
; D-A±34 .7. EDGE DISPLAY .SPANNING TREES AiND RECOVERY IN DATA 1/3
COMMUNICATION NETWORKS(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR INFORMATION AND D- J A ROSKIND

UNCLASSIFIED OCT 83 LIDS TH-1i332 N8014-75-C-iI83 F/G 17/2 N

ImEEEEommhmomiI
smEEEEohhohhE

,- . .

1. I§ 1- 1-
Wo0

kg 11.

1.25 LA

MICOCPY ESLUTONTES CA3
NAINLBUEUO SADRS-16-

OCTOBER, 1983 UDS-TH-1332

Research Supported By:

Defee Aduced Re bProjects ,Age,
Contract O, NR/N0014-75-C1183

Edge Display Spanning Trees and Recovery

in Data Communication Networks

James Anthony Roskind

2'~s e--~ -- approved
A sae;, its

,s

Lab rtorY for Information and Decision SystemsQ .
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

83 11 03 005

October 1983 LIDS-TH-1332

0

EDGE DISPLAY SPANNING TREES AND

RECOVERY IN DATA COMMUNICATION NETWORKS

by

James Anthony Roskind

This report is based on the unaltered thesis of James Anthony Roskind,
4submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at the Massachusetts Institute of Technology Lab-
oratory for Information and Decision Systems with partial support pro-
vided by the Defense Advanced Research Projects Agency under contract
No. ONR/N00014-7S-C-1183.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

- 9 -. >- -

Encl (I)

SIECURITY CLASSIFICATION OF THIS5 PAGE (fUs @ MI. eNIM ________________

REPORT DOCUMENTATION PAGE READ________________

1. REORT UMOE ~ RCIPIENT'S CATALOG NUMBER

4. TITLE (and Subte) 8. TYPE Of REPORT & PERIOD COVERED

Thsi

EDGE DISJOINT SPANNING TREES AND FAILURE Tei
RECOVERY IN DATA COMM4UNICATION NETWORKS S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 8. COTATO RANT NUIER(S)

ARPA Order No. 304S5-7-7S
James Anthony Roskind ONR/N00014-75-C-1183

6. PERFORMING ORGANIZATION NAMIE AND ADDRESS 14. PROGRAM ELEMENT. PROJECT, TASKC

Massachusetts Institute of Technology AREA &WORKC UNIT NUMBERS

Laboratory for Information and Decision Systems Program Code No. ST10
Cambridge, Massachusetts 02139 ONR Identifying No. 049-383

ll. CONTROLLING OFFICE NAME ANC ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency October 1983
1400 Wilson Boulevard 13. NUMBER OFPAGES

Arlington, Virginia 22209 242
* I& MONITORING AGENCY MNM 6 ADDREWS(I diff.,een ktm CsmWIiad Offl.) IL. SECURITY CLASS. (at MEle re..e)

Office of Naval Research UINCLASSI FIED
Information Systems Program ______________

Code 437 aS. OEC1,.ASSIFICAT1ON/OWNGRtADING

Arlington, Virginia 22217 SNDL
14. DISTRIBUTION STATEMENT (of this Repat)

Approved for public release: distribution unlimited

17. DISTRIBUTION ST ATEMENT (sI the abstract nitetediBlac DIl2.ifdliedfts heGRPeW

Is. SUPPLEMENTARY NOTES

* ~is. IKY WORDS (C.Uth. an reverse aid. it a0400ony OWd Ideify by boo"b smembee)

20. ACSTRACT (Ceastle an reve eld. it n"Osay died idmnti* by Nio" mumbW)
In this thesis we discuss a variety of ways in which information about

topological changes (failures and restorations of links of a network) can be
dismissed to the nodes of a packet switching network. Nodes need this infor-
mation as soon as possible, if they are to avoid wasting the communications
resources of the network by misrouting of packets. At the time of a failure we
therefore view communications resources to be at a premium. We demonstrate how
the use of precoinputed (before the failures) structures can aid in providing

'.9swift and communications effficient methods of achieving the necessary notificati ns.,

D I :2 1473 EDim-ON OF I Nov 65 is OUsoLEIK

S/N 002. F. 04. 601 SCURITY CLASS11FICATION OF THIS5 PAGE (WI... 0410 8014*00

* - UNCLASSIFIED

SXCUiTIV CLASIIrCATION Of THIS PA4l (3h 00 Sb

20. (Continued)
One example of such a precomputed structure is a set of k edge disjoint span-

ning tree. One major result of this thesis is a new and computationally efficient
.T method for finding such spanning trees (O(knkn) time to find k edge-disjoint span-

ning trees in a network with n nodes). We also describe directions which might
reduce this time complexity further.

Inherent in any data communication network are variable communications delays
and failures of the communication channels. These two factors combine to make
the task of having all nodes route packets in a consistent way impossible in a
rapidly changing network, as no node can know what is occurring in a distant part
of the network. When the rate of change in the network topology (re: failures
and restorals) is slow enough, the task of synchronizing the nodes is complex but

. achievable. The second major result that we provide is a way in which precomputed
. edge disjoint trees can be used by a distributed algorithm to effectively

synchronize the nodes so that they use the same topology as a basis for routing.

.E

4.

-4

-'°t2...IJdO

"CNI LSIC1O P~45POt~ ae£trE

Edge Disjoint Spanning Trees and

Failure Recovery in Data

Communication Networks

by

JAMES ANTHONY ROSKIND

Submitted to the Department of Electrical Engineering and
Computer Science on September 12, 1983 in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy in

Electrical Engineering and Computer Science

., ABSTRACT

In this thesis we discuss a variety of ways in which

information about topological changes (failures and
restorations of links of a network) can be disseminated to the
nodes of a packet switching network. Nodes need this

*information as soon as possible, if they ar to avoid wasting
the communications resources of the network by misrouting of
packets. At the time of a failure we therefore view
communications resources to be at a premium. We demonstrate
how the use of precomputed (before the failures) structures
can aid in providing swift and communications efficient
methods of achieving the necessary notifications*

One example of such a recomputed structure is a set of k edge
disjoint spanning tree. One major result of this thesis is a
new and computationally efficient method for finding such
spanning trees (O(knkn) time to find k edge-disjoint spanning
trees in a network with n nodes). We also describe
directions which might reduce this time complexity further.

Inherent in any data communication etwork are variable
communications delays and failures f the communication
channels. These two factors no to make the task of
having all nodes rout s in a consistent way impossible

in a rapidly c ing network, as no node can know what is
occurring in distant part of the network. When the rate of
change in t e network topology (re: failures and restorals) is
slow enoug the task of synchronizing the nodes is complex but
achievable. The second major result that we provide is a way in
which precomputed edge disjoint trees can be used by a
distributed algorithm to effectively synchronize the nodes so
that they use the same topology as a basis for routing.

Thesis Supervisor: Dr. Robert G. Gallager

.- Title: Professor of Electrical Engineering and Computer Science

- 1

Edge Disjoint Spanning Trees and

Failure Recovery in Data

Communication Networks

by

James Anthony Roskind

98B.,, S.M. Massachusetts Institute of Technology
(1980)

Submitted to the Department of
Electrical Engineering and Computer Science

*in Partial Fulfillment of the
Requirements of the

*i Degree of

DOCTOR OF PHILOSOPHY

*41 at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1983

c James A. Roskind 1983

The author hereby grants to M.I.T. permission to
reproduce and to distribute copies of this thesis
document in whole or in part.

Signature of Author ---------------------
Department of Electrical Engineering and

Computer Science September 9, 1983

Certified by----------
Professor Robert G. Gallager

Department of Electrical Engineering
and Computer Science

Approved by,
Chairman Arthur C. Smith

Department of Electrical Engineering
and Computer Science

~2

The completion of this thesis required a great deal of effort

on my part, and the part of many others. I would like to take

this moment to express my gratitude to:

My mother, Una Roskind, and father, David Roskind Jr.. who

taught me how to think, question and search 'or answers.

My advisor. Professor Robert Gallager, for his patient guidance

through this adventure.

My readers. Professor Piorre Humblet and Professor Thomas

Magnanti, for their swift editorial responses to my drafts of

this thesis.

The John and Fannie Hertz Foundation for its immense financial

support.

Ms. Peggy Matthews for the swift production of the

illustrations in this thesis, and her assistance in

laying out the final copy.

Mr. John Withrow for the many nontechnical discussions that

made continued effort on this thesis much more pleasant.

IBM for their donation of a Personal Computer that I was

allowed to use to prepare the final draft of this thesis.

(IBM/AGMT DTD 3/3/8).

DARPA for partial support for this work under contract.

ONR/NO0014-75C-1183.

I
°

. ".

31

Table of Contents
-I

Chapter 1- INTRODUCTION 6

EXISTING NETWORKS 10

PERFORMANCE OF RECOVERY ALGORITHMS 12

DETOURS 13

SPANNING TREES 16

Chapter 2- DIRECTED NETWORKS 20

RELATING DIRECTED NETWORKS TO UNDIRECTED NETWORKS 31

UNDIRECTED NETWORKS 34

Chapter 3- FINDING MULTIPLE EDGE DISJOINT SPANNING TREES

IN UNDIRECTED NETWORKS 38

PERTURBING EXISTING TREES 38

AUGMENTING EXISTING SUBTREES 46

WHY IT WORKS 50

IMPLEMENTING THE INDEPENDENCE TEST 58

SET UNION FUNCTIONS 64

ARE TWO NODES IN THE SAME TREE 65

FINDING A PATH IN A FOREST 67

PRECOMPUTATION OF THE DIRECTION TO THE ROOT 71

COMPUTATIONAL COMPLEXITY 76

THE "CLUMP" STRUCTURE 80

COMPUTATIONAL COMPLEXITY - USING CLUMPS 86

CONSTRAINED MINIMAL AUGMENTATION SEQUENCES 86

REMOVING WASTE 89

.5

4

MODULO K FORESTS 89

CORRECTNESS PROOF 91

COMPUTATIONAL COMPLEXITY - MODULO K FORESTS 9-

PREVIOUS RESULTS 93

FUTURE IMPROVEMENTS 94

Chapter 4- NETWORK SYNCHRONIZATION VIA

EDGE DISJOINT SPANNING TREES 95

RELIABILITY OF K EDGE-DISJOINT SPANNING TREES 95

NETWORK MODEL 97

DISSEMINATING EDGE FAILURE INFORMATION 98

"SURE FIRE" RECOVERY METHOD 100

CORRECTNESS PROOF OF THE SF ALGORITHM 121

MAKING USE OF THE SPANNING TREES 1 8

CORRECTNESS PROOF OF THE kSTRA 177

ACTUAL IMPLEMENTATION OF THE kSTRA 190

RECOVERY 194

Appendix A- MORE EDGE DISJOINT SPANNING TREES 196

SMALL TREES 196

PLACING kn/2 LINKS IN C(m+kn) TIME 199

WISHFUL EXTENSIONS 203

FINDING LINKS THAT TOUrH SMALL TREES 204

TIGHTER BOUNDS ON AUGMENTATION SEQUENCE LENGTHS 210

MAINTAINING INTERSECTION DATA STRUCTURES 214

INTERSECTION DATA STRUCTURE IN

THE MULTIPLE TREE ALGORITHM 218

5

Appendix B- FIND-UNION ALGORITHMS 221

0(1) FIND, 0(n) UNION 224

MAINTAINING SIZES OF EQUIVALENCE CLASSES 226

O(n) FIND, 0(1) UNION 230

0(1) FIND, O(log n) UNION 234

References 239

6

Chapter 1 - INTRODUCTION

WHAT IS A DATA COMMUNICATION NETWORK?

'4 A data communication network (network for short)

consists of a set of computers (nodes) and a set of

communication channels (links). The links we will consider

connect distinct pairs of nodes. The functional goal of a

network is to allow data to enter the network along with a

destination address (a specified node), via an external

channel, and have the the same data transmitted out of the

network (at the specified node) via the specified node's

external channel.
.4

We can represent a network by drawing a graph to show
-0S

its topology (i.e. what is connected to what). We offer as an

example:

5%5

* 44.
.7

'4 , .-- .

7

Thp numbered circles represent the 6 functional nodes of the

network. The lines between circles indicate the presence of a

functional link between two nodes. The arrows leading away from

the circles correspond to the external channels which carry

data into and out of the network. In the future we will not

bother drawing these external channels, their presence is

assumed, and they have no real significance to the thesis.

Within the context of this thesis we will only be

considering packet switching networks. In such networks the

data passed along by the network is assumed to enter and exit

the network as discrete bundles, which are called packets. It

is then the "Job" of each node, to decide where each packet it

receives should be sent next. The nodes performance of this job

is referred to as routing.

Within a network, there are two types of 4ailures that

may be considered: link failures and node failures. In general,

packets of data are transmitted between nodes by one

transmitter-receiver pair, and acknowledged by a second

transmitter-receiver pair in the reverse direction. For an edge

to continue to consistently and accurately convey data between

nodes, both such transmitter-receiver pairs must function. A

link is considered to have failed if either of the directed

links (transmitter-receiver pairs) that make up that link has

* failed to function. A node failure has occurred when a node is

no longer capable of processing packets that it receives along

8

any of its links (is: redirecting them). Note that a nods

failure would be perceived by each of the failed node's

neighbors as an edge failure, but packets could be lost in the

Ki process.

The topology of the network is defined by the links and

nodes in the network that are functional. After any failure has

occurred, the topology has changed, and hence routing decisions

made at nodes must be modified. For example, once an edge has

failed, neither of the adjacent nodes should attempt to

transmit data across it, and they must in fact find alternate

routes for their packets (assuming the destination is still

connected to the rest of the network!). It is the consistent

modification of routing policies at all nodes in the network

that is termed recovery.

We have defined what we mean by data communication

networks, but we have actually grouped together a wide variety

of quite distinctive "types" of networks. The distinction is

apparent in that some networks find certain algorithms useful,

while other networks find the same algorithm to be almost

useless. For example, some networks have a topology of links

that allows for direct communication (i&: one link) between

every pair of nodes (we would describe such a network as having

diameter 1, 1 being the greatest number of links necessary to

communicate between any two nodes). Other networks are

comprised of a chain, where there are two end nodes that have

9

exactly 1 link, and some in between nodes that have exactly 2

links. The diagram below illustrates the two types of networks.

Diameter 1 Diameter 5

Note that the second network shown has 6 nodes, and is labeled

"diameter 5" because the furthest apart pair of nodes (the end

nodes) are 5 hops apart. Notice then that algorithms that

require notifying all nodes of an event (eg: a failure) that is

observed by a single node, would proceed very slowly in a large

chain like network, and very swiftly in a network of diameter

1.

The example Just given shows how the topology of a

network might effect the performance of an algorithm. There are

several other details about networks that impact similarly.

These include node processing speed, node storage capacity and

link delay. These factors interact heavily with the topology to

10

determine the performance of algorithms in a given network.

EXISTIN8 NETWORKS

As examples of existing link failure recovery

algorithms, we will look briefly at and contrast some existing

architectures. The first example is incorporated in the ARPA

* net E203. The routing In the ARPA net is dynamic. The routing

is varied to attempt to take advantage of low delay links and

to attempt to avoid links with large waiting queues.

Unfortunately, massive rerouting can quickly congest low delay

paths and cause dramatic oscillations in the choice of minimum

delay paths. This phenomenon was examined by Bertsekas C33,

along with methods of damping (slowing or lessening) the

* response of the system. These methods include asynchronous

" updating, fading memory and biasing of routing toward the

minimum hop route. The current ARPA routing algorithm includes

all of these elements to maintain stability.

The ARPA algorithm, hinted at above, automatically

deals with link failures. The failure appears as a bottleneck

with a large queue of packets waiting to traverse the "downu

r" link. The routing algorithm shifts flow around such an edge and

adapts to the effective change in link capacity (a "down" link

has capacity 0). As mentioned in the last paragraph this change

must be slow to prevent instability.

A second example is the network architecture proposed

by IBM. In this architecture there are a list of fixed routes

that are allowed for each source-destination pair. This list of

routes is static, and decided on when the network is created.

When an edge failure occurs, all nodes are are notified, and a

source node deletes from its list any routes that traverse the

the failed edge. This process would proceed quite quickly as

all that is necessary is notification of all nodes of the

failure.

It is worth noting that the two examples just given lie

at opposite ends of a scale in several respects. The static

prearranged routing scheme recovers quickly, whereas the

dynamic scheme must by its nature adapt slowly. The static

scheme has very limited adaptability to flow variations whereas

the dynamic scheme is constantly attempting to track the (in

some sense) optimal routing policy. The static scheme makes

little use of run time computation and relies heavily on the

long ago precomputed and prearranged routes, while the dynamic

scheme relies entirely on run time computation.

Given the two extreme strategies Just discussed, it is

interesting to explore strategies along the continuum between

them. Such strategies would employ modest precomputation of

12

what to do in the event of a failure, and result in a

relatively swift recovery after the fact@ This is to be the

direction the thesis will take, and the question Is then what,

if any, strategies are "workable", and what are their

computational complexity.

PERFORMANCE OF RECOVERY ALGORITHMS

We discussed earlier how the specifics of the

construction of a network (topology, edge delays etc.) can

impact upon an algorithm's performance. In some networks# the

nature of the data packets may imply performance constraints

that will impact on the usefulness of various recovery

algorithms.

When packetized speech is being transmitted, minimal

delay and delay variance is critical. Speech reconstruction is

a real-time operation that requires the next packet to arrive

by a prescribed time, or else it is useless. Packets that are

delayed due to a failure, and then arrive late are of no use.

When interactive communications are carried out between

a user and a time sharing system, the mean delay is very

significant and variance can be tolerated. In this situation

packets that are delayed by a failure are very welcome upon

.. ..:... .. -. ;.:. : /- /. .. -.- - : -? ,- ,.. . . , ... ,..

~13

arrival, but only if the order of packets can be maintained.

In a network where large files are transmitted between

nodes, the throughput Is a key performance criteria. Delay and

variance of delay are of little significance. When recovering

from failures there are two possible scenarios. The first is

that "any failure Is very rare." Hence a complete restart of

transmission of the files would not effect the long term

throughput. Therefore any recovery algorithm that "recovered"

would be fine. The second scenario is "failures are common."

This would make it useful or necessary to recover without

having to restart transmission of the entire file.

The above list of examples shows clearly why a variety

of "recovery" algorithms are useful. This is the motivation, to

a great extent, of this work.

DETOURS

As a first approach we will consider how traffic on the

roadway deals with failures (is: bridge out, road being paved,

etc.). Presumably, there is some intelligence behind the wheel

of every car to establish basic routes (head in the right

direction, use high capacity edges such as superhighways). When

a failure occurs (a semi jackknifes and blocks the road) a

°1

': _ : , ,. .. , . . . ,, . ,: . . .-. ." . . "

14

secondary routing policy takes place as police decide on a

detour. The decisions made by the police would override the

basic routing that the driver had decided on.

. There are several facts worth noting about such

detours. The first point is that many detours can be

precomputed. It is possible that state police have decided in

advance upon detours around every stretch of state highway.

With such detours already worked out, there is very little

computation necessary when an accident occurs. Little

' computation implies very swift implementation when necessary.

A second point to note about the use of detours is

Inherent in the word detours. Implicit is a method of

circumventing the difficulty when the driver gets clos enough

to begin the detour. The point here is that information about

such difficulties is broadcasted just beyond the perimeter of

the congested area. (this way drivers can avoid the congested

area, rather than being forced to backtrack out of the

congested area, and hence increase the congestion). A major

point is that the police who enact the detour don't have to

travel very far.

Leaving aside now the analogous situation of traffic on

the roadways, we will look briefly at the pros and cons of

using detours in networks. In the area of communication

networks, the use of detours would involve precomputation of

paths around edges (or groups of edges) that are likely to

fail. Specifically, contingency plans might be established for

the failure of any single edge in the network. The contingency

plans for the failure of any one edge would be worked out by

all the nodes close enough to be efft -ted by such a failure.

Hence there would be no more than O(m) (there are m edges)

detours to be computed, and not all of these would have to be

computed by each nods.

As mentioned earlier, detours lend themselves to

precomputation. This tends to allow much of the failure

recovery computation to be done when the network is not heavily

loaded. The second point about detours is that when a failure

occursp only neighboring nodes that participate in the detour

need to be notified of the failure. At first glance this

appears to be a positive point. Local notification implies very

little communication and hence very little use of network

resources. However, should a second failure occur near the

first failure, the difficulties can become great. In the worst

case, the detour around the first failure might use the edge

that failed second, and vice-versa.

°

-.-- '-.-..

Notice that the above second failure scenario is only

noteworthy if there is a significant probability of multiple

failures, and also there is no "centralized intelligence" to

catch such a scenario. It should also be realized that

installing a "centralized intelligence" would not solve all

such problems, but rather forestalls them. A centralized

intelligence" must be notified of network activity via

communication edges, and must disseminate orders via similar

edges. The problem o4 network edge failures would end, Just as

the problem of "centralized intelligence" edge failure would

begin.

Within the context of this thesis we decided that we

would look for distributed algorithms (ie: no centralized

controlling intelligence). We also decided that recovery from

multiple failures would be considered. We were unable to find

any nice extensions of detours as such under these conditions ,

and we moved on to other attacks.

SPANNING TREES

We Just discussed attempts at generating a "detour"

oriented recovery algorithm. The difficulty in such a

development centered on the significant possibility of multiple

failures, and the fact that nodes would only be notified of a

failure if they were close to the resulting congested area.

...

17

Hence, when the probability of multiple failures Is

significant, the only reasonable approach we can se involves

global notification of failures (ie.:tell all the nodes about

every failure).

With the thought in mind that global notification of an

event must take place, we note that the most efficient method,

in terms of communications Is to broadcast the occurrence of

such an event on a spanning tree of the network. A uspanning

tree" of a network with n nodes Is most simply defined as any

set of n-1 edges in the network that do not include any cycles.

There are many equivalent definitions of spanning trees and

they involve the following facts:

1) For every pair of nodes in the network, there is

exactly one path between these nodes formed by edges of

any specific spanning tree.

2) Every spanning tree is a maximal set of edges that is

-. cycle free (i.e. if any edge is added to the set, a

cycle is formed).

3) Every spanning tree is a minimal set of edges that form

a connected subnetwork (i.e.: remove any edge from a

spanning tree, and the resulting set of edges (with the

original nodes) form a disconnected network).

19

The reason why global notification of events is best

accomplished (minimal communication) by broadcasting on a

spanning tree is: The broadcast is complete after n-I

transmissions. There are in fact n-1 notifications to be made,

so n-1 transmissions is optimal.

A last point to mention about spanning trees is that

.* they are very useful in dynamically establishing a fixed

routing. Specifically the work of Friedman E113 seemed to

indicate that a broadcast of the topology and edge utilizations

of the network by way of a spanning tree is close to optimal

(minimizing communication) for the computation of routing

tables throughout a network. The use of such a routing

algorithm would further allow us to assume that all nodes are

aware of the pre-failure topology of the network (i.e.: they

used the knowledge to compute the current routing). With this

assumption we see that a broadcast of the fact that a given

edge has failed is indeed sufficient for recovery (we have

already indicated that the broadcast appears to be necessary to

cope with multiple failures).

Given then that the existence of a known tree in the

post failure network would make a recovery easier, the question

is: How can we assure the existence of such a tree? One

solution is to establish in advance several trees in the

19

pre-fsallure network. To guarantee the existence of at least one

of these trees in the post-single-failure network, it is

sufficient that the pre-failure trees be edge disjoint. (For

now we will be considering edge failures only).

It Is Interesting to note that one tree in the original

network is sufficient to allow efficient notification of the

entire network that one failure occurred. Specifically, if a

failed edge was NOT part of the lone tree, then broadcasting on

the tree is straightforward. If the edge that fails is a part

of the tree, then the tree is divided into two subtrees. The

" union of the nodes .in the two subtrees is indeed the totality

of the network. Making use of this fact# notification can be

". broadcast across these subtrees by starting at both ends of the

failed edge (the failure is directly visible to both of the

adjacent nodes). This result does not extend to multiple

failures without the presence of additional (disjoint) trees,

and so we will continue in that direction.

The many questions to be examined at this point

include: How hard is it to find edge disjoint trees? What

*. topological constraints on the network are necessary for the

existence of such trees? How can this process be extended to

handle large numbers of failures? Some of these questions will

now be addressed.

20

Chapter 2

DIRECTED NETWORKS

Before looking for edge disjoint trees in a network, we

will look at the easier problem of finding edge disjoint rooted

spanning trees in a directed network, A directed network

consists of a set of nodes, and a set of links. Each link

connects two nodes in a fixed order. For example, an edge that

goes from node A to node B is a completely different entity

from an edge that might go from node B to node A. An example of

a directed network is given below.

There are 4 nodes and 6 links in this example. There is an edge

from node A to node Bp but none in the other direction.

A rooted spanning tree (branching) in a directed

network is formed by a subset of the links of the network that

satisfy the following:

21

1) There is a distinguished node called the root.

2) No outgoing link from the root is in the branching.

3) Except for the rooty every node has exactly one outgoing

link in the branching.

4) There is a directed path in the branching from each node

to the root.

There are many other equivalent defining characteristic* and

properties. These include (for instance) the facts that the

branching has no cycles, that there is a unique path from every

node to the root, and that ignoring directions on the links

yields an undirected spanning tree.

We will now look at the problem of finding branchings

in directed networks. First we will consider whether or not a

single branching exists in a given directed network with a

given root node. A necessary condition for the existence of

such a tree is:

For every subset 8 of the nodes in the network that

includes the root, there is at least one link going

from S' to S (S' is the complement of S within the set

22

of nodes in the network).

The necessity of this condition follows from the fact that

there is a directed path from every node to the root in a

branching.

It turns out that the above condition is also

sufficient to guarantee the existence of a branching in a

network. The proof of this follows from an algorithm that finds

a branching, and has the above condition as the only

requirement for its completion. The algorithm builds a

progressively larger subtree until it encompasses the entire

network and hence is a branching. The algorithm is:

a) Start with the root only as the subtree

b) Let S be the set of nodes already in the subtree (from

step a, the root is in S). If S'-{), then we're done.

c) Find an edge going from a node in 8 to a node in S. Add

that link to the subtree along with the node that it is

- -;outgoing from. Repeat steps b and c.

It can be seen that this results in a branching as desired.

23

Now consider the existence of several directed spanning

trees which have a common root, and are such that no link is

used by more than one tree. The necessary and sufficient

conditions are exactly analogous to the single branching

problem, but the algorithms for finding them C6,17,21p22J are

far more complicated. Specifically, the conditions for the

existence of k mutually edge disjoint branchings with a single

given root are: For every set S of nodes in the network that

includes the root node, there are at least k links going from

node(s) in 81 to node(s) in S.

Again the necessity follows directlyq but the

sufficiency is far from obvious. The necessity of the above

conditions follows from the fact that there are k distinct

paths (one per branching) from any node (includes those in any

8') to the root.

The sufficiency again is based upon an algorithm. For

the general case of k branchings the reader is referred to

E6017,219223. As a less complex example, we will present the

algorithm for the case k-2 (ie:find 2 edge disjoint branchings

with a fixed root) in order to show the reader one approach to

g| this problem.

I"

24

First we will give an outline of the algorithm, then

details will be given. The algorithm starts by generating a

single branching, to be reoerred to as the red tree. Then the

algorithm tries to find a second directed spanning tree (the

white tree) that does not use any links already in the red

tree. The white tree starts out as just the root, and it is

iteratively increased in size. Eventually, either the white

tree touches every node (we are done) or else a temporary state

is reached where we can go no further. The reason for this

state is that all the links that enter the set of nodes already

in the white tree, are already used by the red tree. To

overcome this state it is necessary to modify the red tree. The

modification consists of taking one of the links away from the

red tree (one that would prove immediately useful to the white

tree), and then doing what is necessary to patch the red tree

without this link. Thus we produce a "larger" white tree and an

edge disjoint new red spanning tree. Repeating this process we

eventually get the two edge disjoint spanning trees (the white

tree can only grow so large, then it must be a branching).

The algorithm:

STEP 1: Grow a red tree using the algorithm given to find a

single tree.

*

25

STEP II:Brow a white tree without using any red tree links as

follows:

a) Start with no links in the white tree, and only the root

node in the white tree.

b) Let W be the set of nodes in the white tree (note: the

root is in the white tree).

c) Try to find an edge that goes from W1 to W, that isn't

already used by the red tree. If there is no such link,

then go to Step III. (Which will steal an edge away from

the red tree). If there is such an edge, add it to the

white tree and add the node that it came out of to the

white tree.

d) If all nodes are now in the white tree, then we have

both a red and a white spanning tree, and we are done.

