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I. INTRODUCTION
In this paper we show how molecular dynamics can be used in a simple manner to com-

pute the contours of electronic absorption bands. The motivation for this work is to compute
transient electronic spectra for many atom systems. 1.2 We could equally use Monte Carlo or
explicit integration over coordinates to compute equilibrium electronic absorption bands. How-
ever, molecular dynamics provides the only means to calculate these band contours in a non-
equilibrium system. Thus, by demonstrating that molecular dynamics yields the correct absorp-
tion band contour for the equilibrium case, we can justify using this technique in the nonequili-
brium case. We have already elsewhere 1, 2 applied the methods derived in this paper to the cal-
culation of the transient electronic absorption spectra from a chemical reaction occurring in
solution. In another paper 3 the electronic absorption spectrum for an initially thermal equili-
brium system is computed by a time dependent wave packet technique, and the result for the
same 12 molecular test case can be compared to the more classical technique developed here.

In Section 1I we discuss the theory which we will use, as well as a harmonic quantum
correction appropriate for thermal equilibrium. Section III contains a comparison with other
semiclassical approaches for electronic spectra. The potential energy and electronic transition
dipole versus internuclear distance functions used to compute the sample 1, visible absorption
band contours are presented in Section IV. Section V discusses the computational method and
Section V compares calculated and measured equilibrium 12 gas phase band contours. Finally.
in section VII we discuss the results and their significance.

II. THEORY

A. Absorption cross section

The absorption cross section r(w) can be expressed in the usual first order time depen-
dent perturbation theory approach as4-6

4 1: (p,-p )f?.[.Ji I2 8(wf,-w). (2.1)

in which w is the angular frequency. 11 is Planck's constant divided by 2fr. c is the speed of
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light, n is the index of refraction, p, and p, are the probabilities in the ensemble of initial and
final states, (fl is a final state, I i) an initial state, i is a unit vector in the direction of the elec-
tric field of the probe light, Is is the electric dipole operator

p - Tqjrs (2.2)

in which qj is the charge and rj the position of the j th particle, and the argument to the Dirac
8 function is in terms of the angular frequency difference

w f - (E-A)I (2.3)

between the energies Ef and & of the final and initial states.
For an equilibrium system

/l-p/- Q(1 - e -p) (2.4)

whereP = (k, ')- in which ka is Boltzmann's constant and Tthe temperature. We use the
usual linear response4"6 conversion to the Heisenberg picture and closure to write

o.(w) - 4w,,l - E-]I (2r -1f.d, -'-',p, (iI-Ao)1I&.p,()Ili) (2.5)1kn -J ,0 -AW(25

in which p(O) and 1&(t) are the Heisenberg time dependent dipole moment operators evaluated
at times 0 and L If we adopt a classical picture for the dipole moment jx(t), we may rewrite6

Eq. (2.5) in terms of the spectral density operator D as
(,.47r.[l - e-O' ]

(c DR -Is) (2.6)

in which / indicates an ensemble average over initial states (a thermal average for the equili-
brium cases and the spectral density operator per unit angular frequency is defined as

DVi D ,f l - (2,0-1 lim -L fE, f ,' e W) (2.7a)

-r

For a nonequilibrium system there is no a priori relationship between p, and pf. We will
assume here for non-equilibrium systems that p== 0. This means, for example, that we may
start with a small density of final states and illuminate weakly enough so that the final states
aren't pumped appreciably. The appropriate linear response relationship is then

a(-)i- -ID&a. 1) (2.8)
7,cn

in which' 'now indicates an average over a nonequilibrium ensemble.

B. Semiclassical time dependent dipole moment

Mukamel, Stem, and Warshelj7 8 discuss a variety of semiclassical approaches to electronic
spectra, and what we illustrate here is perhaps the simplest and most classical of the possible
choices. The semiclassical picture for the dipole moment which we use takes the nuclear
motion to be classical and the electronic transition as a harmonic oscillator whose angular fre-
quency ), is given by the energy difference between initial and final electronic state potential
energy curves

-f - '-I [V (r-) - Vr.) , (2.9)

in which V/ (r'v) is the final and V, (r'v) is the initial electronic state potential energy as a func-
tion of the positions r - r.. rv of the .V nuclei. Figure I illustrates this concept for a
diatomic molecule.



