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ABSTRACT

Increasing demand for information system capacity has prompted researchers
to find ways to improve the computer systems used in information processing.
Database management systems (DBMS's) represent one such effort to provide bet-
ter information services at lower costs. In order to minimize response time
and maximize throughput, it is desirable that a DBMS supports multiple users
at the same time, allowing multiple transactions to0 run in parallel. However,
for the purpose of maintaining database consistency and integrity, such
parallelism must be properly controlled. For example, suppose two trans-
actions that transfer money into the same bank account are run in parallel.
Without proper coordination between the two transactions, it is possible that
both of them would read the same old balance, modify it independently and
write these independently-modified balances back to the database. If this
happens, the final balance will reflect the result of only one, but not both,
of the transactions, causiné one transaction to be lost. To prevent such vio-
lation of database consistency and integrity from taking place, the
concurrency control facility is an indispensable component of the database

management system.

A generally accepted criterion for correctness of a concurrency control

algorithm is the criterion of sendializabifity of transactions. The classical
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approaches to enforcing serializability are the two-phaAe locking technique
and the  ZLimeatamp ondening technique. The first technique ensures
serializability by imposing a partial order on all transactions based on their
commit order, while the second on their initiation order. Either approach
requires that a read operation from a transaction be neg{stered (in the form
of either a read timestamp or a read lock), so that a write operation from a
concurrent transaction will not interfere improperly with the read operation.
Eowever, setting a 1lock or leaving a timestamp with a data element is an
expensive operation. The purpose of the current research is to seek ways to
reduce the overhead of synchronizing certain types of read accesses, and at

the same time achieving the goal of serializability.

To this end, a hierarchical structure is proposed here as the means for
analyzing opportunities of reducing concurrency overhead in a database appli-
cation. A theorem is discovered which indicates that in a hierarhically
decomposed database one can construct yet a third type of partial order of all
transactions which is different from the simple commit order and the simple
initiation order that have been used in the existing algorithms. This new
type of partial order, called the activity Link onden, enables a new algorithm
for concurrency control to be devised which is believed to have the ability of
effectively reducing the overhead of read access synchronization in a database

system that endorses a hierarchical decomposition of the database.
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1.0 INTRODUCTION AND LITERATURE OVERVIEW

Di 1.1 INTRODUCTION TO THE CONCURRENCY CONTROL PROBLEM

Increasing demand for information system capacity has prompted researchers
to find ways to improve the computer systems used in information processing.
Database management systems (DBMS's) represent one such effort to provide bet-
ter information services at lower costs. In order to minimize response time
and maximize throughput, it is desirable that a DBMS supports multiple users
at the same time, allowing multiple transactions tc run in parallel. However,
for the purpose of maintaining database consistency and integrity, such
parallelism must ©Dbe properly controlled. Therefore the concurrency control

facility is an indispensable component of the database management system.

The role of a concurrency control mechanism is to preserve the atomicity of
a user transaction, i.e., it will prevent the processing of a transaction from
being ennoneously intenfeaved with other concurrenct transactions, so that
each transaction sees a consistent database state and, if necessary, can be

recovered or backed out as a single unit.

A typical example of database inconsistency induced by improper interleav-
ing of steps of concurrenct transact.onc is shown n Figure 1. As shown in
the figure, two trensactions <irultanecusly accessing the same piece of data
may result in lost update, leaving the database in an incorrect state. This

1s due to the fact that the database access steps from these two transactions
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Currently there is $190 in Smith's account.
ty: Deposit $50 in Smith's account.
tZ: Withdraw $50 from Smith's account.

Schedule of steps of t] and t2 Result of Smith's account
t, reads Smith's balance $100

t2 reads Smith's balance $100

t, computes new balance = $150 $100

t, computes new balance = $50 $100

12 writes new balance $150

t2 writes new balance $50

Figure 1. An example c¢f database inconsistency induced by concurrent

processing.

are not properly interleaved. By requiring that the database management sys-—
tem exercise control over such interleaving of concurrent transactions, the

undesirable effects can be eliminated.

1.2 THE SCOPE OF CURRENT RESEARCH

A generally accepted criterion for correctness of a concurrency control algo-
rithm is the <criterion of serializability of transactions, which mearns that
interleaving is harmless so long as one can show that the net effect of such
interleaving is equ{valent 2o aome senialized processing (i.e., one after
another) of all the transactions involvea. In the above example, it is appar-

ent that the steps of the two transactions are scheduled in such a way that

2N
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there exists no serialized schedule (i.e., either t, after t, or t, after t,)
that would have generated the same net effect. Therefore the schedule of

these steps is not serializable, and therefore incorrect.

The classical approach to enforcing serializability is the two-phase Lock-

ing technigue. This technique locks up data elements being accessed by one

transaction and blocks other transactions from operating on these data ele-

ments until the first transaction is finished. Another . s.oach to dealing
with this problem is that of the t{imestamp ondering tech _ 2, which stamps
the data elements with the timestamps of the transaction:s .-* have operated

on them so as to prevent violation of a pre-determineu order from taking

place.

Either approach requires that a read operation from a transaction be aeg<{4-
Zened (in the form of either a read timestamp or a read lock), SO that a write
operation from a concurrent transaction will not interfere improperly with the
read operation. Setting a lock or leaving a timestamp with & data element is
an expensive operation. It not only incurs an write operation in the database
(in the form of setting the read lock or writing the timestamp), but also

potentially causes delays for concurrent transactions.

The purpose of the current research is to seek ways to reduce overhead of
synchronizing certain types of read accesses, and at the same time achieving

the goal of serializability. A more comprehensive overview will be given in

e Aoboldadaledebo e ko oo bos, ~ o 2
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the next subsection of the 1literature in concurrency control, including
efforts up to now that have aimed at similar goais. Here we motivate thi:z

research further through the following simple example.

1.2.1 A MOTIVATING EXAMPLE

Consider an inventory database application of a retail business with a
database shown in Figure 2. There are several types of transactions tha:
operate on this database. R <type 1 transaction inserts a sales,
sales-modification, or a merchandise-arrival record into the database whern the
event of a sales, sales modificaticn or arrival of certain merchandise occurs.
A type 2 transactior is generated periodically for each item in the inventory
to compute the current inventory level of that item. This transaction visits
the sales, sales~modification and mercharndise-arrival records to compute the
net change ever since the last computation of the inventory level of that
item. B new inventory 1level for that item is then posted in the inventory

record.

To control these transactions using two-phase locking, a type 2 transacticn
would have set read locks on every read access it has generated to the sales,
sales-modification and merchandise-arr val records. Using the timestarg
ordering approch, the type 2 transaction would have left read timestamp for
every such record it has read. However, a closer look at the application

reveals that this overhead of read-locking or read-timestamping is not neces-

&>
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Inventory
[ItemlDescription]Current-Inventory-Leve71

Sales Merchandise-on-order
[Sale#]|Qty[Price][Date-time] [Qrderé]QtylSuUp]ie[IOrder-dafETArriva1-daEE]
Sales-Yodification
iSaTesz [qtylPricefDate-time]
Merchandise-Arriva]
[Order#]Qty [Arrival-time |
Figqure 2. An example inventory database.
sary. The sales records, for example, once committed, will not be modified.

In other words, with the exception of being deleted for garbage collect:cn
purposes, the sales records, once committed, have become 'read-only' recorcés.
Therefore the function served by setting read 1locks, etc., is no longer

needed.

While the above case is very simple, a more complicated case may confuse
the situation and make it not so obvious as to whether or not the read
accesses should be registered. Suppose there are type 3 transactions which
are also generated periodically to check for the need of reordering certain
merchandise items. This type of transaction reads the merchandise-arrival
records and adjust the merchandise-on-order records (by setting the

arrival-date field of such records.) It then computes a gross inventory level
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by summing the current-inventory-level and the quantities indicated by the
non-arrived merchandise-on-order records. Based on this gross inventory level
a decision <is rade as to whether to reorder this item. If it decides to dc
s0O, an order request is printed and a merchandise-on-order recordé is generated

and inserted.

