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I. Introduction

Theoretical techniques for describing laser-induced molecular dynamics

combined with multiphoton processes are reviewed, with emphasis on our own

work carried out during the past five years. The presentation is divided

according to Sections II and III as Gas-Phase Processes and Surface Processes,

respectively. The former section is further divided into two parts, where

Part A is Unimolecular Dynamics and Part B is Molecular Collisions. Within

Part A we address five topics: 1. heat-bath models (both classical and

quantum mechanical); 2. the rate equation approach using a quasi-continuum

model; 3. the excitation of intramolecular modes; 4. selectivity in

multiphoton processes; and 5. multiple-frequency laser excitation. Within

Part B we address two topics: 1. resonance formation, chemical reactions

and transition-state spectroscopy; and 2. isotopic selectivity.

Section III is also divided into two parts, where Part A is Energy

Flow in Adspecies-Surface Systems, and Part B is Laser Applications to Sur-

face Chemistry. Part A constitutes most of Section III and is further di-

vided into five topics: 1. microscopic treatment of single-phonon and multi-

phonon processes; 2. selective excitation and thermal effects, including

(a) the use of the memory function to describe feedback mechanisms from the

substrate to the adspecies, (b) the competition between selective and nonse-

lective processes in a multilevel system, and (c) adbond excitation in the

hydrogen/tungsten system; 3. photon energy population; 4. isotope effects;

and 5. dynamic effects associated with migration and desorption.

__o --~
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II. Gas-Phase Processes

A. Unimolecular Dynamics

Since the first report of infrared laser dissociation of polyatomic

molecules in 1971,1 the phenomena of multiphoton excitation (MPE) and

dissociation (MPD) have been extensively studied and have been shown to be

a novel method for vibrational-mode-controlled infrared photochemistry.
2

Most of the major aspects of MPE and MPD are now qualitatively understood

by experimental measurements and related theoretical studies. However,

the quantitative understanding of multiphoton processes and their appli-

cations to selective photochemistry is still in its infancy. The complexity

of the aforementioned processes results not only from the coherent properties

of the laser radiation but also the states of the excited molecular system.

Some of the important questions which have been (or are expected to be)

addressed are the following:

(i) For a large molecular system, what is the nature of the excited

vibrational state and how does it change with laser parameters, such as

intensity, fluence (intensity x time) and frequency?

(ii) What is the magnitude of the absorption cross section?

(iii) What is the interplay between coherent and incoherent processes

when the molecular system is excited and makes the transition from discrete

states to the so-called quasi-continuum?

(iv) What is the role of intramolecular vibrational relaxation (IVR)

in MPE, and what determines the rate of IVR? Is it always fast enough

to randomize the energy absorbed by the intramolecular modes, so that a

a statistical theory may be used to describe MPD?
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(v) How is the degree of isotopic selectivity determined by the IVR

rate, the laser pumping rate and the dissociation rate?

(vi) What are the dynamics of the dissociation event?

(vii) How fast is the randomization of intramolecular energy

compared to a chemical process such as fragmentation?

Quantitative answers to the above questions will provide us with an

understanding of the photophysical (excitation and relaxation) as

well as the photochemical (decomposition and reaction of fragments)

processes. However, the theory developed so far and the experimental

information are not sufficient for us to construct these answers. We

therefore note that the discussions in this Part A of Section II

only provide either qualitative or semi-quantitative descriptions of the

above features of MPE and MPD.

Two distinctly different approaches will be discussed: (1) heat-

bath model (HBM) and (ii) quasi-continuum model (QCM). In the first

approach, HBM, the active mode of the molecular system is singled out,

and the coupling between this mode and the bath modes provides the relaxa-

tion mechanism. With a consequent energy leakage from the active to the

bath modes, the molecule is heated up and the increase of the mode-mode

coupling results ina red shift and smearing out of the absorption spectrum

of the pumped mode. The second approach, QCM, is based on a picture in

which the polyatomic molecule forms a quasi-continuum (QC) at high energies

due to its high density of states. In this approach, all vibrational modes

of the system are treated on equal footing, and each individual state of
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the QC is generally a superposition of all the modes. To describe the

dynamics of MPE based on HBM, we shall start with a simple classical

model and a generalized Langevin theory. Then the results of a quantum

treatment will be discussed and compared with those of the classical approach.

The second approach, QCM, which involves the rate (master) equation for

the energy populations, will be used to describe the phenomena of MPD.

To demonstrate the dynamics of MPE, a quantum treatment of IVR will be

discussed and the rate of IVR for SF6 molecule will be estimated.

Different types of selectivity and the possibility of bond-selective

photochemistry will be investigated. Finally, the cooperative effects

in MPE via multiple-frequency lasers will be analyzed based on both a

quantum treatment and a classical treatment.

7-
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1. Heat-Bath Models

Both classical3- 10 and quantum 10 -13 treatments have been employed

to calculate the photon energy deposited in a damped anharmonic classical/

quantum oscillator. The total energy of a laser-excited molecular system

may be described either by a classical Lagrangian or a quantum Hamiltonian,

while the energy transfer dyanamics is governed by Newton's or Heisenberg's

equations of motion. The absorption cross section may be obtained from the

classical power absorption (force x velocity) or from the quantum rate of

excitation (expectation value of the energy operator). Immediately below,

classical and quantum models are shown, and the results will be compared

later in Part A.5 of this section, where the absorption cross section

of two-laser excitation will be investigated.

a. Classical Models 
6 -8

The classical Lagrangian describing a polyatomic molecule subject to

infrared radiation may be written in terms of the normal coordinates Qi

as follows:

L(Q=IQ2,...Q i) o L0 - V + f(t)QA, (II.1)

where L0 is the unperturbed Lagrangian, and V is the interaction potential

of the molecular system in which one of the normal modes, QA' is infrared

active and coupled to the laser driving force f(t). The corresponding

Newton's equations of motion are
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_ d _ 0 . (11 .2 )." 4B i 3Qi

For a given potential energy V, the equation of motion for the pumped mode

(normal coordinate) may be derived by Eq. (11.2). However, the solution

of that is in general not available due to the set of coupled equations

whose dimensionality is proportional to the numbers of normal modes in the

system. It is possible that for a simple functional form of V, e.g.,

linear coupling case involving terms like z QAQi , the many-body problem"i A

of the system may be reduced to a single-body problem in which the

ensemble-averaged equation of motion of the active mode coordinate is

given by,8 letting QA Q'

2<6> + O +eff <Q> = eE cos(wt)/m. (11.3)

<...> denotes the ensemble average over the bath-mode coordinates; y is

a damping factor resulting from the active- and bath-mode interactions;

E is the electric field of the IR radiation linearly polarized in the

direction of QA with a circular frequency w; m and e are the reduced mass

and the effective charge of the active mode which is treated as an anharmonic

oscillator with an effective frequency given by
6

2
Weff =0 K*A2 (II.4)

where w0 is the harmonic frequency of the active oscillator and is red

shifted by the anharmonic term proportional to the anharmonicity K* and

the steady-state amplitude A.

- - - ---
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By ignoring the transient damping part of the solution of Eq. (11.3),

the steady-state solution gives us the instantaneous power absorption of

the oscillator defined as force times velocity. For near-resonance

excitation, the time- and ensemble-averaged power absorption is found to

be8

<t> Y I , (11.5)
(A-K*A2 2 . 2

which is a Lorentzian with FWHM = 2y. The above expression provides us

with a classical absorption cross section a = <dE/dt>/I, where I is the laser

intensity related to the electric field by I = E c/8n, c being the speed

of light. The steady-state average excitation (numbers of photon absorbed)

of the active mode defined by X = mwA 2/2 = <dE/dt>/(Tiw) corresponds to

the roots of the cubic equation

3 2

aX3 + N X + d = 0, (II.6a)

- (K/m 02 (-,2
a = (K*/mw = P) (II.6b)

b = -2AK* (II.6c)

a - (II.6d)

d - e2E2/(4miw). (II.6e)

[The coefficient "c" in Eq. (II.6d) is obviously not the speed of light.]

We note that the above expression shows an asymmetric Lorentzian when

K* # 0 and there is an optimal detuning A* = K*X*, where X* is the maximum

value of X given by (dX/dA) = 0. Furthermore, for a fixed laser intensity,
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the excitation profiles, X vs. A, show the "bistability" feature given

by the criterion K*>7K*w = /(2d)

We have shown that the absorption cross section is governed by a

Lorentzian, Eq. (11.5), where a constant damping factor (or the energy

relaxation rate), y, is assumed. For a realistic system, the damping

factor could be time dependent, and the phase of the oscillator could

also relax due to the incoherent behavior of the excited molecular system.

For a more rigorous description of the dynamics of MPE, instead of the

simple equation like Eq. (11.3), we consider the generalized Langervin

7
equation (GLE)

t 2
Q + f dt'[Kl(t-t') + WeffK2 (tt')]Q(t) = [f(t) + R(t)]/m. (11.7)

0

Here we have introduced the energy damping kernel K1 and thE dephasing

kernel K,. f(t) and R(t) are the laser driving force and the bath-

induced random force. Considering a Markoff process with K1 (t) = 2y16(t)

and an exponential dephasing kernel K2 (t) = exp(-2y 2t), we find, from the

Laplace-Fourier transform of the velocity autocorrelation function, the

average energy absorption rate to be (assuming that <R(t)>=0)

U (eE) 2 P(T ) [Y2C+,D(

P(T0 = (2fiw) (kT0/m)[1-exp(-w/kT0)], (II.8b)

C = + yy 2, (II.8c)

D = W(Y1 + Y2)9 (II.8d)
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where T is the initial temperature of the molecule. For the situation of

2 2 2
near-resonance, w - w 2w and Eq. (11.8) becomes

< P(T) 2) (11.9)
-" AKA2) 2+(y1+-y2) 2/4J

Since at steady state the rate of energy deposited in the active mode

equals the rate of energy relaxation, the above expression also repre-

* sents the rate of energy absorbed by the whole system (active plus bath

modes). By conservation of energy, we then readily obtain the rate

equation for the active mode energy as

d<EA>
-t = aI - yI(<EA>-<EB>), (II.10)

where aI = <dE/dt> given by Eq. (II.9) is the energy absorption rate of

the whole molecule with absorption cross section a and laser intensity

I, and <EA> and <EB> are the ensemble-averaged energies of the active mode

and the bath modes. We note that in this classical rate equation the

net energy transfer rate of the active mode is characterized by the T

energy relaxation rate (y1), while the total absorption cross section

of the molecule, al, is governed by the total relaxation rate, y1 +Y 2.

We shall show later that the above derived classical rate equation can

also be derived from a microscopic quantum Hamiltonian.

In addition to the above phenomenological models, a classical

trajectory calculation of MPE was recently made for SF6 .9 The

results show that the energy transfer and dissociation rate depend

- . - - . -*
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on laser fluence (intensity x time), and the intramolecular energy

relaxation rate is estimated to be on the order of a picosecond.

Another classical treatment of MPE and MPD for a system of two

nonlinearly coupled oscillators was studied by means of Krylov-

Bogoliubov-Mitropolsky theory. 13 The results show two regions of

behavior for the exchange of energy between the system and the laser

field: (i) the regular region with well-defined frequencies and (ii)

the erratic region. Motion in the latter region leads to dissociation

of the pumped molecule. For a single oscillator, the motion is always

periodic, while for a system with many oscillators, e.g., a polyatomic

molecule, the motion of the system becomes ergodic when it is highly

excited due to the strong anharmonic coupling among the intramolecular

modes.

b. Quantum-Mechanical Models

In the quantum heat-bath treatment, the MPE of a polyatomic molecule

may be described by the total Hamiltonian

H = HA + HB + HAF + HAA + HBB + HBF. (II.11)

H represent the unperturbed Hamiltonians of the active (A) mode

AB

and of the bath (B) modes with the interaction Hamiltonian HAB; HAF

represents the A mode and laser field interaction; and the last three

terms, which are often neglected in theoretical studies, represent the

mode-mode couplings among the active modes (HAA), the bath modes (HBB)

and the direct laser excitation of bath modes (HBF). For an isolated

4
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molecule or collisionless process, HAA is negligible. The mode-mode

coupling among the bath modes usually is very strong such that the time

scale for reaching a thermal equilibrium among these modes is much

faster than that of the active-mode excitation and relaxation. There-

fore, the rapid dynamics within the bath modes governed by HBB may be

absorbed into HB in which the occupation number of these modes is

treated as a constant. Finally, the direct excitation of the bath

modes through HBF is not significant when their frequency

spectrum is far off-resonant with the laser frequeny. Within

the spirit of the heat-bath treatment, we assume that the active mode

can always be singled out from the other modes, which serve as an infinite

energy sink defined by a constant temperature. However, we may have the

situation that the IVR rate is very fast, particularly when the molecule

is highly excited, such that the photon energy is rapidly randomized to

all the bath modes. For a finite heat bath, we expect to have energy

feedback from these thermal bath modes to the active mode. Furthermore,

when the active mode is highly excited, its vibrational frequency may be

comparable to that of the bath modes, and the total absorption cross

section of the molecule reflects both HAF and HBF. In the above

described situation, the heat-bath mode model may not be an appropriate

treatment of MPE processes. A more relevant treatment based on an

"equal footing" of all the modes will be discussed later. In the

following discussion, we shall neglect the last three terms in Eq. (II.11)

and focus on the excitation of the active mode while treating the bath

modes as an infinite sink.
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The second quantization expressions of the components of the

Hamiltonian of Eq. (II.11) are given by,
12 14

HA = i(wo-e*a a)ata, (II.12a)

HB = Z .bb. (II.12b)iB jw J JJ

HAB = (G B a + G*Ba), (11.12)
V

HAF =V cos(Nt) (a + a) (II.12d)

".- .1/2u
V = (2hmwo) '(O)E (II.12e)

S aa and bj, b. are the usual harmonic vibrational ladder operators for

the active mode and the j-th bath mode with frequencies w0 and Wj,

respectively; e* is the anharmonicity of the nonlinear quantum oscillator

(active mode) with the derivative of the diple moment p'(O) evaluated at

the equilibrium point; and B = Rbj represents a multimode operator with

an order p defined by p z wO/wj.

In the Heisenberg picture, the equations of motion for the operator

0 are given by

Stt= IT [O(t), H] (11.13)

for 0 : at, a, B., B. etc. Here 3(t) = exp(iHt/fi)O exp(-iHt/fi) is a time-

dependent Heisenberg operator of the Schr~dinger operator 0 which is time

independent. In general, tractable solutions of the above coupled
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equations are not available due to the many-body effects and the nonlinear

couplings of the bath modes. However, by employing the so-called Weiskoff-

Wigner single-pole approximation or assuming a Markoff process for the bath

modes, the many-body effects resulting from HAB may be reduced to a damping

factor and a frequency shift for the active mode. The above treatment is

similar to the usual phenomenological approach, where a complex frequency

of the active mode is assumed, except that the damping factor may be

rigorously derived based on the microscopic Hamiltonian. Beyond this

heat-bath model, the actual mode-mode coupling should be rigorously

treated without assuming a continuum spectrum for the bath modes. This

will be investigated later in the intramolecular mode-mode coupling within

the SF6 system.

Within the heat-bath model, we obtain a set of equations of motion

for the active mode operator and the average excitation n =<a a> in the

rotating-wave approximation,

dta - + (yl+y 2)/ <a> - iV/2, (II.14a)

L_

d<n>

= - (iV/2)<<a-a>> - yl(<n> - N). (II.14b)

<...>> represents the ensemble average over the active- and bath-

mode coordinates; Y1,2 are the bath-mode-induced energy and phase

relaxation factors; N is the multimode occupation number of the bath

modes; and all other parameters are as previously defined. In the adia-

batic approximation, aI(Y1+Y2 )>>aI, we obtain the rate quation

for the active-mode excitation,
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d<n> o

d =-- (y(<n>-N)..15)

This is seen to be the quantum version of the classical rate equation

(II.10) by noting that <EA> =-iw<n> and <EB> = liff. The quantum

absorption cross section of the molecule is given by

A(y+y2)(11.16)

(A_2C,<n>)2+(y1+y2)2/4

where A = 4n(V/E)2/c.

Using Eq. (11.16), a cubic equation for the steady-state excitation

X = <n(t)>s.s. is readily found from Eq. (11.15),

X =I ' -(/ l + R,(11.17)

(a-2e*X)2+(yl+y 2 ) 2/4

which is identical to the classical results in Eq. (11.6) [or Eq. (II.9)

with Y2 included] if we ignore the initial heat-bath occupation number

N and make the corresponding relations: 2 * = K* and AI = d. The above

results show the power law for the steady-state excitation vs. laser

intensity X = Ip , with p = 1 in the low-excitation harmonic region,

2c*X<<(y1 +y2)/2, and 1/3 4 p < 1 in the high-excitation anharmonic

region. Furthermore, from the time integral of the total cross section

of the molecule, aI/fw, we obtain the power law for the mean numbers of

photons (<N>) absorbed by the molecule (active mode plus bath modes) vs.

laser fluence (0) as

<N> = fdt(oI/w) =q (II.18a)

= fdtl, (II.18b)
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where the nonlinear power q<1 results from the anharmonicity 2e*<fl> of

the absorption cross section. The calculated power law may be used to

fit the experimental results in which the average excitations are deduced

from the direct attenuation of the laser beam propagating through the

SF6 gas cell. 15(a) In Fig. 1, we see that in the low-excitation region

the data are well fitted by Eq. (11.18) with q = 1, whereas in the high-

excitation region the curve is bent to a power law with q = 0.65. An

alternative measurement of <N> vs. laser intensity, rather than the

fluence, is shown in Fig. 2, which indicates the power law of <N> I

with q<1.15(b)

From the above calculated results based on the heat-bath model,

the following features of MPE may be summarized:

(0) The steady-state excitation of the active mode is governed

by the laser intensity, rather than the laser fluence, by a power

law <n> 55 . IP' with 1/3 <p~l1

(ii) When the excitation of the active mode is saturated, i.e.,

the pumping rate is balanced by the relaxation rate, the number of

photons absorbed by the molecule (active plus bath modes) is characterized

by the laser fluence with a power law <N> - *q with q<1.

(iii) Mode-selective excitation is possible by a high-power short-

pulse laser in which the excitation rate of the selectively-pumped mode

is comparable or faster than the relaxation rate, i.e., the energy leakage

rate from the pumped mode to the bath modes.

(iv) For long-pulse laser excitation of a system with very strong mode-

mode coupling, the photon energy is rapidly randomized to all the modes,

K and an effective vibrational temperature of the excited molecule is defined
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by the conservation of energy as follows:
SNm = <Nw, (II.19a)
m

where S is the total number of vibrational modes (e.g., S = 15 for

the SF6 molecule), and Nfm is the overall occupation number of the6 m

molecule given by the Bose-Einstein function

= [exp(K/kTeff) - 1)" . (II.19b)

Here all the intramolecular modes are assumed to be in thermal

equilibrium with an effective temperature Teff and a mean vibrational

frequence w. We note that the average molecular excitation <N(t)>

given by Eq. (11.18) in general is time dependent through the

temporal profile of the laser pulse, I(t). Therefore Teff(t) is also

time dependent and reaches a peak value at the end of the pulse, e.g.,

a square pulse, and gradually decays to the initial temperature after

the pulse is off. Further discussion of Teff will be given later

when a thermal population is introduced by the solution of the rate

equatiun.

The heat-bath model may be extended to a system consisting of

several subgroups in which the mode-mode coupling is more significant

within each subgroup than between the subgroups. In this situation

the specifically-excited subgroup may be characterized by a higher

Teff than the others and in turn opens the selective channels of

laser-induced rate processes which, e.g., are governed by an

Arrhenius form exp(-EA/kTeff), where EA is an activation energy of

the specific channel. We note that the rate processes are determined
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by the ratio of EA/kTeff and not simply by EA, so that the "easier channel"

is not necessarily the one with a lower EA.

2. Quasi-Continuum Model -- Rate Equation Approach

We now discuss the second quantum approach,with treats all vibrational

modes on an equal footing, with the eigenstates of the system being mixtures

of all the normal modes. Due to the high density of vibrational states at

high-excitation energy, the molecule can easily absorb more photons

through resonant incoherent transitions between so-called quasi-continuum

levels, where rate equations have been widely used for collisionless 16 23 and

collisional24-26 MPD.

