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ABSTRACT
A model is given for the non-linear heat equation in a heterogeneous [
medium with memory. Its homogenization is carried out in two particular cases !

(including the linear one).
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SIGNIFICANCE AND EXPLANATION
\

Nonlinear heat flow in a heterogeneous material is considered. In this
model, the internal energy and heat flux depend upon the history of the
temperature and the gradient of the temperature respectively.

The heat conservation law leads to a Nonlinear Volterra integro-
differential equation with appropriate boundary conditions. This problem is
solved under physically reasonable assumptions and its homogenization is
investigated: introducing a small parameter € measuring the "tightness" of
the heterogeneity of the medium (typically we assume €-periodicity for the
physical parameters), the stability of the model is studied (as € goes to

zero) and the homogenized (ideal) limit medium is characterized in some cases,

including the linear one.(<:\\\

The responsibility for the wording and views expressed in the descriptive
summary lies with MRC, and not with the authors of this report.
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HOMOGENIZATION FOR A VOLTERRA EQUATION
* L X 2
Hedy Attouch and Alain Damlamian

I. Introduction

In a heterogeneous medium with memory, a model for the heat equation (see
Nohel [1]) is

13 -

(1.1) 3t + divx Q=nh

where h1 is a given Adiffused source term, £ 1is the internal energy, Q is

1 ’

the heat flux. The latter are assumed to be functionals of the temperature
distribution u with "memory":
(1.2) E(t,x) = by(x)u(t,x) + f:' B(x,t-8)u(s,x)ds

Q(t,x) = -co(x)a(x,Vu(t,x)) +

(1.3)
+ ff. Y{x,t-8)0(x,u(s8,x))ds .

Equation (1.1) is considered on the product £ x (-»,T), wvwhere  is a
bounded regular domain in R? (oxr RF): the function o : Q x R” > Rp,
(x,r) + o(x,r) represents a nonlinear flux law. Its dependence upon x
specifies the heterogeneity of the medium. Similarly bo(x), B(x,t), co(x),
Y(x,t) characterize the spatial heterogeneity of the other thermodynamical
parameters.

To equation (1.1) are added boundary and initial conditions which will be
specified later.

The questions considered here are:

*

Laboratoire de Mathématiques, Univeraitd Paris Sud 91405 Orsay Cedex.
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- under what suitable set of hypotheses is equation (1.1) well-posed
(existence and uniqueness);
- under what further conditions can one treat the corresponding homogenization
problem; in other words, if all the parameters involved (o,bo,B,co,Y) depend
upon another variable € measuring the "tightness" of the heterogeneity of
the medium (typically b:(x) = bo(f) where by(y) is periodic), can one find
a limit problem whose solution would be the limit of the solutions ue, and
whose structure would be similar to (1.1), (1.2), (1.3)?

We will give positive answers to both questions in particular cases
only: in one case the nice method of Crandall-Nohel [1] applies and
homogenization follows (§3, the splitting case); in §4, we deal with the
general situation for which existence and uniqueness is proved via local
monotonicity and global estimates; in §5 we treat the homogenization for the

linear case via the Laplace transform.

A first approach to this type of problem appeared in Raynal [1].

II. Reformulation of the problem as a Volterra equation.

Let * denote the usual convolution with respect to t on [0,+=[.
As "initial" condition, we assume the history of the medium to be known
for t negative. One can then rewrite (1.1), (1.2), (1.3) as:

(2.1) L [bou + B*u] + divx(-c o+ Y*ad) = h

it
where o stands for o(¢,Vu(+*,*) and the right hand side h includes the

0

history of the system up to time zero.
It is customary to define
t
(2.2) clx,t) = cglx) = [ v(x,8)ds

and to assume that c(x,t) and bo(x) are strictly-positive valued (a

physical condition). With these notations (2.1) can be written as:
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(2.3) byu' - div_{(c*e)'} = h - Bju - B'*u ,
where "’'" indicates a time derivative.

