
D-RI34 363 MICROCOMPUTER SOFTWARE SYSTEM DEVELOPMENT: SUGGESTED- 1/2
REVISIONS TO PIL-STD..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON_ AFB OH SCHOOL OF SYST- V M HELBLING

UNCLASSIFIED SEP 83 AFIT-LSSR 1-83 F/G 5/1i N

2.
.. *...

-.
--

14-0

1.89

MCOCP REOUI TEST 22AR
NATONA BUEAUO STNAD932

(1

MICROCOMPUTER SOFTWARE SYSTEM
DEVELOPMENT: SUGGESTED REVISIONS TO

MIL-STD-1521A FOR COST-EFFECTIVE

THROUGH SOFTWARE ENGINEERING

Victor M. Helbling, Captain, USAF

LSSR 10-83

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITYL-

LA AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.0 "

MICROCOMPUTER SOFTWARE SYSTEM
DEVELOPMENT: SUGGESTED REVISIONS TO
MIL-STD-1521A FOR COST-EFFECTIVE
ACQUISITION OF CUSTOM SOFTWARE
THROUGH SOFTWARE ENGINEERING

Victor M. Heibling, Captain, USAF

LSSR 10-83-

. I .- 7 . - . . -. .* "

S

The contents of the document are technically accurate, and
no sensitive items, detrimental] ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the documenit are those of the author Cs) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the Air Training Command,
the United States Air Force, or the Department of Defense.

Accession -nr

NTI.7 f7 1'

ju

Dist, .

P97. 7.,--1

-i " "-

Dist~ nso hedcmn r ecnclyacrge n .- i
no enitvei~ms d~rne~al das o dleerou -S".'-

"". • *

info~na. o areconaind hre~. F~cheore ,-e viws L9.
expesedinth Ioue=ae oeo h ato~)add .i-

.. tem

UNCLASSIFIED
SECURITY CLASSIFICATION or THIS PAGE (When Date Entered).

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R O DC N ONABEFORE COMPLETING FORM

|. REPORT NUMBER J2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

LSSR 10-83 1Am -iAi343 &- 3
_

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MICROCOMPUTER SOFTWARE SYSTEM DEVELOPMENT
SUGGESTED REVISIONS TO MIL-STD-1521A FOR Master's Thesis
COST-EFFECTIVE ACQUISITION OF CUSTOM 6. PERFORMING OG. REPORT NUMBER
SOFTWARE THROUGH SOFTWARE ENGINEERING
7. AUTNOR() S. CONTRACT OR GRANT NUMBER,)

Victor M. Helbling, Captain, USAF S
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

School of Systems and Logistics
Air Force Institute of Technology, WPAFB OH -__ _ _ _-

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE .

September 1983
Department of Communication 13. NUMBER OFPAGES

AFIT/LSH, WPAFB OH 45433 104
14. MONITORING AGENCY NAME & AOORESS(If different from Controllind Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED

IS&. DECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, if different front Report)

If. SUPPLEMENTARY NOTES JIpee ,. ,-#,. - LAW A 1-.

Alr Force aatUlio @1 TecLunology (AC),' ~ S Er--1983
IS. KEY WORDS (Continue. o, rev,,,e aide if.ncess-ary a.. idniyb block numbe,) ;iL'-

77-* %- ". -

microcomputer software engineering
software acquisition computer system development

20. ABSTRACT (Continue an rovers* side (I noceseay end Identify by block Anmber)

Thesis Chairman: Dr. John A. Muller

DD JANo 1473 EDITION or I NOV 69 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

. I I X WV . r * ... ,- -, .. *. .

.. UNCLASSIFIED
%' SECURIlTY CLASSIFICATION OF T1iS PAGE(Whan Dta &Intvrd)

DOD annual investment in computer systems, much of it in micro-
computers, will be $38 billion by 1990, up 900 percent from
1980. Software maintenance costs will be 64 percent of the
1990 total, or more than $24 billion. Software maintenance
can be greatly reduced through systemic software development
as prescribed by MIL-STD-1521A, but DOD managers complain that
the process, originally designed for the acquisition of multi-
million dollar mainframe systems, not for microcomputers,
is much too slow, and therefore not cost effective. Data
automation experts point out, however, that development haste
in conflict with 1521A increases future maintenance costs.
This thesis displays the problem using a recent case study
from the Alaskan Air Command, and presents a new acquisition
procedure incorporating microcomputer software engineering
techniques which reduce system development time while preserving

high software quality as intended by the regulations.

UNCLASSIFIED

SECURITY CLASSIFICATIO14 OF ; AGE'W7Ien Date En-

. ..o

LSSR 10-83

MICROCOMPUTER SOFTWARE SYSTEM

DEVELOPMENT: SUGGESTED REVISIONS TO

MIL-STD-1521A FOR COST-EFFECTIVE

ACQUISITION OF CUSTOM SOFTWARE

THROUGH SOFTWARE ENGINEERING

A Thesis

* Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Management

4,

By

Victor M. Helbling, BGS
Captain, USAF

September 1983

Approved for public release;
distribution unlimited

b1

.° . • -° • • • , , -

!.

This thesis, written by

Victor M. Helbling

has been accepted by the undersigned on behalf of the fac-
ulty of the School of Systems and Logistics in partial ful-
fillment of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS MANAGEMENT

DATE: 28 September 1983

COMMITTEE CHAIRMAN

READER

.
..°.

ACKNOWLEDGEMENTS

This thesis could not have been completed without the

efforts of many fine people, who materially contributed to

its production.

I wish to express my sincere appreciation to my

thesis advisor, Dr. John Muller, for his advice, encourage-

ment, support, and friendship throughout the course of the

year. I also thank Major Ronald H. Rasch, my thesis

reader, for his technical expertise, and Major Ben Iris of

the Alaskan Air Command for arranging all the interviews in

Anchorage.

One indispensable member of the thesis team was my

typist, Jackie McHale, who was solely responsible for this

thesis meeting the AFIT style requirements.

Finally, a special thanks to my wife, Rosemarie, for

her help in proofreading and rewriting, as well as

providing moral and logistical support, and for being my

best friend.

2.

-ii

. . .

" ...

*I -

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS

LIST OF FIGURES. vii

Chapter

I. INTRODUCTION 1

Statement of the Problem 2

Objectives of the Research 3

Scope.................. 4

Justification...... 6

Methodology 10

Thesis Organization and Overview 11

II. FUTURE TRENDS IN MICROCOMPUTER
SYSTEM PROCUREMENT 12

Introduction 12

Trends of Microcomputer Hardware
Procurement 12

Cost Effectiveness 13

. Retention of Personnel 14

Changes in Microcomputer Applications . . . 16

Alaska Defense Network 18

Software Engineering Backgroind... 23

Chapter Summary 28

.V

: , -" " ' ' " -* " 1, " - " ' ' " t "" n ' " ' ' - 2 '] " - -v

Chapter Page

III. SOFTWARE ENGINEERING TECHNIQUE
FOR MICROCOMPUTERS 29

Introduction 29

Conceptual Phase: Identifying
the Operational Requirements 30

The Validation Phase 33

Planning 34

Full-Scale Development Phase 36

Measures of Software Design 38

Testing the Software 39

The Configuration Audit 40

Summary 42

APPENDIX

A. AN INTERPRETATION OF MIL-STD-1521A:
TECHNICAL REVIEWS AND AUDITS FOR SYSTEMS,
EQUIPMENT, AND COMPUTER PROGRAMS 45

Introduction 46

Conceptual Phase 49

Validation Phase 49

Full-Scale Development Phase 50

Reviews 50

Audits 52

Summary................. 55

B. GLOSSARY 56

Definitions 57

v

Appendix Page

C. FORMAL PROGRAM DESIGN METHODOLOGIES 67

Functional Decomposition.............68

Data Flow Design.................68

Data Structure Design...............69

A Programming Calculus..............70

Methodology Comparison.............71

Other Design Recommendations...........73

D. MEASURES OF GOOD DESIGN...............75

Coupling.....................76

Cohesion.....................78

E. STRUCTURED PROGRAMMING...............80

F. PROGRAMMING STYLE..................84

SELECTED BIBLIOGRAPHY...................88

A. REFERENCES CITED...............89

B. RELATED SOURCES................93

vi

LIST OF FIGURES

Figure Page

1 DOD Embedded Computers 6

2 Embedded Computers: Hardware vs. Software . . . 7

3 Catching Software Errors 9

4 Comparative Needs 14

5 Hardware/Software Cost Trends 24

6 Waterfall Model of the Software
Development Cycle 31

7 Microcomputer Software SystemDevelopmn Checklist 43De~~velment Ceckls....................4

8 Software System Development Checklist 47

9 System Development Methodology:
Phases, Reviews, and Audits 48

10 Functional Decomposition 68

11 Data Flow Design Procedure 69

12 Data Structure Design Method 70

13 Basic Data Structure Design Procedure 70

14 Summary of Program Design
Methodology Claims 72

15 Current State-of-the-Art 72

16 Basic Control Structures of
Structured Programming 83

17 The Three Basic Control Flow Constructs 83

vii

CHAPTER I

INTRODUCTION

The Department of Defense (DOD) procures computers

and software the same way it procures airplanes, tanks, and

other hardware. The procurement procedure (Appendix A)

involves months of work and large quantities of paper. It

is designed to ensure that the item finally purchased by

the government will serve its intended purpose. This

complex and expensive process of acquisition is justified

when the object of procurement is itself complex and

expensive, but it is not justified, or even useful, in the

acquisition of microcomputer hardware and software.

Today a microcomputer costs about the same as a good

electric typewriter. Furthermore, the cost of the micro-

computer is decreasing every year (41:59-60). The DOD

manager will soon be required to procure microcomputers

from local vendors, just like office equipment (7), thereby

reducing procurement time and cost. Hardware procurement,

however, is not the microcomputer's entire life cycle cost.

The majority of a computer system's life cycle cost is in

software maintenance (15:11). Consequently, the DOD

manager, who has the responsibility of minimizing computer

1

system life cycle costs, should concentrate on the cost of

software maintenance.

This thesis provides guidelines to minimize the

microcomputer's life cycle costs by describing a method of

software development which reduces software maintenance

cost. These guidelines are intended for the use of all DOD

managers; therefore, the thesis speaks to the individual

with little knowledge of computers. This thesis acquaints

its readers with the concept of software engineering and

its use in the procurement of custom software for

microcomputers.

Statement of the Problem

To meet increasing demands for information throughout

the Department of Defense, managers must depend on computer

systems more and more (22:68-72). In the past, these

managers were concerned only with mainframe computers and

mini-computers, because only these larger machines could

handle the large amount of data that needed processing.

Recently, due to innovations in technology, the micro-

computer has become a suitable alternative. Furthermore,

because of aggressive competition among manufacturers, a

microcomputer network is cheaper than a single, larger

computer. Changes in the procurement procedures of these

machines are imminent since the cost of microcomputers is

now about the same as that of ordinary office equipment.

2

These changes will authorize DOD managers to purchase

off-the-shelf microcomputers to meet their data processing

needs. Industry has already implemented this method of

microcomputer procurement (35). It is the DOD manager's

responsibility to minimize the life cycle costs of the new

microcomputer system. Life cycle costs of computer systems

are governed by the amount and ease of software maintenance

required by the system. The problem is that, presently, no

set instructions are available for the microcomputer user

to follow when ordering custom software.

Objectives of the Research

The objective of this thesis is to develop a custom

software procurement technique for microcomputers. This

technique will be a tool for all DOD managers, and will

assume the reader has little or no background in the use of

computers. The procedure, presented in Chapter III, is

written so any DOD manager/user whose microcomputer

requires custom software can ensure that the delivered

product will:

1. process the data as intended

2. operate with minimal software maintenance

costs, thereby reducing life cycle costs

3. produce the desired information in a

reasonable amount of time

3

4. function in a reliable manner with few

interruptions in service caused by

logic problems

5. be complete at delivery, including all

documentation required to understand and

update the software

6. comply with the intent of the regulations

(MIL-STD-1521A) by incorporating alternatives

which are applicable to microcomputers.

Scope

The microcomputer is a useful tool for DOD managers.

