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Various theoretical approaches to laser-induced molecular dynamics
in the context of multiphoton processes are reviewed. The presentation is
divided into two general categories: gas-phase processes and surface
- processes. Within the first category, unimolecular dynamics and molecular
' collisions are addressed. Within the second category, energy flow in
adspecies-surface systems is examined, and laser applications to surface
chemistry are discussed.
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I. Introduction

Theoretical techniques for describing laser-induced molecular dynamics
combined with multiphoton processes are reviewed, with emphasis on our own
work carried out during the past five years. The presentation is divided
according to Sections II and III as Gas-Phase Processes and Surface Processes,
respectively. The former section is further divided into two parts, where
Part A is Unimolecular Dynamics and Part B is Molecular Collisions. Within
Part A we address five topics: 1. heat-bath models (both classical and
quantum mechanical); 2. the rate equation approach using a quasi-continuum
model; 3. the excitation of intramolecular modes; 4. selectivity in
multiphoton processes; and 5. multiple-frequency laser excitation. Within
Part B we address two topics: 1. resonance formation, chemical reactions
and transition-state spectroscopy; and 2. isotopic selectivity.

Section III is also divided into two parts, where Part A is Energy
Flow in Adspecies-Surface Systems, and Part B is Laser Applications to Sur-
face Chemistry. Part A constitutes most of Section III and is further di-
vided into five topics: 1. microscopic treatment of single-phonon and multi-
phonon processes; 2. selective excitation and thermal effects, including
(a) the use of the memory function to describe feedback mechanisms from the
substrate to the adspecies, (b) the competition between selective and nonse-
lective processes in a muitilevel system, and (c) adbond excitation in the
hydrogen/tungsten system; 3. photon energy population; 4. isotope effects;

and 5. dynamic effects associated with migration and desorption.
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II. Gas-Phase Processes

A. Unimolecular Dynamics

:i Since the first report of infrared laser dissociation of polyatomic
molecules in 1971,1 the phenomena of multiphoton excitation (MPE) and
dissociation (MPD) have been extensively studied and have been shown to be
2 a novel method tor vibrational-mode-controlled infrared photochemistry.2
Most of the major aspects of MPE and MPD are now qualitatively understood

by experimental measurements and related theoretical studies. However,

the quantitative understanding of multiphoton processes and their appli-
cations to selective photochemistry is still in its infancy. The complexity
of the aforementioned processes results not only from the coherent properties
of the laser radiation but also the states of the excited molecular system.
Some of the important questions which have been (or are expected to be)

addressed are the following:

(i) For a large molecular system, what is the nature of the excited
vibrational state and how does it change with laser parameters, such as
intensity, fluence (intensity x time) and frequency?

(i1) What is the magnitude of the absorption cross section?

(iii) What is the interplay between coherent and incoherent processes
when the molecular system is excited and makes the transition from discrete
states to the so-called quasi-continuum?

(iv) What is the role of intramolecular vibrational relaxation (IVR)
in MPE, and what determines the rate of IVR? Is it always fast enough
to randomize the energy absorbed by the intramolecular modes, so that a

a statistical theory may be used to describe MPD?

T Wy TR e T




(v) How is the degree of isotopic selectivity determined by the IVR
rate, the laser pumping rate and the dissociation rate?

(vi) What are the dynamics of the dissociation event?

(vii) How fast is the randomization of intramolecular energy
compared to a chemical process such as fragmentation?

Quantitative answers to the above questions will provide us with an
understanding of the photophysical (excitation and relaxation) as
well as the photochemical (decomposition and reaction of fragments)
processes. However, the theory developed so far and the experimental
information are not sufficient for us to construct these answers. We
therefore note that the discussions in this Part A of Section II

only provide either qualitative or semi-quantitative descriptions of the

above features of MPE and MPD.

Two distinctly different approaches will be discussed: (i) heat-

‘ bath model (HBM) and (ii) quasi-continuum model (QCM). In the first

'l approach, HBM, the active mode of the molecular system is singled out,

. and the coupling between this mode and the bath modes provides the relaxa-
iﬁ tion mechanism. With a consequent energy leakage from the active tao the
!’ bath modes, the molecule is heated up and the increase of the mode-mode

' coupling results ina red shift and smearing out of the absorption spectrum

of the pumped mode. The second approach, QCM, is based on a picture in

which the polyatomic molecule forms a quasi-continuum (QC) at high energies
due to its high density of states. In this approach, all vibrational modes

of the system are treated on equal footing, and each individual state of
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3 the QC is generally a superposition of all the modes. To describe the
dynamics of MPE based on HBM, we shall start with a simple classical

model and a generalized Langevin theory. Then the results of a quantum
treatment will be discussed and compared with those of the classical approach.
The second approach, QCM, which involves the rate (master) equation for

the energy populations, will be used to describe the phenomena aof MPO.

To demonstrate the dynamics of MPE, a quantum treatment of IVR will be
discussed and the rate of IVR for SF; molecule will be estimated.

Different types of selectivity and the possibility of bond-selective

photochemistry will be investigated. Finally, the coaperative effects

in MPE via multiple-frequency lasers will be analyzed based on both a

quantum treatment and a classical treatment.
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1. Heat-Bath Models
13-10

10-13

Both classica and quantum treatments have been employed

to calculate the photon energy deposited in a damped anharmonic classical/

:
)

quantum oscillator. The total energy of a laser-excited molecular system
may be described either by a classical Lagrangian or a quantum Hamiltonian,
while the energy transfer dyanamics is governed by Newton's or Heisenberg's
equations of motion. The absorption cross section may be obtained from the
classical power absorption (force x velocity) or from the quantum rate of
excitation (expectation value of the energy operator). Immediately below,
classical and quantum models are shown, and the results will be compared
later in Part A.5 of this section, where the absorption cross section

of two-laser excitation will be investigated.

a. Classical l"‘lodels‘s'8

The classical Lagrangian describing a polyatomic molecule subject to

infrared radiation may be written in terms of the normal coordinates Qi

as follows:

L(Q5Qps---05) = Ly = V + F(£)Qy, (I.1)

where L0 is the unperturbed Lagrangian, and V is the interaction potential
of the molecular system in which one of the normal modes, QA’ is infrared
active and coupled to the laser driving force f(t). The corresponding

Newton's equations of motion are

- . . - L - A a o e s - . ek )
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For a given potential energy V, the equation of motion for the pumped mode
(normal coordinate) may be derived by Eq. (II.2). However, the solution
of that is in general not available due to the set of coupled equations
whose dimensionality is proportional to the numbers of normal modes in the
system. It is possible that for a simple functional form of V, e.g.,
linear coupling case involving terms like % QAQi’ the many-body problem
of the system may be reduced to a single-body problem in which the
ensemble-averaged equation of motion of the active mode coordinate is

given by,8 letting Qy = Q,
<6> + y<@> + msz <Q> = eE cos(wt)/m. (11.3)

<...> denotes the ensemble average over the bath-mode coordinates; y is

a damping factor resulting from the active- and bath-mode interactions;

E is the electric field of the IR radiation linearly polarized in the
direction of QA with a circular frequency w; m and e are the reduced mass

and the effective charge of the active mode which is treated as an anharmonic

oscillator with an effective frequency given by6

2
weff = (L)O - K*A * (11.4)

where wg is the harmonic frequency of the active oscillator and is red
shifted by the anharmonic term proportional to the anharmonicity K* and

the steady-state amplitude A.
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By ignoring the transient damping part of the solution of Eq. (II.3),
the steady-state solution gives us the instantaneous power absorption of
the oscillator defined as force times velocity. For near-resonance

excitation, the time- and ensemble-averaged power absorption is found to

4m ]
( a-k*A?) 242

which is a Lorentzian with FWHM = 2y, The above expression provides us

(I1.5)

with a classical absorption cross section o = <dE/dt>/I, where I is the laser

intensity related to the electric field by I = EZC/Bn, ¢ being the speed
of light. The steady-state average excitation (numbers of photon absorbed)
of the active mode defined by X = mmAz/Zﬁ = «dE/dt>/(vhw) corresponds to

the roots of the cubic equation

2

w

aX" +bX" +cX+d-=0,
a = (k*/mag)? = (R*)2,
b = -2aK*

¢ = (a%n?2)/(k%)°

d = - e%E%/ (4mhu).

[The coefficient "c" in Eq. (I1.6d) is obviously not the speed of light.]
We note that the above expression shows an asymmetric Lorentzian when
K* # 0 and there is an optimal detuning a* = K*X*, where X* is the maximum

value of X given by (dX/da) = 0. Furthermore, for a fixed laser intensity,

(I1.6a)
(I1.6b)
(I1.6c)
(I1.6d)

(I1.6e)
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the excitation profiles, X vs. A, show the "bistability" feature given
by the criterion K*>K*» = yz/(2d)1/2.

We have shown that the absorption cross section is governed by a
Lorentzian, Eq. (II.5), where a constant damping factor (or the energy
relaxation rate), y, is assumed. For a realistic system, the damping

factor could be time dependent, and the phase of the oscillator couid

also relax due to the incoherent behavior of the excited molecular system.

For a more rigorous description of the dynamics of MPE, instead of the
simple equation like Eq. (II.3), we consider the generalized Langervin
equation (GLE)7

.ot
G+ [ el (te) + wZeeko(t-t')1Q(t") = [F(t) + R(t)1/m.

Here we have introduced the energy damping kernel K1 and the dephasing
kernel Ky f(t) and R(t) are the laser driving force and the bath-
induced random force. Considering a Markoff process with Kl(t) = 2y16(t)
and an exponential dephasing kernel Kz(t) = exp(-2y2t), we find, from the
Laplace-Fourier transform of the velocity autocorrelation function, the

average energy absorption rate to be (assuming that <R(t)>=0)

<S> = ( E) P(T ) 7 7|
dt ) ( 0 {: C™+D }
P(Ty) = (2fw) ™" (KTy/m)[1-exp(-hu/kTy)],

-2 L2,
Yeff TY T M1T2

= W(Yl + Yz)’

Y T Y T I . I T ST T ST Y % _a e e o m Lt e et a A s e m m e e e .

(I1.7)

(I1.8a)

(I1.8b)

(I1.8c)

(I1.8d)
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where T0 is the initial temperature of the molecule. For the situation of

2 2
near-resonance, wgee - = 2wA and Y1Y2<<w2, Eq. (I1.8) becomes

dE eE 2 (Y1+Y2)
<a?>= -2— P(TO) 2 2 > . (11.9)
(a-k#a2) 24y +v,) ¥/

Since at steady state the rate of energy deposited in the active mode
equals the rate of energy relaxation, the above expression also repre-
sents the rate of energy absorbed by the whole system (active plus bath
modes). By conservation of energy, we then readily obtain the rate
equation for the active mode energy as

d<EA>
gt - ol - yl(<EA>-<EB>), (11.10)

where ol = <dE/dt> given by Eq. (II.9) is the energy absorption rate of

the whole molecule with absorption cross section o and laser intensity

I, and <EA> and <EB> are the ensemble-averaged energies of the active mode
and the bath modes. We note that in this classical rate equation the

net energy transfer rate of the active mode is characterized by the T1
energy relaxation rate (yl), while the total absorption cross section

of the molecule, oI, is governed by the total relaxation rate, WRALE

We shall show later that the above derived classical rate equation can
also be derived from a microscopic quantum Hamiltonian.

In addition to the above phenomenological models, a classical

5 trajectory calculation of MPE was recently made for SF6.9 The

5 results show that the energy transfer and dissociation rate depend

.

ke
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on laser fluence (intensity x time), and the intramolecular energy
relaxation rate is estimated to be on the order of a picosecond.
Another classical treatment of MPE and MPD for a system of two
nonlinearly coupled oscillators was studied by means of Krylov-
Bogoliubov-Mitropolsky theory.13 The results show two regions of
behavior for the exchange of energy between the system and the laser
field: (i) the regular region with well-defined frequencies and (ii)
the erratic region. Motion in the latter region leads to dissociation
of the pumped molecule. For a single oscillator, the motion is always
periodic, while for a system with many oscillators, e.g., a polyatomic
molecule, the motion of the system becomes ergodic when it is highly
excited due to the strong anharmonic coupling among the intramolecular

modes.

b. Quantum-Mechanical Models

In the quantum heat-bath treatment, the MPE of a polyatomic molecule

may be described by the total Hamiltonian

H=Hy + Hg + Hpp + Hpp *+ Hgp + Hpe

HA,B represent the unperturbed Hamiltonians of the active (A) mode
and of the bath (B) modes with the interaction Hamiltonian HAB; HAF
represents the A mode and laser field interaction; and the last three
terms, which are often neglected in theoretical studies, represent the
mode-mode couplings among the active modes (HAA)’ the bath modes (HBB)

and the direct laser excitation of bath modes (HBF)‘ For an isolated

+ Hyeo (I1.11)
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molecule or collisionless process, HAA is negligible. The mode-mode
coupling among the bath modes usually is very strong such that the time
scale for reaching a thermal equilibrium among these modes is much
faster than that of the active-mode excitation and relaxation. There-
fore, the rapid dynamics within the bath modes governed by HBB may be
absorbed into HB in which the occupation number of these modes is
treated as a constant. Finally, the direct excitation of the bath

modes through HBF is not significant when their frequency

spectrum is far off-resonant with the laser frequeny. Within

the spirit of the heat-bath treatment, we assume that the active mode
can always be singled out from the other modes, which serve as an infinite
energy sink defined by a constant temperature. However, we may have the
situation that the IVR rate is very fast, particularly when the molecule

is highly excited, such that the photon energy is rapidly randomized to

all the bath modes. For a finite heat bath, we expect to have energy
feedback from these thermal bath modes to the active mode. Furthermore,
when the active mode is highly excited, its vibrational frequency may be
comparable to that of the bath modes, and the total absorption cross
section of the molecule reflects both HAF and HBF‘ In the above
described situation, the heat-bath mode model may not be an appropriate

treatment of MPE processes. A more relevant treatment based on an

"equal footing" of all the modes will be discussed later. In the
following discussion, we shall neglect the last three terms in Eq. (II.11)

and focus on the excitation of the active mode while treating the bath

DN o

modes as an infinite sink.

RS
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The second quantization expressions of the components of the

Hamiltonian of Eq. (II.11) are given by12’14 |

HA = ﬁ(wo-e*a+a)a+a, (I1.12a)
1.
b,
B Z ﬁmJ JbJ (I1.12b)
Hyo = H3(G B a' + G*B'a) (11.12¢)
AB 5 VvV v ’? chet
Hyp = AV cos(ut) (2" +a) (11.12d)
Vo= (2fmag) A (0)E (11.120)
af,a and b§’ bj are the usual harmonic vibrational ladder operators for
the active mode and the j-th bath mode with frequencies wg and wjs

respectively; e* is the anharmonicity of the nonlinear quantum oscillator
(active mode) with the derivative of the diple moment u'(0) evaluated at
the equilibrium point; and Bv = Hbj represents a multimode operator with
an order p defined by p = wo/wj.

In the Heisenberg picture, the equations of motion for the operator

5 are given by

_gﬂl A o), 1] (11.13)

for 0 = a' - B » B, etc. Here 5(t) = exp(th/ﬁ)a exp(-iHt/h) is a time-

dependent Heisenberg operator of the Schrodinger operator 6 which is time

independent. In general, tractable solutions of the above coupled
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equations are not available due to the many-body effects and the nonlinear
couplings of the bath modes. However, by employing the so-called Weiskoff-
Wigner single-pole approximation or assuming a Markoff process for the bath
modes, the many-body effects resulting from HAB may be reduced to a damping
factor and a frequency shift for the active mode. The above treatment is
similar to the usual phenomenological approach, where a complex frequency
of the active mode is assumed, except that the damping factor may be
rigorously derived based on the microscopic Hamiltonian. Beyond this
heat-bath model, the actual mode-mode coupling should be rigorously

treated without assuming a continuum spectrum for the bath modes. This
will be investigated later in the intramolecular mode-mode coupling within
the SF6 system.

Within the heat-bath model, we obtain a set of equations of motion
.1.

for the active mode operator and the average excitation n =<a a> in the
rotating-wave approximation,
d<a> _ i(a-2e*<a’ + +y,)/2 iV/2 (I1.14a)
dt = = |1{A-ce™<a a>) (yl Y2 /2l<a> - i ’ .
~L
%;2 = - (iV/2)<<a’-a>> - v (<n> - ). (11.14b)

<<...>> represents the ensemble average over the active- and bath-

mode coordinates; 1,2 are the bath-mode-induced energy and phase
relaxation factors; N is the multimode occupation number of the bath
modes; and all other parameters are as previously defined. In the adia-
batic approximation, [a[(y1+yz)>>|él, we obtain the rate quation

for the active-mode excitation,




’ 15 .
:ﬂ - gl (). (11.15)
This is seen to be the quantum version of the classical rate equation
(11.10) by noting that <Ep> = fw<n> and <Eg> = fiwN. The quantum
% absorption cross section of the molecule is given by
A(Ylﬂz)ﬁw
g = 5 > (I1.16)
(A'2€*<n>) +(Y1+Y2) /4
where A = 4x(V/E)?/c.
Using Eq. (II.16), a cubic equation for the steady-state excitation
X = <n(t)>S s is readily found from Eq. (II.15),
. Al(1+v,/v,)
g X = 3 2 1 — +N, (11.17)
- (A'ZE*X) +(Y1+'Yz) /4
which is identical to the classical results in Eq. (II.6) [or Eq. (II.9)
» with ) included] if we ignore the initial heat-bath occupation number
. N and make the corresponding relations: 2e* = K* and Al = d. The above
g
results show the power law for the steady-state excitation vs. laser
intensity X « Ip, with p = 1 in the low-excitation harmonic region,
Ze*X<<(y1+72)/2, and 1/3 €< p <1 in the high-excitation anharmonic
region. Furthermore, from the time integral of the total cross section
of the molecule, ol/fiw, we obtain the power law for the mean numbers of
photons (<N>) absorbed by the molecule (active mode plus bath modes) vs.
laser fluence (¢) as
N> = [dt(ol/fw) = o3, (11.18a)
o= [dt1, (I11.18b)
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where the nonlinear power q<1 results from the anharmonicity 2e*<n> of
the absorption cross section. The calculated power law may be used to
fit the experimental results in which the average excitations are deduced
from the direct attenuation of the laser beam propagating through the

SF6 gas ce11.15(a) In Fig. 1, we see that in the low-excitation region
the data are well fitted by Eq. (II.18) with g = 1, whereas in the high-
excitation region the curve is bent to a power law with q = 0.65. An
alternative measurement of <N> vs. laser intensity, rather than the
fluence, is shown in Fig. 2, which indicates the power law of <N> « 19
with q<1.15(0)

From the above calculated results based on the heat-bath model,
the following features of MPE may be summarized:

(i) The steady-state excitation of the active mode is governed
by the laser intensity, rather than the laser fluence, by a power
Taw <>, o = IP with 1/3 <1,

(i1) When the excitation of the active mode is saturated, i.e.,
the pumping rate is balanced by the relaxation rate, the number of

photons absorbed by the molecule (active plus bath modes) is characterized

by the laser fluence with a power law <N> « ¢q with q«l.

(iii) Mode-selective excitation is possible by a high-power short-
pulse laser in which the excitation rate of the selectively-pumped mode
is comparable or faster than the relaxation rate, i.e., the energy leakage
rate from the pumped mode to the bath modes.

(iv) For long-pulse laser excitation of a system with very strong mode-
mode coupling, the photon energy is rapidly randomized to all the modes,

and an effective vibrational temperature of the excited molecule is defined

Py Y = b WL P O Y a ~ j
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by the conservation of energy as follows:
Sﬂh = <N>fw, (I1.19a)
where S is the total number of vibrational modes (e.g., S = 15 for
the SF6 molecule), and Nﬁ is the overall occupation number of the
molecule given by the Bose-Einstein function
- — -1

Here all the intramolecular modes are assumed to be in thermal
equilibrium with an effective temperature Teff and a mean vibrational
frequence w. We note that the average molecular excitation <N(t)>
given by Eq. (I1I.18) in general is time dependent through the
temporal profile of the laser pulse, I(t). Therefore Teff(t) is also
time dependent and reaches a peak value at the end of the pulse, e.g.,
a square pulse, and gradually decays to the initial temperature after
the pulse is off. Further discussion of Teff will be given later
when a thermal population is introduced by the solution of the rate
equatiun,

The heat-bath model may be extended to a system consisting of
several subgroups in which the mode-mode coupling is more significant
within each subgroup than between the subgroups; In this situation
the specifically-excited subgroup may be characterized by a higher

T than the others and in turn opens the selective channels of

eff
laser-induced rate processes which, e.g., are governed by an
Arrhenius form exp(-EA/kTeff), where EA is an activation energy of

the specific channel. We note that the rate processes are determined

e T e e o 4 a2 A e A o Al @ e 4 a A A . fm . . _a_m _3ata A‘-J
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by the ratio of EA/kTeff and not simply by EA’ so that the "easier channel"

is not necessarily the one with a lower EA.