Under this situation, whether or not type 3 transactions can avoid setting
read locks or read timestamps for the inventory and merchandise-arrival
records it retrieves is not so obvious. In fact, if accesses to such records
by type 3 transactions are not controlled, one can construct situations in
which serializability is violated. Suppose two-phase locking is used. Then
we can construct a case in which a merchandise-arrival record y for item X is
seen Dy a type 2 transaction to compute the current level of inventory. This
current level of inventory is in turn seen by a type 3 transaction to figure
out whether to reorder. However, this type 3 transaction may nof have seen
the merchandise-arrival record y. As shown in Figure 3, a timing of these
three transactions can be found such that if the type 3 transaction does not
set read 1locks, violation of serializability occurs. This violation would
generate adverse effect on the performance and integrity of the database, and
is clearly undesirable. A similar case is constructed in Figure 4 which shows
that if the timestamp ordering technique is used and if the type 3 transacticn

does not leave read timestamps, violation of serializability is also possible.
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* ' tart§ t3 reads current-level
starts | C§}$;t§ t2 of inventory time
t3 finishes commits (therefore reads
reading all the one which has
merchandise- included y.)

arrival records

Figure 3. If read locks are not used, an anomoly may occur.

Because of the seeming unpredictability of the situation, most concurrency
- control algorithms, for simplicity, choose to ignore such opprotunity for
reducing synchronization overhead, and complies strictly to the assumption

that all transactions may read and write any part of the database and there-

fore every access has to be controlled.

1.2.2 THE GOAL OF THE CURRENT RESERARCH

The goal of the current research is to seek for a systematic exploitation of

the kind of opportunity for reducing cbncurrency control overhead indicated an

the case above.

Theoretically speaking, the above case would not exaist if all the derived

values of the entire database were computed at the time of the entry of tre
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t) starts’ :za;tgé reads y “time
t2 . t3 reads current-level (therefore
starts ! seen the current level which has

t3 finishes iNcluded y.)

3 reading merchandise-
= arrival, thereéore
1 not seen y

Figure 4. If read timestamps are not used, an anomoly may occur.

event. However, it 1is our Dbelief that such case 4o exist widely in the

real-life applications of database systems, because the instant computation of
all the derived values at the time when an event is captured is both costly

and unnecessary, and does not comply with how the organizations that use a

database system are accustomed to operate. Delayed computations also supports

certain method of operation that an organization may have purposely imposed.

(e.g., the organizational unit that is responsible for the transactiorn that

logs merchandise arrival should not have the knowledge of the current invento-

ry level or the details of the merchandise ordering process.) In fact, the

above case can be generalized further by, for example, adding to it aprlica-
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tions that read from the reordering records and the merchandise-arrival
records to generate supplier profile records in the database. 2As the list
goes on, it is believed that a hierarchy of applications exists such that at
each level of the hierarchy the transaction only reads from but does not write
into data produced by applications of an earlier level. This structure pre-

sents a definite opportunity for concurrency control algorithms to explore.

The bases for our technique are transaction analysis and the maintenance of
a multi-version database. The transaction analysis decomposes the database
into hierarchically related data segments, such that transations that write
inte one segment will only read from the same data segment or segments of
higher levels. The technique enables read accesses to higher-level data seg-
ments to proceed without ever having to wait; it requires no read locks or
read timestamps Dbe set for such accesses. This methodology may also bear

implications on database and transaction design activities.

1.3 OVERVIEW OF RELEVANT LITERATURE

Concurrency control in a centralized or a distributed database systen has
been an active research area. The concept of database consistency has been
formally analyzed in <Eswaran7é, Gray76é>, in which set-theoretic notions are
used to formulate the concept. A consistent schedule of concurrent trans-
actions has been defined to be cone which is equivalent to a serialized sched-

ule. Two-phase locking ha:z been proposed in their papers as a mechanism which

P A PR . ) <. L. . .
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preserves serializability. This notion of serializability has been further

explored in <Bernstein?79>.

Algorithms for database concurrency control abound in the literature. The
distributed database present a challenge for the consistency problem which has
encouraged development of many new algorithms. <For example, Ellis77,
Lamport78, Rosenkrantz78, Thomas79, Bernstein80b.> A survey and comparison of
theories and algorithms of concurrency control can be found in <BernsteinB8O0D,
BadalB80>. Most algorithms are considered variations, extensions and/or combi-
nations of the two basic techniques for concurrency control - two-phase
locking and time stamp ordering. The two-phase locking algorithm ensures con-
sistency by imposing a partial order on all transactions based on their lock
points. (A 1lock point of a transaction is the point in time when the locking
phase of the transaction reaches its peak.) The timestamp ordering algorithm
ensures consistency by imposing a partial order on all transactions based on
the initiation times of the transations. These two techniques have been used

as the basis for further explorations.

One of the foci of recent development in concurrency control algorithms
centers around the identification of techniques that increase level of concur-
rency and/or reduce synchronization overhead, at the same time preserving the
correctness of the algorithm. One dimension of such effort is the
multi-version database. It's been observed that keeping multiple versions of

database elements will improve concurrency of the database <Papadimitrious2>.
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In Papadimitriou's paper, it is shown that there exists an infinite hierarchy
of multi-version serializability, ané proven that the more versions a DB¥MS

keeps, the higher is the level of concurrency it may achieve.

The concept of a timestamp-based multi-version database system was first
proposed in <Reed78>. It is a general scheme in which the identifier of a
data element consists of two components: the name of the data and the version
of the data. In Reed's scheme, retrieval of an arbitrary time slice of the

database is allowed.

A more 1limited multi-version concept was developed in <Bayer80>. In his
scheme, one previous version of a data element, which has been saved for
recovery purposes when the data element is going through changes made by
uncommitted transactions, is utilized to allow read accesses to proceed with-
out having to wait for the commitment of the update transaction. In
<Garcia-MolinaB82>, a framework of strateties for processing read-only trans-
actions is presented. In <Viemont82>, an interesting method for concurrency
control is devised which also makes use of this one extra copy of data ele-
ments ﬁo synchronize transactions by order of commit time. In essance his
technique is one which blends timestamp ordering and two-phase loCking in one
and chocses to switch to one or the other at the most opportune time sc as tc
increase level of concurrency. In <Stearnss8l, Chang2> the
one~previous-version method was extended to accommodate multiple previous ver~

sions (but does not allow fcr access of an arbitrary time slice cf the

B AL SEPEPLEN
el U WL W T WYy W T R ST I R PP ) s . . . . . - - s

- o A a PRV SO N P Y




ISR Are Ao ais S dh s A Bex Jan-Son Huen

INFOPLEX Technical Report #12

database from a user.) In particular, Chan's method is based on two-phase
locking but allows the read-only transaction to receive special treatment -

they do not have to set read locks.

The above list of research bears resemblance to the research to be reported
here. However, our technique is one which is timestamp based and strives to
reduce the need for leaving read timestamps for not just read-only trans-

actions, but update transactions as well.

Another dimension of efforts of reducing synchronization overhead is that
of conflict analysis <BernsteinB0b>. In the research on concurrency control
for SDD-1, conflict analysis was proposed which exploits a priori knowledge of
the nature of the transactions to be run in the system. (To some extent, some
of the research listed in the previous paragraphs concerning providing special
protocols for read-only transactions fall into this category too, as it
exploits the knowledge, albeit a 1limited one, of the nature of the trans-
actions, namely, whether they are read-only or not.) The approach reported in
the present paper is different from that of SDD-1 because it is not oriented
towards distributed database systems, and, because of the special structure of
applications that our approach exploits, together with the fact that multiple
version technique is employed, the pr~toccls are much less restricted. These
new protocols are therefore are more practical to implement. A comparison
between the approach proposed here and that of SDD~1 1s included in the sumra-

ry.
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2.0 BASIC CONCEPTS OF MULTI-VERSION CONSISTENCY

In this chapter, we present the basic concept of multi-version consistency
in graph-theoretic terms. This material is mostly taken from
<Papadimitriou82, Bernstein82>, except for some notational differences. We
wish to establish the fact that, if serializability of transactions is taken
as the criterion for correctness of concurrency contrcl, then acyclicity of a
transaction dependency graph, constructed as a restlt of a multi-version '
scheduling algorithm, 1is the &vidence of correctness of the algorithm, as it

preserves serializability ¢f transactions.

We present the following definitions and theorem.

- Definition. A schedule of a set c¢f transactions T, denoted as S(T), 1%

)

sequence of steps, each of which is denoted as & tuple of the form
<transacticn id, action, version of a data granule>.

The action can be read (r) or write (w). The version of a data granule is

denoted as dv, where d indicates the data granule and v indicates the version.

