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EXECUTIVE SUMMARY

Purpose

During the past several decades problems of environmental contami-
nation have become increasingly important both from the scientific and
the legal standpoints. In recent years a great deal of attention has
been directed to the potential toxicity to aquatic organisms of chemicals
discharged into water bodies.

The U.S. Army, through activities such as munitions manufacturing,
operates a number of plants that produce, consume, or discharge a variety
of chemical substances. Some of these discharges enter bodies of water
inhabited by various aquatic species. Thus the Army must provide the
USEPA with safety data concerning the levels of such discharges and the
possible extent of resulting surface water and ecological contamination.
In order to develop such data the Army conducts both intramural and
extramural programs of aquatic toxicity testing.

Considerable amounts of time, money, and manpower are expended
by the Army in such aquatic toxicity testing programs. To make these

-*.programs more efficient and more effective, the need has been felt for
a reexamination of some of the standard methods used. This has been
especially true of statistical methods involved in the design of testing
programs and the analysis of resulting data. This study is an effort
to make some progress in those directions.

The results in this study indicate areas where the conduct of and
the summarization and reporting of results from chronic aquatic toxicity
tests can be further standardized and made easier to understand. A
number of the statistical approaches and procedures discussed and/or
developed in this study have not to the authors' knowledge been pre-
viously applied to aquatic toxicity data. These improved methods provide
increased information, as compared with standard methodology, about the
structure, relations, and anomolies in the data. They enhance the sensi-
tivity of statistical analyses, so that greater precision of results can

-* be obtained without increasing the amount of testing. In brief this
study provides methods that should improve the reporting and statistical

- * analysis of data from chronic aquatic toxicity tests. This will enhance
the sensitivity of conclusions that can be derived from these tests,
thereby increasing their efficiency.
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Approach

All the statistical procedures discussed in this report are
illustrated with examples based on real data from chronic tests with
fathead minnows. At the outset of the study the principal investigators
visited the USEPA Environmental Research Laboratory at Duluth to become
oriented to the apparatus and procedures used in chronic toxicity tests.

Discussions were held with various investigators concerning the details
of their studies. Some of these investigators provided us with illust-
rative data to be used in our subsequent work.

A number of sets of experimental data were received from Duluth.
the literature pertaining to chronic toxicity tests in general and to
those tests in particular was reviewed and discussed between statistician
and toxicologist. Based on an understanding of experimental procedures
it was possible to then start considering the statistical aspects of the
problems. The statistical procedures discussed in the body of this re-
port represent a combination of methods taken from the statistical litera-
ture where appropriate or developed especially for aquatic toxicity
testing applications where standard procedures were felt not to be the
most appropriate.

Results

Arguments for the use of standardized fish stocks and standardized
data reporting formats are presented. Aspects of the statistical analysis
of toxicity data are discussed and the suggested procedures are illust-
rated with examples based on fish toxicity studies. Data analysis topics
discussed include: graphical displays, preliminary tests of tank to tank
heterogeneity within treatment groups, preliminary outlier detection
tests, overall tests of heterogeneity in response rates across treatment
groups, treatment group-control group pairwise multiple comparison pro-
cedures, the fitting of standard and nonstandard dose response curve
models, analysis of variance and multiple regression analyses on quanti-
tative responses, statistical power and estimation precision to be ex-
pected for various levels of sample size and suggestions for unequal
allocation of experimental effort across treatment groups with greater
effort expended on the control group and lower treatment groups.

Conclusions and Recommendations

1. The USEPA should revise and update the standard procedure for life
cycle tests on fathead minnows.

2. Standardized data reporting sheets are a very useful adjunct to
the categorization and analysis of chronic toxicity test data.

Iii
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3. Guidelines on disposal of potentially hazardous effluent 
from

chronic toxicity tests should be incorporated in the procedure.

4. Detailed procedures for chemical analysis and quality assurance
of chemical data should be incorporated in the procedure.

5. Some of the "standard" methods currently used for analyzing data
from aquatic toxicity tests can and should be modified. The data
should first be graphed, outlying observations or groups of
observations should be located and the reason for their aberrant

behavior determined, and tests for heterogeneity among tanks
within groups should be carried out. Based on the results of
these preliminary inferences, the data should be modified or
adjusted to account for possible heterogeneity or aberrant values
before going on to the inferences of primary interest.

6. If hypothesis tests are to be used to compare the treatment group
and control group responses they should be one sided tests which
are sensitive to monotone alternatives, rather than overall
analysis of variance type "shotgun" tests.

7. Multiple comparison procedures and confidence intervals pro-
cedures should be used to determine specifically which treat-
ment groups have responses which differ from the control group
responses and whether the differences are of a specified
biological significance. Significance tests, by themselves, are
not adequate to define an "MATC" (i.e., maximum acceptable
tolerable concentration). Perhaps a confidence bound should be
routinely constructed at the MATC to determine just how much
worse than the control group the response at that concentration
could conceivably be. In general, confidence intervals impart
much more information than hypothesis tests and should be
routinely used.

8. A good way to place monotone response structure on the problem,
to amooth the data, and to convert a hypothesis testing prob-
lem into an estimation problem is to fit dose response curve
models to the data and to define the "safe" concentration as
that which results in no more than a specified increment in
response from the controA group. A number of nonstandard vari-
ants on the "standard" dose response models discussed in the
literature may be useful. A nonparametric approach to dose
response estimation is feasible, has been implemented in a
computer program, and may be preferable on occassion to some
of the standard parametric dose response models.

.4=
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9. Statistical power and estimation precision depend both on the
number of tanks run per group and the number of fish per tank. In

the presence of substantial tank to tank heterogeneity the effective
sample size may be more nearly the number of tanks than the number
of fish. Thus in the presence of tank to tank heterogeneity, dimin-
ishing returns result from increasing the number of fish used with-
out also increasing the number of fish tanks per group.

10. Under certain circumstances it is sensible to allocate experimental
resources so that the control group and lower concentration groups
receive more tanks and fish than the higher concentration groups.
This results in greater inference sensitivity in the region of the
MATC. Proportional diluters should be modified to permit such
asymmetrical allocations of tanks, at the discretion of the investi-

gator.

11. Statistical power or statistical precision goals should be stated
as part of the protocol for each individual toxicity test and
sample sizes should be determined accordingly.
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INTRODUCTION

During the 1960's and 1970's, environmental contamination in gene-
ral and water pollution specifically, became increasingly important as
legal and scientific problems. Regulatory agencies needed scientific
data to support the notion that a problem existed and also needed fact-
ual information for establishing tolerance limits for levels of chemical

discharges into surface waters. From that need evolved numerous standard
toxicity tests, including a test to determine the long term effects of
toxicants on a representative fish, the chronic toxicity test with fat-

head minnows.

Aquatic toxicologists and biologists evolved and refined an effect-
ive fish toxicity test. As data were analyzed and experiments designed,

the statistical considerations evolved to a more complex level. It be-
came clear that some of the statistical procedures needed for the design

of toxicity tests and for the analysis of chronic toxicity data may be
novel or unique and should be developed specifically for fish toxicity
tests.

Operational activities of the U.S. Army (e.g. munitions manufacture)
involve the production, use, and/or discharge of a variety of commercial

chemicals. Safety data must be provided to USEPA concerning surface
water contamination due to discharges of chemical intermediates or the
final product. In-house research of the U.S.Army with the standard fish
chronic toxicity test highlighted the need for a reexamination of the
standard procedures, especially regarding statistical techniques. The

main goals of this project are to suggest statistical procedures for
analyzing data arising from such toxicity tests, to provide recommen-

dations for a more accurate, reliable standard procedure, and to faci-

litate research in aquatic toxicology in general.

This project was initiated as an interdisciplinary investigation
of the EPA chronic toxicity test for fathead minnows. It combined the
efforts of a toxicologist, a fish specialist, and statisticians. The

biologists functioned as advisors to the statisticians in regard to the

characteristics and limitations of the test animal, test procedures, and
chronic toxicity data and evaluated the test procedure from a toxicolo-
gical viewpoint.

The statisticians developed procedures for data storage, transform-
ation and analysis, scrutinized published statistical techniques for
their applicability to fish toxicity data, and devised new statistical
methods for analyzing data from fish toxicity tests when they were felt
to be more applicable than the standard methods.

This final report is the synthesis of a one year effort. It dis-
cusses both biological and statistical aspects of the planning, conduct,
reporting, and data analyses associated with toxicity tests on fathead
minnows.

xix



Arguments for the use of standardized fish stocks and standardized
data reporting formats are presented. Aspects of the statistical ana-
lysis of toxicity data are illustrated with examples based on fish toxi-
city studies. Data analysis topics discussed include: graphical dis-
plays, preliminary tests of tank to tank heterogeneity within treatment
groups, preliminary outlier detection tests, adjustments in analysis
procedures due to tank to tank heterogeneity, overall tests of hetero-
geneity in response rates across treatment groups, treatment group-control
group pairwise multiple comparison procedures, the fitting of standard
and nonstandard dose response curve models, analysis of variance and
multiple regression analyses on quantitative responses, statistical

* power and estimation precision to be expected for levels of sample size
and suggestions for unequal allocation of experimental effort across
treatment groups with greater effort expended on the control group and
lower treatment groups.

It is hoped that the results obtained in this study will contribute
to better, more reliable toxicity tests and data analyses. This in
turn should provide improved tools for the regulation of toxic chemicals
in aquatic environments and should suggest fertile areas for further

* .study and development.
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I. ASSEMBLE AND EVALUATE INFORMATION ON TEST METHODS

Although the scope of work specified that design and analysis of
chronic toxicity tests would be researched, it became clear early in the
project that many aspects of statistical analysis could be pursued using
exemplary data from early life stage tests. Consequently, the review

of test methods and our literature search included both chronic life-

cycle tests and early life stage tests.

Three literature sets were searched by computer using appropriate
key words (fathead minnow, toxicity, chronic tests, etc.): Mechanized
Information Center, The Ohio State University; Oak Ridge National Lab-

oratory, Oak Ridge, Tenn.; Ohio Environmental Protection Agency, Columbus,

Ohio. The latter search encompassed 13 major data base searches (Amer.
Chem. Soc., Biol. Abstracts, etc.). The hundreds of citations received

were reviewed for relevancy and the important ones were abstracted and
filed. Reprints of copies or articles, 64 in all, that were considered
to be directly related to future tasks were assembled, catalogued and re-
viewed in detail.

These publications provided information on the fathead minnow in
regard to biology, life cycle events, duration of developmental stages,
nutritional information and reproductive characteristics. The papers

on test methods provided details of variation in design among invest-
igators and a large amount of experimental toxicity data for reference
and further discussion.

Papers and technical reports from E.P.A.-Duluth describing the

apparatus [1] and procedure [2] for chronic toxicity tests were reviewed
and studied in detail in order to understand the method of exposure,

physical arrangement of the delivery system and important variations
among investigators, e.g. the syringe delivery method of DeFoe [3]. The

literature search and research paper perusal was essential for the toxi-
*" cology group to authoritatively interpret biological factors, experi-
," mental data or test methods in discussions with the statistical group

or to suggest limitations in design due to the animal or technique.

I1
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II. CATEGORIZING DATA SETS

Early in the project, a number of sets of experimental data from
early life stage toxicity tests t.nd chronic life cycle toxicity tests

were received from and discussed with researchers in EPA-Duluth.
Various aspects of these data were reviewed with the statistical

group to clarify experimental procedures such as types of measurements
and how they were acquired, if measurements were destructive or
nondestructive, the replication of experiments and variation of chemical

concentration in the delivery system. These discussions brought out
the need for standardized data reporting sheets so that data could be
accurately categorized and recorded in a systematic manner for entry
into the computer and statistical analysis. A separate section on

standardized data sheets is included in this report.

The examples in this report are based on some of these experimental
data sets. In particular the data sets from early life stage toxicity

tests by

Benoit - compound A

DeFoe - compound C
Holcombe and Phipps - compound D

Jarvinen - compound B

are used. These data sets are listed in Appendix All.

2
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III. ORGANIZATION OF DATA: STANDARDIZED DATA RECORDS

The early life stage data and chronic life cycle toxicity data sets
were supplied by six different investigators. Each set of chronic data
was received in a unique format. Each set of data was reviewed for the
experimental procedure (if available) in order to accurately categorize
the data for storage on computer and subsequent statistical analysis.
Routine questions, e.g. how many days of exposure, and more complex
questions, e.g. are replicate tests genuine replications, were not easily
resolved by a review of the data sheets, nor was the comparability of
the same categories of data in similar experiments among the array of
investigators. Standardized data records have merit if they are
sufficiently versatile to meet most needs, clearly summarize the exposure

* conditions and facilitate transformation, computer storage, and
statistical analysis of raw data. The latter task is often done by an
individual who is not an expert in biological research and unfamiliar

with operational details of toxicity tests.

Good laboratory practice regulations (GLP) have been adopted by
FDA for nonclinical laboratory studies [4] to assure the quality of
data in support of product safety decisions. One component of the GLP
deals with specific record-keeping practices for experimental data.
The advantages of these required record-keeping practices have been
discussed in regard to vertebrate experiments [5] and would apply
equally as well to fish toxicity data to the benefit of investigators,
statisticians, and regulatory agencies.

Although there is some variation in the design of fish toxicity
tests, certain features are almost universal. For example, in a chronic
toxicity test, a flow-through apparatus is always used and standard
measurements include hatchability of embryos, fish length and weight,
survival (mortality), and spawning data. Consequently, standardized
recording sheets could be devised for summarizing exposure methods and
experimental data.

Our standardized reporting sheets have two components: (a) a
descriptive section summarizing the conditions of the experiment with
code words or letters to categorize or define data for the statistician,
.and (b) the raw data record sheet with no calculations or transforma-
tions. These record sheets have been designed for data of early life

stage tests or chronic life cycle tests.

A. Composite of Experimental Conditions

1. Investigator

2. Toxicant ; Source and % purity

3. Starting Date of Test (Day Zero): / /
D M Y

J3
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4. Selection of embryos: Embryos selected randomly.

___Embryos examined, only viable
eggs incubated.

___Other (specify).

5. Are embryos from paired matings? Yes or no.

6. Fish I.D.: for use only with paired matings; use a unique ident-

ifier here.

7. Generation of embryos or fish? Zero or first?

(Note: In chronic tests, some investigators refer to spawnings of
exposed adults as first generation embryos, others, second generation.
We define zero generation as any stage or form used to start a test
and any stages during that generation, including adults. First
generation is any of the stages following zero generation adults.
One may argue against this system on a biological basis, but it dis-
tinguishes between the same stage of separate generations. With
this system there is no second generation in a standard chronic life
cycle test.)

8. Nominal Concentration: identify tanks by nominal concentration
of toxicant (mg/l, ug/l), "Solvent control" by "S", "water only
control by "W".

9. Identify replicate tanks in Nominal Concentration column by "REP"

e.g. 0.25 REP; identify equivalent tanks by "EQ", e.g. 0.25 EQ.

(Note: It should always be clear in original data sheets the re-
lation of replicate tanks of the same nominal concentration, a
crucial factor in deciding what statistical procedures to use. We
define replicate as the simultaneous exposure of fish to similar
concentrations of a chemical that are delivered independently, i.e.
two tanks containing nominal concentrations that originate from
separate syringes in the delivery system are replicates. We define
equivalent as the simultaneous exposure of fish to the same concent-
ration of a chemical that is delivered from a common origin, i.e.
groups of fish in several screened compartments of the same tank are
equivalent groups, as are fish in different tanks supplied equally
by tubing that is split after the final dilution. Replicate ("re-
peated experiment") does not distort the conventional meaning of that
term. The choice of equivalent ("equal in quantity") was the best
approximation of what occurs.

10. Tank I.D.: identify multiple tanks of the same nominal concent-
ration and type (REP or EQ) by capital letters, e.g. Rep-A,
Rep-B, etc.

4



11. Identify simultaneous incubations (same day, same tank) of embryos

from different spawnings by adding "x" to the "No. of days since

day zero" entry, e.g. 32x, 32x ; for simultaneous incubations of

eggs from the same spawning, add a "y", e.g. 32y, 32y.

12. Embryo cup I.D.: identify multiple embryo cups in the same tank

by Tank I.D. and number, e.g. A-l, A-2.

13. Identify multiple spawnings on the same date by adding a lower

case letter to the entry, "No. of days since day zero", e.g.
32a, 32b.

14. Initial exposure (day zero) as: embryos/fry/juveniles (circle one).

15. Data entries on one line are/are not from the same fish.

B. Data Sheets for Separate Categories of Data

1. Survival Data

a. Experimental conditions: use entries 1, 2, 3, 7, 8, 9, 10,
and 14 from part A to summarize the conditions of the exp-
eriment.

b. Data Sheet

Investigator Toxicant % purity

Starting date of Test (day zero): / /
D M Y

5



No. days Nominal
since Concentration___________________

day zero Tank I.D. _________________

Initial No. _________________

Alive
________Alive, normal

days Dead
Lost

Total for
Interval

Alive
________Alive, normal

days Dead
Lost

Total for

Interval __________________

Alive
________Alive, normal

days Dead
Lost

Total for

Interval________________ ___

2. Fry length or weight

a. Experimental conditions: Use entries, 1, 2, 3, 7, 8, 9, 10
and 14 from Part A to summarize the conditions of the exper-
iment.

b. Data Sheet

Investigator_______________

6
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Toxicant % purity

Measurements taken days after first exposure of this stage.

Starting Date of Test (day zero):

Nominal Tank Length (mm) or Weight (mg) of Individual Fry

Conc. I.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1!

4 ."

3. Hatchability of embryos

a. Experimental conditions: Use entries 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11 and 12 from Part A to summarize the conditions

of the experiment.

b. Data Sheet

Investigator

Toxicant % purity

Starting date of Test (day zero): / /
D M Y

7



Embryo Cup Fish No.days No.embryos Cum.no. Cum. no Cum. no.
Nominal I.D. I.D. since at start hatched unhatched unaccounted
Conc. Tank Cup day zero for

4. Spawning Data

a. Experimental conditions: use entries 1, 2, 3, 5, 6, 8, 10, and
13 from Part A to summarize the conditions of the experiment.

b. Data Sheet

Investigator

Toxicant % purity

Starting date of Test (day zero): / /
D M Y

Nominal Tank Fish No. days No. of No.of Estimated Embryos used
conc. I.D. I.D. since spawnings embryos conditions subsequently?

day zero of embryos Yes, No. Where?

5. Data on surviving adults

8
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a. Experimental conditions: Use entries 1, 2, 3, 6, 8, 9,
10, 14, and 15 from Part A to summarize the conditions
of the experiment.

b. Data Sheet

Investigator

Toxicant % purity

"* Starting date of test (day zero): / /
D M Y

Nominal Tank Fish No.days since Length Weight Sex
conc. I.D. I.D. day zero (mm) (mg) (m, f, im)

6. A data report sheet for chemical analysis of water should be
provided if detailed instructions for chemical analysis are
included in a revised procedure.

7. A separate sheet that need not be standardized should be
attached to the data records summarizing important conditions,
i.e. ph, temperature, photo period, flow rates, type of food

and feeding schedule, etc. and any limits of conditions that
vary during the test.

C. Transfer of Experimental Data to Standardized Data Sheets.

After considerable debugging of the data sheets and several

trials with actual data, the experimental data were transferred
to data sheets for storage on the computer.

9



IV. ANALYSIS OF AND COMMENTS ON THE TEST PROCEDURE

The published procedure for chronic toxicity tests [2] has not
been revised since 1972. Since that time considerable research on
the test per se has been done at EPA - Duluth and elsewhere to improve

reliability, reproducibility and accuracy. For example, some condi-
tions specified in the 1972 procedure may be replaced by improved

techniques, e.g. handling and selection of embryos, use of paired
spawnings, etc. Those changes that could be incorporated as improve-

ments in the test procedure should be made and a revised version

published.

Following are comments about specific sections of the procedure,

using the number and letter designations of the procedure [2] as a
reference.

A. Physical System

4. Flow Rate

Recent USEPA regulations [7] designate certain chemicals as
hazardous wastes if and when they are discarded. Guidelines and

recommendations on the treatment (clean up) of experimental tank
effluent should be included for a test system containing poten-
tially toxic chemicals in ten or more tanks, changing 6 to 10
tank volumes/24 hours in each tank, all operating continuously
for months.

14. Where surface water or municipal water is used, a filter
system should be considered.

B. Chemical System

2. Measurement of toxicant concentration and

5. Methods

A much more detailed procedure should be incorporated in this

section in conjunction with a carefully formulated standardized

reporting sheet. The essence of this suggestion resides in the

absolute need to know the limits of chemical concentration changes
and to have assurance that the chemical analysis data are reliable.

i0



V. EARLY LIFE STAGE TOXICITY TESTS

A. Background In recent years there has been some movement in the
direction of developing toxicity tests that provide much of the in-
formation relating to chronic and sublethal toxicant effects that is
obtainable from full life cycle tests, yet which require far fewer
resources of time, space, cost and which are simpler to carry out
and analyze. To accomplish these aims, the use of early life stage
toxicity tests has become more common. For fathead minnows such
early life stage tests require about thirty days of effort as compared
with 250 to 300 days for full life cycle tests. This permits a great
many more compounds to be tested.

A number of guidelines for conducting early life stage tests in
a standardized manner have been proposed [8, 9, 10]. In these tests,
organisms are exposed during part of the embryonic stage, throughout
the larval stage, and during part of the juvenile stage. The ration-
ale is that this represents the period of greatest sensitivity of
the fish, and so chronic and sublethal toxicant effects will be re-
vealed.

In one version of the test, groups of recently fertilized fish
embryos are placed in embryo cups within test chamabers. There are
generally five or more toxicant groups and one or more control groups.
Each (treatment or control) group consists of two or more replicate
test chambers. The embryos are kept on test until they hatch (about
5 to 7 days), at which point the live, normal larvae are thinned to
the desired number per tank and these are kept on test for about an
additional four weeks, at which point the test is terminated. In a
variant on this approach, the embryos are thinned after just two days
on test. After hatch, all of the live larvae are released into the
test chambers for the rest of the test. This avoids handling the
newly hatched larvae at a time when they are most sensitive to the
toxicant.

B. Data The data recorded in such early life stag tests include
number of embryos per embryo cup, number of embryos hatched live and
hatched normal, number of fry in each embryo cup after thinning, numbeT
of fry live at end of test and number normal, individual weights of
all fry alive at end of test, and periodic toxicant concentration
measurements within each tank.

Standardized data reporting sheets that facilitate the interpre-
tation of test results and the communication of these results among
investigators and laboratories have been developed by investigators
at USEPA - Duluth. They have been kind enough to supply us with such
sheets fro about twenty early life stage tests (personal communica-
tion). Figure V. I illustrates such a basic data reporting sheet

* '- based on the test of compound C carried out by DeFoe.

"'" 11



Page I contains embryo and fry survival and normality data and a
diagram showing the test layout. We see that in this test there was
a single control group (1), five treatment groups (2 to 6), two test
chambers per group, and a single embryo cup per test chamber. Page 2
contains individual weight measurements on all the fry that survived
the test. Page 3 contains the results of the individual toxicant
concentration measurements made in each chamber periodically through-
out the test. We have found these data reporting sheets to be very
easy to understand and very useful.

In order to work with the data it was necessary to put them

into computer readable form. The approach that we took to
accomplish this is illustrated in Figure V.2 for the data from
the test of compound C by DeFoe. The three types of data -- survival,
weight, and toxicant concentration-- are represented in three "card
types." The data for each "card type" are listed in Figure V.2.
Some applications call for use of just one card type while others

call for use of two or more card types. The first six entries on
each card are the same across card types -- treatment group (col 2),
replicate designation (col 4), card type (col 6), card member (cols
7-8), investigator code (cols 9-10), test code (cols 11-12). This
provides enough information to sort the cards by investigator, ex-
periment, type, group, and sequence should the data become disar-
ranged. Card type 1 (survival data) contains in addition number of
embryos tested (cols 16-20), number hatched live (cols 21-25), number
of fry tested (cols 31-35), number live at end of test (cols 36-40),
number normal at end of test (cols 41-45). Card type 2 (weight data)

contains number of weights recorded from that particular chamber

(cols 14-15), individual weights (5 cols per weight, up to 13 weights
per card). Card type 3 (toxicant concentration) contains month

(cols 16-17), day (cols 18-19), year (cols 20-21), toxicant concc'n-
tration (cols 32-38) -- one determination per card. At the head of
each type of information several lines of descriptive text are given.
This text is informative when the data are printed out but is skip-

ped over for purposes of analysis.

We have found this data organization to be easy to prepare,
easy to maintain, and easy to use. Such data files represent the

"basic data" for all subsequent analyses discussed in this report.
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VI. PRELIMINARY GRAPHICAL DATA DISPLAYS

4Graphing the data is generally considered to be a good first
step in analyzing data. Graphs provide insights into the structure
of the data and reveal the presence of possibly unanticipated rela-
tions or anomolies in the data.

Figures VI.l and VI.8 illustrate the kinds of information
that can be obtained from preliminary plots. They illustrate
percentage embryo and fry mortality and abnormality observed in
early life stage tests on fathead minnows conducted by DeFoe
with compound C and by Holcombe and Phipps with compound D. The
tests each consist of a control group (1) and five treatment groups
(2 - 6) with toxicant levels in roughly geometric progression. The
DeFoe test was run with four chambers per group. The plotting symbol
"A" represents a single response, "B" represents two coincident re-
sponses, etc.

Figures VI.l and VI.5 reveal no trends in embryo mortality with
increasing toxicant level in either test. Tank to tank variation
within treatment groups appears to be approximately constant across
groups except for a single tank in Group 2 (Figure VI.l) which has
about 50 percent greater embryo mortality than all the other tanks
in the test. It appears to be an outlier, i.e. its response does
not seem to conform to the pattern of the bulk of the data.

Figures VI.2 and VI.6 show increasing trends in fry mortality
with toxicant concentration in each test. This pattern is to be
expected since the larvae are most toxicant sensitive shortly after
hatching. In each test tank to tank variation within groups is
greatest in the middle and least at the ends, in conformance with
binomial theory. No outlying tanks are evident with respect to fry
mortality. Note that in both tests the highest treatment groups
experience 100 percent fry mortality.

Figures VI.3 and VI.7 exhibit embryo abnormality in the two
tests. They are strikingly similar. In the control groups and the
four lowest concentration groups there is little or no abnormality
among newly hatched live larvae. However in the highest concent-
ration groups there is 100 percent abnormality among newly hatched
live larvae. It thus appears that very high concentrations of each
of these toxicants will penetrate the embryo.

Figures VI.4 and VI.8 exhibit fry abnormality in the two tests.

In brief, there is none. After 32 days the fry have either died or
are normal. Recall that the highest toxicant groups experience 100
percent mortality and so there is no abnormality data to plot.

18
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VII. TESTING FOR TANK TO TANK HETEROGENEITY WITHIN TREATMENT GROUPS

A. Background. In order to assess variability of response, toxicity
tests generally include several fish tanks, usually two to four,
within each treatment or control group. EPA guidelines for early

life stage and full life cycle toxicity tests with fathead minnow
[2, 8] call for at least two replicate test chambers for each
treatment group. Some tests use more.

An important preliminary inference of interest in toxicology
data analyses is to determine if there is any statistical evi-

dence of variation in response among tanks within treatment groups.
Such variation might be due to differences in location or handling
of in(.ividual tanks, to fungus or illnesses that might invade a

tank, to unforseen accidents during the test, etc.

If evidence of tank to tank heterogeneity exists then analyses
should be carried out on a per tank basis. If no evidence of tank
heterogeneity exists then data might be pooled across tanks within

groups and analyses carried out on a per fish basis, ignoring the
replicate tanks. For example, mortality rates could be compared
based on binomial theory. Such per fish analyses would provide
many more degrees of freedom to estimate random error than would
per tank analyses and so are more sensitive. For example if there

are four tanks per group and 25 fish per tank then a per fish
analysis might be based on 99 degrees of freedom per group where-
as a per tank analysis would be based on just three degrees of
freedom per group.

However the validity of per fish analyses rests on the absence

of tank to tank heterogeneity. If there is in fact variation in
response rate across tanks within treatment groups then variabi-
lity estimates based on per fish analyses will underestimate the
true variability of the estimates and test statistics. This
will result in standard error estimates that are too small, con-

fidence intervals that are too short, and hypothesis testing
procedures that falsely reject the null hypothesis more often than
their nominal rates (i.e. inflated alpha levels). It is thus
important to test for the presence of tank to tank heterogeneity
within treatment groups before proceeding on to the analysis
of primary interest.

B. Remarks on Some "Standard" Procedures.

Finney [11], section 9.1, pp 175 ff. suggests the following

procedure for testing tank to tank heterogeneity. Fit a probit

curve to the data based on pooled data across tanks within groups.
Fit a probit curve to the data using the individual tanks within

groups. The point estimates of the two probit fits will be

exactly the same. However the residual chi squares and their
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respective degrees of freedom will differ. The differences
between these two residual chi squares can be interpreted as
the chi square for heterogeneity among tanks within treatment
groups. Similar considerations hold for the usual chi square
test for homogeneity.

We have carried out this procedure using the probit fit and
using the usual chi square test for homogeneity. We compare the
results of these two tests. The theoretical bases of these
heterogeneity tests are discussed in Appendix AVII.

We illustrate these two heterogeneity test procedures on the
fry mortality data. First consider the test of compound C by
DeFoe.

Probit Fit

We fitted the probit model to the treatment groups using the
(natural) logarithm of concentration and excluding the control
group. (Note that the same fit was obtained when the control
group was included). The probit fits were carried out using the
PROC PROBIT procedure in the SAS statistical computing system
12]. The data consist of 1=5 treatment groups, J=2 tanks per

group. Thus there are 10 responses to which we fit the two pa-
rameter probit model.

Pi =  (-5 + SlogCi) i = 2,...,6

Figures VII.l, VII.2 contain the results of the probit fits to
the individual responses and to the responses pooled across
tanks within groups respectively. The analysis of variance ta-
ble, as suggested by Finney, appears in the bottom portion of
Figure VII.l. The upper 0.005 point of the chi square distrib-
ution with 5d.f. is 16.75. Thus this test for tank to tank het-
erogeneity within groups is "highly statistically significant".
At face value this suggests strong statistical evidence of vari-
ation in response rate across tanks within treatment groups.

Chi Square Fit

We now carry out a chi square test of heterogeneity in re-
sponse rates across tanks within groups based on the usual chi
square test of homogeneity across groups. Figures VII.3, VII.4
contain the results of the chi square tests based on the individ-
ual responses and on responses pooled across tanks within groups
respectively. Control group responses are included in these
tests. The tests were carried out using the PROC FREQ procedure
in the SAS spatistical computing system [12 1. The analysis of
variance table suggested by Finney appears below.
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Source d.f. S

Lack of fit of pooled tanks 5 IM.

about model (homogeneity)

Variation of individual tanks 6 I.9

* w/i tmnt groups (by subtraction)

Lack of fit of individual tanks
about model (homogeneity) 11 183.675

Thus the heterogeneity chi square is very small. Thus there
is no statistical evidence of variation among tanks within treat-
ment groups.

Note that the conclusions arrived at from this heterogeneity
chi square test are in direct contradiction to those arrived at
from the heterogeneity chi square test based on the probit fit.
What is the cause of the discrepancy?

There are two possible sources of difficulties. The first
concerns the probability estimates in the denominators of the
test statistics. In the probit based statistic the i-th group

response rate in the denominator is estiamted as

Pi = (i a - 5 + SlogCi ) whereas in the homogeneity chi square
based statistic the i-th group response rate in the denominator
is estimated as Pi = P H X++/N++ for all i. The assumption of

constant P values in the denominator is clearly not justified.
The assumption of Pi values based on the probit model is also
not good, as can be seen from the very large residual "chi
square" value in Table VII.2. Thus the substantial differences
in the response rate estimates that appear in the denominators

of the two statistics, along with the probable inadequacies of
both sets of estimates, may account for at least a portion of

the discrepancy in chi square values.

The second possible source of discrepancy is based on the
validity of the chi square assumption itself. The validity of
the asymptotic chi square theory is dependent on the cell ex-
pected frequencies being large enough. In particular if any
responses are observed in cells with very small expected fre-
quencies then very large cell chi squares can result which can

greatly inflate the statistic.

Consider the two chi square statistics for lack of fit from
the probit model -- one for individual tanks and one for pooled

tanks. We break out the individual components of these statis-
tics.
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Table VII.l DeFoe Compound C Fry Mortality Data

Probit fit to groups 2, 3, 4, 5, 6 -- individual tanks
Chi square statistic for lack of fit to probit model

Mean (X ij) (Ni3) 2

Grp Tank Conc Dead Live Total Pi N ip i  Ni PiQ i  X

2 A 1.991 0 20 20 0.000015 0.000301 0.000301 0.000301
2 B 1.991 0 20 20 0.000301
3 A 5.976 0 20 20 0.002542 0.050830 0.050701 0.05096
3 B 5.976 2 18 20

4 A 14.812 0 21 21 0.0475 0.9975 0.9501 1.0473
4 B 14.812 1 19 20 0.95 0.9409 0.00276
5 A 48.307 4 16 20 0.4227 8.454 1.8805 4.0648

5 B 48.307 5 15 20 2.4444

6 A 146.984 20 0 20 0.88356 17.6713 2.05764 2.6355
6 B 146.984 20 0 20 2.6355

87.8165

2
This compares with X = 87.7666 calculated from SAS PROC PROBIT

Table VII.2 Probit fit to groups 2, 3. 4, 5, 6 -- tanks pooled within groups

Chi square statistic for lack of fit to the probit model

Mean (X+) (Ni)
^ 1+ 

2Grp Conc Dead Live Total Pi Ni+Pi i+PiQ i  X

2 1.991 0 40 40 0.000015 0.000602 0.000602 0.000602

3 5.976 2 38 40 0.002542 0.10166 0.10142<
4 14.812 1 40 41 0.0475 1.9475 1.855 0.484
5 48.307 9 31 40 0.4227 16.908 9.761 6.407
6 146.984 40 0 40 0.88356 35.3426 4.11528 5.271

47.695

2
This compares with X = 47.6775 calculated by SAS PROC PROBIT

Comparison of these two chi square values clearly shows the
source of the "significant" chi square for heterogeneity. Namely

the tanki from group 3 have very small expected frequencies (NP) yet
have observed responses. Thus these component chi square values
are large and dominate the overall chi square values.

If we remove the group 3 values from the chi square statistics
we have:
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Separate tanks: X = 87.8165 - 0.05096 - 74.9347 = 12.831
2

Pooled tanks: X = 47.686 - 35.532 = 12.154

The relation between these two chi square statistics is then
just like that of the chi square tests resulting from thp con-
tingency table tests.

Moral: Uncritical use of the chi square test for homogeneity of
tanks within concentration groups recommended by Finney
can lead to completely incorrect results and results con-
tradictory to those of other homogeneity tests because
of:

* small expected frequencies within cells

, response rate estimates based on particular (pos-
sibly inappropriate) model fitted

We repeated the same calculations on the fry mortality data
in the test of compound D by Holcombe and Phipps.

Probit Fit

Using all six groups, a logarithmic transformation of con-
centration, and Abbott's correction for background response we
obtain:

Source d.f. S.S.
Lack of fit of pooled tanks 3 0.5064

about probit model

Variation of individual tanks 18 21.7906
Sw/i tmnt groups (by subtr)

Lack of fit of individual tanks 21 22.2952
about probit model

The value 21.7906 is at the upper 24 percent point of a chi sq-
uare distribution with 18 d.f. and so is nonsignificant.

Chi Square Fit

There are I = 6 groups, J = 4 tanks per group. We carry out
chi square tests of heterogeneity in response rates across tanks

4 within groups based on the usual chi square test of homogeneity
across groups. We obtain:
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Source d.f. S.S.
Lack of fit of pooled tanks 5 389.676

about model (homogeneity)

Variation of individual tanks 18 10.198
w/i tmnt groups (by subtr)

Lack of fit of individual tanks 23 399.874
about model (homogeneity)

The heterogeneity chi square is again small. There is no
statistical evidence of variation among tanks within treatment
groups. Note however that there is strong statistical evidence
of variation in response rate from group to group, as would be
expected. Thus the weights in the denominator of the heteroge-
neity chi square statistic are suspect.

C. Separate Heterogeneity Tests Within Treatment Groups

We have seen for DeFoe's fry mortality data that we can obtain
diametrically opposite conclusions about heterogeneity of responses
within treatment groups depending on whether the test for homo-
geneity was based on a probit model fit or on a contingency table
fit. This was attributed to

1. differences in the weights used in the denominators of
the chi square statistics (based on the assumed model)

2. small expected frequencies within cells that invalidate
asymptotic distribution theory.

To accouni- for problem (1), we carry out separate chi square

heterogeneity tests within each concentration group, without
imposing any structure on the form of the concentration-response

relation. We do this by carrying out separate chi square tests

within each group and then pooling the results across groups.

There is however, a technical problem associated with this
approach. For many (if not most) of the responses of interest
the probabilities of occurrence are fairly close to 0 or 1. The-
refore the expected frequencies of occurrence can be rather small,
thus invalidating the use of asymptotic chi square theory. We
illustrate this phenomenon with the Holcombe and Phipps fry mor-
tality data, broken down by group. The output (from SAS PROC
FREQ) is shown in Figures VII.5 to VII.10

We see that groups 1, 2, 3, have small expected numbers of
dead fry (less equal to 2.0). Group 4 has expected dead = 3.3
and group 6 has expected live per tank = 0. Thus groups 1, 2, 3,
4, 6 have small expected frequencies in at least some of the cells
of the table.
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We use a (relatively stringent) criterion of applicability of
asymptotic chi square theory that requires that there be an ex-
pected frequency of at least 5 within each cell of the table.
Only group 5 satisfies this criterion within the Holcombe and
Phipps data. We must thus base some of the within groups heter-

ogeneity tests on exact, small sample theory.

Thus we wish to pool across groups the results of tests of
homogeneity of responses among tanks within groups. Some of these
tests are based on asymptotic theory while others are based on
exact, small sample theory.

We have developed a computer program, EXAX2, to carry out
such a procedure. We discuss this program in detail and illus-
trate its application in the following section.

1Dixon and Massey [ 13] page 233, has a slightly more liberal cri-
terion, namely "...none of the F i's (i.e. expected frequencies) is less
than 1 and not more than 20% of the F.'s are less than 5..." Again, only

group 5 would satisfy this.
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VIII. EXAX2 -- A COMPUTER PROGRAM TO TEST FOR HETEROGENEITY OF RESPONSES
AMONG TANKS WITHIN GROUPS

We saw in the previous section for DeFoe's fry mortality responses

from the test on compound C that we obtained diametrically opposite
impressions about the existence of tank to tank heterogeneity within
groups depending on whether we based our homogeneity test on a probit
model fit or on a congingency table fit. This was attributed to

1. Differences in weights used in the denominators of the chi
square statistics (based on the assumed model)

2. Small expected frequencies that produce substantial departures

from the asymptotic distribution theory.

To take account of problem (1), we use the strategy of carrying out sep-
arate chi square heterogeneity tests within each concentration group,
without imposing any structure on the concentration response relation.

There is, however, a technical problem associated with this scheme.
For many (if not most) of the responses of interest the response proba-
bilities of occurrence are fairly close to 0 or 1. Therefore the ex-
pected frequencies of occurrence can be rather small, thus invalidating

the asymptotic chi square theory, upon which most of the standard tests
are based. We saw this in connection with the fry mortality data from

the Holcombe and Phipps test on compound D.

We have developed a computer program, EXAX2, that overcomes this
problem. It carries out separate chi square tests within each treat-
ment group, based on asymptotic theory when the expected frequencies
within cells are large enough and based on exact, small sample theory
when the expected frequencies within cells are small. Thus heterogene-
ity tests using EXAX2 are applicable even with the relatively small sam-
plesizes and relatively extreme response rates encountered in fish tox-
icity tests. The theory underlying the program and instructions for its
use are described in [14] which included as Appendix AVIII.2. In the
body of the section we describe the basis of the calculations in EXAX2

and illustrate its application with examples.

EXAX2 pools the results of tests for heterogeneity in each of

I(I>1) 2 x K independent contingency tables (representing I groups, K
tanks per group). The homogeneity test within each group is based on
the usual chi square statistic, using either its asymtotic distribution
or its exact small sample distribution, as appropriate. The following

approach is used.

1. Within each concentration group, the chi square for homogeneity
among the K tanks is calculated. Let Xi,, N.j represent the
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number of dead fish and the total number of fish respectively in
the j-th tank of the i-th group. Let pi be a pooled estimate of
response probability in the i-th group and qi = 1- Pi Then the
chi square for group i is

K 2
2= (Xij -i pi)

Xi - N^j
:- ijPiqi

j=l

If Pi 0 or qi = 0 (corresponding to zero percent or 100 per-
cent observed mortality) the table is degenerate and X2 = 0 by
definition.

2. If all the expected frequencies (Nipi, N. .i) are greater then
a specified cutoff value (we currently use five), asymptotic the-
ory is used. Thus the observed significance level of 2 is
based on the chi square distribution with K - I d.f.

3. If one or more of the expected frequencies is less than the cut-
off level, then the exact distribution of X, conditional on the
observed marginal totals, is used. The observed significance
level is based on this exact distribution. This approach is de-
scribed in Agresti and Wackerly [ 15]. The exact distribution

Of Xi is computed by systematically enumerating all possible ta-
bles having the given margins using the algorithm in Boulton and
Wallace [ 16 ] and the associated probabilities due to March [18 ].

4. Let Ai denote the observed significance level in the i-th group.
We pool the Ai's over groups to obtain an overall test by an
approach analogous to Fisher's method as described in Littell
and Folks [ 19 , 20 ]. For each group we calculate, based on ex-
act or asymptotic theory, -2tnA i and its mean and variance under
the null hypothesis of homogeneity.

5. The observed significance levels are pooled into a single sta-
tistic by calculating

(-2 ]Ai) 
[ E(-2nAi) 1/2

i..l (2ZnAi)]
Var(-2tnAi)/4 E(-

Z is referred to a standard normal distribution. 'ne null hypo-
thesis of tank to tank homogeneity is rejected for large values
of Z. (The square root transformation is used because it rep-
resents the variance stabilizing transformation, under asymptotic
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theory,for Ei(-2Zi*Ai) and thus probably improves the normality
approximation.)

In addition to calculating preliminary tests of tank to tank
heterogeneity within treatment groups, EXAX2 can carry oit several
other statistical procedures useful in the analysis of data from
aquatic toxicity tests. In particular it can:

0 Pool data across tanks within groups and test for heter-
ogeneity of response rate across groups by use of the
chi square test and either exact small sample theory or
asymptotic large samle theory.

0 Calculate confidence intervals on the odds ratios of
treatment groups to control group using the exact non-
central distribution of Fisher's exact test statistic.

These applications will be discussed in detail in later section.

