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In Search of the Components of Task

Induced Judgment Decrements

Betty S. Golduberry

Abstract

Hammond's Cognitive Continuum Theory (Hammond 1980posits that three

major categories of task features (content, structure, and presentation)

determine how "analyticallyO or Vintuitively" the individual will process

information in arriving at a judgment. The state of the art does not permit a

direct test of this basic assumption. oHvoo er, Jome of its implications can be

examined by manipulating the task features systematically and observing the

effects upon both judgmental products and processes. This was the main purpose

of the two experiments presented in this report.

The task format used in these experiments involved judging the suitability of

hypothetical job applicants for various positions. An optimal model was

available for integrating the predictive information so that actual selection

outcomes (success, failure) could be simulated. Comparison of outcomes derived

from human judgment with those derived from the optimal model provided an index

of "product" quality; policy capturing techniques provided an index for

t"process" evaluation.

One content variable, the quantity of predictive information to be

integrated, and one structural variable, the availability of an explicit

integrative strategy, were, combined factorially in a mixed design in experiment

1. The structural variable, availability, was manipulated more precisely (four

levels of precision) together with a presentation variable, time permitted for

judgment, in a similar mixed design in experiment 2. Key results indicated

IWi..
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that (a) human judgments were more accurate, relative to a theoretical optimum,

when fewer than four items are to be integrated; (b) the decline in accuracy

*with quantity was reflected in process measures; (c) availability of an ideal

weighting strategy did little to ameliorate the quantity effect--people do as

well with a simple ordinal approach; (d) accuracy declined as a function of

time pressure; (e) the four strategies reduced to two in actual use by the

subjects, an equal-weighting and an ordinal-weighting policy; and (f) the

superiority of the ordinal policy declined with time pressure. These results

support various predictions from the Cognitive Continuum Theory and identify,

for further exploration, a range of task conditions at the transition from

primarily "intuition-inducing" to primarily "analysis-inducing."

I. • , .-
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INTRODUCTION

A common, critical, and rather intensively studied aspect of human

decision making is diagnosis (or inference) based on equivocal evidence (Payne,

1982). How (and how well) people carry out this function is a central issue

in the design of decision systems, ranging from personnel selection (Roose &

Doherty, 1976) to medical diagnosis (Nystedt & Magnusson, 1975) to a host of

military applications (Brady & Rappoport, 1973). If, as has been shown

repeatedly, man's "intuitive" capability for using evidence is limited, it

stands to reason that some form of "aiding" might help him produce judgments of

consistently higher quality. And, indeed, a variety of aids such as

"bootstrapping," Bayesian aggregation programs and the like have already

appeared in operational systems (Slovic & Lichtenstein, 1971).

From a practical standpoint, of course, decision aiding is not without

drawbacks. In some situations, for example, it is simply infeasible (e.g., the

exigencies of battle often make timely access to a machine capability

impossible). In others, it may be unnecessary (e.g., if the improvement in

decision quality is not enough to justify the cost). And, even when it could

be of value, users often mistrust machine aiding -- particularly if the

resulting diagnosis is inconsistent with their own intuition. Add to these

problems the growing suspicion that the case against human diagnostic

capability may have been overstated (see, for example, Einhorn & Hogarth,

1981), and it becomes clear that the whole concept requires some rethinking.

Aiding can obviously be of significant practical value; the question is, under

what circumstances?

Several recent trends in decision research bear upon this issue. One is

the redirection of attention from human deficiencies to task influences.

People are neither purely "heuristic" processors of diagnostic evidence nor

A.W
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optimal rule-followers. How they function depends to a great extent upon task

features and, perhaps, upon individual differences as well (Payne, 1980).

Therefore, it becomes important to consider how man's cognitive approach varies

with identifiable task dimensions, and several current lines of research

(including the present one) have been addressing this question.

Another trend, which is just now in its formative stages, is the blending

of normative and descriptive approaches in the study of inference. For years

the predominant emphasis was normative and axiomatic -- exploring human

performance in terms of optimal models. Then it shifted to the descriptive and

empirical -- cataloging the various forms of "heuristic" processing and their

attendant biases (Slovic, et al., 1977). Each emphasis carried with it a

different set of methods and issues. However, if one accepts the premise that

situational features can dictate how the unaided human will approach a decision

task and recognizes the obvious fact that some strategies will produce more

favorable results than others, it becomes clear that description and

prescription should proceed together. For example, it is useful to know

that decision makers (DM's) attach certain weights to specific items of

evidence in judging the qualifications of job candidates or in estimating the

likelihood of enemy attack. However, these subjective weights take on far more

practical significance when viewed against a theoretical optimum (i.e., the

weights that produce the best prediction). Only then can we establish the

practical importance of whatever "human intuition" adds to or subtracts

from the decision process. Only then can we begin to define the circumstances

under which "biases" become sufficient to warrant decision aiding; but only if

we have the descriptive data can we speculate on how best to implement aiding.

The present research was carried out in accordance with both of the above

trends. Its purpose was to identify ranges along several generic task

..*._'
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dimensions within which the cognitive strategies (or decisions processes) used

by DK's appear to shift and, at the same time, to establish the importance of

such shifts for the decision product (i.e., the accuracy of decisions).

The general framework upon which both task manipulations and expected cognitive

influences were based was the Cognitive Continuum Theory (Hammond, 1980). In

this view, DM approaches decision tasks intuitively (as in heuristic

processing), analytically (as in rule-based processing), or at some

intermediate point on a continuum joining these two extremes (i.e., "bounded

rationality"). Where on this cognitive continuum he tends to operate depends

on several principal dimensions of the task: (a) ambiguity of task content, (b)

complexity of structure, and (c) form of task presentation. Highly complex,

ambiguous, and time-constrained tasks, for example, promote intuitive

processing, particularly if DM is not armed with the knowledge of optimal

strategies or principles of task organization. On the other hand, simpler

tasks (ones in which organization is clear, strategies are defined, and time

pressure is minimal) tend to encourage the analytic mode. The specific

task features that are presumed to define these three dimensions are reproduced

in Table 1.

Since there is no convenient way to determine a priori exactly where on

the continuum construct any set of task conditions should lie, it is difficult

to submit the theory to rigorous test. Nonetheless, as a means of organizing

the existing facts on human judgment and of suggesting promising research

directions, the Cognitive Continuum Theory appears to have considerable merit.