The initial condition becomes a Cauchy data at ¢t = 0:
(2.4) a(0) = u, in pi(@)y
the boundary condition is taken to be compatible with the operator
-divx(o(Vu)), for example
(2.5) u=0 on 98 x (0,T) .

Problem (2.3), (2.4), (2.5), upon integration with respect to time
appears as a Volterra type integral equation (cf. 3.1).

We now make precise the type of function ¢ appearing here: let

+
j o+ (x,xr) € Q x A j(x,x) @ R, be of Caratheodory type, convex and

0; let ¢ be its sub-

equicoercive in r. Assume further that 3Jj(x,0)
differential with respect to r and put:

1,1
d(u) = fQ (x,%ulx))dx for u e w,’ (%)
(2.6)

4o  otherwise

then it is shown in Attouch-Damlamian [1] that ¢ is lower semi-continuous
(l.8.c.) convex on Lz(ﬂ)f moreover, denoting by 293¢ the subdifferential of

$ on Lz(ﬁ) one has:

v e 3p(u) ==>fu e w;'1(m n Lz(ﬂ)

(2.7) v = =div h for some h such that

hi{x) @ o(x,Vu(x)) a.e. .

This is the sense in which 0 is used in (2.3) and it also gives a meaning to

\
the Dirichlet condition (2.5) (when 3j is even with respect to r, (2.7) is

actually an equivalence).




CRC R e

. e N T e T e e e e e e e Te T e T T e T R R ORI A AL SECISAL I Sy A AT
I T e I T O it S OC R A e e T T e T e T P

III. The Splitting Case

By this, we mean that %— is independent of x. Equivalently, by an
obvious change of notation (fgr 0), ¢ and Y can be taken independent of
x (c, is taken to be 1).

A) Existence and Uniqueness

Integration of (2.3) with respect to time from 0 to t yields:

(3.1) byu - divx(c*o) = bouo - B*a + H

where H is the integral of h.
(3.2) Proposition: Assume that b, and bS‘ are in L“(ﬂ)+, that B8

is in L°(91 BV(0,T)), and that Y is in BV(0,T). Then equation (3.1)

has a unique solution u in c([0,T]); Lz(ﬂ)) 3 L‘(O,T,w;'1(9)).

2
Furthermore, is in L (2 x (0,T)).

du

dt
Proof: We follow here the ideas of Crandall =~ Nohel [1). ILet e be the
resolvant kernel of Y, 1i.e. the solution of

(3.3) e =Y =Y*e =0 .

Making use of standard results for convolution equations, one obtains

that e belongs to BV(0,T) as soon as Y does so. Using (3.3), (2.3)

becomes
bo g% - divx o(x,Va) = G(u)
(3.4)
u(0) = Uy s where
- * - -
G(u) h + h*e (Bo + bbeo)u + bouoe
(3.5)

-u * (Boe + boe' + B8’ + e*B8';) .

Above Bo = 8(0), e, = e(0) (= Y(0)) and B', e'; are the measure

0
derivatives of B8 and e.
It is easy to check that G is Lipschitz continuous from

1 2
L (0,t;L (2)) into itself for each t > 0. 1In order to apply a fixed

C Sk 2t e Shats 4
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point theory (as in Crandall - Nohel [1]) we first consider the following
2
problem for w in C([0,T]; L (R)):

bo g% - divx o(x,Vu) = w
(3.6)

u(0) = Uy o

1
Now, the operator u + = b divx o(x,%a) is the gubdifferential of
0

¢ (see (2.6)) on Lz(ﬂ) provided the norm on Lz(n) is chosen with the
weight function bo(x) (since b, and b;1 are in Lo(ﬂ)+, this is an
equivalent Hilbert norm on Lz(ﬂ)). Therefore, (3.6) can be solved with
classical estimates which allovw to apply the Lipschitz fixed point
theorem to solve (3.4), (3.5). @&
B] Homogenization

We now assume that b:, °§' Ye, Be and ce depend upon an extra
parameter € measuring the size of the heterogeneity of the medium. A
typical example is the periodic case where b:(u) = Ss(f), c:(x) =
go(f), etc. ... where ;o(y), Zo(y),f.. are Y-periodic (Y is an N-
dimensional parallelepipedon). We make the following hypotheses:

-1

€ € © 4+
(3.7) bo and (bo) are bounded in L (Q) .