The increased capability, availability and reliability of

the machine, coupled with its reduced cost, have made

investing in a microcomputer cost effective. However, the

key factor in the usefulness of a microcomputer lies in the

short time from the recognition of the need to the

emergence of processed data (information). If obligatory

paperwork in the acquisition of hardware and software

removes this advantage of time savings, the benefits of

technological innovation and economic competition are

wasted. Therefore, this thesis assumes that DOD regula-

tions will be modified to delegate the responsibility of

the procurement of microcomputer hardware to the DOD

manager/user. Furthermore, since the DOD will have

4

recognized the value of time conservation in the procure-

ment of hardware, it is plausible to assume that the same

direction will be given regarding software procurement. To

fulfill this responsibility, DOD managers, not necessarily

experts on software acquisition, require a procedure they

can understand to evaluate the development progress of

custom software for their microcomputers. This thesis

deals only with the management of custom software for

microcomputers. It is not intended to guarantee extinction

of error, which would not be cost effective. It is

intended to minimize life cycle costs in an environment of

limited resources (time, expertise, personnel, and money).

It should be noted that hardware complications are

not within the scope of this discussion. Therefore, the

microcomputer is assumed to be tested and error-free when

purchased from the vendor. In addition, it is assumed that

DOD managers wish to reduce computer system life cycle

costs while increasing the amount of time their system is

working properly. Finally, this thesis concerns itself

only with custom software procurement, because errors in

established software packages have, by-and-large, been

eliminated through attrition. Vendors have modernized

those portions of their software package which were

difficult to use (not "user friendly") as a result of

customer complaints. Therefore, "canned programs" will not

6e be addressed in this discussion.

5

li~

Justification

Between 1970 and 1990, history has and will continue

to show a significant worldwide growth in the acquisition

of all sizes of computer systems.

260

240

220

200-

180"

140 CUMULATIVE TOTAL"I /

120
100 NEW PURCHASE -

40-

20

018
o 8 ""<1 82:3;+ 83 84J as 86 87 as 89 9

Figure 1. DOD Embedded Computers (15:14)

The DOD investment in computer systems is also increasing

at a dramatic rate. As seen in Figure 1, the DOD had less

than 10,000 embedded computers in its inventory in 1980-81;

by the end of the decade it is expected to have 260,000

(15:13). The embedded computer includes "all computer

equipment, programs, data, documentation, personnel and

supplies integral to a defense system from design,

acquisition or operations and support point of view

6

[15:191." The cost of these computers is expected to rise

from $4.1 billion in 1980 to $37.99 billion by 1990.

SOFTWARE 85%

SOFTWARE 80% 1990 $37,990M

i HW 35%;
' ".... ':'";"'"; 1985 $13,920M

• "-"SOFTWARE65

1980 S4.100M

Figure 2. Embedded Computers: Hardware vs. Software
(15:14)

As shown in Figure 2, the proportion of the cost

attributable to software will increase from 65 percent in

1980 to 85 percent in 1990. This means the software cost

will rise from $2.67 billion to $32.29 billion in one

decade, an increase of over 1200 percent (15:15). With

such a large increase in projected spending, it is

imperative that management of software be efficient.

Individuals responsible for purchasing software projects

should identify in their requirements software formats

which minimize life cycle costs. Specifically, the

7

.

software should be structured so it is easy to maintain.

Additionally, the computer system must be a useful tool

which justifies its cost. To do that, it must be "user

friendly" and reliable, to encourage employees to use it to

produce timely information for decision making.

*. * Reliable and "user friendly" systems are not a lucky

accident. They result from a systematic approach that

remembers the purpose of the devel-oment is the satis-

faction of the user. A secondary objective is to reduce

the cost of software maintenance.

Software maintenance costs are now estimated to be

two-thirds of total computer life cycle cost, which

includes hardware, software development and software main-

tenance. This ratio is expected to worsen (4:73).

* * However, current emphasis is on development costs, while

. overall life cycle costs continue to be mostly ignored.

Numerous experts (including Milne, Rubey, Bunyard, and

others) indicate that the cost of software errors increases

if they remain unnoticed in the software until the later

stages of procurement (26; 39; 4:77). Figure 3 shows that

whereas the cost of an error discovered in preliminary

design is negligible, the same error detected in the

integration phase could cost five times as much. Worse

yet, if that error is not noticed until the software is in

operation, the maintenance cost is almost 100 times greater

(4:77).

8

.........

IIGO

100-

SOURCES
* IBM-SOD
- TRW

50 sGTE
a * BELL LABS
Cw

2-
cc

I.-

cc 2

- 1

SI I I I I I

PRELIMINARY DETAILED CODE + INTEGRATE VALIDATE OPERATION
DESIGN DESIGN DEBUG

PHASE IN WHICH ERROR IS DETECTED

Figure 3. Catching Software Errors (4:77)

When managers procure a software package, they must

ensure that the delivered product will transform data into

information at the lowest life cycle costs possible.

Therefore, the project manager should strive to find any

errors embedded in the software at the earliest possible

opportunity.

As mentioned earlier, the microcomputer will become

readily accessible to every manager in DOD in the near

future. However, circumventing the established procedure

to save time also bypasses the experience and knowledge

accumulated in the local data automation organizations.

The procedure established in Chapter III is a "band-aid"

9

for the manager. Although not as specific, it is better

because it meets the objectives. It allows the manager to

proceed with the operational requirements of the department

with a minimum loss of time.

In summary, DOD expenditures on computer systems are

growing rapidly. The growth of software maintenance cost

is even more rapid. Software cost can be reduced by

detecting errors early in the development of the computer

system. The cost of software maintenance is a problem to

every computer system, including microcomputers. The use

of the custom software procurement techniques identified in

MIL-STD-1521A (to reduce software maintenance and life

cycle costs) in the procurement of microcomputer custom

software is time prohibitive. Thus, a new technique is

required which considers the intent of the regulations and

the time constraints of the user.

Methodology

This thesis develops a low cost method for the

reduction of microcomputer system life cycle costs.

Initially publications were searched to find established

methods that can be used within the DOD. Then users in

industry were interviewed to identify any procedures not

yet in print. Third, the development of existing systems

was studied to determine the problems encountered and the

10

problems that resulted from the procedure used. Finally

the intent of the regulations was determined and a new

procedure was developed to incorporate the intent of the

regulation while allowing for time constraints typical of

microcomputers.

Thesis Organization and Overview

This thesis is organized into three chapters and

several appendices. Chapter I is the introductory section.

It includes an overview, a statement of the problem, the

objectives of the research, the scope, the justification,

the methodology, and the organization of the thesis.

Chapter II describes the current trend in microcomputer

system procurement, discusses the problems with present

procurement procedures, and explains the purpose of

software engineering. Chapter III presents the new

procedure for microcomputer custom software acquisition.

The appendices provide detailed supplemental information

which the reader of this thesis can use in the development

of the microcomputer system. To eliminate misunder-

standing, all critical words and phases have been defined

in the glossary, Appendix B.

,'.. 11

I'

CHAPTER II

FUTURE TRENDS IN MICROCOMPUTER SYSTEM PROCUREMENT

Introduction

This chapter presents a logical argument for change

in the procurement of microcomputer (micro) systems.

First, it justifies the pending changes in micro hardware

and software procurement. Then, it discusses the innova-

tive system development of the Alaskan Air Command.

* Finally, it introduces software engineering and explains

*why long term costs must be a primary consideration in

software procurement.

Trends of Microcomputer Hardware Procurement

The DOD method of purchasing microcomputers will

change for three reasons. First, the present method is not

cost effective. Just the paperwork intended to prevent

waste is several times more expensive than the machine.

Second, it frustrates people in critical career fields who

must spend their time finding the tools to do a job, rather

than doing the job. Finally, the current method often

results in an obsolete micro with outdated software,

because jobs for microcomputers are typically of short

12

L-,a

duration in a changing environment. The long, drawn-out

process of hardware procurement, followed by a similarly

" extended process of software procurement can deliver a

system not adequate to solve today's problems.

Cost Effectiveness

Today, a project manager must follow a carefully

detailed procedure, established by regulation, to purchase

a computer. Unfortunately, the same procedure is followed

whether a $1,000 micro or a multi-million dollar mainframe

is purchased. The procedure, described in Appendix A,

carefully ensures that the needs of the organization are

met when the equipment is delivered. It evaluates the

needs of the user and the direction of the procurement

effort several times during the procurement process. This

is also very time consuming and results in several

problems.

According to Major Ronald H. Rasch, Associate

Professor of Accounting and Information Systems for the Air

Force Institute of Technology (AFIT), "this policy of

extensive planning is very justified for expensive main-

frame systems, but not cost effective for micros (351."

q -The paperwork required by the regulations actually costs

much more than the microcomputer itself. Furthermore, the

process can easily occupy programmers, engineers and

managers for several months. The salary of any one of

13

these people is more than $3,000 per month. Obviously, the

method used to prevent waste is much more expensive than

any potential waste. In the process, the Air Force

dissipates the energy of its technical people who become

frustrated, disillusioned, and more difficult (thus, more

expensive) to retain.

m* Retention of Personnel

As shown in Figure 4, computer professionals,

including electrical engineers and computer programmers,

have a much higher growth need than social need; that is,

the prefer to deal with technology rather than with people.

&0 -GROWTH NEED

SOCIAL NEED
5 -

5A.-

COMPUTER SALS OTHER CLERICAL MANAGERS
PROFESSIONALS PROFESSIONALS

Figure 4. Comparative Needs (39)

14

9

Professor Ray Rubey, an expert in software engineer-

ing and software acquisition at the Air Force Institute of

Technology, stated that the technically oriented employee

is not as concerned with monetary compensation as with

working on the leading edge of technology. "Studies have

verified that scientific programmers will resign from a

better paying job to be involved in a project that is

clearing new frontiers in the field of computers (39]."

That attitude is displayed by astronaut Sally Ride. An

August 1983 news report said Ride had been offered several

"promotional or advertising offers" worth up to $1 million.

The National Aeronautics and Space Administration forbids

astronauts to make money endorsing products or appearing in

advertising. Ride refused the money. "I wouldn't trade

" this job for $1 million if they paid me tomorrow [9:2]."

With these needs in mind, the Air Force, which is

critically short of people in technical fields, should

reevaluate the usefulness of the current procurement

procedures for micros. An accelerated procurement process

* will allow scientists to spend less time acquiring tools

and more time doing innovative scientific research. The

micro is simply an office tool used to process data into a

6 .desired format. Although it is more flexible and diverse

than a good electric typewriter, the cost is comparable.

1

15

4

Changes in Microcomputer Applications

By the time the process is completed, many changes

may have occurred in the requesting organization. Typical

changes are in personnel, hardware technology, and system

requirements.

According to Major Peter Rensema, who recently

managed the installation of the micro-network for the

Alaskan Air Command (AAC), the nature of military

assignments can result in one of the changes.

It's not unusual for an individual to order
something like a microcomputer and get
reassigned. . . . Later, a microcomputer shows up
and nobody knows where it came from [12:761.

Although the original purpose of the purchase request

can be traced through the process, the individual who

conceptualized the idea, the person who best understood the

application of the requested system to the problem, may

have departed. The probability of the original project

being completed is thus significantly reduced.

A second potential change which can occur before the

process is complete will be the status of hardware

technology. In a year's time, a particular machine can

drop from state-of-the-art to more than a generation old.

The price and availability of a machine can also change

drastically. For example, "the Texas Instrument's 99/4A

home computer which sold for $525 when introduced in 1981,

*e retails for just $100 today (41:591."

16

I

Finally, changes in project requirements signifi-

cantly complicate procurement of the micro system. Until

the machine is in hand, there is no limit to the additional

capabilities that can be required of it. As requirements

increase, the time required to complete the project grows

and fewer of the individuals originally involved in the

project will remain to complete it. In the meantime, the

computer remains unpurchased and the job it was to do

remains undone, or the data is manually processed to

provide information. These problems can be remedied by

procuring micros like any other piece of office equipment.

General Lynnwood E. Clark, Commander of the AAC,

expressed his views in an interview June 17, 1983 in

Anchorage. He stated that:

Micros today exceed the capability of many
minis and mainframes of a decade ago.. They are
less expensive and more reliable than the larger
computers, as well. Whereas a mini or a mainframe
requires a mandatory maintenance capability, a
micro provides a redundant capability [failure
of one micro does not halt operation of the
remainder]. Stil, micros must be networked

- . to be as functional as the larger computers [7].