2. Quasi-Continuum Model -- Rate Equation Approach
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We now discuss the second quantum approach,with treats all vibrational
modes on an equal footing, with the eigenstates of the system being mixtures
‘i‘ of all the normal modes. Due to the high density of vibrational states at
high-excitation energy, the molecule can easily absorb more photons

through resonant incoherent transitions between so-called quasi-continuum
16-23 4

levels, where rate equations have been widely used for collisionless
collisiona12426 wpp,

A well-accepted qualitative model for MPD of SF6 has provided a
general picture where the molecular energy levels are divided into three
regions (see Fig. 2): (I) the discrete region characterized by coherent
excitation, where the vy (active) mode absorbs 3 to 6 photons and the
anharmonicity of the vibrational potential is nearly compensated for by
allowed rotational trans{tions;(ll) the quasi-continuum region where the
level density is very high and incoherent excitation is essential; and
(III) the true continuum region. Region (I) processes are responsible
for isotopic selectivity, coherent effects (multiphoton resonance,
photon echoes, coherent wave propagation, etc.) and the intensity
dependence of MPE with high selectivity. For the excitation processes
in regions (II) and (III) it has been shown experimentally for SF6 that
high laser fluence (energy), not high laser power (intensity), is

necessary for driving the molecule through the quasi-continuum and
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is the important parameter for determining the dissociation yie]d.17

However, later experiments on other molecules have shown that both
laser fluence and intensity determine the dyanmics of MPD.Z(C)
For multiphoton excitation in the quasi-continuum region, the
Fermi Golden Rule is valid and the full Schrodinger equation reduces
to a set of incoherent rate (master) equations. For the collision-
free condition (low pressure), the rate quation for the energy popu-
lation is
dPn a e a e
=t - wn_an_l + WP - (wn + wn-l)Pn = kpPpo (I1.20)
where P is the population in the n-th level (n photons absorbed).
wz (Nﬁ) is the transition rate constant for absorption (emission)
from level n to n+l (n+l to n) and is related to the absorption
cross section (°n) and frequency of the field (with intensity I)
by wﬁ = onI/hm and wﬁ/wz = gn/gn+1, where 9, is the molecular
density of states at energy nfiw. kn’ the unimolecular decomposi-

tion rate constant, can be calculated by RRKM theory27

28

or quantum
RRK theory. From Eq. (II.20) we realize that collisionless MPE
and MPD are characterized by the laser intensity and frequency, the
absorption cross section, the density (or degeneracy) of states and
the unimolecular reaction constant. During the past several years,
the rate equations describing MPD have been studied by different
approaches, such as a thermal model for Boltzmann-type energy

20 diffusion model for continuum popu1at1‘ons,22 exact

23

populations,

the model of restricied intramolecular relaxation25

29

stochastic model,

and the random coupling model.

Ca .




CFTLTeT, T

MR o i it av aun v
.', St et

g

A A oo et S ol s o Ll R3alis

20

Depending on the form of the absorption cross section and the
density of states in the quasi-continuum, the solution of the above
rate equation gives us different populations and corresponding dis-
sociation probabilities. For example, various types of n-dependence
of the absorption cross section have been considered: oy = oo/n,

g, = exp(-an+g) and o = constant in Refs. 19, 20 and 16, respectively.

n

A "thermal model" with suitable functional forms for 9 and 9, (and

neglecting the dissociation rate kn) has been studied in which the

population is governed by the rate equation21

dp
TH? = %} (n+s-1)P__; + %% (n+1)P ., - %%-(2n+$), (I1.21)

where the constant A is proportional to the absorption cross section and

S is the number of vibrational modes involved in the process. The above

rate equation can be solved in closed form to give the thermal population30

Po = Ng, expl-mfiw/KT ¢l (11.22)
where N is a normalization constant and g is the quantum degeneracy given by
o -1 s
N = nzopé} = [1 - exp(hu/kTeel”s (I1.23a)
g, = (n+s-1)1/[nt(s-1)!], (11.23b)

and the effective temperature Teff as a function of time is given by the

conservation of energy
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ot
Sfiwn = cg Idt = o9, (I1.24a)
W = [exp(fu/kT ) - 1771, (11.24b)

where ¢ is the absorption cross section and ¢ is the fluence of the
laser radiation. For multiphoton absorption processes, for kTeff>>ﬁw
and for n>>S, we obtain the high-temperature or classical limit of the

population,

p [ n>! :[ ns | (11.25)
= exp =i, .
N TRV ‘"’.'

where <n> is the mean numbers of photon absorbed per molecule, i.e.,

<n>= ¥ nP_. We note that in this classical limit kT e = Pu<n(t)>/s,
n=0 " e
which follows the time dependence of <n(t)>, and we may obtain a power law

Teff «¢q according to Eq. (II.18). Furthermore, the corresponding

dissociation probability is found to be

P o=
d n=n*

Pna exp(-Sn*/<n>), (11.26)
which is the usual Arrhenius form.
A "continuum model" was also developed for more general functional

forms of 9, and 9,

Q
“

oo(n+C)“, (11.27a)

90(n+c)5'1. (11.27b)

(V=]
3
n
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where 99 9p° C and « are suitable constants. For high excitations n>>1,

the difference equation (I1.20) reduces to a classical diffusion equation

where n becomes a continuous variab]e,31

3P -1 3 aP

n. 9 _n
% I (gn°n )

Using the expression of Eq. (II.27), the population can be solved in a
closed form, and the corresponding dissociation probability is also

given in closed form a522

¢ J g ;
Py = exp(—%)tl + J_ZI(TO)J/J'!],
0 = ()%/(8%,),

J = (S/8)-1, B = 2-a,

for integer valuesof S/8. This model results in a set of “"universal
curves" which may be used for data analysis in various experimental
situations. We note that the thermal results shown in Eq. (II.25) repre-
sent a special case of Eq. (II.29) with « = 1, i.e., a harmonic

model. From the solution of Eq. (II.28), we may calculate the average
excitation (photon quanta per molecule). The result shows a power law

9, where q = (Z-a)'l. It is seen that <n>«x¢ for a harmonic model

<N>«¢
(«=1) and <n>¢¢1/3 for an anharmonic model (a= -1).22 These results are
in agreement with that of the heat-bath model, Eq. (II.17).

The dynamics of MPE and MPD has been investigated by a molecular

beam method, and the experimental results have been analyzed by an

22

(11.28)

(I1.29)

(11.30a)

(I1.30b)
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improved rate equation where the intensity dependence of excitation over
the discrete levels is included.'8 These dynamical features are summarized
as follows: (i) Both the laser intensity and the fluence are important in
determining the MPD yield. (ii) Excitation over the discrete levels into
the quasi-continuum is mainly governed by the laser intensity. (iii)
Excitation through the quasi-continuum to the dissociation level depends

{' only on the laser fluence. (iv) Above the dissociation level, the excess
energy of the dissociated molecule is determined by the balance between

the up-excitation rate and the dissociation rate. Therefore, in the case
of long laser pulses, the excess energy is determined by the laser intensity,
while for short pulses case it is determined by the laser fluence. For SF6,
the excess energy was shown to be laser fluence dependent when the laser
pulse has energy higher than 5 J/cmz. (v) The photon energy deposited in
the active mode is rapidly randomized among all the vibrational modes on

8

a time scale of 10~ s, which is much faster than the dissociation 1ife-

time. The observed dissociation rates and the overall dynamics of MPD are
in good agreement with the results predicted by RRKM theory. (vi) The
population distribution Pn in the quasi-continuum predicted by a model
with o = exp(-an) is narrower than a thermal distribution. Another model

n
based on a dephasing broadening in the quasi-continuum also shows this

narrower population which is governed by a Poisson distribution (see

Fig. 3).32 More recently, a model of quasi-continuum absorption has \

been developed to provide a more precise meaning for the term "quasi-
33

YT
o KA

continuum". This theory accounts for unimolecular dipole dephasing

and partial dipole recorrelation, and it predicts the collapse and

vw"f-'r
e

revival phenomena based on the concept that the level spacing of the 1

quasi-continuum is close encugh that some continuum-like behavior is

]
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evident in the transition dynamics, but also far enough apart so that
the actual discreteness of the upper "band" of the final levels is not
completely smeared.

3. Excitation of Intramolecular Modes12

In the previously discussed heat-bath model of MPE, the active mode
is singled out as the pumped system and all other modes are treated as
a heat bath. The coupling between the system and the bath modes provides
the relaxation mechanism where the many-body effects due to the anharmonic
mode-mode coupling are phenomenologically treated by the energy (yl) and
phase (yz) relaxation factors. This damping model, while providing a simple
picture of the energy transfer processes and focusing on the active-mode
excitation, is not able to provide the detailed individual excitations
within the intramolecular modes. To describe the dynamical excitations
and evaluate the intramolecular vibrational relaxation (IVR) rate, we
shall now present a microscopic model which includes the anharmonic
mode-mode coupling, in contrast to the damping model where only the
active-mode excitation was included.

Before investigating IVR for the SF6 molecule, we shall develop
general formulas for describing the dynamics of intramolecular mode-
mode coupling for any polyatomic system.' The total Hamiltonian for
an anharmonic quantum oscillator subject to infrared radiation may
be written as

H(ts Qps Qs -oe Q) = HSTT 4 aH, = HI(L), (111.31)
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where Hgff

is the effective unperturbed Hamiltonian of the system

(with N normal modes), AHanh is the intramolecular anharmonic coupling,
and H'(t) is the laser field interaction Hamiltonian. In a second-
quantization representation, the individual terms of the total Hamiltonian

may be expressed by12

eff t. s .
Ho § ﬂwjajaj 1} ﬁrj/Z, (11.32)

H ' 13Keats yErata yMeaty 40
anh i#gfk £’mgnﬂ[f"&nn(él1€i1) (a;2;) (a3, )

+ 6taD @)@ )" + ., (11.33)

+
H'(t) =) V.(t)(a; + a;). ' (I11.34)
JZ PTG /

In Eq. (II.32) the imaginary part of the complex effective Hamiltonian
rj takes account of the level broadening of the open system due to
factors such as collisional (pressure) broadening for a homogeneous
system or surface-phonon-induced damping for a heterogeneous system.

In Eq. (II.33), two typical terms of the anharmonic coupling are shown:
the first term representing T2 phase relaxation processes, where no
vibrational energy among the intramolecular modes is exchanged, and
the second term representing the T1 energy relaxation processes where
the photon energy is deposited in the active mode(s) and populated in

all the other inactive mode via anharmonic coupling. In Eq. (I1.34),

Vj(t)«vjocos(mt) is proportional to the derivative of the dipole moment
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and the effective local electric field of the j-th mode with laser
frequency w. We note that the anharmonic coupling factors F}%ﬁ and
G}iﬁ are related to the p-th derivatives of the anharmonic potential
energy (with respect to the normal coordinates) with p = £ + m + n
being the order of the multiquantum coupling.

The solution of the time-dependent Schdrdinger equation

ih[av/at] = Hy, (I1.35)

with the total Hamiltonian given by Eq. (II.31), may be written as14

¥(t) = exp{-% Hgfft + A(t) + §(aj(t)a;f - Bg(t)aj)}wm), (11.36)

where A(t) and B(t) are time-dependent coefficients to be determined
by the equations of motion. Since the energy population and the
excitations of the system are only characterized by the amplitude
functions Bj(t) and are independent of A(t), we shall focus on the
equation of motion for Bj(t), which can be obtained by the substitu-
tion of Eq. (II.31) into Eq. (II.35) together with the expression of
Eq. (I1.36) for the wave function:

B

ds, s
. - ijk £ . m-1m n
il Ai#%#k E%nm{Fzmn(B;si) (B)™ "85 (B§B, )

y 4 '
+ R (e (81" (8,)" expliagt))

+{V59/2) exp(iAgt) - (ir;/2)8;, (11.37)
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where the external detuning (A%) and the internal detuning (AI) are

v ‘inq PEET I R

defined by A% = 2n(v - w and Ap = 2n(£vi + m; - nvk). In

+1 7 V)
deriving Eq. (II.37), we have used the usual rotating-wave approximation
14

(A AL N
AR

St
AL

and operator algebra such as

T

[exp(B*a)]F(a’)[exp(-B*a)] = F(a*+33), (11.38)

‘)

where F(a*) is any operator function and Bj are c-numbers.
The important features of the quantum equations of motion

[Eq. (11.37)]are: (i) The j-th normal mode of the system is strongly

o=

F’ coupled to the laser field when Vjo # 0 and the external detuning is
Ei not far-off the resonance condition Ag = 0 (due to the anharmonicity,
Ei. we shall find later that the optimal detuning is red shifted, i.e.,
PI Ag>0)' (ii) The intramolecular coupling is governed by the coupling

strengths AFiJk, AG’Jk and the internal detuning 4A,. For the intra-
£mn £mn [

molecular coupling to be significant, we shall expect a near resonance
Ay = 0, which was also shown by a classical treatment-35 (iii) By

Eq. (II.37) and its complex conjugate, we find that the equation of
motion for BgBj contains no T2 dephasing term, i.e., no vibrational
energy is exchanged among the intramolecular modes due to the T2
dephasing processes. (iv) The amplitude function is related to the

average excitation in the Poisson distribution

- TR
Phj(t) = exp(-n )nd/nsl, (11.39)

j is the energy population of a harmonic oscillator (for 1 = 0),

and n; and ﬁ& are the vibrational quantum number and the average

E’ where P
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excitation of the j-th mode, respectively, where

- _ 2_
nj(t) = IBj(t)| = r% "jpnj(t)'

Therefore the average excitation ﬁ& = |BJ.|2 is a relevant gquantity in
describing the energy distribution among the intramolecular modes, as
we initially expected.
We have shown that IVR will be significant only when the internal

resonance condition is met, i.e., the photon energy deposited in the
active mode will be rapidly shared by those modes which have frequencies
close to that of the active mode with the frequency combination resonant
or near resonant with that of the active mode. Furthermore, from the
concept of the energy-gap 1aw,36 we know that IVR is dominated by those
low-order combinations, i.e., small values of p, since it is a strongly
decreasing function of p when p increases. We therefore may truncate
the order of IVR in the sum of Eq. (II.37), which otherwise cannot be
numerically solved with a reasonable amount of computer time, particularly
for a large molecule system with a large number of vibrational modes like
SFg-

To show the role of the external and internal detunings in IVR, we
now consider the SF6 system in the collisionless low-pressure regime
(i.e., rj = 0) and focus on the case of the fourth-order anharmonic
coupling 8030306’ i.e., p = 4, where ¢ is the anharmonicity and 03,
02 and QG are the normal coordinates of the v3 (active), V) and Vg
modes. It is known that SF6 has an 0h symmetric group, and the frequency

spectrum of the 15 normal modes (some are degenerate) is (in cm'l):

28

(11.40)




vy 773.6, vy = 642.1, vy = 947.97, vg = 615.03, vg = 522.9 and

V6 364. The corresponding internal detuning then is by =
2n(v3-2v2-v6) and the external detuning is bp = 2mvg = w, where o

is the frequency of the tunable 002 TEA laser which is near resonant
with the v3 mode. The quantum coupled equations of motion [Eq. (11.37)]

for this case become

. b 2 L 2 2 . 2 .
lﬁB1 = ) ClB*fB1 + A C1C2C3BZB§ exp(1AIt) + (V10/2) C1 exp(1AEt),
ihB =x'c4|3*t32 + 2x'C Czc B.B*B.exp(-iast)

2 27272 1¥2¥3'17°2"73 I

e o inBoan? o e o2 2
1‘hB3 = A C3B§B3 + A C1C2C3B’1*B2 exp( 1AIt).

Bj(j=1,2,3) are the related amplitude functions of the normal modes
v3s Yy and 7 respectively; A' = 12a, Ai = Zw(vé + vé - Zvé) and Aé =
vaé - w, where vj(j=2,3,6) are the anharmonic-corrected frequencies,
i.e., vj = vy - A'Cj/ﬁ; and Cj are the quantization constants, Cj =
(ﬁ/ijmj)l/z. The above system, for the case of exact resonance,

Aé = 0, has been discussed and the related IVR has been estimated.37
Here we shall show the dynamical features of IVR and find the optimal
external and internal detunings by solving the coupled equations of
motion numerically. We investigate the time evolution of the average
excitations, Fl = |81|2, ﬁé = lel2 and ﬁé = |B3|2, governed by Eq. (II.41)
with the initial Boltzmann populations at room temperature (T = 300K)

Bl(O) = 0.10, 82(0) = 0.214 and B3(0) = 0.417, and the initial phases
tan-l[Ij(O)/Rj(O)] = 0, where Ij and Rj are the imaginary and real

parts of Bj(j = 1,2,3).

29

(11.41a)

(11.41b)

(I1.41c)
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Fig. 4 shows the peak values of the average excitations of the active
mode (ﬁf) and of the v, mode (ﬁg) vs. the external (Aé) and internal (Ai)
detunings, respectively. It is seen that the optimal detuning AE z 17 cm'l,
and the value of ﬁ} decreases for Aé larger than AE. Similar behavior can
also be seen for ﬁ%. This "“red-shift" behavior of the optimal detuning
is a general feature of any laser-excited anharmonic system where the
energy spacings are closer for higher levels. Furthermore, these non-
linear effects due to the anharmonicity show the "bistability" transi-
tion in the diagram of steady-state average excitation vs. laser
intensity. (See Section III for more detailed discussion.)

Fig. 5 shows that the time evolution of the excitations of
various modes for exact resonance, far-off resonance and the optimal
detuning. It is seen that, by comparison of A with B, the active-mode
excitation (nl) is coupled to the other modes more significantly for the
resonance situation than for the far-off resonance situation, as we
predicted from the internal resonance criterion. Note that the peak
value of thi Vo mode (ﬁ;) decreases from 0.4 (for Ai = 0) to 0.1 (for

)

st = 63 cm ~). From these numerical results we estimate that the rising

I
times of the average excitations tf [defined by the first peak values of

the average excitation ﬁ}(t*)] range from t} = 27 picoseconds (ps) to

tf = 70 ps depending on the internal detuning Ai. However, the rising

times of the 2 mode, i.e., the IVR times, are on the order of t§ = 10 ps

1

(or 3.3 cm °). A typical excitation diagram is shown in Fig. 5(C) for

the case of (Aé/Zv,Ai/Zn) = (2.71, 1.00).

4, Selectivity in Multiphoton Processes

Selectivity is characterized not only by the coherent properties of

the laser field but also by the molecular properties of the excited system.
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Therefore, the types of selectivity in infrared MPE can be classified
according to the relation between the various relaxation times of the

excited system and the energy pumping rate of the laser field. Let us

first define R, and R, as the intra- and intermolecular vibra-
intra inter

tional energy transfer rates, respectively, RVT as the relaxation rate

for molecular vibrational-translation coupling, i.e., RVT-I is the

time for complete thermal equilibrium to be reached in the molecular
mixture, and wexc as the rate of vibrational multiphoton excitation of
the molecule. We can distinguish four different types of selectivity
depending on the relative magnitudes of the relaxation rates and the
laser excitation rate (note that the relaxation rates R, and

inter
RVT are pressure dependent, although for low pressures we shall

inter © intra)'
(I) Mode (bond)-selective excitation (W

expect that RVT << R < R

). A

exc Rintra
certain mode or a functional group of a polyatomic moleclue is in a

nonequilibrium state which has a higher vibrational temperature Teff
[defined by Eq. (1I1.24)] as compared with the remaining modes or func-
tional groups. This is the situation of a long lifetime or high pumping
rate.

).

In this case, the absorbed photon energy is rapidly randomized within

(I1) Molecular-selective excitations (Rintra >> wexc >> Rinter

the excited molecule in which the local vibrational temperature is
higher than the overall translational temperature of the mixture of
different molecules.

(I11) Vibrational-selective excitation (Rinter >> Woye > RvT),

In this more moderate condition, vibrational equilibrium among all the
mixed molecules is reached, but there is still no overall thermal

relaxation. This situation prevails for low pressures, where

UL A . - b -l A o - M S Y S S ~ o P P
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vibration-translation relaxation rates are lower than vibration-
vibration relaxation rates.

(IV) Nonselective thermal excitation (R >> W__ ). This is the situation

vT exc
of thermal excitation of all the molecules in a mixture by a low-power CW

laser. This area of infrared thermal chemistry is of interest for a hetero-
geneous system, e.g., species adsorbed on a solid surface, where the laser
radiation is used to excite the adsorbed gas molecules without significantly
heating up the solid surface (assuming the phonon coupling to be small).

We shall discuss this type of excitation in Section III.

The attraction of infrared laser chemistry is that if the photon energy
can be deposited and maintained in a specific vibrational mode (or functional
group), a selective reaction channel may be induced by that mode (functional
group). Therefore, one of the criticai questions concerning MPD processes
is whether the photon energy remains localized in the pumped mode (or
molecule) long enough to result in a mode-selective (or molecule-selective)
reaction. Most theoretical models of MPD assume that IVR is very fast (on
the order of a picosecond), and statistical approaches such as RRKM theory
have been applied successfully to a number of experimental resu]ts.”’20
Recently, however, several experiments examining product branching ratios
in relatively complex molecules, e.g., cyclopropane, have shown that the

38

laser selectivity cannot be explained by the statistical theory. The

evidence suggests that the laser-induced reactions could result from a

nonergodic or partially mode-selective excitation. Several research

groups have also examined the bond localization character of large

39-41 42

molecules, e.g., benzene, both experimentally and theoretically.