In particular, it suggests that manipulation of the decision task along

specified dimensions (singly or in combination) should produce systematic

changes in the judgment process and, as a result, changes in the decision

product as well. Rarely in past research on judgment or decision making has

* - - -



6

systematic change of this sort been examined within the context of the same

basic task scenario. More typically, specific issues have been addressed using

custom-made laboratory task. -- ones designed to focus on judgmental

heuristics, deviations from Bayes rule, nonoptimal choice, logical problem

solving, and so on, By contrast, the Cognitive Continuum Theory encourages

exploration of dimensions that cut across such task domains: from clearly

defined to ill defined situations; from simple to complex structures; from

time-stressed to more relaxed settings. Thus, it offers a coherent way of

approaching the question raised at the outset: When do conditions warrant some

form of aiding (and what judgmental processes are the most likely candidates

for help)?

The present research involved manipulation of task variables from each of

the major continuum-theory categories (see Table 1) and measurement of both the

judgmental products of those manipulations and the processes by which the

judgments were reached. The object was to determine how the accuracy and

nature of a common type of judgment (cue-based prediction) change as conditions

shift from a more "intuitive" to a more "analytic" position on the task

continuum. At what point does unaided performance become seriously impaired,

and when that happens, can the impairment be attributed to any particular

aspect of the judgment process?

Two experiments were conducted, both using the same basic prediction task

but differing in the particular combination of features manipulated. In the

first, the quantity of predictive information (number of cues) and the

availability of an explicit organizing strategy (scheme for weighting the

cues) were varied; in the second, the complexity of the explicit strategy

and the time available for using it were investigated. In both studies,

performance was evaluated on the basis of how closely judgments approximated an
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optimal organizing strategy. One measure, hit rate, was simply the

percentage of occasions on which DM's prediction was the same as that produced

by the optimal strategy. Another, achievement, was defined as the

* correlation between DM's judgments and those produced by the optimal strategy.

To examine the judgmental processes responsible for hit rate and

achievement scores, it was necessary to compute three additional correlations.

Although these require a bit of explanation, which is properly reserved for the

next sections, suffice it to say here that they were indices of DM's

reliability in judgment, his demonstrated understanding or knowle. c of

the proper organizing rule, and his demonstrated ability to put is knowledge

to use (or to control his judgments in a manner consistent with t rule).

In other words, task conditions were manipulated so as to place ' sing

demands on the unaided human DM -- demands which, at some point, would produce

degraded performance (hit rate and achievement). By tracking

reliability, knowlege and control as well as performance over these

same conditions, it was hoped that the processes responsible for the decline

could be estimated.

METHOD

Basic Task. The judgment task was chosen on the basis of its common

usage in "policy capturing" research, and the likelihood that it would be

meaningful for a wide variety of potential subjects. It consisted of

evaluating the suitability of hypothetical applicants for a secretarial

position using profiles of scores on nine-point skill ratings as predictors (or

"cues"). In particular, subjects were required to integrate the profile

information into a single suitability rating for each applicant by

marking a nine-point graphic rating scale.
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The target secretarial position wasn described in detail in a written job

description. The profiles were constructed by random selection of ratings from

normal disributions along each of the orthogonal skill dimensions. Both the

* normality and independence features were explained to the subjects (so that

they would not be misled into searching for nonexistent profile structures).

j Although the information available for making suitability judgments varied with

experimental conditions, subjects were required to do all calculations or other

operations on the presented data mentally.

The key task manipulations were implemented by varying the number of skill

ratings in each profile (the quantity variable), the time allowed for

each evaluation, the presence or absence in the instructions of a specific rule

for combining the skill ratings (the availability variable), and the

complexity of that integrating rule. Quantity and availability

were varied in the first experiment; time and complexity in the second.

Procedure and Measures. Each subject served for three 45 minute

sessions scheduled approximately one week apart. At the beginning of each

session, written instructions were presented descrihing the secretarial

position, the employer company, the assessment procedure, and whtever strategy

information was called for by the experimental condition. To insure full

understanding, these instructions were augmented as necessary through verbal

exchange. Following the instructions, a booklet was presented containing the

90 applicant profiles to be rated during that session (10 practice and 80

experimental profiles arranged one to a page), and the subject simply worked

his or her way through the pages at a controlled pace, rating the suitability

of each profile in order. After all judgments were completed, a queszionnaire

was administered probing the manner in which the subject perceived and

approached the task.
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As indicated earlier, profiles were constructed by orthogonal combination

of ratings drawn from three, four, or five skill (cue) dimensions. These

dimensions are identified in Table 2 together with an indication of which ones

were used in the various conditions of the two experiments. In Exp.l, number

*of cues was an independent variable; hence, only those with an assigned weight4
were included in each specified condition (e.g., typing skill,

language proficiency and clerical skill for the three-cue

condition). In Exp. 2, the four dimensions designated by asterisks were used

throughout.

In both studies, the subject's overall suitability ratings for the

various profiles served as the basis for two sets of derived measures: product

measures (hit rate and achievement), which indicated how closely performance

approximated an optimuum weighting strategy; and process measures

(reliability, knowledge, and control), which examined the cognitive

elements underlying that performance. Computation of product measures requires

definition of an optimal model relating cues (skill dimensions) to criteria.

In other words, an "ecological validity" relationship must exist before one can

study the human's proficiency in dealing with it. The model adopted in the

present case was the standard linear regression approach commonly used in

41 multiple-cue probability learning research. The weights assigned to the.1
various cues in Exp. 1, for example, are shown in Table 2; those used in Exp. 2

are described in Table 4. Hit rate, then, was simply the proportion of

a subject's suitability Judgments that fell within a specified tolerance

interval around the value generated by the optimal weighting rule.

Achievement was the correlation between the subject's and the model's

ratings.

_ _ . .. ....



10

The process measures require a bit more explanation. Reliability

refers simply to the subject's consistency in judgment and was indexed by the

correlation between ratings made for the same sets of profiles early and late

in each session. Knowledge, or the subject's understanding of the optimal

rule, was indexed by the correlation between the optimal ratings and those

produced by a model of the subject's "policy." The latter. of course, was

derived from the subject's actual rating behavior through the use of linear

regression to "capture" his (implicit) weighting rule (Dawes & Corrigan, 1974;

Goldberg, 1974). Control was indexed by the correlation between judgments

predicted on the basis of this "captured policy" and those actually produced

by the subject in his profile ratings.

