
RD-fi134 356 HIERARCHICAL DATABASE DECOMPOSITION: A TECHNIQUE FOR ill,
DATABASE CONCURRENCY-.(U) ALFRED P SLOAN SCHOOL OF
MANAGEMENT CAMRIDGE MA CENTER FOR I. M H5U DEC 82

UNLASFIDhIR hhh-21-2 @33-EE- 63 hI/2 N
mEE 10hhhh0 h0 hEE

EhEmhmhohmhhhE
EhEEEEEohmhmhE
El.momomo

-1.

U.11 1.0 12.0

MICROCOPY RESOLUTION TEST CHART
9

NATIONAL BUREAU Of SIANOARDSINA
3

A

IZI

Hierarchical Database
Decomposition:

A Technique For Data-
base Concurrency Control

Meichun Hsu

~I.roP~xTechnical Report
12

December 1982

-ITI

*\ 3 1983 ;

CS

C,, Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

83 03 086

,t,. - .---- @-

Contract Number N0C9-81-C-0663
Internal Report Number M010-8212-12
Deliverable Number 001

Hierarchical Database
Decomposition:

A Technique For Data-
base Concurrency Control

Meichun Hsu

,TNrFOPLEX Technical Report
12

December 1982

.OV3

Principal Investigator:
Professor S.E. Madnick

Prepared for:
Naval Electronic Systems Command
Washington, D.C.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
"_ _ __-_ _BEFORE COMPLETING FORM
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report #12

4. TITLE- (ad Subtitle) S. TYPE OF REPORT PERIOD COVERED

Hierarchical Database Decomposition -
A Technique for Database Concurrency
Control 6. PERFORMING ORG. REPORT NUMBER

M010-8212-12
7. AuTHOR(s) I. CONTRACT OR GRANT NUMBER(@)

Meichun Hsu
N0039-81-C-0663

S. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Sloan School of Management, MIT
50 Memorial Drive, Cambridge MA 02139

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1982
I]. NUMBER OF PAGES

.'___61
14. MONITORING AGENCY NAME & ADDRESS(If different from Controllind Office) IS. SECURITY CLASS. (of this report)

unclassified

GIS. DECL ASSI FICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrat entered In Block 20, if different from Report)

1i. SUPPLEMENTARY NOTES

It. K EY WORDS (Continue on reverse aide If necessary aid Identity by block numiber)

Database systems, database concurrency control, timestamp* - algorithm

20. ASISTRACT (Continue on reverse oid# if necessary and Identify by block nmber)

,A generally accepted criterion for correctness of a concurrency
control algorithm is the criterion of serializability of trans-
actions. The classical approaches to enforcing serializability
are the two-phase locking technique and the timestamp ordering
technique. Either approach requires that a read operation from
a transaction be registered (in the form of either a read time-
stamp or a read lock), so that a write operation from a concurr nt

ODD I JAN7 1473 EOITION OF I NOV 65 IS OUSOL9TE
S/N 0102014 6601

SECURITY CLASSIFICATION Oft THIS PAGE (When Date Enteek.)

o '- S . U. •, r , ~

-. 7.

Lt.J41TV CLASSIFICATJOH OF THIS PAGE(When Date Lntered)

-transaction will not interfere improperly with the read operatic
However, setting a lock or leaving a timestamp with a data
element is an expensive operation. The purpose of the current
research is to seek ways to reduce the overhead of synchronizing
certain types of read accesses, and at the same time achieving
the goal of serializability.

- To this end, a hierarchical structure is proposed here as the
means for analyzing opportunities of reducing concurrency over-
head in a database application.! A theorem is discovered which
indicates that in a hierarchically decomposed database one can
construct a type .of partial order of all transactions which is
different from the simple commit order and the simple initiation
order, called the activity link order, whibh enables a new
algorithm for ocncurrency control to be devised which is believe
to have the potential of effectively reducing the overhead of re d
access synchronization in a database system that endorses
a hierarchical decomposition of database.

-paj

U.

.9 -o

SECURITY CLASSIFICAT'ION OF THIS PAGE(U'Pen Data Interact)

-, -

"

INFOPLEX Technical Report #12

ABSTRACT

Increasing demand for information system capacity has prompted researchers

to find ways to improve the computer systems used in information processing.

Database management systems (DBMS's) represent one such effort to provide bet-

ter information services at lower costs. In order to minimize response time

and maximize throughput, it is desirable that a DBMS supports multiple users

at the same time, allowing multiple transactions to run in parallel. However,

for the purpose of maintaining database consistency and integrity, such

parallelism must be properly controlled. For example, suppose two trans-

actions that transfer money into the same bank account are run in parallel.

Without proper coordination between the two transactions, it is possible that

both of them would read the same old balance, modify it independently and

write these independently-modified balances back to the database. if this

happens, the final balance will reflect the result of only one, but not both,

'4 of the transactions, causing one transaction to be lost. To prevent such vio-

lation of database consistency and integrity from taking place, the

concurrency control facility is an indispensable component of the database

management system.

A generally accepted criterion for correctness of a concurrency control

algorithm is the criterion of Ae~atzi~ty of transactions. The classical

INFOPLEX Technical Report #12

approaches to enforcing serializability are the Uo-phate tocking technique

and the timetamp odeing technique. The first technique ensures

serializability by imposing a partial order on all transactions based on their

commit order, while the second on their initiation order. Either approach

requires that a read operation from a transaction be AegiztXLted (in the form

of either a read timestamp or a read lock), so that a write operation from a

concurrent transaction will not interfere improperly with the read operation.

However, setting a lock or leaving a timestamp with a data element is an

expensive operation. The purpose of the current research is to seek ways to

reduce the overhead of synchronizing certain types of read accesses, and at

the same time achieving the goal of serializability.

To this end, a hierarchical structure is proposed here as the means for

analyzing opportunities of reducing concurrency overhead in a database appli-

cation. A theorem is discovered which indicates that in a hierarhically

decomposed database one can construct yet a third type of partial order of all

transactions which is different from the simple commit order and the simple

initiation order that have been used in the existing algorithms. This new

type of partial order, called the activity tLn oadLA, enables a new algorithm

for concurrency control to be devised which is believed to have the ability of

effectively reducing the overhead of read access synchronization in a database

system that endorses a hierarchical decomposition of the database.

2

.

TABLE OF CONTENTS

1.0 INTRODUCTION AND LITERATURE OVERVIEW 1
1.1 Introduction To The Concurrency Control Problem 1
1.2 The Scope of Current Research 2

1.2.1 A Motivating Example 4
1.2.2 The Goal of the Current Reserarch 7

1.3 Overview of Relevant Literature.................. 9

2.0 BASIC CONCEPTS OF MULTI-VERSION CONSISTENCY............. 13

3.0 HIERARCHICAL DATABASE DECOMPOSITION 16
3.1 Some Graphic-Theoretic Definitions 16
3.2 Database Partition 17

4.0 SYNCHRONIZING UPDATE TRANSACTIONS 2
4.1 The Activity Link Function 22
4.2 Concurrency Control Algorithm for Update Transactions 24
4.3 Proof of correctness 25

5.0 SYNCHRONIZING READ-ONLY TRANSACTIONS 30
5.1 The Extended Activity Link Function 30
5.2 Concurrency Control Protocol for Read-Only Transactions 36

6.0 SUMMARY 39

7.0 FUTURE RESEARCH DIRECTIONS 39
7.1.1 Dynamic Restructuring of Database Decomposition 40

7.2 Hierarchical Database Decomposition Methodology 41
7.2.1 Handling Acyclic Decomposition 41
7.2.2 Database Decomposition Methodology Via Data Analysis 42

7.3 Implementation of the Concurrency Control Protocols 42
7.4 The Efficacy of The HDD Approach 42
7.5 Database Computer Applications 42

Bibliography 44
Appendix 49

. . .

- -- 7

INFOPLEX Technical Report #12

1.0 INTRODUCTION AND LITERATURE OVERVIEW

1.1 INTRODUCTION TO THE CONCURRENCY CONTROL PROBLEM

Increasing demand for information system capacity has prompted researchers

to find ways to improve the computer systems used in information processing.

Database management systems (DBMS's) represent one such effort to provide bet-

ter information services at lower costs. In order to minimize response time

and maximize throughput, it is desirable that a DBMS supports multiple users

at the same time, allowing multiple transactions to run in parallel. However,

for the purpose of maintaining database consistency and integrity, such

parallelism must be properly controlled. Therefore the concurrency control

facility is an indispensable component of the database management system.

The role of a concurrency control mechanism is to preserve the atomicity of

a user transaction, i.e., it will prevent the processing of a transaction from

being e..voneouAty itekt eed with other concurrenct transactions, so that

each transaction sees a consistent database state and, if necessary, can be

recovered or backed out as a single unit.

A typical example of database inconsistency induced by improper interleav-

ing of steps of concurrenct transactonF is shown 4n Figure 1. As shown in

the figure, two trpnsactions Jir.ltanerisly accessing the same piece of data

may result in lost update, leaving the database in an incorrect state. This

is due to the fact that the database access steps from these two transactions

i. 1

* . . .

II

INFOPLEX Technical Report #12

Currently there is $100 in Smith's account.

tl: Deposit $50 in Smith's account.

t2: Withdraw $50 from Smith's account.

Schedule of steps of tI and t2 Result of Smith's account

t I reads Smith's balance $100
t reads Smith's balance $10
t2 computes new balance = $150 $100

t2 computes new balance = $50 $100

t writes new balance $150

t writes new balance $50

Figure 1. An example of database inconsistency induced by concurrent

processing.

are not properly interleaved. By requiring that the database management sys-

tem exercise control over such interleaving of concurrent transactions, the

undesirable effects can be eliminated.

1.2 THE SCOPE OF CURRENT RESEARCH

A generally accepted criterion for correctness of a concurrency control algo-

rithm is the criterion of serializability of transactions, which means that

interleaving is harmless so long as one can show that the net effect of such

interleaving is equivotent to 6ome V c.-iazed pkocessng (i.e., one after

another) of all the transactions involved. In the above example, it is appar-

ent that the steps of the two transactions are scheduled in such a way that

INFOPLEX Technical Report #12

there exists no serialized schedule (i.e., either t1 after t2 or t2 after t1)

that would have generated the same net effect. Therefore the schedule of

these steps is not serializable, and therefore incorrect.