8° is bounded in L (R BV(0,T)) and Y  is bounded in BV(0,T).
Applying proposition (3.2) one gets:

(3.8) Propogition: Under hypothesis (3.7), there exists a unique solution
ue for problem (3.1)e and ue is bounded in c¢([0,T]; Lz(ﬂ)) by a

€ €
constant involving only IhILz 2’ 1Bl o ¢ 1Dl o

Q) L (Q) L ()
T

€ €
o) | e o 181 and |y’ "

L7(2) L (9 BV(0,T)) BV(0,T)

-5
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In order to study the convergence of ue when € goes to zero we make

the following extra hypotheses (3.9) - (3.13):
€
(3.9) j (x,x) 1is coercive in r uniformly with
respect to x and €; more precisely:

Ky >0, 3K, € R and p>N-z%i- such that
2N

N+2
-x, .
€
(3.10) ¢ (defined as in (2.6)) converge in the sense of Moaco

3% (x,2) > K, Izl

1) on Lz(n)
to a limit denoted ¢, which is then known to be of the same integral
form, assoclated to a convex function J (cf. Attouch [1]). Finally
¢(uo) is assumed to be finite.

(3.11) Be converges in the weak-star topology of L“(Qi BV(0,T)) ¢to a limit
B8 (consequently Bg converges to Bo in the weak star topology of
Le(ﬂ)r in the periodic case, B is just the average of Be over a
period).

(3.12) b; converges to some bo in the weak star-topology of La(ﬂ) and
ee converges to some e in the weak-star topology of BV(0,T).
Then, e is the resolvant of some Y in BV(0,T) (but Yy has no
relationship to the weak=-star limit of Ye in BV(0,T)).

Consequently, the mapping Ge (the analogue of G in (3.5)) is bounded
so that G°(u°) is bounded in L2(0,7; L2(R)) and therefore, via the

properties of the solutions of the problems (3.6)€, one can conclude (making

also use of (3.10)) that

(1)
For the definition and properties of this convergence, see Mosco [1] or

Attouch [2].

e o
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€ - 1,p dus
(3.13) u is bounded in L (0,T; wo )), at is bounded in

2 2
L (0,T; L (2)), hence, as a consequence of Aubin's lemma (see Aubin
€ 2
{11), u is compact in C([0,T]); L (R)).
€
We will show now that u has only one possible limit value u when ¢

€
goes to zero, which implies that u converges to u. Let therefore en

€
2
go to zero so that u n converges to some u in C( [0,T]; L (Q)):

€ €
(3.14) Proposition: Under the above hypotheses ((3.13)), G “(u ™)

2
converges weakly in L (f x (0,T)) to G(u) (as given in (3.5)), and

€
€ n 2
n du du
b0 at converges weakly in L (Q x (0,T)) ¢to bo at’
€ d ¢
Proof: We write € instead of sn for simplicity. b0 E%- is

bounded in L2(Q)(Q =Q x (0,T)) and for ¢(x,t) in D(Q) one has:

[ 4
edu , . 3P €, _ ¥
oPoat ¥ beoat“—’ oPo 3t ¢

€, €
which proves the second claim. For G (u ), each term can be treated

independently; let us show convergence for the worst case:

€

]
w = 8€ *ue* €

e . First

we(x,t) = f; ee(t-s) fg ue(x,s-o)dBe(x,o)ds

so that
|we(x’o)| o < |e€' 1 Iue(x,')l © lBe(x'.)'BV(O T) ’
L (0,T) L (0,T) L (0,T) !
and
W, < lefl W, 18°1 .
L2 L (0,T)) L (0,T) L°(Q: L (0,T)) L (Q; BV(0,T))