If the action is write, then the version of the data granule included in the

step is created by the transaction. 1If the action is read, then the trans-

action reads the version of the data granule indicated in the tuple.

An example of a schedule is <tq,w,d'>, <t,,r,d'>, <t,,w,3’>, <tg,r,d°>.

13
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Definition. A version j of a data element d is the predecessor of a ver-
sion k of 4 if <tq,w,d’> is before <tp,w,d*> in S(T) where t, t, € T, and
there exists no t € T and i such that <t,w,d'>is between <t ,,w,d?>and <tos

w,a%> in s(T).

Definition. B transaction dependency graph of & schedule SIT) is a
digraph, denoted as TG{S(T)), where the nodes are the transactions in T angd
the arcs, representing direct dependencies between transactions, exist accord-
ing to the following rules:

t, -ty € A iff
(1) <t4,w,dY> and <t,,r,d"> are in $(T) for some 4V, or
(2) <t,4,r,a’> and <t,,w,d%> are in S(T) for some d’,a* where 4’ is the

predecessor of ak.

In other words, the transaction dependency graph represents a relation -
(depends on) of transactions such that t, = ty if t, reads a version of a data
granule created by t4 or if t,; creates a version of a data granule whose pred-

ecessor has been read by t,.

Definition. T™wo schedules S,(T) and S,(T) of the same set of transaction

set T is said to be equivalent iff TG(S,(T)) = TG(S,(T)).

14
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. Definition. A schedule S(T) is serializable if there exists an eguivalent

schedule Sg(T) where all transactions in S5¢(T) are serialized. (i.e., no steps

of one transaction are interleaved with steps from another transaction.)

In <Bernstein82> the following theorem has been shown: a schedule S(T) 1is

serializable iff TG(S(T)) is acyclic.
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3.0 HIERARCHICAL DATABASE DECOMPOSITION

3.1 SOME GRAPHIC-THEORETIC DEFINITIONS

We first brPriefly introduce the concept of a d:graph called a trans:t.ve
semi-tree. This concept will then be used to describe the desararle database
partition to which our concurrency control technique can be apgpl:-ed.
Informally, a semi-tree is a digraph such that, if the directions 0of the arc:
in the graph are ignored, the graph appears to be a spanning tree. A transi-
tive semi-tree is a digraph whose transitive reduction is a semi-tree, 1.€.,
it 1is a semi-tree with an arbitrary number of additional transitively induced

arcs.

Definition. A semi-tree is a digraph such that there exists at most one
undirected path Dbetween any pair of nodes in the graph. Every arc in a

semi-tree is called a critical arc.

Definition. A digraph G is a transitive semi-tree iff its transitive

reduction is a semi-tree.

An example of a transitive semi~tree is shown in Figure 5. It can be seen
that the definition of a transitive semi~tree is more relaxed than a directed
tree, but is more restricted than an acyclic directed graph. The following

two properties are associated with the transitive semi-tree.

16
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ke

Spanning tree Semi-tree Transitive
Semi-tree

Figur2 E. Illustration cf a transitive semi-tree.

n

™

Property. A path in a transitive semi-tree is a critical path iff it

. composed of critica. arcs alone.

PPOpEPty. There exists at most one critical path between ary pair of nodes

in a transitive-semi tree.

Dat et pa tand

3.2 DATABASE PARTITION

Ty

We will use the concept of a data hierarchy graph (DHG), constructeé by
means of transaction analysis, toO characterize the relationship between a
database partition scheme and database transactions. As will be shown later,
the topology of the DHG of a particular database partition scheme will indi-

cate whether or not our concurrency control technigque can be applied tc that

[ O .
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partition scheme. Informally, let a database be partitioned into data seg-
ments. B DHG is a digraph with nodes corresponding to the data segments andg
arcs constructed in such a way that there is an arc from a data segment L[, t2
another data segment D, if and corly if one can find a potential transaction ..

+he database system that updates data elements in D, and accesses (i1.e., reai

(6]

or writes) data elements in D;. In other words, D, = Dj;, 1 # j, indzicate

&3]

that there exist transactions in the system that would link updates of da:a

elements in D, toc the content of data elements in D,.

Definition. _et TY be a set of update transactions to be performed or &
database D. Let P be a partition of D into data segments D4,Dy,...,Dn. &
data hierarchy graph of P w.r.t. TY is a digraph denoted as DHG{(F,T") wizkh
nodes corresponding to the data segments of P and a set of directed arcs jcin-
ing these nodes such that, for i # j, D, = D, iff there exist t € T s.t.
wit) ' D, # empty and a(t) Q D, # empty, where t is a transaction, wi{t},
r(t) and a(t) the write set, the read set and the access set of transaction t.

(The access set a{t) is the union of r(t) and w(t).)

The kind £ database partition to which our concurrency control technique
can be applied is cne such that its data hierarchy graph satisfies the

topclogical reguirement that it be a transitive semi-tree.

Definition. & partition P of a database D is JST-hierarchical with respect

to TY 1ff DHG(P,TY) is a transitive semi-tree.
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Property. Let p be a TST-hierarchical partition w.r.t. TY. Thenrn t e TY

writes in one and only data segment in P.

Proof. sSuppose t writes in two distict data segments D; and D,, then
according to our rule of construction of DHG(P,TY), D, - D,, D, = L, ¢
DHG(P,TY), therefore DHG(P,TY) is no 1longer a transitive semi-tree, which
means that P is not TST-hierarchical w.r.t TY, and contradicts the assumptior.

Based on the above property, a TST-hierarchical database partition r &

Q

defines a trarsacticr c.ass.fication as follicws.

Definition. A transaction classification of a database partition which is
TST-hierarchical w.r.t. TY, 1s a partition of the set TY of all update tranz-
actions into transaction classes T.,Ta, «..,

T,, such that a transaction t ¢

T, 1ff t writes in data segment D,.

Therefore a transaction classification partitions the set of update trans-
actions into classes, each of which corresponds to a data segment in the data
partition. We define the image of the data hierarchy graph for the trans-

action classification as follows:

Definition. n transaction hierarchy graph THG(P,TY) of a database parti-

tion P, TST-hierarchical w.r.t. TY, is a digraph where the nodes are trans-

action «classes T;'s based on transaction classification defined above, and

[N
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arcs connecting these nodes such that T, - T, ¢ A 1ff D, =~ D, exists in the

corresponding DHG(p,TY).

Given definitions of DHG and THG above, we shall denote a crltical path
grom { o § in THG or DHG as CP,’. Therefore, T, ~ T, = ... = T, = CB.’ 1ff

every arc is a critical arc. In addition, we give the following defintaion:

Definition. We define Ahigher than (denoted as *>) as a partial order:ing

of nodes in a THG or a DHG. Specifically, we say that T. hrgher than =, (cr

, 4> T,) iff CP,? exists in the graph.

20
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- 4.0 SYNCHRONIZING UPZCATE TRANSACTIONS

Given a TST-hierarchical database partition, the key to our concurrency
control technique 1s the recognition that, 1f a transaction t belongs toc a
class T, that writes data segment D, and reads data segment D,, and D, is
higher than D, in the Data Hierarchy Graph, then this transaction would appear
to be a read only transaction so far as D, is concerned. Therefore when a
request to reacd a data element d in D, is issued by t, there may exist a prop-
er committed versicon of & tnat is Aaée Yo be givern to t without the need of
leaving a read timestamp with d. However, the way this proper version i1s CoOr-
puted must Dbe such that the overall serializability is enforced. 1In other
words, the introduction of transaction dependency of t on t', where t' is the
transaction in class T; which created the version of 4 that t is allowed tc
read, must never induce cycles in the transaction dependency grarh as de::ned
in Section &multi.. To this end, a function called the activity link functicn
is devised to compute versions that cross-class read accesses may be granted,

and a theorem which testifies to the correctness of this computation 1is pre-

sented. Based on this theorem, a concurrency control algorithm is alsc
presented.
Notations.

(1) I(t) = the initijiation time of a transaction t.

(2) C(t)

the commit time of a transaction t.
(3) TS(dY) = the inititation time of the transaction that creates the ver-

sion v of a data granule d, i.e., the write timestamp of 4V. (A data

[aS]
b
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granule is the smallest unit that concerns the concurrency control com-
ponent of the database system, and is the smallest unit of accesses so

far as concurrency control is concerned.)