General Clark views the use of micros as the cure to a

current data automation problem. As computers become

0 essential to the operation of a variety of departments,

data automation specialists are called upon to be familiar

with an increasing amount of technical jargon and depart-

9 mental detail. In his opinion, "we must get the guy who

17

will use the system into the system. That is, we must

train each user to be the programmer." Rather than have

each programmer become a fuels expert, a supply expert, or

a civil engineer, he suggests we train each specialty in

the use of the computer, specifically the micro. He

continued,

It is easier and more cost effective. Addition-
ally, it encourages the use of the computer by
other members of the organization. The Air Force
emphasizes delegation of authority. We must depend
on the integrity and professionalism of our people
to purchase, set up, and use these tools to improve
their response to mission requirements [7].

Alaska Defense Network

General Clark lives his philosophy. The June 1983

issue of Softalk describes how the Alaskan Air Command

automated to develop "a state-of-the-art computer system

for their alternate command post (ALCOP) that serves as a

backup command center for the Alaskan Air Command [12:75]."

The system was to have portability, survivability,

redundancy, sustainability, as well as be menu driven and

user-friendly.

* What General Clark wanted was a computerized data-
base that would travel. One that would still work
even if the main terminal was knocked out, or
several supporting ones went under. One that any-
one commandeered in an emergency could boot and run
in thirty minutes. And one that could be updated
as disaster progressed, whether it be trembling
earth or falling bombs [12:75].

18

..

• . .' -' " ".:, "" ", " - """. -" -. ; ' .:"" - "' - .". " -'i'- " " ", "." "- - ."',• ..- -." , ' *' -" L "",-- - --,"

One last requirement which the general identified was that

the system had to be on-line by the summer of 1983, just

eighteen months from the conception of the project.

Captain Pete Rensema, who was given project

responsibility, received a lot of support. "The general

saw to it that we only went one week between the paperwork

and the first computer [12:76]." Obviously, their

acquisition process did not follow the established

-* procedures outlined in the current regulation. According

to Captain Dan Rambow, who directed the technical effort as

engineering manager, this resulted in a lot of resistance

from the Data Automation Department. Data Automation

was locked into the use of regulations and established

procedures. Fortunately, the General was not.

They refused to believe you could build an infor-
mation management system from the bottom up, using
personal computers. They suggested a Hewlett-
Packard mini with six stations or a mainframe with
a multi-user system [12:77].

What Captain Rambow did was to follow the intent
of the regulations (to organize the effort) instead
of the letter of the regulations, which was time
prohibitive. . . . To meet the letter of the
regulations AAC would require significantly more
than the 34 man-months used (and available) for the
project [13].

The system costs, so far, are much lower with the micros

than they would have been with a mini.

19

The micro system cost $220,000 for hardware versus
$500,000 for the HP, . . we did it in half the
estimated man-months projected using the regu-
lations, and we met our schedule. [12:76]

Our software maintenance is quicker and
cheaper as well [7].

Captain Rambow manages a construction software house

during his off-duty hours. He identified software

engineering as the key to the success of the AAC network.

He insisted all software be kept simple and user-friendly.

A different view is held by AAC's director of data

automation, LTC Dennis W. Howard. "We believe in the

evolutionary process versus crash project development. Our

concern is minimization of life cycle costs [18]." He

added that timeliness will often suffer in order to achieve

their primary goal.

Software maintenance is very expensive due to
excessive regulations and documentation require-
ments. We need to reduce the time required for
software maintenance. A standardized language like
Ada will help [18].

LTC Howard explained the conflict regarding software

engineering between the data automation (DA) staff and the

operational staff arises from different approaches to the

problem. "The DA people are not prone to [take] risks."

They are much more systematic, cautious and tend to 'follow

the letter of the regulation' "

General Clark acknowledged that, in some instances,

the delays built into Air Force procedures are intolerable

20

to the operational commander. If timeliness is considered

the first priority, the command must accept increased life

cycle costs of software maintenance.

LTC Howard stated, "The DA shops must not forget they

serve the operations staff." Data automation's purpose is

to provide the user with information. In the Air Force,

the operational staff is the user. Still, LTC Howard

advised that:

A [DA] manager must understand the reason for the
regulation and communicate to the user [operational
staff] why it is beneficial to them (to follow the
established procedures] [18:83].

In AAC's case, the benefit would have been reduced

life cycle costs because of minimized software maintenance.

The problem the operational staff may encounter is that

many of the regulations they failed to comply with require

documenting information needed for continuity. LTC Howard

wondered about the future:

Once Major Rensema and Captain Gaudreau have left,
who will be the system integrator? Who will
maintain the system when Captain Rambow leaves?
(18]

.' The answer, like the problem, revolves around the

_ newness of computers to many users. In ten years most high

school graduates will have a good background in the use of

computers. A standardized language will probably have

evolved. Today, however, we must not allow timidity to

21

'j.

impede progress. According to Captain Rambow (1983), "A

one-year review for a piece of equipment that has the cost

of a typewriter is a waste." In the future, a project

manager will not buy a machine specifically designed for

his/her purpose. Rather, machines will be selected that

meet his/her specifications from the equipment available on

the market. The final selection will be based on four

machine criteria: 1) capability to efficiently handle the

custom software; 2) potential to expand as the needs of the

project grow; 3) the overall cost; and 4) reliability.

Once AAC had selected its machine, the engineering

manager had to minimize life cycle costs through careful

organization and development of the software. It should be

noted that the hardware owned by the user presents a

constraint for the software engineer. Greentree Computer

Corporation quoted an article in Money magazine (November

1982) which suggested that "the first time buyer choose the

software first and then buy the compatible hardware

[14:1]." Therefore, if you have a need to process data

using a computer, acquire the software first, then find a

machine compatible with your software. Since the AAC

bought the machines and then developed the software, the

engineering manager was limited by the machine during

software development. In the case of AAC, it did not

impose a problem. Their concerns revolved around time

constraints, a short-term problem. Captain Rambow's

22

- --

background in software programming and maintenance taught

him that the key to minimizing both short-term and

long-term problems in software development revolved around

a concept known as software engineering.

Software Engineering Background

Awareness that the cost of fixing computer software

was spiraling upward spurred the concept of software

engineering. One of the first uses of the term 'software

engineering' was "in naming the first NATO conference on

Software Engineering in 1968 [32:51." Software engineering

is defined as the

practical application of scientific knowledge in
the design and construction of computer programs
and the associated documentation required to
develop, operate, and maintain them [38:111.

The purpose of software engineering is first, to provide a

plan for the "building" of a program in order to increase

the probability of building correctly the first time; and

second, to facilitate software maintenance.

Until the 1970s the cost of hardware was the major

concern of computer facilities managers. Earlier, as

depicted in Figure 5, DOD hardware costs constituted over

80 percent of the computer system life cycle costs (15:11).

Computers at that time were more magic-boxes than tools.

23

-I I - . l - -. -. - . . 7,' - ' , - . ., . - . . . , - ' ,

100

s0 - HAROWARE
OEVE LOPMENT/MAINTE NANCE

60 -SFWR
', PECENT EVELOPMENT

PERCENT
OF

COST

40. .. .

SOFTWARE .j
MAINTENANCE',

20

1270 1985

Figure 5. Hardware/Software Cost Trends (4:74)

Computer users were educated people, with backgrounds in

mathematics or electrical engineering. Since the computers

had limited storage capabilities, programmers had to use

the storage efficiently through ingenious strategies when

writing computer code, or "software." The useful life of a

computer system generation in the 1950s was about ten years

and most new machines were "state of the art" for many

years. In addition, since hardware costs were too

expensive to be cost effective for most firms, few systems

existed and programmers had limited job mobility. As a

result, managers had the services of their programmers for

several years. If a question on the program arose, the

24

software author was available to resolve it. The develop-

ment of hardware accelerated in the 60s and 70s because of

the perceived potential of computers. Now a new genera-

tion is developed in less than a year (45).

As depicted in Figure 5, computer system cost trends,

which include both hardware and software costs, are

changing their apportionment each generation. Software

costs exceeding 60 percent of computer life cycle costs

today, will constitute over 80 percent of computer system

costs by the end of the decade (15:15).

The computer market has expanded as a result of

nationwide increases in labor costs and an increasing

demand for information from banks of voluminous data.

Hardware has become significantly less expensive, primarily

because of an expanded market which helped defray the fixed

cost of research and development. By 1985, the expected

cost of DOD hardware is only 15 percent of the total DOD

computer system life cycle cost (15:11).

Software costs are divided into two parts: software

development and software maintenance. Software development

is the writing of new computer code for a project. As

illustrated in Figure 5, the cost of software development

has fluctuated between 10 and 20 percent of the DOD

computer system life cycle cost. A recent study of nine

DOD software projects showed that 50 percent of the

software developed is never used. It is the 50 percent

25

that is used that gives rise to the need for software

maintenance (39). Software maintenance is updating and

correcting software in use to meet the present needs of the

organization. Figure 5 shows that maintenance costs have

increased during thirty years from 5 percent to over 60

percent of total DOD computer system life cycle cost

(15:11). "The GAO recently reported that only 2 percent of

software could be used as delivered without changes"

(50:51). This increase in maintenance costs results from

years of producing software that is more easily updated

than rewritten. These updates are generally the result of

one of the following:

1. The performance requirements of the system

are changed.

2. Hardware which the software must address

is modified.

3. Programs with which the software must

integrate are revised.

Since the early days of computer programming, the

term "program maintenance" has been applied to such updates

(11:210). Software maintenance is burdensome because

programmers have had no motivation to create clear,

complete documentation during the original software

development. This forces the maintenance programmer to

recreate the logic behind the code, and analyze the thought

process of the individual who created the program.

26

Software maintenance costs can be reduced by meeting the

following requirements:

1. Include accurate, clearly written specifications

which describe the purpose of the software. The

information required from the program should be

precisely explained.

2. Perform thorough testing to ensure that the

software does what the specifications require.

3. Include clear documentation that explains how

the software completes its task.

4. Apply software engineering techniques

(described in Chapter III).

Use of these requirements helps ensure that:

1. Program maintenance is performed only for

necessary changes.

2. All the capabilities of the system are obvious

and therefore useful.

If the documentation is clear and the user understands the

function of the software, it is more likely that the

system's capabilities will be used before a request for

change is made. Any approved changes require software

modification followed by software main'-eiance, which

increases system life cycle costs.

27

EL ,

Chapter Summary

This chapter explained why the procurement of micro-

computer hardware will evolve into a window-shopping event.

First, it justified the pending changes in microcomputer

purchases of hardware and software. Then it presented the

opposing viewpoints in the Alaskan Air Command's innovative

microcomputer system development. Finally, it introduced

software enginiering, and explained the reasons long-term

costs must be a primary consideration in software

procurement.

28

.o-

CHAPTER III

SOFTWARE ENGINEERING TECHNIQUE FOR MICROCOMPUTERS

Introduction

Software engineering has been identified by experts

(39; 26; 32) as a gradual, time consuming ritual intended

• to satisfy the user's needs through a single effort. It

simultaneously attempts to minimize life cycle costs by

reducing software maintenance. Unfortunately, the time

demanded by established software engineering techniques is

not cost-effective when used for microcomputer systems.

Obviously, a technique that is not cost-effective is

intolerable for use in most organizations. No procedure

presently exists, in the military or in industry, for the

procurement of custom microcomputer software in a cost-

effective manner (24; 28; 45; 36; 1; 52; 16; 8; 23). The

procedure developed in this chapter keeps time requirements

to a minimum while observing the intent of established

software engineering techniques. The procedure is divided

into three phases: conceptual, validation, and full-scale

development. As in Appendix A, the conceptual phase is

considered first.

29

I

EUE.* ** U.*

This chapter assumes some familiarity with the system

development methodology. Readers needing additional

definitions, descriptions, or detail should either read

Appendix A before this chapter, or refer to it as

necessary.

Conceptual Phase:
Identifying the Operational Requirements

The single most important step in satisfying the

user's need is identifying that need (20:20). "One of the

most common reasons systems fail is because the definition

of systems requirements is inadequate [40:139]." The first

step in Peters' waterfall model, "Data Collection," (Figure

6) is a form of system analysis (32:12-13). He defines

data collection as the time when "the problem is described,

data gathered with which to gauge its magnitude and a

fundamental understanding of the problem obtained (32:121."