€
Consequently, we is bounded in Lz(Q; LQ(O,T)) because u being
2 1 2
bounded in L (2; H (0,T)) is bounded in L (Q: Cc([(0,T])). By a

similar argument, one checks that for almost every x in @,
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ue(x,t) + u{x,t) in C([0,T)]) which will be enough to show the

€
convergence of w to the proper w in 0'(Q) as follows: for ¥

in 0D(Q)

<veiﬂ> = -fnfff W'(x,t+s+0)e€(t)u€(x,s)Be(x,d) dt ds do ax

= ff dtds es(t:)”‘z do ax w'(x,t+s+o)ue(x,s)85(x,o) .

For every (+,s) the last integral converges to
[ ac IQ ¢ (x,t+s8+0)ul(x,8)B(x,0)dx
because Be converges to £ *-weakly in ﬁ.(Q). Furthermore, lLebe 13's
dominated convergence theorem applies to the (t,s) integral since

integrand is actually bounded by a constant, namely

€ €
le*l, © suplu| 2 * supl|B | _ '
L (0,T; L°(Q)) L (Q)
this last factor being bounded above by supIBel - which is finite

L (Q,Bv(0,T))

by hypothesis (3.7). &

Making now use of the convergence in the sense of Mosco of ¢e to ¢
wvhich implies a demi-closedness property (cf. Attouch [2]) one passes to the

limit in

€
€ € €, € € du
div 0 (x,Vu ) = G (u ) hb at
to conclude that u is a solution of

-div o(x,%u) = G(u) - b -:—‘:
(3.15)

u(O) = uo .

Because G 1is as in (3.5) one concludes to the uniqueness of the
solution for (3.15), hence the conclusion:
(3.16) Theorem: Under the hypotheses (3.7), (3.9), (3.10), (3.11), (3.12)

€
(and with the notations therein), the solution ue of problem (3.4)6. (3.5)
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o il g




2
converges uniformly in C([0,T]; L (R)) to the solution u of the analoguous
problem whose thermodynamical parameters are obtained as follows:
€ €
8 and bo are the weak-star limits of 8 and b0

respectively:;

0 1is the elliptic homogenization of ce (equivalent to the

€
Mosco convergence of ¢ to ¢ cf. (3.10));
Y is the resolvant of the weak-limit of the resolvant of Ye

(these two operations do not commute!). B

IV. Existence and uniqueness in the general case
We start with equation (2.3) again

(4.1) bou' - div((c*9)') = g(u), u(0) = Uy o
where
(4.2) glu) = h = Bou - B'*u

1
is Lipschitz continuous from L (0,t; Lz(n)) intc itself for every positive
t. Therefore, one can solve (4.1) as a Lipschitz perturbation problem (in a

fashion similar to that in III A)) provided one can solve

du
bo at - div((c*0)') = F

(4.3)
u(0) = u

0
for given F, via a monotonicity argument.

Here, one should notice that the method of Crandall - Nohel does not
apply because c depends upon x 8o that div and convolution with ¢ Jo

not commute.

We make the following assumptions where a and k are given positive

numbers :
1 1 1 ®
(4.4) i) bge T4 co0 T B., >— are bounded by k in L (Q) and
b 0° ¢ 0’ 8
0 0 0
lu, ! < k.
0L2(a)

B U L N N L L N S S O S P R N L . S PO S L I L N A R




;: ii) B' <0 and c¢'= -y <0 a.e. in Q5 B(T,x) and c(T,x) are
bounded below away from zero by a; t+ c(t,x) is continuous
at t = 0 with values in Lo(ﬂ).