Otherwise repeat b, c, and d.

STEP III: Carefully choose an edge in the red tree.

The choice of the link to be taken from the red tree for

use in the white tree is rather critical to the success

of this algorithm. The "red tree distance to the root"

from a specific node is defined to be the number of

*i links on the unique red tree path from that specific

S.

26

nods to the root.

We already know that all the links from W" to W. are in the

red tree. From among the set of links that go from W'

to W the SELECTED link is the link which emanates from

the node with the greatest red tree distance to the

root.

This link is selected so as to prevent the case of a red

tre path that goes from W" to W, then back to W' and

then crosses the selected link.

STEP IV: Prepare to use the SELECTED link in the white tre

a) Remove the SELECTED link from the red tree

The network is now partitioned into :

R-(Def.) The set of nodes still connected via the red

tree to the root

and

R'ml(Df.) The set of nodes no longer connected via the

red tree to the root

The network is also partitioned into:

27

W06(Def) The set of nodes already connected to the root

via the white tree,

and

W'(Def.) The set of nodes not yet connected to the

root via the white tree.

b) One straight forward way to mend the broken red tree

back to full tree status (without the use of

the Just removed selected link or any white

links) is: Consider the set of nodes R'W" (read

R" intersect W'). It is very significant to

note that the careful choice of the selected

link guarantees that the links of the red tree

joining nodes in R'W', form a spanning tree of

R'W. Assume there are p nodes in R'W'. Remove

from the existing red tree the p-1 links that

connect pairs of nodes within RIW'. Now to

repair the red tree we must add a total of p

links to the existing subtrees without creating

loops (p- (1 selected link) + (p-i Just

removed)).

c) Start the iteration with the set S-R'W'. An example

of what the network might look like is:

28

0 C

Cr

d) Lot L be the set of directed links which start in S

and and in a nods in S' (since the root is not

29

in By there must be at least 2 such links).

.) If the selected link (re:step a)) is in L, remove it

- from L.

f) There is now at least one link in L. We assert at

this point that any link in L:

1) is not in the red tree

2) is not in the white tree

3) has an end node outside B, that is connected

via the red tree to the root.

Assertion 1 is true because we have (by the end of step b)

removed from the red tree, one outgoing link for every element

of S. A property of a directed tree is that there is exactly

one outgoing link in that tree from every node (except the

root). Hance there cannot remain a red link outgoing from a

node in S

Assertion 2 is the case because 8 is a subset of (its initial

value) R'W'o which must be a subset of W'. Since nodes in 8 are

not in the white tree, we see by definition that the link in L

can not be in the white tree.

30

The validity of the 3rd assertion rests on two facts. The first

fact is that links in L MUST run from nodes in S to nodes in

W'. (Note: S is a subset of N'. We are at this point in the

algorithm because there are no more links from W' to W that

were not red). We further note that all nodes that didn't have

red tree paths to the root were in R'. So a proof by

"" contradiction of assertion 3 would proceed: Assume the link in

L leads to a node with no rod tree path to the root. Then that

node must be in R'W'. Hence the node used to be in S. This

contradicts the fact that nodes are removed from B only after a

red tree path to the root is established (see part g)).

g) Having found an edge (any link in L) that is neither

in the red nor the white tree, and leads to a node with

a red tree path to the root:

1) We add that link to the red tree

2) We remove the node from S that originates

that link (this node now has a red tree path to

the root)

h) If S is not empty, repeat steps d) on (iterate)

i) Finally now we have a full red tree restored. We

have, in the restoration, not made use of the original

"selected link". Add the original "selected link " to

the white tree. Add the originating node to the set of

white nodes.

J) Go back to Step II b) and continue to grow the white

tree.

RELATING DIRECTED NETWORKS TO UNDIRECTED NETWORKS

A common reason to look at directed networks is that

any undirected network is equivalent to a directed network with

twice as many links. This correspondence is based on replacing

every undirected link with a pair of directed links in opposing

directions. Early in this research it was hoped that this

correspondence would lead to a natural extension of results

involving directed networks to undirected networks.

Unfortunately, neither the questions of existence nor method of

finding 2 link disjoint spanning trees in an undirected network

follow from the directed network results. The reason for this

problem is that link disjoint trees in a derived directed

network might share a common link in the original undirected

network. For example:

!.._. !:.:. , , --W7 7 77 . , ° - - , . -' - . . .

32

is an undirected network. The derived directed network is

If we are looking for two edge disjoint spanning trees in this

directed network rooted at node &I we find:

and

It can be seen by a counting argument that it is impossible to

ever have two edge disjoint spanning trees in the original

network. Specifically, each spanning tree must have its own two

links, but there are only three in total.

33

We can however look for 3 link disjoint rooted spanning

trees in a derived directed network. If there are 3 such trees,

then at most two trees can share an edge in the original

undirected network. To put it another way, there is no edge in

the original undirected network that is common to all 3 trees.

If any one edge were destroyed, at least one tree would remain

intact. Unfortunately, The most general solution to the problem

of finding 3 trees in an undirected network, such that no edge

is common to all 3 trees, does not even follow from the

-, .°directed network results. Consider again the fully connected

network of 3 nodes just described. There are indeed 3 trees in

the undirected network that have no edge common to all of them,

namely:

I2 I2 2
and

3 33

There are not however, 3 rooted spanning trees on the derived

directed network, that have a single common root, and share no

edges in common. Hence this solution to the undirected network

would not follow from the derived directed network. For the

c.incerned reader, it is interesting to note that the constraint

of a "single common root" in the directed network spanning

34

trees is not always as critical as it was in the example just

given. A more general network is:

wherein 3 spanning trees exist with no edge common to all 3.
.4

but the derived directed network does not have 3 edge disjoint

rooted spanning trees (even with distinct roots!).

The moral of this story is that: if we want general

solutions to problems of this sort involving undirected

networks, then we must confront them directly. That is what the

next section will address.

UNDIRECTED NETWORKS

The fundamental problem to be addressod in this section

is that of finding 2 spanning trees in an uh1t-r*:ted network.

The constraint on these 2 trees is that there is no edge common

to both trees.

-: 35A

As we looked at this problem several extensions

appeared. The first part of the extension is the constraint on

the k trees. The constraint could be:

a) no edge is used by more than 1 tree

b) no edge is used by all k trees

or most generally

c) no edge is used by more than a trees (with a fixed

0 < a < k).

The motivation for finding 2 edge disjoint spanning

trees was to guarantee that one of the trees would remain

intact after any single edge failure. Motivation for looking at

k mutually edge disjoint spanning trees would be to guarantee

the integrity of at least one tree, even after as many as k-1

edge failures. The usefulness of such things as k spanning

trees with no edge common to all of them, lies in the fact that

at least one three will survive a single edge failure.

Moreover, the conditions for the existence of such a set of

trees, grow more and more lax as k is chosen larger and larger.

We offer now a small theorem that addresses the

concluding point of the last paragraph. It can be seen that a

36

necessary condition for the existence of 2 edge disjoint

spanning trees is that the network be 2 connected.(ie: Every

binary partition of the nodes is traversed by at least 2

edges). The theorem is that: For every 2 connected network,

there exists a k>lm such that k spanning trees exist within

that network with no edge common to all k trees.

The point that makes the above theorem interesting is

that 2 connectedness is necessary, but not sufficient for the

existence of 2 edge disjoint spanning trees. Recall for example

that the network

does not have 2 edge disjoint spanning trees, despite the fact

that it is clearly 2 connected.

The proof of the theorem is as follows: Suppose there

are n nodes in the network. Take any spanning tree in the

network to be tree T(O). T(O) has n-1 edges in it, call them I(

1),...l(n-1). Consider the n-1 spanning trees T(1)...,T(n-1)

37

that are (nonuniquely) defined by: T(i) is a spanning tree of

the network and 1(i) is not part of it. The fact that the

network is 2 connected guarantees that the removal of one edge

(1(1)) from the network will leave a connected network. Indeed,

there are spanning trees in every connected network, and hence

T(1),..T(n-1) exist. The set of trees T(O),...T(n-1) satisfies

the requirement (no edge is in all the trees) and completes the

proof. This proof does not always produce the least number of

trees, but it certainly demonstrates nicely the existence of

some k.

I<

6

I"'

n%

38

Chapter 3

FINDING MULTIPLE EDGE DISJOINT SPANNING TREES

IN UNDIRECTED NETWORKS

In this chapter we will focus on the problem of finding

multiple edge-disjoint spanning trees in an undirected network.

We will start with a method of perturbing a set of overlapping

spanninq trees into a set of maximally distant (minimally

overlapping) spanning trees. The methods involved in this

algorithm are fundamental to all the algorithms that follow.

Next we will view the problem as a matroid problem and show how

the "greedy algorithm" may be applied. This method will involve

growing k edge-disjoint spanning trees from scratch. Finally.

we will look at the computational complexity of the resulting

algorithm and examine ways to improve it. The major result of

this chapter is an algorithm for finding k edge-disjoint

spanning trees in O(knkn) work (assuming n nodes in the

network).

PERTURBING EXISTING TREES

For simplicity, we examine the problem of finding 2

edge disjoint trees in an undirected network. The methods

extend directly to the case of k trees. but the generality only

complicates the discussion. Consider the question of whether or

39

not the following network can be broken into 2 edge-disjoint

spanning trees:

We would like any algorithm to answer this question very

quickly with a "NOM, using a simple counting argument. The

above network has 6 nodes. Any spanning tree must have 5 edges

in it. We would then need 10 edges to find 2 such spanning

trees (but there are only 9).

Consider then a harder problem: Does the following

network contain 2 edge-disjoint spanning trees?

40

The method we will employ to answer this question will take any

2 spanning trees, and perturb them into 2 new spanning trees

that have fewer common edges than their predecessors. By

repeating this process, we show that we can eventually get 2

totally edge-disjoint spanning trees.

As an example suppose we started with identical

spanning trees as shown below:

4

.° . .

0 41

RW

The trees (R for red, and W for white) are defined by putting

their labels on edges. Notice that both trees use the same set

of edges, namely 12,23,14,45,56.

We wish to Incorporate some unused edge into one of the

trees so that the overlap can be reduced. Take any edge, say

edge 25, and consider what would happen if it were used in the

white tree. If we were to use 25 in the white tree we would

form a cycle with edges 21,14,45. Since trees can never have

cycles, we must then remove one of the forementioned edges from

the white tree. As it turns out, all three edges are used by

both trees at present, and removal of any of them would be a

step in the right direction. If we removed 14 from the white

tree we would then have:

42

The overlap has been reduced from 5 edges to 4 edges. Suppose

we next tried to add edge 13 to the red tree. We would form a

cycle with 12g23. Again both edges are doubly used. Suppose we

remove 12 from the rod tree. The result is:

Next we might try adding edge 36 to the white tree. From the

resulting cycle 32g25,56, we would want to remove 32 or 56. The

43

removal of edge 25 would not help us as it is used only once.

If we rcvoved 32 then we would have:

w

Here we might try to add edge edge 46 to the white tree, and

remove edge 45 from the cycle of 45,56. The resulting network

has only one edge common to both trees# and looks like:

R

='%* w

44

At this point things suddenly become a bit more complicated. If

we try to use the remaining unused edge 34 in the white tree,

we get cycle 36,64. Both of these edges are used only by the

white tree and there would be no apparent progress in using

such edges. Similarly, if edge 34 were used in the red tree, we

would form cycle 31,14, and again these edges are only used by

one tree! All is not lost however, we are just forced to use

the full generality of the algorithm. The most general form of

this algorithm requires a deeper search of the potential

consequences of using an edge in one of the trees.

Consider using edge 34 in the white tree. We have

mentioned that no "immediate" progress can be made by removing

edges 36 or 84 from the white tree. If however we were to

remove the edge 36 from the white tree, it would then become an

unused edge, and hence a candidate for use in the red tree. The

resulting red tree cycle of 31,14,45,56 does indeed include the

doubly used edge 56, which can then be removed from the red

tree. Hence, we have found a perturbation sequence (add 34 to

the white tree, remove 36 from the white tree, add 36 to the

red tree, and finally remove 56 from the red tree) that

maintains the tree structures, and decreases the overlap of the

2 spanning trees.

There are several natural questions that might be asked

45

at this point: Does the above algorithm always find two edge

disjoint trees (when they exist)? In a situation where 2

edge-disjoint trees do exist, couldn't the algorithm find two

non-disjoint trees for which there is no possible perturbation

sequence that will improve matters? How much work does it take

to run this algorithm?

In answer to the last question, the complexity of the

above algorithm can be brought down to O(knkn) time (to find k

trees) by using some noteworthy structure of the problem. We

will not present the proof of this complexity result for this

specific algorithm, but we will present a proof for a related

algorithm that makes use of the same problem structures.

The nature of an argument that shows (by contradiction)

that the algorithm always converges to a pair of edge-disjoint

trees (when they exist) would be as follows: Assume we have a

network and there are two edge-disjoint spanning trees r and w.

Suppose we also had two overlapping spanning trees R and W. We

can note that the trees r and w make use of a total of 2(n-1)

edges, whereas R and W are making use of strictly fewer edges

(some of the edges are used twice). We first create a set of

edge-disjoint spanning trees r" and w' such that every edge

that is in R or W, is definitely in r' or w'. (This pair of

trees would be created by a sequence of edge changes performed

46

on r and w.) Recalling that r' and w' must use a greater number

of edges than R and W9 there must be an edge sl, that is used

by r' or w' and is used by neither R nor W. Without loss of

generality assume that *I is in r'. We can then perturb R by

adding alp and removing one of the edges in the cycle that we

just formed. Specifically, we should remove the edge e2 in this

cycle that is not in r' (r' has no cycles). We have thus

perturbed R to have more edges in common with r' (and

maintained the fact that every edge in R or W is still in r' or

w'). Next we recall that e2 was in R, so it must have been in

w" or r'. We know however that e2 is not in r'. Therefore e2 is

in w'. We also note that e2 cannot be in W, as otherwise we

would have just found the non-existent perturbation sequence.

We can then add e2 to W, and remove the edge e3 (from the cycle

that we just formed) that is not in w'. This makes W have more

edges in common with w'... Repeating this argument we can

eventually find a perturbation sequence that makes R and W

identical to r' and w' respectively (which we recall are

edge-disjoint). We must then have found a perturbation sequence

that made R and W more edge-disjoint (contradiction).

AUGMENTING EXISTING SUBTREES

In this section we will develop a method of adding

edges to k mutually edge-disjoint forests (a forest is a subset

of edges and nodes in a network that contain no cycles. This

method was originally described to the author by Dr. Robert

47

TarjanC193. Our ideas which yielded a computationally efficient

algorithm based on finding perturbation sequences extended

directly to this method, and are easier to follow in this

setting.

All forests that we will be concerned with will include

all the nodes in the network. All further references to forests

will discuss only the edge set of that forest). We continue to

add edges until each forest has n-I edges. A forest with n-1

edges must be a spanning tree of the network. Hence we plan to

arrive at k edge-disjoint spanning trees by slowly augmenting k

forests.

Before we get into the theoretical underpinnings, proof

of correctness and details of the efficient use of structures,

we consider once again the following network:

48

EXAMPLE: Finding two edge-disjoint spanning trees.

The list of edges in this network are 12,13,14,23,25,34,36,45,

46,56. We start with the two forests (we are looking for two

spanning trees) both being empty sets, and specify this state

as forests-({},{)). The first edge 12, can easily be used in

the first forests with the result being forests-({12),{}). Next

we try to use 13,and we get forests- ((12, 133,0). Next 14

gives forestsi((12,13,14},{)). The edge 23 cannot be used in

the first forest because it would form a cycle, but it can be

used in the second forest. The result is forests-({12,13,

14), (231). Using 25 gives (C12,13,14,25),(23),and then 34

leads to ((12,13,14,25), (23,34}). Similarly using 36,45 and 56

results in forests-({12,13,14,25,36},(23,34,45,5)). The

network now looks like:

I4

Unfortunately the remaining edge 46, can neither be

used directly in forest 1 (as the cycle 41,13,36 would be

49

formed) nor in forest 2 (as the cycle 45,56 would be formed).

As with the perturbational algorithm, the method of making

progress involves looking for a sequence of edges. Specifically

consider what would happen if we wanted to add edge 46 to

forest 1. In order to preserve the cycle free status, we would

have to remove either edge 41,13 or 36. Since progress involves

. strictly increasing the number of edges used by all of the

forests, the removed edge should be used in forest 2. Indeed,

carefully reviewing the above four edges shows that edge 41 may

be directly used in forest 2. Hence we have an augmentation

sequence of: add 46 to forest 1, delete 41 from forest 1, add

41 to forest 2. This augmentation gives the new forests (M12,

13,25,36,46},{23,34,45,56,41)), which are indeed examples of

two edge-disjoint spanning trees.

With that example under our belt, we can now look at

* *- the general question of finding k edge-disjoint spanning trees

* by such a method. Still to be clarified is: How exactly do we

extend this method to an arbitrary k? How we can efficiently

'- *look for augmentation sequences? How do we know that such an

algorithm will always find a solution when such exists?

9.

9,

50

WHY IT WORKS

For any fixed k, the edges of the network can be viewed

as a matroid. This structure is gotten by defining a set of

edges to be independent iff the set can be partitioned into k

forests 14,7s143. With this theoretical view of the problem, we

can apply the matroid greedy algorithm 16,24) to get a maximal

independent set, which corresponds to a solution to our problem

(if the set ends up with k(n-1) elements). We will not rely on

these facts, but will rather prove directly that our greedy

algorithm works. This will also leave us with a clearer

understanding of how and why we may modify the algorithm to

Improve its computational efficiency.

The greedy algorithm consists of initializing an

independent set F as the empty set, and performing the

following test with every edge a in the network:

If F+{e) is an independent set, then add a to the set F

("independent set" was defined in the last paragraph) Note that

the greedy algorithm would not automatically give the specific

forests, but would rather tell us that such forests exist. The

beauty (and the name) of the greedy algorithm comes from the

fact that once F includes an edge e, it is never removed. Also

to be noted is the fact that every edge is considered for

51

inclusion in F exactly once. This will later play a role in the

computational complexity of the entire algorithm.

Having made the algorithm sound very simple, we point

out that the difficult part is to decide if the set F+{e) is an

independent set. In order to decide this efficiently, we

maintain at all times a partition of F into k forests F(1),...,

F(k). The fact that we maintain this set also means that when

the algorithm terminates, if F has k(n-1) edges, then F(1),..

F(k) are actually the k edge-disjoint spanning trees.

Given an edge a that connects node v to node w, and any

forest F(i) which has v and w in the same tree, we will find it

useful to define C(e9F(i)) to be the unique set of edges in F(

i) that forms a path from v to w. Notice that if e' is in C(e,

F(i)), then F(i)+{e}-{e') is still a forest. Basically, what we

are saying is that if me add an edge to a forest that would

form a cycle, then we simply have to remove any edge from that

cycle to return to a forest status.

4

For a given set of edge-disjoint forests F(1),...F(k),

we shall define a "minimal augmentation sequence" to be a list

of edges e(1), e(p), and a list of indices to forests n

n(1),...n(p) (that are not necessarily distinct), such that:

I S - , - - --.--~ - .- |7- -- ..

52

1) e(1) is not in any forest F(i).

2) for O<i<p, the end nodes of e(i) are both in the same

tree in F(n(i)).

3) for O<i<p, e(i+l) is in C~e(i),F(n(i))3.

4) e(p) has end nodes in separate trees in F(n(p)).

5) for O<i<p, O<J<p+l, i+l<j, e(J) is not in C~e(i),F(n(i))].

It should be visible that we are trying to define a sequence of

edges that allows us to augment, or increase the size of, the

set F (condition 1 says that e(1) is not in F). We are able to

add e(i) to Fi) as we delete e(i+l), and still maintain F(i)

as a forest by virtue of conditions 2 and 3. The fact that we

delete from one forest what we add to another forest (except a(

1), which is simply added) guarantees that the set of forests

would remain a partition of F. The word "minimal" was used to

indicate that no subsequence of edges and corresponding indices

could be left out (re: condition 5) and still give us an

augmentation sequence.

We have hinted strongly that a minimal augmentation

sequence is such that we could run through the sequence

i-Il,...p; and at each stage:

53

1) modify F(n(i)) by adding a(i) and, if i<p,

also removing e(i+l)

When we are all donep we expect that the resulting F(j) are all

forests. In actuality what we have shown is that any ORIBINAL

F(n(j)) could be modified by the addition of e(j) and the

deletion of e(j+l) and still remain a forest. It remains to be

shown that a forest that has been modified several times by the

above augmentation process is still a forest. It is actually

the minimality condition (condition 5) that allows us to prove

that a forest that is modified repeatedly is still a forest.

Theorem: Given a %et of k edge-disjoint forests

F(1),...,F(k), and a minimal augmentation sequence e(1),...

.(p)p and n(1l,...n(p). The following series of operations:

for i-1 to p-1

"-'"F(n(i)) <-- F(n(i)) + {e(i)} - e(i+l)}

next i

F(n(p)) <-- Fln(p)) Ce {(p))

produces a new set of edge-disjoint forests.

The preceding theorem has been proved in the literature

E4,73 but a proof will be provided for completeness and to

assist the reader with understanding the subtleties of the

54

theorem.

-. 9 Proof: We will use induction on the length of the augmentation

sequences

Clearly all minimal augmentation sequences of length 1 produce

now edge-disjoint forests.

Assume that all minimal augmentation sequences of length r

produce edge-disjoint forests by the above process. Let

e(1,..e~r1)and n(l) ... n(r+1) be a minimal augmentation

1 sequence for forests FM1)... F(k). Define F'(1)... F'(k) to be

the resulting forests after one stage of augmentation. That is:

F'(n(l)) -F(n(l)) - Ce(2)) + (&(1))

F1 (i) -F i)-for i other than n (1)

The fact that F'(l)... F'Ck) are edge-disjoint forests is clear.

Now let us define new sequences n'C1), ... n'(r) and e'(1).,...

a' (r) as follows:

e'(i) n (i+1)

n.i L .
i41

55

We will now show that the sequences n' (*) and a' (*) are

minimal augmentation sequences for F'(1),... F'Ck). By the

inductive hypothesis we will have that the modification of

these new forests by the r length sequence will result in

edge-disjoint forests. Hence the original forests F(D),... F(k)

can be modified by the r+1 length sequences n(*) and e(*) to

yield edge-disjoint forests, which completes the inductive

step.

There are 5 conditions to be satisfied to make sure

that e'1,.e()and n'(l), ... n'(r) are a minimal

augmentation sequence for F'M ()... F'(k).

Condition 1 is that e' (1) is not In any of the forests.

We knew that the forests F(s) were edge-disjoint, and that F~n(

1) contained &(2) Cie'(1). Hence we know that none of the

other forests could contain &M2. The definition of F'(*)

guarantees that n(2) is not In F'(n(M)) and all the other F'(

5forests are identical to the F(*) forests. Be we see that

the condition is satisfied.

Condition 2 guarantees that both the endnodes of each

edge e'(i) are in the same tree in F'(n'(i)). This fact follows

directly for all forests except F'(n(l)), which is the only

56

forest that changed. Suppose that p and q were in the same tree

in F(n(1), or equivalently# a path from p to q exists in F~nC

1)). We will show that a path exists from p to q in F'Cn(l)).

If this path in F did not use e(2) (the edge that we removed to

create F'), then clearly the path still exists in F'(n(l)). If

the path did include &M.) then it consists of a path from p to

one endnode of e(2)9 followed by &(2)9 followed by a path from

the other endnode of &M2 to q. Note that the first and third

portions of this path are still intact in F'(n(1)). We also

note that F'(n(1)) has a path between the endnodes of e(2)

which consists of edges in C~e(l),F(nMl) and &Ml. By the

transitivity of paths; we must have a path from p to q in F'(nC

M).

Having shown condition 2, the text of condition 3 is

well defined. What we must show is e'(i+1) is in C~e'(i,F'(n'(

M3). As with condition 2, this follows directly in all cases

except where n'(i)inn(l) (the modified forest). In the case

where n'(i-n~l), we only have difficulty if 9C2) (the removed

edge) was part of CEe' i), F~n'(i))3. (If e(2) were not on this

path, then the path could not possibly have changed.) If we

consider the new path around e'(i) in forest F'(n'(i)) as we

did in the proof of condition bp we can view it as the result

of "adding" 3 paths. These paths are: the path from the andnode

of e'(i) to the undnode of *(2) in F(n'(i)), the path between

the andnodes of e(2) in F'(n'(i)), and the path from the other

57

endnode of e(2) to the other endnode of e'(i) in F(n(i)). The

resulting path has all the edges that the path Ce&' (i),F(n"(

i))3 had except for some edges in CEe(1),F(n(1))3. We know that

e"(i+l) could not be in CEe(1)pF(n(1))3 because e(*) and n(*)

are a minimal augmentation sequencey and must satisfy condition

5 for the case i-i. Hence &'(i+1) is in the path CE(e'(i)qF'(

n" (i))].

The next condition is difficult to show only if it is

referring to the one forest that is changed in creating F"(*).

If n'(p) is not the same as n(1)p then condition 4 is

immediately true. If n'(p) is the same as n(1), then we must

verify that the endnodes of e (p) are still in separate trees.

We note that the endnodes of e(1) were in the same tree in F(n(

1)), and hence the addition of e(1) to f(n(1)) could not have

combined two distinct trees in F(n(1)). Hence the endnodes of

e'(p) must still be in the same distinct trees in F"(n(l)), as

they were in F(n(l))

As we showed in the proof of condition 2, the only

difference between CCe(i)gF(n(i))3 and CCu(i),F'(n(i))3 (i>1)

is the possible addition of edges in C~e(1),F(n(1))] and/or

e(1). Using the fact that e(*), n(*) are minimal augmentation

sequences, and condition 5 with i-1, we get: 2<j<p+l

58

e(j) is not in Ce(i)wF(n(i))3
L.

We can then combine the above original condition 5 to get:

for all ij such that O<i<p, O<J<p+l, i+l<j

e(J) is not in CCE(i),F(n(Q))3 + Cte(1)yF(n(l))3

We also note that e(1) is not in any forest F(*) (condition 1),

and hence e(j) can not be the same as e(j) for J>l. This last

fact combined with the above condition guarantee that e (*) and

n'(*) satisfy condition 5 in forests F"(*).

IMPLEMENTING THE INDEPENDENCE TEST

The basic algorithm starts with F,,F(1),F(2)....F(k),}

and considers each edge a in the network. If F+(e) is

independent, then e is added to F9 otherwise a is discarded.

Using what we have shown thus far, we will be looking for a

minimal augmentation sequence that starts with e. I+ we can

find such a sequence, then F+(e) must be independent and we can

perform the augmentation. When we finish describing the details

of the algorithm we will prove that when we fail to find such

a sequence, then F+{e} is dependent.

A) "Initialization

F <--{

for i-1 to K

..

59

F~i) <-C

next i

B) "Look at all edges

L <- the set of edges

for a- each edge in L

BOSUD C "Test and augment if possible

If F has k~n-l) elements then STOP "We found

k trees

next a

stop "k edge-disjoint trees don't exist

C) "Test to see if F+{.) is independent

Mark every edge in F as unlabeled

QUEUE <- ethe edge we're trying to start with

goto D "the labeling section

The forementioned QUEUE will be used by the labeling section to

search for an augmentation sequence. It holds names of edges

* that need to be looked at "further"

D) "labeling step

If QUEUE is empty then goto 6 "cleanup, F+(e)

is dependent

remove the next a' from QUEUE

for i1I to k "try it in all the forests

60

If the endnodes of e' are in different

trees in F(i)

then goto E "auqmentation found

L" <-- C(e',F(i)) "the path around e'

Label any unlabeled edges in L' with e'

Add any edges that we just labeled to

the QUEUE

next i

goto D "try this labeling step again

The labeling steo is performing a breadth first search of the

edges that may be exchanged for the original edge e. and the

edges that may be exchanged for them, and so forth. When an

edge is found to be of immediate use in a forest (i.e. its

endnodes are in different trees), then the labels can be traced

backwards to reveal the augmentation sequence. The next section

illustrates this process.

E) "Trace out augmentation sequence

n(l) <-- i "winning forest in section D

e(l1) <-- e "the winning edge from section D

j <-- 1 "counter for sequence

TRACE LOOP:

if e(j) == e then goto F "perform

augmentation

j <-- j+1 "increment counter

e(j) <-- label of e(j-1) "trace back label

61

n(j) <-- forest # that contains e(j-l)

SOTO TRACE LOOP

Now we have the actual augmentation sequence (in reverse order)

so all we have to do is use it.