A well-accepted qualitative model for MPD of SF6 has provided a

general picture where the molecular energy levels are divided into three

regions (see Fig. 2): (1) the discrete region characterized by coherent

excitation, where the v3 (active) mode absorbs 3 to 6 photons and the

anharmonicity of the vibrational potential is nearly compensated for by

allowed rotational transitions;(II) the quasi-continuum region where the

level density is very high and incoherent excitation is essential; and

(III) the true continuum region. Region (I) processes are responsible

for isotopic selectivity, coherent effects (multiphoton resonance,

photon echoes, coherent wave propagation, etc.) and the intensity

dependence of MPE with high selectivity. For the excitation processesI
in regions (II) and (III) it has been shown experimentally for SF6 that

high laser fluence (energy), not high laser power (intensity), is

necessary for driving the molecule through the quasi-continuum and
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is the important parameter for determining the dissociation yield.1
7

However, later experiments on other molecules have shown that both

laser fluence and intensity determine the dyanmics of MPD.2(c)

For multiphoton excitation in the quasi-continuum region, the

Fermi Golden Rule is valid and the full Schr6dinger equation reduces

to a set of incoherent rate (master) equations. For the collision-

free condition (low pressure), the rate quation for the energy popu-

lation is

dP
n a ep (W e +Wen- n_ Wn n+1 n .1n -knPn, (II.20)

where Pn is the population in the n-th level (n photons absorbed).

Wa (We) is the transition rate constant for absorption (emission)
n n

from level n to n+1 (n+1 to n) and is related to the absorption

cross section (an) and frequency of the field (with intensity I)
i a e a

by Wna = nI/n and W n = 9 n+l, where g is the molecular

density of states at energy ntiw. kn, the unimolecular decomposi-

tion rate constant, can be calculated by RRKN theory27 or quantum

28
RRK theory. From Eq. (11.20) we realize that collisionless MPE

and MPD are characterized by the laser intensity and frequency, the

absorption cross section, the density (or degeneracy) of states and

the unimolecular reaction constant. During the past several years,

the rate equations describing MPD have been studied by different

approaches, such as a thermal model for Boltzmann-type energy

populations,20 diffusion model for continuum populations, 22 exact

stochastic model, 23 the model of restricied intramolecular relaxation25
29

and the random coupling model.
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Depending on the form of the absorption cross section and the

density of states in the quasi-continuum, the solution of the above

rate equation gives us different populations and corresponding dis-

sociation probabilities. For example, various types of n-dependence

of the absorption cross section have been considered: a = O/n,

an = exp(-an+o) and an = constant in Refs. 19, 20 and 16, respectively.

A "thermal model" with suitable functional forms for an and gn (and

neglecting the dissociation rate kn) has been studied in which the

population is governed by the rate equation2 1

dP
n AI, (n+S-l)Pn_1 + (n+L)Pn+ 1 - (2n+S), (11.21)

where the constant A is proportional to the absorption cross section and

S is the number of vibrational modes involved in the process. The above
- atio30

rate equation can be solved in closed form to give the thermal population

*i P = Ngn exp['nfiw/kTeff]' (11.22)
n g n

where N is a normalization constant and g n is the quantum degeneracy given by

:"'N P[1 exp(-Mw/kTeffS (I2

N = Pn = - (II.23a)

gn (n+S-1)!/[n!(S-1)!], (II.23b)

and the effective temperature Teff as a function of time is given by the

conservation of energy

.0
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t
Sff Jd = I, (II.24a)

n = [exp(f1w/kTeff) - i1 , (II.24b)

where a is the absorption cross section and * is the fluence of the

laser radiation. For multiphoton absorption processes, for kTeff> Aw

and for n>>S, we obtain the high-temperature or classical limit of the

population,

P= L expS exp ,]9  (1.25)

where <n> is the mean numbers of photon absorbed per molecule, i.e.,

<n> = n nP n. We note that in this classical limit kTeff = fiw<n(t)>/S,

which follows the time dependence of <n(t)>, and we may obtain a power law

Teff *0q according to Eq. (11.18). Furthermore, the corresponding

dissociation probability is found to be

Pd ' I P n exp(-Sn*/<n>), (11.26)
n=n* n

which is the usual Arrhenius form.

A "continuum model" was also developed for more general functional

forms of 0n and gn:

= ao(n+C)(, (II.27a)

= go(n+C)S 1, (II.27b)
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where o , go, C and a are suitable constants. For high excitations n>>l,

the difference equation (11.20) reduces to a classical diffusion equation

where n becomes a continuous variable,31

aP n aPn
- gn gn1 -g). (11.28)

a n n n an

Using the expression of Eq. (11.27), the population can be solved in a

closed form, and the corresponding dissociation probability is also

given in closed form as22

Pd exp(-)[1 + I ()J/J!], (11.29)
*-j=1 0

*0 = (n*)8/(8 2
0 ), (Il.30a)

J = (S/)-1, = 2-a, (II.30b)

for integer valuesof S/a. This model results in a set of "universal

curves" which may be used for data analysis in various experimental

situations. We note that the thermal results shown in Eq. (11.25) repre-

sent a special case of Eq. (11.29) with a = 1, i.e., a harmonic

model. From the solution of Eq. (11.28), we may calculate the average

excitation (photon quanta per molecule). The result shows a power law

<n>w q , where q = (2-a) " . It is seen that <n>-o for a harmonic model

(a=l) and <n>c 1/3 for an anharmonic model (a= -1).22 These results are

in agreement with that of the heat-bath model, Eq. (11.17).

The dynamics of MPE and MPD has been investigated by a molecular

beam method, and the experimental results have been analyzed by an
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improved rate equation where the intensity dependence of excitation over

the discrete levels is included.18  These dynamical features are summarized

as follows: (i) Both the laser intensity and the fluence are important in

determining the MPD yield. (ii) Excitation over the discrete levels into

the quasi-continuum is mainly governed by the laser intensity. (iii)

Excitation through the quasi-continuum to the dissociation level depends

only on the laser fluence. (iv) Above the dissociation level, the excess

energy of the dissociated molecule is determined by the balance between

the up-excitation rate and the dissociation rate. Therefore, in the case

of long laser pulses, the excess energy is determined by the laser intensity,

while for short pulses case it is determined by the laser fluence. For SF6,

the excess energy was shown to be laser fluence dependent when the laser

pulse has energy higher than 5 J/cm (v) The photon energy deposited in

the active mode is rapidly randomized among all the vibrational modes on

a time scale of 10-8 s, which is much faster than the dissociation life-

time. The observed dissociation rates and the overall dynamics of MPD are

in good agreement with the results predicted by RRKM theory. (vi) The

population distribution Pn in the quasi-continuum predicted by a model

with an= exp(-n) is narrower than a thermal distribution. Another model

based on a dephasing broadening in the quasi-continuum also shows this

narrower population which is governed by a Poisson distribution (see

32
Fig. 3). More recently, a model of quasi-continuum absorption has

been developed to provide a more precise meaning for the term "quasi-

continuum".33 This theory accounts for unimolecular dipole dephasing

and partial dipole recorrelation, and it predicts the collapse and

revival phenomena based on the concept that the level spacing of the

quasi-continuum is close enough that some continuum-like behavior is
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evident in the trans'tion dynamics, but also far enough apart so that

the actual discreteness of the upper "band" of the final levels is not

completely smeared.

3. Excitation of Intramolecular Modes 12

In the previously discussed heat-bath model of MPE, the active mode

is singled out as the pumped system and all other modes are treated as

a heat bath. The coupling between the system and the bath modes provides

the relaxation mechanism where the many-body effects due to the anharmonic

mode-mode coupling are phenomenologically treated by the energy (y1 ) and

phase (y2 ) relaxation factors. This damping model, while providing a simple

picture of the energy transfer processes and focusing on the active-mode

excitation, is not able to provide the detailed individual excitations

within the intramolecular modes. To describe the dynamical excitations

and evaluate the intramolecular vibrational relaxation (IVR) rate, we

shall now present a microscopic model which includes the anharmonic

mode-mode coupling, in contrast to the damping model where only the

active-mode excitation was included.

Before investigating IVR for the SF6 molecule, we shall develop

general formulas for describing the dynamics of intramolecular mode-

mode coupling for any polyatomic system. The total Hamiltonian for

an anharmonic quantum oscillator subject to infrared radiation may

be written as

... Q1 HQ(t) (e11.31)
H(t, Q' Q2 N H0 + XHanh H'(t),
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where H ff is the effective unperturbed Hamiltonian of the system

(with N normal modes), XHanh is the intramolecular anharmonic coupling,

and H'(t) is the laser field interaction Hamiltonian. In a second-

quantization representation, the individual terms of the total Hamiltonian

may be expressed by
12

H eff t1
f -iirj/2, (i32)

H [F ijka Z (a~a.)m(aak)n
ijtk t,mn=l tmn i k

+ G mn(a i) (at)m(ak)n] + (11.33)

H'(t) = Vj(t)(aj + a.). (III.34)

In Eq. (11.32) the imaginary part of the complex effective Hamiltonian

r takes account of the level broadening of the open system due to

factors such as collisional (pressure) broadening for a homogeneous

system or surface-phonon-induced damping for a heterogeneous system.

In Eq. (11.33), two typical terms of the anharmonic coupling are shown:

the first term representing T2 phase relaxation processes, where no

vibrational energy among the intramolecular modes is exchanged, and

the second term representing the TI energy relaxation processes where

the photon energy is deposited in the active mode(s) and populated in

all the other inactive mode via anharmonic coupling. In Eq. (11.34),
i,Vj(t) cVj0oS(wt) is proportional to the derivative of the dipole moment



26

and the effective local electric field of the j-th mode with laser

ijkfrequency w. We note that the anharmonic coupling factors F"tmn and

G k are related to the p-th derivatives of the anharmonic potential
Gmn

energy (with respect to the normal coordinates) with p = Z + m + n

being the order of the multiquantum coupling.

The solution of the time-dependent Schdrdinger equation

Ti[a/at] =H, (11.35)

14

with the total Hamiltonian given by Eq. (11.31), may be written as14

(t) ~ = x{ eff + A t + }

= exp{~ HO0t + A(t) + Z(Bj(t)a - Bt(t)aj) }(O), (11.36)

where A(t) and B(t) are time-dependent coefficients to be determined

by the equations of motion. Since the energy population and the

excitations of the system are only characterized by the amplitude

functions B.(t) and are independent of A(t), we shall focus on the

equation of motion for B.(t), which can be obtained by the substitu-

tion of Eq. (11.31) into Eq. (11.35) together with the expression of

Eq. (11.36) for the wave function:

dB.
ifl ddt "  k n ' n(B*gi) Z(P )m-IBm (BBk)n

dt ifjk ZmnmnBi j k

+ Gimk (B) (B) (Bk) exp(iAt)}Zmn . j kI

+(Vj/2) exp(iAit) - (ir./2)Bj, (11.37)
jo E3
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where the external detuning (AJ) and the internal detuning (A are
4E

defined by A = 2 (V +, - 'j) - w and a= 2r(Lvi + mVj - nvk). In

deriving Eq. (11.37), we have used the usual rotating-wave approximation

and operator algebra such as
14

[exp(B*a)]F(at )[exp(-B*a)] = F(a"+Bf), (11.38)

where F(a t ) is any operator function and B. are c-numbers.

The important features of the quantum equations of motion

[Eq. (1I.37)] are: (i) The j-th normal mode of the system is strongly

coupled to the laser field when Vj0 0 and the external detuning is

Jnot far-off the resonance condition A = 0 (due to the anharmonicity,

we shall find later that the optimal detuning is red shifted, i.e.,

Aj>0). (ii) The intramolecular coupling is governed by the coupling

strengths xFijk XGijk and the internal detuning A For the intra-
t mn' Zmn

molecular coupling to be significant, we shall expect a near resonance

A, I 0, which was also shown by a classical treatment.35 (iii) By

* Eq. (11.37) and its complex conjugate, we find that the equation of

motion for BMB. contains no T2 dephasing term, i.e., no vibrational

energy is exchanged among the intramolecular modes due to the T2

dephasing processes. (iv) The amplitude function is related to the

average excitation in the Poisson distribution

in

P n(t) = exp(-i )Wnj/nj!, (11.39)

where P is the energy population of a harmonic oscillator (for x = 0),

and nj and n. are the vibrational quantum number and the average
l-3
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excitation of the j-th mode, respectively, where

n (t) = IB(t)l2 = nnPnj(t). (11.40)
nij

Therefore the average excitation = IBj1 2 is a relevant quantity in

describing the energy distribution among the intramolecular modes, as

we initially expected.

We have shown that IVR will be significant only when the internal

resonance condition is met, i.e., the photon energy deposited in the

active mode will be rapidly shared by those modes which have frequencies

close to that of the active mode with the frequency combination resonant

or near resonant with that of the active mode. Furthermore, from the

concept of the energy-gap law,36 we know that IVR is dominated by those

low-order combinations, i.e., small values of p, since it is a strongly

decreasing function of p when p increases. We therefore may truncate

the order of IVR in the sum of Eq. (11.37), which otherwise cannot be

numerically solved with a reasonable amount of computer time, particularly

for a large molecule system with a large number of vibrational modes like

SF6.

To show the role of the external and internal detunings in IVR, we

now consider the SF6 system in the collisionless low-pressure regime

(i.e., rj = 0) and focus on the case of the fourth-order anharmonic

coupling EQ3Q2Q6, i.e., p = 4, where e is the anharmonicity and Q31

Q2 and Q6 are the normal coordinates of the v3 (active), v2 and v6

modes. It is known that SF6 has an 0 h symmetric group, and the frequency

spectrum of the 15 normal modes (some are degenerate) is (in cm'l)
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• 1 = 773.6, v2 = 642.1, v3 = 947.97, v4 = 615.03, 5= 522.9 and

v6 = 364. The corresponding internal detuning then is A =

2n (v3-2v2-v6 ) and the external detuning is AE = 2 7v3 - w, where w

is the frequency of the tunable CO2 TEA laser which is near resonant

with the v3 mode. The quantum coupled equations of motion [Eq. (11.37)]

for this case become

iB 1 = B*B + X'2IC C 2 exp(iA't) + (V10/2) 2 C1 exp(iAit), (I1.41a)1 1 1 C1C2C3 2 3

ifig C 4 * + 2'C C 2C B B*B exp(-i 6t). (11.41b)

" if,4 2 ,+ C C C BB 2 exp(-iAt). (II.41c)

B.(j=1,2,3) are the related amplitude functions of the normal modes

"V. v3' 92 and v6 respectively; ' = 12X, A 21(vN + V1  N) and A=

21rv - W, where v!(j=2,3,6) are the anharmonic-corrected frequencies,

i.e., v = vj - x'Cj/fi; and Cj are the quantization constants, Cj =

h(/2m.w.) The above system, for the case of exact resonance,
337

A' = 0, has been discussed and the related IVR has been estimated.37
E

9 Here we shall show the dynamical features of IVR and find the optimal

external and internal detunings by solving the coupled equations of

motion numerically. We investigate the time evolution of the average

excitations, n, = IB1 12 n =  2 and n3 
= IB3 1 , governed by Eq. (11.41)

with the initial Boltzmann populations at room temperature (T = 300K)

' B(O) = 0.10, 82(0) = 0.214 and B3(O) = 0.417, and the initial phases

tan -[Ij(O)/Rj(O)] = 0, where I and R. are the imaginary and real

parts of B.(j = 1,2,3).

=e3
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Fig. 4 shows the peak values of the average excitations of the active

mode (Fij) and of the v2 mode ( 2) vs. the external (Aj) and internal (aj)

detunings, respectively. It is seen that the optimal detuning A* z 17 cm 1,

and the value of nt decreases for Aj larger than + Similar behavior can

also be seen for n. This "red-shift" behavior of the optimal detuning

is a general feature of any laser-excited anharmonic system where the

energy spacings are closer for higher levels. Furthermore, these non-

linear effects due to the anharmonicity show the "bistability" transi-

tion in the diagram of steady-state average excitation vs. laser

intensity. (See Section III for more detailed discussion.)

Fig. 5 shows that the time evolution of the excitations of

various modes for exact resonance, far-off resonance and the optimal

detuning. It is seen that, by comparison of A with B, the active-mode

excitation (n1 ) is coupled to the other modes more significantly for the

resonance situation than for the far-off resonance situation, as we

predicted from the internal resonance criterion. Note that the peak

value of the v2 mode (-) decreases from 0.4 (for Aj = 0) to 0.1 (for

Aj = 63 cm-). From these numerical results we estimate that the rising

times of the average excitations t* [defined by the first peak values of

the average excitation n--t(t*)] range from t* = 27 picoseconds (ps) to

t* = 70 ps depending on the internal detuning Aj. However, the rising
times of the mode, i.e., the IVR times, are on the order of t* 10 ps

4 -1(or 3.3 cm ). A typical excitation diagram is shown in Fig. 5(C) for

the case of (Ai/27,Ai/27) = (2.71, 1.00).

4
4. Selectivity in Multiphoton Processes

Selectivity is characterized not only by the coherent properties of

the laser field but also by the molecular properties of the excited system.

4

L - - - - - - - -
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Therefore, the types of selectivity in infrared MPE can be classified

according to the relation between the various relaxation times of the

excited system and the energy pumping rate of the laser field. Let us

first define R and R as the intra- and intermolecular vibra-
intra inter

tional energy transfer rates, respectively, RVT as the relaxation rate

for molecular vibrational-translation coupling, i.e., RVT -1  is the

time for complete thermal equilibrium to be reached in the molecular

mixture, and Wexc as the rate of vibrational multiphoton excitation of

the molecule. We can distinguish four different types of selectivity

depending on the relative magnitudes of the relaxation rates and the

laser excitation rate (note that the relaxation rates Rinter and

RVT are pressure dependent, although for low pressures we shall

expect that RVT << Rinter < R.VT inter intra

(I) Mode (bond)-selective excitation (Wexc >> Rintra). A

certain mode or a functional group of a polyatomic moleclue is in a

nonequilibrium state which has a higher vibrational temperature Teff

[defined by Eq. (11.24)] as compared with the remaining modes or func-

tional groups. This is the situation of a long lifetime or high pumping

rate.

(II) Molecular-selective excitations (Rintra " W >> R
exc inter

In this case,the absorbed photon energy is rapidly randomized within

the excited molecule in which the local vibrational temperature is

higher than the overall translational temperature of the mixture of

different molecules.

(III) Vibrational-selective excitation (Rinter Wexc >> RVT).

In this more moderate condition, vibrational equilibrium among all the

mixed molecules is reached, but there is still no overall thermal

relaxation. This situation prevails for low pressures, where
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vibration-translation relaxation rates are lower than vibration-

vibration relaxation rates.

(IV) Nonselective thermal excitation (R >> W ).This is the situationVT exc
of thermal excitation of all the molecules in a mixture by a low-power CW

laser. This area of infrared thermal chemistry is of interest for a hetero-

geneous system, e.g., species adsorbed on a solid surface, where the laser

radiation is used to excite the adsorbed gas molecules without significantly

heating up the solid surface (assuming the phonon coupling to be small).

We shall discuss this type of excitation in Section III.

The attraction of infrared laser chemistry is that if the photon energy

can be deposited and maintained in a specific vibrational mode (or functional

group), a selective reaction channel may be induced by that mode (functional

group). Therefore, one of the critical questions concerning MPD processes

is whether the photon energy remains localized in the pumped mode (or

molecule) long enough to result in a mode-selective (or molecule-selective)

reaction. Most theoretical models of MPD assume that IVR is very fast (on

the order of a picosecond), and statistical approaches such as RRKM theory

have been applied successfully to a number of experimental results. 17,20

Recently, however, several experiments examining product branching ratios

in relatively complex molecules, e.g., cyclopropane, have shown that the

laser selectivity cannot be explained by the statistical theory.3 The

evidence suggests that the laser-induced reactions could result from a

nonergodic or partially mode-selective excitation. Several research

groups have also examined the bond localization character of large

molecules, e.g., benzene, both experimentally 39-41 and theoretically. 4
2

This nonstatistical behavior is explained by a local-mode model in which
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the total system is divided into two groups of vibrational modes. Within

each group, the vibrational modes are strongly coupled and the photon

energy quickly randomized. Between groups, however, the coupling is

considerably weaker, and intergroup randomization rates are therefore

appreciably slower by the concept of the energy-gap law.
36

Another theory called the "restricted IVR model" has been recently

proposed for the possibility of laser selective photochemistry.43 This

model provides a basis for a quantitative description of MPD when IVR pro-

cesses occur on a time scale competitive with the unimolecular reaction

and radiative pumping rate. Note that the statistical theories of uni-

molecular decay, like the RRKM theory, preclude any possibility of

selectivity because of their assumption of very fast IVR rates. For

MPD of the SF6 molecule, the IVR rate is estimated on the order of

1012 sec "1 , so that selective bond breaking (or mode selection) is

possible only when one uses laser radiation with very short pulse dura-

tion and about two orders of magnitude more intense than currently

available lasers. 20  However, for laser-induced decomposition of cyclo-

propane, the experimental results strongly indicates a selective

mechanism38 and may be analyzed by the restricted IVR model in which

a slower IVR rate (1010 sec " ) is estimated. According to this model,

the vibrational modes of the system are divided into two groups with

an intragroup relaxation rate Rintra and an intergroup rate Rinter

s Rintra . The theory then allows for a smooth transition from the RRKM

theory (with a - 1) to the Slater theory (with a >> 1), and group-

selective processes are possible when a << 1.
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5. Multiple-Frequency Laser Excitation

Recent experiments using two infrared lasers simultaneously have

demonstrated that MPD can be produced at significantly reduced intensities

compared to single-laser excitation, and consequently a sharper isotopic
44selectivity can be achieved. In these experiments, a lower inten-

sity near-resonant radiation and a higher-intensity off-resonant radiation,

neither of which produces dissociation by itself, together give dissociation.