Figure 1. Diagram illustrating the angular frequency (If, (R') -' Vf(,R') - V, (R')) at
nuclear separation R'. As the nuclei move on the ground state potential energy &'(R). the
angular frequency fl 1,,(R ) varies.
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We make the approximation that the frequency of the electronic oscillation is so much
greater than that of the nuclear motions that we can evaluate the spectral density for clamped
nuclei, i.e. for r ' fixed. Thus we may write p(t), the electronic dipole moment at time t, as

ju(t) - ;sf. (rNv ) exp(ifl (rN) t] (2.10)

in which pf (rN) gives the direction and magnitude of the electronic transition dipole moment
between states i and fas a function of the positions rN of the nuclei, i.e. the orientation and
vibrational displacement of the molecule, and flfi(rN) is the angular frequency of the elec-
tronic transition dipole oscillation at nuclear positions rN derived by Eq. (2.9) from the
difference in potential energies of the final and initial states at positions rN. The only time vari-
ation of a(t) during the evaluation of the spectral density is that of exp(i 1p t).

This can be interpreted as the molecular equivalent to the semiclassical atomic "virtual
harmonic oscillators" linked to atomic transitions which were used by Landenburg, Bohr, Kra-
mers, Slater, Born and others to describe the absorption, emission, and scattering of radiation
by atoms, and which provided much of the groundwork for the eventual development of quan-
tum mechanics. 9 The generalization to molecules is to make the frequency of the oscillator
(corresponding to the electronic transition) vary with the positions of the nuclei following the
energy difference between the potential curves of the final and initial states, clamping the nuclei
in position while a spectral measurement is made, and then averaging over the distribution of
nuclear positions r4V on the initial potential surface.

Thus evaluating the spectral density t0 from Eqs. (2.7b) and (2.10)

DR .,%] - Ji .ppf(rN)J2 8[(o - (1f,(rV)] . (2.11)

in which 8 6o - 1f1 f.(rV) I selects out the absorption frequency w equal to Efl(r')
Then, the cross section o-(i) for absorption at frequency (0 can be evaluated from Eqs.

(2.6), (2.8). and (2.11) as

W - -- ( I8 .pf,(r')P 8 6 - flp(r.v) ) (2.12)
flcn

in which f(1, is given by Eq. (2.9), y - (1 - e- 0 ' ) for an equilibrium system and y - I for a
nonequilibrium system for which the density of final states pf is essentially zero, and ( indi-
cates an average over the positions rN' of the nuclei in the system. This average may be
evaluated by molecular dynamics for arbitrary systems, and in addition by Monte Carlo or by
explicit integration over the classical or quantum mechanical distribution of nuclear positions r'

for equilibrium systems.
We illustrate here the calculation of electronic spectra using molecular dynamics as we

wish to make calculations of non-equilibrium transient spectra. 1. 2 Thus, by computing the clas-
sical trajectories of the nuclei rv(r) and knowing as a function of nuclear positions the elec-
tronic potential energies V and V, as well as the electronic transition dipole moment /f, we
can compute the electronic absorption spectrum in the manner shown. We take samples at
different times during the trajectories of the nuclei and bin the instantaneous power spectra into
appropriate intervals in frequency to accumulate the averaged spectrum.

If the system is an isotropic one, we can average Eq. (2.12) over all orientations to get4-6

W) - 1i (rV) 12 8[ 6 - fEl1 (r')I ). (2.13)3'Mcn

C. Thermal harmonic quantum correction
A simple quantum correction can be applied to the classical computation of equilibrium

spectra to bring them into closer agreement with quantum reality. If we make the approxima-
tion that the nuclear motion of the system can be treated as harmonic oscillation. we find that
the classical result can be quantum corrected by simply scaling the temperature at which the
classical calculations are performed.
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The exponential factor of the diagonal element of the density matrix for a harmonic oscil-
lator at temperature T is

p(xx; T) exp [L x2anh f (2.14)

in which f -- 2 7 k8 is Boltzmann's constant, x is the position, m is the mass, W is the

angular frequency of nuclear vibration, 11 is Planck's constant divided by 21r, and tanh is the
hyperbolic tangent.

If we take the correspondence principle classical limit as 71-0 of Eq. (2.14), we find

lim exp r x tanh f - exp [mwx2 exp.- , (2.15)2k ( T ex ks Tj
in which, for a harmonic oscillator,

V(x) - mcx 3 /2. (2.16)

This correspondence principle result agrees with classical statistical mechanics. Now we
compare the quantum and classical expressions, Eq. (2.14) and Eq. (2.15), to calculate the
quantum correction. Let T be the physical temperature at which we wish to compute the spec-
tra and let 7' be the scaled temperature for a classical calculation, designed to replicate the
quantum spectra at T.