The classical approach to enforcing serializability is the twophase toc-

ing technique. This technique locks up data elements being accessed by one

transaction and blocks other transactions from operating on these data ele-

ments until the first transaction is finished. Another. ;Aoach to dealing

with this problem is that of the timestamp oAdeping tech .1, whict stamps

the data elements with the timestamps of the transactionE have operated

on them so as to prevent violation of a pre-determine order from taking

place.

Either approach requires that a read operation from a transaction be Aeg&$-

teked (in the form of either a read timestamp or a read lock), so that a write

operation from a concurrent transaction will not interfere improperly with the

read operation. Setting a locK or leaving a timestamp with a data element is

an expensive operation. It not only incurs an write operation in the database

(in the form of setting the read lock or writing the timestamp), but also

potentially causes delays for concurrent transactions.

The purpose of the current research is to seek ways to reduce overhead of

synchronizing certain types of read accesses, and at the same time achieving

the goal of serializability. A more comprehensive overview will be given in

3

-- 3

INFOPLEX Technical Report #12

the next subsection of the literature in concurrency control, including

efforts up to now that have aimed at similar goals. Here we motivate this

research further through the following simple example.

1.2.1 A MOTIVATING EXAMPLE

Consider an inventory database application of a retail business witn a

database shown in Figure 2. There are several types of transactions that

operate on this database. A type 1 transaction inserts a sales,

sales-modification, or a merchandise-arrival record into the database when the

event of a sales, sales modification or arrival of certain merchandise occurs.

A type 2 transaction is generated periodically for each item in the inventory

to compute the current inventory level of that item. This transaction visits

the sales, sales-modification and merchandise-arrival records to compute the

net change ever since the last computation of the inventory level of that

item. A new inventory level for that item is then posted in the inventory

record.

To control these transactions using two-phase locking, a type 2 transaction

would have set read locks on every read access it has generated to the sales,

sales-modification and merchandise-arrval records. Using the timestant

ordering approch, the type 2 transaction would have left read timestamp for

every such record it has read. However, a closer look at the application

reveals that this overhead of read-locking or read-timestamping is not neces-

!4

INFOPLEX Technical Report #12

Inventory
[If1temT Descript ionJ I~rrent-I nven tory-Leve

Sae Mecadseo-re
,Sale# Qty Pricel Date-time Orders IQty Sup hier Order-datel Arrival-date

Sales-Modification
Sales t Pricel Date-timel

Merchandise-Arriva

Order IQty Arrival-time

Figure 2. An example inventory database.

sary. The sales records, for example, once committed, will not be modified.

In other words, with the exception of being deleted for garbage collecticT,

purposes, the sales records, once committed, have become 'read-only' records.

Therefore the function served by setting read locks, etc., is no longer

needed.

While the above case is very simple, a more complicated case may confuse

the situation and make it not so obvious as to whether or not the read

accesses should be registered. Suppose there are type 3 transactions which

are also generated periodically to check for the need of reordering certain

merchandise items. This type of transaction reads the merchandise-arrival

records and adjust the merchandise-on-order records (by setting the

arrival-date field of such records.) It then computes a gross inventory level

INFOPLEX Technical Report #12

by summing the current-inventory-level and the quantities indicated by the

non-arrived merchandise-on-order records. Based on this gross inventory level

a decision Is made as to whether to reorder this item. If it decides to dc

so, an order request is printed and a merchandise-on-order record is generated

and inserted.

Under this situation, whether or not type 3 transactions can avoid setting

read locks or read timestamps for the inventory and merchandise-arrival

records it retrieves is not so obvious. In fact, if accesses to such records

by type 3 transactions are not controlled, one can construct situations in

which serializability is violated. Suppose two-phase locking is used. Then

we can construct a case in which a merchandise-arrival record y for item x is

seen by a type 2 transaction to compute the current level of inventory. This

current level of inventory is in turn seen by a type 3 transaction to figure

out whether to reorder. However, this type 3 transaction may not have seen

the merchandise-arrival record y. As shown in Figure 3, a timing of these

three transactions can be found such that if the type 3 transaction does not

set read locks, violation of serializability occurs. This violation would

generate adverse effect on the performance and integrity of the database, and

is clearly undesirable. A similar case is constructed in Figure 4 which shows

that if the timestamp ordering technique is used and if the type 3 transaction

does not leave read timestamps, violation of serializability is also possible.

--

INFOPLEX Technical Report #12

t3
' ;tlkl

~t2
* IiI

t~3rtc titarts t3 reads current-level)
starts y t9 of inventory time

t3 finishes commits (therefore reads
reading all the one which has
merchandise- included y.)
arrival records

Figure 3. If read locks are not used, an anomoly may occur.

Because of the seeming unpredictability of the situation, most concurrency

control algorithms, for simplicity, choose to ignore such opprotunity for

reducing synchronization overhead, and complies strictly to the assump::on

that all transactions may read and write any part of the database and there-

fore every access has to be controlled.

1.2.2 THE GOAL OF THE CURRENT RESERARCH

The goal of the current research is to seek for a hgytemat.ic expoitation of

the kind of opportunity for reducing concurrency control overhead indicated in

the case above.

Theoretically speaking, the above case would not exist if all the derived

• . values of the entire database were computed at the time of the entry of the

-7

INFOPLEX Technical Report #12

ti* '"

atl t3 t2rastm
I s h c l

t!: 3 fiise inlue ,.

arread, crnlv (heo
arrval thrj r

not seen y

Figure 4. If read timestamps are not used, an anomoly may occur.

event. However, it is our belief that such case do exist widely in the

real-life applications of database systems, because the instant computation of

all the derived values at the time when an event is captured is both costly

and unnecessary, and does not comply with how the organizations that use a

database system are accustomed to operate. Delayed computations also supports

certain method of operation that an organization may have purposely imposed.

* (e.g., the organizational unit that is responsible for the transaction that

logs merchandise arrival should not have the knowledge of the current invento-

ry level or the details of the merchandise ordering process.) in fact, the

above case can be generalized further by, for example, adding to it applica-

8

not seen

INFOPLEX Technical Report #12

tions that read from the reordering records and the merchandise-arrival

records to generate supplier profile records in the database. As the list

goes on, it is believed that a hierarchy of applications exists such that at

each level of the hierarchy the transaction only reads from but does not write

into data produced by applications of an earlier level. This structure pre-

sents a definite opportunity for concurrency control algorithms to explore.

The bases for our technique are transaction analysis and the maintenance of

a multi-version database. The transaction analysis decomposes the database

into hierarchically related data segments, such that transations that write

into one segment will only read from the same data segment or segments of

higher levels. The technique enables read accesses to higher-level data seg-

ments to proceed without ever having to wait; it requires no read locks or

read timestamps be set for such accesses. This methodology may also bear

implications on database and transaction design activities.

1.3 OVERVIEW OF RELEVANT LITERATURE

Concurrency control in a centralized or a distributed database system has

been an active research area. The concept of database consistency has been

formally analyzed in <Eswaran76, Gray76>, in which set-theoretic notions are

used to formulate the concept. A consistent schedule of concurrent trans-

actions has been defined to be one which is equivalent to a serialized sched-

ule. Two-phase locking has been proposed in their papers as a mechanism which

* " ..
"..

-.
°.-

. 7 -7 .

INFOPLEX Technical Report #12

preserves serializability. This notion of serializability has been further

explored in <Bernstein79>.

Algorithms for database concurrency control abound in the literature. The

distributed database present a challenge for the consistency problem which has

encouraged development of many new algorithms. <For example, Ellis77,

Lamport78, Rosenkrantz78, Thomas79, BernsteinBOb.> A survey and comparison of

theories and algorithms of concurrency control can be found in <BernsteinSOb,

Badal8O>. Most algorithms are considered variations, extensions and/or combs-

nations of the two basic techniques for concurrency control - two-phase

locking and time stamp ordering. The two-phase locking algorithm ensures con-

sistency by imposing a partial order on all transactions based on their lock

points. (A lock point of a transaction is the point in time when the locking

phase of the transaction reaches its peak.) The timestamp ordering algorithm

ensures consistency by imposing a partial order on all transactions based on

the initiation times of the transations. These two techniques have been used

as the basis for further explorations.

One of the foci of recent development in concurrency control algorithms

centers around the identification of techniques that increase level of concur-

rency and/or reduce synchronization overhead, at the same time preserving the

correctness of the algorithm. One dimension of such effort is the

multi-version database. It's been observed that keeping multiple versions of

database elements will improve concurrency of the database <Papadimitriou62>.

.4o

10q

INFOPLEX Technical Report #12

In Papadimitriou's paper, it is shown that there exists an infinite hierarchy

of multi-version serializability, and proven that the more versions a DBMS

keeps, the higher is the level of concurrency it may achieve.

The concept of a timestamp-based multi-version database system was first

proposed in <Reed78>. It is a general scheme in which the identifier of a

data element consists of two components: the name of the data and the version

of the data. In Reed's scheme, retrieval of an arbitrary time slice of the

database is allowed.

A more limited multi-version concept was developed in <BayerBo>. In his

scheme, one previous version of a data element, which has been saved for

recovery purposes when the data element is going through changes made by

uncommitted transactions, is utilized to allow read accesses to proceed with-

out having to wait for the commitment of the update transaction. in

<Garcia-Molina82>, a framework of strateties for processing read-only trans-

actions is presented. In <Viemont82>, an interesting method for concurrency

control is devised which also makes use of this one extra copy of data ele-

ments to synchronize transactions by order of commit time. In essance his

technique is one which blends timestamp ordering and two-phase locking in one

and chooses to switch to one or the other at the most opportune time so as tc

increase level of concurrency. In <Stearns8l, Chan82> the

one-previous-version method was extended to accommodate multiple previous ver-

sions (but does not allow fcr access of an arbitrary time slice of the

INFOPLEX Technical Report #12

database from a user.) In particular, Chan's method is based on two-phase

locking but allows the read-only transaction to receive special treatment -

they do not have to set read locks.

