D-A134 263

UNCLASSIFIED

MICROCOMPUTER SOFTWARE SYSTEM DEVELDPHENT SUGGESTED -
REVISIONS T@ MIL-STD.. (U> RIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF SYST..

SEP 8% AFIT-LSSR-1@-83

T

e Y e v
A AR S0 Be e Srarin-iie Seachie i RATIA O

* .
P - .
et LI

. e

. " .
! S .

A e i ettt

- -

« " .

-,

.

;

l-AA .

I‘.>

o

i~
N

22 s e

=

i

—
.
—
Er
[

er

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DTIC FiLE COPY

AIR FORCE INSTITUTE OF TECHNOLOGY

MICROCOMPUTER SOFTWARE SYSTEM
DEVELOPMENT: SUGGESTED REVISIONS TO
MIL-STD-1521A FOR COST-EFFECTIVE
ACQUISITION OF CUSTOM SOFTWARE
THROUGH SOFTWARE ENGINEERING

Victor M. Helbling, Captain, USAF

LSSR 10-83

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

-

Wright-Patterson Air Force Base, Ohio

MICROCOMPUTER SOFTWARE SYSTEM
DEVELOPMENT: SUGGESTED REVISIONS TO
MIL-STD-1521A FOR COST-EFFECTIVE
ACQUISITION OF CUSTOM SOFTWARE
THROUGH SOFTWARE ENGINEERING

Victor M. Helbling, Captain, USAF

LSSR 10-83

The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the Air Training Command,
the United States Air Force, or the Department ocf Defense.

Accession fnr
NTIS FTas] 8
DTYo T
U o0 -
Ju.tis)
T T
By ___ . __,l
SRR |
_e]
Aol I
4
Dist
!
v] |
“!‘_l, |
["\
. nhe, \
\ ~u€,:'.. "
\' rd

Y AT - K " - ‘ ..-'v>‘ . . = - \'a-! . T w'.‘,
RN R T A R PR S PP . S PR R SRS s RS

!'._-;'J

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
LSSR 10-83 An 813y 33

4. TITLE (and Subtitte) S. TYPE OF REPORT & PERIOO COVERED

MICROCOMPUTER SOFTWARE SYSTEM DEVELOPMENT
SUGGESTED REVISIONS TO MIL-STD-1521A FOR Master's Thesis

COST-EFFECTIVE ACQUISITION OF CUSTOM 8. PERFORMING O3G. REPORT NUMBER
SOFTWARE THROUGH SOFTWARE ENGINEERING

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

Victor M. Helbling, Captain, USAF

. A AT A A A 10. PROGRAM ELEMENT, PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRESS RE A N o RN UWBERS

School of Systems and Logistics
Air Force Institute of Technology, WPAFB OH

1. CONTROLLING OFFICE NAME AND AQORESS 12. REPQRT DATE
. September 1983
Department of Communication 13. NUMBER OF PAGES
AFIT/LSH, WPAFB OH 45433 104
4. MONITORING AGENCY NAME & ADORESS(If different from Controlling Olfice) 1S. SECURITY CLASS, (of this report)
UNCLASSIFIED
1Sa, DECLASSIFICATION: DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatrect enteced in Block 20, it ditlerent irom Raport)

18. SUPPLEMENTARY NOTES od fof Bl lexe: IAW AFR 190-17
W%m
for Reseazxch and Professionad Developmant)
Alr Force lnatitute of Technology (AIC) |1 SSEP'B%
Nrighs-Pattecson, AFF OH 45433

19. KE€Y WORDS (Continue on reverse side if necessary and identily by bdlock number)

microcomputer software engineering
software acquisition computer system development

20. ASSTRACT (Continue on reverse side ([neceseary and |dentity by dlock number)

Thesis Chairman: Dr. John A. Muller

DD ,'5e'y: 1473 Eoimion oF 1 OV 6313 oBsOLETE UNCLASSIFIED

......................... .
....... T L e N e RN N L e . .
A PR, R % L RSV P I TIPS IS NS PR LI A ot & im 2t a A

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

UNCLASSIFIED

SECYRITY CLASSIPICATION OF TH1S PAGE(When Data Entered)

- I A A L e e MR R AN A= S i b et St Labas St Insc e add

F?DOD annual investment in computer systems, much of it in micro-
computers, will be $38 billion by 1990, up 900 percent from
1980. Software maintenance costs will be 64 percent of the
1990 total, or more than $24 billion. Software maintenance
can be greatly reduced through systemic software development
as prescribed by MIL-STD-1521A, but DOD managers complain that
the process, originally designed for the acquisition of multi-
million dollar mainframe systems, not for microcomputers,
is much too slow, and therefore not cost effective. Data
automation experts point out, however, that development haste
in conflict with 1521A increases future maintenance costs.
This thesis displays the problem using a recent case study
from the Alaskan Air Command, and presents a new acquisition
procedure incorporating microcomputer software engineering
techniques which reduce system development time while preserving
high software quality as intended by the regulations.

N

/

UNCLASSIFIED

SECLRITY CLASSIFICATION OF ~u' - AGE/When Darts En -

aa t rwrTrTYvyerwrwy \""."-'\'4':'."
- - e e BT NS AR AR CRE Y

LSSR 10-83

MICRCCOMPUTER SOFTWARE SYSTEM
DEVELOPMENT: SUGGESTED REVISIONS TO
MIL-STD-1521A FOR COST-EFFECTIVE
ACQUISITION OF CUSTOM SOFTWARE

THROUGH SOFTWARE ENGINEERING

A Thesis
Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Management

By

Victor M. Helbling, BGS
Captain, USAF

September 1983

Approved for public release;
distribution unlimited

- Tt AR L .
VN VD WA U DN R U Ui G Py Gl G r gt 4

............
..............

This thesis, written by
Victor M. Helbling
has been accepted by the undersigned on behalf of the fac-
ulty of the School of Systems and Logistics in partial ful-
fillment of the requirements for the degree of
MASTER OF SCIENCE IN SYSTEMS MANAGEMENT

DATE: 28 September 1983

Seko, A Mlly

COMMITTEE CHAIRMAN

READER

ii

..........................

CeCiew
LIPS L
PRI

- A
K

A vy
FAM A

(ACKNOWLEDGEMENTS

This thesis could not have been completed without the
efforts of many fine people, who materially contributed to
its production.

I wish to express my sincere appreciation to my
3 thesis advisor, Dr. John Muller, for his advice, encourage-
ment, support, and friendship throughout the course of the
ff year. I also thank Major Ronald H. Rasch, my thesis
reader, for his technical expertise, and Major Ben Iris of

the Alaskan Air Command for arranging all the interviews in

) Anchorage.
- One indispensable member of the thesis team was my
= typist, Jackie McHale, who was solely responsible for this

thesis meeting the AFIT style requirements.
Finally, a special thanks to my wife, Rosemarie, for

her help 1in proofreading and rewriting, as well as

VIR

providing moral and 1logistical support, and for being my

best friend.

N RIND N
[T A L d ‘-A.- e

TN

iii

At et et LR AL

Ay o e e e e e L te e St e . . B - L. . PO - - . -
. . . Lo P VPR IR . L e ST

PR Y . W S, PRIRPIO AP PR SRS SO P S NN UL TR N LT PP U . oA O T T T WAl T AP Sl W WL W I W A

TYT YTV Ty

TABLE OF CONTENTS

E;i Page
MK
h ACKNOWLEDGEMENTS . . . ¢ « « o o o o o o o o« o o o« o iii
o LIST OF FIGURES . . . & & ¢ o o o ¢ o s o o o s o« o o vii
V; Chapter
I, INTRODUCTION . . ¢ « o ¢ o o o o o o o s o o 1
Statement of the Problem 2
Objectives of the Research 3
SCOPE .+ & ¢ ¢ o o o o o s o s o o o o o o o a 4
Justification ¢ . ¢ . 0 o 6
Methodology . . ¢« &« ¢ ¢ &« ¢ ¢ o o o o o o o & 10
Thesis Organization and Overview 11
II. FUTURE TRENDS IN MICROCOMPUTER
SYSTEM PROCUREMENT . . . ¢ . &« + « o & « o & 12
Introduction & & ¢« ¢ o ¢ 4 0 e e e 12

Trends of Microcomputer Hardware

Procurement ¢« ¢ ¢« o ¢ ¢ o o o o o o 12
Cost Effectiveness « ¢ . . 13
Retention of Personnel 14
Changes in Microcomputer Applications . . . 16
Alaska Defense Network 18
Software Engineering Backgroind 23
Chapter SUmMmary . « « « ¢ « o o o o o o o o 28

iv

N Chapter Page

III. SOFTWARE ENGINEERING TECHNIQUE
POR MICROCOMPUTERS . ¢ & ¢ ¢ &« « o« o o o o & 29

Introduction . . ¢ & ¢ ¢ 4 ¢ 4 4 o o o o » a 29

Conceptual Phase: Identifying

the Operational Requirements 30
The Validation Phase ¢« ¢« ¢« ¢« « « . 33
Planning . .+ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o 34
Full-Scale Development Phase 36
Measures of Software Design 38
Testing the Software « . . . 39
The Configuration Audit 40
SUMMATLY ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o o o o o 42

APPENDIX

A. AN INTERPRETATION OF MIL-STD-1521A:
TECHNICAL REVIEWS AND AUDITS FOR SYSTEMS,

EQUIPMENT, AND COMPUTER PROGRAMS 45
Introduction ¢ ¢ ¢ . o 0 .. 46
Conceptual Phase . . . ¢« + ¢« ¢ ¢ ¢« ¢ & o « & 49
Validation Phase . . . ¢ . & ¢ « & o o « & & 49
Full-Scale Development Phase 50

Reviews ¢ v ¢ v v o v v 4 o v 50

Audits v i e e e e e e e e e e 52

SUMMALXY « ¢« ¢ o ¢ o o o o s o o o o o o o o 55

B. GLOSSARY . . . ¢ ¢ ¢ 4 ¢ o o o o o o o o o o & 56
Definitions ¢ . o ... 57

la a PP U UL N W inavindie N S—1 DN G WP WA S S WL WO YD S Y & PR PP W S S P

AN Sinte Baae B ais Sy Sngh Jhaie Sy it Slasn Sads Shdet S anShate 2 dr Tute e
D PN A, .

Appendix Page
C. FORMAL PROGRAM DESIGN METHODOLOGIES 67
Functional Decomposition ¢« « « ¢ o & 68

Data Flow Design . . . ¢ v v ¢« ¢ o o« o o o & 68

Data Structure DeSign . . + ¢ ¢ o« o o o « o 69

A Programming Calculus ¢ « « « « + & 70
Methodology Comparison « + & « &+ o+ & 71

Other Design Recommendations 73

D. MEASURES OF GOOD DESIGN . . . +v ¢ « o o o« o o« = 75
Coupling . ¢ & ¢ ¢ ¢ ¢ ¢ 4 e e e o e 4 e o . 76
Cohesion . . . ¢ ¢ ¢ ¢ ¢ v o ¢« ¢ o o o o o W 78

E. STRUCTURED PROGRAMMING . . ¢« « &+ ¢ ¢ « o s « 80
F. PROGRAMMING STYLE . +. ¢ 4 4 o o s s o s « o o = 84
SELECTED BIBLIOGRAPHY ., . ¢ ¢ & o o o o o« s o o s o = 88
A. REFERENCES CITED . . &« ¢ o s « o o « o 89

B. RELATED SOURCES . . ¢ ¢ & ¢ ¢ o o o o « & 93

vi

R ————— s S ————————— TR TR SRR IR RS LTRSS ST W S SR T SRS S i

LA Bl Bent Seat seh mien Mush (eBEL Mr-aet Bl aedl Shuh Bl Adh Jral i Ses J

LIST OF FIGURES

Figure Page
1l DOD Embedded Computers « « o o & « & & 6
2 Embedded Computers: Hardware vs. Software . . . 7
3 Catching Software Errors e e e e e e e 9
4 Comparative Needs . . . « ¢ ¢ v ¢ ¢ o o o o o & 14
5 Hardware/Software Cost Trends« . . . 24

6 Waterfall Model of the Software
Development Cycle . . « ¢ v ¢ ¢ o o o o o o« @ 31

7 Microcomputer Software System

Development Checklist« ¢« ¢« « . . 43

8 Software System Development Checklist 47
9 System Development Methodology:

Phases, Reviews, and Audits « . . . 48

10 Functional Decomposition « . . . 68

11 Data Flow Design Procedure 69

12 Data Structure Design Method 70

13 Basic Data Structure Design Procedure 70

14 Summary of Program Design

Methodology Claims . . . + ¢« & ¢« & « ¢ o « & 72
15 Current State-of-the-Art 72
16 Basic Control Structures of

Structured Programming ¢ + o . . 83
17 The Three Basic Control Flow Constructs 83

vii

. - . - - - [. . T " g - y ¥ y ~ - . - - N _— N
PP Y P EpT Wy vy . W . k. T AT T . ¢ e Sneleh atelbit St dhe g din sl tedontdinscdinetdine e fione i fiinedes P Y b

CHAPTER I

INTRODUCTION

The Department of Defense (DOD) procures computers
and software the same way it procures airplanes, tanks, and
other hardware. The procurement procedure (Appendix A)
involves months of work and large quantities of paper. It
is designed to ensure that the item finally purchased by
the government will serve its intended purpose. This
complex and expensive process of acquisition 1is justified
when the object of procurement 1is itself complex and
expensive, but it is not Jjustified, or even useful, in the
acquisition of microcomputer hardware and software.

Today a microcomputer costs about the same as a good
electric typewriter. Furthermore, the cost of the micro-
computer is decreasing every year (41:59-60). The DOD
manager will soon be required to procure microcomputers
from local vendors, just like office equipment (7), thereby
reducing procurement time and cost. Hardware procurement,
however, is not the microcomputer's entire life cycle cost.
The majority of a computer system's life cycle cost is in
software maintenance (15:11). Consequently, the DOD

manager, who has the responsibility of minimizing computer

adaa PSP W T D PSSR S AP Ao A S T PN IS I .