We now consider several illustrations of the use of EXAX2 for
tests of heterogeneity among tanks within groups. The EXAX2 out-
puts are shown in the referenced figures. The observed and ex-
pected cell frequencies are indicated. If any of the expected
cell frequencies are lower than the (user-specified) cutoff of
5, exact distribution theory is used. The exact distribution
of chi square, conditional on the marginal totals, is enumerated
and displayed. The observed value of chi square, the observed
significance level, -2/nAi, E(-2/n Ai), Var(-2/n Ai) are calcu-
lated. The six independent tests are combined by summing
-2ZnAi, E(-2/nAi), Var(-2/nAi) over groups and calculating Z.

DeFoe compound C

a) Embryo mortality

b) Fry mortality

Holcombe and Phipps, Compound D

a) Embryo mortality

b) Fry mortality

Jarvinen, compound B

a) Embryo mortality

b) Fry mortality
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A

DeFoe Compound C

Embryo Mortality

There are two tanks per treatment group, 50 embryo per tank. The
results from the EXAX2 calculations are shown in Figures VIII.l to
VIII.6 and are summarized below The pooled significance level cal-
culatations (using Fisher's method) are presented below the results
for group 6. The probability of a standard normal deviate exceeding
0.865 is 0.19.

Embryo Mortality

(Chi sq) (Ai) (-2ZnAi) E(-2ZnAi) Var(-2ZnAi)
Trt Method XSQOBS AI YY EY VARY

1 asympt 0.37205 0.54189 1.22540 2.00 4.00
2 asympt 6.76271 0.00931 9.35371 2.00 4.00

3 asympt 0.38610 0.53436 1.25338 2.00 4.00
4 asympt 1.07250 0.30038 2.40541 2.00 4.00
5 asympt 1.05086 0.30531 2.37286 2.00 4.00
6 asympt 0.0 1.00 0.0 2.00 4.00

SY = 16.611 YMU 12.00 SVARY = 24.00
Z = 0.86483

Except for group 2, where the response from tank 1 appears to be an out-
lier, there is no statistical evidence of tank to tank heterogeneity
within groups.

Fry Mortality

There are two tanks per treatment group, 20 fry per tank. The result
from the EXAX2 calculations are shown in Fig-ures VIII.7 to VIII.12 and
are summarized below. The pooled significanct level calculations are
presented below the results for group 6. The probability of a standard
normal deviate exceeding 0.175 is 0.43.

Fry Mortality

•(Chi sq) (Ai) (-2/nAi) E(-2/nAi) Var(-2tnAi)

Trt Method XSQOBS AI YY EY VARY

1 (Row total = 0) 0.0 0.0 0.0
2 (Row total = 0) 0.0 0.0 0.0
3 EXACT 2.10526 0.48718 1.43825 0.70068 0.5168

4 EXACT 1.07625 0.48780 1.43568 0.70033 0.51499
5 EXACT 0.14337 1.00 0.0 1.12060 2.7544
6 (Row total = 0) 0.0 0.0 0.0

SY = 2.8739 YMU = 2.5216 SVARY = 3.7862
Z = 0.17516

*Figures VIII.I to VIII.36 are cor.tained in Appendix AVIII.l.
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Fry Mortality

(Chi Sq) (Ai) (-2ZnAi) E(-2tnAi) Var(-2tnAi)

Trt Method XSQOBS Al YY EY VARY

1 EXACT 0.70922 1.00 0.0 1.3544 2.7875
2 EXACT 1.08696 0.95647 0.08901 1.543 3.4415
3 EXACT 7.06870 0.07579 5.15948 1.543 3.4415
4 EXACT 5.21662 0.18667 3.35688 1.7349 2.6708
5 asympt 6.44967 0.01967 4.77915 2.0 4.0

* 6 (Row total = 0) 1.0000 0.0 0.0 0.0

SY = 13.385 YMU = 8.1752 SVARY = 17.341
Z = 1.09755

Groups 1, 2, 4, 6 show no statistical evidence of tank to tank het-
erogeneity. Groups 3, 6 show some marginal suggestion of tank to
tank heterogeneity. It is interesting to note that in direct anal-
ogy with the results for embryo mortality, tank 3 of group 3 has
about twice the mortality of the other tanks in the group. This
"coincidence" should be further investigated to determine if this
increased mortality has a systematic cause. Overall, Z = 1.10. The
probability of a standard normal random variable exceeding this val-
ue by chance is 0.136. Thus there is at most a marginal suggestion
of some possible tank to tank variation, but nothing conclusive.

Jarvinen Compound B

Embryo Mortality

There are two tanks per treatment group, approximately 50 embryos
per tank (actually, between 48 and 57 with an average of 51.2). The
results from the EXAX2 calculations are shown in Figures VIII.25 to
VIII.30 and are summarized below. The pooled significance level cal-
culations are given below the results for group 6. The probability
of a standard normal deviate exceeding 2.54 is 0.005.

Embryo Mortality

"(Chi Sq) (Ai) (-2ZnAi) E (-2tnAi) Var (-2ZnAi)

Trt Method XSQOBS AI YY EY VARY
1 Asympt 6.51208 0.01071 9.07234 2.0 4.0
2 EXACT 1.78430 0.27477 2.58361 1.52811 3.23307
3 EXACT 3.05250 0.15951 3.67136 1.17120 2.77808
4 EXACT 0.00085 1.0000 0.00000 1.04511 1.38125
5 EXACT 0.74812 0.43704 1.65548 1.45242 2.94750
6 EXACT 4.75938 0.05966 5.63828 1.52125 3.17408

SY = 22.62107 YMU = 8.71816 SVARY = 17.51398
* Z = 2.54488
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Groups 1 and 6 show significant differences between mortality rates
in replicate tanks. Overall (Z = 2.54) the heterogeneity statistic
is significant at a E 0.005 level. Thus overall there is strong sta-
tistical evidence of tank to tank heterogeneity.

Group 1 shows considerable tank to tank heterogeneity in response,
group 6 shows moderate tank to tank heterogeneity in response, and
group 3 shows marginal tank to tank heterogeneity in response.

If we plot mortality rate by group number we obtain

Embryo mortality rate

.30

.25 x

.20

.15 x x

.10 x x

.05 x x x x
x0 x x p.Group

1 2 3 4 5 6

In agreement with the DeFoe and Holcombe and Phipps embryo mortality
results, we see no trend in embryo mortality rate with increasing
toxicant concentration. We see tank to tank heterogeneity in group
1 and to a lesser extent in groups 3, 6. There is the suggestion
that the response from tank 1 of group 1 might be an outlier. This
will be considered further in section X.

Fry Mortality

There are two tanks per treatment group, approximately 15 fry
per tank (between 14 and 16 with an average of 14.9). The results
from the EXAX2 calculations are shown in Figures VIII.31 to VIII.36
and are summarized below. The pooled significance level calcula-
tions are given below the results for group 6. The probability of
a standard normal deviate exceeding -0.84 is 0.80.

Fry Mortality

(chi sq) (Ai) (-2/nAi) E(-2/nAi) Var(21nAi)
Trt Method XSQOBS AI YY EY VARY
1 (Row total = 0) 0.0 0.0 0.0
2 (Row total = 0) 0.0 0.0 0.0
3 (Row total = 0) 0.0 0.0 0.0
4 (Row total = 0) 0.0 0.0 0.0
5 asympt 0.13393 0.71439 0.67264 2.0 4.0
6 (Row total = 0) 0.0 0.0 0.0
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SY = 0.67264 YMU = 2.0 SVARY = 4.0

Z = -0.84013

This test does not reveal the concentration-response curve very well.
In groups 1-4 no fry died while in group 6 all the fry died. Thus the
tables are degenerate in 5 of the 6 treatment groups. In group 5 there
is no suggestion of tank to tank heterogeneity. Thus overall, there
is no suggestion of tank to tank heterogeneity.

In summary we have seen several different degrees of tank to
tank heterogeneity within groups in the three toxicity tests studied.
With respect to embryo mortality the DeFoe test shows no suggestion
of heterogeneity with the exception of an isolated outlier, the
Holcombe and Phipps test reveals possible suggestion of heterogeneity,
and the Jarvinen test reveals strong suggestion of heterogeneity but
this may also be due to an outlier. With respect to fry mortality
the DeFoe and Jarvinen tests show no suggestion of tank to tank
heterogeneity within groups. The Holcombe and Phipps tests shows
possible suggestion of tank to tank heterogeneity but the abberrant
looking response originates in precisely the same tank as does the
aberrant looking embryo mortality response. This raises questions
about both responses. In brief, there does not appear to be very
much tank to tank heterogeneity within groups and that which does
occur may be due to isolated outlying results.
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IX. ADJUSTMENTS TO ACCOUNT FOR TANK TO TANK HETEROGENEITY WITHIN TREAT-
MENT GROUPS

A. Background, Derivations, and Discussions

We have consit-rRd the problem of testing for tank to tank
heterogeneity within treatment groups. The results of such test
will influence the way we treat the data in subsequent analyses.
Many methods for analyzing qualitative dose response data tacitly
assume that there is no tank to tank variation in response rates
within groups. Binomial distribution theory is used on data
pooled across tanks within groups. Sometimes the assumption of
lack of tank to tank heterogeneity is reasonable, as we have
seen with the DeFoe and Jarvinen fry mortality data. Sometimes
there is borderline statistical evidence of tank to tank hetero-
geneity, as was the case with the Holcombe and Phipps test
(both for the embryo mortality and fry mortality data). In other
situations, such as in the embryo mortality data from Jarvinen's
test on methyl parathion encapsulated, there is stronger statis-
tical evidence of tank to tank heterogeneity, in at least some

of the treatment groups.

In this section we consider methods for accounting for tank
to tank heterogeneity when it exists. Three main approaches are
possible.

1. We can formulate models that explicitly account for tank to
tank heterogeneity within groups and fit these models to the
data by specialized techniques such as maximum likelihood
estimation, using special purpose computer programs. Two

such models are the beta binomial [21] and the correlated
binomial [22]. This approach requires the formulation of
specialized models and development of specialized programs
to implement these analyses. Thus such analyses will be
difficult for experimenters to carry out and the results of
such analyses will be more difficult to interpret.

2. We can carry out analyses on a per tank basis rather than
on a per fish basis. That is, summary values of such as
percent mortality, average weight gain, etc are calculated
within each tank and are then used as basic values for sub-
sequent analyses. This is currently the most commonly used
approach for analyzing fish toxicity data. While it does
correctly account for possible tank to tank heterogeneity,
it does so at the cost of considerable reduction in sensiti-
vity. Namely, the data from perhaps 50 to 100 fish or embryos
per group are summarized by just two to four summary values.
This leaves very few degrees of freedom for estimating error
and so diminishes the sensitivity of the subsequent procedures.
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3. We can adjust the data to reflect the increased variability

due to tank to tank heterogeneity and then use "standard",
binomial based techniques on the adjusted "data". This third
approach is a workman-like approach and has the dual virtues
of being simple to carry out and of permitting the use of
"standard" statistical procedures and computer programs for
subsequent analyses.

Heterogeneity among tanks within groups can be alternatively re-
garded as correlation among the responses of the various fish within the
same tank. Such correlation is usually positive and this has the effect
of increasing the variability of statistics over and above that which
would be assumed under a binomial model.

The increased variability can be accounted for by reducing the
actual sample size in each tank to an effective sample size and then
disregarding the correlation. The number of responses is reduced propor-
tionately so that the observed response rate within each tank remains
constant. Suppose for instance there are 40 embryo in a tank and 8 die.
We thus have an observed response rate of 0.20. Suppose that the re-
sponses within each tank are positively correlated and the variance of

is inflated 20 percent by this correlation. That is

Var( ) = 1.2p(l - p)
40

Then we can regard the effective sample size within that tank as 40/1.2
= 33.33. To maintain the response rate at the observed level of .20 we
adjust the number of responses down to a corresponding effective number
8/1.2 = 6.67. We then analyze the data from this tank by ignoring the
correlation and treating the data as if we have 6.67 responses in 33.33
trials. All the standard analysis procedures, predicated on the assum-
ption of no tank to tank heterogeneity within groups, can be applied to
the modified "data".

The per tank analyses mentioned in paragraph 2 can be regarded
as a limiting case of data adjustment where we adjust the effective

sample sizes within tanks all the way down to 1.

We now consider the calculation of adjustment factors. Motiva-
tion for the adjustment procedure comes from the form of the beta bi-
nomial model [ 21]. Namely suppose Xjj is the number of responses withinij
tank j of treatment group i. The beta binomial model extends the binom-

ial model to allow for tank to tank variation within groups. Thus we
assume

Xij ' Binomial (Nij, Pij) conditional on Pij" j = 1, J
i=li, ... , I

where Pij Beta(ci Qi)

and Nij are fixed.
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Let i- i +  ii i + i

Then E(pij) = Pi Var(pij) = i (l -i)l + 0i

When 0i = 0, Var(Pij) = 0 and we are back to the case of no tank to tank
heterogeneity, at least within the i-th group. The larger 0

j is, the
greater is the extent of tank to tank heterogeneity. Oi varies between
0 and.

Now consider the distribution of Xij.

L(xij,Pij) - Binomial (Nij, pij)

(Pj Beta (ci, i).

These two facts imply that Xij has the marginal beta binomial distribu-
tion with probability function

B(V0 +ti x)

P(X1 =j x) = 1 x0,l, .,N.

It can be shown directly that

E(Xij) = Nii

Var(Xij) = Nijwi(l - i + . ]
We see that the variance of Xii is inflated over and above a binomial

variance by a multiplicative factor.

Suppose Nil = Ni = ..., J. This assumption is reasonable in
fish toxicity test where Ni. represents the number of fish or embryos
within the j-th tank of the i-th group. In this case the multiplicative

factor becomes [(l + NiOi)/(l + 0 i)] = Ki, J = 1, ... , J. Thus

Var(Xij) = N.KiPi(l - P where l<K.-. Define j Xij/Ni" pijis
the observed response proportion.

Therefore

Ki
Var(P) = i(l - Pi)  1.., J
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Thus the effective sample size is Ni/K i . As the extent of tank to tank

heterogeneity approaches 0(i.e. 0i- 0), Ki approaches I and Ni/K i ap-

proaches N i . As the extent of tank to tank heterogeneity gets greater

and greater, Ki- N i and so Ni/Ki approaches 1. Thus the two extreme sit-

uations are not adjusting the within tank sample sizes at all and adjust-

ing the within tank sample size down to 1. The latter adjustment resem-

bles performing analyses on a per tank basis rather than on a per fish

basis. Thus method 2 for accounting for tank to tank heterogeneity can

be regarded as an extreme case of method 3. Note that if N i H N and

ei  0 for all i, then K i = K for all i.

The procedure suggested here for calculating adjustment factors

is motivated by the results based on beta binomial theory, but is simpler

to carry out.

Let Xi., N. denote the number of responses and the total number of fish
respectively within tank j of group i, j 1,..., J. Letpij E Xij/Ni"

Let pi denote the average response rate within the i-th group. The actual

variance of Pij is the binomial theory variance multiplied by the infla-

tion factor K. Thus

Var(PiJ.

Ki - pi)/N]

This suggests that we can estimate Ki by estimating Var(Pij) and pi by

their sample analogwes. Let

- 1 -J -1 J -1 J "2
i j= iNj , Pi - j=lpij' Var(pij) 0 j=l 0 ij i

denote the average sample size, the average observed response rate, and

the sample variance of response rates within the i-th group respectively.

Note that the Nij's are generally nearly equal in fish toxicity data. We

estimate K. as
1

Ki = Var(pij)/[P1 (i  - P)/NI i ]

The numerator of this ratio is the observed variance among the Is

while the denominator is the variance that would be expected just due

to binomial variation. We adjust each Xij, Nij in the group downward by

a factor i.

Notes:

1. Ki is necessarily greater than 1 but Ki may not be. If Ki<l or

if there is no statistical evidence of tank to tank heterogeneity

then we should not adjust sample sizes.

2. Assuming binomial theory when there is in fact tank to tank het-

erogeneity results in underestimation of the variabilities of
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the various statistics calculated. Thus hypothesis tests comparing
treatment group and control group response rates will reject more
often than they should, thereby resulting in underestimation of no-

effect levels. However the opposite effect occurs with respect to
inferences about safe concentrations based on dose response curves.
Underestimation of variability results in overly large lower confi-
dence bounds on safe concentration. A nominal 95% lower confidence
bound may in fact be just an 80% lower confidence bound.

3. The decision as to when to adjust sample sizes downward should be
reasonably liberal, perhaps when there is statistical evidence of
tank to tank heterogeneity at Lhe ot = .20 or the a = .25 level.
However Ki must always be greater than or equal to 1.

4. The calculation of Ki by means of rdtios o variances is ineffi-
cient. A more precise way of determining Ki would be to estimate
8i from the data by maximum likelihood estimation and substitute
this estimate, 0i, into the expression for Ki. Such an estimate
would always be greater than or equal to 1. However such an app-,
roach would require special purpose programs. The estimation of K.
as discussed in this section is simpler and can be carried out by
hand calculation. However in the future we will look in calculation
of Ki's by means of maximum likelihood estimation based on the beta
binomial model.

5. We can calculate separate Ki's for each treatment group based on

the responses solely from the tanks in that group. Alternatively
if Ni = N for all i and if 0i = e for all i then Ki = K for all

i. We can then calculate a common inflation factor K for all
treatment groups. The question of whether we should fit separate

adjustment factors within each group or a single common factor is
a research problem in its own right. We defer the answer to that
question to future work and in this report confine attention to
fitting common adjustment factors for all groups.

If it is sensible on biological grounds, results on tank to
tank heterogeneity observed in previous similar tests might be

combined with current results to obtain a more accurate adjust-

ment factor.

6. The adjustment procedure might take into account the statistical

precisions of the estimates Ki, K. A conservative way to do this
would be to use upper confidence bounds on Ki, K as adjustment

factors rather than the point estimaLes. This modification will

also await future work.

B. Illustrations

We illustrate the application of this adjustment procedure to several
sets of data. First consider the fry mortality data of Holcombe and Phipps

for compound D. From the preliminary test of tank to tank heterogeneity

within treatment groups we conclude that there is at most marginal
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statistical evidence of tank to tank heterogeneity within treatment
groups. (The observed significance level is 0.14). In this example
J = 4, N = 25 for all i, j.

Group 1: Pl = 0.08, P = 0.08, P = 0.04, 4 = 0.04, i = 0.06,

N = 25, Var(pl.) = 0.00053, 1il - ),=N= 0.00226

"^Var(p 0.00053 0.236
1K= ^ 0.00226

A A A AA

Group 2: 0.1223 =0.08, P0.0 8, .08, P2 0.08,
P2 1 O , 2 2 O23 244.0p

N2 = 25, Var(p2j) = 0.00107, P2 (l - p2 )/N2 = 0.00294

Var(p 2 j) 0.00107
K 2 - - 0. 3622 2 - )N 0.00294

A A A A A

Group 3: p = 0.08, = 0.00 = 0.20, p = 0.04, = 0.08,". 31 P32 0 '0 P33 P34 ' 3'

N 3  25, Var( 3.) = 0.00747, p 3 (l - p 3 )/R3  0.00294

3Var(P3j) 0.00747

3K 2.5363 0.00294 2.3

[p3 (l - p3)/N] 0 2

Group 4: P41 0.16, P42 0.20, P 0.16, P 0.00, = 0.13,

SP4 P4 4  P4

N4  25, Var(p) 0.00787, p4 (l - )/K = 0.00452

Var(p4 )
K = - - 0.00787 =1.739

[p4 (1 -0.00452

A A A A -

Group 5: P5 1  0.92, p5 2 = 0.84, p53= 0.64, p5 4 = 0.76, p = 0.79

N 5 25, Var(p5) = 0.01427, P5(l - p5)/N = 0.00664

5Var(P5 ) 0.01427
K 0.00664- 2.150

5 [p 5 ( - p5)/RN5] .06
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Group 6: P61 P62 P63 P64 1.0, P 1.0, N 25, Var(P = 0.0,

P6 (l - p6 )/N6 = 0.0

K is indeterminate and so we take it to be 1.0.
6

Thus,

6.
E Ki

- i=l 0.236 + 0.362 + 2.536 + 1.739 + 2.150 + 1.000
K .6 6 1.337

K is the average adjustment factor which is used to adjust
the observed sample sizes to effective sample sizes. The sample sizes
are adjusted downward so as to maintain the observed response rates with-
in each tank. The results of the adjustment procedure are presented in
Table IX.l. These adjusted values are used as basic input "data" for
subsequent analyses. We then proceed as if there is no tank to tank
variation within groups. The extrabinomial variation has been accounted
for by the adjustment procedure.
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TABLE IX.l EFFECTIVE SAMPLE SIZES AND RESPONSES IN HOLCOMBE AND PHIPPS
COMPOUND D FRY MORTALITY DATA AFTER ADJUSTMENT

FOR TANK TO TANK HETEROGENEITY

Group Tank A Tank B Tank C Tank D

1 Dead 1.50 1.50 0.75 0.75

Live 17.20 17.20 17.95 17.95

Total 18.70 18.70 18.70 18.70

2 Dead 2.24 0.75 1.50 1.50

Live 16.45 17.95 17.20 17.20

Total 18.70 18.70 18.70 18.70

3 Dead 1.50 0.00 3.74 0.75

Live 17.20 18.70 14.96 17.96

Total 18.70 18.70 18.70 18.70

4 Dead 2.99 3.74 2.99 0.00

Live 15.70 17.96 15.70 18.70

Total 18.70 18.70 18.70 18.70

5 Dead 17.20 15.70 11.97 14.21

Live 1.50 2.99 6.73 4.49

Total 18.70 18.70 18.70 18.70

6 Dead 18.70 18.70 18.70 18.70

Live 0.00 0.00 0.00 0.00

Total 18.70 18.70 18.70 18.70
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We next illustrate the adjustment procedure on the embryo

mortality data of Jarvinen for compound B. The preliminary test

eof tank to tank heterogeneity within treatment groups is highly signifi-
cant (Z = 2.54, corresponding to an observed significance level of 0.005).

This statistical significance is due to group 1 (control) which shows

strong tank to tank differences, group 6 which shows a moderate tank to

tank difference, and group 3 which shows possible indications -- but at

best weak statistical evidence -- of tank to tank heterogeneity.

In this example J = 2, Nij are close to Ni (within 1) except for

group 2. We will assume here that Nij = Ni when calculating Ki's. This

assumption can be refined somewhat, if necessary, to calculate 
separate

adjustment factors for each tank, but we will not do that here. This will

await the development of adjustment procedures based on maximum likelihood

estimation.

Group = 2 = 04, p 14/101 0.138, N 51, N
1112 p1112

50, N1 = 50.5

Var(p..) = 0.019 P1 (1 - p1)/N = 0.00236

^- Var(p..)
K 17- 1 - -.019 8.056
1[p( I - pi)i .00236

Group 2: P21 105, 22 = .038, p2 = 8/109 .073, = N = 52,

N = 54.5
2

A A A

Var(2j) .0022 P2 (l = p2)/N2 = .00124

Var(P2 ) .0022
K 2  =7 a

[p2( I  p2 )/IN2] .00124
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Group 3: P = .04, P = 1.4, p= 9/100 = .09, N3 1  N32 N3 50
P31 p3 2  p3  31 N32 N=5

Var(P 3.) = .005 P 3 (l - p3 )/N3 = .0016

Var(fi)
Srj .005

K3 = 3( _ .0016 3.053

Group 4: P .02, = .021, p= 2/98 = .020, N41 50, N42 8,
41 p42  p4  41 4 8,

N= 49
4

Var(14 3.4 x AP4
(I - IN4 .00041

Var(P4j) _ 3.4 x 10- 7  -4

K -A 8 x 10 =0K4
[ 4 (i - p4 )IN4 1 .00041

Group 5: P .077, = .038, P 6/105 = .057, N = 52, 5
5t p5 2  p5  N1 52

53, N = 52.5

Var(p5j) = .00077 P5 (I - p5 )/N5 -00102

Var(P 5j) .00077K 5  - -- -
=K-5  - .00102
[P5(l - P5)N5 l

IP N61 p 62 5

Group 6: p61  .02, A62 .137, p6  8/101 .079, N 50, N = 51,

N = 50.5

Var(p6.) = .00687 P6 (l - p6 )/N6 = .00144

A _ Var(P6.) _ .00687

K6  - ) .00144

[P6(l - P6)IN 6 0
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Assuming that the relatively high embryo mortality response in group I
tank 1 is not an outlier and that the inflation in variability is const-

ant across groups, we calculate an average adjustment factor across treat-
ment groups.

6,Thus,
EK.

i=l' 8.056 + 1.799 + 3.053 + 0 + 0.750 + 4.77
K 6 3.071

K is the average adjustment factor across groups. Alternatively we
might use the separate adjustment factors within groups. The results of
the adjustment procedure are presented in Table IX.2. These adjusted
values can be used as basic input "data" for subsequent analyses. We pro-

ceed with further analyses as if there is no tank to tank heterogeneity
within groups.
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TABLE IX.2 EFFECTIVE SAMPLE SIZES AND RESPONSES IN
JARVINEN COMPOUND B EMBRYO MORTALITY

DATA AFTER ADJUSTMENT FOR TANK
TO TANK HETEROGENEITY

Group Tank A Tank B

1 Dead 3.91 0.65

Live 12.70 15.63

Total 16.61 16.28

2 Dead 1.95 0.65

Live 16.61 16.28

Total 18.56 16.93

3 Dead 0.65 2.28

Live 15.63 14.00

Total 16.28 16.28

4 Dead 0.33 0.33

Live 15.95 15.30

Total 16.28 15.63

5 Dead 1.30 0.65

Live 15.63 16.61

Total 16.93 17.26

6 Dead 0.33 2.28

Live 15.95 14.33

Total 16.28 16.61
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X. OUTLIER DETECTION PROCEDURES

A. Background

Another preliminary analysis of importance is the detection

of responses which do not appear to be in conformance with the

substantial majority of responses. Such exceptional responses

are often referred to as "outliers". Outlier detection proce-
dures are used to decide how extreme a response must be in order
to rule out the possibility that its value is reasonably likely
to be due just to random variation. Consider for example the
percentage embryo mortality responses from DeFoe's test on

compound C that are displayed in Figure VI.l. We remarked that

the mortality rate in group 2, tank A appears to be widely

separated from the others. Can such a separation be explained

by random variation or is there some systematic factor peculiar

to this tank? Similarly, the percentage embryo mortality observed

in group 1, tank A in Jarvinen's test on compound B is widely

separated from the other responses. Can a separation of this

magnitude be reasonably explained by random variation or is there

some systematic factor peculiar to this tank?

Barnett and Lewis [ 23 ] describe a wide class of outlier de-
tection procedures, to screen out those extreme responses that

cannot be reasonably attributed to random variation. They inclu-
de a procedure appropriate for binomial responses (section 3.4,

pp 122-124). Their procedure is based on the assumption of n
independent responses XI, ..., Xn, each binomially distributed

with parameters m and p. They base their outlier test on the
exact conditional distribution of maxXj given EjX. In our data
n represents the number of tanks per group, m is the number of
embryos or fry per tank (assumed to be equal from tank to tank),
and Xj is the number of responses (e.g. dead embryos) per tank.
Their tabulation, Table XIX (pp 320-322) includes only the range
of values n>3, m>lO X(n) = m, m - 1, m - 2. This is quite in-
adequate for the ranges of parameters and responses that arise in
toxicity tests. Thus their exact conditional test is not too

useful for our needs.

Barnett and Lewis state, on page 123, that an alternative,

approximate approach to outlier detection in the binomial case
is to transform {Xj/m} using the arc sine transformation and
then apply normal theory based procedures to these transformed

values. This approach, and variants on it, are in the spirit of
the methods that we recommend in the remainder of this section.

We consider both graphical and numerical procedures.

The theoretical bases of our suggested methods are discussed
in Appendix AX.
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B. Application of Outlier Detection Procedures to Fish Toxicity
Data

We apply the transformations discussed in Appendix AX to

construct graphical outlier detection procedures based on normal
probability plotting techniques and associated formal outlier

detection tests. We apply these procedures to the following
situations:

DeFoe: compound C

embryo mortality data

fry mortality data

Holcombe and Phipps: Compound D

embryo mortality data

fry mortality data

Jarvinen: compound B

embryo mortality data
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DeFoe compound C

I = 6, J = 2 (i.e. 6 groups, 2 tanks per group).

Embryo Mortality

Group 1 p = .41; all expected frequencies are greater than 5.
Group 2 = .51; all expected frequencies are greater than 5.
Group 3 = .37; all expected frequencies are greater than 5.
Group 4 = .37; all expected frequencies are greater than 5.

Group 5 = .39; all expected frequencies are greater than 5.

Group 6 = .38; all expected frequencies are greater than 5.

We apply the transformation suggested in case 1. Data summaries are
given below.

Calculate (- for each tank within each group.

(1/2

X. N. N,- 3j N ~ /NN(J p /Njf

Group 1

Tank A 22 50 0.41 20.5 3.478 .50 .610

Tank B 19 50 0.41 20.5 3.478 .50 -. 610

.Group 2

Tank A 32 50 0.51 25.5 3.535 .50 2.600
Tank B 19 50 0.51 25.5 3.535 .50 -2.600

Group 3

Tank A 20 50 0.37 18.5 3.414 .50 0.621
Tank B 17 50 0.37 18.5 3.414 .50 -0.621

Group 4

Tank A 16 50 0.37 18.5 3.414 .50 -1.036
Tank B 21 50 0.37 18.5 3.414 .50 1.036

Group 5

Tank A 22 50 0.39 19.5 3.449 .50 1.025
Tank B 17 50 0.39 19.5 3.449 .50 -1.025

Group 6

Tank A 19 50 0.38 19.0 3.432 .50 0
Tank B 19 50 0.38 19.0 3.432 .50 0
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To prepare the normal probability plot we order the standardized

values and plot the i-th smallest against the plotting position 100 x
(i - 0.5)/12 on the probability scale. These values are indicated below.

i 2 3 4 5 6

Ordered Value -2.600 -1.036 -1.025 -0.621 -0.610 0

Plotting Position 4.2 12.5 20.8 29.2 37.5 45.8

i 7 8 9 10 11 12

Ordered Value 0 0.610 0.621 1.025 1.036 2.600

Plotting Position 54.2 62.5 70.8 79.2 87.5 95.8

The normal probability plot of these points is shown in Figure

X.l. The plot appears perfectly symmetrical about 0 since J = 2 and so
the responses within groups have correlation -1.0. The effective sample

size is thus 6(J - 1) = 6(2 - 1) = 6 independent observations. The ref-
erence line in the plot is the standard normal distribution function. If
the response rates are homogeneous within groups then the standardized

values should lie near this line. If there is extrabinomial variation
in the data, that is random tank to tank variation within groups, then

the points should lie along a line or a curve with steeper slope than
the standard distribution function. If there are outlying responses in

the data then they should be far removed from the line or curve that
typifies the bulk of the data. This latter situation is seen to be the

case. The ' lk of the data lie very nicely along the standard normal
c.d.f. line. The values corresponding to group 2 are far removed from
this line.

To determine the extent of statistical evidence that the appar-

ent outliers did not occur just due to chance we calculate the probabi-
lity that the maximum absolute value of six independent standard normal
random variables exceeds 2.600. More precisely let ZI, Z2 , ... , Z6 be
six independent standard normal random variables. Then

P[l.max- IZ.I > 2.600] = P[at least one zj > 2.600]

j=136 6 Z
= 1 - P[all 1zjI < 2.600] = I - {P [fzi1 < 2.600]} 6  1 - (.9907)

= 0.055

This is of borderline statistical significance. We can thus infer that

based on this test there is marginal statistical evidence that group 2

contains an outlying tank.
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The appearance of Figure VI.l suggests that the response from

Tank 2A is more than a marginal outlier. We can increase the sensitiv-

ity of the above outlier test by incorporating additional information.
If we assume that there is no trend in response rates across groups then

we can estimate the response rate based on all 12 tanks and can ignore

the correction factor (1 - Nj/N)- I /2 . In general this assumption will

not hold but it seems reasonable in this example based on the appearance

of Figure VI.l and on toxicological considerations (i.e. relatively

little penetration of chemical into the embryo). The value of p based on

12 tanks is 243/600 = 0.405. The largest standardized value is that
from Tank 2A, namely

Z =  32 - (50) (.405) 3.385

[50(.405) (.595)]

What is the probability that the most extreme of 11 independent standard

normal random variable exceeds 3.385 in absolute value?

P[ m IZI > 3.385] = i- {P [IZI < 3.385} 1 - (.9997)1

J=, .12 1 Zj .81 .97

0.003

We can thus infer that, with the additional assumption of no trend in

response with increasing treatment level, there is strong statistical
evidence that the response rate in Tank 2A is an outlying value.

Note that just because the Tank 2A response is an outlier does

not in and of itself mean that the data should be discarded or disregar-

ded. Rather, the investigator needs to reexamine the records for this

tank to determine the reason for the atypical response. If it is due

to clerical error, to experimental mishap, to outbreak of a disease un-

related to the toxicant, etc then perhaps the Tank 2A response is inap-

propriate and should be disregarded. If it represents normal biological

variation then the response should be considered with the others. This

is a matter for biological judgement. Outlier detection procedures are

merely screening devices to direct attention to those places where such

biological judgement need be applied.

DeFoe compound C - Fry mortality

Group 1 = 0;
Group 2 = 0;

Group 3 = 0.05;

Group 4 P = 0.024;
Group 5 = 0.225; expected frequencies less than 5 in both tanks

Group 6 = 1.00 (q = 0);

Thus groups 1, 2, 3, 4, 6 correspond to the Poisson case 2. (In group 6

we interchange the roles of p and q). Group 5 corresponds to case 3.
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1/2I

For all groups but 5 we calculate 1 - 2 - . For group

5 we carry out an arc sine transformation

I I I I /2L J

Group 1

Tank A 0 20 0 0 .50 0

Tank B 0 20 0 0 .50 0

Group 2

Tank A 0 20 0 0 .50 0

Tank B 0 20 0 0 .50 0

Group 3

Tank A 0 20 .05 1.0 .50 -2.828

Tank B 2 20 .05 1.0 .50 1.172

Group 4

Tank A 0 21 .024 0.512 0.512 -2.049

Tank B 1 20 .024 0.488 0.488 0.843

X. N N q N./N (1 N N/) 12 /fvT -

Group 6

Tank A 0 20 0 0 .50 0

Tank B 0 20 0 0 .50 0

X. N. NjP Nj/N N ( - N./N)-I2 2vWjarcsin'. -

arcsin

Group 5

Tank A 4 20 0.225 4.5 0.50 0.20 -0.387

Tank B 5 20 0.225 4.5 0.50 0.25 0.372

To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position

100 x (i - 0.5)/12 on the probability scale. These values are indicated

below.
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i 2 3 4 5 6 7 8 9
~ordered

-2.828 -2.049 -0.387 0 0 0 0 0 0
Value

Plotting 4.2 12.5 20.8 29.2 37.5 45.8 54.2 62.5 70.8
Position

i 10 11 12

Ordered 0.372 0.843 1.172
Value

Plotting
Poitin 79.2 87.5 95.8['.-iPosition

The normal probability plot of these points appears in Figure
X.2. We note two points well below the standard N(0, 1) line. These
points correspond to Tanks 3A, 4A. Both correspond to frequencies of
0, where the normal approximation is least reasonable. Furthermore,
their companion tanks do not show up as outliers. Thus before we say
there is an outlier, we should compare the proportions in the two repli-

cate tanks to see if there is any statistical evidence of differences.

There is an exact test for the equality of two Poisson means.
Nelson [24] discusses this test in detail.

In order to use this test for detecting outlier tanks we need to
test a slightly more general hypothesis. Namely consider the 2 x 2 table.

Replicate

A D

Live X Y

Dead -NA

N N N
A B

If - <.l, 1 <.1 or if - >.9, - >.9 then we're in the Poisson case.
N A B N A NB

Now NAP X NBP implies that if P =P then / = NA/N
A A A' B B B A B A B A B.
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We thus wish to test the hypothesis

XA NA
H :-= p where p N
o AB NB

Nelson's test rejects H at level a if
0

Ym >I F(2X + 2, 2Y; 1 - a/2)
X+l - p

or if

X < - F(2X, 2Y + 2; a/2)
X - p p F(2Y + 2, 2X; 1 - t/2)

where F(vI, V2 ; y) represents the upper Y point of the F c.d.f. with

VI, V2 degrees of freedom. If Y = 0, X>O we can only carry out the one

sided test. (We have just one sided information concerning XB).

Ho: A/XB = p vs HI: XA/AB >p

Nelson's test rejects H at level a if X > pF(2, 2X; 1 - ot).
0 _

We now apply this Poisson test to the outlier detection problem.
Consider groups 3, 4. These give rise to the two extreme points on the
plot:-2.828, -2.049. Let us see if these should be regarded as outliers.

Replicate

In Group 3 we have A B

Dead 0 2 2

Live 20 18 38

20 20 40

Thus X = 0 X P (XA) P (20P )

Y =2 YP (A~)( (20PB)
o B 0 B

Since X = 0, we can carry out only a one sided test. Note that p = 1.

H 1 B > XA

We reject Ho at level a if Y > F(2, 2Y; 1 - os). In our example
Y = 2. The critical value, F(2, 4; .75) is 6.94, which exceeds 2. There
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is thus no statistical evidence of differences among the two responses
in group 3. Thus Tank 3 A is not an outlier.

We now carry out the test for group 4. The situation is less
extreme than that in group 3, however we go through with the test for
illustrative purposes.

Replicate

In Group 4 we have A B

Dead 0 1 1

Live 21 19 40

21 20 41

ThusX =  X (A) EP (21p A)

y 1 % PoB ) ( P ( 2 OpB)

Since X = 0, we can carry out only a one sided test.

H B NB20
H = - 2 0.952 p.

A N 21
A A

H: > 0.952
1 A

From our previous dLscussion (interchanging the roles of X and Y)

N
reject H if Y > p F(2, 2Y; .95) = N F(2, 2Y; .95)

0 A

= .952F(2, 2Y; .95)

In our case Y = 1, .952F(2, 2Y; .95) = (.952)(19.0) = 18.088

Thus we cannot reject H . There is no statistical evidence of0

differences in response rates among the tanks.

Thus tank 4A is not an outlier.
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Holcombe and Phipps compound D Embryo Mortality

I = 6, J = 4 (i.e. 6 groups, 4 tanks per group)

Embryo mortality

Group 1 p = 0.35; all expected frequencies greater than 5.
Group 2 p = 0.35; all expected frequencies greater than 5.
Group 3 = 0.315; all expected frequencies greater than 5.

Group 4 = 0.39; all expected frequencies greater than 5.
Group 5 = 0.335; all expected frequencies greater than 5.

Group 6 = 0.38; all expected frequencies greater than 5.

We apply the transformation suggested in case 1. Data summaries are
given below.

Calculate 1- for each tank within each group.

'/2X. - p
X. N. N. . P N /N (1 "N ) - N.

Group 1

Tank A 17 50 0.35 17.5 3.373 0.25 -0.171
Tank B 21 50 0.35 17.5 3.373 0.25 1.198
Tank C 12 50 0.35 17.5 3.373 0.25 -1.883

Tank D 20 50 0.35 17.5 3.373 0.25 0.856

Group 2

Tank A 19 50 0.35 17.5 3.373 0.25 0.514
Tank B 14 50 0.35 17.5 3.373 0.25 -1.198

Tank C 16 50 0.35 17.5 3.373 0.25 -0.514

Tank D 21 50 0.35 17.5 3.373 0.25 1.198

Group 3

Tank A 15 50 0.315 15.75 3.293 0.25 -0.263

Tank B 12 50 0.315 15.75 3.293 0.25 -1.315
Tank C 24 50 0.315 15.75 3.293 0.25 2.893
Tank D 12 50 0.315 15.75 3.293 0.25 -1.315
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X. N. Np Njq I- N -/ X  - Nj

. Group 4

Tank A 20 50 0.39 19.5 3.449 0.25 0.167
Tank B 21 50 0.39 19.5 3.449 0.25 0.502
Tank C 23 50 0.39 19.5 3.449 0.25 1.172

* Tank D 14 50 0.39 19.5 3.449 0.25 -1.841

Group 5

Tank A 18 50 0.335 16.75 3.337 0.25 0.433
Tank B 19 50 0.335 16.75 3.337 0.25 0.779
Tank C 14 50 0.335 16.75 3.337 0.25 -0.952
Tank D 16 50 0.335 16.75 3.337 0.25 -0.260

Group 6

Tank A 14 50 0.38 19.0 3.432 0.25 -1.682
Tank B 16 50 0.38 19.0 3.432 0.25 -1.009
Tank C 25 50 0.38 19.0 3.432 0.25 2.019
Tank D 21 50 0.38 19.0 3.432 0.25 0.673

To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position 100 x
(1 - 0.5)/24 on the probability scale. These values are indicated below

i 1 2 3 4 5 6 7 8

ordered -1.883 -1.841 -1.682 -1.315 -1.315 -1.198 -1.009 -0.952
Value
Plotting 2.1 6.2 10.4 14.6 18.7 22.9 27.1 31.2

Position

i 9 10 11 12 13 14 15 16

Ordered -0.514 -0.263 -0.260 .-0.171 0.167 0.433 0.502 0.514
Value

Plottiq,s o .4 39.6 43.7 47.9 52.1 56.2 60.4 64.6
Position
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i 17 18 19 20 21 22 23 24
a ordered

Ordee 0.673 0.779 0.856 1.172 1.198 1.198 2.019 2.893
Value

Plotting 68.7 72.9 77.1 81.2 85.4 89.6 93.7 97.9
Position

The normal probability plot of these points is shown in Figure
X.3. Due to the within group correlation, the effective sample size is
6(J - 1) = 6(4 - 1) = 18 independent observations. Is the Group 3, Tank
C response an outlier? To determine the extent of statistical evidence
that the apparent outlier did not occur just due to chance we calculate
the probability that the maximum absolute value of 18 independent standa-
rd normal random variables does not exceed 2.893. Let Z1 , Z2, .. Z.
be 18 independent standard normal random variables.

_[mIz,.8< 18
P[ ma I > 2.893] = 1 - P[all Z _< 2.893] 1 - (.9962)

= 0.066.

This is of borderline statistical significance. We can thus infer that
there is marginal statistical evidence that Group 3 contain an out-
lying tank.

Note that from the scatter plot of embryo mortality vs treatment
in Figure VI.5. It is clear that there is no trend in the data and that
the Tank 3C response does not stand out from those of the six groups as
a whole. If we knew that there was no trend over groups we could constr-
uct a more powerful test by pooling all the tanks and calculating a co-
mmon . However there is no point in doing this since we see from the
scatter plot that Tank 3C is not out of line with respect to the pooled
responses, but rather just with those in Group 3. The reason for this,
if any, might be pursued.

Holcombe and Phipps compound D

I = 6, J = 4 ( i.e. 6 groups, 4 tanks per group)

Fry Mortality

Group 1 p = 0.06
Group 2 P = 0.08
Group 3 p = 0.08
Group 4 f = 0.13; expected frequencies less than 5 in each tank.
Group 5 p = 0.79; all expected frequencies greater than 5.

Group 6 0 = 1.00 (q = 0).