The above list of research bears resemblance to the research to be reported

here. However, our technique is one which is timestamp based and strives to

reduce the need for leaving read timestamps for not just read-only trans-

actions, but update transactions as well.

Another dimension of efforts of reducing synchronization overhead is that

of conflict analysis <BernsteinSOb>. In the research on concurrency control

for SDD-l, conflict analysis was proposed which exploits a priori knowledge of

the nature of the transactions to be run in the system. (To some extent, some

of the research listed in the previous paragraphs concerning providing special

protocols for read-only transactions fall into this category too, as it

exploits the knowledge, albeit a limited one, of the nature of the trans-

actions, namely, whether they are read-only or not.) The approach reported in

the present paper is different from that of SDD-l because it is not oriented

towards distributed database systems, and, because of the special structure of

applications that our approach exploits, together with the fact that multiple

version technique is employed, the pr-tocols are much less restricted. These

new protocols are therefore are more practical to implement. A comparison

between the approach proposed here and that of SDD-l is included in the summa-

ry.

I

L INFOPLEX Technical Report #12

2.0 BASIC CONCEPTS OF MULTI-VERSION CONSISTENCY

In this chapter, we present the basic concept of multi-version consistency

in graph-theoretic terms. This material is mostly taken from

-Papadimitriou82, Bernstein82>, except for some notational differences. We

wish to establish the fact that, if serializability of transactions is taken

as the criterion for correctness of concurrency control, then acyclicity of a

transaction dependency graph, constructed as a result of a multi-version

scheduling algorithm, is the evidence of correctness of the algorithm, as it

preserves serializability of transactions.

We present the following definitions and theorem.

Definition. A schedule of a set c-f transactions T, denoted as S(T), is a

sequence of steps, each of which is denoted as a tuple of the form

<transaction id, action, version of a data granule>.

The action can be read (r) or write (w). The version of a data granule is

denoted as dv, where d indicates the data granule and v indicates the version.

If the action is write, then the version of the data granule included in the

step is created by the transaction. If the action is read, then the trans-

action reads the version of the data granule indicated in the tuple.

An example of a schedule is <tl,w,d'>, <t2 ,r,d'>, <t2,w,d
]>, <t3,r,d

5>.

13

A.

INFOPLEX Technical Report #12

Definition. A version j of a data element d is the predecessor of a ver-

sion k of d if <tl,w,d j> is before <t2 ,w,dk> in S(T) where tj, t2 e T, and

there exists no t e T and i such that <t,w,d'>is between <tj,w,d3>and <t2,

w,dk> in S(T).

Definition. A transaction dependency graph of a schedule S(T) is a

digraph, denoted as TG(S(T)), where the nodes are the transactions in T and

the arcs, representing direct dependencies between transactions, exist accord-

ing to the following rules:

t2 - t i E A iff

(1) <ti,w,dv> and <t2,r,dv> are in S(T) for some dv, or

(2) <tl,r,dl> and <t2,w,dk> are in S(T) for some dJ,dk where d J is the

predecessor of dk

In other words, the transaction dependency graph represents a relation -

(depends on) of transactions such that t2 - ti if t2 reads a version of a data

granule created by tj or if t2 creates a version of a data granule whose pred-

ecessor has been read by t1 .

Definition. Two schedules SI(T) and S 2(T) of the same set of transaction

set T is said to be equivalent iff TG(SI(T)) = TG(S 2 (T)).

14

INFOPLEX Technical Report #12

Definition. A schedule S(T) is serializable if there exists an equivalent

schedule S,(T) where all transactions in Ss(T) are serialized. (i.e., no steps

of one transaction are interleaved with steps from another transaction.)

In <Bernstein82> the following theorem has been shown: a schedule S(T) is

serializaDle iff TG(S(T)) is acyclic.

INFOPLEX Technical Report #12

3.0 HIERARCHICAL DATABASE DECOMPOSITION

3.1 SOME GRAPHIC-THEORETIC DEFINITIONS

We first briefly introduce the concept of a digraph called a transit:ve

semi-tree. This concept will then be used to describe the desiratle datanase

partition to which our concurrency control technique can De applief.

Informally, a semi-tree is a digraph such that, if the directions of the arc-

in the graph are ignored, the graph appears to be a spanning tree. A tran-i-

tive semi-tree is a digraph whose transitive reduction is a semi-tree, i.e.,

it is a semi-tree with an arbitrary number of additional transitively induced

arcs.

Definition. A semi-tree is a digraph such that there exists at most one

undirected path between any pair of nodes in the graph. Every arc in a

semi-tree is called a CritiCal aPC.

Definition. A digraph G is a transitive semi-tree iff its transitive

reduction is a semi-tree.

An example of a transitive semi-tree is shown in Figure 5. It can be seen

that the definition of a transitive semi-tree is more relaxed than a directed

tree, but is more restricted than an acyclic directed graph. The following

two properties are associated with the transitive semi-tree.

16

INFOPLEX Technical Report #12

Spanning tree Semi-tree Transitive

Semi-tree

Figure 5. Illustration of a transitive semi-tree.

Property. A path in a transitive semi-tree is a critical path iff it is

composed of critical arcs alone.

Property. There exists at most one critical path between any pair of nodes

in a transitive-semi tree.

3.2 DATABASE PARTITION

We will use the concept of a data hierarchy graph (DHG), constructed Ly

. means of transaction analysis, to characterize the relationship betwee. a

database partition scheme and database transactions. As will be shown later,

the topology of the DHG of a particular database partition scheme will ini-

cate whether or not our concurrency control technique can be applied to that

17

INFOPLEX Technical Report #12

partition scheme. Informally, let a database be partitioned into data seg-

ments. A DHG is a digraph with nodes corresponding to the data segments an

arcs constructed in such a way that there is an arc from a data segment D,

another data segment D, if and cnly if one can find a potential transactior. :r.

the database system that updates data elements in D, and accesses (i.e., reaS

or writes) data elements in D,. In other words, D -Dj, i # j, indicates

that there exist transactions in the system that would link updates of data

elements in D, to the content of data elements in D3.

Definition. Let Tu be a set of update transactions to be performed on a

database D. Let P be a partition of D into data segments D1,D2,.... Dr. A

data hierarchy graph of P w.r.t. Tu is a digraph denoted as DHG(P,Tu) with

nodes corresponding to the data segments of P and a set of directed arcs 3cin-

ing these nodes such that, for i # j, D, - D, iff there exist t 6 T" s.t.

w(t) Q D, # empty and a(t) 0 Di # empty, where t is a transaction, w(t),

r(t) and a(t) the write set, the read set and the access set of transaction t.

(The access set a(t) is the union of r(t) and w(t).)

The kind of database partition to which our concurrency control technique

can be applied is cne such that its data hierarchy graph satisfies the

topological requirement that it be a transitive semi-tree.

Definition. A partition P of a database D is TST-hierarchical with respect

to Tu iff DHG(P,TU) is a transitive semi-tree.

o , . l . , -q -wI _-

INFOPLEX Technical Report #12

Property. Let p be a TST-hierarchical partition w.r.t. TO. Then t c TO

writes in one and only data segment in P.

Proof. Suppose t writes in two distict data segments D, and D,, then

according to our rule of construction of DHG(P,TO), D, - Dj, D3 - ZL 6

DHG(P,Tu), therefore DHG(P,Tu) is no longer a transitive semi-tree, which

means that P is not TST-hierarchical w.r.t TO, and contradicts the assumption.

Based on the above property, a TST-hierarchical database partition P aIS3

defines a transacticn cla sification as follows.

Definition. A transaction classification of a database partition Which is

TST-hierarcnical w.r.t. TU, is a partition of the set TO of all update tranZ-

actions into tPBnSattio CBSSeS T,T,, ..., Tn,, such that a transaction t c

T, iff t writes in data segment D,.

Therefore a transaction classification partitions the set of update trans-

actions into classes, each of which corresponds to a data segment in the data

partition. We define the image of the data hierarchy graph for the trans-

action classification as follows:

Definition. A transaction hierarchy graph THG(P,Tu) of a database parti-

tion P, TST-hierarchical w.r.t. Tu, is a digraph where the nodes are trans-

action classes Ti's based on transaction classification defined above, and

i9

INFOPLEX Technical Report #12

arcs connecting these nodes such that T, - T A iff D, D, exists in the

corresponding DHG(P,TU).

Given definitions of DHG and THG above, we shall denote a CAt{tLca path

JAOm tO j in THG or DHG as CP J. Therefore, T, - Tk T ... C T = CP. iff

every arc is a critical arc. In addition, we give the following defintion:

Definition. We define higher than (denoted as I>) as a partial r ..err..

of nodes in a TH3 or a DHG. Specifically, we say tlat T. higher than T, (cr j

t> T,) iff CP J exists in the graph.

,C,

S

*

• 20

)"

I E ...-.

INFOPLEX Technical Report #12

4.0 SYNCHRONIZING UPDATE TRANSACTIONS

Given a TST-hierarchica. database partition, the key to our concurrency

control technique is the recognition that, if a transaction t belongs to a

class T, that writes data segment D, and reads data segment D,, and D, is

higher than n, in the Data Hierarchy Graph, then this transaction would appear

to be a read only transaction so far as Di is concerned. Therefore when a

request to read a data element d in Dj is issued by t, there may exist a prop-

er committed version of d that is za'e to be given to t without the need of

* . leaving a read timestamp with d. However, the way this proper version is com-

puted must be such that the overall serializability is enforced. In other

words, the introduction of transaction dependency of t on t', where t' is the

transaction in class T1 which created the version of d that t is allowed to

read, must never induce cycles in the transaction dependency graph as defined

in Section &multi.. To this end, a function called the activity link functicn

is devised to compute versions that cross-class read accesses may be granted,

and a theorem which testifies to the correctness of this computation is pre-

sented. Based on this theorem, a concurrency control algorithtm is alsc

presented.

Notations.

(1) I(t) = the initiation time of a transaction t.

(2) C(t) = the commit time of a transaction t.

(3) TS(d v) = the inItitation time of the transaction that creates the ver-

sion v of a data granule d, i.e., the write timestamp of d". (A data

-- -

,'•..