Both classical and quantum models have been proposed to analyze MPD enhanced

by two or many infrared lasers. 45-48  The effect of laser polarization was

also investigated, and it was found that the excitation is more effective

when the polarizations of the two lasers are parallel than when they are

49
perpendicular. More recently, the interaction of a diatomic molecule

with two near-resonant lasers was studied by a classical anharmonic model. 50

Within a heat-bath treatment, the total Hamiltonian of an anharmonic

quantum oscillator subject to two infrared lasers may be expressed in the

same form as that of a single-laser excitation, Eq. (11.12), except that

the interaction term HA is now extended to the form

H AF =EV 1 (t) + V 2(t)] (at+a), (11.42)

where V 1,2 (t) are the pumping rates of the laser radiations with fre-

quencies w 1,2 By the same procedures as previously introduced for

Eq. (11.15), we obtain the rate equation for the average excitation

via two-laser processes as

d =n all 1 a 2 12  FII)1/2
f-1 + - + FI11 2) yl(<n> -N.(11.43)

11iw2
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F(1112)1/2 is the interference term, with an appropriate function F

related to the oscillatory functions sin(Ait) and cos(Ait), where

A= w -W.i (i=1,2), and the absorption cross sections ai are

given by, similarly to Eq. (11.16), as

Ai (yI+y 2 ) iw( 1
Oi = 2, (II.44)

(Ai- 2*<n>) 2+(yl+y2 ) 2/4

For lack of temporal mutual coherence of the two laser sources, we may

neglect the interference term and focus on the cooperative effects of

these two different lasers on the average excitation of the system.

As shown in Fig. 6, we see that at the optimal detuning with (A. 2 ) =

(2, 8) in the unit of (y1+y2 ), the system has a maximum excitation

(curve A).47  It is also interesting to note that a single-laser

excitation, where the pumping rate equals the sum of the individual

rates, is less effective than the two-laser simultaneous excita-

tions. These cooperative effects of MPE by two different lasers are

characterized by the nonlinearity of the absorption cross section

through the anharmonic potential of the system.

The above results based on a quantum heat-bath model may also be

obtained by a classical approach.48 The equation of motion is given by

an extension of Eq. (11.3),

<Q>= +Y<Q> + W Q! 4 eEi cos(wit)]/m, (11.45)

and the corresponding power absorption is given by the extended

expression of Eq. (11.5)
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dE le E~, (Ai. +y(146
>4 2 + P (t),(1.6-i~i,2 * )+

where the interference term is given by

e2 y cos[(W- w2)t] - (Ai-K*A ) sin[(wl-w 2)t] (I(t) TM() E IE2 i=i,2 (iK*Ai) 2+y21.7

To compare the above classical results with those of the quantum models,

we note that the interference term F(I11 2)
11/2 of Eq. (11.43) is pro-

portional to E1E2 in Eq. (11.47), since the intensity is related to

the electric field by Ii = E/(8ir/c). Furthermore, the

classical and quantum correspondence may be easily obtained by the

following quasi-quantum relations:

e = u'(O), (II.48a)

1 2 2m7MW0 A <nw O, (II.48b)

where e is a classical charge, u'(O) is the matrix slzment of the

derivative of the dipole operator, eval ated at the ,quilibrium point, and

<n>lw 0 is the photon energy absorbed by the quantum oscilator and hence

equals the energy of the classical osicllator with amplitude A.

The enhancement of MPE via multiple-frequency lasers has been

investigated.45'46 It was suggested that if a single laser of intensity

I produces a maximum excitation of frequency w, then the same maximum
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excitation may be produced by N lasers of intensity I/N3 and frequencies

wk = Wo + k(w-wo)/N, with k = 1, 2, ...N. The enhancement of MPE or the

reduced power law of the laser intensity, I/N3 , compared with that of

the separate N-laser excitation, I/N, in principle can be achieved if

one can modulate the phases of the laser pulses such that the Rabi

frequencies a.-e synchronized with the excitations between pairs of

the anharmonic energy levels, i.e., iT pulses are required in addi-

45tion to the resonance condition wk-

I
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B. Molecular Collisions

- . 1. Resonance Formation, Chemical Reactions and Transition-State Spectroscopy

In recent years there has been an upsurge of interest in gas-phase

laser-induced collisions. While much of the excitement has been due to

the tantalising prospect of selectively altering the dynamics of chemical

* reactions, it remains true that the literature (both experimental and

theoretical) is generally characterised by the assumption of very intense

laser fields, and these are somewhat impractical for two reasons. First,

intense fields have a habit of producing stray side effects that may

interfere with the process of interest (gas breakdown due to ionisation

* - is a typical example). Second, and perhaps more important, is that

intense fields are consistent only with pulsed lasers, and these are

unfortunately "switched off" most of the time they are operating: the

pulse length is typically extremely short compared to the time between

pulses. Thus, any cross sectien which one calculates is effectively

"reduced" by many orders of magnitude in a realistic experiment. In

our opinion, this is one of the most serious limitations posed to

conventional laser-induced chemistry.

Of course, one could use the radiation in a theoretically trivial

* . way, to excite the reactants into quantum states that make the desired

reaction more feasible. However, in many cases this may not be desirable.

For example, it may not be possible to excite the reactants because the

available lasers are not resonant with the transition. Moreover, even

after the reactants are excited, one still has only a relatively crude

control over the outcome of the reaction: undesirable side reactions

may also take place, or the quantum efficiency for the reaction of

interest may turn out to be low.
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One can to a large extent get around these problems by taking

advantage of the huge numbers of molecular states that are formed

during the collision. This means that a far greater range of exper-

imental conditions, such as collision energy and laser frequency, can

in principle give rise to a reaction. However, one again runs into

the problem that, since many collisions are short-lived, any photons

that are to be absorbed during the collision have to be absorbed in a

relatively short period of time. This of course means that in order to

observe any reaction at all, one must provide more photons, and this

raises the intensity requirements of the laser to levels that may be

impractical for the reasons we have given. [The kind of intensity that

has been discussed in the literature is typically greater than, and

2usually much greater than, 1 MW/cm2

There are two related factors by which radiative collision cross

sections can be increased. The first is resonance formation, and the

second is low-energy collisions. They are related since the effect

in both cases is to increase the time of collision, thus allowing the

colliding partners more chance of absorbing a photon. It is perhaps

not surprising that resonance formation leads to an enhancement of the

cross section, but it may seem rather paradoxical that a decrease in

collision energy should have a similar effect. After all, the Arrhenius

Law implies that chemical reactions proceed at a slower rate as the

temperature is lowered. However, it must be remembered that in a

chemical reaction there is always an activation energy barrier, and

the reason that reactions become faster at higher energies is simply

that more reactants have sufficient energy to overcome this barrier.



40

But if the activation energy is supplied by a photon, there is then no

need for a high collision energy--indeed low energies are favored since

they entail longer collision times. At exceptionally low collision

temperatures (less than a few degrees Kelvin), the collision must be

treated quantum mechanically since the scattering wavelengths become

comparable to the molecular dimensions, except for very heavy atomic

and molecular reactants. We shall first consider an atom-atom collisiun

in the presence of laser radiation and investigate the ramifications

of radiative resonance formation when more than one laser is employed.

Later, we shall sketch some work which is underway to investigate the

feasibility of driving certain chemical reactions with lasers of low

intensity.

We consider an atom-atom collision in the presence of two lasers,

Li and L2. The total Hamiltonian is given in atomic units as

1 2 Hel Ho Hrad int int
H V + H + H +-H +Hi++H + H2 (1.49)

where u is the reduced mass of the system, and Hel is the electronic

Hamiltonian in the absence of spin-orbit coupling, with eigenvalues

(in the Born-Oppenheimer approximation) which are the molecular
'so . rad

potentials. Hs is the spin-orbit Hamiltonian. H is the Hamiltonian

of the radiation fields,

Hrad E wi at  a. (11.50)
i ia io

where w is the frequency of laser i, and a is its polarization state

0i
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in spherical coordinates: a = 0, +1 and -1 denotes, respectively,

light plane polarized in the z-direction, and right and left

circularly polarized and propagating along z. The eigenvectors

of Hrad are the Fock states In i>, such that aini. = 10 1 0nic-1>

and ai ni > = In ii +1>. The radiative interaction Hamiltonians

within the dipole approximation are

Hint = Ei±[ai + a t (11.51)

where pa is the space-fixed component of the dipole operator and

2(Tw i 1/2
E = -( ) , with Vi as the quantization volume of the field i.

Note that can be related to the molecule-fixed components of the

dipole operator, U I, by the transformation

E D n  (R), (11.52)

no
where D oR) is the Wigner rotation matrix.

We are particularly interested in the two curve-switching processes

which are shown in Fig. 7. Process I has been called the "photon-catalytic

effect".51 This is because there is no net loss of photons from the

field, since for each absorption there is an emission of the equivalent

photon (same frequency, polarisation and direction). Such a process

would therefore appear to hold some promise for laser-induced chemistry.

However, from a practical point of view, laser cavity losses are far

more important than losses to and from a molecular system. Therefore,

-
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the efficiency of the process is hardly affected by the few photons that

are returned to the radiation field by the molecular systems. Moreover,

the overall cross sections are not in general very high. Process II on

the other hand, while apparently a more contrived means of achieving the

same result, turns out to have two advantages. First, it allows the

colliding species to approach at exceptionally low energies, since the

energy defect for curve switching is made up by absorption of the second

photon from L2. Second, it provides greater scope for optimization of

the collision conditions: by changing the bound-to-bound transition

it is possible to optimize the bound-continuum interactions so that

the overall cross section can be maximized.52

In order to treat resonance scattering, we consider a Breit-Wigner

separation of the T-matrix. The radiative interaction gives rise to

resonances in the scattering spectrum, while the field-free interaction

may be considered to be a slowly-varying function of the scattering

energy. It is therefore convenient to separate the T-matrix into slowly

and rapidly varying parts:

T = T + TR

where TP is the slowly varying, potential scattering T-matrix and TR

represents the resonance scattering. Following the formulation of

Feshbach,53 we define the following projection operators:

P = fi E A><cEIdE '  (11.53)

= n><On i  (11.54)

n
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Here, a is a complete set of angular momentum quantum numbers, and E' is

the energy of the continuum state specified by a. The n index is a set

of vibrational and angular momentum quantum numbers which specify a bound

state of the system. The space of Q can be further subdivided into R and

S, such that R + S = Q:

R = E10m><Oml (11.55)
m

S : E kn,><@ni (11.56)

It is now possible to write the T-matrix for resonance scattering as52

T i = <f IHpRHRpI4> (11.57)

|+
where Q = (E-HRR-HRP G HPR) (11.58)

HXy = XHY (11.59)

G+ is the Green's function for potential scattering, i.e., with the
p
radiative interaction switched off and the scattering determined by

* the term He l in the Hamiltonian. This term has off-diagonal elements

in a diabatic basis which are indirectly due to spin-orbit coupling,

reflecting a curve-switching even in the absence of radiation. The

* scattering eigenfunctions i and lf are, respectively, the out-wave

for this potential scattering problem, starting in the initial state i,

and the in-wave starting in the final state f. These are total potential

* scattering wavefunctions consisting of a plane wave in the specified

channel and spherical waves in all channels. These may be written

0L
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in terms of the standing-wave solutions of the potential scattering,

,'" LE by using the orthogonal matrix W which diagonalises the potential

scattering S-matrix.52 The result is

T = Wf H -a 'm' WBi (II.60a)i amm' 'm

T i(DWBA) = E Hfm Qmm, Hm. i , (II.60b)

where m and m' are bound intermediate states of the collision complex, and

Ho =<DlEIHIm> , (11.61)

where (DE is a standing-wave eigenfunction of H. In the distorted-wave!-E
Born approximation (DWBA), W is the unit matrix, and furthermore,

T = H Therefore, we have for the total T-matrix
fi Hf

Tfi (DWBA) Hfi E Hfm Qm ,. Hm~i (11.62)

The quantity of central interest is 0 since it contains the detailed

information about radiative couplings. Possible kinds of laser-induced

resonance scattering illustrated in Fig. 8. By defining 2mm' we also

define a particular pathway: for example, in Eq. (II.60b) HsQstt is

S .the amplitude for Process 2 in Fig. 8. Notice, however, that all the

- ancillary absorptions and emissions induced by L2 are implicitly taken

into account in the inversion of n-; that is, Qst depends not only on

Is> and It> but also on Iu>. We first evaluate Q by expanding Gp in

terms of its open channel eigenfunctions:

9.
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(E)= E - HRR + HRPI E'><aE'IHpR +>+
E-E' iiZ HRP 141><1aE HPRa a

Because of the symmetry of W in (3.12), I4E> can be replaced by 'aE>

in (11.63). With this in mind, the matrix representation of Q-1 in

the space of R may be determined by a superposition of a linewidth

matrix r, a level-shift matrix F, and a radiative interaction matrix V,

which describes the bound-to-bound transitions induced by L2:

(E) -vt FSt(E) E - (11.64)

st it+sts
where

Vst = <n2 1<sIH2nt t>In - 1> (II.65a)

Srst(E) = 27r <n2 -iI<sIH 2  %yE>In 2><n2 1<(YEIt>In 2> (5.4b) (II.65b)
_t

Fst(E) -PfdE' E-E' (II.65c)

Vtt = 0 (II.66a)

.-. int22

r tt(E) =2mzl<n2-11<t I 1 DE>In2>1 22I<tIVI4yE>12+rse (II.66b)

F (E) 1 PAP tt(E'(1)6
tt = PfdE' E-E' ' (II.66c)

where V is the nonradiative interaction operator (e.g., spin-orbit

coupling), and rse is the width due to spontaneous emission. The

3x3 matrix Q- is now inverted to give the following result:
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0-u1 2iu )

St u-2
st - , (11.67)

where i = E - Ei - Fii, and Ei is the unperturbed energy of the

bound state i.

Using Eqs. (11.60) and (11.67), we can now write down the T-matrix

for Processes I and II in Fig. 7. We assume no predissociation channel

and neglect spontaneous emission:

Process I: Tfi = TPfi + E WfaHfmmWBi (II.68)
m aB m -2r m

where

rm = 27 ErHMY 2

Y

faWf H mVm Hm , WaI
Process II: Tfi = .(11.69ram' a (Af-2r m)(;(i-2r m , )-V ,  (II.6

It is noteworthy that as the energy defects A of the dressed states

approach zero, the processes have the same order of magnitude. Indeed,

the actual magnitude of Process II might even greatly exceed that of

Process I, even though Process II is a three-photon process. We have

shown by means of a detailed calculation on the XA + F system that this

is indeed the case, provided the initial kinetic energy is low.52

Moreover, the intensity requirements on the radiation are also very low --

LI operating at 3 kw/cm2 can give rise to gas kinetic cross sections for

Process II. On the other hand, calculations have shown Process I to
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give rise to a relatively small cross section (around 0.05 A 2 even

2though the intensity of Li is large (0.3 MW/cm ). We emphasize that

large effects can be obtained from low-intensity lasers, provided

resonances are involved and the initial collision energy is extremely

low.

Recently, there have been a number of interesting experiments

which appear to have demonstrated chemical reactions that are induced

by lasers resonant with any asymptotic states.54-58 Although this is

an encouraging start, many of these reactions seem to have a very small

total cross section. It would be useful to have a theory of laser-driven

chemical reactions which would enable us to decide what kind of reactions

may be feasible, and to perform some quantitative estimates of cross

sections. To this end we may consider a model of chemical reaction which

is based on the theory of the atom-atom collision discussed above and

which conforms to the criteria we have established. An important condition

is the ability to form resonances during the collision. We have so far

considered radiative resonance formation, but it may be useful to begin

by considering systems which form resonances in the absence of radiation.

An important class of such systems, which are readily obtained experimentally,

are van der Waals molecules (VDWM) formed in their ground electronic state.5 6

We may, for example, be interested in the reaction

He + 1 2 +LJ tw HeI* + 1* (11.70)

where the asterisk signifies an excited electronic state.

Consider a collinear reaction, A + BC + fiw --* BC* + C*

where the bonds BC and AB* are strong and the bonds AB and BC* are

relatively weak (see Fig. 9). This kind of condition would be expected



48

in a typical VDWM. In the absence nf radiation, resonances occur in

each individual electronic state. For example, the BC bond may gain

a quantum of vibrational energy through coupling to the AB bond,

which then enters a bound state of motion. The atoms A, B and C

then co-exist in a quasibound state which is, however, unstable

with respect to the reverse process, predissociation of atom A.

This effect is known as "vibrational predissociation" 63-65

Let us outline the construction of a scattering theory in which

the predissociation takes the form of a Feshbach resonance. The

radiative interaction between electronic states could be handled

in much the same way as for the atom-atom problem. The two electronic

states have the coordinate representation x1([p]; R,r) and x2([p]; R,r),

respectively, where [p] are the electronic coordinates and r and R are,

respectively, the length of the strong bond [I-I in the above reaction]

and the distance from the more weakly-bound atom (He) to the center

of mass of the two strongly-bound atoms (see Fig. 9). Averaging the

total Hamiltonian H over the electronic coordinates, we obtain the

effective (Born-Oppenheimer) Hamiltonian for the nuclear degrees of

freedom:

<Xl=Hlx2>  V12(R,r) (II.71a)

<x1IHlx 1> = TAB + TC,BA + m1(R) + P2 (r) + V,(R,r) (II.71b)

<x2 Hlx 2> = TA,BC + TBC + m2 (R) + P2 (r) + V2 (R,r) (II.71c)

Here, T stands for the kinetic energy operator of the subscripted species,
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and m and p are Morse functions representing the potential energy associated

'6 with the two "bonds" (strictly speaking, the weak bond is not a conventional

bond since its length is measured to the center of mass of the other bond).

V1 and V2 represent the three-body portions of the ground and excited potential

surfaces, which are coupled only through the radiative coupling V12.

We wish to write the T-matrix for the chemical reaction in terms of the

operators P and Q which project, respectively, onto the open channels and

the eigenvectors of a zeroth-order Hamiltonian defined to be the effective

Hamiltonian of Eq.(II.71) minus V1 and V2 . These are then given by

P Z f dEl In1El><nElI + ' dE2In2E2><n2E2 (II.72a)

Q n In1v1 ><n2 v2 1 + Z In2 v2 ><n 2 v2 1, (II.72b)
•n] v I  n2 v2

where InjE> = >, etc., j being the electronic state index. IET> is

the state vector for inelastic scattering in the ground electronic state, con-

sisting of a plane wave in the channel labeled by the asymptotic energy E, plus

outgoing spherical wavesin all other channels. Similarly, JE2> is an incoming

wave for the rearrangement channel. The quantum numbers nj and vj label,

respectively, the quantum states of the Morse oscillators mj and pj. We consider

in addition the projectors R and S such that R + S = Q. The space of R is

defined by those bound-state vectors which give rise to strong resonances (these

can be called "doorway states" 6 6 ), where S is comprised of all other bound-

state vectors. It is now possible to write the general T-matrix element connecting

the initial and final states:

fi fPRRPEi>. (.73)

I f Elp ~
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Equation (11.73) contains all the information relevant to a chemical

reaction, including the effect of the radiation field. It may at first sight

appear analogous to the DWBA picture of a chemical reaction, but it is not.

It does in fact represent the exact solution to the Lippmann-Schwinger equa-

tion, with the complication that the effective (optical) potential, HpRHRP,

is not only complex but also nonlocal in the coordinates R and r. The problem

hinges on the representation of si. This is given in terms of the width matrix

r, the level-shift matrix F and the matrix V whose off-diagonal elements describe

radiative bound-bound transitions. The off-diagonal elements of r consist of

the (nuclear) bound-continuum interaction (both radiative and nonradiative).