LJhat Sha e mar-aesie o 20 B g

R

B N YRS Y

et SudIad aak sed o And s And Sl e Agnad

system life cycle costs, should concentrate on the cost of
software maintenance.

This thesis provides guidelines to minimize the
microcomputer's life cycle costs by describing a method of
software development which reduces software maintenance
cost. These guidelines are intended for the use of all DOD
managers; therefore, the thesis speaks to the individual
with little knowledge of computers. This thesis acquaints
its readers with the concept of software engineering and
its use in the procurement of custom software for

microcomputers.

Statement of the Problem

To meet increasing demands for information throughout
the Department of Defense, managers must depend on computer
systems more and more (22:68-72). In the past, these
managers were concerned only with mainframe computers and
mini-computers, because only these larger machines could
handle the large amount of data that needed processing.
Recently, due to innovations in technology, the micro-
computer has become a suitable alternative. Furthermore,
because of aggressive competition among manufacturers, a
microcomputer network is cheaper than a single, larger
computer. Changes in the procurement procedures of these
machines are imminent since the cost of microcomputers is

now about the same as that of ordinary office equipment.

These changes will authorize DOD managers to purchase
off-the-shelf microcomputers to meet their data processing

needs. Industry has already implemented this method of

microcomputer procurement (35). It is the DOD manager's
responsibility to minimize the life cycle costs of the new
microcomputer system., Life cycle costs of computer systems
are governed by the amount and ease of software maintenance
required by the system. The problem is that, presently, no
set instructions are available for the microcomputer user

to follow when ordering custom software.

Objectives of the Research

The objective of this thesis is to develop a custom
software procurement technique for microcomputers. This
technigue will be a tool for all DOD managers, and will
assume the reader has little or no background in the use of
computers. The procedure, présented in Chapter 1III, is
written so any DOD manager/user whose microcomputer
requires custom software can ensure that the delivered
product will:

l. process the data as intended

2. operate with minimal software maintenance

costs, thereby reducing life cycle costs
3. produce the desired information in a

reasonable amount of time

P PRGNSy S o N Smbatabobatatebobobobedosodadtudoitbonkadad COTY Y W PSRN DU PRI LIe . ~-J

4. function in a reliable manner with few
interruptions in service caused by
logic problems

5. be complete at delivery, including all
documentation required to understand and
update the software

6. comply with the intent of the regulations
(MIL-STD-1521A) by incorporating alternatives

which are applicable to microcomputers.

Scope

The microcomputer is a useful tool for DOD managers.
The increased capability, availability and reliability of
the machine, coupled with its reduced cost, have made
investing in a microcomputer cost effective. However, the
key factor in the usefulness of a microcomputer lies in the
short time from the recognition of the need to the
emergence of processed data (information). If obligatory
paperwork in the acquisition of hardware and software
removes this advantage of time savings, the benefits of
technological innovation and economic competition are
wasted. Therefore, this thesis assumes that DOD regula-
tions will be modified to delegate the responsibility of
the procurement of microcomputer hardware to the DOD

manager/user. Furthermore, since the DOD will have

PO Vi SO e i K W g POy Sy < P S W

et aaas o et Al A A AEASS SE e

PP G W P P

o

L

recognized the value of time conservation in the procure-
ment of hardware, it 1is plausible to assume that the same
direction will be given regarding software procurement. To
fulfill this responsibility, DOD managers, not necessarily
experts on software acquisition, require a procedure they
can understand to evaluate the development progress of
custom software for their microcomputers. This thesis
deals only with the management of custom software for
microcomputers. It is not intended to guarantee extinction
of error, which would not be cost effective. It is
intended to minimize life c¢ycle costs in an environment of
limited resources (time, expertise, personnel, and money).
It should be noted that hardware complications are
not within the scope of this discussion. Therefore, the
microcomputer is assumed to be tested and error-free when
purchased from the vendor. In addition, it is assumed that
DOD managers wish to reduce computer system 1life cycle
costs while increasing the amount of time their system is
working properly. Finally, this thesis concerns itself
only with custom software procurement, because errors in
established software packages have, by-and-large, been
eliminated through attrition. Vendors have modernized
those portions of their software package which were
difficult to use (not "user friendly") as a result of
customer complaints., Therefore, "canned programs" will not

be addressed in this discussion.

.« = <iw . N -t A - -, - R
A aalata A’ atalaletlede it adad PP B U S S e ol Ao Aot

PP |

Justification

Between 1970 and 1990, history has and will continue
to show a significant worldwide growth in the acquisition

of all sizes of computer systems.

260
240 r'
220}
200}
180
160}
140 CUMULATIVE TOTAL‘l
120
NEW PURCHASE —

100}

80}

so -

40F

2 (Vorl bz

0 1 e oA E/
80 81 82

Figure 1. DOD Embedded Computers (15:14)

The DOD investment in computer systems is also increasing
at a dramatic rate. As seen in Figure 1, the DOD had less
than 10,000 embedded computers in its inventory in 1980-81;
by the end of the decade it 1is expected to have 260,000
(15:13). The embedded computer includes "all computer
equipment, programs, data, documentation, personnel and
supplies integral to a defense system from design,

acquisition or operations and support point of view

T PT T TR TP T

[15:19]." The cost of these computers is expected to rise

from $4.1 billion in 1980 to $37.99 billion by 1990.

SOFTWARE 80% 1990 $37,990M

1985 $13,920M

1980 $4,100M

Figure 2. Embedded Computers: Hardware vs. Software
(15:14)

As shown in Figure 2, the proportion of the cost
attributable to software will increase from 65 percent in
1980 to 85 percent in 1990. This means the software cost
will rise from $2.67 billion to $32.29 billion in one
decade, an increase of over 1200 percent (15:15). With
such a large increase in projected spending, it is
imperative that management of software be efficient.
Individuals responsible for purchasing software projects
should identify in their requirements software formats

which minimize 1life cycle costs. Specifically, the

..... . N . ~ .
""""" LI O G P Y S W LG ST Tl O U P U TS PG W O .U N O

software should be structured so it is easy to maintain.
Additionally, the computer system must be a wuseful tool
wﬁich justifies its cost. To do that, it must be "user
friendly"” and reliable, to encourage employees to use it to
produce timely information for decision making.

Reliable and "user friendly" systems are not a lucky
accident. They result from a systematic approach that
remembers the purpose of the devel-oment 1is the satis-
faction of the user. A secondary objective 1is to reduce
the cost of software maintenance.

Software maintenance costs are now estimated to be
two-thirds of total computer 1life cycle cost, which
includes hardware, software development and software main-
tenance. This ratio |is expected to worsen (4:73).
However, current emphasis 1is on development costs, while
overall life cycle costs continue to be mostly ignored.
Numerous experts (including Milne, Rubey, Bunyard, and
others) indicate that the cost of software errors increases
if they remain unnoticed in the software until the later
stages of procurement (26; 39; 4:77). Figure 3 shows that
whereas the cost of an error discovered in preliminary
design is negligible, the same error detected in the
integration phase could cost five times as much. Worse
yet, if that error 1is not noticed until the software is in
operation, the maintenance cost is almost 100 times greater

(4:77).

.t et -
......

50 |-
[- 4
(-]
[~
x
")
[
o wl
- 4
&
S
S w}
-
[T
a
o L
s
2
=
x
L)
I
1

SOURCES

¢ |BM-SDD

® TRW

® GTE

® BELL LABS

Vi /

?

///

1 }

PRELIMINARY DETAILED CODE + INTEGRATE VALIDATE OPERATION

DESIGN OESIGN 0EBUG
PHASE IN WHICH ERROR IS DETECTED
Figure 3. Catching Software Errors (4:77)

When managers procure a

ensure that the delivered product will transform data into

information

at

the 1lowest 1life

Therefore, the project manager should strive to

errors embedded

opportunity.

As mentioned earlier, the

in the software at the earliest possible

microcomputer

software package, they must

cycle costs possible.

find any

will become

readily accessible to every manager in DOD in the

future. However,

to save time

accumulated

The procedure

B S UL RSP WA P S S S W)

in

also bypasses

established in

the 1local data

circumventing the

the

established procedure

S S A S LSRN S

experience and knowledge
automation organizations.

Chapter III is a "band-aid"

L e AR AR Anch i it S il AU I

for the manager. Although not as specific, it is better
because it meets the objectives. It allows the manager to
proceed with the operational requirements of the department
with a minimum loss of time.

In summary, DOD expenditures on computer systems are
growing rapidly. The growth of software maintenance cost
is even more rapid. Software cost can be reduced by
detecting errors early in the development of the computer
system. The cost of software maintenance 1is a problem to
every computer system, including microcomputers. The use
of the custom software procurement techniques identified in
MIL-STD-1521A (to reduce software maintenance and life
cycle costs) 1in the procurement of microcomputer custom
software is time prohibitive. Thus, a new technique is
required which considers the intent of the regulations and

the time constraints of the user.

Methodology

This thesis develops a 1low cost method for the
reduction of microcomputer system life cycle costs.
Initially publications were searched to find established
methods that can be wused within the DOD. Then users in
industry were interviewed to 1identify any procedures not
yet in print. Third, the development of existing systems

was studied to determine the problems encountered and the

10

PRI . FEFCFEPTPCIRIVIPL TN PUPY PG PR DUIS N UR U T PR Y S Py e L a J

L2 e B g - Rt Ak Ar Shutil UM g Sl St SR et SR A AR S I g

problems that resulted from the procedure used. Finally
the intent of the regulations was determined and a new
procedure was developed to incorporate the intent of the
regulation while allowing for time constraints typical of

microcomputers.

Thesis Organization and Overview

This thesis 1is organized into three chapters and
several appendices. Chapter I is the introductory section.
It 1includes an overview, a statement of the problem, the
objectives of the research, the scope, the justification,
the methodology, and the organization of the thesis.
Chapter 1II describes the current trend in microcomputer
system procurement, discusses the problems with present
procurement procedures, and explains the purpose of
software engineering. Chapter III presents the new
procedure for microcomputer custom software acquisition.
The appendices provide detailed supplemental information
which the reader of this thesis can wuse in the development
of the microcomputer system. To eliminate misunder-
standing, all critical words and phases have been defined

in the glossary, Appendix B.

11

e e bt heshestonbesheninstushesnenbosbuntushesnsbeshnsieebmein clefaate ‘r‘—*—“J

>

v O OAUA A
" P) 4
R A

LS

--
5 [
. L]
PR,

CHAPTER II

FUTURE TRENDS IN MICROCOMPUTER SYSTEM PROCUREMENT

Introduction

This chapter presents a logical argument for change
in the procurement of microcomputer (micro) systems.
First, it justifies the pending changes in micro hardware
and software procurement. Then, it discusses the innova-
tive system development of the Alaskan Air Command.
Finally, it introduces software engineering and explains
why long term costs must be a primary consideration in

software procurement,

Trends of Microcomputer Hardware Procurement

The DOD method of purchasing microcomputers will
change for three reasons. First, the present method is not
cost effective. Just the paperwork intended to prevent
waste 1is several times more expensive than the machine.
Second, it frustrates people in critical career fields who
must spend their time finding the tools to do a job, rather
than doing the job. Finally, the <current method often
results in an obsolete micro with outdated software,

because jobs for microcomputers are typically of short

12

——— et
. ~ . .
.

ro

(M JomE. SN Aatardw
. d . .
S ; .

duration in a changing environment. The long, drawn-out
process of hardware procurement, followed by a similarly
extended process of software procurement can deliver a

system not adequate to solve today's problems.

Cost Effectiveness

Today, a project manager must follow a carefully
detailed procedure, established by regulation, to purchase
a computer. Unfortunately, the same procedure 1is followed
whether a $1,000 micro or a multi-million dollar mainframe
is purchased. The procedure, described in Appendix 3,
carefully ensures that the needs of the organization are
met when the equipment is delivered. It evaluates the
needs of the user and the direction of the procurement
effort several times during the procurement process. This
is also very time consuming and results in several
problems.

According to Major Ronald H. Rasch, Associate
Professor of Accounting and Information Systems for the Air
Force Institute of Technology (AFIT), "this policy of
extensive planning is very Jjustified for expensive main-
frame systems, but not cost effective for micros ([35]."
The paperwork required by the regulations actually costs
much more than the microcomputer itself. Furthermore, the
process can easily occupy programmers, engineers and

managers for several months. The salary of any one of

13

VP e, S .J Jemdoa o oa a e e S e - abeaadh ‘ - Foe WP W S - P— .

these people is more than $3,000 per month. Obviously, the
method used to prevent waste 1s much more expensive than
any potential waste. In the process, the Air Force
dissipates the energy of its technical people who become
frustrated, disillusioned, and more difficult (thus, more

expensive) to retain.

Retention of Personnel

As shown in Figure 4, computer professionals,
including electrical engineers and computer programmers,
have a much higher growth need than social need; that is,

the prefer to deal with technology rather than with people.

63
80 B GROWTH NEED
— SOCIAL NEED i
§5 - ﬁ m
H
m —
sn -
45
I
|
a0 it
COMPUTER SALES OTHER CLERICAL MANAGERS
PROFESSIONALS PAGFESSIONALS

Figure 4. Comparative Needs (39)

14

. e a _a . Py Py 2 PP O D O O G

- o e o N Tade o 2had S nge i ihde S s Shess hnd

k Professor Ray Rubey, an expert in software engineer-
H! : ing and software acquisition at the Air Force Institute of
?f Technology, stated that the technically oriented employee
: is not as concerned with monetary compensation as with
ii . working on the 1leading edge of technology. "Studies have

verified that scientific programmers will resign from a

better paying Jjob to be involved in a project that is

clearing new frontiers 1in the field of computers [(39]."
That attitude is displayed by astronaut Sally Ride. An
August 1983 news report said Ride had been offered several
"promotional or advertising offers" worth up to $1 million.
The National Aeronautics and Space Administration forbids
astronauts to make money endorsing products or appearing in
advertising. Ride refused the money. "I wouldn't trade
this job for $1 million if they paid me tomorrow (9:2]."
With these needs in mind, the Air Force, which |is
critically short of people in technical fields, should
reevaluate the usefulness of the current procurement
procedures for micros. An accelerated procurement process
will allow scientists to spend less time acquiring tools
and more time doing innovative scientific research. The
micro is simply an office tool used to process data into a
desired format. Although it is more flexible and diverse

than a good electric typewriter, the cost is comparable.

