D-A134 378 EDGE DISPLAY SPANNING TREES AND RECOYERY IN DATR ° 1/3
COMMUNICATION NETWORKSC(U) MASSACHUSETTS INST OF TECH '

. CAMBRIDGE LAB FOR INFORMATION AND D.. J A ROSKIND !

UNCLASSIFIED OCT 83 LIDS-TH-1332 NBB614-75-C-1183 F/G 17/2 NL

o

Il
il =° o5

[z

l

ceeFEEE R

Fr

E
Fu

=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

...

CTOBER, 1983

o g peap—

e

LIDS-TH-1332

Research Supported By:

Defense Advanced Research
Projects Agency

Contract ONR/N0O0O14-75-C-1183

Edge Display Spanning Trees and Recovery

in Data Communication Networks

James Anthony Roskind

This @orure =t
fcr pibii
distribut. -

.....
AT W W W Wiy YL T)

Lab :r’c'oty for information and Decision Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

M
. ~2en approved
=4 sale; ita
.‘-L i‘}.i Led-

83 11 03 005

P a 1
‘l‘.. - el

A
+tala

Bl B8 -8

NS

A,

October 1983 LIDS-TH-1332

EDGE DISPLAY SPANNING TREES AND

RECOVERY IN DATA COMMUNICATION NETWORKS

Ao

by

James Anthony Roskind

This report is based on the unaltered thesis of James Anthony Roskind,
submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at the Massachusetts Institute of Technology Lab-
oratory for Information and Decision Systems with .partial support pro-
vided by the Defense Advanced Research Projects Agency under contract

No. ONR/N00014-75-C-1183.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology e
Cambridge, Massachusetts 02139

........

Encl (1)

SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Entered)

AT e A Y el AW .vr__-:r'." DA el e At il

REPORT DOCUMENTATION PAGE orr EAD STRUCTIONS _
1. REPORT NUMBER Wwy RECIPIENT'S CATALOG NUMBER |
4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERICDO COVERED .
Thesis

EDGE DISJOINT SPANNING TREES AND FAILURE

RECOVERY IN DATA COMMUNICATION NETWORKS s. PERFORMING ORG. REPORT NUMBER

7. AYTHOR(s) 8. CONTRA;% OR GRANT NUMBEN(s)

ARPA Order No. 3045/5-7-75
James Anthony Roskind ONR/N0O0014-75~C-1183

0. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Program Code No. ST10
ONR Identifying No. 049-383

5. PERFORMING ORGANIZATION NAME AND ADORESS
Massachusetts Institute of Technology
Laboratory for Information and Decision Systems
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. AEPOAT DATE

Defense Advanced Research Projects Agency October 1983

1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 242
3. MONI FORING AGENCY NAME & ADﬁSS(M differsnt lrem Centrelling Office) 18. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems Program)

FTie. DECL ASHIFICATION/ COWNGRADING

Code 437 e DECT ASSIFICATION/ OOWNGRADING

Arlington, Virginia 22217

16. DISTRIBUTION STATEMENT (aof thie Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered In Blesk 20, if different frem Repoet)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Ceontinue en reverse side if necossary and identify by bleck aumber)

20. ABSTRACT (Centinue en reverse c.ldoll ,-.‘“ ity by Bl ‘m?bu) . .]
In this thesis we discuss a variety of ways in which information about

topological changes (failures and restorations of links of a network) can be
dismissed to the nodes of a packet switching network. Nodes need this infor-
mation as soon as possible, if they are to avoid wasting the communications
resources of the network by misrouting of packets. At the time of a failure we
therefore view communications resources to be at a premium. We demonstrate how
the use of precomputed (before the failures) structures can aid in providing

R P WP Y I T PP e P Sy

e P s 4 MEA B . a3 Sy S A A

swift and communications effficient methods of achieving the necessary notificat'gns.
DD , 5%’y 1473 zoimion oF 1 Nov 68 13 oasoLETE
$/N 0102- LF- 014- 6601 SECURITY CLASHEICATION OF THIS PAGE (#hen Dare Entered)
e e R N e g g g N e o)

.
.o . ® .“‘

- 4SRN RN

' UNCLASSIFIED

SECURMITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L -’-«'.--777-.

Ty

20. (Continued)

One example of such a precomputed structure is a set of k edge disjoint span-
ning tree. One major result of this thesis is a new and computationally efficient
method for finding such spanning trees (0(knkn) time to find k edge-disjoint span-
ning trees in a network with n nodes). We also describe directions which might
reduce this time complexity further.

Inherent in any data communication network are variable communications delays
and failures of the communication channels. These two factors combine to make
the task of having all nodes route packets in a consistent way impossible in a
rapidly changing network, as no node can know what is occurring in a distant part
of the network. When the rate of change in the network topology (re: failures
and restorals) is slow enough, the task of synchronizing the nodes is complex but
achievable. The second major result that we provide is a way in which precomputed
edge disjoint trees can be used by a distributed algorithm to effectively
synchronize the nodes so that they use the same topology as a basis for routing.

$.N 0102- L& 014- 4401

B slcum?v cx.nmmcn'lon or Tnls nczm-a Dete ltmnd)

M;MLA

-4.4\.:-‘-1-‘--&

-

MAArA AR L L A

Q Edge Disjoint Spanning Trees nndt
, Failure Recovery in Data
Communication Networks

by
JAMES ANTHONY ROSKIND

h Submitted to the Department of Electrical Engineering and
Computer Science on September 12, 1983 in partial fulfillment
N of the requirements for the Degree of Doctor of Philosophy in
2 Electrical Engineering and Computer Science

ABSTRACT

—Jxln this thesis we discuss a variety of ways in which
information about topological changes (failures and
. restorations of links of a network) can be disseminated to the
- nodes of a packet switching network. Nodes need this
N - information as soon as possible, if they arw to avoid wasting
- the communications resources of the network y misrouting of
X packets. At the time of a failure we therefore view
- communications resources to be at a premium.)\ We demonstrate
how the use of precomputed (before the failures) structures
can aid in providing swift and communications efficient

. methods of achieving the necessary noti‘icatioqu)

e ase
-'....

One example of such a QF;E;;;;ted structure is a set of k edge
disjoint spanning tree.)One major result of this thesis is a
new and computationally efficient method for finding such
spanning trees (O(knkn) time to find k edge-disjoint spanning
trees in a network with n nodes) . We also describe
directions which might reduce this time) complexity Ffurther.

e a,

A

Inherent in any data communication
communications delays and failures
channels. These two factors
having all nodes rout

etwork are variable

+ the communication

ne to make the task of

s in a consistent way impossible
in a rapidly ¢ ing network; as no node can know what is
occurring in distant part of the network. When the rate of '
change in the network topology (re: failures and restorals) is |
slow enoug the task of synchronizing the nodes is complex but

. achievable.m“The second major result that we provide is a way in
which precomputed edge disjoint trees can be used by a
distributed algorithm to effectively synchronize the nodes so
that they use the same topology as a basis for routing.

e 8 X

P NECRP DR

Thesis Supervisor: Dr. Robert G. Gallager

Title: Professor of Electrical Engineering and Computer Science

'’
.

e a A A Sl

'1
{

Edge Disjoint Spanning Trees and

Failure Recovery in Data
Communication Networks
by
James Anthony Roskind
8.B., 8.M. Massachusetts Institute of Technology
(1980)

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the
Requirements of the
Degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1983
c James A. Roskind 1983
The author hereby grants to M.1.T7. permission to

reproduce and to distribute copies of this thesis
document in whole or in part.

?ﬂl / /ﬁ
Signature of Author__._— ':.;_ = ‘*7 oo -

Department of Electrical Engineering and
Computer Science September 9, 1983

Certified by

. Professor Robert G. Gallager
Department of Electrical Engineering
and Computer Science

Approved by

Chairman Arthur C. Smith
Department of Electrical Engineering
and Computer Science

... oL
--------------- B I I . . STl v <
- K T o A it PR W

PR - -7 TR
P R e A e T P N N AP T TV AT i S Wl S iy A WY L Wy

P Al e e A

(N

The completion of this thesis required a great deal of effort
. on my part, and the part of many others. I would like to take

this moment to express my gratitude to:

My mother, Una Roskind. and father, David Roskind Jr., who

taught me how to think. question and search for answers.

My advisor. Professor Robert Gallager, for his patient guidance

through this adventure.

My readers., Professcr Pierre Humblet and Professor Thomas
Magnanti, for their swift editorial responses to my drafts of

this thesis.

The John and Fannie Hertz Foundation for its immense fimnancial

support.

Ms. Peggy Matthews for the swift production of the
illustrations in this thesis, and her assistance in

layind out the final copy.

Mr. John Withrow for the many nontechnical discussions that

made continued effort on this thesis much more pleasant.

IBM for their donation of a Personal Computer that I was
allowed to use to prepare the final draft of this thesis.

{IBM/AGMT DTD 3I/3/83).

DARPA for partial support for this work under contract.

ONR/NO0O0014-75C-1183.

............
........................

Table of Contents

Chapter 1~ INTRODUCTION

iy~ R
[}

EXISTING NETWORKS

Y

RV

PERFORMANCE OF RECOVERY ALGORITHMS

R g

DETOURS
SPANNING TREES

Chapter 2- DIRECTED NETWORKS
" RELATING DIRECTED NETWORKS TO UNDIRECTED NETWORKS
UNDIRECTED NETWORKS

Chapter 3- FINDING MULTIPLE EDGE DISJOINT SPANNING TREES
IN UNDIRECTED NETWORKS

PERTURBING EXISTING TREES

AUGMENTING EXISTING SUBTREES 44
WHY IT WORKS S0
IMPLEMENTING THE INDEPENDENCE TEST 1=]
SET UNION FUNCTIONS 64
ARE TWD NODES IN THE SAME TREE 65
FINDING A PATH IN A FOREST 67
PRECOMPUTATION OF THE DIRECTION TO THE ROOT 71
COMPUTATIONAL COMPLEXITY 76
THE *“CLUMP" STRUCTURE 80 j
COMPUTATIONAL COMPLEXITY - USING CLUMPS) 86 ;
CONSTRAINED MINIMAL AUGMENTATION SEQUENCES 86 ;
REMOVING WASTE 89 !

- ¢ T PR U S Ta o« " o “-_-,'_’ - s . .“.
PR O, ¥ S RGN, Ty 6. e G Yar g e Ve P W R DR TP D UL I . G W TP W |

...............
...............

. Ve
.........

..

MODULO K FORESTS
CORRECTNESS PROOF
COMPUTATIONAL COMPLEXITY - MODULO K FORESTS
PREVIOUS RESULTS

FUTURE IMPROVEMENTS

Chapter 4- NETWORK SYNCHRONIZATION VIA

EDGE DISJOINT SPANNING TREES
RELIABILITY OF K EDGE~DISJOINT SPANNING TREES
NET“ORK MODEL
DISSEMINATING EDGE FAILURE INFORMATION
"SURE FIRE™ RECOVERY METHOD
CORRECTNESS PROOF OF THE SF ALGORITHM
MAKING USE OF THE SPANNING TREES
CORRECTNESS PROOF OF THE kSTRA
ACTUAL IMPLEMENTATION OF THE kSTRA

RECQVERY

Appendix A- MORE EDGE DISJOINT SPANNING TREES

SMALL TREES

PLACING kn/2 LINKS IN C(m+kn) TIME

WISHFUL EXTENSIONS

FINDING LINKS THAT TOUrH SMALL TREES

TIGHTER BOUNDS ON AUGMENTATION SEQUENCE LENGTHS
MAINTAINING INTERSECTION DATA STRUCTURES
INTERSECTION DATA STRUCTURE IN

THE MULTIPLE TREE ALGORITHM

R . e R . RS R - .
et . Vot e e e e, .. . S e T e, R e T
SAT AL L e g oo s g PSP RS PRSP Ny S S VO T DY T T DY DG LD “_‘__A..Aj_l_Li‘

.....

5S

935

97

138

17=

190

194

]

i
)

S
Appendix B- FIND-UNION ALGORITHMS 221
0(1) FIND, O(n) UNION 224
MAINTAINING SIZES OF EQUIVALENCE CLASSES 226

O(n) FIND, O(1) UNION
0¢1) FIND, O(log n) UNION

References

''''''''''' e T - LT L T
O T i R T A T D W WO WIS I PP s

e ane e Amne day- ot i anin SEA ARd ¥

Chapter 1 — INTRODUCTION
WHAT 18 A DATA COMMUNICATION NETWORK?

A data communication network (network for short)
consists of a set of computers (nodes) and a set of
communication channels (links). The links we will consider
connect distinct pairs of nodes. The functional goal of a
network is to allow data to enter the network along with a
destination address (a specified node), via an external
channel, and have the the same data transmitted out of the
network (at the specified node) via the specified node’s

external channel.

We can represeant a network by drawing a graph to show
its topology (i.e. what is connected to what). We offer as an

exampl e

P VL P SR U, (PN ST LAY S WAl ShAy SR Gor)

. . P S WL S e Sy -y |

The numbered circles represent the 6 functional nodes of the
network. The lines between circles indicate the presence of a
functional link between two nodes. The arrows leading away from
the circles correspond to the sxternal channels which carry
data into and out of the network. In the future we will not
bother drawing these external channels, their presence is

assumed, and they have no real significance to the thesis.

Within the context of this thesis we will only be
considering packet switching networks. In such networks the
data passed along by the network is assumed to enter and exit
the network as discrete bundles, which are called packets. It
is then the "job" of each node, to decide where each packet it
receives should be sent next. The nodes performance of this job

is referred to as routing.

Within a netwerk, there are two types of failures that
may be considered: link failures and node failures. In general,
packets of data are transmitted between nodes by one
transmitter-receiver pair, and acknowledged by a second
transmitter-receiver pair in the reverse direction. For an adge
to continue to consistently and accurately convey data between
nodes, both such transmitter-receiver pairs must function. A
link is considered to have failed if either of the directed
links (transmitter—-receiver pairs) that make up that link has
failed to function. A node failure has occurred when a node is

no longer capable of processing packets that it receives alcng

PR WU WAL 1 - ey

vy vy L e
KMARRARISARE < RN

any of its links (ie: redirecting them). Note that a node
failure would be perceived by each of the failed node’s
neighbors as an edge failure, but packets could be lost in the

process.

The topology of the natwork is defined by the links and

nodes in the network that are functional. After any failure has

occurred, the topology has changed, and hence routing decisions

made at nodes must be modified. For example, once an edge has
failed, neither of the adjacent nodes should attempt to
transmit data across it, and they must in fact find alternate
routes for their packets (assuming the destination is still
connected to the rest of the network!). It is the consistent
modification of routing policies at all nodes in the network

that is termed recovery.

We have defined what we mean by data communication
networks, but we have actually grouped together a wide variety
of quite distinctive "types" of networks. The distinction is
apparent in that some networks find certain algorithms useful,
while other networks find the same algorithm to be almost
useless. For example, some networks have a topology of links
that allows for direct communication (ie: one link) between
every pair of nodes (we would describe such a network as having
diameter 1, 1 being the greatest number of links necessary to
communicate between any two nodes). Other networks are

comprised of a chain, where there are two end nodes that have

A bbbt

PP —y

axactly 1 link, and some in between nodes that have exactly 2

links. The diagram below illustrates the two types of networks.

Di ameter 1 Diameter O
Note that the second network shown has 6 nodes, and is labeled
“di ameter 35" because the furthest apart pair of nodes (the end
nodes) are S5 hops apart. Notice then that algorithms that
require notifying all nodes of an event (eg: a failure) that is
observed by a single node, would proceed very slowly in a large
chain like network, and very swiftly in a network of diameter

1.

The example just given shows how the topology of a
network might effect the performance of an algorithm. There are
several other details about networks that impact similarly.
These include node processing speed, node storage capacity and

link delay. These factors interact heavily with the topology to

P A SR ST . IS P

PRy N B S S

s Dt B A e dadnadeadmhndamdtdndninduediredendusbnadesdandmdiiinedinedesidfingd

........................
...

10

determine the performance of algorithms in a given network.

EXISTING NETWORKS
As examples of existing link failure recovery

algorithms, we will look briefly at and contrast some existing
S architectures. The first example is incorporated in the ARPA
net [20]. The routing in the ARPA net is dynamic. The routing
is varied to attempt to take advantage of low delay links and
to attempt to avoid links with large waiting queues.
Unfortunately, massive rerouting can quickly congest low delay
paths and cause dramatic oscillations in the choice of minimum
delay paths. This phenomenon was examined by Bertsekas [3],
along with methods of damping (slowing or lessening) the
response of the system. These methods include asynchronous
updating, fading memory and biasing of routing toward the
minimum hop route. The current ARPA routing algorithm includes

. all of these elements to maintain stability.

The ARPA algorithm, hinted at above, automatically
deals with link failures. The failure appears as a bottleneck
o with a large queue of packets waiting to traverse the "down®
' link. The routing algorithm shifts flow around such an edge and
adapts to the effective change in link capacity (a "down" link
has capacity 0). As mentioned in the last paragraph this change

must be slow to prevent instability.

e R T T T .
AP S TSR TR I, TR N T, T A Y AL TP VU SRR AL VAL PRE D, WA YR WA S T PP R R PO WP

......

()
PR
1

A second example is the network architecture proposed

by IBM. In this architecture there are a list of fixed routes

il = ShE
o, M
A .

that are allowed for each source-destination pair. This list of
routes is static, and decided on when the network is created.
When an edge failure cccurs, all nodes are are notified, and a
source node deletes from its list any routes that traverse the
’ the failed edge. This process would proceed quite quickly as
- all that is necessary is notification of all nodes of the

> failure.

It is worth noting that the two examples just given iic
at opposite ends of a scale in several respects. The static
3 prearranged routing scheme recovers quickly, whereas the
: dynamic scheme must by its nsture adapt sliowly. The static

scheme has very limited adaptability to flow variations whereas

.'l ‘.. ‘.‘

the dynamic scheme is constantly attempting to track the (in

s

some sense) optimal routing policy. The static scheme makes

2

little use of run “ime computation and relies heavily on the
long ago precomputed and prearranged routes, while the dynamic

scheme relies entirely on run time computation.

¥ " TR A AN

Given the two extreme strategies just discussed, it is
interesting to explore strategies along the continuum between

them. Such strategies would employ modest precomputation of

. ‘
A P P L S P W I A o o e i aiadadadi TR I WP PR U T W G YUF GO0 Wi G0 i Dl Gl G . G .

. v W e L W, S, s

12

..
Y
i
5

what to do in the event of a failure, and result in a
relatively swift recovery after the fact. This is to be the

!) direction the thesis will take, and the question is then what,

D I

if any, strategies are "workable", and what are their

computational complexity.

PERFORMANCE OF RECOVERY ALBORITHMS
We discussed earlier how the specifics of the
construction of a network (topology, edge delays etc.) can
impact upon an algoritha’s performance. In some networks, the
- nature of the data packets may imply performance constraints
that will impact on the usefulness of various recovery

algorithms.

When packetized speech is being transmitted, minimal
delay and delay variance is critical. Speech reconstruction is
a real-time operation that requires the next packet to arrive
by a prescribed time, or else it is useless. Packets that are

delayed due to a failure, and then arrive late are of no use.

When interactive communications are carried out between

a4 user and a time sharing system, the mean delay is very

significant and variance can be tolerated. In this situation

packets that are delayed by a failure are very welcome upon

{
N
\
R
1
<

A . e Tl %

13

arrival, but only if the order of packets can be maintained.

In a network where large files are transmitted between
nodes, the throughput is a key performance criteria. Delay and
variance of delay are of little significance. When recovering
from failures there are two possible scenarios. The first is
that "any failure is very rare." Hence a complete restart of
transmission of the files would pot effect the long term
throughput. Therefore any recovery algorithm that “recovered"
would be fine. The second scenario is “"failures are common."
This would make it useful or necessary to recover without

having to restart transmission of the entire file.

The above list of examples shows clearly why a variety
of "recovery" algorithms are useful. This is the motivation, to

a great extent, of this work.

DETOURS

As a first approach we will consider how traffic on the
roadway deals with failures (ie: bridge out, road being paved,
etc.). Presumably, there is some intelligence behind the wheel
of every car to establish basic routes (head in the right
direction, use high capacity edges such as superhighways). When

a failure occurs (a semi jackknifes and blocks the road) a

- ' PR R ST R . - P . . - T . . o, - Y . R - -
P . : P . - .. " a . " - - Ao A k3
NP PRI I R T TP A U G Sn- 1 i Sendbaduandutedhindh M

cgbae RAndhae A el Tl

14

secondary routing policy takes place as police decide on a
detour. The decisions made by the police would override the

basic routing that the driver had decided on.

There are several facts worth noting about such
detours. The first point is that many detours can be
precomputed. It is possible that state police have decided in
advance upon detours around every stretch of state highway.
With such detours already worked out, there is very little
computation necessary when an accident occurs. Little

computation implies very swift implementation when necessary.

A second point to note about the use of detours is
inherent in the word detours. Implicit is a method of
circumventing the difficulty when the driver gets close enough
to begin the detour. The point here is that information about
such difficulties is broadcasted just beyond the perimeter of
the congested area. (this way drivers can avoid the congested
area, rather than being forced to backtrack out of the
congested area, and hence increase the congestion). A major
point is that the police who enact the detour don’t have to

travel very far.

Leaving aside now the analogous situation of traffic on

REPEARR R I aran

13

the roadways, we will loock briefly at the pros and cons of
using detours in networks. In the area of communication
networks, the use of detours would involve precomputation of
paths arcund edges (or groups of edges) that are likely to
fail. Specifically, contingency plans might be established for
the failure of any single edge in the network. The contingency
plans for the failure of any one edge would be worked out by
all the nodes close encugh to be eff. :ted by such a failure.
Hence there would be no more than O(m) (there are m edges)
detours to be computed, and not all of these would have to be

computed by esach node.

As mentioned earlier, detours lend themselves to
precomputation. This tends to allow much of the failure
recovery computation to be done when the network is not heavily
loaded. The second point about detours is that when a failure
occurs, only neighboring nodes that participate in the detour
need to be notified of the fajilure. At first glance this
appears to be a pasitive point. Local notification implies very
little communication and hence very little use of netwark
resources. However, should a second failure occur near the
first failure, the difficulties can become great. In the worst
case, the detour around the first failure might use the edge

that failed second, and vice-versa.

mt Aty et A AN iata A al Al el atal ntala LAl P PO PP VS

Bto

’

R TR
PRI
. R
.e . PRI

-
.

)

R
fl
st
]

v

PPy et am et

16

Notice that the above second failure scenario is only
noteworthy if there is a significant probability of multiple
failures, and also there is no “centralized intelligence" to
catch such a scenario. It should also be realized that
installing a "centralized intelligence” would not solve all
such problems, but rather forestalls them. A "centralized
intelligence” must be notified of network activity via
communication edges, and must disseminate orders via similar
edges. The problem of network edge failur-es would end, just as
the problem of "centralized intelligence” edge failure would

begin.

WNithin the context of this thesis we decided that we
would look for distributed algorithms (ie: no centralized
controlling intelligence). We also decided that recovery from
multiple failures would be considered. We were unable to find
any nice extensions of detours as such under these conditions ,

and we moved on to other attacks.

SPANNING TREES

We just discussed attempts at generating a "detour"
oriented recovery algorithm. The difficulty in such a
development centered on the significant possibility of multiple
failures, and the fact that nodes would only be notified of a

failure if they were close to the resulting congested area.

(EPE PP AP . WL GLIP U WA G W)

...........................

- 17

o Hence, when the probability of multiple failures is
e significant, the only reasonable approach we can see involves
global notification of failures (ie.:tell all the nodes about

-5: every failure).

With the thought in mind that global notification of an
event must take place, we note that the most efficient method,
;. in terms of communications, is to broadcast the occurrence of
. such an event on a spanning tree of the network. A “spanning
tree” of a network with n nodes is most simply defined as any
set of n—-1 edges in the network that do not include any cycles.
- . There are many equivalent definitions of spanning trees, and

they involve the following facts:

1) For every pair of nodes in the network, there is
exactly one path between these nodes formed by edges of

any specific spanning tree.

2) Every spanning tree is a maximal set of edges that is
cycle free (i.e. if any edge is added to the set, a

cycle is formed).

3) Every spanning tree is a minimal set of edges that form
a connected subnetwork (i.e.: remove any edge from a
spanning tree, and the resulting set of edges (with the

original nodes) form a disconnected network).

o et e et e e et T S el e e L e ISP R e - ade. —————

168

The reason why global notification of events is best

accomplished (minimal communication) by broadcasting on a

spanning tree is: The broadcast is complete after n-1
transmissions. There are in fact n—-1 notifications to be made,

i' 80 n~1 transmissions is optimal.

A last point to mention about spanning trees is that
they are very useful in dynamically establishing a fixed
routing. Specifically the work of Friedman [11] seemed to
indicate that a broadcast of the topology and edge utilizations
of the network by way of a spanning tree is close to optimal
(minimizing communication) for the computation of routing
tables throughout a network. The use of such a routing
algorithm would further allow us to assume that all nodes are
aware of the pre-failure topology of the network (i.e.: they
used the knowledge to compute the current routing). With this
assumption we see that a broadcast of the fact that a given
edge has failed is indeed sufficient for recovery (we have
already indicated that the broadcast appears to be necessary to

cope with multiple failures).

Biven then that the existence of a known tree in the
post failure network would make a recovery easier, the question
is: How can we assure the existence of such a tree? One

solution is to establish in advance several trees in the

.............

19

pre—failure network. To guarantee the existence of at least one
of these trees in the post-single-failure network, it is
sufficient that the pre—-failure trees be edge disjoint. (For

now we will be considering edge failures only).

It is interesting to note that one tree in the original
network is sufficient to allow efficient notification of the
entire network that one failure occurred. Specifically, if a
failed edge was NOT part of the lone tree, then broadcasting on
the tree is straightforward. If the edge that fails is a part
of the tree, then the tree is divided intoc two subtrees. The
union of the nodes in the two subtrees is indeed the totality
of the network. Making use of this fact, notification can be
broadcast across these subtrees by starting at both ends of the
failed edge (the failure is directly visible to both of the
adjacent nodes). This result does not extend to multiple
failures without the presence of additional (disjoint) trees,

and so we will continue in that direction.

The many questions to be examined at this point
include: How hard is it to find edge disjoint trees? What
topological constraints on the network are necessary for the
existence of such trees? How can this process be extended to
handle large numbers of failures? Some of these questions will

now be addressed.

R TP

PN W Yy .

20
Chapter 2

DIRECTED NETWORKS

Before looking for edge disjoint trees in a network, we
will look at the easier problem of finding edge disjoint rooted
spanning trees in a directed network. A directed network
consists of a set of nodes, and a set of links. Each link
connects two naodes in a fixed order. For example, an edge that
goes from node A to node B is a completely different entity
from an edge that might go from node B to node A. An example of

a directed network is given beslow.

There are 4 nodes and 6 links in this example. There is an edge

from node A to node B, but none in the other direction.

A rooted spanning tree (branching) in a directed
network is formed by a subset of the links of the network that

satisfy the following:

1) There is a distinguished node called the root,

2) No outgoing link from the root is in the branching.

3) Except for the root, every node has exactly one outgoing

link in the branching.

J—

4) There is a directed path in the branching from each node

to the root.

There are many other equivalent defining characteristics and
properties. These include (for instance) the facts that the
branching has no cycles, that there is a unique path from every
node to the root, and that ignoring directions on the links

vyields an undirected spanning tree.

We will now look at the problem of finding branchings

in directed networks. First we will consider whether or not a

single branching exists in a given directed network with a
given root node. A necessary condition for the existence of

such a tree is:

For every subset 8 of the nodes in the network that
includes the root, there is at least one link going

from S’ to S (S’ is the complement of S within the set

Eii : 22

of nodes in the network).

s

The necessity of this condition follows from the fact that

LA

there is a directed path from every node toc the root in a

branching.

It turns out that the above condition is also
sufficient to guarantee the existence of a branching in a
network. The proof of this follows from an algorithm that finds
a branching, and has the above condition as the only
requirement for its completion. The algorithm builds a
progressively larger subtree until it encompasses the entire

network and hence is a branching. The algorithm is:

a) Start with the root only as the subtree

b) Let S be the set of nodes already in the subtree (from

step a, the root is in 8). If S’=(}, then we're done.

€) Find an edge going from a node in 8° to a node in S. Add

that link to the subtree along with the node that it is

outgoing from. Repeat steps b and c.

It can be seen that this results in a branching as desired.

Sniepiuadmndnidesindindeiineduidedaniaiinsiteinsiemiondnaineinsinainuivey

PP EPPIPE NP W RPN N i

23

Now consider the existence of several directed spanning

trees which have a common root, and are such that no link is

used by more than one tree. The necessary and sufficient
conditions are exactly analogous to the single branching
problem, but the algorithms for finding them [6,17,21,22] are
far more complicated. Specifically, the conditions for the
existence of k mutually edge disjoint branchings with a single
given root are: For every set S of nodes in the network that

includes the root node, there are at least k links going from

node(s) in 8°* to node(s) in 8.

Again the necessity fcllaws directly, but the

sufficiency is far from obvious. The necessity of the above

conditions follows from the fact that there are k distinct

paths (one per branching) from any node (includes those in any

S’') to the root.

The sufficiency again is based upon an algorithm. For

the general case of k branchings the reader is referred to
£6,17,21,22]. As a less complex example, we will present the
algorithm for the case k=2 (ieifind 2 edge disjoint branchings

with a fixed root) in order to show the reader one approach to

this problem.

e e e etehdnb St i inhih e mesteseshesse it edineiindundensiubutbudi

e s 1 _A_ad

- 24
A

First we will give an ocutline of the algorithm, then

details will be given. The algorithm starts by generating a
single branching, toc be referred toc as the red tree. Then the

" algorithm tries to find a second directed spanning tree (the

white tree) that does not use any links already in the red
i. tree. The white tree starts out as just the root, and it is
iteratively increased in size. Eventually, either the white

tree touches every node (we are done) or else a temporary state

is reached where we can go no further. The reason for this
state is that all the links that enter the set of nodes already
in the white tree, are already used by the red tree. To
overcome this state it is necessary to modify the red tree. The
modification consists of taking one of the links away from the
red tree (one that would prove immediately useful to the white
tree), and then doing what is necessary to patch the red tree
without this link. Thus we produce a "larger" white tree and an
edge disjoint new red spanning tree. Repeating this process we
eventually get the two edge disjoint spanning trees (the white

tree can only grow soc large, then it must be a branching).

The algorithm:

STEP I: Grow a red tree using the algorithm given to find a

single tree.

STEP Il1:Grow a white tree without using any red tree links as

follows: .

a) Start with no links in the white tree, and only the root

node in the white tree.

b) Let W be the set of nodes in the white tree (note: the

root is in the white tree).

€) Try to find an edge that goes from W’ to W, that isn’t
already used by the red tres. If there is no such link,
then go to Step I1]1. (Which will steal an edge away from
the red tree). If there is such an edge, add it to the

white tree and add the node that it came ocut of to the

white tree.

d) If all nodes are now in the white tree, then we have
both a red and a white spanning tree, and we are done.

Otherwise repeat b, c, and d.

STEP 111: Carefully choose an edge in the red trees.

The choice of the link to be taken from the red tres for

use in the white tree is rather critical to the success

of this algorithm. The "red tree distance to the root"

from a specific node is defined to be the number of

links on the unique red tree path from that specific

‘
(PP U AP VAP WAL WU . Wty Wy ;_'-‘L’L“_“_‘_A_L-'-__LA_‘.__LLA_‘LM

26

node to the root.

We already know that all the links from W’ to W, are in the
red tree. From among the set of links that go from W’
to W the SELECTED link is the link which emanates froa

the node with the greatest red tree distance to the

root.

This link is selected so as to prevent the case of a red
tree path that goes from W’ to W, then back to W’ and
then crosses the selected link.

STEP IV: Prepare to use the SELECTED link in the white tree

a) Remove the SELECTED link from the red tree

The network is now partitioned into :

R=(Def.) The set of nodes still connected via the red

tree to the root

and

R’=(Def.) The set of nodes no longer connected via the

rad tree to the root

The network is also partitioned into:

" . N T P UGS Sy S JEpy
alata ol aladsdedalad S e 20 e e dhe

27

W=(Def.) The set of nodes already connected to the root

via the white tree.