Thus groups 1, 2, 3, 6 correspond to Poisson case 2. Group 4 corresponds
to case 3 (possibly to case 2). Group 5 corresponds to case 1.
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Thus for groups 1, 2, 3,l'
we calculate (1 - N/N /2 2 VT - A

For group 6 we calculate (1 - N1 N)' 2 2 [A-x. - ]

For group 4 we calculate ( - N IN)-1/2  2A [arcsinvT-
.. %:"= .. ar csinvP-]

For group 5 we calculate (1 - N/N)-1/2 X. Nj

1. N P N IN ( N - N N 1/ /2  2[v'W - A

Group 1

Tank A 2 25 .06 1.5 .25 0.438
Tank B 2 25 .06 1.5 .25 0.438
Tank C 1 25 .06 1.5 .25 -0.519
Tank D 1 25 .06 1.5 .25 -0.519

Group 2

Tank A 3 25 .08 2.0 .25 0.734
Tank B 1 25 .08 2.0 .25 -0.957
Tank C 2 25 .08 2.0 .25 0
Tank D 2 25 .08 2.0 .25 0

Group 3

Tank A 2 25 .08 2.0 .25 0
Tank B 0 25 .08 2.0 .25 -3.266
Tank C 5 25 .08 2.0 .25 1.898
Tank D 1 25 .08 2.0 .25 -0.957

-. 7
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i ': ~ ~X Nj j N N
IN1/ f aresin]

Group 4

Tank A 4 25 .13 3.25 .25 .16 .493
Tank B 5 25 .13 3.25 .25 .20 1.094
Tank C 4 25 .13 3.25 .25 .16 .493
Tank D 0 25 .13 3.25 .25 0 -4.259

N 0 INYV -~wq 1 N N) 1/2X N "\

Group 5

Tank A 23 25 .79 19.75 .25 2.037 1.842
Tank B 21 25 .79 19.75 .25 2.037 0.709
Tank C 16 25 .79 19.75 .25 2.037 -2.126

4 Tank D 19 25 .79 19.75 .25 2.037 - .425

Nj-Xj N. 4 N. ( N i NN [j -XLj~ - V9.4
N11  /

Group 6

Tank A 0 25 0 0 .25 0
"Tank B 0 25 0 0 25 0

Tank C 0 25 0 0 .25 0
Tank D 0 25 0 0 .25 0

To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position 100 x
(i - 0.5)/24 on the probability scale. These values are indicated below.

1 . 2 3 4 5 6 7

~Ordered eValue -4.259 -3.266 -2.126 -0.957 -0.957 -0.519 -0.519

:. PlottingPosition 2.1 6.2 10.4 14.6 18.7 22.9 27.1
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8 9 10 11 12 13 14 15 16
Ordered -0.425 0 0 0 0 0 0 0 0.438
Value

4 Plotting 31.2 35.4 39.6 43.7 47.9 52.1 56.2 60.4 64.6
Position

17 18 19 20 21 22 23 24

Ordered 0.438 0.493 0.493 0.709 0.734 1.094 1.842 1.898
Value

Plotting 68.7 72.9 77.1 81.2 85.4 89.6 93.7 97.9
Position

The normal probability plot appears in Figure X.4. It appears
that the lowest 3 points are well below the N(0, 1) line. These three
points correspond to Tanks 4D, 3B, 5C. Tanks 4D, 3B each have observed
frequencies of 0. This is the region where the normal approximation is
the poorest. Thus before we say that there are any outliers, we should
compare the tanks within the treatment groups using a more appropriate
exact test.

First let's look at tank 3B.

Group 3:
Replicate

_ _ A B C D _

Dead 2 0 5 1 8

Live 23 25 20 24 92

25 25 25 25 100

Tank 3 B is the suspected outlier. Let's compare its results to those
in the other 3 tanks.

Replicate

_._ B A. C. D

Dead 0 8 8

Live 25 67 92

25 75 100
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We can carry out an exact test by means of the Fisher - Irwin test. (See
Lehmann [ 25], section 4.5, Lieberman and Owen [26]).

To carry out the Fisher - Irwin test we adopt the following nota-
tional identifications for the table.

Grp 1 Grp 2

Spec. X k

Ordin. K k

n N-n N

Where
k < N - k, n < N - n, k < n.

i.e. k is the smallest marginal entry
n is the smallest marginal entry in the other margin.
X is the cell entry in the cell corresponding to the (n, k)
marginal categories.

In our example

B A, C9 D

Dead x = 0 8 8 = k ("special")

Live 25 67 92

25 75 lo = N

n

Thus k = 8, n = 25, N = 100, X - x = 0. We enter the Lieberman and
Owen hypergeometric distribution tables at these parameters. We obtain
P(X< 0) = 0.091. Thus a two sided probability is 0.182. This is quite

", marginal, at most.

Now group B was not chosen a priori, but rather as the most extreme
of the 4 responses. Thus to get a feeling for how extreme this behavior

4is we carry out the following approximate calculation. P(most extreme of
4 independent responses is more significant than 0.182 level) = 1 - P
(all 4 responses less significant than 0.182 level) = I - (1 - 0.182)4

= 0.55. We thus conclude that there is no statistical evidence that the
response rate in Tank 3B differs significantly from the responses rates
in the other tanks in that group. We conclude that the extreme behav-
ior of the standardized value is due to the inapplicability of the nor-
malizing square root transformation when X = 0.
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We now consider the responses in Group 4.

Group 4
Replicate

A B C D

Dead 4 5 4 0 13

Live 21 20 21 25 87

25 25 25 25 100

Tank 4D is the suspected outlier. Let's compare its results to those
in the other 3 tanks.

D A, B, C

Dead 0 = x 13 13 = k

Live 25 62 87

25 75 100= N
It
n

Thus here k = 13, n 25, N = 100, X = x 0.

Entering the Lieberman and Oven tables we find that
P(X < 0) - 0.018 this is a one sided probability
Thus the observed two sided significance level = 2(0.018) = 0.036

Now tank D was not chosen a priori. Taking selection into account we have
P (most extreme of 4 tanks more significant than 0.036 level) =
1 - P (all 4 tanks less significant than 0.036 level)
= 1 - (1 - .036)4 = 0.14.

There is thus at most a marginal suggestion that the response rate in
Tank 4D differs significantly from the response rates in the other tanks
in that group. The very extreme appearance of the standardized value
on the normal probability plot is again due to the inapplicability of
the normalizing transformation when X = 0.

We now consider the responses in Group 5.
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Group 5 Replicate

A B C D

Dead 23 21 16 19 79

Live 2 4 9 6 21

25 25 25 25 100

Tank 5C is the suspected outlier. Let's compare its results to those in
the other three tanks.

C A, B, D

Dead 16 63 79

Live 9 = x 12 21 = k n fi5.25

25 75 100 = N

:11 n

In this case the "special" category is "live". Thus k = 21, n = 25,
N- 100, X = x = 9. Entering the Lieberman and Owen tables we find
that

P(X > 9) = 1 - P(X < 8) = 1 - .9638 = .0362.

Thus the two sided significance probability is 2(.0362) = .0724. This
is at best marginal. Now tank D was not chosen a priori. Taking
selection into account, we have

P (most extreme of 4 tanks most significant than .0724 level) =

1 - (1 - .0724)4 = .260

Thus tank D is not significantly different than the others. Since
the expected frequencies are fairly large in this example we can
also carry out an asymptotic test.
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C A, B, D

Dead 16 379
(19.65) (59.25)

9 12 21
Live (5.25) (15.75)

25 75 100

Expected frequencies are in parentheses.

X2 0-E2 (6-9.52 22 .22
2 (16 - 19.75) + (63 - 59.25) (9 - 5.25) (12 - 15.75)2

E 19.75 59.25 5.25 15.75

2
Thus X 4.53

2 2
Under the hypothesis of homogeneity, X is distributed as X1 .

2V

Thus X is significant at the 0.033 level, in close agreement with the
results based on the Fisher - Irwin test, namely lack of statistical
evidence of differences when selection is accounted for.

Since the normalizing transformation is appropriate for the range
of responses in Group 5, we can also regard the normalized value from
Tank C, -2.126, as the minimum of 6 x (4 - 1) - 2 = 16 standard normal
deviates (we disregard those responses corresponding to Tanks 3B, 4D).
The probability that a standard normal deviate is less than -2.126 is
0.017. The probability that the minimum of 22 independent standard
normal deviates is less than -2.126 is thus 1 - (1 - 0.017)16 = 0.25.
Again there is no statistical evidence that this value is an outlier.

.4

Jarvinen compound B

I = 6, J = 2 (i.e. 6 groups, 2 tank per group)

Embryo Mortality

The normal probability plot of standardized values (based on the
case 1 transformation) is shown in Figure X.5. The plot appears perfect-
ly symmetric about 0 since J = 2. The effective sample size is 6(J - 1)
= 6 independent observations. The reference line in the plot is the
standard normal distribution function.

The behavior of the plot suggests the presence of extrabinomial
variation (i.e. random tank to tank variation within groups) in the data
rather than outliers. This is seen by the fact that the points lie along
a curve with steeper slope than that of the standard normal distribution
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-54

function. The extreme points are not outliers since they lie directly on
the curve determined by the other values. Thus the conjecture made in
section VIII concerning the presence of outliers is not home out. Note
that this behavior is directly opposite to that observed in Figure X.I.

If we draw a line through the plotted points in Figure X.5 the
estimated standard deviation (corresponding to the difference betweenthe 84th and 50th percentiles) is about 1.7. Thus the estimated variance

is (1.7)2 = 2.9. This values is very close to the factor K = 3.07 that
we utilized in section IX to adjust these data.
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XI. TESTING FOR CONCENTRATION RELATED EFFECTS

A. Background

After we have completed preliminary graphical displays, tests
for tank to tank heterogeneity, and outlier detection procedures
we are ready to proceed to the main portion of the data analysis.
This involves comparing responses across treatment groups to ar-

rive at an inference about what constitutes an "acceptable"
concentration. If no tank to tank heterogeneity is evident in

the data then the original data may be pooled across tanks within
groups and subsequent analyses carried out on a per fish basis
or alternatively the data can first be adjusted to reflect the
increased variation and the adjusted "data" can be pooled across

tanks and analyzed on a per fish basis. As remarked earlier, we
prefer the latter approach.

Before considering statistical procedures to determine accept-
able concentrations, we must first define what is considered to
be acceptable. According to the guidelines for early life stage

tests, [8], "...A lower chronic endpoint is the highest tested

concentration.. .which did not cause the occurrence (which was
statistically significantly different from the control at the
95% level) of any specified adverse effect and below which no
tested concentration caused such an occurrence.. .An upper chronic
endpoint is the lowest tested concentration.. .which caused the

occurrence (which was statistidally significantly different from
the control at the 95% level) of any specified adverse effect
and above which all tested concentrations caused such an occure-
nce". We are thus interested in determining which concentrations
yield (statistically) significantly different results than the
control group. In a later section we will present an alternative
notion of acceptable concentration.

Opinion: For the purpose of testing hypotheses concerning heter-
ogeneity of response rates across groups or of constructing con-
fidence intervals to compare treatment group and control group
response rates, unless there is relatively strong statistical
evidence of heterogeneity among tanks within groups (e.g. obser-
ved significance level less than 0.05 or 0.10) then act as if
there is not heterogeneity of response from tank to tank within
groups. Base subsequent tests and confidence intervals on the
original (i.e. unadjusted) data, pooled across tanks within
groups.

This suggestion reflects a conservative viewpoint with res-
pect to the conclusions drawn from such subsequent analyses.
Namely, suppose that such tank to tank variation within treat-
ment groups exists but we do not detect it. Then we proceed as
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if none exists. Thus the "true" variability of the test statis-
tics that we use will exceed the assumed variability. Thus if we

carry out a test at nominal level c = 0.05, say, the "true" alpha
level will in fact be greater than the nominal.

Inflating the actual a - level over the nominal level makes
the test more prone to reject the hypothesis of equality of treat-
ment and control groups than an actual a - level test. Thus if
we err, it will be on the side of declaring a treatment group
significantly different from the control group when it in fact
is not. This is conservative.

Carrying out analyses on a per tank basis drastically reduces
the degrees of freedom available for estimating variability of the
test statistics, especially when there are very few tanks per
treatment group. This diminishes the power of subsequent tests
to compare treatment groups with control group, thus causing
acceptance of the null hypothesis more often than necessary when
it is false. That is, suppose there is little or no tank to tank
heterogeneity within groups but we still carry out our analyses
on a per tank basis "to be safe". Then the reduced power of the
procedures based on per tank analyses will cause us to miss mode-
rate differences between treatment groups and control groups that
we might be able to detect if we were analyzing on a per fish basis.
Thus we would be erring on the side of failing to detect departures
from the control group response rates. This is unconservative.

It should be noted that exactly the opposite is true when we

fit dose response curves to the data. Namely underestimation of
variability results in an increased lower bound on safe concent-
ration, which is unconservative. Thus for the purpose of fitting
dose response curves perhaps we should adjust for tank to tank
heterogeneity if the overall significance level is as great as
o = .20 or perhaps even a = .50.

" B. Chi Square Test of Homogeneity Across Treatment Groups

The most commonly used overall test for differences in mort-
ality or abnormality rates across treatment groups is the chi
square test for homogeneity. It is analagous to the shotgun
analysis of variance F test for quantitative data. Since the
preliminary tank to tank heterogeneity tests on the DeFoe and on
the Holcombe and Phipps data sets were at most marginal, we use
the original data. However the same test could be applied after
adjusting the data.

Let pI, P2, "''' p1 denote the response probabilities in the

I (treatment and control) groups. We wish to test the hypothesis
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H: p= P2 - ". PI"0 p1 po
The chi square test is an overall test of this hypothesis (i.e.
a shotgun test). It is based on the following statistic:

Let (Xij, Nij) denote the number of responses and the number
of fish, respectively, in the j-th tank within the i-th treatment
group

i fi , ... , I; j = 1, ..., J.
Let

J J I J I J
Ni+= > Nij, X+ = Xij N++ = Ni~j X,+= > >Xij" Then

J=l j=l i~l,j=l j1lj=l

X+
p+ .- is the estimate of the common value of p under H0.

2 (x+ -
2

22i=l

is the X test of Ho . Under Ho, X2 % X2_. Since the chi square

test is sensitive to all kinds of departures from Ho, it is not
tailor made to be sensitive to ordered alternatives, of the type
most commonly encountered in toxicology. We will discuss this
further later.

The chi square test is easy to carry out from a computational
standpoint since many standard programs are available. For ex-

*. ample the procedure PROC FREQ in the SAS statistical computing
system [12] can be used to carry out this test. The program
BMDP1F in the BMDP statistical computing system [9] can also
be used for this purpose. Figure XI.I illustrates output from
SAS PROC FREQ to test for homogeneity of response rates across
groups for the fry mortality data from the Holcombe and Phipps
test on compound D. This test is based on data pooled across
tanks within groups. Of course, the test rejects Ho very strong-
ly, as it should based on the appearance of the preliminary sca-
tterplot.
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We have also incorporated this test into our EXAX2 computer
program [ 14]. We pool responses across tanks within groups and
compute the chi square test. If expected frequencies within
each cell exceed the cutoff, we evaluate the significance of chi
square based on its asymptotic distribution under Ho .

If any expected frequency is less than the cutoff we evaluate the
exact small sample distribution of chi square, conditional on the
margins, by enumeration as discussed in the section on the exact
chi square program.

We illustrate this feature of EXAX2 with the DeFoe compound

C and with the Holcombe and Phipps compound D data. We tested

for heterogeneity of response rates across groups for the fry

mortality and the embryo mortality data. The results of these

tests are shown in Figures XI.2 - XI.5.

Figure XI.2 illustrates the chi square test of homogeneity
across treatment groups for the embryo mortality data in the
DeFoe compound C experiment. It will be recalled that no tank
to tank heterogeneity within treatment groups was found by the
preliminary test, and so the data have been pooled across the
tanks within treatment groups. The first matrix displays the
observed 2 x 6 table. The second matrix displays the expected

(under Ho) frequencies. Since each expected frequency exceeds
5 (by a great deal in this example) the test is based on
asymptotic theory.

NOTE THAT SINCE THIS IS A PRELIMINARY TEST WE SHOULD BE VERY
LIBERAL IN DECIDING WHEN TO REJECT Ho AND TO GO ON TO MORE DE-
TAILED COMPARISONS. THUS A LARGE a-VALUE e.g. a = .20 or a = .25
SHOULD BE USED. THIS ENHANCES THE SENSITIVITY OF THE TEST TO
DETECT MODERATE DEPARTURES FROM Ho .

We see from the bottom of Figure XI.2 that the observed signi-
ficance level is a = 0.31. Thus even by our liberal yardstick we
see no statistical evidence of group to group differences in
embryo mortality in the DeFoe data. This agrees with the appear-
ance of the preliminary scatter plots.

The same test was carried out for the DeFoe compound C
fry mortality data. The results are given in Figure XI.3.
Again, all the expected frequencies exceed 5.0 and so the

asymptotic theory is used. This time the chi square statistic
is highly significant. Chi square = 182.79 with 5 d.f. Thus
there is strong statistical evidence of group to group response
rate differences in fry mortality. This again agrees with the
appearance of the preliminary scatter plot.
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Figures XI.4, XI.5 contain the results of the chi square tests
of homogeneity across groups for the Holcombe and Phipps compound
D embryo mortality and fry mortality data respectively. Again the
data have been pooled across tanks within groups.

In both cases the expected frequencies exceed 5 and so asymp-
totic theory is used. We see for the embryo mortality data the
test is nonsignificant even at the liberalized a = .20. For the
fry mortality data the test is very highly significant (chi square
= 389.68 with 5 d.f.). Thus again there is no statistical evidence
of group to group differences with respect to embryo mortality
while there is strong statistical evidence of group to group
differences with respect to fry mortality. This is in good
agreement with the appearances of the preliminary scatterplots.

Figure XI.6, XI.7 contain the results of the chi square
tests ofhomogeneity across groups for the Jarvinen compound B
embryo mortality and fry mortality data respectively. The
data have been pooled across tanks within groups. In both
cases all the expected frequencies exceed 5 and so asymptotic
theory is used.

For the fry mortality data the test is very highly signifi-
cant, as was the case with the fry mortality data from the other
experiments considered. It is quite clear that the last two
treatment groups have substantially higher response rates than
the first two groups.

In contrast to the cases for the DeFoe and Holcombe and
Phipps data sets, there is some statistical evidence of group to
group differences in embryo mortality rates.

We also saw strong statistical evidence in Sections VII and X
of heterogeneity in response rates among tanks within groups. In

Section IX we calculated an adjustment factor of K = 3.071 for

these responses, to account for the tank to tank heterogeneity.
The effect of this adjustment on chi square is to adjust it down-

*ward by the factor K. Thus with respected to the adjusted^"re-
sponses", the observed chi square value becomes 10.71426/ K =
10.71426/3.071 = 3.489. The probability that a chi square rand-
om variate with 5 d.f. exceeds 3.489 is 0.625. Thus the tank to
tank heterogeneity within groups accounts for the significant chi
square across groups. Thus again there is no statistical evidence
of variation in embryo mortality rate across groups.

- - C. One Sided Tests of Homogeneity Across Treatment Groups

The shotgtu chi square test, although the most commonly used
test of homogeneity of response rates, is not the most appropriate
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test for application to toxicity data. The chi square test is
an overall test which is not designed to be particularly sensi-
tive to the one sided, monotone alternatives characteristic of
dose response tests. More specialized tests have been designed
to be more powerful against alternatives of this type.

Several tests of response rate homogeneity against ordered
alternatives are discussed in the literature. Snedecor and Cochran
[28] section 9.11 and Steel and Torrie [29], section 22.10 extract
a single degree of freedom from the overall chi square test to
test for linear regression in 2 x K tables where the columns fall
in a natural order Scores, Zj, are assigned (arbitrarily) to the
columns to treat them as values on a continuous scale of measure-
ment. The weighted linear regression coefficient of mortality
probability on score Zj is calculated and tested for significance.
The major drawback of this method is the arbitrariness of the
scores. See [28, 29] for details.

An alternative approach to the construction of one sided
tests is by means of measures of association for ordered contin-
gency tables. Such measures can be thought of as analogs for
qualitative responses to correlation coefficients for quantita-
tive responses. Goodman and Kruskal [ 30, 31 ] have derived and
reported on a number of measures. Several commonly used measures
of association are Kendall's tau b, Stuart's tau c, Goodman and
Kruskal's gamma, just to name a few. For a given table each of
these measures yields different numerical values and so it is
not clear how to ascribe physical meaning to these values. How-
ever for each of the measures a value of zero means no monotone
association between categories and positive or negative values
mean positive or negative associations respectively. Thus a
test of homogeneity of treatment group response rates that is
sensitive to monotone, one sided alternatives can be constructed
by testing the null hypothesis that these measures are zero again-
st a one sided alternative. Brown and Benedetti [ 32 ] have cal-
culated improved standard error estimates for the various measures
that are appropriate studentizing factors to test the null hypo-
thesis that these measures are zero. They show empirically that
their new standard errors provide better approximations in small
and moderate samples than do the older standard error estimates
reported by Goodman and Kruskal [ 31]. Furthermore they show
that a number of measures, each having different numerical values,

V result in identical "t ratios" when normalized by their respect-
ive Brown and Benedetti standard error estimates. This is de-
sirable because we need consider just one "t ratio" rather than
five. Proctor [ 33] shows that tests based on measures of assoc-
iation are in fact much more powerful against one sided, monotone
alternatives than is the shotgun chi square test, as would be
intuitively expected.
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Agresti and Wackerly [ 15] also discuss one sided tests of
homogeneity based on measures of association. They discuss
Kendall's 'b in some detail. They illustrate an instance of the
increased sensitivity of such measure of association tests for
detecting ordered departures from homogeneity with the following
artificial example. Consider the 3 by 3 contingency table with
ordered categories:

A BHigh Medium Low

High 6 4 2

Medium 4 4 4

Low 2 4 6

There is clearly a positive trend in the table however the Fisher-
Irwin test (exact) shows significance level a = .514. This test
would thus miss the trend. However Kendall's b test (exact) is
significant at a = .053 and so would detect the trend.

Agresti and Wackerly also comment that the asymptotic normal
approximation to the distribution of the sample estimate of
may be quite poor for small sample sizes. They report that tle
observed significance level can be substantially greater than
the nominal for small sample sizes; i.e. we reject Ho when it is
correct far more than the nominal proportion of times. This is at

* least-in part due to the maximum likelihnod estimate of standard
error of having a negative bias. Based on Agresti and Wickerly's
example, asymptotic normal distribution theory would be suspect

: at least for N below 50. Agresti and Wackerly suggest that an

alternative, exact conditional test against ordered alternatives
can be used, based on measures of association and enumeration of

- tables, when the sample sizes are too small to apply asymptotic

normal theory.

The applicability of asymptotic distribution theory for the~sample sizes and magnitudes of response proportions encountered

in fish toxicity tests is a matter for detailed future study,
probably by simulation. This is too involved for us to consider

"- here. However as we use this test only on pooled data (original

or adjusted) across tanks within groups, the sample sizes would
be expected to be reasonably large (N in excess of 200) and so

~we utilize asymptotic theory for the remainder of this section.

It should be noted that ordinal measures of association as-
sume that as one variable (e.g. concentration) increases the

• .. other variable (e.g. percent mortality or percent abnormality)

either increases monotonically or decreases monotonically.
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Nonmonotone relations (e.g. first increasing and then decreasing)
can well result in small or even zero values of the measures.
This is analogous to properties of correlation coefficients.

Goodman and Kruskal [ 30 ] define and discuss the properties
of a number of measures of association for cross classifications.
They include a section on measures for ordered categories (i.e.
ordinal data). They propose a measure, y, which is defined as
follows:

Suppose two individuals are drawn at random from a population
described jointly by two discrete, ordered categories.

Category 1: i = 1, ... , I

Category 2: j = 1, ... , J

In our fish toxicity examples I = 2 (e.g. live, dead), J = C
(number of groups)

Let (i, j), (i',j') denote the (random) indices of these two
individuals within the two categories. If there is an ordered cor-
respondence between categories, we should see the same (or oppo-

N" site) orderings of each of the categories, depending on direction
of association.

Let 1s E P[(i>i' and j>j') or (i<i' and j<i')]. E P{same}

Td E P[(i>i' and j<j') or (i<i' and j>j')]. E P{diff}
* d

t P[i = i' or j = j']. H P{tie}

To avoid ambiguity they condition on the absence of ties.
The conditional probability of like orders given no ties is R /
(1 - It ). The conditional probability of unlike orders given no

ties is 1d/(l - Rt). The difference of these two probabilities

is defined as y . Namely

Goodman and Kruskal's Gamma

s d a d
1-1 -I I +11

t 5 t

In the situation when the two categories are independent R =
S

T Id and so y = 0. However the converse is not necessarily true

(except in the 2 x 2 case).
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The Kendall's Vb and Stuart's c measures are related to y

Let m --- min(I, J). Then

I T' - T d• S d

(m- 1)/m

This modification is made so that T c can nearly attain the

absolute value 1 for nonsquare tables when the entire population
lies on a longest diagonal of the table.

Kendall's b is also related to y. Namely, let p.. denote

a cell frequency,

J I
P. ),Pi p P. -- Then

4Pij .j Pij T

j=l i=

sIT - d s - Hd
Y TI 2 2i- p - p .+ p2

i 1  . J=l . i=l j= ij

Is - Id, Tb 121.[1 2

-I[ i=j i.] L -j=l
Tb corrects for pairs of observations tied with respect to at
least one of the categorizations and ranges between -1 and +1.

Somer's d (asymmetric measure)

TI -TId

dRIC 1 - d

t 0



Ts -I d

dCIR 1 t + X

Where Y E probability of tie in row only0

X E probability of tie in column only0

For all of these measures a zero value indicates a complete
lack of a monotone relationship between the two variables
(no association). A value of +1 indicate a perfect monotone in-
creasing relationship (perfect agreement) and a - 1 indicates
a perfect monotone decreasing relationship (perfect disagreement).
It should be noted that lack of a monotone relationship is not
the same as statistical independence. These measures will equal

zero when there is dependence of a complicated form. However,

when the variables are independent, the measures will equal zero.
Kendall's 'b differs from the others in that it can reach a value

of + 1 only for square tables, otherwise its maximum is lower.

Stuart's 'tc is an adjustment of Tb that can attain value + 1 for

non square tables.

There is much discussion in the literature about which measur-
es most realistically portray strengths of monotone relations.
In general it is difficult to interpret the magnitudes of these
measures in any physically meaningful fashion. However we will
be using these measures of association only for tests of signif-
icance to detect departures from 0. For this application the
situation simplifies considerably since Brown and Benedetti,
page 311, show that basing a test of significance on ,C' Y' b'
dcIR , dRIC all lead to exactly the same test statistic, sample

for sample. Thus we do not need to be concerned with differences
among the values of the measures. That is, Brown and Benedetti,
[125] have derived new estimates ASEo of the asymptotic standard

errors of the measures of association that are better than those
given previously in the literature for testing the null hypothesis
that the measure is zero. They report one set of standard errors
to use for testing purposes and another set of standard errors to
use for constructing confidence intervals. They show that

Y_ Th TC aR/C aC/R
I'; ASE (y) ASEo0(b) ASE (T) Ao(a R/c ASE (aC/R)

97

C *. I



°7

which means that the five measures all give the same test of the
null hypothesis of no (monotone) association.

Brown and Benedetti report a simulation study of the use of
these T ratios to test the null hypothesis. They compared the
T-values to the percentage points of the standard normal distri-
bution. They concluded that

1. The ASE 's give empirical type I error rates closer to the
o

nominal significance level and more consistent for different
patterns of non-association than do previously reported stan-
dard error estimates.

2. For N > 100 the T - value can safely be compared to the per-
centile points of the standard normal distribution.

3. For N < 50 the distribution of the T - value seems to have
heavier than normal tails, and they recommend comparing it
to Student's t with approximate degrees of freedom (ADF)
0.4N.

Their T - ratios for testing the null hypothesis of nonasso-
ciation (i.e. monotone) and (asymptotic) standard errors approp-
riate for constructing confidence intervals on the measures of
association are implemented in the BMDP [27 ] program BMDP1F,
measures of association for two way frequency tables. (Note that
BMDPIF was extensively rewritten and reissued in August, 1976.
Thus only versions of this program dated after August, 1976 are
based on the most up to date theory). We will illustrate the use
of this program in this section, with both artificial and real
data.

Proctor [33 ] has discussed the relative efficiencies of tests
of association for ordered two way contingency tables and has com-
pared these efficiencies with that of the chi square test. He
reports that in most cases of ordered alternatives, the efficien-
cies of tests based on the measures of association are much great-
er than that of tests based on chi square. For one example of a
6 x 6 ordered contingency table constructed from an underlying
bivariate normal distribution with correlation p = 0.80, the
efficiencies of the tests of association based on measures of
association relative to the chi square test were about 3.4. This
means that for the chi square test to attain the same power again-
st this alternative as a test based on the measures of associa-
tion, it would need to be based on more than three times as many
observations. In efficiency calculations based on other assump-
tions about ie alternatives, the chi square procedure was con-
sistently generally very much less efficient than test procedures
based on measures of association.
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To get some further feeling for the sensitivities to ordered

alternatives of tests based on measures of association as compa-

red with the chi square test we constructed several artificial
sets of data having varying degrees of monotone trend in response

probabilities. We tested the null hypothesis of no association
between mortality level and treatment group using the one sided
tests based on ordinal measures of association and the shot gun

chi square test. Both of these tests can be carried out using
the BMDP program [27] BMDPIF (versions subsequent to August,
1976). We should note that in these one sided tests we are
looking for counterassociation. That is, the probability of
being alive decreases as concentration group increases. We are
thus testing for departures from 0 in a negative direction.

Figure XI.8 contains instructions for using program BMDP1F.
Figures XI.9, 10 and 11 illustrate one sided and chi square tests
on tables (based on artificial data) that exhibit linear trends
of response probability with concentration group, but with dif-
fering slopes. They represent mild, moderate, and strong trends.
In each case the one sided test based on measures of association

reflects a much stronger association between categories than does

the chi square test.

In conclusion, we see that the various ordinal measures of
association provide equivalent tests of the null hypothesis of
no association between mortality rate and concentration group.
Further more all the tests are much more sensitive than the chi
square test to alternatives of a monotonic nature.

Appendix A5, pp 778-792, of the 1979 BMDP manual [27] and
Brown and Benedetti [32] are helpful in interpreting the output

from BMDP1F. Brown and Benedetti calculate two asymptotic stan-

dard errors for each measure, ASEo, ASE1 . ASE1 is derived as-
suming the alternative hypothesis is true; i.e. the measure is
not zero. It is obtained by the method of Goodman and Kruskal
[31] and is appropriate for setting confidence limits on the
measures for large samples. Brown and Benedetti discuss the use
of ASE1 in computing confidence limits and power in an unpub-
lished technical report that is available from the Health Sciences

Computing Facility at UCLA.

ASE o is computed under the null hypothesis that the measure
is zero. It was derived by Brown and Benedetti in the 1977

paper cited above.

The T-value for each measure is the ratio of each measure
to its ASE0 . Brown and Benedetti report, based on simulation

studies, that the use of ASE o in the denominator of the T-stati-

stic rather than ASE, or other suggestions made in the litera-

ture gives superior results in that the attained type I error
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rates are closer to nominal and are more consistent for differing
patterns of probabilities.

To illustrate the use of these one sided tests of association
vs ordered alternatives as compared with the chi square test of
significance, we ran the BMDP program, BMDP1F, on mortality data

data from the DeFoe compound C test and from the Holcombe
and Phipps compound D tests. The results are shown in Figures
XI.12-15, both for embryo mortality data and for fry mortality
data. Qualitatively there is no difference, in these data, in
the conclusions arrived at by each procedure. The relationships
between concentration and percent response are so strong in the
fry mortality data that the observed significance levels are 0
to many decimal places. For the embryo mortality data, neither
procedure reveals a statistically significant relation between
concentration and percent mortality. Since the observed mortal-
ity in the DeFoe embryo data is smaller at the higher concentra-
tions than at the lower, the measures of association are positive
and the observed significance level is higher for the one sided
test than for the chi square test. We almost have a significant
trend in the wrong direction! Why? It may be due to the outlier
tank in group 2.

In conclusion it should be remarked that any overall test
for concentration related effects is just a screening device.
It merely states whether there is any statistical evidence of
concentration related effects but does not provide any indicat-
ion of which treatment groups have responses that differ from the
control group. That is the role of multiple comparisons. The
overall test is intended to screen out those data sets for which
multiple comparisons would be a futile exercise because no diff-
erences exist. In this regard it should be noted that since the
overall test is just a preliminary procedure, it makes sense to
use a very liberal a-level, like a = .20 or perhaps even a = .50.
This improves the sensitivity of the test to detect marginal
effects, but at the expense of an increased false rejection rate.
However such false rejections of the null hypothesis will be de-
tected later in the multiple comparison phase.
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CTGL. TRT

FREUEN.YF1 R-Y MORTALITY
EXPECIED I
CELL CHIZI
COL PCTI 1 1 2 3 14 95 6- 1 TOTAL

DEAD 6 1 8 1 8 13 1 79 100 1 214
I 35.7 1 35.7 I 35.7 1 35.7 1 35.7 I 35.7 1
I 24.7 1 21.5 i 21.5 I 14.,4 52.6 I 116.0 I

0I .0 I 8.00 I 8.00 1 13.00 I 79.00 I 100.00 I

LIVE I 94l 921 921 87 21 0 9 366
6 84.3 64o3 I 64.3 I 64.3 I 64.3 | 64e3 1

I 13.7 I 11.9 e 11.9 I 5.01 29.2 I 64.3 I
I 94*.00 I 92.00 t 92.00 I 87.00 I 21.00 I 000 I

TOTAL. 100 100 100 100 100 100 600

STATISTICS FOR 2-WAY TABLES

CmI-SQUARE 389.676 DF= 5 PROB=0.O001
PHIA 0.806

CONTINGENCY CUEFFICIENT 0.627
CRAMEROS V 0.806
LIKELIHOOD RATIO CHISQUARE 444.801 DFz 5 PROB"O.O00

4 '

Figure XI.l SAS PROC FREQ output from chi square test for homogeneity

across groups applied to fry mortality data from Holcombe

, and Phipps test on Compound D
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XII. TREATMENT GROUP VS CONTROL GROUP PAIRWISE MULTIPLE COMPARISON
PROCEDURES

If the overall test rejects the hypothesis of no concentration
related effects we must determine which treatment group response rates

differ from the control group rate. A number of procedures can be used
for such inferences, some based on hypothesis testing and some based on

confidence interval estimation. In this section we consider several
approaches based on tests of hypotheses. The discussion is by no means
exhaustive. In the following section we discuss confidence interval pro-

cedures.

A common approach to multiple comparisons on qualitative response
rate data such as mortality rates is to carry out an arc sine normalizing
transformation on the observed response rate within each group and then

compare each treatment group with the control using Dunnett's or Williams'
procedures [34, 35, 36, 37]. Such procedures are based on asymptotic
theory whose validity is questionable if there are a number of small

expected frequencies.

An alternative multiple testing approach is to carry out a suc-

cession of 2 x 2 contingency table tests of homogeneity between each
treatment group and the control group, based on Fisher's exact test
131 or on asymptotic theory depending on expected frequencies. Our

EXAX2 program will do this. A treatment group is said to be (statistica-
lly) significantly different from the control group at e.g. the a. = 0.05
level if the pairwise test rejects the null hypothesis after adjusting
for simultaneity by Bonferroni's method. (i.e. If we perform five pair-
wise comparisons and wish to guarantee an overall a. = 0.05 type one error
level then each individual comparison must be made at the a/5 = 0.01
level). Note that this approach does not impose any monotonicity struc-

ture on the response rates and so may not be most sensitive to detect

small to moderate effects.

Dunnett [ 34 , 35 ] presents a procedure for multiple comparison
of each of the treatment group responses with the control group response,

controlling the overall error rate for all comparisons. His procedure
is derived for quantitative responses, assumed to have equal variability.
He assumes equal replication among the treatment groups with equal or
possibly greater replication of the control group. We might apply this

procedure to qualitative response data fron, to-icity tests after perform-
ing an arc sine variance stabilizing relat - on the observed responses.

A problem with the application of Dunnett's procedure to the

analysis of data from toxicity tests is that is does not take full accou-
nt of the structure of the problem. Namely the various treatment groups
correspond to increasing toxicant levels. One might therefore assume

a monotone (increasing or decreasing) response level with increasing
group number. Since Dunnett did not build such a monotoxicity assump-

tion into his procedure, it loses some sensitivity.
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Williams [36, 37] assumes a monotone response function. He
estimates the treatment and control group response rates under the mono-
toxicity restraint and uses these estimates for treatment group - control
group comparisons. See Williams [36] for details. Chew [38, pp.26-271 brief-

I%" ly describes Williams' method and presents tables for its implementation.
Williams [ 36 ] assumes equal replication for all concentrations (includ-
ing the control). He extends this procedure [ 37 ] to accomodate increas-
ed replication in the control group, two sided tests, and modifications
to account for unequal replication among the treatment groups. As with
Dunnett's procedure, we can apply Williams method to qualitative respo-
nse data after carrying out an arc sine transformation.

We illustrate Williams' method with several examples based on
results from fish toxicity tests. Consider first the fry mortality data
from the Holcombe and Phipps test on compound D. From the preliminary
scatterplot in Figure VI.6 and the overall tests of significance in
Section XI, it is quite evident that fry mortality increases with in-
creasing toxicant level. We wish to determine here which treatment groups
exhibit significantly greater fry mortality rates than the control group.
As the result of the within groups heterogeneity test was marginal
(a = 0.14, see section VIII) we do not adjust the data prior to carrying
out Williams' procedure.

The basic and transformed responses, pooled across tanks within
groups are:

Group (i) 1 2 3 4 5 6

Sample Size (ni) 100 100 100 i00 100 100

Response Rate ) 0.06 0.08 0.08 0.13 0.79 1.00

2Arc Sin V '0 0.495 0.574 0.574 0.738 2.190 3.142

Since these estimates are already in monotone sequence, they do not need
to be modified. We declare the group i response rate to be significantly
different from the control rate if

^ ̂  (21 1/2
" i - Ki > n

The factor t can be obtained from Williams' tables corresponding to the
5% or the 1% significance level. The yardstick t(2/n)I/2 is based on the

assumption that the variance of 2 arc sin vp is 1/n. In our example n =
100 and t 1.756 (corresponding to 5 treatment groups and a = 0.05).
Thus the response in group i is declared to differ significantly from
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1/2
the control group response if P'i > 0.495 + 1.756 (2/100) = 0.743.
Groups 5 and 6 differ significantly from the control and group 4 is just
on the borderline.

We now examine the effect on the outcome of this procedure of
applying an adjustment for tank to tank heterogeneity. From Section IX
B we see that this factor is K = 1.337 for the above data. Thus the
"effective" sample size per group is 100/1.337 = 74.79 and the decision
point for Williams' procedure becomes 0.495 + 1.756(2/74.79)1/2 = 0.782.
Group 4 is no longer borderline.

We now apply this same procedure to the embryo mortality data

from the Jarvinen test on compound B. The result of the within groups

heterogeneity test was highly significant (a = 0.005) and so we first

adjust the data prior to carrying out Williams' procedure. From

Section IXB the adjustment factor is K = 3.071. The basic and trans-
formed responses along with effective sample sizes, pooled across tanks
within groups are:

Group (i) 1 2 3 4 5 6

Effective SampleE 32.89 35.49 32.56 31.91 34.19 32.89

size (ni/k)

Response Rate (P^ 0.139 0.073 0.090 0.020 0.057 0.079

2 Arc Sin 2T P V' 0.764 0.547 0.609 0.284 0.482 0.570
i i

For the sake of simplicity we will utilize an average sample size of
33.32 within each group, but the calculation could alternatively~be
carried out based on the individual group sample sizes. Since {Ni} are
not in monotone sequence we must first modify them by an averaging pro-
cess discussed in Williams [ 36 ] or in Chew [ 38 ] until the resulting
estimates satisfy the monotoxicity constraint. We obtain 0.537, 0.537,
0.537, 0.537, 0.537, 0.570. We declare group i significantly greater

than the control group if Vi > 0.764 + 1.756 (2/33.32)1/2 = 1.194. Ob-
viously no treatment groups have significantly greater response than the
control group. (Interestingly if we carry out Williams' procedure on
these data to look for a monotone decreasing trend in response rate,
we arrive at the same conclusion. That is, no group has significantly
lower response rate than the control group).

Dunnett's and Williams' procedures are based on asymptotic
theory. If the response frequencies do not justify the use of
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asymptotic theory we can carry out a succession of exact, small sample
2 x 2 treatment-control comparisons by means of Fisher's exact test,
adjusting for simultaneity by Bonferroni's method. Consider for example
the comparison of treatment group 4 with the control group for the fry
mortality data from Holcombe and Phipp's test on compound D. We have
the following 2 x 2 table.

CONTROL GROUP 4

DEAD 6 13 19

LIVE 94 87 181

100 100 200

Here, in the notation of Lieberman and Owen,

k = 19
n = 100
N = 200
x= 6

Interpolating in the Lieberman and Owen tables [ 26]

between N = 100 and N = we have

N = 100 P(X<6) = .062 1/N = .01

N = c P(X<6) = .0835 1/N = 0

N = 200 P(X<6) = ? 1/N = .005

Thus P(X<6) = 1/2(.0835 + .062) = .073

Thus this table is significant at the .07 level (not accounting
for simultaneity).

This exact test procedure is thus seen to be somewhat less sen-
sitive than Williams' procedure applied to the same data. This is under-
standable since it does not incorporate the monotonicity structure of the
response rates.
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XIII. CONFIDENCE INTERVAL PROCEDURES FOR COMPARISON OF TREATMENT GROUP
AND CONTROL GROUP RESPONSE RATES

A. Introduction

We have previously considered overall tests of hypotheses to

compare response rates in replicate tanks within treatment groups
and to compare response rates across treatment groups. In this
section we consider procedures for constructing confidence inter-
vals to compare response rates in the treatment groups with that
in the control group on a pairwise basis.

It is well known that hypothesis testing procedures are some-
what limited in their conclusions. They merely state whether the
null hypothesis was accepted or rejected but give no indication of
the extent of the effect. Thus we have no idea of the biological
significance of the effect (as opposed to its statistical signi-
ficance). The rejection or nonrejection of a null hypothesis is

often more a result of sample size than of the biological import-
ance of the effect. The determination of acceptable concentrations
should be based on what are biologically significant effects rather

than on the power function of a hypothesis testing procedure.

Confidence intervals are more informative than tests of hypo-
thesis. The widths of the confidence intervals indicate the degree
of precision in the data concerning the estimates of the quantities
of interest in our inferences. Narrow confidence intervals signify
precise infarences while wide confidence intervals signify imprecise

inferences.