This nonstatistical behavior is explained by a local-mode model in which

]
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the total system is divided into two groups of vibrational modes. Within
each group, the vibrational modes are strongly coupled and the photon
energy quickly randomized. Between groups, however, the coupling is

considerably weaker, and intergroup randomization rates are therefore

appreciably slower by the concept of the energy-gap 1aw.36

Another theory called the "restricted IVR model" has been recently

43

proposed for the possibility of laser selective photochemistry. This

model provides a basis for a quantitative description of MPD when IVR pro-
cesses occur on a time scale competitive with the unimolecular reaction
and radiative pumping rate. Note that the statistical theories of uni-
molecular decay, like the RRKM theory, preclude any possibility of
selectivity because of their assumption of very fast IVR rates. For

MPD of the SF6 molecule, the IVR rate is estimated on the order of

-1

1012 sec ~, so that selective bond breaking (or mode selection) is

possible only when one uses laser radiation with very short pulse dura-

tion and about two orders of magnitude more intense than currently

20

available lasers. However, for laser-induced decomposition of cyclo-

propane, the experimental results strongly indicates a selective

mechanism38 and may be analyzed by the restricted IVR model in which

a slower IVR rate (1010 sec'l) is estimated. According to this model,

the vibrational modes of the system are divided into two groups with

and an intergroup rate R =

an intragroup relaxation rate R inter

intra

8 R The theory then allows for a smooth transition from the RRKM

intra’
theory (with 8 - 1) to the Slater theory (with g >> 1), and group-

selective processes are possible when B << 1.
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5. Multiple-Frequency Laser Excitation

Recent experiments using two infrared lasers simultaneously have
demonstrated that MPD can be produced at significantly reduced intensities
compared to single-laser excitation, and consequently a sharper isotopic

selectivity can be achieved.44

In these experiments, a lower inten-

sity near-resonant radiation and a higher-intensity off-resonant radiation,
neither of which produces dissociation by itself, together give dissociation.
Both classical and quantum models have been proposed to analyze MPD enhanced
by two or many infrared 1aser's.45°48 The effect of laser polarization was
also investigated, and it was found that the excitation is more effective
when the polarizations of the two lasers are parallel than when they are

49

perpendicular. More recently, the interaction of a diatomic molecule

with two near-resonant lasers was studied by a classical anharmonic mode1.50
Within a heat-bath treatment, the total Hamiltonian of an anharmonic

quantum oscillator subject to two infrared lasers may be expressed in the

same form as that of a single-laser excitation, Eq. (II.12), except that

the interaction term HAF is now extended to the form

Hap = B0V, (2) + V,(2)] (at+a), (11.42)

where V1,2(t) are the pumping rates of the laser radiations with fre-
quencies wy,2° By the same procedures as previously introduced for
Eq. (II.15), we obtain the rate equation for the average excitation
via two-laser processes as

051
+ .2

d<n> _ 0111
1 ey

dt ul®

2 4 F(Illz)l/2 - v, (<n>-N). (11.43)




F(1112)1/2 is the interference term, with an appropriate function F
related to the oscillatory functions sin(Ait) and cos(Ait), where

A’i =u1°
given by, similarly to Eq. (II.16), as

-w, (i=1,2), and the absorption cross sections o; are

Ay (yy*vo) oy

(Ai'2€*<N>)2+(Y1+Y2)2/4

0‘1 °
For lack of temporal mutual coherence of the two laser sources, we may
neglect the interference term and focus on the cooperative effects of
these two different lasers on the average excitation of the system.
As shown in Fig. 6, we see that at the optimal detuning with (Al, Az) =
(2, 8) in the unit of (y1+y2), the system has a maximum excitation
(curve A).47 It is also interesting to note that a single-laser
excitation, where the pumping rate equals the sum of the individual
rates, is less effective than the two-laser simultaneous excita-
tions. These cooperative effects of MPE by two different lasers are
characterized by the nonlinearity of the absorption cross section
through the anharmonic potential of the system.

The above results based on a quantum heat-bath model may also be
obtained by a classical approach.48 The equation of motion is given by

an extension of Eq. (II.3),

<6> + y<a> + wsz<Q> = } [eEi cos(wit)]/m.

i=1,2

and the corresponding power absorption is given by the extended

expression of Eq. (II.5)

35

(11.44)

(11.45)
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<dE> = [92 Ef] Y + P (t) (I1.46)
@ 13,2 IR TR L '
where the interference term is given by
2\ —
- i EE Y cos[(ml-mz)t] - (Ai'K*Ai) S1n[(w1-w2)t]
i=I,2 (85-K*AT) “+y
To compare the above classical results with those of the quantum models,
we note that the interference term F(Illz)l/2 of Eq. (I1.43) is pro-
portional to E{E, in Eq. (I1I1.47), since the intensity is related to
the electric field by Ii = E?/(Sn/c). Furthermore, the
classical and quantum correspondence may be easily obtained by the
following quasi-quantum relations:
e = u'(0), (I1.48a)
%“““SAZ = <Ay, (11.48b)

where e is a classical charge, u'(0) is the matrix elzment of the
derivative of the dipole operator, eval ated at the oquilibrium point, and
<n>ﬁw0 is the photon energy absorbed by the quantum oscirlator and hence
equals the energy of the classical osicllator with amplitude A.

The enhancement of MPE via multiple-frequency lasers has been

45,46

investigated. It was suggested that if a single laser of intensity

I produces a maximum excitation of frequency w, then the same maximum
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. . 3 .
excitation may be produced by N lasers of intensity I/N” and frequencies

=wgt k(w'wo)/N, with k = 1, 2, ...N. The enhancement of MPE or the
3

“k
reduced power law of the laser intensity, I/N°, compared with that of
the separate N-laser excitation, I/N, in principle can be achieved if
one can modulate the phases of the laser pulses such that the Rabi
frequencies a.e synchronized with the excitations between pairs of
the anharmonic energy levels, i.e., 7 pulses are required in addi-

tion to the resonance condition wk.45
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B. Molecular Collisions

1. Resonance Formation, Chemical Reactions and Transition-State Spectroscopy

In recent years there has been an upsurge of interest in gas-phase
laser-induced collisions. While much of the excitement has been due to
the tantalising prospect of selectively altering the dynamics of chemical
reactions, it remains true that the literature (both experimental and
theoretical) is generally characterised by the assumption of very intense
laser fields, and these are somewhat impractical for two reasons. First,
intense fields have a habit of producing stray side effects that may
interfere with the process of interest (gas breakdown due to ionisation
is a typical example). Second, and perhaps more important, is that
intense fields are consistent only with pulsed lasers, and these are
unfortunately "switched off" most of the time they are operating: the
pulse length is typically extremely short compared to the time between
pulses. Thus, any cross secticn which one calculates is effectively
"reduced" by many orders of magnitude in a realistic experiment. In
our opinion, this is one of the most serious limitations posed to
conventional laser-induced chemistry.

Of course, one could use the radiation in a theoretically trivial
way, to excite the reactants into quantum states that make the desired
reaction more feasible. However, in many cases this may not be desirable.
For example, it may not be possible to excite the reactants because the
available lasers are not resonant with the transition. Moreover, even
after the reactants are excited, one still has only a relatively crude
control over the outcome of the reaction: undesirable side reactions
may also take place, or the quantum efficiency for the reaction of

interest may turn out to be low.
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One can to a large extent get around these problems by taking
advantage of the huge numbers of molecular states that are formed
during the collision. This means that a far greater range of exper-
imental conditions, such as collision energy and laser frequency, can
in principle give rise to a reaction. However, one again runs into
the problem that, since many collisions are short-lived, any photons
that are to be absorbed during the collision have to be absorbed in a
relatively short period of time. This of course means that in order to
observe any reaction at all, one must provide more photons, and this
raises the intensity requirements of the laser to levels that may be
impractical for the reasons we have given. [The kind of intensity that
has been discussed in the literature is typically greater than, and
usually much greater than, 1 MW/cmZ.]

There are two related factors by which radiative collision cross
sections can be increased. The first is resonance formation, and the
second is low-energy collisions. They are related since the effect
in both cases is to increase the time of collision, thus allowing the
colliding partners more chance of absorbing a photon. It is perhaps
not surprising that resonance formation leads to an enhancement of the
cross section, but it may seem rather paradoxical that a decrease in
collision energy should have a similar effect. After all, the Arrhenius
Law implies that chemical reactions proceed at a slower rate as the
temperature is lowered. However, it must be remembered that in a
chemical reaction there is always an activation energy barrier, and
the reason that reactions become faster at higher energies is simply

that more reactants have sufficient energy to overcome this barrier.
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But if the activation energy is supplied by a photon, there is then no
need for a high collision energy--indeed low energies are favored since
they entail longer collision times. At exceptionally low collision
temperatures (less than a few degrees Kelvin), the collision must be
treated quantum mechanically since the scattering wavelengths become
comparable to the molecular dimensions, except for very heavy atomic
and molecular reactants. We shall first consider an atom-atom collisiun
in the presence of laser radiation and investigate the ramifications
of radiative resonance formation when more than one laser is employed.
Later, we shall sketch some work which is underway to investigate the
feasibility of driving certain chemical reactions with lasers of low
intensity.

We consider an atom-atom collision in the presence of two lasers,
L1 and L2. The total Hamiltonian is given in atomic units as

1 2 el

H=-?ﬁv + H

+ KO 4+ Hrad int + Hint

el

where u is the reduced mass of the system, and H™ " is the electronic

Hamiltonian in the absence of spin-orbit coupling, with eigenvalues

(in the Born-Oppenheimer approximation) which are the molecular

HSo rad is the Hamiltonian

potentials. is the spin-orbit Hamiltonian. H

of the radiation fields,

wrad -5y at al (11.50)

where w; is the frequency of laser i, and o is its polarization state

+ H1 2 s (11.49)
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Wi

in spherical coordinates: o = 0, +1 and -1 denotes, respectively,
light plane polarized in the z-direction, and right and left
circularly polarized and propagating along z. The eigenvectors

of Hrad

T T T

are the Fock states |n. >, such that a, |n. > = /n_  [n, -1>
10 10" 10 10° 10
and a; |n; > = /n. |n. +1>. The radiative interaction Hamiltonians
1¢' 10 10’ 10

within the dipole approximation are

-
-

int _ +
Hi = eii[aio uy t a5, uo] s (11.51)

where My is the space-fixed component of the dipole operator and

ani 1/72
e, = ( v ) . with Vi as the quantization volume of the field i.

i

Note that ug can be related to the molecule-fixed components of the

dipole operator, My by the transformation

- 1R
u_ == My Dno(R)’ (11.52)

n
where D#c(ﬁ) is the Wigner rotation matrix.

We are particularly interested in the two curve-switching processes
which are shown in Fig. 7. Process I has been called the "photon-catalytic
effect".51 This is because there is no net loss of photons from the
field, since for each absorption there is an emission of the equivalent
photon (same frequency, polarisation and direction). Such a process
would therefore appear to hold some promise for laser-induced chemistry.
However, from a practical point of view, laser cavity losses are far

more important than losses to and from a molecular system. Therefore,

ey |
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the efficiency of the process is hardly affected by the few photons that
are returned to the radiation field by the molecular systems. Moreover,
the overall cross sections are not in general very high. Process II on
the other hand, while apparently a more contrived means of achieving the
same result, turns out to have two advantages. First, it allows the
colliding species to approach at exceptionally low energies, since the
energy defect for curve switching is made up by absorption of the second
photon from L2. Second, it provides greater scope for optimization of
the collision conditions: by changing the bound-to-bound transition
it is possible to optimize the bound-continuum interactions so that
the overall cross section can be maximized.52

In order to treat resonance scattering, we consider a Breit-Wigner
separation of the T-matrix. The radiative interaction gives rise to
resonances in the scattering spectrum, while the field-free interaction
may be considered to be a slowly-varying function of the scattering
energy. It is therefore convenient to separate the T-matrix into slowly
and rapidly varying parts:

T=1"+ 1R,

where TP is the slowly varying, potential scattering T-matrix and TR

represents the resonance scattering. Following the formulation of

53

Feshbach,™ we define the following projection operators:

e
H

L0
n

/| waE.><waE.]dE' (11.53)
a

Z|¢n><¢nl . (I1.54)
n
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Here, o is a complete set of angular momentum quantum numbers, and E' is

the energy of the continuum state specified by . The n index is a set

of vibrational and angular momentum quantum numbers which specify a bound

state of the system. The space of Q can be further subdivided into R and

S, such that R + S = Q¢

=
1]

zle ><¢ |
m m m

w
n

Z e, i><d .|
2 16><ty:]

It is now possible to write the T-matrix for resonance scattering as

R

- +
Tei = <V |HpplHppluy>

- + -1
where Q = (E-HRR-HRP Gp HPR)

H

XY XHY .

G; is the Green's function for potential scattering, i.e., with the
radiative interaction switched off and the scattering determined by

the term He] in the Hamiltonian. This term has off-diagonal elements

in a diabatic basis which are indirectly due to spin-orbit coupling,
reflecting a curve-switching even in the absence of radiation. The
scattering eigenfunctions w: and w; are, respectively, the out-wave

for this potential scattering problem, starting in the initial state i,
and the in-wave starting in the final state f. These are total potential

scattering wavefunctions consisting of a plane wave in the specified

channel and spherical waves in all channels. These may be written

43.

(11.55)

(11.56)

(I1.57)

(11.58)

(11.59)




in terms of the standing-wave solutions of the potential scattering,

|¢GE> by using the orthogonal matrix W which diagonalises the potential

scattering S-matrix.52 The result is
TRo=2 T W, H_Q k. W
fi —— fa "om “mm' "m'g "8i °’

R -
Tri(OBR) = £ Hey B oy o

where m and m' are bound intermediate states of the collision complex, and

Hum = <Ol HIm> ,

where ¢ e is a standing-wave eigenfunction of H. In the distorted-wave
Born approximation (DWBA), W is the unit matrix, and furthermore,

Tii = Hfi . Therefore, we have for the total T-matrix

The quantity of central interest is Q since it contains the detailed
information about radiative couplings. Possible kinds of laser-induced
resonance scattering illustrated in Fig. 8. By defining Qomt e also
define a particular pathway: for example, in Eq. (II.60b) Hesttha is
the amplitude for Process 2 in Fig. 8. Notice, however, that all the
ancillary absorptions and emissions induced by L2 are implicitly taken
into account in the inversion of Q'l; that is, Qst depends not only on
|s> and |t> but also on [u>. We first evaluate ol by expanding G' in

p
terms of its open channel eigenfunctions:

44

(I11.60a)

(11.60b)

(I1.61)

(11.62)
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H lq, v ><Y 4 |H
-1 c F o RP!¥aE oE'"PR _ . + +
QU(E) = E - Hpp + P L D ink Hep 1Vog <V [HoR (11.
Because of the symmetry of W in (3.12), lw;E> can be replaced by [¢GE>
in (11.63). With this in mind, the matrix representation of Q'l in
the space of R may be determined by a superposition of a linewidth
matrix I, a level-shift matrix F, and a radiative interaction matrix V,
which describes the bound-to-bound trancitions induced by L2:
-1 N _d
Qst(E) = E -VSt + Fst(E) 3 Fst(E) , (I1
where
int
sy = <n21<s|H2 [t>|n2 - 1> (11
int
Ige(E) = 2m <n, - 1]<s|H2 I¢YE>ln2><n2|<¢YE]V|t>|n2> (5.4b) (11
r (")
| , st
Foe(E) = 5= PFAE' 25— (11
Vtt =0 (I1
I, (E) = 2nz]<n-1]<t|Hi"® o _>|n,>|2+2m|<t| V|6 o> | 2+T (11
tt a 2 1 af 2 vE se
r..(E')
=1 _tt
Fee(E) = = PIAE' =g » (11

where V is the nonradiative interaction operator (e.g., spin-orbit

coupling), and rse is the width due to spontaneous emission. The

1

3x3 matrix @~ is now inverted to give the following result:

63)

.64)

.65al

.65b)

.65¢)

.66a)

.66b)

.66¢)
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Q. s Qst(Auﬁfru)
st N 5 i S _ip y_rol2o-lix L ’
(As ZFS)[(At Zrt)(Au Zru) (Qtu) ] Qst(At'Zrt)
where Ei =E - Ei - Fii’ and Ei‘is the unperturbed energy of the

bound state i.
Using Eqs. (II.60) and (I1.67), we can now write down the T-matrix
for Processes I and II in Fig. 7. We assume no predissociation channel

and neglect spontaneous emission:

We He Ho W, .
Process I: Tfi = T$i +T T fa~fmim8 g1 ,
Mol Ap3ly
where
2

o= 2mZH %,
m YmY

5 wfaHamvmm'Hm:BwBi

Process II: Tey =12 . — —3 5
mn'a8 (Ag=sTp) (45-3Tp )=V

It is noteworthy that as the energy defects A of the dressed states
approach zero, the processes have the same order of magnitude. Indeed,
the actual magnitude of Process Il might even greatly exceed that of
Process I, even though Process II is a three-photon process. We have
shown by means of a detailed calculation on the iﬁ + F system that this
is indeed the case, provided the initial kinetic energy is 1ow.52
Moreover, the intensity requirements on the radiation are also very low --

LI operating at 3 kw/cm2 can give rise to gas kinetic cross sections for

Process II. On the other hand, calculations have shown Process I to

46

(11.67)

(11.68)

(II.69
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give rise to a relatively small cross section (around 0.05 32) even
though the intensity of L1 is large (0.3 MW/cmz). We emphasize that
large effects can be obtained from low-intensity lasers, provided
resonances are involved and the initial collision energy is extremely
Tow.
Recently, there have been a number of interesting experiments
which appear to have demonstrated chemical reactions that are induced
by lasers resonant with any asymptotic states.sl“'58 Although this is
an encouraging start, many of these reactions seem to have a very small
total cross section. It would be useful to have a theory of laser-driven
chemical reactions which would enable us to decide what kind of reactions
may be feasible, and to perform some quantitative estimates of cross
sections. To this end we may consider a model of chemical reaction which
is based on the theory of the atom-atom collision discussed above and
which conforms to the criteria we have established. An important condition
is the ability to form resonances during the collision. We have so far
considered radiative resonance formation, but it may be useful to begin
by considering systems which form resonances in the absence of radiation.
An important class of such systems, which are readily obtained experimentally,
are van der Waals molecules (VOWM) formed in their ground electronic state.sg'62
We may, for example, be interested in the reaction
He + 12 + fiw —> Hel* + I* , (11.70)
where the asterisk signifies an excited electronic state.
Consider a collinear reaction, A + BC + fiu —3 BC* + C* ,
where the bonds BC and AB* are strong and the bonds AB and BC* are

relatively weak (see Fig. 9). This kind of condition would be expected




KA
e

in a typical VDWM. In the absence ~f radiation, resonances occur in

each individual electronic state. For example, the BC bond may gain

a quantum of vibrational energy through coupling to the AB bond,

which then enters a bound state of motion. The atoms A, B and C

then co-exist in a quasibound state which is, however, unstable

with respect to the reverse process, predissociation of atom A.

This effect is known as "vibrational predissociation".63'65
Let us outline the constructicn of a scattering theory in which

the predissociation takes the form of a Feshbach resonance. The

radiative interaction between electronic states could be handied

in much the same way as for the atom-atom problem. The two electronic

states have the coordinate representation Xl([p]; R,r) and xz([p]; R,r),

respectively, where [p] are the electronic coordinates and r and R are,

respectively, the length of the strong bond [I-I in the above reaction]

and the distance from the more weakly-bound atom (He) to the center

of mass of the two strongly-bound atoms (see Fig. 9). Averaging the

total Hamiltonian H over the electronic coordinates, we obtain the

effective (Born-Oppenheimer) Hamiltonian for the nuclear degrees of

freedom:

<X1|H1X2> VlZ(R’r)

<x1|Hlx1> = TAB + TC,BA + ml(R) + PZ(T) + Vl(R,r)

XalHixp> = Ty pe * Tget Mp(R) + pa(r) + V5(Rur)

Here, T stands for the kinetic energy operator of the subscripted species,

(I1.71a)

(11.71b)

(I1.71c)
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and m and p are Morse functions representing the potential energy associated
with the two "bonds" (strictly speaking, the weak bond is not a conventional
bond since its length is measured to the center of mass of the other bond).
V] and V2 represent the three-body portions of the ground and excited potential
surfaces, which are coupled only through the radiative coupling V12.

We wish to write the T-matrix for the chemical reaction in terms of the
operators P and Q which project, respectively, onto the open channels and
the eigenvectors of a zeroth-order Hamiltonian defined to be the effective

Hamiltonian of Eq.(II.71) minus Vi and V2. These are then given by

_ + + - -

P=zx jdE]|n1E]><n]E]| + I fd52|"252><"252| (11.72a)

N v

2
Q= nz; |n1v1><n2v2| + nzv |n2v2><n2v2|, (11.72b)

1M 272

+ + s . . +

where lnjEj> = |nj>]Ej>, etc., j being the electronic state index. |E1> is

the state vector for inelastic scattering in the ground electronic state, con-
sisting of a plane wave in the channel labeled by the asymptotic energy E, plus
outgoing spherical waves in all other channels. Similarly, |E5> is an incoming
wave for the rearrangement channel. The quantum numbers n. and v label,

J J

respectively, the quantum states of the Morse oscillators mj and pj. We consider

in addition the projectors R and S such that R + S = Q. The space of R is
defined by those bound-state vectors which give rise to strong resonances (these

can be called "doorway states"GG)

, where S is comprised of all other bound-
state vectors. It is now possible to write the general T-matrix element connecting

the initial and final states:

- +
Tey = <Ef|HpRQHRP|Ei>. (11.73)
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Equation (II.73) contains all the information relevant to a chemical
reaction, including the effect of the radiation field. It may at first sight
E. appear analogous to the DWBA picture of a chemical reaction, but it is not.
It does in fact represent the exact solution to the Lippmann-Schwinger equa-
tion, with the complication that the effective (optical) potential, HPRQHRP’
!. is not only complex but also nonlocal in the coordinates R and r. The problem
;f hinges on the representation of g. This is given in terms of the width matrix
3 I, the level-shift matrix F and the matrix V whose off-diagonal elements describe
radiative bound-bound transitions. The off-diagonal elements of I consist of

S the (nuclear) bound-continuum interaction (both radiative and nonradiative).