W’ =(Def.) The set of nodes not yet connected to the

root via the white tree.

b) One straight forward way to mend the broken red tree
back to full tree status (without the use of
the just removed selected link or any white
links) is: Consider the set of nodes R’W’ (read
R’ intersect W’). It is very significant to
note that the careful choice of the selected
link guarantees that the links of the red tree
joining nodes in R’W’, form a spanning tree of
R’W’. Assume there are p nodes in R’W’'. Remove
from the existing red tree the p~1 links that
connect pairs of nodes within R°W’,., Now to
repair the red tres we must add a total of p
l1inks to the existing subtrees without creating
loops (p= (1 selected link) + (p~1 just

removed)).

c) Start the iteration with the set S=R’W’, An example

of what the network might look like is:

.............
............

...............

......
...........

.

..................

d) Let L be the set of directed links which

start in 8

and end in a node in 8’ (since the root is not

PRI il U YR PO S b

ROW

R R A
PRGIE Tl T, LU e WAL TS P e O

in 8, there must be at least 2 such links).

@) If the selected 1ink (re:step a)) is in L, remove it

from L.

¥) There is now at least one 1link in L. We assert at

this point that any link in L:
1) is not in the red tree
2) is not in the white tree

3) has an end node outside S, that is connected

via the red tree to the root.

Assertion 1 is true because we have (by the end of step b)
removed from the red tree, one outgoing link for every element
of S. A property of a directed tree is that there is exactly
one outgoing link in that tree from every node (except the
root). Honce there cannot remain a red link outgoing from a

node in 8

Assertion 2 is the case because S8 is a subset of (its initial
value) R’W’, which must be a subset of W’. 8ince nodes in 8 are
not in the white tree, we see by definition that the link in L

can not be in the white tree.

s uM e L p e aTe manaalmialaiatall I

-, & 4§ v

;i 30
The validity of the 3rd assertion rests on two facts. The first
fact is that links in L MUST run from nodes in 8 to nodes in
W’. (Note: B8 is a subset of W’. We are at this point in the
algorithm because there are no more links from W’ to W that ,
were not red). We further note that all nodes that didn’t have
red tree paths to the root were in R’. So a proof by
contradiction of assertion 3 would proceed: Assume the link in
L leads to a node with no red tree path to the root. Than thnf
node must be in R’W’. Hence the node used to be in 8. This

contradicts the fact that nodes are removed from 8 only after a

red tree path to the root is established (see part g)).

g) Having found an edge (any link in L) that is neither
in the red nor the white tree, and leads to a node with

a red tree path to the root:
1) We add that link to the red tree
2) We remove the node from 8 that originates

that link (this node now has a red tree path to
the root)

h) If 8 is not empty, repeat steps d) on (iterate)

i) Finally now we have a full red tree restored. We
have, in the restoration, not made use of the original

"gselected link". Add the original "selected link " to

31

the white tree. Add the originating node to the set of

white nodes.

j) Bo back to Step II b) and continue to grow the white

tree.

RELATING DIRECTED NETWORKS TO UNDIRECTED NETWORKS

A common reason to look at directed networks is that
any undirected network is equivalent to a directed network with
twice as many links. This correspondence is based on replacing
every undirected link with a pair of directed links in opposing
directions. Early in this research it was hoped that this
correspondence would lead to a natural extension of results
involving directed networks to undirected networks.
Unfortunately, neither the questions of existence nor method of
finding 2 link disjoint spanning trees in an undirected network
follow from the directed network results. The reason for this
problem is that link disjoint trees in a derived directed
network might share a common link in the original undirected

network. For example:

et .)_.AA_‘LJ I

PN T GAGTOVOTRTRT T Y W e

.....................

13
.
.

»
.
.

.

.

.
-
’

32

T T K A TR YY ¥V OYOR

N

is an undirected network. The derived directed network is

1f we are looking for two edge disjoint spanning trees in this

directed network rooted at node e, we find:

and

4
It can be seen by a counting argument that it is impossible to E
ever have two edge disjoint spanning trees in the original i
network, Specifically, each spanning tree must have its own two #

links, but there are only three in total.

L
<
4
’ A..;' 2 As‘ .\ .‘. .-i.;‘ J- ‘l."“ A‘ —a -. .l . o el ‘;‘ P e -_e . _a e L - “ P y —— y— A.LLL LA‘

We can however look for 3 link disjoint rooted spanning

trees in a derived directed network. If there are 3 such trees,

then at most two trees can share an edge in the original

undirected network. To put it another way, there is no edge in
the original undirected network that is common to all 3 trees.
1f any one edge were destroyed, at least one tree would remain
intact. Unfortunately, The most general solution to the problem

of finding 3 trees in an undirected network, such that no edge

is common to all 3 trees, does not even follow from the

directed network results. Consider again the fully connected
network of 3 nodes just described. There are indeed 3 trees in

the undirected network that have no edge common to all of them,

namely:

and

There are not however, 3 rooted spanning trees on the derived
directed network, that have a single common root, and share no

edges in common. Hence this solution to the undirected network

would not follow from the derived directed network. For

(ancerned reader, it is interesting to note that the constraint

the

of a "single common root" in the directed network spanning

PRI TPRE AP SPUEIE APULIP _P UL Ia P PP U Y W STE DU SN DU RS WAL UL U PRy Wl Uhy W WUy Gy s G 1

L

34

trees is not always as critical as it was in the example just

given. A more general network is:

l (2)

wherein 3 spanning trees exist with no edge common to all 3,
but the derived directed network does not have 3 edge disjoint

rooted spanning trees (even with distinct roots!),

The moral of this story is that: if we want general
solutions to problems of this sort involving undirected

networks, then we must confront them directly. That is what the

next section will address.

UNDIRECTED NETWORKS

The fundamental problem to be address:d in this section
is that of finding 2 spanning trees in an urd‘re-ted network.

The constraint on these 2 trees is that there is no edge common

to both trees.

. L 2 e g
e T LA - - aande PP TIPSR Iy e o
R D TP IL D W W S Y, WP NP Oy S bt s ey

PrprrT T TR Ty TR W R W T WEE TR T e e e e e =

e 33

As we looked at this problem several extensions

appeared. The first part of the extension is the constraint on

the k trees. The constraint could be:

a) no edge is used by more than 1 tree

-b) no edge is used by all k trees

or most generally

c) no edge is used by more than e trees (with e fixed

0 < @ < k).

The motivation for finding 2 edge disjoint spanning
trees was to guarantee that one of the trees would remain
intact after any single edge failure. Motivation for looking at
k mutually edge disjoint spanning trees would be to guarantee
the integrity of at least one tree, even after as many as k-1
edge failures. The usefulness of such things as k spanning
trees with no edge common to all of them, lies in the fact that
at least one three will survive a single edge failure.
Moreover, the conditions for the existence of such a set of

trees, grow more and more lax as k is chosen larger and larger.

We offer now a small theorem that addresses the

concluding point of the last paragraph. It can be seen that a

. - . . - M . - . " . " 2 . N P a . ||l||‘
e ot o A 4 e B aaMia e Sl oMo i e i e BT P -

e

e P e n g
T ., IR,
LT .'.'.“" RN

36

necessary condition for the existence of 2 edge disjoint
spanning trees is that the network be 2 connected. (ie: Every
binary partition of the nodes is traversed by at least 2
edges). The theorem is that: For every 2 connected network,
there exists a k>1, such that k spanning trees exist within

that network with no edge common to all k trees.

The point that makes the above theorem interesting is
that 2 connectedness is necessary, but not sufficient for the

existence of 2 edge disjoint spanning trees. Recall for example

that the network

does not have 2 edge disjoint spanning trees, despite the fact

that it is clearly 2 connected.

The proof of the theorem is as follows: Suppose there
are n nodes in the network. Take any spanning tree in the
network to be tree T(O). T(0) has n—1 edges in it, call them 1(

1),...1¢(n-1). Consider the n-1 spanning trees T(1)...,T(n-1)

. L B R LRI WPy DS Gy Gy
N N S UL PP Wil P S S WA T W WAy T Saindhh o

etteabadl

LJRSES navis Juads aani 2 hanihdinin A i Siiatd

37

that are (nonuniquely) defined by: T(i) is a spanning tree of
the network and 1(i) is not part of it. The fact that the
network is 2 connected guarantees that the removal of one edge
{1(i)) from the network will leave a connected network. Indeed,
there are spanning trees in every connected network, and hence
T(1),.2T{N-1) exist. The set of trees T(0),...T(n-1) satisfies
the requirement (no edge is in all the trees) and completes the
proof. This proof does not always produce the least number of

trees, but it certainly demonstrates nicely the existence of

some k.

- .- - M b W L e e g = s
PP U P T U R Sy WP a = . dnatndhgnsin sahasheedenbasininsntetdneniend

e el il anasts mmamnamaana e anie e P -

38

Chapter 3

FINDING MULTIPLE EDGE DISJOINT SPANNING TREES

IN UNDIRECTED NETWORKS

In this chapter we will focus on the problem of finding
multiple edge-disjoint spanning trees in an undirected networtk.
We will start with a method of perturbing a set of overlapping
spanning trees into a set of maximally distant (minimally
overlapﬁing) spanning trees. The methods involved in this
algorithm are fundamental to all the algorithms that follow.
Next we will view the problem as a matroid prcblem and show how
the "greedy algorithm" may be applied. This method will involve
growing k edge-disjoint spanning trezes from scratch. Finally,
we will look at the computational complexity of the resulting
algorithm and examine ways to improve it. The major result of
this chapter is an algorithm for finding k edge-disjoint
spanning trees in O(knkn) work {(assuming n nodeé in the

network).

PERTURBING EXISTING TREES

For simplicity, we examine the problem of finding 2
edge disjoint trees in an undirected network. The methods
extend directly to the case of k trees. but the generality only

complicates the discussion. Consider the question of whether or

- - e S eT T ET N

PP P W S SR PSS S ey W tmadin ‘+ PRSP W W

39

not the following network can be broken into 2 edge-disjoint

spanning trees:

O O

O O

We would like any algorithm to answer this question very
quickly with a "NO", using a simple counting argument. The
above network has 6 nodes. Any spanning tree must have S5 edges
in it. We would then need 10 sdges to find 2 such spanning

trees (but there are only 9).

Consider then a harder problem: Does the following

network contain 2 edge-disjoint spanning trees?

I WL AP S Wy, SPRC W P TP |

- aun arg aret S AL Ty TR S T e T TN

40

RS TINRRE

The method we will employ to answer this guestion will take any
2 spanning trees, and perturb them into 2 new spanning trees
that have fewer common edges than their predecessors. By
repeating this process, we show that we can eventually get 2

totally edge-disjoint spanning trees.

As an example suppose we started with identical

spanning trees as shown below:

e i s e i bttt iebiintiiitichbniebintetaletelitbtvintenasintbbiatsatdteintt

D d .
Sy -sr. RIS
. . . . 4 . 0 .
R R
PRI PR

e LAy
R . St
e Lt
PR Lt Lt

41

RW

O

The trees (R for red, and W for white) are defined by putting
their labels on edges. Notice that both trees use the same set

of edges, namely 12,23,14,45,56,

We wish to incorporate some unused edge intoc one of the
trees so that the overlap can be reduced. Take any edge, say
edge 25, and consider what would happen if it were used in the
white tree. If we were to use 25 in the white tree we would
form a cycle with edges 21,14,45, SBince trees can never have
cycles, we must then remove one of the forementioned edges from
the white tree. As it turns out, all three edges are used by
both trees at present, and removal of any of them would be a
step in the right direction. If we removed 14 from the white

tree we would then have:

e e e e -l A habaias A -.-----uALLJ>i

ab Saitatne Sudl Sl Sl il N

42

The overlap has been reduced from 5 edges to 4 edges. Suppose
we next tried to add edge i3 to the red tree. We would form a

cycle with 12,23. Again both edges are doubly used. Suppose we

remove 12 from the red tree. The result is:

R

Next we might try adding edge 36 to the white tree. From the

resulting cycle 32,25,356, we would want to remove 32 or S6. The

PR YA WA PY R RIPY PR Y. W Pt ey Gy o

43

removal of edge 23 would not help us as it is used only once.

1f we rcroved 32 then we would have:

R

w

Here we might try to add edge edge 46 to the white tree, and
remove edge 45 from the cycle of 435,56. The resulting network

has only one edge common to both trees, and locoks like:

0 : ®

44

At this point things suddenly become a bit more complicated. If
we try to use the remaining unused edge 34 in the white tree,

;) we get cycle 36,464, Both of these sdges are used only by the

: white tree and there would be no apparent progress in using
such edges. Similarly, if edge 34 were used in the red tree, we
would form cycle 31,14, and again these edges are only used by
one tree! All is not lost however, we are just forced to use
the full generality of the algorithm. The most general form of
this algorithm requires a deeper search of the potential

consequences of using an edge in one of the trees.

Consider using edge 34 in the white tree. We have
mentionad that no "immediate" progress can be made by removing
edges 36 or 484 from the white tree. If however we were to
remove the edge 36 from the white tree, it would then become an
unused edge, and hence a candidate for use in the red tree. The
resulting red tree cycle of 31,14,45,56 does indeed include the
doubly used edge 356, which can then be removed from the red
tree. Hence, we have found a perturbation sequence (add 34 to

the white tree, remove 36 from the white tree, add 36 to the

red tree, and finally remove 356 from the red tree) that

maintains the tree structures, and decreases the overlap of the

1
5
1
3
i
d

2 spanning trees.

There are several natural questions that might be asked

ittt . hesndneinnsinesitensineitomsiuy

y v vy ¥ B

435

at this point: Does the above algorithm always find two edge
disjoint trees (when they exist)? In a situation where 2
esdge-disjoint trees do exist, couldn’t the algorithm find two
non-disjoint trees for which there is no possible perturbation
sequence that will improve matters? How much work does it take

to run this algorithm?

In answer to the last question, the complexity of the
above algorithm can be brought down to O(knkn) time (to find k
treses) by using some noteworthy structure of the problem. We
will not present the proof of this complexity result for this
specific algorithm, but we will present a proof for a related

algorithm that makes use of the same problem structures.

The nature of an argument that shows (by contradiction)
that the algorithm always converges to a pair of edge-disjoint
trees (when they exist) would be as follows: Assume we have a
network and there are two edge-disjoint spanning trees r and w.
Suppose we also had two overlapping spanning trees R and W. We
can note that the trees r and w make use of a total of 2(n-1)
edges, whereas R and W are making use of strictly fewer edges
(some of the edges are used twice). We first create a set of
edge-disjoint spanning trees r’ and w’ such that every edge
that is in R or W, is definitely in r* or w’. (This pair of

trees would be created by a sequence of edge changes performed

N i A a2 P dn deauiesnienteastenehenhenientietentetnaesessssiseabhenbhomisbundy

46

on r and w.) Recalling that r’ and w’ must use a greater number
of edges than R and W, there must be an edge e1, that is used
by r’ or w’> and is used by neither R nor W. Without loss of
generality assume that el is in r’. We can then perturb R by
adding e1, and removing one of the edges in the cycle that we
just formed. Specifically, we should remove the edge #2 in this
cycle that is not in r* (r’ has no cycles). We have thus
perturbed R to have more edges in common with r* (and
maintained the fact that every edge in Ror W is still in r’ or
w’). Next we recall that e2 was in R, so it must have been in
w’ or r'. We know however that e2 is not in r’. Therefore e2 is
in w?. We alsc note that e2 cannot be in W, as otherwise we
would have just found the non—-existent perturbation sequence.
We can then add e2 to W, and remove the edge e3 (from the cycle
that we just formed) that is not in w’. This mak;s W have more
edges in common with w’... Repeating this argument we can
eventually find a perturbation sequence that makes R and W
identical to r’ and w’ respectively (which we recall are
edge-disjoint). We must then have found a perturbation sequence

that made R and W more edge-disjoint (contradiction).

AUGMENTING EXISTING SUBTREES

In this section we will develop a method of adding
edges to k mutually edge-disjoint forests (a forest is a subset
of edges and nodes in a network that contain no cycles. This

method was originally described to the author by Dr. Robert

P U, VAL P G- - PR VI O WO LI U WY YO0 W A W W wee

L ST S VT W Wy 1

NEMICALs 4 A

47

Tarjanl19l. Our ideas which yielded a computationally efficient
algorithm based on finding perturbation sequences extended
directly to this method, and are easier to follow in this

setting.

All forests that we will be concerned with will include
all the nodes in the network. All further references to forests
will discuss only the edge set of that forest). We continue to
add edges until each forest has n-1 edges. A forest with n-1
edges must be a spanning tree of the network. Hence we plan to
arrive at k edge-disjoint spanning trees by slowly augmenting k

forests.

Before we get into the theoretical underpinnings, proof
of correctness and details of the efficient use of structures,

we consider once again the following network:

4 48
EXAMPLE: Finding two edge-disjoint spanning trees.

The list of edges in this network are 12,13,14,23,25,34,36,45,
44,56, We start with the two forests (we are looking for two
spanning trees) both being empty sets, and specify this state
as forests={(},{}). The first edge 12, can easily be used in
the first forest, with the result being forests=({12>,{}). Next
we try to use 13,and we get forests= ({12, 13),(}). Next 14
gives forests=({(12,13,142),{()), The edge 23 cannot be used in
the first forest because it would form a cycle, but it can be
used in the second forest. The result is forests=({12,13,

14), (23)). Using 25 gives ({(12,13,14,25),(23),and then 34
leads to ((12,13,14,2%), {23,34)), Similarly using 36,45 and 56
results in foreste=({(12,13,14,25,367, (23,34,45,546))., The

network now looks like:

Unfortunately the remaining edge 46, can neither be

used directly in forest 1 (as the cycle 41,113,356 would be

e

P A T T U U YT W . L WP Wk 1

49

formed) nor in forest 2 (as the cycle 45,56 would be formed).
As with the perturbational algorithm, the method of making
progress involves looking for a sequence of edges. Specifically
consider what would happen if we wanted to add edge 46 to
forest 1. In order to preserve the cycle free status, we would
have to remove either edge 41,13 or 346. Since progress involves
strictly increasing the number of edges used by all of the
forests, the removed edge should be used in forest 2. Indeed,
carefully reviewing the above four edges shows that edge 41 may
be directly used in forest 2. Hence we have an augmentation
sequence of: add 46 to forest 1, delete 41 from forest 1, add
41 to forest 2. This augmentation gives the new forests ({12,
13,25,36,463,(23,34,45,%6,412), which are indeed examples of

two edge-disjoint spanning trees.

With that example under our belt, we can now look at
the general question of finding k edge-disjoint spanning trees
by such a method. Still to be clarified is: How exactly do we
extend this method to an arbitrary k? How we can efficiently
look for augmentation sequences? How do we know that such an

algorithm will always find a solution when such exists?

PSP IR I WY VLV WP WA S S S - 4 P - J

- =0

q- WHY 1T WORKS

For any fixed k, the edges of the network can be viewed
as a matroid. This structure is gotten by defining a set of
edges to be independent iff the set can be partitioned inte k
forests [4,7,14]. With this thecretical view of the problem, we
can apply the matroid greedy algorithm £16,24] to get a maximal
independent set, which corresponds to a solution to our problem
(if the set ends up with kin-1) elements). We will not rely on
ii these facts, but will rather prove directly that our greedy
algorithm works. This will also leave us with a clearer

understanding of how and why we may modify the algorithm to

improve its computational efficiency.

The greedy algorithm consists of initializing an
independent set F as the empty set, and performing the

following test with every edge @ in the network:

If F+{(e) is an independent set, then add e to the set F

("independent set" was defined in the last paragraph) Note that
the greedy algorithm would not automatically give the specific
forests, but would rather tell us that such forests exist. The
beauty (and the name) of the qreedy algorithm comes from the

fact that once F includes an edge e, it is never removed. Also

to be noted is the fact that every edge is consider=d for

(AP P YUY VR WA VI e S — S

- . P - U L LY W

L WY W W T - LT LT . -
N Jhen dhan s 2 anc s e Shun i Srencibin Metinne Juan el i S AL AR Sl Yl St A R ¢

o
L -
;5 51

inclusion in F exactly once. This will later play a role in the

i computational complexity of the entire algorithm.
3
1

Having made the algorithm sound very simple, we point
out that the difficult part is to decide if the set F+{e) is an
independent set. In order to decide this efficiently, we
maintain at all times a partition of F into k forests F(1),...,
F{k). The fact that we maintain this set also means that when
the algorithm terminates, if F has k(n—-1) edges, then F(1),..

F(k) are actually the k edge-disjoint spanning trees.

Given an edge e that connects node v to node w, and any
forest F(i) which has v and w in the same tree, we will find it
useful to define C(e,F(i)) to be the unique set of edges in F(
i) that forms a path from v to w. Notice that if e’ is in Cle,
F(i)), then F(i)+{e)-{(e’) is still a forest. Basically, what we
are saying is that if we add an edge to a forest that would
form a cycle, then we simply have to remove any edge from that

cycle to return to a forest status.

For a given set of edgQe-disjoint forests F(1),...F(k),
we shall define a "minimal augmentation sequence" to be a list
of edges e(1),....2(p), and a list of indices to forests n

ni{1),...n{p) (that are not necessarily distinct), such that:

L_oaase Mud and aes 2eagh-Segiran Ara g I

52

1) (1) is not in any forest F(i).

2) for 0<i<p, the end nodes of e(i) are both in the same

tree in F(n(i)).

3) for 0<i<p, e(i+l) is in Cle(i),F(n(i))1.

4) e(p) has end nodes in separate trees in F(n(p)).

3) for 0<i<p, 0<j<p+1, i+1<{j, @(j) is not in Cleli) ,F(n(i)) 1.

It should be visible that we are trying to define a sequence of

edges that allows us to augment, or increase the size of, the

set F (condition 1 says that e(1) is not in F). We are able to

add e(i) to F(i) as we delete e(i+il), and still maintain F(i) 5
as a fores! by virtue of conditions 2 and 3. The fact that we 1
delete from one forest what we add to another forest (except el ?
1), which is simply added) guarantees that the set of forests

would remain a partition of F. The word "minimal" was used to

could be left out (re: condition 85) and still give us an

4
indicate that no subsequence of edges and corresponding indices
augmentation sequence.

We have hinted strongly that a minimal augmentation

Sa A le Cal Tall

sequence is such that we could run through the sequence

TR

i=1,...p} and at esach stage:

R O Ky PR S WD DY SRR N

NS s e g et it et e esite r e Araastran et Shar R aibiins e i Sl M L AL
K 33

1) modify F(n(i)) by adding e(i) and, if i<p,

A also removing e(i+l)

When we are all done, we expect that the resulting F(j) are all
: forests. In actuality what we have shown is that any ORIGINAL
S F(n(j)) could be modified by the addition of e(j) and the
deletion of e{(j+1) and still remain a forest. It remains to be
shown that a forest that has been modified several times by the
above augmentation process is still a forest. It is actually
the minimality condition (condition 5) that allows us to prove

that a forest that is modified repeatedly is still a forest.

Theorem: Given a set of k edge-disjoint forests
F(1)3ee+,F(k), and a minimal augmentation sequence e(1),...

e{p), and n(1),...n{p). The following series of operations:

T for i=1 to p-1
e F(n(i)) <== F(n(i)) + {(@(i)) -~ {(@(i+l))

next i

o F(n(p)) <=- Fin(p)) + (e(p)?
P produces a new set of edge-disjoint forests. -
The preceding theorem has been proved in the literature

[4,7] but a proof will be provided for completeness and to

assist the reader with understanding the subtleties of the

AN

W l' A. .
s Yt

M S anas Saa Bt Eha e Shd as e ci ACEM AN AR Mt i

s4

theorem.

Proocf: We will use induction on the length of the augmentation

sequence.

Clearly all minimal augmentation sequences of length 1 produce

new edge-disjoint forests.

Assume that all minimal augmentation sequences of length r
produce edge-disjoint forests by the above process. Let
@(l),...e(r+l) and n(l)...n(r+l) be a minimal augmentation
sequence for forests F(l1)... F{k). Define F’{(1)...F’ (k) to be

the resulting forests after one stage of augmentation. That is:

F’(n(1)) = F(n(1)) ~ (@(2)} + {e(1))

F?’(i) = F(i) for i other than n(l)

The fact that F’(1)...F’ (k) are edge~disjoint forests is clear.
Now let us define new sequences n’(1),...n°(r) and e’(1),...

e’ (r) as follows:

e’ (i) = @(i+l)

n" (i) = n(i+l1)

. S Y R Pt S bl

BN ¥) Fadiar ey

We will now show that the sequences n’ (#) and e’ (%) are
ninimal augmentation sequences for F?(1),...F’ (k). By the
inductive hypothesis we will have that the modification of
these new forests by the r length sequence will result in
edge—-disjoint forests. Hence the original forests F(1),...F(k)
can be modified by the r+i length sequences ni(#) and e(#) to
vield edge-disjoint forests, which completes the inductive

step.

There are S conditions to be satisfied to make sure
that @’ (1) ,...2°(r) and n"(1),...n"(r) are a minimal

augmnentation sequence for F’(1),...F’ (k),

Condition 1 is that e’ (1) is not in any of the forests.
We knew that the forests F(#) were edge-disjoint, and that F(n(
1)) contained e(2) (=e’(1)). Hence we know that none of the
other forests could contain e(2). The definition of F’ (%)
guarantees that e(2) is not in F’(n(1)), and all the other F’(
#) forests are identical to the F(#) forests. So we see that

the condition is satisfied.

Condition 2 guarantees that both the endnodes of each
edge @’ (i) are in the same tree in F’(n’(i)). This fact follows

directly for all forests except F’(n(1)), which is the only

A woow b ansn Suh sbA st bt g Shed

Sé6

forest that changed. Suppose that p and q were in the same tree
in F(n(1)), or equivalently, a path from p to q exists in F(n(
1)), We will show that a path exists from p to g in F" (n(1)).
If this path in F did not use e(2) (the edge that we removed to
create F’), then clearly the path still exists in F’(n(1)). If
the path did include e(2), then it consists of a path from p to
one endnode of #(2), followed by e@(2), followed by a path from
the otner endnode of e(2) to q. Note that the first and third
portions‘of this path are still intact in F’(n(1)). We also
note that F’(n(1)) has a path between the endnodes of e(2)
which consists of edges in Cle(l1),F(n(l1)] and e(1). By the
transitivity of paths, we must have a path from p to q in F” (n(

i”n.

Having shown condition 2, the text of condition 3 is
well defined. What we must show is @’ (i+1) is in Cle’ (i),F"(n*(
$))). As with condition 2, this follows directly in all cases
except where n’{i)=n(1) {(the modified forest). In the case
where n’(i)=n(1), we only have difficulty {f{ @(2) (the removed
edge) was part of Cle’ (i), F(n’(i))l. (If @(2) were not on this
path, then the path could not possibly have changed.) If we
consider the new path around e’ (i) in forest F’(n’(i)) as we
did in the proof of condition b, we can view it as the result
of "adding" 3 paths. These paths are: the path from the endnode
of @’ (i) to the endnode of e(2) in F(n’(i)), the path between

the endnodes of e(2) in F’(n”(i{)), and the path from the other

P S T

S7

endnode of ®(2) to the other endnode of e’ (i) in F(n{i)). The
resulting path has all the edges that the path Cle’ (i), ,F(n’(
i1 had except for some mdges in CLe(1),F(n(1))]. We know that
@’ (i+1l) could not be in Cle(1),F(n{(1))] because e(#) and n(#*)
are a minimal augmentation sequence, and must satisfy condition
S for the case i=1. Hence e’ (i+1) is in the path ClL{(e” (i),F* (
n’{i))J.

The next condition is difficult to show only if it is
referring to the one forest that is changed in creating F’ (#).
If n’(p) is not the same as n{(1), then condition 4 is
immediately true. If n’(p) is the same as n(l), then we must
verify that the endnodes of e’ (p) are still in separate trees.
We note that the endnodes of e(l) were in the same tree in F(n(
1)), and hence the addition of e(1) to f(n(1)) could not have
combined two distinct trees in F(n(1)). Hence the endnodes of
e’ (p) must still be in the same distinct trees {n F’(n(l)), as

they were in Fin(1)) .

As we showaed in the proof of condition 2, the only
difference between Cle(i) ,F(n{(i))] and Cle(i),F’(nt(i))] (i>1)
is the possible addition of edges in Cle(1),F(n{(1))] and/or
e(1). Using the fact that e(#), n(#) are minimal augmentation

sequences, and condition 5 with i=1, we get: 2¢{;j<p+!

. s . . . L
D Y P S SN P O . PP O R PP Wy W Wy - . B NG A 4

PRERE. ™ 3 S

v v
4

AR 4 AN
»

........

Se
e(j) is not in Cle(i),F(n(i))]
We can then combine the above original condition 5 to get:

for all i,j such that 0<i<p, 0<j<p+1, i+1{y

(i) is not in Cle(i),F(n(1))] + Cle(l),F(n(1))1]

We also note that (1) is not in any forest F(#) (condition 1),
and hence a(j) can not be the same as e(j) for j>1. This last
fact combined with the above condition guarantee that e’ (#) and

n’(#) satisfy condition S in forests F’ (#),

IMPLEMENTING THE INDEPENDENCE TEST

The basic algorithm starts with F=F(1)=F(2)=,,.F(k)={),
and considers each edge @ in the network. If F+{e) is
independent, then e is added to F, otherwise ® is discarded.
Using what we have shown thus far, we will be looking for a
minimal augmentation sequence that starts with e®. If we can
find such a sequence, then F+{e) must be independent and we can
perform the augmentation. When we finish describing the details
of the algorithm, we will prove that when we fail to find such

a sequence, then F+{e) is dependent.
A) “"Initialization

F ==

for i=1 to K

P e B S T B S PP R SRR TPE RPN G i S U2 W WY YAl Wi e W 4

r v

s asa ladde b

N
AP T Sl 'Y P U U WU G Gyt W WD RN YT W Wi ey wpa o A‘JM

A el ea stk el gy & et g g

S9

F(i) <= ()

next §

B) "Loock at all edges
L <= the set of edges
for = each edge in L
BOSUB C "Test and augment if possible
If F has k(n-1) elements then STOP "We found
k trees
next e

stop "k edge-disjoint trees don’t exist

C) "Test to see if F+{e) is independent
Mark every edge in F as unlabeled
QUEUE <{-— e"the edge we’'re trying to start with

goto D "the labeling section

The forementioned QUEUE will be used by the labeling section to
search for an augmentation sequence. It holds names of edges

that need to be looked at “"further".

D) "labeling step
1§ QUEUE is empty then goto B "cleanup, F+{e)
is dependent

remove the next e’ from QUEUE

for i=1 to k "try it in all the forests

Pl ki-Shs Bl St At Minss At Mast Snse Sl S Saiit Mo TR T

[

E! 60
:; If the endnodes of e’ are in different

: . trees in F (i)

-~ then goto E "augmentation found

i*) L? (=~ C(e’,F(i)) "the path around e’
Label any unlabeled edges in L’ with e’
Add any edges that we just labeled to

the QUEUE

. next i

goto D "trvy this labeling step again

The labeling step is performing a breadth first search of the
edges that may ba exchanged for the original edge e. and the
edges that may be exchanged for them. and so forth. When an
edge is found to be of immediate use in a forest (i.ae. its
endnodes are in different trees). then the labels can be traced
backwards to reveal the augmentation sequence. The next section

illustrates this process.

E) “Trace out augmentation sequence

n(1) <-— i "winning ferest in section D

e(l) {-— e "the winning edge from section D

Jj <= 1 "counter for sequence

TRACE LOOP:
if e(j) == e then goto F "perform

augmentation

j €== j+1 "increment counter

e(j) <{-— label of e(j-1) "trace back label

1

TSR TR WP N COur W PSP PEDUIIY. P PO PEIU TN TN VU DI TR DU DE Y@ OU D e 1 -*-_‘-—_——‘—M

’ Tt . - . . . N
e MY e m A mm tea .l A Al PG AP U Uy W

61

n(j) <-— forest # that contains e(j-1)

60TO TRACE LOOP

Now we have the actual augmentation sequence (in reverse order)

80 all we have to do is use it.

