

where ' indicates a time derivative.

The initial condition becomes a Cauchy data at t - 0:

(2.4) u(0) - u0  in L2 (Q);

the boundary condition is taken to be compatible with the operator

-div (O(Vu)), for example
x

* (2.5) u - 0 on 3fl x (0,T)

Problem (2.3), (2.4), (2.5), upon integration with respect to time

appears as a Volterra type integral equation (cf. 3.1).

We nov make precise the type of function a appearing here: let

J : (x,r) e n x RN0-- j(x,r) e R , be of Caratheodory type, convex and

equicoercive in r. Assume further that J(x,O) - 0 let a be its sub-

,. differential with respect to r and put:

f(u) = (x~vu(x))dxfo uew

(2.6) + otherwise f

then it is shown in Attouch-Damlamian (1] that f is lower semi-continuous

2
(l.s.c.) convex on L M); moreover, denoting by 3, the subdifferential of

2
" on L (9) one has:

y e av(u) >u eW (A L 2(Qi)

(2.7)
v - -div h for some h such that

h(x) e o(x,Vu(x)) a.e.

This is the sense in which a is used in (2.3) and it also gives a meaning to

• the Dirichlet condition (2.5) (when J is even with respect to r, (2.7) is

actually an equivalence).

-3-



III. The Splitting Case

By this, we mean that is independent of x. Equivalently, by an
Co

obvious change of notation (for 0), c and y can be taken independent of

x (co  is taken to be 1).

A) Existence and Uniqueness

Integration of (2.3) with respect to time from 0 to t yields

( (3.1) bou- divx(c*a) b u - *u+H

where H is the integral of h.

(3.2) Proposition: Assume that b0  and b are in L () +, that B

is in L(01 BV(0,T)), and that y is in BV(0,T). Then equation (3.1)
21 1,1

has a unique solution u in C([O,T], L2 (OW)) L (0,T,W M).
0i ~ ~du Isi 2(x(0T)

Furthermore, is in L d(t X (0,T)).

Proof: We follow here the ideas of Crandall - Nohel (1]. Let e be the

resolvant kernel of Y, i.e. the solution of

(3.3) e - Y - 7*e - 0

Making use of standard results for convolution equations, one obtains

that e belongs to BV(0,T) as soon as y does so. Using (3.3), (2.3)

becomes (- div Q(x,Vu) - G(u)

(3.4) dt x

u(0) - u0 , where

G(u) h + h*e- ( + boe )u +b u e-
0 0 0 0 0

(3.5)

- u (0e + b 0e' + 0' + e*8';)

Above B0  0 (0), e0  e(0) (- y(0)) and 8', e' are the measure

derivatives of 8 and e.

It is easy to check that G is Lipschitz continuous from

I,L I(0,tL 2(0)) into itself for each t > 0. In order to apply a fixed

-4-
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point theory (as in Crandall - Nohel [11) we first consider the following

problem for w in C([O,T]1 L21a)1•

lb - div a (x,Vu) - w

- (3.6) dt d

u(O) - U0

* 1
Now, the operator u + - 1 div o(x,Vu) is the subdifferential of

2 2
(see (2.6)) on L (11) provided the norm on L () is chosen with the

-1 - +
weight function b0 (x) (since b0  and b0  are in L () , this is an

equivalent Hilbert norm on L2 ()). Therefore, (3.6) can be solved with

classical estimates which allow to apply the Lipschitz fixed point

theorem to solve (3.4), (3.5). U

B] Homogenization

• S C E C
We now assume that b co, Y and a depend upon an extra

- parameter e measuring the size of the heterogeneity of the medium. A

typical example is the periodic case where bE (u) - b c W

c (-), etc. ... where bo(y), co(y),... are Y-periodic (Y is an N-
ho

o

dimensional parallelepipedon). We make the following hypotheses:

(3.7) b and (bE are bounded in L (A)0 0

P.is bounded in L (01 BV(0,T)) and Y is bounded in BV(0,T).