F) "Augment F and the forests

F <-- F + (a) "add the original edge

AUGMENT LOOP:

F(n(j)) <-- F(n(j)) + (e(j)) "add the new edge

if j--1 then return to B "augmentation complete

F(n(j)) <-- F(n(j)) - {e(j-1)} "swap out the

next edge

J <-- j-1 "move to next forest

SOTO AUGMENT LOOP

There is now only one point left to be described,

namely, what to do if the QUEUE in D becomes empty. We claim

that this eventuality implies that F+(e} is dependent.

Lemma: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, then any node that is

adjacent to a labeled edge in one forest, is adjacent to a

labeled edge in every other forest.

62

Proof: Every labeled edge was put in the QUEUE. Every edge in

the QUEUE was tried in every forest, and the path that was

found around that edge in each forest was labeled. Hence, if a

node is adjacent to a labeled edge in one forest, then it is

adjacent to a labeled path (and so a labeled edge) in every

forest.

By virtue of the above lemma, it is reasonable to speak

of nodes that are adjacent to labeled edges, without reference

to a specific forest. We will now show that the set of labeled

edges in each forest forms a tree.

Lemma: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, then the set of

labeled edges in each forest forms a tree.

Proof: It is sufficient to show that there is a labeled edge

path from any node adjacent to a labeled edge, to the nodes at

bo h ends of a (the original edge). Using proof by

contradiction, let e' be the first edge that is taken from the

QUEUE and has andnodes that will never have a labeled path to

one endnode of e (assume that e' is in F(j)). Let e'" be the

edge which caused e' to be put on the QUEUE (Note- It is

impossible for e' to be the original e, hence '' exists).

Since e'' was taken from the QUEUE before e', we know that

there will eventually be a labeled edge path in F(j) from the

endnodes of e to the endnodes of ''. When '' caused e' to be

put on the QUEUE, it was also guaranteed that the other edges

in Ce'',F(J)] will be labeled. There will then be an extension

of the labeled path from endnodes of e to endnodes of &'', on

to endnodes of e' via edges in Cle",F(J)]. This contradicts

the assumption that no such path existed.

Finally now we can show that F+{e) must be dependent in

this empty QUEUE case.

Theorem: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, then F+Ce) is

dependent.

Proof: From the first lemma we have identified there are some

number of nodes that are adjacent to labeled edges; assume

there are q such nodes. The second lemma tells us that there is

a tree in each forest that spans these q nodes. Hence we have

identified k(q-1) edges which already interconnect these q

nodes. The end nodes of the edge a are already among the q

nodes. It is the case that k(q-l)+l edges that interconnect q

-

64

nodes always are a dependent set.

With the validity of the above claim proven, we see that it is

sufficient to end the algorithm with:

6) QUEUE was empty in D

return to B "No augmentation is possible

4
Now that we have a workable algorithm, we will clean up

some of the computational details before we evaluate its

complexity. In the "labeling step" we have two operations that

might pose some difficulty if not carefully done. The first

operation is trying to find out if two endnodes are in the same

tree in a given forest. The second operation is trying to find

the tree path between two nodes, and labeling any of the edges

on this path that are unlabeled.

SET UNION FUNCTIONS

As a brief aside, we should describe what a "set union"

algorithm is. In many discrete problems a partition of a set

must be maintained. This is the case here, where we partition

the nodes into subsets that are interconnected in a given

forest. Such algorithms are so widely used, that some standard

functions are commonly seen in the literature [233 and they are

generally referred to as set union algorithms. A set union

algorithm is able to manipulate a data structurm that

65

represents the partition so as to combine two separate subsets

in the partition into a single subset (via set union). It is

also necessary for an algorithm to be able to determine if two

elements of the original set are in the same subset in the

partition (i.e., ask questions about the actual partition).

Generally a set union algorithm is broken into two functional

parts that manipulate the same data structure. The first part

is a function FIND(i), which returns the name of the subset

that currently contains i. The second function is UNION(ij).

UNION(i,J) modifies the existing data structure to combine the

subsets that contain i and J. Examples of set union algorithms

are given in appendix B. A reader that is unfamiliar with such

algorithms would be advised to read appendix b before

proceeding further.

ARE TWO NODES IN THE SAME TREE

Note that when any two nodes are connected via a tree

in some forest F(j), then for the remainder of the algorithm

these nodes remain connected in F(J). The "augmenting step"

either supplies an alternate connection between nodes before

breaking the old path, or forms connections between nodes that

were not previously connected. With this structure in mind we

see that we can use a set union algorithm in each forest to

keep track of connectivity. When nodes p and q are Joined for

the first time in forest F(j), we can perform a UNION(j,pq).

Note: There are k separate UNION functions, which are

distinguished by the first parameter. These correspond to the k

distinct forests.) Specifically the following statements would

be added to the "augmentation step" just before AUGMENT LOOP:

let ptq be endnodes of e(1) "The winning edge

UNION(n(1),p~q) "remember, these sets are connected n

With these statements in place, the question "Are the

endnodes of an edge already in the same tree in a given forest

F(J) ?", is reduced to a pair of FIND(J,*) operations, and a

comparison. The FIND(Jp) function returns the value of the

canonical node that p is connected to in forest F(J). If both

endnodes are already connected to the same canonical node, then

they are in the same tree. Specifically, the following

statement in the labeling step:

"If the endnodes of e' are in different

trees in F(i)"

as found in the labeling is replaced by the sequence of

statements:

Let pq be the endnodes of e'

IF FIND(ip) is not equal to FIND(i,q)

.6

67

FINDING A PATH IN A FOREST

Next we consider the problem of labeling all edges in

the path between two nodes, excluding those that have already

been labeled. This is the second potentially complex task in

the "labeling step". In general, such a task might take O(n)

time (n is the number of nodes) to perform, as a path might in

the worst case be of length n-1. We repeat this task for each

edge that we put on the QUEUE, which has a worst case average

of O(kn) (except for the original edge, only edges that are in

forests can be put on the QUEUE). The QUEUE is restarted every

time we try to find a new augmentation sequence, which happens

at least O(kn) times. If we are not clever about these

operations, this step in the algorithm could easily consume

O(nknkn) lime.

This specific problem, however, has special structure

that may speed up the net complexity. Assuming that we put the

edges out onto the QUEUE from CEe,F(J)] ordered by their

distance from one endnode of e, then the set of labeled edges

in each forest is a tree at each point in the labeling

algorithm. A proof of this fact would follow from the method

used to show that the empty QUEUE case resulted in labeled

edges that formed trees. With this structure in mind, the

problem of finding a path around an edge becomes reduced to

68

tying the endnodes of the given edge intr the existing labeled

tree. We also should note that the endnodes of a (the original

edge that we're trying to base our augmentation on) are always

in this labeled tree. To speed our search for the direction to

the existing labeled tree, we can precalculate a "Direction to

an endnode of a" in each forest, for each node. This

computation would be done at the end of section C, Just before

we called upon the labeling algorithm to do its work. The use

of this speed up will allow us to effectively spend, for each

forest, a fixed amount of time to process every edge put on the

QUEUE. This speed up is most clearly seen by looking at an

example.

The above forest has 9 nodes, 7 edges, and 2 trees. Suppose

°i-4

that the initial edge a has endnodes 1 and 7. Before starting

the labeling algorithm we would choose one of the endnodes to

be a labeling root in all of the forests. Suppose we chose I to
b

. be the root. We would then calculate the direction to the root

69

for each node in this forest. Specifically we would calculate

1-()92-(21),3-(31),4-(43)95-(53)g6-(63)17-(76)i8-()99-(94).

This data structure shows each node, followed by the first step

(edge) toward the root. With all this precalculation done, the

labeling could be run.

The first question that the labeling algorithm would

ask (relating to paths) would be the path from 7 to 1 (or I to

7), as this is the initial edge e. Note that one of these

nodes, node 1, is already in the labeling tree as it is the

root. Starting from the node that is not in the tree, and using

the precomputed path to root information, we find the path

7-6-3-1. This is indeed the path from 7 to 1 as desired. We

would then put the corresponding edges on the QUEUE, with the

closest to the root going first: that is the order 13, 36,67.

With this order strictly enforced, it will always be the case

that one of the endnodes of any edge that is removed from the

QUEUE is already in the labeled tree. With the above example,

by the time 67 is removed from the QUEUE, node 6 MUST have been

put in the labeled tree in every forest. The reason is that 36

was already removed from the QUEUE, and the path around that

edge put node 6 in the labeled tree in each forest.

Later in the running of the algorithm, the labeling

algorithm might ask for the path from 9 to 1. As we claimed,

70

one of the nodes is already in the labeled tree. We simply

start to look at the path from the node that is not in the

labeled tree, toward the root. The path then starts at 9, and

takes a first step of 94. At this point we note that node 4 is

not in the labeled tree, and we continue the path towards the

root. The next step takes us from node 4 via 43. Here we notice

that node 3 is already in the labeled tree (refer to the

previous paragraph) and we stop looking further towards the

root. The reason why we can stop here, even though our task was

to find a path from 9 to 1, is that we know that the path from

this point to the destination node is already fully labeled. We

know this because we have tied into a labeled tree that

includes the destination node, node 1. We would then put the

edges that we traversed onto the QUEUE in order of their

nearness to the root: 43,94.

As a last stage of this example, we might be asked to

label the edges on the path from 9 to 5. As always, one of the

endnodes (9) in this path is in the labeled tree (in this case,

9 is in the labeled tree because the path from 9 to 1 was

labeled in the last paragraph). We then begin to head for the

root from the other node. Our first step is 53. We note that 3

is in the labeled tree and stop looking any further. The point,

of course, is that the remainder of the path from 5 to 9 was

labeled previously (The remainder is 34, 49. This was labeled

in the last paragraph). We would then put the edge that we

. °. -. I =Now

71

traversed (53) onto the QUEUE.

This example demonstrates that the method given

requires a constant amount of processing time for each edge put

on the QUEUE, in each forest that processes it. This time is

independent of the path lengths, as we can count time both

getting onto the QUEUE and being removed from the QUEUE as the

service time ascribed to each edge that is processed. This

constant amount of processing time is sharply contrasted with

the time it might take if we did the following: For every edge

that is removed from the queue. find the entire path between

the endnodes of that edge, and put any new edges found in that

path on the queue. Since a path may be of length n-1 (n is the

number of nodes in the network), the processing time (using

this inferior method) would be O(n) per edge removed from the

queue, per forest that it is processed in.

In order to be able use the above method we must

precalculate the directions to the current root in each forest.

PRECOMPUTATION OF THE DIRECTION TO THE ROOT

This section must, every time we choose a new edge to

start an augmentation seauence. for each forest, precomDute the

direction to an arbitrary root node from every node in the

m-67

72

network. The root node that is chosen is always one endnode of

the edge that we wish to start the augmentation sequence with.

d "For simplicity, we will only demonstrate the algorithm's use

with one of the forests. If this multiple spanning tree

algorithm was actually implemented, we would execute this

procedure on every one of the forest's list of edges.

We will assume that we have a list of edges E(1),...

E(p) for the forest that we are working with. We will show how

to create a data base such that, if some node x is connected to

the root node in this forest, then a function call of the form

DIRROOT(x) will return the next node in the path to the root.

To remain well defined in all cases, if DIRROOT is given the

name of the root as its parameter, it will return the name of

the root. Since the root is arbitrary in this section, we

assume that this data base is produced by a subroutine call of

the form PRECOMPUTEROOT(y), where y is some node in the

network.

We will start by defining the function call

DIR ROOT(x). This function will use the data base to find the

direction to the root from the given node (which is specified

by an integer from 1 to n). All values of this function are

precomputed, and the execution of this function takes constant

time, as it is nothing more than a table lookup.

60 73

The simplicity of the DIRROOT() function call tells us

that all the work is done in the precomputinq of the table. The

basic way that we deduce the table from the list of edges is as

follows. First we scan down the list of edges once to create

for each node, a list of neighbors of that node. Now that we

have the edge information in this form, we just slowly traverse

the tree. starting at the root. marking each step we take in

the array PATH. We actually perform a breadth first traverse of

the tree, and hence we first put all the correct entries in

PATH for all nodes that are one hop from the root. then for all

nodes that are two hops away, etc. The exact algorithm is as

fol lows:

PRECOMPUTEROOT(x)

'For now. just remember that x will be the root.

DIMENSION PATHEn] 'Declare PATH to be an array with

n entries

DIMENSION NEIGHBORS[n] 'This is an array of queues

of neighbors

'Which initially must all be empty.

FOR i=1 to n

NEIGHBORSriJ <-- EMPTY

NEXT i

74

'Start by running through the list of edges and

'building up the lists of neighbors

FOR i-l to p 'There are p edges

'If an edge a connects nods y to nods z, then

'we define Ni(e) to be y, and N2(e) to be z.

ADD Nl(E(p)) to the queue NEIXHBORSEN2(E(p))]

'The first node is the neighbor of the second

ADD N2(E(p)) to the queue NEISBORS[Nl(E(p))]

'..the second node is a neighbor of the first

NEXT i

'Now that we have lists of neighbors, we can start to

'set up the PATH array.

FOR i 1 TO n

PATHEi] <-- 0 'Mark each entry as uninitialized

NEXT i

PATHCx3 <-- x 'The path to the root is defined to be

'the root

'Start our queue with the only node that is "no" hops

'from the root...

PATHQUEUE <-- x

LOOP:

r9

y <-- next nods name in PATHQUEUE 'Get ready to

'process a new nods. Note that this

'operation removes y permanently from

'PATHQUEUE (i.e. a pop operation)

INNERLOOP:

IF NEISHBOR~y] is EMPTY THEN 'if there are no

more neighbors

SOTO ENDINNERLOOP

z <-- next node name in NEIGHBORCy] 'Get the name of a

"neighbor

IF PATHz]-O THEN ' Make sure that its not

E 'yet initialized

PATH~z] <-- y 'The way to get to the root from

'node z is to go to node y.

ADD z to the PATHQUEUE

END_INNERLOOP:

IF PATHQUEUE is not empty THEN 'See if we've processed

'everything

SOTO LOOP

To analyze the computational comple ity of this

procedure, we note that we start by running through the list of

edges in this forest. Since there can be no more than n-1 edges

in a forest with n nodes, this section takes no more than 0(n)

76

work. We also see that there are two additional entries made in

the NEIGHBORS list for each edge that we look at. Hence there

are no more than 2(n-1) entries ever made in the NEIGHBOR list.

We also note that an entry is made into the queue PATHQUEUE

during the looping section only when an entry is removed from

the NEIGHBOR list. Hence no more than 2(n-1) entries can be

added to PATHQUEUE. Every time we pass through the bottom

section of the procedure we delete an entry from the either

the PATHQUEUE or the NEIGHBORS list (or both). Hence the bottom

section can be executed no more than O(n) times. Hence the

total work done to precalculate the entries in PATH is of O(n).

We recall that this procedure must be run on each of the k

forests, and the grand total of work done in precalculating the

direction to roots in all the forests is O(kn).

COMPUTATIONAL COMPLEXITY

Before developing more efficient versions of this

algorithm, we should evaluate the time complexity of the

algorithm thus far.

Section A performs the initialization of F to an empty

set, and starts all k of the forests F(i) also as the empty

set. Initially none of the forests have edges, and the greedy

algorithm starts F as an empty set (which is by definition

I

77

independent). This section takes a time proportional to k, ard

calls B once.

In section B we pick out unused edges to try to augment

F. Section B relies on the fact that once the algorithm finds

that the edge cannot be used to augment F, it will never be

useful to augment F. For this reason, section B sequentially

selects no more than m edges (m is the number of edges in the

entire network). Hence this section runs in O(m) time. For

every edge that section B looks at, section C is called to see

if the edge can be used.

Section C is titled "Test for Independence". Section C

initializes all the dynamic data structures for section D to do

the actual work. This initialization work consists of marking

every edge in every forest as unlabeled, performing the

pre-order calculation (to assist labeling section), and

clearing the queue to include only the edge that we are trying

to augment F with. The number of edges that get marked varies

from 0 (at the start of the algorithm) to k(n-1)-1 (near

completion of the algorithm). Hence the marking operation takes

an average of O(kn) time. The pre-order calculation, as

mentioned in its section, takes 0(kn) time to compute. The

clearing and reinitializing of the queue takes a constant

amount of time. Hence EACH run of section C takes 0(kn)

7

: 78

processing time in toto. Being called O(m) times by section B,

section C runs in total 0(mkn) time, and ca'ls D once each run.

Section D (Labeling Step) is where mach of the work in

this algorithm takes place. For every edge that gets taken from

the QUEUE, this labeling section reruns itself. In the worst

case, all edges in all forests can be placed on the QUEUE.

Since each forest can have as many as n-1 edges, and there k

forests, O(kn) edgev might be placed on the QUEUE, and hence

O(kn) reruns of section D could occur. Within this labeling

section, work is done for each edge that is removed from the

QUEUE. This work is dcne for all forests (k of them) and
I-

consists of doing a couple of FIND's (O(FIND) work) and some

work to label the path around each edge. The work to label the

path around an edge can be thought of as constant. (There is a

constant amount of needed time to start the labeling process

for each edge, and a constant amount of time needed to put each

edge onto the queue. 3o we have that that the processing which

is done in this section for each edge that finds it way ontoq
the QUEUE amounts to O(k)O(FIND) for processing as the edge is

removed, and some constant processing time as the edge is added

to the QUEUE. So we have that each call of section section D by

section C will take O(kn)O(k)O(FIND) processing time. Hence the

labeling section D takes D(m)U(kn)O(k)O(FIND) time (as sectiun

C calls section D a maximum of m times).

0

79

Finally now we look at sections E and F. The algorithm

executes these sections each time an augmentation sequence is

found. The length of the augmentation sequence governs the

amount of processing done in these two sections. A worst case

scenario would have all augmentation sequences use all the

edges in all the forests. As mentioned earlier, the number of

edges used by all the forests varies from 0 (at the start of

the algorithm) to almost k(n-1) (near the end of the

algorithm). So we see that the average augmentation sequence

could have length O(kn) edges. This result tells us that the

processing done in the looping sections E and F can be no more

than O(kn) per call. We should also recall that a UNION

operation was added just before the "AUGMENT LOOP" statement in

section F (this statement updates the FIND-UNION data

structure as to the augmentation). The total work done in

sections E and F is then O(kn) +O(UNION) for each call. Each

augmentation increases the size of F, and hence these sections

can be called no more than O(kn) times (there are k(n-1) edges

in k edge-disjoint spanning trees). The total amount of work

done in these two sections is then O(kn) (O(kn)+O(UNION)). (The

work to do a UNION is O(UNION)).

The total running time for the algorithm is then:

O(kn) C O(kn) + O(UNION) + O(mk)O(FIND) 3

I• - , . . - .. .

80

As is shown in Appendix B, it is quite easy to get a UNION-FIND

pair such that O(FIND) is constant, and O(UNION) is O(n). The

above complexity then reduces to:

O(knkm).

THE "CLUMP" STRUCTURE

Now we will reduce the complexity of the algorithm

described up to this point. We start by recalling that whenever

the algorithm discovers that an edge cannot be used, it

completely empties the QUEUE. The fact that the QUEUE was

emptied implies (see the previous theorem) that we have found a

set of nodes that are spanned by labeled edges in every forest.

This fact is sufficient to guarantee that the original edge e,

that started the labeling algorithm, was not independent of the

current F. Lets call a set of nodes that are spanned in every

forest F(i), by a subtree of that F(i), a "clump". If we think

about this clump for a second, we realize that any edge that

has both of its endnodes in a clump, cannot be independent of

the current F.

As an example of the above structure, consider the

following fully connected (every node is connected to every

other node) network with six nodes. The algorithm is trying to

0

81

find two edge-disjoint spanning trues. The algorithm has

already placed nine edges into the forests, and the forests

currently look like:

F(1) F(2)

The algorithm just tried to augment the forests using the edge

e26. Tnis resulted in the labeling of edges 12,14,34, and 34

in forest F(1), and edges 13,23,24, and 46 in forest F(2). The

algorithm then realized (as it emptied the QUEUE) that the

addition of e=26 to the set F (namely: (12,13,14,23,24,34,36,

46,56)) produces a dependent set. The greedy algorithm

guarantees that link 26 will not be independent of F in the

future. The clever structure to notice is: not only will any

link that connects node 2 to node 6 prove to be a dependent

addition to F, any node that connects any two nodes in the

clump of nodes (1,2,3,4,6) will prove to be a dependent

addition to F! In this particular example, a clever algorithm

would not even bother to try to augment F with link 16, as it

82

is totally within the clump. In a more general example, the

savings will be shown to be quite significant.

We will now present a few theorems about clumps that

allow us to use this structure to our advantage.

Theorem: If a set of nodes C is a clump for the current F, and

F is augmented using a minimal augmentation sequence, then C is

a clump of the augmented F.

Proof: We simply assert that none of the edges that

interconnect any of the nodes of C (in any forest) can be in

the augmentation sequence. If we show this assertion, then it

will be impossible for any of the edges that interconnect nodes

of C to be removed from any forest by the augmentation process.

Since these edges remain intact in all forests, C must remain a

clump. The proof of our assertion is by contradiction: Suppose

a minimal augmentation sequence exists and the i'th edge has

both endnodes in C. Since all nodes in C are connected in every

forest by edges (there is a subtree in every forest that spans

C) we see that all the endnodes of edge's in C~e(i),F(j)3 are

also in C. Hence by induction all later edges in the

augmentation sequence have both endnodes in C. This contradicts

the definition of an augmentation sequence that states that the

83

last edge in the sequence has its endnodes in separate trees in

some forest.

Now that we have a theorem that states roughly: "once a

clump, always a clump". we are in a position to prove a theorem

that will allow us to make great use of a clump's structure.

Notice that it is no longer necessary to proclaim a set to be a

clump relative to the current F, and this fact is used in the

next theorem.

Theorem: If two sets of nodes A and B are clumps, and there is

a node p that is common to A and B, then the set union A+B is a

clump.

Proof: It is necessary to show that there is a subtree in every

forest that spans A+B. Since forests have no cycles, it is

sufficient to show that a path exists between any two nodes in

any forest. Consider any two nodes q and r, that in are A+B.

Without loss of generality let us fix our attention on some

forest F(J). Since each of our two nodes is in A or B (

non-exclusively), and both A and B are clumps, there must be a

path in F(j) from q to p, as well as r to p. Using the

transitivity of paths, we have a path from q to r in F(j), and

we are done.

..

84

Having established these properties of clumps, it is

clear that we would like to check to see if an edge a is in

some established clump before we try to base an augmentation

sequence on it. As we have said, if both endnodes of some edge

a are in a clump, then F+{e) must be a dependent set. This test

would go in section B, just before the "OSUB C".

Before we actually describe the modifications to the

algorithm, we should mention how we can keep track of the

clumps. The method is to be a set union algorithm, as we have

already shown that existing clumps can be automatically

combined by a set union of the clumps. The question: "In which

clump are the endnodes of a given edge?", can then be reduced

to a FIND of the canonical node for the clump. We then make use

of a standard FIND-UNION subroutine pair to do the work.

For the purposes of the complexity bound, it is not

necessary to maintain a perfect representation of all sets that

can be deduced to be clumps. It is is sufficient to maintain a

coarser structure which is easier to maintain. For example,

suppose our algorithm found out that the set of nodes (1,2,4,6)

formed a clump, as a consequence of trying to use the edge 12.

Our algorithm will only bother to record the fact that (1,2) is

a subset of a clump. This act of discarding information, (in

"". ." -. hol..'- " "- . . .I " I - " . .: i s"1

85

this case, that nodes 4 and 6 are also in the clump), will make

the computational complexity easier to analyze, and not effect

the asymptotic results. Note that having a coarser structure

will simply cause the algorithm to look for an augmentation

sequence even though perfect deduction (via clumps) would have

eliminated the possibility of finding such a sequence.

Specifically the union operator is added in section 8 as:

let pq be the endnodes of a "The original edge

CLUMPUNION(pq) "Don't bother with the other nodes in

the clump

Due to the fact that we don't bother looking for all the other

nodes to perform the appropriate union, the complexity analysis

becomes very simple. Since there are only P nodes, we can do at

most n-1 CLUMPUNION's. After that point it must be the case

that the entire network is one clump. This would mean that we

have found k spanning trees!

The checking of an edge to see if both endnodes are in

the same clump is done in section B, just before the "80SUB C".

the exact statements would be:

Let pq be the endnodes of e

IF CLUMPFIND(p) - CLUMPFIND(q) then goto next a

"don't bother to look at this edge,

F+{e) is dependent

• -. - ,

86

COMPUTATIONAL COMPLEXITY - USING CLUMPS

The new complexity calculation shows that section C,

which formerly could be called m times, can now be called only

k(n-1) times for successful augmentations, plus n-1 times that

clumps are united. Hence section C is only called O(kn) times.

The net complexity is then

0 (m) 0 (CLUMPFIND) +

0(n) 0 (CLUMPUN ION) +

O(kn) [O(kn)+O(UNION)+O(nkk)O(FIND)]

Using tvle FIND-UNION pair that runs in 0(1) and 0(n)

respectively, and identical algorithms for

CLUMPFIND-CLUMPUNION, we then get:

2 3
O(m + n k

If there is no more than I edge connecting any two nodes, we

have that:

2 2 3
0(m) < 0(n), which reduces the above complexity to O(n k).

CONSTRAINED MINIMAL AUGMENTATION SEQUENCES

The intent of this section is to achieve a factor of k

speedup in the algorithm just presented. As motivation for this

potential time savings, we offer the following example of a

'4 87

segment of our algorithm trying to find 3 edge-disjoint

spanning trees. The algorithm is working on a network with 7

nodes. The algorithm has already placed 17 of the necessary

18 (7 nodes imply 6 edges per tree) edges in various forests.

We show below the state of the algorithm by showing the 3

* forests that are currently being examined.

The next edge to be tried is 23. The algorithm first tries to

use 23 in each of the forests. In the first forest the

algorithm cannot use 23, so it puts edge 26 and 63 (the path

around 23) on the QUEUE. Similarly the algorithm tries to use

23 in the second forest, and adds 24,46,61, 15,53 to the QUEUE.

* The attempt at using 23 in the third forest yields an addition

of 21,13 to the QUEUE.

The QUEUE now contains 26,63, 24946,61,15,53, 21,13. As

* we watch the algorithm continue to perform, we will begin to

88

see the wasted operations. The labeling algorithm now pops the

26 from the QUEUE and tries to use it in all the forests. It is

no surprise that the attempted use of 26 in forest 1 is

unsuccessful, and causes no other edges to be put on the QUEUE.

The edge 26 was generated by forest 1, and the algorithm

probably should avoid even trying to use it in such a forest (a

small bit of waste). The use of 26 in forest 2 yields no new

edges on the QUEUE. Using 26 in forest 3 adds 65,54,43 to the

QUEUE (Note: 21,13 are already on the QUEUE).

The QUEUE now contains 63, 24,46p61,53, 21,13, 65,54,

43. This stage of the algorithm then tries to use the edge 63.

We can tell in advance that this stage will be a total waste of

time! Careful checking of this prediction shows that the edge

is not of use in any of the forests, and it causes NO additions

to the QUEUE. The reason for our prediction is that edges 26

and 23 were already considered in all of the forests. Hence all

the edges on paths from node 2 to 6, and nodes 2 to 3 are

already on the queue. By transitivity of paths, all edges on

paths from nodes 3 to 6 must already be on the QUEUE!

We will not proceed further with the algorithm, as we

have already illustrated our point.

A 89

REMOVING WASTE

The question is then raised: How we can keep from

performing such "wasteful" steps? there are two possibilities:

1) If we are going to check every edge that comes off

the queue in every forest (eg: we checked 23 in every

forest), then we should not put ALL the edges that are

in a path around that edge (eg: the path around 23 in

the first forest consisted of 26,63) on the QUEUE.

2) If when we remove an edge from the QUEUE (eg: 23) we

are going to put all the edges in the path (eg:26,63

for the first forest) on the QUEUE, then we shouldn't

bother to check to see if the original edge (eg: 23)

was useful in all the forests. Instead we should rely

on the fact that the edges in the path (eg: 26,63)

around our test edge will be effectively tried in those

other forests!