In other words, r couples the open and closed channels. Under certain condi-

tions we expect these matrices to be representations of local operators, where

these conditions might hinge on the validity of the Markov approximation used

in time-dependent many-body theory. Here a n')nlocal kernel K(t,t') in the rate

equation for a subsystem is replaced by a local function of time:

K(t,t') Z K(t)6(t-t'). This means physically that the motion of the subsystem

at one time is completely uncorrelated with its motion at some other time,

i.e., there is no memory in the motion (due to randomization on a very short

time scale). Similar situations are expected to pertain for long-lived resonances

in three-body collisions, which is quite different from what would be expected

in, say, a direct collision or stripping reaction where the initial and final

states are much more correlated and the nonlocality of the potential is more

important. 67

4 We could initially assume a local optical potential. Then the matrix

representation of Q in the space projected by R will consist of radiative bound-

bound transitions between reactant and product states; it will also consist of

nonradiative predissociation widths which couple the bound and scattering states

-- -
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for either the product or the reactant channels taken separately. Roughly

speaking, the probability of reaction may be regarded as the probability uf

association multiplied by the probability of dissociation into a particular

product channel. [This picture should not be carried too far, however, be-

cause it is essentially perturbative and we are not using perturbation theory.]

The rather complicated effect of nonlocality will eventually have to be addressed,

especially since there is already evidence that nonlocality becomes more importantatw68-70 adti s teitrse

at low energies, and this is just the scattering regime we are interested

in. A simplifying feature is that nonlocality appears to be separable at low

energies, i.e., fE(R,R')E E

Finally, we would like to say a brief word about transition-state spectroscopy

in the light of what has been discussed in this section. There has recently been

interest in, and experimental evidence for, such spectroscopy.71,72 We wish to

emphasize that the transition state may be regarded as a set of resonance states

formed during a collision. Spectroscopy of the transition state then involves

radiative transitions between such states. Spectroscopy and energy transfer

are distinguishable only according to what one wishes to detect: if one chooses

to detect emitted (or absorbed) photons, then it is spectroscopy, and if particles

are detected then it is energy transfer (scattering). The spectroscopic "probe"

may thus be regarded merely as one contributor to the total S-matrix for particle
A

scattering. Thus, the methodology for treating spectroscopy of the transition

state would be essentially what we have outlined for radiative collisions. We

note that L2 acts not only as a spectroscopic probe but also as the agent of

energy transfer within the manifold of transition states. Thus, when L2 has

*. a significant effect on the overall scattering event, the distinction between

these two functions is unclear. They are, however, to be thought of in a unified

way, as we have mentioned.

I
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2. Isotopic Selectivity.

An intriguing potential application of radiative resonance scattering

is to isotope separation. Consider the radiative velocity-changing collision

depicted in Fig. 10. We may represent the event depicted in the top part as

A + B(Ei) -+ AB(v,z) - AB(v't') - A + B(Ef) (11.75)

where +Iiw denotes absorbtion and -hw denotes emission. The vibration-rotation

level of the AB complex is denoted by (v,z). The selectivity of such a process

arises from the different vibration-rotation spacings for systems of different

isotopic composition. 73 Clearly, only certain colliding pairs could then

undergo the above three-photon event. For such systems the final translational

energy has been increased by an amount equal to the energy of a single photon

from L2 (i.e., ,w 2 ). From the previous considerations we might expect such an

event to be extremely efficient at low collision energies. The extra transla-

tional energy picked up would be very much greater than the relative translational

energy of the unexcited molecules in the beam, and comparable to the forward

translational energy. Thus, the excited molecules will tend to be scattered

out of the beam. Experimentally the collision partners can be prepared in the

same beam which is formed by supersonic expansion. At some point downstream

of the source, where the kinetic energy of relative motion is extremely low

(1K), the beam may be crossed by the two lasers Ll and L2. The desired products

which are scattered out of the beam may then be skimmed off and collected.

We have used the formalism of the previous section to calculate the import-

ance of this effect for the XeF system. Let us define a separation p for

130separation of the heavy isotope Xe:

p 130 ((11.75)

U129+ 130
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where a129 and a130 are the kinetic-energy-averaged cross sections for 129 Xe

and 130Xe collisions with 19F, respectively. When L2 is tuned to the appro-

priate frequency for resonance in 130xe 19F, p is found to be as high as 0.996.

While certain aspects not taken into account in our calculations might reduce

the efficiency, such as finite laser bandw'dths and possible elastic collisions

experienced by the deflected molecules before leaving the beam, it is clear that

these velocity-changing radiative collisions could provide an efficient means

of isotope separation. Furthermore, the high cross section of the event (about

20 A2 in our specific example ) is achieved with the relatively lower laser

intensity of 5 kW/cm2

The advantage such a process has over more conventional techniques like

photodissociation or photoionization is, in the main, one of flexibility: first,

there is almost unlimited control over the initial scattering energy, and

second, depending on the tunability of L2, there is a large choice of bound

intermediate states. This flexibility allows for optimization of conditions.

The other techniques are limited to using initial states which belong to a

limited number of bound states. Under these circumstances, the available dis-

sociation pathways may often be unfavorable, requiring intense lasers. We would

like to add that a chemically reacting system (such as was outlined in the pre-

vious section) might be even more appropriate for isotope separation. In this

instance, only one laser is required to drive the reaction. Finally, we sum-

marize by noting that all of the ideas we have discussed in Part B of Section

II lead to our belief that laser-induced chemistry is eminently viable provided

one stresses resonance formation and low collision energies.
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III. Surface Processes

While the influence of laser radiation on homogeneous gas-phase sys-

tems has been intensely studied,1'2 much less has been done on heterogeneous,

e.g., gas/solid, systems either theoretically 35 '74 93 or experimentally.94- 01

The effects of laser radiation on adspecies/surface systems depend upon the

nature of the surface (metal, insulator or semiconductor, smooth or rough, etc.), the

coherent properties of the laser radiation (frequency, intensity, pulse duration,

polarization, etc.) and the electronic and vibrational structure of the adspecies/

surface system. Depending upon the laser frequency, the electronic, vibrational

or vibronic states of the adspecies and/or the substrate may be perturbed with

susequent energy flow among the various modes of the system. In this section,

we shall focus on the infrared vibrational excitation of the adspecies/surface

system in which the direct electronic excitation of the adspecies, which could

only be affected by, e.g., visible radiation, will be ignored. However, indirect

types of excitations such as substrate heating, migration and desorption of the

adspecies will be considered.

We shall first investigate the field-free system where species (atoms or

molecules) are adsorbed (physisorbed or chemisorbed) on a solid surface. The

combined interface system, adspecies/surface, is significantly different from the

homogeneous, i.e., gas-phase or clean surface, systems as follows:

(i) The adspecies (consisting of n atoms) has 3n so-called "frustrated" libra-

tional degrees of freedom instead of 3n-6(5) as in the gas phase. For example,

there are six vibrational modes for CO adsorbed on a solid surface whereas the

surface-free CO molecule has only one vibrational mode.

(ii) Due to the substrate, the excited adspecies usually has a shorter

lifetime as compared with that in the gas phase, because of its strong coupling

to the phonon modes, particularly for chemisorbed species.
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(iii) The energy spectrum of the species is changed in the presence of the

substrate. The frequency shift and level broadening may be caused by many surface-

induced phenomena such as: 82  (1) energy flow between the adspecies and the

substrate and among the internal modes of the adspecies; (2) fluctuation of

the effective dipole moment of the adspecies caused by, e.g., the charge

transfer between the adspecies and the adsorbent surface and the dynamic

coupling between the adspecies dipole and its image; (3) fluctuation of the

conformations of the adspecies caused by the libration of the adspecies,

particularly when the system is subjected to laser radiation; (4) migration-

induced broadening via inelastic scattering among the adspecies (particularly

for physisorbed states) and their collision with the surface atoms; and (5)

other phase-relaxation-induced broadening, i.e., T2 broadening.

(iv) The quasi-continuum region, available in the gas phase only for

polyatomic molecules, may be usually achieved even for diatomic molecules when

adsorbed on a solid surface. The frustrated degrees of freedom, as defined in

(i), have very high densities of states, and the overlap of these individual

states will lead to a quasi-continuum of the overall vibrational potential of

the adspecies and/or the surface potential.

When the adspecies/surface system is subjected to IR radiation, item (iii)

above will most likely play a particularly important role, due to processes such

as laser-enhanced migration and desorption. Furthermore, when the adspecies is

highly excited and reaches the quasi-continuum, further excitation resulting in

bond-breaking (desorption) may be achieved by quasi-resonant laser excitation

J in this region and/or thermal-phonon-assisted excitation. The concept of the

quasi-continuum is essential for understanding the mechanism of desorption;

without this concept, one must resort to unrealistically high laser powers to

overcome the anharmonicity of, e.g., a Morse potential. Detailed discussion

on this aspect will be given later.
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The influence of IR radiation on the adspecies/surface system is more

complicated to describe than for gas-phase unimolecular dynamics as described

in Part A of Section II. The following important mechanisms will be addressed:

0 How is the laser photon energy selectively transferred to the active mode

of the adspecies with consequent relaxation to the bath modes?

0 What is the energy relaxation dynamics and how are the (single-phonon

and multiphonon) relaxation rates governed by systems parameters, such as

frequency spectrum, interaction potential and masses of the adspecies/surface

system?

0 What is the nature (selective and nonselective) of the photon energy

deposition in the system? How is the selectivity characterized by the damping

rate, pumping rate and the rate of intramolecular vibrational relaxation?

* How does the nature of energy flow from the excited mode to the other

modes depend upon mathematical treatments, e.g., Markoff approximation,

continuum-density-of-states approximation and the feedback mechanisms achieved

by memory effects and/or the substrate heating effects?

* How are the isotope effects for a system consisting of a mixture of

isotopic adspecies characterized by, e.g., the frequency difference of the

isotopes, the direct dipole-dipole interaction and the phonon-mediated coupling?

* How does the laser radiation affect the rate processes via field-induced

dynamics such as desorption, migration, decomposition, recombination and

desoption? In other words, how do the laser and surface synergistically affect

heterogeneous catalytic reactions?

J None of the above addressed aspects of laser-induced surface processes

(LSSP) has been completely investigated, either experimentally or theoretically.

However, some qualitative and/or semi-quantitative results, will be discussed

in this section, which consists of two parts: (A) energy flow in adspecies-

surface systems where microscopic treatments, types of selectivity, photon

Ii
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energy population, isotope effects and dynamic effects (migration and desorption)

will be investigated; and (B) laser/surface-catalyzed reactions where applications

of the theoretical aspects of LSSP and some recent experimental work on LSSP

will be reviewed.
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A. Energy Flow in Adspecies-Surface Systems

Considering a group of species (atoms or molecules) adsorbed on a solid

surface and subjected to IR radiation, the most general total Hamiltonian

describing the energy flow within the adspecies/surface system may be written as

H HO + S I Hii + Hiji+ H + HiF(t)

H0 represents the unperturbed Hamiltonian of the system (adspecies, substrate

phonons and laser photons); Hij and Hi j represent the direct interaction andikj
the k-mode-mediated interaction between the i-th and j-th modes, where i, j and k
may be the adspecies, adbond or phonon modes; and HiF is the interaction
.iF

between the i-th mode of the system and the field (laser photon). In the

following discussion, we shall assume only one active mode in the adspecies to

be excited by the IR radiation, except for when we discuss isotope effects,

in which case there will be two active modes.

The microscopic Hamiltonian including heat-bath effects will be used to

calculate the excitations for both single-phonon and multiphonon processes. A

more complicated system consisting of A, B and C subgroups will be investigated,

where the memory function of the interaction between A and B and their common

damping to C is included. Energy populations in a multilevel system will be

studied, and the mechanism of excitation (selective vs nonselective) will be

numerically examined. Numerical results will also be shown for the adbond

excitations in the H/W system. By solving the rate equation in energy space

in the quasi-continuum, several types of photon energy populations and the

associated desorption probabilities will be calculated. Extension of the

single adspecies to a system consisting of two isotopes will be investigated,

and finally, the dynamic effects (migration and desorption) will be studied.

While much of the work presented in this section has already been published or
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is in press (with references cited), some unpublished concepts and results are

also included, e.g., the discussions in Parts A.2.a, A.4 and A.5.

1. Microscopic Treatment

a. Single-Phonon Processes

Consider a heterogeneous system consisting of atoms or molecules adsorbed

on a uniform solid surface and subjected to infrared laser radiation. The

vibrational degrees of freedom of the adspecies-surface system can be divided

into two groups, namely, the pump mode (resonant infrared-active vibrational

mode of the selectively-driven adspecies) and the bath modes (all other modes

including adspecies inactive modes and the surface phonon modes). The radia-

tion feeds energy into the pump mode, and the heat bath provides a relaxation

mechanism. The microscopic model Hamiltonian describing this relaxation

dynamics can be written in the following second-quantized form, corresponding
, i A82

to the simplest case of Eq.(III.1) consisting of only H0, Hi and HiF with =A:

H = HA + HB + HAB + H'(t) (III.2a)

HA =,wAaa + 1 p (a +a)p  (III.2b)
p=3 .

HB = Z jb~ b , (III.2c)

HAB = Z-tl(K a t b+Kjab.) , (III.2d)
J

H'(t) =-tVcos(wt) (at+a) 9 (III.2e)

V = (2f1mAwA)'1'(O)E cos(e) (III.2f)
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HA and HB are the unperturbed Hamiltonians (vibrational energy) of the pump

mode and the bath modes, respectively; HAB is the interaction Hamiltonian

coupling the pump mode and the bath modes; and H'(t) is the adspecies-field

effective interaction Hamiltonian. The operators at ,a and b ,b are the usual

harmonic vibrational ladder operators (with fundamental frequencies wA and wj)

of the pump mode and the bath modes, respectively; ap is the anharmonicity of

the nonlinear quantum oscillator (pump mode); u'(O) is the derivative of the

effective dipole moment of the pump mode evaluated at the equilibrium point;

E is the electric field of the radiation with frequency w, linearly polarized

at an angle e with respect to the effective dipole moment; and mA is the reduced

mass associated with the active mode. In Eq. (III.2d), K represents the coupling

between the active mode and the j-th bath mode. We note that the laser field

defined in the expression of Eq. (III.le) was assumed to be a single-mode classical

field; the case of a quantized multimode laser excitation will be investigated

later. EWe should also mention that e=0 in Eq. (II.12e), which is why the cosine

term is absent there.]

The equation of motion for an operator O(t) in the Heisenberg picture,

O(t) = exp(iHt/ft) 0 exp(-iHt/tf) , (111.3)

where the time-independent operator 0 is defined in the Schrodinger picture, is

,= 1( H ,III.4)

employing the operator algebra
14

[a(t), H] = aH/Da (t) , (I1I.5a)

[b(t), H] = 3H/abt(t) , (III.5b)

we obtain the following set of coupled equations:

i(t) = iWeffa(t) - i Kjbj(t) -iVcos(wt), (III.6a)

j -iw.b.(t) -iK.a(t) (III.6b)
3 33 3

--- -- -
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82where weff is the effective frequency obtained by the contact transformation,

including anharmonicity up to fourth order in Eq. (III.2b),

W eff(t) = wA -2*a (t)a(t) , (III.6c)

2
*= 30B3 /A - 64 , (I11.6d)

We solve for the phonon operators b.(t) by formally integrating Eq. (III.6b)

to obtain

-: b.(t) = b.(O) exp(-i.t) -iKj t dt' a(t') exp[-iwj(t-t')]. (11.7a)

0

Substituting Eq. (III.7a) in Eq. (III.6a), we get

a(t) = iweff(t)a(t) + A1(t) + A2(t) - iV cos(wt) , (III.8a)

where

A (t) = -i Kjb (O)exp(-iw t) (III.8b)

A2 (t) = - dt'A(t') M(t-t') (III.8c)

0
and M(t) is the memory (kernel) function given by

M(t) = IK.12exp(-iwjt) (III.8d)
j 3

To solve the above equation and hence the average excitation, the unknown

function A(t) and the many-body effects due to the phonon modes in A2(t) must be

decoupled. Depending on the memory function M(t), which is characterized by the

time evolution of the active mode and the density of states (or frequency spectrum)

-* of the phonon modes, the excitation and relaxation may behave quite differently.

For example, the relaxation of the active mode may be irreversible in one way or

reversible in another, i.e., there may be energy feedback to the active mode in

the other way. There are several techniques to deal with the aforementioned

many-body problem. We shall first discuss those for irreversible relaxation, and

the feedback mechanism resulting from different features of the memory function

will be investigated later.
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Within a Markoff process where the correlation time of the phonon opera-

tors is much faster than that of the active mode and the excitation rate, the

zeroth-order active-mode operator a(t)=a(O)exp[-ildt'weff(t')] may be used to

evaluate A2 (t). There are several alternatives to evaluate the integral in

Eq. (III.8c): (i) extending the upper time limit From t to infinity and working

out the time integral first; (ii) assuming a continuum phonon spectrum and fac-

toring out the coupling strength K and the density of states p; (iii) assuming

the memory function is a delta function in time. Either of these methods gives 14,84

A2(t)- (y1 /2 + i&a)a(t) , (111.9)

where the damping factor, y1 , and the frequency shift, 6w, are given by

2
Y= 27IK(wA)I P(wA) ' (III.lOa)
6W =p[ IK j,2/ (wA-wj)], (Ill.l0b)

where P stands for "principal part".

Substituting the result of Eq. (111.9) into Eq. (III.8a), we decouple

the phonon modes and obtain a single equation

a(t) - i(Weff+6w-iyl/2)a(t) + A1(t) - iV cos(wt) (III.11)

The effects of the phonon modes have thus been incorporated into a damping

factor, yI, and a frequency shift, 6w, of the active mode. Another technique

to treat the multimode phonon effects is the Wigner-Weisskoff single-pole

approximation, which we shall discuss later when dealing with multiphonon

relaxation processes.

---------4.- - --
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The above nonlinear equation cannot be solved analytically due to the

excitation-dependent anhamonicity in weff(t) [see Eq. (111.6)]. However, for

low excitation, we may ignore the anharmonicity and solve Eq. (III.11) to ob-

tain the ensemble-averaged n the active- arA bath-mode coordinates) excitation

a < (t)a(t)>> for the harmonic case (e*=O),

(V/2) 2  t/ [Y~t 111.2
S<n(t)> + -2e cos(At) + n l1e' J t  (111.12)

where A=wA+6w-w is the phonon-shifted detuning and ii is the phonon occupation

number given by the Bose-Einstein function, evaluated at the active-mode frequency,

= (=exp( A/kT)l1 (111.13)

Here we assumed that the phonon modes provide an infinite energy "sink" and the

initial surface temperature (T) remains constant. This is not necessarily always

true when one considers a more complicated system consisting of several sub-

groups of bath modes, where some of the subgroups may have finite numbers of

modes rather than an infinite sink. Further discussion on this will be given

later.

- So far we have discussed only the situation where the damping or level

width of the excitation is governed by the so-called Tl(energy) relaxation

rate, yI. To include the effects of T2(phase) relaxation on the excitation,

we investigate the Pnsemble-averaged (over tie phonon-bath coordinates) equa-

tion of motion for the active-mode operator, O(t)=a(t) or at(t)a(t), in the

14,81Heisenberg-Markoff picture (HMP).

d<O(t)> <[ 1(Vcos (Wt)/ 1 L3~t a ~jt)j
dt 3a at(t) aa tt 1 aj(t) a- t )

t Aat) a a25t+ a at i? +Yjj 1 0a~(t) + <dO T) 2
a a() +I n aa(t)Ba(t) dt/ T



64

The last term involving the dephasing (T2 processes) is characterized by the

dephasing-induced broadening factor Y2 as follows:

< dt3 T Y2 < a t(t)a(t),O(t) t Ma(t) - a t(ta) [tfa),O"(t) (11115)

A

which is mathematically constructed such that, for O(t)=a(t) and at(t)a(t),

>1 Y2a(t), [a Ma(t))- 0 . (111.16)

This assures that the T2 dephasing changes only the phase of the active mode

without changing its vibrational energy. By analogy with the above phenomena,

in collisional phenomena the T1 and T2 relaxation correspond to inelastic and

elastic scattering, respectively, and the overall collisional broadening is

then given by yl+Y 2.

By using Eq. (111.14) and the rotating-wave approximation, the ensemble-

averaged equations of motion in the HMP are found to be

<(t)>= - Ei(A-2c*<at (t)a(t)>) + (yl+y 2)/2] <(t)>-iV/2 , (III.17a)

<n(t)> = (V/2) <<! t(t)-!(t)>> -yl(<n(t)>-n) (llI.17b)
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where we have used the rotating frame defined by a(t)=a(t)exp(iwt). For long

laser-pulse excitation, we may employ the adiabatic limit, a;I4<(y 1+Y2 )jaI, to

obtain the energy rate equation from Eq. (111.17) with a=0,

d~n> =I
d-- = '- " y1 (<n>-n) (111.18)

where a and I are the absorption cross section of the whole system (active plus

bath modes) and laser intensity (with photon energy 6w). aI/.Aw therefore denotes

the total excitation rate of the system given by

- AI(y1+y2 )

-[ -2E*<n>] +(y1+y2 )' ( 1

a A=(V/E)2(4/c) is a constant resulting from I=E2

and is (87w/c) .