In the discussion in this section we consider the case of no
tank to tank heterogeneity within groups. Thus we pool responses
across tanks within groups to arrive at average response rates with-
in groups. The presence of tank to tank heterogeneity can be accoun-

ted for by

1. Fitting a model which explicitely accounts for heterogeneity
of response rates across tanks -- for example the beta bi-
nomial extension of the binomial model, the negative binom-
ial extension of the Poisson model, or a variance components
extension of a fixed effects analysis of variance model for

quantitative responses.

2. By carrying out analyses on a per tank basis rather than

on a per fish basis. This approach is conservative and
greatly diminishes the number of degrees of freedom avail-
able for error estimation.

3. By adjusting the data to account for the extent of tank to
tank variation. Namely tank to tank variation can be
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regarded as correlated responses within tanks, generally
positively correlated. Thus the variability of the average
responses within tanks is greater than would be the case if
the responses were independent within tanks. Such reduction
in variation can be simply accounted for by reducing the

K' "effective" sample size within tanks to a lesser value and
then ignoring the within tank correlation and proceeding
with binomial based procedures or the like. The reduction
in "effective" sample size reduces the precisions of the
estimates and test statistics just as does correlation
effects.

The procedures discussed in this section, although based on binomial
theory, can be used in conjunction with adjustment method 3. Thus they
are also relevant in the case when tank to tank heterogeneity exists.

Consider the Holcombe and Phipps compound D fry mortality data. We
wish to compare the response rate in treatment group 4 with that in trea-
tment group 1 (the control group). The basic data, pooled across tanks
within groups, is

CONTROL GROUP 4

DEAD 6 13 19

LIVE 94 87 181

100 100 200

Fisher's exact test (without simultaneity adjustment) says that p4 is
"significantly" greater than p1 at the a = 0.07 level. However a sig-

nificance statement such as this says nothing about the magnitude of
P4 /pl. Estimating the value of this ratio is important for assessing

whether there is a biologically significant increase in mortality between
the control group and group four. Confidence interval procedures enable

us to estimate p4/pl and determine the precision of our estimate as well

determine whether P4 is (statistically) significantly greater than pl.

There are three approaches to the construction of confidence inter-
vals in the case of quantal response data.

* Large sample normal theory confidence intervals.

* Exact, small sample confidence intervals based on the noncentral
distribution of the 2 x 2 contingency table, conditional on the
margins. (See Thomas [ 39]) for the theory and the algorithm.

We have implemented this algorithm in EXAX2[14].
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9 Approximate confidence intervals based on Poisson theory.
These intervals are most appropriate when the response pro-
babilities are small (usually under .10).

It should be noted that these procedures do not take the monotonic nature
of the response probabilities into account. We consider each of these

approaches in turn.

B. Method 1 Asymptotic Approach

To use the asymptotic normal approach we adopt a conservative

yardstick and require that each cell in the 2 x 2 table under consi-
deration contain at least 5 responses.

For most situations of practical interest both p1 and P4 will be

relatively far from 1. Certainly if p1 , the mortality rate in the

control group is close to 1, the test will be terminated. If P4 is

very close to 1 while p1 is close to 0, there is no need in calcula-

ting confidence intervals on their ratio. Group 4 will be obviously

unsatisfactory.

We wish to calculate an asymptotic theory confidence interval
on the ratio

= /Pl

Let

E nO = ZnP4 - £npl

We estimate P by

4 1

As NI, N4  0 0 with pI, P4 fixed

is approximately N ql q
[~ NlP NP 4

Thus an approximate 95% confidence interval on t is

ql q4 ql q4 I/2

1-.96 L + L J .9
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In the case of the Holcombe and Phipps example

NI = 4 =100 ql = 1 - .06 = .94

= 6/100 = 0.06 q4 = 1 - .13 = .87

p4 = 13/100 = 0.13: P4

Substituting PI' l'4, q, for the corresponding parameters in the
standard error formula we gave

F q4 194 .87 1/2
+ 0.4731)J

[pLN10z N--4J = 100(.06) + 100(.13) 0.473

Thus an approximate 95% confidence interval on is

(0.773 - 1.96(.473), 0.773 + 1.96(.473)) = (-.154, 1.700)

Therefore, (e. 1 5 4 , e1*7 00 ) is an asymptotic 95% confidence interval

on 6 p4/pl.

This interval is

(0.857, 5.474)

The conclusions from this confidence interval calculation are

0 P4 is not "significantly" different from p1 at the .05

level since the confidence interval contains 1. (Note
that we observed borderline significance with Williams'
procedure at a = 0.05).

* P4 is not very much smaller than P1 (at least 86% of pl)

but may be much larger than p1 (as much as 5.5 times pl)

* p4/Pl is not determined very precisely by the data,based

on such a comparison.

We have thus quantified the relation between p1 and P4.

We now calculate 95% confidence intervals to compare the response
rates in each of the other treatment groups with that in the control
group.
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CONTROL GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6

DEAD 6 8 8 13 79 100

LIVE 94 92 92 87 21 0

100 100 100 100 100 100

Holcombe and Phipps Compound D Fry Mortality Data Pooled Across
Tanks within Treatment Groups

We are not particularly interested in comparing group 6 with the control
since it is obviously inferior. We thus compare groups 2, 3, and 5 with
the control group by means of asymptotic 95% confidence intervals.

Group 2 vs Control

O £nP = nP2 - knpl

= kn^2 - £n 1 k= QnO.08 - £nO.06 = 0.288 .4.08q_ 2 1 11/ r .92 .94 1/
stderr( ) =1N2P + Nll = i + 1 =0.521

+ 1.96 stderr(4) = 0.288 + 1.96(0.52) = (-.733, 1.309)
- 1.309)

Thus an asymptotic 95% confidence interval on e is (e -.733 e 13 =

(0.480, 3.703). This implies that there is no statistical evidence at
the .05 level of a difference between P2 and Pl. Furthermore the present

data do not determine this ratio very precisely.

Group 5 vs Control

X Zn 5 - nnO = n0.79 - Zn0.06 = 2.578

A A [ .21 + .4 ,1/2 1/2
stderr(P) = + J = (.159) = 0.3991loo.79) 100(.06)

P+ 1.96stderr() = (1.794, 3.362)

1.794 3.362Thus an asymptotic 95% confidence interval on 0 is (e1 7  e3.62
(6.011, 28.859). There is thus overwhelming statistical evidence that
the response rate in group 5 is substantially greater than that in the
control group, by at least a factor of 6. The interval however is very
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wide and so we cannot determine the ratio very precisely.

We may wish to modify these intervals for simultaneity. Since we
are calculating 4 confidence intervals we can adjust their levels to
attain a familywise confidence level of 0.05. The simplest way to do
this is by means of Bonferroni's inequality. Namely we construct each
interval at individual confidence level 1 -(.05/4) = .9875. The approp-

riate normal distribution factor then becomes 2.50.

exp{2.n(Pj/Pl + 2.50[ IN-. + 4 /Njl/2 J =2, 3, 4, 5

These intervals are:

Group 2 vs Control (.363, 4.906)

Group 3 vs Control (.363, 4.906)

Group 4 vs Control (.664, 7.067)

Group 5 vs Control (4.857, 35.712)

We thus conclude that there is strong statistical evidence that

group 5 has at least 5 times the response rate of group 1 but there is
not enough statistical evidence to distinguish the response rates at

groups 2, 3, 4, from that at group 1. Furthermore the data are not
sufficient to make precise inferences about the ratios of treatment
group to control group response rates without putting further structure
on the problem such as assuming some sort of dose response relation.
We will consider this approach in subsequent sections.

C. Method 2 Exact, Small Sample Confidence Intervals

If the sample sizes are not sufficiently large to apply the
asymptotic confidence interval procedure (method 1) and if response pro-
portions are not sufficiently small to apply Poisson theory (method 3),
then confidence interval comparisons between treatment groups and control
group can be made by an exact, small sample procedure. This procedure
is based on the non null distribution of Fisher's exact test in 2 x 2
contingency tables.

Consider a 2 x 2 contingency table to compare the response rate
in a particular treatment group with that in the control group.

Control Group 2 Total

Dead XI  X2  XI + X2

12 1 2Live m - X m -X 2  m +n - (X1 +X 2 )

m n m + n
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Let p1 , P2 denote the response probabilities (e.g. probability of

death) within the control group and treatment group respectively. We can

test the hypothesis

Ho: p1 
= P2

vs HIl: Pl ' P2

by means of Fisher's exact test (Lehmann [ 25], Lieberman and Owen [ 26 1),
conditional on the margins of the table being fixed. This test is based

on the hypergeometric distribution. We reject H if X is too extreme.
0

The nonnull distribution of X conditional on X + X = t is
2 1 2

P(X = xix + X = t0 = C (P) tX) xP~ x =0, 1, 2,...,
2 1 2 t \\

where Ct (p) is a normalizing constant and

Pi /q 1

= p2 /q2

The quantity P is known as the odds ratio and is very important for
power calculations and for calculating confidence intervals to compare

the response rates in the treatment and control groups on a pairwise
basis.

The odds ratio is a quantity between 0 and -. p = I if and only if

P1 = P2. If p > 1 then p1/p2>l and if p<l then pl/p 2<l. The size of

the confidence interval on p indicates how precisely this quantity can

be estimated from the data.

Thomas [39] presents an algorithm for calculating exact, small
sample confidence intervals on p based on the distribution of X2 , condi-

tional on the margins of the table. We have implemented Thomas' algo-
rithm in EXAX2 [14] and illustrate the calculation of the confidence in-
tervals with several examples.

We first consider the Holcombe and Phipps compound D fry mortality

data. The output appears in Figure XIII.l. The first page of the out-
put defines the odds ratio explicitly in terms of the order of the
groups and the order of the response categories. Subsequent pages pre-
sent the individual 2 x 2 tables to compare treatment groups with the
control group on a pairwise basis, a point estimate and confidence in-
terval on the odds ratio and the one sided significance level of Fisher's
exact test for equality of the two response probabilities.

It should be noted that the quantities ALPHAL and ALPHAU, which

specify the probability inequalities governing the upper and lower
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confidence limits are under the control of the user. They can be adjust-
ed to yield one sided upper or lower confidence bounds in place of two
sided intervals or to account for simultaneity by means of Bonferroni's
method.

In the present example individual 95% two-sided confidence intervals
are calculated on the odds ratios of each treatment group with the control
group. The conclusions are similar to those arrived at with the asympto-
tic intervals. Namely the response rates in groups 2 and 3 cannot be
distinguished from that in the control group. The fry mortality rate in
group 4 is marginally worse than the control group rate. The lower con-
fidence limit of 0.13 suggests that the fry mortality rate in group 4
could be substantially worse than the control rate. The upper confidence
limit of 1.27 is not too far removed from 1.0. This implies that the
fry mortality rate in group 4 is not significantly different from that
in group I at o. = 0.05 but would be significant at a slightly higher
a -level. (. = 0.07 suffices here). The odds ratios comparing the re-
sponses rates in groups 5, 6 to that in the control group are very small
and the upper bounds are very small. There is thus strong evidence that
these groups have significantly higher fry mortality rates than the con-
trol group and substantilly so.

The large widths of the confidence intervals imply that the odds
ratios cannot be determined very precisely.

We next consider the Holcombe and Phipps compound D embryo mortality
data. The output format is the same as that for the fry mortality data
and appears in Figure XIII.2. We see that none of the treatment group
response rates are significantly different from the control group rate.
The confidence intervals all straddle 1 and so the treatment group re-
sponse rates cannot be distinguished from the control group response
rate. This is in conformance with the results of our preliminary ana-
lyses.

The previous discussion pertained to construction of exact, small
sample confidence intervals on the odds ratio

~Pl/ql

P P2 /q 2

However p has no direct physical interpretation. A parameter such as

6 = p2 /1P

is more physically meaningful. How can we construct confidence intervals
on e based on the confidence intervals we have constructed on p? We can
express 6 in terms of p and p1. Namely
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P + pl ( I 
- P)

If P<l then 0 decreases as p1 increasLS from 0 to 1.

If P>l then 0 increases as p1 increases from 0 to 1.

For fixed pI, 0 decreases as p increases from 0 to -

Suppose ( p,Q) is a confidence interval on p and suppose

(i' Pl) is a confidence interval on p1.

Then a conservative confidence interval on 0 i:

1)
Pl Pl P)

Where

1 as p1 <I P1  = as C

The confidence interval on the odds ratio p comes from the EXAX2 program

output. Confidence intervals on p1 can be calculated by the Pearson-

Clopper method. Namely if

X1

Pl -N then

X, I
1= 1 + X1 F(2N 1 - 2X1 + 2, 2X 1 - ot/2)1

= 0 if XI  0

P 1 + N X 1 
+  F (2X I + 2 , 2N 1 - 2X ; 1 - / 2

1 1 if X1 = N

These confidence intervals are given in chart form. See for example Box,
Hunter, and Hunter [40], pages 642, 643 or Dixon and Massey [13], pages

501-504.
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We apply this conservative procedure to the Holcombe and Phipps comp-
ound D fry mortality data and compare the results with those calculated
by LUe asymptotic approach.

In the control group X, = 6, N I = 100.

Thus Pl = 0.06. A 99% 2 sided nonfidence interval on p1 is, from the

Pearson-Clopper charts entered at = 0.06, n = 100, (0.02, 0.15)

(ki' Pl ).

The 95% confidence intervals on the odds ratio p, namely (p, p) are

Group 2 vs Control (0.2018, 2.5238)

Group 3 vs Control (0.2018, 2.5238)

Group 4 vs Control (0.1278, 1.2743)

Group 5 vs Control (0.0055, 0.0467)

Group 6 vs Control (0, 0.0027)

Combining these results as discussed previously, we obtain:

Groups 2, 3 vs Control

Since p>1, p<l we have

1 1 0.401
- _ 2.5238 + 0.02(1 - 2.5238)

p + l

1 1
P+ (I - P) 0.2018 + 0.02(1 - 0.2018) = 4.592

This would be a conservative 100(i - .05 - .01) = 94% confidence inter-
val,

The corresponding 95% confidence interval based on asymptotic normal
theory (0.480, 3.703). We see that the two intervals are qualitatively
similar but that the conservative interval is longer, as would be ex-
pected.

We now compare the conservative small sample with the approximate
large sample intervals for comparisons of groups 4, 5, 6 with the control
group. The calculations proceed analagously.

129



Conservative, Small Sample Approximate, Large Sample
Interval on 0 Interval on 6

Groups 2,3 vs Control (0.401, 4.592) (0.480, 3.703)

Group 4 vs Control (0.788, 6.885) (0.857, 5.474)

Group 5 vs Control (5.272, 39.856) (6.011, 28.859)

Group 6 vs Control (6.566, 50) large sample interval

not calculated

We see that the two sets of intervals are qualitatively similar how-
ever the conservative, small sample intervals are 30%-51% longer than
the corresponding asymptotic intervals.

An alternative approximation can be used to calculate conservative
confidence intervals on O-p2/p Consider again the 2 x 2 table.

CONTROL GROUP 2

DEAD X1  X2

LIVE Y Y1 2

NI N2

Let p1, P 2 denote the probabilities of death in groups 1, 2 respectively.

We wish to construct a confidence interval on p 2 /pl 2 0.

Now NV N2 were fixed by the experimenter. Let r H N2 IN . Suppose

we assume the fiction that NI %Po (A), N2 % Po(rA) and that N1 , N2 in the
data are realizations of these two independent random variables. Then
X19 X Y Y can be treated as independent Poisson random variables

1'29 1' 2
with means p X, p X, q 1 , q rA respectively. Confidence intervals onS1 2 1 2"
P /p/1can be constructea by methods like those discussed in connection
with the Poisson approximation approach, (method 3). Namely

X2 1 1 < < F(2X 2 + 2 2XI;

X + 1 F(2X I + 2, 2X2 ; 1 - a1 r - p1 - Xl
11

1 2)- > 1 - a

where a1 + a2 = o . Now these confidence intervals are conservative because

we are introducing additional variability by assuming that N1 , N 2 are

random variables rather than fixed constants. The variances of X1 , X2
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are inflated from N lpq 1 , N2 P2q2 to N lp, N2 P2 by this assumption. Thus

the greater are pI, P2, the more conservative this procedure will be.

We illustrate the application of these intervals with the Holcombe

and Phipps compound D fry mortality data and the DeFoe 1, 1, 2, trichloro-

ethane fry mortality data.

First consider the Holcombe 7-d Phipps compound D fry mortality data.

The comparisons of Groups 2, 3, 4 vs Control, based on the Poisson appro-

ximation, are quite similar to the conservative small sample confidence

intervals discussed earlier in this subsection.

Now consider comparisons of Groups 5, 6 with the Control group.

Group 5 vs Control: X5 = 79, X 6, N = N = 100, i = a =0.025

Thus

K F(14, 158; .975) 8F(160, 12; .975)) (.94) ,

80
6-(2.77 (5.82, 36.93)

is an approximate 95% confidence interval on p5 /pl.

Group 6 vs Control: X = 100, X = 6 Na = a 2 = 0.025

Thus

101 101 (0,12; .975") (00 1 101
7'- F(14, 200; .975)' F(2 2 , 2; =917 1.79' 6

(2.75)) (7.98, 46.29)

is an approximate 95% confidence interval on p6/P

These intervals compare with the conservative, small sample intervals
calculated earlier as follows:

Conservative, Small Sample Approximate Poisson

Group 5 vs Control (5.27, 39.86) (5.82, 36.93)

Group 6 vs Control (6.57, 50) (7.98, 46.29)

These intervals are seen to be quite similar.
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We now consider the DeFoe 1, 1, 2, trichloroethane data and calculate
approximate confidence intervals to compare Groups 5, 6 to the control
group. Since X% = 0 we can only calculate lower confidence bounds.
Group 5 vs Control: X 9, X, 0, N5 N 40, a1 0.05, 2 0.

Thus

9 1 9 258
1 F(2, 20; .95) = 3.49 5

is a 95% lower confidence bound on p5 /P1 .

Group 6 vs Control X = 40 0, a = 0.05, ac =0 .

Thus

40 1 40 1

1 F(2, 82; .95) - 3.12

is a 95% lower confidence bound on p6/pl.

Thus there is strong statistical evidence that the response rates in
groups 5 and 6 are substantially greater than that in the control group.
The response rate in group 5 is at least 2.1 times that in the control
group.

D. Method 3 Poisson Approximation

We now consider method 3 for placing confidence intervals on ratios
of parameters. This method is based on the Poisson approximation to the
binomial distribution and so requires that each p be less than 0.1 or
that each p be greater than 0.9 in order that the Poisson approximation
be reasonably accurate. Operationally, we will use this approximation
if each P is less than 0.1 or if each P is greater than 0.9. The proto-
type situation is

Control Group 2

Dead X X
1 2

Live N -X N - X
1 1 2 2

N N2

Let p1 , p2 denote the response probabilities in groups 1, 2 respectively.
We wish to construct I - a confidence intervals on p2/P1 .
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Let XI  Np 1 , X2 = N2P2.

Then if p1<.l, p2<.l X1 Po (Y1) X2%Po (X2). We can thus pose the problem

as one of placing confidence intervals on the ratio of two Poisson means.
If p >.9, p >.9 it is probably of more interest to place a confidence in-
terval on t ratio q2 /q where q 1 p1 , q 1 - p We are then
back in the above situation.

Nelson [ 24 ] shows that a 1 - a confidence interval on A2/ I is

x +1 X2+ ,2

1 F(2X I + 2, 2X2 ; I - a1)' X1  F(2X2 + 2, 2X2; 1 - a2

where F(vI, V2 ; y) represents the upper y point of the F-distribution

with d.f. vi V2 and a1 + 2 =a . Now

.2/ (N2P2)/(NlP ) = (N2 /N 1)(p 2 /p 1 )

Thus multiplying the above confidence bounds by the factor NI/N2 yields

confidence bounds on p2 /Pl. Namely

X 2l2 2  
F(2X + 2, 2X 1 a-

l F(2X1 + 2, 2X - a1 ) N X2 1 2 2 1 2

is a I - a confidence interval on p2/pl. Often we take a1, a2 to be
ax/2. However for one sided confidence intervals we takea I = t, °X2 = 0
or al = 0, aX = a.

1 2

If XI = 0 or if X2 = 0 we have only one sided information about

pI, P2 respectively. Thus we can only construct one sided confidence
bounds on their ratio. Namely if X > 0, X2 = 0 then set the lower con-
fidence bound equal to 0 and upper confidence bound on p2/Pl becomes

N 1 2 1
NI

F(2, 2X; 1 - a) if X= 0, XI>0.

2

If XI = 0, X2>0, then we can only get a lower bound on p2 /Pl. Set
the upper bound equal to and the lower confidence bound becomes
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X i________ f X, 0, X >0
2 F(2, 2X2; 1 - a) N 2  2

If XI = 0, X = 0 the problem is indeterminate.

Nelson [ 24] presents charts which facilitate the construction of
two sided 90%, 95% or 99% confidence intervals on A2/X1. However his

21l
charts do not apply for the situation when X% =0 or X2 = 0. In fact

they effectively apply only when 0.1<X2 /XIIO. The charts are shown in

in Fioures XIII., Xlll.4, XIII.5.

To use the Nelson charts

1. Enter the value of X /X on the horizontal axis.
2 1

2. Go up to the curve labelled with the X value. (There are two

sets of curves, corresponding to upper and lower confidence
limits).

3. Read the upper and lower limits on the vertical scale.

4. Multiply the resulting limits by the ratio N IN2 .

We illustrate the use of this Poisson based procedure on several sets of
data. First we consider the Holcombe and Phipps compound D fry mortality
data. We pool responses across tanks within groups.

CONTROL GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6

DEAD 6 8 8 13 79 100

LIVE 94 92 92 87 21 0

i100 100 100 100 100 100

We compare various treatment groups with the control group. We will cal-
culate two sided 95 percent, nonsimultaneous confidence intervals. Groups
2 and 3 appear to have response probabilities around 0.10 and group 4 does
not seem to be too much beyond this level. We thus stretch our criterion
a bit and calculate confidence intervals to compare groups 2, 3, 4 with
the control groups.

Note that we could modify the confidence intervals for simultaneity
by using Bonferroni's inequality.
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Groups 2, 3 vs Control:

X2 =8,X= 6, N2 = N= i00, a 2 = .025

Thus

81 1297) 8 -
SF(14, F(8, 12; .975) 93)-(3.11) =

(0.404, 4.665).

Group 4 vs Control:

X4 =13, X 6, N2 = N = 100, = 2 = .025

Thus

F(14, 26; .975) 6- F(28, 12; 975) '14

(0.76, 6.95)

Comparing the confidence intervals obtained by methods 1, 2, 3 we
see that

Conservative Poisson
Asymptotic Small Sample Approximation

Group 2, 3
vs Control (.480, 3.703) (.401, 4.592) (.404, 4.665)

Group 4
vs Control (.857, 5.474) (.788, 6.885) (.76, 6.95)

Thus the asymptotic intervals are shorter than either of the small sample
intervals. The small sample intervals are thus more conservative.

We next consider the DeFoe compound C fry mortality data. We

again pool across tanks within groups.

_____CONTROL GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6

DEAD 0 0 2 1 9 40

LIVE 40 40 38 40 31 0

40 40 40 41 40 40

Since there are zero responses in the control group (i.e. XI  0), we can

only calcualte lower confidence bounds.
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Group 2 vs Control: Since Group 2 has 0 responses also, the situation
is indeterminate.

Group 3 vs Control: Choose a = .05 = 0 X = 2, X = 0, N = N = 40
1 2 3 '1 ' 3 1

Then

2 2 0.29

1 F(2 , 4; .95) 6.94 0

is a 95 percent lower confidence bound on p3 /Pl. Thus there is no statisti-

cal evidence, at the at .05 level, that p3 >pl.

Group 4 vs Control: X = 1, X =0 N = 41, N =40 Choose a = .05,
(X = 0.
2

Then

1 1 40 40 1

1 F(2, 2; .95) 41 41 19.0

is a 95 percent confidence bound on p4 /pl. Thus there is no statistical

evidence, at the a = 0.05 level, that p4 >Pl.

In general the confidence intervals that we have calculated are too
wide to determine the ratios of the various probabilities with much
precision. We must conclude that the data are not sufficient to esti-
mate these ratios very precisely without placing further structure on
the problem. One way of imposing such further structure will be dis-
cussed in the following sections.
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XIV. DOSE RESPONSE CURVE ESTIMATION -- PROBIT ANALYSIS

A. Introduction. Dose Response Estimation vs Hypothesis Testing

An alternative approach to estimating acceptable concentration

levels is based on fitting dose response models to the data and

estimating that concentration, CL, which results in an increase

of at most L in the response rate over and above background level.

The dose response curve formulation is pictured schematically in

Figure XIV.I. The problem of determining a safe concentration
has been transformed from a testing problem (determine which re-
sponse rates are significantly different than the control rate)

to an estimation problem (calculate a lower confidence bound on

CL).

The two formulations are conceptually different and lead to

different implications. With the classical hypothesis testing

formulation the larger and more precise the experiment the more

powerful will be the hypothesis test. Thus lower concentration

levels will be found significantly different from the control

group and so the acceptable concentration will be decreased.
By contrast, with the dose response curve estimation formulation

the larger and more precise the experiment, the higher will be

the lower confidence bound on CL and so the acceptable concent-

ration will be increased. This latter situation seems more

natural to us for two reasons.

1. There is no need to specify rigid sample size requirements
in the protocol. People could present any level of evidence

regarding safe concentrations that they wish. The more ex-
tensive the experiment, the higher will be the lower con-

fidence bound on CL -

2. An investigator conducting toxicity tests in support of

petitions to the EPA for discharge permits is induced to

carry out more extensive and more precise experimentation

by the economics of the situation. He is rewarded for his

efforts by demonstrating a greater safe concentration.

OPINION: We feel that increased emphasis should be placed on the fitting

and use of dose response curve models in the design of and analysis of
data from aquatic toxicity tests.

It should be noted that just because we define C in terms of the
L

concentration associated with an increase in response rate of L units
over background does not mean that we consider killing 100L percent of
the fish to be "acceptable". No increased mortality is really desirable.

However by adopting this formulation we can argue that we are limiting
our risk to an upper bound on L. The choice of L in a particular situa-
tion would of course need to be a biological and a regulatory decision.
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We have fitted (or attempted to fit) a number of dose response models
to the embryo and fry mortality data. Some of these models are standard
while others are nonstandard. Among the standard models fitted are the
probit model (Finney [ 11]) with either logarithmic or untransformed con-
centration and the logit model with either logarithmic or untransformed
concentration levels. Both of these models classically account for back-
ground variation by means of Abbott's correction. For example a probit
model with Abbott's correction might state

p(conc) = p0 + (I - po) 4 (0 + I 9n (conc))

where po, p(conc) are the response rates at the control and at conc re-
spectively, (.) is the normal c.d.f., and p0 ' %O' B are unknown param-
eters to be estimated from the model fit. Such a probit model can easily
be fitted to the data using SAS PROC PROBIT [ 12 ]. The 1979 version of
the BMDP package [ 27 1 contains a stepwise logistic regression program.

Among nonstandard dose response models tried are a nonstandard probit
type model and a "nonparametric" dose response model. The nonstandard
probit type model differs from the standard model in the way it handles
background response. One version can be written as

p(conc) = (a0 + a1 Zn (conc + c))

where p(conc) is the response rate at conc, c accounts for the background
response, and a , , c are unknown parameters to be estimated from the
model fit. A cqitiism of Abbott's correction is that it tacitly assumes
that background related response and toxicant related response are due to
different and independent mechanisms. The nonstandard model assumes that
background related responses and toxicant related responses are due to
similar mechanisms and thus that background acts like an incremental to-
xicant level c. Which (if either) model is more appropriate in a given
situation depends on how well they fit the data and on biological judge-
ment. The nonstandard probit model and a large family of other standard
and nonstandard dose response models can be fitted by the use of nonlinear
regression programs such as SAS PROC NLIN [ 12 ] and BMDP programs BMDP3R,
BMDPAR[ 27 1 (program versions 1977 or later).

We have developed a "nonparametric" dose response model that differs
from the more usual parametric models in a number of ways.

1. There is no need to make strong parametric assumptions about the
form of the dose response model.

2. There is no need to be concerned with transformations of the
concentration levels.

3. There is no need to worry about the parametric form used to
correct for background variation.
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4. Exact, small sample theory is used to construct conservative
lower bounds on safe concentration.

We have developed a special purpose computer program to carry out such
nonparametric dose response analyses. It is described in detail in
Feder and Sherrill [ 41 ], which is included as an appendix to section
XVI.

We now illustrate inferences about safe concentrations based on the
various dose response models discussed above.

B. Probit Analysis Using SAS PROC PROBIT

In this subsection we fit probit models to the fry mortality
data from the DeFoe test on compound C and from the Holcombe and
Phipps test on compound D. Although we do not adjust the data
for tank to tank heterogeneity, the same analyses can be carried
out after such adjustments have been made.

We first consider the DeFoe data. The basic data are listed
in Figure XIV.2. There are two tanks per treatment group. Con-
centration values for each group (in units of pg/liter) have
been determined as average values over all determinations and
over all tanks within each group. These are denoted as CONCMEAN.
Other variables of importance are

DEADESUM # # dead embryos in the tanks after hatch. (After
about 5 days).
DEADFSUM # # dead fry after 32 days.

PRPDEADE, PRPDEADF E proportions of dead embryos and fry
respectively.
LOGCONC Oglo(CONC)

Note that the measured concentration in the control group is not
zero here and that no fry mortality has occurred in the control
group. It is unclear from preliminary plots of proportions of
dead fry vs arithmetic and logarithmic concentration (not shown)
whether a probit model would better be fitted to arithmetic or

to logarithmic concentration. We will try both fits and

compare them.

We first fit a standard probit model using arithmatic concen-
tration. The specific model fitted is

p(CONC) = c + (1 - c) 4( ° - 5 BCONC)

where 0(.) is the standard normal c.d.f., 0 and 8 are unknown
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model parameters that characterize the shape of the response
curve, and c is the unknown model parameter that specifies
the background rate. (The quantity 5 in the argument of 4(P) is
due to probit convention). We fit this model to the data with
SAS PROC PROBIT by maximum likelihood estimation. The output
resulting from this fit appears in Figures XIV.3 - XIV.6. The
interpretation of this output is as follows:

SSummary of the maximum likelihood iteration process.
Intercept, Slope +-+ ' , respectively in the probit model.

c - background rate, or threshold rate.

(Note that if C goes negative at an iteration step
it is set to 0.).

MU,SIGMA (Ii,a) correspond to the mean and standard deviation
of the dose-response distribution.

pI, U are related to 0, l as

= - p/o, a 1 = 1/a
-. " 0

These relations can be verified from the entries given in
the output.

) The estimated asymptotic variance-covariance matrix of c

' c). This is based on the Fisher information's inverse.

The estimated asymptotic variance-covariance matrix of

(6, 8). This is based on the inverse of the estimated Flqher
information matrix.

Note: These estimated var-cov martices are the basis of the confidence
interval calculations made by the program. The validity of these var-cov
estimates depends on having the true state of nature and the maximum like-

lihood estimates interior to the parameter space. In this fit c = 0.003
with an estimated standard error of 0.03. We thus might consider drop-
ping c from the model.

OChi square test for lack of fit of the probit model.

Degrees of freedom E number of groups - number of
parameters E 6 - 3 = 3.

Under the null hypothesis of no lack of fit to the model
this statistic has a chi square distribution with 3
d.f.
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O A plot of the fitted straight line in the probit domain,
with the estimated probits of the dose response rates at
each concentration level in the data indicated as X's on
th- plot.

-1
Notes: 1. Probit (0) E 5 + ( (0) = - . However it is

plotted as 0 because that is the smallest value
used. Similarly, Probit (1) E 5 + 4-l)(1) =c,
but it is plotted as 10 because that is the large-
st value used.

2. The observed thresholds at probit values of 0

and 10 seem far away from the fitted line. The
standard errors of these points are also very
large, so these points are discounted when dete-
rmining a probit fit. In particular,

-1
Var[probit(^)] = p(l - p)/n(P (p)) - as

p - 0 or 1.

Thus these points carry very little weight in the
straight line fit in the probit domain.

3. The estimated background response rate has been
removed from the plot. Thus estimates represent
increments over background.

O Plot of 00 - 5+ CONC) vs CONC.

( For various percentiles of the fitted dose response curve
(after adjusting for background), the point estimates of
CONCMEAN are given as well as 95% lower and upper confidence
bounds on these points.

Note: These percentiles are percentages of the population
responding due to the toxicant, after adjusting for
background effects.

The point estimates correspond to the percentiles indicated
on the plots.

These lower confidence bounds are just the quantities needed to cal-
culate confidence bounds on safe concentrations. Lower 95% two sided
bounds correspond to lower 97.5% one sided bounds. Suppose we are will-
ing to tolerate an increase in response of 10 percent due to toxicant
causes. What is a lower confidence bound on safe dose?

Consider the dose response curve (adjusted for background rate).
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.10

0 d
Ad.10

A D (.10) + 5 -
Now d i ^ = 32.65 from Figure XIV.6.10B

The lower 97.5 percent confidence interval on d.10 is - 45.97. It is

thus totally uninformative due to the gentle slope of the dose response
curve (0.036) and relatively large standard error of the slope (0.014).

Note that the confidence bounds on the percentiles of the dose response
curve are based on Fieller's theorem. See Finney [ 11], section 4.7
(esp.eqns (4.37), (4.38)) for details.

We now consider the chi square test statistic for goodness of fit
in more detail. The chi square statistic can be used for a number of
purposes. The statistic given in D is

CHI-SQUARE ( > i -Ni)

L Where 0 i = # observed responses in the i-th treatment
group

N. = # fish in the i-th treatment group

= estimated response probability in the i-th
treatment group.

i"=i 1 P-
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a + i - 5) 1 = d , 6.

The values of these quantities for the 6 treatment groups are as follows:

"2
(0 - NP)

Trt Grp 0 N P NP NPQ __NQ

1 0 40 0.0100 0.3996 0.3956 0.4036
2 0 40 0.0115 0.4586 0.4534 0.4639
3 2 40 0.0154 0.6152 0.6058 3.1655

4 1 41 0.0300 1.2300 1.1931 0.0443
5 9 40 0.2397 9.5876 7.2896 0.0474
6 40 40 0.9979 39.9144 0.0854 0.0858

X2 4.2105

We see that this chi square statistic agrees with that calculated
in @ of the PROBIT output. We should break out the cell by cell con-
tributions in order to ensure that a large value of chi square is not
due to one or a few cells with very low expected frequency. Just one
observed response in such a cell can inflate the chi square statistic
tremendously. In our case this does not occur.

Note that the applicability of the asymptotic chi square approxima-
tion to the distribution of X2 is doubtful here due to the small
expected sample sizes. Namely

i 1 2 3 4 5 6

KPi 0. 40 0.46 0.62 1.23 9.59 39.91

Nq~i 39.60 39.54 39.38 39.77 30.41 0.09

Dixon and Massey [ 13 ] page 238 state that for the approximate a-
symptotic X2 distribution to be close "the sample size N must be suf-
ficiently large that none of the Fi's (i.e. Nih i or Niqi) is less than
1 and not more th-1 20 per cent of the Fi's are less than 5." This
criterion is clearly not met in the above example.

Since no control group mortality was observed and since the esti-
mated background rate is compatible with 0 (6 = 0.0031,stderr(E) = .0288)
it was decided to refit the model specifying that c = 0. This simplifi-
cation will reduce the standard errors of estimates considerably.
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The fit is shown in Figure XIV.7 and the associated confidence in-
tervals are given in Figure XIV.8. The point estimates the slope and

intercept are seen to be very similar to those based on the threshold

model fit in Figure XIV.3. In particular

Threshold Model 2.537 0.036 0.003 0.834 0.014 0.029

No Threshold Model 2.616 0.035 0 (by 0.257 0.006 0(by defn.)
defn.)

We see that the point estimates of o, i, c have not changed by much,

but the standard errors have decreased markedly. Thus if there is no
statistical evidence of background mortality we should eliminate it from

the model to increase estimation precision.

Let's see how this affects the percentile point estimates and lower

confidence bounds on them.

Threshold Fit No Threshold Fit

Lower 97.5 Per- Lower 97.5 Per-
Point cent Confiden- cent Confidence

Percentile Estimate ce Bound Point Estimate Bound

i 3.773 -157.377 1.657 -17.646
3 16.086 -109.518 14.388 0.000
5 22.606 - 84.331 21.130 8.900

10 32.647 - 45.967 31.511 21.622

15 39.421 - 20.657 38.515 29.364
20 44.805 - 1.246 44.082 35.034

30 53.572 27.152 53.146 43.539
50 68.064 54.847 68.130 56.372

70 82.557 67.675 83.115 68.459

80 91.323 73.775 92.179 75.594

We see that the point estimates under the nonthreshold fit are
slightly lower than the point estimates under the threshold fit in the
lower portion of the curve.

However the increased precision of estimation under the nonthresh-

hold fit results in substantial increases in the lower confidence bounds.

Suggestion:

1. If there is no observed response in the control group.

152



and 2. If the control group response rate, as estimated from the
dose response fit - including threshold - is nonsignificant.

and 3. If there is no a priori reason to expect background rate

then, eliminate background threshold parameter from the model.

This raises in a conjecture: Suppose we fit a nonthreshold model even
when a non zero background rate exists. We conjecture that the point
estimates of nonthreshold response rates will be estimates of quantities
lower than the true response rates. However the increased precisions of
these estimates may well result in more accurate lower confidence bounds
on the "true" response percentiles. This is a bias-variance trade off.

It is interesting to note that Charles Stephan [ 42 ], page 78 ff
discusses Abbott's correction in connection with the estimation of LC-
50 concentration in acute toxicity tests. He comments "...Abbott's
formula ... is a statistically sound way of correcting for control mort-
ality if, and only if, the cause of the control mortality does not make
the rest of the test organisms more susceptible to the toxicant. This
assumption is usually questionable in acute mortality tests with aquatic
animals. ... If control mortality is below a specified minimum... it should
be reported along with the results of the test, but correction of the
LC50 for this mortality would seem to be a meaningless exercise ...
It is interesting that we arrive at a similar suggestion, based on dif-
ferent reasoning. Our motivation is a bias-variance tradeoff.

The previous PROC PROBIT analyses on the DeFoe data treated concent-
ration without any transformation. We also tried to fit a probit model
using log concentration. Folklore states that a probit or logit fit
will better fit the response vs logarithmic concentration relation than
the response vs arithmetic concentration relation.

Finney [ 11] page 8-13 recommends using log concentration. Stephan
42] also recommends the use of a logarithmic transformation of

concentration on a routine basis.

Finney, pages 9ff states "The frequency distribution of
tolerances, as measured on the natural scale (i.e. arithmetic
scale - P.F.) is usually markedly skew, but often a simple
transformation of the scale of measurement will convert it to
a distribution approximately of the familiar Gaussian or nor-
mal form ... normalization can often -e effected by expressing
the tolerances in terms of the logarithms of the concentrations
instead of the absolute vlues. Indeed this transformation is
now standard practice ... the justification is the widespread
applicability of the normal distribution as an adequate appro-
ximation to the truth ... "

1
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Stephan, page 75, states "...Whenever any method is used to analyze
concentration mortality data, whether or not a transformation such as
probit, logit, or angle is used on the mortality data, the logarithmic
transformation should probably be used on the concentration data. All
of the methods assume that the concentration-mortality curve is linear,
and it seems to be generally accepted that the curve is more likely
to be linear if log concentration is used.

We show by example of the DeFoe 1, 1, 2, trichlc:oethane data that

the logarithmic transformation of concentration provides a much poorer
fit of the probit model than does arithmetic concentration. The moral
is that each time we fit a probit, logit, or other dose response model
we should have an open mind as to using untransformed concentration,
logarithmic concentration, or some other function of concentration. We
should transform concentration in a manner suitable for each individual

data set.

We first tried to fit the probit model with background response to
logarithmic concentration. The attempted fit would not converge. To
improve convergence performance we refitted the DeFoe data with logari-

thmic concentration using a specified background rate of 0 (the obser-
ved level). The output appears in Figures XIV.9. The maximum like-
lihood algorithm converges, however the resulting probit model is not
an adequate fit to the data as indicated by the highly significant re-
sidual chi square statistic. (Chi square = 47.6774 with 4d.f.)

We break out the components of the chi square statistic by group, as
discussed previously, to determine whether the very large chi square
value is due just to one or two components with very small expected re-
sponses but with one or two observed responses. Such components can
greatly distort the overall chi square.

(0 - Np)
Log1 0 (Conc) Trt Grp 0 N P Np Np NP

-1.3098 1 0 40 0.0000 0.0000 0.0000 0.0000
0.29907 2 0 40 0.000015 0.00060 0.00060 0.00060
0.7764 3 2 40 0.0025428 0.10171 0.101455 35.518
1.1706 4 1 41 0.0476 1.9516 1.8587 0.4872
1.6840 5 9 40 0.4227 16.908 9.7610 6.4068
2.1673 6 40 40 0.884 35.36 4.102 5.249

47.662

We see the third treatment group contributes the most to the statis-
tic. It has a very small expected frequency and two observed responses.
If this were the only -arge deviation between data and model, we might
be inclined to consider the possibility of a reasonable probit fit with
the exception of an outlier group. However, even if we disregard this groui,
the components of chi square from the remaining cells sum to 12.144 with
3d.f. This value is still significant at the 0.01 level, even after the
largest component has been deleted. We thus conclude that the model
does not fit the data well. This, coupled with probit plots suggests

154



the inappropriateness of the probit fit after a logarithmic transform-
ation of concentration. Ths probit fit to untransformed concentration
is s'-erior in this case.

We now consider the Holcombe and Phipps compound D data. A listing
of these data is contained in Figure XIV.IO. The variable names corre-

spond to those of the DeFoe data. The test consisted of six groups

(control + 5 toxicant concentrations) and four tanks per group. Note
that the control group concentration is 0 and there is a nonzero thresh-
old response rate.

Probit models were fitted to the fry mortality data after pooling
tanks within concentration groups. SAS PROC PROBIT was use to fit pro-

bit models both to concentration and to log 10 (concentration). These fits
included background effects, to be fitted by maximum likelihood.

The probit fit vs untransformed concentration appears in Figures

XIV.lI, XIV.12. The residual chi square statistic is quite small (0.3361
with 3d.f.) sig~lifying a good fit to the data. Figure XIV.12 contains

the estimated percentiles of the probit response curve, adjusted for
background, along with lower and upper 95 percent confidence limits cal-

culated by use of Fieller's Theorem. For example for the 10th percentile

the estimate for C is 78.77 while a lower 97.5 percent confidence

bound is 58.72. .10

One difference between the fits to the DeFoe and to the Holcombe and

Phipps data should be noted. In the DeFoe data no mortality was observea
in the control group and the threshold response rate was estimated to be

= 0.003 with an asymptotic standard error of 0.029. Thus there was no
evidence of background mortality and we markedly improved precision of
the fit by deleting the background correction.

In the case of the Holcombe and Phipps compound D data we observe X = 6

deaths within the control group, with each of the 4 tanks exhibiting at

least one death. Thus we know that there is background variation. From
our probit fit with arithmetic dosage we estimate & = 0.0718 with an a-

symptotic standard error of 0.016. Thus E is 4.5 asymptotic standard
deviations from 0 and so is highly statistically significant.