-ina(x 2  - x tanh f (2.17)
2k, r A1

r" (2.18)
2k9 tanh f

Dividing Eq. (2.18) by Tgives the quantum correction factor C.
C- - -. r---L-= "f  (2.19)

T 2kT tanhf tanhf

This temperature quantum correction is plotted in Fig. 2.
For example, the scaling factor used to compute the equilibrium electronic absorption

spectrum for gas phase 12 at 298 K is C - 1.03. This means that if we perform the classical
calculation at r" - 307 K then we will get the correct quantum spectral band contour in the
approximation of harmonic motion as if we had done the quantum calculation at 298 K.

D. Symmetry
For a nonequilibrium system, the isotropic average of Eq. (2.13) will not in general be

correct. Therefore we derive the proper averaging for the important case of pumping and prob-
ing with linearly polarized light. We determine the average of D[i -is) over all orientations for
the anisotropic and nonequilibrium case in which we prepare the sample by pumping it with
linearly polarized light, and then measure its spectrum by probing with light polarized linearly
in a different direction. For a diatomic molecule (symmetric top) the transition dipole jL,,
must either lie along the axis of the molecule or in a plane at right angles to the molecular axis.
The absorption probability for pump light is depen Jent on the angle between the electric vector
i' of the pump light and the transition dirol- ,ector ;&,, and is greatest when l.,, and E' are
aligned. t 2 and tht, the pump light prepares an anisotropic sample of excited molecules, which
can then be probed.

The angular distribution of excited molecules is12

(9) _L (1+P(a' • (2.20)
41r



f/tanh f

ND-

Figure 2. Graph of harmonic quantum correction factor 77 T - f/anh f.in which I' is the
true temperature and r is the quantum corrected temperature at which the classical calculation
is carried out and N u/2ks T.



-5-

where the second order Legendre polynomial is

P2 ( 3x - (2.21)

and 0 is the angle between the electric unit vector i' of the pump light and the unit vector A
along the axis of 12. The P3 term is referred to as the asymmetry parameter. When the transi-
tion dipole vector g,.f points along the molecular axis, /3 - 2, a cosine-squared distribution.
When /afj is perpendicular to the molecular axis, P3 - -1, a sine-squared distribution.

We would like to compute ( D[ -a ] ) which determines the cross section for absorption
by Eqs. (2.6) and (2.8) in which () indicates an average over all orientations for the distribu-
tion of the molecules which have been excited by the pump light. We can write this, using the
notation of Eq. (2.7), as

DK -~.,Id - i i D [A,,,s, (2. 22a)

- a, a, (DE,,j,]) (2.22b)i ij
" - , i A i (2.22c)I,

in which the subscripts i and j refer to the Cartesian components of i and/ (i .A, is the
average of D[I,,AI over the orientational distribution of molecules excited by . np light.
We want

A , "i D .,,#.,]', (2.23a)

- fd2 A \() ' DOA,,Mj ) (2.23b)

f d' h -[+lP 2( A) D Og,.g I I (2.23c)

in which A is the unit vector along the axis of 12 at the time of excitation. 1(0) is the probabil-
ity distribution for excitation and ' Dg,,Aj I is the average conditional on the axis of the
molecules being fixed in a certain direction A when the pump light is absorbed.

Using rotational symmetry (see Appendix A)

D A' 0 ) 8,A1+)A') + A (2)  
-" (2.24)

so that for molecules with internuclear axes aligned along the axis

D :,4.L: , - A(°) + A42) (2.25)
D AI, D 0 -1. 2) (2.26)

£ 1 2

and

A 7_ D ),,,, A 0 ) . (2.27)TZ

Combining Eq. (2.24) with the following (see Appendix B)f d 2 A . , . 1
4. . 8, 5 (2.28)

f d2  i . . . A, _ 8 8
41 pi, n) +k 1 1k 8481618 11l ] (2.29)

Eq. (2.23c) can be evaluated as
3 i', i'. - 6.,

'4, -A) . 3 A' .0 (2.30)
tO0
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Finally, we write our average from Eq. (2.22c) as
SD[.] I I i, j A A(0) 8 U + G 41 2) 3 i ' , i 'j - 1 (2.31 a

A', ,j 3l' 2  0 (2.31a)
I.1 1 1

.A() +/3 A 2)' • -)2 - 1 (2.31b)
10

- (° ) + I A (2') P2 ( ° • ) (2.3 1c)

5

in which ' is the electric unit vector of the pump light and i is the electric unit vector of the
probe light.