. ..- ,- . .- . *.. : . - - - . -.-- . - ' -- - .

INFOPLEX Technical Report #12

granule is the smallest unit that concerns the concurrency control com-

ponent of the database system, and is the smallest unit of accesses so

far as concurrency control is concerned.)

4.1 THE ACTIVITY LINK FUNCTION

The following definitions and properties apply to a database with a parti-

tion P which is TST-hierarchical w.r.t. Tu and has a corresponding transaction

classification.

Definition. A function I,o'd defined for a transaction class T, is a func-

tion which maps a time m to another time m' such that m' = Ilai(m), where m'

is the initiation time of the oldest active (i.e., uncommited and un-aborted)

transaction in the transaction class T, at time m. Formally,

.m if there exists no t E T, active at time m,
Ii 0ld(m) =

.Min (1(t)) otherwise, where t E T,, I(t) < m and C(t) > m.

Definition. Let the activity link function A,' be a function defined for a

pair of transaction classes Tj and Tj, where T, and Tj are transaction classes

such that T, t> Ti. A)j recursively maps a time m to another time as follcw-.

IJOld(m) if T1 - Tj CP) J

.AkJ(Ak(m)) otherwise, where" T, Tk . ."Tj = CPJ.

INFOPLEX Technical Report #12

old1. (m) = init. time of the oldest
1-active trans. in class

T. at time m:1

T.

=74L

old time
I. (M) m1

A.J(m) = I. 'd(I kod(m)), if CP. j

T.4 Tk 4 T

A. (M) T.

Tk

' time

S T.

Figure 6. Graphical represenation of the A function.

That is, the function A maps a time m for a transaction from class T, to

the initiation time, A)J(m), of successively (i.e., along the critical pat. cf

THG) the oldest active transaction in the class T,. For example, if the cr:t-

ical path between Tj and T, is T - Tk T,, then A)(m) = I, ' (IkOa(r)

This is exemplified in Figure 6.

23

INFOPLEX Technical Report #12

4.2 CONCURRENCY CONTROL ALGORITHM FOR UPDATE TRANSACTIONS

Based on the definitions given above, we describe in this subsection. the

concurrency control algorithm for update transactions under the hierarchical

decomposition approach, and prove its correctness. For the purpose of concur-

rency control, we assume that every data segment is controlled by a Aegmet

cont'tev which supervises accesses to data granules within that segment.

Concurrency control algorithm for update transactions:

For every database access request from an update transaction t f T, for a

data granule d c D,, the following protocol is observed:

Protocol A

If i #j, then the segment controller of Dj provides the version do of d such

that

TS(d0) =Max(TS(dv)) for all v such that

TS(dv) < A,)(I(t)).

(Note that no trace of this access needs to be registered in any form for the

purpose of concurrency control by the segment controller.)

Protocol B

if i = ,then use the bahic time~.tmp o~'deftnq pAotcocot <Bernstein8o> or tne

n~ti-veAtion time~&tamp oAdevaxg p.'otocoe 4Reed78>.

I-

INFOPLEX Technical Report #12

4.3 PROOF OF CORRECTNESS

To show that the above algorithm is correct, one must show that

serializability is enforced. In order to do this, we define a relation =>

between a pair of transactions and show that the above algorithm allows a

transaction tj to directly depend on a transaction t2 only if tl => t2.(D-

rect dependency is defined in Section &multi.) We then show that properties

of the relation => lead to Theorem 1, which concludes that the above algorltht

preserves serializability.

Definition. A relation topologically follows (denoted as =>) is defined

for a pair of transactions tj, t2, where tj E T,, t2 E Tj, T, and T, are con-

nected by a critical path in THG, i and j not necessarily distinct. We say

that t, topologica7ly follows t 2 (or tj => t 2) iff

(1) if T1
= T, then I(tj) > I(t 2).

(2) If T1 t> Tj then I(tj) ? Aj (I(t2)).

(3) If Tj t> T, then I(t 2) < Aj(I(tj)).

Intuitively, => is a relation between transactions based on both the timing

of the transactions and the hierarchical levels in the THG of the transaction

classes that the transactions belong to. To be more specific, 't"1 => t2 '

always means that tj is 'later' than t2. However, this 'later' is not only

based on the initiation times of the two transactions involved, but also on

25

INFOPLEX Technical Report #12

:t2 (1) if T, =j
:tj then 1(t 1) > I(t 2).

)timne
1(t2) l(tl)

time timei

t2 t

(2) If T, f Tj then (3) If Tj f> Tj then

Figure 7. Graphical representation of the relation tl=> t2.

the relative levels of the transaction classes to Which tj and t2 belong:

Given a fixed t2, the lower the level of t,, the later tj4s irnitiatic. ti~e

has to be in order for t 1 => t 2 t) hold. Clearly, => is defined only between

transactions that belong to classes that are on a critical path ir. TH:,

because otherwise the A function is undefined. This relation is exemnplified

UZ

INFOPLEX Technical Report #12

in Figure 7. Two interesting properties concerning the relation => are pre-

sented below:

Property 1.1. The relation => is anti-symmetric. (This directly follows

from the definition of the relation.)

Property 1.2 (The property of transitivity!. The relation => is

critical-path transitive, i.e., if there exists tj c T,, t 2 eT, t 3 c - ,

suchi that t1 => t 2 , t 2 => t 3 and T,, Tk and T, are on a critical path in THG,

then t, => t 3 .

Proof. (See Appendix)

We now define the following synchronization rule and show that our concur-

rency control algorithm enforces this rule.

Definition. We say that the partition synchronization rule (abbreviated as

PSR) is enforced in a schedule S(Tu) if, for any tj, t 2 e Tj, t, - t 2 E

TG(S(TU)) implies that tj => t 2 .

A concurrency control algorithm enforces the partition synchronization rule

if it allows direct dependencies to occur between transactions t j and t2 only

if t1 => t2. This is translated into the following three cases:

27

INFOPLEX Technical Report #12

(1) If tj and t2 are in the same transaction class, the algorithm must

allow tj to read a version v of a data granule d created by t2, or to create a

new version of a data granule d whose latest version dv was created by t2,

only if t2 has an inititation time that is less than that of tj. (i.e., only

if TS(d v) < I(t 1).)

Protocol B of our algorithm satisfies this requirement.

(2) If tj belongs to a class T, of a lower level while t2 belongs to a

class T, of a higher level, then the algorithm must allow tj to read dv cre-

ated by t2 only if t2 has an initiation time less than AJ(I(t1)). (i.e., only

if TS(dv) < A (I(t)).)

Protocol A of our algorithm satisfies this requirement.

(3) If tj belongs to a class T, of a higher level while t2 belongs to a

class T, of a lower level, then the algorithm must allow tj to create, at time

m, a new version of a data granule whose predecessor dv has been read by t2,

only if tj has an initiation time greater than or equal to Aj)(I(t 2)).

This, however, is always true because, by the very fact that tj is artive

at time m and I(t2) < m, and that AJ'(I(t2)) yields a time value which is def-

initely smaller than the initiation time of the oldest active transacticn in

class T, at time m, Ai(i(t2)) must be less than I(t,).

2?

INFOPLEX Technical Report #12

Therefore we conclude that our algorithm enforces PSR. What is left to do

in proving the correctness of our algorithm is to show that a schedule that

enforces PSR is also correct. The following theorem therefore completes our

proof.

Theorem 1. Let TG(S(Tu)) be a transaction dependency graph of a set cf

udpate transations Tu run on a database with a TST-hierarchical partitior.

and the schedule S observes the partition synchronization rule with respect t:

the transaction classification corresponding to P, then TG(S(TU)) has n:

cycles.

Proof. (See Appendix)

I

INFOPLEX Technical Report #12

5.0 SYNCHRONIZING READ-ONLY TRANSACTIONS

What has been discussed is the algorithm for controlling concurrent upda te

transactions. Now we turn to the read-only transactions.

For a read-only transaction t that reads from data segments that lie on one

critical path CP,3 of the DHG, the protocol that should be observe is the same

as that observed by the update transactions in a class immediately below the

lowest class of the critical path CP J in THG, namely, a class right below

class T. (If there exists no class below T, in ThG, then a fictitious class

can be created to 'host' this read-only transaction.) Therefore read-only

transactions will have to obey protocol A alone and will not cause any read

timestamp or read lock to be generated. This is graphically presented by

transaction t 1 in Figure 8.

What we are concerned with here are those read-only transactions that read

from any combination of data segments that do not lie on a critical path in

DHG, as illustrated by transaction t2 in Figure 8. To handle these trans-

actions, we first introduce the extended activity link function in the follow-

ing subsection.

5.1 THE EXTENDED ACTIVITY LINK FUNCTION

i,. the previous section we have introduced the activity link function which

centers around the linkage between transactions in classes that are on a crt-

INFOPLEX Technical Report #12

T

i2

t I

.I.
t

-
5

44

T
T 41

t t
12

S......t reads from class
(t is a read-only transaction)

Figure 8. Read-only transactions that read from one critical path.

ical path in the transaction hierarchy graph. The extended function, on the

other -nd, specifies how transactions in a transaction class are linked to

transacticns in another transactoion class when there is not necessa:ily any,

critical path that connects the two. This function is used to provide a way

of computing a conzstent daUbaze AZo.te that can be accessed by a read o7r1y

transaction that reads fr,m any comb: ;ttion of data segments in the database.

We will first introduce the functions C, and E, that can be ccnsdered

conceptually the inve~A6 of functions 1,° 10 and A,. Then two properties. cf

Wew l Is

n rd c
h u c i n

,a ea
d B

L. INFOPLEX Technical Report #12

the relationship between the functions AU and B) are derived. The extended

activity link function EJ is then defined in terms of functions A ant B, an

its usefulness is indicated in a lemma that follows. The existence and aer--

vation of a consistent database state is given in theorem 2, wnic. makes use

of the extended activity link function.

Definition. Let c, a te: m' be a function which maps time m tc anctr.-

er ml where T, is a transaction class and C late(m) is determined as follows.

C, la te (m) =jm if there exists no t c T, active at time m,

Max (C(t)) otherwise, where t e T,; I(t) < n, and C(t) > .