We now fit a probit model to the same data using log1 0 (concentration).

The estimated parameter values, their estimated asymptotic variance-co-

variance matrix, and the residual chi square statistic appear in Figure

XIV.13. The residual chi square statistic is 0.5046 with 3d.f., which

is very small, thus indicating a good fit to the data1 . We thus have

1
Note that the chi square value 0.2287, given by SAS in Figi-, e XIV.

13 is incorrect in this case. It seems to be omitting the control group

contribution to the chi square statistic. This problem has been brought

to the attention of the program developer and has been corrected in later

versions of the program.
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good probit fits to the data using both arithmetic and logarithmic con-
centration.

The estimated oackground level is 6 = 0.0738 with a standard error of
0.0156. Thus 6 is 4.73 standard deviations from 0 and so is highly sta-
tistically significant.

The estimated percentiles (after adjusting for control group mortality)
and 95 percent confidence intervals (by Fieller's theorem) are shown in
Figure XIV.14. The lower confidence bound iF a 97.5 percent one sided

bound. This display is analogous to that in Figure XIV.12.

We have thus fitted two distinct models which seem to fit the data
well: the probit model with arithmetic concentration (Figure XIV.II)
and the probit model with logarithmic concentration (Figure XIV. 13).
The parameter estimates associated with these two fits are somewhat dif-
ferent. Namely

Arithmetic (StdErr) Logarithmic (StdErr)

P 109.916 (3.638) 2.028 (0.016)
24.300 (3.861) 0.1044(0.015)

6 0.0718(0.016) 0.0738(0.016)

We see that the estimated background levels are somewhat similar, how-
ever the estimates P, G are very different.

Even though the parameter estimates differ considerably, Lne model
fits may still be very similar. We compare the estimated response dis-
tribution percentiles and associated lower confidence bounds in Figures

XIV.12, XIV.14 for the arithmetic and logarithmic concentration fits
respectively. These are shown below.

Arithmetic (Figure XIV.12) Logarithmic (Figure XIV.14)

Lower 97.5% Lower 97.5 % Conf
Percentile Estirate Conf. Bound Estimate Bound

1 53.39 22.40 60.97 45.76
2 60.01 31.92 65.10 50.13
3 64.21. 37.95 67.87 53.12
5 69.95 46.15 71.83 57.47

10 78.77 58.72 78.38 64.83
15 84.73 67.13 83.14 70.29
20 89.46 73.77 87.12 74.92
30 97.17 84.43 94.03 83.01

The point estimates of the response distribution percentiles corres-
ponding to the arithmetic and logarithmic fits are quite similar beyond
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the third percentile. However there is considerable discrepancy between
corresponding lower confidence bounds on safe dose, based on each of the
two fits -- below the 10th percentile! Below the third percentile the
discrepancy is fifty percent or more.

How can we choose between the two fits?

1. Prior knowledge or mechanistic information

None here. Since the probit model is an empirical model, no much
in the way of mechanistic arguments will distinguish between the two

fits.

2. Magnitude of residual chi square

Arithmetic fit Residual chi square = 0.336 with 3d.f.
(a = 0.953)

Logarithmic fit Residual chi square 0.505 with 3 d.f.
(a = 0.918)

Both chi square values are quite small and the question of which one is
larger is probably just a matter of chance fluctuations. Therefore we
should not use these two statistically insignificant values to distinguish
between the fits.

3. Appearances of plots of predicted and observed responses

Scatterplots of predicted and observed responses vs arithmetic
concentration are shown in Figures XIV.15, XIV.16. Similar plots vs
logarithmic concentration are shown in Figures XIV.17, XIV.18. The
probit plots (Figures XIV.15, XIV.17) indicate greater discrepancies be-
tween observed and predicted responses (after adjusting both for back-
ground) at the low percentiles of the logarithmic concentration fit than
of the arithmetic concentration fit. Similarly at the highest treatment
group. Thus the arithmetic concentration fit seems to be a (slightly)
better approximation to the data at the low percentiles than does the
logarithmic concentration fit.

4. Conservativeness. Below the 25th percentile the lower confidence
bounds based on the arithmetic concentration fit are lower than those
based on the logarithmic concentration fit. The discrepancy is especi-
ally noticeable for the low percentiles, in particular below the 10th
percentile. Above the 10th percentile both lower bounds are similar.
Thus the arithmetic concentration fit seems to be more conservative than
the logarithmic concentration fit at the low percentile.

Opinion I would prefer the arithmetic concentration fit in this case.
However further experimentation at the low concentrations would be needed
to distinguish between the differing conclusions at the low percentiles.
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Alternative analysis ignoring background

We remarked with respect to the analysis of the DeFoe data that an
alternative way of handling background mortality is to ignore it. The
hope is that the improved precision will offset the downward bias and
result in higher values for lower confidence bounds on safe dose.

Note: If the control group response rate is significantly different
from 0, as is the case with the Holcombe and Phipps data, we would not
expect the dose response fit ignoring background to be a good fit to the
data. Probit models ignoring background response, fitted to both arith-
metic and logarithmic concentrations, show large and highly significant
residual chi square statistics 28.96 and 65.03 respectively with 4d.f.
The plots of fitted and observed responses vs concentration also show
discrepancies.

We now compare the percentile point estimates and their lower confidence
bounds based on the fit ignoring background response with those based on
the fit including background response. Comparisons pertain to the fit

vs untransformed concentration.

Background Included Background Excluded

Point Lower 97.5% Point Lower 97.5%
Percentile Estimate Conf. Bound Estimate Conf. Bound

1 53.39 22.403 -7.48 -24.234
3 64.21 37.946 13.37 0.648

5 69.95 46.147 24.41 13.197
7 74.05 52.006 32.33 21.991

10 78.77 58.715 41.42 32.626

15 84.73 67.135 52.89 45.860
20 89.46 73.775 62.01 56.369
25 93.53 79.421 69.83 64.178
50 109.92 101.288 101.40 97.761

We see that in this example, with the background level many standard
deviations from 0, the bias-variance trade off is such that it does not
pay to reduce the assuned background response level to 0 in order to

lessen the standard deviation.
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Figure XTV.1 Schematic representation of dose response curve formulation
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XV. DOSE RESPONSE CURVE ESTIMATION -- MAXIMUM LIKELIHOOD ESTIMATION BY
*' NONLINEAR LEAST SQUARES REGRESSION

We have seen in the previous section how standard dose response
models can be fitted to the data by use of SAS PROC PROBIT. This pro-
cedure fits a probit model to the data, with several possible variations.
Namely it fits the model

p(x) = c + (1 - c)'(8o + 81x)

where x = concentration or log (concentration), c is the background rate,
and 8, 81 are unknown parameters to be estimated from the data. p(x) is
the response probability corresponding to x. The value of c may be known
or unknown. Estimation is done by maximum likelihood, based on binomial
theory.

Jennrich and Moore [ 43] show that for distributions in the ex-
ponential family, maximum likelihood calculations can be carried out by
means of nonlinear least squares regression calculations. This applies,
in particular to models based on the binomial distribution.

Thus dose response curves can be fitted to the data by use of
appropriate nonlinear regression programs. Both SAS [ 12 ] (PROC NLIN)
and BMDP [ 27] (P3R and PAR) contain nonlinear regression programs that
can carry out these calculations. See Jennrich and Moore [ 431 for a
discussion of the theory underlying the relation b.tween maximum likeli-
hood estimation and nonlinear regression in the exponential family. We
illustrate the methodology with the use of SAS PROC NLIN. However any
nonlinear regression program with capability to carry out iteratively
reweighted least squares (i.e. allow weights to be functions of the model
paramters) would suffice.

SAS PROC PROBIT also calculates lower and upper confidence bounds
on concentration values corresponding to various response curve percen-
tile (after adjusting for background), by use of Fieller's theorem (Fin-
ney [ 11 1 pp 78-79). We illustrate how these confidence bounds can be
calculated, based on the parameter estimates of the fit and their asym-
ptotic variance-covariance matrix.

Before discussing the details of fitting dose response curves by
means of nonlinear regression programs. We discuss some of the reasons
that one might wish to do this.

1. The data analyst may have a general purpose nonlinear regression
program available but no special purpose dose response estimation
program. Thus the general tool can be used without modification
instead of having to write a special purpose program.
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2. A very wide variety of models can be fitted to the data by use
of general nonlinear regression. PROC PROBIT is rather limited
in the extent of models it will fit. Namely it will fit only a
probit model using concentration or log concentration. It will
adjust for background effects only by Abbott's correction.

We may wish to fit models other than the probit, e.g. the
logit model, or even more complex models that incorporate both
the probit and logit models as special cases. Background effects
might be modelled as additive concentrations rather than by
Abbott's correction. Namely,

p(x) = 'DO + 0 log (c + c))

where co, the background effect, represents an alternative way
of accounting for background. Such a model, although non-
standard, can easily be fitted by nonlinear regression techniques.
Also, transformations of concentration levels other than the
logarithmic are useful. For example the square root transformation.

3. PROC PROBIT automatically inflates variance and covariance estimates
estimates and confidence interval bounds by heterogeneity factors
whenever the probit model does not fit the data (as determined
by the residual chi square statistic). This is not always what
we wish to do. PROC NLIN does not inflate variance estimates by
heterogeneity factors.

4. We can calculate and save predicted and residual values and thus
'* easily construct residual plots.

It should be noted that PROC NLIN will not compute confidence in-
tervals on response curve distribution percentiles by use of Fieller's
Theorem, as PROC PROBIT does. However we show in the subsequent dis-
cussion how we can carry out these calculations fairly easily, using
either a hand calculator or a small computer program, once the para-
meter estimates and their asymptotic variances and covariances have been
determined.

We now consider three examples of fitting dose response models
to fry mortality data by use of SAS PROC NLIN. We use the Holcombe and
Phipps fry mortality data in all the examples. The models fitted are:

p(conc) = c + c ( + S1conc)

+- BO+ conc/( 80+ 81cnc
p(conc) = c+je + 1  + e

* p(conc) = ( 0 + 1 1log 10 (conc + c))

178

. .. S



All the models are fitted based on binomial distribution theory after
pooling data across tanks within groups. This is the way that PROC PRO-
BIT fits models and is appropriate if there is no tank to tank hetero-
geneity within groups. In the presence of tank to tank heterogeneity we
can first adjust the data by an adjustment factor and then pool across
tanks within groups.

The first model fit is a repeat of a model we fitted by PROC PRO-
BIT and serves to verify that we can duplicate the PROC PROBIT fits by
nonlinear regression. The second model is a logit model and illustrates

* that we can fit alternative models with PROC NLIN and that the probit and
logit model fits result in very similar inferences.

The third model fit treats the background as an additive concent-
ration rather than adjusting for it by Abbott's correction. This sort of
model would be appropriate if the mechanism of response due to background
sources is the same as the mechanism of response due to the substance
under test.

Ai We now discuss the formulation of fitting dose response curves

by means of nonlinear regression techniques.

- Suppose that there are I concentration groups (both control and
treatment) and that the i-th group contains Ni subjects and has X. re-

sponses. Let pj%) denote the response probability within the i-th

group. Then X ' Binomial (Nip p

The form of p is specified by the form of the dose response

model. For example in model 1, pi() = c + c$(0 + 81conci) , where

SE (a09 819 c) is the unknown parameter vector, to be estimated by

least squares.

2. Under the model assumptions Xi has meen i1 ) and variance
a2(6), where

Ili%) = NiPi(Q)

U(q) = NiPi(Q)(l - (k))

The nonlinear regression procedure optimizes the function

22

SQ(Q E (xi - vi1 ) 2wi(Q

where wi(e) - 1/a2(0). Jennrich and Moore [43] show that optimizing Q(6)

by the Gauss-Newton method is equivalent to fitting the dose response
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veo

curve by maximum likelihood estimation.

* We fit the models to the Holcombe and Phipps compound D data.
We first consider, pi(Q) = c + C0 + lconci). The results of
fitting this model in the standard manner with PROC PROBIT are shown
in Figure XIV.ll.

We first discuss the NLIN commands needed to produce the output.
See the SAS 79 manual [12], pp 317-329, for further details.

The model is

P = N i[c + CcO(S,0 + S Id i)] E N ipi(k)

where 00 1 c) 7Q are to be estimated by weighted least squares. The
weights are w iwQ) =l/[Nipi(Q)(i - (k] The fitting algorithm
also uses the derivatives of the mean value function. Theseoare:

au/90 = 00 + a d)

a/c= N ill - 0 + i d i)]

where x(x), OCx) represent the standard normal probability density func-
tion and cumulative distribution function respectively.

The SAS commands needed to generate this fit are given below

I PPDC'NLIN-ES= 2 -ETHOU= GAUSS; - -

2 PARAMETEkS BC-5 0 TO -4.0 BY 0.23
51=0.5 TO 0.10 BY 0.025

.... C=0.03 TO 0.11 BY C2 .-

3. B 0uNDO<=C<=1
A R G=O8+B I*C ON CM E AN;
A ARG= MAX (A R(,- 5pO);
ARG=MIN( ARGk.5 .0) *I___
-.BIGPFiI=PR0S ORWRV51
SM~LPH10.?989*EXP(-O.5*ARG**2);
PROS =C+( 1 .0-C )*81GPHX ;

+ MODEL DEAOF SUM= PRCB*FRYSUM;__

OE-R.Bl=(I C-C)*CNCMEAN*SMLPHI*FRYSUM;
DER.C=(l.-BIGPHI)*FRYSUM*

---4OUTPUT OUTNHULPmlA PREDIOCEDPRDFSm EIALRfs;
W' WEIGHT =1.O/ (Fk U _Pkub*cf I.0-kRub)TITLE2 7RB:T MODEL FIT WI7ti ASBOT711S CO RkrECT ION--UNT ANS FRMiED O0CNCENTtAr&
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Line 1 instructs NLIN to fit by the Gauss-Newton method. NLIN
can also fit models by use of the method of steepest descent or the
Marquardt method. The Marquardt method is a compromise between Gauss-
Newton and steepest descent. Sometimes near the optimum, steepest de-
scent or Marquardt methods take smaller steps and in different direc-
tions than the Gauss-Newton method and so are less prone to overshoot the
optimum. Thus one optimization method will sometimes produce conver-
gence when another one does not. The BEST = 20 command instructs NLIN
to print out the locations and error sums of squares values that it cal-
culates in the preliminary grid search to determine starting values for
the iterative portion of the search.

Line 2 specifies parameter values and/or ranges of parameter
values that NLIN should use for a preliminary grid search to arrive at
starting values for the iterative phase.

Line 3 specifies bounds on the parameters. If the parameters
exceed these bounds at any time during the iterative process they are
forced back into the permissible region.

Line 4 contains the model specification. The variable DEADFSUM
represents the mortality within the i-th group. FRYSUM is the total
number of fish exposed (pooled over tanks within groups) and PROB is the
response probability in the i-th group. The SAS program statements be-
tween lines 3 and 4 are used in the specification of the model in line 4.

Line 5 contains expressions for the derivatives p/D 0, 1/ '
i/Dc respectively.

Line 6 specifies that the predictions and residuals from the fit
be calculated and saved for future use.

Line 7 specifies the weights that are to be used in the weighted
least squares fit. Note that these weights are functions of the model
parameters (through PROB). They are updated following each iteration.

The output from these commands appears in Figures XV.I to XV.4.
Figure XV.I contains a listing of the Holcombe and Phipps data. Figure
XV.2 contains a summary of the parameter values and residual sums of
squares associated with the 20 best points in Cie preliminary grid
search. The point with smallest weighted residual sum of squares is
used to start the iterative Gauss-Newton search procedure. The results
of the Gauss-Newton iteration are summarized in Figure XV.3. It conver-
ges after 8 steps. Figures XV.4 contains statistics based on the model
converged to in Figure XV.3. The upper portion of the page contains an
analysis of variance table based on weighted sums of squares. The middle
portion of the page contains parameter estimates and asymptotic standard
errors. The bottom of the page contains the asymptotic correlation mat-
rix among the parameter estimates. We compare these results with those

in Figure XIV.ll.
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Several points need to be remembered in making the comparison.

1. We are fitting the model p(Q) = c + c'U( 0 + 81conc) whereas PROC

PROBIT parameterizes the model as p(Q) = c + B4((8- 5) + 81conc).

Thus the estimates , in the two fits should agree while the

PROC NLIN estimate of R0 should be 5 smaller than the correspond-

ing PROC PROBIT estimate. Comparison of the estimates shows that

this is the case.

2. The residual chi square (0.3361) calculated by SAS PROC PROBIT
is the same as the (weighted) residual sum of squares in the
PROC NLIN fit. Thus this residual sum of squares provides a
test of goodness of fit of the model.

3. The asymptotic variances and covariances calculated by PROC NLIN
need to be adjusted before being compared to those calculated by
PROC PROBIT. In particular, combining the asymptotic standard
errors and the asymptotic correlation matrix obtained by PROC NLIN,
we calculate the asymptotic variance covariance matrix.

0.066928 - 0.000543 - 0.000618
(0.000543 0.00000455 0.00000468)
0.000618 0.00000468 0.00002797)

This matrix looks nothing like the asymptotic variance covariance
matrix that is calculated by SAS PROC PROBIT. The reason for
this is as follows. We stated that X has mean Vi(k) E NiPi(k)
and variance G2(k) E Nipi(Q)(l - p However the weighted

least squares fit is carried out assuming that Var(X i) E k

where k is a constant to be estimated from the data. Thus the es-

timates of the variances and covariances given by PROC NLIN as-

sume Var(Xi) ^ka( )' Thus all variances and covariances are

multiplied by k.

How is k estimated? Just as in the case of weighted linear
regression, k is estimated by the residual mean square. Namely,

k = weighted residual mean square = 0.11203710

Our maximum likelihood model, though, tells us that k = 1. We
thus need to adjust all variances and covariances to this value
of k. To do this, we simply divide the above variance covariance
matrix by k. When this is done we obtain

0.5974 -0.00485 -0.00551
(0.00485 0.0000405 0.0000418)

0.00551 0.0000418 0.000250
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This matrix is nearly the same as that calculated by PROC PROBIT.

An important purpose for fitting the probit model is to calculate
lower confidence bounds on safe concentrations by use of Fieller's theo-
rem (Finney [ 111, pp 78-79). That is, we wish to calculate a lower
bound on the concentration such that O( 0 + a1 conc) = L, where L is some

specified response rate. Such lower confidence bounds, at (one sided)
confidence level 97.5 percent are a standard part of the PROC PROBIT out-

put. They are given in Figure XIV.12 for the Holcombe and Phipps compound
D data with untransformed concentration. We indicate below how to calcu-
late these bounds for any confidence level, based on the output from
PROC NLIN. The theory underlying these calculations is sketched in App-
endix AXV.

The fitted model is (conc) = C + 0 + conc).

We wish to construct a 1 - c level confidence interval on that CONC such
that

-(0 + S1concL) = L

where L is specified (e.g. 0.01, 0.05, 0.10 etc.). L represents the
response level attributed to toxicant (i.e. over and above background).

The point estimate, concL, is

concL = (-I(L) - aO)/M, (fL- a0 M/V

Let the asymptotic variance-covariance matrix of 0 , be denoted as

g h oVar(0 ) a

A 1 - ot confidence interval on concL is shown in Appendix AXV to be

A -B+B z -4AC

concL - 2A

^2 2
where A 1 - jz

1 8/2
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L : _ : ;, .: ,-: _ . . , .; . -. ' . -. ., ., .,,.-. . - .. : .. . . . -: . . ... . -, : .:

B = 2[a 1 U L hz 2

2 2
C = [0 0 - - gz /21

z /2 is the upper cx/2 point of the standard normal distribution.

The quantities 0 l g, h, j are obtained as output from NLIN. The

results of the calculations are given below.

Holcombe and Phipps -- Compound D -- Untransformed Concentration
Results from calculation of upper and lower 95 percent

confidence bounds on various percentiles of PROBIT fit -- by Fieller's
Theorem

L f 71(L) Lower 95% conf.limit upper 95% conf.limit

0.01 -2.345 22.958 69.385
0.03 -1.88 39.00 78.23
0.05 -1.645 47.07 82.73
0.07 -1.48 52.73 85.91
0.10 -1.28 59.96 89.78
0.15 -1.03 68.06 94.66
0.20 -0.83 74.80 98.62
0.25 -0.68 79.82 101.63
0.50 0 101.69 116.15

These confidence bounds are seen to agree very closely with the
bounds calculated by SAS PROC PROBIT and which appear in Figure XIV.12.

The previous dose response model fitted by use of PROC NLIN was a
repeat of a model that has also been fitted by PROC PROBIT. Comparisons
of the PROC PROBIT and PROC NLIN outputs verified that dose response
models can in fact be fitted by nonlinear regression programs and helped
to interpret the various features of the PROC NLIN output.

We now consider the fitting two dose response models that cannot be
fitted by PROC PROBIT. This of course is the reason for considering the
application of PROC NLIN for dose response estimation in the first place.
We first consider the logistic model and then look at an alternative to
Abbott's correction for accounting for background response.

The logistic model is a commonly used dose response model and gives
results very similar to probit fits, at least between the 2nd and 98th
percentiles. The logistic c.d.f. is
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and is a symmetric unimodel distribution like the normal, but has heavier
tails. We fit the dose response model

p(conc) = c + cF( 0 + Blconc)

in direct analogy to the probit fit that appears in Figures XIV.11.

The results of the Gauss-Newton interative process are given in
Figure XV.6. The Marquardt algorithm converges whereas the Gauss-Newton
algorithm does not because the Marquardt algorithm can take smaller steps
and is more flexible in direction. However both algorithms arrive at
nearly the same parameter estimates. The summary of the fitted dose
response model appears in Figure XV.7. We can compare this fit to the
probit fit in Figure XV.4.

We see that both the logit model and the probit model fit the data
quite well (residual sums of squares are quite small). The background
mortality rate is estimated to be about 0.07 by each model. The asympt-
otic variance-covariance matrix of the logit fit parameters is estimated
to be

0 0 1.0000 -0.988351 -0.55036
Var = 0.093958 0 0.00388 0 -0.988351 1.0000 0.520791

0 0 0.00518 -0.55036 0.520791 1.0000 6

00.00388 0 -0.019626 0.000160 0.00011
00388 0 2.46095 -0.019626 -0.01459)

0 0.00518 -0.01459 0.000111 0.00028

E hi*

We now apply Fieller's procedure for calculating lower end upper con-
fidence bounds on distribution percentiles of the dose response fit. We
need only modify the calculations done for the probit fit by defining
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f F1 (L) n L logit (L)L - L

and using the appropriate point estimates and variance-covariance matrix.

Holcombe and Phipps -- Compound D -- Untransformed Concentration

Results from calculations of upper and lower 95 percent

confidence bounds on various percentiles of LOGIT fit -- by Fieller'&
Theorem

. L f ZU L lower 95% upper 95% LOGIT PROBIT Point
L 1-L conf.limit conf.limit point estimate estimate

- 0.01 -4.5951 2.515 66.209 45.31 52.931
0.03 -3.4761 26.859 78.151 61.205 64.231
0.05 -2.9444 38.390 83.863 68.757 69.942
0.07 -2.5867 46.127 87.726 73.838 73.952

0.10 -2.1972 54.526 91.957 79.370 78.812
- 0.15 -1.7346 64.454 97.031 85.940 84.887

0.20 -1.3863 71.879 100.900 90.888 89.747
0.25 -1.0986 77.967 104.142 94.974 93.392
0.50 0 100.441 117.293 110.578 109.916

The point estimates of the probit and logit fit percentiles are pre-
sented side by side for comparison. Except at L = 0.01 they are very
close and even at L = 0.01 they are similar. The situation is a bit
different with respect to confidence bounds on the safe concentration.
The logit confidence bounds are to be compared with the probit confidence
bounds. We see that the upper logit and probit confidence bounds are
very similar at each percentile. However the lower confidence bounds

for the logit fit are somewhat lower than the lower confidence bounds

for the probit fit at the low distribution percentiles.

For LZ0.07, the lower confidence bounds for the logit and probit
fits are rather similar, the lower logit bounds being constantly small-

er than the lower probit bounds. For L below 0.05 this phenomenon is
accentuated, especially at L - 0.01. This the region in which mortali-
ty due to background is the first order effect while toxicant related
mortality is secondary. Thus the data and the fitted model reflect pri-
marily the background effects and provide little direct evidence about
toxicant related mortality. Since the tails of the logistic distribu-

tion are heavier and steeper than the tails of the normal distribution,
changes in parameter values perturb percentile estimates in the normal
distribution much less than they do in the logistic distribution. Thus
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the lower logistic confidence limits become much wider than the correspo-
nding lower normal limits as L - 0. This phenomenon holds very strongly
in this example at L = 0.01 and to some extent at L = 0.03, 0.05. In
this region the data provide little basis to choose between the logit and
probit fits. Both models fit the data well and yield very similar point
estimates. Thus we learn the following lesson:

THE LOWER CONFIDENCE BOUNDS ON "SAFE" CONCENTRATIONS CORRESPONDING TO
LOW PERCENTILES OF THE DOSE RESPONSE DISTRIBUTION MAY BE SENSITIVE TO
THE PARTICULAR FORM ASSUMED FOR THE DOSE RESPONSE RELATION, EVEN THOUGH
SEVERAL MODELS MAY FIT THE DATA EQUALLY WELL AND PROVIDE SIMILAR POINT
ESTIMATES OF PERCENTILES. THE DATA MAY NOT BE SUFFICIENT TO DISTINGUISH
BETWEEN THE MODELS.

This phenomenon is observed quite frequently in very low dose extra-
polation based on results of carcinogenesis experiments. However in
those applications the extrapolation is much more extreme than in fish
toxicology applications. However this example illustrates that even in
fish toxicology situations the inference about safe dose can be very
sensitive to model assumptions, even at the first to the third per-
centile. The extent of background effects may prevent us from disti-
nguishing among alternative models which fit the data about equally but
which yield qualitatively different inferences about safe concentrations
corresponding to low distribution percentiles.

To partially circumvent this problem we consider an alternative
approach to dose response estimation based on fewer assumptions about
the shape of the response distribution. See the following section for a
discussion on this nonparametric approach to dose response estimation.

We consider now a third example of fitting dose response models by
means of nonlinear regression. This example involves a nonstandard model
which provides an alternative to Abbott's correction to account for back-
ground response. Abbott's correction is appropriate when the mechanism
associated with background effects is independent of the mechanism asso-
ciated with toxicant effects. For example toxicant mortality may be due
to chemical effects whereas background mortality may be due to increased
handling of the fish.

However Stephan [42 ] criticizes the assumption that the control
mortality mechanism is totally independent of the toxicant mortality
mechanism. He states that stressing the fish during the acclimation or

testing periods may make them more susceptible to the toxicant. Thus
background effects may act like additions to the toxicant concentrations.
Stephan suggests not correcting for control mortality when assessing
the effects of various toxicant concentrations.

An alternative way to reflect the dependence between background and
toxicant mortality mechanisms is to fit a model which reflects the fact
that background may function as an addition to the effective toxicant
concentration. Assume that background effects are equivalent to an
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addition of c Vg/liter in toxicant concentration. The quantity c is a
model parameter to be estimated from the data. (Note that the usage of
the notation c is completely different in this example than in the pre-
vious examples in this section. Here it is being used as a concentration
whereas in previous examples the symbol c represented a probability.

4,

Consider the following models based on an assumed normal dose
response curve.

(1) p(conc) = 0 + 81(conc + c)]

. (2) p(conc) = D[gO + Q1(logl0(conc + c) - 3.0)].

These models are to be fitted to the data by maximum likelihood esti-
mation, based on binomial distribution theory. The parameters 8O, al

c are to be estimated from the data. The first model is over parameter-
Ized, in that $0 and c cannot be separated from one another. Thus to

fit model (1) we fit

p(conc) = 0[(0 + 81c) + 1 conc] - 0(a0 + S1conc)

* using PROC PROBIT with untransformed concentration and no "background"
effect included.

The centering cqnstant 3.0 in model (2) is intended to reduce the
correlation between 0$ 81 thereby improving the covergence properties
of the fitting algorithms. To fit model (2) we carry out a maximum like-
lihood analysis using PROC NLIN. The output from this analysis is shown
in Figures XV.8, XV.9. The Marquardt algorithm again achieves convergence
whereas the Gauss-Newton algorithm does not. Note however that the Gauss-
Newton algorithm attains a smaller residual sum of squares due to the
difference in weighting. (The distinction between attaining the smallest

residual sum of squares and attaining a stationary point corresponds to
the difference between minimum chi square estimation and maximum like-
lihood estimation. This distinction is discussed in Jennrich and Moore
[43], page 10, and in the BMDP manual [27]. Both of these methods are

*" asymptotically equivalent. The summary of the Marquardt algorithm fit
is presented in Figure XV.9. The residual sum of squares represents a
chi square test for goodness of fit of the model. We see that

residual chi square = 59.32 with 3d.f.

Thus the model does not seem to fit the data. We break down this re-
sidual chi square into individual cell components to determine whether
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the large residual chi square represents consistent lack of fit or the
contribution of a single aberrant cell.

We see that the expected frequencies, Nf, N4, are quite large under the
model fit and that there is a systematic discrepancy between model and
data. Namely the model underestimates at the lower and upper ends and
overestimates p in the middle.

We thus conclude that model (2) is not appropriate for this set of
data. However this or similar models may be appropriate for other sets
of data. The point is that the use of nonlinear regression techniques
to fit dose response curves greatly expands the variety of models that
we can fit to the data.

Since model (2) does not fit the data well we do not use it to calcu-
late lower confidence bounds on "safe" dose. However these calculations
can easily be made by use of asymptotic maximum likelihood theory.
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XVI. NONPARAMETRIC LOWER CONFIDENCE BOUNDS ON SAFE CONCENTRATIONS

In this section we again consider the estimation of "safe" con-
centrations based on fitted dose response curves. We wish to estimate

a lower confidence bound on that concentration, cL, for which the respo-

nse rate is no more than L greater than the control group rate. The

value of L is specified by the user. We present this situation picto-
rially below.

Response Rate

. CONC.
C C C ... C..'0 1 2 . L r... ck......c

The dose response curve is assumed to be concave upward at the lower
percentiles. For a logit or probit fit this would be below the median
of the distribution. The solid portion of the illustration represents
the region where the dose response curve is concave upward.

The upper bound on the upward concavity region is denoted UCR.
UCR is specified by the user.

Let co  c < c 2 <... < c : UCR denote the test concentrations (treat-

ment and control)in the upward concavity region. co, the control group

concentration, would often be 0.

The standard method of estimating cL by means of dose response

curves is to assume a specific form for the dose response curve such as
probit or logit in concentration or in log concentration and then fit the
model by means of maximum likelihood estimation, based on all the data.
SAS PROC PROBIT or a nonlinear regression package can be used to fit

such models.

The procedure discussed in this section has a number of import-

ant differences from these standard parametric dose response models.
Among these are

1. Inferences about safe concentrations can sometimes be rather
sensitive to the particular form of the dose response curve
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assumed. Yet it may not be possible to distinguish among
such competing models based on the data at hand. The need
for such strong parametric assumptions is alleviated with
the procedure in this section.

2. Once a functional form is chosen for the dose response curve,
there is still the question of the dose metameter. Different
lower bounds may result depending on whether the probit (say)
model is chosen with respect to concentration, log (concent-
ration), or some other function of concentration. There is
no need to worry about the specific form of the dose meta-
meter with the nonparametric procedure of this section.

3. The parametric dose response models assume a specific func-
tional form for the correction for background responses;
Abbott's formula (Finney, [11 1, pp125-126) is commonly used.
However estimates of the low percentiles of the dose response
curve can be sensitive to the specific form of background
correction used. The procedure in this section does not
require the specification of any particular functional
form for background response.

4. The standard method of fitting a parametric dose response
model is by means of maximum likelihood estimation. The
theoretical justification is based on the assumptions of
large samples and asymptotic normality. These assumptions
may not be entirely satisfied in the case of relatively
small sample sizes or of many response group probabilities

at or near 0 percent or 100 percent. By contrast, the
method discussed in this section is based on exact small
sample theory and so is appropriate irrespective of small
sample sizes or extreme response rates. We also present
an alternative confidence bound calculation which may yield
higher lower bounds, however this alternative approach depe-
nds on large sample theory and asymptotic normality. Both
estimates are routinely calculated by our computer program.

5. The standard parametric probit or logit dose response curve
fits utilize the information from all the test concentrations,
including those high concentrations at the upper end of the
dose response curve, far away from the safe concentration.
In fact, these upper concentrations, with high response rates

are very instrumental in determination of the slope estimate
and associated precision estimate. These high concentrations,

to thus carry considerable weight, through the specification of
the model, in estimating response behavior at the low concen-
trations. This is not desirable, since the same functional
form may not be appropriate throughout the entire range of
concentrations. By contrast, the method in this section
uses information only from those concentration groups where

AN the dose response curve in concave upward. This is generally
in the region below the median of the dose response curve.
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One assumption made throughout this section is that the response
results can be modelled with the binomial distribution within each tank
and that there is no evidence of tank to tank heterogeneity within treat-
ment groups. The responses can then be pooled across tanks within treat-
ment groups and we can assume a single binomial distribution for the
pooled responses within each treatment group. This distributional as-
sumption is made in our program.

What do we do if there in fact is evidence of heterogeneity with-
in tanks? There are three approaches to account for this situation. See
Section IX for detailed discussion. Briefly these approaches are:

1. Carry out analyses on a per tank basis rather than on a per
fish basis. This is the approach that is currently being
used by some researchers. However this approach greatly

reduces the number of degrees of freedom available for
analysis. I feel it is too conservative.

2. Fit distributional models to the data that explicitely ac-
count for such tank to tank heterogeneity. Several sucb
models proposed are the beta binomial model (Williams [21])
or the correlated binomial model (Kupper and Haseman [22 ]).
These models generalize the binomial distribution model and
can be incorporated into a dose response curve estimation
model. The fitting would be by maximum likelihood estima-
tion and the statistical inferences would be based on asy-
mptotic normal distribution theory.

3. We can adjust the data to reflect the within tank correlation.
Namely tank to tank heterogeneity reflects itself as varia-
tion in response rate from tank to tank within treatment
groups. This can also be regarded as correlation of respon-
ses within individual tanks. The effect of such correlation
is to reduce precisions of estimates as compared to what they
would be in a binomial model, since the correlations will
usually be positive. This reduced precision can be account-
ed for in a workmanlike manner by reducing the effective
sample size within each tank. Namely suppose we have 4 tanks
per group, 25 fry per tank, and responses 1, 3, 8, 7 respecti-
vely. The effect of assuming a binomial model would be to
pool data across tanks within groups, so batw have 100
fry and 19 responses. Thus P = .19 and VVar(f) =
4(.19)(1 - .19)/100 = .039. However correlation within tanks
inflates the variability by a factor h. (h>l). Reduce the
assumed sample size within each tank from 25 to 25/h. Cor-
respondingly reduce the effective number of responses within
each tank to 1/h, 3/h, 8/h, 7/h, for a tota1 of 19/h. Thus

= (19/h)/(100/h) = .19 still. However Var( )
,q(.19)(1 - .19)/(100/h) - .039rF. We then disregard the

201



tank to tank heterogeneity and utilize the binomial based
procedures, such as the computer program discussed in this
section.

This method of adjustment to effective sample sizes is
approximate and somewhat crude, however it has the advant-
age of simplicity and no special computer programs need be
used. Namely, the same methods that are utilized in the
absence of tank to tank heterogeneity are used in the pre-
sence of such heterogeneity, only with reduced sample sizes.
This allows for the use of standard analysis tools in non-
standard situations.

Looked at from the perspective of reducing sample sizes
to an effective sample size, carrying out analyses on a per
tank basis is like reducing the effective sample size in a
tank all the way down to 1. I feel that this is going a bit
too far.

In particular the methods discussed in this section can be
utilized following such adjustments to account for tank to
tank heterogeneity. Thus from now on in this section we
ignore the question of tank to tank heterogeneity within
groups and discuss our procedure, based on binomial dis-
tribution theory, as if there were no tank to tank hetero-
geneity.

We now consider the details of the nonparametric dose response
procedure.

Assume that k is such that co < cL < ck < UCR. The value of k is speci-

fied by the user of the program.

Response Rate

c+L

p oC
0

0 CONC

C Co+/L C C
0 0 L Ck Cr
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Let po pk denote the true response rates at c0, ck respectively. Draw

a chord joining the points (Co,p ), (ck, p.) . Let denote the slope of

this chord. Thus

Pk -Po

c k c" 0

Upward concavity implies that the chord lies above the dose response
curve throughout the region (c 0C ). The concentration at which this

chord crosses the value c + L on the response scale is c + L/. If

c = 0, this concentration is L/a. Thus

Sc 0+ L/a < c L

0

and so it we can place a lower confidence bound on co + L/a, then this
also serves as a nonparametric lower confidence bound on cL.

Let Or, .i' " be the estimated response rates based on bi-
nomiaY theory at concentrations c , c1, ..., cr respectively. Then
Nii % B (Nipi) i 0, i, ..., r when N is the number of animals on

i
test in the i-th treatment group pooled across tanks and p is the true
response probability within the i-th treatment group.

Let po denote a lower confidence bound on po, Pk denote an upper

confidence bound on pi. Such exact lower and upper confidence bounds
were derived by Clopper and Pearson [ 46 ] and are valid for small sample
sizes. Expressions for them are contained in a number of sources, in-
cluding Hollander and Wolfe [ 47], pages 23, 24. Charts for these con-
fidence intervals are given in a number of places, including Dixon and
Massey [13] pp 501-504. Expressions for these confidence bounds are
given in Appendix AXVI.l.

An upper confidence bound, U, on 8 is

Pk To
U ck c'° 0

Thus a lower confidence bound on c is c + L/k. This confi-
dence bound is valid in small samples. L o

The results in the concentration groups ck + ' ck + 2' "'' cr
can be used to improve on the confidence bound discussed above. The de-
tails of this procedure, along with a description of an alternative con-
fidence bound, valiC in large samples, are discussed in the writeup "A
Computer Program to Calculate Nonparametric Lower Confidence Bounds on
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Safe Concentrations in Quantal Response Toxicity Tests" by Feder and
Sherrill [41 ]. This writeup also describes in detail the use of a
computer program to implement this procedure. This document is included
as an appendix to this section. We illustrate the results of this pro-
gram by example in the remainder of this section and compare the results
of the nonparametric estimates of safe concentration with those based on
the logit or probit fits.

We first consider the DeFoe compound C fry mortality data.

We have seen from previous sections that there is no evidence of tank to
tank heterogeneity within treatment groups.

The various portions of the computer program output are numbered
and we discuss them in detail.

As a number of the parameter values used in the program were
chosen rather arbitrarily (e.g. UCR) we should regard the output as il-
lustrative of the algorithm's working rather than as a definitive ans-
wer in this particular case. We know that the algorithm will give con-
servative answers. The question is just how conservative the algorithm
is.

We know from the preliminary plots and tests of homogeneity that
there is no concentration related trend in embryo mortality. Such pre-
liminary analyses are very important to carry out, in order to gain an
understanding of the structure of the data. This helps us to interpret
the results of the procedures such as the one in this section.

The numbered descriptions below refer to the similarly numbered
descriptions in the computer printout for the DeFoe fry mortality data.

1. The title of the output. This title appears at the head of
every page.

2. The basic data are presented for each tank within each con-
centration group (treatment and control). Numbers of fry
per tank, numbers survived, and toxicant concentration are
given.

3. The number and the proportion of dead fry within each group
are given. These values are calculated by pooling across
tanks within groups.

4. Basic parameter values for the procedure.

L E response rate, over and above the control rate, at the
"safe" concentration.
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k E the index of assumed upper bound on the "safe" con-
centration, CL.

i.e. c < CL < c
o - L- k

UCR : upper limit of the concave upward region in the dose
response curve.

A number of confidence bound calculations are carried out for
differing combinations of (L, k, UCR). In this example UCR is specified
as 50. This places it just above the fifth treatment group. = .225

= 1.000).

Thus r = 5 and c r  48.3074 in this problem.

L and k are varied.

L = .01, .05, .10
k = 3, 4, 5.

L = .01, k = 3, UCR = 50.0 in the first calculation.

5. Simultaneous confidence interval adjustments are made in this
run by means of Bonferroni's inequality with familywise confi-
dence level 0.95. Thus all small sample confidence intervals
are calculated at individual confidence level 1 - (.05/4) =

0.9875.

6. Upper and lower confidence intervals are calculated at each
concentration group. These are exact, small sample confi-
dence intervals, calculated as discussed by Clopper and
Pearson using the expressions in Appendix AXVI.1.

7. Straight line approximations to the dose response curve are
calculated using the combinations of treatment groups shown.
The specific method of calculation of the slopes is discus-

Ased in the program documentation in Appendix AXVI.2. (Feder and
Sherrill [41 ]). For each combination of concentrations
CONC MEAN is the arithmetic average of the concentrations,
slope (normal approx) and slope (small sample) are the cal-
culated values of k based on either asymptotic theory or
exact small sample theory. See the program documentation
for details.

8. Lower confidence bounds on cL are calculated using the mini-
mum of the slopes in paragraph 7 (in this case .0056 for
the normal approximation and .0084 for the exact approach).
The values given under "calculated safe dose" are c 1+ L/.
These are .0494 + .01/.0056 - 1.845 and .0494 + .011.0084
1.24 respectively for the normal theory and small sample
calculation.
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Since we have taken k = 3, ck  c 5.9762 is an upper bound
on cL, by assumption. Thus

a (normal) min(l.85, 5.98) 1.85
L

cL (small sample) = min(l.24, 5.98) = 1.24

Since the response rates are so extreme in 5 of the 6 groups (i.e. close
to 0 or 1) we have small expected frequencies in many of the cells and
asymptotic normal theory is suspect here. We will thus confine attent-
ion to calculations based on exact small sample theory for the remainder
of the section.

9. We modify the parameters defining the procedure. The values
k, UCR remain at 3, 50.0 respectively, however L is changed
to 0.05. We thus define the "safe" concentration as that
which yields a response rate of .05 above control.

10. Proceeding through the same calculations as before we find
that the minimum slope (small sample) is .0084. Thus

c + L/ U = .0494 + .05/.0084 = 5.98

Since c = c = 5.9762 we estimate
k 3

c L = min (c + L/UP ck) min(5.98, 5.98) = 5.98

11. We now alter L to 0.10, leaving k and UCR as before.

12. CL = min(c1 + L/SU' Ck) = min(.0494 + .10/.0084, 5.9762) =

min(ll.954, 5.9762) - 5.9762.

Thus &L is constrained by overly conservative
assumption about ck.

13. We now set k = 4 (c4 = 14.8125) and set L back to 0.01

14. We now calculate slopes, but we have fewer to work with.
Namely we use cl, c4, c5 in various combinations.

15. CL = min(cl + L/SU ' ck) = min(.0494 + .01/.0082, 14.8125) =

1.2625
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16. We now change L to 0.05, leaving the other parameters as
before.