Therefore, to compute the absorption spectrum for probe light polarized along i by a sys-
tem prepared by pump light polarized along ',

a(ai) - - 7-R-/ (Aa0 + A- A'2) P2( W - i)I (2.32)

in which

A ) - I, l/fi(r'v) P 8[6 - f1-(r') (2.33)

A 2) -, [s .g,,(r'V)] 2 8[(" - flf, (rv)] - A(0 )  (2.34)

where /3 is the asymmetry parameter defined above for the pump light, &j, (r 'v) is the transition

dipole vector at nuclear positions r-v for the probe light, and K [h .ILf, (rv)1 2 j, is the average of
the i component squared of the probe transition moment vector at nuclear positions r.v for
molecules with symmetry axis aligned along A when the pump light is absorbed.

III. RELATION TO OTHER TECHNIQUES
The almost classical technique we illustrate here is related to other semiclassical tech-

niques for computing electronic absorption spectra.. 8 This approach is related to a short time
limit of the wave packet time dependent method. 3, 13.16 T-Us, it is appropriate for liquid solu-
tions with rapid randomization (which can also be treated by wavepacket techniques17 ). for
excitation to quickly dissociating states, and for the band contours of systems with vibrational
and rotational structure, the details of which would be given by longer time wave packet evolu-
tion.

In this section we show the equivalence of the binning method used for calculations in
this paper and the semiclassical methods of Lax. 18 and Tellinghuisen and Moeller t 9 and Lee, 20

Lax's discussion I8 of the relation of *exact". and classical Franck-Condon spectra applies equally
to the comparison of "exact* wavepacket and molecular dynamic binning spectra, and his semi-
classical Franck-Condon spectra are approximated by our harmonic quantum correction. The
Landau - Zener - Stuckelberg surface crossing probabi!t,y. in a form similar to the Tully - Pres-
ton surface hopping method, 21 is shown to give the same results as the other methods when
the lower surface is raised by A&, giving rise to intersectionis) of the ground and excited state
surfaces. which can be treated as surface crossings with a strength given by the usual dipole
coupling. The binning method given in this paper is considerably simpler, both conceptually and
computationally. than the other methods mentioned above, so it is important to establish the
equivalence. In addition, the extension of the molecular dynamic bining method to nonequili-
bnum systems1. 2 is particularly clear and simple.
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A. The molecular dynamic binning method
Consider Fig. 3 which shows, for a two dimensional case, a contour plot of

Vf(rv) - V (r-1), together with a particular trajectory on the , potential surface. This trajec-
tory is plotted as dots spaced at equal times, which are the sample times used to inquire as to
which bin the trajectory is in. The space between a pair of contour lines corresponds to a fre-
quency range

k < (d< (0 + (3.1)2- '  2 '

where Wk - k 8w, i.e. the k bin. (The contour intervals are then 8E - I SW). In Fig. 4 we
magnify a portion of Fig. 3 and show a few more details. The amount of time spent between
the two contour lines shown is proportional to the contribution this particular trajectory seg-
ment will make to the corresponding spectral frequency bin. The time r spent between con-
tours is the distance D traversed divided by the velocity, or

D md md
(p/m) p sine p(3

in which p is the magnitude of the momentum, p, - p sine is the magnitude of the momentum
perpendicular to the contour lines, and m the mass. The perpendicular separation d between
the contours is

d w---8- (3.3)
IAFJ

where

I.!FI - IV I Vf (r'v ) - V, (r.v)]1 (3.4)

evaluated in the vicinity of the crossing region. AF, is the force change between the final and
initial potential surfaces perpendicular to the contour lines of V - V, at the intersection
V, + &a,, - Vf. Taking the rate of crossing per unit time from the initial to the final surface
to be

k - 21r W2  (3.5)

in which W is a coupling parameter, the total probability P of crossing from the initial to the
final surface while on the trajectory in the region of the bin is

P - k.- 2 8 p 7'F.] (3.6a)

2" W1 p"(3.6b)
- R IAFJI

Nothing essential depends on our assumption of two degrees of freedom, and Eq. (3.6) is gen-
eral.