MODULO K FORESTS

Of these two possibilities, we will pursue only the

latter. It is very easy to impliement, and equally easy to

analyze. The idea is simply that when the labeling algorithm

pops an edge from the QUEUE, it should check to see only if it

is useful in the forest after the one it came out of (modulo

90

k). Instead of checking for usefulness in k forests, we need

look only in one forest (a factor of k savings). The modified

algorithm would have a labeling algorithm that would look like:

D) labeling step

If QUEUE is empty then goto 8 'cleanup, F+{e)

is dependent remove the next e' from QUEUE

let j be the index of the forest containing el

use j-0 if e' is not in any forest "the

original edge isn't in a forest

let i <-- (j mod k)+l "the next forest: O<i<k+l

If the endnodes of a' are in different

trees in F(i)

then goto E "augmentation found

L' <-- C(e',F(i)) "the path around e'

Label any unlabeled edges in L' with a'

Add " y edges that we Just labeled to

the QUEUE

goto D "try this labeling step again

What we have thus removed is a direct factor of k work from

this section of the algorithm. As we saw earlier, this is the

key section of the algorithm in terms of complexity.

Although this forementioned change improves the

91

algorithm's computational complexity, it has changed the

algorithm and, therefore, it remains to prove that this

modified algorithm will still perform correctly. This algorithm

K still produces minimal augmentation sequences when it finds a

-sequence, as we have only further constrained the previous

conditions (In addition to the five conditions that define a

minimal augmentation sequence, we have the added constraint

that n(i) is congruent to i, modulo k) Hence any augmentation

I sequence that is found can be used to augment the existing

forests. It remains to show that when no such constrained

*minimal augmentation sequence can be found by the above

process, then the set F+(e) is dependent.

CORRECTNESS PROOF

The proof of this fact uses the same main theorem used

earlier in the thesis. Only the proof of the first lemma needs

to be changed slightly.

Lemma: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, tnen any node that is

adjacent to a labeled edge in one forest, is adjacent to a

labeled edge in every other foremst.

Proof: Every labeled edge was put in the QUEUE. Ee r r u

-- " . . . " "i9I IlIIi'

D-Ai 34 378 EDGE DISPLAY SPANNING TREES AND
RECOVERY IN DATA 213-

COMMIUNICATION NETNORKS(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR INFORMATION AND D. J A ROSKIND

UNCLA5SIFIED OCT 83 LIDS-TH-i332 N@@014-75-C-ii83 F/G 17/2 NMIIIEEEEIIE
EhEEEEEEEIIEEE
EEIIEEEEEIhIEE
mEEEIhEEEEEEEE
EEEEEEIhElhhhI

hEEEEEEEEEEEllI.

"4.0

a'a

1.2 1111. 111 .

MIRCP.RSLTO4TS HR

AI~r4L BUEA OFSA32DS 96-

92

the QUEUE was tried in the next forest, and the path around

that edge was labeled in the next forest (as forests are

disjoint, and an edge can only be labeled in its own forest).

Therefore, if a node is adjacent to a labeled edge in one

forest, then it is adjacent to a labeled edge in the next

(modulo k) forest. Repeating this process shows that it is

adjacent to a labeled edge in all k forests.

Lemma: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, then the set of

labeled edges in each forest forms a tree.

Proof: The same proof as was used earlier applies.

Finally now we can show that F+{e) must be dependent in

this empty QUEUE case.

Theorem: If the above algorithm completely empties the QUEUE

without finding an augmentation sequence, then F+Ce} is

dependent.

Proof: Same as was used earlier.

93

COMPUTATIONAL COMPLEXITY - MODULO K FORESTS

We can now recall the complexity of the algorithm that uses the

clumps structure, and we get the new complexity:

O(m)O(CLUMPFIND)

+0 (n) 0 (CLUMPUNION)

+O(kn) CO(kn)+O(UNION)+O(nk)O(FIND)3

Using the FIND-UNION pair that runs in 0(1) and 0(n),

respectively, and identical algorithms for

CLUMPFIND-CLUMPUNION, we get a complexity:

:2 2

O(m+n k)

PREVIOUS RESULTS

Within the literature we have found algorithms C5,13,

143 which do find pairs of spanning trees in an undirected

" network, when they exist.

The Kameda algorithm algorithm is more complex to

2
describe and is evaluated to run in time O(max(n log(n),mn))

where: m is the number of links, m is the number if nodes. The

Chase algorithm is said to have complexity O(mn log*Cn))

where:
.•

... .

-%-

94

log*(n)-(De4.)l9ast integer i such that log (n)<inl
2

and "log" to the mii, refers to functional composition of log

with itself i times, and then applied to n.

In comparison, our algorithm to find two edge edge

2

disjoint spanning trees would run in O(n) time.

FUTURE IMPROVEMENTS

There are other potential improvements that may be made

* to this algorithm. To date, none of those improvements have

demonstrably improved the not asymptotic performance. Several

of these improvements are presented in Appendix A.

Roskind' s Conjecture

We believe that further research in this area, along the lines

of the methods of the Appendix A, could produce an algorithm

with performance of better than:

2 2
0(nk n + n k) logckn))

95

Chapter 4

Introduction

To review what we have done thus far, we started out by

examining a couple of failure recovery schemes. We concluded

that there was a gap between algorithms that had post failure

decisions completely precalculated (via predominately static

routing), and algorithms that left all the work to be done

after the failure. To fill that gap we discussed the

possibilities of using precalculated detours. This detour

method could generally affect a recovery when there was the

possibility of only one failure. To accommodate the possibility

of more one failure (between major routing updates), we

considered methods of creating redundant (edge-disjoint)

spanning trees. In chapter 3 we developed highly efficient

methods for finding such spanning trees, and now we will

discuss how they might be used in recovering from edge failures

in network.

RELIABILITY OF K EDGE-DISJOINT SPANNING TREES

*The recovery from "several" arbitrary edge failures

(using pre-computed tree(s)) would require pro-computing

"several" edge-disjoint spanning trees. For example, in order

to guarantee that the edges on the pre-computed spanning trees

could be used to inform every node in the network of k

arbitrary failures, it is necessary to have computed k

edge-disjoint spanning trees. The natural question that might

* ** * *" ** * 4* . -

96

be asked is: For an arbitrary k, what is the mean time to

failure of all k trees, as compared to the mean time to failure

of a single edge? The mean time to failure of all k trees is

significant in that, after all k trees have failed, it is

usually impossible to notify all nodes in the network of an

additional failure via edges of the spanning trees. What this

question addresses is how much failure recovery ability is

gained by adding additional spanning trees. To answer the above

question, we offer the following analysis.

*Assume that the edge failure rates are independent and

Poisson with mean time to failure of M time units. We are

assuming that we have k edge disjoint spanning trees, spanning

the n nodes of the network. We would like to find the mean time

to failure of the set of all k trees. Since there are k

spanning trees, they contain k(n-1) "spanning tree" edges. The

mean time to failure of one of the spanning trees is

M/(k(n-1)), as the failure of any of the significant edges

would cause a spanning tree to break. When the first spanning

*. tree has failed, there are only k-1 trees left, and hence the

are only (k-1)(n-1) relevant spanning tree edges. The mean time

to the failure of ALL the trees is then:

M M M
------ - ----------- + . +--------

k(n-i) (k-i) (n-i) (n-i)

.

97

M 1 1 1 1

-- - * (-- ----------- -

(n-1) k k-i 2 1

M
This sum is bounded above by * log k+l

n-I

If we have 2 or 3 trees already, this analysis shows

that the added complications of using and maintaining
-"

additional trees yields little marginal increase in the

reliability of the set of trees.

NETWORK MODEL

Before we discuss how the edge-disjoint spanning trees

can be put to use in recovery from edge failures, we will

define our network model, and what we mean by "failures". The

- exact model that we will discuss is not the only model in which

edge-disjoint spanning trees might be used, but it is meant to

be a well defined scenario in which we can define explicit

protocols. Several of the assumptions are made to mimic the

paper on "Resynch Procedures..." by Finn [103, which serves as

the basis of much of our protocol development.

We will assume that nodes in the network have error

free processors and storage. We will also assume that all edges

in the network are error-free while they are up (operational).

All edges are either up or down (non-operational). These last

two facts can be guaranteed by a link protocol, at the expense

-4 *.S -A

S98

of having variable transmission delays on each edge. Edges that

are down can carry no information, except test messages

concerning the status of that edge. Edges that are up are

assumed to have some arbitrary capacity and, as we said,

variable transmission delay. An edge may change from up to down

at any point in time, and we assume that the two endnodes of

that edge might not realize this at the same time. We do

require that both endnodes agree that a node is down, and both

endnodes execute a prescribed link level protocol before an

edge can become operational again. The last assumption is that

all packets are received on an edge in the order in which they

were transmitted (packets can't pass each other on a link).

DISSEMINATING EDSE FAILURE INFORMATION

The original reason for developing multiple

edge-disjoint spanning trees was to be able to broadcast the

fact that a failure had occurred. The usefulness of this lies

in the assumption that each node in the network has knowledge

of the pre-failure topology. The statement that "Edge x-y has

failed", is sufficient to inform any node of the post failure

topology. We are using several spanning trees so that after

more than one failure has occurred, at least one of our trees

will be predominately intact. It is necessary then to describe
.4i

a protocol (or distributed algorithm) that will, assuming we

have k edge disjoint trees:

.4.i' . 4

99

1) When fewer than k edge failures occur, all nodes will be

notified (in a communications efficient manner) of

all failures.

2) When moe than k-1 failures occur, but not all of the

spanning trees are affected, all nodes will be

notified of all failures.

3) When "too many" failures have occurred in the spanning

trees (all of the trees are damaged), a "sure fire"

backup method is instigated in each connected group of

nodes. All nodes in a connected network where a "sure

fire" algorithm is active are made aware (or conclude

independently) that such a method is to be used.

The protocol should generally be such that likely events (eg:

single failures or restorals) cause minimal action

(communication), and unlikely events (such as so many failures

that the network becomes disconnected) are permitted to

instigate a lot of work (communications), but must not fail to

perform (no deadlocks or infinite loops, no matter what). An

example of a "sure fire" method to deal with massive failures

would be an algorithm that would flood the network (every node

that receives a "flood message",p retransmits that message on

all other outgoing edges) and reestablishes whatever

connectivity is left in the network. Details of such a "sure

100

fire" method will given later.

A major difficulty with such protocols is getting all

nodes to use the new link level topology information at nearly

the same time. If different nodes maintained different views of

the topology of the network, they might ping-pong a packet back

and forth, having total disagreement as to how the packet

should get to its destination. This synchronization of nodes

will make for some difficulties in the final explicit

definition of our protocol. Many of the complications that

arise in the algorithms are based on this synchronization

problem.

"SURE FIRE" RECOVERY METHOD

There are three major gaps in the protocol that we have

just hinted at. The first question is: How can one reach a

state where every node is sure that all nodes are aware of

exactly the same topology? (We assume that each node has an

internal topology table that all routing is based upon, and

this is what we seek to synchronize.) This first question is

quite significant, as this synchronization is the starting

assumption of the entire protocol. The second question is: What

is a concrete example of a "sure fire" protocol? It is hard to

be convinced that an entire protocol is correct when one part

of it (use "sure fire" method) is not defined. Finally, we need

101

to very explicitly define the entire protocol, so that we can

rigorously prove its correctness. In this section we will

address the first two questions. The explicit definition of the

entire protocol will be postponed until we have discussed, in

looser terms, the way our protocol might use k spanning trees.

The-reason for developing this algorithm was to

synchronize all nodes in their views of the network topology.

Implicit in a link protocol is the fact that each node knows

the local link level topology (re: adjacent nodes). We would

like to prove that when the algorithm terminates, every node

knows the entire link level topology of the network.

Unfortunately, this algorithm cannot lay claim to such an

incredible feat. The fundamental problem with any algorithm

achieving such synchronization is that all information that an

individual node has is (by virtue of the delays in the edges)

information about how the network used to be in the past. We

assume that failures can occur asynchronously throughout the

network, and hence a node can never be sure that the topology

that it has accumulated has not changed. The best that we can

hope to achieve is that we can find a fixed topology that every

node will agree with at SOME point in time SINCE the start of

the algorithm. The reason behind the "some time" statement is

that at least this fixed topology was correct locally (each

node agreed potentially at different times). The reason for the

"since the start" statement is that the nodes then know that

102

local correctness was not that long ago.

The fundamental problems that we Just mentionedo with

respect to what a distributed algorithm may con _ude about a

changing network, extends to what it means for listributed
4-

I. algorithm to end. We can talk about when any on ode stopped

running a given algorithm, or when a specific nt found out

that all nodes have stopped running, or when an omniscient

observer noticed that all the nodes have stopped running, or

when all nodes know that all nodes have stopped running, or

when all nodes know that all nodes know that all nodes have

stopped running, etc. When we refer to the "termination of the

sure fire algorithm", we are describing the point in time when

an omniscient observer has noticed that ALL of the nodes in the

network have stopped running the algorithm. Notice that

individual nodes may stop running at earlier points in time.

Our "sure fire" protocol will, loosely speaking,

terminate execution with all nodes aware of some fixed topology

of the part of the network to which they are connected. More

over, every node will be sure that every other node in its

connected subset of the network has an identical (and correct

in the above sense) view of the topology of the network. Hence,

the "sure fire" algorithm will terminate with the nodes having

exactly the assumptions necessary to begin to make use of the

J

4 4 .

,.4""4" 4 " I
=

"l-~ " I '" # j 'd

103

multiple spanning trees! When we have finished describing the

"sure fire" algorithm, we will have also proved that the

situation is reachable in which all the nodes are aware of the

entire topology of the network (at least the part they are

connected to).

The conditions, again loosely stated, that our "sure

fire" (SF) algorithm will satisfy are:

1) The algorithm may be started asynchronously by any

node(s) in the network when there is . change in the link level

topology around that node. If the topology of th) network

changes (an edge fails) while the algorithm is running, any

node(s) may start a new version of the algorithm.

2) When any node p starts to execute the algorithm, all

nodes that can receive messages from p will be forced to start

the SF algorithm. The remaining c-nditions deal with the

performance of the algorithm after we have stopped haying

link level topology changes.

3) No node may stop executing the algorithm until it is

aware of a jointly approved topology of its maximal connected

subset of the network. By "jointly approved" we mean that for

every node p in this connected set, there was a time (since the

start of this algorithm) that node p agreed with all aspects of

this topology that related to node p (i.e.: what edges are

104

adjacent to it).

4) When a node x stops executing the algorithm, all of

its neighboring nodes will "immediately there after" also stop

executing the algorithm. By "immediately there after" we mean

they will stop execution before they have time to receive any

data packets from node x. (The exception to this would be when

a neighbor starts a new version of the algorithm.)

The idea behind running the algorithm is to determine

what the connectivity is at each node. Condition 1 guarantees

that any node may start the inquiry. Condition 2 guarantees

that every node in the connected subset will assist in this

inquiry. Every node in the connected subset MUST participate in

gathering the information for it to be correct! Condition 2

also guarantees that every node in the connected subset will

update his view of the topology to conform to the results of

this current inquiry (nodes that participate in the algorithm

end up having the same view of the topology). Condition 3

guarantees that each node will wait for the full results of the

inquiry before acting upon the information that is being

gathered. Finally condition 4 guarantees that once a node

begins to act upon the results of the inquiry (by sending out

packets in a direction that is reasonable for the "known"

topology), all the nodes neighbors will be in agreement in

their view of the topology.

105

The "sure fire" j-otocol that we will describe is based

upon algorithm Al of Finn [103. The changes that we have made

will allow the nodes to find out the link level topology of the

network. The logical structure of the algorithm is due entirely

to Finns and we are making no modifications to it at this

point.

The following state information is kept at each node in

the network:

a) M - (Def.) mode of this node: either NORMAL or

RESYNCH mode

b) R = (Def.) The version number of the last SF

algorithm started

c) N(i) - (Def.) iil,...n A table with entries for

each node in the network. This table will

eventually tell which nodes in the network are

connected to this node.

d) L() - (Def.) A table with entries for each edge that

touches this node. The entries contain status

information about each of these adjacent edges.

. ..

106

e) E(ij) (Def.) i and j -l,...n A connectivity

table with entries for every pair of nodes in

the network. Eventually this table will contain

the view of the topology of the network.

When in the past, we have said that the BF algorithm

was "running at a given node", what we meant was that the nods

was in the RESYNCH mode. This mode indicates that the node is

actively participating in the resynchronization of the nodes

"view of the topology" and no data packets are being sent . When we

said that the algorithm "stopped running at a given node"# what

we meant is that the node is in the NORMAL mode, and regular

data packet switching is also being done.

In order to avoid confusion (in the nodes) between

different tries at running this algorithm (that are started at

different points in time), a version number is kept at each

node. This version is basically an integer counter. If, at any

point in time, a node wants to start to run the SF algorithm

all over again, it simply picks a version number that is one

greater than any version number that it has ever heard used.

When a node exchanges information across a link during the

running of the SF algorithm, it includes a copy of the version

number that this information is related to. Using this

protocol, information that would have been pertinent to old

107

versions (and hence is not part of the most recent version) is

ignored.

The node table carries some logical information about

the status of other nodes in the running of the SF algorithm.

If we examine the contents of this table at node J, and we look

at the entry Nip) in this table, we get the following

Information:

If Nip) is 0: Node j does not yet know that there are any

possible paths from j to p.

If N(p) is 1: Node j knows that there is a path from j to p.

(We will be more precise about these paths later.)

If N(p) is 2: Node j knows that there is a path from j to p.

Node p has received (since the start of this version)

responses across all of its adjacent edges that are up.

Hence node p knows exactly what nodes it is connected to by

crossing exactly one edge. Node j has been made aware of

all the nodes that node p can reach in one step, and this

is represented in the table at node j (that is: Since there

is a path from j to p, and p can reach some set S of nodes

in one edge, then there is a path from j to every node in

S. Hence the entries of N (kept at node J) for each node in

S are either 1 or 2).

V'.

108

As we said, the table L() contains entries for each

edge that is adjacent to this node. This table is used to keep

records of the status of the adjacent edges. As we will see,

the table entries are initially set to either "LINK IS DOWN",

or "LINK IS PROBABLY UP". Later in the running of the

algorithm, when a response is received across a link, the

status "LINK IS PROBABLY UP" will be changed to "LINK IS

DEFINITELY UP". This algorithm is made to act in a very

conservative fashion, and verifies all its assumptions (such as

certain links being up) before it records them as facts.

The E(nn) table is not significant to the logical flow

of the algorithm, in that there is never & test made as to the

contents of E. The meaning of an entry E(i,j) in node p, is:

If E(ij) is 1: There is an edge that connects nodes i and j

that "IS DEFINITELY UP".

If E(ij) is 0: Node p is not aware of an edge that connects

node i to node j that is up. If in addition, either of the

entries N(j) or N(i) in node p is a 2, then there is no

edge between node i and j that is up. Note that the table

E(*,*) is symmetric. for purposes of clarity, we will

maintain this entire table.

- . . "'-." '" "'" ." " " ' ' -" ' - '- . " - " f- ... : :, . . . i ' , - " - - ' . ,

109

Having given the reader a preview of what the algorithm

will maintain as variables, we now present the actual

algorithm.

We start by describing the procedure that any node p

that wants to start (or restart) the SF algorithm would do.

This procedure can only be executed if node p is aware of some

change in the link level topology of the network. Until we

introduce the spanning tree algorithm that will work in

conjunction with this algorithm, we will restrict node p to

executing this procedure only if some local topological change

takes place. (i.e. The underlying link protocol tells us that

an adjacent edge has changed from up to down, or from down to

up). Hence when we later prove theorems that assume that there

no topological changes during the period of time being

discussed, this procedure can not be involved. If some node is

in the resynch mode (M-RESYNCH) and there is a change in the

status of an adjacent edge, then that node MUST immediately

execute this procedure.

INITIATE "Sure Fire"

execute at node p

R <-- R+1 'Get a version number that is bigger than

any we've heard of.

.

-7 7

110

M <-- RESYNCH 'we have to put ourselves into RESYNCH

mode, thus starting our own running of

the algorithm

'Now we initialize our tables to run

FOR i-I TO n

N(i) <-- 0 'we are connected to no other nodes,

NEXT i

'except...

N(p) <-- 1 'we are connected to ourselves

'We make no assumptions about the link level topology

'of the network and we initialize it to have no edges.

FOR i-i to n

FOR J- TO n

E(ij) <-- 0 'We don't even assume that we

are sure of the adjacent

(edges) link level topology

NEXT J

NEXT i

'For the final part of the initiation of BF, we must

* 'initialize Lo, and tell all our adjacent nodes to

'run this version of SF.

'Assume that there are q links that touch our node p.

'Hence the L() table has q entries. There are also q

'physical edges that we refer to as LINK(1)p...LINK(q).

'Note that L(i) is an entry in a table, but LINK(i) is

'the actual link as viewed by the underlying link

'protocol.

FOR i-I TO q 'run through all these links

IF LINK(i) is down THEN 'Get the edge status from

'the underlying link

'protocol system.

L(i) <-- OLINK I DOWN" "..remember it, but

'that's all we'll do (ie: look

'at the next link)

ELSE C 'The actual link is viewed as up by

'the link protocol

L(i) <-- "LINK IS PROBABLY UP" 'remember

'and test it out by sending a message

BEND (BF(RNqE)) ON LINK(i)

3 'End the ELSE

NEXT i

WAIT TILL NEXT MESSAGE ARRIVES

In the special case where all links are down, we should go back

112

to the normal mode.

The test message that was sent across each link that was marked

as "PROBABLY UP", identi4ies itself as a part of a specific

version of the SF algorithm. Since this message is sent as part

of the procedure, we expect that the rest of the network will

soon be executing the SF algorithm. This test message then

serves double duty, in forcing all of its neighbors to start

executing the SF algorithm, as well as testing the status of

the edge. We will soon see that upon receipt of this message,

neighbors will soon send a message back over the same edge

(part of the protocol), and hence verify the functionality of

the edge.

The next thing that we must describe is the response of

node p to an arbitrary SF(R'gN',E'). There are several cases,

each of which depends on the version number R, which the node p

currently has. The easiest possibility is the case where the

version numbered in the received message is older than the

current version R (RC<R). In this case the SF message can be

totally ignored, as there is a more current version running (or

a more current version was run).

The next possibility is that the R' in the received

. . .', ...- - -..

~113

message SF(R',N',E')q refers to a more recent version than node

p has heard of (R'>R). In this case, node p must start to run

a SF algorithm with version number R' from scratch. The

procedure that must be run is then:

node p RECEIVED SF(R',N',E') on its LINK(r) from node s

(LINK(r) corresponds to table entry L(r) at node p)

at node p R<R'

node p executes

R <-- RP 'Update our record of the highest version

'number that we've heard of.

M <-- RESYNCH 'Officially start to execute this

'version of SF, no matter what we were

'doing.

'Since we are connected to all the nodes that our

'neighbor (who sent us the message) is, we can load

'its connectivity table for a start

FOR i-n1 TO n

N(i) <-- N"(i) 'Load the table that we received

NEXT I

'Also, we are connected to ourselves

N(p) <-- I

'Our view of the topology is restricted to what was

I -.

V17

114

'Just received in the SF message. So we start by

.- *loading that:

FOR i-l TO n

FOR J-1 TO n

E(i,J) <-- E' (ivj) 'This is what we received

NEXT 1

NEXT i

'We actually have one more bit of informationg the SF

'message that we received had to be sent out after the

'start of this version of the SF algorithm started

'running. Since we received this message directly from
.4

'node s, there must an edge that is up from node p to

*" 'node s.

E(p,s) <-- I 'Record the existence of this link...

E(s,p) <-- 1 '.• in both directions

'The last thing to do is to set up our Lo) table, and

'propagate the fact that version R if the SF algorithm

'is being run.

'Assume that there are q links that touch our node p.

'Hence the Lo) table has q entries. There are also q

'physical edges that we refer to as LINK(1) ... LINK(q).

FOR i-I TO q 'run through all these links

IF LINKi) is down THEN 'I the actual link is

'down,

-. . . - •

115

L(i) <-- "LINK IS DOWN" '..remember It, but

'that's all We'll do (is: look

'at the next link)

ELSE C 'The actual link is view by the link

'protocol to be up

L(i) <-- "LINK IS PROBABLY UP" 'remember

'and test it out (and propagate the

'running of this algorithm) by sending

'a message.

SEND (SF(RgNE)) ON LINK(i)

3 'End the ELSE

NEXT i

'There is actually one edge that we are sure is

'working (since the start of this version. As mentioned

'when we initialized the topology E table, LINK(r) is

'definitely up, as the SF message came over it. So...

L(r) <-- *LINK IS DEFINITELY UP"

WAIT TILL NEXT MESSAGE ARRIVES

We have now describe the exact actions taken by an

arbitrary node p when it receives a message SF(R',N',E'), when

the version number R that is maintained by node p s qifferent

4rom R'. The final case to discuss occurs when R'-R. in this

-9

.1 *.•

116

case node p has already sent out some SF messages with this

version number, and the received SF message is in some sense "a

response" to node p's broadcasts. There are two states that

node p may be in, and these will determine node p's response.

If node p has finished running this version (M is now NORMAL),

then node p can ignore this message, as node p has completed

its work on this version. If node is still running this version

(M is still RESYNCH), then node p must perform the following

series of updates and transmissions. The work that is required

is basically to combine any additional information that arrived

in this SF message with all the information that node p already

had, and then tell all it* neighbor all the information that it

knows. Note that the underlying link protocol will only deliver

messages over edges that it has told us are up. If any edge

status (as determined by the link protocol) changes while a

node is in the resynch mode, then it must go back and execute

the initiate procedure.

node p RECEIVED SF(R',N',E') on its LINK(r) from node s

LINK(r) is up

(LINK(r) corresponds to table entry L(r) at node p)

at node p R - R'9 M " RESYNCH '°

node p executes

'Since we are connected to all the nodes that our

'neighbor (who sent us the message) is, we should

117

'combine this information with what we knew in

'our old N.

FOR i-i TO n

N(i) <--MAXIMUM (N(i), N'(i)) 'This MAX function

'serves to combine the two arrays. Notice that

'if either table was a 1 or a 2, then the

'result was a 1 or a 2. This corresponds to

'either table saying that there is a path to

'node i, so we record in our N table that there

'is a path to node i. Also, if either table has

'an entry of 2, then a 2 is stored into our N

'table. This corresponds to the case where one

*of the N tables carries information that says

'all the connectivity data about that node is

'contained elsewhere in that table. Since we

'are copying all the connectivity data from

'both tables, it is correct to put a 2 into our

'N table as well.

NEXT i

'LINK(r) is definitely up, as the SF message came over

'it. So...

L(r) <-- "LINK IS DEFINITELY UP"

FOR i=1 to n 'Run through the entire table

FOR j=1 to n

E(itj) <-- MAXIMUM (E(ij)E'(ipj)) 'Here we

'are simply saying that if either E or

'E has definite information about two

'nodes being connected# then we should

'remember that those two nodes are

'connected.

NEXT j

NEXT i

'We actually have one more bit of information, the SF

'message that we received had to be sent out after the

'start of this version of the SF algorithm started

'running. Since we received this message directly from

'node s, there must an edge that is up from node p to

'node s.

E(ps) <-- 1 'Record the existence of this link...

E(s,p) <-- 1 '.. in both directions

'The next thing we have to do is see if WE know (via E

'table) about all the topology that touches us. To

'check on this we have to see if all the entries in L()

'are "DOWN" or "DEFINITELY UP" (i.e. check to see that

'none of them are still "PROBABLY UP").

'Assume that there are q links that touch our node p.

'Hence the L() table has q entries. There are also q

'physical edges that we refer to as LINK(1),...LINK(q).

FOR i-1 TO q 'Run through the table

IF L(i)="LINK IS PROBABLY UP" THEN 'If we are not

sure of our adjacent edges...

SOTO BROADCASTSTAGE 'then lets get on

with things

'Since we haven't found an indecisive edge yet,

'try the others

NEXT i

'All the L table entries must be decisive, hence we do

'know all about our local connectivity. We have to

'record this fact in the N table.

N(p) <-- 2 'We (node p) are sure of the local

'connectivity and have the appropriate

'entries elsewhere in N to represent

'this.

BROADCAST-STAGE:

'As with all the responses, we must broadcast all the

'information that we have to all our neighbors.

'If we have made no changes to our tables, then the

'following broadcasts are not necessary.

FOR i=I TO q 'run through all these links

IF LINK(i) is UP THEN 'If we've been acting as if

.'. .

120

'this link is up...

SEND (SF(R,N,E)) ON LINK(i) 3 'Broadcast

'across that link

NEXT i

'There is now the possibility that all the entries in N

'are zeroes or twos. This would mean, as we will prove

'shortly, that the topology in E is totally correct

'(for our connected subnet), and the set of non-zero

'entries in N correspond exactly to the the set of

'nodes in our connected subset of the network. This

'would also mean that we have completed the algorithm.
'p..