4.1 THE ACTIVITY LINK FUNCTION

The following definitions and properties apply to a database with a parti-
tion P which is TST-hierarchical w.r.t. TY and has a corresponding transactior.

classification.

Definition. A function 1,°'Y defined for a transaction class T, is a func-
tion which maps a time m to another time m' such that m' = I1°‘°(m), where m'
is the initiation time of the oldest active (i.e., uncommited and un-aborted)

transaction in the transaction class T, at time m. Formally,

m if there exists no t € T, active at time m,
old -
I, (m) =
Min (I(t)) otherwise, where t € T,, I(t) < m and C(t) > m.

Definition. Let the activity link function A,° be a function defined for a
pair of transaction classes T; and T;, where T; and T; are transaction classes

such that T, *> T;. A,j recursively maps a time m to another time as follows.

1;°'%m) if T; - T; = cP,’?
A;’(m) =
A (A;*(m)) otherwise, where
T, Ty =...~ T; = CP,’.
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Figure 6.

IiOId(m) = jnit. time of the oldest

active trans, in class
Ti at time m:

R e B T
. 'ﬁ—‘ b &
T
1.°%%m) m time
1 L]
Adm = 190901 %% m), if @) =
i 3 k i
<+
T T T,

Graphical represenation of the A function.

A/l S0l Sk and aast s S o a4 L

That is, the function A maps a time m for a transaction from class T, to

the initiation time, A,’(m), of successively (i.e., along the critical pa:irn cf

THG) the oldest active transaction in the class T;.

For example, if the cr:t-

ical path between T, and T, is T, = Ty, = T,, then A,’(m) = 1,°79(1,°"9%m)).

This is exemplified in Figure 6.
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4.2 CONCURRENCY CONTROL ALGORITHM FOR UPDATE TRANSACTIONS

Based on the definitions given above, we describe in this subsection the
concurrency control algorithm for update transactions under the hierarchical
decomposition approach, and prove its correctness. For the purpose of concur-
rency control, we assume that every data segment is controlled by a Aegment

contnollen which supervises accesses to data granules within that segment.

Concurrency control algorithm for update transactions:

For every database access request from an update transaction t € T, for a

data granule 4 ¢ D,, the following protocol is observed:

Protocol A
If i # j, then the segment controller of D; provides the versaion d° of 4 such
that
TS(a°) = Max(TS(dV)) for all v such that
TS(dY) < A I(1(t)).
(Note that no trace of this access heeds to be registered in any form for the

purpose of concurrency control by the segment controller.)

Protocol B

If i

j, then use the basic timestamp ondening protoco{ <BernsteinB0> or the

multi-vension timestamp ondening protocol <Reed78>.

.
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4.3 PROOF OF CORRECTNESS

To show that the above algorithm is correct, one must show that
serializability 1is enforced. In order to do this, we define a relation =>
between a pair of transactions and show that the above algorithm allows a
transaction t4, to directly depend on a transaction t, only if t4 => t,.(D-
rect dependency is defined in Section &multi.) We then show that propertaie:
of the relation => lead to Theorem 1, which concludes that the above algorithn

preserves serializability.

Definition. a relation topologically follows (denoted as =>) is defined
for a pair of transactions ty4, t,, where t, ¢ T,, ty ¢ 7;, T, and T, are con-
nected by a critical path in THG, i and j not necessarily distinct. We say

that t4 topologically follows t, (or t, => t,) iff

(l) if T‘i = TJ then I(t1) > I(tz).
(2) If T, *> T, then I(ty) 2 A;'(I(ty)).

(3) If T; *> T, then I(ty) < A7 (I(ty)).

Intuitively, => is a relation between transactions based on both the timing
of the transactions and the hierarchical levels in the THG of the transaction
classes that the transactions belong to. To be more specific, 't => to'
always means that t4, is 'later’' than t,. However, this ’'later' is not only

based on the initiation times of the two transactions involved, but also on
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T2 —_— (1) if Ty = T,
5 A then I(t,) > I(t,).
- -
: - >time
I(tz) I(ty)
t, t2
at — T : T
3 ‘Iftzﬂ : ; A1J(I(t1))
. } _) ) 2 3
time time
p—— :
t, A t, | -

(2) If T4 > T, then
I(t,) 2 RJ‘(I(tz)).

Figure 7.

(3) If Ty t> T, then
1(ty) < A (I(E D).

Graphical representation of the relation t=> t,.

the relative 1levels of the

Given a fixe2d tg,
has
transactions that

because otherwise

Y PR T, PV PR T

transaction classes
the lower the level of t,,
to be in order for t, => t, to hold.
belong to classes

the A function is undefined.
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the
Clearly,

that are

P WS P,

to which t, and t, belong:
later t,'s znitiaticn
=> 15 defined only between
on a critical path ar TES,

This relation is exemplaified
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in Figure 7. Two interesting properties concerning the relation => are pre-

sented below:

Property 1.1. The relation => is anti-symmetric. (This directly follows

from the definition of the relation.)

Property 1.2 (The property of transitivity/. The relation => s
critical-path transitive, i.e., if there exists t, e T,, ty € T,, t3 € T,,
such that ty => t,, t, => t3 and Ty, Ty and T, are cn a critical path in THG,
then t, => tj.

Proof. (See Appendix)

We now define the following synchronization rule and show that our concur-

rency control algorithm enforces this rule.

Definition. We say that the partition synchronization rule (abbreviated as
PSR) is enforced in a schedule S(TY) if, for any ty, to, € T*, t, = to €

TG(S(TY)) implies that t, => t,.

A concurrency control algorithm enforces the partition synchronization rule

if it allows direct dependencies to occur betweern transactions t, and t., only

if t4 => t,. This is translated into the following three cases:
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(1) If t, and t, are in the same transaction class, the algorithm must
allow t4 to read a version v of a data granule 4 created by t,, Or to create a
new version of a data granule @ whose latest version dY was created by tj,

only if t, has an inititation time that is less than that of t,. (i.e., only

if TS(AVY) < I(t4).)

Protocol B of our algorithm satisfies this requirement.

(2) If t, Dbelongs to a class T, cf a lower level while t, belongs tC a
class T, of a higher level, then the algorithm must allow t4 to read aVv cre-~
ated by t, only if t, has an initiation time less than A,7(I(t,)). (i.e., only

if TS(AY) < A, (I(t4)).)

Protocol A of our algorithm satisfies this requirement.

f3) If t4, Dbelongs to a class T; of a higher level while t, belongs to a
class T, of a lower level, then the algorithm must allow t, to create, at time
m, a new version of a data granule whose predecessor dY has been read by to,

only if t, has an initiation time greater than or equal to A;'(I(tj,)).

This, however, is always true because, by the very fact that t, 1s active
at time m and I(t,) < m, and that A, (I(t,)) yields a time value which is def-
initely smaller than the initiation time of the oldest active transacticn in

class T, at time m, A;'(I(t,)) must be less than I(ty).
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N Therefore we conclude that our algorithm enforces PSR. What is left tc dc
in proving the correctness of our algorithm is tc show that a schedule thra:
enforces PSR 1is also correct. The following theorem therefore completes our

K proof.

o Theorem 1. Let TG(S(TY)) be a transaction dependency graph of a set C

by

'y

- udpate transations TY run cn a database with a TST-hierarchical partitiorn F,

L3 t-1
P

rt
O

and the schedule S observes the partition synchronization rule with respec:

.

;: "‘A ‘.:l -

2%s’

the transaction classification correspording to P, then TG(S(TY)) has n:

cycles.

Proof. (See Appendix)
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5.0 SYNCHRONIZING READ-ONLY TRANSACTIONS

What has been discussed is the algorithm for controlling concurrent update

transactions. Now we turn to the read-only transactions.

For a read-only transaction t that reads from data segments that lie on one
critical path CP,’ of the DHG, the protocol that should be observe is the same
as that observed by the update transactions in a class immediately below the
lowest class of the cratical path CP,’ in THG, namely, & class right below
class T,. (If there exists no class below T, in Th3, then a fictitious class
can be created to ‘'host' this read-only transaction.) Therefore read-only
transactions will have to obey protocol A alone and will not cause any read
timestamp or read 1lock tc be generated. This is graphically presented by

transaction t, in Figure 8.

What we are concerned with here are those read-only transactions that read
from any combination of data segments that 4o not lie on a critical path in
DHG, as :llustrated by transaction t, in Figure 8. To handie these trans-
actions, we first introduce the exfended activity Link function in the follow-

ing subsection.