In other words, I' couples the open and closed channels. Under certain condi-

tions we expect these matrices to be representations of local operators, where

these conditions might hinge on the validity of the Markov approximation used

in time-dependent many-body theory. Here a nunlocal kernel K(t,t') in the rate

equation for a subsystem is replaced by a local function of time:

K(t,t') = «(t)s(t-t'). This means physically that the motion of the subsystem

at one time is completely uncorrelated with its motion at some other time,

i.e., there is no memory in the motion (due to randomization on a very short

time scale). Similar situations are expected to pertain for long-1ived resonances

in three-body collisions, which is quite different from what would be expected

in, say, a direct collision or stripping reaction where the initial and final

states are much more correlated and the nonlocality of the potential is more

important.67
We could initially assume a local optical potential. Then the matrix

representation of @ in the space projected by R will consist of radiative bound-

bound transitions between reactant and product states; it will also consist of

nonradiative predissociation widths which couple the bound and scattering states

E T P -'a ' 2" a 4 a'a a'":. a' ' a & a4 & @& m B _t_.&8 B .4 SomD s o> . -a s _a _a -,-,-A;A-A-g_.‘).--_n_n-J



for either the product or the reactant channels taken separately. Roughly
speaking, the probability of reaction may be regarded as the probability uf
association multiplied by the probability of dissociation into a particular
product channel. [This picture should not be carried too far, however, be-

cause it is essentially perturbative and we are not using perturbation theory.]
The rather complicated effect of nonlocality will eventually have to be addressed,
especially since there is already evidence that nonlocality becomes more important

68-70

at low energies, and this is just the scattering regime we are interested

in. A simplifying feature is that nonlocality appears to be separable at low

energies, i.e., fE(R,R')E':'og[.:(R)hE(R').Gg’70

Finally, we would like to say a brief word about transition-state spectroscopy

in the light of what has been discussed in this section. There has recently been

71,72

interest in, and experimental evidence for, such spectroscopy. We wish to

emphasize that the transition state may be regarded as a set of resonance states
formed during a collision. Spectroscopy of the transition state then involves
radiative transitions between such states. Spectroscopy and energy transfer

are distinguishable only according to what one wishes to detect: if one chooses
to detect emitted (or absorbed) photons, then it is spectroscopy, and if particles
are detected then it is energy transfer (scattering). The spectroscopic "probe"
may thus be regarded merely as one contributor to the total S-matrix for particle
scattering. Thus, the methodology for tréating spectroscopy of the transition
state would be essentially what we have outlined for radiative collisions. We
note that L2 acts not only as a spectroscopic probe but also as the agent of
energy transfer within the manifold of transition states. Thus, when L2 has

a significant effect on the overall scattering event, the distinction between
these two functions is unclear. They are, however, to be thought of in a unified

way, as we have mentioned.
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2. Isotopic Selectivity

An intriguing potential application of radiative resonance scattering
is to isotope separation. Consider the radiative velocity-changing collision
depicted in Fig. 10. We may represent the event depicted in the top part as

*‘hw] +ﬁw2 -ﬁw-l

A + B(E;) — AB(v,2) — AB(v'2') —— A + B(Ef) (i1.75)
where +hw denotes absorbtion and -hw denotes emission. The vibration-rotation
level of the AB complex is denoted by (v,2). The selectivity of such a process
arises from the different vibration-rotation spacings for systems of different
isotopic composition.73 Clearly, only certain colliding pairs could then
undergo the above three-photon event. For such systems the final translational
enerqgy has been increased by an amount equal to the energy of a single photon
from L2 (i.e.,‘ﬂwz). From the previous considerations we might expect such an
event to be extremely efficient at low collision energies. The extra transla-
tional energy picked up would be very much greater than the relative translational
energy of the unexcited molecules in the beam, and comparable to the forward
translational energy. Thus, the excited molecules will tend to be scattered
out of the beam. Experimentaliy the collision partners can be prepared in the
same beam which is formed by supersonic expansion. At some point downstream
of the source, where the kinetic energy of relative motion is extremely low
( 1K), the beam may be crossed by the two lasers L1 and L2. The desired products
which are scattered out of the beam may then be skimmed off and collected.

We have used the formalism of the previous section to calculate the import-

ance of this effect for the XeF system. Let us define a separation p for

separation of the heavy isotope ]SOXe:
I*3
p=—130 ((11.75)
°129*9130

.
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where 5]29 and 5130 are the kinetic-energy-averaged cross sections for 129xe

nd ]30Xe collisions with ]gF, respectively. When L2 is tuned to the appro-

130419 | 5 is found to be as high as 0.996.

a
priate frequency for resonance in
While certain aspects not taken into account in our calculations might reduce
the efficiency, such as finite laser bandw'dths and possible elastic collisions
experienced by the deflected molecules before leaving the beam, it is clear that
these velocity-changing radiative collisions could provide an efficient means

of isotope separation. Furthermore, the high cross section of the event (about
20 RZ in our specific examp1e73) is achieved with the relatively lower laser
intensity of 5 kW/cm®.

The advantage such a process has over more conventional techniques like
photodissociation or photoionization is, in the main, one of flexibility: first,
there is almost unlimited control over the initial scattering energy, and
second, depending on the tunability of L2, there is a large choice of bound
intermediate states. This flexibility aliows for optimization of conditions.

The other techniques are limited to using initial states which belong to a
limited number of bound states. Under these circumstances, the available dis-
sociation pathways may often be unfavorable, requiring intense lasers. We would
like to add that a chemically reacting system (such as was outlined in the pre-
vious section) might be even more appropriate for isotope separation. In this
instance, only one laser is required to drive the reaction. Finally, we sum
marize by noting that all of the ideas we have discussed in Part B of Section

IT lead to our belief that laser-induced chemi;try is eminently viable provided

one stresses resonance formation and low collision energies.

SR W W R U ST TN U IR Y Y Aol s P P o e




54

T et

I11. Surface Processes

% While the influence of laser radiation on homogeneous gas-phase sys-

: tems has been intensely studied,l’2 much less has been done on heterogeneous,
' e.g., gas/solid, systems either theoretica11y35’74'93 or experimenta]ly.94'101
' The effects of laser radiation on adspecies/surface systems depend upon the

nature of the surface (metal, insulator or semiconductor, smooth or rough, etc.), the
coherent properties of the laser radiation (frequency, intensity, pulse duration,
polarization, etc.) and the electronic and vibrational structure of the adspecies/
surface system. Depending upon the laser frequency, the electronic, vibrational

or vibronic states of the adspecies and/or the substrate may be perturbed with
susequent energy flow among the various modes of the system. In this section,

we shall focus on the infrared vibrational excitation of the adspecies/surface

system in which the direct electronic excitation of the adspecies, which could

only be affected by, e.g., visible radiation, will be ignored. However, indirect
types of excitations such as substrate heating, migration and desorption of the
adspecies will be considered.

We shall first investigate the field-free system where species (atoms or
molecules) are adsorbed (physisorbed or chemisorbed) on a solid surface. The
combined interface system, adspecies/surface, is significantly different from the
homogeneous, i.e., gas-phase or clean surface, systems as follows:

(i) The adspecies (consisting of n atoms) has 3n so-called "frustrated" libra-
tional degrees of freedom instead of 3n-6(5) as in the gas phase. For example,
there are six vibrational modes for CO adsorbed on a solid surface whereas the
surface-free CO molecule has only one vibrational mode.

(ii) Due to the substrate, the excited adspecies usuaily has a shorter
lifetime as compared with that in the gas phase, because of its strong coupling

to the phonon modes, particularly for chemisorbed species.
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(iii) The energy spectrum of the species is changed in the presence of the
substrate. The frequency shift and level broadening may be caused by many surface-
induced phenomena such as:82 (1) energy flow between the adspecies and the
substrate and among the internal modes of the adspecies; (2) fluctuation of
- the effective dipole moment of the adspecies caused by, e.g., the charge
hl transfer between the adspecies and the adsorbent surface and the dynamic
- coupling between the adspecies dipole and its image; (3) fluctuation of the
conformations of the adspecies caused by the 1ibration of the adspecies,

particularly when the system is subjected to laser radiation; (4) migration-

- induced broadening via inelastic scattering among the adspecies (particularly

for physisorbed states) and their collision with the surface atoms; and (5)
other phase-relaxation-induced broadening, i.e., T2 broadening.

(iv) The quasi-continuum region, available in the gas phase only for
polyatomic molecules, may be usually achieved even for diatomic molecules when
adsorbed on a solid surface. The frustrated degrees of freedom, as defined in
(i), have very high densities of states, and the overlap of these individual
states will lead to a quasi-continuum of the overall vibrational potential of
the adspecies and/or the surface potential.

When the adspecies/surface system is subjected to IR radiation, item (iii)
above will most likely play a particularly important role, due to processes such
as laser-enhanced migration and desorption. Furthermore, when the adspecies is
highly excited and reaches the quasi-continuum, further excitation resulting in
bond-breaking (desorption) may be achieved by quasi-resonant laser excitation
in this region and/or thermal-phonon-assisted excitation. The concept of the
quasi-continuum is essential for understanding the mechanism of desorption;
without this concept, one must resort to unrealistically high laser powers to
overcome the anharmonicity of, e.g., a Morse potential. Detailed discussion

on this aspect will be given later.
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The influence of IR radiation on the adspecies/surface system is more
complicated to describe than for gas-phase unimolecular dynamics as described
in Part A of Section II. The following important mechanisms will be addressed:

® How is the laser photon energy selectively transferred to the active mode
of the adspecies with consequent relaxation to the bath modes?

® What is the energy relaxation dynamics and how are the (single-phonon
and multiphonon) relaxation rates governed by systems parameters, such as
frequency spectrum, interaction potential and masses of the adspecies/surface
system?

® What is the nature (selective and nonselective) of the photon energy
deposition in the system? How is the selectivity characterized by the damping
rate, pumping rate and the rate of intramolecular vibrational relaxation?

® How does the nature of energy flow from the excited mode to the other
modes depend upon mathematical treatments, e.g., Markoff approximation,
continuum-density-of-states approximation and the feedback mechanisms achieved
by memory effects and/or the substrate heating effects?

@ How are the isotope effects for a system consisting of a mixture of
isotopic adspecies characterized by, e.g., the frequency difference of the
isotopes, the direct dipole-dipole interaction and the phonon-mediated coupling?

® How does the laser radiation affect the rate processes via field-induced
dynamics such as desorption, migration, decomposition, recombination and
desoption? In other words, how do the laser and surface synergistically affect
heterogeneous catalytic reactions?

None of the above addressed aspects of laser-induced surface processes
(LSSP) has been completely investigated, either experimentally or theoretically.
However, some qualitative and/or semi-quantitative results, will be discussed
in this section, which consists of two parts: (A) energy flow in adspecies-

surface systems where microscopic treatments, types of selectivity, photon
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energy population, isotope effects and dynamic effects (migration and desorption)
will be investigated; and (B) laser/surface-catalyzed reactions where applications
of the theoretical aspects of LSSP and some recent experimental work on LSSP

will be reviewed.
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A. Energy Flow in Adspecies-Surface Systems

Considering a group of species (atoms or molecules) adsorbed on a solid
surface and subjected to IR radiation, the most general total Hamiltonian

describing the energy flow within the adspecies/surface system may be written as

Py
AR MO

H0 represents the unperturbed Hamiltonian of the system (adspecies, substrate
phonons and laser photons); Hij and Hikj represent the direct interaction and
the k-mode-mediated interaction between the i-th and j-th modes, where i, j and k
may be the adspecies, adbond or phonon modes; and HiF is the interaction

between the i-th mode of the system and the field (laser photon). In the
following discussion, we shall assume only one active mode in the adspecies to
be excited by the IR radiation, except for when we discuss isotope effects,

in which case there will be two active modes.

The microscopic Hamiltonian including heat-bath effects will be used to
calculate the excitations for both single-phonon and multiphonon processes. A
more complicated system consisting of A, B and C subgroups will be investigated,
where the memory function of the interaction between A and B and their common
damping to C is included. Energy populations in a multilevel system will be
studied, and the mechanism of excitation (selective vs nonselective) will be
numerically examined. Numerical results will also be shown for the adbond
excitations in the H/W system. By solving the rate equation in energy space
in the quasi-continuum, several types of photon energy populations and the
associated desorption probabilities will be calculated. Extension of the
single adspecies to a system consisting of two isotopes will be investigated,

and finally, the dynamic effects (migration and desorption) will be studied.

While much of the work presented in this section has already been published or
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is in press (with references cited), some unpublished concepts and results are
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also included, e.g., the discussions in Parts A.2.a, A.4 and A.5.

B 1. Microscopic Treatment

a. Single-Phonon Processes

Consider a heterogeneous system consisting of atoms or molecules adsorbed
i on a uniform solid surface and subjected to infrared laser radiation. The

- vibrational degrees of freedom of the adspecies-surface system can be divided
into two groups, namely, the pump mode (resonant infrared-active vibrational

i mode of the selectively-driven adspecies) and the bath modes (all other modes
including adspecies inactive modes and the surface phonon modes). The radia-
tion feeds energy into the pump mode, and the heat bath provides a relaxation
mechanism. The microscopic model Hamiltonian describing this relaxation

dynamics can be written in the following second-quantized form, corresponding

to the simplest case of Eq.(III1.1) consisting of only Hy» Hij and H;p with i=A:82

Ho=Hy + Hy + Hpg + H'()) (111.2a)
H, =fuaTa + 548 (at+a)P (111.2b)
A A pl=-3 p ’ ’
_ +
Hy = gaﬁwjbjbj , (111.2¢)
} L
Hag = §‘H(Kja by +K;ab3) , (I111.2d)
H' (t) =Vcos(wt) (a +a) , (111.2e)

V= (2ﬂmAwA)'*u'(o)e cos(e) . (111.2f)

T N P L kY . 2. A a - _ . e




LA P A et s siul Mr PR
RPIRE S .
. A

60

Ha and HB are the unperturbed Hamiltonians (vibrational energy) of the pump
mode and the bath modes, respectively; HAB is the interaction Hamiltonian
coupling the pump mode and the bath modes; and H'(t) is the adspecies-field
effective interaction Hamiltonian. The operators a+,a and b+,b are the usual

5)

of the pump mode and the bath modes, respectively; Bp is the anharmonicity of

the nonlinear quantum oscillator (pump mode); u'(0) is the derivative of the

harmonic vibrational ladder operators (with fundamental frequencies wp and w

effective dipole moment of the pump mode evaluated at the equilibrium point;

E is the electric field of the radiation with frequency w, linearly polarized

at an angle 6 with respect to the effective dipole moment; and M is the reduced
mass associated with the active mode. In Eq. (IIIl.2d), Kj represents the coupling
between the active mode and the j-th bath mode. We note that the laser field
defined in the expression of Eq. (IIl.le) was assumed to be a single-mode classical
field; the case of a quantized multimode 1laser excitation will be investigated
later. [We should also mention that 6=0 in Eq. (II.12e), which is why the cosine

term is absent there.]

The equation of motion for an operator 0(t) in the Heisenberg picture,

0(t) = exp(iHtAr) 0 exp(-iHt/fM) , (111.3)
where the time-independent operator 0 is defined in the Schrodinger picture, is
do(t) = 1 " (111.4)
do(t) = L rotey , ] ,
employing the operator a]gebra14
[a(t), H] = aH/3a" (t) , (I11.5a)
[b(t) , H] = aH/ab'(t) , (111.5b)
we obtain the following set of coupled equations:
a(t) = imeffa(t) - i % Kjbj(t) -iVcos(wt), (III.6a)

bj(t) = -iwjbj(t) -ina(t) , (111.6b)
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K
where Soff is the effective frequency obtained by the contact transformation,ez
including anharmonicity up to fourth order in Eq. (III.2b),
3! weps(t) = wA-Ze*a+(t)a(t) , (111.6c)
' - 2
e* = 3083/uy - 684 . (111.6d)
ii We solve for the phonon operators bj(t) by formally integrating Eq. (III.6b)
: to obtain
L t
e bj(t) = bj(O) exp(-imjt) -iK; J dt' a(t') exp[-iwj(t-t‘)]. (I11.7a)
’ 0
Substituting Eq. (IIl.7a) in Eq. (Ill.6a), we get
a(t) = iweff(t)a(t) + Al(t) + Az(t) - iV cos(wt) , (I11.8a)
where
- * [
Al(t) = -j } Kjbj(O)exp(-1wjt) . (111.8b)
3
Ay(t) = - f dt'A(t') M(t-t') , (111.8¢)
2 0
i'l and M(t) is the memory (kernel) function given by
| M(t) = ] IKjlzexp(-imjt) . (111.8d)
J

To solve the above equation and hence the average excitation, the unknown
function A(t) and the many-body effects due to the phonon modes in Az(t) must be
decoupled. Depending on the memory function M(t), which is characterized by the
time evolution of the active mode and the density of states (or frequency spectrum)
of the phonon modes, the excitation and relaxation may behave quite differently.
For example, the relaxation of the active mode may be irreversible in one way or
reversible in another, i.e., there may be energy feedback to the active mode in
the other way. There are several techniques to deal with the aforementioned
many-body problem. We shall first discuss those for irreversible relaxation, and
the feedback mechanism resulting from different features of the memory function

will be investigated later.
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Within a Markoff process where the correlation time of the phonon opera-
tors is much faster than that of the active mode and the excitation rate, the
zeroth-order active-mode operator a(t)=a(0)expEﬁfdt'weff(t')] may be used to
evaluate Az(t). There are several alternatives to evaluate the integral in
Eq. (III.8¢c): (i) extending the upper time limit from t to infinity and working
out the time integral first; (ii) assuming a continuum phonon spectrum and fac-

toring out the coupling strength K and the density of states p; (iii) assuming

the memory function is a delta function in time. Either of these methods gives 14,84
Aplt) = - (v{/2 + isuw)a(t) , (I11I.9)
where the damping factor, e and the frequency shift, sw, are given by
_ 2
‘3(1 = ZTTIK(OJA)I P(wA) ’ (111.103)
= 2 _
Sw -:-P[§ IKJI /(uuA wj)], (ITI.10b)
where P stands for "principal part".
Substituting the result of Eq. (I11.9) into Eq. (II1.8a), we decouple
the phonon modes and obtain a single equation
a(t) = i(ugpgtou-iy /2)a(t) + Aj(t) - iV cos(ut) . (111.11)

The effects of the phonon modes have thus been incorporated into a damping
factor, Yqs and a frequency shift, sw, of the active mode. Another technique
to treat the multimode phonon effects is the Wigner-Weisskoff single-pole
approximation, which we shall discuss later when dealing with multiphonon

relaxation processes.
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The above nonlinear equation cannot be solved analytically due to the
excitation-dependent anharmonicity in “eff(t) [see Eq. (III.6)]. However, for
lTow excitation, we may ignore the anharmonicity and solve Eq. (1II.11) to ob-
tain the ensemble-averaged On the active- and bath-mode coordinates) excitation

<n(t)> = <<af(t)a(t)>> for the harmonic case (e*=0),

(V/2)2 vt

<n(t)> = - 1+
A +(Y1/2) c

v t/2 nt | (111.12)

-2e cos(at) | +n |1-e

where A=wp*Su=w is the phonon-shifted detuning and R is the phonon occupation

number given by the Bose-Einstein function, evaluated at the active-mode frequency,

7. [ explfiuy/kT)-1 |71 (111.13)

Here we assumed that the phonon modes provide an infinite energy "sink" and the

initial surface temperature (T) remains constant. This is not necessarily always
true when one considers a more complicated system consisting of several sub-
groups of bath modes, where some of the subgroups may have finite numbers of
modes rather than an infinite sink. Further discussion on this will be given
later.

So far we have discussed only the situation where the damping or level
width of the excitation is governed by the so-called Tl(energy) relaxation
rate, L To include the effects of Tz(phase) relaxation on the excitation,
we investigate the ensemble-averaged (over tie phonon-bath coordinates) equa-
tion of motion for the active-mode operator, 5(t)=a(t) or a*(t)a(t), in the

Heisenberg-Markoff picture (HMP).14’81

d<6 t)> : 6 t a t a L
__E%_l.=<i£}cos(mt»%][-§;$?%; - %E%f%l - (Yl/z) [ gast} a(t)

(111.14)
30(t

{ oo m_a20(t) O(t)
aa (t)

" salt)sat(e)
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The last term involving the dephasing (T2 processes) is characterized by the

dephasing-induced broadening factor Yo S follows:

<<::§%:::> " Y2 [af(t)a(t)’o(t)]af(t)a(t) - a'(t)a(t) [a*(t)a(t),a(t)] . (I11.15)

"
which is mathematically constructed such that, for 0(t)=a(t) and at(t)a(t),

<<§é%%;>§2 = - ypa(t), d[a’ t%a t)] LT 0. (111.16)

2

This assures that the T2 dephasing changes only the phase of the active mode
without changing its vibrational energy. By analogy with the above phenomena,
in collisional phenomena the T1 and T2 relaxation correspond to inelastic and
elastic scattering, respectively, and the overall collisional broadening is
then given by Yo

By using Eq. (II1.14) and the rotating-wave approximation, the ensemble-

averaged equations of motion in the HMP are found to be

A(t)> = - [i(a-2e*<a’(t)a(t)>) + (vy+y,)/2] A(t)>-iv/2 (111.17a)

<h(t)> = (iV/2) <<a'(t)-a(t)>> - y1(<n(t)>-ﬁ) , (IT1.17b)
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where we have used the rotating frame defined by 5(t)=a(t)exp(iwt). For long
laser-pulse excitation, we may employ the adiabatic limit, l§|<<(y1+y2)|a|, to

obtain the energy rate equation from Eq. (III.17) with §=0,

d;:’ - g%-- v, (<n>-7 . (111.18)

where o and I are the absorption cross section of the whole system (active plus
bath modes) and laser intensity (with photon energy #iw). oI/fw therefore denotes

the total excitation rate of the system given by g1

ol __ Allyy+vy)
Au [A-ze*<n>iz¥(vl+vz)z/4

(111.19)

and A=(V/E)2(4w/c) is a constant resulting from I=E2/(8w/c).
The steady-state average excitation, X, for a cold surface, i.e., neglecting

n, is seen from Eq. (III.18) to be governed by a cubic equation,

AI(F+/Y1)

X = . (111.20)
(A—Ze*X)2+(F+/2

)2

where T =y ;+y, is the total damping factor resulting from the T, (energy) and

T, (phase) relaxation. The optimal detuning then occurs at the maximum (dX/da = Q)
and is given by A* = 2¢*X* (note - the single asterisk which was already attached
to ¢ does not signify an optimal condition as it does for A and X). At the other
extreme where dX/da + =, we obtain a quadratic equation for the detuning, whose
two roots correspond to a "bistability" in X as a function of A. By equating

the two roots, we obtain the critical pumping rate I*=Y1PE/(8A5*), implying that

the existence of the bistability is a consequence of the condition I>I*. For
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a fixed laser intensity, which is proportional to V2 (or the pumping rate),
the bistability criterion may also be stated in terms of the anharmonicity as
e¥ > g¥* = (Y1F+)/(4AI)%. This "bistability" feature of the steady-state
excitation is shown in Fig. 11. It is seen that when the anharmonicity e* is
larger than the critical value, e**, the excitation profile shows the bistable
transition from P to Q as the detuning increases, and from R to S as the detuning
decreases. We note that the maximum excitation is red-shifted to a* > 0, which
is a general property of any nonlinear oscillator with ¢* > 0. A classical
analogy of this nonlinear quantum oscillator will be shown later.