F) "Augment F and the forests

F == F + (@) "add the original edge

AUGMENT LOOP:
F(n{(3j)) <— F(n(j)) + {@(j)) “"add the new edge
if jm=m] then return to B "augmentation complete
F(n(j)) <== F(n(j)) ~ {(@(j-1)) "swap out the

next edge

j <== j—-1 "move to next forest

60TO AUGMENT LOOP

There is now only one point left to be described,
namely, what to do if the QUEUE in D becomes empty. We claim 8

that this eventuality implies that F+{(e) is dependent. i

Lemma: If the above algorithm &omplnt-ly empties the QUEUE . 4
without finding an augmentation sequence, then any node that is
adjacent to a labeled edge in one forest, is adjacent to a

labeled edge in every other forest. g

S S U U W G WS T N e . P P P W AT W WA Gy

62

Proof: Every labeled edge was put in the QUEUE. Every edge in
the QUEUE was tried in every forest, and the path that was
found around that edge in each forest was labeled. Hence, if a
node is adjacent to a labeled edge in one forest, then it is
adjacent to a labeled path (and so a labeled edge) in every

forest.

By virtue of the above lemma, it is reasconable to speak
of nodes that are adjacent to labeled edges, without reference
to a specific forest. We will now show that the sat of labeled

edges in each forest forms a tree.

Lemma: If the above algQorithm completely empties the QUEUE
without finding an augmentation sequence, then the set of

labeled edges in each forest forms a tree.

Proof: It is sufficient to show that there is a labeled edge
path from any node adjacent to a labeled edge, to the nodes at
bo h ends of e (the original edge). Using proof by
contradiction, let e’ be the first edge that is taken from the
QUEUE and has endnodes that will never have a labeled path to
one endnode of e (assume that e’ is in F(j)). Let e’’ be the

wdge which caused e’ to be put on the QUEUE (Note- It is

T T
2~ AN T

impossible for e’ to be the original e, hence 2’° exists),
Since e’’ was taken from the QUEUE before e’, we know that
there will eventually be a labeled edge path in F(j) from the
endnodes of e to the endnodes of e’’. When e’’ caused e’ to be
put on the GQUEUE, it was also guaranteed that the other edges
in Cle’”,F(j)] will be labeled. There will then be an extension
of the labeled path from endnodes of e to endnodes of e’”, on
to endnodes of ®’ via edges in Cle’’,F(j)]. This contradicts

the assumption that no such path existed.

Finally now we can show that F+{e) must be dependent in

this empty QUEUE case.

Thecrem: 1f the above algorithm completely empties the QUEUE
without finding an augmentation sequence, then F+{(e) is

dependent.

Proof: From the first lemma we have identified there are some
number of nodes that are adjacent to labeled edges assume
there are g such nodes. The second lemma tells us that there is
a tree in each forest that spans these q nodes. Hence we have
identified k(g—-1) edges which already interconnect these g
nodes. The end nodes of the edge e are already among the q

nodes. It is the case that k(g—-1)+1 edges that interconnect ¢

nodes always are a dependent set.

With the validity of the above claim proven, we see that it is

sufficient to end the algorithm with:

6) QUEUE was empty in D

return to B "No augmentation is possible

Now that we have a workable algorithm, we will clean up
some of the computational dItIilltb.fOF. we evaluate its
complexity., In the “labeling step" we have two operations that
might pose some difficulty if not carefully done. The first
operation is trying to find out if two endnodes are in the same
tree in a given forest. The second operation is trying to find
the tree path between two nodes, and labeling any of the edges

on this path that are unlabeled.

SET UNION FUNCTIONS

As a brief aside, we should describe what a "set union"
algorithm is. In many discrete problems a partition of a set
must be maintained. This is the case here, where we partition
the nodes into subsets that are interconnected in a given
forest. Such algorithms are so widely used, that some standard
functions are commonly sewn in the literature [23] and thuey are
generally referred to as set union algorithms. A set union

algorithm is able to manipulate a data structur= that

- T,
{:w

{ .

.

¥

-

-

635

represents the partition so as to combine two separate subsets
in the partition into a single subset (via set union). It is
also necessary for an algorithm to be able to determine if two
elements of the original set are in the same subset in the
partition (i.e., ask gquestions about the actual partition).
Generally a set union algorithm is broken into two functional
parts that manipulate the same data structure. The first part
is a function FIND(i), which returns the name of the subset
that currently contains i. The second function is UNION(i,j).
UNION(i, §) modifies the existing data structure to combine the
subsets that contain i and j. Examples of set union algorithms
are given in appendix B. A reader that is unfamiliar with such
algorithms would be advised to read appendix b before

proceeding further.

ARE TWO NODES IN THE SAME TREE

Note that when any two nodes are connected via a tree
in some forest F(j), then for the remainder of the algorithm
these nodes remain connected in F(j). The "augmenting step”
either supplies an alternate connection between nodes before
breaking the old path, or forms connections between nodes that
were not previously connected. With this structure in mind we
see that we can use a sat union algorithm in each forest to
keep track of connectivity. When nodes p and g are joined for
the first time in forest F(j), we can perform a UNION(j,p,q). (

Note: There are k separate UNION functions, which are

PR A P

66

distinguished by the first parameter. These correspond to the k
distinct forests.) Specifically the following statements would

be added to the "augmentation step” just before AUGMENT LOOP:

let p,q be endnodes of &(1) "The winning edge

UNION(n(1),p,q) "remember, these sets are connected n

With these statements in place, the question "Are the
endnodes of an edge already in the same tree in a given forest
F(j) ?", is reduced to a pair of FIND(j,#) ocperations, and a
comparison. The FIND(J,p) function returns the value of the
canonical node that p is connected to in forest F(j). If both
endnodes are already connected to the same canonical node, then
they are in the same tree. Specifically, the following

statement in the labeling step:

"If the endnodes of e’ are in different

trees in F(i)"

as found in the labeling is replaced by the sequence of

statements:

Let p,q be the endnades of e’

IF FIND(i,p) is not equal to FIND(i,q)

> - * - - v = M o
- m = m GRS P S S, [T G ahasrhonte Amdnad o suintuintuntaniy

T

-

e
. . .

&7

FINDING A PATH IN A FOREST

Next we consider the problem of labeling all edges in
the path between two nodes, excluding those that have already
been labeled. This is the second potentially complex task in
the "labeling step". In general, such a task might take O(n)
time (n is the number of nodes? to perform, as a path might in
the worst case be of length n—-1. We repeat this task for each
edge that we put on the QUEUE, which has a worst case average
of O(kn) (except for the original edge, only edges that are in
forests can be put on the QUEUE). The QUEUE is restarted every
time we try to find a new augmentation sequence, which happens
at least O(kn) times. If we are not clever about these
operations, this step in the algorithm could casiiy consume

O0(nknkn) iime.

This specific problem, however, has special structure
that may speed up the net complexity. Assuming that we put the
edges out onto the QUEUE from Cle,F(j)] ordered by their
distance from one endnode of e, then the set of labeled edges
in each forest is a tree at each point in the labeling
algorithm. A proof of this fact would follow from the method
used to show that the empty QUEUE case resulted in labeled
edges that formed trees. With this structure in mind, the

problem of finding a path around an edge becomes reduced to

68

tying the endnodes of the given edge intn the existing labeled
tree. We also should note that the endnodes of e (the original
edge that we’re trying toc base our augmentation on) are always
in this labeled tree. To speed our search for the direction to
the existing labeled tree, we can precalculate a "Direction to
an endnode of e in each forest, for each node. This
computation would be done at the end of section C, just before
we called upon the labeling algorithm to do its work. The use
of this speed up will allow us to effectively spend, for each
forest, a fixed amount of time to process every edgQe put on the
QUEUE. This speed up is most clearly seen by looking at an

example.

The above forest has 9 nodes, 7 edges, and 2 trees. Suppose
that the initial edge e has endnodes 1| and 7. Before starting
the labeling algorithm we would choose one of the endnodes to
be a labeling root in all of the forests. Suppose we chose 1 to

be the root. We would then calculate the direction to the root

i e

for esach node in this forest. Specifically we would calculate
1=() 3, 2-(21) y, I=(31) , 4-(43) , 5=(53I) , 6~ (63) , 7-(76) ,8-() ,9-(94) .
This data structure shows each node, followed by the first step
(edge) toward the root. With all this precalculation done, the

labeling could be run.

The first gquestion that the labeling algorithm would
ask (relating to paths) would be the path from 7 to 1 (or 1 to
7)), as this is the initial edQe e. Note that one of these
nodes, node 1, is already in the labeling tree as it is the
root. Starting from the node that is not in the tree, and using
the precomputed path to root information, we find the path
7-6-3-1. This is indeed the path from 7 to 1 as desired. We
would then put the corresponding edges on the QUEUE, with the
closest to the root going first: that is the order 13, 36,67.
With this order strictly enforced, it will always be the case
that one of the endnodes of any edge that is removed from the
QUEUE is already in the labeled tree. With the above example,
by the time 47 is removed from the QUEUE, node 6 MUST have been
put in the labeled tree in every forest. The reason is that 36
was already removed from the QUEUE, and the path around that

edge put node 6 in the labeled tree in each forest.

Later in the running of the algorithm, the labeling

algorithm might ask for the path from 9 to 1. As we claimed,

70

one of the nodes is already in the labeled tree. We simply
start to look at the path from the node that is not in the
labeled tree, toward the root. The path then starts at 9, and
takes a first step of 94. At this point we note that node 4 is
not in the labeled tree;,; and we continue the path towards the
root. The naxt step takes us from node 4 via 43. Here we notice
that node 3 is already in the labeled tree (refer to the
previous paragraph) and we stop looking further towards the
root. The reason why we can stop here, sven though our task was
to find a path from 92 to 1, is that we know that the path from
this point to the destination node is already fully labeled. We
know this because we have tied into a labeled tree that
includes the destination node, node 1. We would then put the
edges that we traversed onto the QUEUE in order of their

nearness to the root: 43,94,

As a last stage of this example, we might be asked to
label the edges on the path from 9 to 5. As always, one of the
endnodes (9) in this path is in the labeled tree (in this case,
9 is in the labeled tree because the path from @ to i was
labeled in the last paragraph). We then begin to head for the
root from the other node. Our first step is 353. We note that 3
is in the labeled tree and stop looking any further. The point,
of course, is that the remainder of the path from S to 9 was
labeled previously (The remainder is 34, 49, This was labeled

in the last paragraph). We would then put the edge that we

N

PR N

71

traversed (53) onto the QUEUE.

This example demonstrates that the method given

requires a constant amount of processing time for each edge put
on the QUEUE, in each forest that processes it. This time is
independent of the path lengths. as we can count time both
getting onto the QUEUE and being removed from the GUEUE as the
service time ascribed to each edge that is processed. This
constan£ amount of processing time is sharply contrasted with
the time it might take if we did the following: For every edge
that is removed from the gueue. find the entire path between
the endnodes of that edge., and put any new edges found in that
path on the queue. Since a path mavy be of length n-1 (n is the
number of nodes in the network), the processing time (using
this inferior method) would be 0(n) per edge removed from the

queue., per forest that it is processed in.

In order to be able use the above method we must

precalculate the directions to the current root in each forest.

PRECOMPUTATION OF THE DIRECTION TO THE ROOT
This section must, every time we choose a new edge to
start an augmentation seaquence., for each forest, precompute the

direction to an arbitrary root node from every node in the

e A B i PR S P 4 L PRSP PRI U T I U L . T TP - aca - o - --~._A~-;"4A.J

network. The root node that is chosen is always one endnode of

the edge that we wish to start the augmentation sequence with.
For simplicity, we will only demonstrate the algorithm’s use
with one of the forests. If this multiple spanning tree
algorithm was actually implemented, we would execute this

procedure on svery one of the forest’s list of wmdges.

We will assume that we have a list of edges E(1),...
E(p) for the forest that we are working with. We will show haow
to create a data base such that, if some node x is connected to
the root node in this forest, then a function call of the form
DIR_ROOT(x) will return the next node in the path to the root.
To remain well defined in all cases, if DIR_ROOT is given the
name of the root as its parameter, it will return the name of
the root. Since the root is arbitrary in this section, we s
assume that this data base is produced by a subroutine call of 1
the form PRECOMPUTE_ROOT(y), where y is some node in the

network.

We will start by defining the function call
DIR_ROOT(x). This function will use the data base to find the i
direction to the root from the given node (which is specified
by an integer from 1 to n). All values of this function are
precomputed, and the execution of this function takes constant

time, as it is nothing more than a table lookup.

e adn PRI DU WP W e N PP RIP UL DI UL G GO G G N)

The simplicity of the DIR_ROOT() function call tells us
that all the work is done in the precomputing of the table. The
basic way that we deduce the table from the list of edges is as
follows. First we scan down the list of edges once to create
for each node, a list of neighbors of that node. Now that we
have the edge information in this form, we just slowly traverse
the tree. starting at the root. marking each step we take in
the array PATH. We actually perform a breadth first traverse of
the treé, and hence we first put all the correct entries in
PATH for all nodes that are one hop from the root. then for all
nodes that are two hops away, etc. The exact algorithm is as

follows:

PRECOMPUTE_ROOT ()

’For now. just remember that x will be the root.

DIMENSION PATHIN]J ’Declare PATH to be an array with

n entries

DIMENSION NEIGHBORSINn] ’This is an array of queues
of neighbors
*Which initially must all be empty.
FOR i=1 to n
NEIGHBORSCi] <-—- EMPTY

NEXT i

PR W N LT - PO S S S A O S T W G i VO S Wy S =

- 74

'Start by running through the list of edges and
'building up the lists of neighbors
FOR i=1 to p ’There are p edges
*I¥{ an edge ® connects node y to node z, then
'we define Ni(e) to be y, and N2(e) to be z.
ADD N1(E(p)) to the queue NEIBHBORSIN2Z2(E(p))]
'The first node is the neighbor of the second
ADD N2(E(p)) to the queue NEIGHBORSIN1(E(p))]
’..the second node is a neighbor of the first

NEXT 14

’Now that we have lists of neighbors, we can start to
‘set up the PATH array.
FOR i= 1 TO n

PATHIi] <-- 0 ’Mark esach entry as uninitialized

NEXT i

PATHIx] <-— x ’The path to the root is defined to be

*the root

‘Start our queue with the only node that is "no" hops

$rom the root...

PATHQUEUE <-- x

LOOP:

D W O, N T S, RPN 1 L U 37 VLN Wiy W WA W SR e WS

- 75

y {-= next node name in PATHQUEUE °’Get ready to

*process a new node. Note that this

'operation removes y permanently from

PATHRQUEUE (i.e. a pop operation)

INNER_LOOP:
IF NEIGHBORLY] is EMPTY THEN ’if there are no
more neighbors

GOTO END_INNER_LOOP

z {== next node name in NEIGHBOR([y) ’Get the name of a
*neighbor
IF PATHL(21=0 THEN ’ Make sure that its not
C ’yet initialized
PATHLz] <-- y 'The way to get to the root from
'node z is to go to node vy.

ADD z to the PATHQUEUE

END_INNER_LOOP:
IF PATHQUEUE is not empty THEN ’See if we've processed
'everything
60TO LOOP

To analyze the computational comple ity of this
procedure, we note that we start by running through the list of
edges in this forest. Since there can be no more than n-1 edges

in a forest with n nodes, this section takes no more than 0O(n)

— S —— - i S M

76

work. We also see that there are two additional entries made in
the NEIGHBORS list for each edge that we look at. Hence there
are no more than 2(n-1) entries ever made in the NEIGHBOR list.
We also note that an entry is made into the queue PATHQUEUE
during the looping section only when an entry is removed from
the NEIGHBOR list. Hence no more than 2(n-1) entries can be
added to PATHQUEUE. Every time we pass through the bottom
section of the procedure, we delete an entry from the either
the PATHQUEUE or the NEIGHBORS list (or both). Hence the bottom
section can be executed no more than O(n) times. Hence the
total work done to precalculate the entries in PATH is of 0O(n).
We recall that this procedure must be run on each of the k
forests, and the grand total of work done in precalculating the

direction to roots in all the forests is 0O(kn).

COMPUTATIONAL COMPLEXITY
Before developing more efficient versions of this
algorithm, we should evaluate the time complexity of the

algorithm thus far.

Section A performs the initialization of F to an empty
set, and starts all k of the forests F(i) also as the empty
set. Initially none of the forests have edges, and the greedy

algorithm starts F as an empty set (which is by definition

77

independent). This section takes a time proportional to k, ard

calls B once.

In section B we pick out unused esdges to try to augment
F. Section B relies on the fact that once the algorithm finds
that the edge cannot be used to augment F, it will never be
useful to augment F. For this reason, section B sequentially
selects no more than m edges (m is the number of edges in the
entire network). Hence this section runs in O(m) time. For
every edge that section B loocks at, section C is called to see

if the edge can be used.

Section C is titled "Test for Independence". Section C
initializes all the dynamic data structures for section D to do
the actual work. This initielization work consists of marking
every edge in every forest as unlabeled, performing the
pre—order calculation (to assist labeling section), and
clearing the queues to include only the edge that we are trying
to augment F with. The number of edges that get marked varies
from O (at the start of the algorithm) to k(n-1)-1 (near
completion of the algorithm). Hence the marking operation takes

an average of O(kn) time. The pre—order calculation, as

mentioned in its section, takes OD{(kn) time to compute. The
clearing and reinitializing of the queue takes a constant

amount of time. Hence EACH run of section C takes O(kn)

N I SO WL S G PRy) pame— _-M

78

processing time in tots. Being called O(m) times by section B,

section C runs in total O(mkn) time, and ca’ls D once each run.

Section D (Labeling Step) is where mich of the work in
this algorithm takes place. For every edge that gets taken from
the QUEUE, this labeling section reruns itself. In the worst
case, all edges in all forests can be placed on the QUEUE.
Since each forest can have as many as n-—-1 edges, and there k
forests, O(kn) edges might be placed on the QUEUE, and hence
O(kn) reruns of section D could occur., Within this labeling
section, work is done for each edge that is removed from the
QUEUE. This work is dcocne for all forests (k of them) and
consists of doirg a couple of FIND’s (O(FIND) work) and some
work to label the path around each edge. The work to label the
path around an edge can be thought of as constant. (There is a
constant amount of needed time to start the labeling process
for each edge, and a constant amount of time needed to put each
edge~onto the queue. 3o we have that that the processing which
is done in this section for each edge that finds it way onto
the QUEUE amounts to O(k)O(FIND) for processing as the edge is
removed, and some constant processing time as the esdge is added
to the QUEUE. So we have that each call of section section D by
section C will take O(kn)O(k)C(FIND) processing time. Hence the

labeling section D takes O(m)O(kn)O(k)O(FIND) time (as section

C calls section D a maximum of m times).

Finally now we look at sections E and F, The algorithm

executes these sections each time an augmentation sequence is
found. The length of the augmentation sequence governs the
amount of processing done in these two sections. A worst case
scenario would have all augmentation sequences use all the
edges in all the forests. As mentioned earlier, the number of
edges used by all the forests varies from O (at the start of
the algorithm) to almost k(n-1) (near the end of the
algorithm). So we see that the average augmentation sequence
could have length O(kn) edges. This result tells us that the
processing done in the looping sections E and F zan be no more
than O(kn) per call. We should also recall that a UNION
operation was added just before the “AUGMENT LOOP" statement in
section F (this statement updates the FIND-UNION data

structure as to the augmentation). Thae total work done in
sections E and F is then O(kn) +0(UNION) for each call. Each
augmentation increases the size of F, and hence these sections
can be called no more than 0O(kn) times (there are k(n-1) edges
in k edge-disjoint spanning trees). The total amount of work
done in these two sections is then 0(kn) (O(kn)+O0(UNICON)). (The

work to do a UNION is O(UNION)).

The total running time for the algorithm is then:

O(kn) [O(kn) + D(UNION) + O(mk)O(FIND) 1

DR

3 8o

,'~ As is shown in Appendix B, it is quite easy to get a UNION-FIND
pair such that O(FIND) is constant, and O(UNION) is O(n). The

above complexity then reduces to:

. D(knkm) .

THE "CLUMP" STRUCTURE

Now we will reduce the complexity of the algorithm
described up to this point. We start by recalling that whenever
the algorithm discovers that an edge cannot be used, it
completely empties the QUEUE. The fact that the QUEUE was
emptied implies (see the previous theorem) that we have found a
set of nodes that are spanned by labeled edges in every forest.
This fact is sufficient to guarantee that the original edge e,
that started the labeling algorithm, was not independent of the
current F. Lets call a set of nodes that are spanned in every
forest F(i), by a subtree of that F(i), a "clump". If we think
about this clump for a second, we realize that any edge that
has both of its endnodes in a clump, cannot be independent of

whe current F,

As an example of the above structure, consider the
following fully connected (every node is connected to every

other node) network with six nodes. The algorithm is trying to

oA L. . S L R ST W AR IR DX PRI U VD W) G Vi UALK VP Woll GGy WOw WU GO SN G S

el A ¥F SARTAET

)= M

81

find two edge—disjoint spanning trees. The algorithm has

already placed nine edges into the forests, and the forests

O &
OO
® O—E

F (1) - F(2)

The algorithm just tried to augment the forests using the edge

currently look like:

e=26, This resulted in the labeling of edges 12,14,34, and 34
in forest F(l1), and edges 13,23,24, and 446 in forest F(2). The
algorithm then realized (as it emptied the QUEUE) that the
addition of e=26 to the set F (namely: (12,13,14,23,24,34,34,
46,56}) produces a dependent set. The greedy algorithm
guarantees that link 26 will not be independent of F in the
future. The clever structure to notice is: not only will any
link that connects node 2 to node 6 prove to be a dependent
addition to F, any node that connects any two nodes in the
clump of nodes (1,2,3,4,6) will prove to be a dependent
addition to F! In this particular example, a clever algorithm

would not even bother to try to augment F with link 16, as it

N~

82

is totally within the clump. In a more general example, the

savings will be shown to be quite significant,

We will now present a few theorems about clumps that

allow us to use this structure to our advantage.

Theorem: If a set of naodes C is a clump for the current F, and
F is augmented using a minimal augmentation sequence, then C is

a clump of the augmented F.

Proof: We simply assert that none of the edges that
interconnect any of the nodes of C (in any forest) can be in
the augmentation sequence. 1f we show this assertion, then it
will be impossible for any of the edges that interconnect nodes
of C to be removed from any forest by the augmentation process.
Since these edges remain intact in all forests, C must remain a
clump. The proof of our assertion is by contradiction: Suppose
a4 minimal augmentation sequence exists and the i’th edge has
both endnodes in C. Since all nodes in C are connected in every
forest by edges (there is a subtree in every forest that spans
C); we see that all the endnodes of edges in Cle(i),F(j)]) are
also in C. Hence by induction all later edges in the
augmentation sequence have both endnodes in C. This contradicts

the definition of an augmentation sequence that states that the

83

last edge in the sequence has its endnodes in separate trees in

some forest.

Now that we have a theorem that states roughly: “"once a
clump, always a clump", we are in a position to prove a theorem
that will allow us to make great use of a clump’s structure.
Notice that it is no longer necessary to proclaim a set to be a
clump relative to the current F, and this fact is used in the

next theorem.

Theorem: 1f two sets of nodes A and B are clumps, and there is
a node p that is common to A and B, then the set union A+B is a

clump.

Proof: It is necessary to show that there is a subtree in every
forest that spans A+B. Since forests have no cycles, it is
sufficient to show that a path exists between any two nodes in
any forest. Consider any two nodes q and r, that in are A+B.
Without loss of generality let us fix ocur attention on some
forest F(j). Since each of our two nodes is in A or B (
non-exclusively), and both A and B are clumps, there must be a
path in F(j) from q tc p, as well as r to p. Using the

transitivity of paths, we have a path from q to r in F(j), and

we are done.

84

Having established these properties of clumps, it is
clear that we would like to check to see if an edge e is in
some established clump before we try toc base an augmentation
" sequence on it. As we have said, if both endnodes of some edge
@ are in a clump, then F+{e) must be a dependent set. This test

would go in section B, just before the "GOSUB C“.

Before we actually describe the modifications to the
algorithm, we should mention how we can keep track of the
clumps. The method is to be a set union algorithm, as we have
already shown that existing clumps can be automatically
combined by a set union of the clumps. The question: "In which
clump are the endnodes of a Qiven edge?", can then be reduced
to a FIND of the canonical node for the clump. We then make use

of a standard FIND-UNION subroutine pair to do the work.

For the purposes of the complexity bound, it is not
necessary to maintain a perfect representation of all sets that
can be deduced to be clumps. It is is sufficient to maintain a
coarser structure which is easier tc maintain. For example,
suppose our algorithm found out that the set of nodes (1,2,4,6)
formed a clump, as a consequence of trying to use the edge 12,
Our algorithm will only bother to record the fact that (1,2} is

a subset of a clump. This act of discarding information, (in

3

(|
[

this case, that nodes 4 and 6 are also in the clump), will make
the computational complexity easier to analyze, and not effect
the asymptotic results. Note that having a coarser structure
will simply cause the algorithm to look for an augmentation
sequence even though perfect deduction (via clumps) would have
eliminated the possibility of finding such a sequence.

Specifically the union operator is added in section G as:

let p,q be the endnodes of @ "The original edge

CLUMPUNION(p,q) "Don’t bother with the other nodes in

the clump

Due to the fact that we don’t bother looking for all the other
nodes to perform the appropriate union, the complexity analysis
becomes very simple. Since there are only r nodes, we can do at
most n-1 CLUMPUNION’s. After that point it must be the case
that the entire network is one clump. This would mean that we

have found k spanning trees!

The checking of an edge to see if both endnodes are in
the same clump is done in section B, just before the "GOSUB C".

the exact statements would be’

Let p,q be the endnodes of
IF CLUMPFIND(p) == CLUMPFIND(q) then goto next e
"don’t bother to look at this edge,

F+{e) is dependent

Iraits =4 SLERE

AR

86

COMPUTATIONAL COMPLEXITY - USING CLUMPS

The new complexity calculation shows that section C,
which formerly could be called m times, can now be called only
k{n-1) times for successful augmentations, plus n-1 times that
clumps are united. Hence section C is only called O(kn) times.

The net complexity is then

O{m)O(CLUMPFIND)+
0(n)O(CLUMPUNION) +

O(kni CO(kn)+0(UNION)+0(nkk)O(FIND)]

Using tie FIND-UNION pair that runs in 0(1) and O(n)
respectively, and identical algorithms for

CLUMPFIND-CLUMPUNION, we then get:

2 3
Oim + n k)

If there is no more than 1 edge connecting any two nodes, we

have that:

2 2 3
O(m) < O(n), which reduces the above complexity to O(n k).

CONSTRAINED MINIMAL AUGMENTATION SEQUENCES
The intent of this section is to achieve a factor of k
speedup in the algorithm just presented. As motivation for this

potential time savings, we offer the following example of a

- TR TN T
PP T vy haliet Clali)

gt L ot Rl

segment of our algorithm trying to find 3 edge-disjoint

spanning trees. The algorithm is working on a network with 7

nodes. The algorithm has already placed 17 of the necessary
18 (7 nodes imply 6 edges per tree) edges in various forests.
We show below the state of the algorithm by showing the 3

forests that are currently being examined.

DO O O
NG & 1 ® G

N~
(5) (@ 010 OO0
O O (D

The next edge to be tried is 23. The algorithm first tries to
use 23 in each of the forests, In the first forest the
algorithm cannot use 23, so it puts edge 26 and 63 (the path
around 23) on the QUEUE. Similarly the algorithm tries to use
23 in the second forest, and adds 24,446,461, 15,53 to the QUEUE.
The attempt at using 23 in the third forest yields an addition

of 21,13 to the QUEUE.

The QUEUE now contains 26,63, 24,446,61,15,53, 21,13. As

we watch the algorithm continue to perform, we will begin to

see the wasted operations. The labeling algorithm now pops the
26 from the QUEUE and tries to use it in all the forests. It is
no surprise that the attempted use of 26 in forest 1 is
unsuccessful, and causes no other edges to be put on the QUEUE.
The edge 246 was generated by forest 1, and the algorithm
probably should avoid even trying to use it in such a forest (a
small bit of waste). The use of 26 in forest 2 yields no new
edges on the QUEUE. Using 26 in forest 3 adds 45,54,43 to the

QUEUE {(Note: 21,13 are already on the QUEUE).

The QUEUE now contains 63, 24,446,61,53, 21,13, 65,54,
43. This stage of the algorithm then tries to use the edge 63.
We can tell in advance that this stage will be a total waste of
time! Careful checking of this prediction shows that the edge
is not of use in any of the forests, ;nd it causes NO additions
to the QUEUE. The reason for our prediction is that edges 246
and 23 were already consizZered in all of the forests. Hence all
the edges on paths from node 2 to 6, and nodes 2 to 3 are
already on the queue. By transitivity of paths, all edges on

paths from nodes 3 to & must already be on the QUEUE'!

We will not proceed further with the algorithm, as we

have already illustrated ocur point.

T L

i

»

REMOVING WASTE
The question is then raised: How we can keep from

performing such "wasteful®" steps? there are two possibilities:

1) I1f we are going to check every edge that comes off
the queue in every forest (eg: we checked 23 in every
forest), then we should not put ALL the edges that are
in a path around that edge (eg: the path around 23 in

the first forest consisted of 26,63) on the QUEUE.

2) If when we remove an edge from the QUEUE (eg: 23) we
are going to put all the edges in the path (eg:26,63
for the first forest) on the QUEUE, then we shouldn’t
bother to check to see if the original edge (eg: 23)
was useful in all the forests. Instead we should rely
on the fact that the edges in the path (eg: 26,63)
around our test edge will be effectively tried in those

other forests'

MODULD K FORESTS

Of these two possibilities, we will pursue only the
latter. It is very easy to implement, and equally easy to
analyze. The idea is simply that when the labeling algorithm
pops an edge from the QUEUE, it should check to see only if it

is useful in the forest after the one it came out of (modulo

e e e e m e A e el e e b i dedt it nsieetetenshentesanbuehiinteliuintistitnteben

90

¢.“u(- i

k). Instead of checking for usefulness in k forests, we need
look only in one forest (a factor of k savings). The modified

algorithm would have a labeling algorithm that would look like:

D) labeling step
I1f QUEUE is empty then goto G "cleanup, F+{e)
is dependent remove the next e’ from QUEUE

let § be the index of the forest containing e’

- TS
T A

use j=0 if e” is not in any forest "the
. original edge isn’t in a forest
let i <-= (j mod k)+1 "the next forest: 0<{i<{k+l

If the endnodes of e’ are in different

trees in F(i)
then goto E “"augmentation found
L’ <-=- C(e’,F(i)) "the path around e’
Label any unlabeled edges in L’ with 2’
Add . y edges that we just labeled to
the QUEUE

goto D "try this labeling step again

What we have thus removed is a direct factor of k work from

this section of the algorithm. As we saw earlier, this is the

key section of the algorithm in terms of complexity. !

Although this forementioned change improves the

s AT Al A b Bt deedBetendimetelieatel P

PT—r

91

algorithm’s computational complexity, it has changed the
algorithm and, therefore, it remains to prove that this
modified algorithm will still perform correctly. This algorithm
still produces minimal augmentation sequences when it finds a
sequence, as we have only further constrained the previous

conditions (In addition to the five conditions that define a

minimal augmentation sequence, we have the added constraint
that n(i) is congruent to i, modulo k) Hence any augmentation
sequence that is found can be used to augment the existing

forests. It remains to show that when no such constrained

minimal augmentation sequence can be found by the above

process, then the set F+{e) is dependent.

CORRECTNESS PROOF
The proof of this fact uses the same main theorem used
earlier in the thesis. Only the proof of the first lemma needs

to be changed slightly.

Lemma: If the above algorithm completely empties the QUEUE
without finding an augmentation sequence, tnen any node that is
adjacent to a labeled edge in one forest, is adjacent to a

labeled edge in every other forest.

Proof: Every labeled edge was put in the QUEUE. Ever. e.-_¢

D-A124 278

UNCLARSSIFIED

EDGE DISPLAY SPANNING TREES AND RECOYERY IN DATA 2/3 -
COMMUNICATION NETHORKS(U) MASSRCHUSETTS INST OF TECH

CAMBRIDGE LRAB FOR INFORMATION AND D.. J R ROSKIND

OCT 83 LIDS-TH-1332 N@eei4-75-L-1183 F/G 17/2 NL

T

Ty

v

~
=T

.

g

.
N J‘

T

ol

-

AR AN

'Y'_."v.

«

k.

'FE
EEEER

EEEFEEEED

e

l

3"

Il

lle=
=

—— ———
— —
— ———

125

l

MICROCOPY RESOLUTION TEST CHART

1963-A

NATIONAL BUREAU OF STANDARDS-

.y ®_ % T %, 70~ 0 T

o il Aowra e ot Spat S et BANLING NN
...... oW Vet e T T e -
------- .

..