The distinction among these measures and the logic on which they are

founded are perhaps best illustrated with reference to their original source:

the Brunswik lens model (Brunswik, 1956; Hammond & Summers, 1972). As shown in

Figure 1, Tucker (1964) suggested that the relationship (r a) between judgments

(YS) and criterion measures (Yet or the actual outcome of the events judged)

can be partitioned into several statistically independent components reflecting

respectively: (a) the subject's acquired knowledge of specific task properties,

(b) his cognitive control in applying this knowledge, and (c) the degree of

predictability in the task system. Tucker's complete equation reads as follows:

ra a GRS Re + C / l-Rs/ Re 2

where

r a = the correlation between correct (Ye and observed (Y )Judgments;

G - the correlation between the linear prediction of the correct

judgment (Ye and the linear prediction of the subject's judgment

(Yfrom the cue values;



R s a the multiple correlation between the cues and the subject's

judgments (Ys), which is also the correlation between the subject's

Judgments (Ys) and the linear predictions of the subject's Judgments

(is);

Re a the predictability of the criterion (Ye) from the cues in the task

(which is also the correlation between the actual correct judgments

(Ye) and the predicted correct (Ye) Judgments);

C - the correlation between the variance in the task system and the

subject's judgmental system which is unaccounted for by G.

In the present case, this equation can be simplified to:

ra = GRS

since specification of an optimal organizing (weighting) strategy makes the

criterion perfectly predictable from the cue values (i.e., Re - 1.00), and the

optimal strategy is linear (eliminating the need for the right-hand side of

equation 1). Now, thus simplified, Tucker's equation renders the distinctions

among measures used in the present experiments apparent. The ra term

represents achievement which, as we saw, can be decomposed into the two

"process" indices: knowledge (G) and control (R. ). In words, a DM's

judgments are accurate (achievement) to the extent that they correspond to

the "true suitability" of the hypothetical secretarial applicants as dictated

by our optimal model (e.g., Table 2). He can only be accurate if he

understands this rule (knowledge) and is able to apply it (control)

with consistency (reliability). By having indices of these three

processes, we are in a position to probe the influence of the task conditions

suggested by the Cognitive Continuum Theory.

='
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EXPERIMENT I

As indicated earlier, a task content variable. cue quantity, and a

structure variable, rule availability, were manipulated in factorial

combination. The purpose was to Induce systematic shifts in performance which

could then be analyzed using the process measures.

Subjects and design. Twenty-four undergraduate psychology students

participated in exchange for extra course credit. Each was assigned at random

to one of two groups defined on the basis of rule availability. The

weighting group was provided with the specific numerical strategy used to

generate the "optimum" ratings: the regression weights shown in Table 2 plus a

description of how such weights should be used in making judgments (the linear

weighting rule). The order group was told only that the cues were ordered

in importance for the job of secretary as indicated in parentheses in Table 2.

The quantity variable was manipulated within subjects at three levels: 3.

4, or 5 cues as shown in Table 2. Thus the design was a mixed model 2 x 3

factorial with 12 subjects per group.

Results. The principal findings for all measures are summarized in

Table 3. Hit rate scores are based on a definition of accuracy in terms of

a .2 cm tolerance interval around the optimal point on the graphic rating

scale. All the other measures are in terms of correlations as defined earlier.

*1 Considering first the overall (product) measures, both show the expected

decline in performance as a function of the quantity of Information to be

processed (number of cues). However, the availability of an optimal strategy

for weighting the cues (Group I vs. Group II) produced no apparent improvement

over the simple ordinal instructions. These obvious trends were supported by

an analysis of variance: quantity was highly significant for both hit rate

and achievement, F(2,44) - 18.69 and 47.20 respectively, both p < .001;

neither availability nor its interaction with quantity approached
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significance on either index, F(1,22) was less than .35 in all cases.

Since the same pattern of significance occurred on the process measures as

weil, all were collapsed across groups as shown at the bottom of Table 3; these

results are presented graphically in Figure 2.

One important difference between the two product performance measures is

the shape of the decrement over information quantity (see Figure 2).

Achievement (Ach) scores declined linearly over all three levels while

hit rate (HR) dropped only between the 3-cue and 4-cue levels. This

pattern was supported by the Newman-Keuls test applied to pairs of conditions:

the 3-4 cue difference was reliable for both measures (p < .01); the 4-5 cue

difference was reliable for Ach (p - .01) but not for HR.

Turning to the process measures, it is apparent that knowledge (G) and

control (C) were, in fact, the principal components in the overall Ach score. A

multiple regression analysis showed that G explained 35% of the variance in

Ach, C accounted for an additional 48%, and reliability (R) added less than IZ

(a nonsignificant increment). The G component also contributed significantly

to the overall hit rate (HR) score, accounting for 31% of the variance; the

contribution of C, however, dropped to 7%, and that of Rt was again

nonsignificant (at .4%). Looking at Fig. 2, it is easy to see how well GxC (the

product of G and C) predicts the Ach function. One cannot, of course, "read"

directly the relative contributions made by the components to the explained HR

or Ach variance.

The data for each process measure were analyzed separately in the ese

fashion as for the product scores. Again, the ANOVA results showed a

significant quantity effect for all measuresa: F(2,44) - 13.01 for C,

57.66 for G, and 6.67 for R ; p < .001, .001, and .003 respectively. Neither

availability nor its interaction with information quantity was significant

* 4~' - -- * .A
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on any index: F(1,22)- 1.31, p < .265 for G; F * (1,22) 1.20, p <.286

for C; E(1,22) - 1.57, p < .457 for R. The Newman-Keuls analyses suggested

that the 3-4 cue differences were reliable for all three indices (p < .01), but

the 4-5 cue difference was limited to the G component (p < .05).

Despite the fact that R was also affected significantly by the quantity

manipulation, the effect was not as systematic as in the case of the other

process measures: for Group I, the 4-cue condition was inferior to the others;

for Group II, the 5-cue condition was uniquely inferior. Since, as we have

seen, this component accounted independently for very little variance in either

product measure, it was not considered worthy of further interpretation. It is

not surprising, of course, that R should add little unique predictiveness; in

essence, both it and C should index Dl's ability to apply his own weighting

rule consistently.