A remark on the relaxation rate of the single-phonon processes must be
made before we discuss multiphonon processes. We have shown that the many-body
effects of the phonon modes on the excitations of the active mode may be reduced
to an energy relaxation factor (yl) and frequency shift (8w) as shown by Eq.
(I11.10). In the Markoff approximation the single-phonon relaxation rate is
given by 14,78

Re 2 |K(mj)|2 Sdt exp[-i(wj-mA)‘r]
J 0

"

S; d(ule(wJ.)|zp(mj)n8(wj-wA). (I11.21)

which vanishes when wA>mj, a situation in which the active-mode frequency is
usually greater than that of the bath modes. This unrealistic zero relaxation
rate may be avoided if one includes the finite lifetime of the phonon modes, g
which turns the delta function in Eq. (III.21) into a Lorentzian.g7 For an Einstein

spectrum o(wj) = 6(wj-wD), we obtain

3
W 2
Y] = (Tﬂ) <~A) "8/ | (111.22)
"1 A9/ Ny -ug) 24(15/2)
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which is significantly different from the result for zero phonon width Vg = 0.

For a Debye model, o(wj) = 3w§/wg and ' 0, we have

4
Y - (ézz)(ﬂa)(i&) ; (111.23)
Ms/\“D

where mA and mg are the reduced masses of the adspecies and the surface atoms,

respective]y.78’93

b. Multiphonon Processes

We have shown that a single-phonon relaxation rate may be achieved by the
finite lifetime (or level width) of the phonon modes if the frequency difference
wp-wp is not significantly greater than the phonon width g This is for the
situation that the active-mode frequency is close to the phonon spectrum. How-
ever, for an IR-active system the active-mode frequency is usually much higher
than that of the phonon modes, e.g., for CO/Ni, wA~2nx1000cm'1, wj-ZHX300CN-1
and yB~50cm'1, which results in a very small single-phonon relaxation. There¢ o <,
for those systems with a big energy gap between the active and bath modes, the
relaxation mechanism is dominated by multiphonon processes and neither Eq. (III.22)
nor (II1.23) is an appropriate expression for vy- To fine the power law for the
ratios(nh/ms) and (wA/wD), we shall investigate the thermally-averaged (on both
the active- and bath-mode coordinates) golden rule for the multiphonon relaxation

rate,87

Y =G%)Re§dt <HAB(1:) HAB(c@ , (II1.24)
0
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which is governed by the autocorrelation function of the interaction Hamiltonian

between the active mode and the bath modes.

Consider a Morse surface potential

v(Q.u)

-2a(Q-U-ry)
D [ e 07 _2e-a(Q-U) , (111.25a)

0

2a0q[e? - 3 , (I111.25b)

where D and a are the appropriate parameters of the Morse potential, and Q and
U are the position of the adatom and of the surface atom with equilibrium
position ro Since the frequency of the adatom is much higher than that of

the phonon spectrum, we have used the linear expension exp («Q) ® 1 + aQ and
dropped the constant terms which do not conserve energy in Eq. (III. 25b). The
interaction Hamiltonian is then given by the fluctuation of the adatom-surface
potential, i.e.,

Hag = V(Q,U) - <V(Q,U)> . (111.26)

where <V(Q,U)> is the thermally-averaged (over the bath-mode coordinates)

surface potential. Employing the identities

V() gau(0), _ _al(t)_ al(0) j<a?U(t)U(0)> (111.27a)

><@
o, _ <a?U%/2> , (111.27b)

<e

we obtain the autocorrelation function

<<Hpg(t)Hyg(0)>> = (2a0)2<<Q(t)Q(0)>> {Ey(E,+1) + Eg(Ep+1)-265  2(E2+1)},(111.28a)
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2 2 .
Eq = exp(a“<<y®>>) s (111.28b)
E, = exp(a2<<u(t)u(o)>>) . (111.28c)

Eq. (III.28) together with Eq. (III.24) enables us to evaluate the multiphonon
relaxation rate up to any order. Note that the linear term of the potential
v(Q,U) = 4azDQU gives us the single-phonon relaxation rate, Eq. (II11.22), when
2azD=mAw§. Furthermore, the relaxation rates may behave differently for different
choices of the interaction potential and/or phonon spectrum. To evaluate the
multiphonon relaxation rate for a very strong coupling case, the steepest

descent method is usually used.87’89

For a p-phonon process with wA=qu+(p-q)wp, where wp g and wy, are the
frequencies of the active mode and of the acoustic and optical phonons, respecti-
vely, the interaction Hamiltonian includes the term [az(p+1)QUp/p!]. Transforming

the coordinates Q and U into the second quantization operators, the integral of

Eq. (111.24) may be worked out for an Einstein spectrum to give77
0,2 o\ “%m N\ /m. \P-9
o ’ &( A)( A A\(4 , (I11.29)
1 - 1 -
Cptp-a) 112\ gug / \(p-0)e, mq/\ ™p

where Mps mq and mp are the reduced mass of the active mode and of the acoustic

and optical phonons. We note that the multiphonon relaxation rate is strongly
decreasing with increasing the order parameters p and g, Since mA<<mp,mq. There-
fore, for systems with a small mass ratio, mA/mq,mq<<1, and/or a high active-

mode frequency, wA>>mp,wq, we expect a long lifetime of the excited adspecies.

The above results, which provide us with a quantitative description of the power

laws of the mass and frequency, are in agreement with that of the energy-gap

37

Taw. The relaxation rate for the N/Si system has been estimated to be

45'1. The latter is much lower due to the

-1 -1 -177
smaller mass ratio, mH/mPt’ and wp = 2000 cm ~, wq ~ 150 ¢cm ~ and wy = 400 cm ~.

Yy ® 10115'1, where for H/Pt, Yy ® 10
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&' To obtain the average excitation of the active mode and temperature
E;i dependence of the multiphonon relaxation rate, we shall consider the microscopic
Hamiltonian81
H=Hy +Hg + Hpp + H'(t) (I11.30)
which is the same as that of the single phonon case except that the interaction
Hamiltonian HAB describing multiphonon relaxation is now given by
- + * ot
HAB = z 6ﬁGvaa +-ﬂGvaa) s (I11.31a)
- where we define a multiphonon operator
R Jy
- B, = L by by <eeby (I11.31b)
o Jppdgeeecdy v1 92 N
and G, is the coupling strength. It is seen that HAB reduces to Eq. (III.2d)
and describes single-phonon relaxation when N=1 and Gv=Kj' The Heisenberg equations
of motion are
‘ a(t) = ilugpelt)ru(t)Ialt) - i 2 G,B,(t) -1V cos{ut), (111.32a)
N . = - o3 *
: Bv(t) = 1Qva(t) 1Nvaa(t), (I1I.32b)
where jv
o o, = [B,(t)Hgl/B (t) = 1 wy (I11.33a)
o J=J1
- +
- N, = [B,(t),B ()] (I11.33b)
h and a(t) is a stochastic frequency modulation which accounts for dephasing effects.
';{ By employing the Markoff approximation as used in the single-phonon case,
;;; Eq. (II1.32) is decoupled and results in the ensemble-averaged equations of motion
- in the Hup!4-84
N A(t)> = -Lila-2ex<a’(t)a(t)>) + (vp#v,p)/2]<E(t)>-iv/2 ,  (I11.3%a)
iﬂ% <n(t)> = -(iV/2)<<5+(t)-5(t)>> - yl(<n(t)>-ﬁ) , (II1.34b)
._ which have the same structure as for the single-phonon case [Eq. (I111.17)],

except that we now have the multiphonon equilibrium occupation N = Hﬁ&’ and the
J
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relaxation factor is given by
2_
v, = 2n g |6, [N 8(wp-0) > (111.35a)
where jN jN
N =1 (n;#41) - 1 n.. (I11.35b)
R A PR 3=iy

In deriving Eq. (I11.35), the phonon-induced frequency shift was neglected

and we assumed that the stochastic frequency obeys the simple correlation

<w(t)a(t')> = YZG(t-t'). We note that the significant difference between single-
phonon and multiphonon processes lies in the nature of the relaxation factor,

1> which is temperature independent [Eq. (II1.21)] for single-phonon relaxation
but strongly temperature dependent for multiphonon relaxation. For example,

for an Einstein spectrum with p(mj)=6(mj-m0) and 2,=Puy (p-phonon process), we

find the temperature dependence of the relaxation rate as

vy = [exp(huy/kt-11 / [exp(hup/kt) 1P, (II1.36)

which, for low temperature (kT<<ﬁmD) becomes almost temperature independent,

Yy =1+ pexp( Hup/KT) (111.37a)

whereas for high temperature 6ﬁmA>kT>’ﬂaD) , (111.37b)

v = (kT/an)P{expeﬁmA/kT)-ll )

which shows a strong temperature dependence.

We have also assumed the coupling factor Gv to be independent of tempe-

rature and the spectrum of the phonon modes to be governed by a delta function.

Furthermore, only the single term in Eq. (III.35) which provides the dominant

contribution to the relaxation rate is considered. When considering many atoms

of the substrate, the order parameter p should be split into several parts, i.e.,

P T TP P DL IR W R WS TR W S Y R S W
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wp® 2 qmq, with 2q=p, and the associated compound density of states should be
expressed in terms of a convolution of the single-phonon density of states.36
To evaluate the multiphonon relaxation rate for an actual system, a realistic
phonon spectrum is needed, and information on the crystal structure of the
substrate is required for a first-principles calcu1ation.102
We have so far investigated the microscopic Hamiltonian based on a

single-mode classical field, invoking the assumption that the number of photons
in the laser field is so large such that the electric field (or intensity) of
the radiation is kept constant even in the presence of the absorbing medium.
Depending on the initial states of the system, the active mode may absorb or emit
photons corresponding to the excitation and de-excitation of the adspecies.
Similarly, the phonon modes may behave as a thermal field when the adspecies is
initially "cooler" than the bath modes. For instance, if the substrate is heated
by a laser or other thermal source but the adspecies is not, then energy could
flow from the phonons to the adspecies. To study these cooling or heating
processes of the adspecies, we shall consider a microscopic Hamiltonian similar
to that of Eq. (III.1), except that the adspecies-laser interaction, H'(t), is
non-quantized into a multimode field form,

H'(t) = E (Victa + Vic,ah) (111.38)
where c; and c, are the harmonic ladder operators for the k-th mode of the
quantized field, and Vi is proportional to the electric field due to radation

and may be referred to as the Rabi frequency of the excitation. The Heisenberg

equations of motion, previously given by Eq. (III.32), now become
a(t) = fugpeltlalt) - i g 6B (t) -1 E Vie (t) (111.39a)

év(t) = - ia B (t) - N G*a(t) , (I11.39b)

ék(t) = ju, () - ivalt) . (111.39¢)
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The above coupled equations can be solved by using the Markoff approximation
to include the many-body effects due to the phonon modes and the laser as
developed in the previous sections. Here we shall present an alternative
technique.

Taking the Laplace transform of Eq. (2.35), we get

a(s) = U(s)a(s) + ¥ V,(s)B (s) + E W (s)c,(s), (111.40)

where a(s), Bv(s) and ck(s) are the Laplace transforms of a(t), Bv(t) and ck(t),
respectively, and U(s), Vv(s) and wk(s) are the appropriate functions obtained
from the Laplace transform of Eq. (I11.39). Employing the Wigner-Weisskopf
single-pole approximation, i.e., s=0 in Eq. (III.40), the inverse Laplace trans-
form of Eq. (II1.40) can be obtained to evaluate the average excitation of the

active mode,

<n(t)> = <<a’(t) a(t)>> = <n(0)> et +

( 2
G
——1—21—-—— 1+e'Pt-2e'rt/2cos(Avt) qﬁs(o)

A3+(r/2)2 J

<~

\
f

2
v
+E __J__k_l___ [1+e'rt-2e'rt/2cos(Akt)]ﬁk(O) s

2 2
kAk+(r/2)

(I11.41)

where <n(0)>, 55(0) and Fk(o) are the initial occupation numbers of the active,
phonon and photon modes, respectively, defined by a Bose function with the same
temperature but at a differ:nt frequency. The detunings are defined by
B,=wp=R, and B Twp=Ck where 2, js the multiphonon frequency and wy js the k-th
mode laser frequency. Finally, r=v;+yq is the total damping factor describing
the effects of the parallel nonradiative (phonon) and radiative (photon)
relaxation of the quantum oscillator into two independent, noninteracting

multimode baths. We note that the multiphonon rate y, has a temperature dependence
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given by Eq. (III1.36), while the radiative factor g is independent of tempera-
ture since we consider dipole transitions of the active mode, i.e., the
interaction Hamiltonian, Eq. (III.38), contains only linear coupling terms in
the resonance excitation with frequency Wy .

Assuming an Einstein spectrum for both the phonon and photon modes, the

average excitation at resonance, Av=Ak=0’ becomes
2 2 2 - -rt/2)2 Tt
<n(t)> = [ = ][ ]GEl péNE + |VF| pFnF][] -e ] + <n(0)>e™" °, (I11.42)
«T

which is characterized by the incoherent phonon field and the coherent laser

field with initia]OCCUpationSpEﬁt and p#ﬁ#, respectively, and the initial
occupation of the active mode is decaying with a total rate I through two parallel
channels, the phonon and photon bath. We note that the active-mode excitation,
with initial state <n(0)>=0, is built up by both the laser field and the phonon
field, particularly when the initial phonon occupation Nt is high and/or is
"heated up" by the laser field either directly or indirectly via mode-mode

coupling.

p——— g G
“‘I L AROOACE ]
I Tt e L . tot L
o Lt L L '

2. Selective Excitation and Thermal Effects

So far the adspecies/surface system has been described microscopically by

a Hamiltonian in which the active mode is singled out,with all the other (inactive) |

' raoryrr
L A
PR

modes treated as a heat bath. The many-body effects of the bath modes were

reduced to the damping factors 0 and Yy based on a Markoff approximation in

which the kernel function, M(t) in Eq. (III.8¢c), was assumed to be a delta
function. We shall now investigate the memory effects of the kernel function on
the energy-flow dynamics (which up to now were assumed to be governed by an
irreversible process with an infinite heat bath). To discuss the types of
selectivity, the energy population of a multilevel system will be studied, and
finally, the excitations of the a-Sond in the H/W system will be examined

numerically.
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a. Memory Function and Feedbqpk Mechanisms

As illustrated in Fig. 12, in a simple heat bath model, the system consists
of the active (A) mode and the bath (B) modes in which the B modes are treated
as an infinite energy sink due to their large number of modes and the continuum
phonon spectrum. The energy flow from A to B is irreversible (with a relaxation
rate y) within the spirit of Markoff processes. In a modified model, the system
is divided into three groups: the active (A) mode, the quasi-continuum (B)
modes and the true continuum (C) modes. For CO/Ni as an example, the vq mode
(with frequency ~1000 cm'l) is the active mode, and the adspecies internal and
adbond modes (~300 cm'l) are the B modes. We shall demonstrate that in the
A-B-C model, although the energy flow from A to C and B to C are irreversible,
the energy flow between A and B is not necessarily a one-way process. Depending
upon the kernel function and the density of states associated with the quasi-
continuum B modes, the interaction between A and B may be a two-way process,
i.e., there can be a feedback from A to B. Furthermore, we shall show that
there is an interference effect which causes an indirect coupling between A and B
via the C modes.

The microscopic Hamiltonian describing the energy flow dynamics of the
A-B-C system subjected to IR radiation may be best expressed as [Eq. (III.1)

with i=A, j=B and k=C, where the C modes are inactive]

H=Hy+ Hag + Hao * Hge + Hyp * Hgg *+ Hpp + Hyp (111.43)

where Hq=H,+Hg+H. is the unperturbed Hamiltonian of the system, H,.(i,j=A,B,C)

ij
represent the interactions among them, and HAF and HBF represent the A-mode-laser
and B-mode-laser interactions. In the following discussion, we shall focus on
the energy flow between A and B, and the last two terms in Eq. (III.43) will be
ignored since our model system will consist of only one adspecies and one active
mode. For simplicity, we further assume single-phonon processes (the extension

to multiphonon processes may be done by techniques used earlier).

T .
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The equations of motion for the operators a, bj and Cy for the A, B and C

modes are given in the rotating frame by14’84
3= -i} 95 by E J do Ky 9y € Ep - %1 RI (111.44a)
by = -iggaE;”! ‘ijd”k Kk ok <k Ex/Ej "'jz;j.VJ‘J"':AJ‘J..t (H1.480)
¢, = 1Ky aEk -i 2 Kji by E5/Ep (I1I.44c)
Ej = exp(iAjt), etc. (I11.44d)

V is given by Eq. (III.2f); gj’ KAk. Kjk and ij. represent the appropriate
coupling factors associated with HAB’ HAC’ HBC’ and HBB’ respectively; the
detunings are defined by A=wp-u, By=upmwy, A =wp=wyp s R T etc., where
wps 05 and w) are the frequencies of the A mode, the j-th B mode and the k-th C mode

with the continuum spectrum and density of states Py Employing the many-body
techniques previously discussed, the effects due to the C modes may be replaced

by the frequency shift and the damping factor, whereby Eq. (III.44) becomes

i=vga- )6, by By - Tt (111.45a)
J

. = -iGaE; > [V 50+ 7 [Ky01%0] 8550 (1I1.45b

bj = -1 ja j - j;J' 1 J ™ Ol po e . . )

Gj=gj+(Gl+iGz) has two components--gj resulting from the direct coupling and
(Gl+iGZ) resulting from the indirect coupling between A and B via their coupling
to the C modes, where Gl,2 « KjOKAOQO; and Ya is the C-mode-induced damping
factor. We note that in Eq. (III1.45b), the B-B coupling is governed by the
direct coupling factor ‘Gj' (with j#j'), the C-mode-induced indirect coupling
2 2 ¥ ' s 2 Y sl o2

lej.ol po(w1th j'#3) and the damping factor YB=n|Kj.0] po(w1th j'=j). For
tractable results, we shall keep only the j'=j term in Eq. (II1I.45b), so that

. , ‘iAJ-t
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Eq.(III.45) has the same functiona) structure as Eq.(III.6), except that now
the damping factor YA.B has been introduced in the operators for the A and B
modes due to their energy relaxation to the C modes. Substituting the formal
solution of Eq. (III.45¢c) into Eq. (III.45a), we obtain, for bj(0)=0,
. t > .
a = -y - j dt'a(t')M(t-t')-’% 't (I11.46)
where the kernel (memory) function is given by
M(t) = T 16;1%expl(iavg)t] . (111.47)
3 J J
To solve for a(t) with the boundary condition a(0)=0, we obtain the Laplace
transform of a(t) from Eq.(I1I1.46) as
_ ~1(Vv/2)/(s-ia)
a(s) = — s (111.48)
(Sty,)+M(s)
which is characterized by the Laplace transform of the kernel function, M(s),

given from Eq. (I11.47) by

2
G.
M(s) =¥ —l—JI— . (111.49)

In our earlier discussions involving the Markoff or continuum spectrum approxi-
mation, M(t) = §(t), the dynamics of the B mode were simply damped due to the A
mode. To investigate non-Markoff processes or reversible processes between

A and B, we shall now evaluate M(s) without assuming a continuum spectrum.

From the concept of the energy-gap law and the multiphonon relaxation rate
discussed earlier, we know that the coupling strengt. IGJ.I2 is strongly decreasing
with the increasing of the multiphonon order parameter. For only finite numbers
of modes in B, we then may truncate the sum in Eq.(I11.49) and further assume

the mean value Aj=X and § IGJ.I2 = N|G|2 to obtain
J
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which yields
-1(V/2) ($+v5-12)
(5-2q) (5-2,) (5-2,)

a(s) =

where A3=1A and 11 o are the roots of

sZe(yptrg-8)s + vy(vg-18) + N[E]Z = 0

78

(I111.50)

(I11.5%a)

(I11.51b)

We shall show that the nautre of the energy flow between A and B is characterized

by these roots. For near resonance, Zk<yA B when the damping of the B mode

is in the range

YA-ZVN-IEI < vg < YA+2m[§| ,

(111.52)

Eq.(III.52) has two complex roots (which otherwise are real). These complex roots

yield the oscillatory behavior of a(t), and accordingly the active-mode exci-

tation <n(t)> = <<a+(t)a(t)>> is an oscillating function. Therefore, Eq.(II1.52)

provides the criterion, in terms of the damping factors YA.B and the coupling

strength /ﬁlﬁl. for the energy flow from A to B and back to A.