FOR i-1 TO n 'Look through

IF N(1)-I THEN 'If we find a one, then they're

'not all 0 or 2

SOTO CONTINUERUNNING

'Otherwise, keep checking the list

NEXT i

'All the entries in N must be 0 or 2, so we terminate

'running by going into the normal mode

M <-- NORMAL

121

CONTINUERUNNING:

START TO PROCESS NON-SF PACKETS

CORRECTNESS PROOF OF THE SF AL.GORITNM

Each of the proofs that follows will start out with

some elementary discussion, and progress to the point where a

series of very carefully stated theorems can be shown. We have

endeavored to exercise the greatest care when a proof was

complex, and the least rigor during the preliminary

(motivating) discussions. We hope that this format will both

prove correctness to the reader that scrutinizes the text, and

at the same time explain it to the casual reader.

We will now give a proof of the correctness of the

above SF algorithm. We define "correctness" to mean that all

four conditions that were given at the start of this section

are satisfied (re: any node(s) can start the algorithm,..., all

nodes become aware in their E table of the topology of their

connected subset, etc.).

It is common, in the proof of an algorithm, to show

that the algorithm always terminates. We have defined

"terminates", with respect to our algorithm, to mean that all

nodes in the connected subset that is running the SF algorithm

have returned to the normal mode (M-NORMAL). In the case of our

SF algorithm, it is not possible to show that it always

122

terminates. The algorithm restarts a now version of itself

every time there is a link level topology change. If the link

level topology continues to change (rapidly) then the algorithm

may never terminate. What we do expect from this algorithm is

that: if the link level topology doesn't change for some

"sufficient" length of time, then the algorithm will terminate.

Lemma: If a node p sends a message SF(R.-,-) on edge p-q, then

either: a message of the form SF(R,-,-) will be (or was)

received on edge q-p of the form SFCR,-,-) OR node p will run a

version of the BF algorithm with a version number greater than

R. (We will use "-" in such transmissions to ean unspecified,

and of no significance.)

Proof: We start by noting that if edge p-q changes status at node p to

down, then the definition of the SF algorithm requires that

node p execute the "Initiate" procedure This would imply

execution of version R+I of the SF algorithm, and we would be

done.

If on the other hand the edge p-q did remain up as

viewed by the link protocol, then the link protocol guarantees

that the message will be (or was) received, and node q can

still send messages on edge q-p. We then would have the

following possibilities. Node q must either be running some

A "

123

non-SF algorithm, running a version R' of the SF algorithm

where R'<R, running version R of the SF algorithm, or running

version R''>R of the SF algorithm. In either of the first two

cases, the node q will, upon receiving the message from p,

immediately start running version R of the algorithm, and send

to all its neighbors (including node p) the message SF(R,-,-).

If a neighbor q of node p is already running version R, then q

must have sent a message SF(R,-, -) to all its neighbors

(including p), when it started version R. Hence in these cases,

node p must eventually receive messages SF(R, -,-) from node q.

Lastly, if node q is executing version R'' of the SF algorithm,

then it must have sent a message of the form SF(R'',-,-) to

node p. Once node p gets such a message (note that R''>R) it

must execute (or be executing) a version of the S algorithm

with a higher version than R.

End of proof

If we look back at the definition o+ the SF algorithm

we notice that if some edge e is considered to be down by the

underlying link protocol, at node p, when node p first starts

version R, then node p will never send (and has never sent) an

SF(R,-,-) message on edge e. Suppose then that we have two

neighboring nodes, p and q, that have an edge a between them.

Further suppose that both p and q are running the same version

R, but when they each started that version they were told

different things about the status of a by their respective link

124

protocols (p was told that a was up, but q was told that a was

U" down). From our initial comment in this paragraph we know that

node q will never send an SF(R,-,-) message over e. From the

definition of the SF algorithm, we know that node p has tried

(or will try) to send an SF(R,-p-) message. By applying the

above lemma, we then know that node p will eventually run a

higher version of the SF algorithm. We are, in our analysis,

trying to focus on the version of the SF algorithm that might

allow the entire SF to terminate. We would like to avoid being

distracted in our proofs by nodes that cannot possibly return

.to the normal mode during this version (such as node p in the

above example) We would also like to avoid the distraction of

adjacent nodes that "claim" that they are connected (node p

claims that it is connected to q in this version) to the set of

nodes that we are concerned with. These "claims" can be made

despite the fact (known to an omniscient observer) that they

will never interact via that connection during that version (in

our example above, q will not reply during this version). For

this reason we will consider two nodes to be "directly version

R connected" iff they have an edge between them that each node

agreed was up when it began version R. We can then consider a

"maximally connected subset" of nodes in the network that are

all running the same version, based on this notion of "version

R connectivity".

Lemma: In a maximal connected subset S of the network, if

version R of the SF algorithm is running, then either the SF

o- .

125

algorithm will terminate, or a version of SF with a version

number greater than R will be run.

Proof: By contradiction: Assume that version R was run, no

greater version ever gets run in 5, and the SF algorithm never

terminates. Since version R was running at some point, there

must have been some node(s) that started this version R. When a

node p first starts running version R it sends a message SF(R,

-p-) to all its neighbors.

Making use of the previous lemma and the assumption

that no version greater than R is run at node p, we can

conclude that node p must eventually receive messages SF(R,-,-)

from all its neighbors. Note that there is no provision for any

node to decrease the version number o+ the SF algorithm that it

is running, hence node p will be running version R throughout

the receipt of all these SF(R,-, -) messages. There is no

facility to change a "DEFINITELY UP" value of any L() at node p

to a "POSSIBLY UP", and each time SF(R,-,-) is received from a

new neighbor, another element of L() is changed to a

"DEFINITELY UP". Finally, when the last of node p neighbor's

(that was sent the original version R message by node p) sends

p an SF(R,-,-) message, the last entry of "POSSIBLY UP" in L()

will be changed to a "DEFINITELY UP". With all the entries in

L() at node p having decisive values, the algorithm calls for

I.

i -

126

N(p) to be given the value of 2. Node p then transmits to all

its neighbors the message SF(RN,-), with N(p) -2.

We now have that every neighbor of p will eventually

receive a message SF(R,N,-) with N(p)-2. The first time each

neighbor p" of p receives a message SF(R,N',-) with N'(p)-2, it

must set the value of its NI"(p) to 2, and must send to all its

neighbors a message SF(R,N'',-), with N''(p)-2. Similarly, the

neighbors of neighbors of node p must set their N"''(p) to 2,

and continue the process. Eventually every node p" in S must be

running version R with their N' such that N'(p)-2.

Since the above argument could have been done with any

p in the set S, we can conclude that for every p and p' such

that nodes p and p' are in S, we will eventually have that

N(p')-2 in node p.

Now since we assumed that this algorithm did not

terminate, there must be a node p' in S that is not in the

normal mode at this point. For p' to not be in the normal mode,

there must be an entry N'(q)-l at node p'.Since all the entries

in N' that correspond to nodes in S are 2, we know that node q

is not in S. Let node p be the first node in S to have N(q)-I

during the running of version R of the SF algorithm. When node

p first started running version R, it initializes all entries

127

of N to a value of 0 or the values supplied by some adjacent

node. Since node p is the first node in S to have N(q) -1, and

S is the maximal connected set, we know that N(q) was initially

set to 0 at node p. There must then be a subsequent point in

the algorithm that allows node p to change N(p) to 1, despite

the fact that it only receives SF(RN',-) with N'(q) -0. The

only way node p can change an entry in N when it receives such

messages is when it is changing N(p). Hence p must be the same

as q, which contradicts the the fact that p in is S and q is

not.

End of proof.

Theorem: If there are no changes in the topology according to

the link protocol after time t in some maximal connected subset

S of the network, and R is the largest version number being

used by any node in S at time t, then the algorithm will

terminate with a version number of R.

Proof: If there are no further topological changes, then there

is no facility for increasing the version number (i.e. we have

no reason to execute the "Initiate" procedure). Hence no

greater version than R can ever be run after time t. Combining

this with the previous lemma gives the desired result.

End of proof.

128

So we have now shown that if we stop having link level

topology changes in some maximal connected set of nodes, then

the SF algorithm will 'eventually" terminate. It follows then

that if we don't have any topological changes in a maximal

connected set of nodes for a "sufficiently" long period, then

the algorithm will terminate. We see that this follows as: if

we wait a "sufficiently" long time without a failure or

restoral, then the algorithm will have "eventually" terminated.

Now that we have some proof about the fact that the SF

algorithm terminates, it is reasonable to talk about the state

of the nodes when it does terminate. Hence forth, in our proof

of the correctness of the definition of our SF algorithm, we

will center our discussion on version R, which is active when

the SF algorithm next terminates. We will also restrict our

discussion to the connected set of nodes S that are running

that version R. Our proof will now go through the four

conditions that we stated at the start of the SF algorithm

section.

The first condition stated that it must be possible to

start the SF algorithm asynchronously at any node(s), and

restart it at that node as a whole new version if there is any

link level topology change before it terminates. Looking back

129

at the algorithm, it is clear that we have provided procedures

that start and restart the algorithms. This claim is not a very

large point, as we have not yet proved what happens when the

algorithm is started.

The second point begins to address what it means to

"start" the algorithm. Specifically, the second condition says

that once any one node starts to run the SF algorithm, all

nodes that can receive messages from p will be forced to start

the SF algorithm. This feature follows directly from the

definition of the SF algorithm. Whenever a node starts the SF

algorithm, it sends out SF(-, -,-) messages on all its edges

that are up to all of its neighbors. This message will force

the neighbors that actually receive it (those that the starting

node can communicate with) to run the SF algorithm (if they

aren't already).

The real reason for the previous condition was to

guarantee that when we apply the theorems that assume "maximal

connected set S...", we will be able to prove that all nodes in

S are running the algorithm. The remaining conditions deal with

the performance of the algorithm after we have stopped having

link level topology changes.

Condition 3. non-rigorously stated is that:

130

. No node may stop executing the algorithm until it is aware of a

jointly approved topology (E table) of the network. By "jointly

approved" we mean that for every node p that is mentioned in

this E table topology, there was a time (since the start of

this algorithm) that node p agreed with all aspects of this

table that related to node p (i.e.: what edges are adjacent to

it) . °

The topology that our algorithm produces is E(*,*). We

have to show two things about this topology. We must show that

the same topology is generated at every node, and we must show

that this topology was "approved" by each node in this

connected subset.

As before, we will focus attention upon version R of

the SF algorithm. We start by exaening the values of E in node

p, right after it has completed tr:r procedure (except possibly

going into normal mode) that changed he value of N(p) to 2.

(Note that node p is the first node that can change N(p) to 2.

All other nodes must wait till they receive a message SF(R,N',

-) with N" (p)2.)

Since we know that the SF algorithm will terminate with

9

131

this version number, we know that there will be no actual &ink

level topology changes around node p, from the time it begins

version R, to the time it enters the normal mode. (Otherwise

rode p would start a new version, and prevent termination with

this version.)

By looking at the procedure that changed N(p) to 2, we

see that all entries in L() at node p (which correspond to the

edges adjacent to node p) must have been marked either "DOWN"

or "DEFINITELY UP" to allow this change. Suppose an edge e

- adjacent to p was up during the running, by p, of version R. We

are guaranteed by the way the SF algorithm has node p start

version R, that this edge was marked "POSSIBLY UP" in that

start up procedure. There is no place in any of SF's procedures

that a node could possibly change a "POSSIBLY UP" to a "DOWN"

in the same version. Hence this edge must be now marked

"DEFINITELY UP". Every time an edge is marked "DEFINITELY UP",

the corresponding entry in E is changed to a 1. So we have that

as a consequence of edge e being up (for the duration of node

- p's run of version R), there must be a corresponding entry of 1

in E here at node p.

Suppose that the entry E(p,q) (or E(q,p)) is a 1. The

- first node that could have had an entry of E(p,q)-l must be

either node p or node q. In either case the first node to

r

132

change E(p,q) to a 1 did so after a message of the form SF(R,-,

-) was received over the p-q edge. Knowing that edge p-q was up

during the running of this version, guarantees that it is still

up as when it goes down a new version of SF will start. Hence

if an entry in E(p,q) is 19 then the corresponding edge is

currently up.

To sum up the results of the last paragraphs; Right

after node p has completed (except possibly going into normal

mode) the procedure that changed the value of N(p) to 2, we

find that the entries in E contain the exact list of edges that

are functional and adjacent to node p. We will refer to the

contents of E in node p at this point in time as Ep(*,*), and

we will refer to this point in time as tp.

Lemma: If in some node q (that is between executing

procedures), the value of N(p) is 2, then all entries in node q

of the form E(p,p') are exactly identical to the corresponding

entries of Ep(p,p').

Proof: Consider some fixed p':

case 1: p=q We are basically addressing the point that here

A 133

at node p, the entry E(p,p') cannot change from when it was

Ep(p,p'). Since the SF algorithm only increases the values of E

during the running of a specific version, we have only to show

that there is no possibility that Ep(p,p')mO and E(p,p')-I.

If E(pp') is 1, then there must have been a first time

in the network that a node had E(p,p')-I. Since the cnly nodes

that can change E(p,p') without copying some received value are

nodes p and p', the first occurrence of E(pgp')-l must have

been at node p or node p'. In either case, it was caused by the

receipt of a message of the form SF(R,-,-) on edge p-p'. From

this we can conclude that nodes p and p' were directly version

R connected, and hence Ep(p,p') must be 1.

case 2: p is different from q

First we will show that if Ep(p,p') is zero, then E(p,

p') is zero. Using proof by contradiction, assume the contrary:

Ep(p,p')=O and E(pp')-l. Since E(p,p')-1, there must have been

a first node in the network in which E(pp')-l, and it must

have been node p or node p'. In either case this latter E(pp')

had to become one in response to a message being sent across

p-p' of the form SF(R,-,-). This then implies that edge p-p'

was up during this version, which contradicts the fact that

Ep(p,p')O (which means p-p' must have been down during this

version).

*7 7 7

134

Next we will prove the hard part; 14 Ep(p,p')-I. then

E(ppp') must be one. This basically guarantees that the

* information that is gathered and stored in node p (as Ep(pg*))

is delivered to every node before that node goes into the

normal mode. We are given the key assumption above, that N(p)-2

in node q.

We start by noting that, since N(p)-2 at node qp then

there must have been a message received at node q that caused

* N(p) to become 2. Suppose the message was SF(R9 N99E'), and it

was received from node q'. Notice that it must have been the

case that N' (p) was two when it sent the above message.

We can now repeat the above process and find a list of

nodes q~q',q3',... (with no repetitions) such that:

message SF(R,N',E') from q' caused q to make its N(p)in2,

message SF(R,NPIOE'') from q'' caused q' to make its N(p)-2

message SF(RNp,Ep) from p caused q''''...' to make its N(p)in2

The reason why the list must end with a message from node p, is

that p does not require a message with N(p)-2 to make its N(p)

135

into 2. Moreover, since node p is the only node that the SF

algorithm allows to change N(p) without receiving a message

with N'(p)-2, all other nodes must rely on some such sequence

of messages to eventually get N(p)-2. The reason why we know

the exact message that node p sent to start this process is

that right after node p changed N(p) to two, it sent out the

above message to all its neighbors (so this had to be the first

time they got an N(p)-2), and then we recorded (defined) Ep as

the contents of E in P at that point.

Having formed the above list, we note that by virtue of

the way that a received SF(R,-,E) is used to modify the E table

at the receiving node (take the MAX of the received E and the

current E) we have the following:

message SF(R,NpEp) from p caused q''...' to make its E(pp')-I

message SF(RN',E') from q' caused q' to make its E(pp')-1

message SF(R,N',E') from q' caused q to make its E(pp)-l

Hence E(p,p') at node q must be one, which is the desired

result.

End of proof

I

Theorem: If two nodes q and q' (elements of S) enter the normal

state in version R, then every entry in their E tables are

identical.

Proof: Consider any entry E(p,p') in node q, and E'(pp') in

q'. Since both nodes have entered the normal mode# we know N(p)

-2 in both nodes. By the above lemma, we know that E(p,p')-

Ep(p,p'), and E'(p,p')-Ep(p, p'). By transitivity we then have

E(p,p')-E(pp').

End of proof

We have now shown that all nodes that enter the normal

mode in version R have the same exact E table. We must now show

that this E table was locally correct with respect to any node

p (in S) at some point during the running of the algorithm.

The time that that each node p agrees with all of its

local topology in THE final E is what we defined as tp (the

* time right after node p changed N(p) to 2). We can recall from

our discussion of tp that the values of Ep (the E table at node

p at time p) contained exactly the correct entries to represent

all the local link level topology of node p, at that time. The

last lemma tells us that that any final E table (all entries in

K

137

N are 2, and this includes N(p)) agrees at all E table entries

of the form E(p,p'), with Ep(p,p'). If we add to this the fact

that every E table in every SF algorithm is symmetric (E(p,q)

mE(qp)), then we are done.

Finally, to complete this correctness proof, we must

show condition 4 is true of our SF algorithm. This condition

states that when any node stops running the algorithm, then all

of its neighbors immediately there after" also stop running the

SF algorithm also (unless they are starting a new version).

We can prove this fact about the SF algorithm rather

directly. First we note that we define "stop" to mean "change

to normal mode" (M-NORMAL). When ever a node changes to the

normal mode, all of its entries in N' must be 2. The last thing

that a node p does before it returns to normal mode is to send

out an SF message packet to all of its neighbors that is of the

form SF(R',N',-). We should recall from our network model, that

all packets are received in the order in which they are

transmitted. Hence no data packet sent out by node p can be

received before they receive this SF message packet.

Notice that the only way that a neighbor can ignore

this SF(R',N',-) is if it is running a newer version of the SF

*

138

algorithm with a greater version number, and hence it will soon

start node p into a new version. Assuming that some neighboring

node q is not running a greater version number, it must run the

appropriate procedure upon receipt of SF(R',N,-). In all cases,

this involves having the node q form a new N table by taking

the maximum value of the received N"(ipj) with its internal

N(ij). Since the largest possible value of elements in N is 2,

we know that it will end up with 2 as every entry in its N

table. From the definition of the SF algorithm, it then follows

that the node q will end this procedure by entering the normal

mode ("stopping").

We have now shown that all the conditions that we

required for a "sure fire" algorithm, are satisfied by our

definition of our SF algorithm.

MAKING USE OF THE SPANNING TREES

We assume that there are k spanning trees that are

numbered T(), ... T(k). Since all the nodes identified all these

trees independently, but using the same algorithm and data (E

table topology generated by the SF algorithm), we can assume

that all the nodes have the same set of spanning trees,

numbered in the same way.

r

139

In the SF algorithm, there was no presumed knowledge of

the network, and the major mode of communicating in the network

was flooding. In a network with n nodes and m edges, it

requires between m and 2m transmissions to get a message to all

nodes via flooding. By making use of a spanning tree the same

message can be delivered to all nodes in exactly n-1

transmissions. These sorts of differences are fundamental to

the communications savings that we will realize when we make

use of the spanning trees that we have on hand. In addition, it

will not be necessary to shut down the network when the

spanning tree based algorithm is running, and yet arbitrary

topological changes can be communicated.

Now we will turn ou- attention to the actual use of the

k spanning trees to disseminate information on link level

topology changes. We will call this algorithm the k Spanning

Tree Recovery Algorithm (kSTRA). We start by examining the

different parts of the "sure fire" algorithm that we have

described. The following parts are intertwined in the

algorithm, but separating them out will lead us to an algorithm

that makes use of the spanning tree structures that we have

identified.

Roughly speaking, the SF algorithm starts out with each

node having its own view of the network. The first thing that

140

happens is that all the nodes are told that their old view of

the topology is very bad, they should discard all the old

information about the topology, and stop processing packets of

data. All nodes are required to stop what they are doing, and

begin to run this algorithm. Notice that if the old topology

information that the nodes had was not so terrible, they could

continue to route packets using it.

The next thing that happens is that all nodes tell all

their neighbors everything that they know about the network. By

transitivity, eventually every node knows everything about the

network's link level topology. There is also a facility in the

SF algorithm to allow each node to realize when it has received

(although indirectly) a report from every other nooe. This way

the algorithm can assure each individual node when THAT

PARTICULAR node knows the entire link level topology of the

network.

When a single node is totally sure that it knows

everything about the link level topology of the network, it is

almost ready to start to route packets. The key step that

precedes this routing is that this totally informed node tells

all of its neighbors everything that it knows about the

network. The basic problem here is that this knowledgeable node

doesn't want to be sending packets to unknowledgeable nodes, as

141

they wouldn't know what to do with them. This well informed

Unode could wait till some other protocol guaranteed that all

nodes were well informed before it began to route packets, but

the SF algorithm we described is trying not to waste any time.

In the interest of this time savings, the entire E table

topology is retransmitted over every link twice, once in each

direction as each node realizes that it is well informed.

Finally now, the nodes begin routing packets. These

packets are sent with the confidence that when they are

received by the adjacent nodes, they will be routed in

accordance with the mutually known E table topology. The first

packet that is sent over each link might as well have a header

which reads: "Use the new E table topology to route this

packet", as that was what the last SF(*,*,*) message had (it

contained all the E table topology, and the receiving node

figured this out).

Having broken down the "sure fire" algorithm into its

parts, we can discuss the similarities with the task of

disseminating failure information. The big differences that we

wish to achieve in the kSTRA are:

1) Packets should continue to be routed while the

142

algorithm is running. These packets should continue using the

existing E table (which is known to have been consistently

formed at every node) until a new E table topology can be

calculated. Note that the nodes then perform their routing

based upon this table, and not on any other information (re:

failures) that they might deduce had occurred. (Obviously we

don't however send packets over failed edges.)

2) Spanning trees should be used instead of flooding to

carry information between nodes (when correctness of the

protocol will allow).

3) Rather than transmitting the whole E table topology

between nodes, only the changes from the previously agreed upon

E table topology will be sent. (minimize communication)

When we begin the task of spreading information about a

failure, each of the nodes has its own view (E table) of the

network's topology. For the most part, nodes in the network

have a fairly accurate view of the network's topology, and we

don't want them to throw away that information. We would like

to inform all the nodes of the change in the link level

topology, and then try to "all at once" have all nodes in the

network start using the new (more correct) E table topology as

their basis 4or routing. Hence, all nodes will maintain a

143

topology (E table) that was originally generated by the SF

algorithm, while the kSTRA is running, making no change in this

topology until a special CHANGE message is received.

We start by looking back at all the pieces of the

algorithm that we said constituted the "sure fire" algorithm.

The first step is to initiate the algorithm, and be sure that

all nodes are involved. The SF algorithm used flooding to

accomplish this startup, the kSTRA can certainly use a spanning

tree to get every node involved. The spanning tree that is used

is selected from the list o4 precomputed ones. Specifically, it

is the least numbered tree that is intact (at least within the

knowledge of the given node). Any node may restart the

algorithm on a higher numbered tree if it knows that the

spanning tree that has been suggested is not intact. If none of

the trees are intact, then the SF algorithm is initiated. As

with the SF algorithm, version numbers are maintained, and a

node may reinitiate a new version of the algorithm if it is

necessary. It should be noted that during the running of the

kSTRA algorithm, all nodes will continue to route using the old

E table topology. In this way, we defer to the final point in

the kSTRA the synchronized change to the use of the new E table

topology by all nodes.

The notification that a new version of the kSTRA is

V ' l I l-

144

running is broadcast out across a spanning tree along with a

list of E table topology changes that are required by the

originating node to get the E table to conform to the known

link level topology. In this way, all the nodes are not only

told that the algorithm is running, but they are told the E

table topology modifications that go along with this version.

If a node must add anything to the E table topology changes

that are on the list, it must reinitiate a new version of the

kSTRA with all the things on the old list, and any additions

that it has to make. Hence, a version of the kSTRA is

u eventually formed that has all the E table topology changes

that are required. Note that if two copies of the same version

of kSTRA are formed with different lists of changes, some node

will eventually hear about this, and start a new version with

-. all the changes from both the former lists.

At this point in the algorithm, some of the nodes might

have received the list of E table topology changes, and some

might not have. Before we can make the transition to using the

new E table topology, all nodes must be aware of all updates.

Since we are using a spanning tree of the network, we have a

convenient way to verify that all the nodes have this new

version of the kSTRA. The broadcast of the start of this

specific version of the kSTRA continues across the tree until

4 it reaches a leaf of the tree (a node that has only one edge in

this tree). This leaf node then responds to the node that told

145

it about this version with an acknowledgement of that specific

version. Similarly, nodes that have rec&ived acknowledgements

for a specific version from all but one of their tree edges,

transmit an acknowledgement for that version across that lone

edge. This process repeats itself until these acknowledgements

all collect at some node. That is, some node receives

acknowledgements from all its tree neighbors for a specific

version of kSTRA. Any node that receives acknowledgements from

all its tree neighbors is then sure that every node in the

network has heard the list of changes involved in this version

of kSTRA.

Now the moment comes when nodes are about to use their

new E table topology information. Once any node is sure that

all nodes in the network have heard about all the changes in

this version of kSTRA, we are ready to proceed. What we must do

now is have a synchronized change in the E table topology used

as each node's basis for routing.

As we said in the preface to this chapter, the change

in E table topology used for routing should be very nearly "all

at once". As with the "sure fire" algorithm, we wish to prevent

any node from transmitting a packet to another node, and having

the other node not understand why tie packet was sent. The SF

algorithm flooded the network with an SF message that explains

146

the entire E table topology to any node that receives it. A

flood was sufficient as all packets are received across edges

in the same order as they were transmitted. Any method other

than using a flood would allow packets that are routed using

one E table topology to arrive at neighboring nodes before the

neighbors are aware that this new E table topology is in

service. We are in the position that every node is definitely

aware of this new E table topology, and all we have to say is

"Use the new topology". The final step in this algorithm is

then the flooding of the network with the statement "Use the

new E table topology specified in such and such a version of

the kSTRA". This flooding (across all edges) can be initiated

by any node that has received acknowledgement messages from all

of its tree neighbors. By waiting for this point to perform the

flooding operation, we have also succeeded in producing a very

small amount of information that needs to be flooded across the

network.

As a *inal point, we note that after the "Use the new E

table topology as given in version of kSTRA" has started its

flood, all the nodes in the subset of the network that are

currently connected to the node that originated the flood will

soon be using the new topology. Hence, any later changes in

topology that are instigated by future versions of the kSTRA

can carry lists of changes from this new E table topology. Care

must be taken to express which E table topology the list of

147

changes modifies, but that information can be carried in che

packet with the list.

Having given a casual description of the kSTRA

algorithm, we will now give a careful and detailed description

of the tasks involved in running it. We start by defining the

variables that the algorithm will maintain at each node p:

Variables used by kSTRA

R the version number of the last known SF algorithm

E(i,j) i and J-1,...n) The currently used E table

topology, which was initially set by version R of the SF

algorithm.

ECOUNT An integer 0,1,2,.... that tells where E() came

from. If ECOUNT is 0, then El) is the E table topology

generated by the SF algorithm. If ECOUNT > 0, then ECOUNT is

the number of times that the E table topology has changed from

the one generated by the SF algorithm.

V the version number of the kSTRA that was (is) most

recently run(ning).

148

U(ij) (i and j-1,...n) A list of updates to some E

table topology. For every possible edge in the network it has

* an entry of "DON'T CHANGE", "ADD THIS EDGE", or "REMOVE THIS

EDGE".

HIST() An array that records the list U that was

associated with each version of kSTRA that we have heard about

and acknowledged. (We will explain later how we can throw much

of this HISTory away.)

T(i) (i-1,...k) A list of k edge disjoint spanning

trees, every edge is in the current E table topology E().

TREE An integer from I to n, that points to the least

numbered tree that we can use the kSTRA on (due to failures,

not all the spanning trees are still intact).

LINK(i) i-19...q, assuming that there are q edges in

T(TREE) that are adjacent to node p. This array contains the

"names" of these tree edges that this node p is adjacent to.

L(i) i=l,...q A list of logical variables that are

used to record what is "going on" over each of the above

149

LINK(i)'s, in terms of the progress of the kSTRA. 0 means that

this node has broadcast the current version of kSTRA over the

edge, 1 means that it has received an acknowledgement of the

current version.

Before we describe the details of the kSTRA algorithm,

we must take care of initializing variables that will be used

by the algorithm. The simplest place to put these

initialization statements is in the SF algorithm. Specifically,

they are placed just before the statement that assigns NORMAL

to M (the mode). By inserting the following statements at that

point in the SF algorithm, we guarantee that every node in

the (connected subset) of the network has the same initial

conditions.

INITIALIZE kSTRA

at each node p:

V <-- 0 'Start the system as if version 0 of kSTRA

'Just ran

'Use the topology to generate a set of

'edge-disjoint trees.