Briefly, then, it appears that DM's ability to make integrative

judgments declines as the number of cues increases, largely because he is less

proficient at formulating an effective weighting policy (knowledge). Lack of a

good strategy, of course, precludes maximum achievement. In addition, Ach

appears to suffer from DM's inability to apply his own weighting strategy

consistently (control). As one might expect, HR is not as predictable from

cognitive process measures as is Ach; in fact the simple correlations between

the two product measures only averaged r - .48. However, what predictability

there is for HR rests almost entirely with the G component.

The fact that availability of an optimal weighting strategy did little to

offset the decline in performance with information load is not surprising; if

the detailed strategic information merely adds to an already heavy processing

load, one would scarcely expect it to be of much help. At the lower

information levels, however, one would expect some benefit. Absence of an

. . ' .I .



availability effect here could reflect either a ceiling limitation (an

achievement score of around .90 may leave little room for improvement) or

possibly a tendency for DM to reduce the metric weighting scheme to a simpler

ordinal one (in which came the strategy would be identical to that for the

"unavailable" condition). In view of this ambiguity, the rule availability

manipulation was repeated -- and expanded -- in Exp. 2.

EXPERIMENT 2

In this study a task presentation variable (response time limitation)

was examined in conjunction with a strategy manipulation. Here, however, a

wider range of available weighting rules was used: the simplest (Note 1)

consisted of four equal weights; the most complex (4), of four

different weights. One rule (3) was identical to the 4-cue condition of

Exp. 1. The expectation was that the more complex weighting schemes would

encourage analytic processing, particularly under a liberal time limitation.

However, with increasing time pressure, DH would be forced into a more

intuitive mode and overall performance (hit rate, achievement) should suffer.

As in Exp. 1, the plan was to examine the elements of any such overall decline

using knowledge (G), control (C), and reliability (R) measures.

Subjects and Design. The 48 undergraduate volunteers were assigned

randomly to four groups, each of which served under one of the weighting rules

shown in Table 4. Each subject Judged the same 80 applicant profiles under

three different time limits (5, 10. and 15 seconds) with order of treatment

balanced over subjects within each group. Order of profiles within each

condition was randomized. Thus, the design was identical to that used in Exp.

1 except that the between-subjects variable (weighting rule) was manipulated

over four rather than two levels.

Results. The principal findings are summarized in Table 5. For the

-, ,".- ' .
-



16

overall (product) measures, performance declined with both time

limitation and weilghting strategy complexity (if equal weighting of

cues is considered the simplest rule). Both of these main effects were highly

significant. In the case of the weighting strategy variable, the

E(3,43) a 9.68, p < .001 for HR, and 6.23, p < .001 for Ach; for time

limitation, the respective values were F(2,86) - 11.98 and 15.40, both

p < .001. Despite the fact that the time limitation function appears steeper

under the two simpler conditions (Groups I and II) than under the more complex

ones (Groups III and IV), the interaction did not approach significance on

eithcer measure: F(6,86) a 1.15, p < .34 for KR; 1.45, p <.20 for Ach.

These functions are illustrated in Figure 3 (HR) and 4 (Ach) for the various

strategy groups, and collapsed across groups in Figure 5.

Looking at Figure 3 and 4, it is apparent that the critical complexity

level is the point at which either more or fewer than half the cues are to be

weighed equally: the 3 and 4 cue levels produced similar performance that was

generally superior to the 0 and 2 cue levels on both HR and Ach. Figure 5

shows that the time limitation was considerably more detrimental to HR than to

Ach, particularly when fewer than 10 seconds was permitted. Overall, the

correlation between HR and Ach scores was somewhat higher (r -.62) than in Exp.

1 (r -.48).

The G and C components again accounted for most of the variance in Ach

(93Z) and a significant, though considerably smaller, portion of that for HR

(43%); while R added a nonsignificant 2% and 3%, respectively. Figure 4 shows

that GxC (the product of G and C) again yielded almost perfect prediction of

Ach in that the two lines on the figure coincide. While the pattern of

variance in the two product measures explained by these components was not

identical to that for Exp. 1, it was generally quite similar. That is, G

1 1-717
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accounted for more of the HR variance, and C for more of the Ach variance

(although both C and G plum their interaction contributed heavily to Ach), and

these tendencies were greatest under the shortest time limitation (5 seconds).

Unlike Experiment 1, however, C was the clearly dominant factor in both HR and

Ach for the 15 second condition (it accounted for about five times the

variance that G did on both measures).

The separate ANOVA's applied to the process scores indicated that time

limitation had a significant effect on all three measures:

F(2,86)-22.02 for C, 7.56 for G, and 8.99 for R; all p < .001.

Strategy Complexity produced a reliable effect on two measures:

F(3,43)-3.88, p <.015 for C; 14.37, p <.001 for G but only 2.32, p <.088

for R. More noteworthy than the main effects, however, was a significant

interaction between the two variables for the C index, F(6,86)-2.57, p <

.024. Looking at Table 5, it is clear that the interaction reflects an

exaggeration of the time limitation effect under the presumably simplest

equal-weighting condition. What this suggests is that the equal weighting rule

can be applied very effectively if there is sufficient time; if not, the C

index drops to a level below that for the "complex" unequal weighting rule.

Neither the G nor the R measures showed an interaction between time limitation

and strategy: F(6,86)-1.38 and 1.48 respectively, p < .20.

It is of some interest to compare the results for Group Iri under the 10

second condition (see Table 5) with those for Group II under the 4 cue

condition in Exp. I (see Table 3) since they were, for all practical purposes,

the same. The pattern across the various measures was quite similar; however,

the absolute level of performance was uniformly higher in the present study.

The only plausible explanation is that processing a fixed number of cues--even
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with variable time constraints--is less confusing than having to integrate a

variable number of cues.

Comparing the principal ways of varying task difficulty in the two studies

(number of cues to be integrated vs. time in which to integrate them),

it would appear that number tends to have a greater effect on the G component,

and time, on the C component. That is, increasing the number of cues to be

processed makes it harder for DM to formulate an appropriate strategy; reducing

the time available makes it harder to apply his strategy consistently.

DISCUSSION

The research plan was to manipulate task variables in a manner designed to

induce performance decrements and, by indexing concurrent changes in judgment

processes, to identify the major components of those decrements. It was hoped

that the information yielded by this approach would have implications for

"decision aiding" in one common type of judgment task.