iii) B" and c"(= -y') are nonnegative measures for a.e. x in
Q.
iv) (2,6) holds with the following inegualities
¥r,s in np,
alr-sl2 < (o(x,r) - o(x,s8), r-s)
and |o(x,r) - oi(x,s8)] < k|r-s] .
We start by choosing t small enough as follows:
(4.5) Proposition: Let Au = -div((c*g)') = -div(coo) - div(c'*0). For T
F?! small enough, A is maximal monotone from Lz(O,T; H;(Q)) =V into

t2(0,7); 8" = v,

Proof: We estimate
(Au-Av,u-v)v,'v >
> fQ co(o(x,Vu(x) - o(x,Vv(x)), Vu(x) - Vv(x))dxdt
+ IQ (c'*(o{x,Vulx)) = o(x,Vv(x)), Vu(x) -Vv(x))dxdt
>a IQ c0|Vu-Vv|2dxdt
- IQ Jc']*]a(Va) - 0(Vv)| |Vu-Vv|dxdt
>a [, ¢ |Tu-7v| %axat

- ' - _
[ axle' ] | lo(Vu)=o(Vv)| ,  |Vu=Vvl ,

L (0,T) L (0,T) L (o,T)

2 [ ]
> a IQ c0|Vu Vv|“axdt - klc'l

1 IQ |Vu-Vv|2axat .
L (21 L (0,T))

Note now that lc'(x)| , = cg(x) = c(t,x) so by (4.4) ii)
L (0,T

)

5:f fe'l 1 is arbitrarily small for T arbitrarily close to zero.
(v L (9L (0,T))

1R 2

Ve For such a T, (Au-Av,u=-v) > 6|Vu-Vv| 2 for some positive number 6.
o L°(Q)

b';"

e -10-

R




-

e

Hence A is monotone. Being also ev~rywhere defined and continuous on V,

it is maximal, B

Now, for such a small T, bo g: + A is one to one and onto from V to
V' (because of a standard non-linear argument of coerciveness, cf. Brezis
(11). This proves local existence and uniqueness of the solution for problem
(4.3), hence for (4.1), (4.2). In order to prove global existence we now get
two a priori estimates.
(4.6) Proposition: Under the above hypotheses, there is a constant o
(depending upon & and k) such that if u is a solution of (4.1), (4.2),

the following holds:

*
lal o ,  SC, and [3(Vw)| ., I3 (a(Van)} , <,
L (0,T:L°(R)) L (Q) L (Q)
2 2 c1
(consequently {|Vul 2 < kC,y, lo(Vu) | 2 < ;—).
L (Q) L (Q)

Proof: Multiply (4.1), (4.2) by u(t) and integrate by parts to get

1 1 2
%:—t |bg2u(t)|22 + IBgzu(t)l 2
L (9) L°(R)
(4.7) + [o(B'*u) (t)ult)dx + [ (coo+c'*o)(t) + Vu(t)dx =

= [q h(t)u(t)ax .

Integrating on (0,t) yields

1 2 t 2 t
Ibgzu(t)l , * [o [ Bgu'dsax + [ [o c o(Vu(s))Vu(s)dsdx

L7(R) 0

N =

(4.8) = f; fﬂ heu dsdx + f; fn (=B'*u) (s)u(sg)dsdx +

1
t 1.5 2
+ fo fﬂ (-c'*0)(8)Vu(s)dsdx + 2 lbo u, Lz(n) ;

By (4.4) ii), one has

-11-

. * T e . - B e - coe - Tt . ., . . . - . " P - . .. - - B l... . e e T e . -
P W S PP I S NP S IR S S SIS SR R R B NP B Rr TP NPT S A o o wlalatata niada®atoata eoa

PP P

PO W

& Bleilocd ol
.




e v, N T L R L T T N T T T N T Y T R T T N T U WY Y VWY TR W

[5t-8"*witeutmas < [§ [2 -pt(s~1) Glute)l? + ducn1?)anar

< f; %Iu(s)lz(ﬂo-s(s))ds + % fg as I; -8' (s=1) lu(1) | 2ar
(4.9)< . , o . )
<3 [5(By-Bls)) lule)|“as + 3 ([§ -8'(n)an) ([ lu(t)| “ar)

t 2
< (By-B(E)) fo u‘(s)ds .
Hence

(4.10) f: Ig Bouz + (B'*u)u dAxds > fn B(x,t) f:lu(x,l)lzdsdx .