GENERATE (T(1),... T(k)) USING E(*g*)

'We assume that tree I can be used by kSTRA

150

TREE <-- 1

'Its nice to have the list of links that we are

'adjacent to in tree T(TREE) on hand at all times. This

'variable makes it easier to describe the algorithm.

LINKO) <-- links of T(TREE) adjacent to node p

'Remember that the current topology in E(*,*) was

'produced by the SF algorithm.

ECOUNT <-- 0

'Initially, there are no changes desired in the

]' 'topology E(*,*). We start U(*,*) to indicate this fact

FOR i-1 TO n

FOR i1 TO n
.

"* U(ij) <-- "DON'T CHANGE" 'There are no

'changes desired in the

'current topology.

NEXT j

NEXT i

At this point we will mention the other interface

between the kSTRA and the SF algorithm. We recall that the SF

algorithm was previously allowed to start at any node if there

was a local link level topology change at that node. At this

point we remove that restriction, and replace it with the

restriction that nodes may only execute the "Initiate" SF

151

procedure if the kSTRA requests it. The correctness of all the

theorems will be guaranteed by the fact that the kSTRA will

only be run if some node has a local failure. Since that local

failure gave free license to that node to start the SF

algorithm (under the definition of the SF), it is in keeping

with the proven structure that the SF algorithm may be later

initiated upon the request of the kSTRA.

As with the SF algorithm, we start by describing the

procedure that a node p would execute to instigate the running

of a new version of the kSTRA, based solely on a change in

local link level topology. To prevent confusion in the

algorithm, it will not be possible for a single link to be

brought down and up in a single version of the kSTRA. To settle

all such disputes, whenever a request to add an edge is made in

the same list as a request to remove it, only the request to

remove the edge will be entered into the new update request

list U(*,*). Later, when a new E is formed, each node will have

a chance to update that E table to bring up an edge that it

could not (by the above convention) do as part of this update.

At this point we will only discuss link level topology changes

that are totally within the set of nodes that are reachable

under the current topology E(*o*) (We will avoid the problem of

bringing up an edge that connects to an unreachable node by

assuming that the SF algorithm will be started if such a link

level topology change takes piace.) With this convention, we

152

describe the instigating procedure performed by a node p, when

U " i it decides that the edge from node p to node p' should change

status. (i.e. The underlying link protocol tells us when this

is the case.)

Interrupt received from link level protocol

Execute at node p

'This procedure is executed because the status of some

'edge (pp') has changed. Let STATUS - 1 if we are

'running this code because (p,p') has just come up, 2

'if it has just gone down.

'First see if the current update table contains this

'topology change.

IF U(p,p')in"ADD THIS EDGE" AND STATUS-i

OR

U(p,p')-"REMOVE THIS EDGE" AND STATUS=2

THEN 'If we already have exactly this

'update...

GOTO ALL-DONE 'then there's no work to do

'There is also the chance that the update table says to

'remove the edge, but we wanted to bring the edge up

'(STATUS-i). The result is that this version of the

'kSTRA will only bring the edge down (by leaving the

'update table unchanged), in keeping with the above

153

'convention.

IF U(pqp')&"REMOVE THIS EDGE" AND STATUS-i

THEN

OTO_ALLDONE 'then there's no work to do

'We want to change the update list, so start a

•new version

V <-- V+1 'Increment the version number

'Lets add our change to the update table

IF STATUS=I THEN

r

U(pqp') <-- "ADD THIS EDGE"

U(p',p) <-- "ADD THIS EDGE"

ELSE

U(pP') <-- "REMOVE THIS EDGE"

U(p',p) <-- "REMOVE THIS EDGE"

3

'Now we have to make sure that there is still a good

$-spanning tree

IF STATUS-I THEN 'We couldn't hurt T(TREE) by

'suggesting that a new edge be

' added to the topology..

GOTO TREE-OKAY 'so get on with things

j154

'We are asking that an edge be taken down, so see if

'its in the current spanning tree T(TREE).

IF edgelp,p') Is not in T(TREE) THEN 'If its not...

8010 TREE-OKAY 'then get on with things.

'The spanning tree T(TREE) is no longer intact, so we

'have to look for a new one (in our list), that is

'intact even with all the suggestions made in the

'update list.

NEXT-TREE:

TREE <-- TREE+l 'Try the next larger tree

IF TREE > k THEN 'we ool, have b spanning trees,

INITIATE NEW VERSION o4 SF algorithm 'once they're

aI brooef, ,se the sure fire

SPECIALENTRYPOI NT:

'Now wi have to test to see i# any update clobbers

'this tree

FOR i 1 TO n

FOR j-1 TO n 'Run through all the updates

IF U(i,j)-"REMOVE THIS EDGE"

THEN 'if the update brings down a link..

E 'See if the tree uses it..

IF edge(i,j) is in T(TREE)

THEN 'If it is...

SOTO NEXT-TREE 'Try another tree

N

NEXT j

iNEXT i

'Since we changed which spanning tree we are going to

'use$ we have to reload this list of adjacent edges

LINK() <-- links of T(TREE) adjacent to node p

TREE-OKAY:

'Well, none of the updates we know about damage this

'spanning tree T(TREE),

'Since we are starting a new version of kSTRA, we have

'to record the fact that we haven't heard any

'acknowledgements on any of the edges in the tree.

'Assume that there are q edges that are adjacent to

'this node in tree T(TREE)..

FOR i-I TO q 'Across every adjacent link in the tree..

TRANSMIT(kSTRA(ECOUNTqVpTREEqU)) ON LINK(i)

....the information we have.

L(i) <-- 0 'No acknowledgements yet

NEXT i

ALL DONE:

o. .A

156

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

ARRIVES

Now that we have described how a node instigates the

running of a new version of the kSTRA, we have to describe how

a node responds to a message of the form that we started

sending across the tree. The case that we then discuss occurs

when an arbitrary node p receives a message of the form

kSTRA(ECOUNT',V',TREE',UP) from some node p'.

First we notice that node p may be in NORMAL mode, or

in RESYNCH mode (in terms of the SF variables). If a node

receives the above kSTRA packet, and it is in the RESYNCH mode,

then a new version of the SF algorithm is starting, and the

kSTRA packet can be ignored. This follows from the fact that

node p" was not in the RESYNCH mode when it sent the packet (a

node in RESYNCH mode is not allowed to do anything but run the

SF algorithm). Since node p' was not in the RESYNCH mode, the

last thing it did before entering the NORMAL mode, was to send

a packet to p, that would force p to enter the NORMAL mode

UNLESS p WAS STARTING A NEW VERSION OF THE SF ALGORITHM.

Thus there remains the possibility that node p is in

the NORMAL mode, which we will assume from here on.

15~7

If ECOUNT' is less than ECOUNT (ECOUNT is the variable

that is kept in node p), then this kSTRA message pertains to an

E table topology that is no longer being used at node py and

should be ignored.

It is not possible for ECOUNT' to be greater than

ECOUNT. The last thing that node p' did before it incremented

ECOUNT' to its present value was to send a message to node p

that would bring ECOUNT up to the same value. Hence we have

only to give further concern to the case of ECOUNT-ECOUNT'.

There are several possibilities for the way that V

compares to V'. If V' is less than V, then this packet pertains

to a kSTRA that has been superseded, and the packet can be

ignored. If V<V', then node p must do work that is quite

similar to the work that is involved in initiating a kSTRA. If

the versions numbers agree, then we have only to verify that

these are part of the same exact version of the kSTRA, and not

different versions that started up with identical version

numbers (update lists should be identical). The following

procedure performs these tasks

node p receives kSTRA(ECOUNT',Y',TREE',U') from node

4-

158

V<V' or V-V' ; ECOUNT-ECOUNT'

Execute at node p:

'separate the cases where V-V' and V<V'

IF V-V' THEN 'When the versions agree..

[C

'Check to make sure that both update tables

'are identical

FOR i-1 TO n

FOR J-1 TO n

IF Uli,j) differs from U'(ij)

THEN 'If they disagree

SOTO NEWVERSION

NEXT J

NEXT i 'Finish the table

'Since both update tables are the same, we have

'already broadcast this exact kSTRA....

SOTO END OF PROC 'and we're done

'Now for V<V'...

'Make sure that all the changes that we had in our

'update table are included in the update list that we

'received.

FOR i-1 to n

FOR jil to n

159

IF U' (i j) -"DON' T CHANGE"

AND

U(ipj) is not"DON'T CHANGE"

THEN 'if we know womething that

'node p' didn't...

SOTO NEWVERSION 'start a now version

IF U(ipj)="REMOVE THIS EDGE"

AND

U'(ipj) is not"REMOYE THIS EDGE"

THEN 'again

SOTO NEWVERSION 'start a new version

NEXT j

NEXT i

* 'We just have to continue the version we were

'told about, so..

'The table U' has all the updates that we had, and

'probably more, so load this update list into our table

FOR i=1 to n

FOR J-1l to n

U (i, j) <-- U' (i j) 'load our table

NEXT j

NEXf i

160

'Since someone who started this version tested out the

'fact that the tree T(TREE) is still intact with

'updates U', all we have to do is load it.

TREE <-- TREE'

'We've modernized our list of updates, so we can jump

'to the point where we set up LINKo, and continue the

'broadcast.

GOTO PREPARE_TOBROADCAST

NEWVERSION:

'We knew about some updates that weren't in U', so we

'should start a new version of the kSTRA with the

'combination of all the updates.

'The new version is just one larger than the version we

'received.

V <-- V'+l

'remember that the combination of bringing an edge up

'and down in the same version implies that we should

'just bring down the edge.

FOR i-1 to n

FOR j=1 to n

'load our table with the combination of

'the updates in our *ld table, and

'those in U'.

L

161

IF U'(i,j) "REMOVE THIS EDGE"

THEN U(ij) <-- "REMOVE THIS EDGE"

IF U(ij) is not "REMOVE THIS EDGE"

AND

U' (ij)-"ADD THIS EDGE"

THEN U(i,9j) <-- "ADD THIS EDGE"

NEXT j

NEXT i

'Now we have to make sure that there is still a good

'spanning tree. We do this by using the smallest

'spanning tree that might be intact under the above

'updates.

TREE <-- MAXIMUM(TREETREE)

'...and checking that it is not damaged by any of the updates

GOTO CHECKTREE

NEXT-TREE:

TREE <-- TREE+1 'Try the next large- tree

IF TREE > k THEN 'We only have k spanning trees,

INITIATE NEW VERSION of SF algorithm 'once they're

'all broken, use the sure fire

'algorithm.

CHECK_TREE:

'Now we have to test to see if any update clobbers

'this tree

162

FOR i = 1 TO n

FOR j-1 TO n 'Run through all the updates

IF U(ij)& "RE M OVE THIS EDGE"

THEN 'if the update brings down a link..

I 'See if the tree uses it..

IF edge(isj) is in T(TREE)

THEN 'If it is...

SOTO NEXTTREE 'Try another tree

NEXT j

NEXT i

PREPARETOBROADCAST:

'Since we changed which spanning tree we are going to

'use, we have to reload this list of adjacent edges

LINK() <-- links of T(TREE) adjacent to node p

'Since we are starting a new version of kSTRA, we have

'to record the fact that we haven't heard any

'acknowledgements on any of the edges in the tree. Do

'this as we broadcast across each edge.

'Now we can finally start to broadcast this new version

'across the spanning tree T(TREE).

'Assume that there are q edges that are adjacent to

'this node in tree T(TREE).

0 ° --..... . . .

I63

'Our job is to notify all of our tree neighbors

'of this version.

'If we haven't started a new version, then we don't need

'to send the broadcast back to node p', but things

'still work if we do send it..

FOR i-1 TO q 'Across every adjacent link in the tree..

TRANSMIT(kSTRA(ECOUNT,V,TREEqU)) ON LINK(i)

'Send notification of the new version.

L(i) <-- 0 'We have received no acknowledgements.

NEXT i

'Next we have to check to see if we are a leaf of the

'tree. A leaf has the property that it has only one

'neighbor in the tree.

IF q=l THEN '...and if we are a leaf, then we start

'the acknowledgements flowing back

I

SEND (ACK kSTRA(ECOUNTvV)) ON LINK(l) 'The ack

'goes to our one neighbor.

HIST(V) <-- U(*,*) 'remember this update list, we

'may end up implementing it later.

]

il END_OF_PROC:

164

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

ARRIVES

We have now described all the parts of the kSTRA that

involve the sending of packets containing the update list. The

above procedures are then the procedures that guarantee that

all nodes hear about a comprehensive update list. Now we will

describe how the acknowledgements will propagate back through

the tree. The purpose of this section is to guarantee that at

least one node can "figure out" that all nodes in the network

have been appraised of a specific update list. Once that node

draws this conclusion# the final flood stage of the algorithm

will commence. We will first describe the procedure by which

acknowledgements propagate back from the leaves of the network.

So far the only time that a node has sent an

acknowledgement has been when the node is a leaf of a tree. In

order to get the acknowledgements to propagate back to some

central node in the tree we have to have nodes pass along

acknowledgements. The specific rule for passing along these

acknowledgements is that whenever all but one of a node's tree

neighbors has sent in an acknowledgement, the node sends an

acknowledgement to its remaining tree neighbor. With these

rules usedg a node that receives an acknowledgement from its

neighbor can deduce that all nodes beyond the transmitting node

165

in the tree have heard about this version of the kSTRA. This

deduction is also the justification for sending an

acknowledgement out when we have received acknowledgements from

all but one of our tree neighbors. It follows also then that if

a node receives an acknowledgement from every one of its tree

neighbors, it can deduce that every node in the network knows

about this version of the kSTRA.

As with each of the procedures that we have described

up to now, we must discuss the response to various

ACK kSTRA(ECOUNT'gV') at node p, depending on the values on

ECOUNT' and V'. If ECOUNT>ECOUNT'p then this acknowledgement

pertains to an outdated E table topology, and can be ignored.

For the same reason as was given at the start of the previous

procedure, ECOUNT' cannot be larger than ECOUNT.

If V>V', then node p has knowledge of a more recent

kSTRA, and simply ignores the message. It cannot be the case

that V' is greater than V. To see this, we recall that part of

the procedure that node p" (which sent the acknowledgement)

executed as it started to run version V' included informing all

of its tree neighbors of this new version (except possibly for

a tree neighbor that informed p' of ALL the details of this

version). Hence either p was already notified by p' of all the

details of this version V', or p told p' all the details of the

166

version V'. In either case, node p must then have a version

number of at least V'. Hence not only does V=V', but these

version numbers refer to exactly the same version of the

kSTRA (ie.: they agree as to the contents of the update list

that this version number refers to). We can also conclude that

" - this acknowledgement arrives on some edge that is in TCTREE) at

node p, and we can refer to this edge as LINKlt).

The only response to an acknowledgement that we have to

describe is what to do when we receive an acknowledgement with

exactly the same version numbers as we are maintaining.

node p receives ACKkSTRA(ECOUNT',V') from node p' on LXNK(t)

V-V' and ECOUNT-ECOUNT'

Node p executes:

'We start out by recording the fact that we have

'received an acknowledgement over this edge.

LINK(t) <-- 1

'Next we have to count up the number of

'acknowledgements that we have gotten so far.

ACKCOUNT <-- 0 'initialize the counter

FOR i-I TO q 'there are q adjacent edges in T(TREE)

IF LINK(i)Ml

167

THEN 'If we've gotten an acknowledgement...

ACKCOUNT <-- I+ACKCOUNT 'Increment

'the counter

NEXT i

'Check to see if we are missing

'several acknowledgements..

IF ACKCOUNT < q-1 THEN '..and if we are..

SOTO ENDACKPROC 'don't send out anything

IF ACKCOUNT - q-1

THEN 'If we're missing exactly one, then

'find out which link hasn't carried an acknowledgement

FOR i-1 TO q

IF LINK(i)=O

THEN '0 means that there hasn't been one

I

SEND (ACK kSTRA(ECOUNTqV)) ON LINK(i)

'send the ack on this edge...

HIST(V) <-- U(*,*) 'Remember this update

'list$ we may end up

'implementing it later.

BOTO ENDACKPROC 'we're done

NEXT i

'The above loop will never fall through

'into this statement

1868

3

'It must be the case that ACK COUNT is q. This means

'that all the nodes have heard about the details of

'this version of the kSTRA. Hence it is time to

'broadcast the message to all nodes that they should

'start using the new E table topology.

'Since what we must do here is identical to what a node

*must do when it receives a CHANGE kSTRA message, we

'will just reference that part of the algorithm (which

'will be the next section).

HIST(V) <-- U(*,*)

EXECUTE code for receipt of:

CHANGE kSTRA(ECOUNTV)

END-ACKPROC:

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

ARRIVES

As the last bit of this algorithm we will define what a

node does when it receives a CHANGE kSTRA(ECOUNT',VP) message.

This message is intended to flood throughout the network across

every edge. The purpose of the message is to get the receiving

node to change the value of E that it is using, by updating E

with the update list contained in version V'.

169

As in each of the previous procedures, if

ECOUNT'<ECOUNT, then it should be ignored, and it is not

possible for ECOUNT' to be greater than ECOUNT.

The first node to cause execution of this code must

have had evidence (acknowledgements from all its neighbors)

that all nodes have heard about this specific version V' of the

kSTRA. Hence we are sure that V is greater than or equal to VI.

Also this node must have sent an ACK-kSTRA(ECOUNT,Y'), and so

HIST(V') must contain the update list for version V.

Node p receives CHANGE-kSTRA(ECOUNT',V') from node p'

ECOUNT-ECOUNT'

V'-< V

HIST(Y) has an update list for this version

Node p executes:

'First we should continue the flood of the message

SEND CHANGE_kSTRACECOUNT,V) on ALL adjacent links

'Since we are going to have a whole new E table

'topology, we might as well restart the version numbers

V <-- 0 'Start the system as if-version 0 of

'kSTRA just ran

170

'Now we have to update the E table topology.

'First get back that update list that we saved.

U(*,*) <-- HIST(V')

'Now run through the entire topology and make the

'changes

FOR i=1 TO n

- FOR j-l TO n

IF U(ipj) is not "DON'T CHANGE"

THEN 'if there might be a change here..

IF U(ij)-1"ADD THIS EDGE"

THEN 'We should this edge to E

E(ipj) <-- 1

ELSE 'We should remove this...

'... edge from E

E(ij) <-- 0

3

NEXT j

NEXT i

'Use the topology to generate a set of

'edge-disjoint trees.

GENERATE (T(1)... T(k) USING E(*Y*)

'We assume that tree I can be used by kSTRA

171

TREE <-- 1

LINK() <-- links of T(TREE) adjacent to node p

*'Since this is an E table topology change, increment the

'counter that keeps track of the number of changes

'since the SF algorithm ran.

ECOUNT <-- ECOUNT+I

'Initially, there are no changes desired in the new E

'table topology E(*,*). We start U(*,*) to indicate

'this fact

FOR i-i TO n

FOR J-1 TO n

U(ij) <-- "DON'T CHANGE" 'There are no

'changes desired in the current

'topology.

NEXT j

NEXT i

'We don't need any o+ that old HISTory, as it all

'referred to changes in the old topology

CLEAR HIST()

'As a last point, we have to check to see that the E

'table has exactly the edges that the lower level

'link protocol says it should.

9

172

VALID <-- "YES" 'Assume that the E table is valid

FOR i=1 TO n

IF E(pi)=l AND our edge to node i is down

THEN E 'E says the edge is up, but its

'really down

U(ip) <-- "REMOVE THIS EDGE"

U(pi) <-- "REMOVE THIS EDGE"

VALID <-- "NO" 'Remember that we have

'updates

3

IF E(p,i)- AND our edge to node i is up

THEN C 'E says the edge is down, but its

'really up

U(i,p) <-- "ADD THIS EDGE"

U(p,i) <-- "ADD THIS EDGE"

VALID <-- "NO" 'Remember that we have

'updates

3

NEXT i

IF VALID-"NO" THEN 'The E table isn't yet right so..

GOTO SPECIALENTRY POINT 'in INITIATEkSTRA

'to start up a new version

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

ARRIVES

173

CORRECTNESS PROOF OF THE kSTRA

The conditions that we wish to show that the kSTRA

algorithm satisfies are identical to those that we wanted for

the SF algorithm. The only differences between them is that the

kSTRA algorithm requires a certain amount o4 knowledge about

the network, and as a result of this knowledge the kSTRA is

able to complete its task (most of the time) using much less of

the network's resources (communication on edges of the

network).

As with the SF algorithm, we start by addressing the

question of whether the kSTRA terminates. We define

"terminates", with respect to the kSTRA, to be reaching the

state where either: a new version of SF has been started, -OR-

ECOUNT is the same for all nodes in the network and version 0

of the kSTRA is active at every node. (i.e: There are no

suggestions yet to change the current E table topology.) The

second termination possibility condition really means that the

algorithm succeeded in its job, and the first condition means

that the kSTRA "gave up" and called on the SF algorithm. As

with the SF algorithm, it is impossible to show that the kSTRA

algorithm will always terminate. We can however, as we did with

the SF algorithm, guarantee that the algorithm will always

terminate if no failures or restorals occur for a sufficiently

At 174

long time.

The proof will have three basic parts. In the first

part we will show that all the nodes that were connected in the

original E table (that the SF algorithm produced) will start

out at some fixed time with identical values of ECOUNT and E(*,

*). All of our references to the network henceforth in our

proof will be restricted to the connected nodes in this

original E table. Then we will show that if the kSTRA is run

(and the SF algorithm doesn't take over) then every time the

ECOUNT variable is incremented, it is incremented at every

node, and again there is a point in time when all nodes have

identical values of ECOUNT and E(*O*) . Finally we will show

that if no link level topology changes occur for a sufficient

period of time then a point in time will come such that all

values of ECOUNT and E(*,*) at all nodes will agree, and the

topology represented by E will be the exact link level topology

of the network.

Theorem: If the SF algorithm terminates at time t, then the

* value of of ECOUNT at time t at all nodes in the network is 0,

also at time t the E tables at all nodes in the network are

identical.

.0: I i " i " i f l l; ; '

175

Proof: When each node enters the normal mode, the initializing

procedure of the kSTRA sets the value of ECOUNT to C. We also

know that at the time when each node p enters the normal mode

(and the SF algorithm is going to terminate at this version R),

the E table at node p is set to some value Ef (E+ is the same

for all nodes). What we must show is that from the time that

each individual node enters the normal mode to the time when

gall the nodes have entered the normal mode (definition of SF

algorithm terminates) that the values of ECOUNT and E cannot

change. The only procedure that can change ECOUNT or E (while

the kSTRA is in the normal mode) is the one that sends and

responds to CHANGE-kSTRA messages. This procedure can only run

after ALL nodes have acknowledged some version of the kSTRA.

Each node can only run the kSTRA algorithm after that node is

in the normal mode. Hence a CHANGEkSTRA message can only be

sent after all nodes are in the normal mode, and ECOUNT and E

at each node can only change after ALL the nodes are in the

normal mode.

End of proof

For the following definitions, we will equate the

following entries in an update list with the following numbers:

"DON'T CHANGE" < ---- > 0

"ADD THIS EDGE" < ---- > 1

"DELETE THIS EDGE" < ---- > 2

I i J II m l b,'

176

Definition: We say that update list U(*,*) is less than

U'(*,*) iff:

1) for every ij in {1,...n)

U(ij) is less than or equal to U' (ij)

AND

2) for some i,j in (1,...n)

U(ij) is strictly less then U'(i,J)

Definition: We define SUM(U(*,*)) to be the sum of the elements

of update list U(*,*).

Lemma: If U(*,*) is less than U'(*O*) then

SUM(U(*,*)) < SUM(U'(*,*))

Proof follows directly from the definitions.

Lemma: For any update list U(*,*) on a network with e edges, it

is always the case that 0 < SUM(U(*,*)) < 4e+1

Proof: The largest value of any entry in U is 2, and the least

is 0. The rest of the proof follows from the definition of SUM.

177

Lemma: Assuming that there are e edges in the network, the

kSTRA will never have a version number greater than 4e.

Proof by contradiction: If some node had a version number V

greater greater than 4e with some ECOUNT, then there must have

been a sequence of versions:

version V had update list U

U' (*,*) is less than U(*#*)

version V-1 had update list U'

U'' (*,*) is less than U' (*,*)

version V-2 had update list U''

version 0 had update list U'''...'iall zeroes

The reason for the above list is that the only way the kSTRA

can start a new version V at some node p is when some version

V-1 doesn't have all the information in its update list that

node p knows about. Node p then raises some of the values in

the update list, and starts a new version.

In the above list of items we have more than (by

178

assumption) 4e update lists that are sequentially related by

"is less than". If we take the SUM of each of these update

K. lists and apply the previous lemmas, we get a list of more than

4e+1 integers (U(*,*) contains only integers, hence the sum is

integral) that are in order and vary from 0 to 4e. This is the

desired contradiction.

End of proof

Lemma: Assume that at time tl all nodes in the network have the

same value of ECOUNT and identical E tables. Also assume that

at some time after tI node p still has the same value of ECOUNT

(and hence the same E table) and at least one edge in every

tree T(1),...T(k) has failed. If node p is running the kSTRA

algorithm then either node p will receive a CHANGEkSTRA

message, or else it will be forced to start the SF algorithm.

Proof: Using the method of proof by contradiction, assume that

node p never receives a CHANGEkSTRA message, and never again

runs the SF algorithm. (Since no SF or CHANGE kSTRA message

will ever be received, E and ECOUNT will never change.)

Let version V be the highest version that node p will

ever run. (Recall that there is a bound on the number of

Lx--

179

distinct version numbers.) Let us wait till node p is running

version V. We then have at node p some well defined integer

TREE which is at most k. We can also assume that the update

table U(*,*) at node p has n'a removal requests for any of the

edges in tree TCTREE), and hence all edges that are adjacent to

node p in T(TREE) are still up.

Let edge i-j be the closest edge in tree T(TREE) (via a

path in T(TREE)) that will ever be labeled down in some nodes

update list. We can then assume that the edges in the path from

node p to i via tree T(TREE) are all functional, and will

remain that way forever. (We are taking i to be on the same

subtree of T(TREE) as node p after edge i-j is removed.) We

will refer to nodes on the tree path in T(TREE) from p to i as:

p', pPP pP ,...p P ... 'Pi.

Since node p is still running version V, it must have

sent out messages kSTRA(ECDUNTV,TREEU) to all its neighbors

on edges of tree T(TREE). Let node p" be the closest neighbor

in the T(TREE) path from node p to node i (a node that knows

that T(TREE) is broken). Once node p' has received this kSTRA

message from node p, node p' must be aware that no tree number

less then TREE is still functional.

180

1f node p' is not aware that tree number TREE is not

functional, then it must send (or have sent) to the next node

(p'') on the tree path in T(TREE) from node p to i, the message

kSTRA(ECOUNTV', TREE, U'). Eventually we must reach a node p2

that is both aware that node i-j is not functional and aware

(we have traced the notification path) of all the updates that

node p was aware of. This node is then aware that none of the

trees numbered 1 through TREE are intact, and must be running

the kSTRA on some other tree T(TREE') (TREE'>TREE). We should

also recall that the edges in the path from p to p2 will, by

assumption, never fail. Hence node p2 can never run the SF

algorithm or receive a CHANGEJkSTRA message (if p2 did either

of these things, then the flood would propagate back to node

p).

If we then wait till node p2 runs the highest version

it will ever run, then we can repeat the above procedure and

find a node p3 that is permanently connected to p2, that must

eventually come to know (in its update list) that all trees

numbered less than or equal to TREE' are broken.

By performing tte above procedure no fmore than k times,

we will find a node which is aware that all k trees have failed

edges, and must by the definition o4 the kSTRA algorithm run

the SF algorithm. The permanent connection back to node p which

181

we have guaranteed would then force node p to participate in

the SF algorithm, which is the desired contradiction.

End of proof

I

Theorem: Assume that at time tl, all nodes in the network have

the same value of ECOUNT and identical E tables. If at any node

p, since the time node p assumed its current ECOUNT value and E

table, the local link level topology around node p differed

from that given in the E table, then either the SF algorithm

will eventually run at node pq or a CHANSE_kSTRA message will

be received (or sent) by node p.

Proof: If the local link level topology around node p is

different from the topology given in E, then there must have

been a point in time t2 when this difference first existed.

Time t2 could not have been before the SF algorithm stopped

running at this node. If this difference existed from the time

that the current E table was established, then the procedure

that changed the E table would have noticed the difference and

forced node p to run the Initiate kSTRA procedure. If the

change occurred after the table was established, ther the

definition of the kSTIA requires that the initiate kSTRA

procedure be run at that time. In any case, kSTRA must be

running at node p.