5.1 THE EYTENDED ACTIVITY LINK FUNCTION

1. the prevaious section we have introduced the activity link function which

centers around the linkage between transactions in classes that are on a cro.t-
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®.--... t reads from class
(t is a read-only transaction)

Figure E. Read-oOrly transactions that read from one critical patl.

ical path in the transaction hierarchy graph. The extended function, O& the
other nd, specifies how transactions in a transaction class are linked to
rransactions in another transaction class when there is not necessasily any
critical path that connects the two. This function 1s used to provide a way
of computing a consistent database +tate that can be accessed by a reas on.¥

transaction that reads fr'm any comb: #ation of data segments 1in the database.

Wwe will first introduce the functions C, 2'® and B,’ that can be ccrsidered

conceptuaily the J{nvense of functions 1,9 an3 A,’. Then two properties cf
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the relationship between the functions A,’ and B;' are derived. The extended
activity 1link function E1J is then defined in terms of functions A and B, ard
its usefulness is indicated in a lemma that follows. The existence anid cer.-
vation of a consistent database state is given in theorem 2, whiClh makes use

of the extended activitv link function.

Definition. Let C,'2'€: = m' be a function which maps time m ¢

o]
s3]
&)
O
ot
v
I

er m' where T, is a transaction class and C,'2%'®(m) is determined as fcllows.

m if there exXists no t ¢ T, active at time m,
c late(m) -
1
Max (C(%)) otherwise, where t ¢ T,, I(t) < m and C(z) > .

That is, C,'2%®(m) is the fates? commit time of all transactions in ciass T.
that started before or at time m. However, to make C,'2'€(m) computatle, al:
such transactions must have committed at the time of computation of C1‘ate(m).

We give the following definition concerning the computab{fity of ¢,'2%'®(n).

Definition. C,'2'®(m) is computable at time m® iff there exists nc trans-

action started before ¢r at itime m that is still active at time r°.

Now we introduce & function which is conceptually the inverse of the func-
tion A. While the A function maps a time in a lower level class t¢c the init:-

ation taime of some transacticn in a higher level class, the B functicen maps a

4=
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time in a higher level class to the commit time of some transaction in & lower

level class:

Definition. The Backward activity link function, defined for a pa:r of
transaction classes T, and T;, where T, *> T,, denoted as B,;'(m),is a func-

tion which maps a time value m to another such that

c,'®®(m) if T, - T, = CP,’
B, (m) = _
By '(B,*(m)) otherwise,
where T, = ... = T, = T, = CP,7.

The following two properties Dind the functions A and B together and

formally describe how they are the inverse of each other.

Property 2.1. B,°(B,'(m)) 2 m, where T, -~ ... = T, = CP,’ in the trans-
action hierarchy graph.

Prooaf. (See Rppendix)
Property 2.2. For evey positive ¢, A,°(E,'(m) - €) < m, where T, = ... ~
T, = Cij in the transaction hierarchy graph.

Proof. (See Appendix)

Definition. an wundirected critical path, denoted as UCP.?, is an crderez

set o©of distinct indices of transaction classes in THG such that UCP,’ = <,
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i1, i2, ..., in, j> where for any two indices h, k adjacent in the set, either

Th = Ty or T, = T, is a crtical arc in THG.

It 1is obvious

only one UCP in THG
ity link function A
a critical path,

UCP, is defined for

Definition. The

transaction

classes

that for a TST-hierarchical partition there exists cne anc
between any pair of transaction classes. While the activ-
is defined for any pair of transaction classes that lie on
the extended activity link function, using the concep:t ci
any pair of transaction classes.

Tink function defined for a pa:r cf

extended activity

T, and T,, denoted as E;’(m), is a function which maps a

time value m to another such that

mif i

C,'?*®(m) if i # j ana T,

E;’(m) =

=3,

- T, is a critical arc in THG,

1,°'%m) if i # j ana T; = T, is a critical arc in THG,

E  (E;¥(m)) otherwise, where <i,k,...,3> = UCP,?,

The following lemma illustrates the usefulness of the extended actavity
link function.

lemma 2.7. Let T,, T; and T; be transaction classes in a THG cf a
TST~hierarchical database partition, and T, and T, are on one critical patr.

Then

P PV ST SRS

for any time value mand t, € T,, ty € T;, if I(t,) < E,'(m) and I(t;)2
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E,’(m) then there exists no ty; - t, in the transaction dependency graph
TG(S(T")) where the schedule S enforces the PSR's.

Proof. (See Appendix)

Intuitively, the E function provides a way cf computing a £{me waflf for al.
transaction classes in the database system across which no direct dependerncy
from the ‘'older side' of the wall to the 'newer side' of the wall can occur.
A time wall TW(m,s) is the set of all times Eg'(m) where m is a time, D 1s a
chosen data segment, and L, 1s any data segment. This concept is graghically

presented in Figure G. The significance of this concept is <that if

that a
read-only transaction reads the latest versions of data granules of data seg-
ment D, which are right before the time indicated by the time wall componern:
Es'(m) of certain time wall TW(m,s), then it 1S accessing a consistent data-

base state and will in no way induce cycles into the transaction dependency

graph. This discussion is formally presented in the following theorem.

Theorem 2. 1f the schedule S enforces the PSR on TY, and for every @ € D,

that a read-only transaction tgp reads, S allows it to read the version d&° such

that
TS(d°) = Max (Ts(dV)) where Ts(dV) < Eg'(m),

for some time m and some transaction class index s, then TG(S(TY U tg4)) has nco

cycle.

Proof. (See Appendix)
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A time wall TW(s,m) is such that no direct
dependencies occur between a transaction on
the }eft side of the dotted line (i.e., I(t)
< E "(m) ) and that on the gight side of the
dotted line (i.e., I(t)> Es (m) ,)

Figure 9. The E function used as a 'time wall.'

In other words, if a read-only transaction reads the latest versions cf

data granules of data segment D; which are right before the time indicated by
the time wall component E¢'(m) of certain time wall TW(m,s), then it is
accessing a consistent database state and will not induce cycles into the

transaction dependency graph.

5.2 CONCURRENCY CONTROL PRCTOCOL FOR READ-ONLY TRANSACTIONS

Making use of Theorem 2, a read-only transaction t that reads from data

segments that do not lie on one critical path in DHG should be given versions

W
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that are the 1latest before certain time wall. However, to compute the time
wall the system has to determine the starting transaction class Tg and a
starting time value m. While the choice can be arbitrary, it is theoretically

desirable that the following criteria are met:

(1) Eg'(m) (for all T, in the THG) is computable at I(t), the initiation
time of the read-only transaction.

(2) There exists no m' > m such that Ec'(m') is computable at I(t) for a
s P

b
—

T, in the THG.

The first criterion stipulates that m should be smaff enough so that all Eg’
(m) is computable at I(t), therefore t potentially does not have to wait until
a later time to access from certain segment. (If some Eg’{m) is not computarie
at I(t), t would have to wait till a later time when it is computable before
accessing data from data segment DJ.) The second criterion strives to achieve

reading of the newest pcssible database state.

A compromise 1is struck here in devising our protocol for read-only trans-~
actions. First, to save computation time, a new time wall is computed by the
system at certain intervals and the new time wall is 'released' to all
read-only transactions that start before the next veansl{on of the time wall is
released by the system. (That is, there is no need to compute a time wall for
every read-only transaction.) In computing the next version of the time wall,

the system can choose arbitrarily a starting class Tg which is of one of the

37
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lowest levels and choose m to be the current time. If it encounters any C,
'ate fynction that it cannot compute, it waits until it becomes computable.
Eventually enough time will elapse such that Eg'{(m) becomes computable for all

T;'s. Then & newly constructed time wall is released.

Let the release time of a time wall TwWw(m,s) be denoted as RT(TW(m,s)). Now

we provide the formal definition of the read-only transaction synchronization

protocol.

Concurrency Control Algorithm for Read-Only Transaction

For every database read request from a read-only transaction t fcor a data

granule d, the following protocol is observed:

Protocol C

Let 4d ¢ D,. The segment controller of D, provides the version 4° of & such
that

TS(d°%) = Max(TS(dY)) for all v such that

TS{aV) < E¢’(m)

where RT(TW(m,s)) = Max(RT(TW)) for all TW such that RT(TW) < I(t).