A similar computation, making use of Young's inequality corresponding

to 3 and j., gives:

f: fn(coo(Vu) + ¢c'*0(Vu)) * V u Axds >
(4.11)

*
> IQ cix,t) fg j(x,Vu(x,s8)) + J (x,0(x,Vu(x,s))dsdx .

Now (4.8), (4.10) and (4.11) combined give
(4 1
1% 2
2 Ibo u(t)| 2

+ fn B(t,x) f: uz(l,x)dsdx +
L ()

t .
(4.12) + [q ete,x) [(3(s,T) + 3§ (x,0(Vu)))dsax <

1
L <f§fnhudsdx+‘%|b/2u

|2
0 2 *

0'1L2(a)
A standard application of Gronwall's inequality finally yields the desired

result.

(4.13) Proposition: Assume the above hypotheses and that ¢(u°) is

finite. Then, there is a constant C, (depending upon @, k and ¢(uo))

such that whenever u is a solution of (4.1), (4.2) then:

d
<2 <c, .,
ac Lz(Q) 2

f$(w)l <c, .
L (0,T)

Proof: Multiply (4.1), (4.2) by g% to get
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t du, 2 t du
fo fn boldtl dxds + fo fn(Bou + B'*y) at {(s)dxds +

(4.14)
t 4 t 4
+ Jg Jtego + c'*0) 5o (Vuls))axds = [ [o h Ef(a)dxds .

In (4.14) we integrate by parts the third term as follows:

f: (B'*u)u’ = u(t) fg u(s)B'(t-s)ds - B'(0) f; uz(s)ds

- I: u(s) f: u(o)B8"(s~0)dods .

Making use of 8" > 0, one can evaluate the last term in a way exactly
similar to (4.9) above to get
(0.15)  [% (B 25 ge) & uieBt(t-mas - 8'(0) [E uP(aras .
0 dt 0 0
Again, similarly,
(4.16) [ (c'*0) = (Vu)ds > Vult) * (c'*a)(t) - ¢'(0) [o ols)Vu(s)as .
Using (4.15), (4.16) and the following consequence of the definition of sub-

differential o = 33:

a a
(4.17) o at (Vu) = at J(Vu) ,
(4.14) yields
t du 2 1.2
[o Iq by Vag! axds + 3 185 u(t)le(n) +

+ [ epdtVutenax < [ [on %% axds +

1 g%, |2
(4.18) + 5 1841,

+ [ e, 3(Vu )ax +
i@y 00

+ fﬂ u(x,t) f: u(x,s)(=8'(x,t-8))dxds
+ fn Yu(x,t) f; o(x,u({x,8))(=c'(x,t-8))dsdx .

In the right hand side of (4.18) one can use the following bounds:

n g f; a(t)uls) (-8 (t~8))dxds <

(4.19)

2
< |ul * |8
£”c0, 1.2 (a)) v’ (0,1 10))

“13-




ii) By Young's inequality
[q I; o(s)Vult) * (-c'(t-8))dsdt

< o $3Tate))e mete)) + 1l _ 13 (a(Tun)| .
L”(Q) L' (@)

Now, confronting (4.18) and (4.19) with hypothesis (4.4) ii) and proposition

(4.6) one can conclude. [

(4.20) Theorem: Under hypotheses (4.4), problem (4.1), (4.2) has a unique
solution on [0,T].