That is, clate(m) is the iatest commit time of all transactions in class

that started before or at time ms. However, to make C, late(m) computable, a-l

such transactions must have committed at the time of computation of C, ate(5).

We give the following definition concerning the computability of cate().

Definition. C ate(m) is computable at time m° iff there exists no trans-

action started before cr at Jme im that is still active at time no.

Now we introduce a function which is conceptually the inverse of the func-

tion A. While the A function maps a time in a lower level class to the init:-

ation time of some transaction in a higher level class, the B funrtion maps a

h~?I

INFOPLEX Technical Report #12

time in a higher level class to the commit time of some transaction in a lower

level class:

Definition. The Backward activity link function, defined for a pa~r of

transaction classes T, and T,, where T, t> T,, denoted as B)U(r),:s a func-

tion which maps a time value m to another such that

() = late(m) if T - Tj = CPw'

[m otherwise,
where T, - ... - Tk - Tj = CP).

The following two properties bind the functions A and B together and

formally describe how they are the inverse of each other.

Property 2.1. A,I(B,)(m)) ? m, where T, - =.. - CP,) in the trans-

action hierarchy graph.

Pro'f. (See Appendix)

Property 2.2. For evey positive e, A,I(B)(m) - E)< m, where T,

Tj = CP J in the transaction hierarchy graph.

Proof. (See Appendix)

Definition. An undirected crPitical path, denoted as UCPJ, is an :rde'ea

set of ditinct indices of transaction classes in THG such that UCP- = ,

INFOPLEX Technical Report #12

il, i2, ... , in, j> where for any two indices h, k adjacent in the set, either

Th - Tk or Tk - Th is a crtical arc in THG.

It is obvious that for a TST-hierarchical partition there exists one and

only one UCP in THG between any pair of transaction classes. While the activ-

ity link function A is defined for any pair of transaction classes that lie on

a critical path, the extended activity link function, using the concept c:

UCP, is defined for any pair of transaction classes.

Definition. The extended activity link function defined for a pair of

transaction classes T1 and T,, denoted as EjJ(m), is a function which maps a

time value m to another such that

m if i =j,

Cilate(m) if i # j and T, - T, is a critical arc in THG,
E1 j(m) =

IO°l(m) if i 0 j and T i - Tj is a critical arc in THG,

EkJ(Ek(m)) otherwise, where <i,k,...,j> = UCPI J ,

The following lemma illustrates the usefulness of the extended activity

link function.

Lemma 2.1. Let T,, Ti and Tj be transaction classes in a ThG of a

TST-hierarchical database partition, and T, and T, are on one critical patr..

Then for any time value m and t, E T,, t 2 c T,, if I(t1) < Ek'(m) and (t2)

34

4

INFOPLEX Technical Report #12

Ek,(m) then there exists no tj - t2 in the transaction dependency graph

TG(S(TU)) where the schedule S enforces the PSR's.

Proof. (See Appendix)

Intuitively, the E function provides a way of computing a time wait for all

transaction classes in the database system across which no direct dependency

from the 'older side' of the wall to the 'newer side' of the wall can occur.

A time wall TW(m,s) is the set of all times Es (m) where m is a time, D, is a

chosen data segment, anf D, is any data segment. This concept is graphical

presented in Figure 9. The significance of this concept is that if a

read-only transaction reads the latest versions of data granules of data seg-

ment D, which are right before the time indicated by the time wall component

Es1 (m) of certain time wall TW(m,s), then it is accessing a consistent data-

base state and wil. in no way induce cycles into the transaction dependency

graph. This discussion is formally presented in the following theorem.

Theorem 2. If the schedule S enforces the PSR on Tu, and for every d c D

that a read-only transaction tR reads, S allows it to read the version do such

that

TS(d °) = Max (TS(dv)) where TS(dv) < E,'(m),

for some time m and some transaction class index s, then TG(S(Tu U tn)) has nc

cycle.

Proof. (See Appendix)

INFOPLEX Technical Report #12

s

T3

T TI

I 3 m

E(m) E m)
S S M

... s S

A time wall TW(s,m) is such that no direct
dependencies occur between a transaction on
the left side of the cotted line (i.e., I(t)
(E C(m)) and that on the 5ight side of the
dot ed line (i.e., 1(t)> E (m).)

S

Figure 9. The E function used as a 'time wall.'

In other words, if a read-only transaction reads the latest versions cf

data granules of data segment Di which are right before the time indicated !y

the time wall component EI(m) of certain time wall TW(m,s), then it is

accessing a consistent database state and will not induce cycles into the

transaction dependency graph.

5.2 CONCURRENCY CONTROL PROTOCOL FOR READ-ONLY TRANSACTIONS

Making use of Theorem 2, a read-only transaction t that reads from data

segments that do not lie on one critical path in DHG should be given versicns

A3l

INFOPLEX Technical Report #12

that are the latest before certain time wall. However, to compute the time

wall the system has to determine the starting transaction class T, and a

starting time value m. While the choice can be arbitrary, it is theoretically

desirable that the following criteria are met:

(1) Es'(m) (for all T, in the THG) is computable at I(t), the initiation

time of the read-only transaction.

(2) There exists no m' > m such that Es'(m') is computable at 1(t) for all

T, in the THG.

The first criterion stipulates that m should be zmot e.nough so that all E,'

(m) is computable at I(t), therefore t potentially does not have to wait until

a later time to access from certain segment. (If some EsJ(m) is not computable

at 1(t), t would have to wait till a later time when it is computable before

accessing data from data segment D,.) The second criterion strives to aclieve

.-4 1 reading of the newet possible database state.

A compromise is struck here in devising our protocol for read-only trans-

actions. First, to save computation time, a new time wall is computed by the

system at certain intervals and the new time wall is 'released' to all

read-only transactions that start before the next ve' ion of the time wall is

released by the system. (That is, there is no need to compute a time wall for

every read-only transaction.) In computing the next version of the time wall,

the system can choose arbitrarily a starting class T. which is of one of the

'" 37

. . . • - : . - .: , .-- . -.-.. . 12 " ' . -

Ls

INFOPLEX Technical Report #12

lowest levels and choose m to be the current time. If it encounters any C,

-ate function that it cannot compute, it waits until it becomes computable.

Eventually enough time will elapse such that Es (m) becomes computable for all

T,'s. Then a newly constructed time wall is released.

Let the release time of a time wall TW(m,s) be denoted as RT(TW(m,s)). Now

we provide the formal definition of the read-only transaction synchronization

protocol.

Concurrency Control Algorithm for Read-Only Transaction

For every database read request from a read-only transaction t for a data

granule d, the following protocol is observed:

Protocol C

Let d E D,. The segment controller of D, provides the version d° of d such

that

TS(d0) Max(TS(dv)) for all v such that

TS(dv) < E s '(m)

where RT(TW(m,s)) = Max(RT(TW)) for all TW such that RT(TW) < I(t).

Le"

38

INFOPLEX Technical Report #12

6.0 SUMMARY

A new technique of concurrency control for database management systems has

been proposed. The technique makes use of a hierarchical database decompos-

ition, a procedure which decomposes the entire database into data segments

based on the access pattern of the update transactions to be run in the

system. A corresponding classification of the update transactions is derived

whete each transaction class is 'rooted' in one of the data segments.

The technique requires a timestamp ordering protocol be observed for

acesses within an update transaction's own root segment, but enables read

accesses to other data segments to proceed without ever having to wait or to

leave any trace of these accesses, thereby reducing the overhead of concurrer.-

cy control. An algorithm for handling ad-hoc read-only transactions in thts

,* environment is also devised, which does not require read-only transactions tc

wait or set any read timestamp. The proof of correctness of these algorithms

in terms of their preservation of serializability is provided through a set of

* eight properties, three lemmas and two theorems. A comparison of the SDD-l

approach, the multi-version two-phase locking approach (MV2PL) and the Hierar-

chical Database Decomposition (HDD) approach proposed here is given in

Figure 10.

7.0 FUTURE RESEARCH DIRECTIONS

39

S

INFOPLEX Technical Report #12

HDD SDD-l m'.2PL

Trans Hier- General* None

Analysis archical

Represen- T3 T .7

tation

Inter- Never re- May cause N.A.

Class ject or read req.

Synch. block a to be re-

read req. jected or
blocked

Intra- Timestaflp Serialized 2-phase

Class Ordering Pipelining locking

Synch.

Read-only Similar to No special Never

Trans. Inter-class handling block or

Synch. reject

Figure 10. A comparison of the HDD, SDD-1 and MV2PL approaches.

7.1.1 DYNAMIC RESTRUCTURING OF DATABASE DECOMPOSITION

We will develop a scheme for handling ad hoc transactions that introduce

access patterns which cause an original partition to become illegal. Tnis

aspect of the technique is important for two reasons. First, any datatase

INFOPLEX Technical Report #12

partition and transaction classification based on an a priori analysis of all

possible transactions to be run in the system is not likely to be fault-proof.

Second, some transactions that are not frequently run but demand an access

pattern which causes a finer partition to become illegal may be left out of

the pre-analysis intentionally, so that for the majority of the time the sys-

ten can operate under a finer partition while a special handling is adOpted5 to

take care of this type of transactions when they enter the system. We will!

try to achieve a scheme which can dya/ctyrestructure the database parti-

tion. That is, it should be a scheme which does not require a quiescence of

the database activity in order to perform the restructuring or the

restoration.

7.2 HIERARCHICAL DATABASE DECOMPOSITION METHODOLOGY

7.2.1 HANDLING ACYCLIC DECOMPOSITION

The present technique centers around the transitive semi-tree form of

hierarchical database decomposition. The transitive semi-tree, while mucn

more relaxed than a directed tree, nay still be too restricted for the tech-

nique to be useful in some applications. Based on the theories developed for

the current technique, we propose to find an algorithm that will transform a

database partition whose data hierarchy graph is of the form of an acyclic

graph to a legal partition, while preserving the granularity of the original

partition as much as possible.

41

4, INFOPLEX Technical Report #12

7.2.2 DATABASE DECOMPOSITION METHODOLOGY VIA DATA ANALYSIS

We propose to study in detail graph-theoretic methodologies that can be

used to cluster data elements of a database to arrive at a legal or an acyclic

decomposition of the database.