92

the QUEUE was tried in the next forest, and the path around
that edge was labeled in the next forest (as forests are

disjoint, and an edge can only be labeled in its own forest).

MR - < R AAAR Y T LONRE T

Therefore, if a node is adjacent to a labeled edge in one
forest, then it is adjacent to a labeled edge in the next
(modulo k) forest. Repeating this process shows that it is

adjacent tc a labeled edge in all k forests.

Lemma: If the above algorithm completely empties the QUEUE
without finding an augmentation sequence, then the set of

labeled edges in each forest forms a tree.

Proof: The same proof as was used earlier applies.

Finally now we can show that F+{e) must be dependent in

this empty QUEUE case.

Theorem: If the above algorithm completely empties the QUEUE
without finding an augmentation sequence, then F+(e) is

dependent.

Proof: Same as was used esarlier,

ARSI LA

N
.)

g Y Yt
200

..
)
'L

COMPUTATIONAL COMPLEXITY - MODULO K FORESTS
We can now recall the complexity of the algorithm that uses the

clumps structure, and we get the new complexity:

O {(m) 0 (CLUMPF IND)
+0(n) 0 (CLUMPUNION)
+0(kn) [O(kn)+0(UNION)+0(nk)O(FIND)]

Using the FIND-UNION pair that runs in 0(1) and O(n),
respectively, and identical algorithms for
CLUMPFIND-CLUMPUNION, we get a complexity:

2 2
Otm + n k)

PREVIOUS RESULTS
Within the literature we have found algorithms [35,13,
14] which do find pairs of spanning trees in an undirected

notuork, when they exist.

The Kameda algorithm algorithm is more complex to
2
describe and is evaluated to run in time O(max(n 1log(n),mn))
where: m is the number of links, m is the number if nodes. The
Chase algorithm is said to have complexity O(mn log#(n))

where!

[S P

- - .-
........

b : 94
o

» | i
- log#(n)=(Def.)least integer i such that log (n)<{=}
2
and "log" to the "i" refers to functional composition of log
X with itself i times, and then applied to n.

In comparison, our algorithm to find two edge edge

2
disjoint spanning trees would run in 0O(n) time.

FUTURE IMPROVEMENTS

Therae are other potential improvements that may be made
to this algorithm. To date, none of these improvements have
demonstrably improved the net asymptotic performance. Several

of these improvements are presented in Appendix A.

»

Roskind’s Conjecture

We believe that further resesarch in this area, along the lines

of the methods of the Appendix A, could produce an algorithm

with performance of better than:

2 2
O({nk n +n k) logikn))

.............

Chapter 4
Introduction

To review what we have done thus far, we started out by
examining a couple of failure recovery schemes. We concluded
that there was a gap between algorithms that had post failure
decisions completely precalculated (via predominately static
routing), and algorithms that left all the work toc be done
after the failure. To fill that gap we discussed the
possibilities of using precalculated detours. This detour
method could generally affect a recovery when there was the
possibility of only one failure. To accommodate the possibility

of more one failure (between major routing updates), we

considered methods of creating redundant (edge-disjoint)
spanning trees. In chapter 3 we developed highly efficient
mathods for finding such spanning trees, and now we will
discuss how they might be used in recovering from edge failures

in network.

RELIABILITY OF K EDGE-DISJOINT SPANNING TREES

The recovery from "several" arbitrary edge failures
(using pre-computed tree(s)) would require pre-computing
“several"” edge-disjoint spanning trees. For example, in order
to guarantee that the edges on the pre-computed spanning trees
could be used to inform every node in the network of k
arbitrary failures, 1t is necessary to have computed k

sdge-disjoint spanning trees. The natural question that might

4

..........

VTR U TN PRE TN DU TR DU S i SO AP i Syo e

L el

DRkt Sl ek /e d Al st . p———— ._-V'-._T P A e pan S A ST RO SCA R i AT AT A AT S L e S i

be asked is: For an arbitrary k, what is the mean time to
failure of all k trees, as compared to the mean time to failure
of a single edge? The mean time to failure of all k trees is
significant in that, after all k trees have failed, it is
usually impossible to notify all nodes in the netwofk of an
additional failure via edges of the spanning trees. What this
question addresses is how much failure recovery ability is
gained by adding additional spanning trees. To answer the above

question, we offer the following analysis.

Assume that the edge failure rates are independent and
Poisson with mean time to failure of M time units. We are
assuming that we have k edge disjoint spanning trees, spanning
the n nodes of the network. We would like to find the mean time
to failure of the set of all k trges. Since there are k
spanning trees, they contain k(n—-1) "spanning tree" edges. Thé
mean time to failure of one.of the spanning trees is
M/(ki(n—-1)), as the failure of any of the significant edges
would cause a spanning tree to break. When the first spanning
tree has failed, there are only k-1 trees left, and hence the
are only (k-1) (n-1) relevant spanning tree edges. The mean time
to the failure of ALL the trees is then:

M M M

+ +t ceenes * me—m———
k{n-1) (k=1) (n—1) (n-1)

..

M 1 1 1 1
B mememe—e—— * { + *oasat ——— + ——= }-
(n-1) k k-1 2 1
M
This sum is bounded above by = ~——=== # log k+i .
n-1

If we have 2 or 3 trees already, this analysis shows
that the added complications of using and maintaining
additional trees yields little marginal increase in the

reliability of the set of trees.

NETWORK MODEL

Before we discuss how the edge-disjoint spanning trees
can be put to use in recovery from edge failures, we will
define our network model, and what we mean by "failures". The
exact model that we will discuss is not the only model in which
edge-disjoint spanning trees might be used, but it is meant to
be a well defined scenario in which we can define explicit
protocols. Sevéral of the assumptions are made to mimic the
paper on "Resynch Procedures..." by Finn [10];, which serves as

the basis of much of our protocol development.

We will assume that nodes in the network have error -
free processors and storage. We will also assume that all edges
in the network are error—-free while they are up (operational).
All edges are either up or down (non-operational). These last

two facts can be guaranteed by a link protocol, at the expense

lh o d 8 oA e e oataatatatata® N

g St e At U A

K
.
‘<-
e
NS
L]
-

BUCR RRICAE - .
| P I WP SR S0 Wil Tt SN W

o - A o -t -
B aenh 2 G ariy e aoi e 2eil oW e ol N R R - e
et AU I A MR R S .Y T

of having variable transmission delays on each edge. Edges that
are down can carry no information, except test messages
concerning the status of that edge. Edges that are up are
assumed to have some arbitrary capacity and, as we said,
variable transmission delay. An sdge may change from up to down

at any point in time, and we assume that the two endnodes of

that edge might not realize this at the same time. We do
require that both endnodes agree that a node is down, and both
endnodes execute a prescribed link level protocol before an
edge can become operational again. The last assumption is that
all packets are received on an edge in the order in which they

were transmitted (packets can’t pass sach other on a Iink).

DISSEMINATING EDGE FAILURE INFORMATION

The original reason for developing multiple
sdge—-disjoint spanning trees was to be able to broadcast the
fact that a failure had occurred. The usefulness of this lies
in the assumption that each node in the network has knowledge
of the pre—-failure topology. The statement that "Edge x-y has
$ailed®, is sufficient to inform any node of the post failure
topology. We sre using several spanning trees so that after

more than one failure has occurred, at least one of our trees

will be predominately intact. It is necessary then to describe
a protocol (or distributed algorithm) that will, assuming we

have k sdge disjoint trees:

'.-"-‘.- S TSl o . - '-._' R . . - . o P TP P ESR Y |

1) When fewer than k edge failures occur, all nodes will be

notified (in a communications efficient manner) of

all failures.

2) When more than k-1 failures occur, but not all of the

spanning trees are effected, all nodes will be

ff'.? notified of all failures.

3) When "too many” failures have occurred in the spanning
trees (all of the trees are damaged), a "sure fire"
backup method is instigated in each connected group of
nodes. All nodes in a connected network where a "sure '

;fi fire" algorithm is active are made aware (or conclude .

independently) that such a method is to be used.

The protocol should generally be such that likely events (eg:
single failures or restorals) cause minimal action
(communication), and unlikely events (such as so many failures
_ that the network becomes disconnected) are permitted to
instigate a laot of work {(communications), but must not fail to
f;\ perform (no deadlocks or infinite loops, no matter what). An
example of a "sure fire" method to deal with massive failures .
would be an algorithm that would flood the network (every node
that receives a "flood message", retransmits that message on
all other ocutgoing edges) and reestablishes whatever

. connectivity is left in the network. Details of such a "sure

L. P e . . I R R
P VN IS WP T AT s WL UL TRy e S SV WA -V

- ™ L
e e S

100

fire" method will given later.

A major difficulty with such protocols is getting all
nodes to use the naw link level topology information at nearly
the same time. If different nodes maintained different views of
the topology of the network, they might ping~pong a packet back
and forth, having total disagreement as to how the packet
should get to its destination. This synchronization of nodes
will make for some difficulties in the final explicit

definition of our protocol. Many of the complications that

arise in the algorithms are based on this synchronization

problem.

“SURE FIRE" RECOVERY METHOD

There are three major gaps in the protocol that we have
just hinted at. The first question is: How can one reach a
state where every node is sure that all nodes are aware of
exactly the same topology? (We assume that each node has an
internal topology table that all routing is based upon, and

this is what we seek to synchronize.) This first question is

quite significant, as this synchronization is the starting
assumption of the entire protocol. The second question is: What
is a concrete example of a "sure fire” protocol? It is hard to
be convinced that an entire protocol is correct when one part

of it (use “sure fire" method) is not defined. Finally, we nead

TN L R S S PO WSSy S V- V.-V |

31

101

to very explicitly define the entire protocol, so that we can

!I rigorously prove its correctness. In this section we will

o address the first two questions. The explicit definition of the

Patat

N entire protocol will be postponed until we have discussed, in

AL

Dt Aen) AN P
IR W et S Tk
T KPP

2

looser terms, the way our protocol might use k spanning trees.

The reason for developing this algorithm was to
synchronize all nodes in their views of the network topology.
Implicit in a link protocol is the fact that sach node knows
the local link level topology (re: adjacent nodes). We would

like to prove that when the algorithm terminates, every node

knows the entire link level topology of the network.
Unfortunately, this algorithm cannot lay claim to such an
incredible feat. The fundamental problem with any algorithm
achieving such synchronization is that all information that an
individual node has is (by virtue of the delays in the edges)
information about how the network used to be in the past. We
assume that failures can occur asynchronously throughout the
network, and hence a node can never be sure that the topology
that it has accumulated has not changed. The best that we can
hope to achieve is that we can find a fixed topology that every
node will agree with at SOME point in time SINCE the start of
the algorithm. The reason behind the "some time" statement is
that at least this fixed topology was correct locally (each
node agreed potentially at different times). The reason for the

"girmce the start” statement is that the nodes then know that

102

local correctness was not that long ago.

The fundamental problems that we just mentioned, with
respect to what a distributed algorithm may con ude about a

changing network, extends to what it means for distributed

algorithm to end. We can talk about when any on ode stopped
running a given algorithm, or when a specific n © found out
that all nodes have stopped running, or when an aomniscient
observer noticed that all the nodes have stopped running, or
when all nodes know that all nodes have stopped running, or
when all nodes know that all nodes know that all nodes have
stopped running, etc. When we refer to the "termination of the
sure fire algorithm", we are describing the point in time when
an omniscient observer has noticed that ALL of the nodes in the
network have stopped running the algorithm. Notice that

individual nodes may stop running at earlier points in time.

Our "sure fire" protocol will, loosely speaking,

terminate execution with all nodes aware of some fixed topology

of the part of the network to which they are connected. More
over, every node will be sure that every other node in its
connected subset of the network has an identical (and correct
in the above sense) view of the topology of the network. Hence,
the "sure fire” algorithm will terminate with the nodes having

exactly the assumptions necessary to begin to make use of the

103

multiple spanning trees' When we have finished describing the
"sure fire" algorithm, we will have also proved that the
situation is reachable in which all the nodes are aware of the
entire topology of the network (at least the part they are

connected to).

The conditions, again loosely stated, that our “sure

fire" (SF) algorithm will satisfy are:

1) The algorithm may be started asynchronously by any
node(s) in the network when there is « change in the link level
topology around that node. If the topology of th: network
changes (an edge fails) while the clgorithm is running, any

3

node(s) may start a new version of the algorithm.

2) When any node p starts to execute the algorithm, all
nodes that can receive messages from p will be forced to start
the SF algorithm. The remaining c~nditions deal with the
performance of the algorithm after we have stopped having

link level topology changes.

3) No node may stop executing the algorithm until it is
aware of a jointly approved topology of its maximal connected
subset of the network. By "jointly appraved" we mean that for
every node p in this connected set, there was a time (since the
start of this algorithm) that node p agreed with all aspects of

this topology that related to node p (i.e.! what edges are

S s

. e - - PUSE WY TS W TP ¢
PRI - - sunibedinecindusdnedabditeiinadesdiondiolishibuidiabd

.....

104

adjacent to it).

4) When a node x stops executing the algorithm, all of
its neighboring nodes will "immediately there after" also stop
executing the algorithm. By "immediately there after"” we mean
they will stop execution before they have time to receive any
data packets from node x. (The exception to this would be when

a neighbor starts a new version of the algorithm.)

The idea behind running the algorithm is to determine
what the connectivity is at each node. Condition 1 guarantees
that any node may start the inquiry. Condition 2 guarantees
that every node in the connected subset will assist in this
inquiry. Every node in the connected subset MUST participate in
gathering the information for it to be correct! Condition 2
also guarantees that every node in the connected subset will
update his view of the topology te conform to the results of
this current inquiry (nodes that participate in the algorithm
end up having the same view of the topology). Condition 3
guarantees that each nade will wait for the full results of the
inquiry before acting upon the information that is being
gathered. Finally condition 4 guarantees that once a node
begins to act upon the results of the inquiry (by sending out
packets in a direction that is reasonable for the "known"
topology), all the nodes neighbors will be in agreement in

their view of the topolegy.

.-'I.:.'-’-_.‘-'.‘. PP RS S W 1

PRLEP Y PN WA Uy S U UR S s SV)

U WAL IR P PG AP AL .20 A A G G W

LTS e T e T - .

-
L.
,
'
y

..........

105

The "sure fire" s-otocol that we will describe is based
upon algorithm Al of Finn [10). The changes that we have made
will allow the nodes to find out the link level topology of the
network. The logical structure of the algorithm is due entirely
to Finn, and we are making no modifications to it at this

point.

The following state information is kept at each node in

the network:

&) M = (Def.) mode of this node: either NORMAL or
RESYNCH mode

b) R = (Def.) The version number of the last SF

algorithm started

€) N(i) = (Def.) i=l,...Nn A table with entries for
each node in the network. This table will
eventually tell which nodes in the network are

connected to this node.

d) L() = (Def.) A table with entries for each edge that
touches this node. The entries contain status

information about each of these adjacent edges.

. - - . . c P Y SR
DU R DU ST PETCIESCPRSO RN SIS S -

106

®) E(i,j) = (Def.) i and j ={,...n A connectivity
table with entries for every pair of nodes in
the network. Eventually this table will contain

the view of the topology of the network.

When in the past, we have said that the 8F algorithm

was "running at a given node", what we mesant was that the node

was in the RESYNCH mode. This m;dl indicates that the node is
actively participating in the resynchronization of the nodes

“view of the topology" and no data packets are being sent . Whan we
said that the algorithm "stopped running at a given node", what

we meant is that the node is in the NORMAL mode, and regular

data packet switching is also being done.

3

In order to avoid confusion (in the nodes) between
different tries at running this algorithm (that are started at
different points in time), a version number is kept at each

node. This version is basically an integer counter. 1, at any

point in time, a node wants to start to run the SF algorithm

all over again, it simply picks a version number that is one
greater than any version number that it has ever heard used.
When a node exchanges information across a link during the
running of the 8F algorithm, it includes a copy of the version
number that this information is related to. Using this

protocol, information that would have been pertinent to old

i 7 .) R R S . e aA 2

. S N e

versions (and hence is not part of the most

ignored.

The node table carries some logical
the status of other nodes in the running of
I we examine the contents of this table at
at the entry N(p) in this table, we get the

information:

If N(p) is O: Node j does not yet know that

possible paths from § to p.

107

recent version) is

information about
the 8F algorithm.
node j, and we look

following

there are any

If N(p) is 1: Node j knows that there is a path from j to p.

(We will be more precise about these paths later.)

I$f Nip) is 2 Node j knows that there is a path from j to p.

Node p has received (since the start of

this version)

responses across all of its adjacent edges that are up.

Hence node p knows exactly what nodes it is connected to by

crossing exactly one edge. Node j has been made aware of

all the nodes that node p can reach in one step, and this

is represented in the table at node j (that is: Since there

is a path from j to p, and p can reach some set S of nodes

in one edge, then there is a path from j to every node in

S. Hence the entries of N (kept at node

S are either 1 or 2).

j) for each node in

NP P PP Dy

PR L

As we said, the table L{) contains entries for each

edge that is adjacent to this node. This table is used to keep
records of the status of the adjacent edges. As we will see,
the table entries are initially set to either "LINK IS DOWN",
or "LINK IS PROBABLY UP", Later in the running of the
algorithm, when a response is received across a link, the
status “LINK IS PROBABLY UP" will be changed to "LINK IS
DEFINITELY UP", This algorithm is made to act in a very
conservative fashion, and verifies all its assumptions (such as

certain links being up) before it records them as facts.

The E(n,n) table is not significant to the logical flow
of the algorithm, in that there is never a test made as to the

contents of E. The meaning of an entry E(i,j) in node p, is:

If E(i,j) is 1: There is an edge that connects nodes i and j

that "1S DEFINITELY UP",

If E(i,J) is O: Node p is not aware of an edge that connects
node i to node § that is up. If in addition, either of the
entries N(j) or N(i) in node p is a 2, then there is no
edge between node { and j that is up. Note that the table
E(e,#) is symmetric. for purposes of clarity, we will

maintain this entire table.

|
|
1
[}

IS P v s o e s adacade ad

gy v BT W e
o e s e e e Bant st v dhes i i it RN PO AR N
it AT s S e . et e ittt SRR AR/ AR S ST T

Lo e i NN, SN I

109

Having given the reader a preview of what the algorithm
will maintain as variables, we now present the actual

algorithm.

We start by describing the procedure that any node p

that wants to start (or restart) the SF algorithm would do.

This procedure can only be executed if node p is aware of some
change in the link level topology of the network. Until we
introduce the spanning tree algorithm that will work in

conjunction with this algorithm, we will restrict node p to

executing this procedure only if some local topological change
takes place., (i.e. The underlying link protocol tells us that
an adjacent edge has changed from up to down, or from down to
up). Hence when we later prove theorems that assume that there
no topological changes during the period of time being
discussed, this procedure can not be involved. If some node is

in the resynch mode (M=RESYNCH) and there is a change in the

status of an adjacent edge, then that node MUST immediately

o execute this procedure.

*’ INITIATE "Sure Fire"

ﬂj execute at node p

R <-- R+1 ’Get a version number that is bigger than

= any we’ve heard of,

| pas 2ty C IR N H

»”E

-,
o~

sy

K
.
-
)
o
«

.......................

110

M {-- RESYNCH ’we have to put ocurselves into RESYNCH
made, thus starting our own running of

the algorithm

Now we initialize our tables to run
FOR i=1 TO n
N(i) <== 0 ’we are connected to no other nodes,
NEXT §
’except...

Ni{p) <-=- 1 ’we are connected to ourselves

‘We make no assumptions about the link level topology
'of the network and we initialize it to have no edges.
FOR i=1 to n
FOR j=1 TO n
E(i,j) <-- 0 'We don’t even assume that we
are sure of the adjacent
(edges) link level topology
NEXT 4
NEXT i

'For the final part of the initiation of SF, we must

’initialize L(), and tell all our adjacent nodes to

'run this version of SF.

"
.
.
.
.
i
h
3
Ve
3
.
»n
'.

s SRk atem Dl o) T TR L, RR Y . e T e TR T sy T e T

111

Assume that there are q links that touch our node p.
*Hence the L() table has g entries. There are also q
‘physical edges that we refer to as LINK(1),...LINK(q).
*Note that L(i) is an entry in a table, but LINK(i) is
*the actual link as viewed by the underlying link

*protocol.

FOR i=]1 TO q ’run through all these links
IF LINK(i) is down THEN °’Bet the edge status from
*the underlying link
*protocol system.
L(i) <== “LINK IS DOWN" ’..remember it, but
*that’s all we’ll do (ie! look

*at the next link)

ELSE [*The actual 1link is viewed as up by
*the link protocol

L{(i) <== "LINK IS PROBABLY UP" ’remember
*and test it out by sending a message
S8END (SF(R,N,E)) ON LINK(})
J ’'End the ELSE
NEXT &

WAIT TILL NEXT MESSAGE ARRIVES

In the special case where all links are down, we should go back

j‘lA"AJ-A\LA‘A:LLLJ

112

to the normal mode.

The test message that was sent across each link that was marked
as "PROBABLY UP", identifies itself as a part of a specific
version of the SF alQorithm. Since this message is sent as part
of the procedure, we expect that the rest of the network will
soon be executing the SF algorithm. This test message then
serves double duty, in forcing all of its neighbors to start
executing the SF algorithm, as well as testing the status of
the edge. We will soon see that upon receipt of this message,
neighbors will soon send a message back over the same edge
(part of the protocol), and hence verify the functionality of

the edge.

The next thing that we must describe is the response of
node p to an arbitrary SF{(R’,N’,E’). There are several cases,
each of which depends on the version number R, which the node p
currently has. The easiest possibility is the case where the
version numbered in the received message is older than the
current version R (R°’<R). In this case the SF msessage can be
totally ignored, as there is a more current version running (or

& more current version was run).

The next possibility is that the R’ in the received

w“

..........
..........

113

message SF(R’,N’,E’), refers to a more recent version than node
p has heard of (R’>R)., In this case, node p must start to run
a SF algorithm with version number R’ from scratch. The

procedure that must be run is then:

node p RECEIVED SF(R’",N’,E’) on its LINK{r) from node s
{LINK(r) corresponds to table entry L{(r) at node p)
at node p R<R’

node p axecutes

R <~= R’ ’Update our record of the highest version

‘number that we’ve heard of.

M <-—- RESYNCH ’0Officially start to execute this
'version of SF, no matter what we were

'doing.

'Since we are connected to all the nodes that our
'neighbor (who sent us the message) is, we can load
*its connectivity table for a start
FOR i=1 TO n

N(i) <=~ N’({i) ’Load the table that we received
NEXT i
'Also, we are connected to ourselves

N(p) <=— 1

'Our view of the topology is restricted to what was

114

*just received in the SF message. So we start by

S 4 e, e e s . ey
',.','J')'.“} ‘L LR

g »
L3

*loading that:
FOR i=1 TO n
FOR j=1 TO n

E{i,j) <-- E’{i,j) °’'This is what we received

. e, s
v, ORI
A LRV I N

s o2

NEXT 3

)

NEXT i

N
LN
LS
v
v

[
»,

'We actually have one more bit of information, the SF
message that we received had to be sent out after the
‘start of this version of the SF algorithm started
*running. Since we received this message directly from
'node s, there must an edgQe that is up from node p to
‘node s.

Elp,s) <=~ 1 ’Record the existence of this link...

E(s,p) <=1 7,. in both directions

'The last thing to do is to set up our L{) table, and
'propagate the fact that version R if the SF algorithm

'is being run.

'Assume that there are q links that touch our node p.
'Hence the L() table has q entries. There are also g

*physical edges that we refer to as LINK(1),...LINK(qQ).

FOR i=1 TO q '"run through all these links

IF LINK(i) {s down THEN ’'If the actual link is

*down,

PO DL T P,

........

115

L(i) <=—= "LINK IS5 DOWN" ?,.,remember it, but
'that’s all we’ll do (ie: look

*at the next link)

ELSE [*The actual link is view by the link

*protocol to be up
Lti) <-- "LINK IS PROBABLY UP" ’remember

and test it out (and propagate the

*running of this algorithm) by sending
i 'a message.
: SEND (SF(R,N,E)) ON LINK(i)

1l ’"End the ELSE

3 NEXT 1§
'There is actually one edge that we are sure is
*working (since the start of this version. As mentioned
'when we initialized the topology E table, LINK(r) is
‘definitely up, as the SF message came over it. So...
L{r) <-=— "LINK IS DEFINITELY UP"

WAIT TILL NEXT MESSAGE ARRIVES

We have now describe the exact actions taken by an
arbitrary node p when it receives a message SF(R’,N’,E”), when

the version number R that is maintained by node p ‘s \ifferent

$rom R’. The final case to discuss occurs when R’=R. (n this

116

case node p has already sent out some SF messages with this
version number, and the received SF message is in some sense "a
response” to node p’s broadcasts. There are two states that
node p may be in, and these will determine node p’s response.
1f node p has finished running this version (M is now NORMAL),
then node p can ignore this message, as node p has completed
its work on this version. If node is still running this version
(M is still RESYNCH), then node p must perform the following
series of updates and transmissions. The work that is required
is basically to combine any additional information that arrived
in this SF message with all the information that node p already
had, and then tell all its neighbor all the information that it
knows. Note that the underlying link protocol will only deliver
messages over edges that it has told us are up. If any edge
status (as determined by the link protocol) changes while a
node is in the resynch mode, then it must go back and execute

the initiate procedure.,

node p RECEIVED SF(R’,N’,E’) on its LINK(r) from node s
LINK(r) is up

(LINK(r) corresponds to table entry L(r) at node p)

at node p R =R’, M = "RESYNCH"

node p executes

*Since we are connected to all the nodes that our

'neighbor (who sent us the message) is, we should

117

'combine this information with what we knew in
u ‘our old N.
| FOR i=1 TO n

N(i) <-=MAXIMUM (N(i), N’(i)) *This MAX function
.. 'serves to combine the two arrays. Notice that
'if either table was a 1 or a 2, then the
’result was a 1 or a 2. This corresponds to
'ejither table saying that there is a path to
’node i, so we record in ocur N table that there
'is a path to node i. Also, if either table has
'an entry of 2, then a 2 is stored into our N
’table. This corresponds to the case where one
'of the N tables carries information that says
*all the connectivity data about that node is
’contained elsewhere in that table. Since we

'are copying all the connectivity data from

’both tables, it is correct to put a 2 into our
’N table as well.

NEXT i

LINK(r) is definitely up, as the SF message came over
’it. Sa..l

L{r) <-= "LINK IS DEFINITELY UP"

.
I

FOR i=1 ton 'Run through the entire table

FOR j=1 to n

e s

h ko S el
o . .

YT Y
LI “
. ¢ 1Y

- . e a A Tt aAMMA sl At
a - - FLV -

P TP W YR W T D DN . T R

e B R AT WA - . o L e e A o

3 118

E(i,j) <=— MAXIMUM (E(i,j),E’(i,3)) ’'Here we

i . ‘are simply saying that if either E or

‘ 'E’ has definite information about two
*nodes being connected, then we should
’remember that those two nodes are
'connected.

NEXT j

NEXT i

'We actually have one more bit of information, the SF

'message that we received had to be sent out after the

‘start of this version of the 5F algorithm started

'running. Since we received this message directly from

'node s, there must an edge that is up from node p to

’node s.

E(p,s) <-—- 1 ’*Record the existence of this link...

E(s,p) <~—= 1 ’.. in both directions

'The next thing we have to do is see if WE know (via E
‘table) about all the topology that touches us. To

*check on this we have toc see if all the entries in L)
*are "DOWN" or "DEFINITELY UP" (i.e. check to see that

'none of them are still "PROBABLY UP"),.
*Assume that there are q links that touch our node p.

*Hence the L{() table has g entries. There sre also q

‘physical edges that we refer to as LINK(1),...LINK(Q).

LT YR Sy

S - = %

A e

v v Pugiradaty

LI PR
. ‘. R WY
v) St K ot

119

FOR i=1 TO q 'Run through the table
IF L¢i)="LINK IS PROBABLY UP" THEN ’1f we are not
sure of our adjacent edges...
B0TO BROADCAST_STAGE ‘then lets get on

with things

’Since we haven’t found an indecisive edge yet,

*try the others

NEXT i

'All the L table entries must be decisive, hence we do

’know all about our local connectivity. We have to

'record this fact in the N table.

N(p) (~-= 2 ' We (noae p) are sure of the local
*connectivity and have the appropriate
’entries elsewhere in N to represent

’this.
BROADCAST_STAGE:

’As with all the responses, we must broadcast all the

’information that we have to all our neighbors.

'lf we have made no changes to our tables, then the

’following broadcasts are not necessary.

FOR i=1 TO q ’run through all these links

IF LINK(i) is UP THEN ’1f we’ve been acting as if

PN

120

'this link is UPsss

SEND (SF(R,N,E)) ON LINK(i)] 7’Broadcast

s. *across that link

NEXT i

*There is now the possibility that all the entries in N
’are zeroes or twos. This would mean, as we will prove
*gshortly, that the topology in E is totally correct

’ (for our connected subnet), and the set of non-zero
'entries in N correspond exactly to the the set of
‘nodes in our connected subset of the network. This

'would also mean that we have completed the algorithm.

FOR i=1 TO n *Look through
IF N(i)=1 THEN 'If we find a one, then they’re

not all O or 2

BOTO CONTINUE_RUNNING
'Otherwise, keep checking the list
NEXT 1
*All the entries in N must be O or 2, so we terminate
'running by going into the normal mode

M <-- NORMAL

YL E LT LT,

121

CONTINUE_RUNNING:

START TD PROCESS NON-SF PACKETS

CORRECTNESS PROOF OF THE 8F ALGORITHM

Each of the proofs that follows will start out with
some elementary discussion, and progress to the point where a
series of very carefully stated theorems can be shown. We have
endeavored to exercise the greatest care when a proof was
complex, and the least rigor during the preliminary
(motivating) discussions. We hope that this format will both
prove correctness to the reader that scrutinizes the text, and

at the same time explain it to the casual r.ndor..

We will now give a proof of the correctness of the
above SF algorithm. We define “"correctness” to mean that ali
four conditions that were given at the start of this section
are gsatisfied (re: any node(s) can start the algorithm,..., all
nodes become aware in their E table of the topology of their

connected subset, etc.).

It is common, in the proof of an algorithm, to show
that the algorithm alweys terminates. We have defined
“"terminates"; with respect to our algorithm, to mean that all
nodes in the connected subset that is running the SF algorithm
have returned to the normal mode (M=NORMAL). In the case of our

S8F algorithm, it is not possible to show that it always

_.

e mm At A Ao m o o = A -

.- . - . e o e A A B
N . . . N + PP U O Ul Uy WAL L T W iy sy wer e
P PRI SO U A Vg T " Seeniusinemibundiuny

122

terminates. The algorithm restarts a new version of itsel¥f
E * every time there is a link level topology change. 1f the link
level topology continues to change (rapidly) then the algorithm

may nevar terminate. What we do expect from this algorithm is

that: if the link level topology doesn’t change for some

*gsufficient” length of time, then the algorithm will terminate.

Lemma: 1f a node p sends a message SF(R,-,-) on edge p—-q, then
either: a message of the form SF(R,~,-) will be (or was)
received on edge q-p of the form SF(R,-,-) OR node p will run a
version of the SF algorithm with a version number greater than
R, (We will use "-" in such transmissions to mean unspecified,

and of no significance.)

Proof: We start by noting that if edge p—q changes status at node p to
down, then the definition of the SF algorithm requires that
node p execute the "Initiate" procedure This would imply
execution of version R+1 of the SF algorithm, and we would be

done.

1+ on the other hand the edge p-q did remain up as
viewed by the link protocol, then the link protocol guarantees
that the message will be (or was) received, and node q can
still send messages on edge q-p. We then would have the

following possibilities. Node g must either be running some

A P S S AP |

.............
...........

123

.) ul“"l“.' .

non-SF algorithm, running a version R’ of the SF algorithm
where R’<R, running version R of the SF algorithm, or running
version R’’>R of the SF algorithm. In either of the first two
cases, the node q will, upon receiving the message from p,
immediately start running version R of the algorithm, and send
to all its neighbors (including node p) the message SF(R,~,-).
14 a neighbor q of node p is already running version R, then q
must have sent a message SF(R,-, =) to all its neighbors
{including p), when it started version R. Hence in these cases,
node p must eventually receive messages SF(R, -,~) from node q.
Lastly, if node q is executing version R’’ of the 8F algorithm,
then it must have sent a message of the form SF(R*’?’,-,-) to
node p. Once node p gets such a message (note that R’?’>R) it
must execute (or be executing) a version of the § algorithm

with a higher version than R.