182

Now that we know that the kSTRA is running at node p,

we know from our last lemma that if all the trees T(i) become

damaged, then our theorem is proved. We are then left to show

that if one tree remains intact, then eventually a CHANGE-kSTRA

message will be received (or sent) by node p.

If we assume that one tree remains intact, then the

version of kSTRA that node p initiates will

propagate out on tree T(TREE) to all the nodes,

or else it will reach a node that has an update entry that

prevents further use of tree T(TREE),

. or else it will be received by a node that is running a higher

version number (and hence be ignored),

or else it will be received by a node that has received a

CHANGE-kSTRA message,

or by a node that is running the SF algorithm.

In either of the latter two cases, the fact that one tree is

intact will guarantee that node p will either get a

CHANGE-kSTRA or a SF mc.sage. In the second c third :ases we

are guaranteed that a higher version will be sent and one of

the above five fates will befall it. Since there are no more

than 2n distinct version numbers, eventually we are guaranteed

that some broadcast will reach all nodes, and no node will

create a higher version (or else the CHANGE_kSTRA procedure or

SF algorithm will be run. All that follows could only be

preempted by a CHANGE message, or the running of the SF

algorithm, either of which would end our proof correctly). The

nodes that receive this maximal kSTRA broadcast will then start

to execute the acknowledgement procedure, and eventually all

nodes will have received ACK-kSTRA(ECOUNTV) on all but one of

their edges in the tree that this version V used, and sent out

an ACKkSTRA(ECOUNT,V) on the remaining outgoing edge. Since

there are n-1 edges in a spanning tree, and n ACK messages are

eventually sent, there must be an edge in this spanning tree

that carried this ACK message both ways.Hence there must be a

node that received the ACK message on ALL of its edges in the

version V tree. This node would then start a CHANGE kSTRA

message moving through the network. If the node that started

sending the CHANGE was node p, then we're done. If node p did

not start the CHANGE messages moving through the networkq then

it would eventually reach node p (recall that at least one tree

is intact).

U

End of rroof.

Theorem: Assume that at time ti all nodes in the network have

L%

184

the same value of ECOUNT and identical E tables. If at time tl,

at any node p, the local link level topology around node p

differs from that given in the E table, then every node q in

the network will eventually either run the SF algorithm, or a

CHANGE-kSTRA message will be received (or sent) by node q.

Proof: From the previous theorem we know that this theorem is

true if p=q. If node p is not the same as node q, then the last

theorem tells us that node p will eventually run the SF

algorithm, or receive a CHANGE_kSTRA message. If the network

has a path that connects node p to node q, this then guarantees

the correctness of the theorem. If the network is no longer

connected, then none of the spanning

trees are still intact,

and again the theorem must be true (by our last lemma).

End of proof

Now that we have a theorem that basically says that if

the E table differs from what the actual link level topology

is, then a CHANGE-kSTRA will eventually be broadcast, we will

show that this change of E tables can be done in identical

fashion in all nodes, and hence the resulting new E tables will

be the same at all nodes.

195

Lemma: Assume that at time tl all nodes in the network have the

same value of ECOUNT and identical E tables. If after tl node p

receives ACK(ECOUNT,V') from node q, and node p is running

n version V' of the kSTRA, then the update list U(*g*) at node p

is the same as the update list was at node qv when it sent the

ACK.

Proof: Before node q could have sent the above ACK message to

node p, it must have sent the message kSTRA(ECDUNTvV',U',TREE).

Hence node p received this message before it received this

ACK-kSTRA message, and was still running version V' when the

ACK arrived. By definition of the algorithm that processed the

kSTRA(ECOUNTV',U',TREE), node p must have had exactly U' as

its update table when it finished the above kSTRA message. By

definition of the algorithm, if the version number at node p

didn't change from the time of receipt of the kSTRA message to

the time of receipt of the ACK, the update table must not have

changed.

End of proof.

So we have that when we receive an ACK(ECOUNT,V'), if

we are running version V' (i.e. we don't ignore the message)

then we know exactly the update list that the sending node has

V..

186

saved in its HISTory array under version V'. Looking back at

the definition of the kSTRA algorithm, we see that ACK messages

are only sent when all the nodes that are "further out" on the

tree used by V' have also sent acknowledgements. By repeated

application of this last lemma, we then have that all the nodes

that are further away on the tree used by version V' have also

stored the update table U' in their HISTory array. Finally, if

and when some node p receives ACK(ECOUNT,V') on all of its

edges, it must be the case that all the nodes in the network

have stored the update list UI in their HISTory array.

Lemma: Assume that at time tl all nodes in the network have the

same value of ECOUN't and identical E tables. If before the SF

algorithm is restarted, two nodes p and q send

CHANGEkSTRA(ECOUNT,V) and CHANGEkSTRA(ECOUNT,V'), then V-V'.

Proof: There are two reasons for nodes to send out CHANGE

messages; one is as a response to receiving a CHANGE message,

and one is as a response to having received ACK messages from

all neighbors in T(TREE). Let us consider the first nodes p'

and q' that sent out these CHANGE messages. We then have that

both nodes p' ard q' have received ACK messages from all their

neighbors in their respective trees. By the dwfinition of the

kSTRA algorithm, we then have that p' has never acknowledged

any version of the kSTRA greater than V', and p has never

187

acknowledged any version greater than V. We also know from the

preceding discussion that all nodes have acknowledge both

versions V' and V. Hence V=V'.

End of proof

Now we have that if CHANGE message is flooded across

the network, only one version can be sent with this specific

ECOUNT, and all nodes respond to it by modifying their E tables

in the same way (all nodes have identical entries in their

HISTory arrays for this version). So we know (if all nodes

receive this CHANGE_kSTRA(ECOUN7,V) message) that each node

will eventually heve some fixed ECOUNT'-ECOUNT+I, and E'. (If

all nodes don't receive this message, then the network is

disconnected. We then L.iow from an earlier proof that the nodes

that did not receive the CHANGE must start the SF. The nodes in

a CHANGEd section of the network will eventually realize that

all the trees that they form under E' are broken, and they too

will start the SF algorithm.) We are now left to show that at

some fixed time, all nodes in the network have the same ECOUNT'

and E'.

Lemma: Assume that at time tl all nodes in the network have the

same value of ECOUNT and identical E tables. If, before another

SF algorithm is restarted all nodes receive

D-i3:4 378 EDGE DISPLY SPNNING TREES
ND RECOVERY IN DTA 3/3~COMMUNICATION NETIJORKS U MASSACHUSETTS INST OF TECH

CAMBRIDGE LAB FOR INFORMATION AND D- J A ROSKIND
UNCRSIFEDOCT 83 LIDS-TH-1332 N814-75-C-i183 F/G 17/2 N

I

.11- 7 ;%32 P

-.44

9.1i

1.25 jj11.4 11.

MICROCOPY RESOLUTION TEST CHART
4 NATIONAL BUREAU OF STANDARDS-1963-A

11

* • 4 .. ,. . ,, ,., ,.

188

CHAN6EkSTRA(ECOUNTV) message, then at the point when the last

Iode in the network receives this message, all nodes will have

the same ECOUNT'-ECOUNT+1 and E' (the topology E table).

Proof: We already know that under the assumptions of this lemma

that every node willat some point in time after ti, have

ECOUNT'mECOUNT+1 and E" (the same E" for every node). What we

haven't shown is that these values cannot change at any node until

all the nodes have established them. To see that this correct,

we start by noting that the only way that either of these

values can change is to have a node receive a

CHANGE_kSTRA(ECOUNT',-) message (we are assuming that the SF

algorithm has not restarted). We can also recall that the only

way that a CHAHGE_kSTRA(ECOUNT',-) can be sent, is if ALL nodes

have sent out a ACKkSTRA(ECOUNT'l-) message, which cannot

occur until all nodes have CHANGEd to ECOUNT'. Hence the values

of ECOUNT' and E cannot change until all the nodes have

received CHANGE-kSTRA(ECOUNT,-).

End of proof

4,

Finally, now that we have shown that all the E tables

are modified in each new ECOUNT in the same way, we have only

to show that if there are no failures for a sufficiently long

time, then the E tables will eventually represent exactly the

189

link level topology of the network.

Theorem: Assume that the values of ECOUNT and E are the same at

time t, at all nodes in the network. If no more failures occur

after time t, then either the SF algorithm will be run, or the

kSTRA algorithm will modify the E tables so that they are the

same at every node, and they will contain exactly the link

* level topology of the network.

Proof: If the E tables exactly represent the link level

topology of the network, then we are done. If the link level

topology of the network is different from that shown in E, then

we are guaranteed by our previous theorems that either the SF

algorithm will run, or the value of ECOUNT and E will be

modified at all the nodes. If the SF algorithm runs then we are

also done, so assume that the SF algorithm does not get run

after time t. Let t2 be the time at which all values of ECOUNT

and E have been modified to ECOUNT'-ECOUNT' and El.

If E' does not represent the link level topology of the

network, then we know that it will be changed again. This time

ho"ever, it will be impossible for any node to request that an

edge be added in the same update list as it already requested

that it be removed. Hence the update list that is formed at

*. 190

every node will contain the correct local changes to E' that

m" are necessary to make E" reflect the local link level

topology (in the last update list an edge might have gone down

and up during the ECOUNT period. Hence that edge might not be

placed in E'.) Within the time that ECOUNT' is being used,

nodes will only acknowledge versions that include these local E

table topology changes. Bo we have that any update list that is

ACKnowledged by every node must include these changes, and when

such a list is used to generate ECOUNT'"-ECOUNT'+1 and E", El"

will have all the corrections to El that are needed.

End of proof

ACTUAL IMPLEMENTATION OF THE kSTRA

We have described the kSTRA thus far in terms of

several types of messages which contain a variety of data. Some

of the data that we chose to include In these transmissions was

placed there to help to clarify what was going on, and simplify

the proofs. In an actual implementation, far less information

needs to be exchanged between nodes or maintained at each node.

To begin with, the first message that we talked about

was kSTRA(ECOUNTV,U,TREE). If the a receiving node q knows the

E table that corresponds to ECOUNT (which is needed to process

this message), then node q can infer (based on which edge this

V%.-

i.,. ,., ..8.i . .. i -. .. : ,i ,: , - . ..

W.7

191

packet arrived on) which of the k edge-disjoint spanning trees

the message was making use of. Hence this piece of data is

unnecessary.

The second data item is the update table U(*g*). It Is

expected that this algorithm will run very swiftlyp and hence

most changes in E tables will involve very few edge additions

or deletions. The contents of such a U table could be expressed

as a very small list Ceg: "remove edge p-qg add edge r-s") and

only that list needs to be sent. We are also causing the most

likely changes (exactly one change in the E table) to require

very little communications.

As we showed in our correctness proof, the value of v

is nicely bounded (by 4e, where a is the number of edges), and

its presence will later simplify the communication required by

. the CHANGE-kSTRA.

The value of ECOUNT is, in the above presentation, an

unbounded integer. We can recall from our proofs that (in a

connected subset of the network) until all nodes have received

the CHANGE kSTRA(ECOUNT,-), no node in that set can send out a

CHANGEkSTRA(ECOUNT+1,-) message. Hence there are only 2

possible ECOUNT values th.t we might receive. We argued

p5
V..

192

repeatedly (before each procedure) that the value of ECOUNT'

that comes with a message is always less than or equal to the

ECOUNT that a node has internally. It is then sufficient to

send only the least significant bit of the integer ECOUNT with

each kSTRA message, and no confusion can arise.

So we have that all the data that should be included is

one bit (for ECOUNT), one integer between 1 and 4e (for V) and

two short lists of integers between I and a (which edges should

be added, and which edges should be removed).

The next message that we described was the

ACKkSTRA(ECOUNTV). From the preceding paragraph we see that

the only data required in this packet is a bit (for ECOUNT),

and an integer between I and 4e (for V).

Lastly there is the message that will flood across the

network: CHANGE_kSTRA(ECOUNTV). As with the above

acknowledgement message, this type of message would only have

to carry a bit and an integer between 1 and 4e.

In data communications, the time necessary for a packet

to travel from one end of the network is generally proportional

193

to the size of the packet times the number of hops taken (each

node must receive the whole packet before it can be passed on).

The fact that the amount of data required in each of the above

packets is so small, guarantees that the algorithm can

(assuming that kSTRA packets are given top priority) complete a

modification of the E table very swiftly. The swiftness of the

algorithm tends to guarantee that the topology will be tracked

well by the algorithm. This swiftness then justifies our

premise that few changes would be included in the update list.

Looking now at the storage requirements for the

algorithm, we start by noting that only the one bit that is

transmitted to represent ECOUNT must be saved. The current E

table topology must be stored at all times, but this block of

-' memory is certainly bounded in size by the number of edges in

the network. The current version number requires space for one

integer in the range of 0 to 4e. The update list can be stored,

independent of the number of entries, in an area that is

roughly no larger than is needed tl store the topology.

[..

The HIST array (remembers all the update lists that we

, have acknowledged) can have as many as 4e entries (one for each

version). The clever point to notice however, is that every

update list that a given node acknowledges, must contain all

the updates in all the previously (within this ECOUNT cycle)

194

acknowledged update lists. Hence the MIST array can simply

maintain a list of all updates that we have heard in the order

in which we heard them, and keep a pointer to show at what

point in in this sequential list the acknowledgement for a

given version was sent out. This array would then take space

that was bounded by O(e), as are the memory requirements for

the E table and U list.

RECOVERY

We have now explained how the multiple trees can be

used to disseminate the edge failure information. Recovery from

a failure has several parts. As we have said earlier, recovery

involves the consistent modification of routing policies at all

nodes in the network. It also involves decisions as to what

should be the fate of packets that are midway between their

source and destination. (Some packets may even have been

transmitted across the failed link before it went down!)

As was mentioned in chapter 1 of this thesis, the exact

recovery goals vary from network to network, and application to

application. There are only a few basic strategies that might

be used in conjunction with our kSTRA algorithm, and we will

try to mention them here. Fundamentally there is a choice of

whether to maintain packets that were in transit before a

failure, or to throw them away. If packets can be thrown away,

195

then some sort of end to end link protocol (from the point of

entry into the network, to the point of exit from the network)

must be used if the system is to guarantee end to end

transmission. If packets are not thrown away, then care must be

taken not to produce duplicates of packets (For examplel if a

packet was sent across an edge, and then the edge went down,

and no acknowledgement was received, should the packet be

retransmitted after a new E table is developed?). If it is

necessary to prevent such duplication of packets, some packet

numbering scheme (perhaps included in an end to end protocol)

would have to be used. A second item that must be dealt with,

if packets are not thrown away, is that the order in which the

a sequence of packets arrive at the destination node is not

necessarily the order in which the packets were injected into

the network at the source node. If it is necessary to preserve

ordering then again a numbering scheme would be needed.

- 1

:N T .- - - -. - .- - -

196

Appendix A

Possibilities for finding edge-disjoint spanning trees, in an

undirected network, in less than O(knkn) time.

A simplistic analysis of the running time of our

algorithm that we presented in Chapter 3 to find k edge

disjoint spanning trees in an undirected network is: we must

place O(kn) edges in various forests, and the work required in

each placement may involve looking at all the previously placed

edges (O(kn)). Hence the total work was at least O(knkn). The

careful analysis in Chapter 3 also showed that the

forementioned tasks dominated the time complexity of the

algorithm, and the net complexity was indeed O(knkn). In this

appendix we will explore two methods of holding down the

lengths of the augmentation sequences that a related algorithm

finds. We hope, but do not prove, that one of these methods

will eventually lead to an algorithm that finds such

edge-disjoint trees in asymptotically less time than O(knkn).

SMALL TREES

The following theorem places a tighter bound on the

amount of work needed to augment the set of forests with an

edge.

Im

197

Let v be a nodep and let I (a forest number) be such O<i<k+l

Define: T(i~v) - The set of nodes that are in the same tree as

v in forest Fi)

r -8iven a set S, we define ISI to be the number of elements in S.

Assume that we are trying to augment the forests by

adding edge (vw) (v and w are nodes). We have the following

theorem:

Theorem: For any forest F(i), if a minimal augmentation

sequence exists that starts with edge (vpw)p then a minimal

augmentation sequence exists that has less than k(IT(i,vY)-1)

edges in the sequence. Moreover, the augmentation sequence can

be found by looking at no more than k(lTliv)1-1) additional

edges (other than (vpw)).

The implication of the above theorem is that we

should (assuming we're not looking for minimum weight trees)

try to augment the existing forests with an edge that "touches"

a small tree in one of the forests. We will then have a bound

on the number of edges that must be looked at in order to find

. •. - , .

-- -

* 198

an augmentation sequence.

Proof: Let e(l)ve(2)9...e(p) and n(l),n(2).,...n(p) be an

example of the shortest possible minimal augmentation sequence.

Using proof by contradictiong assume that p > k(IT(ipv)I-1). It

must be the case that both endnodes of every edge e(J)p (j<p),

are contained in T(i~v) (otherwise we could produce . shorter

sequence). In each forest, there can be no more th IT iv) I-2

edges that have both endnodes in the set T(ipv). :e there

are no more than k(IT(igv) l-1) edges from all the 4 -A its

combined that have both endnodes in T(i~v). This contradicts

the premise that we have a list e(*) of greater than

k(IT(iv)l-1) such edges. (Note: there can be no repetitions in

the list e(*)I as we are dealing with a minimal augmentation

sequence.)

..

Having shown that an augmentation sequence of this

bounded length exists, It remains to be shown that such a

sequence can be found by looking at no more than k(IT(iv)1-1)

- edges. To get this bound, we would have to modify the labeling

step of our multiple tree algorithm. The modification would

consist of prechecking every edge that was put on the QUEUE,

for use in forest F(i) (i.e. can we end the augmentation

sequence by using this edge in F(i)). This would guarantee that

no more than k(IT(i,v)I-1) edges would be placed on the QUEUE,

199

by the argument given in the last paragraph. Note that such a

modification to the original labeling section would not change

its asymptotic complexity. Hence the whole multiple tree

algorithm would run (asymptotically) at least as fast as the

original.

PLACING kn/2 LINKS IN O(m+kn) TIME

We will now demonstrate the usefulness of such a

theorem. Recall that a necessary condition for the existence of

k edge disjoint spanning trees is that the network be k

connected. In particular, there are at least k edges touching

every node. At the start of the algorithm every T(i,v) is a

singleton, and any augmentation sequence that starts by

touching such a singleton can be found in constant time (i.e.

just put the edge that touches v, such that IT(iv) -, in

forest F(i)). At the start of the algorithm there are kn

distinct singleton sets. Each edge that is placed in a forest

during this process changes at most two singletons into a

larger set (worst case unites two singletons) From this it

follows that at least kn/2 edges (minimum) will be placed into

forests during this process. We will show that this work can be

done in O(m+kn) time (m from looking at the list of edges, kn

from placing the kn/2 edges with a cost of 0(1) work each).

The algorithm: Initialize an array s(p) (p-l,2,...n) to be all

200

0. The definition of s(p) is to be such that for any node p,

* F(s(p)) is the least numbered forest in which node p might

still be a singleton. If s(p)-k+l, then node p is not a

singleton in any forest. One at a time the algorithm looks at

every edge (v, w) as follows:

"check v"

1) If s(v)mk, then goto "check w"

2) s(v) <-- s(v)+l 'point to next forest

3) if IT(s(v),v)I-1 then v is a singleton in s(v)p so..

a) UNION(s(v),v,w) 'put the edge (vw) in the forest

b) get the next edge, and goto "check v"

4) goto "check v" 'see if v is a singleton in the next forest

"check w"

5) If s(w)mk+l, then get the next edge and goto "check v"

6) s(w) <-- s(w)+l 'point to next forest

7) if IT(s(w),w)I1 then w is a singleton in s(w), so..

a) UNION(s(w),wv) 'put the edge (wv) in the forest
A .

b) get the next edge, and goto "check v"

8) goto "check w" 'see if w is a singleton in the next forest

Before we analyze the computational complexity of this

algorithm, we should define the UNION-FIND algorithm that will

" be used in conjunction with it. In the earlier section of this

tDk thesis we made use of a lookup table to perform a FIND

operation. The UNION(iv,w) operation had to search the i'th

n | m p . _ , L . - " . , , _ , . .

201

lookup table (corresponding to the forest F(i)) and change all

mentions of the canonical node that represented v (i.e. FIND(i,

v)) to the canonical node that represented w. This linear

search took O(n) operations. This amount of computation in the

above algorithm is intolerable, and unnecessary. Note that the

first node that is passed to the above UNION(*,*,*) function

call is always a singleton. Knowing that the first node passed

to this UNION function is a singleton, we can devise a fast

UNION function that runs in O(1) time. This fast UNION

maintains a data base (an array that gives the canonical node

associated with node) that looks identical to that which the

O(n) UNION maintains. The 0(1) UNION is defined as follows:

UNION(i ,p,q)-(definition)

Modify the data structure by changing the entry that

corresponds to a FIND(i~p). Since p is a singleton,

this corresponds to a single change.

The new entry should be what is returned by a FIND(i,q)

Note that the UNION(i~vqw) can also update a lookup

table which maintains the size of T(igv). Using such a table,

the evaluation of IT(i,v)l can be done in constant time.

Specifically, we can set up an array N(i,v), so that the

" following is true at all times: (for O<i<k+l, O<v<n+l)

IT(iv)I N(i,FIND(iv))

202

N(iw) gives the size of the tree in forest F(i) that contains

canonical nods w. By requiring that N(*,*) be correct only at

canonical nodes, we make it possible to have a UNION algorithm

that wastes little time to update the N(*,*) array. The new

UNION' (ipvqw) algorithm would then be:

1) If FIND(i,v)-FIND(iw) then return 'no work to do

2) temp <-- N(ipFIND(iv)) + NliqFIND(i,w)) 'add old tree sizes

3) UNION(ivw) 'perform UNION algorithm

4) N(iFIND(igv)) <-- temp 'remember now size

5) return

With the above functions defined, we see that each of

the individual statements in our algorithm run in constant

time. With a little clever counting we will show that we have

indeed placed at least kn/2 edges into various forests in

0(m+kn) time.

-4

To get a time bound on our algorithm, we note that

steps 2 and 6 can be executed only kn times (O(kn)). This

bounds the number of times that steps 3,4,7 and 8 can be

executed. Steps 1 and 5 can be executed by virtue of the fact

that steps 4 or 8 (respectively) have been executed (O(kn)),

plus no more than one additional time for each edge that is

looked at (O(m)). Hence no statement is executed more than

203

O(m+kn) times, and since each statement takes constant time,

the algorithm runs in O(m+kn) time.

WISHFUL EXTENSIONS

We have now shown the usefulness of trying to find

augmentation paths that start with edges that touch small

trees. We do not have a proof that shows the complexity of

finding k edge disjoint spanning trees is reduced from O(knkn)

when edges are fed to the algorithm starting with the ones that

touch the smallest trees. We can show that the cost of

providing edges in such order (i.e. the edge (v#w) such that

IT(iv)l is currently minimal) during the running of the

algorithm is no more than O(o~kn log(kn)). The hope for a

better bound on the overall algorithm would then be that:

, a) Half of the kn edges may be placed in time O(m+kn) time

b) Half of the remaining kn/2 edges may be placed in O(m+kn)

time (unproven)

c) Half of the remaining kn/4... in O(m+kn) time (unproven)

0 '

;a*

°'."

204

The total work required would then be:

O)((m+kn)log (kn)) for the placements

PLUS

O(*+kn log(kn)) for producing the edges in order

Since m is at least k(n-l)g this is just:

O(m log(kn))

If we were very lucky, the plac eme nt time for steps bp cps@*

would only be O(kn)v and the net complexity might be

0Cm + kn log(kn)).

The motivation for thinking along these lines is a

paper on finding spanning trees using a distributed algorithm

by Sallager, Humblet and Spira £123.

FINDING LINKS THAT TOUCH SMALL TREES

We will now describe an algorithm that will, at each

point in the running of the multiple spanning tree algorithm,

find the edge Cv, w) (that has not yet been shown to be

dependent) such that lT(i~v)l Is minimal over all forests F(i),

and over all nods* v, that have unexamined edges touching them.

Dy "unexamined edges" we mean that the multiple spanning tree

205

algorithm has not yet tried to place them in any of the

forests. This algorithm also gives the value 1, for which IT(i,

v)l is minimal. The spanning tree algorithm must know the value

of i so that it can try every edge that is put on the QUEUE in

forest F(i). It is this focusing of attention upon the forest

Fi) that provides the bound n the augmentation sequence

length.

We start by making a list of all the canonical nodes in

each forest, along with the size of the tree associated with

that canonical node (this takes G(kn) work). This list will be

updated as the spanning tree algorithm is run, and the smallest

tree in any forest will be found based on this list.

In order to quickly find an unused edge that touches a

• 'given node, we form a list of all edges that touch each node.

Forming this vector of lists (one list for each node) takes

O(m) time. Unfortunately this data structure produces two

copies of every edge (one for each endnode). When an edge is

found on one node's list and used (given to the spanning tree

algorithm to examine) it must be deleted from the other list

that it is on. To achieve an efficient deletion (i.e. we can't

afford to search for the second listing), we maintain an n by n

interconnection matrix. The elements of this matrix tell

whether an edge connection between two nodes (that is on the

. ... ; . ' ' . '° . " ' -' " - .r .. -.. . 4." J . . 4 - '.' . -.. /. . .-.- -.. o . ." -"-.-" . '.

206

forementioned list) has been examined yet. Note that only m

entries in the n by n matrix need be initialized. With these

two structures we can, given any nods v, find the next

unexamined edge that touches node v (or find that there are no

more) in constant time. Creating these structures takes O(m)

time.

Using the structure described in the last paragraph, we

can find edges that touch any given node. Our actual problem is

to find an edge that touches a certain tree. Each tree in each

forest is referenced by way of a canonical node. We therefore

need a fast way to list the nodes in each tree, based on a

canonical node. To achieve this fast listing of nodes, we

maintain (in addition to the data structure that FIND and UNION

must maintain to do their Job well) a linear list of all the

nodes that are associated with each canonical node for each

tree in each forest. To make it possible to combine these lists

in constant time (the UNION algorithm will have this added

functional chore) we must also maintain a pointer from each

canonical node to the last node in the list. A picture amply

describes the method, so we offer the following example:
-4"

4.

.4

node 1 and 2 were canonical nodes in forest F(i) We have the

following structures

207

A UNIOGN(iql,2) takes place, and the now canonical nods Is node

1. The following Is the resulting structure

S.-208

The changes made were as follows:

a) The last node on nods 2's list (node 8) was given

a pointer to the second node on node l's list.

b) The pointer from node I to the next element in its

list (1 to 3) was changed to point to node 2.

Note that the pointer from node 2 to node 8, is no longer

shown. Pointers to the end of a list are only significant if

the node is a canonical node. It should also be noted that the

operation of combining the two lists takes a constant amount of

time, independent of the length of the lists (which are

determined by the corresponding tree sizes).

There is one more detail that we must add to the above

data structure to make it possible to find a useful node in a

given tree in constant time. The problem that must be overcome

is that the node that "pops out" of the above structure may not

have any unused edges touching it. Basically, we drew a member

from an equivalence class, and then found out that we couldn't

use it. What we are anxious to avoid Is having that element pop

up again and wasting our time. To speed things up, when ever we

find such a node (i.e. all of its edges have been looked at) in

one of these linear lists we should delete it from the list.

(The canonical node would be marked "empty", where as the other

.

209

nodes in the list could be physically deleted.) Note that

since the FIND and UNION algorithms rely on separate data

structures, we don't damage the original algorithm. Also, since

there are n nodes and k forests, the most time we could waste

on deletion operations is O(kn). When a deletion does not

result, we can find an edge, which touches any tree, in

constant time.

Now what remains is to identify the smallest tree in

any forest. Using the forementioned structures we can then find

an edge which touches that tree in constant time (or be told

that none exists). A key point to note here is that the sizes

of the trees in the forests vary very slowly. That is, when an

augmentation sequence is used, exactly two trees change their

"size". All the other trees that are involved in the

augmentation sequence get reformed, but the number of nodes in

each tree (and the actual nodes in each tree) remain unchanged.

As for the two trees that change, one is enlarged to contain

the other. The problem is then to find the minimum element

(smallest tree) among a slowly changing set of numbers (tree

sizes) This can be done efficiently by forming a binary

"playoff tree" with kn leaves, and depth log(kn)/log(2). The kn

leaves are the initial k forests of n singleton trees. To form

this tree initially takes O(kn) work, but updates take only

O(log(kn)) work. This tree must be updated when:

210

1) a UNION takes place (this happens O(kn) times)

2) it is discovered that there are no more edges to be

examined that touch the currently smallest tree

(again this is bounded by O(kn) occurrences)

The total to maintain this tree is then O(kn log(kn)).