17. c = min(cl + L/U' ck) min(.0494 + .05/.0082, 14.8125) =

min(6.1145, 14.8125) = 6.1145

18. We change L to 0.10 leaving k, UCR unchanged.

19. CL min(c1 + LI U 14.8125) = min(.0494 + .10/.0082,

14.8125) = min(12.1796, 14.8125) = 12.1796

20. We now change k to 5 and set L back to 0.01.

Thus c c = 48.3074.
k 5

21. L = 0.01,k = 5

C= min(c1 + L/ U'ck) - min(.0494 + .01/.0080, 48.3074) =

1. 3045

22. Change L to 0.05

23. L = 0.05.

CL = min(cI + L/ u'ck) = min(.0494 + .05/.0080, 48.3074) =

6.3246

25. L 0.10, k= 5

CL = min(c + L/ U k = min(.0494 + .10/.0080, 48.3074) =

12. 5998

We thus conclude that k = 3 is too conservative. Setting
k = 4 or 5 yields nearly the same lower bound on cL. In particular for
k- 5

L = .01 ^ = 1.3045
^L

L = .05 cL = 6.3246
L = .10 cL = 12.5998
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We now compare the lower confidence bounds on CL obtained from
the nonparametric dose response curve fits to these obtained by more
classical probit fits in Section XIV.

(k = 5, UCR = 50.0)

Nonarametric Small Sample Asymptotic

L = 0.01 cL =1.3045 1.496

L = 0.05 cL = 6.3246 7.282

L = 0.0 cL = 12.5998 14.515

We fitted a probit model to the data (untransformed concentration)
using SAS PROC PROBIT. We corrected for background with Abbott's correc-
tion and obtained

Point estimate Lower 95% Conf.Bnd.

L = 0.01 3.7725 -157.377
L = 0.05 22.6065 - 84.3307

L = 0.10 32.6468 - 45.9667

The lower bounds based on the probit fit with background are
thus useless. We refitted the model with the assumption of no back-
ground response. This is therefore a more restrictive model. Results:

Point estimate Lower 95% Conf.Bnd.

L = 0.01 1.6567 -17.6457
L = 0.05 21.1299 8.8997
L = 0.10 31.5110 21.2620

Thus at L = .05 and especially at L = 0.10 the nonparametric
bounds are more conservative. However they are based on many fewer
assumptions.

An attempt was made to fit the probit model to log concentration,
as suggested by Finney. The probit program would not converge at all.

We now apply the nonparametric dose response program to the
Holcombe and Phipps. compound D fry mortality data and compare the esti-
mates of safe concentration with those based on probit and on logit
fits. The logic underlying the procedure is indicated in Figure XVI.I

Refer to the computer printout (nonparametric). In this example the
control group is at concentration 0 so we do not have to adjust for its
affects. However we do have significant background effect.

We see from the listing of the data (D on computer printout
following) and mortality rates by group that group 5 has an observed fry
mortality rate of 0.79 while group 4 has an observed fry mortality rate
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of 0.13. Confidence intervals on these values of p clearly confirm that
group 4 is below the median of the dose response curve while group 5 is
above the median. Therefore UCR lies somewhere between group 4 and group
5. We have taken it at concentration l00g/liter, about midway between
the two groups. Thus cr = c4 = 72.9499.

If we define the "safe" values of L to be below 0.10 (over and
above control) we should try c c = 44.9049 or ck = c4 = 72.9499 as

upper bounds for c . We consider te results of the small sample calcu-
lations.

* First trying k = 3:

L 0.01

c L = min(L/9 ck) = min(O.01/0.0027, 44.9049) =

3.663

L 0.05

CL min(ll U' ck) min(O.05/0.0027, 44.9049) =

18. 3315

L - 0.10

. L = min(L/au, ck) = min(0.l0/.00 2 7, 44.9049) =

36.6629

If we next try k = 4, we have less of an adjustment for simultaneity and
so we get slightly shorter intervals in this case. Namely

k =4:
L = 0.01 cL 3.8453

L =0.05 c = 19.2264
AL

L 0.10 cL 38.4529

Thus k = 3 and k = 4 yield essentially the same results for all pra-

ctical purposes.

Let'snow compare these results with those obtained by fitting
probit and logit models to the data.

Probit models were fitted to the data vs CONC (untransformed)

and logl, (CONC). Both probit fits have nonsignificant residual chi

square o? about the same magnitude and so are judged to fit the data

about equally well. The following 95 percent lower confidence bounds

on safe concentration were obtained from these fits.
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PROBIT FITS

L UNTNSFMD CONC LOG10 CONC

0.01 22.403 45.764
0.05 46.147 57.470
0.10 58.715 64.836

We see that the nonparametric fit is much more conservative than the
probit fits since it is basei on low dose linearity. Note that especia-
lly at the low percentiles 4 ne probit inference is quite sensitive to
whether untransformed concentration or log concentration are used.

We also fitted a logistic dose response to the data using the
SAS nonlinear regression program, PROC NLIN. Only untransformed conce-
ntrations were used with the logistic fit. Background response was
adjusted for the Abbott's correction, just as we did with the probit
fit. The following summarizes the results of the logistic fit and co-
mpare the inferences with those based on the probit fits.

Chi square for goodness of fit 0.282 with 3d.f.

Thus there is no evidence of lack of fit of the model to the data and
the logit and probit models fit about equally well.

Point estimates of percentiles (after adjusting for background)

L Probit(Untransformed CONC) Probit(log CONC) Logit(untransformcd CONC)

0.01 53.385 60.974 45.31
0.05 69.946 71.826 68.757
0.10 78.774 78.380 79.370

Thus, except for L = 0.01 where there is a bit of disparity among the
models (although not of practical concern) the three models yield es-

sentially the same percentile estimates.

We now consider lower confidence bounds on these same percentiles

based on the three parametric fits and on the nonparametric fit.
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2PRELIMINARY RESULTS:

_-RE T1LN1SIUS.L> LMMLN;_SQiftlL APP ---L.SLO'PE(SMALL--ALE ---

1 4 36.4750 ().o; 1 .0026

S-fAFE LJUSE REiS6ULtS' --.--

CAL ATE AF; DOSE 04 1-N st, D r TA U.AT.D DOf 0SE CI-lSC:N SAFt DpSe

- 7 4P.4098 49.4098 310.4% 9

output from special purpose program to calculate lower
bounds on safe concentration based on nonparametric dose
response curve fit
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Lower confidence bounds*on percentiles (after adjusting for background)

Probit(Untransformed Probit (log Logit(Untransformed Non-
L CONC) CONC) CONC) parametric

0.01 22.403 45.764 2.515 3.845
- 0.05 46.147 57.470 38.390 19.226

0.10 58.715 64.836 54.526 38.453

*Confidence intervals for parametric fits are based on 95% two sided non-
simultaneous procedures using Fieller's theorem. Nonparametric confiden-
ce intervals are based on simultaneous procedure with familywise confid-
ence level of 95%.

Comparing the lower confidence bounds on safe concentration we see the
following relations.

1. The nonparametric procedure is more conservative than the
parametric procedures, especially at the very low percentiles.
This is because the nonparametric procedure is built on the
assumption of linear approximations in the low concentration
region, while the logit and probit fits approach their limit-
ing values through exponential decay. Which estimate is more
appropriate would need to be a matter of biological judgement.
Since responses in the region of concentration for which
L < 0.05 are dominated by background response, the data them-
selves do not provide much empirical evidence.

2. The results at L = 0.01 are surprisingly inconsistent across
model fits. There is at least an order of magnitude differ-
ence in confidence bounds based on the logit and probit fits,
despite the fact that the point estimates are in good agree-
ment. There is even a factor of two difference between the
bounds based on the two probit fits, despite good agreement
of the point estimates. Thus the inferences at low percent-
iles are very sensitive to the model assumed. The nonpara-
metric procedure, while conservative, is based on many fewer
assumptions.

In this example the probit model fitted the data quite nicely and
yielded more liberal confidence bounds on c than did the nonparametric
procedure. It is our experience that this is not always the case. In
some situations the probit or logit model does not fit the data well.
In other situations Fieller's method may yield lower confidence bounds
on cL which are negative! We saw this in the case of the DeFoe data.
In such cases the nonparametric procedure can provide more liberal
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bounds than the parametric procedures. We will see this in the follow-
ing example.

We now place lower confidence bounds on the safe concentration for
the Benoit compound A fry mortality data. We first consider the non-
parametric procedure and then compare results with bounds based on the
probit model. Figures XVI.2, XVI.3 contain plots of proportions of dead
fry vs untransformed concentration and vs log 0(concentration) respecti-
vely.

Based on the appearance of these plots, a probit dose response model
does not seem to hold very well, especially with respect to untransformed
concentration. Furthermore, there is some question about homogeneity of
respLise rates within tanks at the highest concentration.

We first consider the nonparametric procedure. We see that the aver-
age concentration at the control group is 0.0809 and there was no obser-
ved fry mortality there. Based on the plots of proportion dead fry vs
concentration and based on fry mortality proportions printed out by the
program, we set UCR, the upper bound on the upward concavity region, to
be somewhere above the 5th treatment group. In particular we set UCR =

15.0. Then cE c5 = 13.3182.

Note that for the purpose of illustration we are assuming that there
is no tank to tank heterogeneity within groups. This assumption needs
to be checked and appropriate modifications made, if necessary.

Because of the many sample proportions close to 0 the asymptotic
normality assumption is questionable and so we use the small sample con-
fidence bouids.

Based on the observed proportions of dead fry in the various groups,
if L is less than or equal tc 0.10 it makes sense to choose ck, the upper

bound on safe concentrations to be c4 or c5. For definiteness we choose

c here. Thus we have

UCR =15.0 k = 4

L 0.01 L = min(cI + L/ U, ck) = min(O.0809 + 0.01/0.0423, 6.6020)

= min(0.0809 + 0.2364, 6.6020) = 0.3137

L =0.05 cL min(c1 + L/cU,k) = min(0.0809 + 1.1819, 6.6020)

= 1.2628
L=. mi(c I +L )

0.10 CL m n + L/SU, ck= min(O.0809 + 2.3638, 6.6020)

= 2.4447
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We now compare these results with those based on the probit fit,
using SAS PROC PROBIT.

First models including background variation were assumed. Namely

p(CONC) = c + cD((s0 - 5) + 1 CONC

p(CONC) = c + c((0 - 5) + 1log1 0(G0NG)

The maximum likelihood fitting algorithm was unable to converge with
either of these three parameter models!

Next the background rate was specified to be 0 and two parameter
probit models were fitted to the data. The plot of proportion dead fry
vs CONC suggests that the probit model does not fit the untransformed
concentration and in fact the model converged to shows substantial lack
of fit to the data. We therefore consider the probit fit in log conce-
ntration. This fit is better, but still exhibits marginal statistical
evidence of lack of fit (Residual chi square = 8.00 with 4d.f., which
is significant at a = 0.09). Based on this fit, the 95% lower confi-
dence bounds on response distribution percentiles (using Fieller's theo-
rem and adjusted by Finney's heterogeneity factor) are:

L 0.01 cL  0.082

0.05 C = 0.523
L

0.10 CL = 1.362

Thus in this example these bounds are lower than those based on the non-
parametric procedure. They are also based on a much more restrictive
model.

The nonparametric procedure seems quite superior in this example.
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XVII. ANALYSIS OF QUANTITATIVE RESPONSES

Most of the preceeding discussion has been concerned with aspects

of the analysis of quantal survival data. This includes preliminary
graphical displays, tests for heterogeneity among tanks within groups,
outlier detection procedures, adjustments for tank to tank heterogeneity,
analysis of variance and multiple comparison procedures, and various
types of dose response estimation procedures.

Quantitative responses such as length and weight are also recorded

during and at the conclusion of toxicity tests. Weight measurements
(in mgs) on all surviving fish at the conclusion of early life stage

tests are standard. The statistical analysis of such responses is dis-
cussed in this section. This discussion is also directly relevant to
the statistical analysis of the length and weight measurements that are

taken at periodic intervals (e.g. at 30 day or 60 day intervals) in full
life cycle tests.

The approach to analyzing weight and length data is directly analagous

to the approach to analyzing survival data. Each aspect of analyzing

quantal data, mentioned above, has a direct counterpart for analyzing

quantitative data. In fact the procedures appropriate for analyzing
quantitative responses are more "standard" and more familiar to most users
of statistical methodology than those appropriate for analyzing quantal

responses.

In addition to weight and length data a quantitative response often re-

corded and analyzed in mammalian toxicology tests is time to death (or
time to tumor or time to any apriori specified event). Such time to
death data provide more information than the 30 day, 60 day, 120 day,
etc., survival rates that are commonly reported in aquatic toxicity tests.
In particular knowledge of time to death of each embryo or fry yields the
percent survival responses as a byproduct. However 30 day survival data

will not reveal whether the fish that died did so on day 1, day 15, or
day 29. Such information is important for understanding the mechanisms

by which the toxicants act.

The analysis of time to death data involves working with censored

responses. Parametric and nonparametric approaches to the analysis of
such data are discussed in a number of books such as Gross and Clark [49]
and Kalbfleischand Prentice [50].

Time to death (to the nearest day) data is usually collected as part

of the day to day test procedure since the tanks are examined daily (or

at least on weekdays) for dead fish and these are removed and recorded.

Unfortunately, time to death data is not routinely reported as part of
the experimental results. In particular time to death of individual
fish was not included in any of the data sets made available to us.

As such, the analysis of censored life data is not discussed here.
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We would make a strong recommendation that time to death of indivi-
dual fish be routinely reported in the future instead of or in addition
to 30 day, 60 day, etc., percent survival data. This would require little
additional cost or effort but could possibly provide valuable additional
information.

In the remainder of the section we consider the various aspects of
analyzing the weights recorded on survivors of 30 day early life stage
tests. Before getting down to the technical and methodological issues,
several conceptual points should be discussed. The primary difficulty
in the interpretation of weight data is the confounding of weight gain
with survival. A number of scenarios can be postulated leading to
different conclusions about the relationships to be anticipated. Death
can be thought of as the first order effect of the toxicant and weight
loss (or lesser weight gain) as a secondary effect. If death and weight
loss represent different degrees of severity of the same mechanism then
one would expect that average weights of survivors would decrease as the
mortality rate increases and lack of observation of such a decrease
might be interpreted as lack of effect. However, since weights are
measured just on survivors a selection phenomenon may be occurring.
Presumably, in the various treatment groups the stronger fish survive
while the weaker fish die. Presumably the weaker fish would have gained
less weight on average than the stronger fish, had they survived (e.g.,
if they were in the control group). Since greater numbers of weak fish
survive in the control and low treatment level groups than in the higher
treatment level groups, these weak survivors might decrease the average
weight gain relative to the strong survivors in the treatment groups.
Thus an increase in observed average weight with treatment level might
be possible, or if the toxicant reduces weight gain in the treatment
groups, the selection and reduction effects may offset one another,
therby resulting in no observable trend. Therefore the biological
meaning of observed trends in weight gain with increasing concentration
or the lack of observed trends depends very much on the biological assum-
ptions about toxicant mechanisms and about association between survival
and weight loss.

One way to reduce or eliminate the confounding of the survival and
weight gain responses is to confine weight gain comparisons to those con-
centration groups whose mortality rates are not significantly (either
biologically or statistically) greater than that in the control groups.
The rationale for this viewpoint is that mortality is a first order
effect while weight gain is a second order effect. Thus in groups with
significant mortality, the question of reduction in weight gain is not
of concern. Only when the mortality rate approximates that in the control
group is the comparison of weight gains important.

We illustrate the analysis of the weight responses with fry data from
the Holcombe and Phipps test on compound D. Recall that the observed
mortality rates in the control group and the five treatment groups were
0.06, 0.08, 0.08, 0.13, 0.79, 1.00. It was sho'wn in Section XII that the
mortality rates in groups 5 and 6 differ significantly from that in the
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control group and group 4 is borderline (statistically) significant
according to Williams' procedure. Thus it might be reasonable to confine
weight gain comparisons with the control group to treatment groups 2, 3,
and possibly 4.

A. Preliminary Scatterplots

A number of plots were prepared showing the means and standard deviations
of weight by tank plotted against group number, concentration, log con-
centration, proportion of survivors, and other variables. Several of
these plots are shown in Figures XVII.l to XVII.4. Figure XVII.l shows
average weight per tank vs group number. Group 6 does not appear in this
plot since it had 100 percent mortality. A downward trend in average
weight with increasing group number is evident. Note that the total
range of variation in average weights is not very great -- between 100
mg and 145 mg. Figure XVII.2 shows standard deviation of weight per
tank vs group number. With the exception of one tank in group 5 there
appears to be no trend in standard deviation with group. Note that the
sFiandard deviation estimates in group 5 are less stable than those in the
other groups since they are based on many fewer observations. Figures
XVTI.3, XVII.4 show the average weight per tank vs concentration and vs
log concentration respectively (more specifically log(l + CONC)). The
decreasing trend in average weight with increasing concentration is
again evident. In Figure XVII.4 a linear or quadratic trend in log con-
centration can be seen among the treatment groups.

B. Outlier Detection Procedures and Testing for Tank to Tank Heteroge-
neity Within Groups

Analysis of variance models were fitted to the individual weights
and logarithmic weights to determine if there is any statistical evidence
of tank to tank heterogeneity within groups or of differences in average
weights across groups. The two way mixed model

Wijk = P + a. + Tj + i = 1, ... , I j = 1, ... , J
i j(i) ijk k = 1, ... , nij

was specified where Wijk corresponds to the weight or to the log weight
of the k-th fish within the j-th tank of the i-th group, ei is the fixed
group effect, Tj(i) is the random effect of the j-th tank within the i-th
group, and Eijk Is the experimental variation. It is assumed that Tj(i)

2 2are independent N(0, UT) and Eijk are independent N(O, C) and the
{Tj(i) }, {E ijk are independent. In the case of the Holcombe and Phipps

Compound D fry mortality data I = 5, J = 4, nij varies with tank and with
tank and with group but is nearly constant in groups 1 to 4. The model
was fitted to the data using PROC GLM in the SAS statistical computing
system [ 12]. The results are shown in Figures XVII.5 to XVII.7.
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Figures XVII.5 and XVII.6 show the analysis of variance tables for
the responses weight and log weight respectively. Figure XVII.7 shows
the expected mean squares of the entries in the analysis of variance
tables in Figures XVII.5 and XVII.6. The conclusions from the fits to

- the untransformed weights and to the logarithmic weights are very simi-
lar. From the expected mean square of TANK (GRP) indicated in Figure|~ -.

XVII.7 it is seen that the hypothesis H0 : C = 0 is tested by comparing
the TANK (GRP) mean square with the error mean square. The resulting F
tests are nonsignificant for both the untransformed and logarithmic
weight responses (observed significance levels 0.64, 0.70 respectively).
The estimated variance components are:

untransformed weights

^2 (11324.61
900.3 /19.19 -7.58i~it k 15 5)

logarithmic weights

"2 /1.136N
a = 15 - 0.097)/19.19= -0.001

Thus in both cases oT is set equal to zero. Therefore in this example
the error mean square may be used as an error yardstick against which
to compare the fixed effect mean squares for group effects.

In general 2T will not be equal to zero and so an appropriate error
'- yardstick will be a linear combination of the error mean square and the

tank (group) mean square. To see how this works consider the test of the
hypothesis Ho:ci = 0, that is no group effects. This null hypothesis is
obviously false and the test given by PROC GLM, based on the error mean
square with 366 d.f. rejects H0 very strongly. However the error m an
square underestimates the variability of the group mean square if al is
is greater than zero. The type IV expected mean square for group is shown
in Figure XVII.7 to be a2 + 18.2048a2 . Thus the tank (group) mean squaree T
with 15 d.f. is a more appropriate error yardstick than the error mean
square estimates '2 In general a linear combination of these two mean
squares would be an even better yardstick.

The classical approach to combining expected mean squares is based
on choosing that linear combination which yields an unbiased estimator of

2 G2
2 + 18.2048aT. Namely

w[r 2 + 19.1915a2] + (1 - w) 2 = a2 + 18.2048a2

e- e e T
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Thus

18.2048 0.95
19.1915

2
Note that w does not depend on CT

If the design had been completely balanced, this would have led to usin§
the tank (group) mean square with 15d.f. irrespective of the value of a.
Such an approach is analagous to carrying out analyses on a per tank
basis rather than on a per fish basis.

For the untransformed weights

.95 MS TANK (GRP) + .05 MS ERROR = .95(754.97) + .05(900.35) 762.26

For the logarithmic weights

.95 MS TANK (GRP) + .05 MS ERROR = .95(0.0757) + .05(.0972) = 0.0768

To calculate the effective number of degrees of freedom of this linear
combination, assume that

''(
2  2 2

.95 MS TANK (GRP) + .05 MS ERROR % + 18.2048a )X /ve TV

where V is unknown. Equating the variances of the two sides we obtain:

(.95)2(a 2 + 19.1915(2 )2 2 + (.05)2U2 2 = (U2 + 18.20480)2 2

e T 15 e 36 e T V

Approximating the expectations by the mean squares yields

(a)untransformed weights

(.95) (754.97) 2 1+ (.05) (900.35) 2 = (762.26) -

or v = 16.9

(b)logarithmic weights

2 21 2 21 2 1
(.95) 0757) T + (.05) (.0972) 366 (.0768)

or v=17.1

Comparison of the type IV group mean square with this error yardstick
yields
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untransformed weights: 7649.96/762.26 = 10.04

logarithmic weights: 0.6743/0.0768 = 8.78

Although in the case of unbalanced data the numerator and denominator mean
squares are not strictly independent and the denominator "mean square"
is not strictly distributed as chi square, an approximate test is usually
constructed by treating these ratios as F ratios with degrees of freedom
4 and 17. These ratios are of course very highly statistically signifi-
cant according to this yardstick. Thus there is very strong statistical
evidence of differences in average weights among groups.

It should be noted that this approach of using essentially the tank
(group) mean square with 15d.f. as error yardstick is very close to
carrying out group to group comparisons on a per tank basis rather than
on a per fish basis. Figures XVII.8 shows the output from a one way

analysis of variance to compare group means using the tank means as
basic input data. This corresponds to a quantification of the relations
seen in Figure XVII.l. Again the group effects are highly significant.
The expected mean square for tank (group) as shown in Figure XVII.7 is as
if each tank contained 19.19 fish on average. (The average is actually
19.3). If we divide MS TANK (GRP) by 19.19 we obtain 39.34 which agrees
quite well with the error mean square of 39.40 in Figure XVII.8.

An alternative approach to pooling mean squares in the analysis of
variance is based on finding that linear combination of tank (group) and
error mean squares which minimizes the mean square difference from
aY 2 + 18.2048a2. Namely choose w so that

E[w MS TANK (GRP) + (1 - w)MS ERROR - (a 2 + 18.2048a )]2
e

is minimized. The resulting choice of w will depend on the relative2 ad2 22
magnitudes of cre and U2. As aT/ae approaches zero, more and more emphasis
will be placed on the error mean square because its reduced variance will
more than compensate for its bias. The above expectation can be calculated
to be

" (2 2222 204 2
w (a + 19.19a ) + (1 - w) a 2 + [(19.19w - 18.2048)a2

e I e 366

We wish to choose w(ONwl) to minimize this expression. If we substitute

in the estimates of the mean squares and of the variance components we
obtain

2 2 + (1 w)2 2 2 2w (754.97) (900.35 + 0 75997.3w + 4429.7(1 - w)

which has its minimum in the interval O<w<l at w = 0.055. Thus the second
approach leads to the error yardstick
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.055 MS TANK (GRP) + .945 MS ERROR = 892.35

with approximate degrees of freedom obtained by solving the equation

(.055)2(754.97)2 1 + (.945)2 (900.35)2 (89235 2

or V = 380.

Thus this allocation effectively leads to the use of the error mean square
in this case and is very different from that obtained by equating expected
mean squares. This alternative pooling scheme is most useful when there
are an inadequate number of degrees of freedom for estimating MS TANK (GRP)

*because it then puts more weight on the error mean square. The criterion
used does not of course, insure that the resulting mean square is an
unbiased estimate of a2 + 18.2048cx2 .

e

It should be noted that the GLM procedure permits the decomposition
of the model sum of squares into individual degree of freedom components.
This feature is illustrated in Figure XVII.8. The linear and quadratic
components of trend are defined by the contrasts (-2, -1, 0, 1, 2) and
(2, -1, -2, -1, 2) respectively. These contrasts single out physically
important comparisons among the groups to test and estimate and thereby
increase the sensitivity of the analysis of variance tests. This approach
is analagous to carrying out a one sided measure of association test with

qualitative survival data.

The residuals from the analysis of variance fits can be used to check
distributional assumptions and to detect outliers. Figures XVII.9 - XVII.12
display the arithmetic and logarithmic residuals from the fits in Figures
XVII.5 and XVII.6 respectively. Figures XVII.9 and XVII.10 show the resi-
duals plotted vs group. No outliers are obvious. The variability seems
constant with group. The residuals from the untransformed weights appear
to be much more symmetric about zero than those from the logarithmic
weights. Figures XVII.II and XVII.12 show normal probability plots of the
arithmetic and logarithmic residuals respectively. The plot in Figure
XVII.ll looks much more nearly normal than that in Figure XVII.12.

The lowest two residuals in Figure XVII.lI lie below the line through
the remainder of the data. To determine whether there is any statistical
evidence that these observations are outliers we can test whether the most

- . extreme of 386 independent normally distributed random variables with mean
0 and standard deviation 30 is likely to exceed 118 in absolute value.
(The two extreme residuals correspond to observations 209 and 220, are
from group 3, tanks A and B, have values -112.9 and -117.9, and are

O- associated with fish having reported weights of 15 mgs and 10 mgs. I am
assuming that these are the correct weights, but this should be checked).

P[most extreme of 386 observations greater than 118 in absolute value]

1 [P(-ll8<X<18)]3 86  1- [2 {--')- 11386 1 (.999950)386k-3i-

- 1 - .98 = .02
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Thus there is statistical evidence that this extreme residual does not
conform to the others. Whether this represents a clerical error or
natural biological variation would need to be determined.

Assuming that the extreme observation is an outlier, the second
most extreme observation can be compared to the extreme of 385 obser-
vations.

P[most extreme of 385 obsvns greater than 113 in absolute value] =

1 - [P(-113<X<13)] 385 = 1 - [2( 1113 11 385 = 1 - (.99990)385

=0.037

There is thus statistical evidence that this second most extreme obser-
vation is also an outlier.

*- Basic records should be examined to determine if these observations
are valid. If not, they should be corrected or deleted and the modified

data reanalyzed. If they in fact represent natural biological variation
then biological judgement should be used to determine whether or not to
retain these observations with the remainder.

C. Multiple Comparison Procedures and Regression Analyses

Based on the results of the analysis of variance calculations pre-
viously discussed, we can carry out comparisons of average weight gains
across groups. The average weight gains and numbers of animals per
group are:

Group 1 2 3 4 5

N 94 92 92 87 21

Average 131.2 135.59 127.9 113.1 108.1

The standard errors of these averages based on averaging the responses

from four tanks and varying numbers of fish per group, are

1/4(0 2 + 02 /23.5), 1/4(G2 + aj/23),.V4(a2 + G2/23), 1/4(o + 32/21.75),
T I e ,

1/4(G 2 + a /5.25). The variance components a2 , 2 can be estimated by
T eTI e

appropriate linear combinations of the tank (group) and error mean squares

displayed in Figure XVII.5. For the Holcombe and Phipps fry mortality

data ;2 = 0 and so we can estimate the standard errors using the error

mean square.

Thus

^2
2 =900.355 with 366 d.f.
e

* Alternative standard error estimates with appropriate degrees of fre--dom

can be constructed using approaches analagous to those discussed in the

previous subsection.
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We apply Williams' procedure [ 361 to determine which groups have

(statistically) significantly lower weight gain than the control group.
We first need to ad'ut these mean values so that they are in monotone

decreasing sequence. We simply calculate weighted average (94 x 131.2
+ 92 x 135.59)/186 = 133.37 of the averages in groups 1 and 2. The modi-
fied averages are now in monotone decreasing order. We declare the group
i average weight gain to be significantly smaller than the control average
if

X d - X < -te (1/N. + 1/NI)l/2
i,adj 1 e i 1

Note that Xi,adj is the adjusted average whereas X1 is the unadjusted
average. We use the factor t obtained from Williams' table, which is

derived under the assumption of equal group sample sizes. This assumption
is quite reasonable for groups 1-4. We assume that 2 is estimated with
366 d.f. A more conservative assumption might be use 15 d.f. since this
is the amount of information concerning aT. This would raise E from 1.75
to 1.88.

The group i mean is declared to be significantly lower than the

control mean if

X < X - t (1/N + 1/N 1/2= 131.2 - (1./50)(30.01)(I/N.
i,adj 1 e i 1i

+ 1/N )/2

i = 2: X2,adj = 133.37 critical value =123.50

i = 3: X3adJ = 127.9 critical value = 123.50

i = 4: X4,adj = 113.1 critical value = 123.39

i = 5: X5adj = 108.1 critical value = 118.52

Thus the average weight gains in groups 4 and 5 are declared by Williams'

* procedure to be (statistically) significantly lower than the control group
average at the 5 percent level. With respect to mortality, group 5 is
obviously much different than the control group and group 4 is border-
line (statistically) significantly different. Thus the quantal
survival and quantitative weight responses yield essentially the same

conclusions.

We can fit regression models to the weight gain data to quantify
the trends in averages across groups. Figure XVII.4 shows average weight
gain plotted against log(l + CONC). The responses in the four treatment
groups show a definite trend, mostly linear but possibly with some second
order curvature. Figure XVII.13 shows the results of fitting a cubic
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polynomial in log (1 + CONC) to the treatment groups and an indicator

function to the control group. Namely the model

2 LOC3 +EW = + I ICTL + 2  LCON+ LONC + LCON3 + i
ijk 2 3 4ijk

was fitted to the weight data where ICTL = 1 if GRP = 1 and 0 otherwise
and LCONC = log(l + CONC). This model fits a cubic polynomial to the

treatment groups. The parameter BI, represents the difference between

the control group mean and the extrapolation back to LCONC = 0 along the
cubic polynomial. The contrasts estimated at the bottom of the figure

correspond to the differences between the mean responses at the treat-

ment groups, based on the polynomial fit, and the control group response.

A complication in inference procedures arises if there is tank to
tank heterogeneity within groups. Observations within the same tank are
then dependent due to a common tank effect. The variation of the type
IV mean square for GRPS is seen in Figure XVII.7 to be inflated from
2 to 2 + 18.2048a, due to such heterogeneity. The standard errors in

Figure XVII.13 might then be inflated by the factor [1 + 18.2048a,/Ge] I

to account for such heterogeneity. The quantity c1 + 18.2048U2 can be
estimated by pooling mean squares in Figure XVII.5 in at least one of

two different ways, as discussed in the previous subsection. These
yields estimates of 726.26 with 17 d.f. or 892.35 with 380 d.f. Alter-

natively, regression fits can be carried out on a per tank basis, as is

commonly done. This turns out to be very similar to using the 17d.f.
variance estimate.

Since 2 was nonsignificant in the previous ANOVA fit, since &2 = 0,

and since the variance estimate with 380 d.f. is very similar to the

error mean square in Figure XVII.13, we will use the error mean square

as the basis of standard error calculations in this example. It should

be noted however that this is appropriate only if o = 0.

We see from the type I sums of squares in Figure XVII.13 that the

linear component of trend is highly significant while the quadratic and

cubic trends are nonsignificant over and above the linear trend. This

agrees with the appearance of Figure XVII.4. The quadratic and cubic

terms should be deleted and the model refitted. The contrasts at the
bottom of Figure XVII.13 show, in agreement with the results from

Williams' procedure, that groups 4 and 5 differ significantly from the

control group while groups 2 and 3 do not.
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XVIII. EXPERIMENAL DESIGN CONSIDERATIONS

In this section we consider a number of issues pertaining to the
~design and conduct of aquatic toxicity tests such as precision to be
~expected as a function of sample size, allocation of tanks among treat-
~ment groups, additional variables to measure, numbers of tanks to be run.

~A. Assumptions, Additional Variables to Measure, Numbers and Allocations
. of Tanks

~We briefly discuss several assumptions and recommendations associated
-with planning toxicity tests.

~It is assumed that the constraint on size of test is the number of
fish tanks that can be run within cost, manpower, and apparatus limita-

~tions. The cost of running a test is assumed to be directly proportional
~to the number of tanks run. Once a tank is put on test, the fish a-e
~essentially free. Thus a sample size strategy for early life stage tests
~is to run as many tanks as can be afforded and fill each tank with the
. maximum number of embryos or fry that is biologically sensible. This may

differ for full life cycle tests.

.- A sufficient number of fish tanks should be included in the tests
" to be able to detect the presence of tank to tank heterogeneity within
: groups. If we have enough degrees of freedom among tanks within groups,
: the need for pooling mean squares in the analysis of variance in order

to improve the sensitivity of tests or estimates of treatment effects
is diminished. We can analyze the data on a per tank basis if we wish
to which is appropriate whether or not tank to tank heterogeneity is
present. The main difficulty with per tank analyses is when the lack of
adequate degrees of freedom diminishes precision of inference. We recommend
that there be at least 12 d.f. to estimate tank to tank variation within
groups. This would correspond to an average of 3 tanks per group if 6
treatment groups were being run. However to account for the possibility
zero percent mortality in the control group and 100 percent mortality in
the highest treatment group, it is suggested that 4 replicate tanks per
group be run. This would provide 12d.f. for estimating variability just
based on the results of the four intermediate groups. A glance at the
charts of the noncentral t or noncentral F distribution shows that the
power of analysis of varaince type tests based on 12d.f. is nearly as great
as that with the infinite number of degrees of freedom. For example for

0.05 and one d.f. in the numerator

noncentrality (0) 1.5 2.0 2.25 2.5 2.75 3.0

power, 12 d.f. 0.50 0.74 0.83 0.90 0.945 0.972

[..power, - d.f. 0.56 0.81 0.89 0.94 0.973 0.989
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The differences in power are of little qualitative importance.

An important distinction should be recognized between the numbers of
tanks needed to estimate the variability of treatment group responses as
opposed to the numbers of tanks needed to reduce the tank to tank varia-
bility. Sppose that we run J tanks per treatment group, n fish per tank,
and that aT, a2 represent the components of variation between tanks and
between fish within tanks respectively. Then the variance of a treat-
ment group average is

2 2
e TnJ J

if a is large relative to ae /n, the only way to reduce the variance is
by increasing J. However for fixed j, the ability to estimate this
variance with 12 d.f. yields nearly as much sensitivity of tests and con-
fidence intervals as an estimate with infinite d.f. This is also reflected
in the fact that the upper 97.5 percentile of the t distribution is 2.78
with 4 d.f., 2.18 with 12 d.f., and 1.96 with infinite d.f. Thus 12 d.f.,
is most of the way between 4 d., and infinite d.f.

It should be noted that while we recommend at least 12 df., for
estimating variablity, the tanks do not necessarily need to be equally
replicated across groups. En fact we will suggest an unequal allocation
later in this section.

Another important aspect of planning experiments is specifying classes
of variables. At least six classes of variables can be distinguished:
responses to be measured, controlled experimental variables, blocking
variables, variables to be held constant, covariates to be measured, and
variables to be randomized over. Rather than present a detailed discussion

* of each class of variable, we will emphasize those aspects which either
vary from practice or are less obvious. In addition to the responses
currently measured, it was argued in the previous section that individual
times to death should be reported. This response must be measured but

4 usually is neither reported nor analyzed. Obvious blocking variables are
fish tank or test series. Other, less obvious blocking variables that
might be incorporated into inves'rigations are homogeneous subsets of fish
(e.g., offspring of common parents, fish raised in the same breeding
chamber, fish purchased from a single supplier at a single time, etc),
investigators, laboratories, time period when test was conducted, tech-
nician, and many others. Some of the latter blocking factors would most
naturally occur in round robin tests. In any test program a number of
variables are held constant, at least nominally. Examples are water
temperature, pH, hardness, levels of additives or impurities; type, amount,
and frequency of food; type of fish tank; photoperiod. All these variables

K must be reported with the experimental results so that experimental con-
ditions can be repeated an~d results compared across laboratories. Diffe-
rences in variables held constant will sometimes account for discrepancies
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in results. Covariates are factors which cannot be controlled but which
can be measured and taken into account when analyzing the data. Covariates
commonly reported are deviations from nominal in either controlled experi-
mental variables or in variables held constant. The most obvious covariate
is actual test concentration. This should be determined periodically in each
tank and reported. The analysis of the data should be based on actual
toxicant concentrations rather than nominal. The question of how to
summarize toxicant levels has biological as well as statistical aspects.
For example is effective level the average, the median, the maximum or
some other? The question of frequency of measurement pertains to the
short term effects of fluctuations in levels. The greater the effect of
short term fluctuations in toxicant levels, the more frequently they need
be measured. This aspect will not be considered further here. Other
covariates to be measured and used for analysis might be water temperature,
hardness, or pH, and measures of the size or health of the brood stock from
which the test fish were taken. The remaining class of variables -- those
to be randomized over -- is perhaps the most numerous. However the variables
thought to be most important were included in the other five categories.
These variables, many of which are not explicitely known, are randomized
over. Their effects thus enter into the experimental variability. It is
hoped that their effects are not too great.
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B. Sample Size and Power Considerations for Quantal Survival Data

We first assume that there is no tank to tank variation within
groups. We later modify the results to account for tank effects by
adjusting sample sizes downward to "effective sample sizes."

If there is no tank to tank variation then it suffices to consider
just the number of fish run per control or treatment group. Suppose that
there is a control group (group 0) and I treatment groups (groups 1, 2,
... , I). In standard practice I - 5. Suppose that we run No fish in the
control group and N fish in each treatment group. Then test then in-
volves a total of No + IN E C fish. If we carry out pairwise comparisons
of treatment and control groups based on the arcsine transformation of
observed response rates, the variances of 2 arc sin A - 2 arc sin /PJ
are 1/No + 1/N. We wish to allocate fish to treatment and control groups
so as to minimize 1/No + I/N subject to No + IN = C, fied. This is a
Lagrange multiplier problem whose solution is No = NI

1 /2 . Thus the more
treatment groups, the greater is the sample size in the control group
relative to that in the treatment groups. This is because the control group
enters into all pairwise comparisons whereas each treatment group enters
into just one. The suggested sample sizes are then

N = C/(I + 1/2

N = CI1/2( + 1I/2)

This implies that for every 100 fish tested, the allocation between treat-
ment and control groups would be

I Control (per 100 fish) Treatment(per 100 fish)

1 50 50
2 41.4 29.3
3 36.60 21.13
4 33.33 16.67
5 30.90 13.82
6 28.99 11.84
7 27.43 10.36
8 26.12 9.23
9 25 8.33

10 24.03 7.60
11 23.16 6.98
12 22.40 6.47

We see that the allocation is far from equal if I is moderate. For example
if I - 5, the control group gets 2.5 times as many fish as any of the treat-

* ment groups.

How effective in increasing sensitivity of inferences is this depar-
ture from equal allocation? To determine the sensitivity of various sizes
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of tests to detect increases in response rates between control group and
treatment groups, we carried out a series of power calculations. The
null and alternative hypotheses considered were:

H0: P > PO

H: p> p0

We estimate po, p by the sample response rates Vo, f and reject Ho at
a - 0.05 if

2 arc sin Y5 - 2 arc sin p > 1.645(1/N + 11N)1/2

0 0

simultaneity considerations are ignored in this calculation. The power
of this test is calculated for various levels of N, p, po. The expression
for the power is

- ([1.645 -(Ji -]

I/No + 1/N_

where t(') is the standard normal c.d.f.

=2 arc sin

o= 2 arc sin p-o

Calculations were made for the cases of equal allocation (i.e. N
fish per group) and "optimal" allocation (i.e. N(I + 1)/(I + 11/2) fish
in each treatment group and N(I + 1) /2/(1+ J1/2) fish in the control
group. The usual situation, I = 5, is considered. The results are
shown in Table XVIII.l.
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TABLE XVIII.1 POWER OF ONE SIDED PAIRWISE COMPARISONS OF SURVIVAL RATES
BETWEEN CONTROL GROUP AND TREATMENT GROUPS. a = 0.05.

P0 =0.001 N 50 75 100 150 200

p - .05 0.62* 0.77 0.87 0.96 0.988
0.67* 0.82 0.90 0.98 0.995

.10 0.87 0.96 0.99 0.999 1.000
0.91 0.98 0.995 1.000 1.000

.15 0.96 0.995 0.999
0.98 0.998 1.000

.20 0.99 1.000
0.996 1.000

.30 1.000

1.000

P0 - .05 N 50 75 100 150 200

p .10 0.25 0.32 0.39 0.51 0.61
0.27 0.35 0.42 0.55 0.66

.15 0.53 0.68 0.79 0.91 0.96
0.58 0.73 0.83 0.94 0.98

.20 0.77 0.90 0.96 0.993 0.999
0.82 0.93 0.98 0.997 1.000

.30 0.97 0.996 1.000 1.000
0.98 0.999 1.000 1.000

.40 0.998 1.000
1.000 1.000

*Top number represents power under equal allocation. Bottom number repre-
sents power under optimal allocation, I = 5.
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P I .10 N 50 75 100 150 200

p - .15 0.19 0.24 0.28 0.37 0.45
0.20 0.26 0.31 0.41 0.49

.20 0.41 0.54 0.64 0.79 0.88
0.45 0.58 0.69 0.84 0.92

.30 0.83 0.93 0.98 0.998 1.000
0.87 0.96 0.99 0.999 1.000

.40 0.98 0.997 1.000 1.000
0.99 0.999 1.000 1.000

.50 0.999 1.000
1.000 1.000

Po 0.15 N 50 75 100 150 200

p = .20 0.16 0.20 0.24 0.31 0.37
0.18 0.22 0.26 0.34 0.41

.30 0.57 0.72 0.82 0.93 0.98
0.62 0.77 0.86 0.96 0.99

.40 0.89 0.97 0.992 1.000 1.000
0.92 0.98 0.997 1.000 1.000

.50 0.99 0.999 1.000
0.994 1.000 1.000

273

",-i". . , .""',.''",,,--''.: - . : ' -". ,. . . . -. - . ". . . . . ... "-• " . . - ." .



The following conclusions can be drawn from Table XVIII.l.

1. The ability to discriminate between treatment group and control group
mortality rates varies considerably with N, Po , p. Thus these calcu-
lations provide some idea of the discrimination capability of the
test as a function of size. Remember of course that these calculations
don't account for the effects of heterogeneity among tanks.

2. The effect of allocating more fish to the control group than to the
treatment groups is minor. Equal allocation yields nearly as good
power as "optimal" allocation and is logistically much simpler.

3. If no assumptions can be made about the magnitudes of survival rates
to be expected at the various concentration groups then equal alloca-
tions should be used.

4. If we can say something a priori about the survival rates at the
various treatment groups, then we should have larger sample sizes
in the lower concentration groups and smaller sample sizes in the
higher concentration groups. The aim should be to even out the
power of treatment group-control group comparisons as much as
possible across groups.