B. Equivalence with Landau - Zener - Stuckelberg, Tully - Preston (LZSTP) method
Eq. (3.6) is just the Landau - Zener - Stuckelberg rate for radiationless transtion surface

crossing2 1.22 in the case of diabatic surfaces which intersect with small coupling W (The adia-
batic crossing probability would be I - P) The multidimensional picture of a hopping trajectory
is due to Tully and Preston. 2 1 The calculation of the rate for crossing, as opposed to following
the trajectories after they have crossed (which we do not need to do). has been recently carried
out in the context of radiationless transitions (w - 0) by Heller and Brown, 22 (who did not use
the simplified binning method) and the results are excellent.

For coupling Wcaused by dipole radiation, we have. for unit field strength,



Figure 3. A two dimensional contour plot of V, (rV') - V (r,') showing a particular trajectory
on the V potential surface plotted as solid circles spaced at equal times. The inset box Idashed
lines) is magnified in Fig. 4.



Figure 4. A magnified view of the inset box of Fig. 3. D is the distance traversed between adja-
cent contour lines and d is the perpendicular distance between the contour lines.
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W2 (r) . I ,,(r')12, (3.7)

in which n is the index of refraction.

C. Equivalence with *classical" method
It is possible to arrive in several different ways at a semiclassical expression for the

absorption cross section which involves only classical (possibly quantum corrected) phase space
densities. Laxis was apparently the first to derive it. Lee 2° calls it the "semiclassical" cross sec-
tion, and Tellinghuisen and Moeller 19 call it, as we do here, the classical absorption spectrum.
Indeed, we arrived at their formula in Section 11 in yet another way, i.e. the classical oscillating
dipole analogy of the old quantum theory.

To show the equivalence of Eq. (2.13) and Eq. (25) of Tellinghuisen and Moeller 19 to the
binning method and LZSTP, we need to relate the individual trajectory picture used in Sects. Ill
A and B to the coordinate space integral expression, Eq. (2.13).

The concept of the binning method is easiest to work with. We imagine pointwise sam-
pling the appropriate phase space density p(rV,pv), which may be equilibrium or nonequili-
brium. We merely check to see what bins the phase space points are in, and assign them
appropriately, thus building a histogram of the absorption profile. There is no need to run the
trajectories, other than as a means to compute p(r'V,p'V), since in the short time required to
cross a bin the overall phase space density is not changing much (or for a stationary p(rV,p 'V)

not changing at all). Also, momentum is irrelevant as to which frequency bin the phase space
point belongs. Thus, the total rate of crossing induced by the electromagnetic field is the bin
count over all of phase space, or

k 1 f dr v dpV p(r'v,p ' ) W2 (r' ) .1[w - n1,] (3.8a)

- 8w f dr," P(r.V) ig19,(r.v)l1 AGO - (n1,) . (3.8b)

where P(r-') is the probability as a function of position, the factor of 1/3 is introduced for
spherically averaged molecular orientations, and

I -8 X< 4h8W
A(X) - 0 otherwise.

Now take the limit as 8u--O

k - 21 f dr 'v P(r'v ) I/fi(r'v)I1 8(( - fl11 ) . (3.8c)

To relate this rate to a cross section. we note that for unit field strength the photon flux is
c/27ru. and (r. flux - rate. thus

ar ) - '2-.-- f dr v P(r.v) I,fi (r.') 2 8(o - nl,) (3.8d)

S4_._, (rV)J1 8[6 - lj(r-v)]\. (3.8e)
3ftCh

Eq. (3.8d) is the multidimensional form of the diatomic work of Tellinghuisen and Moeller, 19

(see also Laxis and Lee 2° ) and Eq. (3.8e) is Eq. (2.13) of this paper. As this equation is
derived from the binning method, the equivalence is thus established between LZSTP, the bin-
ning method and the *classical spectrum'.
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D. Relation to reflection method
It is natural to seek the relation to the reflection approximation, probably the most used

technique for estimation of absorption spectra in diatomic molecules. Heller 14 and Lee. Brown
and Heller23 have given the correct polyatomic generalization of the reflection method. It is
related but not equivalent to the methods of Sects. III A - C. For low lying vibrational levels of
Y, and steep upper surfaces the reflection method should be superior to classical absorption
techniques.

As Tellinghuisen and Moeller t 9 have noted, the reflection approximation has its draw-
backs, especially for moderate and high temperatures, since each quantum wavefunction with
significant Boltzmann populations must be known and used. The higher vibrational states give
rise to inaccurate results (for a discussion of this see Hellert 4 ). and the method is therefore
suspect at high temperatures, where it is also most difficult to apply. Here, the classical spec-
trum methods are distinctly advantageous.