15

FIPU VSO ML S-SR SO0 WU SR T— v ***-"““*““*'M

I e St g B ara . v 7 Y 4 vy D A A S

Changes in Microcomputer Applications

By the time the process 1is completed, many changes
may have occurred in the requesting organization. Typical
changes are in personnel, hardware technology, and system
E requirements.

- According to Major Peter Rensema, who recently

managed the 1installation of the micro-network for the

Alaskan Air Command (AAC), the nature of military

assignments can result in one of the changes.

It's not wunusual for an individual to order
something like a microcomputer and get
reassigned. . . . Later, a microcomputer shows up
and nobody knows where it came from [12:76]1].

Although the original purpose of the purchase request
can be traced through the process, the individual who
conceptualized the idea, the person who best understood the
application of the requested system to the problem, may
have departed. The probability of the original project
being completed is thus significantly reduced.

A second potential change which can occur before the
process is complete will be the status of hardware
technology. In a year's time, a particular machine can
drop from state-of-the-art to more than a generation old.
The price and availability of a machine can also change
drastically. For example, "the Texas Instrument's 99/4A
home computer which sold for $525 when introduced in 1981,

retails for just $100 today [41:591]."

16

Finally, changes in project requirements signifi-
cantly complicate procurement of the micro system. Until
the machine is in hand, there is no limit to the additional
capabilities that can be required of it. As requirements
increase, the time required to complete the project grows
and fewer of the individuals originally involved 1in the
project will remain to complete it. In the meantime, the
computer remains unpurchased and the job it was to do
remains undone, or the data 1is manually processed to
provide information. These problems can be remedied by
procuring micros like any other piece of office equipment.

General Lynnwood E. Clark, Commander of the AAC,
expressed his views in an interview June 17, 1983 in
Anchorage. He stated that:

Micros today exceed the capability of many
minis and mainframes of a decade ago. They are
less expensive and more reliable than the larger
computers, as well. Whereas a mini or a mainframe
requires a mandatory maintenance capability, a
micro provides a redundant «capability [failure
of one micro does not halt operation of the
remainder]. still, micros must be networked
to be as functional as the larger computers [7].
General Clark views the wuse of micros as the cure to a
current data automation problem. As computers become
essential to the operation of a variety of departments,
data automation specialists are called upon to be familiar

with an increasing amount of technical jargon and depart-

mental detail. In his opinion, "we must get the guy who

17

PP PP AT PO YT T DR DR N DUy Gl V00 U i g G (i Y UG . S VY s "

T 7w —

s

QPN LR

will use the system into the system. That is, we must
train each user to be the programmer." Rather than have
each programmer become a fuels expert, a suéply expert, or
a civil engineer, he suggests we train each specialty in
the use of the computer, specifically the micro. He

continued,

It is easier and more cost effective. Addition-
ally, it encourages the use of the computer by
other members of the organization. The Air Force
emphasizes delegation of authority. We must depend
on the integrity and professionalism of our people
to purchase, set up, and use these tools to improve
their response to mission requirements [7].

Alaska Defense Network

General Clark 1lives his philosophy. The June 1983
issue of Softalk describes how the Alaskan Air Command
automated to develop "a _state-of-the—art computer system
for their alternate command post (ALCOP) that serves as a
backup command center for the Alaskan Air Command {12:75]."
The system was to have portability, survivability,
redundancy, sustainability, as well as be menu driven and
user-friendly.

What General Clark wanted was a computerized data-
base that would travel. One that would still work
even if the main terminal was knocked out, or
several supporting ones went under. One that any-
one commandeered in an emergency could boot and run
in thirty minutes. And one that could be updated

as disaster progressed, whether it be trembling
earth or falling bombs [12:75].

18

vy
rrr
68, -

TR

O e
S, -d.

One last requirement which the general identified was that
the system had to be on-line by the summer of 1983, just
eighteen months from the conception of the project.

Captain Pete Rensema, who was given project
responsibility, received a 1lot of support. "The general
saw to it that we only went one week between the paperwork
and the first computer [12:76]." Obviously, their
acquisition process did not follow the established
procedures outlined in the current regulation. According
to Captain Dan Rambow, who directed the technical effort as
engineering manager, this resulted 1in a lot of resistance
from the Data Automation Department. Data Automation
was locked into the use of regulations and established
procedures. Fortunately, the General was not.

They refused to believe you could build an infor-
mation management system from the bottom up, using
personal computers. They suggested a Hewlett-

Packard mini with six stations or a mainframe with
a multi-user system [12:77].

What Captain Rambow did was to follow the intent
of the regulations (to organize the effort) instead
of the letter of the regulations, which was time
prohibitive. . . . To meet the letter of the
regulations AAC would require significantly more
than the 34 man-months used (and available) for the
project [13].

The system costs, so far, are much lower with the micros

than they would have been with a mini.

19

hardware versus
half the

using the regu-
schedule. [(12:76]
maintenance is quicker and

The micro
$500,000 for the HP, . . . we did it in

system cost $220,000 for

estimated man-months projected
lations, and we met our

« « « Our software
cheaper as well [7].

Captain Rambow manages a construction software house

during his off-duty hours. He identified software

engineering as the key to the success of the AAC network.

He insisted all software be kept simple and user-friendly.

A different view is held by AAC's director of data

automation, LTC Dennis W. Howard. "We believe 1in the

evolutionary process versus crash project development. Our

concern is minimization of life cycle costs [18]." He

added that timeliness will often suffer in order to achieve

their primary goal.

Software maintenance is
excessive regulations and documentation require-
ments. We need to reduce the time required for
software maintenance. A standardized language like
Ada will help [18].

very expensive due to

LTC Howard explained the conflict regarding software

engineering between the data automation (DA) staff and the

operational staff arises from different

approaches to the

problem. "The DA people are not prone to [take] risks."

They are much more systematic, cautious and tend to 'follow
the letter of the regulation'."
General Clark that, in

acknowledged some instances,

the delays built into Air Force procedures are intolerable

20

M VTS W S W) LY Wl Y G U S P AT W, DU 1P SR Gy UL Ly Vg S o P e

o

to the operational commander. If timeliness is considered
the first priority, the command must accept increased 1life
cycle costs of software maintenance.

LTC Howard stated, "The DA shops must not forget they
serve the operations staff." Data automation's purpose is
to provide the user with information. In the Air Force,
the operational staff is the wuser. Still, LTC Howard
advised that:

A [DA]) manager must understand the reason for the
regulation and communicate to the user [operational
staff] why it 1is beneficial to them [to follow the
established procedures] [18:83].

In AAC's case, the benefit would have been reduced
life cycle costs because of minimized software maintenance.
The problem the operational staff may encounter 1is that
many of the regulations they failed to comply with require
documenting information needed for continuity. LTC Howard

wondered about the future:

Once Major Rensema and Captain Gaudreau have left,

who will be the system integrator? Who will
maintain the system when Captain Rambow leaves?
[18]

The answer, like the problem, revolves around the
newness of computers to many users. In ten years most high
school graduates will have a good background in the use of
computers. A standardized 1language will probably have

evolved. Today, however, we must not allow timidity to

21

¥ O TPV WSS W W PR 10 W W TP W WRE WY U W ST S U S S W S D G P S

g " RS S e Svie auen B uiechas Thie T Salhe i - — v v~ %

if impede progress. According to Captain Rambow (1983), "A
one-year review for a piece of equipment that has the cost
of a typewriter is a waste." In the future, a project
manager will not buy a machine specifically designed for
his/her purpose. Rather, machines will be selected that
meet his/her specifications from the equipment available on
the market. The final selection will be based on four
machine criteria: 1) capability to efficiently handle the
custom software; 2) potential to expand as the needs of the
project grow; 3) the overall cost; and 4) reliability.

Once AAC had selected its machine, the engineering
manager had to minimize life cycle costs through careful
organization and development of the software. It should be
noted that the hardware owned by the user presents a
constraint for the software engineer. Greentree Computer
Corporation quoted an article in Mcrey magazine (November
1982) which suggested that "the first time buyer choose the
software first and then buy the compatible hardware
[14:1}." Therefore, if you have a need to process data
using a computer, acquire the software first, then find a
machine compatible with your software. Since the AAC
bought the machines and then developed the software, the
engineering manager was limited by the machine during
software development. In the case of AAC, it did not
impose a problem. Their concerns revolved around time

constraints, a short-term problem., Captain Rambow's

22

LAPU W S N I e - o PP R W WA S WA O IR R WO W PR L G0 S O S UL GLEY U UL UL W VO P W WL WD ST S G Wi W SO J

TR

background in software programming and maintenance taught

P
et

him that the key to minimizing both short-term and
long-term problems in software development revolved around

a concept known as software engineering.

Software Engineering Background

Awareness that the cost of fixing computer software
was spiraling upward spurred the concept of software
engineering. One of the first uses of the term 'software
engineering' was "in naming the first NATO conference on
Software Engineering in 1968 [32:5]." Software engineering
is defined as the

practical application of scientific knowledge in

the design and construction of computer programs

and the associated documentation required to

develop, operate, and maintain them [38:11].
The purpose of software engineering is first, to provide a
plan for the "building" of a program in order to increase
the probability of building correctly the first time; and
second, to facilitate software maintenance.

Until the 1970s the cost of hardware was the major
concern of computer facilities managers. Earlier, as

. depicted in Figure 5, DOD hardware costs constituted over
80 percent of the computer system life cycle costs (15:11).

Computers at that time were more magic-boxes than tools.

23

L A . N v
an L VA VR W VAL AT Wy S WP L Y P P P S T W v

P * 4 2

100 ——

80 - HAROWARE
DEVELOPMENT/MAINTENANCE

60 SOFTWARE

DEVELOPMENT

PERCENT
oF

cosT

" s MAINTENANCE “- el
N AR P) . LY S
NN I L L A

: .

< x'u "‘?:

Figure 5. Hardware/Software Cost Trends (4:74)

Computer users were educated people, with backgrounds in
mathematics or electrical engineering. Since the computers
had 1limited storage capabilities, programmers had to use
the storage efficiently through ingenious strategies when
writing computer code, or "software." The useful life of a
computer system generation in the 1950s was about ten years
and most new machines were "state of the art" for many
years. In addition, since hardware costs were too
expensive to be cost effective for most firms, few systems
existed and programmers had limited Jjob mobility. As a
result, managers had the services of their programmers for

several years. If a question on the program arose, the

24

P g i SPOR aollh AUt snu JnSSciihe B sbali Mt e

software author was available to resolve it. The develop-

. ment of hardware accelerated in the 60s and 70s because of
the perceived potential of computers. Now a new genera-
tion is developed in less than a year (45).

As depicted in Figure 5, computer system cost trends,
which include both hardware and software costs, are
changing their apportionment each c¢eneration. Software
costs exceeding 60 percent of computer 1life cycle costs
today, will constitute over 80 percent of computer system
costs by the end of the decade (15:15).

The computer market has expanded as a result of
nationwide increases in labor costs and an increasing
demand for information from banks of voluminous data.
Hardware has become significantly less expensive, primarily
because of an expanded market which helped defray the fixed
cost of research and development. By 1985, the expected
cost of DOD hardware is only 15 percent of the total DOD
computer system life cycle cost (15:11).

Software costs are divided into two parts: software
development and software maintenance. Software development
is the writing of new computer code for a project. As
illustrated in Figure 5, the cost of software development
has fluctuated between 10 and 20 percent of the DOD
computer system life cycle cost. A recent study of nine
DOD software projects showed that 50 percent of the

software developed 1is never used. It is the 50 percent

25

——a M —tataiala _“_1_4,'_“.:_-‘__4.1

Ctegm gt
, DR
L,

that 1is used that gives rise to the need for software
maintenance (39). Software maintenance is updating and
correcting software in use to meet the present needs of the
organization. Figure 5 shows that maintenance costs have
increased during thirty years from 5 percent to over 60
percent of total DOD computer system life cycle cost
(15:11). "The GAO recently reported that only 2 percent of
software could be used as delivered without changes"
(50:51). This increase in maintenance costs results from
years of producing software that is more easily updated
than rewritten. These updates are generally the result of
one of the following:

1. The performance requirements of the system

are changed.

2. Hardware which the software must address

is modified.

3. Programs with which the software must

integrate are revised.

Since the early days of computer programming, the
term "program maintenance"” has been applied to such updates
(11:210). Software maintenance is burdensome because
programmers have had no motivation to create clear,
complete documentation during the original software
development. This forces the maintenance programmer to
recreate the logic behind the code, and analyze the thought

process of the individual who created the program.

26

LRt manh sl e - - - gl e 2l B e andh o 2

SR

'R EMOMERD

Software maintenance costs can be reduced by meeting the

IR TS
ol .

1! following requirements:

{ 1. Include accurate, clearly written specifications
which describe the purpose of the software. The

il) information required from the program should be

: precisely explained.

2. Perform thorough testing to ensure that the

L‘ software does what the specifications require.

! 3. Include clear documentation that explains how

the software completes its task.

4. Apply software engineering techniques

(described in Chapter III).

Jse of these requirements helps ensure that:
1. Program maintenance is performed only for
necessary changes.
2. All the capabilities of the system are obvious

and therefore useful.

If the documentation is clear and the user understands the
function of the software, it 1is more 1likely that the
system's <capabilities will be used before a request for
change is made. Any approved <changes require software
modification followed by softwzre main-eusance, which

increases system life cycle costs.