We now consider adjustments in power calculations to take account
of tank to tank heterogeneity. We do this by adjusting downward the
effective sample size in each group and then entering Table XVIII.I with
the effective sample size. We calculate the adjustment by use of the
beta binomial model [21].

Suppose that the test consists of I groups, J tanks per group, and
n organisms (fish or embryos) per tank. Thus the actual sample size per
group is N Jn. Let Xij denote the number of responses (dead, abnormal,
etc) in the J-th tank of group i. We assume that Xi, is binomially dis-
tributed with parameters (n, Pij) and Pi. is in turnibeta distributed
with parameters (ai, 61). This model allows for random variation of the

pij Is within the i-th group. Let

a i /(a i +

0 1/(a +

Then E(P ) = Var(P = ( - )ei/(I + ii i Va(ij) ~i~ 1i i/( 0

The unconditional distribution of X is beta binomial with mean and
variance ii
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E (X1 j) = npi

1 + ni 0<0 <

Var (X1) = n - 1 1 + i  i

Assume that 0i  0 is constant across groups. Let

I Kl+nlO

1+0

This is the variance inflation factor due to tank to tank heterogeneity.
-. The effective sample size per tank is then n/K and so the effective sample

size per group is

N Jn/K = N 1 +
eff n/K=N 1 +

As 0 + 0, Neff + N, the number of organisms. As 0 + , Neff - J, the
number of tanks. As a G , Neff + J(l + 6)/e. Thus the effective number

of organisms per tank asymptotes out as the actual number increases. Fig-
ure XVIII.l shows a plot of neff 2 n(l + 6)/(1 + nO) vs n for various
values of 0. We see the diminishing returns of placing more and more fish
per tank in the presence of tank to tank heterogeneity. However under the
cost structure assumed in this section we still place the maximum number
of organisms within each tank, which we assume is 50 for embryos and 25
for fry. These numbers of course are only working assumptions.

To get some feeling for the meaning of 0 in terms of variance in-
flation factors, we calculate the factors corresponding to n = 25, n = 50
for various values of 0.

0 0 0.01 0.025 0.05 0.10 0.50 1.00

Var.infl.fact.,nf25 1 1.24 1.61 2.19 3.18 9 13

Var.infl.fact.,n=50 1 1.5 2.2 3.3 5.5 17.3 25.5

We calculated variance inflation factors for several sets of Fathead

-, Minnow data in Section IX. These were

1. Holcombe and Phipps compound D fry mortality

n = 25, K = 1.337 E (1 + 250)/(1 +0)

Thus 0 0.014 and neff 18.78. Thus Neff = 75.
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2. Jarvinen compound D embryo mortality

n 50, K =3.071 =-(1 + 506)/(l + e)

Thus 0 0.044 and n eff =16.31. Thus N ef 65.
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C. Expected Precision for Comparison of Treatment Croup and Control
Group Survival Probabilities

In the previous subsection we calculated the power to be expected
for pairwise treatment group-control group comparisons of survival proba-
bilities as a function of po, p, N. In this subsection we calculate the
expected half lengths of two sided 95 percent confidence intervals on
P - Po for these same combinations of po, p, N. We again assume no tank

to tank heterogeneity within groups and account for such heterogeneity
by reducing the effective sample sizes, as discussed in the previous sub-
section. We base the precision calculations on asymptotic normal theory.

Namely the confidence interval half length is calculated as

1.96[(p q + pq)/N]I /2 . Asymptotic normality may not be a very good assum-

ption wAen N = 50 or when po = 0.001, but it is only being used for planning
purposes.

TABLE XVIII.2 EXPECTED HALF LENGTHS OF 95 PERCENT TWO SIDED CONFIDENCE
INTERVALS FOR COMPARISONS BETWEEN TREATMENT GROUP AND

CONTROL RESPONSE RATES

p0 P 0.001 N 50 75 100 150 200

p = .05 .06 .05 .04 .04 .03
.10 .08 .07 .06 .05 .04

.15 .10 .08 .07 .06 .05

.20 .11 .09 .08 .06 .06

.30 .13 .10 .09 .07 .06

.40 .14 .11 .10 .08 .07

.50 .14 .11 .10 .08 .07

Sp = 0.05

p = .10 .10 .08 .07 .06 .05
.15 .12 .09 .08 .07 .06
.20 .13 .10 .09 .07 .06
.30 .14 .11 .10 .08 .07
.40 .15 .12 .10 .09 .07

.50 .15 .12 .11 .09 .08

p = 0.10

p = .15 .13 .11 .09 .07 .06
.20 .14 .11 .10 .08 .07
.30 .15 .12 .11 .09 .08

.40 .16 .13 .11 .09 .08

.50 .16 .13 .11 .09 .08
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P 0.15 N 50 75 100 150 200

p .20 .15 .12 .11 .09 .07.30 .16 .13 .11 .09 .08. .40 .17 .14 .12 .10 .08.50 .17 .14 .12 .10 .09

-27

.-4
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D. Power Calculations for Quantitative Weight Response

In previous subsections we calculated expected power and expected
estimation precision for the quantal survival response. In this
subsection we carry out similar calculations for the quantitative weight
response. Distributional aqsumptions are based on the results of analyz-
ing the Holcombe and Phipps compound D fry weights in Section XVII. There
was considerable group to group variation in survival proportions but not
as much variation in the weights of the surviving fry. In particular

Control Group Group 4 Group 5 Group 6

Survivors 94/100 87/100 21/100 0/100

Avg.Wt.of
Survivors(mg) 131.2 113.1 108

Max. Wt. 190 186 195

Min. Wt. 45 29 34

Std. Dev. 25.8 34.0 36.7

Variability is not too dependent on concentration group or on survival
rate. The variance components are assumed to be constant across treat-
ment groups.

The power and precision calculations below are based on a number of
assumptions.

1. There is no tank to tank variation within treatment groups. We discuss
corrections for such factors later in the subsection.

2. Equal sample sizes among treatment and control groups.

This assumption is reasonable if we confine comparisons of weight
gains to treatment groups with mortality rates not greatly in excess
of the control rate. Otherwise an average or minimum N might be used.

3. Constant variability across treatment groups.

This assumption might hold for the weights themselves or for some
function of the weights such as log weights.

4. There are enough observations to have effectively an infinite number
of degrees of freedom. The power obtained with 12 d.f. is nearly that
obtained with infinite d.f.

279

a

* * °.

• , -: . ' - , -.' . _. .. _ .; . :. ." ' . .. ...' - " " .. . , - ,



5. No simultaneity correction is applied.

Table XVIII.3 shows the power of a one sided normal theory test of

SH: li=i
0 0

vs

"I < P 0

where 4, po are the average weights in the treatment and control groups
respectively. In the absence of tank effects the individual weights are
assumed to have standard deviation u. The bottom portion of the table
contains factors C, for constructing 95 percent lower confidence bounds
on po -P. Namely -o p Xo - -Ca.

.8
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TABLE XVIII.3 POWER OF ONE SIDED PAIRWISE COMPARISONS OF AVERAGE WEIGHT
GAINS BETWEEN CONTROL GROUP AND TREAT14ENT GROUPS. C±=0.05

N 10 15 25 35 50 75 100 150 200

dI

d ~ .20.05 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07

.04 0.06 0.06 0.07 0.07 0.07 0.08 0.09 0.10 0.11

.06 0.07 0.07 0.08 0.08 0.09 0.10 0.11 0.13 0.15

.08 0.07 0.08 0.09 0.10 0.11 0.12 0.14 0.17 0.20

.1 0.08 0.09 0.10 0.11 0.13 0.15 0.17 0.22 0.26

.2 0.12 0.14 0.18 0.21 0.26 0.33 0.41 0.54 0.64

.3 0.17 0.21 0.28 0.35 0.44 0.58 0.68 0.83 0.91

.4 0.23 0.29 0.41 0.51 0.64 0.79 0.88 0.97 0.99

.5 0.30 0.39 0.55 0.67 0.80 0.92 0.97 0.996 1.000

.6 0.38 0.50 0.68 0.83 0.91 0.98 0.995 1.000

.7 0.47 0.61 0.80 0.90 0.97 0.996 1.000

.8 0.56 0.71 0.88 0.96 0.991 0.999

.9 0.64 0.79 0.94 0.98 0.998 1.000

1 0.72 0.86 0.97 0.995 1.000

1.2 0.85 0.95 0.995 1.000

1.4 0.93 0.99 1.000

1.6 0.97 0.997

1.8 0.991 1.000

2 0.998

2.2 1.000

C .74 .60 .47 .39 .33 .27 .23 .19 .16
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The power calculations and precision factors in Table XVIII.3 need
to be adjusted for tank to tank variation within groups. Suppose that
there are J tanks per group, n organisms per tank, and that ay, G2 repre-
sent the between and within tank components of variation. The variance
of the average weight in the group is then

.2 Y2 a2 + no2
e e 

J N N

2 2.1/2
Table XVIII.3 is entered at N and at d = (Po - O/(ae + n 2)

The precision factors at the bottom of the table remain the same but the
confidence bound is po - p v o - X - C(a2 + na2)1 /2

We now apply these relations to the weight gain data from the Holcombe
and Phipps test on compound D. In that example there is no statistical
evidence of tank to tank variation within groups. Namely

-^2
a = 900.354 with 366 d.f.
e

2 -'2a + 19.1912 = 754.97 with 15 d.f.
e T

Thus

2-'
a= -7.58~T=

2
and we assume it is 0. Since ae is estimated with 366 degrees of freedom,

* we assume it is known exactly. Thus Ye = 30.0. The average N in groups
1-4 is 91.24 while the sample size in group 5 is 21. Assume for the purpose

of power calculations that Vo = X0 , p = X. Thus 1 o = 131.245, V 3 = 127.924,

114 = 113.080, p 5 = 108.095.

Therefore,

d_ 1o0 3 131.245 - 127.924
d3 30.0

- Vo -P4 131.245 - 113.080 -

d a 3 0.6064 30

1o - 15 131.245 - 108.095
5 30
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Interpolating (approximately) in Table XVIHI.3 with N =90 andd3
d4, d5 yields

Control vs group 3 Power = 0.16

Control vs group 4 Power = 0.99

For group 5 the assumption of equal N is not reasonable ani so we cal-
culate the noncentrality parameter for the test as d5/(l/N0 + 1/N5) 

1 /2

3.186. Thus power =4(noncentrality -1.645) 0 c(3.186 -1.645)

ID(l.540) =0.94.
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E. Unequal Allocations of Testing Effort Among Treatment Groups

Standard test guidelines call for equal numbers of tanks to be run
at each treatment group. Such a design would be sensible only if prior
to running the test there was total ignorance about response levels to be
expected. That is suppose it was thought a priori that the mortality rate
for each treatment group could be anywhere between 0 and 100 percent. Then
it would make good sense to allocate experimental effort equally among treat-
ment groups to assure specified power whenever and wherever the mortality
rate exceeds that in the control group by a specified amount. However if
on the basis of either a priori scientific information or previous testing
some information was available concerning mortality rates to be expected
at the various treatment groups, then unequal allocation of experimental
effort would be preferable. In particular at the higher treatment groups,
where mortality would be expected to be substantially higher than the control

rate, it is easy to detect differences from the control. Thus the experi-
mental effort should be decreased at these groups. At the lower experimen-
tal groups, where it is more difficult to detect differences from the control

group, the experimental effort should be increased to improve sensitivity.
Thus the degree of experimental effort should in general decrease as the
toxicant level increases.

Details of a procedure for arriving at an unequal allocation will be

discussed in the report on phase 2, for Daphnia magna. For the purpose
of this subsection, consider the following illustration of the effects
on sensitivity of unequal replication. Suppose that the experiment is to

consist of a control group and I = 5 treatment groups. Suppose that cost
and logistical restraints limit the number of tanks to 24, that n = 25
fry will be exposed in each tank and that tank to tank heterogeneity
is such that the variance inflation factor is 1.5. Suppose it is felt
that the control group response rate will be about 0.05 and the mortality

rates in the treatment groups will be about 0.10, 0.15, 0.20, 0.40, and
0.80 respectively. The classical allocation would be to run J = 4 tanks
per group. Thus N = 100 fish per group. The effective sample sizes would

be Neff = 100/1.5 = 66.67 fish per group. Suppose further that it is con-
sidered important (biologically and/or legally) to detect increases in

? mortality of 10 percent above the control rate. That is, we wish to detect
differences between 5 percent and 15 percent mortality.

Under the classical allocation scheme the power to be expected for
each treatment group-control group comparison would be:

Group 2 vs control

1 - 8 = [(2 arc sinvl.0 - 2 arc sin/?63)/(2/66.67)1 /2 - 1.645] -

(-[(.64 .45)/(2/66.67)1/2 - 1.645] - $(-0.53) - 0.30
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Group 3 vs control

1 - 8 - 4[(.80 - .45)/(2/66.67)1/2 1.6451 0(0.38) 0.65

Group 4 vs control

.1 - 8 P[.93 - .45)/(2/66.67)1/2 - 1.645] - t(l.13) = 0.87

Group 5 vs control

1 - 4 K [(1.37 - .45)/(2/66.67)1/2 - 1.6451 = 0(3.67) = 1.000

Group 6 vs control

1 - t = $[(2.21 - .45)/(2/66.67)1/2 - 1.6451 = fi (8.52) = 1.000

Consider the modified e. ocation of 7, 6, 6, 3, 1, 1 tanks in the
control group and in each of the treatment groups respectively. Then
No - 175, N2 f 150, N3 = 150, N4 = 75, N5 = N6 = 25. The effective sample
sizes, Neff - N/1.5, are then 116.67, 100, 100, 50, 16.67, 16.67. The
power to be expected for each treatment group-control group comparison

would then be:

Group 2 vs control

1 - 8 = 4[(2 arc sinv- - 2 arc sinvC )/(i/I16.67 + 1/100)1/2 - 1.645] f

0[(.64 .45)/0.136 - 1.6451 - D(-0.25) = 0.40

Group 3 vs control

1 - a - $D [(.80 -. 45)/(1/116.67 + 1/100)1/2 - 1.645] = 4(0.923) = 0.82

Group 4 vs control

1 - a - 'D[(.93 .45)/(1/116.67 + 1/50) 1 /2 _ 1.645] = fi(l.195) f 0.88

Group 5 vs control

1 - 8 - D[(1.37 - 0.45)/(1/116.67+ 1/16.67)1/2 - 1.645] = P(1.87) = 0.97

Group 6 vs control

1 - D = [(2.21 - 0.45)/(1/116.67 + 1/16.67)1 / 2 - 1.645] = D(5.08) = 1.00

Comparison of the two sets of calculations shows that we have improved
the power of the comparisons at the low concentration end of the test without

4sacrificing any appreciable power at the high concentration end of the test.
4This has been done without increasing the size of the test. If we were

willing to add several additional tanks we could do even better. The power
for the comparison of the mortality rate 0.15 vs the control rate has been
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increased from 0.65 to 0.82. This is a substantial improvement because
the chance of not detecting such an increase in mortality has diminished
from 1 in 2.86 to 1 in 5.56. This just about halves the type 2 error
probability.

The previously suggested unequal allocation of experimental effort
to concentration groups is intuitively sensible, improves sensitivity at
the low end of the experiment where it is most needed, does not diminish
sensitivity at the high end of the experiment, and does not increase the
overall size of the test. It requires specifying prior beliefs about
the response levels to be expected at the various concentration levels.
A scheme for doing this will be discussed in the phase 2 report. However,
it is pretty clear that the more definitive the prior information, the
more unequal should the allocation be. As prior information diminishes
to complete ignorance the design should approach equal allocation. Of
course the efficacy of the design depends on the accuracy of the prior
information. If it is believed a priori that group 6 will have between
a 75 percent and 100 percent mortality rate but it in fact has a 15 per-
cent mortality rate, then an unequal tank allocation scheme will probably
do worse than an equal tank allocation scheme.
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XIX DESIGN AND ANALYSIS CONSIDERATIONS FOR FULL LIFE CYCLE TESTS

DISTINCT FROM THOSE FOR EARLY LIFE STAGE TESTS

In recent years, efforts in aquatic toxicity testing have been shifting

more and more to early life stage tests and away from full life cycle tests.

The results obtained from a full life cycle test are directly analagous to

those obtained from early life stage tests, only much more of them are

accumulated. Mortality rates are recorded periodically, length and weight

measurements are obtained periodically, and fecundity responses such as

embryos per spawn, total numbers of embryos, spawns per female are

recorded. With respect to the survival, weight, and length responses

the design and analysis considerations discussed in the previous sections

are directly applicable and require no amplifications or modifications.

Some differences in design and analysis considerations may be called
for with respect to the fecundity responses. Questions of homogeneity of

variances, tank to tank heterogeneity within groups, form of dose response

relation are handled in essentially the same manner as the analagous

questions for the mortality and weight responses. Similarly, sample size
determination and tank allocation design calculation need to be made in the

same manner as those carried out for mortality and for weight responses.
The statistical issues are the same, but the numbers may turn out to be

different.

One design consideration associated with fecundity responses may well

introduce important differences as compared with those for mortality and

weight considerations. Namely it has been assumed that the cost structure

is such that there is a certain incremental cost associated with adding an

additional tank to the test but once the tank is added, the fish are free.

This leads to the recommendation to run as many tanks as can be afforded
and fill each tank with the maximum number of embryos or fry that is bio-

logically sensible. This cost structure may not hold for fecundity respon-

ses. There is a considerable amount of operational and clerical effort

associated with accumulating the hatched embryos, counting them, associating

them with the appropriate fish or groups of fish, and properly recording the

data. The numbers of embryos produced are related to the numbers of fish
rather than to the numbers of tanks. Thus fish can no longer be considered

free. Effects of competition on production must also be considered. In

the presence of tank effects it may thus be sensible to increase the

number of tanks in the test and decrease the number of fish per tank.

This may improve the precision of statistical inferences without incurring
additional expense. The particular trade off between number of tanks and

number of fish per tank would of course depend on the extent of tank to

tank heterogeneity and on the tank and fish costs.

All of these issues arise in the design and analysis of toxicity tests
on Daphnia magna. Survival, length, and fecundity responses are reported

at periodic intervals. The fecundity responses reported by various investi-

* gators include average embryos per surviving female per chamber, embryos

per surviving female, total number of embryos depending on the design

of the test. Questions of multiple daphnids or individual daphnids
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per beaker are commonly posed. Thus most of the design and analysis
considerations involved in full life cycle tests that are distinct from
those in the early life stage tests will be addressed in the course of
the discussion of the design and analysis of the Daphnia toxicity tests.
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APPENDIX All EARLY LIFE STAGE DATA SETS USED AS EXAMPLES IN THE BODY OF

THE REPORT

This appendix contains listings of data sets from four early life
stage toxicity tests. These data are used for illustrations of the
procedures discussed in the body of the report. These data sets are

Benoit - compound A

DeFoe - compound C
Holcombe and phipps - compound D

Jarvinen - compound B.

The three types of data -- survival, weight and toxicant
concentration -- are represented in three "card types." The first six

entries on each card are the same across card types -- treatment group
(col 2), replicate designation (col 4), card type (col 6), card member
(cols 7=8), investigator code (cols 9-10), test code (cols 11-12). This
provides enough information to sort the cards by investigator, experiment,

type, group, and sequence should the data become disarranged. Card type 1
(survival data) contains in addition number of embryos tested (cols 16-20),
number hatched live (cols 21-25), number of fry tested (cols 31-35), number

live at end of test (cols 36-40), number normal at end of test (cols 41-45).

Card type 2 (weight data) contains number of weights recorded from that
particular chamber (cols 14-15), individual weights (5 cols per weight,

• up to 13 weights per card). Card type 3 (toxicant concentration) contains
month (cols 16-17), day (cols 18-19), year (cols 20-21), toxicant concen-

tration (cols 32-38) -- one determination per card. At the head of each
type of information several lines of descriptive text are given.

-.

Appendix All is the appendix for Section II.
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VLSTIGATOR: JARVINOIN (04)v TEST: COMPOU14D 1B (01)

TA FROM EARLY LIFE STAGE TESTS %4TH FATHEAD MINNOWS
X LEVELS : 1 ICiNTRUL),2Z( LOWEST),..e., 6(-HIGHEST ; 2 R~EPS EA (At 0

* EMBRYOS TES-TEa- 4 LIVE AFTER KIATC.4- A NORMAL FRY AFTEk HtATCH
*FRY TtSTEU, ;0 ALIVE AT END, i0 NORMAL AT END

A 1 10't0L 51 q 39 16 it: 16
6 1 10401 5c0 48 48 14 14 14
A 1 10401l 57 51 51 15 15 15
d 1 10401 52 50 50 14 14 14
A 1 10401 50 -4& --- 48-&--15 15 15
j 1 10401 50 43 43 15 15 15
A 1 10401 50 49 49 15 15 15
0 1 10401 46- 47- 47 15 15 15
A 1 10401 52 48 48 L5 08 08
6 1 10401 53 51 51 15 06 06
A 1 10401 50) 49- 49 15 OC 00
6 1 10401 51 4t4 44 15 c 00

vESTI.,ATOK: JARvINON (04),9 TEST: CoMPoUNDBI (01l

* TA FROM EARLY LIFE STAGE TESTS WITH FATHEAD MIINNOWS
X LEVELS: l(CONTROL),2(LObEST),...,6U-IGHEST ); 2 REPS EA IAB)
DIV IDUAL #iEIGHTS tML,) OF ALL FISH ALIVE AT END UF TEST (1-2 CARDS/TANK)
MbER OF .wEIGrITS E LIST OF WEIGHTS

*A e 10401 lb 096 080 072 098 059 074 1.11 078 104 097 060 057 091
A 2 20401 16 085 070 -064 -

o 2 10401 14 107 090 069 082 073 069 120 078 092 120 099 135 069
*d 2 20401 14 068

A 2 10401 15 093 096- 096 C19-1 10C 083 098 043 090 070 069 040 052
A 2 20401 15 072 068
b 2 10401 14 114 085 079 112 07C 082 099 090 084 078 iOUj Obl ubi
6 2 20401 14 071
A 2 10401 15 080 100 04a ICO 105 082 U71 066 096 078 087 078 O6o
A 2 20401 15 081 067
b 2 10401 15- -088 090 110 078- 087 070 041 059 117 0c4 039 047 C34
b 2 20401 15 053 064

*A 2 10401 15 09:1 091 089 091 058 086 056 070 064 O't8  083 048 065
*A 2 20401 15 0-98 075

d 2 10401 15 089 C77 084 078 06C 075 090 056 072 065 073 065 050
d 2 20401 15 083 064
A 2 10401 08 078 -060 052 065 067 047 045 105

*d 2 10401 06 078 088 070 038 102 048
A 2 10401 00
6 2 1.0401 00
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INVESTIsiATOK: JARVINON (04lI TEST: C*MPO&JND B 101)

DATA FROM EARLY LIFi STAGE TESTS .ITH FATHEAD MINNOwS

SIX LEVELS: 1(CONTROL)92(LOwEST),...,Ob(IGHEST);2 REPS EA (Atb)
MEASURED CONCLNTRATIDNS OF TOXICANT (MG/L)

I A 3 1040l 030879 0.00
1 A 3 20401 031579 .O0
1 A 3 30401 032279 0.00
I A 3 40401 032979 0.00
I b 3 10401 030679 0.00
I 0 3 e0401 031379 0.00

.I b 3 30401 032079 0.00
I b 3 40401 032779 0.00

2 A 3 10401 030879 0.22
2 A 3 20401 031579 0.24
2 A 3 30401 032979 0.19
2 b 3 10401 030679 0.29
2 c 3 20401 031379 0.23
2 b 3 30 401 032079 0.28

2 6 3 40'i01 032779 0.18
3 A 3 10401 030879 0.34
3 A 3 20401 031579 0.39
3 A 3 30401 032279 -0.53
3 A 3 4 OtOl 032979 0.25
3 o 3 10401 030679 0.48
3 d 3 20401 031379 0.36

3 b 3 30401 032079 0.42
3 0 3 40401 032779 0.29
4 A 3 10401 030879 0.46
4 A 3 Z0401 031579 0.55
4 A 3 30,01 032279 0.89
4 A 3 40401 032979 0.33
4 8 3 10401 030679 0.72
4 o 3 e04Ol 031379 0.52
4 8 3 30401 032079 0.88

4 3 40401 032779 0.35
5 A 3 10401 030879 0.60
5 A 3 20401 031579 0.73
5 A 3 30401 032279 0.91
5 A 3 40401 03t979 0.61
5 b 3 10401 030679 1.10

5 b .i 20401 031379 C.59
5 o 3 30'.01 032079 1.10

5 6 3 40-01 03e779
6 A 3 10401 030879 1.10
6 A 3 20401 031579 0.96

-b- A 3 30401 032279 1.90
6 A 1 40401 032979 1.10

b b 3 10401 030679 1.40
8 b 3 204,01 0 3 1 3 79 0.bQ

6 6 3 30401 032079 1.60
,a3 40401 032779 1-10
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INVESTItATOk: DuANE BENOIT (01), TEST: A (01)

DATA FROM EARLY LIFE STAGE TESTS %ITM FATHEAD MINNOmS

SIX LEVELS: 1(CONTROLj92(LOwEST)*... b(I-IGHEST); 4 kEPS EA (AtBCt0J
0 EmBRYOS TESTEj) a ALIVE AFTER HATCH. 9 NORMAL FRY AFTER MATCH
0 FRY TESTEU, 0 ALIVE AT ENC, I NORMAL AT END

I A 1 10101 30 24 23 15 15 15

1-0 0101 30 26 26 Is 15 15
1 C 1 10101 30 20 20 15 15 15
1 0 I 10101 30 24 23 15 15 15
2 A I 10101 3G 22 21 15 15 15
2 b 1 10101 30 21 21 15 14 14
2 C 1 10101 30 21 21 15 15 15
2 0 1 10101 30 16 16 15 15 I5
3 A 1 10101 30 17 Ib 15 14 14
3 6 1 10101 30 20 20 15 14 14
3 -C I I0-14D- - 30 -12- 21 is 15 15
3 0 1 10101 30 22 21 15 15 15
4 A 1 10101 30 12 11 15 1i 12
4 0 1 -OOL 30 -18 18 -15 11 11
4 C 1 10101 30 22 22 15 14 14
4 D 1 10101 30 25 24 15 14 14

5 A 1 10101 30 -.20.- -20- - -0 9 -Oq
5 b 1 10101 30 17 17 15 oe 06
5 C 1 10101 30 17 16 15 09 09
5 0 1 1OO 30 24 24 15 06 08
b A 1 10101 30 19 18 15 08 08

a b 1 10101 30 20 19 15 03 03
b C 1 10101 30 26 25 15 12 12
SU 1010i 30 21 21 15 iC 10

I~vESTIbATOR: DUANE BENOIT (01), TEST: A t01)
DATA FROM EARt-.--LIF-E -ST&E---TEST4-I-T-H-FAT-MEAD MINNOWS -

SIX LEVELS: l(CONTROL)qZ(LOEST ... 96(1IGHEST); 4 REPS EA (A,98C.D)
INDIVLDUAL .EIGHTS tMCII OF ALL FISH ALIVE AT END OF TEST (1-2 CARDS/TANK)
NUMbERq -Of M*E-I~v$T*S -&-4L--LT -G i--MS------ --.--

I A 2 10101 14 164 152 164 123 13C 094 141 150 ZC5 128 08b 070 11c
I A 2 20101 14 139
I b 2 101-01-15- 090 -"5-- 18 1.29 402 -1b5 103 135 170 160 140 092 162
1 b 2 20101 15 139 106
1 C 2 10101 15 175 130 102 143 L21 131 172 120 150 090 133 125 121
I &-2 201-01 -46--4-5-2-- 4 -- ---- -- .
I U 2 10101 15 136 080 123 116 133 100 100 090 183 190 073 004 09C
I u 2 ZOI 15 152 1bO
.-e -A401-n --01-5- 9-0---24,0- -12- -02- -084 120- 190 114 -2 108 107 418 128
2 A 2 20101 15 110 060
2 d i 10101 14 123 145 112 180 083 124 100 155 111 107 090 161 142

2 a8 2 '2010-1 4- & 4 -- .. .-.. .. . ..
2 C 2 10101 15 083 134 114 118 18C 160 130 180 132 190 084 120 132 *
2 L 2 ZOLO1 15 131 109
2 0 2 1OLOL 15 L80 -062 - 15-2 180- -1-73 -138-- 130 092 133 130 08o 140 115

2 D 2 20101 15 093 137
3 A 2 10101 14 110 159 094 148 08C 151 121 096 144 132 100 112 095

-- 3 A 2 2-01014-4-- - L-60 --- - .- --- - - -
3 8 2 10101 14 113 162 070 141 134 090 124 248 182 138 094 098 131
3 8 2 20101 14 146

-- 3, C 2- 10101 -15 -11-0--07-3-- -240--I19 -- 130 L1O 090 04 080 193 123 086 150

3 C 2 20101 15 162 118
3 0 2 10101 15 110 150 200 078 093 147 115 122 101 126 092 153 103
3 0 2 10101 -15 -1-20 -070 -

4 A 2 10101 12 131 130 112 132 092 132 112 099 106 140 125 094 q
4 0 2 10101 11 083 136 148 060 1-62 139 157 121 091 146 134
4 C 2 10101 15 182 086 140 106 105 165 130 164 091 115 122 099 145
4 C 2 20101 15 117 094
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4 0 e 10101 14 121 I40 25t 132 132 114 123 105 li 154 12U 131 072

,4 0 2 20101 14 Ill
5 A 2 10101 09 043 11 100 064 071C Ill 0qO 050 150

5 b 2 10101 06 054 117 127 098 121 157

5 C 2 10101 09 070 Db5 184 144 125 084 112 071 106
5 V 2 10101 08 080 130 071 166 IIC 078 137 078

A 2 10101 0, -024 034 025 010 021 014 051 018

6 8 2 10101 03 U37 031 007
6 C 2 10101 12 041 059 051 031 035 049 033 033 052 030 034 052

a 0 2 10101 10 026 020 048 013 042 082 037 024 042 Oil

I,4VESTIGATOR: DuANE BENUIT 101), TEST: A (01l

. DATA FROM EARLY LIFE STAGE TESTS WITH FATHEAO MINNOWS

SIX LEVELS: liCONTROL),2(LOwEST,...,. 60IbNEST; 4 REPS EA 1A,8,C,0I
SEE OATA SHEET FUR NOTES

* tASUkEU CONCENTRATIONS OF TOXICANT (MICRO tj/L)

I A 3 10101 - 061179 0.06.
I A 3 20101 062579 0.08
I A 3 30101 070979 0.15
1 d 3 10101 060679- 0.00

I B 3 20101 061879 0.08
I o 3 30101 070279 0.10

I C 3 10101- 060879-- 0.07
I C 3 d0101 062179 0.06
I C 3 30101 070579 C-13

1 0 3 10101 061479 0.06

1 0 3 20101 062879 O.LO
2 A 3 10101 061179 1.68
2 A 3 20101 062579 1.59

2 A 3 30101 070979 2.00
2 b 3 10101 060679 1.b3
2 b--3-2010 - -044-4-7-9- . . --- 4-- 6-9 - - - - - - - .

2 5 3 30101 061879 1.27
2 0 3 40101 070279 1.58
2 C 3 10101--0 . .8-79---- ... .. 70

2 C 3 20101 061879 1.40
2 C 3 30101 062179 1.52

2 . 34 01-L 0-705-7-9- -- .- 5
2 0 3 10101 061479 1.84
2 0 3 20101 062879 1.84
3 A- 3- 10104 -0 .- 1-- -----..... .3.0 3-
3 A 3 20101 062579 2.69
3 A 3 30101 070979 4.00
3 o 3 10101- 0606-79- .. ... 3.26-
3 8 3 20101 061479 3.58
3 b 3 30101 061879 2.d1
3 b- 3 40101 -070279 ... ... -3.32
3 C 3 10101 060879 2.85
3 C 3 20101 061879 2.36
3 L 3 30101 062179-----.... 2.72 -

3 C 3 40101 070579 3.61
3 u i 10101 061479 3.79
3 U 3 20101 062879 3.44
' A 3 10101 060879 5.99
4 A 3 20101 061179 6.37
4 A 3 30101 -062579 - 5.5-7 -
4 A 3 40101 070979 7.30
4 ,6 3 10101 060679 7.06
4 6 3 20101 060679 6.83
4 a 3 30101 061179 7.19
4 b 3 40101 061879 5.91

4 t) 3 50101 062579 b.09

4 b 3 60101 070279 6.49

298



4 8 3 70101 070579 7.92
4 3 60101 070979 7.80
- C 3 10101 060E79 5.66

4 C 3 ?0101 061179 6.21
C 3 30101 062179 5.23

4 t. 3 40101 062179 5.14
4 L 3 501OL 06Z579 5.44
4 L 3 bOlOI 070279 5.95
4 L 3 70101 070579 7.02

L. C 3 4010L 070979 7.50

. U 3 10101 061179 b.72
4 0 3 20101 061479 7.57
q 3 30 -6 5 7 9 5.93

4 U 3 40101 062879 7.76
-t 0 3 50101 070979 8.40
5- A 3 LOI OJ.--- -4,L-7-.9--- -13-0----
5 A 3 20101 06Z579 12.00
5 A 3 30101 070979 18.00

a 3 LOO - 060679--.-. - 1-7.-20
* 5 0 3 2OlOl 061879 10.80

5 d 3 30101 070279 11.80
5-. 3 401G -. 04-84- '- .. .......-. 0-- .. . .

5 C 3 20101 U62179 1C.70
5 C 3 30101 070579 13.10
5 U 3 1OOL C61479 13.60
5 0 3 20101 062879 15.30
6 A 3 10101 061179 24.10
a A 3 2010 062579 23.30
6 A 3 30101 070979 30.00
b d 3 10101 )60679 29.80
6- 3-20101- -0-179-2A ......- HQ68
6 b 3 30101 070279 32.70
6 C 3 10101 060879 24.20
a L 3 20101 -062179---
6 C 3 30101 070579 33.40

6 D 3 10101 061479 21.20
o 0 3 2010L 062&79 23-30

7t
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INVESTIGATOA OEFOE ispa. TS$ra C
DATA FROM EARLY LIFE STGE TESTS viT4 ;iT4EAl Mlt'|4dS
SIX LEVELS I 1ICJVI01LI.I2L iIl.... b(lIG.45IIe? 4EP EA I%#I)
a EMBRYOS TESTEO I LIVE AFTii hATCH* I N )Q'AL FRY AFTiq -AT':
I FRY TESTED# I ALIVE AT ENO. I NO'IAL AT EN)
1 A 1 13201 50 zi 28 20 2o ?O
1 1 13201 50 31 it 20 20 f0
2 A 1 10201 50 1 17 23 2') 70
2 9 1 10201 50 31 31 ?0 20 23
3 A 1 10201 50 130 3) 20 20 ?0
3 S 1 10201 50 13 33 20 13 18
4 A 1 10201 50 34 34 21 21 21
4 a 1 10201 50 '9 21 20 19 14
5 A 1 10201 50 28 2J 20 16 16
S 8 1 10201 50 33 33 20 15 15
6 A 1 10201 50 31 33 20 30 00
6 8 1 10201 50 31 00 20 03 00

INVESTIG TORS )EFOE 1021 TESTI C
"ATA FRON EWLY LIFE StkGi rfsTS [1r4 FAT'4EAn %IN43$S
SIX LEVELS I I(CONITR3L)ZILOEST)jo.b(41IGHEST3JZ 1-PS :, (%,)
IOIVIOUAL 4EIG4S (AG) OF ALL FIS4 ALIVE AT E1I IF TEiT ( 2 C40l5 34 LESSICELL)
NU-BER OF wEIGHTS - LISf OF 4EIGHTS
I A 2 10201 23 159 139 105 170 1b6 171 124 13! 36 3 5 113 183 3)2
I A 2 23201 20 141 1S3 174 130 153 172 134
1 B 2 10201 20 011 147 172 173 174 151 200 103 124 238 173 145 170
1 B 2 23201 20 150 165 153 084 230 135 071
2 A 2 10201 20 124 13 312 109 141 141 11 L, 162 124 153 187 126
2 A 2 20201 20 131 119 125 103 133 19! 080
2 A 2 10201 20 091 142 145 214 113 117 095 723 116 164 162 200 1#0
2 8 2 20201 20 161 236 200 190 19? 137 1e1
3 A 2 10201 23 171 1%8 0;5 17 06 160 129 157 174 15 3 OZ 145 137
3 A 2 20201 20 131 153 144 152 11? 177 198
3 A 2 10231 13 170 153 151 165 131 134 14'1 15Z 162 137 120 129 131
3 B 2 20201 10 100 016 124 155 047
4 A 2 10201 21 OT 133 08 122 19; 162 09 135 165 144 122 152 073
4 A 2 20201 21 193 144 145 145 134 226 150 345
4 S 2 10201 19 115 111 073 Oq) 133 084 132 114' 364 102 093 091 131
4 8 2 20201 19 177 053 124 090 101 119
5 A 2 10201 16 037 056 072 047 056 053 037 053 044 007 024 047 049
5 A 2 Z0201 16 037 034 35?
5 B 2 13201 15 029 3S0 335 055 035 033 057 J35 36 345 050 061 003
5 8 2 20201 15 045 030
6 A 2 10201 00
6 a 2 10201 00

INVESTIGATORI DEFOE 1021, TESTS C
DATA FROM EARLY LIFE STAGE TESTS WITA PT-iEA m IN4OVS
SIX LEVELS a IC]4TL),2L34iST),...,,1IGHEST);2 SE 14.3)
MEASURED CONCENT44TIONS OF TOXICANr (NOTE NO UNITS GIVE4)
1 A 3 13231 0;0579 000.16a
I A 3 20201 093779 OGC.3b5
1 A 3 30201 091374 000.074
I 1 A 3 40201 091274 000.116
1 A 3 50201 091479 OCL*)68
1 A 3 60201 01711 000.323
1 A 3 ?3231 012171 000.024
1 A 3 80201 100271 000.033
1 3 10201 090679 000.078
1 5 3 23201 091174 0009054
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1 8 3 33201 091379 000.045
1 8 3 43201 091779 000°318
1 8 3 50201 01207? 000.04Z
I 3 60201 00277) O00.oz6
1 Fl 3 70201 100179 000.324
1 0 3 80201 100374 000.033
2 A 3 10201 00579 001.?5
2 A 3 20201 090779 led2
2 A 3 30201 0;107) 2.54
2 A 3 40201 091270 2,?4
2 A 3 50201 091479 l.d4
2 A 3 60201 09197) 1.d3
? A 3 70201 092979 1.96
2 A 3 80201 10027) 2.02
2 8 3 10201 690679 1.78
2 B 3 20201 091179 2.34
2 8 3 30201 091379 2.15
2 A 3 40201 091774 1.0'
2 8 3 53201 0)?07? 1.9
2 8 3 60201 0)2774 I.54
2 B 3 70201 130179 7.01
2 I 3 60201 10037? 2.01
3 A 3 10201 090579 7.47
3 A 3 20201 090779 5.66
3 A 3 30201 091074 4.91
3 A 3 40201 09127) 4.Z8
3 A 3 50201 09147) 6.16
3 A 3 60201 091979 6.55
3 A 3 70201 092d19 4.73
3 A 3 90201 100279 6.03
3 8 3 10201 090677 5.22
3 6 3 20201 091179 7.06
3 a 3 30201 09137? 8.40
3 8 3 40201 091779 4.73
3 8 3 50201 092079 6.23
3 8 3 60201 092779 4.54
3 8 3 70201 100179 6.99
3 8 3 80201 100379 6.74
4 A 3 10201 090579 14.174 A 3 20201 04077 13.32
4 A 3 33231 0)1077 16.87
4 A 3 40201 091279 17.305
4 A 3 50201 091479 12,49
4 A 3 63291 091979 14.14
4 A 3 70201 0:2479 14.)9
4 A 3 50201 100279 13,3
4 8 3 10201 090679 13.55
4 8 3 20201 091179 17.12
4 0 3 30201 09137) 16.57
4 S 3 40201 091779 14.76
4 8 3 50201 0)2074 13.73
4 B 3 60201 092779 14.37
4 R 3 70201 100177 15.10
4 8 3 80201 10037' 14.14
5 A 3 10201 090579 43.71
5 A 3 20201 090779 43.15
5 A 3 30201 091)71 55,d0
5 A 3 40201 0)1271 52.20
5 A 3 50201 091474 42,46
5 A 3 60201 091979 46. 11
5 A 3 70201 09271 4e.36
5 A 3 80201 10037) 51.63
5 R 3 1201 090674 4?.71
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543 20201 0 11 7J
5 P 3 30201 0) 13 71
5 a 3 43201 091?7)4
5 q 3 50201 092079 44.11

5 B 3 60201 02774 4 3. 0
5 q 3 70201 10017)
5 4 3 00201 '.!. H
8 A 3 13O 0;051) 135.0
b A 3 Z0201 00771 17.,?
6 A 3 30201 0,1071) L54.25
6 A 3 40231 0912,79 15fo 5
6 A 3 50201 0)147) 1i1.
6 B 3 10201 0vo)S? i .1 ?

6 8 3 20201 0)117) 10..75
6 a 3 30201 0)137 151.)

[0
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IMVESTIGATOR, 41LCOMIE V HII''S blil. TESEI o oli
DATA FROM fA~tl WIE STAGE TCT9 VTTH 4 4EA Nt4*4(nS
sit tEvELS' IICONTRI3LIP m13'drT1, .... simGIESTiv Ate t4' EAEafec,bi

M!IVYOS TESTED* I LIVE AFTC3 4%T!49 :1 NO0F1A FRY AFTER 4ATCH
FRY TETDo A ALIfVE A 4.INI'LAt C'4F
1A 1 10603 %0- 31 7 5 23 23

1 a 1 1060 O 29 '9 ?5 21 Z3
1 C 1 10401 5) 38 1 5 $4 24
11 10603 so 30 10 ?6 '14 2k

2AI163 50 31 11 ?1 )' ? ?
2 1 1C0503 so 30% -% 7 4 24 ?