End of proo¥

If we look back at the definition of the SF algorithm
we notice that if some edge @ is considered to be down by the
underlying link protocol, at node p, when node p first starts
version R, then node p will never send (and has never sent) an
SF(R,-,~) message on edge e. Suppose then that we have two
neighboring nodes, p and q, that have an edge e between them.
Further suppose that both p and q are running the same version
R, but when they each started that version they were told

different things about the status of e by their respective link

e

- 124
f protocols (p was told that e was up, but g was told that e was
! * down). From our initial comment in this paragraph we know that

node q will never send an SF(R,-,~) message over e. From the
definition of the SF algorithm, we know that node p has tried
{or will try) to send an SF(R,~;-) message. By applying the
above lemma, we then know that node p will eventually run a
higher version of the SF algorithm. We are, in our analysis,
trying to focus on the version of the SF algorithm that might
allow the entire SF to terminate. We would like to avoid being
distracted in our proofs by nodes that cannot possibly return
to the normal mode during this version (such as node p in the
above example) We would also like to avoid the distraction of
adjacent nodes that "claim" that they are connected (node p
claims that it is connected to g in this version) to the set of
nodes that we are concerned with. These "claims" can be made
despite the fact (known to an omniscient observer) that they
will never interact via that connection during that version (in
our example above, q will not reply during this version). For
this reason we will consider two nodes to be "directly version
R connected" iff they have an edge between them that each node
agreed was up when it began version R. We can then consider a

"maximally connected subset” of nodes in the network that are

all running the same version, based on this notion of "version

Y
'."- . f
PR

R connectivity®.

Lemma: In a maximal connected subset S of the network, if

i

version R of the SF algorithm is running, then either the SF

..........

..............

125

algorithm will terminate, or a version of SF with a version

number greater than R will be run. -

Proof: By contradiction: Assume that version R was run, no
greater version ever gets run in 8, and the SF algorithm never
terminates. Since version R was running at some point, there
must have been some node(s) that started this version R. When a
node p first starts running version R it sends a message SF(R,

~y=) to all its neighbors.

Making use of the previous lemma and the assumption
that no version greater than R is run at node p, we can
conclude that node p must sventually receive messages SF(R,-,-)
from all its neighbors. Note that there is no provision for any
node to decrease the version number of the SF algorithm that it
is running, hence node p will be running version R throughout
the receipt of all these SF(R,-, -) messages. There is no
facility to change a "DEFINITELY UP" value of any L() at node p
to a "POSSIBLY UP", and sach time S8F(R,-,-) is received from a
new neighbor, another element of L() is changed to a
“DEFINITELY UP"”. Finally, when the last of node p neighbor’s
(that was sent the original version R message by node p) sends

p an SF(R,~,~-) message, the last entry of "POSSIBLY UP" in L)

will be changed to a "DEFINITELY UP". With all the entries in

L() at node p having decisive values, the algorithm calls for

i

~ B B e tAal A . e a AJ
PP T PP AAPY - S S .

PP
At e ae n o Tt i dne Shat St J) ")

126

.
2
2

N(p) to be given the value of 2. Node p then transmits to all

its neighbors the message SF(R,N,~-), with N(p) =2,

We now have that every neighbor of p will eventually
receive a message SF(R,N,~) with N(p)=2. The first time each
neighbor p° of p receives a message SF(R,N’,~) with N’ (p)=2, it
must set the value of its N’’’ (p) to 2, and must send to all its
neighbors a message SF(R,N"’,<), with N’’’ {(p)=2, Similarly, the
neighbors of neighbors of node p must set their N’’’ (p) to 2,
and continue the process. Eventually every node p’ in S must be

running version R with their N’ such that N’ (p)=2,

8ince the above argument could have been done with any
p in the set S, we can conclude that for every p and p’ sucih
that nodes p and p’ are in 8, we will eventually have that

Nip*’)=2 in node p.

New since we assumed that this algorithm did not
terminate, there must be a node p’ in S that is not in the
normal mode at this point. For p’ to not be in the normal mode,
there must be an entry N’ (g)=1 at node p’.8Bince all the entries
in N’ that correspond to nodes in €S are 2, we know that node q
is not in S. Let node p be the first node in S to have N(g)=1
during the running of version R of the SF algorithm. When node

p first started running version R, it initializes all entries

. e . “ - - Lo N .- .
T T T T - o e - . - TN .- PR LI I S UL G WO, QUi e -
R o L LI
W) R o e

s Ve

‘ ‘ 127

.
.

+

of N to a value of O or the values supplied by some adjacent

o
L
2
.~ °

node. Since node p is the first node in S_to have N{(qg) =1, and
S is the maximal connected set, we know that N(q) was initially
set to O at node p. There must then be a subsequent point in
the algorithm that allows node p to change N(p) to 1, despite
the fact that it only receives SF(R,N’,~) with N’ (q) =0. The
only way node p can change an entry in N when it receives such
messages is when it is changing N(p). Hence p must be the same
as q, which contradicts the the fact that p in is § and q is

not.

End of proof.

Theorem: 1f there are no changes in the topology according to
the link protocol after time t in some maximal connected subset
S of the network, and R is the largest version number being
used by any node in & at time t, then the algorithm will

terminate with a version number of R.

Proof: 1f there are no further topological changes, then there
is no facility for increasing the version number (i.e. we have
no reason to execute the "Initiate" procedure). Hence no

greater version than R can ever be run after time t. Combining

this with the previous lemma gives the desired result.

End of proo¢.

PO I YT I G Gy Y. .

B T e s . . - LT) L e e . RS . A a s o
LU WALIPS W YOI Iy Busuladiui

4 128

So we have now shown that if we stop having link level

. .. ,‘
. .
P I A
. '
: s .
.

topology changes in some maximal connected set of nodes, then
the SF algorithm will “"eventually" terminate. It follows then
that if we don’t have any topological changes in a maximal

connected set of nodes for a "sufficiently” long period, then

:4-
_\.‘
.‘\

5
B
ii
=

the algorithm will terminate. We see that this follows as: if
we wait a "sufficiently" long time without a failure or

restoral, then the algorithm will have "eventually" terminated.

Now that we have some proof about the fact that the SF

algorithm terminates, it is reasonable to talk about the state
of the nodes when it does terminate. Hence forth, in our proof
of the correctness of the definition of our SF algorithm, we
will center our discussion on version R, which is active when
the SF algorithm next terminates. We will also restrict our
discussion to the connected set of nodes S5 that are running
that version R. OQur proof will now go through the four
conditions that we stated at the start of the SF algorithm

section.

The first condition stated that it must be possible to
start the SF algorithm asynchronously at any node(s), and
restart it at that node as a whole new version if there is any

link level topology change before it terminates. Looking back

P S S S ST Y S W w1 P

e anaienmietienainasittedutaininsatesniaaintuieisendivsniinshemiminaih o

amains o st o o o ath sl S el el

o B gt 2o e T A St S SR

129

at the algorithm, it is clear that we have provided procedures
that start and restart the algorithms. This claim is not a very
large point, as we have not yet proved what happens when the

algorithm is started.

The second point begins to address what it means to
“start" the algorithm. Specifically, the second condition says
that once any one node starts to run the SF algorithm, all
nodes that can receive messages from p will be forced to start
the SF algorithm. This feature follows directly from the
definition of the SF algorithm. Whenever a node starts the SF
algorithm, it sends out SF(-, —,-) messages on all its edges
that are up to all of its neighbors. This message will force
the neighbors that actually receive it (those that the starting
node can communicate with) to run the SF algorithm (if they

aren’t already).

The real reason for the previous condition was to
guarantee that when we apply the theorems that assume "maximal
connected set S...", we will be able to prove that all nodes in
S are running the algorithm. The remaining conditions deal with
the performance of the algorithm after we have stopped having

link level topology changes.

Condition 3, non-rigorously stated is that:

g O LT g, W T Tw T W WL w 4 - %
- . v - - - . - - .
- S WL TN T . - A
P e B - - . . -

130

D Y RN

i . No node may stop executing the algorithm until it is aware of a
jeintly approved topology (E table) of the network. By "jointly
approved" we mean that for every node p that is mentioned in
this E table topology, there was a time (since the start of
this algorithm) that node p agreed with all aspects of this

table that related to node p (i.e.: what sdges are adjacent to

it)."

The topology that our algorithm produces is E(x,%#). We

TR

have to show two things about this topology. We must show that

——

yf the same topology is generated at every node, and we must show

that this topology was “approved" by each node in this

connected subset.

As before, we will focus attention upon version R of
the SF algorithm. We start by exar‘ning the values of E in node
p, right after it has completed t'.~ procedure (except possibly

going into normal mode) that changed .he value of N(p) to 2.

- -
h. -
»’ -

{Note that node p is the first node that can change N(p) to 2.
L.
F! ’ All other nodes must wait till they receive a message SF(R,N’,

=) with N’ (p)=2.)

Since we know that the SF algorithm will terminate with

}) / - 3 - ~ » a .,
. - . - . RSP Y L Y PR U e P . A Atdo i e s e B B o PR
o - O . - i P . . L - e i

P
il

L 2

QAN - GBS

TS
+ N

—————
Dttt

131

this version number, we know that there will be no actual .ink
level topology changes around node p, from the time it begins
version R, to the time it enters the normal mode. (Otherwise

rode p would start a new version, and prevent termination with

this version.)

By looking at the procedure that changed N{(p) to 2, we
see that all entries in L{) at node p (which correspond to the
edges adjacent to node p) must have been marked either "DOWN"
or "DEFINITELY UP" to allow this change. Suppose an edge e
adjacent to p was up during the running, by p, of version R. We
are guaranteed by the way the SF algorithm has node p start
version R, that this edge was marked "POSSIBLY UP" in that
start up procedure. There is no place in any of SF’s orocedures
that a node could possibly change a "POSSIBLY UP" to a "DOWN"
in the same version. Hence this edge must be now marked
"DEFINITELY UP". Every time an edge is marked "DEFINITELY UP",
the corresponding entry in E is changed toc a 1. So we have that
as a consequence of edge e being up (for the duration of node
p’s run of version R), there must be a corresponding entry of 1

in E here at node p.

Suppose that the entry E(p,q) (or E(q,p)) is a 1. The
first node that could have had an entry aof E(p,q)=1 must be

either node p or node q. In either case the first node to

A ol it i K] .

132

change E(p,q) to a 1 did so after a message of the form SF(R,-,
=) was received over the p-g edge. Knowing that edge p-q was up
during the running of this version, guarantees that it is still
up as when it goes down a new version of SF will start. Hence
if an entry in E(p,q) is 1, then the corresponding edge is

currently up.

To sum up the results of the last paragraphs; Right
after node p has completed (except possibly going into normal
mode) the procedure that changed the value of N(p) to 2, we
find that the entries in E contain the exact list of edges that
are functional and adjacent to node p. We will refer to the
contents of E in node p at this point in time as Ep(*,%), and

we will refer to this point in time as tp.

Lemma: If in some node q (that is between executing
procedures), the value of N(p) is 2, then all entries in node gq
of the form E(p,p’) are exactly identical to the corresponding

entries of Ep(p,p’).

Proof: Consider some fixed p’:

case 1: p=q We are basically addressing the point that here

e e e e e et ———

T S U PP I . U W S G S T NP . A S gy o

- L e aen s s ot aen el geel et o S At DA B

133

at node p, the entry E(p,p’) cannot change from when it was
Ep(p,p’). Since the SF algorithm only increases the values of E
during the running of a specific version, we have only to show

that there is no possibility that Ep(p,p’)=0 and E(p,p’ =i,

1+ E(p,p’) is 1, then there must have been a first time
in the network that a node had E(p,p’)=1., Since the cnhnly nodes
that can change E(p,p’) without copying some received value are
nodes p and p’, the first occurrence of E(p,p’)=1 must have
been at node p or node p’. In either case, it was caused by the
receipt of a message of the form SF(R,-,-) on edge p-p’. From
this we can conclude that nodes p and p” were directly version

R connected, and hence Ep{p,p’) must be 1.

case 21 p is different from g

First we will show that if Ep(p,p’) is zero, then E(p,
p’) is zero. Using proof by contradiction, assume the contrary:
Ep(p,p’?=0 and E(p,p’)=1. Since E(p,p’)=1, there must have been
a first node in the network in which E(p,p’)=1, and it must
have been node p or node p’. In either case this latter E(p,p”)
had to become one in response to a message being sent across
p-p’ of the form SF(R,—-,-). This then implies that edge p-p’
was up during this version, which contradicts the fact that
Eplp,p’)=0 (which means p-p’ must have been down during this

version).

B & PG Pl o P S S S

PP S P S|

P ARt Bt g T S S M

P, vl eeo Ry TN TR

134

Next we will prove the hard parts 1¢ Ep(p,p’)=1, then
E(p,p’) must be one. This basically guarantees that the
information that is gathered and stored in node p (as Ep(p,#))
is delivered to every node before that node goes into the
normal mode. We are given the key assumption above, that N(p)=2

in node q.

We start by noting that, since N(p)=2 at node q, then
there must have been a message received at node g that caused
N(p) to become 2. Suppose the message was SF(R, N’,E’), and it
was received from node g’. Notice that it must have been the

case that N’ (p) was two when it sent the above message.

We can now repeat the above process and find a list of
nodes q,Q°,9"’,.:s (with no repetitions) such that:
message SF(R,N’,E’) from q’ caused q to make its N(p)=2,
message SF(R,N’’,E’’) from g’ caused q’ to make its N(p)=2

message SF(R,Np,Ep) from p caused q’°""..." to make {ts N(p)=2

The reason why the list must end with a message from node p, is

that p does not require a message with Ni(p)=2 to make its N(p)

TR DL W, PRV S VW GO DU ¥ U PR DR W oE DR PT VTR

i

R P

Of ks S8 s dh el I
e Bt

PP — - a M o A Sl M e

135

into 2. Moreover, since node p is the only node that the SF
algorithm allows to change N(p) without receiving a message
with N’ (p)=2, all other nodes must rely on some such seguence
of messages to eventually get N(p)=2, The reason why we know
the exact message that node p sent to start this process is
that right after node p changed N(p) to two, it sent out the
above message to all its neighbors (so this had to be the first
time they got an N{(p)=2), and then we recorded (defined) Ep as

the contents of E in P at that point.

Having formed the above list, we note that by virtue of
the way that a received SF(R,-,E) is used to modify the E table
at the receiving node (take the MAX of the received E and the
current E) we have the following!
message SF(R,Np,Ep) from p caused g”’..."” to make its E(p,p’)=1

- message SF(R,N’’,E’’) from q’’ caused Q' to make its E(p,p’)=1

message SF(R,N’,E’) from q° caused q to make its E(p,p’)=1

Hence E{(p,p’) at node q must be one, which is the desired

result.

End of proof

MG UL W WO VLD WO VLD SR WA

. WO W e A

PRI G AT T U U D N . PRSI PP YL G S LIPS W V0 WA DU iy DUy O U g . ‘..‘J

P g v e e W T W TR, W T, T e T e s ' .

e e e A At autn 2tn et edh Al S -t Setin i JbUihN T S

..........

136

Theorem: 1§ two nodes q and q° (elements of S) enter the normal
state in version R, then every entry in their E tables are

identical.

Proof: Consider any entry E(p,p’) in node q, and E’ {p,p’) in
qQ’. Since both nodes have entered the normal mode, we know N(p)
=2 in both nodes. By the above lemma, we know that E(p,p’)=
Ep(p,p’), and E’(p,p’)=Ep(p, p’). By transitivity we then have

El(p,p’)=E’ {p,p’).

End of proof

We have now shown that all nodes that enter the normal
mode in version R have the same exact E table. We must now show
that this E table was locally correct with respect to aﬁy node

p (in S) at some point during the running of the algorithm.

The time that that each node p agrees with all of its
local topology in THE final E is what we defined as tp (the
time right after node p changed N(p) to 2). We can recall from
our discussion of tp that the values of Ep (the E table at node
p at time p) contained exactly the correct entries to represent
all the local link level topolaogy of node p, at that time. The

last lemma tells us that that any final E table (all entries in

PP Y WD G G | P LT Yl SO0 gl W S N YR W G A WA N

P " . L

- A A A A A A

.....

b S e S Sl i M

137

N are 2, and this includes N{(p)) agrees at all E table entries
of the form E(p,p’), with Ep(p,p’). 1f we add to this the fact
that every E table in every SF algorithm is symmetric (E(p,q)

=E{q,p)), then we are done.

Finally, to complete this correctness proof, we must
show condition 4 is true of our SF algorithm. This condition
states that when any node stops running the algorithm, then all
of its neighbors immediately there after" also stop running the

SF algorithm also (unless they are starting a new version).

We can prove this fact about the SF algorithm rather
directly. First we note that we define "stop" to mean "change
to normal mode" (M=NORMAL). When ever a node changes to the
normal mode, all of its entries in N” must be 2. The last thing
that a node p does before it returns to normal mode is to send
out an SF message packet to all of its neighbors that is of the
form SF(R’,N’,-). We should recall from our network model, that
all packets are received in the order in which they are
transmitted. Hence no data packet sent out by node p can be

received before they receive this SF message packet.

Notice that the only way that a neighbor can ignore

this SF(R’,N’,-) is if it is running a newer version of the SF

IR LRI G GO LY TV U PT S GO W SIS ISP

P e LI e S e AvEl A0SR S

138

algorithm with a greater version number, and hence it will soon
start node p into a new version. Assuming that some neighboring
node q is not running a greater version number, it must run the
appropriate procedure upon receipt of SF(R°4N;-). In all cases,
this involves having the node q form a new N table by taking
the maximum value of the received N’ (i, j) with its internal
N(i,j). Since the largest possible value of elements in N is 2,
we know that it will end up with 2 as every entry in its N
table. From the definition of the SF algorithm, it then follows
that the node q will end this procedure by entering the normal

mode ("stopping").

We have'nnw shown that all the conditions that we
required for a "sure fire" algorithm, are satisfied by our

definition of our SF algorithm.

MAKING USE OF THE SPANNING TREES

We assume that there are k spanning trees that are
numbered T(1),...T{(k). Since all the nodes identified all these
trees independently, but using the same algorithm and data (E
table topology generated by the SF algorithm), we can assume
that all the nodes have the same set of spanning trees,

numbered in the same way.

PR W NP LI IP I WA W W W ¥ PR G Sy e

)
3
L.

..........

 are el A o ati g

e A hemh 2oam 2 amn s tes B A AR i Aran Rt Ehd S et
B deo ol b R R A Aaiaf

139

In the SF algorithm, there was no presumed knowledge of
the network, and the major mode of communicating in the network
was flooding. In a network with n nodes and m edges, it
requires between m and 2m transmissions to get a message to all
nodes via flooding. By making use of a spanning tree the same
message can be delivered to all nodes in exactly n-i
transmissions. These sorts of differences are fundamental to
the communications savings that we will realize when we make
use of the spanning trees that we have on hand. In addition, it
will not be necessary to shut down the network when the
spanning tree based algorithm is running, and yet arbitrary

topological changes can be communicated.

Now we will turn cu- attention to the actual use of the
k spanning trees to disseminate information on link level
topology changes. We will call this algorithm the k Spanning
Tree Recovery Algorithm (kSTRA). We start by examining the
different parts of the "sure fire" algorithm that we have
described. The following parts are intertwined in the
algorithm, but separating them out will lead us to an algorithm
that makes use of the spanning tree structures that we have

identified.

Roughly speaking, the SF algorithm starts out with each

node having its own view of the network. The first thing that

. " o .o [5 2 LI L. TP TP DT e v
PR G R W ¥ 44-;;44‘“; 2 al e

A

: 140
happens is that all the nodes are told that their old view of

]) the topology is very bad, they should discard all the old

i information about the topology, and stop processing packets of

E data. All nodes are required to stop what they are doing, and

i begin to run this algorithm. Notice that if the old topology

information that the nodes had was not so terrible, they could

continue to route packets using it.

The next thing that happens is that all nodes tell all
their neighbors everything that they know about the network. By
transitivity, eventually every node knows everything abouf the
network’s link level topology. There'is also a facility in the
SF algorithm to allow each node to realize when it has received
(although indirectly) a report from every other noce. This way
the algorithm can assure each individual node when THAT
PARTICULAR node knows the antire link level topology of the

network.

When a single node is totally sure that it knows
everything about the link level topology of the network, it is
almost ready to start to route packets. The key step that

precedes this routing is that this totally informed node tells

DS A uﬁ*.".‘ MNNE

all of its neighbors everything that it knows about the
k network. The basic problem here is that this knowledgeable node

doesn’t want to be sending packets to unknowledgeable nodes, as

P U YU Gp e 4

e A R e e et hes e s inenisseismimnivntesnshunbuunems

ot hary T
O Ot N
' N ate
LU LA

e

7t
i
DI

T

141

they wouldn’t know what to do with them. This well informed
node could wait till some other protocol guaranteed that all

nodes were well informed before it began to route packets, but
the SF algorithm we described is trying not to waste any time.
In the interest of thie time savings, the entire E table
topology is retransmitted over every link twice, once in each

direction as each node realizes that it is well informed.

Finally now, the nodes begin routing packets. These
packets are sent with the confidence that when they are
received by the adjacent nodes, they will be routed in
accordance with the mutually known E table topology. The first
packet that is sent over each link might as well have a header
which reads: "Use the new E table topology to route this
packet”, as that was what the last SF(%,%,%) message had (it
contained all the E table topology, and the receiving node

figured this out).

Having broken down the "sure fire" algorithm into its
parts, we can discuss the similarities with the task of
disseminating failure information. The big differences that we

wish to achieve in the kSTRA are:

1) Packets should continue to be routed while the

© eyt
-

- 4 AAAMASAROACRS SR AL TR

o8 Am

‘‘‘‘‘‘‘‘‘

142

algorithm is running. These packets should continue using the
existing E table (which is known to have been consistently
formed at every node) until a new E table topology can be
calcul ated. Note that the nodes then perfaorm their routing
based upon this table, and not on any other information (re:
failures) that they might deduce had occurred. (Obviously we

don’t however send packets over failed edges.)

2) Spanning trees should be used instead of flooding to
carry information between nodes (when correctness of the

protocol will allow).

3) Rather than transmitting the whole E table topology
between nodes, only the changes from the previously agreed upon

E table topology will be sent. (minimize communication)

When we begin the task of spreading information about a
failure, each of the nodes has its own view (E table) of the
network’s topology. For the most part, nodes in the network
have a fairly accurate view of the network’s topology, and we
don’t want them to throw away that information. We would like
to inform all the nodes of the change in the link level
topology, and then try to "all at once" have all nodes in the
network start using the new (more correct) E table topology as

their basis for routing. Hence, all nodes will maintain a

B it Tt g 2 o Sr et

e, e e

143

topology (E table) that was originally generated by the SF
algorithm, while the kSTRA is running, making no change in this

topology until a special CHANGE message is received.

We start by looking back at all the pieces of the
algorithm that we said constituted the “sure fire" algoritham.
The first step is to initiate the algorithm, and be sure that
all nodes are involved. The SF algorithm used flooding to
accomplish this startup, the k8TRA can certainly use a spanning
tree to get every node involved. The spanning tree that is used
is selected from the list of precomputed ones. Specifically, it
is the least numbered tree that is intact (at least within the
knowledge of the given node). Any node may restart the
algorithm on a higher numbered tree if it knows that the
spanning tree that has been suggested is not intact. If none of
the trees are intact, then the SF algorithm is initiated. As
with the SF algorithm, version numbers are maintained, and a
node may reinitiate a new version of the algorithm if it is

necessary. It should be noted that during the running of the

kSTRA algorithm, all nodes will continue to route using the old

‘E table topology. In this way, we defer to the final point in

the kSTRA the synchronized change to the use of the new E table

topology by all nodes.

The notification that a new version of the kSTRA is

144

running is broadcast out across a spanning tree along with a
list of E table topology changes that are required by the
originating node to get the E table to conform to the known
link level topology. In this way, all the nodes are not only
told that the algorithm is running, but they are told the E
table topology modifications that go along with this version.
I1f a node must add anything to the E table topology changes
that are on the list, it must reinitiate a new version of the
kSTRA with all the things on the old list, and any additions
that it has to make. Hence, a version of the kSTRA is
eventually formed that has all the E table topology changes
that are required. Note that if two copies of the same version
of kSTRA are formed with different lists of changes, some node
will eventually hear about this, and start a new version with

all the changes from both the former lists.

At this point in the algorithm, some of the nodes might
have received the list of E table topology changes, and some
might not have. Before we can make the tranmsition to using the
new E table topology, all nodes must be aware of all updates.
Since we are using a spanning tree of the network, we have a
convenient way to verify that all the nodes have this new
version of the kSTRA. The broadcast of the start of this
specific version of the kSTRA continues across the tree until
it reaches a leaf of the tree (a node that has only one edge in

this tree). This leaf node then responds to the node that told

vy PP

[i S st A T)

v \ & s annts St S hindh Seadh Sanii S el S

145

it about this version with an acknowl edgement of that specific
version. Similarly, nodes that have received acknowledgements
for a specific version from all but one of their tree edges,
transmit an acknowl edgement for that version across that lone
edge. This process repeats itself until these acknowl edgements
all collect at some node. That is, some node receives

acknowl edgements from all its tree neighbors for a specific
version of kSTRA. Any node that receives acknowledgements from
all its tree neighbors is then sure that every node in the

network has heard the list of changes involved in this version

of kSTRA.

Now the moment comes when nodes are about to use their
new E table topology information. Once any node is sure that
all nodes in the network have heard about all the changes in
this version of kSTRA, we are ready to proceed. What we must do
now is have a synchronized change in the E table topology used

as each nade’s basis for routing.

As we said in the preface to this chapter, the change
in E table topoclogy used for routing should be very nearly "all
at once"”. As with the "sure fire" algorithm, we wish to prevent
any node from transmitting a packet to another node, and having
the other node not understand why the packet was sent. The SF

algorithm flooded the network with an SF message that explains

Py

146

the entire E table topology to any node that receives it. A
ta . flood was sufficient as all packets are received across edges
in the same order as they were transmitted. Any method other
;; than using a flood would allow packets that are routed using
i. one E table topology to arrive at neighboring nodes before the
neighbors are aware that this new E table topology is in
service. We are in the position that every node is definitely
LI aware of this new E table topology, and all we have to say is
"Use the new topology". The final step in this algorithm is

then the flooding of the network with the statement "Use the

new E table topology specified in such and such a version of
the kSTRA". This flooding {(across all edges) can be initiated
by any node that has received acknowledgement messages from all
of its tree neighbors. By waiting for this point to perform the
flooding operation, we have also succeeded in producing a very
small amount of information that needs to be flooded across the

network.

As a final point, we note that after the "Use the new E
table topology as given in version of kSTRA" has started its
flood, all the nodes in the subset of the network that are
currently connected to the node that originated the flood will
soon be using the new topology. Hence, any later changes in
topology that are instigated by future versions of the kSTRA

can carry lists of changes from this new E table topology. Care

must be taken to express which E table toupology the list of

a

o <ailn<4.1IIAA‘l‘“‘_L‘-\‘—.‘\-

e

- 147
- changes modifies, but that information can be carried in :he
a packet with the list.

Having given a casual description of the kSTRA
algorithm, we will now give a careful and detailed description
of the tasks involved in running it. We start by defining the

variables that the algorithm will maintain at each node p:

Variables used by kSTRA

R the version number of the last known SF algorithm

Edi,) (i and §=1,...n) The currently used E table
topolaogy, which was initially set by version R of the SF

algorithm.

ECOUNT An integer 0,1,2,.... that tells where E() came

i? from. 1f ECOUNT is O, then E() is the E table topology
generated by the SF algorithm. If ECOUNT > O, then ECOUNT is
ri the number of times that the E table topology has changed from
}

the one generated by the SF algorithm.

Y. v

V the version number of the kSTRA that was (is) most

recently run(ning).

tm el aaltata_ ah

Cpa e
-]t

-,

e BOORODE
o asoD

e RN JuE JEA guk 4 ’ o
(A A e
2.8 ¢ 'ty .

r
:
.

Ry R P

148

Ui, j) (i and j=1,...n) A list of updates to some E

table topology. For every possible edge in the network it has

- an entry of "DON’T CHANGE", "ADD THIS EDGE", or "REMOVE THIS

EDGE". ¢

HIST() An array that records the list U that was
associated with each version of kSTRA that we have heard about

and acknowledged. (We will explain later how we can throw much

of this HISTory away.)

T(1) (imi,...k) A list of k edge disjoint spanning

trees, every edge is in the current E table topology E().

TREE An integer from 1 to n, that points to the least
numbered tree that we can use the kSTRA on (due to failures,

not all the spanning trees are still intact).

LINK(i) i=],...qQ, assuming that there are q edges in
T(TREE) that are adjacent to node p. This array contains the

“names" of these tree wsdges that this node p is adjacent to.

L¢i) di=1,...9 A list of logical variables that are

used to record what is "going on" over each of the above

it st Al et i i TP

A : 149

LINK(i)’s, in terms of the progress of the kSTRA. O means that
]l this node has broadcast the current version of kSTRA over the
Gi edge, 1 means that it has received an acknowledgement of the
current version.
[]

Before we describe the details of the kSTRA algorithm,
we must take care of initializing variables that will be used
by the algorithm. The simplest place to put these
initialization statements is in the SF algorithm. Specifically,
they are placed just before the statement that assigns NORMAL
to M (the mode). By inserting the following statements at that
point in the SF algorithm, we guarantee that every node in
the (connected subset) of the network has the same initial

conditions.
INITIALIZE kSTRA
at each node p:

V {~= 0 ’Start the system as if version 0 of kSTRA

? just ran

'Use the topology to generate a set of

'edge-disjoint trees,

GENERATE (T(1),... T(k)) USING E(%,%)

'We assume that tree 1| can be used by kSTRA

M LY S W VA Dmanalie

Rk aesn anie et eahett-Taadt ik DS L AR e Al A

150

TREE <-- 1

*Its nice to have the list of links that we are

*adjacent to in tree T(TREE) on hand at all times. This

'variable makes it esasier to describe the algorithm.

LINK{) <=- links of T(TREE) adjacent to node p

’Remember that the current topology in E(#,#) was

*produced by the SF algorithm.
ECOUNT <-- 0

*Initially, there are no changes desired in the
'topology E(#,%#), We start U(»,#) to indicate this fact
FOR i=1 TO n
FOR j=1 TO n
Ui, §) <== "DON’T CHANGE" ’There are no
‘changes desired in the

'current topology.
NEXT 3

NEXT i

At this point we will mention the other interface
between the kSTRA and the SF algorithm. We recall that the SF
algorithm was previously allowed to start at any node if there
was a local link level topology change at that node. At this

point we remove that restriction, and replace it with the

restriction that nodes may only execute the "Initiate" SF

et A e el e ad PV P PP PEPUIPT VR PPN V0 DU PN PG T OF 1R PR Wil Wi S W Gar sl Vi Su BRSSP S e e LJ
o a ; s . . A

3 : 151
= procedure if the kSTRA requests it. The correctness of all the
: thecrems will be guaranteed by the fact that the kSTRA will
only be run if some node has a local failure. Since that local
failure gave free license toc that node to start the SF
algorithm (under the definition of the SF), it is in keeping

with the proven structure that the SF algorithm may be later

initiated upon the request of the k&STRA.

As with the SF algorithm, we start by describing the
procedure that a node p would execute to instigate the running
of a new version of the kS§TRA, based sclely on a change in
local link level topology. To prevent confusion in the
algorithm, it will not be possible faor a single link to be
brought down and up in a single version of the kSTRA. To settle
all such disputes, whenever a request to add an edge is made in
the same list as a request to remove it, only the request to
remove the edge will be entered into the new update request
list U(#,%), Later, when a new E is formed, each node will have
a chance to update that E table to bring up an edge that it
could not (by the above convention) do as part of this update.
At this point we will only discuss link level topology changes

that are totally within the set of nodes that are reachable

under the current topology E(#,%) (We will avoid the problem of

i bringing up an edge that connects to an unreachable node by

#i assuming that the SF algorithm will be started if such a link
1 , .

¢ level topology change takes place.) With this convention, we
3

......

.‘ﬂ'
.
X

»

iy N P)
et 4, 4
B A

o o aea aae e oy s s el VM SR ST PN

152

describe the instigating procedure performed by a node p, when
it decides that the edge from node p to node p’ should change
status. (i.e., The underlying link protocol tells us when this

is the case.)