Applying proposition (3.2) one gets:

(3.8) Proposition: Under hypothesis (3.7), there exists a unique solution

c C 2
u for problem (3.1) and u is bounded in C([O,T]i L 01)) by a

constant involving only Ih L2I Q)  1 0 L ( ), b 01 L O"( ) L in)

1(b0) I , 1 and Iy'l .
L (1) L (fQ; BV(O,T))

-5-
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In order to study the convergence of u when e goes to zero we make

the following extra hypotheses (3.9) - (3.13):

(3.9) j (xr) is coercive in r uniformly with

respect to x and C; more precisely:

3K1 > 0, K2  R and p >2- such thatN+2
2N

J (xr) ) K 1  r - K2

(3.10) * (defined as in (2.6)) converge in the sense of Mosco on L (0)

to a limit denoted *• which is then known to be of the same integral

form, associated to a convex function j (cf. Attouch El]). Finally

-(u0  is assumed to be finite.

(3.11) B converges in the weak-star topology of L (0i BV(0,T)) to a limit

B (consequently B0  converges to 00 in the weak star topology of

L7(g), in the periodic case, B is just the average of over a

period).

(3.12) b0  converges to some b0  in the weak star-topology of L (9) and

e converges to some e in the weak-star topology of BV(0,T).

Then, e is the resolvant of some y in BV(O,T) (but y has no

relationship to the weak-star limit of Y in BV(0,T)).

Consequently, the mapping G (the analogue of G in (3.5)) is bounded

so that G (u ) is bounded in L 2(0,T L 21)) and therefore, via the

properties of the solutions of the problems (3.6), one can conclude (making

also use of (3.10)) that

(1)

For the defqnition and properties of this convergence, see Mosco [l] or
Attouch [2].
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CO du
(3.13) u is bounded in L (OTu W ) _ is bounded in

2 2L (0,T L ()), hence, as a consequence of Aubin's lemma (see Aubin

c 2
(1]), u is compact in C([O,T]u L (W).

We will show now that u has only one possible limit value u when c

c
goes to zero, which implies that u converges to u. Let therefore c

n

n 2
go to zero so that u converges to some u in C( (0,T]; L ()):

£ £

n n
(3.14) Proposition: Under the above hypotheses ((3.13)), G (u

2
converges weakly in L (11 x (0,T)) to G(u) (as given in (3.5)), and

n d n 2 du
bn -t converges weakly in L (SI x (0,T)) to b0 .dt

C

Proof: We write £ instead of c for simplicity. b0 " - is
n 0 dt

bounded in L2 (Q)(Q = n x (0,T)) and for p(x,t) in V(Q) one has:

f cdcPb£ F- asp fb alQ o dt Q Oat f Qb0 at

which proves the second claim. For G (u ), each term can be treated

independently; let us show convergence for the worst case:

c F C' £
w B *u *e . First

w(x,t) ft ec(t-s) fo uc(xs-a)d8c(xa)ds

so that

'w (x,,)l -Is I 1 Iu (x,)l lo (x'')Iv(OT)
L (0,T) L (0,T) L (0,T)

- and

-w I1 2  co leV1 1 luc 2 a' Ici
L (Q L (0,T)) L (0,T) L (Q; L (0,T)) L (fl; BV(O,T))

c 2 .
Consequently, w is bounded in L (flu L (0,T)) because u being

bounded in L (M H 1(0,T)) is bounded in L2 (Q; C([O,T])). By a

similar argument, one checks that for almost every x in ,

-7-
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u (x,t) + u(x,t) in C( [0,T]) which will be enough to show the

convergence of v to the proper w in V(Q) as follows: for '0

in V(Q)

"..- > -fnff f ,,o'(x,t+s+O)e (t)u (x,s)i (x,o) dt do do dx

£ C

M f f dtds e£(t)ffn do dx 0*(x,t+s+o)uC(xs)O (x,o)

For every (t,s) the last integral converges to

f do fa 0'(x,t+s+o)u(x,s)O(x,o)dx
beas £ a

because converges to 8 *-weakly in L (Q). Furthermore, Lebe 0 s

*.. dominated convergence theorem applies to the (t,s) integral since

integrand is actually bounded by a constant, namely

- upt £ C
0 II sup I suplt I

L (0,Tg L (0)) L (Q)

this last factor being bounded above by supl', . which is finite
L (n,BV(O,T))

by hypothesis (3.7). U

Making now use of the convergence in the sense of Mosco of * to

which implies a demi-closedness property (cf. Attouch [2]) one passes to the

-. limit in

-dvaC (,uC C ( C bC du£
.-div a (xVu ) - G (u0) - b dt

to conclude that u is a solution of

"" du
-div o(xVu) G(u) - b "