The reflection approximation, in the present notation, is

o(w) - W--- , f dr-v I*,, (r) 2 tij f(r'v)12 
8(W- [Vj(r,' ) - EjJ) . (3.9)3 1cn

The main distinction between Eq. (3.9) and Eq. (3.8) is the replacement of V (r-') by E,,. the
energy of the jfk vibronic state on the initial surface 4 and the enumeration of each initial wave
function * (rV).

E. Wavepacket methods
Wavepacket dynamics can also be used to compute electronic spectra3.t 7 and provides a

route to more exact solutions. In a semiclassical version the method is efficient but not as fast
as the more classical methods (especially the binning method) discussed here. However, use of
the coherent wavepacket approach permits accurate rendition of the spectrum, including
interference oscillations and spectral structure not available in any of the methods mentioned
above. There are no restrictions to low or high temperatures, but for highly anharmonic poten-
tials approximate wavepacket propagation methods3 can have significant errors for higher reso-
lution spectra and more exact propagation may be required. 13

IV. INPUTS TO 12 CALCULATION
In this section, we test the binning molecular dynamics method, computing the band con-

tour of the visible absorption spectrum of room temperature gas phase 12 molecules, and com-
pare the results to experimental measurements.

A. Potential Energy
Figure 5 shows the potential energy curves for the iodine ground X 0'TZ) state and the

excited A 1,(311), B 0"( 311) and B"1,0QI) states. The ground X state is taken from a semi-
empirical potential due to Matzen, Calder and Hoffman 24 and from the experimental RKR
values of Coxon.25 The A state and the B" repulsive state are from Tellinghuisen,16.2 and the
B state is from Barrow and Yee2s and Luc. 29

For the ground state for internuclear distance R < 0.325 nm and for the entire B" state
the potential energies are easily calculated from potential functions V(R) cited above. The
ground state for R > 0.325 nm, the A state and the B state potential energy values are gen-
erated by the Aitken-Neville technique 30 of iterated linear interpolation of the RKR turning
points, a set of n points V(R,), i - 0.....n where V(R,) is the potential energy at internuclear
distance R,. Interpolation methods use function points to determine a unique polynomial
P, (R) which satisfies the constraints

P,(R,) - V(R). i-0 ....' n. (4.1)

The Aitke-Neville method uses repeated linear interpolation to compute the value of P ,(X)
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INTERNUCLEAR DISTANCE (nm)
Figure 5. The potential energy curves for the ground XC 07(,Z) A l,(*1i). B 0O,1T1l) and

B"1 ,onf) states used in the calculation of the electronic absorption spectrum of iodine. The
dots show the RKR turning points for every fifth vibrational level.
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for XKin (RoR.) subject to the constraints that P,(R,) - V(R,). Here X is an internuclear dis-
tance for which a value of the potential energy V(X) is required. Ten function points
V(R,), i - m-9...,m, are used in the interpolation to compute P,,(X) V(X). These points

are a subset of the complete set of RKR points. The range (R,.-9,R,) is chosen such that X
lies as close as possible to the median value. In the case where X is close to Ro or R . where n
is the total number of RKR points, there are still ten points used in the interpolation.

The upper portions of the inner repulsive branch of the A state and the B state are
approximated by potentials of the form V(R) - A+C/R". In the case of the B state repulsive
branch C - 8.2805 x 10" , n - 12 and A - 164.60. The smooth curve is attached at v, - 34.
For the A state repulsive branch C - 3.538 x 10- 5, n - 11, A - 104.87 and the curve is
attached at v' - 35. Here the units of A and Care such that V(R) is in kJ mole- ' when R is in
nanometers.

B. Transition dipole
The transitions strengths Iafil2 for the A-X transition and the B"--X transition are

taken to be constant as a function of internuclear distance, with values27 Il.f, 1 ,-- 0.453
x 10- Clmn (0.0407 D2) and iIf,_ - 1.5135 x 10" C'm (0.136 D2). in which D is
Debyes (e,). For the B-X transition the electronic transition moment (paj 1,) versus R cen-
troid is derived over the range R - 0.25 to R - 0.29 nm from the transition dipole data.27 The
data points for ipf& I from Tellinghuisen 27 are used to construct two linear segments for the
intervals R - 0.25 to 0.2685 nm and R - 0.2685 to 0.29 nm. The resulting 1g&f, I versus inter-
nuclear distance functions for the three transitions are shown in Fig. 6.