PP N T I S TR I O i PP D O N N R N
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6.0 SUMMARY

A new technique of concurrency contrel for database management systems has
been proposed. The technique makes use of a hierarchical database decompos-
ition, a procedure which decomposes the entire database into data segments
based on the access pattern of the update transactions to be run in the
system. A corresponding classification of the update transactions is derived

where each transaction class is 'rooted' in one of the data segments.

The technique requires a timestamp ordering protocol be observed for
acesses within an update transaction's own root segment, but enables read
accesses to other data segments to proceed without ever having to wait or to
leave any trace of these accesses, thereby reducing the overhead of concurrer.-
Cy control. An algorithm for handling ad-hoc read-only transactions in this
environment 1is also devised, which does not reguire read-only transactions tc
wait or set any read timestamp. The proof of correctness of these algorithms
in terms of their preservation of serializability is provided through a set of
eight properties, three lemmas and two theorems. A comparison of the SDD-1
approach, the multi-version twc-~phase locking approach (MV2PL) ard the Hierar-
chical Database Decomposition (HDD) approach proposed here is given in

Figure 10.

7.0 FUTURE RESEARCH DIRECTIONS

39
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HDD SDD-1 MV2PL
Trans Hier- General™® None
Analysis archical
Represen- T T T T
tation R

T.

w

. . (o)
Inter- Never re- May cause N.A.
Class ject or read regq.
Synch. block a to be re-

read req. jected or

blocked

Intra- Timestamp |Serialized | 2-phase
Class Ordering Pipelining | locking
Synch.
Read-only similar to | No special ] Never
Trans. Inter~-classj| handling block or

synch, reject

Figure 10.

———Y

A comparison of the HDD, SDD-1 and MV2PL approaches.

———————

7.1.1 DYNAMIC RESTRUCTURING OF DATABASE DECOMPOSITION

We will develop a scheme for handling ad hoc transactions that introduce

access patterns

aspect of the

Sel ade e b o

which

technique

cause
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is important for two reasons.

an original partition to become illegal.
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First, any database
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partition and transaction classification based on an a priori analysis of all
possible transactions to be run in the system is not likely tc be fault-procft.
Second, some transactions that are not frequently run but demand an access
pattern which causes a finer partiticn to become illegal may be left out of
the pre-aralysis intentionally, so that for the majority of the time the sys-
tem can operate under & finer partition while a special handling is adop:ted to
take care of this type of transactions when they enter the system. We will
try to achieve a scheme which can dynam{calfy restructure the database parti-
tion. That is, it should be a scheme which does not reduire a guiescence of
the database activity in order to perform the restructuring or the

restoration.

7.2 HIERARCHICAL DATABASE DECCOMPOSITION METHODOLOGY

7.2.1 HANDLING ACYCLIC DECOMPOSITION

The present technique centers around the transitive semi-tree form of
hierarchical database decomposition. The <transitive semi-tree, while much
more relaxed than a directed tree, may still be too restricted for the tech-
nigue to be useful in some applications. Based on the theories developed for
the current technique, we propose to find an algorithm that will transform a
database partition whose data hierarchy graph is of the form cof an acyclic

graph to a legal partition, while preserving the granularity of the original

partition as much as possible.

41
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7.2.2 DATABASE DECOMPOSITION METHODOLOGY VIA DATA ANALYSIS

We propose to study in detail graph-theoretic methodologies that can be
used to cluster data elements of a database to arrive at a legal or an acyclic

decomposition of the database.

7.3 IMPLEMENTATION OF THE CONCURRENCY CONTROL PROTOCOLS

Studies will be made of the complexity of implementation cf protococls
developed in the current and future research. Algorithms for (1) computing
the version numbers to be accessed by a transaction, (2) maintaining
multiple-versions c¢f the database, and (3) garbage collecticn will be

addressed.

7.4 THE EFFICACY OF THE HDD APPROACH

In order to substantiate the underlying assumptions used in the HDD
approach of the hierarchical organization of databases, we propose to under-
take a case study of operations of some real organizations. These cases will
also be used to validate the claimed advantages of the HDD approach over con-

ventional approachs to concurrency control.

7.5 DATABASE COMPUTER APPLICATIONS

42




T ke T

g

. —T

N Y Y

——

INFOPLEX Technical Report #12

One of the motivations for the current research is to find a way to opti-
mize the concurrency control activities inside of a multi-processor based
database computer that employs a hierarchical decomposition of the DBNS
functionalities. The potential of the current technique in reducing
inter-level synchronization communications will be explored and algorithms £

concurrency control in such an environment will be proposed.
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APPENDIX

(I) PROOF OF PROPERTY 1.2

Property 1.2 (The property of transitivity/.
Proof. We consider the following 5 groups of cases:
(1) T, = T, = T,. By definition of => we have I(ty) > I(ty) > I(tj3).

fore t, => tgj.

(2) T, = Ty # T,. TwO cases are considered:

T T p————

There-

(2.1) T, *> T;. 7Then t, => tj impiies I(ty)2 A, (I(tgz)) ty => t, implies

I{ty) > I(tp). Therefore I(ty) > A,'(I(t3)). Therefore t, =>

(2.2) T, *> T,. Then t4y => t, implies I(t4) > I(t,). By Property

t3.

0.2 we

have A‘J(I(t1)) 2 AqJ(I(tQ)). t2 => t3 implles A1J(I(t2)) > I(tg).

Therefore A,7 (I(t;)) > I(tz). Therefore t, => tj,.
(3) T # T, = T, Two cases are considered:

(3.1) T, *> T,. Then ty; => t3 implies I(t,) > I(tz). By Property

0.2 we

nave A;'(I(ty)) 2 A, (I(t3)). t, => t, implies I(t)> A, ' (I(t,)).

Therefore I(ty) 2 A;'(I(tz)}). Therefore t, => tj.

(3.2) T, t> T,. Then t, => t3 implies I(t,) > I(tz). t4 => t, implies A’

(1(t4)) > I(t,). Therefore A;’(I(t4)) > I(tz). Therefore t,
(4) T, = T, # T,. Two cases are considered:

(4.1) T, > Tk‘ Then Lty => t2 implies I(t1) > Aki(l(tg)). Lty =>

=> tgj.

-3

implies A, '(I(t,)) > I(tj3). Therefore I(t,) > I(t3). Therefore t, =>

ta.
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(4.2) T, *> T,. Then t, => t, implies A,"(I(t,)) > I(ta). t, => tj
implies I(t,)2 A,*(I(t3)). Therefore A,"(I(ty)) > A ,*(I(t3)). By
Property 0.2 we have I(ty) > I(t3). Therefore t, => tj.
() T; # T, # T,, T, # T,. SiX cases are considered:
(5.1) T, *> T, *> T,. Then t4 => t, implies A,*(I(t,)) > I(tp). From
Property 0.1 and 0.2 we have A;’(I(tq)) = B, (A ,*(I(ty))) 2 B (1(t,).
Therefore B,  (I(t4)) 2 3, 7(I(t,)). t, => t3 implies A, (I(ty)) >
1(ta). Therefore A,’(I{cy)) > I(t3). Therefore t, => tg.

(5.2) T, t> T, *> T,. Then t, => tjz implies I(tz)2 A “(1(t3)). Fron

Property C.1 and 0.2 we have A, '(I(ty)) 2 A,'(A,*(I(t3))) = A, (I(t3))
t, => t, implies I(t4)) 2 A, '(I(ty)). Therefore I(ty) 2 AJW(IUQ))

Therefore t4, => tgj.

(5.3) T, *> T, *> T,. Then ty => t, implies I(t4)2 A, '(I(ry)). From
Property 0.1 and 0.2 we have A;?(I(t;)) 2 A, 7 (A, (1(z2))) = AKJ(I(:;)l
t, => ty implies A, (I(t,)) > I(taz). Therefore A,”(I(ty)) > I(z3)
Therefore t. => tj.
(5.4) T, *> T; *> T,. Then ty => t, implies A;*(I(t4)) > I(ty). t, => t,
implies I(t,)2 A;*(1(t3)). From Property 0.1 and 0.2 we have A,*
(I(t4)) > A,%(I(t3)) = A;%(A,;7(I(t3))) Therefore I(ty) > A, (I(t3)).
Therefore t 4 => tg.
(5.5) T, *> T, *> T,. Then tq => t, implies A,X(I(t,}) > I(ty). tp => ¢,
implies 1I(t,)2 A;*(I(t3)). Therefore A;X(I(ty)) > A *(I(t3)).