27

P

i

Chapter Summary

This chapter explained why the procurement of micro-

computer hardware will evolve into a window-shopping event.
First, it Jjustified the pending changes 1in microcomputer
purchases of hardware aad software. Then it presented the
opposing viewpoints in the Alaskan Air Command's innovative
microcomputer system development. Finally, it introduced
software engin:ering, and explained the reasons long-term
costs must be a primary consideration in software

procurement.

28

- £ N o “-I.ll...‘.'lli -Iv."."'.i".'-.'... A a0 o0 o L A *_n_tAA_hl

CBAPTER III

SOFTWARE ENGINEERING TECHNIQUE FOR MICROCOMPUTERS

Introduction

Software engineering has been identified by experts
(39; 26; 32) as a gradual, time consuming ritual intended
to satisfy the user's needs through a single effort. It
simultaneously attempts to minimize 1life cycle costs by
reducing softwars maintenance. Unfortunately, the time
demanded by established software engineering techniques is
not cost-effective when used for microcomputer systems.
NDbviously, a technique that 1is not cost-effective is
intolerable for wuse 1in most organizations. No procedure
presently exists, in the military or in industry, for the
procurement of custom microcomputer software in a cost-
effective manner (24; 28; 45; 36; 1; 52; 16; 8; 23). The
procedure developed in this chapter keeps time requirements
to a minimum while observing the intent »>f established
software engineering techniques. The procedure 1is divided
into three phases: conceptual, validation, and full-scale
development. As in Appendix A, the conceptual phase is

considered first.

29

PR TP TP WP W W Y S a . "'-~'-w\\'4i-“=“‘ ey

P Aol o et oes g

oA A

This chapter assumes some familiarity with the system
development methodology. Readers needing additional
definitions, descriptions, or detail should either read
Appendix A Dbefore this chapter, or refer to it as

necessary.

Conceptual Phase:
Identifying the Operational Requirements

The single most important step in satisfying the
user's need is identifying that need (20:20). "One of the
most common reasons systems fail is because the definition
of systems requirements is inadequate [40:139]1." The first
step in Peters' waterfall model, "Data Collection," (Figure
6) is a form of system analysis (32:12-13). He defines
data collection as the time when "the problem is described,
data gathered with which to gauge its magnitude and a
fundamental understanding of the problem obtained (32:12]."

Identifying the requirements sets the direction of the
development effort. The requirements definition must be:

1. technically feasible

2. precise, clear, and not open to misinterpretation

3. produced within the time allotted to this

project phase
4. within the project schedules and budgets

5. simple, efficient and economical [40:139]

30

TR T T T

p——

- e b len s gudl AR
R~ R 1 AR

DATA
COLLECTION
(RAW DATA) I
SYSTEMS
ANALYSIS
[REQUIREMENTS
DEFINITION
PRELIMINARY
DESIGN ‘
(LOGICAL DESIGN)]
DETAILED
DESIGN
(PHYSICAL DESIGN)
'CODE
(IMPLEMENTATION) j
TEST
INSTALLATION
Time incr ' >

Figure 6. Waterfall Model of the Software Development
Cycle (32:13)
If the user «can identify exactly what 1is des‘:2d at the
beginning of the project, the life «cycle costs will be
reduced two ways: first, by eliminating the software
development firm's costly 1involvement in requirement
identification; and second, by avoiding inappropriate or

inefficient software requiring extensive modifications.

31

I P PP AP N

The purchase of a microcomputer system 1is directed
toward a specific purpose-~-transformation of data into
information. If the software to perform that transfor-
mation 1is not already available (i.e., a "canned" program
does not exist), the DOD manager must pay for expensive
custom software development. 1In this custom development,
only the operational requirements which directly satisfy
the purpose for which the microcomputer was purchased
should be specified. Any additional attributes should be
identified as optional. These extras should be considered
only if they enhance the operational environment and do not
interfere with the primary requirements. Operational
requirements are therefore the basis for design, and after
the product is complete, the basis for testing. The DOD
manager can eliminate ambiguity from operational require-
ments by "formalizing the wuser requirements [26]." This
formalization includes:

1. a description of the user environment

2. identification of interfaces with other systems

3. 1identification of operator characteristics

4. a list of functions to be performed

5. a list of inputs to the system and what form

the inputs will take

6. a list of outputs from the system and who will

use (read) the output. Output should be

tailored to meet the need of the user

32

L . P R S S Sy)__'_A‘_A'A:‘_'_l O 1 & o A . - 8 L b g e

7. identification of all constraints including

a. physical (space, power, coolant, machine)

b. cost (how much you can spend)

c. schedule (how much time you have)

d. resources available [26]
(If defining the operational requirements is still a
problem the manager can refer to the article by Laura
Scharer, "Pinpointing Requirements," pages 139-151, in the
April 1981 issue of Datamation.)

After the system's operational requirements are
identified they must be recorded. "A problem [requirement]
unstated [unwritten] is a problem unsolved [26]." Once
these requirements have been recorded they should be
communicated to the contractor who will provide the
software. The requirements at this time represent the
functional baseline (see Appendix A). The manager is now
ready to verify the direction of the development as he/she

enters the Validation Phase.

The Validation Phase

After the contractor has had the opportunity to study
the functional baseline, he/she is ready to discuss these
operational requirements and the required techniques of
development. Having clearly identified the functional
baseline, the next step is to consider reducing life cycle

costs, If the DOD manager has been successful in

33

T

D]
P

Sy

S L,

o
.

Ca e & fft
v

B Rt

identifying the final functional baseline before initial
entry into Full-Scale Development, the rest of the
development, including life cycle costs reduction, will be
easier and cheaper. Therefore, before the contractor
begins design work, the DOD manager should indicate any
preference for techniques which aid 1in the reduction of
life cycle software maintenance and system 1life cycle
costs. These technigues are discussed 1in Appendix C,
Formal Program Design Methodologies. The wuse of these
design methodologies will encourage the cortractor to

carefully plan the software development.

Planning

The planning portion of a project is not only the
basis for all other work, but also "requires a third of
the entire effort [3:20; 51:198]." Once the contractor
understands the operational requirements he/she must
prepare a high level design of the proposed system for the
DOD manager. The high 1level design has several benefits
which help the engineering effort. The design should:

1. include a graphic representation

2. show the scope of control

3. describe the order of calling

4, show the decomposition

5. identify the inputs and outputs

6. use concise and/or official names

34

P eimine bt PR VLY S VLA SO VR VU UHT UL S, G SO S-S) e ———— i e s e

a &‘_A_LLA'_J

Several tedhniques are available to help

contractor communicate this high-level design to the

manager. These include:

At

1. Leighton diagrams (32:44-48)

2. Structured Analysis and Design Technigues
(32:62-70; 37:16-34; 26)

3. the Systematic Activity Modeling Method
(32:136-138; 26)

4. Hierarchy, plus Input, Process, Output
(32:48-53; 43:144-154; 26)

5. Data Flow Diagrams (32:139-150; 33:1090; 26)

6. Decision Tables (32:99-100; 42:846; 26)

7. Program Design Language (5:105-110;
32:184-186; 26).

8. Warnier-Orr Diagrams (17:104-174;

32:110,164,176; 26).

Much as a building architect specifies the
structure and construction of a building, the
software architect must specify the structure and
construction of a program. The major motivation
« « o is the desire to reduce the cost of producing
and ma.ntaining software (2:13).

the

DOD

this ¢time the contractor has both the functional

baseline (with the operational requirements) and

35

the

..("VG I-"-.'._» R

instructions on how the DOD manager wishes the software

development to be organized. These two form the basis by
which development cost projections are estimated. Since

development contracts are based on this estimate, the

importance of the functional baseline and the development
instructions cannot be understated. Together, they
comprise a preliminary allocated baseline.

A review should be held at this time encompassing the
intent of the Systems Requirement Review (SRR) and the
System Design Review (SDR) (see Appendix A). This review
(the B~5 or Part I Specifications) produces the allocated
baseline which is used by the contractor as the minimum
standard. The DOD manager and the contractor must at this
time agree on the cost and time required to complete the
software. The DOD manager should prepare rigid schedules
to evaluate the progress of the project. As shown in
Figure 5, Appendix A, this ends the Validation Phase and

signals the beginning of the Full-Scale Development Phase.

Full-Scale Development Phase

During the first two phases, the DOD manager and the
contractor defined the problem and documented the solution.
This document, the allocated baseline, 1is used by the
contractor to establish the development guidelines. Now

the contractor proposes a custom software design.

36

To preserve the benefits of the orderly process
demanded by regulations and to take advantage of the speed
with which microcomputers can be procured, the PDR and CDR
should be combined into a single final design review. This

composite design review determines if:

1. the design approach considers all performance
requirements
2. the approach will satisfy these requirements

3. the design is detailed enough to begin coding.

The manager should carefully analyze the design before
accepting it by signing off on the review. He/she should
consider exactly how the proposed design would function in
anticipated situations. Any deficiencies should be
documented because the contractor is responsible for
correcting deficiencies before coding starts. The DOD
manager should, however, avoid changing the contracted
system requirements (the allocated baseline). Any changes
to the requirements could affect the time and cost
established by the contract. If major changes nmust be
made, the time schedule and the project budget must be
adjusted to show a repetition of the Conceptual and
Validation Phases. If no <changes are necessary the DOD
manager should evaluate the quality of the design by using

the established measures of software design.

37

R S IR, D N DI WY RPN S e PP et e Srnbadi P S B, . Bt P TP Y

R ————r

Measures of Software Design

Several measures of good software design have been

identified and are applicable 1in the analysis of micro-

DR |

computer development. They include coupling, cohesion, and

structured programming. The first two measures, coupling
and cohesion, evaluate the relationship between and within
the software modules of a program. Appendix D discusses
coupling and cohesion as measures of good design. The last
measure, structured programming,
is becoming one of the more promising approaches to
reducing the ever-increasing cost of producing and
maintaining software. The goal of structured
programming is to organize and discipline the
program design and coding process in order to
reduce logic type errors [34:38].
A detailed review of structured programming is provided in
Appendix F. Structured programming, like coupling and
cohesion, can help the DOD manager evaluate whether or not
the software design 1is adequate (11:212). If it |is
not adequate, the contractor should be notified of the
design problems. The contractor must then correct those
deficiencies. Once the deficiencies have been corrected
the contractor can translate the design into code. A
finished program includes the code and its full documen-
tation (46:208). Full documentation 1includes: 1) a users'

manual 2) a maintenance manual; 3) operational handbooks;

and 4) top level design diagrams (25). Once the contractor

38

PP WP P, WP S S, Y. G S VA G U B U W U LY P il a~ P — .y . . - e . QA.A_‘j

completes the code, the DOD manager must evaluate its
performance before delivery. This evaluation is conducted

through software testing (26).

Testing the Software

"Meyers defined testing as the process of executing a
program with the intent of finding errors [26]." An error
will be present when the program created by the contractor
does not do what the DOD manager reasonably expects it to
do. In order to find errors the contractor must use a test
plan to evaluate the produced software. The test plan
should be developed before the testing starts. In current
practice, software testing is 40 to 50 percent of the total
effort (26; 3:20; 51:199). Still, this effort does not
guarantee error free software. "One cannot find all the
errors in a program by testing it [19; 46:206; 11:211]."
Testing may find some errors, but no reasonable amount of
testing can guarantee their absence (26). The three major
categories of errors are 1) a mistake in design; 2) a
failure of a component; and 3) error introduced by a human
operator (27:45). Since costs increase rapidly as an error
free system 1is approached (30), the DOD manager should
be concerned only that those errors in the system be
eliminated which interfere with the system objectives. Any
errors which do not interfere with the operational purpose

of the microcomputer often cannot <cost effectively be

39

It Al e =S s

detected or corrected. Correction of detected errors Iis
software maintenance. Unnecessary software maintenance
should be avoided. "Development builds a system,
maintenance can destroy it [6:199]."

A well planned development is the best way to avoid
the first two categories of software errors which are
specification related and most common (46:218). Testing
will often locate errors in the last two categories. Since
the contractor must correct any errors found during
testing, the DOD manager should only be concerned that the
test plan was followed. Once testing is complete and all
corrections made, the <contractor has a finished product
composed of the software, the documentation, the test plan,
and the test results. The DOD manager must now ensure that
the completed product 1is acceptable. This is done by

conducting a configuration audit.

The Configuration Audit

The configuration audit of a developed microcomputer
software system combines the Functional Configuration Audit
(FCA) and the Physical Configuration Audit (PCA) discussed
in Appendix A. 1In this audit the DOD manager determines if

l. the test plan is adequate to ensure that the

operational requirements identified in the

allocated baseline have been met

40

P T S N LI O WP I S LA S - VLA N AP TS Ay Sy GRY B Sy N WY Sy WO G Ll S Sy Sy Do Y Y U . b WA

- 2. the test results indicate satisfactory completion
a of all tests
3. the support documentation accurately and clearly

reflects the software (10:1341).

The audit should be performed by a team independent
of the development project (48:319). Any discrepancies
noted should be documented and corrected by the contractor.
Once the contractor corrects the discrepancies, the DOD
manager is ready to accept the production baseline of the
software with one <condition. The software is accepted as
delivered, provided the contractor has corrected all
discrepancies identified during design review and configur-
ation audit. In addition, any testing which the contractor
identified as successful that cannot be wverified (by
reproduction) is the responsibility of the contractor. The
DOD contractor must specify this condition in the
Acceptance Contract. The Formal Qualification Review
(FQR), which normally is conducted after the audits, is not

conducted in the microcomputer custom software procurement

3.
- process. Now, the DOD manager can accept delivery of the
o~
‘ﬁ- software system, and is ready to purchase the hardware
(14:1; 44:II-2). The information required by the DOD
4

manager about the software 1is provided by the contractor.
The DOD manager must consider the constraints imposed by

that information as well as the projected growth of the

41

A o S S s Jane St s

system when he/she selects the hardware. Once the DOD
manager has the hardware and the software, this new tool

can be used to improve the organization's performance.