The steady-state average excitation, X, for a cold surface, i.e., neglecting

n, is seen from Eq. (111.18) to be governed by a cubic equation,

=.AI(r+/y 1) (111.20)
+"(A-2F-*X)2+(r +/2) 2

where r+=Y1 is the total damping factor resulting from the T1 (energy) and

T2 (phase) relaxation. The optimal detuning then occurs at the maximum (dX/dA = 0)

and is given by A* = 2c*X* (note - the single asterisk which was already attached

to e does not signify an optimal condition as it does for A and X). At the other

extreme where dX/dA -, we obtain a quadratic equation for the detuning, whose

two roots correspond to a "bistability" in X as a function of A. By equating

the two roots, we obtain the critical pumping rate I*=ylP2/(8Ac*), implying that

the existence of the bistability is a consequence of the condition 1>1*. For
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a fixed laser intensity, which is proportional to V2 (or the pumping rate),

the bistability criterion may also be stated in terms of the anharmonicity as

C* > C** = (ylr+)/(4AI) . This "bistability" feature of the steady-state

excitation is shown in Fig. 11. It is seen that when the anharmonicity e* is

larger than the critical value, €**, the excitation profile shows the bistable

transition from P to Q as the detuning increases, and from R to S as the detuning

decreases. We note that the maximum excitation is red-shifted to A* > 0, which

is a general property of any nonlinear oscillator with e* > 0. A classical

analogy of this nonlinear quantum oscillator will be shown later.

A remark on the relaxation rate of the single-phonon processes must be

made before we discuss multiphonon processes. We have shown that the many-body

effects of the phonon modes on the excitations of the active mode may be reduced

to an energy relaxation factor (y1 ) and frequency shift (Sw) as shown by Eq.

(III.10). In the Markoff approximation the single-phonon relaxation rate is

given by 14,78

w'O

YI= Re S K(d) 2 S exp[-i(Wj-WA)T]

i 0

= dwjiK(wj)I 2P(Wj)7rS(j-A) ,  (111.21)

0

which vanishes when WA>wj, a situation in which the active-mode frequency is

*_ usually greater than that of the bath modes. This unrealistic zero relaxation

rate may be avoided if one includes the finite lifetime of the phonon modes, YB'

87
which turns the delta function in Eq. (111.21) into a Lorentzian. For an Einstein

spectrum p(wj) = 6(wj-WD), we obtain

(M, (', A -WD)'2+(YB/2) 2  (111.22)

-- - - -- - . .---.- - -
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which is significantly different from the result for zero phonon width YB= 0.
= 2 3

For a Debye model, p(wj) 3w D and yB=O, we have

1 \ m 2 m(111.23)

where and ms are the reduced masses of the adspecies and the surface atoms,

respectively. 78,93

b. Multiphonon Processes

We have shown that a single-phonon relaxation rate may be achieved by the

finite lifetime (or level width) of the phonon modes if the frequency difference

wA-wD is not significantly greater than the phonon width yB" This is for the

situation that the active-mode frequency is close to the phonon spectrum. How-

ever, for an IR-active system the active-mode frequency is usually much higher

than that of the phonon modes, e.g., for CO/Ni, wA-2xlOOOcm'1, Wj-2rx3OOcm
1

and YB-5Ocm', which results in a very small single-phonon relaxation. Therc.,-.o

for those systems with a big energy gap between the active and bath modes, the

relaxation mechanism is dominated by multiphonon processes and neither Eq. (111.22)

nor (111.23) is an appropriate expression for yI. To fint the power law for the

ratios (mA/mS) and (wA/wD), we shall investigate the thermally-averaged (on both

the active- and bath-mode coordinates) golden rule for the multiphonon relaxation

87rate,

YI =(;2-ReSdt 4CHAB( t ) H AB(O) > (111.24)

0
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which is governed by the autocorrelation function of the interaction Hamiltonian

between the active mode and the bath modes.

Consider a Morse surface potential

Q-2o(QU'ro). 2e-(Q-U)V(Q,U) D e (III.25a)

Z2aDQ[e2 U - e W (III.25b)

where D and a are the appropriate parameters of the Morse potential, and Q and

U are the position of the adatom and of the surface atom with equilibrium

position rO. Since the frequency of the adatom is much higher than that of

the phonon spectrum, we have used the linear expension exp (cQ) 2 1 + cQ and

dropped the constant terms which do not conserve energy in Eq. (III. 25b). The

interaction Hamiltonian is then given by the fluctuation of the adatom-surface

potential, i.e.,

HAB = V(Q,U) - <V(Q,U)> , (111.26)

where <V(Q,U)> is the thermally-averaged (over the bath-mode coordinates)

surface potential. Employing the identities

"<eU(t) eU(O)> = <ecU(t) ><eU(O)>e<a2U(t) U(O)> (III.27a)

b2 2

<eu> e <a U/2> (III.27b)

we obtain the autocorrelation function

<H( ( ) 2Q(t)Q(O) {EO(Et+1) + E4(E4+1)-2Eo (Et+1 ),(III.28a)
ABtHAI) 2
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E0  2exp(a2<<U2>>) (II1.28b)

2
Et = exp(a <<U(t)U(O)>>) (III.28c)

Eq. (111.28) together with Eq. (111.24) enables us to evaluate the multiphonon

relaxation rate up to any order. Note that the linear term of the potential

V(Q,U) z 4a2DQU gives us the single-phonon relaxation rate, Eq. (111.22), when

2D 22 mAwA. Furthermore, the relaxation rates may behave differently for different

choices of the interaction potential and/or phonon spectrum. To evaluate the

multiphonon relaxation rate for a very strong coupling case, the steepest

descent method is usually used. 87,89

For a p-phonon process with wA qwq+(p-q)wp, where wAwq and wp are the

frequencies of the active mode and of the acoustic and optical phonons, respecti-

vely, the interaction Hamiltonian includes the term [a2(p+I)QuP/p!]. Transforming

the coordinates Q and U into the second quantization operators, the integral of

Eq. (111.24) may be worked out for an Einstein spectrum 
to give 77

'AY (111.29)

[p (p- q) !) q ~p m) m-

where mA , mq and mp are the reduced mass of the active mode and of the acoustic

and optical phonons. We note that the multiphonon relaxation rate is strongly

decreasing with increasing the order parameters p and q, since mA<<mp mq. There-

fore, for systems with a small mass ratio, mA/mq mq<<1, and/or a high active-

mode frequency, wA>>wp,wq, we expect a long lifetime of the excited adspecies.

e The above results, which provide us with a quantitative description of the power

laws of the mass and frequency, are in agreement with that of the energy-gap

law. 37 The relaxation rate for the N/Si system has been estimated to be

1011s'1' where for H/Pt, y1 z 104s1. The latter is much lower due to the

-1 -1I -177
smaller mass ratio, mH/M andA 2000 cm 150 cm and w 400 cm

H P•, wA.q x
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To obtain the average excitation of the active mode anI temperature

dependence of the multiphonon relaxation rate, we shall consider the microscopic

Hamiltonian
81

H = HA + HB + HAB + H'(t) , (111.301

which is the same as that of the single phonon case except that the interaction

Hamiltonian HAB describing multiphonon relaxation is now given by

HAB = (vGB at + G*Bta) (III.31a)

where we define a multiphonon operator

iv
B e • b. b. *Ob.N, (III.31b)
V Jl' 2' j N 2

and GV is the coupling strength. It is seen that HAB reduces to Eq. (III.2d)
and describes single-phonon relaxation when N=1 and G =K. The Heisenberg equations

vj

of motion are

;(t) '4weff( t)w(t)la(t) - i IG Bv(t)-iV cos(wt), (111.32a)
V

B(t) =-inB(t)-iN G a(t), (III.32b)

where iv

SV= [B V(t),HBI/Bv(t) = i wj (III.33a)

N= [B(t),B (t) , (III.33b)

and r(t) is a stochastic frequency modulation which accounts for dephasing effects.

By employing the Markoff approximation as used in the single-phonon case,

Eq. (111.32) is decoupled and results in the ensemble-averaged equations of motion

in the HMP
14'84

4a(t)> -[i(A 2e*<a (t)a(t)>) + (yl+y 2)/2]<a(t)>-iV/2 , (III.34a)

<(t)>= -(iV/2)<<a (t)-t)>-N) , (III.34b)

S which have the same structure as for the single-phonon case [Eq. (111.17)],

except that we now have the multiphonon equilibrium occupation N= nn-, and the
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relaxation factor is given by

Y= 2w IGvI2jNv6(wA-Qv) (III.35a)

where

NV = il (ii.+i) - j ii.. (III.35b)
~=jl J=jJ

In deriving Eq. (111.35), the phonon-induced frequency shift was neglected

and we assumed that the stochastic frequency obeys the simple correlation

. - <(t)Z(t')> = y26(t-t'), We note that the significant difference between single-

phonon and multiphonon processes lies in the nature of the relaxation factor,

Y1, which is temperature independent [Eq. (111.21)] for single-phonon relaxation

but strongly temperature dependent for multiphonon relaxation. For example,

for an Einstein spectrum with p(w J)=6(wj-wD) and nv=PwD (p-phonon process), we

find the temperature dependence of the relaxation rate as

Y [exp(lwA/kt-l] I [exp(hwD/kt) -11p , (111.36)

which, for low temperature (kT<cffwD) becomes almost temperature independent,
!D

YJ 1 + pexp( fIwD/kT) , (III.37a)

* whereas for high temperature (1 A>kT>>irD) , (III.37b)

Y, (-kTftwD) P[exp (ifwA/kT)-1]

which shows a strong temperature dependence.

We have also assumed the coupling factor GV to be independent of tempe-

rature and the spectrum of the phonon modes to be governed by a delta function.

Furthermore, only the single term in Eq. (111.35) which provides the dominant

contribution to the relaxation rate is considered. When considering many atoms

*I of the substrate, the order parameter p should be split into several parts, i.e.,
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wA= Z qwq, with Xq=p, and the associated compound density of states should be

expressed in terms of a convolution of the single-phonon density of states.
36

To evaluate the multiphonon relaxation rate for an actual system, a realistic

phonon spectrum is needed, and information on the crystal structure of the

substrate is required for a first-principles calculation.
102

We have so far investigated the microscopic Hamiltonian based on a

single-mode classical field, invoking the assumption that the number of photons

in the laser field is'so large such that the electric field (or intensity) of

the radiation is kept constant even in the presence of the absorbing medium.

Depending on the initial states of the system, the active mode may absorb or emit

photons corresponding to the excitation and de-excitation of the adspecies.

Similarly, the phonon modes may behave as a thermal field when the adspecies is

initially "cooler" than the bath modes. For instance, if the substrate is heated

by a laser or other thermal source but the adspecies is not, then energy could

flow from the phonons to the adspecies. To study these cooling or heating

processes of the adspecies, we shall consider a microscopic Hamiltonian similar

to that of Eq. (Ill.1), except that the adspecies-laser interaction, H'(t), is

non-quantized into a multimode field form,

H'(t) =-4 I (Vkc a + V*Ckat ) , (111.38)

where ck and ck are the harmonic ladder operators for the k-th mode of the

quantized field, and Vk is proportional to the electric field due to radation

and may be referred to as the Rabi frequency of the excitation. The Heisenberg

.4 equations of motion, previously given by Eq. (111.32), now become

a(t) = iWeff(t)a(t) - i GvBv(t) - i Vkck(t) , (III.39a)
vk

(t) = iwB (t) - iN Ga(t) , (III.39b)

k(t) = i kck(t) . iVk a(t) .(III.39c)
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The above coupled equations can be solved by using the Markoff approximation

to include the many-body effects due to the phonon modes and the laser as

developed in the previous sections. Here we shall present an alternative

technique.

Taking the Laplace transform of Eq. (2.35), we get

a(s) = U(s)a(s) + I V (s)B (s) + I Wk(S)Ck(S), (111.40)

v k

where a(s), B (s) and ck(s) are the Laplace transforms of a(t), Bv(t) and ck(t),

respectively, and U(s), V (s) and Wk(s) are the appropriate functions obtained

from the Laplace transform of Eq. (111.39). Employing the Wigner-Weisskopf

single-pole approximation, i.e., szO in Eq. (111.40), the inverse Laplace trans-

form of Eq. (111.40) can be obtained to evaluate the average excitation of the

active mode,

<aM(t) a(t)>> =(n(O)> e-rt +

S2 1+e -rt-2e -rt/2coS(A t) (0)

(111.41)

where <n(O), nj-(O) and _k(0) are the initial occupation numbers of the active,

phonon and photon modes, respectively, defined by a Bose function with the same

temperature but at a differ~nt frequency. The detunings are defined by

A=wA-nV and Ak=wA- k , where Q is the multiphonon frequency and wk is the k-th

mode laser frequency. Finally, r=y1+y0 is the total damping factor describing

the effects of the parallel nonradiative (phonon) and radiative (photon)

relaxation of the quantum oscillator into two independent, noninteracting

multimode baths. We note that the multiphonon rate y, has a temperature dependence
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given by Eq. (111.36), while the radiative factor yo is independent of tempera-

ture since we consider dipole transitions of the active mode, i.e., the

interaction Hamiltonian, Eq. (111.38), contains only linear coupling terms in

the resonance excitation with frequency wkzwA.

Assuming an Einstein spectrum for both the phonon and photon modes, the

average excitation at resonance, A,=Ak=O, becomes

) - ][ GEI2pNE + VFI2PJl - e rt/2 + <n(O)>e-rt (111.42)

which is characterized by the incoherent phonon field and the coherent laser

field with initial occupations PENE and pFF'n respectively, and the initial

occupation of the active mode is decaying with a total rate r through two parallel

* channels, the phonon and photon bath. We note that the active-mode excitation,

with initial state <n(O)>=O, is built up by both the laser field and the phonon

. . field, particularly when the initial phonon occupation NE is high and/or is

* "heated up" by the laser field either directly or indirectly via mode-mode

coupling.

2. Selective Excitation and Thermal Effects

So far the adspecies/surface system has been described microscopically by

a Hamiltonian in which the active mode is singled out,with all the other (inactive)

modes treated as a heat bath. The many-body effects of the bath modes were

reduced to the damping factors yI and Y2 based on a Markoff approximation in

which the kernel function, M(t) in Eq. (III.8c), was assumed to be a delta

function. We shall now investigate the memory effects of the kernel function on

the energy-flow dynamics (which up to now were assumed to be governed by an

irreversible process with an infinite heat bath). To discuss the types of

* selectivity, the energy population of a multilevel system will be studied, and

finally, the excitations of the a,',ond in the H/W system will be examined

*. numerically.
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a. Memory Function and Feedback Mechanisms

As illustrated in Fig. 12, in a simple heat bath model, the system consists

of the active (A) mode and the bath (B) modes in which the B modes are treated

as an infinite energy sink due to their large number of modes and the continuum

phonon spectrum. The energy flow from A to B is irreversible (with a relaxation

rate y) within the spirit of Markoff processes. In a modified model, the system

is divided into three groups: the active (A) mode, the quasi-continuum (B)

modes and the true continuum (C) modes. For CO/Ni as an example, the V3 mode

(with frequency -.1000 cm"1) is the active mode, and the adspecies internal and

adbond modes (,300 cm" ) are the B modes. We shall demonstrate that in the

A-B-C model, although the energy flow from A to C and B to C are irreversible,

the energy flow between A and B is not necessarily a one-way process. Depending

upon the kernel function and the density of states associated with the quasi-

continuum B modes, the interaction between A and B may be a two-way process,

i.e., there can be a feedback from A to B. Furthermore, we shall show that

there is an interference effect which causes an indirect coupling between A and B

via the C modes.

The microscopic Hamiltonian describing the energy flow dynamics of the

A-B-C system subjected to IR radiation may be best expressed as [Eq. (Ill.1)

with i=A, j=B and k=C, where the C modes are inactive]

H = H0 + HAB + HAC + HBC + HAF + HBB + HAA + HBF, (111.43)

where Ho=HA+HB+Hc is the unperturbed Hamiltonian of the system, H. (i,j=A,B,C)

represent the interactions among them, and HAF and HBF represent the A-mode-laser

and B-mode-laser interactions. In the following discussion, we shall focus on

the energy flow between A and B, and the last two terms in Eq. (111.43) will be

ignored since our model system will consist of only one adspecies and one active

mode. For simplicity, we further assume single-phonon processes (the extension

to multiphonon processes may be done by techniques used earlier).
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The equations of motion for the operators a, bj and ck for the A, B and C

modes are given in the rotating frame by
14'84

=-1 gj bj E. -i dkK Ek e iAt (1I1.44a)

i . i~jj .t (I.4b

j -igjaEj-1 -ijdwk Kik Pk Ck Ek/Ej i - 1 (III.44b)

Ck = -iKAk aEk -i K Kk bj Ej/Ek (III.44c)

E. = exp(iA t), etc. (III.44d)

V is given by Eq. (III.2f); gj, KAk, Kjk and Vjj, represent the appropriate

coupling factors associated with HAB, HAC, HBC, and HBB. respectively; the

detunings are defined by A=wA-w, Aj=wA-j, Ak=A-=k, bkjwj-k , etc., where

A' j and kare the frequencies of the A mode, the j-th B mode and the k-th Cmonde

with the continuum spectrum and density of states Pk" Employing the many-body

techniques previously discussed, the effects due to the C modes may be replaced

by the frequency shift and the damping factor, whereby Eq. (111.44) becomes

iV eiAt

yAa- iG --E , (III.45a)

bj = -iG aE I - [iV .. + ?r IK.12poe 1 (III.45b)

G=gj+ (G1+iG 2 ) has two components--gj resulting from the direct coupling and

(GI+iG2 ) resulting from the indirect coupling between A and B via their coupling

to the C modes, where G1 ,2  KjoKAoPO; and YA is the C-mode-induced damping

factor. We note that in Eq. (III.45b), the B-B coupling is governed by the

direct coupling factor V.L, (with j#j'), the C-mode-induced indirect coupling

1TKj 0 o o(with j'$j) and the damping factor YB= lKjIo po(with j'=j). For

tractable results, we shall keep only the j'=j term in Eq. (III.45b), so that

j YBbj - iGj a e (III.45c)
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Eq.(III.45) has the same functional structure as Eq.(III.6), except that now

the damping factor YA,B has been introduced in the operators for the A and B

modes due to their energy relaxation to the C modes. Substituting the formal

solution of Eq. (III.45c) into Eq. (III.45a), we obtain, for b.(O)=O,

Y t- dt'a(t')M(t-t')-iV e i At  (1 .6a "=yAa - ' e , (111.46)

where the kernel (memory) function is given by

M(t) = IGjj 2 exp[(iA(j1-yB)t] (11.47)

To solve for a(t) with the boundary condition a(O)=O, we obtain the Laplace

transform of a(t) from Eq.(III.46) as

i(V/2)/(s-iA)
a(s) = , (111.48)(S+YA)+:M(s)

which is characterized by the Laplace transform of the kernel function, M(s),

given from Eq. (111.47) by

R(s) = )-i ~j  (111.49)J(S+YB)-~

In our earlier discussions involving the Markoff or continuum spectrum approxi-

mation, M(t) -6(t), the dynamics of the B mode were simply damped due to the A

mode. To investigate non-Markoff processes or reversible processes between

A and B, we shall now evaluate M(s) without assuming a continuum spectrum.

From the concept of the energy-gap law and the multiphonon relaxation rate

discussed earlier, we know that the coupling strengti IGj12 is strongly decreasing

with the increasing of the multiphonon order parameter. For only finite numbers

of modes in B, we then may truncate the sum in Eq.(III.49) and further assume

the mean value Aj=Aand j IGjI 2  NIGI2 to obtain
!, 3
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NIJI
MR(s) - (111.50)

s + YB-i

which yields

-i (V/2) (SY-'a)

a(s) = ' (III.51a)

where N3 iA and X are the roots of

s2 +(YA+YB-iE)s + YA(YB-A) + NII 2 = 0 (III.51b)

We shall show that the nautre of the energy flow between A and B is characterized

by these roots. For near resonance, A yAB , when the damping of the B mode

is in the range

YA'2VftIGI < YB < yA+2l IG , (111.52)

Eq.(III.52) has two complex roots (which otherwise are real). These complex roots

yield the oscillatory behavior of a(t), and accordingly the active-mode exci-

tation <n(t)> S <<a(t)a(t)>> is an oscillating function. Therefore, Eq.(III.52)

provides the criterion, in terms of the damping factors YA,B and the coupling

strength it'[I, for the energy flow from A to B and back to A. In the limit of

"TA,B<VTGI, we readily obtain I1 2 ±ivfj']j, which provides the frequency of

this back-and forth-flow. We note that in the single-mode limit, s 0,

M(0)NIGI B, for A : 0, which gives the same results a: that of the Markoff

processes in which energy is irreversibly flowing from A to B and C with a

total rate of YA+M(0). The active-mode excitation for arbitrary values of

YB is given by

A"
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<n(t)> =a(t) 2 = Cne (III.53a)

n=1

where A are the roots of Eq. (111.52), X3 = iA and

m-i /2)(yB-iA+ n)

cn =_ x B - , (III.53b)-( Xn - Xn , ) ( Xn -X n i)

with n,n',n"=1,2,3.