However, A;*(I(t4)) = A,*(A,¥(I(t,))). Therefore &,°(I(ty)) > I(ty).

Therefore t4 => tgj.
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(5.6) T" 4> TJ t> Tk- Then ty => t2 implies I(t1)->- Ak](I(tz))- But AK1

>

(I(tz)) = Aj’(Akj(I(tz)))- And tz => t3 implies AkJ(I(tg)) > T(ts).
Therefore A, '(I(ty)) 2 A, '(I(t3)). Therefore I(tq) 2 A,'(I(ty)).
Therefore t => tgj.

In each group, we have permutated the order of levels among the distinct

transaction classes to arrive at a total 13 cases. These cases exhaust all
the possible situations that govern t,, t, and t; and for every situation
transitivity is shown to hold. Therefore we conclude that => is

critical-path transitive.

(I1) PROOF OF THEOREM 1

In order to prove Theorem 1, we first give the following two defin:tions

and a lemma about the transaction dependency graph.

Definition. & critical path dependency, petween two distinct transactions
ty ¢ T, and t, € Ty, denoted as CD(t,, tj,),is a cycle-free dependency path
from t, to t, in TG(S(TY)) and T; and T; are on one critical path in THG, 1

and j not necessarily distinct.

Definition. A boundary critical path dependency in TG(S(TY)) betweer twc
transactions ty € T, and t, ¢ T,, where t, # t,, denoted as BCD(t,, t;),is a

CD(t4, ty) such that either or both of the following are true:

mn
fon
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1. There exists t3 ¢ T, such that t4y = t; €CD(t4,ty) and T,, T, and T,
are N0t on one critical path;
2. There exists t4 € T, such that t4 = t, €CD(t,,ty) and T,, T, and T,

are not on one critical path.

Property. 1f BCD(t,, tg4), where t, € T, and t; ¢ T,, then there ex:st t,
€ T, and t3 € T, t,, ty not necessarily distinct, such that CD(t4, t,) C
CD(t4, tg), CD(t,,ta) C CD(ty, ts), CD(ta,ta) C CD(ty, tg) and T,, T,, T,
and T, are on one critical path in THG. (This directly follows from the fact

that THG is a transitive semi~tree.)

lemma 1. 1f there exists a critical path dependency CD(t,,t,) in a trans-
action dependency graph TG(S(T)) where the schedule S enforces the partiticr
synchronization rule, then t, => t,.

Proof. Let £ be the length (in number of arcs, i.e., direct
dependencies) of a critical path dependency. Then £ nas a total order and
is bounded from below by 1. By way of complete mathematical induction, to
prove that if CD(t4,t;) then t, => t,, we have toc show the following:

(1) 1f Z(CD(t4,t3))

1 then t4 => t,.

(2) 1f £(CD(t4,t3))

g and if ty => typ for all t,, tp S.t. there exists
CD(ta,tp) and L£(CD(t,.ty)) < g, then t, => t,.
Now we prove the above two statements.

(1) In this case, CD(ty,tp)= t; = to. By property 1.3 we have t, => t..
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(2) To prove the second statement, let t5 € T, and t4 € T, be such that

ty -ty € CD(ty, ty), t4 = to € CD(t,, t,), and a path, denoted as

Path(tg,t4), from t3 to t, such that Path(ts,ts) C CD(t,,t,). BAlso let

ty € Ty and ty € T,. Consider the fcllowing two cases:

(2.1) If CD(t,4,ty) is no{ a BCD, then Path(ta,ty) is a CD(ta,tgs).

Since £(cD(t;,t,)) < g therefore t, => t,. And by the definition of

¢p, T;,, T,, Ty and T; must be on one critical path of THG. Therefo
we have ty = tg3, tg * t, and t3 => ty. By property 1.2 (i.e., the
property of critical path transitivity) we have t¢ => t,.
(2.2) If CD(ty,ts) {4 a BCD, then by the property above of a BCD we
have that there exist tg € T, and tg ¢ T, such that CD(t,,tg) C CD(
ta), CO(ts,tg) € CD(t4,ty), and CD(tg,t,) C CD(t4,t,), where T,, T
T, and T; are on one critical path of THG. Since £(CD(t4, tg))
g, therefore t, => tg. Similarly, tg => ¢, and tg => tg. By prope

ty 1.2 we conclude t, => ts. {.£.0.

Theorem 1.
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Proof. sSuppose there exists a cycle. Then the cycle involves at leas:t two

transactions t4 and t, that belong to transactions that are cn one critical
path. This means that there exist CD(t4,t,) and CD(t,,t4). By the above
lemma, CD(t,,t,) implies t4 => t, and CD(t,,t,) implies t, => t,. However,
is anti-symmetric (by property 1.1). Therefore ty => t, and t, => t; cannot
be true at the same time. Therefore there can be no cycle in this transacti

dependency graph. 0.fF.D.

=>
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(I11) PROOF OF PROPERTY 2.1

Property 2.7. A,°(B,"(m)) 2 m, where T, = T,y = = ... = Ty (n-y) = T,pn ~ T,
= CP,’ in the transaction hierarchy graph.
Proof. B,°(B,"(m,, = B,7(C,¢(...(Cyn(C,(m)))...)). (C, is an abbreviated

expressicn for C,'2%'®and 1, is an abbreviated expression for I,°'9.) Let n, =

C,(m). Then m, = C(t,°) if there exists t €T, active at time m and C;(m) = 2(t;°)

and m; = m if there exists no t e T, active at time m. Therefore A,°(B,’
(m)) = A2,2(C,4y(...(C,nlm,;))...)). Continue substitution of the L function in
b - the expression with similarly defined m,n,, ..., m;,, We get A,J(B,i(m)) = A,
(m,;). Now we start spelling out the function A;7: A, (m,q) = A4 (I,(m, ),

Consider the following two cases:

(1) If there exists not € T,;4 active at m,q, then I;y(m;4)=m;4. Since m,
= Cyqlm,3) 2 m,5, we have I;q(m,4)2 m,,.

(2) If there exists t € T,, active at m;4, then I,4(m;4)= I(t;4'), Where t,1'
# t,,° (since t,,' is active at m,; while t,,° commits at m;,), and
I(t,4') 2 m,, (since if I(t;4') < m,, then during the previous applica-
tion of C,y, Cys(m,5) should be equal to C(t,.') and not C(t;+°), and

contradicts the assumption.) Therefore 1I,4(m,4)2 m,5.
Therefor we conclude I,;4(m,4)2 m;2. By the same reasoning we continue spelil-
ing out the A function to arrive at the following: A,’(B,'(m)) = Aln’(11n(m7r)1
Since I,n(m;n) 2 m; = C;(m), we have A,’ (B, (m)) 2 A,,7(C,(m)). Since

A, (c,(m) = 1,(C,(m)) 2 m, we have A,3(B,"(m)) 2 m. @.£.0.
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(IV) PROOF OF PROPERTY 2.2

Property 2.2. A,’(B,'(m) - €) <m, where T; = T,y = = ... = T,(n-1» = T1nr
- T; = CP1j in the transaction hierarchy graph, and € a small value.

Proof. Let m,, m,n, ..., m, be defined in the same way as in the procf cf
Property 2.1. We have A ,’(B, (m)-€) = A,7(m,y - €) = A, (I,4(m,y = €)). Now
we show that I,4(m,y - €) < m,,. Consider the following two cases:

(1) If there exists no t € T, active at m;5, then m;y = Cy4(m,3) = m,a.
Therefore I,4(m,, - €) = I,4(m,p ~ €) S m,p - € < Mm,,.

(2) If there exists t € T,, active at m,,, then m,y = Ciq (m;y) = C(t,+°)

where I(t,,°) < m,,. Therefore I, (m,, - €) = I,4(C(t;4%)~ €) < I(t,,°)
<m,,.
Therefore we conclude I,.(m;y - €) < m,p. Let m,q4' = I,¢ {myqy - €). Then m,,
< m,p, and A;?(B,'(m) - €) = A,4y’(m,4'). Continue the process of substi-
tution we have A,7(B;'(m) - €) = A, (m,n") = I;(m, ') where m,n' < m,. But
I,(m,n') S I;(m; - €) =1,;(C;(m) - ¢) <m. Therefore A;?(B,'(m) - ¢) < m.
0.£.D.