7.3 IMPLEMENTATION OF THE CONCURRENCY CONTROL PROTOCOLS

Studies will be made of the complexity of implementation of protocols

developed in the current and future research. Algorithms for (1) computing

the version numbers to be accessed by a transaction, (2) maintaining

multiple-versions of the database, and (3) garbage collection will be

addressed.

7.4 THE EFFICACY OF THE HDD APPROACH

In order to substantiate the underlying assumptions used in the HDD

approach of the hierarchical organization of databases, we propose to under-

take a case study of operations of some real organizations. These cases will

also be used to validate the claimed advantages of the HDD approach over con-

ventional approachs to concurrency control.

7.5 DATABASE COMPUTER APPLICATIONS

42

INFOPLEX Technical Report #12

One of the motivations for the current research is to find a way to opti-I
mize the concurrency 'ontrol activities inside of a multi-processor based

database computer that employs a hierarchical decomposition of the DBMS

functionalities. The potential of the current technique in reducing

inter-level synchronization communications will be explored and algorithms for

*- concurrency control in such an environment will be proposed.

INFOPLEX Technical Report #12

BIBLIOGRAPHY

Astrahan76:
Astrahan, M.M. et al. System R: Relational approach to database
management. ACM Trans. Database Syst. 1, 2 (June 1976) 25-35

Badal8O:
Badal, D.Z. The analysis of the effects of concurrency control cn
distributed database system perforamcne. Proc. %7LDB (1980)

Baer80:
Baer, J.L. et al. The two step commitment protocol: modelling,
specification and proof methodology. Proc. 5th Intern. Conf. on
Software Eng. (March 198K)

BayerSO:
Bayer, R., Heller, H., and Reiser, A. Parallel.ism and recovery in
database systems. ACM Trans. Database Syst. 5, 2 (June 198C)

Bernste.n79:
Bernstein, P.A., Shipman, D.W., and Wong, W.S. Formal aspects cf
serializabllity in database concurrency control. IEEE Trans. Scft-
ware Eng. SE-5, 3 (Ma;' 1979)

Bernstein80:
Bernstein, P.A., and Goodman, N. Fundamental algorithms for concur-
rency control in distributed database systems. Computer Corporation
of America, TR CCA-8-05 (Feb 1980)

Bernstein80o:
Bernstein, P.A., Shipman, D.W., and Rothnie, J.B. Concurrency con-
trol in a System for Distributed Databases (SDD-I). ACM Trans. on
Database Syst., 5, 1 (March 1980)

Bernstein82:
Berstein, P.A., Goodman, N., and Hadzilacus Distributed database
control and allocation. CCA Semi-annual technical report (July!
1982

Charrberliin73:

4,4-

4

INFOPLEX Technical Report #12

Chamberlin, D.D., Boyce, R.F., and Tralger, I.L. A deadlock-free
scheme for resource locking in a data-base environment. IBM RJ 1329
(#20657) (Dec. 1973)

Chamberlin8l:
Chamberlin, D.D. et al. A history and evaluation of system P.
Comm. ACM 24, 10 (Oct. 1981)

Chan82:
Chan, A. et. al. The implementationof an integrated concurrency
control and recovery scheme. Technical report CCA-87-Cl, ComFpter
Corporation of America, Cambridge, Mass. (1982)

Coffman7l:
Coffman, Jr. E.G., Elphick, M.J., and Shoshani, A. System
deadlocks. ACM Comput. Surv. 3, 2 (June 1971)

DeWitt79:
Dewitt, D.J. Direct - A multiprocessor organization for supporting
relational database management systems. IEEE Trans. Coputers C-2,
6 (June 1979)

Garcia-Molina82:
Garcia-Molina, H. and Wiederhold, G. Read-only transactions in a
distributed database. ACM Trans. Database Syst. 7, 2 (June 1962)

E2.1is77:
Ellis, C.S. Consistency and correctness of duplicate database sys-
tems. In Proc. 6th Symposium on Operating System Principles, West
Lafayette, Ind. (1977) 67-84

Eswaran76:
Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, 1.L. The
r-tions of consistency and predicate lccks in a database systems.
Comm. ACM 19, 11 (Nov. 1976) , 624-634

GardarinSO:
,ardarin, G. An introduction to SABRE, a multiprocessor database
computer. Publications Sabre (1980)

INFOPLEX Technical Report #12

Goodman79:
Goodman, N., Bernstein, F.A., Wong, E., Christopher, F., and
Rothnie, J.B. Query processing in SDD-1: a system for distributed
databases. Computer Corporation of America, TR CCA-?9-06,
Cambridge, MA (Oct. 1979)

Gray75:
Gray, J.N., Lorie, R.A., and Putzolu, G.R. Granularity of locks in
a shared data base. Proc. VLDB (1975)

Gray76:
Gray, J.N., Lorie, R.A., Putzolu, G.R., and Traiger, I.L.
Granularity of locks and degrees of consistency in a shared data
base. in Modelling in Data Base Management Systems, G.M. Nalssen.
(et.) North Holland Publishing Company (1976)

Hsiao7:
Hsiao, 2.K., and Madnick, S.E. Database machine architecture in tne
context of information technology evolotion. Proc. VLDB (1977)

Hsiao79:
Hsia", O.K., Ed. Collected readings on a database computer (0271.
Department of computer and Information Science, The Chio State
Univ., Columbus, Ohio (March 1979)

Hsiao80:

Hsiao, D.K. Database computers. In Advances in Computers, Academic
Press, Vol. 19 (1980)

King73:
King, P.F., and Collmeyer, A.J. Database sharing - An efficient
mechanism for supporting concurrent processes. NCC (1973)

Lampor t 7:
Lamport, L. Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACM, 21, 7 (July 1978) 558-565

Mer83:
Mager, F.S., Gcldber, R.P. A survey of some approaches to distrib-
uted data base and distributed file syster architecture. BS Sys-
tems, INC. Waltham, Mass. TR-8-O00 (Jan !997)

4E

INFOPLEX Technical Report #12

4Maryanski8O:
Maryanski, F.J. Backend database systems. ACM Comput. Surv. 12,
(March 1980)

Menasce8O:
Menasce, D.A., Popek, G.J., and Muntz, R.R. A locking protocol fcr
resource coordination in distributed databases. ACM Trans. Data-
base Syst. 5, 2 (June 1980)

MohanT9:
Mohan, C. An analysis of the design of SDD-i: A system for distrob-
uted data bases. SDBEG-Il, Univ. of Texas at Austin (April 1979)

Papad:mitriou79:
Papadimitriou, C.H. The serializability of concurrent database
updates. Journal of ACM 26, 4 (Oct 1979)

Papadimitriou82:
Papadimitriou, C.H. and Kanellakis, P.C. On concurrency control by
multiple versions. Proc. 1982 ACM SIGACT-SIGMOD Symp. on Principles
of Database Syst. (March 1982)

Reed78:
Reed,D.P. Naming and synchronization in a decentralized computer
system. Ph.D. dissertation, Dept. of Electrical Engineering and
Compute, Science, M.I.T., Cambridge, Mass. (September 1978)

Rozenkrantz78:
Rozenkrantz, D.J., Stears, R.E., and Lewis Ii, P.M. System leve-
concurrency control for distributed database systems. A7Y T
Database Syst. 3, 2 (June 1978)

Rypka79:
Rypka, D.J., and Lucido, A.P. Deadlock detection and avcidance fcr
shared logical resources. IEEE Trans. Software Eng. SE-5, r (Sert.
1979)

SilberschatzSC:
Silberschatz, A., and Kedem, z. Consistency in hierarchical dat-
base systems. Journal of ACX 27, 1 (Jan 198K) , 71-SC

L .-

O! INFOPLEX Technical Report #12

Stearns8l:
Stearns, R. and Rosenkrantz, D. Distributed database concurrency
control using before-values. ACM SIGMOD Conference Proceedr.ng
(1981)

Stonebraker80:
Stonebraker, M. Retrospection on a database system. ACM Trans.
Database Syst. 5, 2 (June 1980) , 225-240

Thomas79:
Thomas, R.H. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Syst. 4, 2 (June
1979) ,180-209

""- ViemontE':
- Viemont, Y.H. and Gardarin, G.J. A distributed concurrency contrcl

algorithm based on transaction commit ordering. Procedding of Fault
Tolerance Computer Systems, Santa Monica, Cal. (June 1932)

_ "Verhofstad76:
Verhofstad. Recovery techniques for database systems. ACM Ccm -ou.
Surv. (june 1978)

0

-°

S

0

A- INFOPLEX Technical Report #12

APPENDIX

(I) PROOF OF PROPERTY 1.2

Property 1.2 (The property of transitivity!.

Proof. we consider the following 5 groups of cases:

(1) T % = Tk = T. By definition of => we have 1(t 1) > 1(t 2) > 1(t3). Tnere-

fore t => t3-

(2) T, = Tk 0 Ti. Two cases are consi ieref:

(2.1) T, 1> Tj. Then t2 => t3 implies I(t2)- Aj'(I(t 3)) ti => t2 implies

I(t1) > I(t 2). Therefore 1(t 1) > Aj'((t 3)). Therefore t. > t3.

(2.2) T, t> T,. Then t => t2 implies 1(t1) > I(t2). By Property 0.2 we

have AJ(I(t,)) - A,2 (I(t2)). t2 => t3 implies A,1(1(t 2)) > I(t3).

Therefore A,;(I(tl)) > I(t,). Therefore t, => t3.

(3) T, # Tk = T, Two cases are considered:

(3.1) T, 1> T,. Then t2 => t 3 implies 1(t2) > I(t3). By Property 0.2 we

.. have Aji~lt2)) _> Aj'(I(t3)). tl => t2 implies l(tl) > A, (I(t2)).

Therefore 1(t,) ? A,'(I(t 3)). Therefore tj => t3.

(3.2) Tj f> T,. Then t2 => t3 implies I(t2) > I(t3). tj => t2 implies A,;

(I(t1)) > I(t2). Therefore A)J(I(t)) > I(t3). Therefore t, => t3.