Summary

This chapter outlined a procedure which c¢in be used
by DOD managers to procure custom microcomputer software.
This procedure maintains the intent of the regulations
while significantly reducing the time required for the DOD
manager to have the microcomputer system working for
his/her organization. The procedure, as depicted in
Figure 7, has three phases. The conceptual phase
identifies the operational requirements which become the
functional baseline and are communicated to the contractor.
The validation phase confirms the functional baseline and
adds the method of development requested by the DOD
manager. This results 1in the allocated baseline. Finally,
in the full-scale development phase the allocated baseline
is used to design, code, and test the system. Together,
these three phases comprise a system which 1is a compromise
between the timely needs of the operational commander and
the meticulous development of the data automation officer.

This procedure still requires time. However, 1t is
much more streamlined than a mainframe development (see

Appendix A). The time it does consume will not be much

42

e o el et
. o

- d L €
—.7",v"

Date

Step

Conceptual Phase

Identify requirements
Write down requirements = functional baseline
Communicate functional baseline to contractor

Validation Phase

Identify desired software engineering
guidelines

Requirements review

Document/correct discrepancies
Allocated baseline

Contracts and schedules signed

Full~Scale Development Phase

Contractor proposes design

Analvze design

Conduct design review

- To verify satisfaction of requirements

- Measure software design

- Document/correct discrepancies

Contractor codes the design

Code is tested by contractor

~ Detects errors

- Corrects errors

- Retests

- Documents and tests results

Conduct Configuration Audit

- Analyze test plan to make certain it
verifies that the delivered code meets the
requirements of the allocated baseline

- Evaluate the test results

- Ensure documentation is complete

- Document/correct discrepancies

Accept software system

Purchase hardware from local vendor

Figure 7.

Microcomputer Software System Development
Checklist

43

.......

more than that
fact, experienced
the additional
crash project

timely (39;

will

software

software

34).

PR O

make

required for

maintenance

this

44

managers confirm

required

structured

T

development. In

that

with a

more

P S S Y

g T R—

APPENDIX A

AN INTERPRETATION OF MIL-STD-1521A:
TECHNICAL REVIEWS AND AUDITS FOR SYSTEMS,
EQUIPMENT, AND COMPUTER PROGRAMS

45

Introduction

This appendix is provided tc allow the reader to
compare the abbreviated system development methodology,
presented in Chapter III, with the existing standard. The
difference between the two methodologies 1is obvious when
Figure 7 is compared to Figure 8. The presence of this
appendix also allows the reader to review the intent of the

original system development methodology. The system

development methodology can be used by the DOD manager to
reduce software system life cycle costs. This process has

seven steps:

1. System Requirement Review (SRR)

2. System vDesign Review (SDR)

3. Preliminary Design Review (PDR)

4. Critical Design Review (CDR)

5. Functional Configuration Audit (FCA)
6. Physical Configuration Audit (PCA)

7. Formal Qualification Review (FQR)

Using these reviews, the manager monitors the
developing organization's technical progress. They also
reveal the technical progress of each phase in the system
acquisition life cycle. As seen in Figqure 9, a 1life cycle
has three phases: 1) the Conceptual Phase; 2) the

Validation Phase; and 3) the Full-Scale Development Phase.

46

i T

|

I

Conceptual Phase

- Identify requiraments

- Write down requiraments

- Communicata functional baseline to contractor

- Conduct SRR to determine contractor's initial
progress

- Document deficiencies

Validatcion Phase

- Evaluate software engineering development

- Conduct SDR for an overall review of the
requirements

- Document/correct discrepancies

-~ Allocated baseline

Full-Scale Development Phase

- Contractor proposes high-~level design
- Analyze design
- Conduct PDR to compare high-level design to
allocated baseline
- Evaluate the high-level software design
- Document discrepancies
~ Accept high~-level design (C-5 specifications)
- Initiate detail design of the software
- Conduct CDR to ensure detailed design
satisfies performance requirements of
the allocated baseline
- Evaluate the detailed software design
- Document discrespancies
- Contractor ~odes the design baseline
- detacts errors
- corraects errors
- retests
- documents test results
- Conduct 7CA
- analyze the test plan to make certain it
verifies that the delivered code meets the
requirements of the allocated baseline
- evaluate the test results
- document discrepancies in action items
- Conduct PCA
- ansure that the support documentation
accurately and clearly reflects the softwars
- make certain the documentation is complete
- make certain the softwarz changes
resulting from the FCA are reflected
in the documentation
- document discrepancies in action items
- Conduct FQR
- confirm that all action items identified
during the FCA and the PCA have been
resolved
- Accept software systam
- Repeat Development steps for the procurament
of the hardware

Figure 8.

Software System Development Checklist

47

Al] —— ML S PN Y DNy Y NN S ¥ PR S Y WD Gy W VAT W W Gy SRy Ry S PUREE T G WY G U Y G Wl G WY SON W o A—LAA‘J

(Li67) SITPOY Due ‘smo1Acy ‘soseyq :ABOTOPOUISW Jusudorensq weisAs -6 2Inbld

ANITASYY L00a0¥d ANITISYE NDISId

403

INTTISVE EINOOTN ANTIESYE TYNOILONOA %

AR glec ey SNOTINOOTIV

@ zSa«uEHBmm onaMmmwﬁmEm SINTWANINCEY

ATWN IWI TN

SNOTINOTATOHAS T||| ||||||| |
INTHAOTANAD D AN “ Aoraniasma Em:
TIUMLIOS WAISAS WIHO¥d

mEmEE:Sm STSKATUNY
TINOTIONNA

JSVHA NOIINAITNA ASVHd "TNALJIIONCO

Conceptual Phase

Control of the system 1life cycle starts with the

Conceptual Phase which includes a functional analysis and
preliminary requirements allocation. When that is finished
the System Requirement Review (SRR) is conducted "to
determine initial direction and progress of the con-
tractor's System Engineering Management effort and his
convergence upon the optimum and complete configuration
[47:12]." The SRR guarantees that the contractor is,
indeed, solving the right problem. This phase produces
System Specifications, called the functional baseline. The
functional baseline identifies what needs to be done. It
is a first attempt at describing the specifications. At

this point the life cycle enters the Validation Phase.

Validation Phase

During the Validation Phase, the System Specifi-
cations functional baseline governs the tasks of the
contractor as the product 1is developed. The Air Force
project manager monitors the contractor's progress during
the Validation Phase using the System Design Review (SDR).
The SDR permits the manager to evaluate the adequacy of
the Validation Phase products before the contractor
formally submits them (29:20). The SDR is primarily

concerned with the overall review of the requirements.

49

PRE R WP . - = PP S Ly Y Al enadbmtedins s de o o PR S Sy WAL G YT VO U SN W S MY SR T S W S R S G S Sy SR VI v J

MIL-STD-1521A, Appendix B, 1lists the items which must be
reviewed during the SDR. After the SDR is completed, the
contractor should correct any deficiencies identified
during the SDR. These authenticated specifications
(product) are the B-5 or Part I specification, the
allocated baseline. The subm.ttal of the specifications
ends the Validation Phase and leads to the beginning of the

Full-Scale Development Phase.

Full-Scale Development Phase

Reviews

The first review conducted in the Full-Scale Develop-
ment Phase is the Preliminary Design Review (PDR). The PDR
is a review of the developer's top-level software design in
response to the software specifications (29:25). These
specifications would have been approved, authenticated and
baselined 1in the phases prior to the PDR. The purpose
of the PDR 1is to determine if 1) the design approach
considers all performance requirements; 2) the approach
will satisfy these requirements; and 3) the new software
will work with the existing software and hardware.

The requirements for conducting PDRs are specified in
MIL-STD-1521A, Appendix C (29:26). The PDR 1is conducted
after a basic design approara has been selected by the

contractor. 1If problems in the design of the baseline are

50

discovered during the PDR, the Air Force must ensure that
an Engineering Change Proposal (ECP) is issued. The ECP
will formally acknowledge the changes to the established
baselines (29:30). Upon completion of the PDR, the
developer has achieved the design baseline (C-5 specifi-
cation) and 1is ready to initiates the detail design of the
software. The design baseline signifies the end of the
Analysis Phase and the beginning of the Design Phase. When
the detail design 1is completed, and before coding and
testing of software, a Critical Design Review (CDR) is
conducted. According to MIL-STD-1521A,

A CDR shall be conducted [on the software] to

ensure that design solutions, as reflected in the

Draft Part II Product Specifications on engineering

drawings, satisfy performance requirements estab-

lished by the Part I Development Specification

[47:40].

The CDR for a software package is a technical review

of flowcharts when the logical design is completed (29:30).
The purpose of the CDR is to critically review the detailed
design of the software to determine if 1) the requirements
of the software development specifications can be
implemented; 2) the detailed design of the flowcharts is
compatible with the design structure presented at the
Preliminary Design Review; and 3) the flowcharts are

detailed enough to start coding.

51

T r? P T',*tfrEr
RN . o . ‘- . 3 N
v * .t PRI . .

To identify deficiencies, the manager should question
the design presented. If the deficiencies are extensive
and the design 1is unacceptable, the manager should
reschedule the CDR for a later date. Otherwise, 1if the
design 1is basically sound, the deficiencies should be
documented in the meeting minutes of the CDR. This action
should be followed up to ensure that the deficiencies have
been corrected.

After a successful CDR, the contractor will prepare
the software and its documentation. It is then time to

conduct the configuration audits on this product.

Audits

The purpose of the audits 1is to verify compliance
with the requirements identified in the specifications and
other contract requirements. Two kinds of audits are
performed: the Functional Configuration Audit (FCA) and the
Physical Configuration Audit (PCA).

The purpose of the FCA is to ensure that the
delivered computer code actually does what the user asked
for in the Software Specifications (B-S/Part I Specifica-
tions). The FCA is accomplished by auditing the results of
the software qualification tests to determine the gualifi-
cation status of the software (29:35). If during the FCA
the software fails to meet the specifications, the manager

has two choices.

52

If the discrepancies are not extensive, they should
be formally identified in the FCA minutes and in action
items. The discrepancies must be corrected before the
Physical Configuration Audit starts, and the corrections
checked during the Formal Qualification Review.

If the discrepancies are extensive, the software is
disapproved, or the requirements 1in the Development
Specification are changed. If the software is disapproved,
the software must be modified, retested and re-audited.
Sometimes, though, when the software cannot satisfy the
Development Specifications, "it may be desirable to change
the specifications to agree with the software performance
[29:37]." If the software is accepted after the FCA, then
the Formal Qualification Review becomes a formality which
is part of the FCA. In this case, the FQR, which is
essentially the same as the FCA, "can be accomplished in a
single combined Audit/Review [47]." If the software has
some requirements yet to be satisfied, the FQR will be
conducted after the Physical Configuration Audit (29:42).

The Physical Configuration Audit (PCA) is conducted
to ensure that the support documentation accurately and
clearly reflects the software. It 1is the prime instrument
used for making design modifications (software maintenance)
to computer code (29:38). Good complete documentation can
significantly reduce software maintenance costs. We know

that software maintenance costs comprise two-thirds of

53

PRI amedh Cumer obt et
oy .o

future DOD computer 1life cycle costs (15:11). Therefore,
the PCA can help reduce DOD software maintenance costs.
The PCA 1is conducted by comparing the documentation with
the software. This includes verifying the narrative
information and flowcharts against listings for accuracy,
completeness, and understandability of documentation.
Special attention must be given to portions of software
which were changed as a result of the FCA. It is possible
that the corresponding documentation updates may have been
overlooked. In addition,

The positional handbooks, wusers manuals, and

operators manuals should be validated prior to

System Development Test and Evaluation (DT&E). The

verification of these manuals will normally be

accomplished during System DT&E [29:40].
Deficiencies discovered during the PCA will be listed on DD
Form 250. This signed DD 250 (with deficiencies) repre-
sents a conditional acceptance until the shortages have
been satisfied. This conditional acceptance, with out-
standing qualification requirements, normally requires a
Formal Qualification Review (29:42).

The FQR then ensures that all discrepancies noted in

the FCA and PCA minutes have been corrected. With the
completion of the FQR, the softwire 1is certified and

accepted by the Air Force manager.

54

P PR Y A e o O, Qo o

Summary

The DOD manager can ensure an orderly, well-planned
;2 development of a system by systematically completing each
- review and audit. This imposed organization can help the
-. manager succeed in acquiring software which will identify

and satisfy the allocated baseline. In addition, a

systematic development reduces the number of design errors
in a software package, thus reducing software maintenance

and system life cycle costs.

55

P ol VAP U Y PR Y WEY W ST SR YT T Y © N Y -J

PP Py SR T

APPENDIX B

GLOSSARY

56

A Snsh e e Jneth Madh S g S o

- %

PP S Wy S

This appendix defines the software engineering terms
used in this thesis. The definitions are a subset of the

IEEE Standard Glossary of Software Engineering Terminology

except where otherwise indicated.