"0(3.15)

(_u(O) u 0

Because G is as in (3.5) one concludes to the uniqueness of the

solution for (3.15), hence the conclusion:

(3.16) Theorem: Under the hypotheses (3.7), (3.9), (3.10), (3.11), (3.12)

(and with the notations therein), the solution u of problem (3.4) , (3.5)

;.................................. ...... .... . .
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converges uniformly in C([0,T]I L ()) to the solution u of the analoguous

problem whose thermodynamical parameters are obtained as follows:

8 and b0  are the weak-star limits of B and b 0

respectivelyi

0 is the elliptic homogenization of a (equivalent to the

Mosco convergence of * to # cf. (3.10))y

£
y is the resolvant of the weak-limit of the resolvant of 

y

(these two operations do not commutel). U

IV. Existence and uniqueness in the general case

We start with equation (2.3) again

(4.1) b u' - div((c*o)') g(u), u(O) - u000

' where

(4.2) g(u) - h - 80 u - 0'*u

is Lipschitz continuous from L (0,t; L 2()) intv itself for every positive

t. Therefore, one can solve (4.1) as a Lipschitz perturbation problem (in a

fashion similar to that in III A)) provided one can solve

b dt div((c*o)') = F

(4.3)
u(O) - u

for given F, via a monotonicity argument.

Here, one should notice that the method of Crandall - Nohel does not

apply because c depends upon x so that div and convolution with c ao

not commute.

We make the following assumptions where a and k are given positive

7 numbers:
(44 t 0 1 1 1 0o

(4.4) I) bo, co, 00, are bounded by k in L (0) and
0 c0 FO

1u0  ( k.
L

-9-



11) B' 0 and c' -- Y 4 0 a-e- in Q1 B(T,x) and c(T,x) are

bounded below avay from zero by a; t'-e c(t,x) Is continuous

at t - 0 with values in 17(a).

iii) 0" and c"(-n -Y') are nonnegative measures for a.e. x in

*Iv) (2.6) holds with the following inequalities

Vr,s9 in "

&Ir-si 2 (Ox,r) - (x,s), r-s)

and Io(xr) -O(x,s)i 4 kir-sl

We start by choosing t small enough as follows:

(4.5) Proposition: Let Au -- div((cuo)') - -div(c 0) -div(c'*O). For T
0

2 1
small enough, A is maximal monotone from L (0,Tj H (9~)) -V into

L(0,T); H1 ) V'.

Proof: We estimate

(Au-Av,u-v), DyV

f~ c0 (a(x,Vu(x) - (x,Vv(x)), Vu(x) -Vv(x))dxdt

+ fQ (cl*(c(xVu(x)) -a(x,Vv(x)), Vu(x) -Vv(x))dxdt

Q

-fQ Ic'11oa(Vu) - (Vv)I IVu-Vvidxdt

;0 a fQc0VUV 2dxdt

-fa dxlc'(x)I L I 0,T) ia(Vu)-O(Vv)1 2 (,)IVu-VvI L 2 (0,T)

;a V dxdt - kic'I f IVU-VvI dxdt
17(91u L (0,T))

Note now that Ic'(x)I L1 0T=co(x) - c(t,x) so by (4.4) ii)

* ic'I is1 arbitrarily small for T arbitrarily close to zero.
L(11; L (0,T))

2
For such a T, (Au-Av,u-v) > BiVu-VvI 2 for some positive number e

L (Q)

-10-



".' . . - " .. " -i

Hence A is monotone. Being also ev-rywhere defined and continuous on V,

it is maximal. *

d

Now, for such a small T, b + A is one to one and onto from V to

V' (because of a standard non-linear argument of coerciveness, cf. Brezis

* (1]). This proves local existence and uniqueness of the solution for problem

(4.3), hence for (4.1), (4.2). In order to prove global existence we now get

two a priori estimates.