V. COMPUTATIONAL METHOD

To compute the classical trajectories 3t rv(:) - r1(r)..r(t) we first choose an initial set
of coordinates and momenta for the N atoms in our system and then describe the atomic
motion by integrating Newton's second law

8V dzr,
F, - , -. N (3.2)

in which V - V(r.v) is the potential energy of the atoms at positions r1 . r.. ry, F, - F, (r'v) is
the force on the i th atom, and mn is the mass of the i th atom. The time step size is 1.0 femp-
tosecond. A modified Verlet integration algorithm is used 32-3 along with minimum image
periodic truncated octahedral boundary conditions35 to reduce edge effects.

Before we actually make spectral calculations, we equilibrate the system at the desired
temperature Tby integrating forward in time, stopping at intervals to choose a new set of velo-
cities selected at random from a Maxwell-Boltzmann distribution consistent with the tempera-
ture T Then, to sample more of configuration space, we again pick new sets of velocities
between sets of trajectories used for the spectral calculations, and average the resulting spectra.

The classical trajectories for a system of 100 non-interacting 12 molecules were computed
for a time period of 6 nanoseconds.

VI. 12 EQUILIBRIUM GAS PHASE SPECTRUM
Figure 7 shows the equilibrium gas phase spectrum of 12 as calculated by molecular

dynamics and the gas phase experimental data from Tellinghuisen 27 superimposed as solid cir-
cles. The solid line is the quantum corrected gas phase spectrum while the dashed line is the
uncorrected gas phase spectrum. There is very good agreement between the theoretical and
experimental electronic absorption band contours of lz and the quantum correction is seen to be
small for this case of low ground state vibrational frequency.

r .. . . . I• t 'I
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Figure 6. Transition dipole moment magnitudes '/%,, (R) as functions of 1, internuclear dis-
tance R. For the A-X and the B"-X transitions the function is taken to be a constant while
for the B-X transition it is shown as a function of R centro, . The solid circles are the data
points from Tellinghuisen.



WAVELENGTH (nm)
800 600 500 400

1.6- 40

1.2- A*-X 30

0.8- 20

00
0 E

24-)

~z 2 B*X 1600L

1E
16- 400

8-I
C-) 200

0 0

6- x 0

C-) ~120 *1i
S4-*

- -180

-40-
- 0 >< E -

32- -800 -
TOTAL

24' -600 ill
16r -400

8 -200

0l 0
10 12 14 16 18 20 22 2-d 26

ENERGY (103cm-')



r .11.

VII. DISCUSSION AND CONCLUSION

We have shown that the band contour of the electronic absorption spectrum of a gas
phase equilibrium system can be computed by a nearly classical mechanical approach and have
used l as an illustration. Utilizing potential energy and transition moment functions from the
literature, we have been able to calculate the electronic absorption spectral band contour to a
remarkable accuracy. Furthermore we have shown that a quantum correction can be applied to
the classically computed spectrum, but that for the massive, weakly bound 12 molecule this
correction is quite small. Since classical molecular dynamics are the basis of these calculations
one can have confidence, given the agreement of computed and measured spectral contours,
that the classical nuclear motions as simulated are a reasonable classical representation of the
actual nuclear time evolution of the real system.

Another very different way to compute such spectra ab initio from molecular dynamics
would be to use a quantum force classical trajectory (QFCT) method36 in which we follow a
classical trajectory, computing at each time step the electronic transition dipole vector I s (rV)
and the potential energies Vf(rN) and V, (rv) of the final and initial states in order to calculate
the transition dipole frequency f/fi (r-V), and to bin the results to accumulate the spectrum.

Calculations of electronic band contours with the method presented here are particularly
appropriate for the liquid state in which the rotational and much of the vibrational structure is
washed out by dephasing due to averaging over solvent molecule initial conditions and by
different interactions with solvent molecules in the ground and excited states. 17 We have illus-
trated liquid state calculations elsewhere1.2 using the technique presented in this paper. Due to
the simplicity and close connection to classical trajectories, we can also easily carry out non-
equilibrium time dependent calculations as we have already shown i.2 to compute the transient
absorption during chemical reactions in solution.
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APPENDIX A: PROOF OF EQ. (2.24)
We wish to explore the consequences of rotational symmetry for the structure of the

quantity

AU (A) - ' D "js, t" (A)

For any (proper or improper) rotation R - [RJ1. rotational invariance implies that

A,U(R A) - .RRjAki(h), (A)

as can be seen by recognizing that for any pair of vectors a and b. Y.A,,1h)a,b, is invariant
under rigid rotation of the triple a. b. 6.