In the limit of

YA B<<N|E| » we readily obtain x| 2-ti»’ﬁlﬁl, which provides the frequency of

this back-and forth-flow. We note that in the single-mode limit, s = 0,

ﬁ(0)=N|§|2/yB, for A = 0, which gives the same results as that of the Markoff

processes in which energy is irreversibly flowing from A to B and C with a

total rate of yA¥ﬁ(o). The active-mode excitation for arbitrary values of

g is given by
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-At|2
<n(t)> = la(t)l2 :E: , (111.53a)

where 1, , are the roots of Eq. (I11.52), A3 = 1A and

-1(V/2)(YB-1A+A )
Cq el ow - , (I111.53b)

with n,n',n"=1,2,3,

In addition to the above, there is a second type of energy feedback based
on the periodicity of the kernel function in the quasi-continuum and the memory

Ei effects of the bound-continuum coup]ing,103

and a third type which we now

consider corresponds to the feedback effects resulting from the direct heating

of the substrate or indirect heating via phonon coupling. The substrate

ii temperature obeys the heat diffusion equation, given in a one-dimensional
approximation as

aT _
t az

) + S(z,t) . (111.54)

D is the diffusivity and the heating source is S(z,t) = (a/oCy)(1-R)I(z,t),
where o, p and Cv are the absorption coefficient, mass density and specific
heat of the substrate, respectively, and R is the reflectivity. We note
that the substrate temperature is governed by the volume source of the laser
radiation, I(z,t), with the boundary condition DoCV(aT/az) = 0 on the
surface (z = 0). The solution of Eq. (III.54) is in general only available
numerically. Except for the situation where the substrate is heated by a

high-power short pulse, e.g., gigawatt picosecond pulse, the above diffusion
104

equation, may be replaced by
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‘ T _ 9 (g 3T
=% (03) (I11.55a)
U
. and the boundary condition
kK 3y = -(1-R) 1(0,1)
= = -(]- R . (I111.55b)
z=0
where K = DpCv is the thermal conductivity of the substrate.
In an indirect heating process for the aforementioned A-B-C system
(Fig. 13), the boundary condition is given by
[instead of Eq. (I11.55b]
K (%%) = -F(t), (111.56)
z=0

where F(t) is the rate of energy flux (N/cmz) from the (A+B) modes to the

C modes whose temperature increases by an indirect channel through the iaser
excitation of (A+B). ‘We note that the energy flux rate F(t) in general is
time dependent since the excitation and relaxation of (A+B) are time dependent.
However, when the excitation of (A+B) saturates to steady state, the rate

of energy flow from the radition into (A+B) equals the rate of "cakage from
(A+B) to C. In this situation, the steady-state energy flow Fs.s.(t) =

ol A, where o is the steady-state total absorption cross section of (A+B)

and may be written as [see Eq. (111.19)]

fAIT

£ - , (111.57)
S50 (a-2e%x)%4(r/2)°

where f is a fraction relating the microscopic number of modes to the macro-
scopic thermal parameter, e.g., thermal conductivity of the substrate, and

I is the damping factor of (A+B).
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g In general, the damping factor is time dependent and given by the

;: thermally-averaged golden rule, similar to Eq. (I111.24),

1 :

. - (2

r(t) = (F)Refd-c <<HABC(T) HABC(O)» . (111.58)
N 0

' where the interaction Hamiltonia HABc is related to the power series of the

correlation function of the C-mode coordinate, <<Qc(t) Qc(0)>>, which generally
% depends on time through the time-dependent occupation number <nC(t)>. In view

g' of the fact that r(t), <"A,B(t)> and <nc> are all varying in time, the func-

4 tional form of F(t) should be quite complicated. To find the temperature of

X the C modes, one should simultaneously solve the rate equation of (A+B) with

iﬁ a time-dependent damping factor r(t) and the heat diffusion equation. However,

- when the excitation of (A+B) is saturated and when r(t) is assumed to be a

constant (or given by its mean value), the maximum surface temperature of the

substrate, subject to the boundary condition of Eq. (III.56) with a steady-

state flux FS s.» may be obtained by a Green's function technique to belos’106

TH =T, + ZFS‘S.[tp/wD)]i/pCv . (111.59)

% From this result and the expression of Feo s in Eq. (II1.57), we can draw

the following conclusions regarding the temperature behavior of the substrate

due to indirect laser heating: (i) in contrast to direct heating, the indi-
rectly-heated surface temperature is sensitive to the laser frequency through

the Lorentzion of FS vs detuning; (ii) Tg is linearly proportional

S.
to the laser intensity at low excitation, whereas T; « 1P with 1/3<p<l, in general
(iii) the increase of the substrate surface temperature will be significant

only when the diffusivity is small; otherwise the thermal energy will diffuse

into the bulk; (iv) the increase of T; results in a higher occupation number

. .- . - N N 2 e - L S )
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of the C modes,which in turn may provide energy feedback via their thermal
phonons. Furthermore, the increase of <nc(t)> leads to the decrease of the
rate of energy flow from (A+B) to C given by r(t)[<nAB(t)>- <nc(t)>].
However, we also note that the overall effects of <"C(t)> on the energy-
flow dynamics of the system are not yet clear since the relaxation rate,
r(t), is also time dependent. The above results based on a square laser
pulse tend to overestimate the surface temperature compared with that for

an actual pulse which is close to a Gaussian. For better results, we may
approximate the Gaussian by an isosceles triangle, which gives T; = 4/(27)*
(= 0.77 of that for the square pu]se).105

To further investigate the nonequilibrium behavior, we consider the

rate equation

d<n,.>
AB I
— =2y [<nAB(t)> - <nc(t)>] , (111.60)

which has the same structure as that of Eq. (III.18) except that the time

dependence of r(t) and <nc(t)> are given bylo7
t imot +
rt) =fd-re <<[JK.C:(t), IK:C.(0)]>> (I111.61a)
j J j JJ
0
and
t ion 2 +
<nc(t)> =JdTe <<JIK]2C.(0)C(T)>> (I11.61b)
j J J J
0
;

where wy 1s the mean frequency of the (A+B) subsystem, Cj=1§1ci is the multiphonon
operator for the C modes, and Kj is the coupling constant between (A+B) and C.

We note that Eq. (III1.60) reduces to the equilibrium expression, £q. (III.18),
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when the C-mode correlation time is much shorter than the inverse relaxation
time and the upper time 1imit of Eq.(III.61) is extended to infinity. We
finally note that the multiphonon retaxation rate given by Eq.(II1.58) is a
more general form than that of Eq. (III.61).

b. Multilevel System -- Selective vs Nonselective

So far we have assumed the active mode to be a harmonic "oscillator"
without energy-level structure. For a true quantum system, the active mode
should be treated as a multilevel system. As shown in Fig. 13, we consider a
multilevel system in which the active mode is coupled to the B mode, which in
turn couplesto the continuum C modes with the damping factor y. In the
Heisenberg-Markoff picture (HMP) and within the rotating-wave approximation,

the equations of motion for the Bose operators are given by83

dA (t)

A = 3T H A (1) expl-(E -E)tA] (111.62)

where Hmn are the matrix elements of the interaction Hamiltonian

H' = HAB+HBC+HAF(t) given by

= ' = A B F A B
Hmn = <‘l’m|,H l‘l’n> <95 ¢j k ((HAB"' HBC+ HAF)‘¢1'¢

¢Q§i being the eigenstates of the A, B and photon modes with the corres-

ponding probabilities Pm(t)=|Am(t)|2. For example, in a two-photon process
the eigenstates |002>, |200> and |020> represent A and B both in their ground
states, only A excited and only B excited, respectively. Considering the A
mode as a three-level system with excited states, coupled to the m-th and

2m-th level of B which is in turn decaying to C, the equations of motion for
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the Base operators -- 3y 5.3 for the A mode and B1 2 for the B mode -- in

the HMP are given from Eq. (1II.62) as

él(t) = - V) a,(t) exp(-iat) , (111.64a)

52(t) = -1'V1 al(t) exp(iAlt) - igl Bl(t) exp(-iAit) - 1V2a3(t) exp('iAzt),
(I11.64b)
53(t) = - iv2 az(t) exp(-iAzt) - g, Bz(t) exp(-iAét), (II1.64c)
B, (t) = -igY a,(t) exp(iajt) - (v,/2) By(t), (111.64d)
§2(t) = - ig§ as(t) exp(iast) - (v,/2) By(t) (111.64e)

Where A]. = NA - W Az = A1 - Ze*’ Ai = mB - (I)A’ Aé = MB + 26* - (A’A' (-:* iS the
anharmonicity of the A mode, and V, g, y are the pumping rates, coupling factors
and the damping rates for the related levels, respectively. The above coupled
equations are numerically solved for V; =V, =V, g; =g, =gandy; =y, =¥

to obtain the level populations
2 2 2
P, = Ial(t)lz, Py = laz(t)|2 + |a3(t)| and Pp = [B,(t)]° + [By(t)]°. (111.65)

PA and PB describe the population dynamics of the photon energy deposited in
the A and B modes, respectively, while PC =1 - (P1+PA+PB) describes the
population loss of the (A+B) modes and represents thermal heating, i.e., the
portion of the photon energy randomized in the phonon bath C modes. The
energy populations are shown in Fig. 14(A) for selective excitation of the

A mode with (V,g,y) = (4,0.1,0.4) and in Fig. 14(B) for nonselective heating
of the C modes with (V,g,y) = (4,1,1). We see that for fixed laser pumping
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rates the selective excitation of the active mode (A) requires a small multi-
phonon coupling factor, g, and small energy leakage rates, y, out of the B
mode, while appreciable nonselective thermal heating of the bath modes (C)

is achieved when the coupling factor and the damping rate are comparable to

the pumping rate.

c. Adbond Excitation -- Hydrogen/Tungsten

In the heat-bath treatments, we have focused on the excitation of the
active mode and treated all the other modes as a heat bath, which leads to a
damping factor and the frequency shift for the active mode. To investigate
the energy flow within the adspecies or the adbond, the vibrational modes
should be rigorously treated rather than singling out the active mode from
the bath modes. The intramolecular vibrational relaxation (IVR) rate of
SF6 molecule in the gas phase has been addressed in Part A.3 of Section II,
and now we shall extend that study to the excitation of a heterogeneous system,
namely hydrogen atom adsorbed on a tungsten surface. As shown in Fig. 15,
there are total of six (3n, with n=2) possible 1ibrational modes in the C2v
point group bridge site adsorption of H/W(100). These consist of two-fold
degenerative pairs of lateral modes (“2 and v3) and vertical modes (vl
in-phase and out-of-phase modes).108 In view of the frequency spectrum
v, = 1038.6, v, = 645.3 and vy = 1290.6 cn™', we shall consider the
fourth-order anharmonic coupling potential, proportional to Q%QZQ3= which
dominates the vibrational relaxation rate with the internal detuning
AI=:2w(2v1-v2-v3), where 01,2,3 are the normal coordinates of the v1,2,3
modes. By the concept of the energy-gap law and the multiphonon relaxation
rate discussed earlier, we presume that the fourth-order anharmonic coupling
is the lowest order we can use since the detuning 4y is not far off resonance.

The Hamiltonian describing the fourth-order anharmonic coupling among

the intra-bond modes of H/W in which the 2 mode is subjected to IR radiation




is given by83

3
H=( AHujala; +aH o +4Vcos(ut)(a] +a;) (111.66)
i=1

where V is given by Eq. (III.2f), and the anharmonic coupling is Hanh =
(QI+QZ+Q3)4' The diagonal terms of this coupling give the anharmonic components
of the modes, whereas the off-diagonal terms provide the mode-mode

coupling with the fourth-order coupling term X'Q§Q203, where 1A' = 121,

Referring to Eq.(I1I1.41), we can write the equation of motion for the ampli-

tude functions Bj as 12

w8, = a'cex 8,2 + 20'TB* BB.E, -(V,/2)%C,E (111.67a)
1 1°1 52 1 9283k ~Vqg 1°F ° y

#B, = r'cYpr B2+ 2'T8,2BX E (111.67b)
2 2 P2 B2 1°38 :

s en - 4 * 2 1 2 *

E, = exp(ziat), Ee = exp(iAét) , (I11.67d)

Ai = 2n(2vi -vé -vé ), Aé * 2nvi -w (111.67e)

where C = cfb2c3 and other parameters are defined as in Eq. (II.41). The
above coupled equations have been numerically solved by the fourth-order
Runge-Kutta method (using a DEC-10 computer connected to the NCAR graphics

software). The dynamical feature of the excitations which show the energy

flow among v V3 and the active mode (vl) are illustrated in Fig. 16.
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3. Photon Energy Population

In the heat-bath treatments, we have shown that the laser radiation may
selectivily excite the active mode while the bath modes are kept "cold" if
the pumping rate is greater than the relaxation rate; otherwise, there is

nonselective thermal heating of the whole adspecies and/or the substrate

surface. We have also demonstrated that in the H/W system, the IVR rate could

0l2

be very fast (1 s'l) when the internal resonance condition is not within

the low-order anharmonic coupling. For systems with a very fast IVR rate,

%! the photon energy initially deposited in the active mode may be randomized

? among all the adspecies and adbond modes. In this situation, the master (rate)
ii equation, which treats all the vibrational modes in the subsystem, e.g., (A+B)
Ei in Fig. 13, on an equal footing, is more appropriate than that of the heat-bath

treatments. We should note that, from the concept of energy-gap law, the sub-

= system involved in the master equation is defined by those modes which are
strongly coupled, e.g., (A+B) modes in Fig. 13, and usually excludes those
Tow-frequency phonon modes (C) which are separated far in frequency from the A
and B modes. Therefore, the energy space of the master equation is defined
by the number of photons absorbed by the whole adspecies, or (A+B) modes,
rather than the vibrational quantum number of the active mode.

Before presenting the master equation which involves the pumping
(relaxation) rates, we shall first calculate the associated absorption
(stimulated emission) cross section for the adspecies. This may be obtained
by a generalization of the total c¢ross section of an anharmonic oscillator
in Eq. (II1.19),

A(n+1)T
(m1)T) (111.68)

o]

N (a-2e%)26(T/2)°
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where the n dependence of the transition dipole matrix element
; Ml <n+l,. ‘x|n> = J(;:IS“O,I has been included. g, represents the cross
't‘ section for a transition between the m-th and (m+1)-th levels with Tevel
widths T and T ,; ?ﬁ a (Pn+rn+1)/2 is the mean width; and X is the steady-
iii state excitation of the active mode. Noting that both Fﬁ and X in general
are n-dependent, e.g., F'n=(n+1)r0 for the transition pair (n, n+l) and
X « (n+l) at low active-mode excitations, the cross section may be written
in the general form
o = (n+1)%o* , (I11.69)

S n

where ~* and a are correlated parameters depending on the relative magnitudes

'i"..-..
S e

of the anharmonicity and the bandwidth. For example: «=1 and c*=r0/[A2+rg].

for e*=0 (harmonic oscillator) and Fh=r (constant bandwidth); a=-1 and

a*==I‘o/(2e*)2 for an anharmonic osci]]ator,'Fn=ro<<25*X, X=n+1 and 4=0; a=0
and a*=A/T, for e*=4=0 and T, = (n+1)r,.

The master equation describing the photon energy population in the

energy (n) space can be written as80

dae
—d‘g = -(Ion/‘Kw)[Pn-(gn/gn_,_l)Pn,,,l] + (I°n-1m“’)[Pn-l'(gn-l/gn)pn] . (I11.70)

. r . . . . .
450

P, is the population (adspecies/cmz) of the level of energy nifw, i.e., absorbing
n laser quanta, and 9, is the degeneracy of the n-th level, related to the
number of vibrational modes S in the adspecies [or (A+B) modes] by

- )51

g, = 9p(n+l , (I111.71)
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and o, ., are the quantum cross sections for transitions between the level
pairs (n, ntl) given by Eq. (III.69). We note that, as discussed in Part A.2.a,
the transition rates or the cross sections are in general time dependent, and

the above master equation with constant cross sections is the limiting case

of the generalized master equation84
t
dPn I . . ' ,
—at S d% ) dt' L Do (t-t") Pr(t') - op i (t-t') PL(t")] , (II1.72)
0 n'

which reduces to Eq. (II1.70) when we assume just the dipole transition, i.e.,

g )
n'n
that within the harmonic model the dipole transition is a selection-rule-allowed

= 0p8nt nsl? and a Markoff process, i.e., cn(t-t') = §(t-t'). We note

process, but if the anharmonic potential is considered, the high-order transi-

tions with o , =024 (jz2) are also allowed .

n'n nn',ntj
The exact solution of the quantal master equation for general forms of
9, and 9, is not available. However, we shall discuss two limiting cases which
are physically interesting and can be analytically solved.

(1) a=S-1 (single-mode harmonic oscillator). Eq. (III.70) becomes

dpP

—t = - (Io*/H)[(n#1)P  + nP o - (2n+1)P T, (II1.73)

which has the solution, with the initial condition Pn(t=0)=N06(t),

P (t) = Now"(t)/[1+w(t)]"+1 . (111.74a)
W(t) = oc*o/He (111.74b)
t
¢ -'r dt I = laser fluence (J/cmz) . (I11.74c)
0
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The corresponding average excitation (quanta/adspecies) is
1
<n(t)> =g 1 P =Wed . (111.75)
0

(2) a=0 (constant cross section), S=1. For this case Eq. (Iil.70) becomes

dp
75? = -(Io*Hw)[2P -P -P. 1] . (111.76)

With the same initial condition as in case (1) and by using the recurrence rela-

tion of the modified Bessel function, we obtain the population function
Pa(t) = NNjexp(-2W)T (2W) , (111.77)

where N is a normalization constant, In is the modified Bessel function, and W
is again given by Eq. (III.74b). The corresponding average excitation for this

population is

<n(t)> = 2(w/1r)Lé « ¢Li . (111.78)

We note that the average excitation is proportional to the square root of
the laser fluence, whereas in case (1) it is linearly proportional.
To investigate the population function and the associated average exci-

tation for the general forms of ¢_ and g, We shall now assume that Pn, g

n n

ard g, are smooth functions in n-space. Within this continuum assumption,
which is a good approximation when n is large, the quantal master equation,

Eq. (II1.70), is then converted into the classical diffusion equation31

.....
......
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n/gn)] : (I11.79)

Substituting Eqs. (III.69) and (III.71) inco Eq. (II1.79), a particular

solution of Eq. (II1I.79) consistent with the initial condition Pn(t=0) =

NOG(t) is
P (t) = NNyg expl-n®/(820)] (111.80)
2 N = (8/90)(82w)'s/5/r(5/s) , (111.80b)
- B=2-a , (111.80c)

where W is again given by Eq. (III.74b) and N is the normalization factor.
The average excitation for this classical population function can then be

calculated as

an(t)> = N;L j;dn P n = (20)/Br[(s+1)/8Ir(s/8) (111.81)

which is proportional to 01/8 (since W = ¢) and consistent with the quantal

results of Eqs. (III.75) and (I1I1.78) for 8 =1 (a=1) and B8 = 2 (a=0). It is

worth noting that for a = -1 (anharmonic oscillator), <n(t)> « ¢1/3 in this

classical diffusion model, whereas the steady-state excitation of the active

1/3 in the quantal Heisenberg-Markoff model Eq. (I1I.20).

mode <"A(t)>s.s. = [
Combining Eqs. (II1.71), (III.80) and (III.81),we can express the population

function in terms of the average excitation as

N.B
. 0" (F(S S S-1 nF(S) 8
Pp = FT§7(<n ty5) (M7 exel-(Gy) ] (111.82a) -

F(S) = rL(s+1)/8]Ir(S/8) . (111.82b)

................
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For a comparison with the above classical diffusion model, we now consider

a Boltzmann thermal distribution P;(t) which is characterized by the effective

temperature Teff and the quantal degeneracy g; [gn in Eq. (III.71) is a

classical degeneracy] as follows:

.83b)

.83¢)

.84a)

.84b)

Pa(t) = NNjgrexp[-niu/kT cel (I11.83a)
where
o -1 -
N = [2 P;/N] = [T-exp(tre/v” (111
g = (ms-1)1/[nt(s-1)1] (111
and the effective temperature Taps 1s defined as the average excitation
energy per vibrational mode and is governed by energy conservation as
4wn = 4<n(t)>/S , (II1
M= [er(M/kT gp) - 1170 . (111

For a multiphoton process (<n(t)> >>1), we obtain the high effective tempe-

rature limit (kTeff>>'ﬂa), and for n>>S, Eqs. (III.83) and (I111.84) reduce to

n s kTeff/hm, KTopf = 4u<n(t)>/S , (111

S
N = (KTgee)> (111

* _ S-1,«_ =
gy = N7 /(S-1)! = g - (111

.85a)

.85b)

.85¢)
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The population function reduces to

PX(t) = NOns'l exp|- ns ’ (111.86]
" s en(t)ors)S] | 8>

which is identical to the result of the classical diffusion equation,

Eq. (III.82a), for the case a = 1 (harmonic oscillator).

rﬁ: Another important population function, the Poisson distribution, which
. follows from a solution of the Schrodinger equation,3? has the form
ul Pn = (<n>"/n!)exp(-<n>) , (111.87a)

where <n> is the average excitation of the adspecies assumed to be harmonic

I! with equal energy spacings. We note that <n> in general is time dependent and
: is given by14
Al
<n(t)> = —Z— [14e T2 T 2c05(at)] (I111.87b)
a%+(r/2)

where A is a constant proportional to the transition dipole of the adspecies

and T is the overall level width. The above result is identical to Eq. (III.12)
with n = 0; however, <n> here represents the photon quanta absorbed by the
adspecies (as a whole) rather than that of the active mode. Moreover,
<"(t)>s.s. « I in the Poisson distribution which is quite different from the
fluance dependence <n(t)> « ¢q in the other types of distributions aforemen-
tioned. For a comparison of the Poisson function and those obtained from

the diffusion equation and the Boltzmann-type distribution, we plot the

results for various values of S and o« in Fig. 17. The associated desorp-

tion probabilities Pd’ shown in Fig. 18, are defined by

P, =i Y P_ (quantal population), (111.88a)
d N0 L N
n=n
Py = ﬁL.d{P dn P (classical population), (111.88b)
0
n*
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where n* is the desorption threshold. The adspecies will be desorbed

from the solid surface through the channel of a direct bond breaking, indirect
migration-induced desorption or Fano-type autodesorption via mode-mode coupling
within the adspecies. We note that with a knowledge of the energy population
together with the measured quantity n*, we should be able to evaluate the
desorption probability. The reverse procedure, namely knowing the measured n*
and the desorption yield (probability and/or rate of desorpticn) will provide
the information about Pn, i.e., how good are the calculated populations for
various systems. More discussion on the dynamics of desorption will be given

later.