(4) T, = T) # Tk. Two cases are considered:

(4.1) T, t> T,. Then ti => t2 implies I(t1) > Aki(I(t2)). t2 => t3

implies Ak1 (I(t2)) > I(t3). Therefore I(tj) > I(t3). Therefore tj =>

t43.

49

INFOPLEX Technical Report #12

(4.2) Tk t> T,. Then t1 => t2 implies A~k(I(t1)) > I(t 2). t 2 => t3

implies 1(t2)_ Ak(I(t3)). Therefore A~k(I(t1)) >A)I((t 3)). By

Property 0.2 we have 1(tj) > I(t3). Therefore t1 => t3.

(5) T, 0 T k # Ta, T1 0 T,. Six cases are considered:

(5.1) Tj t> Tk t> T,. Then t1 => t2 implies Ak(I(ti)) > I(t2). Fro,

Property 0.1 and 0.2 we have A1I(I(tj)) = Ak'(Alk(I(tI))) > AkJ(I(t9).

Therefore A1 J(I(tl)) ? Ak'(I(t 2)). '2 => t 3 implies Akj(I(t 2))
•

I(t3). Therefore AJ(I(c1)) > 1(t3). Therefore tj => t 3.

(5.2) T, t> Tk t> Tj. Then t 2 => t3 implIes I(t 2)
> Ajk(-(t 3)). From

Property 0.1 and 0.2 we have Ak'(I(t 2)) ? A,'(Ajk(I(t 3))) =

=> t2 implies I(tI)) ? Ak (I(t2)). Therefore (t1)

Therefore tj => t 3 .

(5.3) Tj t> T, t> Tk. Then tj => t 2 implies I(t1)_ AkI(I(t 2)). From

Property 0.1 and 0.2 we have A,!(I(tj)) ? AI(Ak'(I(t'))) =A'(I(t)).

t 2 => t 3 implies Akj(1(t2)) > I(t 3). Therefore A,)(I(tl)) > I(t3).

Therefore t1 => t3.

(5.4) Tk t> T1 t> Tj. Then t1 => t2 implies A k(I(t1)) > I(t 2). t 2 =>

implies I(t-2)- Ajk(l(t 3)) From Property 0.1 and 0.2 we have A k

(I(tl) > Aj (I(t3)) = A k(Ai(I(t3))) Therefore I(t1) > A, (I(t3)).

Therefore t1 => t 3.

(5.5) Tk f> Tj t> T,. Then tj => t2 implies A k(I(t) • :(t2). t 2 =>-"I k(l(tl)) • A k(l(t3)).

implies 1(t2)-> Ajk(I(t 3)). Therefore A > A

However, Ajk((tl)) A3 k(AI(I(tl))). Therefore A,3(I(t1)) > 1(t).

Therefore tj => t 3 .

INFOPLEX Technical Report #12

(5.6) T, t> T3 t> Tk. Then tj => t2 implies I(t1)? Ak1(I(t2)). But A,'

(I(t2)) = Aj(Akj(I(t2))). And t2 => t 3 implies AkJ(I(t 2)) > !(t 3).

Therefore Ak!(I(t 2)) Ai I(t3)). Therefore I(t 1) ? Aj(I(t3)).

Therefore tj => t 3 .

- In each group, we have permutated the order of levels among the distinct

transaction classes to arrive at a total 13 cases. These cases exhaust all

the possible situations that govern tj, t2 and t 3 and for every situation

transitivity is shown to hold. Therefore we conclude that => is

critical-path transitive.

(II) PROOF OF THEOREM 1

In order to prove Theorem i, we first give the following two definiticns

and a lemma about the transaction dependency graph.

Definition. A critical path dependency, between two distinct transactions

t1 e T, and t2 e Tj, denoted as CD(tj, t2),is a cycle-free dependency patn

from tj to t, in TG(S(TU)) and T, and Tj are on one critical path in THG, i

and j not necessarily distinct.

Definition. A boundary critical path dependency in TG(S(Tu)) between twC

transactions tj E T, and t2 E T,, where t1 0 t2, denoted as BCD(tj, t2),is a

CD(tj, t2) such that either or both of the following are true:

[E

. ** I .

9. INFOPLEX Technical Report #12

1. There exists t3 e Tk such that tj - t 3 eCD(t 1,t 2) and T,, Tj and Tk

are not on one critical path;

2. There exists t4 e T, such that t4 - t2 eCD(t19 t2) and T,, T, and T,

are not on one critical path.

Property. If BCD(tj, t4), where tj E T, and t4 f T1, then there ex:st t2

E Tk and t3 E T1 , t2, t3 not necessarily distinct, such that CD(t, t 2) C

CD(t1 , t4), CD(t 2,t3) C CD(t1 , t4), CD(t 3,t 4) C CD(t1 , t4) and T,, TJ, %

and T, are on one critical path in THG. (This directly follows from the fact

that THG is a transitive semi-tree.)

Lemma 1. If there exists a critical path dependency CD(tlt 2) in a trans-

action dependency graph TG(S(T)) where the schedule S enforces the partition

synchronization rule, then t1 => t 2.

Proof. Let e be the length (in number of arcs, i.e., direct

dependencies) of a critical path dependency. Then t has a total order anc

is bounded from below by 1. By way of complete mathematical induction, to

prove that if CD(tl,t 2) then t1 => t2, we have to show the following:

(1) If t(CD(t 1 ,t 2)) = 1 then tj => t 2 .

(2) If t(CD(t1 ,t2)) = g and if ta => tb for all ta, tb s.t. there exists

CD(ta,tb) and t(CD(ta,tb)) < g, then tj => t2.

Now we prove the above two statements.

(1) In this case, CD(tl,t 2)= ti - t2. By property 1.3 we have tj => tZ.

INFOPLEX Technical Report #12

(2) To prove the second statement, let t3 e Tk and t4 E T, be such that

tl - t 3 E CD(t1 , t 2), t 4 - t 2 e CD(tj, t2), and a path, denoted as

Path(t 3,t4), from t3 to t4 such that Path(t 3,t4) C CD(tl,t 2). Also let

tj E Tj and t2 E Ti. Consider the following two cases:

(2.1) If CD(tl,t 2) is not a BCD, then Path(t 3,t4) is a CD(t 3,t4).

Since "(CD(t1 ,t2)) < g therefore t1 => t2. And by the definition of

CD, T,, Tj, Tk and T, must be on one critical path of THG. Therefore

we have t1 - t 3, t 4 - t 2 and z3 => t 4 . By property 1.2 (i.e., the

property of critical path transitivity) we have t1 => t2.

(2.2) If CD(t 11 t2) L5 a BCD, then by the property above of a BCD we

have that there exist t5 E T, and t6 E T. such that CD(t1 ,t5) C CD(t1,

t2), CD(t 5,t6) C CD(tl,t 2), and CD(t 6,t2) C CD(t 1,t2), where T,, Tn,

T, and T, are on one critical path of THG. Since i(CD(t1 , t5))<

g, therefore tj => t 5 . Similarly, t6 => t 2 and t 5 => t6. By proper-

ty 1.2 we conclude tj => t 2. Q.E.D.

Theorem 1.

Proof. Suppose there exists a cycle. Then the cycle involves at least two

transactions t1 and t2 that belong to transactions that are on one critical

path. This means that there exist CD(t1 ,t2) and CD(t 2,t1). By the above

lemma, CD(t 1,t 2) implies t I => t 2 and CD(t 2 ,tl) implies t 2 => t 1. However, =>

is anti-symmetric (by property 1.1). Therefore t I => t 2 and t 2 => tl cannot

be true at the same time. Therefore there can be no cycle in this transaction

dependency graph. 0..

53

I "

'.9 INFOPLEX Technical Report #12

(III) PROOF OF PROPERTY 2.1

Property 2.1. A,3 (B)'(m)) > m, where T, - T, 1 - - - T - T

= CPJ in the transaction hierarchy graph.

Proof. A,'(B,(m,, A,3 (C,(... (C,(C3 (m)))...)). (C3 is an abbreviated

expression for C, ateand I, is an abbreviated expression for Ij .d) Let m,., =

C(m). Then ir, = C(tjo) if there exists t ET, active at time m and C3 (m) = C(tjo),

and m. = m if there exists no t E T, active at time m. Therefore A,J(BE.

(m)) = A,'(C,,(... (Cn))...)). Continue substitution of the L function in

the expression with similarly defined min, ..., mil, we get AJ(Bj'(m)) = A,'

(m,). Now we start spelling out the function Ai: A)j(mil) = Ajij(Ii(m, 1)).

Consider the following two cases:

(1) If there exists no t E T1 1 active at m,1, then I,1 (m,,)= m il. Since m,1

.= C, 1 (r 2) M r,2, we have I,,(m, 1)- nM2.

(2) If there exists t e Tj active at m,, then I,1 (m,1)= I(til1), where tj

t,1
0 (since ti1 ' is active at m1 while t,1 commits at mil), and

I(tll') > M, 2 (since if I(ti 1 ') < M, 2 then during the previous applica-

tion of Cj, C,.(m, 2) should be equal to C(t, 1') and not C(t, 1
0), and

contradicts the assumption.) Therefore I,1 (m,1)- m, 2.

Therefor we conclude I 1 (m,)-
> m 2. By the same reasoning we continue spell-

ing out the A function to arrive at the following: AJ(Bj'(m)) =

Since I,,(min) ? m, = C3 (m), we have A,'(B3 (m)) _A,,3 (C(m)). Since

Ain J(C(m)) = 1(C 3 (m)) > m, we have AiJ(B(m)) - m. ...

~54

*m9

INFOPLEX Technical Report #12

(IV) PROOF OF PROPERTY 2.2

Property 2.2. A,'(Bj'(m) - E) < m, where T, - T,1 -. . - - -,

- Tj = CP j in the transaction hierarchy graph, and E a small value.

Proof. Let mjr, m ..., m, be defined in the same way as in the proof of

Property 2.1. We have AJ(Bj (m)-E) = AI(ml - e) = Aj (I,1(mj - 6)). Now

we show that l,1 (m,1 - c) < M,2. Consider the following two cases:

(1) If there exists no t E T,1 active at M, 2, then mi1 Ci(m, 2) = iN,2-

Therefore !,1 (m,1 - E) = II,(m, 2 - E) 5 M 2 - E < M, 2 .