In addition to the above, there is a second type of energy feedback based

on the periodicity of the kernel function in the quasi-continuum and the memory

effects of the bound-continuum coupling, 103 and a third type which we now

consider corresponds to the feedback effects resulting from the direct heating

of the substrate or indirect heating via phonon coupling. The substrate

temperature obeys the heat diffusion equation, given in a one-dimensional

approximation as

aT = La 9T + S(z,t)
D-'-'(111.54)

D is the diffusivity and the heating source is S(z,t) = (a/pCv)(l-R)I(z,t),

where a, p and CV are the absorption coefficient, mass density and specific

heat of the substrate, respectively, and R is the reflectivity. We note

that the substrate temperature is governed by the volume source of the laser

radi3tion, I(z,t), with the boundary condition DPC v(T/az) = 0 on thev
surface (z = 0). The solution of Eq. (111.54) is in general only available

numerically. Except for the situation where the substrate is heated by a

high-power short pulse, e.g., gigawatt picosecond pulse, the above diffusion

equation, may be replaced by
104
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3T az (D 9T) (III.5Sa)

and the boundary condition

K (aT) = -(l-R) I(O,t) , (III.55b)3z Z =0

where K = DpC is the thermal conductivity of the substrate.

v

In an indirect heating process for the aforementioned A-B-C system

(Fig. 13), the boundary condition is given by

[instead of Eq. (III.55b]

K = -F(t), (111.56)z=O

where F(t) is the rate of energy flux (W/cm2) from the (A+B) modes to the

C modes whose temperature increases by an indirect channel through the laser

excitation of (A+B). We note that the energy flux rate F(t) in general is

time dependent since the excitation and relaxation of (A+B) are time dependent.

However, when the excitation of (A+B) saturates to steady state, the rate

of energy flow from the radition into (A+B) equals the rate of *eakage from

(A+B) to C. In this situation, the steady-state energy flow Fs*s.(t) =

aI/ftr, where a is the steady-state total absorption cross section of (A+B)

and may be written as [see Eq. (111.19)]

F f A I r (1.7
Fs.s. (A2e*X)2+(r/2) 2 (II.57)

where f is a fraction relating the microscopic number of modes to the macro-
I

scopic thermal parameter, e.g., thermal conductivity of the substrate, and

r is the damping factor of (A+B).

0
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In general, the damping factor is time dependent and given by the

thermally-averaged golden rule, similar to Eq. (111.24),

t

r(t) = ()Refd ABc() HABC(O)>> (111.58)

0

where the interaction Hamiltonia HABC is related to the power series of the

correlation function of the C-mode coordinate, 4<Qc(t) Q (0)>>, which generally
C

depends on time through the time-dependent occupation number <nc(t)>. In view

of the fact that r(t), <nA,B(t)> and <nc> are all varying in time, the func-

tional form of F(t) should be quite complicated. To find the temperature of

the C modes, one should simultaneously solve the rate equation of (A+B) with

a time-dependent damping factor r(t) and the heat diffusion equation. However,

when the excitation of (A+B) is saturated and when r(t) is assumed to be a

constant (or given by its mean value), the maximum surface temperature of the

substrate, subject to the boundary condition of Eq. (111.56) with a steady-

state flux Fs.s., may be obtained by a Green's function technique to beI05'106

= T0 + 2Fs.s.[tp/D)] /pCv (111.59)

From this result and the expression of Fs.s. in Eq. (111.57), we can draw

the following conclusions regarding the temperature behavior of the substrate

due to indirect laser heating: (i) in contrast to direct heating, the indi-

rectly-heated surface temperature is sensitive to the laser frequency through

the Lorentzion of Fs.,s" vs detuning; (ii) Tt is linearly proportional

to the laser intensity at low excitation, whereas T* - Ip with 1/3<p<l, in general
5

(iii)the increase of the substrate surface temperature will be significant

only when the diffusivity is small; otherwise the thermal energy will diffuse

into the bulk; (iv) the increase of T* results in a higher occupation number
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of the C modes,which in turn may provide energy feedback via their thermal

phonons. Furthermore, the increase of <nc(t)> leads to the decrease of the

rate of energy flow from (A+B) to C given by r(t)[<nAB(t)> - <nc(t)>].

However, we also note that the overall effects of <nc(t)> on the energy-

flow dynamics of the system are not yet clear since the relaxation rate,

r(t), is also time dependent. The above results based on a square laser

pulse tend to overestimate the surface temperature compared with that for

an actual pulse which is close to a Gaussian. For better results, we may

approximate the Gaussian by an isosceles triangle, which gives T* 4/(27)

( 0.77 of that for the square pulse). 105

To further investigate the nonequilibrium behavior, we consider the

rate equation

.-. d<nAB>dt nAB r t) [<n(t)> - <nc(t)>] (111.60)

which has the same structure as that of Eq. (111.18) except that the time

dependence of r(t) and <nc(t)> are given by1
07

t iW (T

0r(t) die <<[ j , ,

and

t iW T
<nC(t)> •fde 0  JXIK.1 2C.(0)C'(T) b

where w0 is the mean frequency of the (A+B) subsystem, C- T ci is the multiphonon
i= 1 *1

operator for the C modes, and K. is the coupling constant between (A+B) and C.

We note that Eq. (111.60) reduces to the equilibrium expression, Eq. (111.18),
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when the C-mode correlation time is much shorter than the inverse relaxation

time and the upper time limit of Eq.(III.61) is extended to infinity. We

finally note that the multiphonon relaxation rate given by Eq.(III.58) is a

more general form than that of Eq. (111.61).

b. Multilevel System -- Selective vs Nonselective

So far we have assumed the active mode to be a harmonic "oscillator"

without energy-level structure. For a true quantum system, the active mode

should be treated as a multilevel system. As shown in Fig. 13, we consider a

multilevel system in which the active mode is coupled to the B mode, which in

turn couplesto the continuum C modes with the damping factor y. In the

Heisenberg-Markoff picture (HMP) and within the rotating-wave approximation,

the equations of motion for the Bose operators are given by
83

dA (t)
t HmnAm(t) exp[-(Em-E)t/ft] (111.62)

where Hmn are the matrix elements of the interaction Hamiltonian

H' = HAB+HBC+HAF(t) given by

"rHmn = <m!H''In> = A€ € * i(HAB+ HBC+ HAF)14i.4j'4k.> , (III.63)AB

•n 1T- j.ABFC Ad i k' 11.3

"ijk being the eigenstates of the A, B and photon modes with the corres-

ponding probabilities Pm(t)=IAm(t)1 2 . For example, in a two-photon process

the eigenstates 1002>, 1200> and 1020> represent A and B both in their ground

states, only A excited and only B excited, respectively. Considering the A

mode as a three-level system with excited states, coupled to the m-th and

2m-th level of B which is in turn decaying to C, the equations of motion for
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the Base operators -- a1,2,3 for the A mode and B1,2 for the B mode =- in

-* the HMP are given from Eq. (111.62) as

al(t) = - iVI a2(t) exp(-iAt) , (III.64a)

a2(t) = -iVj al(t) exp(iAlt) _ igI B1(t) exp(-iAjt) - iV2a3(t) exp(.iA 2t)'

(III.64b)

3(t)= - iV2 a2(t) exp(-iA 2t) - ig2 B2 (t) exp(-iAjt), (III.64c)

6.(t) =-ig! a2(t) exp(iAt) - (y1/2) B1(t), (III.64d)

i1 2

2(t)= - ig a3 (t) exp(iAkt) - (Y2/2) B2(t) , (III.64e)

where A1 = A " w, A2 = A1 = 
2c*, A1 = mwB - WA'A 2 = m'B + 2c* - WA' c* is the

anharmonicity of the A mode, and V, g, y are the pumping rates, coupling factors

and the damping rates for the related levels, respectively. The above coupled

equations are numerically solved for V1 = V2 = V, = g2 = g and y= Y2= Y

to obtain the level populations

P1  1a1(t)1
2, PA = 1a2(t)1

2 + ja3(t)
12 and P = IBI(t) 12 + 1B2(t)12. (111.65)

P and PB describe the population dynamics of the photon energy deposited in

the A and B modes, respectively, while PC = 1 - (P describes the

population loss of the (A+B) modes and represents thermal heating, i.e., the

portion of the photon energy randomized in the phonon bath C modes. The

energy populations are shown in Fig. 14(A) for selective excitation of the

A mode with (V,g,y) = (4,0.1,0.4) and in Fig. 14(B) for nonselective heating

of the C modes with (V,g,y) = (4,1,1). We see that for fixed laser pumping
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rates the selective excitation of the active mode (A) requires a small multi-

phonon coupling factor, g, and small energy leakage rates, y, out of the B

mode, while appreciable nonselective thermal heating of the bath modes (C)

is achieved when the coupling factor and the damping rate are comparable to

the pumping rate.

c. Adbond Excitation -- Hydrogen/Tungsten

In the heat-bath treatments, we have focused on the excitation of the

active mode and treated all the other modes as a heat bath, which leads to a

damping factor and the frequency shift for the active mode. To investigate

the energy flow within the adspecies or the adbond, the vibrational modes

should be rigorously treated rather than singling out the active mode from

the bath modes. The intramolecular vibrational relaxation (IVR) rate of

SF6 molecule in the gas phase has been addressed in Part A.3 of Section II,

and now we shall extend that study to the excitation of a heterogeneous system,

namely hydrogen atom adsorbed on a tungsten surface. As shown in Fig. 15,

there are total of six (3n, with n=2) possible librational modes in the C2v

point group bridge site adsorption of H/W(100). These consist of two-fold

degenerative pairs of lateral modes (v2 and v3) and vertical modes (vI

in-phase and out-of-phase modes).1 08  In view of the frequency spectrum

V = 1038.6, = 645.3 and = 1290.6 cm 1 , we shall consider the

fourth-order anharmonic coupling potential, proportional to Q Q2Q3 ,AQ Q3 which

dominates the vibrational relaxation rate with the internal detuning

Ai27r(2v1-v 2 -v 3 ), where Q are the normal coordinates of the v1 , 2 , 3

modes. By the concept of the energy-gap law and the multiphonon relaxation

rate discussed earlier, we presume that the fourth-order anharmonic coupling

is the lowest order we can use since the detuning AI is not far off resonance.

The Hamiltonian describing the fourth-order anharmonic coupling among

the intra-bond modes of H/W in which the v mode is subjected to IR radiation

I.- --
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is given by
83

3

H 4w aTa i + X Hanh + 4Vcos(wt)(aj +a1 ) (111.66)
i =1

where V is given by Eq. (III.2f), and the anharmonic coupling is Hanh =

4(QI+Q 2+Q3) . The diagonal terms of this coupling give the anharmonic components

of the modes, whereas the off-diagonal terms provide the mode-mode

2coupling with the fourth-order coupling term X'QlQ 2Q3, where V = 12x.

Referring to Eq.(III.41), we can write the equation of motion for the ampli-

tude functions B. as 12

i4 = X'C4 B* B2 2 + 2X'CB* B2B3E+ -(V1o/2)2ClEf , (III.67a)

tB2 = X'C4 B* B22 + X'CB 2 B E

2B = 2 2 2* E 3 (III.67b)

iB 3 = X'C4 B B 2 + xICB1 2 B* E (III.67c)3 3 33 1 2-

E± =exp(±iA4t), Ef = exp(iA.t) (III.67d)

A,= 2w(2vi -v 2 -v; ), A = 2wv 1 -w , (III.67e)

where C= 2 CC and other parameters are defined as in Eq. (11.41). The

above coupled equations have been numerically solved by the fourth-order

Runge-Kutta method (using a DEC-10 computer connected to the NCAR graphics

software). The dynamical feature of the excitations which show the energy

flow among v2 ' v3 and the active mode (vl) are illustrated in Fig. 16.
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3. Photon Energy Population

In the heat-bath treatments, we have shown that the laser radiation may

selectivily excite the active mode while the bath modes are kept "cold" if

the pumping rate is greater than the relaxation rate; otherwise, there is

nonselective thermal heating of the whole adspecies and/or the substrate

surface. We have also demonstrated that in the H/W system, the IVR rate could

be very fast (.I012 s"I) when the internal resonance condition is not within

the low-order anharmonic coupling. For systems with a very fast IVR rate,

the photon energy initially deposited in the active mode may be randomized

among all the adspecies and adbond modes. In this situation, the master (rate)

equation, which treats all the vibrational modes in the subsystem, e.g., (A+B)

in Fig. 13, on an equal footing, is more appropriate than that of the heat-bath

treatments. We should note that, from the concept of energy-gap law, the sub-

system involved in the master equation is defined by those modes which are

strongly coupled, e.g., (A+B) modes in Fig. 13, and usually excludes those

low-frequency phonon modes (C) which are separated far in frequency from the A

and B modes. Therefore, the energy space of the master equation is defined

by the number of photons absorbed by the whole adspecies, or (A+B) modes,

rather than the vibrational quantum number of the active mode.

Before presenting the master equation which involves the pumping

(relaxation) rates, we shall first calculate the associated absorption

(stimulated emission) cross section for the adspecies. This may be obtained

by a generalization of the total cross section of an anharmonic oscillator

in Eq. (111.19),

A(n+l)na = n
-(111.68) n (L.2cX) 2+(r/2) 2
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where the n dependence of the transition dipole matrix element

Un,n+ =n+1' xln>= .(n+1)u, has been included, an represents the cross

section for a transition between the m-th and (m+l)-th levels with level

-. nwidths rn and n1 = (r+r )/2 is the mean width; and X is the steady-

state excitation of the active mode. Noting that both Fn and X in general

are n-dependent, e.g., Fn=(n+l)r0 for the transition pair (n, n+1) and

X (n+l) at low active-mode excitations, the cross section may be written

in the general form

an = (n+1)aa* (111.69)

where ,* and a are correlated parameters depending on the relative magnitudes

of the anharmonicity and the bandwidth. For example: a=1 and a*=r l[A 2+r 2.

for c*=O (harmonic oscillator) and Ifn=r (constant bandwidth); a=-1 and

a*=r /(2c*) 2 for an anharmonic oscillator, Yn=r0 <<2*X, X=n+l and A=0; a=OI0

and a*=A/r0 for *=A=O andF n = (n+1)r O.

The master equation describing the photon energy population in the

energy (n) space can be written as
80

*dP

dt I I= W + /g (111.70)

2P is the population (adspecies/cm ) of the level of energy nfTw, i.e., absorbing

n laser quanta, and g is the degeneracy of the n-th level, related to the

number of vibrational modes S in the adspecies [or (A+B) modes] by

gn g0(n+
l)S 1  (111.71)

%°
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and an,n1 are the quantum cross sections for transitions between the level

pairs (n, n±1) given by Eq. (111.69). We note that, as discussed in Part A.2.a,

the transition rates or the cross sections are in general time dependent, and

the above master equation with constant cross sections is the limiting case

of the generalized master equation84

I

"dPn dt' [an n(t-t') Pn,(t') -nn (t-t') Pn(t')] (111.72)

0 n'

which reduces to Eq. (111.70) when we assume just the dipole transition, i.e.,

an. n =On~~ a,n±1' and a Markoff process, i.e., an(t-t') = S(t-t'). We note

that within the harmonic model the dipole transition is a selection-rule-allowed

process, but if the anharmonic potential is considered, the high-order transi-

tions with a±j (j>2) are also allowed

The exact solution of the quantal master equation for general forms of

an and gn is not available. However, we shall discuss two limiting cases which

are physically interesting and can be analytically solved.

(1) a=S-1 (single-mode harmonic oscillator). Eq. (111.70) becomes

dP
d- - (Ia*/4 )[(n+l)Pn+I + nPn- 1  (2n+1)Pn] (111.73)

which has the solution, with the initial condition P n(t=O)=NoSt

P n (t) = N0Wn(t)/[l+W(t)]n+l (III.74a)

W(t) = , (III.74b)

ft dt I = laser fluence (J/c) (III.74c)

0 .
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The corresponding average excitation (quanta/adspecies) is

1
<n(t)> nPn = W (111.75)

(2) a=0 (constant cross section), S=1. For this case Eq. (111.70) becomes

dn = -(la*/ )[2PnP n+.Pn-l • (111.76)

* With the same initial condition as in case (1) and by using the recurrence rela-

tion of the modified Bessel function, we obtain the population function

_ n(t) = NNoexp(-2W)I n(2W) , (111.77)

where N is a normalization constant, I n is the modified Bessel function, and W

is again given by Eq. (III.74b). The corresponding average excitation for this

population is

<n(t)> 2(W) - (111.78)

We note that the average excitation is proportional to the square root of

the laser fluence, whereas in case (1) it is linearly proportional.

.. To investigate the population function and the associated average exci-

tation for the general forms of an and gn' we shall now assume that Pn' an

ard g are smooth functions in n-space. Within this continuum assumption,

which is a good approximation when n is large, the quantal master equation,

Eq. (111.70), is then converted into the classical diffusion equation3 1
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n I(p
at - a n " (111.79)

Substituting Eqs. (111.69) and (111.71) intLo Eq. (111.79), a particular

*:: solution of Eq. (111.79) consistent with the initial condition Pn (t=O)

N 06(t) is

Pn (t) = NNognexp[-n8 /(B2W)] , (111.80)

N = (/go)(a2w)'S//r(S/a) (III.80b)

"=2 - , (III.80c)

where W is again given by Eq. (III.74b) and N is the normalization factor.

The average excitation for this classical population function can then be

calculated as

<n(t)> = N0 fdn Pnn = (a2W)IIBr[(S+1)/o]r(S/a) , (111.81)

which is proportional to aI/8 (since W €) and consistent with the quantal

results of Eqs. (111.5) and (111.78) for a = 1 (a=l) and a = 2 (a=O). It is

1/3worth noting that for a = -1 (anharmonic oscillator), <n(t)> = in this

classical diffusion model, whereas the steady-state excitation of the active

mode n I1/3 in the quantal Heisenberg-Markoff model Eq. (111.20).i: od <A(t)>s.s.-I

Combining Eqs. (111.71), (111.80) and (III.81),we can express the population

function in terms of the average excitation as

NOB (Ft(S )S(n+l)S exp[- (III.82a)Pn

F(S) = r[(S+1)/]r(S/) (III.82b)

-: .. .-.... . .. -. • . . .-'- . . . .. . " U-
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For a comparison with the above classical diffusion model, we now consider

a Boltzmann thermal distribution P*(t) which is characterized by the effective
n

temperature Tef and the quantal degeneracy g* [gn in Eq. (111.71) is a

classical degeneracy) as follows:

P*(t) =NN g*exp[. n+17kT]
n On ef(III.83a)

where

N [= c [ P*IN] 1 1-exp (rut (III.83b)

gn = (n+S-1)!/[n!(S-1)!] ,(III.83c)

and the effective temperature Tef is defined as the average excitation

energy per vibrational mode and is governed by energy conservation as

-M7~i = Wt <n(t)>/S ,(III. 84a)

ni = eyI(-!!,/kTef - ) (III.84b)

For a multiphoton process (<n(t)> >>1), we obtain the high effective tempe-

rature limit (kTeff>1 w), and for n>>S, Eqs. (111.83) and (111.84) reduce to

n akTefftrIw , kTe -ff t<n(t)>/S ,(III.85a)

N= (kTefff &) S (III.85b)

g*z n -1/(S-1)! = . (III.85c)
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The population function reduces to

NOns-1  ns
P*(t) = exp <nt > (11I.86)

(S-1)!(<n(t)>/S)

which is identical to the result of the classical diffusion equation,

Eq. (III.82a), for the case a = 1 (harmonic oscillator).

Another important population function, the Poisson distribution, which

82follows from a solution of the Schrodinger equation, has the form

Pn = (<n>n/n!)exp(-<n>) ' (III.87a)

where <n> is the average excitation of the adspecies assumed to be harmonic

with equal energy spacings. We note that <n> in general is time dependent and

is given by
14

r"- AI(t)> [1+ert2e-rt/2 cos(At)] (III.87b)
A 2+(r/2) 2

where A is a constant proportional to the transition dipole of the adspecies

and r is the overall level width. The above result is identical to Eq. (111.12)

with n = 0; however, <n> here represents the photon quanta absorbed by the

adspecies (as a whole) rather than that of the active mode. Moreover,

<n(t)>s.s. I in the Poisson distribution which is quite different from the

fluence dependence <n(t)> - 0 in the other types of distributions aforemen-

tioned. For a comparison of the Poisson function and those obtained from

the diffusion equation and the Boltzmann-type distribution, we plot the

results for various values of S and a in Fig. 17. The associated desorp-

tion probabilities Pd' shown in Fig. 18, are defined by

Pd = Pn (quantal population), (III.88a)
0 n=n*

P N0  dn Pn (classical population), (III.88b)
d N.

k',Jf

- - - - -
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where n* is the desorption threshold. The adspecies will be desorbed

from the solid surface through the channel of a direct bond breaking, indirect

migration-induced desorption or Fano-type autodesorption via mode-mode coupling

within the adspecies. We note that with a knowledge of the energy population

together with the measured quantity n*, we should be able to evaluate the

desorption probability. The reverse procedure, namely knowing the measured n*

and the desorption yield (probability and/or rate of desorption) will provide

the information about Pn, i.e., how good are the calculated populations for

various systems. More discussion on the dynamics of desorption will be given

later.