Interrupt received from link level protocol

Execute at node p

*This procedure is sxecuted because the status of some
‘edge (p,p’) has changed. Let STATUS = 1 if we are
*running this code because (p,p”) has just come up, 2

'if it has just gone down.

*First see if the current update table contains this
’topology change.
IF U(p,p”)="ADD THIS EDGE" AND STATUS=1}
OR
U(p,p’)="REMOVE THIS EDGE" AND STATUS=2
THEN ’If we already have exactly this
*update...

60TO ALL_DONE ’then there’s no work to do

'There is also the chance that the update table says to
'remove the edge, but we wanted toc bring the edge up
*(STATUS=1). The result is that this version of the
*'kSTRA will only bring the edge down (by leaving the

*update table unchanged), in keeping with the above

PR N S N . Hoo— adn.

S

C e T et . . L . e
PRI R U TR V. PRSI U PP Uy T G JPC . W VL D WY ST PR

153

*convention.
E IF Ulp,p’)="REMOVE THIS EDGE" AND STATUS=i
= THEN

GOTO_ALL _DONE ’then there’s no work to do
'We want to change the update list, so start a
'new version

i V {-= V+1 ’Increment the version number

’Lets add our change to the update table

IF STATUS=1 THEN
C
Utp,p’) <-- "ADD THIS EDGE"
Utp’,p) <-- "ADD THIS EDGE"
1
ELSE

Up,p’) <—— "REMOVE THIS EDGE"

Uip’,p) <-— "REMOVE THIS EDGE"

’Now we have to make sure that there is still a good

‘spanning tree

IF STATUS=1 THEN ’We couldn’t hurt T(TREE) by
'suggesting that a new edge be
*added to the topology..

B60TO TREE_OKAY ’so get on with things

Lt e 2y s aceldr Seae-Biet Whed

154

'We are asking that an edge be taken down, so see if
'its in the current spanning tree T(TREE).
IF edge(p,p’) is not in T(TREE) THEN ’If its not...

B0TD TREE_OKAY ’then get on with things.

‘The spanning tree T(TREE) is no longer intact, so we
have to look for a new one (in our list), that is
’intact sven with all the suggQestions made in the

‘update list.

NEXT_TREE:
TREE <-- TREE+] 'Try the next larger tree
IF TREE > k THEN ‘wWe orl, have + spanning trees,
INITIATE NEW VERSION o0¢ SF algorithm 'once they’'re

al. dbrover, .ee the sure ¢ire

‘algoritre.

BPECIAL_ENTRY_POINT:

"Now we have to test to see 1¢¥ any update clobbers

‘this tree

FOR i = 1 TO n

FOR j=3 TO n "Run through all the updates
IF uti1, j)="REMOVE THIS EDBE"

THEN ’'if the update brings down a link.,
t 'See 1f the tree uses it..

IF edge(i,j) 1s in T(TREE)

POy P P o]

DAl hndi St Radic) Lot St s ling Sttt A
.........

155

‘BEECT

THEN ’If it is...

GOTO NEXT_TREE ’Try another tree

- NEXT j

NEXT i

'S8ince we changed which spanning tree we are going to
‘use, we have to reload this list of adjacent edges

LINK() <~- links of T(TREE) adjacent to node p

TREE_OKAY:
'Well, none of the updates we know about damage this

’spanning tree T(TREE).

'Since we are starting a new version of kSTRA, we have
’to record the fact that we haven’t heard any

*acknowl edgements on any of the edges in the tree.

’Assume that there are q edges that are adjacent to
*this node in tree T(TREE)..
FOR i=1 TO q ’Across every adjacent link in the tree..
TRANSMIT (kSTRA(ECOUNT,V, TREE,U)) ON LINK(i)
*eesethe information we have.
L(i) <-= O ’No acknowledgements yet

NEXT i

ALL_DONE:

S PR ST M G WP S

AR O P YR T S S S S S PPy W O SO 1P U S

1356

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

;) ARRIVES

Now that we have described how a node instigates the
running of a new version of the kSTRA, we have to describe how
& node responds to a message of the form that we started
sending across the tree. The case that we then discuss occurs
when an arbitrary node p receives a message of the form

kSTRA(ECOUNT’ ,V’ ,TREE” ,U”) from some node p’.

First we notice that node p may be in NORMAL mode, or
in RESYNCH mode (in terms of the SF variables). If a node
receives the above kSTRA packet, and it is in the RESYNCH mode,
then a new version of the SF algorithm is starting, and the
kSTRA packet can be ignored. This follows from the fact that
node p’ was not in the RESYNCH mode when it sent the packet (a
node in RESYNCH mode is not allowed to do anything but run the

SF algorithm). Since node p’ was not in the RESYNCH mode, the

last thing it did before entering the NORMAL mode, was to send
t a packet to p, that would force p to enter the NORMAL mode
F! UNLESS p WAS STARTING A NEW VERSION OF THE SF ALGORITHM.

Thus there remains the possibility that node p is in

the NORMAL mode, which we will assume from here on.

N Lo ~

e A N A e A A e e e e e Bt e

pr——————

vﬁ'v‘. utﬁl""_-,
NI D MR

D - RO

v
it}

— P —— Ba ak Al v Sal i D N AN R

157 |

I+ ECOUNT’ is less than ECOUNT (ECOUNT is the variable
that is kept in node p), then this kSTRA message pertains to an
E table topology that is no longer being used at node p, and

should be ignored.

It is not possible for ECOUNT’ to be greater than
ECOUNT. The last thing that node p’ did before it incremented
ECOUNT” to its present value was to send a message to node p
that would bring ECOUNT up to the same value. Hence we have

enly to give further concern to the case of ECOUNT=ECOUNT?’.

There are several possibilities for the way that V
compares to V', If V’ is less than V, then this packet pertains
to a kSTRA that has been superseded, and the packet can be
ignored. If V<V’, then node p must do work that is quite
similar to the work that is involved in initiating a kSTRA. I+
the versions numbers agree, then we have only to verify that
these are part of the same exact version of the kSTRA, and not
different versions that started up with identical version
numbers (update lists should be identical). The following

procedure performs these tasks

node p receives kSTRA(ECOUNT’,V’,TREE’,U’) from node p’ ‘

‘‘‘‘‘

s

158

WV’ or v=V® 3 ECOUNT=ECOUNT’

i . Execute at node p:

'separate the cases where V=V’ and WV’

IF Vv=Vy® THEN ‘'When the versions agree..
C
’Check to make sure that both update tables

are identical

— —— v
e i [

PN f
s S

FOR i=1 TO n

FOR j=1 TO n
IF Ui, j) differs from U’ (i, J)
THEN '1f they disagree
GOTO NEW_VERSION
NEXT j
NEXT i ’Finish the table
*Since both update tables are the same, we have
*already broadcast this exact kSTRA....
50TO END_OF_PROC 'and we’re done

]

"Naw for YWv?,,.

'Make sure that all the changes that we had in our
‘update table are included in the update list that we
'received.

FOR i=1 to n

FOR j=1 to n

VPP

Sttt i et S Mol o Cihest et AL ARavt N

159

IF U’ (i, j)="DON’T CHANGE"
AND
Uti,j) is not"DON’T CHANGE"
THEN ’if we knew something that
’node p’ didn’t...
BOTO NEW_VERSION ’start a new version
IF Uti, j)="REMOVE THIS EDGE"
AND
U* (i, j) is not"REMOVE THIS EDGE"
THEN ’again

GOTO NEW_VERSION ’start a new version

NEXT j

NEXT 1

*We just have to continue the version we were
*told about, so..

V (== Vv

*The table U’ has all the updates that we had, and
*probably more, so load this update list into our table
FOR i=1 to n
FOR j=1 to n
Uti,j) <=— U (i, j} ’load our table
NEXT j
NEX ' i

L ana unt it Sl bt Mied iR

4 160

’Since someone who started this version tested out the
'fact that the tree T(TREE) is still intact with
*updates U’, all we have to do is load it.

TREE <-- TREE’

'We’ve modernized our list of updates, so we can jump

*to the point where we set up LINK(), and continue the

i‘ ’broadcast.
2 GOTD PREPARE_TO_BROADCAST
- NEW_VERSION:

'We knew about some updates that weren’t in U’, so we
'should start a new version of the kSTRA with the

;I 'combination of all the updates.
p!

2 'The new version is just one larger than the version we

_ 'received,

V <~= V’+1

'remember that the combination of bringing an edge up
’and down in the same version implies that we should
*just bring down the edge.

FOR i=1 to n

FOR j=1 to n
*load our table with the combination of

i ’the updates in our 2ld table, and

FER G o anst e ot e BN U0

’those in U’.

—— v —
SnErE e At Sren e e Jins hst IS AR RIRNG

1) 161

IF U’ (i, j)="REMOVE THIS EDGE"

1 THEN U(i,j) <-- "REMOVE THIS EDGE"
IF U(i,j) is not "REMOVE THIS EDGE"
AND
i U’ (4, 4)="ADD THIS EDGE"
THEN U(i,j) <-- "ADD THIS EDGE"
NEXT j
NEXT i

'Now we have to make sure that there is still a good
'spanning tree. We do this by using the smallest
'spanning tree that might be intact under the above
*updates.

TREE <-- MAXIMUM(TREE, TREE’)

’...and checking that it is not damaged by any of the updates

60TO CHECK_TREE

NEXT_TREE:

TREE <-- TREE+1 °*’Try the next large- tree

IF TREE > k THEN ’We only have k spanning trees,

INITIATE NEW VERSION of SF algorithm ’once they’re
& 'all broken, use the sure fire

; *algorithm.

CHECK_TREE:

b e JaC ettt

*Now we have to test to see if any update clobbers

‘this tree

LRt e {

P . S SIS e B

162

FOR i =1 TO n
FOR j=1 TO n ’Run through all the updates
IF U{(i, j)="REMOVE THIS EDGE"
THEN ’i{f¥ the update brings down a link..
C 'See if the tree uses it..
IF edge(i,j) is in T(TREE)
THEN ’If it is...

GOTO NEXT_TREE *Try another tree

NEXT j

NEXT i

PREPARE_TO_BROADCAST:
'Since we changed which spanning tree we are going to
‘use, we have to reload this list of adjacent edges

LINK() <=- links of T(TREE) adjacent to node p

'Since we are starting a new version of kSTRA, we have
'to record the fact that we haven’t heard any
’acknowl edgements on any of the edges in the tree. Do

’this as we broadcast across each edge.

Now we can finally start to broadcast this new version

'across the spanning tree T(TREE).

'Assume that there are q edges that are adjacent to

*this node in tree T(TREE).

1

163
u ’Our job is to notify all of our tree neighbors
- ’of this version.
. 'If we haven’t started a new version, then we don’t need
EQ ’to send the broadcast back to node p’, but things

I;T *still work if we do send it..

FOR i=1 TO q ’Across every adjacent link in the tree..
TRANSMIT(kSTRA(ECOUNT,V,TREE,U)) ON LINK(i)
'Send notification of the new version.
L{i) <=- 0 ’We have received no acknowledgements.

NEXT i

*Next we have to check to se2 if we are a leaf of the
’tree. A leaf has the property that it has only one
'neighbor in the tree.
IF qg=1 THEN ’eaoand if we are a leaf, then we start
’the acknowl edgements flowing back
L
SEND (ACK_kSTRA(ECOUNT,V)) ON LINK(1) ’The ack
'goes to our one neighbor.
HIST(V) <=—= U(x, %) ’remember this update list, we

‘may end up implementing it later.

END_OF _PROC:

I AniC SRR MO A S AR

N TRy T ey W W T ¥ e s ey e 1‘

j e

164

e

"yt v,
. ‘. v oo
’ ,_ "v LA

.

CONTINUE NORMAL PROCESSING UNTIL NEXY kSTRA MESSAGE

ARRIVES

We have now described all the parts of the kSTRA that
involve the sending of packets containing the update list. The

above procedures are then the procedures that guarantee that

all nodes hear about a comprehensive update list. Now we will
describe how the acknowledgements will propagate back through
the tree. The purpose of this section is to guarantee that at

least one node can "figure out"” that all nodes in the network

have been appraised of a specific update list. Once that node

KaLEUSS, ; § (N AN
o AR

draws this conclusion, the final flood stage of the algorithm
will commence. We will first describe the procedure by which

acknowl edgements propagate back from the leaves of the network.

5% So far the only time that a node has sent an

acknowl edgement has been when the node is a leaf of a tree. In

order to get the acknowledgements to propagate back to some
central node in the tree we have to have nodes pass along
acknowl edgements. The specific rule for passing along these
acknowl edgements is that whenever all but one of a node’'s tree
neighbors has sent in an acknowl edgement, the node sends an

acknowl edgement to its remaining tree neighbor. With these

rules used, a node that receives an acknowledgement from its

e
AN

neighbor can deduce that all nodes beyond the transmitting node

R STt
T el A
. '; N Y

R Py
e e

R

o]

HPUEAP PRI YL TN DA Va7 DU G- e T POTW TS SR W TR S e

NOAOE
F' St

|

!

1

]

4

|

d

1635

in the tree have heard about this version of the kSTRA. This
deduction is also the justification for sending an

acknowl edgement out when we have received acknowl edgements from
all but one of our tree neighbors. It follows alsoc then that if
a node receives an acknowledgement from every one of its tree
neighbors, it can deduce that every node in the network knows

about this version of the kSTRA.

As with each of the procedures that we have described
up to now, we must discuss the response to various
ACK_KSTRA(ECOUNT? ,V?) at node p, depending on the values on
ECOUNT’ and V’. 1f ECOUNT>ECOUNT’, then this acknowl edgement
pertains to an outdated E table topology, and can be ignored.
For the same reason as was given at the start of the previous

procedure, ECOUNT’ cannot be larger than ECOUNT.

I+ V>V?, then node p has knowledge of a more recent
kSTRA, and simply ignores the message. It cannot be the case
that V’ is greater than V. To see this, we recall that part of
the procedure that node p’ (which sent the acknowledgement)
executed as it started to run version V’ included informing all
of its tree neighbors of this new version (except possibly for
a tree neighbor that informed p’ of ALL the details of this
version). Hence either p was already notified by p’ of all the

details of this version V’, or p told p’ all the details of the

166

version V’. In either case, node p must then have a version
number of at least V’. Hence not only does V=V’, but these
version numbers refer to exactly the same version of the

kSTRA (ie.: they agree as to the contents of the update list
that this version number refers to). We can also conclude that
this acknowledgement arrives on some edge that is in T(TREE) at

node p, and we can refer to this edge as LINK{t).

The only response to an acknowledgement that we have to
deascribe is what to do when we receive an acknowledgement with

exactly the same version numbers as we are maintaining.

node p receives ACK_KSTRA(ECOUNT’,V’) from node p* on LINK(t)
V={* and ECOUNT=ECOUNT’

Node p executes:

'We start out by recording the fact that we have
'received an acknowledgement over this edge.

LINK(t) <-- 1

"Next we have to count up the number of

’acknowl edgements that we have gotten so far.
ACK_COUNT <-— 0 ’initialize the counter

FOR i=1 TO g ‘there are g adjacent edges in T(TREE)

IF LINK(i)=1

1467

THEN ’If we’ve gotten an acknowledgement...
ACK_COUNT <-- 1+ACK_COUNT ’Increment
’the counter

NEXT i

P DD

*Check to see if we are missing

b
b
g

Lt

'several acknowledgements..
IF ACK_COUNT < -1 THEN '.eand if we are..

GOTO END_ACK_PROC ’'don’t send out anything

IF ACK_COUNT = g-1
THEN *lf we’re missing exactly one, then
C
*find out which link hasn’t carried an acknowledgement
FOR i=1 TO q
IF LINK(i)=0
THEN *0 means that there hasn’t been one
t

SEND (ACK_kSTRA(ECOUNT,V)) ON LINK(i)

’send the ack on this edge...

. HIST(V) <~== U(#,%) ’Remember this update
E *list, we may end up
P ’implementing it later.

BOTO END_ACK_PROC ’we’re done

NEXT i

'The above loop will never fall through

’into this statement

. - . .
- E ST . .. - . - P .
- e I S - N L . - - e . . L A o o B et o
T Nt e L S PP — e l“Lh_n PP U B PN PO LAV SRR B e S
LS VEAUE SR SUNE S Y N

1468

- RRARAILAG T KR
4 A

It must be the case that ACK_COUNT is q. This means
'that all the nodes have heard about the details of
this version of the kETRA. Hence it is time to
'broadcast the message to all nodes that they should

*start using the new E table topology.

*Since what we must do here is identical to what a node
’must do when it receives a CHANGE _kSTRA message, we
’will just reference that part of the algorithm (which
’will be the next section).

HIST(V) <== U(#%, %)

EXECUTE code for receipt of:

CHANGE _kSTRA (ECOUNT, V)

END_ACK_PROC:
CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE

ARRIVES

As the last bit of this algorithm we will define what a
node does when it receives a CHANGE_kSTRA(ECOUNT’,V’) message.
This message is intended to flood throughout the network across
every edge. The purpose of the message is to get the receiving
node to change the value of E that it is using, by updating E

with the update list contained in version V’,

el e R PP O T A G TRE SR YU WS WUy Uy & 20w .
PR S NOC SR, SV

.« .
PPN

s
’

169

As in each of the previous procedures, if
ECOUNT’ <ECOUNT, then it should be ignored, and it is not

possible for ECOUNT’ to be greater than ECOUNT.

The first node to cause execution of this code must
have had evidence (acknowledgements from all its neighbors)
that all nodes have heard about this specific version V’ of the
kSTRA. Hence we are gure that V is greater than or equal to V’,
Also this node must have sent an ACK_kSTRA(ECOUNT’,V’), and so

HIST(V’) must contain the update list for version V’,

Node p receives CHANGE_kSTRA(ECOUNT’,V’) from node p’
ECOUNT=ECOUNT?

V= V

HIST(V") has an update list for this version

Node p executes:

’First we should continue the flood of the message

SEND CHANGE_kSTRA(ECOUNT,V) on ALL adjacent links

’Since we are going to have a whole new E table
'topology, we might as well restart the version numbers
V <-— 0 ’Start the system as if_version 0 of

*'kSTRA just ran

o _r TP U TR T 4T L T T s . .
- L Ralin it ~ [N . A .

170 1
ﬂ . "Now we have to update the £ table topology.
2: 'First get back that update list that we saved.

Ul%, %) <—= HIST(V?)

"Now run through the entire topology and make the
'changes
FOR i=1 TO n
FOR j=1 TO n
IF Udi,j) is not "“DON’T CHANGE"
THEN if there might be a change here..
C
IF U¢i, j)="ADD THIS EDGE"
THEN *We should this edge to E
E(i,§) <=~ 1
ELSE 'We should remove this...

oo @wdge from E

Eti,j) <~— 0

NEXT j

NEXT i

‘Use the topolagy to generate a set of

'edge-disjoint trees.

- BENERATE ¢ T(1),... T(k)) USING E(%,%)

'We assume that tree 1 can be used by kSTRA

LR SR N P P P P S .

171

TREE <-- 1

LINK() <-- links of T(TREE) adjacent to node p

*’8ince this is an E table topology change, increment the
'counter that keeps track of the number of changes
'since the SF algorithm ran.

ECOUNT <~-~ ECOUNT+1

'Initially, there are no changes desired in the new E
'table topology El(x,%), We start U(x,#) to indicate
*this fact
FOR i=1 TO n
FOR j=1 TO n
Ui, j) <-- “DON’T CHANGE" °’There are no
*changes desired in the current
*topology.
NEXT j

NEXT i

’We don’t need any of that old HISTory, as it all
’referred to changes in the old taopology

CLEAR HIST ()

'As a last point, we have to check to see that the E
’table has exactly the edges that the lower level

*link protocol sayg it should.

T

172

VALID <~- "YES" ’Assume that the E table is valid
FOR i=1 TO n
IF E(p,i)=1 AND our edge to node i is down
THEN € ’E says the edge is up, but its
’really down
U¢i,p) <-- "REMOVE THIS EDGE"
U(p,i) <~- "REMOVE THIS EDGE"
VALID <-- "NO" ’Remember that we have
‘updates |
]
IF E(p,i)=0 AND our edge to node i is up
THEN ['E says the edge is down, but its
‘really up
UCi,p) <-- “ADD THIS EDBE"
U(pyi) <-- "ADD THIS EDGE"
VALID <-=- "NO" ’Remember that we have

‘updates

NEXT i

IF VALID="NO" THEN ’The E table isn’t yet right so..
GOTO SPECIAL_ENTRY POINT ’in INITIATE_kSTRA

*to start up & new version

CONTINUE NORMAL PROCESSING UNTIL NEXT kSTRA MESSAGE
ARRIVES

. SIS TNy VY W Y

o aa aa a ava ke hen aa st e e St e iac ARV
P T g - L . ~ . B

173

CORRECTNESS PROOF OF THE kSTRA

The conditions that we wish to show that the kSTRA
algorithm satisfies are identical to those that we wanted for
the SF algorithm. The only differences between them is that the
kSTRA algorithm requires a certain amount of knowledge about
the network, and as a result of this knowledge the kSTRA is
able to complete its task (most of the time) using much less of
the network’s resources (communication on edges of the

network).

As with the SF algorithm, we start by addressing the
question of whether the kSTRA terminates. We define
“terminates", with respect to the kSTRA, to be reaching the
state where either: a new version of SF has been started, -0R-
ECOUNT is the same for all nodes in the network and version 0
of the kSTRA is active at every node. {(i.e! There are no
suggestions yet to change the current E table topolagy.) The
second termination possibility condition really means that the
algorithm succeeded 1n its job, and the first condition means
that the kSTRA "gave up" and called on the SF algorithm. As
with the SF algorithm, it is impossible to show that the kSTRA
algorithm will always terminate. We can however, as we did with
the SF algorithm, guarantee that the algorithm will always

terminate if no failures or restorals occur for a sufficiently

174

long time.

The proof will have three basic parts. In the first
part we will show that all the nodes that were connected in the
original E table (that the S5F algorithm produced) will start
out at some fixed time with identical values of ECOUNT and E (#,
*#). All of our references to the network henceforth in our
proof will be restricted to the connected nodes in this
original E table. Then we will show that if fhe kSTRA is run
(and the SF algorithm doesn’t take over) then every time the
ECOUNT variable is incremented, it is incremented at every
node, and again there is a point in time when all nodes have
identical values of ECOUNT and E(%,%) .'Finally we will show
that if no link level topology changes occur for a sui‘icient
period of time then a point in time will come such that all
values of ECOUNT and E(#,#) at all nodes will agree, and the
topclogy represented by E will be the exact link level topolagy

of the network.

Theorem: If the SF algorithm terminates at time t, then the
value of of ECOUNT at time t at all nodes in the network is O,

also at time t the E tables at all nodes in the network are

identical.

e : 175

Proof: When each node enters the normal mode, the initializing
7‘ procedure of the kSTRA sets the value of ECOUNT to (0. We also
N know that at the time when each node p enters the normal mode

(and the SF algorithm is going to terminate at this version R),

s B TR W)
v Y

hl the E table &t node p is set to some value Ef (Ef is the same

for all nodes). What we must show is that from the time that

each individual node enters the normal mode to the time when

all the nodes have entered the normal mode (definition of SF
algorithm terminates) that the values of ECOUNT and E cannot

change. The only procedure that can change ECOUNT or E (while
the kSTRA is in the normal mode) is the one that sends and

responds to CHANGE_kSTRA messages. This procedure can only run

after ALL nodes have acknowledged some version of the kSTRA.

\ Zea. en atedin o viw, LI 2 S v, EMEE
. . _"‘,-_',i.‘..

Each node can only run the kSTRA algorithm after that node is
in the normal mode. Hence a CHANGE_kSTRA message can only be

sent after all nmodes are in the normal mode, and ECOUNT and E
at each node can only change after ALL the nodes are in the

normal mode.

End of proof

For the following definitions, we will equate the

following entries in an update list with the following numbers:

"DON’ T CHANGE" {====> 0
& "aDD THIS EDGE" <====>1
F “DELETE THIS EDGE" (-=--> 2
]

PTG WP VI g Wy Wy ay vy was whw-.

PR a T e it et aniadadebandedenbasibenhesinahesihennuiitehosinudundbuhusini

176

Definition: We say that update list U(¥%,#) is less than
U? (#,%) iff:
1) for every i, j in {1,...n}
U(i,j) is less than or equal to U’ (i, j)
AND
2) for some i,j in {1,...n)}

Uli,j) is strictly less then U” (i, j)

Definition: We define SUM(U(%,#)) to be the sum of the elements

of update list U(«,%),

Lemma: If U(x, %) is less than U’ (#,%#) then

SUM(U(#, %)) < SUM(U” (%,%))

Proof follows directly from the definitions.

Lemma: For any update list U(#,%) on a network with e edges, it

is always the case that 0 < SUM(U(%*,%#)) < 4e+1

Proof: The largest value of any entry in U is 2, and the least

is 0. The rest of the proof follows from the definition of SUM.

P

q 177

Lemmat: Assuming that there are e edges in the network, the

kSTRA will never have a version number greater than 4e.

Proof by contradiction: If some node had a version number V

-
.
.

greater greater than 4e with some ECOUNT, then there must have
been a sequence of versions:?
version V had update list U

U (#,%) is leass than U(x,*)

version V-1 had update list U’
Ur? (%, %) is less than U’ (&, %)

version V-2 had update list U’’

version O had update list U’*’...’=all zeroes

The reason for the above list is that the only way the kSTRA

can start a new version V at some node p is when some version
V-1 doesn’t have all the information in its update list that

node p knows about. Node p then raises some of the values in

the update list, and starts a new version.

In the above list of items we have more than (by

Y. Y

[P S

A e 0 e L i S0 v Judl Mot AR A e A

;4 178

assumption) 4e update lists that are sequentially related by
"is less than". If we take the SUM of each of these update
lists and apply the previous lemmas, we get a list of more than
4e+1 integers (U(#,%) contains only integers, hence the sum is
integral) that are in order and vary from O to 4e. This is the

desired contradiction.

End of proof

Lemma: Assume that at time t1 all nodes in the network have the
same value of ECOUNT and identical E tables. Also assume that
at some time after ti1 node p still has the same value of ECOUNT
(and hence the same E table) and at least one edge in every
tree T(1),...T(k) has failed. If node p is running the kSTRA
algorithm then either node p will receive a CHANGE_kSTRA

message, or else it will be forced to start the SF algorithm.

Proof: Using the method of proof by contradiction, assume that
node p never receives a CHANGE_kSTRA message, and never again
runs the SF algorithm. (Since no SF or CHANGE_kSTRA message

will ever be received, E and ECOUNT will never change.)

Let version V be the highest version that node p will

ever run. (Recall that there is a bound on the number of

N T RPN PRI DU I W U g

1

179

distinct version numbers.) Let us wait till node p is running
version V. We then have at node p some well defined integer
TREE which is at most k. We can also assume that the update
table Q(*,*) at node p has nu removal requests for any of the
-dgis in tree T(TREE), and hence all edges that are adjacent to

node p in T(TREE) are still up.

Let edge i-j be the closest edge in tree T(TREE) (via a

path in T(TREE)) that will ever be labeled down in some nodes

update list. We can then assume that the edges in the path from
node p to i via tree T(TREE) are all functional, and will
remain that way forever. (We are taking i to be on the same
subtree of T(TREE) as node p after edge i-j is removed.) We

will refer to nodes on the tree path in T(TREE) from p to i as:

P’ P”, p:”,...psv'...v’i.

Since node p is still rumning version V, it must have

sent out messages kSTRA(ECOUNT,V,TREE,U) to all its neighbors
on edges of tree T(TREE). Let node p’ be the closest neighbor
in the T(TREE) path from node p to node i (a node that knows
that T(TREE) is broken). Once node p’ has received this kSTRA
message from node p, node p’ must be aware that no tree number

less then TREE is still functional.

_ PR - G SO S 1 B i h mlaalls

180

If node p’ is not aware that tree number TREE is not
functional, then it must send (or have sent) to the next node
(p°?’) on the tree path in T(TREE) from node p to i, the message
kSTRA(ECOUNT,V?, TREE, U’). Eventually we must reach a node p2
that is both aware that node i-j is not functional and aware
(we have traced the notification path) of all the updates that
node p was aware of. This node is then aware that none of the
trees numbered 1 through TREE are intact, and must be running
the kSTRA on some other tree T(TREE’) (TREE’>TREE). We should
also recall that the edges in the path from p to p2 will, by
assumption, never fail. Hence node p2 can never run the SF
algorithm or receive a CHANGE_kSTRA message (if p2 did either

of these things, then the flood would propagate back to node

P,

I¥ we then wait till node p2 runs the highest version
it will ever run, then we can repeat the above procedure and
find a node p3 that is permanently connected to p2, that must
eventually come to know (in its update list) that all trees

numbered less than or equal to TREE®’ are broken.

By performing the above procedure no more than k times,
we will find a node which is aware that all k trees have failed
edges, and must by the definition of the kSTRA algorithm run

the SF algorithm. The permanent connection back to node p which

[- |

181

we have guaranteed would then force node p to participate in

1 the SF algorithm, which is the desired contradiction.

End of proof

Theorem: Assume that at time t1, all nodes in the network have
the same value aof ECOUNT and identical E tables. If at any node
p, since the time node p assumed its current ECOUNT value and E
table, the local link level topology around node p differed
from that given in the E table, then either the SF algorithm
will eventually run at node p, or a CHANGE_kSTRA message will

be received (or sent) by node p.

Proof: 1f the local link level topology around node p is

- different from the topology given in E, then there must have
k been a point in time t2 when this difference first existed.
Time t2 could not have been before the SF algorithm stopped

running at this node. I1f this difference existed from the time

that the current E table was established, then the procedure
that changed the E table would have noticed the difference and
forced node p to run the Initiate kSTRA procedure. If the
change occurred after the table was established, ther the
definition of the kSTRA requires that the initiate kSTRA
procedure be run at that time. In any case, kSTRA must be

running at node p.

reYrTY I YT rat e T
AL

¥ 3 182

?i . Now that we know that the kSTRA is running at node p,
we know from our last lemma that if all the trees T(i) become

damaged, then our theorem is proved. We are then left to show

h that if one tree remains intact, then eventually a CHANGE_kSTRA
: message will be received (or sent) by node p.

N I1f we assume that one tree remains intact, then the

version of kSTRA that node p initiates will

propagate out on tree T(TREE) to all the nodes,

or else it will reach a node that has an update entry that

prevents further use of tree T(TREE),

or else it will be received by a node that is running a higher

version number (and hence be ignored),

or else it will be received by a node that has received a

CHANGE _kSTRA message,

ar by a node that is running the SF algorithm.

In either of the latter two cases, the fact that one tree is
intact will guarantee that node p will either get &

CHANGE _kSTRA or a SF me,sage. In the second ¢ third cases we

are guaranteed that a higher version will be sent and one of

| 183

the above five fates will befall it, Since there are no more
t‘ than 2n distinct version numbers, eventually we are guaranteed
that some broadcast will reach all nodes, and no node will
create a higher version (or else the CHANGE_kSTRA procedure or
i. SF algorithm will be run. All that follows could only be
v preempted by a CHANGE message, or the running of the SF
algorithm, either of which would end our proof correctly). The
nodes that receive this maximal kSTRA broadcast will then start
to execute the acknowledgement procedure, and eventually all
nodes will have received ACK_kSTRA(ECOUNT,V) on all but one of

their edges in the tree that this version V used, and sent out

;H an ACK_kSTRA(ECOUNT,V) on the remaining cutgoing edge. Since
there are n-1 edges in a spanning tree, and n ACK messages are
F. eventually sent, there must be an edge in this spanning tree
Fﬂ that carried this ACK message both ways.Hence there must be a

node that received the ACK message on ALL of its edges in the

version V tree. This node would then start a CHANGE_kSTRA
message moving through the network. I+ the node that started
sending the CHANGE was node p, then we’re done. lf node p did

not start the CHANGE messages moving through the network, then

it would eventually reach node p (recall that at least one tree

;A is intact).

End of proof.

Theorem: Assume that at time t1 all modes in the network have

——r—s W.‘y ¥ I‘E"‘—'"’v‘l‘l.y,-
..E“,"‘_..‘_.." A Lo

N PO S N VUR. U SR W Y GEPP |

]

TTRrTT

i-vv-'vvv-vv-
B A '
Lo e .

=T

— T T T T T T YT Y T T U L
By B . .

b et San et ShARL A IRt

184

the same value of ECOUNT and identical E tables. 1f at time t1i,
at any node p, the local link level topology around node p
differs from that given in the E table, then every node q in
the network will eventually either run the SF algorithm, or a

CHANGE _kSTRA message will be received (or sent) by node g.