4. Isotope Effects

Infrared isotope separation of species in the gas phase has been success-

2

fully carried out both theoretically and experimentally.® However, the isotope

effects of species adsorbed on a solid surface have only been recently studied

100,109 4 theoretically.B unlike gas-phase isotopes

either experimentally
whose absorption cross sections are governed mainly by their frequency difference,
the collective excitations of isotopic adspecies are characterized by many other
surface-induced effects: (i) direct dipole-dipole interactions among the

identical and isotopic adspecies; (ii) indirect adspecies-adspecies inter-

action due to their common coupling to the substrate phonons, i.e., the
phonon-mediated interaction; (iii) frequency shift and level broadening of

the adspecies induced by such effects as substrate heating, multiphonon

relaxation and dephasing; and (iv) dynamic effects such as migration and
desorption. The above effects all influence the absorption cross sections

of the isotope adspecies and usually smear out the "frequency separation” of
different isotopes when they are co-adsorbed on a solid surface. For systems

like c12016 c12,18

and adsorbed on a copper surface, the frequency difference

of the C-0 stretching is about 47 cm'1 and their dynamic dipole-dipole

109

coupling is rather large. Therefore, it is more difficult to observe the

S -
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jsctope effects for adsorbed CO than for adsorbed H2 and DZ’ which have
weaker intermolecular coupling and a larger frequency difference. We shail
suggest below some possible mechanisms for isotope separation of adspecies
using a model based on a previously-developed theory.86
The ensemble-averaged equations of motion for a system consisting of
a mixture of two isotopic adspecies may be obtained by extending those for

the single adspecies, Eq. (II1.34), as follows:

Ei ié(t) = [;gff(t)'ﬂ a(t) + VA/2 + D'b(t) , (I11.89a)
: ié(t) = msz(t)-w b(t) + VB/Z + D'a(t), (I11.89b)
<ﬁA(t)> = -VA<<Im[a(t)]>> -20<<Im[a(t)b+(t)]>> - y?[<nA(t)> - nC/Z}, (I11.89c¢)
<ﬁB(t)> = -VB<<Im[b(t)]>>‘+2D<<Im[a(t)b+(t)]>> - Y?[<"B(t)> - nC/Z], (111.89d)

where VA and VB are the pumping rates for the A and B modes, e is the Bose-
Einstein distribution for the C modes, Im denotes the imaginary part, and
méff and mgff are the effective frequencies of the isotopic adspecies A and B

whose ensemble averages are given by

<<mg%2>> = wp g~ ZSK,B<nA,B(t)> -iPA’B/Z ’ (I11.90a)
r, . =yhB 4 AB (111.90b)
AB ~ i Y2 : .

In the above equations, a new adspecies-adspecies coupling strength, D', is
introduced,

D' = D-i(Dl+iD2), (I11.91)
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which consists of two components, the direct dipole-dipole coupling strength D

and the phonon-mediated coupling (D1 + iDZ), where D1 and 02 are given by the

real and imaginary parts, respectively, of the integra1110

t
B-(lﬂ—fdt' b(t') § ncG?G? exp(i(spst-agst)] (111.92)
0

For the Markoff process or for a continuum C-mode spectrum, the real part of

the integral reduces to the simple expression

= A.B

which is proportional to the multiphonon occupation number, ne = n(ﬁ'j+1)-nnj s

the density of states of the C-modes,po, and product of the coupling strengths

between the isotopic adspecies and the C-modes,GGGg. Here we have approximated

A.B A.B

The coupled equations [Eq. (III.89)], which are highly nonlinear due to
the anharmonic corrections 2€*<"A,B(t)> and the isotope coupling strength D',
can only be solved numerically. However, one can obtain the steady-state
excitatations for the weak-coupling case, D'=0, as

2
<ny g(t)>¢ ¢ = (V"'B/zl EQ’B/Y?’B] = (I11.94)

[«‘”2%2»'“‘} * (TA.B/ 2}

which show that one of the adspecies may be selectively excitated without sig-

nificant excitation of the other when the laser frequency, w, is tuned to one

of the optimal values, i.e., Aé%g z <<w2%2>> -w = 0, for either adspecies A or B.

;j To demonstrate the effect of the coupling strength, D', on the dynamics

- and the steady-state excitations, we plot the numerical solutions of Eq.(III.89)

for the harmonic case (e; B=0) in Fig. 19. It is seen that <nA(t)> is higher than

<nB(t)> for 4y < A, where 4y g = wy g-w, With D'=0 [Fig. 19(A)]. As D'
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increases, both excitations decrease [Fig. 19(B)]. Increasing the coupling
strength to the transition value, i.e., D' = D*’=(AB+AA)/2, causes the steady-
state excitations to become identical [Fig. 9(C)]. For large coupling strength,
D'>D*, both excitations are low and <nB(t)> is higher than <nA(t)> (Fig. 19(D)].
These numerical results for the steady-state excitations are seen to be in

accord with analytical results. Such results can be obtained by defining the
"difference excitation" N_= X - Y, where X and Y are the steady-state excitations
of the adspecies A and B, respectively. We obtain, from Eq. (I111.89), for

* - =y = A- B.—. =r.=
EA’B'O’ VA"VB-V, Yl"Yl Yl and I"A I'B r,

N, = vzrn_(n+-2o')/[}yl[zf+zgil, (111.95a)

1, =an, - D'2 - (r/2)2 (111.95b)
1~ Aa%g , :

Z, =ra,/2 . (111.95¢)

Q. =08g 8 (111.95d)

AA)B = mAsB - W . (111.958)

The above expression for the steady-state "difference excitation" N_ displays
the following important features: (i) isotopic selectivity increases with
decreasing coupling strength; (ii) when the coupling strength reaches the
transition value D' = D" = Q,/2, there is zero selectivity, i.e., N_ =0 as
shown in Fig. 19(C).

For further investigation of the selectivity, we consider the reduced selec-
86

tivity S defined by

t
3 =.f dt<nA(t)>/<nB(t)> . (I11.96)
0




A ur.',’.'.

il

TR N S oS L.

A B Mags Shatin Sl Hhedr Shamy o . - - . cT AT T e T T e T

98

where tp is the laser pulse duration, and <nA(t)> and <nB(t)> are the excita-
tions of the isotopes to be solved numerically from Eq. (II1.89). The numerical
results for non-interacting (D'=0) and interacting (D'#0) isotopes are shown

in Fig. 20, which reveals the following features: (i) for the harmonic case,
with e} =0, S=1 for 8p=lagl [eurve (E)], (i1} for the anharmonic cases,

eK,B#O, a higher selectivity is expected [curve (B)] than that of curve (E)

due to the nonlinear feature of the excitation; (iii) the optimal condition
for high selectivity is that the laser frequency has positive detuning for
both the A and B adspecies [compare curve (C) with (E) and curve (A) with (B)];
(iv) curve (E') shows the effects of D' on the selectivity for the case of
EK,B=0 at D'=D*=(AA+AB)/2, where S=1 at steady-state as predicted by the
analytical expression, Eq. (III.95); (v) for eK’B#O, D* is "blue shifted"
toward S=1 [curve (F')]; (vi) an increase in D' shows a decrease in S [curves
(A) to (G')], and S<1 when D'<D*, corresponding to the situation of <> < <ng>
[curve (D) of Fig. 19 and curves (F') and (G') in Fig. 20]. We finally note
that for a non-interacting system, D'=0,the greater the frequency difference,
Ap-Bps the higher the selectivity; however, for an intereacting system, an
increase of the coupling strength, D', does not necessarily result in a decrease
of the excitations. Numerical solutions of Eqs. (II1.89 and (II1.96) show that
there is an optimal set of values (D**, EK,B) which yield maximum excitations;
e-g., for ex=1, V;=10, v} =y, =2 and 8,=8.3, D** = 2.9 yields the maximum
value of <Np>.

For further demonstration of the effects of the coupling strength, we
Took at the total steady-state excitation N,=X+Y. Some results are shown in

Fig. 21.

i
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5. Dynamic Effects

We shall end this section by discussing some dynamic effects resulting
from the excitation of the adspecies and/or the substrate. These effects
are associated with phenomena such as migration, recombination, decomposition
and desorption. Here we shall focus on theoretical aspects of migration and
desorption, while other processes will be looked at in Section IV.
a. Migration

To describe the individual behavior of the adspecies occupied at different

lattice sites, we introduce another parameter, namely the site operator, in
addition to the ladder operators for the normal modes in the dynamic Hamiltonian

given by

H(t) = HO(QI’QZ’..QJ) + kgk.vkk'(QI’QZ’."QJ)CECK' + HAF(t) . (III.97)

H0 is the unperturbed Hamiltonian of the system (with normal coordinates Qj),
ka.(Qj) is the lattice-site-dependent interaction potential of the system, and
c; and c,. are the site operators of the Bloch states |k> and <k'|, respectively,
which can be expressed in terms of Wannier functions in the site representation
as

ik -R

c; =lk>=—=TJe "n , (111.98a)
n

1
N

e Mem| : (111.98b)
m

(Qq2Qp0-=Q;) = V i ] ) Py Q.Q° (111.99)
' s goe = + (11 . _'+...’ .
TR 0 1[ 30y . i3 ng+lT 20;(20;)7|
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the multiphonon processes. Using the second-quantization expression of Eq.

(I11.99) and the Wannier site representation in Eq. (II11.98), we obtain, from

Eq. (I11.97), the microscopic model Hamiltonian as fo]]ows:79

0
B

0

= 0 '
H(t) Hy + Hg + Ho + Ho + Hp + Hy + Hy + H, + HAF(t) R (111.100)

0_ + 0. t 0. ¥

L (I11.101a)
- t oot tooat t oot t
He ngjxnjcncn(bj+bj) + % YnCncpla +a) + g% ancncn(a +a)(bj+bj), (I1I.101b)
- +
"= Ll o (111.101c)
H, = cle (at+a) (111.101d)
2 n;men n'm ’ *
_ IR
Hy § ngm Gnm cncm(bj+bj) , (111.101e)
- It ateayint N
Hy } nzm wmncncm(a +a)(bj+bj) + [higher-order terms], (I11.101F)
Hyp(t) = n;m V(t) K cle (aT+a) . (111.101g)

X, ¥, Z, J, K and G are the appropriate coupling parameters proportional to the
first derivative of the interaction potential (ka.),while W is proportional

to the second derivative of ka.. The above dynamic Hamiltonian provides us

with the following features: (i) the ground state site energy of the adspecies
E0 is perturbed by Hé, which includes changes in site n due to direct interac-
tions with the lattice and due to active-mode excitation, as well as an indirect

interaction with the phonons via the active mode; (ii) the terms Hg and H1

- represent parallel motion of the adspecies, IJnmI2

in H1 being related to the
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intersite transition probability from site n to site m due to coherent motion; (iii)
the terms H2 and H3 represent the perpendicular vibrational-motion-induced intersite
transitions due to the active mode A and the bath modes B of the adspecies/

surface system, respectively; (iv) H4 is the A and B mode coupling-induced

intersite transition; (v) finally, the excitation of the active mode, governed

by HAF(t), provides the dominant driving force for intersite migration of the
adspecies.

For the case of chemisorption on a lattice site, the equilibrium position

of the adspecies is shifted due to the distortion of the lattice. In this case
the adspecies-phonon interaction is very strong and perturbation theory cannot
be used. It is posssible, however, to use a canonical transformation to go to
.‘-
J
shifted equilibrium position of the adspecies and the lattice distortion. The

lattice-dressed operators A;, An’ B., Bj and C:Cn which take into account the

transformed total Hamiltonian is quite complicated, and for tractable results

we shall investigate the single-phonon case, where the dressed Hamiltonian is

H(t) = Hy + Hog * HC + Bpp(t) (111.102a)
Hy = Eg ril Cle, + M eeh A + gmﬁ}% . (111.102b)
Hyg = nﬁg‘,j'nﬁf;m cic, [A*Bj+AB;] , (111.102¢)
He = ngj 12, cc, [A+BJ.+AB;] : (111.102d)
Haelt) = n;m v (1) clc, [AHA] . (111.102e)
bage =Wy - 2% ATA (111.102f)
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EO is the distortion energy, ﬁim and inj are the transformed coupling constants

of Wﬂm and an, respectively, and G(t) is the transformed laser-adspecies coupling
constant of V(t)Knm. Employing the many-body technique described in the previous
sections, we obtain the equations of motion for the ensemble average <<<e:+>>>
(over the A and B modes and the lattice site coordinates) of the active (A) mode

and the lattice site transition probability:

dsf = -i<wgpe(t)> <A> - iV(t) - {[Ylﬂzﬂml/Z} <A> (111.103a)

@d‘:) -i«V(t)A*— V(LAY - [ﬁ*"m}[(ﬁ)'ﬁo] : (111.103b)

d b » Ry

dt N -ZY““:[«“\» +l]nB * {nBﬂ] @A» 2<<P'>> - @n+1>> - (@n-) :
(111.103c)

Here Yp is a dephasing factor,and 1 is the phonon-coupling-induced damping

factor given by

=<
—
[

'§ lij'ZYB/[AJZ' * [YB/Z]Z] ’ (111.104a)

8; = <weff> ey (I111.104b)

whera Yg is the decay factor of the phonon (B) modes due to anharmonic coupling.

In Eq. (II1.104) and in what follows, we assume only nearest-neighbor contribu-

tions, namely, ng = Zg,ntl = 73, etc. The migration-induced damping factor
™ is given by
v i A a2 cosdrg] - aysinfdry]
vy =) (W] . (111.105)
M J 2% + /2)°
i *[s/?)
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where Aj and d are the wavelength of the B-mode vibration and the lattice
spacing of the substrate, respectively. We note that a simplified mode]78
which assumes an infinite phonon lifetime, i.e., yB=0, results in y1=yM=0 for
single-phonon processes and for Waff > ©j- For systems with great energy gap,
(weff-wj)>>ya, the damping factors for the single-phonon processes are very
small and multiphonon processes are dominant. Employing techniques similar
to those used for obtaining Eq. (II1.35), the expressions of | and ™ for
multiphonon processes may be obtained by setting Aj equal to <”eff>'z ws and

multiplying the coupling parameters lijlz and iﬁjl2 by the multiphonon occu-
pation number of the heat-bath modes in Eqs. (III.104)and (III.105).

From the coupled equations, Eq. (II1.103), we can calculate the lattice
site occupation probabi1ity<§?n(t§> »  which in turn gives us the mean-square

displacement of the adspecies

2 2 2 |
R(t»ad 1 n2dpe (t)) . (111.106)
¢ 3 e ci)
and the diffusion (migration) coefficient

D = 1im [féfi&ii_l . (111.107)

2t

The site probability function ((Pn(t)>> is in general not analytically available
due to the time-dependent excitation((nA(t» which is nonlinearly coupled

(Eq. (111.103)]. For tractable results, we investigate the large damping case,
1,27 W such that the adspecies reaches its steady-state excitation

X E«"A(t)»s.s which is governed by a cubic equation, Eq. (III.20). Using

this steady-state excitation, we may solve Eq. (III.103C) to obtain the

quasi-steady-state site probability,

ey
RO

o

. abnalle 'W*"‘-“*‘—*hh'k*k'-*L‘-kj
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<<pn(t)> - 1 (ant)e M, (111.108)

where In is a modified Bessel function and

W= {Z"Bx X “B]YM : (111.109)
Thus, from Eq. (III1.106) and using the recursion relation for the modified
Bessel functions, we obtain the mean-square displacement, which in turn yie -

the migration coefficient

D = 4wd? . (111.110)

This is related to the laser intensity by a power law, IP, 1<p<3, since W = 1P,
p=1 for low excitations for the harmonic case (e*=0), and P=1/3 for high
excitations. We note that the above laser-enhanced migration constant, D = W,

is governed by an Arrhenius form for the high-temperature limit, kT>>ﬁwj.

D= DO exp[-EA/kT} ’ g (I1I.111a)

A\'J' 2 ~j‘2
Ep = W]+ 2] |Huy (111.111b)

is the "activation energy" for migration. We note that the above Arrhenius form
for the migration coefficient resulting from single-phonon processes may be
replaced by a non-Arrhenius function for multiphonon processes.

The master equation given in Eq. (II1.103c) involves the assumptions of

nearest-neighbor contribution and constant migration rate. Removing these two
84

assumptions, we have the generalized master equation
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dP(m.n..t) T .t =’ det L (W (et )P(mt gt - W (t-t')P(m,n,j,t')J
nn
m',n',t' ?

mm m'm,n'n
(111.112)

where P(m,n,j,t) is the site probability of finding the adspecies at the lattice
site (m,n) and at the j-th vibrational level at time t, w%%:’nn(t) is a time-
dependent transition rate from state (m',n',j') to (m,n,j), and w%:%,n.n(t) is

the associated reverse rate. We note that in the above general form the transitior
rates are not only time dependent but also governed by both the site coordinate
(m,n) and the vibrational states of the adspecies (j) which are activated by

the laser radiation. Depending on the migration barrier and the vibrational
energy of the adspecies, there are at least three types of dynamical transitions.

Type (I): horizontal migration. The laser induces the transition from

(m,n,j) to(m',n',j) with a change in lattice site but leaving the vibrational
state unchanged. This is the situation that the adspecies is vibrationaliy
excited to a mobile site followed by a horizontal migration, but returning to
its initial vibrational state by energy relaxation to phonons. Mathematically,
this process may be described by H1 and H4 in Eq. (III.101).

Type (II): vertical transition. This involves the transition from

(myn,j) to (m,n,j'), where the initial j-th vibrational state is promoted to
the higher state j'>j when the adspecies absorbs photons, but the energy
level is still not high enough to cause intersite transitions. For this case the

migration barrier is large, and the description involves HC in Eq. (II1.101b).

Type (III): oblique transition. This involves simultaneous intersite and

vibrational state transitions and may be described by H2 and HAF in Eq. (III.101).
We note that a type (1) transition usually involves a physisorbed state
for highly mobile adspecies and may be thermally induced by either direct laser

heating of indirect phonon excitation. A type (II) transition may cause direct

PO N S VO S
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desorption when enough phonons are absorbed by the adspecies. The last type
of transition may cause indirect desorption via surface rate processes such
as recombination or decomposition or by the assistance of phonons.

We finally note that the laser-induced selective surface migration of

adspecies has been theoretically proposed.84

although no experimental work
has been reported. In the model system of Lin and George.84 the moble
adspecies (usually in a physisorbed state) could migrate in a preferential
direction which has a lower migration energy barrier and/or higher effective
temperature [see Eq. (111.111)]. This laser-enhanced selective migration,
either direction-selective or adspecies-selective (if isotope and/or mixture
adspecies are involved), plays an essential role in the surface rate processes
which are diffusion-limited.

b. Desorption

Desorption mechanisms have been recently studied, both theoreti-

ca11y78’80-82’89-92 94-101

and experimentally. First of all, we should note that
none of the theories developed as far nor measured data are able to completely
describe the desorption mechanisms which may be achieved through several
channels. Depending upon the states of the adspecies (such as physisorbed or
chemisorbed, adatom or admolecule, and the potential of the adbond) and the
frequency spectrum of the system and the laser field, as shown in Fig. 22 the
desorption may result from direct laser excitation or from indirect energy
transfer processes. The desorption channels from type (I) to type (V) will

be discussed separately.

Type (I): direct desorption via active-mode excitation. This type of

desorption channel has been investigated by Slutsky and George in a harmonic

mode],78

Lin and George in an anharmonic mode]go’82 and Metiu et al in a
Morse potential model89 [see Fig. 22(I)]. In these models, the active mode

is excited by multiphoton processes,while energy is leaking to the bath modes
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which lead to a damping factor or level width of the active mode. When enough
photon energy is absorbed by the active mode [or the adbond in the one-dimensional
(1D) Morse potential model], the adspecies may be desorbed from the surface by
overcoming the desorption energy. In a harmonic model, this threshold photon
energy (or laser intensity) in order for desorption to occur has been under-
estimated by the harmonic model, where the absorption cross section is governed
by a constant detuning A=wA-m, and has been overestimated by the 1D Morse

potential model. While the anharmonic model of Lin and George (AMLG) should

sometimes provide a good estimate of the desorption threshold energy, none of
the above treatments will be appropriate when the IVR rate of the system is
faster than or comparable to the laser excitation rate, since the photon energy
is more 1ikely randomized within the adspecies and/or substrate phonons.
Overcoming the anharmonicity in the AMLG model, A'=A-2e*<n>, or in the Morse
potential model, and thus reaching the continuum,is quite unlikely to occur for
this fast 1VR situation. We also note that in the Morse potential model, the
important concept of the "quasi-continuum" is excluded. Therefore,one might
look for another type of desorption channel, such as the following suggestion.