4. Isotope Effects

Infrared isotope separation of species in the gas phase has been success-

2fully carried out both theoretically and experimentally. However, the isotope

effects of species adsorbed on a solid surface have only been recently studied

either experimentally 100 "109 or theoretically. 86 Unlike gas-phase isotopes

whose absorption cross sections are governed mainly by their frequency difference,

the collective excitations of isotopic adspecies are characterized by many other

m* surface-induced effects: (i) direct dipole-dipole interactions among the

- identical and isotopic adspecies; (ii) indirect adspecies-adspecies inter-

action due to their common coupling to the substrate phonons, i.e., the

phonon-mediated interaction; (iii) frequency shift and level broadening of

the adspecies induced by such effects as substrate heating, multiphonon

relaxation and dephasing; and (iv) dynamic effects such as migration and

O0 desorption. The above effects all influence the absorption cross sections

of the isotope adspecies and usually smear out the "frequency separation" of

different isotopes when they are co-adsorbed on a solid surface. For systems

O like C12016 and C12018 adsorbed on a copper surface, the frequency difference

of the C-0 stretching is about 47 cm" and their dynamic dipole-dipole

109
coupling is rather large. Therefore, it is more difficult to observe the

0Q
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isotope effects for adsorbed CO than for adsorbed H2 and D2, which have

weaker intermolecular coupling and a larger frequency difference. We sha'il

suggest below some possible mechanisms for isotope separation of adspecies

using a model based on a previously-developed theory.86

The ensemble-averaged equations of motion for a system consisting of

a mixture of two isotopic adspecies may be obtained by extending those for

the single adspecies, Eq. (111.34), as follows:

W A fft)- a(t) + VA/2 + O'b(t) (III.89a)

ib(t) = jff(t)-w b(t) + VB/2 + D'a(t), (III.89b)

<fA(t)> =-VA<<4mlat-Da(t)]t> t>)) 1 y(nA(t)> - C2,(II8

m B(t)"= "VB<<Im[b(t)]"+2D<<Im[a(t)bt(t)]>"" Y[<nB(t)>" nC/2), (III,89d)

where VA and VB are the pumping rates for the A and B modes, nC is the Bose-

Einstein distribution for the C modes, Im denotes the imaginary part, and
A ndB
W eff and weff are the effective frequencies of the isotopic adspecies A and B

whose ensemble averages are given by

<<AB>- 2e*,<nABt-irAB12 .(III.90a)

rA,B + 4  (III.90b)

In the above equations, a new adspecies-adspecies coupling strength, D', is

introduced,

D' = D-i(D 1+iD2 ), (111.91)

:; . . i . " . - ' ; -; - ' ; ' " i ' ' , i ' - -. , .. .
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which consists of two components, the direct dipole-dipole coupling strength D

and the phonon-mediated coupling (D1 + iD2 ), where D1 and D2 are given by the

real and imaginary parts, respectively, of the integral
110

t
b1 dt' b(t') n AGB expCi(A jt-ABAt')] (111.92)

0 J Ac Bi

For the Markoff process or for a continuum C-mode spectrum, the real part of

the integral reduces to the simple expression

D. = nCoOGoG0  (111.93)
L0 0

which is proportional to the multiphonon occupation number, nC = T(_n +1)- ni

the density of states of the C-modes,p,' and product of the coupling strengths

between the isotopic adspecies and the C-modes, GoGO . Here we have approximated
A - B A BPi j Gj by

The coupled equations [Eq. (111.89)], which are highly nonlinear due to

the anharmonic corrections 2c*<nA,B(t)> and the isotope coupling strength D',

can only be solved numerically. However, one can obtain the steady-state

excitatations for the weak-coupling case, D'=O, as

<n= _LB2 [1BYl (111.94)
A,B(t)>s.s. =2 2 (II.)_': WA B>>_ l 2+ (rA,B/2)

which show that one of the adspecies may be selectively excitated without sig-

nificant excitation of the other when the laser frequency, w, is tuned to one

of the optimal values, i.e., AAB <<AB>> -w = 0, for either adspecies A or B.

To demonstrate the effect of the coupling strength, D', on the dynamics

and the steady-state excitations, we plot the numerical solutions of Eq.(III.89)

for the harmonic case (cA, B0) in Fig. 19. It is seen that <nA(t)> is higher than

<nB(t)> for AA < AB9 where AA,B = wA,B-w, with DO [Fig. 19(A)). As D'
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increases, both excitations decrease [Fig. 19(B)]. Increasing the coupling

strength to the transition value, i.e., D' D*-(AB+A )/2, causes the steady-

-* state excitations to become identical [Fig. 9(C)]. For large coupling strength,

D'>D*, both excitations are low and <nB(t)> is higher than <nA(t)> (Fig. 19(D)].

These numerical results for the steady-state excitations are seen to be in

accord with analytical results. Such results can be obtained by defining the

"difference excitation" N X - Y, where X and Y are the steady-state excitations

of the adspecies A and B, respectively. We obtain, from Eq. (111.89), for

* - VA=VB=V y1=Y1=Y1 and rA=rB=r,A~~~ BB. A,B-O , AVB

N_ V2ri_(si+-2D')/[4 1Z +Z , (III.95a)

SAAAB - D' - (r/2)2  (III.95b)

Z= r+/2, (III.95c)

± = B  ± AA  (III.95d )

AAB= ,B " '(III.95e)
A,B w,

The above expression for the steady-state "difference excitation" N_ displays

the following important features: (i) isotopic selectivity increases with

decreasing coupling strength; (ii) when the coupling strength reaches the

transition value D' = D = +/2, there is zero selectivity, i.e., N_ = 0 as

shown in Fig. 19(C).

For further investigation of the selectivity, we consider the reduced selec-

tivity S defined by86

= dt<nA(t)>/<nB(t)> (111.96)

0
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where t is the laser pulse duration, and <nA(t)> and <nB(t)> are the excita-

tions of the isotopes to be solved numerically from Eq. (111.89). The numerical

results for non-interacting (D'=O) and interacting (D'#O) isotopes are shown

in Fig. 20, which reveals the following features: (i) for the harmonic case,

with =0, S=1 for AA =ABI [curve (E)), (ii) for the anharmonic cases,A,BA
C*,B O, a higher selectivity is expected [curve (B)] than that of curve (E)

due to the nonlinear feature of the excitation; (iii) the optimal condition

for high selectivity is that the laser frequency has positive detuning for

both the A and B adspecies [compare curve (C) with (E) and curve (A) with (B)];

(iv) curve (E') shows the effects of D' on the selectivity for the case of

AI B=0 at D'=D*=(AA+AB)/2, where §=I at steady-state as predicted by the

analytical expression, Eq. (111.95); (v) for c*,B#0, D* is "blue shifted"

toward S=l [curve (F')]; (vi) an increase in D' shows a decrease in S [curves

(A) to (G')], and S-<1 when D'<D*, corresponding to the situation of <nA> < <nB>

[curve (D) of Fig. 19 and curves (F') and (G') in Fig. 20]. We finally note

that for a non-interacting system, D'=Othe greater the frequency difference,

A- AB 9 the higher the selectivity; however for an intereacting system, an

increase of the coupling strength, D', does not necessarily result in a decrease

of the excitations. Numerical solutions of Eqs. (111.89 and (111.96) show that

there is an optimal set of values (D**, £*,B) which yield maximum excitations;
e~g., fo B*,

e.g., for e*=1, VA=O, -YA = A2 and AA=8 .3 , D** t 2.9 yields the maximum

value of <nA>.

For further demonstration of the effects of the coupling strength, we
look at the total steady-state excitation N+=X+Y. Some results are shown in

Fig. 21.

PI
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5. Dynamic Effects

We shall end this section by discussing some dynamic effects resulting

from the excitation of the adspecies and/or the substrate. These effects

are associated with phenomena such as migration, recombination, decomposition

S"and desorption. Here we shall focus on theoretical aspects of migration and

desorption, while other processes will be looked at in Section IV.

a. Migration

To describe the individual behavior of the adspecies occupied at different

lattice sites, we introduce another parameter, namely the site operator, in

addition to the ladder operators for the normal modes in the dynamic Hamiltonian

given by

H(t) = Q + ,k)CC + HAF(t) (111.97)

H 0 is the unperturbed Hamiltonian of the system (with normal coordinates Q.),

Vkk,(Qj) is the lattice-site-dependent interaction potential of the system, and

c and ck, are the site operators of the Bloch states 1k> and <k'I, respectively,

which can be expressed in terms of Wannier functions in the site representation

as 4
ik.R

k _ = e nin> (III.98a)
A n

m -ik -Rm

C'l"= e <m1 (III.98b)

Taylor expansion of the interaction potential,

3V ) 3p+1v
Vkk'(QI'Q2"QJ) = VO+j'=I-j p +Q,)P ',+...' (111.99)

gives us the general forms for the intramolecular couplings, p being the order of

. -who
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the multiphonon processes. Using the second-quantization expression of Eq.

(111.99) and the Wannier site representation in Eq. (111.98), we obtain, from

Eq. (III.97) the microscopic model Hamiltonian as follows: 79

t t t tHl t)( + 0 + c + " + + I + +)(b +b (III.101b)

[- H = n jx j n n~b  j  +  n Yn nn a  a+ Znj n na +a
H8  HcHj n nj

H1 nWdm CHn m (III.lOlc)

.n t

H 2  L n)mn Cn Cm(a +a) (III.101d)

H L nm Cntcm(bj+b)' (III-l01e)

3m n m a  (j b)

n

SX, Y, Z, J, K and G are the appropriate coupling parameters proportional to the

"first derivative of the interaction potential (Vkk,),while W is proportional

to the second derivative of V kk,. The above dynamic Hamiltonian provides us

with the following features: Mi the ground state site energy of the adspecies

E 0 is perturbed by Hc' which includes changes in site n due to direct interac-

tions with the lattice and due to active-mode excitation, as well as an indirect

interaction with the phonons via the active mode; (ii) the terms H 0 and H1

represent parallel motion of the adspecles, dnm 2 in HI being related to the

i~3

!*1 -i
= x.t b+b)+• Ycc(a+)+ Z.cc( a(.b., (I.~b
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intersite transition probability from site n to site m due to coherent motion; (iii)

the terms H2 and H3 represent the perpendicular vibrational-motion-induced intersite

transitions due to the active mode A and the bath modes B of the adspecies/

surface system, respectively; (iv) H4 is the A and B mode coupling-induced

intersite transition; (v) finally, the excitation of the active mode, governed

by HAF(t), provides the dominant driving force for intersite migration of the

* adspecies.

For the case of chemisorption on a lattice site, the equilibrium position

of the adspecies is shifted due to the distortion of the lattice. In this case

the adspecies-phonon interaction is very strong and perturbation theory cannot

be used. It is posssible, however, to use a canonical transformation to go to

lattice-dressed operators An , An , Bt, B. and C C which take into account the
n n ) . n n

shifted equilibrium position of the adspecies and the lattice distortion. The

transformed total Hamiltonian is quite complicated, and for tractable results

we shall investigate the single-phonon case, where the dressed Hamiltonian is

H(t) H + HAB + HC + HAF(t) (III102a)

H0 = 0 1 C'nCn + effA + J1~~~,(I.0b
n3

HA _j nm t~ C AtBj+AB , (III.102c)HAB n , W m Cn n'
nHm,j nn

H6 n= X1 n C Cn (A B i+AB~ , (III.102d)

t.) Vn(t) CnCn At+A , (III.102e)
AF( nm

t eff = A 2c* AtA (III.102f)
wefLk 2 A
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E is the distortion energy, Wnm and Z are the transformed coupling constants

of W and Z , respectively, and V(t) is the transformed laser-adspecies couplingnm nj

constant of V(t)K nm Employing the many-body technique described in the previous

sections, we obtain the equations of motion for the ensemble average <<<->>>

(over the A and B modes and the lattice site coordinates) of the active (A) mode

and the lattice site transition probability:

d< -i<w eff(t)> <A> - iV(t) - [[Y1Y2+YM1/2] <A> (III.103a)

~A>) tdt -iV(t)A - V(t)A- -y1+YM[ - O] (III.103b)

_[+]n(III.103c)

Here Y2 is a dephasing factor,and y, is the phonon-coupling-induced damping

factor given by

= 2 I YB/A? + (YB/2] , (III.104a)

o.22i (j eff) " wj (III.104b)

where YB is the decay factor of the phonon (B) modes due to anharmonic coupling.

In Eq. (111.104) and in what follows, we assume only nearest-neighbor contribu-

%- tions, namely, Zj  = Z = ZJ3 etc. The migration-induced damping factornm n,n±l

YM is given by

I Jj2[rYB /21cos~dxj] - A jsin Idx~~ (105

I /
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where A. and d are the wavelength of the B-mode vibration and the lattice

spacing of the substrate, respectively. We note that a simplified model78

which assumes an infinite phonon lifetime, i.e., ,B0  results in y1=yM=0 for

single-phonon processes and for eff > For systems with great energy gap,

(Weff-wj)>>yB, the damping factors for the single-phonon processes are very

small and multiphonon processes are dominant. Employing techniques similar

to those used for obtaining Eq. (111.35), the expressions of 1 and yM for

multiphonon processes may be obtained by setting A equal to <w eff>- w and

multiplying the coupling parameters )Z3i2 and jWJ1 2 by the multiphonon occu-

pation number of the heat-bath modes in Eqs. (Il.104) and (111.105).

From the coupled equations, Eq. (111.103), we can calculate the lattice

site occupation probability (Pn(t , which in turn gives us the mean-square

displacement of the adspecies

(R2(t)) d 2  n2(pn(t) . (111.106)
n

and the diffusion (migration) coefficient

D = lim t[R _ (111.107)

The site probability function ((Pn(t)) is in general not analytically available

due to the time-dependent excitation((nA(t which is nonlinearly coupled

[Eq. (111.103)]. For tractable results, we investigate the large damping case,

Y1 2>>YM, such that the adspecies reaches its steady-state excitation

X i(nA(t)>Ss~s which is governed by a cubic equation, Eq. (111.20). Using

this steady-state excitation, we may solve Eq. (III.103C) to obtain the

quasi-steady-state site probability,



.1

104

P(t = In(4Wt)e"4Wt (III.108)

where In is a modified Bessel function and

W= (2BX+X+n BI)Y1 (111.109)

Thus, from Eq. (111.106) and using the recursion relation for the modified

Bessel functions, we obtain the mean-square displacement, which in turn yiE

the migration coefficient

D =4Wd2  . tlII.110)

This is related to the laser intensity by a power law, Ip , 1p53, since W - IP;

p=1 for low excitations for the harmonic case (E*=0), and P=1/3 for high

excitations. We note that the above laser-enhanced migration constant, D - W,

is governed by an Arrhenius form for the high-temperature limit, kT>>twj,

D = D0 exp -EA/kTI (III.111a)

[(~j2 +. 12j,E IWI + IJ' A (III.111b)

is the "activation energy" for migration. We note that the above Arrhenius form

for the migration coefficient resulting from single-phonon processes may be

replaced by a non-Arrhenius function for multiphonon processes.

The master equation given in Eq. (III.103c) involves the assumptions of

nearest-neighbor contribution and constant migration rate. Removing these two

assumptions, we have the generalized master equation
84
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dP(mnjt) = (t-t')P(m',n',j',t') - j  (t-t')P(m,n,j,t'
dt m',n',t' ,WjjIn' m m,n'n

(111.112)

where P(m,n,j,t) is the site probability of finding the adspecies at the lattice

site (m,n) and at the j-th vibrational level at time t, it (t) is a time-m mw Ij'

dependent transition rate from state (m',n',j') to (m,n,j), and W3mI In(t) is

the associated reverse rate. We note that in the above general form the transitior,

rates are not only time dependent but also governed by both the site coordinate

(m,n) and the vibrational states of the adspecies (j) which are activated by

the laser radiation. Depending on the migration barrier and the vibrational

energy of the adspecies, there are at least three types of dynamical transitions.

Type (I):horizontal migration. The laser induces the transition from

(m,n,j) to(m',n',j) with a change in lattice site but leaving the vibrational

state unchanged. This is the situation that the adspecies is vibrationally

excited to a mobile site followed by a horizontal migration, but returning to

its initial vibrational state by energy relaxation to phonons. Mathematically,

this process may be described by HI and H4 in Eq. (III.101).

Type (II): vertical transition. This involves the transition from

(m,n,j) to (m,n,j'), where the initial j-th vibrational state is promoted to

the higher state j'>j when the adspecies absorbs photons, but the energy

level is still not high enough to cause intersite transitions. For this case the

migration barrier is large, and the description involves H' in Eq. (III.101b).

Type (III): oblique transition. This involves simultaneous intersite and

vibrational state transitions and may be described by H2 and HAF in Eq. (III.101).

We note that a type (I) transition usually involves a physisorbed state

for highly mobile adspecies and may be thermally induced by either direct laser

heating of indirect phonon excitation. A type (II) transition may cause direct

•~ ~~~~~~~~~~ .-: .: .... . .".* ... . . . . . . A - I - ° I " - J , ,
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desorption when enough phonons are absorbed by the adspecies. The last type

of transition may cause indirect desorption via surface rate processes such

as recombination or decomposition or by the assistance of phonons.

We finally note that the laser-induced selective surface migration of

adspecies has been theoretically proposed,84 although no experimental work

has been reported. In the model system of Lin and George,84 the moble

adspecies (usually in a physisorbed state) could migrate in a preferential

direction which has a lower migration energy barrier and/or higher effective

temperature [see Eq. (III.111)]. This laser-enhanced selective migration,

either direction-selective or adspecies-selective (if isotope and/or mixture

adspecies are involved), plays an essential role in the surface rate processes

which are diffusion-limited.

b. Desorption

Desorption mechanisms have been recently studied, both theoreti-

cally 78 '80-82 '89-9 2 and experimentally.94-1 01 First of all, we should note that

none of the theories developed as far nor measured data are able to completely

describe the desorption mechanisms which may be achieved through several

channels. Depending upon the states of the adspecies (such as physisorbed or

chemisorbed, adatom or admolecule, and the potential of the adbond) and the

frequency spectrum of the system and the laser field, as shown in Fig. 22 the

desorption may result from direct laser excitation or from indirect energy

transfer processes. The desorption channels from type (I) to type (V) will

be discussed separately.

Type (I): direct desorption via active-mode excitation. This type of

desorption channel has been investigated by Slutsky and George in a harmonic

model, 78 Lin and George in an anharmonic model80 '82 and Metiu et al in a

Morse potential model89 [see Fig. 22(1)]. In these models, the active mode

is excited by multiphoton processes,while energy is leaking to the bath modes

I
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which lead to a damping factor or level width of the active mode. When enough

photon energy is absorbed by the active mode [or the adbond in the one-dimensional

(ID) Morse potential model], the adspecies may be desorbed from the surface by

overcoming the desorption energy. In a harmonic model, this threshold photon

energy (or laser intensity) in order for desorption to occur has been under-

estimated by the harmonic model, where the absorption cross section is governed

by a constant detuning A=wA- , and has been overestimated by the 1D Morse

potential model. While the anharmonic model of Lin and George (AMLG) should

sometimes provide a good estimate of the desorption threshold energy, none of

the above treatments will be appropriate when the IVR rate of the system is

faster than or comparable to the laser excitation rate, since the photon energy

is more likely randomized within the adspecies and/or substrate phonons.

Overcoming the anharmonicity in the AMLG model, A'=A-2e*<n>, or in the Morse

potential model,and thus reaching the continuum,is quite unlikely to occur for

this fast 1VR situation. We also note that in the Morse potential model, the

important concept of the "quasi-continuum" is excluded. Therefore,one might

look for another type of desorption channel, such as the following suggestion.