Proof: From the previous theorem we know that this theorem is
true if p=q. If node p is not the same as node q, then the last
theorem tells us that node p will eventually run the SF
algorithm, or receive a CHANGE_kKSTRA message. If the network
has a path that connects node p to node q, this then guarantees
the correctness of the theorem. If the network is no longer
connected, then none of the spanning

trees are still intact,

and again the theorem must be true (by our last lemma).

End of proof

Now that we have a theorem that basically says that if
the E table differs from what the actual link level topology
is, then a CHANGE_kSTRA will eventually be broadcast, we will
show that this change of E tables can be done in identical
fashion in all nodes, and hence the resulting rew E tables will

be the same at all nodes.

0

r
S
i

T T
£ .

e ‘z

185

Lemma: Assume that at time t1 all nodes in the network have the
same value of ECOUNT and identical E tables. If after t!1 node p
receives ACK(ECOUNT,V”’) from node q, and node p is running
version V’ of the kSTRA, then the update list U(#,%) at node p
is the same as the update list was at node q, when it sent the

ACK.

Proof: Before node q could have sent the above ACK message to
node p, it must have sent the message kSTRA(ECOUNT,V’,U’,TREE).
Hence node p received this message before it received this
ACK_kSTRA message, and was still running version V’ when the
ACK arrived. By definition of the algorithm that processed the
kSTRA(ECOUNT,V’ ,U’,TREE), node p must have had exactly U’ as
its update table when it finished the above kSTRA message. By
definition of the algorithm, if the version number at node p
didn’t change from the time of receipt of the kSTRA message to
the time of receipt of the ACK, the update table must not have

changed.

End of proof.

So we have that when we receive an ACK(ECOUNT,V’), if
we are running version V’ (i.e. we don’t ignore the message)

then we know exactly the update list that the sending node has

L el same. aash o e g

186

saved in its HISTory array under version V’. Looking back at
the definition of the kSTRA algorithm, we see that ACK messages
are only sent when all the nodes that are "further out" on the
tree used by V’ have also sent acknowledgements. By repeated
application of this last lemma, we then have that all the nodes
that are further away on the tree used by version V> have also
stored the update table U’ in their HISTory array. Finally, if
and when some node p receives ACK(ECOUNT,V?’) on all of its
edges, it must be the case that all the nodes in the network

have stored the update list U* in their HISTory array.

Lemma: Assume that at *ime t1 all nodes in the network have the
same value aof ECOUN, and identical E tables. If before the SF
algorithm is restarted, two nodes p and g send

CHANGE _kSTRA(ECOUNT,V) and CHANGE_kSTRA(ECOUNT,V’), then V=V’,

Proof: There are two reasons for nodes to send out CHANGE
messages; one is as a response to receiving a CHANGE message,
and one is as a response to having received ACK messages from
all neighbors in T(TREE). Let us consider the first nodes p’
and q’ that sent out these CHANGE messages. We then have that
both nodes p° ard q’ have received ACK messages from all their
neighbors in their respective trees. By the definition of the
kSTRA algorithm, we then have that p’ has never acknowledged

any version of the kSTRA greater than V’, and p has never

inaadeamtidennad]

-y
-

et L g

T e
- it s

B 20mn e o e iR AR

187

acknowl edged any version greater than V. We also know from the
preceding discussion that all nodes have acknowledge both

versions V>’ and V. Hence V=V’,

End of proof

Now we have that if CHANGE message is flooded across
the network, only one version can be sent with this specific
ECOUNT, and all nodes respond to it by modifying their E tables
in the same way (all nodes have identical entries in their
HISTory arrays for this version). 5o we know (if all nodes
receive this CHANGE_STRA(ECOUNT,V) message) that each node
will eventually have some fixed ECOUNT’=ECOUNT+1, and E’. (If
all nodes don’t receive this message, then the network is
disconnected. We then L.ow from an earlier proof that the nodes
that did not receive the CHANGE must start the SF. The nodes in
a CHANGEd section of the metwork will eventually realize that
all the trees that they form under E’ are broken, and they too
will start the SF algorithm.) We are now left to show that at
some fixed time, all nodes in the network have the same ECOUNT?

and E’.

Lemma: Assume that at time t1 all nodes in the network have the
same value of ECOUNT and identical E tables. If, before another

SF algorithm is restarted all nodes receive

“fAD-A134 378 EDGE DISPLAY SPANNING TREES AND RECOYERY IN DRTA -
COMMUNICATION NETWORKS(U)> MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR INFORMATION AND D.. J A ROSKIND

UNCUASSIFIED OCT 83 LIDS-TH-1332 N@88@14-75-C-1183 F/G 1772

as el
HEEE

K EEEFFEITH

)

e ——

I

<

m—
—————
=

e

e
—
—
—
—

i

.4
=

L

125

—
S ——

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

188

CHANGE_kSTRA(ECOUNT,V) message, then at the point when the last
- node in the network receives this message, all nodes will have

. the same ECOUNT’=ECOUNT+1 and E’ (the topology E table).

Proof: We already know that under the assumptions of this lemma
that every node will,at some point in time after ti, have
ECOUNT’*=sECOUNT+1 and E’ (the same E’ for every node). What we
haven’t shown is that these values cannot change at any node until
all the nodes have established them. To see that this correct,
we start by noting that the only way that either of these
values can change is to have a node receive a

CHANGE _kSTRA(ECOUNT? ,~) message (we are assuming that the SF
algorithm has not restarted). W‘ can also recall that the only
way that a CHANGE_KSTRA(ECOUNT’,-) can be sent, is if ALL nodes
have sent out a ACK_kSTRA(ECOUNT’,~-) message, which cannot
occur until all nodes have CHANGEd to ECOUNT’. Hence the values
of ECOUNT’ and E cannot change until all the nodes have

recei ved CHANGE_kSTRA (ECOUNT,-).

End of proof

Finally, now that we have shown that all the E tables
are modified in each new ECOUNT in the same way, we have only
to show that if there are no failures for a sufficiently long

time, then the E tables will eventually represent exactly the

P - T o . .
s PR N . N e mimala -
I, W, IR N YN PRI T W P WS

POESPR ST TN WY W ¢

RINT L

S e
AN

Xy
1 1

. «
4.'-'

i8¢

link level topalogy of the network.

Theorem: Assume that the values of ECOUNT and E are the same at
time t, at all nodes in the network. 1f no more failures occur
after time t, then either the SF algorithm will be run, or the
kSTRA algorithm will modify the E tables so that they are the
same at every node, and they will contain exactly the link

level topology of the network.

Proof: If the E tables exactly represent the link level
topalagy of the network, then we are done. 1f the link level
topology of the network is different from that shown in E, then
wae are guaranteed by our previous theorems that either the SF
algorithm will run, or the value of ECOUNT and E will be

modified at all the nodes. If the SF algorithm runs then we are

also done, so assume that the SF algorithm does not get run
after time t. Let t2 be the time at which all values of ECOUNT

and E have been modified to ECOUNT’=ECOUNT’ and E’.

If E’ does not represent the link level topology of the
network, then we know that it will be changed again. This time
however, it will be impossible for any node to request that an
edge be added in the same update list as it already requested

that it be removed. Hence the update list that is formed at

..

R e .
"
)

. el s
+ [. .
: ."."' et

- ["’a

e

[g

. "‘ F'{'..

PREREAR] .
AR I

h
E
b

F ol

.

T T

. 0 s "oy

o lii PR
A S . i
. et T

P
VR
]

[
.

Tty -2,
Fanint

‘. \'.3{‘."-{':

MERRER I X

190

every node will contain the correct local changes to E’° that
are necessary to make E’ reflect the local link level

topology (in the last update list an edge might have gone down
and up during the ECOUNT period. Hence that esdge might not be
placed in E’.) Within the time that ECOUNT’ is being used,
nodes will only acknowledge versions that include these local E
table topology changes. So we have that any update list that is
ACKnowl edged by every node must include these changes, and when
such a list is used to generate ECOUNT’ *=ECOUNT’+1 and E’’, E*’

will have all the corrections to E’ that are needed.

End of proof

ACTUAL IMPLEMENTATION OF THE kSTRA

We have described the kSTRA thus far in terms of
several types of messages which contain a variety of data. Some
of the data that we chose to include in these transmissions was
placed there to help to clarify what was going on, and simplify
the proofs. In an actual implementation, far less information

needs to be exchanged between nodes or maintained at each node.

To begin with, the first message that we talked about
was kSTRA(ECOUNT,V,U,TREE). If the a receiving node q knows the
E table that corresponds to ECOUNT (which is needed to process

this message), then node q can infer (based on which edge this

. e

.............

A m

191

packet arrived on) which of the k edge-disjoint spanning trees
the message was making use of. Hence this piece of data is

unnecessary.

The second data item is the update table U(x,#), It is
expected that this algorithm will run very swiftly, and hence
most changes in E tables will involve very few edge additions
or deletions. The contents of such a U table could be expressed
as a very small list (eg: "remove edge p—q, add edge r-s") and
only that list needs to be sent. We are also causing the most
likely changes (exactly one chande in the E table) to require

very little communications.

As we showed in our correctness proof, the value of v
is nicely bounded (by 4@, where @ is the number of edges), and
its presence will later simplify the communication required by

the CHANBE_kSTRA.

The value of ECOUNT is, in the above presentation, an
unbounded integer. We can recall from our proofs that (in a
connected subset of the network) until all nodes have received
the CHANGE_kSTRA(ECOUNT,~), no node in that set can send out a
CHANGE _kSTRA (ECOUNT+1,~-) message. Hence there are only 2

possible ECOUNT values th t we might receive. We argued

" NP IPUI T G T WY G S]

192

repeatedly (before each procedure) that the value of ECOUNT’
that comes with a message is always less than or equal to the
ECOUNT that a node has internally. It is then sufficient to
send only the least significant bit of the integer ECOUNT with

each kSTRA message, and no confusion can arise.

So we have that all the data that should be included is
one bit (for ECOUNT), one integer between i1 and 4e (for V), and
two short lists of integers between 1 and @ (which edges should

be added, and which edges should be removed).

The next missaqo that we described was the
ACK_KkSTRA(ECOUNT,V). From the preceding paragraph we see that
the only data required in this packet is a bit (for ECOUNT),

and an integer between i and 4e (for V).

Lastly there is the message that will flood across the
network: CHANGE _kSTRA(ECOUNT,V). As with the above
acknowl edgement message, this type of message would only have

to carry a bit and an integer between i and 4e.

In data communications, the time necessary for a packet

to travel from one end of the network is generally proportional

TN L YA TR TS T TR e e o R I e o o FEEC T

193

g' to the size of the packet times the number of hops taken (each
i node must receive the whole packet before it can be passed on).
'é: The fact that the amount of data required in each of the above
{§ packets is so small, guarantees that the algorithm can
'i (assuming that kSTRA packets are given top priority) complete a
3% modification of the E table very swiftly. The swiftness of the

algorithm tends to guarantes that the topeclogy will be tracked
ii well by the algorithm. This swiftness then justifies our

:; premise that few changes would be included in the update list.

Looking now at the storage requirements for the
algorithm, we start by noting that only the one bit that is
transmitted to represent ECOUNT must be saved. The current E
table topology must be stored at all times, but this block of
memory is certainly bounded in size by the number of edges in
the network. The current version number requires space for one

integer in the range of 0 to 4e. The update list can be stored,

independent of the number of entries, in an area that is

roughly no larger than is needed tg store the topology.

130
4

The HIST array (remembers all the update lists that we

”

o
.t

have acknowledged) can have as many as 4e entries (one for each

~ -

DR
e

s e e
Py

version). The clever point to notice however, is that every

- T
o s
’

update list that a given node acknowledges, must contain all

o'..'
A.\.I

..\.
L N

v
»

the updates in all the previously (within this ECOUNT cycle)

A

-t - - e . PN e et - - .
. e . . Ca . . - . . - .

. LA e el a BRI IR U WL T P WP PO U Y hadendedethddnind NP Y VU V0 DU VLT PR IS 1 U DR 000 Wl W W PN Warwee ' - |
»7 PO

SRS
-
}

~

. . . e - P I '™ PN SRR el el
o - -, N . * 4 - J B 2 [- e Bt
A T T P A kol = T S

194

acknowl edged update lists. Hence the HIST array can simply
maintain a list of all updates that we have heard in the order
in which we heard them, and keep a pointer to show at what
point in in this sequential list the acknowledgement for a
given version was sent ocut. This array would then take space

that was bounded by O(e), as are the memory requirements for

the E table and U list,

RECOVERY
We have now explained how the multiple trees can be
used to disseminate the edge failure information. Recovery €from

a failure has several parts. As we have said earlier, recovery

involves the consistent modification of routing policies at all’

nodes in the network. It also involves decisions as to what
should be the fate of packets that are midway between their
source and destination., (Some packets may esven have been

transmitted across the failed link before it went down')

As was mentioned in chapter 1 of this thesis, the exact
recovery goals vary from network to network, and application to
application. There are only a few basic strategies that might
be used in conjunction with our kSTRA algorithm, and we will
try to mention them here. Fund;mcntally there is a choice of
whether to maintain packets that were in transit before a

failure, or to throw them away. If packets can be thrown away,

.....

NES PR T W

.............
...............

195

then some sort of end to end link protocol (from the point of
entry into the network, to the point of exit from the network)
must be used if the system is to guarantee end to end
transmission. 1f packets are not thrown away, then care must be
taken not to produce duplicates of packets (For examples if a
packet was sent across an edge, and then the edge went down,
and no acknowledgement was received, should the packet be
retransmitted after a new E table is developed?). If it is
necessary to prevent such duplication of packets, some packet
numbering scheme (perhaps included in an end to end protocol)
would have to be used. A second item that sust be dealt with,
if packets are not thrown away, is that the order in which the
a sequence of packets arrive at the destination node is not
necessarily the order in which the packets were injected into
the network at the source node. I+ it is necessary to preserve

ordering then again a numbering scheme would be needed.

e e e iy aiata e a e Ve saal A a e Al e - s -

196

Appendix A

Possibilities for finding edge-disjoint spanning trees, in an

undirected network, in less than O(knkn) tiese.

A simplistic analysis of the running time of our
algorithm that we presented in Chapter 3 to find k edge
N disjoint spanning trees in an undirected network is: we must
place O(kn) edges in various forests, and the work required in
X each placement may involve looking at all the previously placed
edges (O(kn)). Hence the total work was at least O(knkn). The
careful analysis in Chapter I also showed that the
forementioned tasks dominated the time complexity of the
algorithm, and the net complexity was indeed O(knkn). In this
appendix we will explore two methods of holding down the

lengths of the augmentation sequences that a related algorithm

T T T T VR

finds. We hope, but do not prove, that one of these methods

will eventually lead tc an algorithm that finds such

edge-disjoint trees in asymptotically less time than O(knkn).

e atn e i S o

8MAL.L TREES

The following theorem places a tighter bound on the

amount of work needed to augment the set of forests with an

edge.