Type (I11): direct desorption via the quasi-continuum. The concept of the

quasi-continuum and the mechanisms for level broadening have been proposed by
Lin and George.84 As shown in Fig. 22(11), the active (A) mode is pumped by
near-resonant radiation and the photon energy is rapidly randomized within
the admolecule(M) with a damping rate y to the C modes. There we have intro-
duced the quasi-continuum (QC) in the surface potential M-C bond. We note
that for a small adspecies (e.g., single atom or diatomic molecule), the QC
may not be achieved when one assumes an 1D potential. As discussed in Part
A.3 of this section, the master (rate) equation treatment for the incoherent

excitation in the regime of the QC is able to provide a quantitative descrip-
80

tion of the desorption mechanism. We should also note that the level

t




108

™ I' T
. L8 RN
N P

broadening of the adspecies can be achieved by several factors such as the
anharmonic coupling in the adbond, the surface-phonon-induced T1 and T2 relaxa-
tion and adspecies-adspecies interactions (static dipole coupling or dynamic

scattering-induced pressure broadening). All of these broadening effects may

achieve the QC even for small species where this is not possible in the gas
phase.

Type (111): indirect desorption via tunneling. Desorption may also occur

indirectly when the adspecies (particularly for a physisorbed state) is excited
to a high vibrational level whose energy is degenerate with some continuum of
the adbond. As shown in Fig. 22(III), the active mode of the admolecule is
excited with its excited state coupled to the continuum of the adbond (B-C)

to cause the desorption of A-B. This type of desorption channel essentially
involves a Fano-type bound-continuum coupling and has been employed by Lucas
and Ewing in their predissociation model for an adspecies and later by Kreuzer
et a192 and Casassa et a].gl Although a Morse potential has been used for the
adbond (B-C), the above authors have assumed either a single-photon process or
a multiphoton process but with a harmonic potential for the active bond (B-C).
This harmonic assumption again might overestimate the transition rate (or the
absorption cross section) in the master equation.92 Furthermore, a 1D Morse

potential of the adbond (B-C) without the concept of the QC may cause errors in

the estimation of the desorption rate.

?i Type (IV): indirect desorption via substrate heating. Shown in Fig. 22(IV)
'E; is a system in which the adspecies is not active to the radiation but the

F—! substrate can absorb photon energy either by phonon or electron excitation.

The adbond may be broken by absorbing thermal energy from the heated substrate

_ surface. This desorption channel may occur when the substrate with small

l' diffusivity is highly heated and the adspecies is weakly bounded, e.g., physi-
sorbed. However, this type of desorption is much less sensitive to the laser fre-

quency than types (1)-(11I) where the dipole transition is governed by the

. ‘,‘.'_--; - PR VU O S U SO S Sy




- T T T e
- -~ SN0 G Sren S SaSEL s Bume S ene med R " - -7 .

109
detuning.

Type (V): phonon-assisted desorption in the QC regime. We propose another

type of desorption channel, as shown in Fig. 22(V), which combines those mecha-
nisms described for types (I)-(IV). The effective adbond potential (M-C)
consisting of regions (i) and (ii) is coupled to the substrate phonons which

may help desorption occur, particularly when the adbond is excited to region (ii)
and near the true continuum. In the coherent excitations of region (i) with
strong phonon coupling, the energy flow from the adspecies to the substrate is
more likely irreversible. However, when the adspecies reaches region (if),

i.e., the QC,desorption may be assisted by the feedback energy from the thermal
phonons. When the adspecies is highly excited into the QC region and in thermal

equilibrium with the substrate, the desorption rate (kD) may be approximated by
ky = koexp[-(E*éﬁm<n>)/kBT§] R (I11.119)

where k0 is the pre-exponential factor, kB is Boltzmann's constant, and <n> is
the mean number of photon absorbed by the adspecies [given by e.g., Eq.(II1.75)
or (I11.78)] with the threshhold desorption energy E* and maximum surface
temperature T; [given by Eq. (II11.59)]. Another way of describing the phonon-
assisted desorption rate is by the expression

k0 = koexp[-E*/kB(Teff+T§)] s (I11.114)

where Teff is an effective temperature of the adspecies [given by Eq. (I111.84)].
We note that in either of the above expressions, Eq. (III.113) or (III.114),
the desorption rate may be enhanced by the laser excitation through <n> and

- » * ~
Teff and further assisted by the thermal phonons via TS s Where Tg (> T0

(initial surface temperature) when the substrate surface is not heated.
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A more rigorous expression for the desorption rate given now as time depen-

dent is

kp(t) = ‘degwne(t) P(t) (111.115)
0

where Pn(t) is the probability that the adspecies is in the bound vibrational
state |n>, given by, e.g., a Poisson function [Eq.(II1.87a)]. wne(t) is a thermal

transition rate from the bound state |n> to the continuum state |e> given by
ne(t) = kg &0 [~(e€ ) /KT (1] (111 116)

where En is the energy of the n-th vibrational state, and T;(t) is the time-
dependent surface temperature which can be obtained from the diffusion equation,

Eq. (III.55a), with the boundary condition Eq. (I11.56).
Type (VI): indirect desorption by dynamics, The final desorption channel

to be discussed is also an indirect type, which may be achieved by dynamic
processes such as migration, scattering and reactions. An example is shown

in Fig. 22(VI), where the initially chemisorbed adspecies may make a transition
to the mobile physisorbed P-state by absorbing enough photon energy to over-
come the transition barrier, but still not have enough energy to overcome the

desorption barrier.82

The mobile P-state may easily migrate on the surface
and eventually desorb from the substrate by further absorbing photon energy
via the direct desorption channel [types (I) and II)] or the indirect channel
[types (III) and (IV)] or the phonon-assisted channel [type (V)].

B. Laser Applications to Surface Chemistry

We have discussed in Part A.5 two of the most important dynamical processes
associated with the phenomenon of laser-stimulated surface processes (LSSP)
--migration and desorption. In addition to these processes, LSSP in general
should include rate processes such as diffusion, recombination, decompo -

sition, dissociation and adsorption (or deposition). Before investigating
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the experimental aspects of LSSP, we display in Fig. 23 a flow chart of the
methodology of LSSP. Both classical and quantum treatments have been developed
for the absorption cross section which, with the master equation in energy
space,gives the energy population and the average excitation. Furthermore,

by solving the master equation in the lattice-site space we may investigate
laser-induced surface migration (which in the field-free case has been studied

by random walk techm'ques.111

We have shown that for large values of n, the
discrete master equation reduces to a classical diffusion equation where the
energy population can be analytically obtained. The energy flow and population
of the adspecies/surface system provide the fundamental mechanisms of LSSP as
discussed in Part A. In this second part we shall study the applications of
LSSP to surface chemistry, which includes heterogeneous catalysis, chemical

vapor deposition and laser annealing.

Some of the applications of lasers to surface chemistry and/or physics are:

(1) Enhancement of surface diffusion-limited reactions.

(2) Enhancement of the mobilities of selective species in a multi-
component environment.

(3) Control of the concentration of reagents by selective desorption
or excitation-induced migration of the species.

(4) Study of the decomposition and recombination rate processes
on solid surfaces.

(5) Study of the catalytic properties and heterogeneity features
of the adsorbents.

(6) Isotope separation and mass separation of adspecies via selective
desorption (laser chromatography).

(7) Study of the composition and location of the active sites and
the conformation structure of the adspecies.

(8) Fabrication of microelectronics via laser-induced chemical vapor

deposition; microetching and laser annealing.
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We first discuss laser applications to heterogeneous catalysis, which
involve the following processes:112 (1) adsorption (physical or chemical)
and desorption of the species on the catalytic surface; (2) migration of
adsorbed species and subsequent collisions; (3) interactions (via dipole-
dipole, charge transfer, etc.) between the adspecies, either directly or
surface-mediated; (4) scattering (reactive or nonreactive) of gas-phase

species by the clean surface or adsorbed species.

A laser beam might influence the above processes in a number of ways
depending upon the physical and chemical states of the excited species. Some
examples are (where K denotes the catalytic substrate):

(i) Excitation of a reactant in the gas phase

—+B+C+K (b)

(ii) Excitation of an intermediate adsorbed on the surface

---+ AB + K (c)

kl k2
(A + B)/K --==--2 (AB)/K ===%-=>
--—+C+D+K (d)

(iii) Excitation of a reaction product in the gas phase
A+B + K ===+ (AB)/K ==-=—=+C +D . (e)

In (i), laser radiation may enhance the adspecies-substrate reaction

(a) and the decomposition processes catalyzed by the substrate (b). Laser/

surface-catalyzed decomposition processes have been investigated for the

’ chemisorption of CH4 on Rh113 and HCOOH on Pt,97 where thc vibrational
%! excitation of the reactants has been chosen to change the rate of adsorption
;3 and the amount of products formed. The infrared laser-induced etching of a
¢
.
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semiconductor has been studied for SFS/Si. where the gas-phase reactant SF

; 6
‘ is excited and then chemsorbed on the Si surface to react and form the products

SFS(g) and SiF4(g) desorbed from the substrate.l00

In (ii), laser radation may influence the overall reaction rate in
several ways: (1) by increasing the mobility of the reactant atoms (A or B)
through photon excitation of the A-K or B-K bond with subsequent enhancement
of the reaction rate k1 [see type (VI) in Fig. 22]; (2) by removal of the
excess energy from the unstable complex (AB) on the substrate surface via
laser-stimulated emission accompanied by s face-phonon-mediated relaxation,
thereby increasing the reaction rate ky; and (3) by breaking the AB-K bond
either directly through laser excitation of the adspecies or indirectly through
thermal desorption by laser heating of the surface [see types (I) and (IV) in
Fig. 22]. We note that the direct desorption of chemisorbed species from a
solid surface usually requires multiphoton absorption, necessitating the use
of high-power radiation. However, much lower powers may be sufficient for
the desorption of a diatomic molecule adsorbed on a solid surface (A-B-K)
if the photon energy absorbed by the A-B molecule can be easily transferred
to the surface to break the B-K bond via anharmonic coupling [see type (III)
in Fig. 22]. Laser desorption of OH radicals from a silica surface has been
reported in which a low-power (=10 W/cmz) CW CO, laser was used to excite the

95

Si-0H stretching mode. High-intensity (=Mw/cm2) pulsed CO, laser desorption

processes have also been performed for CH3F/NaC1,99 CSHSN/Ag and the isotopes
C-H-N and C.D.N coadsorbed on KC1.100’101
' 55 575

#! In (iii), we illustrate laser excitation of a reaction product after it
is desorbed from the substrate. The detection of the OH radical desorbing
from a Pt and Rh/Pt catalyst surface by laser-induced fluorescence has been

recently reported.97
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Another important aspect of laser applications is in laser-assisted
chemical vapor deposition (LCVD), which could provide a new method in the
fabrication of microelectronics. A typical sequence of events occurring in
CVD are:

1. Diffusional transfer of the gaseous reactants to the surface.
Adsorption of reactants on the surface.

Events on the surface, e.g., reactions, migration, nucleation, etc.

W N

Desorption of products from the surface.

Laser radiation can be used to decompose the gaseous molecules or heat the
substrate in order to enhance adsorption. Examples of systems studied so far
are: the decomposition of metal alkyls and metal carbonyls to deposit on

115 reactions of

metals and the decomposition of SiH4 to deposit oh silicon;
S1C1, with H, to deposit Si, and SiH, with NHy to deposit si M- 118 e note
that in the above mentioned examples, laser radiation may be used to induce

CVD with many features which are not available from the conventional procedures,
e.g., single-step processes, small-scale deposition with high homogeneity,

remote procedure, and selective and local deposition.

We finally mention laser annealing. Both CW laser solid-phase recrystalli-
zation and pulsed laser liquid-phase epitoxy have been reported.117 Furthermore,
the controversy regarding the physical mechanisms responsible for annealing,
namely the thermal melting model versus nonthermal plasma model, has been

investigated by picosecond laser processes.118
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Figure Captions

Fig. 1. Power law for the average number of photons absorbed per molecule:
(A) fluence dependence <N>c¢q and (B) intensity dependence N><I9.  Non-
linear effects with q<1 result from the anharmonicity of the absorption
cross section [Eq. (II.16)]. The dots are the experimental data based on
the measurement of laser f1uence15(a) and laser intensity.ls(b)
Fig. 2. Schematic energy diagram for infrared multiphoton excitation of

a polyatomic molecule. The discrete states of the active mode are initially
excited and coupled to the quasi-continuum which may be further pumped to
reach the true continuum by absorbing enough photons. Note that in the
quasi-continuum the energy populations are usually determined by a set of
incoherent rate (master) equations.

Fig. 3. Popluation of the photon energy (Pn) vs. number of photons absorbed
per molecule (n) in the quasi-continuum region characterized by: (A) thermal
distribution [Eq. (I1.25)], Poisson distribution in a harmonic model and (C)
with the anharmonic corrections.32

Fig. 4. Red-shift diagrams of the optimal detunings for infrared excitation
of the SF¢ molecule: (A) maximum active (v3)-mode excitation (ﬁ?) vs.
external detuning (Aé) and (B) maximum vz-mode excitation (ﬁg) vs. internal
detuning (a}) With a fixed ap/2r = 2.7 en™'.

Fig. 5. The time-dependent average excitations of the active mode (ﬁl),
the v, mode (ﬁé) and the v, mode (ﬁé) for the detunings (Aé/Zﬂ, Ai/2w) =
(A) (0, 0) exact resonance,(B) (0, 20) far-off internal resonance and (C)
(2.71, 1.00). Aé/Zn = 2.71 is the optimal external detuning for the SF6
molecule.

Fig. 6. Time evolution of the average excitation of SF6 subject to one and

to two infrared lasers at various scaled [in unit of (y1+y2ﬂ Rabi frequencies
;= (Ailio)l/z/(y1-+y2) and scaled detuning Di = Ai/(Y1+Y2): (A) simultaneous
excitation by two lasers with (91,92) = (0.5, 1) and single laser excitations
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with (8) (2, D) = (1, 8), (C) (2, D) = (0.5, 1) and (D) (%, D) = (1.5, 2).
Here the time scale is in the unit of laser pulse duration (t) with intensity
profiles Ii(t) = Ii Sin4(nt/1), i=1, 2. 47

o

Fig. 7. Two radiative mechanisms for curve-switching (j= %-+ j= %) in an
excimer system. Process I: during the collision a laser L1 excites a bound
state of the system. Subsequently, a stimulated emission brings the system
into a new channel. Process II: while in the initial bound state, the system
absorbs a photon from a second laser, L2, and enters a second bound state. As
in I, the system is brought into the final channel through an emission stimu-
lated by L1.

Fig. 8. Illustration of possible collisional conversions involving two lasers.
The open channels |a> and |g> are radiatively coupled to the bound states |s>,
|t>, and |u> by the first laser. These bound states are themselves mutually
coupled by the second laser, which induces real as well as virtual transitions
(solid and dashed arrows, respectively). Two non-radiative interactions are
also included. The spin-orbit interaction couples the open channels |a> and
|8> and is denoted by the curved arrow in (1); the second, unspecified, inter-
action couples |t> to a third channel |y> and is depicted in (3).

Fig. 9. Schematic representation of the HeI2 molecule in the X and B elec-
tronic states. The motion of He is in a potential defined with respect to the
distance, r, from the He atom to the center of mass of 12. The other coordinate,
R, is the separation of the I atoms. In the absence of radiation there are
certain collisional energies, E;, for which the system undergoes resonance
scattering. Here the motion in the 12 bond is strongly coupled to the motion

in the Hel bond. In the excited excimer state, the I-1~ bond is isoelectronic
with the Xel ground state (which is weakly bound), wherein the roles of strong
bond and weak bond are switched. After formation of the vibrationally predis-
sociative resonance in the X state, a photon may be absorbed exciting the system
into a predissociative excimer state. Subsequently, predissociation occurs:
vibrational energy from the I'-He+ bond is transferred to the weak I-I~ bond
resulting in bond dissociation.
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Fig. 10. Radiative scattering pathways with initial scattering energy E,.
Top: L1 (long arrow) effects a continuum-to-bound transition. The level
spacing in the bound state manifold is such that a subsequent transition

by L2 (short arrow) can be made to a higher level), with subsequent decay

to the initial scattering state but at an increased translational energy

Ef. Bottom: the same electronic system but with different isotopic compo-
sition. The intermediate level spacing does not permit a significant transi-
tion by L2, therefore only elastic scattering is permitted.

Fig. 11. The normalized steady-state excitation as a function of detuning for
the harmonic case ¢*=0 (solid curve) and anharmonic cases with ¢*= critical
value (e**)=5/3 (dashed curve) and ¢*= 6 (dashed-dotted curve). The bistable
transition points are shown by P, Q, R and S. The parameters used are
(1772A) = (1,10,2.5), with the units of y in 1?45", Ypse* and & inlgm']],

I in W/cm® and A in 107 cm/M/s. Note that 1 cm ' corresponds to 3x10 " s~

in frequency.85

Fig. 12. Schematic diagrams for the heat-bath models: (I) simple case with
irreversible energy flow from A to B and (II) modified case for energy flow between
A and B while being damped by the common bath C.

Fig. 13. Schematic energy level diagrams for the A, B and C modes, where V;

are the pumping rates between the i-th and the (i+1)-th vibrational levels of the
active mode, coupled to the B mode via multiphonon coupling through the

factor 9i3 Y denotes the energy relaxation of the m-th level of the B mode due
to7;ts coupling to the C modes which are condensed modes with density of states

Fig. 14. Energy populations of the A, B and C modes for two-photon multiphonon
processes, given by PA’ PB and PC’ respectively, for (pumping rate, coupling
factor, damping rate) = (V,g, v) = (A) (4,0.1,0.4) selective excitation and
(8) (4,1,1) nonselective thermal heating.84

Fig. 15. (A) Hydrogenic lattice modes of H chemisorbed on W(100) at saturation
coverage with H occupying a CZV point group symmetric bridge site. Motions of
the H atoms vertical and lateral to the surface are indicated by the arrows % and
+(»), respectively. (B) Schematic diagram indicating the frequency spectrum
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of the H/W(100) system. Note that the IR active 2 mode (1048.6 cm']) is

coupled to the Vo and V3 modes by the fourth-order anharmonic coupling
'l

A'030,05. 2

Fig. 16. Dynamical features of the average excitations of the active mode (ﬁl),
the v, mode (ﬁé) and the v, mode (ﬁé) for the heterogeneous system H/W with detun-
ings (Aé/Zn,Ai/Zw) = (A) (0,0) exact resonance and (B) (10,80). Here we

have used the following parameters: laser intensity I==IOBW/cm2, anharmonic
coupling constant A =5 cm'1 and initial temperature T0 = 300 K.

Fig. 17. The distribution functions of four-photon excitations (<n(t)> = 4), for
a Poisson population (--), diffusion model population (for a = 1) with S=1 (---)
and S=6 (----), Boltzmann population with S=1 (----) and S=6 (—), and quantal
population with S =a =1 (-----),

Fig. 18. The desorption probabilities of n*=5 [defined by Eq.(IV.88)] associated
with the distribution functions shown in Fig. 17.82

Fig. 19. Time-dependent excitations <Np B(t)> of the active modes for the harmonic
case, i.e., e*=0 with (V,y,AA,AB)= (10,1,4,8) and D'= (A) O, (B) 2, (C) D* and
(D) 10. D*= (a,+45)/2= 6 is the transition value where N_=0.%

Fig. 20. Time evolution of the reduced selectivity [Eq.(IV.96)] for the non-
interacting [curves (A)- (B)] and interacting isotopic system [curves (B')- (G')].
The parameters used are: V=10, yf’B= y2’8= 4, EK= s§= e* and (D',e*,AA,AB)=
(A)(0,e**,5,10), (B) (0,e**,5,-5), (C) (0,0,5,10), (D) (0,e**,5,0), (E) (0,0,5,-5):
and (e*,AA,AB)= (e**,5,10) with D'=(B')2,(C') 4, (D') 6, (F') D* and (G') 10.
e**=1.,28 is the critical anharmonicity as defined in Fig. 11, and D* = (AA+AB)/2 is

the coupling strength at the transition point defined by Eq.(III.95) for N_=0.
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Fig. 21. Total steady-state exc1tatlon profiles in (N+,uJA B‘D )-space for e*=0,
¥p* =0, V=10 and (uwg- A,yl,y1)- (A) (15,5,5), (B) (15,7,3). (C) (5,3,7) and
(D) (5,3,7), where N,=X+Y is the total steady-state excitation, X= <Np>e o
and Y = <Ng>¢ o g1ven by the numerical solutions of Eq.(IV.89). 86

Fig. 22. Schematic diagrams of adspecies-surface systems and the associated
energy leve's, where A, B and M represent the adspecies (adatom or admolecule),
C represents the substrate (or bath modes), and the laser radiation is indicated
by the wiggly lines. Several types of desorption channels are illustrated:

(I) direct desorption via active-mode excitation, (II) direct desorption via
the quasi-continuum, (III) indirect desorption via tunneling, (IV) indirect

desorption via substrate heating, (V) phonon-assisted desorption and (VI)
indirect desorption via dynamics.

Fig. 23. Flow chart o#&the méthbd&{ggy of LSSP, ind1§;t1ng both classical and
quantumntreatmgnts of fhe\qbsorpt1on ss saction ~ solving the\master
equation in en space and lattice-s space, we are able to 1nVe§tJ§é§e

the\EEErgx\E?pu1ati desorptionand m1grat1on which are essential comB\nenis
_heterogeneous rate processes.
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