Identifying the requirements sets the direction of the

development effort. The requirements definition must be:

1. technically feasible

2. precise, clear, and not open to misinterpretation

3. produced within the time allotted to this

* project phase

4. within the project schedules and budgets

5. simple, efficient and economical [40:139]

3.

30

DATA

COLLECTION
(RAW DATA I

,. WE.

ANALYSIS

REQUIREMENTS

h

I DESIGN PRELIMINAY

4L(LOGICAL DESIGN

Fiue 6. Wtrfo Ie CAL DESIGNe

;.!lgl~i CODE
:. !IIM LE M' ENAToN

" " INSTALATION

~~Time increasinS
I

,;/ .Figure 6. Waterfall Model of the Software Development

Cycle (32:13)

If the user can identify exactly what is dep.--d at the

beginning of the project, the life cycle costs will be

* reduced two ways: first, by eliminating the software

development firm's costly involvement in requirement

identification; and second, by avoiding inappropriate or

inefficient software requiring extensive modifications.

31

The purchase of a microcomputer system is directed

toward a specific purpose--transformation of data into

information. If the software to perform that transfor-

mation is not already available (i.e., a "canned" program

does not exist), the DOD manager must pay for expensive

custom software development. In this custom development,

only the operational requirements which directly satisfy

the purpose for which the microcomputer was purchased

should be specified. Any additional attributes should be

identified as optional. These extras should be considered

only if they enhance the operational environment and do not

interfere with the primary requirements. Operational

requirements are therefore the basis for design, and after

the product is complete, the basis for testing. The DOD

manager can eliminate ambiguity from operational require-

ments by "formalizing the user requirements [26]." This

formalization includes:

1. a description of the user environment

2. identification of interfaces with other systems

3. identification of operator characteristics

4. a list of functions to be performed

5. a list of inputs to the system and what form

the inputs will take

6. a list of outputs from the system and who will

use (read) the output. Output should be

tailored to meet the need of the user

32

7. identification of all constraints including

a. physical (space, power, coolant, machine)

b. cost (how much you can spend)

c. schedule (how much time you have)

d. resources available [26]

(If defining the operational requirements is still a

problem the manager can refer to the article by. Laura

Scharer, "Pinpointing Requirements," pages 139-151, in the

April 1981 issue of Datamation.)

After the system's operational requirements are

identified they must be recorded. "A problem [requirement]

unstated [unwritten] is a problem unsolved [26]." Once

these requirements have been recorded they should be

communicated to the contractor who will provide the

software. The requirements at this time represent the

functional baseline (see Appendix A). The manager is now

ready to verify the direction of the development as he/she

enters the Validation Phase.

The Validation Phase

After the contractor has had the opportunity to study

the functional baseline, he/she is ready to discuss these

q operational requirements and the required techniques of

development. Having clearly identified the functional

baseline, the next step is to consider reducing life cycle

costs. If the DOD manager has been successful in

33

identifying the final functional baseline before initial

entry into Full-Scale Development, the rest of the

development, including life cycle costs reduction, will be

easier and cheaper. Therefore, before the contractor

begins design work, the DOD manager should indicate any

preference for techniques which aid in the reduction of

life cycle software maintenance and system life cycle

costs. These techniques are discussed in Appendix C,

. Formal Program Design Methodologies. The use of these

design methodologies will encourage the cortractor to

carefully plan the software development.

Planning

The planning portion of a project is not only the

basis fcor all other work, but also "requires a third of

the entire effort [3:20; 51:1981." Once the contractor

understands the operational requirements he/she must

prepare a high level design of the proposed system for the

DOD manager. The high level design has several benefits

which help the engineering effort. The design should:

1. include a graphic representation

2. show the scope of control

@4 3. describe the order of calling

4. show the decomposition

, -5. identify the inputs and outputs

6. use concise and/or official names

34

a a r •

Several techniques are available to help the

contractor communicate this high-level design to the DOD

manager. These include:

1. Leighton diagrams (32:44-48)

2. Structured Analysis and Design Techniques

(32:62-70; 37:16-34; 26)

3. the Systematic Activity Modeling Method

(32:136-138; 26)

4. Hierarchy, plus Input, Process, Output

(32:48-53; 43:144-154; 26)

5. Data Flow Diagrams (32:139-150; 33:1090; 26)

6. Decision Tables (32:99-100; 42:846; 26)

7. Program Design Language (5:105-110;

32:184-186; 26).

8. Warnier-Orr Diagrams (17:104-174;

32:110,164,176; 26).

Much as a building architect specifies the
structure and construction of a building, the
software architect must specify the structure and
construction of a program. The major motivation
. . . is the desire to reduce the cost of producing
and ma-ntaining software (2:13).

At this time the contractor has both the functional

baseline (with the operational requirements) and the

35

instructions on how the DOD manager wishes the software

development to be organized. These two form the basis by

which development cost projections are estimated. Since

development contracts are based on this estimate, the

importance of the functional baseline and the development

instructions cannot be understated. Together, they

comprise a preliminary allocated baseline.

A review should be held at this time encompassing the

intent of the Systems Requirement Review (SRR) and the

System Design Review (SDR) (see Appendix A). This review

(the B-5 or Part I Specifications) produces the allocated

baseline which is used by the contractor as the minimum

standard. The DOD manager and the contractor must at this

time agree on the cost and time required to complete the

software. The DOD manager should prepare rigid schedules

to evaluate the progress of the project. As shown in

Figure 5, Appendix A, this ends the Validation Phase and

signals the beginning of the Full-Scale Development Phase.

Full-Scale Development Phase

During the first two phases, the DOD manager and the

contractor defined the problem and documented the solution.

This document, the allocated baseline, is used by the

contractor to establish the development guidelines. Now

the contractor proposes a custom software design.

3

To preserve the benefits of the orderly process

demanded by regulations and to take advantage of the speed

with which microcomputers can be procured, the PDR and CDR

should be combined into a single final design review. This

composite design review determines if:

1. the design approach considers all performance

requirements

2. the approach will satisfy these requirements

3. the design is detailed enough to begin coding.

The manager should carefully analyze the design before

accepting it by signing off on the review. He/she should

consider exactly how the proposed design would function in

anticipated situations. Any deficiencies should be

documented because the contractor is responsible for

correcting deficiencies before coding starts. The DOD

manager should, however, avoid changing the contracted

system requirements (the allocated baseline). Any changes

to the requirements could affect the time and cost

established by the contract. If major changes must be

made, the time schedule and the project budget must be

adjusted to show a repetition of the Conceptual and

Validation Phases. If no changes are necessary the DOD

manager should evaluate the quality of the design by using

the established measures of software design.

3

37

I

Measures of Software Design

Several measures of good software design have been

identified and are applicable in the analysis of micro-

computer development. They include coupling, cohesion, and

structured programming. The first two measures, coupling

and cohesion, evaluate the relationship between and within

the software modules of a program. Appendix D discusses

coupling and cohesion as measures of good design. The last

measure, structured programming,

is becoming one of the more promising approaches to
reducing the ever-increasing cost of producing and
maintaining software. The goal of structured
programming is to organize and discipline the
program design and coding process in order to
reduce logic type errors [34:381.

A detailed review of structured programming is provided in

Appendix F. Structured programming, like coupling and

cohesion, can help the DOD manager evaluate whether or not

the software design is adequate (11:212). If it is

not adequate, the contractor should be notified of the

design problems. The contractor must then correct those

deficiencies. Once the deficiencies have been corrected

the contractor can translate the design into code. A

finished program includes the code and its full documen-

tation (46:208). Full documentation includes: 1) a users'

manual 2) a maintenance manual; 3) operational handbooks;

and 4) top level design diagrams (25). Once the contractor

38

completes the code, the DOD manager must evaluate its

performance before delivery. This evaluation is conducted

through software testing (26).

Testing the Software

"Meyers defined testing as the process of executing a

program with the intent of finding errors [261." An error

will be present when the program created by the contractor

does not do what the DOD manager reasonably expects it to

do. In order to find errors the contractor must use a test

plan to evaluate the produced software. The test plan

should be developed before the testing starts. In current

* .-. practice, software testing is 40 to 50 percent of the total

effort (26; 3:20; 51:199). Still, this effort does not

guarantee error free software. "One cannot find all the

errors in a program by testing it [19; 46:206; 11:211]."

Testing may find some errors, but no reasonable amount of

testing can guarantee their absence (26). The three major

categories of errors are 1) a mistake in design; 2) a

failure of a component; and 3) error introduced by a human

operator (27:45). Since costs increase rapidly as an error

free system is approached (30), the DOD manager should

be concerned only that those errors in the system be

eliminated which interfere with the system objectives. Any

errors which do not interfere with the operational purpose

of the microcomputer often cannot cost effectively be

39

detected or corrected. Correction of detected errors is

software maintenance. Unnecessary software maintenance

should be avoided. "Development builds a system,

maintenance can destroy it [6:199]."

A well planned development is the best way to avoid

the first two categories of software errors which are

specification related and most common (46:218). Testing

will often locate errors in the last two categories. Since

the contractor must correct any errors found during

testing, the DOD manager should only be concerned that the

test plan was followed. Once testing is complete and all

corrections made, the contractor has a finished product

composed of the software, the documentation, the test plan,

and the test results. The DOD manager must now ensure that

the completed product is acceptable. This is done by

conducting a configuration audit.

The Configuration Audit

The configuration audit of a developed microcomputer

software system combines the Functional Configuration Audit

(FCA) and the Physical Configuration Audit (PCA) discussed

in Appendix A. In this audit the DOD manager determines if

1. the test plan is adequate to ensure that the

operational requirements identified in the

allocated baseline have been met

40

2. the test results indicate satisfactory completion

of all tests

3. the support documentation accurately and clearly

reflects the software (10:1341).

The audit should be performed by a team independent

of the development project (48:319). Any discrepancies

noted should be documented and corrected by the contractor.

Once the contractor corrects the discrepancies, the DOD

manager is ready to accept the production baseline of the

software with one condition. The software is accepted as

delivered, provided the contractor has corrected all

discrepancies identified during design review and configur-

ation audit. In addition, any testing which the contractor

identified as successful that cannot be verified (by

reproduction) is the responsibility of the contractor. The

DOD contractor must specify this condition in the

Acceptance Contract. The Formal Qualification Review

(FQR), which normally is conducted after the audits, is not

conducted in the microcomputer custom software procurement

process. Now, the DOD manager can accept delivery of the

software system, and is ready to purchase the hardware

(14:1; 44:11-2). The information required by the DOD

manager about the software is provided by the contractor.

The DOD manager must consider the constraints imposed by

that information as well as the projected growth of the

41

I

system when he/she selects the hardware. Once the DOD

manager has the hardware and the software, this new tool

can be used to imorove the organization's performance.

Summary

This chapter outlined a procedure which can be used

by DOD managers to procure custom microcomputer software.

This procedure maintains the intent of the regulations

while significantly reducing the time required for the DOD

manager to have the microcomputer system working for

his/her organization. The procedure, as depicted in

Figure 7, has three phases. The conceptual phase

identifies the operational requirements which become the

functional baseline and are communicated to the contractor.

The validation phase confirms the functional baseline and

adds the method of development requested by the DOD

manager. This results in the allocated baseline. Finally,

in the full-scale development phase the allocated baseline

is used to design, code, and test the system. Together,

these three phases comprise a system which is a compromise

between the timely needs of the operational commander and

the meticulous development of the data automation officer.

This procedure still requires time. However, it is

much more streamlined than a mainframe development (see

Appendix A). The time it does consume will not be much

42

'I

Date Step

Conceptual Phase

- Identify requirements
- Write down requirements = functional baseline
- Communicate functional baseline to contractor

Validation Phase

- Identify desired software engineering
guidelines

- Requirements review
- Document/correct discrepancies
- Allocated baseline
- Contracts and schedules signed

Full-Scale Development Phase

- Contractor proposes design
- Analyze design
- Conduct design review

- To verify satisfaction of requirements
- Measure software design
- Document/correct discrepancies

- Contractor codes the design
- Code is tested by contractor

- Detects errors
- Corrects errors
- Retests
- Documents and tests results

- Conduct Configuration Audit
- Analyze test plan to make certain it

verifies that the delivered code meets the
requirements of the allocated baseline

- Evaluate the test results
- Ensure documentation is complete
- Document/correct discrepancies

- Accept software system
- Purchase hardware from local vendor

Figure 7. Microcomputer Software System Development

Checklist

43

more than that required for a "crash" development. In

fact, experienced software managers will confirm that

the additional software maintenance required with a

crash project will make this structured effort more

timely (39; 26; 34).