-

R . - R L. . S L e aaa
-~ et e T et e e e e . e e .. . F N S . PPN Aecsahid B S
O N O R Vs IACTOL S ION R S S Sl S SR MDY S DU P Vo 4 e -


~~~~~

P i ‘b ,"."T"'.",‘"r",‘_"'.‘:'. SO T

......................

197

Let v be a node, and let i (a forest number) be such 0<{i<k+}

Define: T(i,v) = The set of nodes that are in the same tree as

v in forest F (i)

Biven a set S, we define !S! to be the number of elements in S.

Assume that we are trying to augment the forests by

adding edge (v,w) (v and w are nodes). We have the following

theorem:

Theorem: For any forest F(i), if a minimal augmentation
sequence exists that starts with edge (v,w), then a minimal
augmentation sequence exists that has less than k(iT(i,v)i~-1)
edges in the sequence. Moreover, the augmentation sequence can
be found by looking at no more than k(iIT(i,v)!-1) additional

edges {(other than (v,w)).

The implication of the above theorem is that we

should (assuming we’re not looking for minimum weight trees)
try to augment the existing forests with an edge that "touches"
a small tree in one of the forests. We will then have a bound

on the number of edges that must be locoked at in order to find

Ly et e e % e r e s aaas e adas o s ad o) sdadhadanknck b

-




i L e s dbtk Siaid E] 0
a2 T R S A Y oma Naacting b o A S0 NIV L TR
S pe e . 4
..

- 198

el an augmentation sequence.

R Proof: Let @(1),e(2),...e(p) and n(1),n(2),...n{p) be an

N

.l example of the shortest possible minimal augmentation sequence.
e

ké Using proof by contradiction, assume that p > k{iT(i,v)!I-1). It

must be the case that bath endnodes of every edge e(j), (j<p),
are contained in T(i,v) (otherwise we could produce ° shorter
sequence). In each forest, there can be no more th. ITi,v)i-1
sdges that have both endnodes in the set T(i,v). F :e there
are nc more than k(iT(i,v)!-1) edges from all the ¢+ - Lts
combinad that have both endnodes in T(i,v). This contradicts
the premise that we have a list e(#) of greater than
k(1T(i,v)1-1) such edges. (Note: there can be no repetitions in
the list e(#), as we are dealing with a minimal augmentation

seguence.)

Having shown that an augmentation sequence of this
bounded length exists, 1t remains to be shown that such a
sequence can be found by looking at no more than k(iT(i,v)i-1)
edges. To get this bound, we would have to modify the labeling
step of our msultiple tree algorithm. The modification would
consist of prechecking every edge that was put on the QUEUE,
$or use in forest F(i) (i.e. can we end the augmentation
sequence by using this edge in F(i)). This would guarantee that

no more than k(!T(i,v)!-1) edges would be placed on the QUEUE,

R P . . P
i I e N o R



L oomn s A e SRR O

PO

199

MR T

by the argument given in the last paragraph. Note that such a
- modification to the original labeling section would not change

its asymptotic complexity. Hence the whole multiple tree

algorithm would run (asymptotically) at least as fast as the

i original.

] PLACING kn/2 LINKS IN Od(m+kn) TIME

{ We will now demonstrate the usefulness of such a

: theorem. Recall that a necessary condition for the existence of
k edge disjoint spanring trees is that the network be k
connected. In particular, there are at least k edges touching
every node, At the start of the algorithm every T(i,v) is a
singleton, and any augmentation segquence that starts by
touching such a singleton can be found in constant time (i.e.
just put the edge that touches v, such that IT(i,v)i=1, in
forest F(i)). At the start of the algorithm there are kn
distinct singleton sets. Each edge that is placed in a forest
during this process changes at most two singletons into a
larger set (worst case unites two singletons) From this it
follows that at least kn/2 edges (minimum) will be placed into

forests during this process. We will show that this work can be

done in O(m+kn) time (m from lacking at the list of edges, kn

from placing the kn/2 edges with a cost of 0(1) work each).

The algorithm: Initialize an array s{p) (p=1,2,...n) to be all

R
M S KRN - S S

Ty T TS S Vv Sy -




i 2

AT VIR
ot L T e e e
EEPAP . . s e

.r T T e e
. . S
. T ’
. PR .

T . S PP ST S, SO U SRR . S WY S ¥

200

O. The definition of s(p) is to be such that for any node p,
Fi(s(p)) is the least numbered forest in which node p might
still be a singleton. 1f s(plwk+l, then node p is not a
singleton in any forest. One at a time the algorithm looks at

every edge (v, w) as follows:

“check v"
1) 1f s(v)=mk, then goto “check w"
2) sl{y) <-— s(v)+! ’point to next forest
3) if IT(s(v),v)i=1 then v is a singleton in s(v), so..
a) UNION(s(v),v,w) ’put the edge (v,w) in the forest
b) get the next edge, and goto "check v"
4) goto "check v" 'see if v is a singleton in the next forest
“check w"
S) If s(w)=k+1, then get the next edge and goto “check v"
6) s(w) <=— s(w)+1l 'point to next forest
7) if IT(s(w),wW)I=1 then w is a singleton in s(w), so..
a) UNION(s{w),w,v) ’put the edge (w,v) in the forest
b) get the next edge, and goto "check v"

8) goto "check w" ’'see if w is a singleton in the next forest

Before we analyze the computational complexity of this
algorithm, we should define the UNION-FIND algorithm that will
be used in conjunction with it. In the sarlier section of this
thesis we made use of a lookup table to perform a FIND

operation. The UNION(i,v,w) operation had to search the i’th




e v v e s ed i atuettetneann SRR AN A R S S
- v e e e Sl e acive ) N e e Sl It St e e A AN AR
" ReSLANAESME RANGRATIAR AR St PR .

K | 201

lookup table (corresponding to the forest F(i)) and change all
mentions of the canonical node that represented v (i.e. FIND(i,
v)) to the canonical node that represented w. This linear
search took 0(n) operations. This amount of computation in the
above algorithm is intolerable, and unnecessary. Note that the
first node that is passed to the above UNION(#,#,%) function
call is always a singleton. Knowing that the first node passed
to this UNION function is a singleton, we can devise a fast
UNION function that runs in 0(1) time. This fast UNION
maintains a data base (an array that gives the canonical node
associated with node) that looks identical to that which the

O(n) UNION maintains. The 0(1) UNION is defined as follows:

UNION(i,p,q)=(definition)
Modify the data structure by changing the entry that
corresponds to a FIND(i,p). 8ince p is a singleton,
this corresponds to a single change.

The new entry should be what is returned by a FIND(i,q)

Note that the UNION(i,v,w) can also update a lookup
table which maintains the size of T(i,v). Using such a table,
the evaluation of IT(i,v)! can be done in constant time.
Specifically, we can set up an array N(i,v), so that the

following is true at all timas: (for O0<i<k+1l, O<v<{n+1)

ITtiy,v)! = N(i,FIND(i,Vv))

PP " - [




e aeth g Bita it S-S el et Al N i i i
................................ - N .

202

N(i,w) gives the size of the tree in forest F(i) that contains
canonical node w. By requiring that N(#,#) be correct only at
canonical nodes, we make it possible to have a UNION algorithm
that wastes little time to update the N(#,%) array. The new

UNION® ti,v,w) algorithm would then be:

1) I¥ FIND(i,v)=FIND(i,w) then return "no work to do

2) temp <—= N(i,FIND(i,v)) + N(i,FIND(i,w)) ’add old tree sizes
3) UNION(i,v,w) ’perform UNION algorithm

4) N(i,FIND(i,v)) <~= temp "remember new size

S) return

With the above functions defined, we see that each of
the individual statements in our algorithm run in constant
time. With a little clever counting we will show that we have
indeed placed at least kn/2 edges into various forests in

Di(m+kn) time.

To get a time bound on our algorithm, we note that
steps 2 and &6 can be executed only kn times (O(kn)). This

bounds the number of times that steps 3,4,7 and 8 can be

executed. Steps 1 and 5 can be executed by virtue of the fact

that steps 4 or 8 (respectively) have been executed (O(kn)),

plus no more than one additional time for each edge that is

looked at (O(m)). Hence no statement is executed more than

-

]

TR VAT N R R i A T U T NP, Gy P S NPT W U I 1P PRI LA UL A SAT Wl WL TOA Wl L. -

P W WP U W DU SPUr- D WA DN B I O




T, W
...........
...........

203

O(m+kn) times, and since sach statement takes constant time,

the algorithm runs in O(m+kn) time. .

WISHFUL EXTENSIONS

We have now shown the usefulness of trying to find
augmentation paths that start with edges that touch small
trees. We do not have a proof that shows the complexity of
finding k edge disjoint spanning trees is reduced from O(knkn)
when edges are fed to the algorithm starting with the ones that
touch the smallest trees. We can show that the cost of
providing edges in such order (i.e. the edge (v,w) such that
1IT(i,v)! is currently minimal) during the running of the
algorithm is no more than Od(m+kn logi{kn)). The hope for a

better bound on the overall algorithm would then be that:

a) Half of the kn edges may be placed in time O(m+kn) time

b) Half of the remaining kn/2 edges may be placed in O(m+kn)

time (unproven)

c) Half of the remaining kn/4... in O(m+kn) time (unproven)

» -l

*

...........

ST AT IR T I SR JEIL I T N : . Ca g, "
*al alata™ alafleSataSate st boa P PP g W ) P



____________

..... . .
------ N e e o L. . . -
e s B e I e el alml A a8 A e A b B

204

The total work required would then be:

D((m+kn)leg (kn)) for the placements
PLUS
Ot(m+kn log(kn)) for producing the edges in order

Since m is at least ki(n-1), this is just:

O(m log(kn))

If we were very lucky, the placement time for steps b, c,...
would only be O(kn), and the net complexity might be

O(m + kn log(kn)).

The motivation for thinking along these lines is a
paper on finding spanning trees using a distributed algorithm

by Gallager, Humblet and Spira [12].

FINDING LINKS THAT TOUCH 8MALL TREES

WNe will now describe an algorithm that will, at sach
point in the running of the multiple spanning tree algorithm,
find the edge (v, w) (that has not yet been shown to be
dependent) such that IT(i,v)! is minimal over all forests F(i),
and over all nodes v, that have unexamined edges touching them.

By “unexamined edges” we mean that the multiple spanning tree

e e A e il a s wle alatatata anadd



B It e i N .  wT Ay WO NTEFORTSNA P, e

—re BB A 4 B AN arae 4 e o/ San et UK Sri Suui ol N v ARG St S e
b ferc e aaraserase LE A o e e s T - e Ny e . .

A ’ 205

algorithm has not yet tried to place them in any of the
l forests. This algorithm alsc gives the value i, for which IT(i,
? v)! is minimal. The spanning tree algorithm sust know the value
of i, so that it can try every edge that is put on the QUEUE in
F forest F(i). It is this focusing of attention upon the forest
’E F(i) that provides the bound on the augmentation sequence

length.

We start by making a list of all the canonical nodes in
each forest, along with the size of the tree associated with
that canonical node (this takes O(kn) work). This list will be
updated as the spanning tree algorithm is run, and the smallest

tree in any forest will be found based on this list.

In order to quickly find an unused edge that touches a
given node, we form a list of all edges that touch each node.
Forming this vector of lists (one list for each node) takes
O(m) time. Unfortunately this data structure produces two
copies of every edge (one for each endnode). When an edge is
found on one node’s list and used (given to the spanning tree
algorithm to examine) it must be deleted from the other list
that it is on. To achieve an efficient deletion (i.e. we can’t
afford to search for the second listing), we maintain an n by n
interconnection matrix. The elements of this matrix tell

whether an edge connection bestween two nodes (that is on the




...........

111 Lt sl Sl Jinds Al N A P e e

206

forementioned list) has been axamined yet. Note that only m
entries in the n by n matrix need be initialized. With these
two structures we can, given any node v, find the next
unexamined edge that touches node v (ar find that there are no
more) in constant time. Creating these structures takes O(m)

time.

Using the structure described in the last paragraph, we
can find edges that touch any given node. Our actual problem is
to find an edge that touches a certain tree. Each tree in each
forest is referenced by way of a canonical node. We therefore
need a fast way to list the nodes in each tree, based on a
canonical node. To achieve this fast listing of nod-;. we
maintain (in addition to the data structure that FIND and UNION
sust maintain to do their job well) a linear list of all the
nodes that are associated with each canonical node for each
tree in each forest. To make it possible to combine these lists
in constant time (the UNION algorithm will have this added
functional chore) we must also maintain a pointer from each
canonical node to the last node in the list. A picture amply

describes the method, so we offer the following example:

node 1 and 2 were canonical nodes in forest F(i) We have the

following structures

AR RSP S Y SN U IS ST T O YA . PRI R T . PRV S S YO S wgs.)




O

A UNION{i,1,2) takes place, and the new canonical node is node

1. The following is the resulting structure

AR ) IR i e a B - . P A il A e S N - .'_A‘-t""‘.'*w

S e e . e e e e e . Wt T Co e Dt ]
CHSE. W Wl ST TV YA S0 SN S S U W U WO S L L e, S S S, L PP G T SOt SO LI, TR

207

®




.............

P AR St st et

208

The changes made were as follows:

a) The last node on node 2°s list (node 8) was g@given
a pointer to the second node on node 1’s list.
b) The pointer from node 1 to the naxt element in its

list (1 to 3) was changed to point to node 2.

Note that the pointer from node 2 to node B, is no longer
shown. Pointers to the end of a list are only significant i¥f
the node is a canonical node. It should also be noted that the
operation of combining the two lists takes a constant amount of
time, independent of the length of the lists (which are

determined by the corresponding tree sizes).

There is one more detasil that we must add to the above

data structure to make it possible to find a useful node in a
given tree in constant time. The problem that must be overcome
is that the node that "pops out” of the above structure may not
have any unused edges touching it. Basically, we drew a meamber
from an equivalence class, and then found out that we couldn’t
use it. What we are anxious to avoid is having that element pop
up again and wasting our time. To speed things up, when ever we
find such a node (i.e. all of its edges have been looked at) in
one of these linear lists we should delete it from the list.

(The canonical node would be marked "empty"”, where as the other




209
; nodes in the list could be physically deleted.) Note that
i since the FIND and UNION algorithms rely on separate data
' structures, we don’t damage the original algorithm. Also, since
there are n nodes and k forests, the most time we could waste
i on deletion coperations is O(kn). When a deletion does not

result, we can find an edge, which touches any tree, in

constant time.

- R
T Lo e e

Now what remains is to identify the smallest tree in

any forest. Using the forementioned structures we can then find

L2 yopry Y
AN s et
s a :!, PO S ]

an edge which touches that tree in constant time (or be told

PE—
. [
.

that none exists). A key point to note here is that the sizes
of the trees in the forests vary very slowly. That is, when an
augmentation sequence is used, exactly two trees change their
"size". All the other trees that are involved in the

augmentation sequence get reformed, but the number of nodes in

each tree (and the actual nodes in each tree) remain unchanged.

As for the two trees that change, one is enlarged to contain
the other. The problem is then to find the minimum element
(smallest tree) among a slowly changing set of numbers (tree

sizes) This can be done efficiently by forming a binary

*playoff tree" with kn leaves, and depth log(kn)/1og(2). The kn
lmaves are the initial k forests of n singleton trees. To form
this tree initially takes O(kn) work, but updates take only

O(lag(kn)) work, This tree must be updated when:

YR VT IR VRPN Vit W N WG Vi Wu WA R SRS

T e et e e e et tatalatatatala el st acebedatad el dkaiat



...............

210

1) a UNION takes place (this happens O(kn) times)

2) it is discovered that there are no more edges to be
examined that touch the currently smallest tree

(again this is bounded by O(kn) occurrences)

The total to maintain this tree is then O{(kn log(kn)).

So we have shown that we can (on the fly) find the
canonical node and forest that contains the smallest tree.
Biven the canonical node, we can in constant time find a node
in that tree, whereby in constant time we can find an edge that
touches that node (the last two "constant time"” estimates are
amortized over the choice of O(kn) edges). Hence the total time

needed to provide the edge we desire is O(kn log(kn)).

TIGHTER BOUNDS ON AUGMENTATION SEQUENCE LENGTHS

We mentioned earlier that the fundamental performance
bottleneck in the execution of the multiple spanning tree
algorithm is the fact that O{(kn) edges must be placed in
various forests, and sach placement might require an
augmentation sequence of length O(kn). In this section we will
again attempt to reduce the length of such sequences, in hopes

of improving the net performance of our algorithm. No

Al e

d - .o, - e o -
T PGP S RN P



s AR S o C RS

. - At IT AT e .

211

asymptotic improvements have as yet been shown to result from

the ideas that follow, although the ideas seem promising.

We start by repeating the definition of T(i,v), to be
the set of nodes in the tree in forest F(i), that includes node
v. In the last section we showed that we could bound the length
of an augmentation by O(k !T(i,v)!). Let us define the

intersection of all T(i,v), over all forests, for a fixed node:

T(v)=(Def) T(l,v) # T(2,v) * ,.. % Tl(k,Vv)

(wa remind the reader that "#" in this context means “"set
intersection”). We will show that we can bound the size of an
augmentation sequence that starts with edge (v,w), to be not
greater than k(i{T(v)!-~1). It should be noted that this is a
tighter bound than k(!T(i,v)i-1), as IT(v)! must be less than
or equal to !T(i,v)! (for all i). As we will see by the example
below, it can quite easily be the case that IT(v)! is strictly

less than !T(i,v)! (for all {i).

We might note that T(v) can be viewed as the set of
nodes that are reachable from v in all forests. With that
thought in mind, it is clear that T(#) partitions the set of
nodes. A bit of thought about this structure will show the
interested reader that the sets that result are quite different

from the "clump" structure that was discussed in the Chapter 3.




- s TR W TTT T~ T ot <o « - W e ¥ e 0w ¥ L .
— i a4 e T WS ¥ mICW_ W W v w e T
e e e T T T T g T ] C) B - o . o . -
TR N T L e T e T e LT

212

As an example, consider the following two foresats:

0
P ® } ®
©

The partitions induced by T(#,#) would then lock like:

O O
© ®)®
® ®

Finally the partition induced by T(#):

MR - & sin et b -4 JN JF o g Fdlifd's - S MNONNEEEDES

@ e e . . i . . - “ A ™
A e A i Bt Ak o 8 R a3 ML Attt an Tt -J




...........

it Sl Satt e e i Tw P A _“-_".r"v":"'; s e T

213

O

®

Notice that iT(1)1=2, and this is less than !T(1,1)! and

1T(2,1)}, both of which are 3.

First we will show that if a minimal augmentation
sequence exists and starts with edge (v,w), then a minimal
augmentation sequence exists that has no more than k(!{T(v)!i-1)
edges. As with our earlier sequence bound proof, we note that
there cannot be more than !(T(v)-1! edges in any forest that
have both endnodes in T(v). Therefore there cannot be more than
k(iT(v)i-1) edges in all the forests that have both endnodes in
T(v). Suppose that we had a minimal augmentation sequence that
started with edge (v,w), and there were more than k(iT(v)i-1)

edges in that sequence. Consider the first k(i{T(v)!-1) of

PYENE PR - ) PP ORI WU S S




r\‘i'\‘\v"..‘.'."."\".‘.‘.‘.‘"'

Y R L

'7.'.2",". . i &
Tt PRI

v Ty
._-.!: e

214

these edges. There must be an edge among these eadges that does
not have its endnodes in T(v) (if all the edges were in T(v),
then T(v) would be a clump, and we could not have found an
minimal augmentation sequence). Let edge e(j)=(x,y) be the
first edge that does not have both its endnodes in T(v) (as
mentioned, j is no wore than k(iT(v) i-1)). Bince we are
dealing with an augmentation sequence, we know that a path
around the previous edge Cle(j-1),F(i)] contains e(j). Also,
since both the endnodes of edge e(j-1) are in T(v), there must
be an edge e=(x’, y*) in the path Cle(j-1),F(i)], such that x’
is in T(v), and y’ is not in T(v). By the definition of T(»),
there must be a forest F(i) in which y’ is not in T(i,v). Also
by the definition of T(#), x’ must be in T(i,v). Hence a
minimal augmentation sequence may be formed with j or fewer

edges, that ends with the placement of (x’,y’) in forest F(i).

All the bounds that we have mentioned thus far in this
section can only be used IF we can “"quickly" determine the
membership of an arbitrary node in T(v). The remainder of this

section will focus on this problem.

MAINTAINING INTERSECTION DATA STRUCTURES
We now turn our attention to the task of maintaining
T(v), and being able to swiftly determine membership in T(v).

As noted, T(#) defines a partition of the set of nodes. We can




. S, A e Sates 2O R
— - T N - - B
T rCIC NI - -

213

therefore use a set union algorithm to maintain the partition,
and FIND function calls to determine if two nodes are in the
same partition. Sufficient is a set union algorithm that has a
FIND n;gorithm that runs in 0(1) time, and a UNION algorithm
that rdnl in D(n) time (See appendix B for details). We will
refer to the FIND-UNION pair that maintains this partition
T(#), as TFIND(#) and TUNION{(#,#), respectively. The hard part

is then to decide when toc perform a TUNION.

To be able to determine when to perform a TUNION(x,y)
(and what x and y should be) we maintain an n by n array of

integers:

Mix,y)= (Def) The number of forests in which node x is in the

same tree as node y

Note that M(x,%) is a symmetric matrix. The description that
follows is easier to give without exploiting this symmetry. An
actual implementation would probably take advantage of such

structure.

We can update the contents of the array M(s, %) as
follows: Whenever two trees in a given forest are to be

combined by a UNIDN(i,v,w), we do the following first:

. R I .

) - L DU SHWPR TR PR TR SE @ DS PP LA DY Whl S
R P




w . LW e WL R, T e Y

DAt A NN D et ot A A Pk

216

[ELIR 3 T
e S

assume T(i,v)={a(l),a(2),...a(p)) “"Node sets for ..

! T, w)=(b(1),b({2),...b(q)} " ... the trees

FOR i=1 to p "Try all elements in T(i,v)..
ii FOR j=1 to q "..with all elements of T(i,w)
o M(ati),b(j)) <~ 1+Mlali),b(3§))
"They’re connected in another forest

M(b(j),ali)) <== 1+M(b(§),ali))

IF M(a(i),b(j))=k then.."1f they’re connected
in k forests
IF TFIND(a(i)) not eqgqual TFIND(b(j)) then..
TUNION(a(i),b(j)) "Put the sets together
NEXT j
NEXT i

and then we do the actual UNION(i,v,w).

Unfortunately, the set union algorithm that we are
_using (via FIND(i,v) and UNION(i,w,v)) does not maintain a

data structure that is convenient for listing all nodes that

are in a given tree. To facilitate such a listing we would

E! . maintain a data structure of "linear lists" of nodes in each
tree, in each forest, by using a slightly more complex union
algorithm (as described above), in addition to our standard

rﬁ UNION-FIND pair.

AT N PR U PN PSS WU W G- w W)

N e e —

J.' R N S T TIPS P VP P T VY P ]



-« ' 217

E. At first, the evaluation of the computational
’ complexity necessary to maintain T(#) appears as a terrible
mess. The combinatoric problem is that of combining all nodes
i- in one tree with all nodes in an other tree, whenever a UNION
- is done, with the trees varying in size as the algorithm
progresses... (very messy). We can however calculate the
computational complexity quite simply, by virtue of the fact
that we maintain the matrix Mix,y). We note that the entries in
M(w, %), are always integers between 1 and k inclusive.
Moreover, these entries never decrease. Therefore, there can be
no more than nkn changes in values of entries of M(#,#), and
hence no more than O(nkn) executions of statements that modify
M(%,%#), This puts a bound on the total execution time of the
above program of O(nkn). (Note that the only statement in the
above program that doesn’t run in constant time is the
TUNION(#,#) operation., The TUNION runs in O(n) time, but can
only be executed a maximum of n times. Hence the total

contribution of TUNION is O(nn) time, and is negligible.)

We can therefore see that T(#) can be maintained at a
cost of no more than O(nkn) work. It should be noted that T(s)

is being maintained as a partition, and TFIND operations can be

used to see if two nodes are in the same subset of T(s), Using

the same methods as we did to find edges that touch small

,iwir"

trees, we can then find edges that touch small subsets of the

RTTYTTE Y TV r

PRPE WS WY N



- . 218

partition T(#). Since there are only n possible distinct
!! . canonical nodes in T(#), the calculation of the smallest subset
e in the partition would require O(log(n)) time ®ach time T(#)
changed. Hence we would spend O(n log(n)) time finding small
subsets (as opposed to O(kn log(kn)) time which was spent in

the last section to find small trees.)

With the above analysis we see that the 0O(nkn) time
necessary to maintain T(#) dominates the effort of this
section and is then the amount of work needed to supply the
multiple tree algorithm with edges as desired by this section.
We do not claim that this is the best method to provide edges
in this order, but since the complexity is less than that of
the original multiple tree algorithm (O(knkn)), the impact on

the multiple tree algorithm should be further explored.

INTERSECTION DATA STRUCTURE IN THE MULTIPLE TREE ALGORITHM
We have now shown how edges could be supplied (on the
fly) to our algorithm for finding multiple edge-disjoint
spanning trees in an undirected network. What remains is to
show how the multiple tree algorithm can be modified to use

T(#) to find minimal augmentation sequences that are

constrained in length by k(iT(v)i-1) (where edge (v,w) starts

the seguence).




& 219

i' The key point to notice is that if any edge (v,w) that .
I is put in the QUEUE traverses the boundary of the partition

T(s) (i.e@. TFIND(v) is different from TFIND(w)), then edge

(veow) is immediately useful in one of the forests. This fact

P T
‘. PR .
B P A

o T TR

stems from the original bounding argument for this

“intersection of trees" section. Since a TFIND operation tskes

.
'
b
.
»
-
-
-

b
r..
P
r .
:

P

only constant time, we can perform this check on every edge
that is put on the QUEUE, and have no effect on the time

complexity of the original algorithm.

1f ever we find an edge that traverses the partition
Ti(#), we could immediately look for the {forest in which this
edge is directly useful. The search would be among k forests,
and would involve doing a FIND(i,v) and a FIND(i,w), both of
which take constant time. Hence finding the end of an
augmentation sequence by this method would take O(k) time to
find each ending. Since there are only ki(n-1i) edges placed
during the running of the program, we see that we spend no more
than a total O(knk) time finding these quick endings to

augmentations.

Now that we can guarantee that that no augmentation

R Lk ARt AR
S T

sequence found by our intersection monitoring algorithm can

have an edge (except the last edge in the sequence) that

iy
.

— R on as 2kl
PP E A . v

e N TR TR
PR PP I X
ISP

- . . T e . e .. PR S e T - . . . R R R . .
l'.-’.-' PRI P SRS A Wil YA i W P P W VI AP WK . PO P U U . G G Ry




-------

: FICRIRR

220

] 4

—~—y -

]

crosses a boundary of the partition T(#), we are sure that the

augmentations are less than k(I1T(v)!-1) in length. To achieve

A~ T
[ d

- this result we have added a total of O(knk+nkn) work. The open
question iws: “What effect does this bound on the augmentation
sequence length have on the net complexity of the algorithm?”,
More specifically: “Can it be shown that the (worst case)
average augmentation sequence length is less than O(kn) when

this algorithm is used?"

b S YR LA ST S W WV S W W WY SPU P

ECE R SR SN ST S N T LT o ORI P G Y



Aaaarn s At el et thd fadtahd A A e R VAN A L RER AL S WS I o Bl e T N
ARG L Sl N S A Y 3

.........

221
Appendix B

FIND-UNION algorithms

In the problems that we have discussed in this thesis,
we have had to maintain a data structure that represents the
partition of a set of discrete elements, on several different
occasions. One of the first uses was, in developing an
algorithm to find k edge disjoint spanning trees in an
undirected network, to recall which nodes were already
connected to one and other in a given forest. Later on, in
enhancing that algorithm, we maintained a partition that
recorded the structure of "clumps" for the algorithm. Lastly,
in appendix A, there were a variety of partitions of the nodes
in the network that we needed to maintain and manipulate. Due
to the variety of manipulations that were necessary to perform
upon these partitions, and various computational complexity
goals, we have developed a range of algorithms to service our
needs. In this appendix we are going to present a full list of

such algorithms.

A general property of all the partitions (or
squivalence classes) that we maintain is: if two elements are
put into the same equivalence class, in some partition, at some
point during the running of an algorithm, then those two

elements will forever more remain in the same equivalence class

Y st adssadiuadion a P -t P SIPEP U Y T Ul U G ST GINe ST YN TR G P SO YRS S N e




v
-V

ol 3 Yt

............

R TP RN AP o L AP Y . S

222

in that partition. This condition means that we are not
maintaining arbitrarily changing partitions. It precludes, for
example, the partition ({11},(2),(3})}, from changing to ((i1,2,
{3)), and later to ((1},{2,3)}._This general property of our
partitions also reduces thn‘ngmb;r of primitive manipulations
that might be performed to the joining of (or "UNION"ing) of

two existing partitions.

An example of the results of such UNION operations on a
partition would be:
Start with the partition {{1), {2}, {3}, (4}, {5}
UNION({123, {3})
resulting in {{1,3),{2),{4),{(5)>
UNION({1,32,{5>)
resulting in {{1,3,52,{(2),{42)
UNION( {23, {(4))
resulting in €({1,3,5},(2,43}2
UNION({1,3,53, (2,4))

resulting in ({1,2,3,4,5}2

- 8ince the data structure contains the information that

describes the partition, it is sufficient to provide the UNION
operator with names of one element in each of the equivalence
classes that we want united. For example, when the partition
was ({1,3,5),€2,4)}, it is sufficient to say UNION(2,5), to

modify the partition to ({1,2,3,4,53).

UL WA A TL DI LI Wl WO WO W S - . S P,




’ ' 223

Having a data base that represents a partition is not
enough, we need some way to interrogation that data base and
gain information about the partition that is represented. The
most common question for us to ask is: "Are the elements x and
y in the same equivalence class?". A sufficient bit of
information is gotten by providing a function that interrogates
the data base, and FINDs the canonical name of he equivalence
class that contains an arbitrary element x. We could therefore
reduce the original question about elements x and y, to the
question of whether elements x and y are in equivalence classes

with the same canonical name.

An example of the results of various FIND operations
when the current data base represents the partition is {{1,3},
{2,43,(35)} is:

FIND(1)=1

FIND(2)=4

FIND(3) =1

FIND(4)=4

FIND(5) =3
The significance of the fact that FIND(2)=FIND(4), is th‘t
elements 2 and 4 are in the same equivalence class in the given
partition. Note that the names of different equivalence classes
must distinct. In order to accomplish this, all of our
algorithms will use the name of some element in the equivalence
class as the canonical name for the equivalence class,
analysis of a nearly linear (almost O(1) UNION and FIND) set

union algorithm algorithm is presented.

PR . PR G P UL A Sy P U0 W S W A a e o e L

Ca 4 e ta _BMatatiamama A P



. . . .
PR I R PPN UL Ul WL IS Ui G L Ul Uy W W wege . g

224

The two functions that we have introduced are used through out
the the literature to describe functions that manipulate partitions
[22]). We will now proceed to develop specific FINDEUNIDN algorithm

pairs.

0(1) FIND, O(n) UNION

We sav in the explanation of what the FIND operator
does, the way a table of the canonical names for each element
completely specifies the partition. We can define a very simple
FIND-UNIDN algorithm that maintains a table (or array) of
values for use by the FIND aperatar. The action taken when a

FIND{(x) was called for would then be:

1) Get the x"th entry from the table, this is the canonical

name for x

The UNION operator would then have to update this table every
time it was called upon to act. The update that would be

required when a UNION(x,y) was Called for would then be:

1) Get the x’th entry from the table, call {t X

2) Get the y’th entry from the table, call {s Y

We now have X and Y are the canonical names of x and v,

respectively.

LT el P % P S WD TP DR G Y o PRI I P

IIPIUE CU WPE WDV NN S S S S |




..........

-

»
"

o

225

3) Look through the table for any entries that are X...

3a) ..and change such entries to Y

We have now changed the canonical name of any element that used
to be in the equivalence class with x, to have the canonical
name of all the elements in the equivalence with y. Hence, all
the elements that used to be in either in the equivalence with

either x or y, are now all in one equivalence class.

In order to be able to describe the other algorithms
that we will present later in this appendix, we be forced to
use a more formal language. For consistency, the following is
the formal definition of the FIND-UNION algorithm that we have

Just described:

INITIALIZATION1

DIMENSION M(n) ’reserve space for the array

FOR i=1 TOn ’Initialize the entire table so that...
M(n) <-— n ’..the canonical name for each singleton
equivalence class is the name of the singleton
NEXT i

FIND1 (x)

RETURNS (M(x)) ’return the x’th entry in the table

. e P PUE W S, -

U T - PR UL UL gy W G . S e e v



T e o W T

226

UNIDN1{(x,y)

! ‘ X {—— M(x) ’"get the canonical name for x
Y {-- M(y) ’'get the canonical name for y
FOR i=1 ton ’Look at all n entries in the table
! IF [M(i)=X] THEN *find an entry with
v *canonical name X
M(i) <-- Y ’...and change its name
’to Y

NEXT i

Assuming that there are n elements in the set that we
& ' are manipulating, we can see that the search of all elements
done by the union operator takes 0(n) time. The FIND operator

b, has only to do an array lookup, and hence performs in

constant (0(1)) time.

MAINTAINING SIZES OF EQUIVALENCE CLASSES

Before we discuss the next FIND~-UNION pair, we will
take a brief diversion to discuss the computational complexity
of finding the size of an cguivalencs class. The goal is to
maintain some data structure that allo-s us to execute a
function call, such as SIZE(x), that returns the number of

elements in x’s equivalence class. There are several uses for

such a function. In the later examples of FIND-UNION pairs,

J— v v v
. .'.Fv A 3
s N - .t o

R TP G L U Y WL G Wl Tl Yl .0 W AN WD W 4 PN A R L PO WP

. T I S S R s



TTERRT LT

aiet .- & aAfriE

OnCe

b kA SR i oo e . Jaa BRC)
.'. .

227

knowledge of such sizes will be critical in constructing
efficient algorithms. In appendix A, several of the potential
improvements in our multiple spanning tree algorithm are based
on being able to figure out the sizes of various equivalence

classes.

The algorithm that we present as SIZE(x), is only
capable of working when x is the canonical name of the the
equivalence class that contains x. Although this seems like a
major limitation, the FIND-UNION algorithm pair just given
exemplifies a situaticn where the translation from arbitrary
element in a class, to the canonical name of the class takes
only constant time. It is also the case, that the algorithm
(SIZEUNION(x,y)) that updates this data base when a UNION is
performed must be given the canonical names of the equivalence

classes, and not just arbitrary elements.

The algorithms are are rather straightforward. First

there is the data base initializer:

INITIALIZE

DIMENSION SIZEOF (n) there are n elements that we
have to remember

DIMENSION VALIDSIZE(n) ’Which of the above

U 'y

P S P W ST T TPV AP P JPUSCIPAL. Japi) - Snsitatnshntantdanedl il




.l‘.’—r A.I ’v ,’ . .“ -“-v-.. -",
L]

- TV,
- ROV

g tniine. v et ot van A quen S e Ao AR

r " g T T T
B iy Sagh Ak EEve e st et ani DU AR - - -

228

'sizes are valid
FOR i=1 TO n 'run through all entries
SIZEQF (i) <-= 1 ’All classes start out
'as size 1
VALIDSIZE <-- TRUE ’All the elements are
’canonical names, s0 all the

'sizes are valid

NEXT i

Next there is the function that looks ontc the data base and

returns the size of the given equivalence class:

SIZE (x)

IF VALIDSIZE(x)=FALSE ’make sure that this
element is a canonical name
THEN STOP "x is not a canonical name
RETURNS(SIZEOF (x)) ’Since it is a canonical, just

*look it up

Finally there is the function that updates the data base when a
UNION is performed. The convention that we will use is that the
canonical name of the resulting equivalence class, will be the

first parameter (the name of the first equivalence class) to




TOrPTWTTI I L T T PR EL T e Te T T T T T T e e e ey s e T W

PO S-S v

229

the function call.

SIZEUNION(x,y)

IF VALIDSIZE(x)=FALSE ’Check that the parameters are
'valid names...
OR
VALIDSIZE (y)=FALSE
THEN STOP ‘'one of the parameters is not a name
VALIDSIZE(y) <-- FALSE ’The second name is no longer
4 canonical name, and its size
is no longer valid
SIZEQF (x) <—— SIZEQF(x)+SI1ZEOF(y) ’'Add the sizes uf
*the two classes, to get the

'size of the new one

RETURN ’That’s it

It is interesting to note that each the above functions runs in
constant time, as there are no loops in any of the code. There
are constraints on the parameters, but that will pose no

difficulty in using these algorithms in later examples of a

FIND-UNION pairs.

e et R e ol mD ol el el A oml m

I T R I R P Y T AL P T N DU Oy S T



N a®

i

.........

‘ 230

O(n) FIND, O(1) UNION

Although this particular FIND-UNION pair did not end up
to be directly useful in this thesis, the concepts are used in
conjunction with other FIND-UNION algorithms in appendix A. Its
function, in the context in appendix B, will be discussed later
in this appendix. One special constraint that is present in the
use of this specific algorithm, is that the two elements that
are given as parameters to the UNION operator, must be
canonical names. The idea here is to use a data structure that
forms a loops of pointnr; for each equivalence class. By
manipulating the pointers, two loops may be quickly combined
into one. The FIND function traverses this loop each time it
performs it task, and takes considerably more than constant

time.

It is easiest to give a visual example of this
algorithm, before the explicit form is presented. Assume that
we have the partition ((1,2,3),44,6),(5) of the set of integer

from 1,...4. We might depict this partition as:

[ PR WP TR P r 3




.........

231

€

The canonical names of the partitions are 2, 6 and S

respectively. The result of a UNION(6,5) would then result in

the following:

o @

Notice that only the two pointers that came out of the

canonical elements S and & changed during this operation. The
other transformation was the removal of the second circle

around element 5, which keeps the number of canonical elements
per esquivalence class down to one. The result of the operation

UNIDN(2,6) would then be:

A ata alatala.acais ata e ad

PP S P ST R T ST SN PN A e taactalac e S A A A PR A S VAP VP Sl SN W A SO P,




232

As a standard, we always make the first parameter of the UNION
operator into the canonical name of the new set in this

algorithm. Again notice that only two pointers had to be moved
to perform the UNION.

The FIND operation is performed by chasing the pointers
around the loop, until an element is identified that is the

canonical node.

The formal definition of this algorithm is:

INITIALIZATION2

DIMENSION POINTERS(n) ’The vector of arrows

DIMENSION CANONICAL (n) ’The logical variable that

U P P PO Py S s o P




FOR i=1 ton *Initial

CANONICAL (i) <

POINTERS (i) <-

NEXT i

FIND2(x)

LOOP:

ELSE x <-- POINTERS(x)

80TO LOOP and tr

UNION2(x,y)

IF CANONICAL (y)=FALSE
OR CANONICAL (x

THEN STOP ’In

CANONICAL (y) <-- FALSE

IF CANONICAL (x)s=TRUE
THEN RETURNS (x)

233

*tells if element n is a
‘canonical name
ize the above arrays
== TRUE '"All elements start out
'as canonical names
- i ’Each element starts out

'pointing at itself

'see if we've got a canonical name

*if so, return that name

'otherwise, chase around the
loop one step...

y again

'we better not get a parameter
)=FALSE *that isn’t a
*canonical name
valid parameter

’element y is no longer the

*canonical name for the

PULEF YD LY V)




v .-
...................................

! 234

'equivalence class
i , TEMP <-- POINTERS(y) ’remember what y used to point to
b POINTERS(y) <--— POINTERS(x) * point y at what x used
to point at...
i ‘ | POINTERS(x) <-- TEMP ‘'and point x at what y used to
2 ’point at.

RETURN ’"That’s it

At

o

0¢(1) FIND, O(log n) UNION

v
A

¥
"

To be precise, the algorithms we will give can perform
a total of n UNIDN operations in time O(n log n) worst case,
and hence the average time per UNION is a worst case average
O(log n). This FIND-UNION pair has as its basis, the pair of
algorithms FIND1 and UNIONi. A very fast FIND algorithm is

produced by keeping a table of the canonical values as part of

the data base. As with FINDi, orly a lookup is then required to
perform the FIND operation. The reason why the UNION1 function
took so long (O(n)) to execute, was that a search of the entire
table was required to find all the elements in a given class.
The type of data base (a series of pointers) maintained for
FINN? and UNIONZ will be used in this algorithm to swiftly scan
through ONLY the elements in a SPECIFIC equivalence class when
a4 UNION is performed.

The data base that we will maintain has three parts:

1) A quick look table for FIND

W et




v L AT Lon Jodn Jancavie Tt TR TR e T T Tt T e Wt T T Y LT T T
d w od v o2 ""“"v N . I - . . R - - - . - - - L . . . K -

235

2) A set of lists. One list for sach equivalence class. Each

lists contain all the elements of its class.

3) A table that tells the size of each equivalence class.

We start with the initislization:

INITIALIZATIONS

DIMENSION M(n) ’reserve space for the array

DIMENSION SIZEOF{(n) ’"there are n elements that we

*have to remember sizes for

DIMENSION POINTERS(n) °*The vector of arrows

FOR i=1 TOn ’Initialize the entire table so that...
M(n) <=~ n ’..the canonical name for each
*singleton equivalence class is the

'name of the singleton

POINTERS (i) <~= i ’Each element starts out

*pointing at itsels

S8I1ZEOF (i) <==- 1 *All classes start out
‘as size 1§

NEXT i




¢ aPaE Ao e it as i i SN .
DR SN .

................

236

RVEY S IRV

'y

Next we define the FIND function, which is actually
identical to FIND!.

i AR
-~

LY
a

FIND3 (x)

RETURNS (M(x)) ‘’return the x’th entry in the table

- Ty AR
_-;‘;'.", KA R R PPN

Finally we come to the UNION operator. Basically what

we will do in this function is identical to what UNION1 did, in

l! . that all entries in the table M(#) that need to be updated will
by
3

be changed. Instead of searching the table to find out which

entries should change, the circular lists will provide the
names of all the elements that are in a given equivalence
class. As the final speedup, we will select which of the two
equivalence classes (aof the parameters to UNION) has the fewest
entries in M(»#) to change. By making this selection of which
equi valence class should have its name changed, we are able to

achieve the O(log n) time bound for UNION3(x,y).

UNION3 (x,Yy)

X <-= FIND3(x) ’First get the true canonical

Y {~= FIND3(y) ’names of the parameters

------------------------------------------ S e e i e e




v — vy —— o T N T T T TN N TR vy ey v
q. PrT— ha o aag Pt S e S S St Snaith - e e N RO - T R . -
. .'..' -- '''''''''''''''''''' - . -

237
N Now make sure that X refers to the smaller class
IF SIZEOF(X) > SIZEOF(Y) 'and if its not...

THEN t ’ thlﬂ. o e

TEMP <-- X *Switch them

X ==Y
; Y<{— X
a. "Now run through all the elements of this smaller class

CHANGE <~- X ’The first element to change is X

FOR i=1 to SIZEOF(X) ’We even know how many changes
'to make
M(CHANGE) <~- Y ’'Bive this element the same
‘name as the other class
CHANGE <-- POINTERS(CHANGE) ’Use the pointers
to get to the next element in

‘the list
NEXT i ‘’repeat till done

’Now we update the size data

SIZEOF(X) <-- SIZEDF(X)+SIZEOF(Y) ’Add the sizes of the two

classes, to get the size of the new one

‘Lastly we must update the list of what’s in the X Class
TEMP <-- POINTERS(Y) ’remember what Y used to point to...

POINTERS(Y) <-- POINTERS(X) * point Y at what X used

1

tat ST . . . . St e e e - - -
et et e gt gt T o Atdentcdeacbalioch obadato Aadada ol adasala e dadia




- i ntad Ml el St NN 4

4 238

to point at...

' POINTERS(X) <~— TEMP ’'and point X at what Y used to point at.
-

RETURN ’"That’s it

To obtain the computational complexity bound, we

consider how many times the entry in M for a given node can
change. The key point to notice is that every time an entry of
M (say Mi(x)) changes, we know that the size of the equivalence
class that x becomes a part of is at least twice as large as
its old equivalence class. Hence no entry in M may change more
than log(n) times. Since there are n elements, in the course of
n—=1 union operations no more than O(n(lo§ n)) changes may be
entries of M. In the above procedure, the only statements that
might be executed more than n—-1 times (once per union) are the
statements including the place where M() is changed. With the
above bound on the number of times that these statements can
execute, we have the desired total bound of O(log n) work per

union (averaged over n-1 unions)

. For further reading on more advanced algorithms, the
reader is referred to the paper by Tarjan [22] in which the
analysis of a nearly linear (almost 0(1) UNION and FIND) set

union algorithm algorithm is presented.

Aalafiadatedal AL_-A""'-_:L_AJ

Y I R UL T PO, S - P it e Bt S s o B e




=, 1
It
.n
L

a

REFERENCES

1 Alon Atai, Richard Lipton, Christos Papadimitriocu, M.
Rodeh, Covering Graphs by Simple Circuits, MIT Laboratory

for Computer Science TM-1355, February 1980,

N

Paul Baran, On Distributed Communications Networks, I1EEE

Trans. on Communications (CS-12).

“

Dimitri Beritsekas, Dynamic Behavior of Shortest Path

Algorithms for Communication Networks, MIT Laboratory for

ACE : § RCRCRTMARAS

) Information and Decision Systems Report, LIDS-TH-1003, June
5
- 198Q
¢ : 4 J Clausen. L. A. Hansen, "Finding } edge-disjoint spanning
F o trees aof minimum total weight in a network: An apglication
x of matroid theorvy," Math. Prcg. Study 13 (198Q),
DD-BB-IOI-

S S. M. Chase, An Implemented Graph Algorithm for winning
Shannon Switching Games, Communications of the ACM 15

é Jack Edmonds. Edge Disjoint Branchings. Combinatorial

Algorithms, Edited by R, Rustin.

7 Jack Edmonds, "Minimum partition of a3 matroid into




240

independent subsets," Jourmal of Research of the Nation

ﬁ Bureau of Standards &69B ( 1945)

8 Jack Edmonds, Maximum Matching and a Polyhedron With 0,
- i-vertices, Journal of Research of the National Bureau of
Standards-B. Mathematics and Mathematical Physics, Vol.

69B, Nos. 1 and 2, January=-June 1965.

9 Shimon Even, R. Tarjan, A Combinatorial Problem Which Is
complete on Polynomial Space, Journal of the A.C.M., Vol.

23, NO, 4, October 1976, pp.710-719,

10 Steven 6. Finn, Resynch Procedures and a Fail-Safe Network
Protocol, lEEE Transactions on Communications, Vol. COM-27,

No.6, June 1979

11 Daniel Friedman, Communications Complexity of Distributed

Shortest Path Algorithms, MIT thesis, December 1978,

Department of Electrical Engineering and Computer Science.

12 R. G Gallager, P. A. Humblet, P. M. Spira, A Distrit

Algorithm for Minimum-Weight Spanning Trees, ACM Trans. or.

-

=
=
5o
e
s
L
t.' -

T
i

. Programming Languages and Systems, Vol. 35, No. 1, January

1983, pp 66-77

13 T.Kameda, On Maximally Distant Spanning Trees of a Graph,

Dy

Tv,r_,.
R &40 T 7
T ‘
: oL
i@

Computing 17, pp. 115-119, (1976).

B St P R Yl s~
el
. L% 0, O

................ . o "
................... R . W U P o0 PP O —

frw
)

L]

1]

1

,
I

3

»

}
»

!

»

¥ .
|

]
Jo
b,
]
b,
X
4

9
X
b

p

J



e

p

7

« b

Iz e k] ]
P

241

14 7. Kameda, S. Toida, Efficient Algorithms For Determining

15

16

17

18

19

20

21

A e a e A 'mle &l

An Extremal of a Graph, 14th Annual Symposium on Switch and

Automata THeory, pp. 12-15, (1973).

Genya Kishi, Yoji Kajantani, Maximally Distant Trees and
Principal Partition of a Linear Graph, lEEE Transactions on
Circuit Theory, Vol. CT=-16, NO. 3, August 19469, pp.

323-330.

E. L. Lawler, Combinatorial Optimization: Networks and

Matroids, Holt, Rinehart, and Winston, New York, 1974

Laszle Lovasz, On Two Minimax Theorems on Graph, Journal of

Combinatorial Theory (B) 21, 96-103, (19764).

K. Maruyama, G. Markowsky, On the Generation of Explicit

Raouting Tables, IBM.

James Roskind, Robert E. Tarjan, A Note On Finding

Minimum~Cost Edge~Disjoint Spanning Trees, To be published.
Mischa Schwartz, Thomas Stern, ROuting Technigues In
Computer Communication Networks, IEEE Transactions on

Communications, Vol. Com-28, No. 4, pp 539-552, April 1980Q.

Yossi Shiloach, Edge-Disjoint Branchings in Directed




22

24

T YT W v W, N =~ =

242

Multigraphs, Information Processing Letters, Vol. 8, No. 1,

pp. 24-27, January 1979.

Robert Tarjan, A Good Algorithm for Edge-Disjoint
Branching, Information Processing Letters, Vol. 3, No. 2,

pp. 51-53, November 1974,

Robert Tarjan, Finding Edge Disjoint Spanning Trees, 8th
Hawaii International conference on Systems Sciences, pp.

251-252, January 197%5.
Christos H. Papadimitriou, Kenneth Striglitz, Combinatorial

Optimization: Algorithms and Complexity, Prentice Hall,

(1982)

RPN P PGPV IEr I WP S0, W WS WA Yy DRI 1 St POk PPy Vo R S S




. g v'l.‘» p g
. a..wj..af\a.ﬁvﬂ,

o