Definitions

acceptance testing: formal testing conducted to determine
whether or not a system satisfies its acceptance
criteria and to -enable the <customer to determine
whether or not to accept the system.

algorithm: 1) a finite set of well-defined rules for
the solution of a problem in a finite number of
steps; for example, a complete specification of a
sequence of arithmetic operations for evaluating
sin X to a given precision (ISO), 2) a finite set
of well-defined rules that gives a sequence of
operations for performing a specific task.

audit: 1) an 1independent review for the purpose of
assessing compliance with software requirements,
specifications, baselines, standards, procedures,

instructions, <codes, and contractual and licensing
requirements, 2) an activity to determine through
investigation the adequacy of, and adherence tc,
established procedures, instructions, specifications,
codes, and standards or other applicable contractual
and licensing requirements, and the effectiveness of
implementation.

baseline: 1) a specification or product that has been
normally reviewed and agreed wupon, that thereafter
serves as the basis for further development, and that
can be changed only through formal change control
procedures, 2) a configuration identification
document or a set of such documents formally
designated and fixed at a specific time during a

configuration item's 1life cycle. Base’® ‘nes, plus
approved changes from those baselines, corstitute the
current configuraticn identification. For configur-
ation management there are three baselines, as
follows: a) functional baseline - the initial
approved functional configuration, Db) allocated

57

b andmad el ol

baseline~-the 1initial approved allocated config-
uration, and c¢) product baseline~~-the initial
approved or conditionally approved product
configuration identification.

bottom-up: pertaining to an approach that starts with
the lowest 1level software components of a hierarchy
and proceeds through progressively higher levels to
the top level component; for example, bottom-up
design, bottom-up programming, bottom-up testing.
Contrast with top-down.

code: 1) a set of wunambiguous rules specifying the
manner in which data may be represented in a discrete
form, 2) to represent data or a computer program in
a symbolic form that can be accepted by a processor,
3) to write a routine, 4) loosely, one or more
computer programs, or part of a computer program,
5) an encryption of data for security purposes.

cohesion: The degree te which the tasks performed by a
single program module are functionally related.
Contrast with coupling.

computer: 1) a functional unit that can perform
substantial computation, including numerous

arithmetic operations or logic operations, without
intervention by a human operator during a run, 2) a
functional programmable unit that consists of one or
more associated processing units and peripheral
equipment, that 1is controlled by internally stored
programs, and that c¢an perform subrctantial compu-
tation, including numerous arithmetic ~»perations or
logic operations, without human intervention.

computer network: a complex consisting of two or more
interconnected computers.

computer program: a sequence of instructions suitable
for processing by a computer. Processing may include
the use of an assembler, a compiler, an interpreter,
or a translator to prepare the program for execution
as well as to execute it.

computer sophisticate: a person comfortable with the
complexities of modern computer science. One able to
cope with hardware and software which is not user-
friendly. [(author]

computer system: a functional wunit, consisting of one or
more computers and associated software, that wuses

58

common storage for all or part of a program and also
for all or part of the data necessary for the execu-
tion of the program; executes user-written or user-
designated programs; performs user-designated data
manipulation, including arithmetic operations and
logic operations; and that can execute programs that
modify themselves during their execution. A computer
system may be a standalone unit or may consist of
several interconnected units. Synonymous with ADP
system, computing system.

configuration: 1) the arrangement of a computer system
or network as defined by the nature, number, and the
chief characteristics of the functional units. More
specifically, the term configuration may refer to a
hardware configuration or a software configuration,
2) the requirements, design, and implementation that
define a particular version of a system or a system
component, 3) the functional and/or physical
characteristics of hardware/software as set forth in
technical documentation and achieved in a product.

configuration audit: the process of verifying that all
required configuration items have been produced, that
the current version agrees with specified require-
ments, that the technical documentation completely
and accurately describes the configuration items, and
that all change requests have been resolved.

confiquration item: 1) a collection of hardware or
software elements treated as a unit for the purpose
of configuration management, 2) an aggregation of
hardware/software, or any of its discrete portions,
that satisfies an end use function and is designated
for configuration management. Configuration 1items
may vary widely in complexity, size, and type from an
aircraft, electronic or ship system to a test meter
or round of ammunition. During development and
initial production, configuration items are only
those specification items that are referenced
directly in a contract (or an equivalent in-house
agreement). During the operation and maintenance
period, any reparable item designated for separate
procurement is a configuration item.

coupling: a measure of the interdependence among modules
in a computer program. Contrast with cohesion.

Critical Design Review (CDR): a formal technical review
of the design as depicted by the specification and
flow diagrams, sufficiently detailed to enable the

59

programmer to code and to assure that design require-
ments have been met before beginning cceding.

[1 [29:77-79]
3

g data base: 1) a set of data, part or the whole of
- another set of data, and consisting of at least one
9 file that is sufficient for a given purpose or for a
o given data processing system, 2) a collection of
data fundamental to a system, 3) a collection of
data fundamental tc an enterprise.

error: 1l) a discrepancy between a computed, observed,
or measured value or condition and the true,
specific, or theoretically correct value or

condition, 2) human action that results in software
containing a fault. Examples include omission or
misinterpretation of user requirements in a software
specification, incorrect translation, or omission of
a requirement in the design specification. This is
not a preferred usage.

flowchart: a graphical representation of the definition,
analysis, or solution of a problem in which symbols
are used to represent operations, data, flow, and
equipment,

Formal Qualification Review (FQR): the test, inspection,
or analytical process by which products at the end
stem or «critical-item level are verified to have met
specific procuring activity contractual performance

reg.iirements (specification or equivalent).
. "7-791
Formal Quaiification Tests (FQT): formal tests oriented

toward testing of the functional and performance
characteristics of the CPCI, normally using opera-
tionally configured equipment at the System DT&E site
prior to the beginning of System DT&E. [29:77-79]

Full-Scale Development Phase: the period when the
system/equipment and the principal items necessary
for its support are designed, fabricated, tested, and
evaluated. The intended output is, as a minimum, a
preproduction system which closely approximates the
final product, the documentation necessary to enter
the production phase, and the test results which
demonstrate that the production product will meet
stated requirements (DODI 5000.1, AFR 800-2).
[29:77-79]

60

A Lt it At Gt Ans o i et Jead JRut Aanis M Sath 4

Functional Configuration Audit (FCA): & formal audit to

validate that the development <¢f a CI has been
completed satisfactorily and that the CI has achieved
the performance and functional characteristics
specified in the functional or allocated configur-
ation identification. [29:77-79]

function decomposition: a method of designing a system
by breaking it down into its components in such a way
that the components correspond directly to system
functions and subfunctions.

hardware: physical equipment used in data processing, as
opposed to computer programs, procedures, rules, and
associated documentation. Contrast with software.

high-level language: synonomous with higher order language.

higher order language: a programming language that usually

includes features such as nested expressions, user
defined data types, and parameter passing not
normally found in 1lower order languages, that does
not reflect the structure of any one given computer
or class of computers, and that can be used to write
machine independent source programs. A single,
higher order language statement may represent
multiple machine operations. Contrast with machine
language, assembly language.

instruction: 1) a program statement that causes a
computer to perform a particular operation or set of
operations, 2) 1in a programming language, a meaning-
ful expression that specifies one operation and
identifies its operands, if any.

integration: the process of combining software elements,
hardware elements, or both into an overall system.

interface: 1) a shared boundary. An interface might be
a hardware component to link two devices or it might
be a portion of storage or registers accessed by two
or more computer programs, 2) to interact or
communicate with another system component.

machine language: a representation of instructions and
data that is directly executable by a computer.
Contrast with assembly language, higher order
language.
61

T — = s - —

maintainability: 1) the ease with which software can be
maintained, 2) the ease with which maintenance of a
functional unit can be performed 1in accordance with
prescribed requirements.

modular decomposition: a method of designing a system by
breaking it down into modules.

modular programming: a technique for developing a system
or program as a collection of modules.

modularity: the extent to which software is composed of
discrete components such that a change to one
component has minimal impact on other components.

module: 1) a program unit that is discrete and
identifiable with respect to compiling, combining
with other units, and loading; for example, the input
to, or output from, and assembler, compiler, linkage
editor, or executive routine, 2) a logically
separable part of a program.

nest: 1) to incorporate a structure or structures of
some kind into a structure of the same kind. For
example, to nest one loop (the nested loop) within
another loop (the nested subroutine) within another
subroutine (the nesting subroutine), 2) to place
subroutines or data in other subroutines or data at a
different hierarchical level so that subroutines can
be executed as recursive subroutines or so that the
data can be accessed recursively.

network: 1) an interconnected or interrelated group of
nodes, 2) in connection with a disciplinary or
problem oriented qualifier, the combination of
material, documentation, and human resources that are
united by design to achieve certain objectives; for
sample, a social science network, a science
information network.

operating system: software that controls the execution
of programs. An operating system may provide
services such as resource allocation scheduling,
input/output control, and data management. Although
operating systems are predominantly software, partial
or complete hardware implementations are possible.
An operating system provides support in a single spot
rather than forcing each program to be concerned with
controlling hardware.

62

PRI SUPIP RPN i DA SR SR GRS W ISP WU RS DU W UL . Lt o L P T S

T P ——

Physical Configuration Audit (PCA): a formal examination
of the technical documentation (specification,
handbooks, and manuals) to determine their
compatibility with the qualified CPCI. [29:77-79].

Physical Design Review (PDR): A formal review of the
preliminary design of a CI to 1) evaluate technical
progress, 2) determine its compatibility with the
requirements of the CI Development Specification, and
3) establish the existence and compatibility of the
physical and functional interfaces among <CI equip-
ment, facilities, computer programs, and personnel.
[29:77-79]1

preliminary design: 1) the process of analyzing design
alternatives and defining the software architecture.
Preliminary design typically includes definition and
structuring of computer program components and data,
definition of the interfaces, and preparation of
timing and sizing estimates, 2) the result of the
preliminary design process.

program: 1) a computer program, 2) a schedule or plan
that specifies actions to be taken, 3) to design,
write, and test computer programs.

quality assurance: a planned and systematic pattern of
all actions necessary to provide adequate confidence
that the item or product conforms to established
technical requirements.

reliability: 1) the ability of an item to perform a
required function under stated conditions for a
stated period of time, 2) see software reliability.

software development plan: a project plan for the develop-
ment of a software product. Synonymous with computer
program development plan.

software documentation: technical data or information,
including computer listings and printouts, in human-
readable form, that describe or specify the design or
details, explain the capabilities, or provide
operating instructions for wusing the software %o
obtain desired results from a software system.

software engineering: the systematic approach to the
development, operation, maintenance, and retirement
of software.

63

E4 software reliability: 1) the probability that software
1 will not <cause the failure of a system for a
- specified time under specified conditions. The
t{‘ probability is a function of the inputs to and use of
- the system as well as a function of the existence of
L faults in the software. The inputs to the system
L determine whetl.er existing faults, if any, are
- encountered, 2) the ability of a program to perform
- a required function under stated conditions for a
stated period of time.

specification: 1) a document that prescribes, in a
complete, precise, verifiable manner, the require-
ments, design, behavior, or other characteristics of
a system or system component, 2) the process of
developing a specification, 3) a concise statement
of a set of requirements to be satisfied by a
product, a material or process indicating, whenever
appropriate, the procedure by means of which it may
be determined whether the requirements given are
satisfied.

structured design: a disciplined approach to software
design that adheres to a specified set of rules based
on principles such as top-down design.

structured program: a program constructed of a basic set
of control structures, each one having one entry
point and one exit. The set of control structures
typically includes: sequence of two or more
instructions, conditional selection of one of two or
more instructions, conditional selection of one of
two or more instructions or segquences of instruc-
tions, and repetition of an instruction or a sequence
of instructions.

structured programming: L a well-defined software
development technique that incorporates top-down
design and implementation and strict use of
structured program control constructs, 2) loosely,
any technique for organizing and coding programs that
reduces complexity, improves clarity, and facilitates
debugging and modification.

System Design Review (SDR): a design review conducted to
evaluate the optimization, correlation, completeness,
and risk associated with the allocated technical
requirements. [29:77-79]

64

P
D)
,

- R —

System Requirements Review (SRR): a system engineering

review to ascertain the adequacy of the contractor's
efforts in defining system requirements. It will be
conducted when a significant portion of the system
functional requirements has been established.
(29:77-79]

system software: software designed for a specific computer

system or family of computer systems to facilitate
the operation and maintenance of the computer system
and associated programs, for example, operating
systems, compilers, utilities.

test plan: a document prescribing the approach to be taken
for intended testing activities. The plan typically
identifies the items to be tested, the testing to be
performed, test schedules, personnel requirements,
reporting requirements, evaluation criteria, and any
risks requiring contingency planning.

test repeatability an attribute of a test indicating
whether the same results are produced each time the
test is conducted.

testability: 1) the extent to which software facilitates

both the establishment of test c¢riteria and the
evaluation of the software with respect to those
criteria, 2) the extent to which the definition of
requirements facilitates analysis of the requirements
to establish test criteria.

testing: the process of exercising or evaluating a
system or system component by manual or automated
means to verify that it satisfies specified require-
ments or to identify differences between expected and
actual results.

top-down: pertaining to an approach that starts with the
highest level component of a hierarchy and proceeds
through progressively lower levels; for example,
top-down design.

top-down design: the process of designing a system by
identifying its major components, decomposing them
into their 1lower level components, and iterating
until the desired 1level of detail 1is achieved.
Contrast with bottom-up design.

user-friendly: easy to use or understand by the non-
expert. [author]

65

validation: the process of evaluating software at the
end of the softwares Jdevelopment process to ensursa
compliance with software requirements.

Validation Phase: the overall objective of the Validation
Phase is to determine whether to proceed with Full-
Scale Development. The ultimate goal of the

v ‘on Phase, where development 1is to be
perfo..ed by a contractor, 1is to establish firm and
realistic performance specifications (Allocated

Baseline), which meet the operational and support
requirements. [29:77-79]

verification: 1) the process of determining whether or
not the products of a given phase of the software
development c¢ycle fulfill the requirements estab-
lished during the previous phase, 2) formal proof of
program correctness, 3) the act of reviewing,
inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether or not items,
processes, services, or documents conform to
specified requirements.

walk-through: a review process in which a designer or
programmer leads one or more other members of the
development team through a segment of design or code
that he or she has written, while the other members
ask gquestions and make comments about technique,
style, possible errors, violation of development
standards, and other problems.

66

APPENDIX C

FORMAL PROGRAM DESIGN METHODOLOGIES

67

T

Sa

-
'vv“l'", p

No single design methodology has been shown to be

L A

"correct" for all types of problems. Therefore, the
following suggestions cover a variety of applications
(2:13).