9

44

I

I

APPENDIX A

AN INTERPRETATION OF MIL-STD-1521A:
TECHNICAL REVIEWS AND AUDITS FOR SYSTEMS,

EQUIPMENT, AND COMPUTER PROGRAMS

45

I .

Introduction

This appendix is provided to allow the reader to

compare the abbreviated system development methodology,

presented in Chapter III, with the existing standard. The

difference between the two methodologies is obvious when

Figure 7 is compared to Figure 8. The presence of this

appendix also allows the reader to review the intent of the

original system development methodology. The system

development methodology can be used by the DOD manager to

reduce software system life cycle costs. This process has

seven steps:

1. System Requirement Review (SRR)

2. System Oesign Review (SDR)

3. Preliminary Design Review (PDR)

4. Critical Design Review (CDR)

5. Functional Configuration Audit (FCA)

6. Physical Configuration Audit (PCA)

7. Formal Qualification Review (FQR)

Using these reviews, the manager monitors the

developing organization's technical progress. They also

reveal the technical progress of each phase in the system

acquisition life cycle. As seen in Figure 9, a life cycle

has three phases: 1) the Conceptual Phase; 2) the

Validation Phase; and 3) the Full-Scale Development Phase.

46

Date Step

Conceptual Phase

- Identify requirements
- Write down requirements
- Communicate functional baseline to contractor
- Conduct SRR to determine contractor's initial

progress
- Document deficiencies

Validation Phase

- Evaluate software engineering development
- Conduct SDR for an overall review of the

requirements
- Document/correct discrepancies

..- Allocated baseline

Full-Scale Development Phase

- Contractor proposes high-level design
- Analyze design

____ - Conduct PDR to compare high-level design to
allocated baseline

_m - Evaluate the high-level software design
- Document discrepancies
- Accept high-level design (C-5 specifications)

."._. - Initiate detail design of the software
__." - Conduct CDR to ensure detailed design

satisfies performance requirements of
the allocated baseline

___" - Evaluate the detailed software design
- Document discrepancies
- Contractor codes the design baseline
- detects errors
- corrects errors
- retests
- documents test results

" "" - Conduct FCA
- analyze the test plan to make certain it

verifies that the delivered code meets the
requirements of the allocated baseline

- evaluate the test results
- document discrepancies in action items

- Conduct PCA
- ensure that the support documentation
accurately and clearly reflects the software

- make certain the documentation is complete
- make certain the software changes

resulting from the FCA are reflected
in the documentation

- document discrepancies in action items
- Conduct FQR

- confirm that all action items identified
during the FCA and the PCA have been
resolved

- Accept software system
- Repeat Development steps for the procurement

of the hardware

Figure 8. Softwqare System Development Checklist

47

I

OR

~~E-i

1 0

00

48

Conceptual Phase

Control of the system life cycle starts with the

Conceptual Phase which includes a functional analysis and

preliminary requirements allocation. When that is finished

the System Requirement Review (SRR) is conducted "to

determine initial direction and progress of the con-

tractor's System Engineering Management effort and his

convergence upon the optimum and complete configuration

[47:12]." The SRR guarantees that the contractor is,

indeed, solving the right problem. This phase produces

System Specifications, called the functional baseline. The

functional baseline identifies what needs to be done. It

is a first attempt at describing the specifications. At

this point the life cycle enters the Validation Phase.

Validation Phase

During the Validation Phase, the System Specifi-

cations functional baseline governs the tasks of the

contractor as the product is developed. The Air Force

project manager monitors the contractor's progress during

the Validation Phase using the System Design Review (SDR).

The SDR permits the manager to evaluate the adequacy of

the Validation Phase products before the contractor

formally submits them (29:20). The SDR is primarily

concerned with the overall review of the requirements.

49

MIL-STD-1521A, Appendix B, lists the items which must be

reviewed during the SDR. After the SDR is completed, the

contractor should correct any deficiencies identified

during the SDR. These authenticated specifications

(product) are the B-5 or Part I specification, the

allocated baseline. The submittal of the specifications

ends the Validation Phase and leads to the beginning of the

Full-Scale Development Phase.

Full-Scale Development Phase

Reviews

The first review conducted in the Full-Scale Develop-

ment Phase is the Preliminary Design Review (PDR). The PDR

is a review of the developer's top-level software design in

response to the software specifications (29:25). These

specifications would have been approved, authenticated and

baselined in the phases prior to the PDR. The purpose

of the PDR is to determine if 1) the design approach

considers all performance requirements; 2) the approach

will satisfy these requirements; and 3) the new software

will work with the existing software and hardware.

The requirements for conducting PDRs are specified in

MIL-STD-1521A, Appendix C (29:26). The PDR is conducted

after a basic design approaci has been selected by the

contractor. If problems in the design of the baseline are

50

discovered during the PDR, the Air Force must ensure that

an Engineering Change Proposal (ECP) is issued. The ECP

* will formally acknowledge the changes to the established

baselines (29:30). Upon completion of the PDR, the

developer has achieved the design baseline (C-5 specifi-

cation) and is ready to initiates the detail design of the

software. The design baseline signifies the end of the

Analysis Phase and the beginning of the Design Phase. When

the detail design is completed, and before coding and

testing of software, a Critical Design Review (CDR) is

conducted. According to MIL-STD-1521A,

A CDR shall be conducted [on the software] to
ensure that design solutions, as reflected in the

Draft Part II Product Specifications on engineering
drawings, satisfy performance requirements estab-
lished by the Part I Development Specification
[47:40].

The CDR for a software package is a technical review

of flowcharts when the logical design is completed (29:30).

The purpose of the CDR is to critically review the detailed

design of the software to determine if 1) the requirements

of the software development specifications can be

implemented; 2) the detailed design of the flowcharts is

compatible with the design structure presented at the

Preliminary Design Review; and 3) the flowcharts are

detailed enough to start coding.

51

..

rn

To identify deficiencies, the manager should question

the design presented. If the deficiencies are extensive

and the design is unacceptable, the manager should

reschedule the CDR for a later date. Otherwise, if the

design is basically sound, the deficiencies should be

documented in the meeting minutes of the CDR. This action

" should be followed up to ensure that the deficiencies have

been corrected.

After a successful CDR, the contractor will prepare

the software and its documentation. It is then time to

conduct the configuration audits on this product.

Audits

The purpose of the audits is to verify compliance

with the requirements identified in the specifications and

other contract requirements. Two kinds of audits are

performed: the Functional Configuration Audit (FCA) and the

Physical Configuration Audit (PCA).

The purpose of the FCA is to ensure that the

delivered computer code actually does what the user asked

for in the Software Specifications (B-S/Part I Specifica-

tions). The FCA is accomplished by auditing the results of

the software qualification tests to determine the qualifi-

cation status of the software (29:35). If during the FCA

the software fails to meet the specifications, the manager

gI has two choices.

52

-I . . ." .. . - ' . .

If the discrepancies are not extensive, they should

be formally identified in the FCA minutes and in action

items. The discrepancies must be corrected before the

Physical Configuration Audit starts, and the corrections

checked during the Formal Qualification Review.

If the discrepancies are extensive, the software is

disapproved, or the requirements in the Development

Specification are changed. If the software is disapproved,

the software must be modified, retested and re-audited.

Sometimes, though, when the software cannot satisfy the

Development Specifications, "it may be desirable to change

the specifications to agree with the software performance

[29:37]." If the software is accepted after the FCA, then

the Formal Qualification Review becomes a formality which

is part of the FCA. In this case, the FQR, which is

essentially the same as the FCA, "can be accomplished in a

single combined Audit/Review [47]." If the software has

some requirements yet to be satisfied, the FQR will be

conducted after the Physical Configuration Audit (29:42).

The Physical Configuration Audit (PCA) is conducted

to ensure that the support documentation accurately and

clearly reflects the software. It is the prime instrument

used for making design modifications (software maintenance)

to computer code (29:38). Good complete documentation can

significantly reduce software maintenance costs. We know

*g that software maintenance costs comprise two-thirds of

53

6

future DOD computer life cycle costs (15:11). Therefore,

the PCA can help reduce DOD software maintenance costs.

The PCA is conducted by comparing the documentation with

the software. This includes verifying the narrative

information and flowcharts against listings for accuracy,

completeness, and understandability of documentation.

Special attention must be given to portions of software

which were changed as a result of the FCA. It is possible

that the corresponding documentation updates may have been

overlooked. In addition,

The positional handbooks, users manuals, and
operators manuals should be validated prior to
System Development Test and Evaluation (DT&E). The
verification of these manuals will normally be
accomplished during System DT&E [29:40].

Deficiencies discovered during the PCA will be listed on DD

Form 250. This signed DD 250 (with deficiencies) repre-

sents a conditional acceptance until the shortages have

been satisfied. This conditional acceptance, with out-

standing qualification requirements, normally requires a

Formal Qualification Review (29:42).

The FQR then ensures that all discrepancies noted in

the FCA and PCA minutes have been corrected. With the

completion of the FQR, the software is certified and

accepted by the Air Force manager.

54

Iq

Summary

The DOD manager can ensure an orderly, well-planned

development of a system by systematically completing each

review and audit. This imposed organization can help the

manager succeed in acquiring software which will identify

and satisfy the allocated baseline. In addition, a

systematic development reduces the number of design errors

in a software package, thus reducing software maintenance

- and system life cycle costs.

5

I

APPENDIX B

GLOSSARY

56

This appendix defines the software engineering terms

used in this thesis. The definitions are a subset of the

IEEE Standard Glossary of Software Engineering Terminology

except where otherwise indicated.

Definitions

acceptance testing: formal testing conducted to determine
whether or not a system satisfies its acceptance
criteria and to enable the customer to determine
whether or not to accept the system.

algorithm: 1) a finite set of well-defined rules for
the solution of a problem in a finite number of
steps; for example, a complete specification of a
sequence of arithmetic operations for evaluating
sin x to a given precision (ISO), 2) a finite set
of well-defined rules that gives a sequence of
operations for performing a specific task.

audit: 1) an independent review for the purpose of
assessing compliance with software requirements,
specifications, baselines, standards, procedures,
instructions, codes, and contractual and licensing
requirements, 2) an activity to determine through
investigation the adequacy of, and adherence tc,
established procedures, instructions, specifications,
codes, and standards or other applicable contractual
and licensing requirements, and the effectiveness of
imolementation.

baseline: 1) a specification or product that has been
normally reviewed and agreed upon, that thereafter
serves as the basis for further development, and that
can be changed only through formal change control
procedures, 2) a configuration identification
document or a set of such documents formally
designated and fixed at a specific time during a
configuration item's life cycle. Base' nes, plus
approved changes from those baselines, constitute the
current configuraticn identification. For configur-
ation management there are three baselines, as
follows: a) functional baseline - the initial
approved functional configuration, b) allocated

57

baseline--the initial approved allocated config-
uration, and c) product baseline--the initial
approved or conditionally approved product
configuration identification.

bottom-up: pertaining to an approach that starts with
the lowest level software components of a hierarchy
and proceeds through progressively higher levels to
the top level component; for example, bottom-up
design, bottom-up programming, bottom-up testing.
Contrast with top-down.

code: 1) a set of unambiguous rules specifying the
manner in which data may be represented in a discrete
form, 2) to represent data or a computer program in
a symbolic form that can be accepted by a processor,
3) to write a routine, 4) loosely, one or more
computer programs, or part of a computer program,
5) an encryption of data for security purposes.

cohesion: The degree to which the tasks performed by a
single program module are functionally related.
Contrast with coupling.

computer: 1) a functional unit that can perform
substantial computation, including numerous
arithmetic operations or logic operations, without
intervention by a human operator during a run, 2) a
functional programmable unit that consists of one or
more associated processing units and peripheral
equipment, that is controlled by internally stored
programs, and that can perform subtantial compu-
tation, including numerous arithmetic operations or
logic operations, without human intervention.

computer network: a complex consisting of two or more
interconnected computers.

* computer program: a sequence of instructions suitable
for processing by a computer. Processing may include
the use of an assembler, a compiler, an interpreter,
or a translator to prepare the program for execution
as well as to execute it.