(V) PROOF OF LEMMA 2.1

Lemma 2.7. Llet T,, T, and T, be transaction classes in a THG cf a legal
database partition, and T; and T; are on one critical path. Then for any time

value m, if I(t,) < E,'(m) and I(t,)2 E,3(m) then there exists nc t, — t, in

on
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the transaction dependency graph TG(S(TY)) where the schedule S enforces the ‘
PSR's.
Proof. Let T,, be the class such that k1l is the fisrt index in UCP,' where
Ty, and T,, T, are on one critical path. (k and k1 are not necessarily
distict.) Then k1 will also be the first such index in UCP,?, and the subset
of the ordered set UCP,' up to k1 and that of UCP,’ up to k1 are eguivalent.
(This 1is because between any pair of nodes there is one and only one UCP.)
Consider the following four groups of cases:
(1) 1 =3 # x1 or i = j = k2.
In this case, E,'(m) = E,’(m). Since t, and t, are in the same
class, by intra-class-synchronization rule we have I(t4)< I(ts),
which implies that there exists no t, - to.
(2) 1 = k1 # j. Two cases are considered: .
(2.1) T, *> T,.
I(ty) 2 E,%(m) implies that A;'(I(t3)) 2 A,'(E,7(m)) = AJ“’(B”j
(Ex“'(m))). From Property 2.1 we have A,*'(B, 7 (E,*"(m))) 2
E,“'(m) = E,'(m) > I(t,). Therefore A;'(I(t,)) > I(t4), whach
implies that there exists no ty = ts,.
(2.2) T, *> T,.
I(ty) < E.'(m) implies B,7(I(ty)) < a,2(E,"(m)) = E(m)S I(t,y)
Therefore A,7(I(t,)) < I(t,), which implies that there
exists no ty -~ to.
(3) 3 = X1 # i. Two cases are considered:

(3.1) T, t> T,.

tn
82
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I(ty) 2 E’(m) implies that A,'(I(ty)) 2 A;'(E,’(m)) = E,'(m)>
I(ty). Therefore A,'(I(t,)) > I(t,), which implies that there
exists no ty = to.
(3.2) T; t> T,.
I(ty) < Ex'(m) implies I(t,)< E,'(m) - €, which implies &,’
(I(ty)) < a,°(B,"(Ex’(m)) - €). From property 2.2 we have A,’
(B, (E’(m)) - ¢) < E, . (m). Since I(t,) 2 E,’(m), therefore A,J
(I(t4)) < I(t,), which implies that there exists no ty - ts.
(4) 1 # j # k1. SixX cases are considered:
(4.1) T; %> T,y *> T,.
I(ty) 2 E, ’(m) implies that A;'(I(tz)) 2 A, (E,7(m)) = &, (B’
(Ex*"(m))) = By (B, *"(By I (Ex " (m)))). By property 2.1, A,.'
(A5 (Br T (E*T(m))) 2 ALy (BEW*"(m)) = E,'(m). Since E,'(m) >
I(ty), we have A;'(I(t,)) > I(ty), which implies that there
exists no ty ~ to.
(4.2) T; > T4 *> T;.
I(ty) < Ey'(m) implies I(t4) < E,'(m)- €, which implies A,’
(I(t4)) € AP(E (M) ~ €) = Ayd (B5Y(Byy " (EL,%T(M)) = €)). Let
m' = B, %"(Byy ' (E*'(m)) - €). By property 2.2 we have m' < E, " '(m)
Therefore A, 3 (A ¥ (B (Ex*'(m)) - €)) = A, 4 (m') <
B I(E%"(m)) = E,7(m) € I(t.). Therefore A,’(I(t,)) € I(t,)
which implies there eXxists no t, = t,.

(4.3) Tyy > T, > T,.

m
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I(ty) 2 E ’(m) implies A;'(I(ty)) 2 A,'(E,.*{m)) = &, (B, (E,~
(m))) 2 E,'(m) > I(t,). Therefore A,'(I(ty)) > I(t,), whicr
means that there exists no t, = t,.

(4.4) T, *> T, *> T,4.

1(ty) < E,'(m) implies A;2(I(t4y)) <€ &,7(Ex'(m)) =A,3(&, ' (E*’

(M) = A2 (B (m)) =E,°(m) < I(ty). That is, A,%(I(ty)) <
I(t,) which means there exists no ty = t,.

(4.5) T4 *> T; 4> T,.
I(ty) < Ey '(m) implies I(t4)S E,'(m) - ¢, which means A,  (I(:

S AV(E (M) - €) = A,7(B,"(E,7(m)) - €) < E,2(m) < I(ty).

That is, A;?(I(t4)) < I(t,), which means that there exists nc
ty = to.

(4.6) Ty > T, %> T,,.
I(ty) 2 Ey’(m) implies A,'(I(ty)) 2 A, (E’(m)) = &, (A, «°(E."]
(m)) = E,'"{m)> I(t4). That is A, '(I(t,)) > I(t,y), which means
that there exists no t,; = to,.

For each of the group above we have permutated the level of the dis-

tinct classes and for a total of 11 cases we have shown that it is

impossible to have ty = t,. Therefore we prove that there exists no

ty = tso. 0.5.0.

(V1) PROOF OF THEOREM 2
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In order to prove Theorem 2, we first give the following definitions and a

lemma (Lemma 2.2.)

Definition. A consistent transaction set with respect to a schedule S(T/,
abbreviated as a CS w.r.t. S(T), is a set of transactions T¢S C T such that if
t ¢ TS® and 1f there exists t, € T such that t = ... = t, C TG(S(T)), (:.e.,

if t depends on t; in the transitive clcsure of =), then t, e TCS,

Property 2.3. (The Property of a consistent transaction set./ Partition TV
into TY' and TY?. Then TY' is a consistent transaction set w.r.t S(T) iff for
any two transactions tg,t,, such that t, ¢ TY' and t, ¢ TY?, there exists nc
ty = t, in the transaction dependency graph TG(S(T)).

Proof. We want to show that the following two parts are true:

(1) If TY' is a CS then there exists no ty — t,.
By definition of a CS, if t¢ ¢ T“' and t, - t,, then t, must be also
in T“’, which contradicts the given. Therefore there exists no t, -
ts.

(2) If there exists no t, — t, for any t, € T¥' and t, € T“?, then TV is
a Cs.
TY' is a CS because no transaction in TY' can have a dependency in the
transitive closure on a transaction which is not in TY!'.

Therefore we conclude that this property is true. {.f.0.

o
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Definition. Given a time value m and a starnting transaction class Ts, a
designated consistent transaction set, denoted as T®%(m,s), is a consis-ent

transaction set such that for all t € Tg, t € T°%(m,s) iff I(t) < m.

lemma 2.2. parition TY into TY' and TY2. Then TY' is the designated con-
sistent transaction set T°®(m,s) w.r.t. S(TY), where the schedLle S enforces
the PSR, if T“' con:ains, fcr all i, all and only transactions t such that
I(t) < Eg'(m) where t €.T,.

Proof. construct a time wall TW(m,s). Then by the previous lemma (Lemma
2.1) we know that for any 3, k, 1f ty ¢ T, and I(t4y) < Eg’(m),and t; € T, and
I(ty) 2 E¢(m) tnen there exists nc ty = t,. Therefore by Property 2.3 above
we know that TY' is a consistent transaction set if it contains for ail i Ccrly
transactions t such that I(:) < Eg'(m) where t ¢ T,. And since E.%(m) = m, we
have I(ty) < m if ty € Tg. Therefcre 7Y rmust be the designated consisternt

transaction set T%%(m,s). @.f£.0.

Corollary. Given a time value m and a starting transaction class T., there

exists a desiyrated consistent transaction set T%%(m,s).

Theorem 2.

Proof. Partit.on TY intc T¥' ard TY? such that feor all ot e T., foroall oL,
t e TY' 1ff I(1) < E.'(m). Trern 1t 1s clear that dependencies irniucei Iy <.
must be arcs that gc from tg to trarsacticns in TY', and arcs fror sran-

actions in TY? to the By lemra .., there exist no dependencies frcor tran. -
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actions in TY'! to those in TYZ2. Therefore arcs introduced by tg will rct
introduce any cycle into the original TG(S(TY)). Since TG(S(T“)) has nc

cycle, therefore TG(S(T“ U tg)) has nc cycle. {.F.0.
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