(4.6) Proposition: Under the above hypotheses, there is a constant C1

(depending upon a and k) such that if u is a solution of (4.1), (4.2),

the following holds:

lul a 2 C and tJ(Vu)l L , (vu))I 1 C
L (0,TIL (0)) L (Q) L (Q)

(consequently IVulL 2  ( kC1, lo(Vu)1 L2 ( r.L2(Q) L2(Q)

Proof: Multiply (4.1), (4.2) by u(t) and integrate by parts to get

I d 1/2 2 + 1/u( t) 2
2- - lb0 u(t)l L

2 u ()2 dt 0L 2 0 L 2(a)

(4.7) + f,(O'*u)(t)u(t)dx + f/(c0 G+coea)(t) 
• Vu(t)dx =

f h(t)u(t)dx

Integrating on (0,t) yields
1 !1/2 2 2
IN u(t)1 + fo fa Bou2 dsdx + fta co(Vu(s))Vu(s)dsdx
2 02 0 0 0 0

L (0)

(4.8) " f fn hou dsdx + ft f. (-O*u)(s)u(s)dsdx +

, 2
+ ft f. (-c'*o)(s)Vu(s)dsdx + fb u0f 2(I )

By (4.4) ii), one has

-11-
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r f'(-B''u)(s)u(s)ds < f' fo -O-(s-T)(-Iu(S)I 2 + 'IUMr~ 12)dsd

f! jj ~u(s)j2(O -O(s))ds + "I f' df -0'(8-T)Ilu(r)I dT

(4.9)

f( j J(0-(s))usl 2do + " (ft -0-'rdr)ftjU(T)I 2 dT)

,.O2 ftB-B u2 s)ds

Hence

(4.10) fo fl 2+ (B'*u)u dxds > f. u(x,t) 2dndx

A similar computation, making use of Young's inequality corresponding

to j and j , gives:

ft fa(coa(Vu) + c'*O(Vu)) • V u dxds
- (4.11) 0*

f in c(x,t) ft J(x,Vu(x,s)) + J (x,O(x,Vu(x,s))dsdx

Now (4.8), (4.10) and (4.11) combined give
.1' 2l '/2 ,2

SIb2 u(t) I + fa B(tx) fo u2(,x)dsdx +
L 2(0)

.

(4.12) + fa c(t,x) lj(s,Vu) + j (x,o(Vu)))dsdx 4

ft fn h 1 d/2 + 2 b u I
0 2 0 0L 2(2)

A standard application of Gronwall's inequality finally yields the desired

result.

(4.13) Proposition: Assume the above hypotheses and that #(u 0 ) is

_ finite. Then, there is a constant C2  (depending upon d, k and #(u

such that whenever u is a solution of (4.1), (4.2) then:

dt l(u)l , 2L (Q) L (0,T)
,du

Proof: Multiply (4.1), (4.2) by du to get

-12-
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ft fnb xs+ tf( + B'%U) L (s)dxds +
ft0 bIdxd 0 ~f dt

* (4.14)

+ ft facc~O + C.O)! (Vu(s))dxds - ft f j h "(s)dxds
0 ~dt 0 d

In (4. 14) we integrate by parts the third term as follows:

ft(B'*u)u' - u(t) ft u(s)O'(t-s)ds 0 '(0) f Wu sds

-ft ui(s) f: u(0)0-(s-O)dads

* making use of 0)0, one can evaluate the last term In a way exactly

*similar to (4.9) above to get

(4.15) f t (0 *u) du tu( t) ft u( u)O'(t-s)ds 0 '(0) ft u 2 ()ds
0 dt.

Again, similarly,

(.1Jo C* 7 (Vu)ds )oV~) (c'*O)Ct) c'(0 ft (s)Vu~o)ds

Using (4.15), (4.16) and the following consequence of the definition of sub-

* differential a - j:

*(4.17) a d(Vu) j j(Vu)

(4.14) yields

ft fo bo ,du,2 2 d + 1 1IS/2u(t)I122  +

0 d t 2 0L 2 ( 0 )

+ f c J(Vu(t))dx ( ft fa.. h d1 dxds +

(4.18) + 0 21 r 2CJVod
2 0 L 2(G)

+ fn u(x,t) ft u(x,s)(-O'(x,t-s))dxds

+ fn Vu(x,t) ft G(x,Vu(x,s))(-c'(x,t-s))dsdx

In the right hand side of (4.18) one can use the following bounds:

(lut 2 2 1

-13-



ii) By Young's inequality

fa ft a(s)Vu(t) " (-c'(t-s))dsdt0
4 fa J(Vu(t))(co-c(t)) + Ic'l IJi(O(Vu))l

L (Q) L (Q)

Now, confronting (4.18) and (4.19) with hypothesis (4.4) 11) and proposition

(4.6) one can conclude. U

(4.20) Theorem: Under hypotheses (4.4), problem (4.1), (4.2) has a unique

solution on [0,T].