* computer sophisticate: a person comfortable with the
complexities of modern computer science. One able to
cope with hardware and software which is not user-
friendly. (author]

computer system: a functional unit, consisting of one or
9 more computers and associated software, that uses

58

common storage for all or part of a program and also
for all or part of the data necessary for the execu-
tion of the program; executes user-written or user-
designated programs; performs user-designated data
manipulation, including arithmetic operations and
logic operations; and that can execute programs that
modify themselves during their execution. A computer
system may be a standalone unit or may consist of
several interconnected units. Synonymous with ADP
system, computing system.

configuration: 1) the arrangement of a computer system
or network as defined by the nature, number, and the
chief characteristics of the functional units. More
specifically, the term configuration may refer to a
hardware configuration or a software configuration,
2) the requirements, design, and implementation that
define a particular version of a system or a system
component, 3) the functional and/or physical
characteristics of hardware/software as set forth in
technical documentation and achieved in a product.

configuration audit: the process of verifying that all
required configuration items have been produced, that
the current version agrees with specified require-
ments, that the technical documentation completely
and accurately describes the configuration items, and
that all change requests have been resolved.

configuration item: 1) a collection of hardware or
software elements treated as a unit for the purpose
of configuration management, 2) an aggregation of
hardware/software, or any of its discrete portions,
that satisfies an end use function and is designated
for configuration management. Configuration items
may vary widely in complexity, size, and type from an
aircraft, electronic or ship system to a test meter
or round of ammunition. Duritig development and
initial production, configuration items are only
those specification items that are referenced
directly in a contract (or an equivalent in-house
agreement). During the operation and maintenance
period, any reparable item designated for separate
procurement is a configuration item.

coupling: a measure of the interdependence among modules
in a computer program. Contrast with cohesion.

Critical Design Review (CDR): a formal technical review
of the design as depicted by the specification and
flow diagrams, sufficiently detailed to enable the

59

I

programmer to code and to assure that design require-
ments have been met before beginning coding.
[29:77-79]

data base: 1) a set of data, part or the whole of
another set of data, and consisting of at least one
file that is sufficient for a given purpose or for a
given data processing system, 2) a collection of
data fundamental to a system, 3) a collection of
data fundamental to an enterprise.

error: 1) a discrepancy between a computed, observed,
or measured value or condition and the true,
specific, or theoretically correct value or
condition, 2) human action that results in software
containing a fault. Examples include omission or
misinterpretation of user requirements in a software
specification, incorrect translation, or omission of
a requirement in the design specification. This is
not a preferred usage.

flowchart: a graphical representation of the definition,
analysis, or solution of a problem in which symbols
are used to represent operations, data, flow, and
equipment.

Formal Qualification Review (FQR): the test, inspection,
or analytical process by which products at the end
stem or critical-item level are verified to have met
specific procuring activity contractual performance
re; :irements (specification or equivalent).

'7-79]

Formal Quaiification Tests (FQT): formal tests oriented
toward testing of the functional and performance
characteristics of the CPCI, normally using opera-
tionally configured equipment at the System DT&E site
prior to the beginning of System DT&E. [29:77-79]

Full-Scale Development Phase: the period when the
system/equipment and the principal items necessary
for its support are designed, fabricated, tested, and
evaluated. The intended output is, as a minimum, a
preproduction system which closely approximates the
final product, the documentation necessary to enter
the production phase, and the test results which
demonstrate that the production product will meet
stated requirements (DODI 5000.1, AFR 800-2).
[29:77-79]

60

.. . . - . • - . ..

Functional Configuration Audit (FCA): . formal audit to
validate that the development cf a CI has been
completed satisfactorily and that the CI has achieved
the performance and functional characteristics
specified in the functional or allocated configur-
ation identification. [29:77-79]

function decomposition: a method of designing a system
by breaking it down into its components in such a way
that the components correspond directly to system
functions and subfunctions.

hardware: physical equipment used in data processing, as
opposed to computer programs, procedures, rules, and
associated documentation. Contrast with software.

high-level language: synonomous with higher order language.

higher order language: a programming language that usually
includes features such as nested expressions, user
defined data types, and parameter passing not
normally found in lower order languages, that does
not reflect the structure of any one given computer
or class of computers, and that can be used to write
machine independent source programs. A single,
higher order language statement may represent
multiple machine operations. Contrast with machine
language, assembly language.

instruction: 1) a program statement that causes a
computer to perform a particular operation or set of
operations, 2) in a programming language, a meaning-
ful expression that specifies one operation and
identifies its operands, if any.

integration: the process of combining software elements,
hardware elements, or both into an overall system.

interface: 1) a shared boundary. An interface might be
a hardware component to link two devices or it might
be a portion of storage or registers accessed by two
or more computer programs, 2) to interact or
communicate with another system component.

* machine language: a representation of instructions and
data that is directly executable by a computer.
Contrast with assembly lanquage, higher order
language.

6

61

maintainability: 1) the ease with which software can be
maintained, 2) the ease with which maintenance of a
functional unit can be performed in accordance with
prescribed requirements.

modular decomposition: a method of designing a system by
breaking it down into modules.

modular programming: a technique for developing a system
or program as a collection of modules.

modularity: the extent to which software is composed of
discrete components such that a change to one
component has minimal impact on other components.

module: 1) a program unit that is discrete and
identifiable with respect to compiling, combining
with other units, and loading; for example, the input
to, or output from, and assembler, compiler, linkage
editor, or executive routine, 2) a logically
separable part of a program.

nest: 1) to incorporate a structure or structures of
some kind into a structure of the same kind. For
example, to nest one loop (the nested loop) within
another loop (the nested subroutine) within another
subroutine (the nesting subroutine), 2) to place
subroutines or data in other subroutines or data at a
different hierarchical level so that subroutines can
be executed as recursive subroutines or so that the
data can be accessed recursively.

network: 1) an interconnected or interrelated group of
nodes, 2) in connection with a disciplinary or
problem oriented qualifier, the combination of
material, documentation, and human resources that are
united by design to achieve certain objectives; for
sample, a social science network, a science
information network.

operating system: software that controls the execution
of programs. An operating system may provide
services such as resource allocation scheduling,
input/output control, and data management. Although
operating systems are predominantly software, partial
or complete hardware implementations are possible.
An operating system provides support in a single spot
rather than forcing each program to be concerned with
controlling hardware.

62

L

Physical Configuration Audit (PCA): a formal examination
of the technical documentation (specification,
handbooks, and manuals) to determine their
compatibility with the qualified CPCI. [29:77-79].

Physical Design Review (PDR): A formal review of the
preliminary design of a CI to 1) evaluate technical
progress, 2) determine its compatibility with the
requirements of the CI Development Specification, and
3) establish the existence and compatibility of the
physical and functional interfaces among CI equip-
ment, facilities, computer programs, and personnel.
[29:77-79]

preliminary design: 1) the process of analyzing design
alternatives and defining the software architecture.
Preliminary design typically includes definition and
structuring of computer program components and data,
definition of the interfaces, and preparation of
timing and sizing estimates, 2) the result of the
preliminary design process.

program: 1) a computer program, 2) a schedule or plan
that specifies actions to be taken, 3) to design,
write, and test computer programs.

quality assurance: a planned and systematic pattern of
all actions necessary to provide adequate confidence
that the item or product conforms to established
technical requirements.

reliability: 1) the ability of an item to perform a
required function under stated conditions for a
stated period of time, 2) see software reliability.

software development plan: a project plan for the develop-
ment of a software product. Synonymous with computer
program development plan.

software documentation: technical data or information,
including computer listings and printouts, in human-
readable form, that describe or specify the design or
details, explain the capabilities, or provide
operating instructions for using the software to
obtain desired results from a software system.

software engineering: the systematic approach to the
development, operation, maintenance, and retirement
of software.

63

software reliability: 1) the probability that software
will not cause the failure of a system for a
specified time under specified conditions. The

probability is a function of the inputs to and use of
the system as well as a function of the existence of
faults in the software. The inputs to the system
determine whetlher existing faults, if any, are
encountered, 2) the ability of a program to perform
a required function under stated conditions for a
stated period of time.

specification: 1) a document that prescribes, in a
complete, precise, verifiable manner, the require-
ments, design, behavior, or other characteristics of
a system or system component, 2) the process of
developing a specification, 3) a concise statement
of a set of requirements to be satisfied by a
product, a material or process indicating, whenever
appropriate, the procedure by means of which it may
be determined whether the requirements given are
satisfied.

structured design: a disciplined approach to software
design that adheres to a specified set of rules based
on principles such as top-down design.

structured program: a program constructed of a basic set
of control structures, each one having one entry
point and one exit. The set of control structures

" typically includes: sequence of two or more
instructions, conditional selection of one of two or
more instructions, conditional selection of one of
two or more instructions or sequences of instruc-
tions, and repetition of an instruction or a sequence
of instructions.

structured programming: 1) a well-defined software
development technique that incorporates top-down

* design and implementation and strict use of
structured program control constructs, 2) loosely,
any technique for organizing and coding programs that
reduces complexity, improves clarity, and facilitates
debugging and modification.

" System Design Review (SDR): a design review conducted to
evaluate the optimization, correlation, completeness,
and risk associated with the allocated technical
requirements. [29:77-79]

6

64

O

System Requirements Review (SRR): a system engineering
review to ascertain the adequacy of the contractor's
efforts in defining system requirements. It will be
conducted when a significant portion of the system
functional requirements has been established.
[29:77-79]

system software: software designed for a specific computer
system or family of computer systems to facilitate
the operation and maintenance of the computer system
and associated programs, for example, operating
systems, compilers, utilities.

test plan: a document prescribing the approach to be taken
for intended testing activities. The plan typically
identifies the items to be tested, the testing to be
performed, test schedules, personnel requirements,
reporting requirements, evaluation criteria, and any
risks requiring contingency planning.

test repeatability an attribute of a test indicating
whether the same results are produced each time the
test is conducted.

testability: 1) the extent to which software facilitates
both the establishment of test criteria and the
evaluation of the software with respect to those
criteria, 2) the extent to which the definition of
requirements facilitates analysis of the requirements
to establish test criteria.

testing: the process of exercising or evaluating a
system or system component by manual or automated
means to verify that it satisfies specified require-
ments or to identify differences between expected and
actual results.

top-down: pertaining to an approach that starts with the
highest level component of a hierarchy and proceeds
through progressively lower levels; for example,
top-down design.

top-down design: the process of designing a system by
identifying its major components, decomposing them
into their lower level components, and iterating
until the desired level of detail is achieved.
Contrast with bottom-up design.

user-friendly: easy to use or understand by the non-
expert. [author]

65

a

validation: the process of evaluating software at the
end of the software development process to ensure
compliance with software requirements.

Validation Phase: the overall objective of the Validation
Phase is to determine whether to proceed with Full-
Scale Development. The ultimate goal of the
V on Phase, where development is to be
perfo ...d by a contractor, is to establish firm and
realistic performance specifications (Allocated
Baseline), which meet the operational and support
requirements. [29:77-791

verification: 1) the process of determining whether or
not the products of a given phase of the software
development cycle fulfill the requirements estab-
lished during the previous phase, 2) formal proof of
program correctness, 3) the act of reviewing,
inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether or not items,
processes, services, or documents conform to
specified requirements.

walk-throuqh: a review process in which a designer or
programmer leads one or more other members of the

*development team through a segment of design or code
that he or she has written, while the other members
ask questions and make comments about technique,
style, possible errors, violation of de-velopment
standards, and other problems.

66

S.

A

APPENDIX C

FORMAL PROGRAM DESIGN METHODOLOGIES

67

No single design methodology has been shown to be

"correct" for all types of problems. Therefore, the

following suggestions cover a variety of applications

(2:13).

Functional Decomposition. Refers to:

the divide-and-conquer technique applied to
programming (as shown in Figure 10]. By viewing
the stepwise decomposition of the problem and the
simultaneous development and refinement of the
program as a gradual progression to levels of
greater and greater detail, functional decomposi-
tion [can be characterized] as a top-down approach
to problem-solving. Conversely, groups of instruc-
tions sequences [can be formed and layered]
together into "action clusters," starting at the
atomic machine instruction level and working our
way up to the complete solution. This approach
leads to a bottom-up method [2:19].

OIVIOE ANO CONQUER S fEPWISE REFINEMENT

PA

Figure 10. Functional Decomposition (2:19)

Data Flow Design. This method has also been known as

"transform-centered design" and "composite design" (2:23).