Proof: From proposition (4.5), there is existence and uniqueness on some
interval [0,t] t > 0. But the very same proposition gives existence and
uniqueness locally in time (starting from 7t > 0, the problem is changed only
insofar as G in (4.2) is modified to incorporate the history up to T; this
in no way changes the conclusion because of the a priori estimates are global
in time). Combining local existence and the a priori estimates (4.6) and

(4.13) gives the result in a standard way. N

V. Homogenization (for the linear case)

In this paragraph, b:, Be, ¢ ana Ye will depend upon the parameter
€ which will tend to zero; similarly, os will depend upon € but will be
assumed to be linear with respect to Vu, hence the notation

oe(x,r) = 2% (x)r , where a%(x)
is a measurable function from I to a fixed (independent of €) set of
symmetric uniformly positive definite matrices.

We shall assume hypotheses (4.4) to be satisfied uniformly with respect
to €, so that (4.6), (4.13) and (4.20) hold uniformly in €.

Congequently, the solutions ue of equations (4.1)5, (4'2)5' belong to

2
a compact set of C((0,T]; L (R)) and a bounded set of
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'2(0,'1'; 1.2(9)) .

: L”(0,1; n;(m) Aw

The question of homogenization for (4.1)5, (4.2)6 is: what can be said .
of the limit points of ue as € goes to zero?
In order to simplify the notations we shall assume that € belongs to a
sequence (still denoted €) such that the following holds:
(5.1) ue converges to some u in C(([0,T]; Lz(ﬂ)), in the weak-star
topology of LG(O,T: H;(Q)) and the weak topology of
w20, L2
(5.2) b: converges to b, in the weak~star topology of LD(Q): Be
converges to B in

otw'*o,mr L@, w0, LYy .

Following integration in ¢, the Volterra equation can be written as

(5.3) - aiv W& ~F%

where

(5.4) we(x,t) = f; Ae(x)ce(x,t-s)Vue(x,s)ds
and

FE(x,8) = ~bo(xu’(x,8) = [ 85(x,t-8)u(x,8)ds +
(5.5)
+ f; h(x,s)ds + hg(x)uo(x) .

Clearly F€ converges to F in c((o,T], H-1(9)) and weakly in
w"z(o,'r; LZ(Q)), for
(5.6) Fix,t) = bo(x)(uo(x)-u(x,t)) + f; h(x,s)ds - f; B(x,t-s)u(x,s8)ds .
On the other hand, we is bounded in W1'2(0,T; LZ(Q)). In order to
characterize the possible weak limits W of we (the uniqueness of which
will follow, as usual from the unigue solvability of the limit equation), we
shall assume, after extracting another subsequence, still denoted ¢, that

we converges weakly to some . So, going to the limit in (5.3) yields:
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(5.7) -divW =F

The main task is to find the relationship between W and u, which (5.4)
should yield. Here, because the problem is linear, we use the Laplace
transform, but to do so we extend the problem to [0,+w) in time as

follows: for t > T, extend Be by Be(x,t) = Be(x,T), h and ye by zero
(so ce(x,t) = ce(x,T)), and by theorem (4.20) which applies to any

interval (0,T4], ue exists for all t > 0, but for ¢t > T, the problems
become simpler, as seen from (2.1):

€
€ du € € € €
——— - -y® = .
b0 at B (T)u divxa(coVu Y*Vu ) 0

A detailed analysis of estimates (4.6), (4.13) shows that in this particular

€
case, Ju (t)] grows at most exponentially in ¢t with a rate uniform in

5'(Q)

€. Therefore, all the Laplace transforms considered here will be convergent
at least in some complex right half-plane Re ) > Xo.

We will denote by

v(A) = I;° e ty(t)at for Re A > Ay
and (5.3), (5.4) yield (5.8)e below since.the gradient operator in x
commutes with the Laplace transform.
WEx,A) = A% e (x,A) Tlu_(x,2))
(5.8)e . .
- aiv WE(x,0) = FE(x, )

For fixed A, (5.8)e is just the homogenization problem for an elliptic
operator with complex coefficients.