As expected, both increasing the amount of information to be processed

(from 3-5 cues) and decreasing the available time (from 15-5 seconds per

judgment) reduced the overall accuracy of DM's judgments (HR and Ach). Making

the judgment rule more complex (unequal weights assigned to more than half the

cues) also significantly reduced accuracy. Making it less explicit

(ordering rather than weilhting the importance of cues) had no effect,

possibly because rank ordering is as precise as the human judge can be in this

task. In any case, the two experiments provided ample opportunity for the study

of induced decrements in judgment accuracy.

Two principal aspects of judgment were of interest: how closely DM's

cue-weighting policy corresponded to the optimal rule (knowledge or G), and how

consistently he was able to apply his own policy in making judgments (control

or C). The latter concept was also indexed using a third measure (R), but

. ... - .
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since it turned out to be largely redundant with the other two, it will not be

discussed further.

The main finding with respect to these "process" measures was that

different means of inducing decrements do, in fact, seen to operate through

somewhat different cognitive mechanisms. In particular, adding to the

information load (cues to be integrated) affects DM's ability to formulate an

appropriate weighting strategy, even though the necessary information is

provided explicitly. This is what one would expect if, in the language of

Hammond's Cognitive Continuum Theory, the judge were to rely on an

intuitive processing mode: "knowing" the proper rule does little to help

him make better intuitive judgments because he is forced to use a simpler

strategy. On the other hand, reducing the time available and/or increasing tkre

complexity of the weighting rule seems to have a greater impact on the

application than on the formulation of a proper weighting policy. Performance

breaks down because DM has difficulty carrying out his own preferred strategy

with any consistency. Over a large number of judgments, he may accord each cue

its proper weight, but in a particular instance, he simply has trouble

integrating the various cue values. Again, in Hammond's terminology, it is as

4 though he were operating in a proper analytic mode, but was unable to do

all the required mental calculations in the time allowed.

The above account is, of course, an oversimplification of the

results--both G and C components were involved to an extent in most of the

induced decrements. Furthermore, for reasons that are not entirely clear,

performance was somewhat higher overall in Exp. 2 than in Exp. 1--even on

identical conditions; hence direct comparison. between studies must be viewed

cautiously. Nevertheless, the fact that different patterns of results emerged

from the two studies, and they quite possibly represent different kinds of

4A -"--
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1. Table I suggests that an equal weighting rule is simpler cognitively

than an unequal one, although evidence for this assumption io sparse.

2. The G x C index is a predicted achievement score based on the product

of obtained G and C scores.
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processing deficits (albeit produced within the same basic task framework). is

an encouraging finding. Future experimentation should, among other things,t seek to replicate the time and quantity functions in factoral combination

within the same study.

Should the present findings hold up under replication, it would suggest

that system designers should focus on different aiding concepts depending upon

how a particular task "srsss the DM. For example, if he must deal with a

large number of predictive items, some form of "divide and conquer" strategy

might be most appropriate (to minimize the loss from "intuitive"

simplification). If, on the other hand, time pressure is the main task demand,

"bootstrapping" might be preferable.

The idea of tailor-making aiding concepts to generic task forms

(diagnosis, action selection, etc.) is not, of course, new. What is suggested

here, however, is that different concepts might be implemented within the

same basic task scenario depending upon which features are most

troublesome. As the nature of the deficits produced by specific task

dimensions becomes more clearly established, the plausibility of this approach

to aiding can be subjected to more rigorous test.
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Footnotes

1. Table I suggests that an equal weighting rule is simpler cognitively

than an unequal one, although evidence for this assumption is sparse.

2. The G x C index is a predicted achievement score based on the product

of obtained G and C scores.
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Reference Notes

Hamond, K. R. The integration of research in judgment and decision

theory (Report No. CRJP 226). Boulder, Colorado: University of Colorado,

July, 1980.
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Table I

Complexity of Task Structure

Inducing Intuition Inducing Analysis
1.Texture of judgment scale 1. Texture of judgment scale

A. Many alternatives A. Few alternatives
B. Many steps to solution B. Few steps

2. Number of cues presented* 2. Number of cues presented
A. Many cues (5 or more) A. Few Cues (2-4)
B. Contemporaneously displayed B. Sequentially encountered

3. Vicarious mediation - 3. Vicarious mediation -

Intra-ecological correlations Intra-ecological correlations
large (R-.5) degree (horizontally) minimal degree (vertically)

4. Cue distribution characteristics 4. Cue distribution characteristics
A. Normal A. Peaked
B. Linear function B. Nonlinear, nonmonotonic function

5. Weights - equal" S. Weights - unequal
6. Organizing principle - linear 6. Organizing principle - nonlinear

Ambiguity of Task Content

Inducing Intuition Inducing Analysis
1. Organizing principle not available* 1. Organizing principle available
2. Task outcome not available 2. Task outcome available
3. Unfamiliar content 3. Highly familiar content
4. Feedforward 4. Feedforward

A. No training A. Prior skill
B. No information B. Information

5. Feedback - minimal 5. Feedback - cognitive feedback

Form of Task Presentation

Inducing Intuition Inducing Analysis
1. Task decomposition - a posteriori 1. Task decomposition - a priori*12. Cognitive decomposition- 2. Cognitive decomposition-

a posteriori a priori
3. Type of cue data - continuous 3. Type of cue data - dichotomous
4. Type of cue definition 4. Type of cue definition

A. Pictorial A. Pictorial
B. Subject measures cue levels B. Objective measures

S. Response time permitted or implied- 5. Response time permitted or implied-
brief" open

'Manipulated in Experiment 1.
"Manipulated in Experiment 2.

L4 A..
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Table 2

Rating Skills

Croups Typing* Language* Telephone* Business Clerical*
Skill Proficiency Usage Machine Skill

Knowledge

Metric (Ordinal) Weights used in Exp. 1.