6

68

6

In its simplest form, (data flow design] is nothing
more than functional decomposition with respect to
data flow. Each block of the structure chart is
obtained by successive application of the engineer-
ing definition of a black box that transforms an
input data stream into an output data stream. When
these transforms are linked together appropriately,
the computational process can be modified and
implemented much like an assembly line that merges
streams of input parts and outputs streams of final
products [2:23].

MODEL OF
PROBLEM

2 IDENTIFY AFFERENT ENVIRONMENT
AND EFFERENT IV RESTATE PROBLEM AS
ELEMENTS DATA FLOW GRAPH

DArA FLOWAFLOW

GRAPm4

AFFEREN CENTRAL EFERN
D' ATA ELEMENTS TRANSFORMDAAEM NT

PROGRAM 3 FACTORING OF AFFERENT
4 REFINEMENTS AND STRUCTURE EFFERENT AND

ALTERATIONS TRANSFORM BRANC,#IES

i. " PROGRAM

Figure 11. Data Flow Design Procedure (2:24)

Data Structure Design. This design follows the

hypothesis that:

A program views the world through its data
structures and that, therefore, a correct model of
the data structures can be transformed into a
program that incorporates a correct model of the

*e world. The importance of this view is emphasized
by Michael Jackson's words that "a program that
doesn't directly correspond to the problem
environment is not poor, is not bad, but is wrong
[2:26].

69

6'

SYSTEM NETWORK/OATA
STRUCTUR.SOPERATONS STRUCTURE JIAGRAM

I OPEN FILE

2 READ FILE
3.
4 ---

Figure 12. Data Structure Design Method (2:27)

2. DATA STEP

DATA 4 OPERATIONS STEP

STRUCTURESP

3 PROGRAM STEP STRUCTURE

Figure 13. Basic Data Structure Design Procedure (2:27)

70

.4

A Programming Calculus. Proving the "correctness" of

a program is "disappointingly difficult [2:29]." This

method uses a simultaneous process where the program and

the proof are constructed together. Bergland discusses the

design strategy as follows:

The initial design task consists of formally
specifying the required result as an assertion
stated in the predicate calculus. Given this
desired post-condition, one must derive and verify
the appropriate pre-conditions while working back
through the program being constructed. The program
and even individual statements play a dual role in
that they must be viewed in both an operational way
and as predicate transformers. The method is a
top-down method to the extent that both the

4resulting program and the predicates can be formed
in stages by a sequence of stepwise refinements
[2:29].

Methodology Comparison. Many claims have been made

about the different strategies for software design, as seen

in Figure 14.

For functional decomposition, the proponents have
largely said "D is [a] good design, believe me."
For data flow design methods, people have said,
"Program C is letter than program D. Let me tell
you why." For data structure design methods, the

4q claim is that "B is right, C and D are wrong. A
program that works isn't necessarily right." In
the programming calculus, the contention is that
"Program A is probably correct. B, C, and D are
unproven [2:35].

,4

71

FUNCTIONAL. DECOMPOJSITION

OATA FLOW, DES.CN METM00
C >0

DArA STRuCluRE 0ES1GN MET00

8 RIG#$4RON

P OU A A M M ,G 0A L'. S C : ~ A)
A P~r)VABLV ORC

a C 0 v ~1pQOVE1JUJ

Figure 14. Summary of Program Design Methodology Claims
(2: 3 5)

MAI

Fu~CTOAI. OAIA DI0 AucuIAlUU

YO.IEO U4DE M0E

SUc~,QF S*UC'.UPE STRUCTURESrUC

soVE I EIS SO~wf SLALt" oprt%*

Figure 15. Current State-of-the-Art (2:35)

72

Other Design Recommendations. G. D. Bergland identi-

fied four specific design methodologies. These additional

recommendations are more suitable for the software

procurement novice.

Top-down design: In the top-down design approach, the

system is approached as a whole from the outside. The

* system is then subdivided into a limited number of modules

with specified interfaces. Each module is then subdivided

into submodules (26).

Factoring: Like top-down design, this strategy breaks

the problem into smaller, more manageable portions. Some

guidelines include:

a. reduce the module size so that the entire
module fits on one page.

b. clarify the system by modularizing.

c. avoid redundant functions.

d. separate work things (calculating and editing)
from management things (decisions or module
calls).

e. create more useful modules by ensuring each
module does just one function (thereby being
universally useful.)

Avoid Decision Splits: This refers to a situation

where the data required for the recognition part of the

* Odecision is in a different module from the decision itself.

This practice is difficult to implement but should be

attempted (26).

73

Maintain Local Error Reporting: Report an error from

the module that detects the error and knows what it is.

This helps locate the source of the error, is easier to

update the error message, avoids duplication and helps keep

wording and format consistent.

Avoid State Memory: This refers to data internal to a

module that survives unchanged from one use of the module

to the next. State memory causes problems in this

situation because its effects are unpredictable. It also

makes the module harder (thus more expensive) to maintain

(26).

These recommendations have been provided because they

have gained notoriety as some of the better precautions to

reduce software maintenance. The list of available

"precautions" is surely unending. Nevertheless, these

recommendations will contribute significantly to the

reduction of software life-cycle costs.

4

74

I

APPENDIX D

MEASURES OF GOOD DESIGN

75

Among the primary measures of good design are module

relatedness measures. They explain how portions of com-

puter code (modules) are connected. Two module relatedness

measures are coupling and cohesion.

Coupling

Coupling measures intermodule strength; the degree of

interdependence between two modules. Coupling should be

minimized to make modules as independent as possible (31;

26). The links on a chain have maximum coupling. If one

link fails the other links become useless. Conversely, if

the modules of a software system have minimum coupling,

failure of one module will have minimum effect on the

system. Minimized or loosest possible coupling is desired

because:

1. The fewer connections there are between two

modules, the less the chance there is for a bug in one

module to appear as a symptom in another.

2. We can change the software in a module with

minimum risk of having to change other modules.

3. While maintaining a module we don't want to worry

about the coding details of other modules [31:102-1031.

Six different types of module coupling may occur

between modules. In order of the loosest or best to

tightest or worst, they are:

76

r

Data: Modules communicate by by sending only those

data elements required (26). Each element (or parameter)

is either a single field or a table in which each entry

contains the same type of information (31:103).

Stamp: Modules communication refers to the same data

structure (26; 31:103; 34:43). The structure contains

fields which are not required and are excess data.

Therefore, when an element of data is manipulated in the

structure it affects all the modules which refer to the

structure. It will even affect those modules which do not

interact with the actual data being serviced.

Control: Modules are control coupled if one module

passes to a second module a piece of information intended

to control the internal logic of the second module

(31:103).

External: Modules refer to an externally declared

data element [34:43].

Common: Modules refer to the same global data area

(26).

Content: One module refers to data inside of

another, or if one module alters a statement in another

(31:113; 34:43; 26).

4Two modules may have more than one type of coupling,

or have the same type of coupling several times (31:103).

Minimizing coupling will reduce the time and expense

required for software maintenance during the life of the

77

system. Another measure of the design of a system is the

strength within each module, or its cohesion.

Cohesion

Cohesion refers to the intramodule strength. It "is

the measure of the strength of functional association of

elements within a module [31:118]." The 'elements' are the

computer instructions. The preference is for modules whose

elements are strongly and genuinely related to one another.

Ideally, a module contains elements that all contribute to

the execution of one problem-related task. An example of

good cohesion would be a module which calculates the area

of a circle given the radius. It has one purpose. An

example of bad cohesion is a module whose elements

contribute to activities with no meaningful relationship to

one another (31:129). Cohesion is a good measure of a

module's maintainability. A module with good cohesion is

easier (thus less expensive) to maintain than a module with

bad cohesion.

The seven levels of cohesion in order of their

maintainability (from best to worst) are:

Functional: This most desired form of cohesion is

q characterized by modules that perform a single specific

function (34:43). All the elements in the module

contribute to the execution of one, and only one, problem

o* related task (31-119).

78

£

Sequential: In this form of cohesion module, action

consists of several logical functions operating on data in

a predetermined order (34:43). The output of one function

(or operation) is the input to the next (26; 31:125).

Communicational: Software with this intramodule

strength uses the same input, but the output is not

related. The order of the operations is not important (26;

*I 31:125).

Procedural: "A procedurally cohesive module is one

whose elements are involved in different and possibly

unrelated activities, in which control flows from each

activity to the next [31:124]." A specified order exists,

* but there is no relation between steps, and control flows

from one element to another (26).

Temporal: The elements of this module are involved

in activities that are related in time (31:125). A key

characteristic of this form of intramodule strength is

.'nitialization' (26; 34:43).

Logical: These elements contribute to activities of

the same general category. They are substitute choices for

each other and generally are represented by a decision on a

structure chart. It is used to overlap parts of functions

.* which have the same lines of code (26; 31:125).

Coincidental: The elements in this module contribute

to activities with no meaningful relationship to one

79

0I

'A

another (31:129). It is a 'coincidence' that all functions

are in the same module (26).

Cohesion is a measure of module strength, and acts
somewhat like a chain, holding together the
activities in the module. If all the activities of
a module are related by more than one level of
cohesion, the module has the strength of the
strongest level of cohesion; this is the
chains-in-parallel rule [31:133].

a

4

I

i 80

I .

APPENDIX E

STRUCTURED PROGRAMMING

81

Structured programming is the formulation of programs

as hierarchical nested structures of statements and objects

of computation (49). The goal of structured programming is

to reduce program complexity, and improve program clarity.

These two attributes will help make the software program be

more 'user friendly' and have lower software maintenance

requirements. Structured programming reduces complexity

by using only three control structures: 1) sequence;

2) conditional (if-then-else); and 3) loop (do-while).

Figures 16 and 17 graphically depict the three control

structures of structured programming.

Code designed using only these control structures is

easier to read and understand. Code that is easy to read

and understand is less difficult to update. Therefore, the

use of structured programming can reduce software

maintenance and computer system life-cycle costs.

I

82

IF-THEN-ELSE

-. . l)~~O-W-iIr. L"-.

SEQUE

--CES "WIILE" "ELSE" "THEN"
SPROCESS •PROCESS PRCESI

PROCESS B

SEQNCE O-!nLE IF-THEN-ELSE

~Figure 16. Basic Control Structures of Structured
. Programming (34 :15)

SEDUENCE ITE.RAION SELECTION

A SEQUENCE A ITERATION A SELECTION

- aoB. do B: co B.
__ cC. A END A ALT

A END - cc.
* A END.O

Figure 17. The Three Basic Control Flow Constructs (2:15)

83

0

APPENDIX F

PRCGGRAMMING STYLE

84

-A14 363 MICROCOMPUTE R SOFTIUARE SYSTEM DEVELOPMENT: SUGGESTED 2/2
REVISIONS TO MIL-STD-.(U) AIR FORCE IN5T OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF SYST- V M HELBLING

UNCLASSIFIED SEP 83 AFIT-LSSR 18 83 F/fl 5/1 NLmEE~hhhEEE-h

L3- 2

inn 1.0 C

11IJIL2 -4 111

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

In the last twenty years, the concept of programming

style has been changed drastically.

If you asked someone what good programming style
was, you would likely have received (if you didn't
get a blank stare) a lecture on

1. how to save microseconds
2. how to save words of memory

. 3. how to draw neat flowcharts
4. how many comments to write

per line of code [21:303].

Today, some microcomputer programmers are primarily

concerned with 'efficiency' and 'clever' use of machine

capabilities. These practices are dangerous and result in

software that is difficult (therefore expensive) to update.

Kernighan and Plauger recommend these elements of

programming style:

Expression: At the lowest level of coding,

individual statements and small groups of statements have

to be expressed so they read clearly (21:304).

Structure: The larger structure of the code should

also read clearly. It should be written with only a

handful of control-flow primitives (such as if-then-else).

This is one aspect of what we mean by structured

programming (see Appendix E). Coding in this set of

well-behaved structures makes code readable, thus more

understandable and likely to be right. This reduces

software maintenance cost by making the code easier to

change and debug (21:304).

85

Robustness: A program should work not just on the

easy cases, or on the well-exercised ones, but all the time

(21:304).

Efficiency and Instrumentation: Until we have a

working piece of code, we don't always know where it spends

its time. And until we know that, talk of changing it "for

* efficiency" is foolish. Write the whole program clearly.

If it is then too slow or too big, change to a better

algorithm (21:305).