Upon inspection of (5.5), one sees that for every ¢t > 0, Fe converges

1

to F in c([0,t); H-1(9)) but that F° grows in H™' at the same rate as

e ~
u does. Consequently, for each A with Re A > Xo, Fe(k) converges to

F(A\) in 3-1(91 €). Similarly ue(l) converges to u{A) weakly in

H;(Qr €). The sesquilinear form
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(5.9) a A1 uw) = [o e x, A" (x)Vulx) Tv(x)ax
is continuous coercive on H;(ﬂl €) under the hypothesis
(5.10) Re ce(x.l) > po(l) > 0, which we will check later.

Indeed, e is bounded on 2 for each A such that Re A > 0 go a

is continuous and for such \'s,

Re ae(lt u,u) = In Re cc(x,X)Ac(x)IVu(x)lzdx >

>a Iﬂ Re ct(x,A)IVulzdx

since Ae is symmetric real coercive. Incldentally, another proof of
existence for the solution ue is thus obtained by applying Lax-Milgram's
theorem for ;c.

One can now apply a compactness result for complex homogenigation (see
for example Sanchez-Palencia [1], Murat [1] or Bensoussan-Lions-Papanicolaou
[1]). For each A with Re A > Xo, there is a matrix-valued function

D(x,A) (independent of F and W) such that (5.8)_ implies at the limit

€ + 0:

-divW=F
(5.11) - -
w(xlx) = D(x,A)Vu(x,A) .

In order to apply the inverse lLaplace transform to (5.11), all that is
needed is that D(x,A) be analytic in A with at mest polynomial growth at
{A{ + », in which case it is the Laplace transfurm of a distribution of
finite order in t, denoted E(x,t). That D is analytic is a mere
consequence of the fact that it is a limit of a sequence of analytic functions
of A, the limit being locally uniform. PFrom the uniform boundedness of ce
and At, one can conclude that D(x,\) is bounded by a multiple of
(Re A)-1. Consequently, E(x,t) is a bounded distribution of order not more

than 2, on [0,4»[, with values in the cone of bounded measurable symmetric
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square matrices on .

We now check that (5.10) holds: integration by parts in

-(Re A)t

(5.12) Re ce(x,l) = f: e cos{Im A t)ce(t)dt

gives

t Re

Re ce(x,X) = f;(1 - cos(t Im )))e A(c; - 2 Re Xc; + (Re X)zce)dt .

Since (1 - cos(t Im 1)) and -cé are nonnegative functions and c; is a
nonnegative measure,

Re

(5.13) Re ce(x,X) > I;o (1 = cos(t Im A))e-t x(Re A)zce(t)dt ;

combining (5.12) and (5.13) one gets

- 2
(5.14) Re c_(x,A) > AR J) 7 et R de (vae
1+(Re A)
- Re A
But c_(t) > a implies with (5.14) that Re c _(x,\A) > a which
€ € 2
1+(Re 1)

implies (5.10). Finally, we have proved the following theorem:

€ €
(5.15) Theoxem: Let b:, c , Be and oe = A (linear case) satisfy
hypotheses (4.4) with a and k independent of €. There exists a sequence

€ converging to zero, functions bo(x), B(x,t) and a distribution E(x,t)
€

such that the solution u " of the corresponding problem (4.1), (4.2)
2
converges in C([{0,T]; L (2)) to the solution u of

(5.16) bou' - Aiv((E*Vy)') = G(u) .

€ €
by and B are the weak limits of bon and B n' and E is obtained via
its lLaplace transform D(x,\) which is the complex elliptic homogenization of
- €
c, (x,0A M(x). W

€
n

* Remark: Even in the case of periodic problems, where there are explicit

formulas for D it is not known whether ¢t~ E(t,x) is in some appropriate

v
s
3
la
»

i

'r

4

sense, a convex decreasing function of t, not even whether it is a function

~
o

.
Dty

T

of t, as one would suspect. This is one of the problem left open in the

—4 -
v e .
. ".
.
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theory, the other one being the homogenization of the non-linear case (where

the Laplace-transform cannot be used).
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