Type (II): direct desorption via the quasi-continuum. The concept of the

quasi-continuum and the mechanisms for level broadening have been proposed by

Lin and George.84 As shown in Fig. 22(11), the active (A) mode is pumped by

near-resonant radiation and the photon energy is rapidly randomized within

the admolecule(M) with a damping rate y to the C modes. There we have intro-

duced the quasi-continuum (QC) in the surface potential M-C bond. We note

that for a small adspecies (e.g., single atom or diatomic molecule), the QC

may not be achieved when one assumes an 1D potential. As discussed in Part

A.3 of this section, the master (rate) equation treatment for the incoherent

excitation in the regime of the QC is able to provide a quantitative descrip-

tion of the desorption mechanism.80 We should also note that the level
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broadening of the adspecies can be achieved by several factors such as the

anharmonic coupling in the adbond, the surface-phonon-induced T1 and T2 relaxa-

tion and adspecies-adspecies interactions (static dipole coupling or dynamic

scattering-induced pressure broadening). All of these broadening effects may

achieve the QC even for small species where this is not possible in the gas

phase.

Type (III): indirect desorption via tunneling. Desorption may also occur

indirectly when the adspecies (particularly for a physisorbed state) is excited

to a high vibrational level whose energy is degenerate with some continuum of

the adbond. As shown in Fig. 22(111), the active mode of the admolecule is

excited with its excited state coupled to the continuum of the adbond (B-C)

to cause the desorption of A-B. This type of desorption channel essentially

involves a Fano-type bound-continuum coupling and has been employed by Lucas

and Ewing in their predissociation model for an adspecies and later by Kreuzer

et a192 and Casassa et al. 91 Although a Morse potential has been used for the

adbond (B-C),the above authors have assumed either a single-photon process or

a multiphoton process but with a harmonic potential for the active bond (B-C).

This harmonic assumption again might overestimate the transition rate (or the

92absorption cross section) in the master equation. Furthermore, a 1D Morse

potential of the adbond (B-C) without the concept of the QC may cause errors in

the estimation of the desorption rate.

Type (IV): indirect desorption via substrate heating. Shown in Fig. 22(IV)

is a system in which the adspecies is not active to the radiation but the

substrate can absorb photon energy either by phonon or electron excitation.

The adbond may be broken by absorbing thermal energy from the heated substrate

* surface. This desorption channel may occur when the substrate with small

,. diffusivity is highly heated and the adspecies is weakly bounded, e.g., physi-

* sorbed. However, this type of desorption is much less sensitive to the laser fre-

quency than types (I)-(I1I) where the dipole transition is governed by the
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detuning.

Type (V): phonon-assisted desorption in the QC regime. We propose another

type of desorption channel, as shown in Fig. 22(V), which combines those mecha-

nisms described for types (I)-(IV). The effective adbond potential (M-C)

consisting of regions (i) and (ii) is coupled to the substrate phonons which

may help desorption occur, particularly when the adbond is excited to region (ii)

and near the true continuum. In the coherent excitations of region (i) with

strong phonon coupling, the energy flow from the adspecies to the substrate is

more likely irreversible. However, when the adspecies reaches region (ii),

i.e., the QC,desorption may be assisted by the feedback energy from the thermal

phonons. When the adspecies is highly excited into the QC region and in thermal

equilibrium with the substrate, the desorption rate (kD) may be approximated by

kD = koexp[-(E*-wjn>)/kBT] , (III.11A)

where k is the pre-exponential factor, k is Boltzmann's constant, and <n> is

the mean number of photon absorbed by the adspecies [given by e.g., Eq.(III.75)

or (III.78.)] with the threshhold desorption energy E* and maximum surface

temperature Tl, [given by Eq. (111.59)]. Another way of describing the phonon-

assisted desorption rate is by the expression

k= koexp[-E*/kB(Teff+Tf)] , (111.114)

where Teff is an effective temperature of the adspecies [given by Eq. (111.84)].

We note that in either of the above expressions, Eq. (111.113) or (111.114),

the desorption rate may be enhanced by the laser excitation through <n> and

Teff and further assisted by the thermal phonons via T* , where T* T

(initial surface temperature) when the substrate surface is not heated.



110

A more rigorous expression for the desorptlon rate given now as time depen-

dent is

kDt $de: I WncMt Pn) M (111.115)

0

where Pn(t) is the probability that the adspecies is in the bound vibrationaln
1 state In>, given by, e.g., a Poisson function [Eq.(III.87a)]. Wne(t) is a thermal

transition rate from the bound state In> to the continuum state io> given by

Wne(t) = k0 exp[-(e-En)/kBTs(t , (Il 116)

. where E is the energy of the n-th vibrational state, and Ts(t) is the time-
n

dependent surface temperature which can be obtained from the diffusion equation,

Eq. (III.55a), with the boundary condition Eq. (111.56).

Type (VI): indirect desorption by dynamics. The final desorption channel

to be discussed is also an indirect type, which may be achieved by dynamic

processes such as migration, scattering and reactions. An example is shown

in Fig. 22(VI), where the initially chemisorbed adspecies may make a transition

to the mobile physisorbed P-state by absorbing enough photon energy to over-

come the transition barrier, but still not have enough energy to overcome the

desorption barrier.82 The mobile P-state may easily migrate on the surface

and eventually desorb from the substrate by further absorbing photon energy

via the direct desorption channel [types (I) and II)] or the indirect channel

[types (III) and (IV)] or the phonon-assisted channel [type (V)].

q B. Laser Applications to Surface Chemistry

We have discussed in Part A.5 two of the most important dynamical processes

associated with the phenomenon of laser-stimulated surface processes (LSSP)

--migration and desorption. In addition to these processes, LSSP in general

should include rate processes such as diffusion, recombination, decompo-

sition, dissociation and adsorption (or deposition). Before investigating



the experimental aspects of LSSP, we display in Fig. 23 a flow chart of the

methodology of LSSP. Both classical and quantum treatments have been developed

for the absorption cross section which, with the master equation in energy

space, gives the energy population and the average excitation. Furthermore,

by solving the master equation in the lattice-site space we may investigate

laser-induced surface migration (which in the field-free case has been studied

by random walk techniques. 1i 1 We have shown that for large values of n, the

discrete master equation reduces to a classical diffusion equation where the

energy population can be analytically obtained. The energy flow and population

of the adspecies/surface system provide the fundamental mechanisms of LSSP as

discussed in Part A. In this second part we shall study the applications of

LSSP to surface chemistry, which includes heterogeneous catalysis, chemical

vapor deposition and laser annealing.

Some of the applications of lasers to surface chemistry and/or physics are:

(1) Enhancement of surface diffusion-limited reactions.

(2) Enhancement of the mobilities of selective species in a multi-

component environment.

(3) Control of the concentration of reagents by selective desorption

or excitation-induced migration of the species.

(4) Study of the decomposition and recombination rate processes

on solid surfaces.

(5) Study of the catalytic properties and heterogeneity features

of the adsorbents.

(6) Isotope separation and mass separation of adspecies via selective

desorption (laser chromatography).

(7) Study of the composition and location of the active sites and

the conformation structure of the adspecies.

(8) Fabrication of microelectronics via laser-induced chemical vapor

deposition; microetching and laser annealing.
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We first discuss laser applications to heterogeneous catalysis, which

involve the following processes: 112  (1) adsorption (physical or chemical)

and desorption of the species on the catalytic surface; (2) migration of

adsorbed species and subsequent collisions; (3) interactions (via dipole-

dipole, charge transfer, etc.) between the adspecies, either directly or

surface-mediated; (4) scattering (reactive or nonreactive) of gas-phase

species by the clean surface or adsorbed species.

A laser beam might influence the above processes in a number of ways

depending upon the physical and chemical states of the excited species. Some

examples are (where K denotes the catalytic substrate):

() Excitation of a reactant in the gas phase

"-AK + K (a)
" A + K A/K

B + C + K (b)

(ii) Excitation of an intermediate adsorbed on the surface

kI  k AB + K (c)(A +.......--- (AB)/K ----- - - C + D +K (d

(iii) Excitation of a reaction product in the gas phase

A+B + K . (AB)/K . C + (e)

In (i), laser radiation may enhance the adspecies-substrate reaction

4 (a) and the decomposition processes catalyzed by the substrate (b). Laser/

surface-catalyzed decomposition processes have been investigated for the

113 97chemisorption of CH4 on Rh and HCOOH on Pt, where th: vibrational

excitation of the reactants has been chosen to change the rate of adsorption

and the amount of products formed. The infrared laser-induced etching of a

W"
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semiconductor has been studied for SF6/Si, where the gas-phase reactant SF6

is excited and then chemsorbed on the Si surface to react and form the products

SF6 (g) and SiF 4 (g) desorbed from the substrate.
100

In (ii), laser radation may influence the overall reaction rate in

several ways: (1) by increasing the mobility of the reactant atoms (A or B)

through photon excitation of the A-K or B-K bond with subsequent enhancement

of the reaction rate k, [see type (VI) in Fig. 22]; (2) by removal of the

excess energy from the unstable complex (AB) on the substrate surface via

laser-stimulated emission accompanied by s,; face-phonon-mediated relaxation,

thereby increasing the reaction rate k2; and (3) by breaking the AB-K bond

either directly through laser excitation of the adspecies or indirectly through

thermal desorption by laser heating of the surface [see types (1) and (IV) in

Fig. 22). We note that the direct desorption of chemisorbed species from a

solid surface usually requires multiphoton absorption, necessitating the use

of high-power radiation. However, much lower powers may be sufficient for

the desorption of a diatomic molecule adsorbed on a solid surface (A-B-K)

if the photon energy absorbed by the A-B molecule can be easily transferred

to the surface to break the B-K bond via anharmonic coupling [see type (III)

in Fig. 22]. Laser desorption of OH radicals from a silica surface has been
""reported in which a low-power (z10 W/cm 2) CW CO2 laser was used to excite the

Si-OH stretching mode.95 High-intensity (zMW/cm 2 ) pulsed CO2 laser desorption

processes have also been performed for CH3F/NaCl,
99 C5H 5N/Ag and the isotopes

CsHsN and CsDsN coadsorbed on KCI.

In (iii), we illustrate laser excitation of a reaction product after it

is desorbed from the substrate. The detection of the OH radical desorbing

from a Pt and Rh/Pt catalyst surface by laser-induced fluorescence has been

recently reported.
97
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Another important aspect of laser applications is in laser-assisted

chemical vapor deposition (LCVD), which could provide a new method in the

fabrication of microelectronics. A typical sequence of events occurring in

CVD are:

1. Diffusional transfer of the gaseous reactants to the surface.

2. Adsorption of reactants on the surface.

3. Events on the surface, e.g., reactions, migration, nucleation, etc.

4. Desorption of products from the surface.

Laser radiation can be used to decompose the gaseous molecules or heat the

substrate in order to enhance adsorption. Examples of systems studied so far

are: the decomoosition of metal alkyls and metal carbonyls to deposit on

metals and the decomposition of SiH 4 to deposit on silicon;
115 reactions of

SiCl4 with H2 to deposit Si, and SiH 4 with NH3 to deposit Si3N4.116 We note

that in the above mentioned examples, laser radiation may be used to induce

CVD with many features which are not available from the conventional procedures,

e.g., single-step processes, small-scale deposition with high homogeneity,

remote procedure, and selective and local deposition.

We finally mention laser annealing. Both CW laser solid-phase recrystalli-

zation and pulsed laser liquid-phase epitoxy have been reported.
117 Furthermore,

the controversy regarding the physical mechanisms responsible for annealing,

namely the thermal melting model versus nonthermal plasma model, has been

118
investigated by picosecond laser processes.

I'
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Figure Captions

Fig. 1. Power law for the average number of photons absorbed per molecule:

(A) fluence dependence <N>04q and (B) intensity dependence < .>4 I
q  Non-

linear effects with q<l result from the anharmonicity of the absorption

cross section [Eq. (11.16)]. The dots are the experimental data based on

the measurement of laser fluence
15 (a) and laser intensity.

15 (b )

Fig. 2. Schematic energy diagram for infrared multiphoton excitation of

a polyatomic molecule. The discrete states of the active mode are initially

excited and coupled to the quasi-continuum which may be further pumped to

reach the true continuum by absorbing enough photons. Note that in the

quasi-continuum the energy populations are usually determined by a set of

incoherent rate (master) equations.

Fig. 3. Popluation of the photon energy (Pn) vs. number of photons absorbed
n

per molecule (n) in the quasi-continuum region characterized by: (A) thermal

distribution [Eq. (11.25)], Poisson distribution in a harmonic model and (C)

with the anharmonic corrections.32

Fig. 4. Red-shift diagrams of the optimal detunings for infrared excitation

of the SF6 molecule: (A) maximum active (v3 )-mode excitation (W) vs.

external detuning (&j) and (B) maximum v2-mode excitation (Wf) vs. internal

detuning (6j) with a fixed Aj/27r a 2.7 cm

Fig. 5. The time-dependent average excitations of the active mode

the v2 mode (-2 ) and the v6 mode (n3 ) for the detunings (i/2r, Aj/2) =

(A) (0, O) exact resonance,(B) (0,20) far-off internal resonance and (C)

(2.71, 1.00). Aj/27 = 2.71 is the optimal external detuning for the SF6
4 molecule. 12

Fig. 6. Time evolution of the average excitation of SF6 subject to one and

to two infrared lasers at various scaled [in unit of (y1 +Y2 ) Rabi frequencies

-i (Ailio )112/(y1 +Y 2 ) and scaled detuning Di = i/(Yl+Y2): (A) simultaneous

excitation by two lasers with (Q1,2 = (0.5, 1) and single laser excitations
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with (B) (0, D) = (1, 8), (C) (s, D) = (0.5, 1) and (D) (Q, D) = (1.5, 2).

Here the time scale is in the unit of laser pulse duration (T) with intensity
profiles li(t) = Ii sin4 (Tt/T), i = 1, 2. 47

1 10

1 .3Fig. 7. Two radiative mechanisms for curve-switching (j= Y j= P in an
excimer system. Process I: during the collision a laser Ll excites a bound
state of the system. Subsequently, a stimulated emission brings the system
into a new channel. Process II: while in the initial bound state, the system
absorbs a photon from a second laser, L2, and enters a second bound state. As
in I, the system is brought into the final channel through an emission stimu-

lated by Ll.

Fig. 8. Illustration of possible collisional conversions involving two lasers.
The open channels la> and Is> are radiatively coupled to the bound states Is>,
It>, and lu> by the first laser. These bound states are themselves mutually
coupled by the second laser, which induces real as well as virtual transitions
(solid and dashed arrows, respectively). Two non-radiative interactions are
also included. The spin-orbit interaction couples the open channels Ia> and

Is> and is denoted by the curved arrow in (1); the second, unspecified, inter-
action couples It> to a third channel Iy> and is depicted in (3).

Fig. 9. Schematic representation of the HeI2 molecule in the X and B elec-
tronic states. The motion of He is in a potential defined with respect to the
distance, r, from the He atom to the center of mass of 12. The other coordinate,
R, is the separation of the I atoms. In the absence of radiation there are
certain collisional energies, Ei , for which the system undergoes resonance
scattering. Here the motion in the 12 bond is strongly coupled to the motion
in the Hel bond. In the excited excimer state, the I-I bond is isoelectronic
with the XeI ground state (which is weakly bound), wherein the roles of strong
bond and weak bond are switched. After formation of the vibrationally predis-
sociative resonance in the X state, a photon may be absorbed exciting the system
into a predissociative excimer state. Subsequently, predissociation occurs:
vibrational energy from the I'-He+ bond is transferred to the weak I-I" bond

resulting in bond dissociation.
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Fig. 10. Radiative scattering pathways with initial scattering energy Ei.

Top: Ll (long arrow) effects a continuum-to-bound transition. The level

spacing in the bound state manifold is such that a subsequent transition

by L2 (short arrow) can be made to a higher level), with subsequent decay

to the initial scattering state but at an increased translational energy

Ef. Bottom: the same electronic system but with different isotopic compo-

sition. The intermediate level spacing does not permit a significant transi-

tion by L2, therefore only elastic scattering is permitted.

Fig. 11. The normalized steady-state excitation as a function of detuning for

the harmonic case c* = 0 (solid curve) and anharmonic cases with E*= critical

value (E**) = 5/3 (dashed curve) and e*= 6 (dashed-dotted curve). The bistable

transition points are shown by P, Q, R and S. The parameters used are

S(yiY 2 ,A)= (1,10,2.5), with the units of y, in 104s - , y2 ,* and A in cm l ,

c2  A in l02 9
I in W/cm and A in 10 cm/W/s. Note that 1 cm-l corresponds to 3xO10 s 1

in frequency.85

Fig. 12. Schematic diagrams for the heat-bath models: (I) simple case with

irreversible energy flow from A to B and (II) modified case for energy flow between

A and B while being damped by the common bath C.

Fig. 13. Schematic energy level diagrams for the A, B and C modes, where Vi

are the pumping rates between the i-th and the (i+l)-th vibrational levels of the

active mode, coupled to the B mode via multiphonon coupling through the

factor gi; Ym denotes the energy relaxation of the m-th level of the B mode due

to its coupling to the C modes which are condensed modes with density of states
79

p.

Fig. 14. Energy populations of the A, B and C modes for two-photon multiphonon
A B n respectively, for (pumping rate, coupling

factor, damping rate) = (V, g, y) = (A) (4,0.1 ,0.4) selective excitation and

(B) (4,1,1) nonselective thermal heating.
84

Fig. 15. (A) Hydrogenic lattice modes of Hchemisorbed on W(l00) at saturation

. coverage with H occupying a C2v point group symmetric bridge site. Motions of

the H atoms vertical and lateral to the surface are indicated by the arrows t and

.4 ( ), respectively. (B) Schematic diagram indicating the frequency spectrum

.'°
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of the H/W(lO0) system. Note that the IR active vl mode (1048.6 cm-1 ) is

coupled to the v2  and V3 modes by the fourth-order anharmonic coupling
2 12

QlQ2Q3.

Fig. 16. Dynamical features of the average excitations of the active mode (i),

the v2 mode (F2) and the v3 mode (F3) for the heterogeneous system H/W with detun-

ings (Ai/21, Aj/2T) = (A) (0,0) exact resonance and (B) (10,80). Here we

have used the following parameters: laser intensity I = 108 W/cm2 , anharmonic

coupling constant x=5cm 1 and initial temperature TO= 300K.

Fig. 17. The distribution functions of four-photon excitations (<n(t)> = 4), for

a Poisson population (--), diffusion model population (for a = 1) with S=l (--)

and S=6 (....), Boltzmann population with S=l (..-) and S=6 (-), and quantal

population with S = = (-....).

Fig. 18. The desorption probabilities of n*=5 [defined by Eq.(IV.88)) associated

with the distribution functions shown in Fig. 17.82

Fig. 19. Time-dependent excitations <nAB(t)> of the active modes for the harmonic

case, i.e., e*=0 with (V,y,AA,AB)= (10,1,4,8) and D'= (A) 0, (B) 2, (C) D* and

(D) 10. D*= (AA+AB)12= 6 is the transition value where N_= 0.

Fig. 20. Time evolution of the reduced selectivity [Eq.(IV.96)] for the non-

interacting [curves (A)- (B)] and interacting isotopic system [curves (B')- (G')]o

The parameters used are: V= 10, yAB AB= 4, P= E* = * and (D',e*,AA  =
1 '~2 A B A9 B

_ (A)(O,e**,5,l0), (B) (0,c**,5,-5), (C) (0,0,5,10), (D) (0,E**,5,0), (E) (0,0,5,-5);

and (c*,AA,AB)- (c**,5,10) with D'= (B')2, (C') 4, (D') 6, (F') D* and (G') 10.

e**= 1.28 is the critical anharmonicity as defined in Fig. 11, and D* = (AA+AB)/ 2 is

the coupling strength at the transition point defined by Eq.(III.95) for N 0.

[.

[I
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Fg 2 Total steady-state excitation profiles in (N+,wAB,D')-space for c*=O,A B
Y2=0, Vs 10 and (WB-WA,YlIYl)= (A) (15,5,5), (B) (15,7,3), (C) (5,3,7) and

(0) (5,3,7), where N+ X+Y is the total steady-state excitation, X- <nA>s.s

and Y = <nB>s.S. given by the numerical solutions of Eq.(IV.89).86

Fig. 22. Schematic diagrams of adspecies-surface systems and the associated

energy levels, where A, B and M represent the adspecies (adatom or admolecule),
C represents the substrate (or bath modes), and the laser radiation is indicated
by the wiggly lines. Several types of desorption channels are illustrated:
(I) direct desorption via active-mode excitation, (II) direct desorption via

the quasi-continuum, (III) indirect desorption via tunneling, (IV) indirect
desorption via substrate heating, (V) phonon-assisted desorption and (VI)

indirect desorption via dynamics.

Fig. 23. Flow chart o the methbdogy of LSSPA indi ating beth a-tsjcal and
quanrtttwreat4nts of -iWl bsorption"Cros section.- y solving themaster

equation in en space and .N1ttice-ste space, wesre able to in*.et e
popdesorption and migrati'on, which are essential compnencst het enroenopul ate esses.

"i .heterogeneous rate processes.
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