So we have shown that we can (on the fly) find the

canonical node and forest that contains the smallest tree.

-iven the canonical node, we can in constant time find a node

in that tree, whereby in constant time we can find an edge that

touches that node (the last two "constant time" estimates are

amortized over the choice of O(kn) edges). Hence the total time

needed to provide the edge we desire is O(kn log(kn)).

TIGHTER BOUNDS ON AUGMENTATION SEQUENCE LENGTHS

We mentioned earlier that the fundamental performance

bottleneck in the execution of the multiple spanning tree

algorithm is the fact that O(kn) edges must be placed in

various forests, and each placement might require an

augmentation sequence o4 length O(kn). In this section we will

again attempt to reduce the length of such sequences, in hopes

of improving the net performance of our algorithm. No

211

asymptotic improvements have as yet been shown to result from

the ideas that follow, although the ideas seem promising.

We start by repeating the definition of T(iv), to be

the set of nodes in the tree in forest F(i), that includes node

v. In the last section we showed that we could bound the length

of an augmentation by O(k IT(iv)l). Let us define the

intersection of all T(igv)g over all forests, for a fixed node:

T(v)-(Def) T(1pv) * T(2,v) * ... * T(kmv)

(we remind the reader that *1 in this context means "set

intersection"). We will show that we can bound the size of an

augmentation sequence that starts with edge (vw), to be not

greater than k(IT(v)I-1). It should be noted that this is a

tighter bound than k(IT(igv) l-1), as IT(v)I must be less than

or equal to T(ipv)l (for all 1). As we will see by the example

below, it can quite easily be the case that Tv)U is strictly

less than IT(iav)' (for all i).

We might note that T(v) can be viewed as the set of

nodes that are reachable from v in all forests. With that

thought in mind, it i clear that T(*) partitions the set of

nodes. A bit of thought about this structure will show the

interested reader that the sets that result are quite different

from the "clump" structure that was discussed in the Chapter 3.

212

As an exampleg consider the following two forests:

The partitions induced by T(*g*) would then lock like:

o00
Finally the partition induced by T(*):

213

Noti ce that I T (1) =29 and thi s i s leass than I T (11)I1 and

IT(2,l)sl, both of which are 3.

F'irst we will show that if a minimal augmentation

sequence exists and starts with edge (vgw)g then a minimal

augmentation sequence exists that has no more than k(IT(v)!-1)

edges. As with our earlier sequence bound proof, we note that

there cannot be more than IT(v)-1l edges in any forest that

have both andnodes in T~v). Therefore there cannot be more than

k(IT(Y)I-1) edges in all the forests that have both andnodes in

T(v). Suppose that we had a minimal augmentation sequence that

started with edge (vow), and there were more than k(:T(v)l-1)

edges in that sequence. Consider the first k(ITMIf-l) of

o - -- - - - - - - -

214

these edges. There must be an edge among these edges that does

not have its endnodes in T(v) (if all the edges were in T(v),

then T(v) would be a clump, and we could not have found an

minimal augmentation sequence). Let edge e(j)-(xy) be the

first edge that does not have both its endnodes in T(v) (as

mentioned, j is no aore than k(IT(v) 1-1)). Since we are

dealing with an augmentation sequence, we know that a path

around the previous edge C1*(J-1),F(i)] contains e(j). Also,

since both the endnodes of edge e(J-1) are in T(v)g there must

be an edge e&(x', y') in the path CEe(J-1),F(i)], such that x'

is in T(v)9 and y' is not in T(v). By the definition of T(*),

there must be a forest F(i) in which y' is not in T(iv). Also

by the definition of T(*)v x" must be in T(iov). Hence a

minimal augmentation sequence may be formed with j or fewer

edges, that ends with the placement of (x',y') in forest F(i).

All the bounds that we have mentioned thus far in this

section can only be used IF we can "quickly" determine the

membership of an arbitrary node in T(v). The remainder of this

section will focus on this problem.

MAINTAINING INTERSECTION DATA STRUCTURES

We now turn our attention to the task of maintaining

T(v), and being able to swiftly determine membership in T(v).

As noted, T(*) defines a partition of the set of nodes. We can

215

therefore use a set union algorithm to maintain the partition@

and FIND function calls to determine if two nodes are in the

same partition. Sufficient is a set union algorithm that has a

FIND algorithm that runs in O(M) time, and a UNION algorithm

that runs in O(n) time (Bee appendix B for details). We will

refer to the FIND-UNION pair that maintains this partition

T(*), as TFIND(*) and TUNION(*,*), respectively. The hard part

is then to decide when to perform a TUNION.

To be able to determine when to perform a TUNION(x,y)

(and what x and y should be) we maintain an n by n array of

integers:

M(xy)- (Def) The number of forests in which node x is in the

same tree as node y

Note that M(*,*) is a symmetric matrix. The description that

follows is easier to give without exploiting this symmetry. An

actual implementation would probably take advantage of such

structure.

tol We can update the contents of the array M(*,*) as

follows: Whenever two trees in a given forest are to be

combined by a UNION(i,v,w), we do the following first:

,6

* 216

assume T(i,v)m(a(1),a(2). ..,.a(p)) "Node sets for .

T(i~w)in(b(l)pb(2), ... b(q)) ". the trees

FOR i-1i to p "Try all elements in T(ipv)..

FOR J-1 to q "..with all element* of T~iqw)

M(aMi)bQj)) <-- l+M(a(i)9bQj))

"They're connected in another forest

M(b~j)9a(i)) <-- l+M(bQj),a(i))

IF M(a(i)pb(J))-k then.."If they're connected

in k forest*

IF TFIND(a(i)) not equal TFIND~b(j)) then..

TUNION(aMi,bQj)) "Put the sets together

NEXT j

NEXT i

and then we do the actual UNION~i~vvw).

Unfortunately, the set union algorithm that we are

using (via FIND(i,v) and UNION(ivwgv)) does not maintain a

data structure that is convenient for listing all nodes that

are in a given tree. To facilitate such a listing we would

maintain a data structure of "linear lists" of nodes in each

tree, in each forest, by using a %lightly more complex union

* algorithm (as described above), in addition to our standard

UNION-FIND pair.

217

At first, the evaluation of the computational

complexity necessary to maintain T(*) appears as a terrible

mess. The combinatoric problem is that of combining all nodes

in one tree with all nodes in an other tree, whenever a UNION

is done, with the trees varying in size as the algorithm

progresses...(very messy). We can however calculate the

computational complexity quite simply, by virtue of the fact

that we maintain the matrix M(xy). We note that the entries in

M(*, *)p are always integers between I and k inclusive.

Moreover, these entries never decrease. Therefore, there can be

no more than nkn changes in values of entries of M(*,*), and

hence no more than O(nkn) executions of statements that modify

M(*,*). This puts a bound on the total execution time of the

above program of O(nkn). (Note that the only statement in the

above program that doesn't run in constant time is the

TUNION(*,*) operation. The TUNION runs in O(n) time, but can

only be executed a maximum of n times. Hence the total

contribution of TUNION is O(nn) time, and is negligible.)

We can therefore see that T(*) can be maintained at a

cost of no more than O(nkn) work. It should be noted that T(*)

is being maintained as a partition, and TFIND operations can be

used to see if two nodes are in the same subset of T(*). Using

the same methods as we did to find edges that touch small

trees, we can then find edges that touch small subsets of the

218

partition T(*). Since there are only n possible distinct

.c ocanonical nodes in T(), the calculation of the smallest subset

in the partition would require O(log(n)) time each time T(*)

changed. Hence we would spend O(n log(n)) time finding small

subsets (as opposed to O(kn log(kn)) time which was spent in

the last section to find small trees.)

r

With the above analysis we see that the O(nkn) time

necessary to maintain T(*) dominates the effort of this

section and is then the amount of work needed to supply the

multiple tree algorithm with edges as desired by this section.

We do not claim that this is the best method to provide edges

in this order, but since the complexity is less than that of

the original multiple tree algorithm (O(knkn)), the impact on

the multiple tree algorithm should be further explored.

INTERSECTION DATA STRUCTURE IN THE MULTIPLE TREE ALBORITHM

We have now shown how edges could be supplied (on the

fly) to our algorithm for finding multiple edge-disjoint

spanning trees in an undirected network. What remains is to

show how the multiple tree algorithm can be modified to use

- T(*) to find minimal augmentation sequences that are

*. constrained in length by k(IT(v)I-1) (where edge (v,w) starts

the sequence).

7 -. 7- -- ..

219

The key point to notice is that if any edge (vpw) that

is put in the QUEUE traverses the boundary of the partition

T(*) (i.e. TFIND(v) is different from TFIND(w))p then edge

*(vw) is immediately useful in one of the forests. This fact

stems from the original bounding argument for this

"intersection of trees" section. Since a TFIND operation takes

only constant time, we can perform this check on every edge

that is put on the QUEUE, and have no effect on the time

complexity of the original algorithm.

If ever we find an edge that traverses the partition

T(*), we could immediately look for the forest in which this

edge is directly useful. The search would be among k forests,

- . and would involve doing a FIND(iv) and a FIND(iw), both of

which take constant time. Hence finding the end of an

augmentation sequence by this method would take O(k) time to

find each ending. Since there are only k(n-1) edges placed

during the running of the program, we see that we spend no more

than a total 0(knk) time finding these quick endings to

augmentat ions.

Now that we can guarantee that that no augmentation

sequence found by our intersection monitoring algorithm can

have an edge (except the last edge in the sequence) that

%R

220

crosses a boundary of the partition T e), we are sure that the

augmentations are less than k(IT(v)I-1) in length. To achieve

this result we have added a total of Olknk+nkn) work. The open

question is: "What effect does this bound on the augmentation

sequence length have on the net complexity of the algorithm?".

More specifically: "Can it be shown that the (worst case)

average augmentation sequence length is less than O(kn) when

this algorithm is used?"

6P

221

Appendix B

FIND-UNION algorithms

In the problems that we have discussed in this thesis,

we have had to maintain a data structure that represents the

partition of a set of discrete elements, on several different

occasions. One of the first uses was, in developing an

algorithm to find k edge disjoint spanning trees in an

undirected network, to recall which nodes were already

connected to one and other in a given forest* Later on, in

enhancing that algorithm, we maintained a partition that

recorded the structure of "clumps" for the algorithm. Lastly,

in appendix A, there were a variety of partitions of the nodes

in the network that we needed to maintain and manipulate. Due

to the variety of manipulations that were necessary to perform

upon these partitions, and various computational complexity

goals, we have developed a range of algorithms to service our

needs. In this appendix we are going to present a full list of

such algorithms.

A general property of all the partitions (or

equivalence classes) that we maintain is: if two elements are

put into the same equivalence class, in some partition, at some

point during the running of an algorithm, then those two

elements will forever more remain in the same equivalence class

_-1

222

in that partition. This condition means that we are not

maintaining arbitrarily changing partitions. It precludes, for

example, the partition {(1),{2},{3)), from changing to {{1,2),

(3)), and later to ({1),{2,3)). This general property of our

partitions also reduces the number of primitive manipulations

that might be performed to the joining of (or "UNION"ing) of

two existing partitions.

An example of the results of such UNION operations on a

partition would be:

Start with the partition {{1),(2),(3),4),5))

UNION({1}, (3})

resulting in {{1,3),(2),{4),{5))

UNION({1,3), (5))

resulting in {{1,3,5),(2),{4)

UNION(2}, (4)

resulting in M1,3,5),(2,4))

UNION({1,3,5), (2,4))

resulting in {{1,2,3,4,5))

Since the data structure contains the information that

describes the partition, it is sufficient to provide the UNION

operator with names of one element in each of the equivalence

classes that we want united. For example, when the partition

was ({1,3,5),(2,4)), it is sufficient to say UNION(2,5), to

modify the partition to (1,2,3,4,5)).

r

223

Having a data base that represents a partition is not

enough, we need some way to interrogation that data base and

gain information about the partition that is represented. The

most common question for us to ask is: "Are the elements x and

y in the same equivalence class?". A sufficient bit of

information is gotten by providing a function that interrogates

the data base, and FINDs the canonical name of he equivalence

class that contains an arbitrary element x. We could therefore

reduce the original question about elements x and y, to the

question of whether elements x and y are in equivalence classes

with the same canonical name.

An example of the results of various FIND operations

when the current data base represents the partition is M1,3),

(2,4),5)) is:

FIND()-1

FIND (2)=4

FIND (3) -1

FIND(4)-4

FIND(5)-5

The significance of the fact that FIND(2)-FIND(4), is that

elements 2 and 4 are in the same equivalence class in the given

partition. Note that the names of different equivalence classes

must distinct. In order to accomplish this, all of our

algorithms will use the name of some element in the equivalence

class as the canonical name for the equivalence class.

analysis of a nearly linear (almost 0(1) UNION and FIND) set

union algorithm algorithm is presented.

224

The two functions that we have introduced are used through out

the the literature to describe functions that manipulate partitions

E223. We will now proceed to develop specific FIND-UNION algorithm

pairs.

0(1) FIND, O(n) UNION

We saw in the explanation of what the FIND operator

does, the way a table of the canonical names for each element

completely specifies the partition. We can define a very simple

FIND-UNION algorithm that maintains a table (or array) of

values for use by the FIND operator. The action taken when a

FIND(x) was called for would then be:

1) Get the x'th entry from the table, this is the canonical

name for x

The UNION operator would then have to update this table every

time it was called upon to act. The update that would be

required when a UNION(xy) was called for would then be:

1) Get the x'th entry from the table, call it X

2) Get the y'th entry from the table, call is Y

We now have X and Y are the canonical names of x and y,

respectively.

225

3) Look through the table for any entries that are X...

3a) ..and change such entries to Y

We have now changed the canonical name of any element that used

to be in the equivalence class with x, to have the canonical

name of all the elements in the equivalence with y. Hence, all

the elements that used to be in either in the equivalence with

either x or y, are now all in one equivalence class.

KIn order to be able to describe the othet algorithms

that we will present later in this appendix, we be forced to

use a more formal language. For consistency, the following is

* the formal definition of the FIND-UNION algorithm that we have

•. Just described:

INITIALI ZATION1

DIMENSION M(n) 'reserve space for the array

FOR i-I TO n 'Initialize the entire table so that...

#M(n) <-- n '..the canonical name for each singleton

equivalence class is the name of the singleton

NEXT i

FINDI(x)

RETURNS (M(x)) *return the x'th entry in the table

226

UNIONI(xy)

X <-- M(x) 'gut the canonical name for x

V <-- M(y) 'get the canonical name for y

FOR 11 to n 'Look at all n entries in the table

IF EM(i)-X3 THEN 'find an entry with

'canonical name X

M(i) <-- Y "...and change its name

'to Y

NEXT i

Assuming that there are n elements in the set that we

are manipulating, we can see that the search of all elements

done by the union operator takes 0(n) time. The FIND operator

has only to do an array lookup, and hence performs in

constant (0(1)) time.

MAINTAINING SIZES OF EQUIVALENCE CLASSES

Bef ore we discuss the next FIND-UNION pair, we will

take a brief diversion to discuss the computational complexity

of finding the size of an cquivalencb class. The goal is to

maintain some data structure that allo-s us to execute a

function call, such as SIZE(x), that returns the number of

elements in x's equivalence class. There are several uses for

such a function. In the later examples of FIND-UNION pairs,

i:
I.

227

knowledge of such sizes will be critical in constructing

efficient algorithms. In appendix A, several of the potential

improvements in our multiple spanning true algorithm are based

on being able to figure out the sizes of various equivalence

classes.

The algorithm that we present as SIZE(x), is only

capable of working when x is the canonical name of the the

equivalence class that contains x. Although this seems like a

major limitation, the FIND-UNION algorithm pair just given

exemplifies a situaticn where the translation from arbitrary

element in a class, to the canonical name of the class takes

only constant time. It is also the case, that the algorithm

(SIZEUNION(xy)) that updates this data base when a UNION is

performed must be given the canonical names of the equivalence

classes, and not just arbitrary elements.

The algorithms are are rather straightforward. First

there is the data base initializer:

INITIALIZE

DIMENSION SIZEOF(n) 'there are n elements that we

have to remember

DIMENSION VALIDSIZE(n) 'Which of the above

228

'sizes are valid

1 FOR i-1 TO n 'run through all entries

SIZEOF(i) <-- 1 'All classes start out

-as size 1

VALIDSIZE <-- TRUE 'All the elements are

'canonical names, so all the

'sizes are valid

NEXT i

Next there is the function that looks onto the data base and

returns the size of the given equivalence class:

SIZEx)

IF VALIDSIZEx)-FALSE 'make sure that this

element is a canonical name

THEN STOP 'x is not a canonical name

RETURNS(SIZEOF(x)) 'Since it is a canonical, Just

'look it up

Finally there is the function that updates the data base when a

UNION is performed. The convention that we will use is that the

canonical name of the resulting equivalence class, will be the

first parameter (the name of the first equivalence class) to

229

the function call.

SIZEUNION (x, y)

IF VALIDSIZE(x)-FAL8E 'Check that the parameters are

'valid names...

OR

VALIDSIZE (y) -FALSE

THEN STOP 'one of the parameters is not a name

VALIDSIZE(y) <-- FALSE 'The second name is no longer

a canonical name, and its size

is no longer valid

SIZEOF(x) <-- BIZEOF(x)4SIZEOF(y) 'Add the sizes of

'the two classes, to get the

'size of the new one

RETURN 'That's it

It is interesting to note that each the above functions runs in

constant time, as there are no loops in any of the code. There

are constraints on the parameters, but that will pose no

difficulty in using these algorithms in later examples of a

FIND-UNION pairs.

I

-"

230

jd

O(n) FIND, 0(1) UNION

Although this particular FIND-UNION pair did not and up

to be directly useful in this thesis, the concepts are used in

conjunction with other FIND-UNION algorithms in appendix A. Its

function, in the context in appendix B, will be discussed later

in this appendix. One special constraint that is present in the

use of this specific algorithm, is that the two elements that

are given as parameters to the UNION operator, must be

canonical names. The idea here is to use a data structure that

forms a loops of pointers for each equivalence class. By

manipulating the pointers, two loops may be quickly combined

into one. The FIND function traverses this loop each time it

performs it task, and takes considerably more than constant

time.

It is easiest to give a visual example of this

algorithm, before the explicit form is presented. Assume that

we have the partition ({1,2,3}#{4v6),(5} of the set of integer

from 1....6. We might depict this partition as:

231

The canonical names of the partitions are 2v 6 and 5

respectively. The result of a UNION(605) would then result in

the following:

Notice that only the two pointers that came out of the

canonical elements 5 and 6 changed during this operation. The

other transformation was the removal of the second circle

around element 5, which keeps the number of canonical elements

per equivalence class down to one. The result of the operation

UNIDN(2,6) would then be:

232

As a standard, we always make the first parameter of the UNION

operator into the canonical name of the new set in this

algorithm. Again notice that only two pointers had to be moved

to perform the UNION.

The FIND operation is performed by chasing the pointers

around the loop, until an element is Identified that is the

canonical node.

The formal definition of this algorithm is:

INITIALIZATION2

DIMENSION POINTERS(n) 'The vector of arrows

DIMENSION CANONICAL(n) 'The logical variable that

233

'tells if element n is a

'canonical name

FOR i1 to n 'Initialize the above arrays

CANONICALCi) <-- TRUE 'All elements start out

'as canonical names

POINTERS(1) <-- i 'Each element starts out

'pointing at itself

NEXT i

FIND2 (x)

LOOP: IF CANONICAL(x)TRUE 'see if we've got a canonical namt

THEN RETURNSx) 'if sor return that name

ELSE x <-- POINTERS(x) 'otherwise, chase around the

loop one step...

SOTO LOOP "... and try again

UNION2(x,y)

IF CANONICAL(y)oFALSE 'we better not get a parameter

OR CANONICAL(x)FALSE 'that isn't a

'canonical name

THEN STOP 'Invalid parameter

CANONICAL(y) <-- FALSE 'element y is no longer the

'canonical name for the

7-

234

'equivalence class

TEMP <-- POINTERS(y) 'remember what y used to point to

POINTERS(y) <-- POINTERS(x) ' point y at what x used

to point at...

POINTERS(x) <-- TEMP 'and point x at what y used to

'point at.

RETURN 'That's it

0(1) FIND, O(log n) UNION

To be precise, the algorithms we will give can perform

a total of n UNION operations in time O(n log n) worst case,

and hence the average time per UNION is a worst case average

O(log n). This FIND-UNION pair has as its basis, the pair of

algorithms FINDI and UNION1. A very fast FIND algorithm is

produced by keeping a table of the canonical values as part of

the data base. As with FINDI, orly a lookup is then required to

perform the FIND operation. The reason why the UNIONI function

took so long (0(n)) to execute, was that a search of the entire

table was required to find all the elements in a given class.

The type of data base (a series of pointers) maintained for

FINP2 and UNION2 will be used in this algorithm to swiftly scan

through ONLY the elements in a SPECIFIC equivalence class when

a UNION is performed*

LThe data base that we will maintain has three parts:

1) A quick look table for FIND

k -.. . . --. . - -' , - . . .i i i .

.. .

235

2) A set of lists. One list for each equivalence class. Each

lists contain all the elements of its class.

3) A table that tells the size of each equivalence class.

We start with the initialization:

INITIAL! ZAT I N3

DIMENSION M(n) 'reserve space for the array

DIMENSION SIZEOF(n) 'there are n elements that we

'have to remember sizes for

- DIMENSION POINTERS(n) 'The vector of arrows

FOR i-1 TO n 'Initialize the entire table so that...

M(n) <-- n '..the canonical name for each

'singleton equivalence class is the

'name of the singleton

POINTERS(i) <-- i 'Each element starts out

'pointing at itself

SIZEOF(i) <-- 1 'All classes start out

'as size 1

NEXT i

236

Next we define the FIND function, which is actually

identical to FINDI.

FIND3 (x)

RETURNS (M(x)) 'return the x'th entry in the table

Finally we come to the UNION operator. Basically what

we will do in this function is identical to what UNION1 did, in

that all entries in the table M(*) that need to be updated will

be changed. Instead of searching the table to find out which

entries should change, the circular lists will provide the

names of all the elements that are in a given equivalence

class. As the final speedupo we will select which of the two

equivalence classes (of the parameters to UNION) has the fewest

entries in M() to change. By making this selection of which

equivalence class should have its name changed, we are able to

achieve the O(log n) time bound for UNION3(xwy).

UNION3(xpy)

X <-- FIND3(x) 'First get the true canonical

Y <-- FIND3(y) 'names of the parameters

L l ., ..- S. - - -. -. ~. • -- * .w o - -r , ' -

237

"Now make sure that X refers to the smaller class

'In IF SIZEOFX) > SIZEOF(Y) 'and if its not...

THEN E 'then...

TEMP <-- X 'Switch them

X <--Y

Y<-X 3

'Now run through all the elements of this smaller class

CHANGE <-- X 'The first element to change is X

FOR i-1 to SIZEOF(X) *We even know how many changes

'to make

M(CHANGE) <-- Y 'Give this element the same

*name as the other class

CHANGE <-- POINTERS(CHANGE) 'Use the pointers

'to get to the next element in

'the list

NEXT i 'repeat till done

'Now we update the size data

SIZEOFX) <-- SIZEOF(X)+SIZEOF(Y) 'Add the sizes of the two

classes, to get the size of the new one

'Lastly we must update the list of what's in the X class

TEMP <-- POINTERS(Y) 'remember what Y used to point to...

POINTERSIY) <-- POINTERS(X) ' point Y at what X used

238

to point at...

POINTERS(X) <-- TEMP land point X at what Y used to point at.

RETURN 'That's it

To obtain the computational complexity bound, we

consider how many times the entry in M for a given node can

change. The key point to notice is that every time an entry of

M (say M(x)) changes, we know that the size of the equivalence

class that x becomes a part of is at least twice as large as

its old equivalence class. Hence no entry in M may change more

than log(n) times. Since there are n elements, in the course of

n-1 union operations no more than O(n(log n)) changes may be

entries of M. In the above procedure, the only statements that

might be executed more than n-1 times (once per union) are the

statemeits including the place where Mo is changed. With the

above bound on the number of times that these statements can

execute, we have the desired total bound of O(log n) work per

union (averaged over n-1 unions)

For further reading on more advanced algorithms, the

reader is referred to the paper by Tarjan E223 in which the

analysis of a nearly linear (almost 0(1) UNION and FIND) set

union algorithm algorithm is presented.

239

REFERENCES

1 Alon Atai, Richard Lipton, Christos Papadimitriou. M.

Rodeh, Covering Graphs by Simple Circuits, MIT Laboratory

for Computer Science TM-155, February 1980.

2 Paul Baran, On Distributed Communications Networks. IEEE

Trans. on Communications (CS-12).

3 Dimitri Bertsekas. Dynamic Behavior of Shortest Path

Algorithms for Communication Networks, MIT Laboratory for

Information and Decision Systems Report, LIDS-TH-1005, June

1960

4 J Clausen. L. A. Hansen. "Finding k edge-disjoint spanning

* trees of minimum total weight in a network: An application

A of matroid theory," Math. Prog. Study 13 (1980),

pp.88-101.

5 S. M. Chase, An Implemented Graph Algorithm for winning

Shannon Switching Games, Communications of the ACM 15

(1972), pp. 253-256.

6 Jack Edmonds, Edge Disjoint Branchings. Combinatorial

Algorithms, Edited by R, Rustin.

7 Jack Edmonds, "Minimum partition of a matroid into

* 240

independent subsets," Journal of Research of the Nation

Bureau of Standards 69B (1965)

8 Jack Edmonds, Maximum Matching and a Polyhedron With 0,

1-vertices, Journal of Research of the National Bureau of

Standards-B. Mathematics and Mathematical Physics, Vol.

69Bp Nos. 1 and 2, January-June 1965.

9 Shimon Even, R. Tarjan, A Combinatorial Problem Which Is

complete on Polynomial Space, Journal of the A.C.M., Vol.

23, NO. 4, October 1976, pp.710-719,

10 Steven G. Finn, Resynch Procedures and a Fail-Safe Network

Protocol, IEEE Transactions on Communications, Vol. COM-27,

No.6, June 1979

11 Daniel Friedman, Communications Complexity of Distributed

Shortest Path Algorithms, MIT thesis December 1978,

Department of Electrical Engineering and Computer Science.

12 R. 6 Gallager, P. A. Humbletp P. M. Spira, A DistriL

Algorithm for Minimum-Weight Spanning Trees, ACM Trans. or.

Programming Languages and Systems, Vol. 5, No. 1p January

1983, pp 66-77

0 13 T.Kameda, On Maximally Distant Spanning Trees o+ a Graph,

Computing 17, pp. 115-119, (1976).

*
m

*

*4 241

14 T. Kameda, S. Toida, Efficient Algorithms For Determining

An Extremal of a Graph, 14th Annual Symposium on Switch and

Automata THeory, pp. 12-15, (1973).

I
15 Genya Kishi, Yoji Kajantani, Maximally Distant Trees and

Principal Partition of a Linear Graph, IEEE Transactions on

Circuit Theory, Vol. CT-16, NO. 3, August 1969, pp.

323-330.

16 E. L. Lawler, Combinatorial Optimization: Networks and

Matroids, Holt, Rinehart, and Winstons New York, 1976

17 Laszlo Lovasz, On Two Minimax Theorems on Graph, Journal of

Combinatorial Theory (B) 21, 96-103, (1976).

18 K. Maruyama, G. Markowsky, On the Generation of Explicit

Routing Tables, IBM.

19 James Roskind, Robert E. Tarjan, A Note On Finding

Minimum-Cost Edge-Disjoint Spanning Trees, To be published.

20 Mischa Schwartz, Thomas Stern, ROuting Techniques In

Computer Communication Networks, IEEE Transactions on

Communications, Vol. Com-28. No. 4, pp 539-552, April 1960.

21 Yossi Shiloach, Edge-Disjoint Branchings in Directed

242

Multigraphs, Information Processing Letters, Vol. 6, No. 1,

Spp. 24-27, January 1979.

* 22 Robert Tarjan, A Good Algorithm for Edge-Disjoint

Branching, Information Processing Letters, Vol. 3, No. 2,

pp. 51-53, November 1974.

23 Robert Tarjan, Finding Edge Disjoint Spanning Trees, 8th

Hawaii International conference on Systems Sciences, pp.

251-252, January 1975.

24 Christos H. Papadimitriou, Kenneth Striglitz, Combinatorial

Optimization: Algorithms and Complexity, Prentice Hall,

(1982)

.9

4t7

Al I

'404

iftt

.014.----.-

A 11~~~t * i k5 1

Ile 4 .,i~~i.