Functional Decomposition. Refers to:

the divide-and-conguer technique applied to
programming [as shown in Figure 10]. By viewing
the stepwise decomposition of the problem and the
simultaneous development and refinement of the
program as a gradual progression to levels of
greater and greater detail, functional decomposi-
tion [can be characterized] as a top-down approach
to problem-solving. Conversely, groups of instruc-
tions sequences [can be formed and layered]
together 1into "action clusters," starting at the
atomic machine instruction 1level and working our
way up to the complete solution. This approach
leads to a bottom-up method [2:19].

O1VIOE AND CONQUER STEPWISE REFINEMENT

Figure 10. Functional Decomposition (2:19)

Data Flow Design. This method has also been known as

"transform-centered design" and "composite design" (2:23).

68

L i gl Ak St it b

LI P

o~

In its simplest form, [data flow design] is nothing

more than functional decomposition with respect

data flow.

Each block of the
obtained by successive application of

ing definition of a black box

input data stream into

these transforms are linked
the computational process
implemented much 1like an

streams of input parts and outputs streams of final

products [2:23].

structure chart is
the engineer-

that transforms

an output data stream.
together appropriately,

can be modified
assembly line that merges

2 IDENTIFY AFFERENT
AND EFFERENT
ELEMENTS

4 REFINEMENTS ANO

MOCEL OF
PROBLEM
ENVIRQNMENT

AFFERENT CEN
DATA ELEMENTS TRANSFORM

RAL EFFERENT
DATA ELEMENTS

3 FACTORING OF AFFERENT

OATA FLOW
GRAPH

PROGRAM
STRUCTURE
ALTERATIONS
OPTIMIZED
PROGARAM

1. RESTATE PROBLEM AS

DATA FLOW GRAPH

EFFERENT AND

TRANSFORM BRANCHES

Figure 1ll. Data Flow Design Procedure

Data Structure Design.

hypothesis that:

A program views the

This

world

structures and that, therefore,
the data structures can

program that incorporates a correct model of the
world. The importance of this view 1is emphasized
by Michael Jackson's words that "a program that
doesn't directly correspond to the problem

environment is not poor,

[2:26].

69

be

design

through

its

(2:24)

follows

a correct model
transformed 1into

is not bad,

but is wrong

When

and

data

the

PRl 2 ek Jaur cant aun 4
-

Ty e

Figure 12.

Figure

SYSTEM NETWORK/DATA
STRULTURKS/OPERATIONS STRUCTURE JIAGRAM

m@

1 OPEN FILE

2 READ FILE

3 -

4 -

Data Structure Design Method (2:27)
MODEL OF i. MODEL STEP
PROBLEM
ENVIRONMENT
2. DATASTEP

DATA

4. QPERATI TEP
STRUCTURES ore ONS STE

STRUCTURE
ORRESPONDENCES

QPERATIONS TO
SOLVE PROBLEMS

PROGRAM

J PROGRAM STEP STRUCTURE

5. TEXT STEP

PROGRAM TEXT

13.

Basic Data Structure Design Procedure

70

(2:27)

YTV T

A Programming Calculus. Proving the "correctness" of

a program is “"disappointingly difficult [2:29]." This
method uses a simultaneous process where the program and
the proof are constructed together. Bergland discusses the

design strategy as follows:

The 1initial design task consists of formally
specifying the required result as an assertion
stated in the predicate calculus. Given this

desired post-condition, one must derive and verify
the appropriate pre-conditions while working back
through the program being constructed. The program
and even individual statements play a dual role in
that they must be viewed in both an operational way
and as predicate transformers. The method is a
top-down method to the extent that both the
resulting program and the predicates can be formed

in stages by a sequence of stepwise refinements
(2:29].

Methodology Comparison. Many c¢laims have been made

about the different strategies for software design, as seen

in Figure 14.

For functional decomposition, the proponents have
largely said "D 1is [a] good design, beliecve me."
For data flow dosign methods, people have said,
"Program C is letter than program D. Tet me tell

you why." For data structure design methods, the
claim 1is that "B is right, C and D are wrong. A
program that works 1isn't necessarily right." 1In

the programming calculus, the contention 1is that
"Program A is probably correct. B, C, and D are
unproven [2:35].

71

& FUNCTIONAL DECOMPOSITION @

OATA FLO;:)OéStGN METROD
DATa STAUCTYRE DESICN METHQD

Loa
PRUGAAMMING TALCLL .S 0'STPLIKE ; ?

A PROVABLY CQRRECT e W
8C 0 JNPROVEY =3 @

Figure 14. Summary of Program Design Methodology Claims

REAL-WORLD
PROBLEM ENVIRONMENT
MAGIC
DAlA
STRUCTURE MATHEMATICAL
MODEL “ooeL
Wagit v y v
. . . JAla PRUGRAMMING
FUNCT:ONAL DATA P QW
STRUCTURE CALLLLUS
U] & \

QECQUPOSITION OES.GN 0ESGN 0rSC.0. NE
G3a0 5300 GO0 Gago
MCCAAM PQOGAAM PROGRAM PROGRAM
STOuC* yAe 3TAYCTURE STRUCTURE STRUCTURE
SOME™ VES SOME MES USUALLY® OF TEN®

TAMERE APP CAaLE

Figure 15. Current State-of-the-Art (2:35)

72

P Wy

Other Design Recommendations. G. D. Bergland identi-

fied four specific design methodologies. These additional
recommendations are more suitable for the software
procurement novice.

Top-down design: In the top-down design approach, the
system is approached as a whole from the outside. The
system is then subdivided into a limited number of modules
with specified interfaces. Each module is then subdivided
into submodules (26).

Factoring: Like top-down design, this strategy breaks
the problem into smaller, more manageable portions. Some
guidelines include:

a. reduce the module size so that the entire
module fits on one page.

b. clarify the system by modularizing.

¢. avoid redundant functions.

d. separate work things (calculating and editing)
from management things (decisions or module
calls).

e. create more useful modules by ensuring each
module does just one function (thereby being
universally useful.)

Avoid Decision Splits: This refers to a situation

where the data required for the recognition part of the
decision is in a different module from the decision itself.

This practice is difficult to implement but should be

attempted (26).

73

Maintain Local Error Reporting: Report an error from
the module that detects the error and knows what it is.
This helps locate the source of the error, is easier to
update the error message, avoids duplication and helps keep
wording and format consistent,

Avoid State Memory: This refers to data internal to a
module that survives unchanged from one use of the module
to the next. State memory causes problems in this
situation because its effects are unpredictable. It also
makes the module harder (thus more expensive) to maintain
(26).

These recommendations have been provided because they
have gained notoriety as some of the better precautions to
reduce software maintenance. The 1list of available
"precautions” is surely unending. Nevertheless, these
recommendations will contribute significantly to the

reduction of software life-cycle costs.

74

APPENDIX D

MEASURES OF GOOD DESIGN

75

PR A S Y

PRSP e iiinih [W e P % P W Wy

(IS

Among the primary measures of good design are module
relatedness measures. They explain how portions of com-
puter code (modules) are connected. Two module relatedness

measures are coupling and cohesion.

Coupling

Coupling measures intermodule strength; the degree of
interdependence between two modules. Coupling should be
minimized to make modules as independent as possible (31;
26). The 1links on a chain have maximum coupling. If one
link fails the other links become useless. Conversely, 1if
the modules of a software system have minimum coupling,
failure of ‘one module will have minimum effect on the
system, Minimized or loosest possible coupling is desired
because:

1. The fewer connections there are between two
modules, the less the chance there 1is for a bug in one
module to appear as a symptom in another.

2. We can change the software in a module with
minimum risk of having to change other mcdules.

3. While maintaining a module we don't want to worry
about the coding details of other modules [31:102-103].

Six different types of module coupling may occur
between modules. In order of the 1looses: or best to

tightest or worst, they are:

76

AP L W PO PR

Data: Modules communicate by by sending only those
data elements required (26). Each element (or parameter)
is either a single field or a table in which each entry
contains the same type of information (31:103).

Stamp: Modules communication refers to the same data
structure (26; 31:103; 34:43). The structure contains
fields which are not required and are excess data.
Therefore, when an element of data is manipulated in the
structure it affects all the modules which refer to the
structure. It will even affect those modules which do not
interact with the actual data being serviced.

Control: Modules are control coupled if one module
passes to a second module a piece of information intended
to control the internal 1logic of the second module
(31:103).

External: Modules refer to an externally declared
data element [34:43].

Common: Modules refer to the same global data area
(26).

Content: One module refers to data inside of
another, or if one module alters a statement in another
(31:113; 34:43; 26).

Two modules may have more than one type of coupling,
or have the same type of coupling several times (31:103).
Minimizing coupling will reduce the time and expense

required for software maintenance during the life of the

77

g

fw
=
Y 1

v LB AR ANAS
S PPN
. P

system. Another measure of the design of a system is the

strength within each module, or its cohesion.

Cohesion

Cohesion refers to the intramodule strength. It "is
the measure of the strength of functional association of
elements within a module [31:118]." The 'elements' are the
computer instructions. The preference is for modules whose
elements are strongly and genuinely related to one another.
Ideally, a module contains elements that all contribute to
the execution of one problem—related task. An example of
good cohesion would be a module which calculates the area
of a circle given the radius. It has one purpose. An
example of bad cohesion 1is a module whose elements
contribute to activities with no meaningful relationship to
one another (31:129). Cohesion 1is a good measure of a
module's maintainability. A module with good cohesion is
easier (thus less expensive) to maintain than a module with
bad cohesion.

The seven levels of cohesion in order of their
maintainability (from best to worst) are:

Functional: This most desired form of cohesion is
characterized by modules that perform a single specific
function (34:43). All the elements in the module
contribute to the execution of one, and only one, problem

related task (31-119).

78

Sequential: In this form of cohesion module, action

consists of several logical functions operating on data in

a predetermined order (34:43). The output of one function
(or operation) is the input to the next (26; 31:125).

Communicational: Software with this intramodule

strength uses the same input, but the output 1is not
related. The order of the operations is not important (26;
31:125).

Procedural: "A procedurally cohesive module is one
whose elements are 1involved in different and possibly
unrelated activities, 1in which control flows from each
activity to the next [31:124]." A specified order exists,
but there is no relation between steps, and control flows
from one element to another (26).

Temporal: The elements of this module are involved
in activities that are related in time (31:125). A key
characteristic of this form of intramodule strength is
'‘nitialization' (26; 34:43).

Logical: These elements contribute to activities of
the same general category. They are substitute choices for
each other and generally are represented by a decision on a
structure <chart. It 1is used to overlap parts of functions
which have the same lines of code (26; 31:125).

Coincidental: The elements in this module contribute

to activities with no meaningful relationship to one

79

e e sunstendesniostnletok w-- & il e diut o uede “"‘J

another (31:129). It is a 'coincidence' that all functions

are in the same module (26).

- Cohesion 1is a measure of module strength, and acts
somewhat like a chain, holding together the
activities 1in the module. If all the activities of
a module are related by more than one level of
cohesion, the module has the strength of the
strongest level of cohesion; this is the
chains-in-parallel rule [31:133].

80

APPENDIX E

STRUCTURED PROGRAMMING

81

Structured programming is the formulation of programs
as hierarchical nested structures of statements and objects
of computation (49). The goal of structured programming is
to reduce program complexity, and improve program clarity.
These two attributes will help make the software program be
more 'user friendly' and have lower software maintenance
requirements. Structured programming reduces complexity
by wusing only three control structures: 1) sequence;
2) conditional (if-then-else); and 3) loop (do-while).
Figures 16 and 17 graphically depict the three control
structures of structured programming.

Code designed using only these control structures is
easier to read and understand. Code that is easy to read
and understand is less difficult to update. Therefore, the
use of structured programming can reduce software

maintenance and computer system life-cycle costs.

82

]

Eout b Miie

SEQUENCE
|]

' PROCESS A
S 2

} PROCESS B

|

SEQUENCE

Figure 16.

Figure 17.

R Ry

DO-WHILE —
z T

PROCESS

PN
\\\\F
DO-WHILE

Basic Control Structures of Structured
Programming (34:15)

SEQUENCE _ITERATION SELECTION
n 4]
8] 8]
A SEQUENCE A ITERATION A SELECTION
g0 8. a0 B: go 8.
o C. A END A ALY
A END o o C.
A END

The Three Basic Control Flow Constructs

PR P Y I W S P

83

(2:15)

v

APPENDIX F

PROGRAMMING STYLE

84

T T

-A124 363 MICROCOMPUTER SOFTWARE SYSTEM DEVELOPMENT: SUGGESTED
REYISIONS TO MIL-STD.. (U> AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF SYST.. ¥ H HELBLING

UNCUASSIFIED SEP 83 AFIT-LSSR-18-83

NL

§

=

"EEFEEEE

EEEE

—
122 Tt mes

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Ty T S e —— A AL s 2 liate B/ St it aiC I I A S A i A Ja vin it R/iiiad)

In the last twenty years, the concept of programming
style has been changed drastically.
If you asked someone what good programming style

was, you would 1likely have received (if you didn't
get a blank stare) a lecture on

1. how to save microseconds

2. how to save words of memory

3. how to draw neat flowcharts

4. how many comments to write
per line of code [21:303].

Today, some microcomputer programmers are primarily
concerned with ‘'efficiency' and ‘'clever' use of machine
capabilities. These practices are dangerous and result in
software that is difficult (therefore expensive) to update.
Rernighan and Plauger recommend these elements of
programming style:

Expression: At the lowest level of coding,
individual statements and small groups of statements have
to be expressed so they read clearly (21:304).

Structure: The larger structure of the code should
also read clearly. It should be written with only a
handful of control-flow primitives (such as if-then-else).
This 1is one aspect of what we mean by structured
programming (see Appendix E). Coding in this set of
well-behaved structures makes code readable, thus more
understandable and likely to be right. This reduces

software maintenance cost by making the code easier to

change and debug (21:304).

............

e e WG V. e T T W T S Wy SR }
R o . Pl R e T T Lt

Robustness: A program should work not Jjust on the
i‘ easy cases, or on the well-exercised ones, but all the time

(21:304).