First consider the case A - I and R a rotation by (b about the : axis. Differentiating Eq.
(A2) with respect to d and then setting 4, to zero yields

A 12(1)+A2, (1) A22(i)-.4 I 1 () A 23(2)

A 2,(V)-Ai1() -, 12fE)-. 21 (2) -A 1 () " 0. (A3)

.32f) 4-A31(f) 0

from which we conclude that
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A'°) - 6 A(2)  -Ali 0

A (A) A l)  A(0 - V A 42) 0 (A4)

0 0 A(o) + A (2)

for appropriate constants A( ), i - 1.2,3.
Next, invoke Eq. (A2) for k - I and R the improper rotation (reflection in the C plane).

We are not assuming that the excitable molecule has an inversion center, any more than we
assumed the excitable molecule to be spherically symmetric in the preceding paragraph.

1 001.
R 0- 0 . (AS)

10 0 1

Using Eqs. (AS) and (A3) in (A2) yields A"') - -A(' ), so A") - 0.
We can write Eq. (A3), with A") . 0, in the form

As(j) - A'016,j + A(2') 3808j3-8 ,)

Now choose any rotation R such that R i - A, i.e., RO - hi, i - 1,2.3. Using Eqs. (A2) and
(A6), we have

AU (A) - A,4J (R 1)

- I£R~kRIAi)
ki

- :Rk R,1 2A~k+A2 3
k 8

3k

- A'0'80 + A12
) 3(tAh)

2

where, in the last step we used the orthogonality of R

YR,kR,18k, - YRkRik 80 W, A)

and R I - A (so that IR,43 - R,3 - hi). With the definition Eq. (A), Eq. (A7) is identi-
cal to Eq. (2.24), which we set out to prove.

APPENDIX B: PROOF OF EQS. (2.28) AND (2.29)

Define the linear map

M: E3@E3 - El,  (BI)

where E" is the real linear space of n-tuples. by the matrix

11 22 33 23 32 31 13 12 21

1! 0 0 0 I/'2 I/-v' 0 0 0 0
2 0 0 0 0 0 1/v 1/,2 0 0
3 0 0 0 0 0 0 0 1/.'! 1,/! (B2)

/4 1'; I/vi -2/'; 0 0 0 0 0 0
5 1 1/'! -I/v2 0 0 0 0 0 0 0

M is the matrix that couples two p-states to a d-state. From (B2) it is easy to read oft that

- -, ___I_______... __--___
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MM r - 1, (the identity matrix on E5) and that P - MTM is the projection (on d-states)
whose matrix is

Puj. - 0 [8i,8fl + 8,,8s - .8, ski]. (B3)

3
The point of introducing Mis that, for any rotation R there is a 5 x 5 matrix r(R) such that

M R@R - r(R) M, (B4)

and r(R) is a unitary irreducible representation of the rotation group.
1. The existence of r(R) and its being an irreducible representation follow from the obser-

vation that the polynomials

Y. .,s A X (15)

are d-state wave-functions.
2. The unitarity of r(R) follows from

r(R)F(R)T - M R®R Mr M R-t®R -, Mr

- M R®R P R-'SR - MT (B6)

- M P MT . MMT MM r _ 1,

thanks to the consequence

R®R P R-'®R-I - P (37)

of the orthogonality of R.
We are now prepared to evaluate rotational averages (2.28) and (2.29). Using (83),

MrM he, - P @ho - @h - -8, (B8)
3,

so, with the definition

V(A) - M AOR. (B9)

and the observation, which follows from (14) and (B9),

Y(R h) - M ROR At&A - r(R) M ®Ae - r(R) v(a). (BIO)

we have a decomposition of RiA

&OA - 18 + M r V(A) (BI1)
3

into components transforming by the one and five dimensional irreducible representations of
the rotation group. The strategy for evaluating averages f(A)\ over the unit sphere is to
replace them with averages over the rotation group f(R ), and use the orthogonality
theorem of group representation theory. 37 [n this way. we find

v(fi) -,I r(R) 02)D -O0, (812)

which. with (B I), proves (2.28). and
V.(At) Vd(I)'>- I' Fr.(R)Fr,(R) v,,(u) v.(u)

oar

1 j- 8 , v,(2) v (i) (B13)-I' T

1 1

which, with IB11). yields
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ill.h~h) 8 , 8 . + Y.MQM,3k1 (V. W VJv ((E)
.9 a

S 2(14)

8,JSk + 2~

When (B14) is combined with (3), we obtain (2.29).
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