(2) If there exists t 6 Tj active at Mi2, then m 1 Ci1 (mi2) C(tl °)

where I(t,1
0) < M, 2. Therefore I,1(mj -) = I,(C(t,1 °)- e) 5 I(t,,O)

< M, 2.

Therefore we conclude I,1 (mn, - 6) < M, 2 . Let M, 1 ' = 1,1 (m,, - e). Then m,,

< M, 2 , and A,-(Bj(m) - 6) = A,'(rn'). Continue the process of subtsti-

tution we have A, (Bj1 (m) - 6) = A,,(mn,,') = Ij(mn,,') where m,,' < m,. But

Ij(m')< I(m) = Ij(Cj(m) - E) < m. Therefore AJ(Bj(m) -) < M.

2 . Q.E.D.

(V) PROOF OF LEMMA 2.1

Lemma 2.1. Let Tk, T, and T, be transaction classes in a TH3 of a legal

database partition, and T, and T, are on one critical path. Then for any time

value m, if 1(tj) < Ek'(m) and I(t2)
_ EkJ(m) then there exists no t- t2 in

..

INFOPLEX Technical Report #12

the transaction dependency graph TG(S(TU)) where the schedule S enforces the

PSR' s.

Proof. Let Tk be the class sucn that k1 is the fisrt index in UCP,' where

Tkl and T,, T, are on one critical path. (k and k1 are not necessarily

distict.) Then ki will also be the first such index in UCPk), and the subset

of the ordered set UCPk' up to k! and that of UCPk J up to kl are equivalent.

(This is because between any pair of nodes there is one and only one UCP.)

Consider the following four groups of cases:

(1) i = j # k or i = k.

In this case, Ek'(m) = Ekl(m). Since tj and t 2 are in the same

class, by intra-class-synchronization rule we have I(t0)< I(t 2),

which implies that there exists no tj - t2.

(2) i = kl # j. Two cases are considered:

(2.1) T, t> Tj.

I(t 2) 1' EkJ(m) implies that AJ
1 (I(t2)) - AJ 1 (Ek'(m)) Ajk1(B.,

(Ekkl(m))). From Property 2.1 we have A, k(BklJ(Ekkl(m))) -

Ekk1(m) = Ek!(m) > I(tj). Therefore A3'(I(t 2)) > I(t1), which

implies that there exists no tl - t2.

(2.2) Tj t> T1.

I(tj) < E,'(m) implies Aj(I(tl)) 5 A,1(Ek'(m)) = Ek (m)!5 I(t 2).

Therefore AJ(I(tl)) 5 I(t2), which implies that there

exists no tj - t 2.

(3) j = kl # i. Two cases are considered:

(3.1) T , T .

2 INFOPLEX Technical Report #12

1(t2) ? E,
3 (M) implies that AJ'(I(t 2)) Aj'(Ek'(m)) =Ek'(n'j>

I(t,). Therefore A3 '(I(t 2)) > I(tj), which implies that there

exists no tj - t2.

(3.2) T% I> T.

1(t1) < Ek
1 (m) impiies 1(t1)5 EkI(m) - c, which implies A,)

(1(tl)) :5 A,)(BJI(Ek m)) - c). From property 2.2 we have A,J

(B,'(Ek3 (m)) - is) < Ekj(M). Since I(t 2) > Ekj(m), therefore A,J

(1(t1)) < 1(t2), which implies that there exists no t, - t2.

(4) i # #ki. Six cases are considered:

1(t 2) Ekj(M) implies that Aji(I(t2)) Ajl(Ekj(m)) =Aj'(Bkl

(E Ikl(M))) = AkI(Aj kI(Bklj(Ek kl(M)))). By property 2.1, Ak,'

(Aj kl(Bklj(E kkl(M))) ? Akl'(Ek kl(M)) = Ek'(M). since Ek'() >

1(t1), we have A,'(I(t 2)) > I(t1), which implies that there

exists no t1 - t2.

(4.2) Tj t> T%, t> Ti.

1(t1) < Ek
1I(rt,) implies 1(t,) < Ek 1 (M)- e, which implies A)j

(1(t1)) 5 A)(Ek'(m) - e) =Ak~i(Aikl(Bkli(Ek kl(M)) -).Let

M= A, k1(Bkl(Ek kl(M)) - E). By property 2.2 we have ml < E"(9

Therefore Akl (A kI (Bkl'(Ek kl(M)) -E)) = Akl(m ') :5

Aklji(Ek kI(M)) = Ek 2 (rn) :5 '1(t2). Therefore A,3(I(tl)) SI(t-I

which implies there exists no tj t2 -

I I . , _ ,I _ , ,, , , .. mu nl -I u- m

AINFOPLEX Technical Report #12

I(t2) • Ekl(m) implies A1 '(I(t 2)) • A '(Ekj(m)) A1, IB(E,

(m))) - Eki(m) > I(t1). Therefore Aj'(I(t 2)) > I(t1), whcr

means that there exists no tj - t2-

(4.4) Tj t> T, t> TkI.

I(tj) < Ek1 (m) implies Ai(I(tl)) < AJ(Ek'(m)) =A,)(A,1 (E'

(m)) = AklJ(Ekk1(m)) =Ek3 (m) < I(t2). That is, A,J(I(t1)) 5

I(t2) which means there exists no t i - t2.

-. ' (4.5) TkI t> T t> T,.

I(t1) <Ek(m) implies I(t1)5 E 1I(m) - E, which means A,'(7(t

:5 AJ(Ek'(m) - E) A,3 (Bj (Ekj(m)) - E) < EH(r,) - I(t) .

That is, Ai1 (I(tl)) < I(t2), which means that there exists n-c

tl - t 2 "

• (4.6) Ti t> Tj f> Tki.

I(t2) •Ek3 (m) implies Aj(I(t 2)) •A,(E(m)) =A 3
1 (A wIE 1

(m)) = Ek'(m)> I(t1). That is Aj,(I(t 2)) > I(tj), which means

that there exists no tj - t2.

For each of the group above we have permutated the level of the dis-

tinct classes and for a total of 11 cases we have shown that it is

impossible to have tl - t2 -. Therefore we prove that there exists no

t- t2- 0..

(VI) PROOF OF THEOREM 2

INFCP'EX Technical Report #12

In order to prove Theorem 2, we first give the following definitions and a

lemma (Lemma 2.2.)

Definition. A consistent transaction set with respect to a schedule S(TI,

abbreviated as a CS w.r.t. S(T), is a set of transactions Tcs C T such that if

t e T c s and if there exists tj E T such that t ... - t, C TG(S(T)), (i.e.,

if t depends on t, in the transitive clcsure of -), then t1 E Tc s .

Property 2.3. (The Property of a consistent transaction set.) Partition 7-

into TU l and Tu2. Then Tu l is a consistent transaction set w.r.t S(T) iff for

any two transactions t 1,t2 , such that t I 6 T
u l and t2 E Tu2 , there exists nc

tl - t2 in the transaction dependency graph TG(S(T)).

Proof. We want to show that the following two parts are true:

(1) if Tul is a CS then there exists no tj - t2.

By definition of a CS, if tj e Tul and tl - t2, then t2 must be also

in Tul, which contradicts the given. Therefore there exists no t -.

t2•

(2) If there exists no tj - t 2 for any t1 E T u and t 2 c T, then Tul is

a CS.

Tu l is a CS because no transaction in Tul can have a dependency in the

transitive closure on a transaction which is not in Tul.

Therefore we conclude that this property is true. Q.E.D.

59

INFOPLEX Technical Report #12

Definition. Given a time value m and a ztahting tkansaction class T, a

designated consistent transaction set, denoted as TCS(ms), is a consistent

transaction set such that for all t c Ts, t e TCS(m.,s) iff I(t) < m.

Lemma 2.2. parition Tu into Tul and Tu 2 . Then Tul is the designated con-

sistent transaction set TCS(m,s) w.r.t. S(Tu), where the schedule S enforces

the PSR, if Tu ' con-ains, for all i, all and only transactions t such that

I(t) < E, (m) where t E .T

Proof. Construct a tine wall TW(m,s). Then by the previous lemma (Lemna

2.1) we know that for any -, k, if t I e T, and I(t1) < E s
2 (m),and t2 c T, and

I(t2) - Esk(m) then there exists no t, - t 2. Therefore by Property 2.3 above

we know that Tul is a consistent transaction set if it contains for all i only

transactions t such that 1(t) < E,'(m) where t e T,. And since EsS(m) = m, we

have I(ti) < m if ti e T s . Therefore must be the designated consistent

transaction set TCS(m,s). O.E.V.

Corollary. Given a time value m and a starting transaction class Ts, there

exists a desigr.ated consistent transaction set TCS(m,s).

Theorem 2.

Proof. Partit~on T' into T" and T u 2 such that fCr all t t, fc a

t E Tu iff i(t) < E (w) Then it is clear that dependencaes

must be arcs that go fro= t o transctic ns n T', anJ arcs frot

actions in Tu 2 to tp. By Lenmo 3.3, there exist no dependencies f

I

INFOPLEX Technical Report #12

actions in TL" to those in Tu 2 . Therefore arcs introduced by tR Will rot

introduce any cycle into the original TG(S(To)). Since TG(S(TU)) has nc

cycle, therefore TG(S(TU U tR)) has no cycle. Q.E.D.

I

S

S

.9

pD

P ~As49'
*

A -

t~titt
.7 1K:trv

.1 I,4 L"h14 Ket
~~<

; 4

9 44
1%~

A. ~ * r~aa~ rrL 4&
.4,~ i, ;.~ .~

_ ~ 4~'~ LrA..s* -. 4<I ~%
2

*~;J~4,.4~4
-~ 1*

'V S. --

4- 5

5;

7
1

4

-
. ~ st. ~

~4
4 -d4. ~'

- ~. ct-,V 4
g, ; '. ~ 4

~

5- -' 4
24,. -

- 4,.~k'V

-y I.

'1

.4-
1 -

4 44~

\4

4 vs

i~ t. . -~ -

4
St V* a.

-Ic' 1-'4k