Proof: From proposition (4.5), there is existence and uniqueness on some

interval [0,t] t > 0. But the very same proposition gives existence and

7uniqueness locally in time (starting from T > 0, the problem is changed only

insofar as G in (4.2) is modified to incorporate the history up to T; this

* in no way changes the conclusion because of the a priori estimates are global

in time). Combining local existence and the a priori estimates (4.6) and

(4.13) gives the result in a standard way. U

V. Homogenization (for the linear case)

In this paragraph, b, c and y will depend upon the parameter

e which will tend to zerol similarly, a will depend upon C but will be

assumed to be linear with respect to Vu, hence the notation

a (x,r) - A (x)r , where A (x)

is a measurable function from n to a fixed (independent of E) set of

symmetric uniformly positive definite matrices.

We shall assume hypotheses (4.4) to be satisfied uniformly with respect

to C, so that (4.6), (4.13) and (4.20) hold uniformly in C.
C

Consequently, the solutions u of equations (4.1) , (4.2)£, belong to

a compact set of C([O,T; L2(a)) and a bounded set of

-14-
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1 1,2 2L (0,T; H (A)) ( W (0,T1 L (fl))
0

The question of homogenization for (4.1) , (4.2) is: what can be said
C

, of the limit points of u as C goes to zero?

In order to simplify the notations we shall assume that £ belongs to a

* sequence (still denoted E) such that the following holds:

(5.1) u converges to some u in C([O,T]i L ()), in the weak-star

7: topology of L (0,Tj H ()) and the weak topology of

W,2 (O,T; L2 (S))I

(5.2) b converges to b0  in the weak-star topology of L (); 8
0

converges to 8 in

O1'1(0,Tj L'(0)), W-,I'm10,T L 1))SIM

Following integration in t, the Volterra equation can be written as

b."(5.3) - div W F

where

(5.4) E(x,t) - ft A(x)c(xts)Vuc(xs)ds

and

F (xt) - -b0(x)u£ (xt) - ft 8£(xt-s)uc(xs)ds +

(5.5)

+ ft h(x,s)ds + b;(x)u(X)

Cleary F -1
Clearly converges to F in C([0,T], H 1 )) and weakly in

W12 (0,T; L ()), for

(5.6) FRx,t) - b W:(u 0 (x)-u(x,t)) + ft h(x,s)ds - ft (x,t-s)u(x,s)ds

on the other hand, W is bounded in W 12(0,T; L 2M)). In order to

characterize the possible weak limits W of W (the uniqueness of which

will follow, as usual from the unique solvability of the limit equation), we

shall assume, after extracting another subsequence, still denoted £, that

W e converges weakly to some W. So, going to the limit in (5.3) yields:

-15-



(5.7) -div W F

The main task is to find the relationship between W and u, which (5.4)

should yield. Here, because the problem is linear, we use the Laplace

*transform, but to do so we extend the problem to [0,+-) in time as

follows: for t > T, extend 0 by Bc(x,t) S 0E(x,T), h and y by zero

(so c C(x,t) S c (x,T)), and by theorem (4.20) which applies to any

interval (0,T1], u exists for all t > 0, but for t > T, the problems

* become simpler, as seen from (2.1):

E du E E  
- -

b0 7-+ 0 (T)u - divxA(c 0 Vu-y*Vu) 0

A detailed analysis of estimates (4.6), (4.13) shows that in this particular

E
*. case, lu (t)I 1 grows at most exponentially in t with a rate uniform in

• C. Therefore, all the Laplace transforms considered here will be convergent

at least in some complex right half-plane Re A > X0 .