3-cues .5(1) .3(2) .2(3)

4-cues .5(1) .2(2) .2(2) .1(3)

5-cues .3(l) .2(2) .2(2) .2(2) .1(3)

*Used in Exp. 2 as well.
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Table 3

Mean Scores Obtained under the Six Experimental
Conditions in Experiment I on All Five Measures

Measure

Product Process r)
Experimental Relis-
Condition Hit Rate(%) Ach.(r) Knowledge(G) Control(C) (GxC) bility(R)

Strategy Not Available (Group I)
3 cues 49 .93 .98 .95 .93 .92
4 cues 38 .82 .89 .92 .82 .81
5 cues 36 .75 .83 .92 .76 .88

collapsed over
quantity 41 .83 .90 .93 .84 .87

Strategy Available (Group II)
3 cues 59 .89 .97 .92 .89 .87
4 cues 39 .79 .92 .85 .78 .85
5 cues 39 .73 .85 .85 .72 .77

collapsed over
quantity 46 .80 .91 .87 .80 .83

Collapsed Over Groups
3 cues 54 .91 .97 .94 .91 .90
4 cues 39 .80 .91 .89 .81 .83
5 cues 38 .74 .84 .89 .75 .83

collapsed over
quantity 44 .82 .91 .91 .82 .85

Ja. IA.
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Table 4

Weighting Strategies - Experiment 2

Skill Ratings 4 equal 3 equal 2 equal 0 equal

Typing Speed .25 .40 .50 .40

Language Proficiency .25 .20 .20 .30

Telephone Usage .25 .20 .20 .20

Clerical Skill .25 .20 .10 .10

I

. 1• t . . . I I I I .. .



29

Table 5

Mean Scores Obtained under the Twelve Experimental

Conditions in Experiment 2 on All Five Measures

Measuresa
Product Process (r)

Experimental Relia-
Condition Hit Rate(Z Ach(r) Knowledge(G) Control(C) (GxC) bility(R)

4 Equal Wgt. Strategy (Group 1)
15 sec. 74 .94 .98 .96 .94 .94
10 sec. 71 .89 .98 .91 .89 .83
5 sec. 54 .83 .97 .85 .82 .72

collapsed over times 66 .89 .98 .91 .88 .83

3 Equal Wgt. Strategy (Group 11)
15 sec. 78 .95 .99 .96 .95 .93

10 sec. 70 .94 .98 .96 .94 .93
5 sec. 56 .91 .99 .92 .91 .86

collapsed over times 68 .93 .99 .95 .93 .91

2 Equal Wgt. Strategy (Group III)
15 sec. 49 .91 .98 .93 .91 .88
10 sec. 48 .86 .97 .89 .86 .81
5 sec. 36 .87 .96 .87 .84 .79

collapsed over times 44 .87 .97 .90 .87 .83

0 Equal Wgt. Strategy (Group IV)
15 sec. 44 .88 .98 .90 .88 .82

*10 sec. 43 .88 .95 .93 .88 .90
5 sec. 41 .84 .97 .87 .87 .83

collapsed over times 43 .88 .97 .90 .88 .85



30

ENVIRONMENT SUBJECT

Achievement

Cues

ecological cue

yevalidity I utilization Y
(criterion) 4, f (subject's response)

-X1

Re X 2 Rs
Task - -Control

Predictability 01 X 3

-i Y

(predctio (prdicton o

ofciein, -00 sujet' repne

Fprgdutio 1pedcto otnw3iosmdl

otcitro~ ujctsWspne



31

C nA c A C, CR JI C CA C C

(I

-0 zo
m a0

-9

0.~oPIu -

rr/M,/
m r/

/ *

pi -0/
(D o
'-i.' z

oA +

pi/

:I -

(-9 1 /
4A- 9



32

'47-

3 I

Is-A

"=No

'-am l t t 0Iog

f* ug - Epl~m O.lvivro n l7 Vt



3 3

c0-l maam

to 0 0 0 0 CA a a a

C,,

1.03
CL

0~

m

;4ViW
Ha3



November 1982

OFFICE OF NAVAL RESEARCH

Engineering Psychology Group

TECHNICAL REPORTS DISTRIBUTION LIST
1

OSD Deparment of the Navy

CAPT Paul R. Chatelier Tactical Development & Evaluation
Office of the Deputy Under Secretary Support Programs

of Defense Code 230
OUSDRE (E&LS) Office of Naval Research
Pentagon, Room 3D129 800 North Quincy Street
Washington, D. C. 20301 Arlington, VA 22217

Dr. Dennis Leedom Manpower, Personnel & Training
Office of the Diputy Under Secretary Programs

of Defense (C I) Code 270
Pentagon Office of Naval Research
Washington, D. C. 20301 800 North Quincy Street

Arlington, VA 22217
Department of the Navy

Mathematics Group
Engineering Psychology Group Code 411-MA
Office of Naval Research Office of Naval Research
Code 442 EP 800 North Quincy Street
Arlington, VA 22217 (2 cys.) Arlington, VA 22217

Aviation & Aerospace Technology Statistics and Probability Group
Programs Code 411-S&P

Code 210 Office of Naval Research
Office of Naval Research 800 North Quincy Street
800 North Quincy Street Arlington, VA 22217
Arlington, VA 22217

Information Sciences Division
Communication & Computer Technology Code 433

Programs Office of Naval Research
Code 240 800 North Quincy Street
Office o N:aval Research Arlington, VA 22171800 North Quincy Street
Arlington, VA 27217 CDR K. Hull

Code 230B
Physiology & Neuro Biology Programs Office of Naval Research
Code 441NB 800 North Quincy Street
Office of Naval Research Arlington, VA 22217
800 North Quincy Street
Arlington, VA 22217

a't -



November 1982

Department of the Navy Department-of the Navy

Special Assistant for Marine Corps Dr. Robert G. Smith

Matters Office of the Chief of Naval

Code 1OOM Operations, OP987H

Office of Naval Research Personnel Logistics Plans

800 North Quincy Street Washington, D. C. 20350
Arlington, VA 22217

Dr. Andrew Rechnitzer

Dr. J. Lester Office of the Chief of Naval

ONR Detachment Operations, OP 952F
495 Summer Street Naval Oceanography Division

Boston, MA 02210 Washington, D. C. 20350

Mr. R. Lawson Combat Control Systems Department

ONR Decachment Code 35
1030 East Green Street Naval Underwater Systems Center

Pasadena, CA 91106 Newport, RI 02840

CDR James Offutt, Officer-in-Charge Human Factors Department
ONR Detachment Code N-71
1030 East Green Street Naval Training Equipment Center