Efficiency and Instrumentation: Until we have a

working piece of code, we don't always know where it spends
its time. And until we know that, talk of changing it "for
efficiency"” is foolish. Write the whole program clearly.
L If it is then too slow or too big, change to a better

- algorithm (21:305).

o Documentation: If you write the code with care in

the detailed expression, using the fundamental structures,

;? and choosing a good representation, most of the code will
gﬁ be self-documenting--it can be read (21:305).
W Kernighan and Plauger did not emphasize a need for
éf the use of flowcharts. 1In fact, studies by Schneiderman,
- Mayer, McKay, and Heller conject that "flowcharts may even
be a hindrance ([34:65]." Kernighan and Plauger did
2§ recommend these guidelines for expression:
‘g l. Don't be too clever.
. 2. Don't be too complicated.
3. Be clear versus efficient.
gg 4. Don't hesitate to rewrite the program.]
‘ (21:305-309).]

Milne's quidelines parallel those suggestions:

» 86

K '_..".; o ,"

NOAEYACAC JAE I MC S g A A A P S AL S I M I L O A AL R AR

1. Don't be too clever cr complicated.

2. Don't optimize the code.

3. Stick to basic control structures (Appendix E).

4. Make sure every comment means something.
Don't have comments echo the code.

5. Use an appropriate language, but be clear in
the language you use.

6. Use descriptive names for objects.

7. Avoid negative logic.

8. Don't bé unnecessarily complicated.

9. Avoid temporary variables (26).

The DOD manager should request that the contractor
follow these guidelines. Programmers often claim that they
don't have time to worry about niceties 1like style
(21:309). The DOD manager must resist abdicating to this
complaint. The time saved when problems are encountered in
testing and when software modifications are performed on
complicated, unclear softwaré will far outweigh any savings

during the software development.

87

¥ e W

b

et aear
PLAPE}

¥

v .
R Y

. .
alac

a

.

S R I gt A It Y
LRI
tatafaiat ey

- _u[‘_
88

=

SELECTED BIBLIOGRAPHY

O —
-

.........

A. REFERENCES CITED

1. Babel, Philip S. ASD Computer Resource Focal Point,
Deputy for Engineering, ASD/EN, Wright-Patterson
AFB OH. Personal Interview. 23 March 1983.

2. Bergland, G. D. "A Guided Tour of Program Design
Methodologies," Computer, October 1981, pp. 13-37.

3. Brooks, Frederick P., Jr. The Mythical Man-Month.
Phillipines: Addison-Wesley Publishing Company,
Inc., 1975.

4. Bunyard, Major General Jerry Max, USAF, and James Mike
Coward. "Today's Risks in Software Development:
Can They be Significantly Reduced?" Concepts,
Vol. S5, No. 4 (Autumn 1982), pp. 79-84.

5. Caine, Stephen H., and E. Kent Gordon. "PDL - A Tool
for Software Design," Proceedings, National
Computer Conference, AFIPS Press, 1975.

6. Clapp, Judith A. "Designing Software for Maintain- J
ability, " Computer Design, September 1981,

7. Clark, Lieutenant General Lynnwood E., USAF.
Commander, Alaskan Air Command, Elmendorf AFB AK.
Personal interview. 17 June 1983. |

8. Craddoc, Doc. Manager for Software Quality, Texas
Instruments, Austin TX. Telephone interview.
19 July 1983.

9. Dayton Daily News. "Sally Ride: No Trade for Space
Trip," Vol. 106, No. 338 (14 August 1983), p. 2.

10. Douglas, Captain Frank E., III, USAF. "Physical
Configuration Audit of Embedded Computer Programs."
IEEE 1979 National Aerospace and Electronics
Conference. New York: IEEE, 1979,

11. Dunn, Robert H., and Richard S. Ullman. "A Workable
Software Quality/Reliability Plan," IEEE
Proceedings 1978: Annual Reliability and
Maintainability Symposium. New York: IEEE, 1978.

89

Tt . L N e el N e -....'A".'-'~'.»-"' O ~ s
LIRS “ LI m'-’.A PSPPSR TG A PR PR TS DR Th TR T T T PO D0 D N Yy s -J

IR AL

Ferris, Michael
A Network of
the 1IBM Pers

Lar L it aedl o4 =g L gl SN D Il I i i Y A

. "Automating America's Air Defense:
XT's Stands Ready," Softalk for
onal Computer, Vol. 2 (June 1983),

pp. 75-81.

Air Command,
16 June 1983

Gaudreau, Captain Skip, USAF. Headquarters Alaskan

Elmendorf AFB AL. Personal interview.

Greentree Computer Corporation. How to Choose Micro
Computer Software. Rockville MD: Greentree

Grove, Mark H.

Henderson, John
Business Mac
28 July 1983

pp. 104-176.

17 June 1983

Computer Corporation, 1983.

"DOD Policy for Acquisition of

Embedded Computer Resources," Concepts, Vol. 5,
No. 4 (Autumn 1982), pp. 9-36.

. Systems Engineer, International
hines, Dayton OH. Telephone interview.

Higgins, David A. "Structured Programming with
Warnier-Orr Diagrams," Byte, December 1977,

Howard, Lieutenant Colonel Dennis D. Chief of Data
Automation, Elmendorf AFB AL. Personal interview.

Huang, J. C. "Program Instrumentation and Software
Testing," Computer, April 1978,

Huskey, Major Charlie D. Lessons Learned in the
Use of Microcomputers in Systems Development.

Center, 1980

Kernighan, Bria
Style: Examp

Surveys, Vol
pp. 303-319.

Lang, Walter N.

Marriot, Phil.

interview,

......
............
.......

Alexandria VA, Defense Technical Information

n W., and P. J. Plauger. "Programming
les and Counterexamples," Computing
. 6, No. 4 (December 1974),

"What the Computer has Wrought,"

Air Force, Vol. 66, No. 7 (July 1983), pp. 68-72.

Manager of Software Quality, National

Cash Register Corporation, Dayton OH. Telephone

21 July 1983.

90

.............

tatataava

e N i S MM MM A CE T R R j‘lr':'1

24. Mathenia, Lynn. Operations Manager, The International
Software Data Base, Ft. Collins CO. Telephone
interview. 2 July 1983.

= 25. McCracken, Michael L. Former Chief System Test, 46024
Computer Services Squadron, Lowry AFB CO. Personal
interview. 12 July 1983.

- 26. Milne, Rob. 1lst Lieutenant USA. Professor, Depart-
- ment of Electrical Engineering, AFIT/ENG, Wright-~
- Patterson AFB OH. Course EE 593. "Software

" Engineering, " Spring Quarter 1983, Lectures.

18 March 1983 through 3 June 1983.

27. Morgan, D. E., and D. J. Taylor. "A Survey of Methods
of Achieving Reliable Software,"” Computer, February
1977, pp. 44-52.

28. Myers, L. P. District Staff Manager, Data Base
Administrator, Northwestern Bell, Omaha NE.
Personal interview. 22 December 1982.

29, Neil, George. Software Acquisition Management
Guidebook: Reviews and Audits. Alexandria VA:
Defense Technical Information Center, 1977.

30. Nelson, Captain William, USAF. Software Quality
Control, Hanscom AFB MA. Telephone interview.
16 February 1983.

31. Page-Jones, Meilir. The Practical Guide to Structured
Systems Design. New York: Yourdon Press, 1980.

32. Peters, Lawrence J. Software Design: Methods and
Techniques. New York: The Yourdon Press, 1981.

33. . "Software Representation and Composition
Technique, " Proceedings of the IEEE, Vol. 68,
No. 9 (September 1980), pp. 1085-1093.

34. Pilcher, Major Russell Dean, USAF. "Techniques
Available for Improving the Maintainability of DOD
Weapon System Software," Unpublished master's
thesis, Naval Postgraduate School, Monterey CA,
. June 1980.

35. Rasch, Major Ronald H., USAF. Associate Professor of
Accounting and Information Systems, Air Force
Institute of Technology, Wright-Patterson AFB OH.
Personal interview. 29 June 1983.

91

Py 1'LL.__iL St o < - - VPR SR O PO SN WG WA S VDY PN WY TR Sl Vg Wy Sl v

TN Y i St Tt S A e i - St ivee R " inciiie ANt S Ak A Sl I S R N A BN bl

MY
.{":"-

36. Rock, Dick. Data Automation Manager, Union Pacific
Railroad, Omaha NE. Personal interview.
23 December 1982.

——
e,
e
A

37. Ross, Douglas T. "Structured Analysis (SA): A
Language for Communicating Ideas," IEEE
Transactions on Software Engineering, Vol. SE-3,
No. 1 (January 1977), pp. 16-34.

‘e
PN

AN
. ’:

'l
b 2t %

38. Rowell, Captain Phillip V., USAF. "Specifying Users'
Requirements inthe Context of Military Intelligence
Related Computer Systems." Unpublished master's
thesis., LSSR 53-81, AFIT/LS, Wright-Patterson AFB
OH, 19 September 1981. AD Al113017.

'."".' v

e~ 39. Rubey, Raymond J. Professor, Department of Electrical
Engineering, AFIT/ENG, Wright-Patterson AFB OH.

h-. Course EE 5.45, "Software Acquisition," Spring

- Quarter 1983. Lectures. 28 March 1983 through

- 3 June 1983.

40. Scharer, Laura. "Pinpointing Requirements,”
Datamation, April 1981, pp. 139-151.

s 41. Schiffres, Manuel. "Behind the Shakeup in Personal
- Computers," U.S. News and World Report, Vol. 94,
No. 25 (27 June 1983), pp. 59-60.

42. Stanley, Phillip M. "A Design Approach to the Audit
of Computer Information Systems,"” Information
Processing 80. New South Wales Australia: North
Holland Publishing Company, 1980.

e

eV a s 0 88
o:l,-,'.'. v d
LI

LY

43. Stay, J. F. "Hipo and Integrated Program Design,"
IBM Systems Journal, Vol. 15, No. 2 (1976),
pp. 143-154.

3
.-".-, ;, [N

> ST

44. Steininger, Partner Henry J., Arthur Young and
Company. The Impact of Low Cost Computing
Technologies on the Department of Defense.
Washington DC: Arthur Young and Company, 10 April
1983.

r

gl

IR

.

v %
PR A

45. Sumner, Eric E. Vice President, Computer Technologies
and Military Systems, 3ell Laboratories, Murray
Hill NJ. Personal interview. 13 January 1983.

")

ML Sy
RPN

VRTINS

46. Trauboth, H. Software Testing and Validation
Techniques for Highly Reliable Process-Information
Systems. Marlow Buckinghamshire England: Vlasak
and Company Limited, 1980,

Pefetst
LY

..' ~
AL
g .’ .'

R

92

l.{\
La

PN NE M S S .

LA S Y iRt T St 4e S [e S Ak A N A R i N A A

U.S. Department of Defense. Technical Reviews and
Audits for Systems, Egquipments and Computer
Programs. MIL-STD-1521A (USAF). Washington:
Government Printing Office, 1 September 1972.

Walker, Dr. Michael G. "Auditing Software Development

Projects: A Control Mechanism for the Digital
Systems Development Methodology." IEEE 1979
COMPCON, Spring. New York: IEEE, 1979.

Wirth, N. "On the Composition of Well-Structured
Programs," ACM Computing Surveys, December 1974.

Wolfe, Major H. Wayne, USAF. "Those Damned
Computers," Air University Review, Vol. XXXIV,
No. 4 (May-June 1983), pp. 48-55.

Zelkowitz, Marvin V. "Perspectives on Software
Engineering," Computing Surveys, Vol. 10, No. 2
(June 1983), pp. 197-21s6.

52. Zonars, Demetries. Computer Center Director, ASD/EN,
Wright-Patterson AFB OH. Telephone interview.
16 August 1983.

B. RELATED SOURCES

Air Force Systems Command. A Guide for Program

Management. AFSCP 800-3. Wright-Patterson AFB
OH, 9 April 1976.

Bersoff, Edward, Vilas D. Henderson, and Stan Sugel.
"Software Configuration Management: A Tutorial,"
Computer, January 1979, pp. 97-115.

Boehm, Dr. B. W. "Software Engineering," Classics in

Software Engineering. New York: Yourdon Press,
1978.

. Software Engineering Economics. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1981.

Dlutsch, Michael S. "Software Project Verification and
Validation," Computer, April 1981, pp. 54-70.

Fagan, M. E. "Design and Code Inspections to Reduce Errors

in Program Development," IBM Systems Journal, Vol. 15,
No. 3 (1976).

93

Howden, William E. "A Survey of Static Analysis Methods,"
IEEE Tutorial: Software Testing and Validation
Techniques. New York: IEEE, 1978.

Jensen, Randall W. "Structured Programming," Computer,
March 1981, pp. 31-48.

, and Charles C. Jones. Software Engineering.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1979.

Lehman, John H. "How Software Projects Are Really
Managed, " Datamation, January 1979, pp. 119-129.

Metzger, Phillip W. Managing a Programming Project.
Englewood Cliffs NJ: Prentice-Ball, Inc., 1973.

Tzudeker, Harvey. "Software Configuration Management
Testability and Traceability," Defense Systems
Management Review, Vol. I, No. 6, pp. 106-115.

U.S. Department of Defense. Configuration Control:
Engineering Changes, Deviations and Waivers.
MIL-STD-480A. Washington: Government Printing Office,
29 December 1978.

. Configuration Management: Practives for
Systems, Equipment , Munitions, and Computer Programs.
MIL-STD-483 (USAF). Washington: Government Printing
Office, 21 March 1979.

. Engineering Management. MIL-STD-499A (USAF).
Washington: Government Printing Office, 1 June 1976.

. Specification Practices. MIL-STD-490.
Washington: Government Printing Office, 18 May 1972.

5 94

Wi Sl WY WA L WY T WA UL W I U LA LI WL LY

MNP R