We will denote by

-vo) - j+ e-tv(t)dt for Re X > X0 0

and (5.3), (5.4) yield (5.8) below since the gradient operator in x

commutes with the Laplace transform.

W- A (x) c (xA) V(u (xA))

C
-div W (x,X) - F (x,X)

For fixed A, (5.8) is just the homogenization problem for an elliptic

operator with complex coefficients.

Upon inspection of (5.5), one sees that for every t > 0, FE converges
H-1 H-1

to F in C([O,t]; (M)) but that Fc grows in H at the same rate as

u does. Consequently, for each A with Re A > A0, F (A) converges to
A A

(A) in H- 1I C). Similarly u (X) converges to u(A) weakly in

H (0; C). The sesquilinear form

-16-
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(5.9) a (Al uv) - f cC(x0,)A (x)Vu(x)Vv(x)dx

is continuous coercive on H O li C) under the hypothesis

* (5.10) Re c (xA) W P0 (A) > 0, which we will check later.
0

Indeed, c €  is bounded on 11 for each A such that Re 1>0 so a

is continuous and for such Ass,

Re a (XI u,u) In Re c,(x,)A(x)lVu(x)l dx )

A 2
a a Re c,(x,X)Ivul dx

, since A Is symmetric real coercive. Incidentally, another proof of

- existence for the solution u is thus obtained by applying Lax-Milgram's

theorem for u

One can now apply a compactness result for complex homogenization (see

for example Sanchez-Palencia [1], Murat [1] or 3ensoussan-Lions-Papanicolaou

(1]). For each X with Re X > A., there is a matrix-valued function

D(xX) (independent of F and W) such that (5.8) implies at the limit

C +0:

( divW
(5.11)

(x,A) D(xdX)Vu(x,A)

In order to apply the inverse Laplace transform to (5.11), all that is

needed is that D(x,X) be analytic in X with at most polynomial growth at

JAI + -, in which case it is the Laplace transform of a distribution of

finite order in t, denoted E(x,t). That D is analytic is a mere

consequence of the fact that it is a limit of a sequence of analytic functions

of A, the limit being locally uniform. From the uniform boundedness of c
C

and A , one can conclude that D(x,X) is bounded by a multiple of

(Re X)-. Consequently, Z(x,t) is a bounded distribution of order not more

than 2, on [0,+.[, with values in the cone of bounded measurable symmetric

-17-
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square matrices on

We now check that (5.10) holds: integration by parts in

-Re A)t
i*l (5.12) Re c x,A) - f e cos(Im A tlc (t)dt

E 0 C

gives

-tRe X 2
Re c (x,A) - 1- cos(t Im A))e -  (c -2 Re Ac' + (Re A) c )dt

Since (1 - cos(t Im A)) and -c" are nonnegative functions and c; is a

nonnegative measure,

A I( Re X2
(5.13) Re c (x,A)) (1 - cos(t Im A))e - t  (Re )c (t)dt i

E 0O C

.. combining (5.12) and (5.13) one gets
2

*(5.14) Re c C(x,A)) ( A 2 f; e A (td
1+(Re A)

A ReA
But c (t) a implies with (5.14) that Re c (x,A) a Re )2 which

1+(Re A)

implies (5.10). Finally, we have proved the following theorem:

(5.15) Theorem: Let b , c and aC A (linear case) satisfy

hypotheses (4.4) with a and k independent of C. There exists a sequence

C converging to zero, functions b0(x), B(x,t) and a distribution E(x,t)
n C

n

such that the solution u of the corresponding problem (4.1), (4.2)

2
converges in C([0,T]u L ()) to the solution u of

(5.16) b0 u' - div((E*Vu)') - G(u)
0

C nCnn n
and 8 are the weak limits of b0  and B , and E is obtained via

its Laplace transform D(x,A) which is the complex elliptic homogenization of
* C

c€ (x,A)A nx). U
n

Remark: Even in the case of periodic problems, where there are explicit

formulas for D it is not known whether to+ E(t,x) is in some appropriate

sense, a convex decreasing function of t, not even whether it is a function

of t, as one would suspect. This is one of the problem left open in the

~~........i-............'-.....
............................. -.+........................
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*. theory, the other one being the homogenization of the non-linear case (where

the Laplace-transform cannot be used).
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