Documentation: If you write the code with care in

the detailed expression, using the fundamental structures,

and choosing a good representation, most of the code will

be self-documenting--it can be read (21:305).

Kernighan and Plauger did not emphasize a need for

the use of flowcharts. In fact, studies by Schneiderman,

Mayer, McKay, and Heller conject that "flowcharts may even

be a hindrance [34:65]." Kernighan and Plauger did

recommend these guidelines for expression:

1. Don't be too clever.

2. Don't be too complicated.

3. Be clear versus efficient.

4. Don't hesitate to rewrite the program.

(21:305-309).

Milne's guidelines parallel those suggestions:

86

. • . -

1. Don't be too clever or complicated.

2. Don't optimize the code.

3. Stick to basic control structures (Appendix E).

4. Make sure every comment means something.

Don't have comments echo the code.

5. Use an appropriate language, but be clear in

the language you use.

6. Use descriptive names for objects.

7. Avoid negative logic.

8. Don't be unnecessarily complicated.

9. Avoid temporary variables (26).

The DOD manager should request that the contractor

follow these guidelines. Programmers often claim that they

don't have time to worry about niceties like style

(21:309). The DOD manager must resist abdicating to this

complaint. The time saved when problems are encountered in

testing and when software modifications are performed on

complicated, unclear software will far outweigh any savings

during the software development.

87

-- A-1 -- -

~4

4..

.4.

SELECTED BIBLIOGRAPHY

-S

.4
-4,

.5.

-p.

Up

88V.

S.

SU -
U 4 U U - . .

- U . U - - -. . - U
-~ -. ~- -~ ~?

A. REFERENCES CITED

1. Babel, Philip S. ASD Computer Resource Focal Point,
Deputy for Engineering, ASD/EN, Wright-Patterson
AFB OH. Personal Interview. 23 March 1983.

2. Bergland, G. D. "A Guided Tour of Program Design
Methodologies," Computer, October 1981, pp. 13-37.

3. Brooks, Frederick P., Jr. The Mythical Man-Month.
Phillipines: Addison-Wesley Publishing Company,
Inc., 1975.

4. Bunyard, Major General Jerry Max, USAF, and James Mike
Coward. "Today's Risks in Software Development:
Can They be Significantly Reduced?" Concepts,
Vol. 5, No. 4 (Autumn 1982), pp. 79-84.

5. Caine, Stephen H., and E. Kent Gordon. "PDL - A Tool
for Software Design," Proceedings, National
Computer Conference, AFIPS Press, 1975.

6. Clapp, Judith A. "Designing Software for Maintain-
ability," Computer Design, September 1981,
pp. 197-204.

7. Clark, Lieutenant General Lynnwood E., USAF.
Commander, Alaskan Air Command, Elmendorf AFB AK.
Personal interview. 17 June 1983.

8. Craddoc, Doc. Manager for Software Quality, Texas
Instruments, Austin TX. Telephone interview.
19 July 1983.

9. Dayton Daily News. "Sally Ride: No Trade for Space
Trip," Vol. 106, No. 338 (14 August 1983), p. 2.

10. Douglas, Captain Frank E., III, USAF. "Physical
Configuration Audit of Embedded Computer Programs."
IEEE 1979 National Aerospace and Electronics
Conference. New York: IEEE, 1979.

11. Dunn, Robert H., and Richard S. Ullman. "A Workable
Software Quality/Reliability Plan," IEEE
Proceedings 1978: Annual Reliability and
Maintainability Symposium. New York: IEEE, 1978.

89

12. Ferris, Michael. "Automating America's Air Defense:
A Network of XT's Stands Ready," Softalk for
the IBM Personal Computer, Vol. 2 (June 1983),
pp. 75-81.

13. Gaudreau, Captain Skip, USAF. Headquarters Alaskan
Air Command, Elmendorf AFB AL. Personal interview.
16 June 1983.

14. Greentree Computer Corporation. How to Choose Micro
Computer Software. Rockville MD: Greentree
Computer Corporation, 1983.

15. Grove, Mark H. "DOD Policy for Acquisition of
Embedded Computer Resources," Concepts, Vol. 5,
No. 4 (Autumn 1982), pp. 9-36.

16. Henderson, John. Systems Engineer, International
Business Machines, Dayton OH. Telephone interview.
28 July 1983.

17. Higgins, David A. "Structured Programming with
Warnier-Orr Diagrams," Byte, December 1977,
pp. 104-176.

18. Howard, Lieutenant Colonel Dennis D. Chief of Data
Automation, Elmendorf AFB AL. Personal interview.
17 June 1983.

19. Huang, J. C. "Program Instrumentation and Software
Testing," Computer, April 1978.

20. Huskey, Major Charlie D. Lessons Learned in the
Use of Microcomputers in Systems Development.
Alexandria VA, Defense Technical Information
Center, 1980.

21. Kernighan, Brian W., and P. J. Plauger. "Programming
Style: Examples and Counterexamples," Computing
Surveys, Vol. 6, No. 4 (December 1974),
pp. 303-319.

22. Lang, Walter N. "What the Computer has Wrought,"
Air Force, Vol. 66, No. 7 (July 1983), pp. 68-72.

23. Marriot, Phil. Manager of Software Quality, National
Cash Register Corporation, Dayton OH. Telephone

• .. interview. 21 July 1983.

90

24. Mathenia, Lynn. Operations Manager, The International
Software Data Base, Ft. Collins CO. Telephone
interview. 2 July 1983.

25. McCracken, Michael L. Former Chief System Test, 4602d
Computer Services Squadron, Lowry AFB CO. Personal
interview. 12 July 1983.

26. Milne, Rob. ist Lieutenant USA. Professor, Depart-
ment of Electrical Engineering, AFIT/ENG, Wright-
Patterson AFB OH. Course EE 593. "Software
Engineering," Spring Quarter 1983. Lectures.
18 March 1983 through 3 June 1983.

27. Morgan, D. E., and D. J. Taylor. "A Survey of Methods
of Achieving Reliable Software," Computer, February
1977, pp. 44-52.

28. Myers, L. F. District Staff Manager, Data Base
Administrator, Northwestern Bell, Omaha NE.
Personal interview. 22 December 1982.

29. Neil, George. Software Acquisition Management
*Guidebook: Reviews and Audits. Alexandria VA:

Defense Technical Information Center, 1977.

30. Nelson, Captain William, USAF. Software Quality
Control, Hanscom AFB MA. Telephone interview.
16 February 1983.

31. Page-Jones, Meilir. The Practical Guide to Structured
Systems Design. New York: Yourdon Press, 1980.

32. Peters, Lawrence J. Software Design: Methods and
Techniques. New York: The Yourdon Press, 1981.

33._ "Software Representation and Composition
Technique," Proceedings of the IEEE, Vol. 68,
No. 9 (September 1980), pp. 1085-1093.

34. Pilcher, Major Russell Dean, USAF. "Techniques
Available for Improving the Maintainability of DOD
Weapon System Software," Unpublished master's
thesis, Naval Postgraduate School, Monterey CA,
June 1980.

35. Rasch, Major Ronald H., USAF. Associate Professor of
Accounting and Information Systems, Air Force
Institute of Technology, Wright-Patterson AFB OH.
Personal interview. 29 June 1983.

91

*,i. . -. * * - - r r w . r - --. . .. , ** .'. .,

36. Rock, Dick. Data Automation Manager, Union Pacific
Railroad, Omaha NE. Personal interview.
23 December 1982.

37. Ross, Douglas T. "Structured Analysis (SA): A
Language for Communicating Ideas," IEEE
Transactions on Software Engineering, Vol. SE-3,
No. 1 (January 1977), pp. 16-34.

38. Rowell, Captain Phillip V., USAF. "Specifying Users'
Requirements inthe Context of Military Intelligence
Related Computer Systems." Unpublished master's
thesis. LSSR 53-81, AFIT/LS, Wright-Patterson AFB
OH, 19 September 1981. AD A113017.

39. Rubey, Raymond J. Professor, Department of Electrical
Engineering, AFIT/ENG, Wright-Patterson AFB OH.
Course EE 5.45, nSoftware Acquisition," Spring

" Quarter 1983. Lectures. 28 March 1983 through
3 June 1983.

40. Scharer, Laura. "Pinpointing Requirements,"
Datamation, April 1981, pp. 139-151.

41. Schiffres, Manuel. "Behind the Shakeup in Personal
Computers," U.S. News and World Report, Vol. 94,
No. 25 (27 June 1983), pp. 59-60.

42. Stanley, Phillip M. "A Design Approach to the Audit
of Computer Information Systems," Information
Processing 80. New South Wales Australia: North
Holland Publishing Company, 1980.

43. Stay, J. F. "Hipo and Integrated Program Design,"
IBM Systems Journal, Vol. 15, No. 2 (1976),
pp. 143-154.

44. Steininger, Partner Henry J., Arthur Young and
Company. The Impact of Low Cost Computing
Technologies on the Department of Defense.
Washington DC: Arthur Young and Company, 10 April
1983.

45. Sumner, Eric E. Vice President, Computer Technologies

and Military Systems, Zell Laboratories, Murray
Hill NJ. Personal interview. 13 January 1983.

46. Trauboth, H. Software Testing and Validation
Techniques for Highly Reliable Process-Information
Systems. Marlow Buckinghamshire England: Vlasak
and Company Limited, 1980.

92

,: .i,, . . * . ,. ,., , ,. .,.,,,. *'.~.*

47. U.S. Department of Defense. Technical Reviews and
Audits for Systems, Equipments and Computer
Programs. MIL-STD-1521A (USAF). Washington:
Government Printing Office, 1 September 1972.

48. Walker, Dr. Michael G. "Auditing Software Development
Projects: A Control Mechanism for the Digital
Systems Development Methodology." IEEE 1979
COMPCON, Spring. New York: IEEE, 1979.

49. Wirth, N. "On the Composition of Well-Structured
Programs," ACM Computing Surveys, December 1974.

50. Wolfe, Major H. Wayne, USAF. "Those Damned
Computers," Air University Review, Vol. XXXIV,
No. 4 (May-June 1983), pp. 48-55.

51. Zelkowitz, Marvin V. "Perspectives on Software
Engineering," Computing Surveys, Vol. 10, No. 2
(June 1983), pp. 197-216.

52. Zonars, Demetries. Computer Center Director, ASD/EN,
Wright-Patterson AFB OH. Telephone interview.
16 August 1983.

B. RELATED SOURCES

Air Force Systems Command. A Guide for Program
Management. AFSCP 800-3. Wright-Patterson AFB
OH, 9 April 1976.

Bersoff, Edward, Vilas D. Henderson, and Stan Sugel.
"Software Configuration Management: A Tutorial,"
Computer, January 1979, pp. 97-115.

Boehm, Dr. B. W. "Software Engineering," Classics in
Software Engineering. New York: Yourdon Press,
1978.

. Software Engineering Economics. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1981.

Dlutsch, Michael S. "Software Project Verification and
Validation," Computer, April 1981, pp. 54-70.

Fagan, M. E. "Design and Code Inspections to Reduce Errors
in Program Development," IBM Systems Journal, Vol. 15,
No. 3 (1976).

93

Howden, William E. "A Survey of Static Analysis Methods,"
IEEE Tutorial: Software Testinq and Validation
Techniques. New York: IEEE, 1978.

Jensen, Randall W. "Structured Programming," Computer,
March 1981, pp. 31-48.

, and Charles C. Jones. Software Engineering.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1979.

Lehman, John H. "How Software Projects Are Really
Managed," Datamation, January 1979, pp. 119-129.

Metzger, Phillip W. Managing a Programming Project.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1973.

Tzudeker, Harvey. "Software Configuration Management
Testability and Traceability," Defense Systems
Management Review, Vol. I, No. 6, pp. 106-115.

U.S. Department of Defense. Configuration Control:
Engineering Changes, Deviations and Waivers.
MIL-STD-480A. Washington: Government Printing Office,
29 December 1978.

_ Configuration Management: Practives for
Systems, Equipment , Munitions, and Computer Programs.
MIL-STD-483 (USAF). Washington: Government Printing
Office, 21 March 1979.

Engineering Management. MIL-STD-499A (USAF).
Washington: Government Printing Office, 1 June 1976.

Specification Practices. MIL-STD-490.
Washington: Government Printing Office, 18 May 1972.

94

'IA

04

A01

jrr
f 4L

'4il