Pasadena, CA 91106 Orlando, FL 32813

Director Dr. Alfred F. Smode
Naval Research Laboratory Training Analysis and Evaluation
Technical Information Division Group

Code 2627 Orlando, FL 32813
Washington, D. C. 20375

CDR Norman E. Lane
Dr. Michael Melich Code N-7A

Communications Sciences Division Naval Training Equipment Center
Code 7500 Orlando, FL 32813

Naval Research Laboratory
Washington, D. C. 20375 Dr. Gary Poock

Operations Research Department

Dr. J. S. Lawson Naval Postgraduate School

Naval Electronic Systems Command Monterey, CA 93940
NELEX-06T
Washington, D. C. 20360 Dean of Research Administration

Naval Postgraduate School

Dr. Robert E. Conley Monterey, CA 93940
Office of Chief of Naval Operations
Command and Control Mr. H. Talkington
OP-094H Ocean Engineering Department
Washington, D. C. 20350 Naval Ocean Systems Center

San Diego, CA 92152
CDR Thomas Berghage
Naval Health Research Center
San Diego, CA 92152

2

- I , p . . . ,- . _



November 1982

Department of the Navy Department of the Navy

Mr. Paul Heckman Commander
Naval Ocean Systems Center Naval Air Systems Command
San Diego, CA 92152 Crew Station Design

NAVAIR 5313
Dr. Ross Pepper Washington, D. C. 20361
Naval Ocean Systems Center
Hawaii Laboratory Mr. Philip Andrews
P. 0. Box 997 Naval Sea Systems Command
Kailua, HI 96734 NAVSEA 03416

Washington, D. C. 20362

Dr. A. L. Slafkosky
Scientific Advisor Commander
Commandant of the Marine Corps Naval Electronics Systems Command
Code RD-I Human Factors Engineering Branch
Washington, D. C. 20380 Code 81323

Washington, D. C. 20360

Dr. L. Chmura
Naval Research Laboratory Larry Olmstead
Code 7592 Naval Surface Weapons Center
Computer Sciences & Systems NSWC/DL
Washington, D. C. 20375 Code N-32

Dahlgren, VA 22448
HQS, U. S. Marine Corps
ATTN: CCA40 (Major Pennell) Mr. Milon Essoglou
Washington, D. C. 20380 Naval Facilities Engineering Command

R&D Plans and Programs
Commanding Officer Code 03T
MCTSSA Hoffman Building II
Marine Corps Base Alexandria, VA 22332
Camp Pendleton, CA 92155

3Dt. Robert Biersner

Chief, C Division Naval Medical RSD Comnand
Development Center Code 44
MCDEC Naval Medical Center
Quantico, VA 22134 Bethesda, MD 20014

Human Factors Technology Administrator Dr. Arthur Bachrach
Office of Naval Technology Behavioral Sciences Department
Code MAT 0722 Naval Medical Research Institute
800 N. Quincy Street Bethesda, MD 20014
Arlington, VA 22217

Dr. George Moeller
Commander Human Factors Engineering Branch
Naval Air Systems Command Submarine Medical Research Lab
Human Factors Programs Naval Submarine Base
NAVAIR 334A Groton, CT 06340
Washington, D. C. 20361

3



November 1982

Department of the Navy Department of the Navy

Head Dean of the Academic Departments
Aerospace Psychology Department U. S. Naval Academy
Code L5 Annapolis, MD 21402
Naval Aerospace Medical Research Lab
Pensacola, Fl. 32508 Dr. S. Schiflett

Human Factors Section
Commanding Officer Systems Engineering Test
Naval Health Research Center Directorate
San Diego, CA 92152 U. S. Naval Air Test Center

Patuxent River, MD 20670
Commander, Naval Air Force,

U. S. Pacific Fleet Human Factor Engineering Branch
ATTN: Dr. James McGrath Naval Ship Research and Development
Naval Air Station, North island Center, Annapolis Division
San Diego, CA 92135 Annapolis, MD 21402

Navy Personnel Research and Dr. Harry Crisp
Development Center Code N 51

Planning & Appraisal Division Combat Systems Department
San Diego, CA 92152 Naval Surface Weapons Center

Dahlgren, VA 22448
Dr. Robert Blanchard
Navy Personnel Research and Mr. John Quirk
Development Center Naval Coastal Systems Laboratory

Command and Support Systems Code 712
San Diego, CA 92152 Panama City, FL 32401

CDR J. Funaro CDR C. Hutchins
Human Factors Engineeing Division Code 55
Naval Air Development Center Naval Postgraduate School
Warminster, PA 18974 Monterey, CA 93940

Mr. Stephen Merriman Office of the Chief of Naval
*Human Factors Engineering Division Operations (OP-115)

Naval Air Development Center Washington, D. C. 20350
Warminster, PA 18974

Professor Douglas E. Hunter
Mr. Jeffrey Grossman Defense Intelligence College
Human Factors Branch Washington, D. C. 20374
Code 3152
Naval Weapons Center Department of the Army

China Lake, CA 93555
Mr. J. Barber

Human Factors Engineering Branch HQS, Department of the Army
Code 1226 DAPE-MBR
Pacific Missile Test Center Washington, D. C. 20310

Point Mugu, CA 93042

4



November 1982

Department of the Navy Foreign Addressees

Dr. Edgar M. Johnson Dr. Kenneth Gardner
Technical Director Applied Psychology Unit
U. S. Army Research Institute Admiralty Marine Technology
5001 Eisenhower Avenue Establishment
Alexandria, VA 22333 Teddington, Middlesex TWll OLN

England
Director, Organizations and

Systems Research Laboratory Director, Human Factors Wing
U. S. Army Research Institute Defence & Civil Institute of
5001 Eisenhower Avenue Environmental Medicine
Alexandria, VA 22333 Post Office Box 2000

Downsview, Ontario M3M 3B9
Technical Director Canada
U. S. Army Human Engineering Labs
Aberdeen Proving Ground, MD 21005 Dr. A. D. Baddeley

Director, Applied Psychology Unit
Department of the Air Force Medical Research Council

15 Chaucer Road
U. S. Air Force Office of Scientific Cambridge, CB2 2EF England

Research
Life Sciences Directorate, NL Other Government Agencies
Bolling Air Force Base
Washington, D. C. 20332 Defense Technical Information Center

Cameron Station, Bldg. 5
AFHRL/LRS TDC Alexandria, VA 22314 (12 copies)
Attn: Susan Ewing
Wright-Patterson AFB, OH 45433 Dr. Craig Fields

Director, System Sciences Office
Chief, Systems Engineering Branch Defense Advanced Research Projects
Human Engineering Division Agency
USAF AMRL/HES 1400 Wilson Blvd.
Wright-Patterson AFB, OH 45433 Arlington, VA 22209

Dr. Earl Alluisi Dr. M. Montemerlo
Chief Scientist Human Factors & Simulation
AFHRL/CCN Technology, RTE-6
Brooks Air Force Base, TX 78235 NASA HQS

Washington, D. C. 20546
Foreign Addressees

Dr. J. Miller
Dr. Daniel Kahneman Florida Institute of Oceanography
University of British Columbia University of South Florida
Department of Psychology St. Petersburg, FL 33701
Vancouver, BC V6T 1W5
Canada

5

a i* il i



November 1982

Other Organizations Other Organizations

Dr. Robert R. Mackie Dr. Ralph Dusek
Human Factors Research Division Administrative Officer
Canyon Research Group Scientific Affairs Office
5775 Dawson Avenue American Psychological Association
Goleta, CA 93017 1200 17th Street, N. W.

Washington, D. C. 20036
Dr. Amos Tversky
Department of Psychology Dr. Robert T. Hennessy
Stanford University NAS - National Research Council (COHF)
Stanford, CA 94305 2101 Constitution Avenue, N. W.

Washington, D. C. 20418
Dr. H. McI. Parsons
Human Resources Research Office Dr. Amos Freedy
300 N. Washington Street Perceptronics, Inc.
Alexandria, VA 22314 6271 Variel Avenue

Woodland Hills, CA 91364
Dr. Jesse Orlansky

Institute for Defense Analyses Dr. Robert C. Williges
1801 N. Beauregard Street Department of Industrial Engineering
Alexandria, VA 22311 and OR

Virginia Polytechnic Institute and
Professor Howard Raiffa State University
Graduate School of Business 130 Whittemore Hall
Administration Blacksburg, VA 24061

Harvard University
Boston, MA 02163 Dr. Meredith P. Crawford

American Psychological Association
Dr. T. B. Sheridan Office of Educational Affairs
Department of Mechanical Engineering 1200 17th Street, N. W.
Massachusetts Institute of Technology Washington, D. C. 20036
Cambridge, MA 02139

Dr. Deborah Boehm-Davis
Dr. Arthur I. Siegel General Electric Company
Applied Psychological Services, Inc. Information Systems Programs
404 East Lancaster Street 1755 Jefferson Davis Highway
Wayne, PA 19087 Arlington, VA 22202

Dr. Paul Slovic Dr. Ward Edwards
Decision Research Director, Social Science Research
1201 Oak Street Institute
Eugene, OR 97401 University of Southern California

Los Angeles, CA 90007
Dr. Harry Snyder
Department of Industrial Engineering Dr. Robert Fox
Virginia Polytechnic Institute and Department of Psychology

State University Vanderbilt University
Blacksburg, VA 24061 Nashville, TN 37240

6

! '"tq"t- " -, ,. .. , ..... • • .. ., : .. . . -- '. ... " " ; 1 [ 1 i -A.



November 1982

Other Organizatio y Other Organizations Enierg

Dr. harls GetysDr. Babur M. Pulat

Univrsit ofOklaomaNorth Carolina A&T State University
455 West Lindsey Greensboro, NC 27411
Norman, OK 73069

Dr. Lola Lopes
Dr. Kenneth Hammond Information Sciences Division
Institute of Behavioral Science Department of Psychology
University of Colorado University of Wisconsin
Boulder, CO 80309 Madison, WI 53706

Dr. James H. Howard, Jr. Dr. A. K. Bejczy
Department of Psychology Jet Propulsion Laboratory
Catholic University California Institute of Technology
Washington, D. C. 20064 Pasadena, CA 91125

Dr. William Howell Dr. Stanley N. Roscoe
Department of Psychology New Mexico State University
Rice University Box 5095
Houston, TX 77001 Las Cruces, NM 88003

Dr. Christopher Wickens Mr. Joseph G. Wohl
Department of Psychology Alphatech, Inc.
University of Illinois 3 New England Executive Park
Urbana, IL 61801 Burlington, MA 01803

Mr. Edward M. Connelly Dr. Marvin Cohen
Performance Measurement Decision Science Consortium

Associates, Inc. Suite 721
410 Pine Street, S. E. 7700 Leesburg Pike
Suite 300 Falls Church, VA 22043
Vienna, VA 22180

Dr. Wayne Zachary
Professor Michael Athans Analytics, Inc.
Room 35-406 2500 Maryland Road
Massachusetts Institute of Willow Grove, PA 19090

Technology
Cambridge, MA 02139 Dr. William R. Uttal

Institute f or Social Research
Dr. Edward R. Jones University of Michigan
Chief, Human Factors Engineering Ann Arbor, MI 48109
McDonnell-Douglas Astronautics Co.
St. Louis Division Dr. William B. Rouse
Box 516 School of Industrial and Systems
St. Louis, MO 63166 Engineering

Georgia Institute of Technology
Atlanta, GA 30332

7



November 1982

Other Organizations

Dr. Richard Pew Psychological Documents (3 copies)
Bolt Beranek & Newman, Inc. ATTN: Dr. J. G. Darley
50 Moulton Street N 565 Elliott Hall
Cambridge, MA 02238 University of Minnesota

Minneapolis, MN 55455
Dr. Hillel Einhorn
Graduate School of Business
University of Chicago
1101 E. 58th Street
Chicago, IL 60637

Dr. Douglas Towne
University of Southern California
Behavioral Technology Laboratory
3716 S. Hope Street
Los Angeles, CA 90007

Dr. David J. Getty
Bolt Beranek & Newman, Inc.
50 Moulton street
Cambridge, MA 02238

Dr. John Payne
Graduate School of Business
Administration

Duke University
Durham, NC 27706

Dr. Baruch Fischhoff
Decisicn Research
1201 Oak Street
Eugene, OR 97401

Dr. Andrew P. Sage
School of Engineering and

Applied Science
University of Virginia
Charlottesville, VA 22901

Denise Benel
Essex Corporation
333 N. Fairfax Street
Alexandria, VA 22314

8