2 c 1 10603 50 34 31 214 73 23
2 0) 1 1060 30 29 l '5 3 2i
3 A 1 10403 50 35 15 7K i3 23
3 R 1 10603 so 3A 18 25 ,5 23
j-" -!V6R3 50 26 ?,1-- 20 20 _____
3 0 1 10603 so 3i -3% is 14 ?
A % 1 10601 50 30 11 2 4 P1 ?1
4 4 1 10603 sc 29 2' 2 P) '3
4 C 1 10603 50 -27 25 295 '. 21
4 0 1 10603 56 36 18 2% '5 25
5 A 1 10603 so it -*1 25 2 02
5 8 i151603 so 31 '7 28 04 04i
5 C 1 10603 810 36 18 ?5 09 0?
5 0 1 10603 50 34 i3 24 es 6
6 A I 1001 0 36 00) ;p q 00 00
6 41 10603 s0 34 qq Z5 00 00
SC 1 10603 50 25 11 Pi g0 00

6 0 1 10603 so 29 00 Ps 00 01)
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INVESTIGATORI HLCOMOIE pHtIPPS (161, TESVt 1 103l
DATA FRO'I EAPLY LIFE STAGE TrSTI VtT'f F4THEA) "+4NOWS
SIX LE E1..'. It.Cr'1NTI3 LI. 2tLW5Tle ,,, 61410 ,4E7) 4 QEPS FS (ApRoCD
.. I-OVID'JAL -EIG4TS (43.) OF 4LL P194 ALIVE AT EIO OF TEST 1 2 CARDS rIQ LESSICELLI
NIIfRER VIP WEIGHTS A LIST OP WEIG4'TS
1 A 2 10601 23 121 104 114 141 113 144 136 1457 110 090 118 14i 109
1 A 2 .0603 T3 140 129 167 11) 15 m 132 12 147 120 175
1 4 z IuLui 3 1 47 173 i4' 17T 11? i1s 148 177 136 1,2 i9 1R 1i
1 9 7 20603 Z3 141 116.! 7 4 11 127 147 032 165 127 103
I C z 10f,03 24 15S 12? 11 1 iR5 1 1) 134 146 152 1SO 045 0qh 067
1 C Z 20603 21 173 190 12q l1 q no$ 104 109 114 134 136 095
I '3 2 10631 24 128 115 I7? 1Y) 11,1 12f) 140 108 114 099 114 14'4 130
1 f) 20603 24 12 10.8 11? 111* 144 105 111 PI 103 124 116
2 A I(603 ZZ 144 101 0l 11% 11 I17 127 150 111 178 103 120 146 137
2 a Z 20603 22 115 113 114 Inq 117 137 11O 116 116
2 11 2 10603 24 029 160 S4 I.4 '1IV5_16 4 119 IA6 14 14? usP 1, 1 4
2 4 2 20603 24 145 113 !1; 141 I4 11- 149 111 384 t2? 154
2 C 2 Ir6%O3 ?3 161, 145 111 11! 15? 182 146 136 140 111 110 1'f4 140
2 C 2 20601 ? I I 1it ] 6 111 150 123 1 117 1f 147
? 0 ' 10603 23 177 2711 ! 1 1'4 124 13 165 341 lit 140 151 178
2 '3 2 20603 ?3 102 111 1?1 111 14? 115 110 153 1 S 101
3 A ? 10603 23 133 1-) ''. 17 

, 170 111 119 135 125 C-74 094 111 170
3 A Z 20A03 23 153 16i ir l3 1 '.' 119 145 11? 11? LI5
3 A ? 10603 .15 111 1tO 101 1)1 IR5 13 1?1 154 Lu? 131 .I1. 124 156
- 4 2 20601 25 117 144 141 1'1 113 141 111 124 O?q 0,s 074 0 7 q

I C 2 10403 24) 168 137 "71 1 1' I l 3 14C 109 LV1 1-3 14A? 170 155

3 C P 20603 20 143 113 14n 10'1 la? Iti C-49 _____ ________

3 ' 2 10603 24 1i 117 "'14 I 11 1? |? 1 -IU 149 143 12 06 13r, 114
3 n 2 2n6 )1 24 143 144 IM 1 I 11US 171 101 10? IZ. (0 A 3
4 A Z 126el 21 110 149 141 151 1 1 n .O0 III ti? 114 147 P 1 C l n  1II
4 A 2 70S03 21 L4 ih u ", ' ?S C17 ,.23
4 4 2 10603 70 1 0 130 11 t'" 11 1o T )Q t?:2 I 5 1, 1.," 11 14')
4 4 Z 20603 0 I15 121 ', 111 177 3177 '.'4
4 C 2 10 3 21 17 171 ll 174 137 115 153 114 135 151 IO 098" 136
4 f ?( ,NO03 P1 1.10 l11 At1 0'. tV, 190 OT 04'
'0 2 106C? P5 130 13( 17- 10' 1" t 12 105 104 134 115 17 9 173 114
4 6- 2 06U Z)5 134 k_0 43 ~i _;A f 11 T j -?34 51 3l N 4 0'?-7 04 N Ob

A 1060 02 113 074
A IC0 c V? 14 117 11711 2.

5 C 1C013 (IQ 11p 121 1. 1121 116 131 14? )44 P14
S 0 10403 0)4 11" 129 1t' 00? 041 03'
, A I(.%C3 0)

*6 a. 10403 0i-
14C li' 1 ( 1 V0

* '32 10.C3 3
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IVES11'~f.T09s 4nLCIOW3E V4100111NI. TfSTt n 1111____________

SIX UEL~Su 1t:CJNTRxjL, 7uLiu;',r. .... 6('4G-4F.S1l1a 4 VEPS Ef f~tb
mF %SP'rf0 CO4ICrTPArIrn4% (IF tlTr4IY P4CP) G, I Ll

I A I 1C6(3 0
I q 3 IC-%%3 3
I C-3 IC0433 1 __ ___ ______________________________

7 A 3 10403 OP'73 '.1
7 A 1 20"3 0390479l ". 7
7 k 3 '0IC 1 019? 4

7 4 -4 5W)1~3 092479 1 __ ____ __________________________

? 4 3 Ic"I,1 0R2i73 ?A.0
a 8 1 706 3 0J907
R 3 10S03 0911714".

2 1 4 V-Q3 0919? 71
Z 5 3 5C03 09?57731

i C-- -3 200 39f7 3.~ -4 - & 3 3 Oj ,)3 1j11 41.
7 r 3 3L((3 J91 7 l v& 3 40F,01 31171) 1 17
2 C I 4003 F 191)7'? 17 14 3 5 tl5 03 J 9 e4f 11
7 C ? 5ct,3 3)97679 n~f 5 3 3 1 (6 3 ) P14
7 n13 1 40-3 Pp'u7) '1q A c$)03 09357g i
2_?r I_3Z2603 0937717 '5.8 5 R 30f,03 09117 I__ I3.
2 1 1 0611 30117? ; 1.6 s 5 3t 4C3 f 937 1??.--C ij -
2 -1 3 '0503 39?0772 q7 9 115c.fj3 3,3.57. F4C
7 fl 5 m 633 L'72774 11. c C 3 00 04247) I'

*3 AI10603 O4'i7 1 41:1 5 C 1 20603 090A.79 I,
3 A 3206(ilC3 0L. 71 4P 1 5 C It 30A 03 Y)I1271

*3A3 4(43 to 173 471 -- 5-C 0L'c,? 301'j7? 1 1

*3 & I AC'.03 31 ?4 7 z f.4* . 0 3 1(603 0 R 3) 7 )I 13.
., , 3 1 V,* 5 0 3 7 t!1143- 0603 0(3'3I71 1 .

7 I 3 (A 3 24C 13 1) 9 %.2 5 r 13 VV11r, 191174 113.
3 A 3 30 6(3- J:) L?7 6.q4 5 13 3 4r fU3 172 )7 1 115 .
3 4 3 401,03 09197'3 451______ )35003 10')?7 _____ )'4.

3 5 ' 505sc3 i !71 - A310603 14?77) 7311w
*3 C 3 106013 )142977 30o SA 20603 U1473I"
*3 C 3 M4A03 39524-6 A 3 30603 11t79 '71.
*3 C 3 IO13 99179 C,1 A 3 4C(6C3 )1?771 31'.

'A C 1 3'. I1977 6 A 3 ; E FC 3 39'.4?? 1
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APPENDIX AVII THEORETICAL BASES OF CHI SQUARE AND PROBIT BASED TESTS

OF TANK TO TANK VARIATION WITHIN TREATMENT GROUPS

A. Chi Square Test for Heterogeneity of Tanks Within Treatment Groups

Suppose that there are I treatment (or control) groups and J
tanks per treatment group. Let pi denote the probability of
death within the i-th group, i = 1, 2, ... , I assuming homogeneity
of tanks within groups. The heterogeneity chi square procedure

tests the hypothesis

Ho: p= p2  "'" = P.

Let Nij , Xij denote the number of fish and number of dead

fish respectively in the j-th tank of the i-th group. Let

Xi+= Xij X++ = ijXij, Ni+ = Z1 Nij. N++ = ZiZ1 Nij, Pij -

Xij/Nij, Pi. = Xi+/Ni+, P = X++/N++.

The chi test of homogeneity based on each tank separately is

based on the statistic

2 I J (X.. _ N.i.)U i J j with IJ - 1 d.f.

I N p(l - p)i=l j=l

The chi square test of homogeneity based on tanks pooled within
treatment groups is based on the statistic

2 I (Xi+ N 2i+)2

< E3 Ni+(l- ) with I - 1 d.f.
II 1=i 2 2

The difference of these two statistics, X3 - X , is

I II

IJ(X -N 2- - (ij _ ij~i)

k. z N .(i- P ) with 1(J - 1) d.f.
i=l j=l ij

This difference is thus a test of homogeneity of response rates

across tanks within treatment groups and has a nominal chi square

distribution with I(J - 1) degrees of freedom if such homogeneity

exists. Note however tnat the weights in the denominator of this
"chi square" statistic have been calculated under the null hypo-

thesis that p1 = p2 = ... = p1 = p. Thus if the response probabili-

ties differ among treatment groups, as we have seen in the case with
respect to fry mortality, then the weights are incorrect and the
nominal null distribution is inappropriate. Thus this procedure

leaves something to be desired.

*
Appendix AVII is the appendix for Section VII.
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B. Probit Model Based Test for Heterogeneity of Tanks Within

Treatment Groups

Let Xij, Nij, Xi+, N ir, Pij have the same interpretation

as in subsection A. Let ( + SCi) denote the response pro-

bability in the i - th group where Ci is some function of the

toxicant concentration in the i - th group, (D is the standard

normal c.d.f. and a, S are model parameters to be estimated from

the data. Let 2 4(& + RCi ) denote the maximum likelihood es-

timate of 4'..
1

Finney's suggestion is to compare test statistics for lack of

fit to the probit model based on each tank separately and based

on tanks pooled within treatment groups. The lack of fit test

based on each tank separately is

2 with I - 2 d.f.
t N A D N. (l - 0.J 5-I

The lack of fit test based on tanks pooled within treatment groups

is

2 1 ("2

(Xi+ % -l i with 1 - 2 d.f.

The difference is these two statistics,

i_ 2 1 (X ij - Nij p i  with I(J - l)d.f.

I - I =i=l j=l N ( -

This difference is again a test of homogeneity of response rates

across tanks within treatment groups and has a nominal chi square

distribution with I(J - 1) degrees of freedom if such homogeneity

exists. Note that the weights in the denominator of the statistic

are based on the fitted probit model and depend for their validity

on the validity of this model.
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APPENDIX AVIII.1w OUTPUT FROM EXAX2 COMPUTER PROGRAM

Appendix AVIII.1 is an appendix for Section
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APPENDIX AVIII.2 DESCRIPTION AND INSTRUCTIONS FOR USE OF EXAX2
COMPUTER PROGRAM

4

4*

Appendix AVIII.2 is an appendix for Section III.
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EXAX2--A Camputer Program to Canpare Binomial ? roportions

I. Introduction

Dichatancus data arise in many fields of application. In fish toxicology

experiments it is of interest whether an embryo hatches into a live fry, whether

the fry has survived 27 days post hatching, whether the surviving fry are normal

or abnormal. Ln toxicology experiments on higher animals, such as mammals, the

presence or absence of specific types of tzunrs or deformities is of importance.

Such responses naturally give rise to 0-1 or success-failure type data. Such 0-1

data are encountered also in many other fields. For example in industrial

applications it is noted whether or not a unit meets design specifications or

whether or not a unit lasts beyond the warranty period. In sc.iological applica-

tions it is of interest to note whether an individual exhibits certain behavior

patterns, has specific opinions, etc. A myriad of additional applications could

be cited.

Part of the analysis of success-failure data involves estimating the probabi-

lities of "success" within various groups and coparing these probabilities across

groups. EXAX2 is a computational tool to assist in carrying out such comparisons.

Since the need for the program was motivatied by problems arising in aquatic

toxicology, the remainder of the section centers around such applications.

In toxicity tests on fish or daphnids, a number of test concentrations are rn

along with one or more control groups. Within each concentration group (treatment

*B or control) several tanks or beakers are run, each chamber containing a number of

the organi~ns under study. Within each chamber the numbers of embryos, numbers of

* fry hatched live or normal, numbers of fry surviving or normal at the conclusion of

9 the experiment are recorded. It is desired to compare the proportions of live or

normal embryos or fry in the various =_eatment groups with corresponding proportions

ix the control groups.
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A preliminary inference of importance is to test the response proportions among

the tanks or beakers within each group for han.geneity. if there is no evidence of

. tank to tank heterogeneity within concentration groups, the data can be pooled across

tanrKs within groups and further analyses carried out based on binomial theory.

However if evidence exists -f tank to tank heterogeneity within groups, subsequent

" analyses must be adjusted to reflect this, either by adjusting the model or the data

or by carrying cut analyses on a per tank basis.

SEXAX2 carries out tests of hcageneity of tanks w thin groups based on the chi

square statistic. If the expected response frequencies are "large enough" the

distribution of the test statistic is approximated by large sample chi square theorly.

If the expected response frequencies are not large enough for asymptotic theory tc

be applicable, the test statistic is evaluated based on its exact small sample

distributicn, derived fram the exact Mll sample distribution of the contingency

* i table, conditional on the margins (March, 1972). Individual tests of homogeneity

- - within groups are ccmbined by means of Fisher's method (Lit-ell and Folks, 1971,

1973) to obtain an overall test of hcaxgeneity.

EXAX2 also has the capability to test for heterogeneity of response rates across

treatment groups based on responses pooled within groups. Either the exact small

sample or approximate large sample distribution of the chi square statistic is

utilized. Heterogeneity among tanks within groups can be accounted for either by

.modifying the chi square statistic by a heterogeneity factor (Finney, 1971) or by

modifying the data to "eff-tive frequencies" to reflect within tank correlation.

EXAX2 can calculate exact confidence intervals on che odds ratio of a treatment

_rnup response rate as compared with a control group response rate, based on the

:.ii. distribution of Fisher's exact test for 2x2 tables (Thomas, 1971). The0

-noe interval calculations are based on responses pooled across tanks within

-e response frequencies would need to be modified to "effective frequencies"
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to reflect within tank correlation.

Section II discusses program organization and capabilities and provides a more

detailed description of the program's procedures. Section III contains detailed

instructions for card input.

II Program Organization and Capabilities

Suppose that the aquatic toxicity test consists of N treatment groups (including

both test and control groups) and K tanks or beakers per group. (EXAX2 can handle

* different values of K tor each group, however we assume a single K value for

* notational convenience.) Thus the responses within each treatment group can be

i summarized as a 2xK contingency table. The rows represent the response category

(e.g. dead, live or abnormal, normal, etc.) Each colun represents the responses

fran an individual tank. We wish to compare response probabilities across columns.

It is first necessary to specify the entries in the tables. A 2xK contingency

table can be specified as a 3x(K+l) matrix partitioned as follows:

Row
Col 1 1 Col 2 ... CoTotals

Row i X(l, 1) i X(l, 2) ... X(l, K) i  R()

Row 2 X(2, 1) X(2, 2) ... X(2, 1) i R(2)
--- - ----------------

Col Total C(l) u(2) ... C(K) XN

rwhere the X(I,J) comprise the "body" of the table; R(l) and R(2) are row totals;

C(U), C(2), ..., C(K) are the column totals; and XN is the grand total.

The information in the first K columns of each matrix is inputted one column

at a time either by specifying the body of the table (X(l, 1), X(2, 1), ..., XMl, K),

X(2, K)) or the column totals and the first row (C(M), X(U, 1), ..., C(K), X(l, K)),

or the column totals and the second row (C(1), X(2, 1), ..., C(W), X(2, K)) (See

section III, intructions for card input). The remaining elements are computed and

,,- the complete matrix is printed. A single matrix or several matrices must be inputted,

depending on the purpose of the analysis.
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ea' inputted matrix is first examined to detect and adjust for the following

conditions-- if they exist:

1.) If any column totals are zero those columns are deleted, K is reduced

accordingly, and the new matrix is printed.

2.) If any row total is zero or if only one column total is nonzero, then

that table is the only possible table with the given row and column totals. As

• such it is defined to be degenerate and the observed level of significance (for

*future heterogeneity tests) is set to 1. A message to this effect is printed.

3.) Steps 1 and 2 above are repeated for each succeeding inputted contingency

table.

We first consider tests of hcmogeneity within treatment groups and later we

will discuss tests across treatment groups.

If a table is not degenerate, the expected cell frequencies (EX(I, J)) are

calculated as EX(I, J) RI) C(J) /XM (I = 1, 2; J : , ..., K) and XSQ is

calculated as XSQ = (XCI, J) - ((I, j))2 I D<(I, J). If K = 2 a correction
J=l I=l

for continuity is applied to improve the convergence of the distribution of XSQ to

its asymptotic chi square form. Namely if K 2
.2 22

XSQ jl I _I (IX(I, J) - EX(I, J) I - 1/2)2 / EX(I, J).

The table ot expected frequencies and the user specified cutoff value, CUTOFF (for

what constitutes a "large" expected frequency within each cell), are printed.

The table of expected frequencies is then examined to see if any of the

expected frequencies are less than CUTOFF, e.g. 5. If not XSQ is considered to be

asymptotically distributed as X2 with K-I degrees of freedom, and its significance

leve± (Ai) is calculated based on chi square theory. The observed chi square value

and its significance level (Ai) are printed. If one or more of the expected

frequencies is less than CUTOFF, the exact distribution ot the XSQ statistic is

calculated. This is done by enumerating all possible tables with the given row

350



*I

an- column totals (algorithm due to Boulton and Wallace, 1973) and their associated

chi square values. Under the assumption of homogeneity ot response probabilities

across columns the probability of each possible table, conditional on the row and

*/ column margins fixed, is (March, 1972)
K

M11(J)J

I,J

From this exact distribution over possible tables the exact distribution of XSQ

is derived. Based on this derived distribution, the significance level (Ai) of the

XSQ value associated with the observed table (XSQOBS) is calculated as the probability

of a XSQ value greater than or equal to XSQOBS. The observed XSQ value and

significance level (Ai ) are printed and optionally (see instructions for card input)

the exact XSQ distribution is printed. The entire process is then repeated on the

next contingency table.

After tests of homogeneity (asymptotic or exact) have been carried out on each

treatment group, the significance levels A1, A2, ... , A,, sunmarize the results

of the independent tests of the honogeneity on each table. To obtain an overall

* significance level these independen, Ai's are combined as follows:

For groups where the istribution of X Q has been approximated ny its asymptotic

chi square form, the null distribution of A; is approximately uniform (0, 1). Thus

Yi - 2 ln (i i) has an approximate chi square distribution with 2 degrees of free-

dom, mean E(Yi) E ELY - E(- 2 L, (Ai)) - 2, and varibnce Var (Y) =VaY - Var (-2 Ln

(Ai )) 4.

For groups where the exact small sample distriution of XbQ has been used, A-- and

Yi -2 Ln (Ai ) have discrete null distributions derived from the null distribution

of the contingency table. The mean E(Yi) - EYi and variance Var (Yi) E V4RYi are

* calculated from the exact distribution of Yi -2 ln (Ai).
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In either case (i.e. exact or asymptotic) the values of Yi, EYi, and ,ARYi are

calculated and printed along with the other resluts for each table. The test

-statistic for the overall test of tank to tank homogeneity within groups is

Z VARYi/ (4 =i)

*It is calculated and printed at the end of the output. Under the null hypothesis

that the tables are all homogeneous, Z has an approximate standard normal distri-

bution. The null hypothesis is rejected for large values of Z.

We now consider additional applications of EXAX2. The program has the

capability to carry out chi square tests of hcmogeneity across treatment groups and

to construct exact confidence intervals on the odds ratios of treatment groups

compared with the control. These applications are discussed in turn, beginning

with tests of hcmogeneity across groups.

if preliminary tests do not reveal heterogeneity among tanks within treatment

. groups, then it is appropriate to sum the observed trequencies in the individual

tanks within each treatment group. This results in a new 2xN contingency table

* which can be tested for homogeneity across treatment groups. EXAX2 car perform

the appropriate summing within groups and then proceed with the chi square test

across groups, based either on exact or asymptotic theory, as discussed above.

Since just one contingency table is involved in this application, the Z statistic

is not computed.

EXAX2 has the capability to compare, on a pairwise basis, the odds (p/(l-p))

within each treatment group to the odds in a user specified group; e.g. the control

group. Using an algorithm given by Thcmas (1971) an exact confidence interval is

computed for each odds ratio (one per treatmnent group). The user specifies both

the upper and lower alpha levels, thus permitting either one sided or two sided

confidence intervals.
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To illustrate how this works consider the frequencies for treatment I (the

control group) and treatment T as forming a 2x2 contingency table:

Col 1 Col T Row Totals

Row 1 X(±, 1) X(l, T) Y(l)

Row 2 X(2, 1) (2, T) Y(2)

Col Totals C(1) CMf) YN

Y(l), Y(2), YN designate respectivcly the two row totals and the grand total of

this new table. The odds ratio PSI is defined as PSI = (PiQ 1 ) / (PTQ1)

wh~ere P, PT are the category 2 probabilities (i.e. "success") within treatment

groups 1, T respectively and Q, B I-P1 , QT H I-PT are the category 1 probablities

within treatment groups 1, T respectively.

We estimate these quantities by

= X(2, 1) / C()

PT X(2, T) I C(T)

Q X(l, 1) / C(1) 1 I-P1

Xl, T) / CT) E -PT

PSI = (X(2, 1) X (1, T)) / (X(l, 1) X (2, T)).

Thomas' algorithm is an iterative technique for finding upper and lower

conficence bounds on PSI. It is based on the noncentral distribution of Fisher's

exact test statistic.

III Instructions for Card Input

in this section we present detailed instructions for card input to EXAX2.
The ca~d input consists of 5-12 Program Inforation Cards followed by the Data

Cards and the Alpha Card. The Program information Cards are, in order: one Input

Option Card, one Parameter Card, one Fornat Card, one Header Card, one Labels Card,

and from one to six Title Cards. These cards must be punched as described below:

1. INPUT OPTION CARD This card should have a 1 in card colunr 1 if the
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subsequent data cards represent K tanks per treatnent group and the tank data Is

to be pooled (sunmed) within each treatment group to produce one 2M contingency

table which will then be analyzed. There should be a 2 in card column 1 if no

pooling is to occur. In this case, the data will be tested for homogeneity among

tanks within treatment groups.

2. PARAMETER CARD

Card Cols. Description

1-5 K = the number of columns in each
contingency table (a right justified
integer) (K is the number of tanks
per treatment group.) K should be less
than or equal to 12 if the number on the
Input Option Card is 2.

6-15 CUIOFF = the smallest expected cell
frequency with which the use of the
asymptotic chi square approximation is
permitted. If one or more expected cell
frequencies are smaller than CUTOFF then
the exact small sample distribution of
XSQ is used. (CUTOFF is a real number
with decimal point.)

16-19 blanks

20 NTITLE = the number of Title Cards used
(an integer from 1 to 6)

21-25 N = the number of 2XK contingency tables,
i.e. the number of groups (both treanent
and control.)
If the number on the Input Option Card is
is 1, then N should be less than or equal
to 12.

26-29 blanks

30 IOPT = 1, if the exact distribution of
XSQ is to be printed

0, otherwise.

31-34 blanks

35 IDATA = 1, if data card input is of tne fort
C(I), X(l, I) (see the description of the
Data Cards given below for an explanation of
this notation)
= 2 if data card input is C(I), X(2, I)
= 3 if data card input is X(, 1), X(2, I)
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Card Cols. Description

40 IC group number corresponding to group
(control or treatent) to which each other
treatment group is to be canpared when
calculating confidence intervals on the
odds ratios (e.g. the number of the con-
trol group).

It should be noted with respect to the specification of K in colmis 1-5 of

the parameter card that sane groups may have L<K tanks. The associated contingency

tables for these groups thus have L<K columns. These tables must be augmented with

K-L columns of zeros by inputting K-L Data Cards containing zeros. The program

will later delete these dummy columns and perform its canputations based only on

the original L columns.

3. FORMAT CARD

This card contains the format in which the subsequent data cards have been

punched, e.g. (F5.0, F5.0), (see the description of the data cards given below).

* Note: No I or A formats may be used! All 80 card columns may be used. The format

- statement may be positioned anywiere on the card and must include the parentheses

(see any FORTRAN text for an explanation of frmats).

4. tADER CARD

This contains a specia-l heading (it may be blanks) which will be printed above

the output for each contingency table. Any or all of the 80 coiumns may be used.

(e.g. Drbryo Mortality)

b. LABELS CARD

Card Cols. Description

1-2 blanks

-10 A label for the first row of the contin-
gency table

11-12 blanks

13-2U A label for the second row of the contin-
gency table (e.g. "live", "dead")
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6. TITLE CARDS

These cards contain titles which will be printed above the output for each

contingency table. Any or all of the 80 columns on each card may be used. The

number of Title Cards must agree with the entry NTITLE on the Parameter Card. If

no titles are desired there must be a blank card here and NTITLE must ecual 1.

7. DATA CARDS

An observed 2xK contingency table can be specified as a 3x(K+l) matrix

partitioned as follows:
Row

Col 1 Col 2 ... Coi K Totals

Row 1 XMI, 1) X(, 2) ... X(1, K) R(l)

Row 2 X(2, i) X(2, 2) X(2, K) R(2)

Col. Totals C(1) C(2) ... C(K) XN

The X(I, J) canprise the "body" of the table; R(l) and R(2) are row totals; C(1),

:(2), ... , C(K) are the column totals; and XN is the grand total. Each Data Card

-ontains the content of one of the first K columns of this matrix. This information

±. :e specified in one of three 'ays. If IDATA = 1 (in card column 3b of the

-iraneter Card), the I-th Data Card must contain C(I), XUI, I). If IDATA = 2, the

-t:. dta Card must contain CI), X(2, I). If IDATA = 3, the -tin Data Card must

:unz..ur X(U, I), X(2, I). EXAX2 will compute trie other matrix elements. The

:onnat given on the second Program Information Card specifies the format under

which this information will be read.

The K Data Cards for the first contingency table are followed by the K Data

SCards for the second contingency table and so on until all N contingency tables have

been given. There will thus be NxK Data Cards in all. iTe form of the data for

each contingency table must be consistent with the entries on the Program Information

Cards.
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8. ALPHA CAkD

Card Cols Description

1-5 ALPHAL : the lower alpha level for the
odds ratio confidence intervals

6-10 ALPHAU = the upper alpha level for the

odds ratio confidence intervals.

These must be decimal numbers less than or equal to one and their sum must be

less than or equal to one.

If the data consist of just one tank per group or if EXAX2 is instructed to

pool data across tanks within groups, then confidence intervals on the odds ratios

are automatically computed. If the data consist of more than one tank per group

"  (i.e. K>l) and EXAX2 is instructed not to pool across tnnks within groups then

" confidence intervals are not computed and this card may be citted.

The input cards are placed at the end of the progam deck between the

//GO.SYSIN DD * card and the/* card. The example below illustrates the input

stream.
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4 5.
~-( V 5.0& ) _ _

EM6RVO MORTALITY
ALIVE AEAO

IiVeSTIPATOK: HJLCOM3r- t. PHIPPS (06), TEST: 0 (03.
* JUATA eROM EARLY LIFE STAGE TESTS ,ITH FATHEAD MINN0NS
*SIA LtVELz: _(CONTRLL), 2(LUWEST), ... , 6(HIGHEST); 4 REPS EA (A,b,C,0)

EMKYUS TESTE3, # LIVE AFTERATCH,NOALF AFTERHA-..
".i FkY TESIcU, I ALIVE Ar END., ;I 4ORMAL AT EisO
1 A i 10o0 i 50 33 33 25 23 23
1 o 10o03 53 29 Zb 25 23 23
1 L 1 01b03 5 38 3o 25 24 24
I. UI 1000Oo1 50 30 30 25 2-+ 24
2 A i 0G03 T0 -1 31 25 2222
2 o 1.0b03 50 36 35 25 24 24

"- 2 .L I 1003 50 3 4 33 25 23 23
. u 1 ;0-Oi 50 49 2 25 23 23

. 3 A L 106)3 5C 35 35 25 23 23
0 1 10003 50 39 35 25 25 25
--C 0o0i 50 26 26 25 20 20

1.. 1 10603 50 38 36 25 24 24
4_ '_ A 1 I0o0 50 30 30 25 21 21
4+ 0 1~~ 100- 5 29 29 25 20 20

4 L 1 ioOi 50 27 25 25 21 21
4 U I 10 3 5 36 35 25 25 25

-A i 10o i 50 j,2 31 25 02 02
5 0 1 1000.3 5Q 31 27 25 04 04
->C I 0o03 50 30 35 25 09 09
0 U I loOi 5C 34 33 25 Oo 06

.I lc i0 50 36 03 Z5 00 00
o 1 10o0. 50 -4 00 25 00 00

b U 1 10o03 53 29 OC 25 00 00

In this example the tank data will be pooled within treatments and 95% confidence

intervals (ALFHAL = 0.025, ALFHAU 0.025) will be computed on the odds ratios

between treatment one ard every other treat nent. There are six treat nents with 4

"tanks each. 'The exact distribution of XSQ will be printed if it is used in the

homogeneity test; i.e., if any of the expected frequencies is less than b.0 (CUICFF).

There are tive title caras preceeding the data cards rran which the total number

of embryos and the number alive will be read.
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IV Program Limitations

EXAX2 has limitations of time and space. The space limitations are due to the

dimensioned size of various arrays. When pooling tanks within treatments, N must

be less than or equal to 12 and when not pooling tanks, K must be less than or

equal to 12. This limit can be raised by increasing the sizes of the arrays in

the following table:

Program Location Arrays

MF program X, C, EX, ICHECK
3LUBRC'ilz TABLE X, C
6UBROu:'LN. INTUT X, C
SUUTINE INPUT1 X, C
S UTINE INPUT2 X, C
SUBRODtI7E EXAX Y, RX, XSQT, D, V, U, DIM

Depending upon the number of tables (with the given margins) that are enumerated

in generating -he exact distribution of XSQ, it may also be necessary to increase

the sizes of the arrays SIG, XSQ, PROB and IOINT in SUBROUTINE EXAX. Also in

FUNCTION FUN (a part of Thomas' confidence interval algorithm) there is a machine-

*. dependent constant (DPC) which should be set in the DATA statement to the largest

real number the machine can hold.

In some cases the CPU time required by the program may be quite large. No

systematic study has been performed to deterunine when this is so, but the following

two examples may be of interest:

1.) For a 2x10 table with column margins all equal to 50 and row margins of

46 and 454, the smallest expected cell frequency is 4.6. If CUTOFF = 5.0, the exact

distribution of XSQ will be generated requiring the enumberation of over 435,000

tables and a CPU time of over 10 minutes on the AMDAHL 470 V6 computer.

2.) For a 2x6 table with colurm margins all equal to 60 and row margins of

333 and 27, the smallest expected frequency is 4.5. If CUTOFF = 5.0, the exact

distribution of XSQ will be generated requiring a CPU time of over 50 seconds.
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It should also be nomed that, as Agresti and Wackerly (1977) point cut,

generally for a fixed grand total the number of tables enumerated (and hence

the CPU time) in generating the exact distribution is much higher when the

column margins are equal than when they are unequal.

P.
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APPENDIX AX! THEORETICAL BASES OF SUGGESTED OUTLIER DETECTION
TRANSFORMATIONS

In this appendix we discuss the motivations and theoretical bases
*. underlying the outlier detection procedures that are illustrated in the

body of the section.

Suppose that the data originate from I treatment groups, J tanks
per group. Consider the i-th group. Let Xij, Nij denote the number of
responses and the total number of fish in the J-th tank, j = 1, ... , J,
and let denote the pooled estimated response rate (Vi = EjXij/ENi)

In subsequent discussion we omit the subscript i for notational convenience
and so these quantities are denoted as P, Q, X, Ni, respectively. LetN N i j.

Consider the chi square statistic for testing for tank to tank
heterogeneity within groups

X (X N 2

J=l Ni

This statistic is distributed as chi square with J-1 d.f. under the null
• hypothesis of no tank to tank heterogeneity. For the purpose of detec-

ting outlying responses we consider three cases:

Case 1: All expected frequencies within the group are greater
than a specific cutoff, e.g. 5.

Case 2: 0<0.1 or >0.9.

Case 3: 0.i<$0.9 and one or more expected frequencies of
responses is less than the cutoff, e.g.5.

We suggest somewhat different transformation in each case.

.* Case 1. All the expected frequencies within the group exceed the cutoff

Consider the individual terms in the chi square test statistic,

(Xj - Njp)/[NjV4]1" 2 . Assume that the weights in the denominator are
"correct" and "fixed". The quantities Xj, f in the numerator are co-

rrelated since P includes X. It can be shown that the variance of

Appendix AX is an appendix for Section X.
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(X N P)N oil 2 is 1 - (Ni/N). If all the NJ are equal, this

variance is 1 - 1/J. If all the expected frequencies in the table exceed

5, as is the case with the Defoe compound C embryo mortality data, then

the quantities

(I- N./N)- I / 2  j ]) j 1, .

can be treated as having an approximate standard normal distribution.

standardized ratios. We pool them across groups and plot the resulting

IJ values on normal probability paper. However, for the purpose of
formal inference we account approximately for the correlation among terms
within groups(approximately -1/(J - i))by treating the J values witnin

each group as if they were J - 1 independent values. This adjustment
of course has the most impact when J = 2. The normality assumption

might be enhanced by first carrying out an arc sine variance stabilizing

transformation.

Case 2. Expected response probability within the group is small
e.g. P<O.l

Case 2 is also applicable to the situation when p>.9, by conci-
dering the complementary response.

The distribution of X can be approximated by a Poisson distri-

bution with mean X = N p. The variance stabilizing transformation inthe Poisson case is we2 known to be the square root transformation. In

particular, 2(X 1/2 _ XI/2) has~an approximate standard normal distri-
bution. We estimate A iby N. -A . Now XJ, A are positively correlated

since X includes X.. It can be shown by a Taylor expansion argument

that the variance of 2(X.I /2 - 1/2) is approximately (1 - N /N). If

all the N 's are equal, this variance is 1 - 1/J.
1

Thus if p<O.l (or if 4<0.1), the quantities (1 - NN)/2 x,'.1/22X1/2
2(X. (N = 1, ..., J, can be treated as having an approxi-

A. 4mate standard normal distribution. Graphical and numerical outlier de-
tection procedures are based on these standardized values. We carry out
the same types of analyses with these values as with the standardized
ratios calculated under case 1. For formal inferences we account appro-
zimately for the correlation among terms within groups (approximately
- I/(j - 1)), as we did in case 1, by treating the J values within each
group as if they were J - 1 independent values
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Case 3. Expected response probability is moderate ( i.e. O.lfl0.9) but
some expected frequencies do not exceed the cutoff (e.g. 5)

We follow the suggestion of Barnett and Lewis and carry Qyt the
arcsine variance stabilizing transformation. In particular 2Nj [arc' ^i12 1/2
sin ( 1) - arc sin (pl/2] has an approximate standard normal distri-

bution as N + . We estimate p by . It can be shown that the variance1/2 (J 1/2) 1/2csi

of 2N7I 2 [arc sin ( ) - arc sin 2)] is approximately (I - N./N).

If all the N 's are equal this variance is 1 - l/J. Thus the quantities

2N i/2(1 - N./N)-1/2[arc sin ( 11/2) - arc sin(A1/2 j = 1, ... , J can

be treated as having an approximate standard normal distribution. Graph-
ical and numerical outlier detection procedures are based on these standa-
rdized values. We carry out the same types of analyses with these values
as with the standardized ratios calculated under case 1. For formal in-
ferences we account approximately for the correlation among terms within
groups (approximately - 1/(J - 1)), as we did in the previous cases, by
treating the J values within each group as if they were J - 1 independent
values.
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APPENDIX AXV. CONFIDENCE INTERVAL ON CONCENTRATION THAT CORRESPONDS TO
A GIVEN LEVEL OF INCREASE IN RESPONSE OVER CONTROL GROUP
RESPONSE.

After we have fitted the nonlinear regression model we wish to calcu-
late confidence bounds on the safe dose. We use Fieller's theorem.

S.

C + L ----------------
L IC2.

safe

Suppose we're willing to tolerate a response rate L above the control
group rate, C.

We want a confidence interval on d such that
safe

VO + a1dsafe L and E (80, 81, c).

The standard probit fit assumes that

p%; d) = c + (1- c)D(8O + 8id). (1)

where c is the background rate.

We obtain , by a maximum likelihood fit of the model using a non-

linear regression program or using SAS PROC PROBIT.

We then wish to solve the equation

0(80 +1dsafe) = L. (2)

Thus, 80 + 81dsfe -1 (L) fL (3)
0 1.fL

Appendix AXV is the appendix foi Section XV.
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AA $-I(L) -%8 (4)

The point estimate for dsafe is dsafe ( 4)

Placing a confidence interval on dsafe is now a direct application of

Fieller's Theorem. See Mandel [ 44 ], page 279 or Graybill [ 45 1, pages
126-127

Thus for fixed d, a 1 - a confidence interval on Yd -O + a d is

A A

Yd a0 + 1d + z a/2 g + 2hd + Jdz (5)

AA A A A

where g - Var(80), j -- Var(81 ), h -- Cov(O , 81).

The confidence interval on dsafe includes all d's such that

A Ar"

f L CO + ald + z a12 Ig + 2h + Jdz

A A2 2 2
i.e. (0 +a 1d - < z /2 (g +2h +jd

2)

f L

Thus the limits on dsafe are obtained by solving the equations

f L 0 + 81d + za/ 2v'g + 2hd + jd2  (6)

Thus A A 2 2 2
( 0 +(ld f L) zoa/2(g + 2hd + jd) (7)
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A necessary and sufficient condition for Fieller's Theorem to yield a
valid confidence interval for d is thatsafe

a Jza/2 > 0 (8)

That is, I2 must be "many" std error units away from 0.
Under the condition in equation (8) a 1 - a two sided confidence
interval on dsafe is

- B + VB1 - 4AC
dsafeE 2A (9)

where A, B, C are

^ 2 jz2
A a/2

2
B = 2 [a1( 80-fL -hza/ 2 1 (10)

, ^ fL) 2 2
C = [(80 - 2- gz a2

Suppose now we wish to calculate a 1 - a level lower bound on dsafe'
This is the value that could be used for regulatory purposes. By an
argument similar to the one above, it can be shown that the form of the
confidence interval is the same as above, except that za/ 2 is replaced
by z and the smaller root in equation (9) is used. Thus to calcu-
late a lower 95 percent confidence bound on d safe we use the lower end
point of a 90 percent two sided confidence interval and d safe etc.
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APENDIX AXVI.1. CONFIDENCE BOUNDS ON BINOMIAL PROBABILITIES

We observe p YABi(n, p).

We wish to construct a 1 - a/2 sided confidence interval on p.

These limits can be obtained easily using the Clopper-Pearson charts.

See Dixon and Massey [ 13] pp 501-504.

" Tables of such confidence limits are given in Natrella [48 ].

P {< p < p= 1 - t where

p -I + n -Y + F(2n - 2Y + 2, 2Y; 1 - a/2 = 0 if Y = 0
U L

1-

n__Y 1 l-t2) l= f
+ Y L +l1 F(2Y +2, 2n -2Y;1 a/p 1iY=n

Appendix AXVI.1 is an appendix for Section XVI.
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APPENDIX AXVI.2. DESCRIPTION AND INSTRUCTIONS FOR USE OF NONPARAMETRIC
DOSE RESPONSE ESTIMATION COMPUTER PROGRAM

Appendix AXVI.2 is an appendix for Section XVI.
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I. INTRODUCTION

Dose response experimentation has many applications such as

toxicity tests, bioassay, engineering stress tests, tests of response

to advertising campaigns, just to name a few. This writeup considers

application of dose response experimentation to tests of toxicity on

fish and other water species. However the procedures and the computer

program discussed are relevant to many other applications.

In aquatic toxicity tests samples of fish or other water species

are exposed in tanks or beakers to the substance or substances under

study. The exposures are carried out at a succession of concentrations

starting at or near zero (i.e. the control groups) and progressing to

relatively high and lethal concentrations. Responses of these creatures

to the toxicant are recorded and degrees of response are compared

across concentration groups.

Many different responses are recorded. Some of these are percent

of embryos hatched live or hatched normal, percent of fry surviving

for a fixed duration or to the conclusion of the test, body weight or

body length of surviving fish, numbers of eggs laid, numbers of eggs

hatched. These various responses give rise to several different types

of data-quantitative (e.g. body weights), count (e.g. number of eggs

laid), quantal response (e.g. hatch/no hatch, live/die, normal/abnormal).

The discussion here pertains to quantal responses.
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Quantal response toxicity tests often give rise to binomial dis-

tribution data. Namely within each test chamber a certain number of

organisms are placed on test. Under reasonable assumptions the numbers

of "successes" (e.g. numbers of fish per tank that die before the con-

clusion of the test) follow the binomial distribution. Many standard

methods have been proposed over the years to fit models to such binomial

dose response data. Finney (1971) and Cox (1970) discuss two of the most

commonly used empirical models, namely the probit and logit dc response

functions. Background response is commonly accounted for in t ,

models by means of Abbot's correction (see Finney, Chapter 7). imber

* of other parametric dose response models have been proposed, based on

empirical or on mechanistic considerations. See Kalbfleisch and Prentice

(1980), pp. 195-198 for a. description of a general family of dose

response models.

Determining safe concentrations by inferences based on dose

response curves has an important advantage over determinations based on
.4

hypothesis tests to compare treatment and control groups. Namely if a

particular test is either too small or too variable then a hypothesis

test comparing treatment and control group response rates may not be

sufficiently powerful. It may thus not be able to detect moderate

sized changes in response rate from the control group. This has the

effect of raising the estimated "no effect" level, which is unconserva-

tive. Such a problem might well arise in the presence of a reasonable

sized background response rate. By contrast, decreased sample size or

increased variability reduce lower confidence bounds on safe
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concentrations derived from dose response curve fits. In this sense,

inferences about safe concentrations based on dose response curves are

more conservative than inferences based on hypothesis tests,

However parametric dose response models have the common drawbacks

that

1. Inferences about percentiles, especially low percentiles,

of the response distribution can be very sensitive to the

specific functional form assumed.

2. Inference procedures are generally based on asymptotic normal

maximum likelihood theory and may thus be inappropriate for

data sets with small sample sizes or with many treatment

.,. group response rates near 0% or near 100%.

3. Results of the high concentration treatment groups,

far away from the safe concentrations,have important

influence on the estimation of the low percentiles of the

dose response curve.

4. Background responses are accounted for in a structured

parametric manner, such as by Abbott's correction. The

form of this background correction may influence the

determination of safe concentraions.

The procedure discussed in this writup avoids many of these

problems. It does not require assumption of a specific functional

form of the dose response curve. It is based on exact small sample

distribution theory. It uses information only from the lower half of

the dose response curve. It does not require a structured, parametric

form of correction for background.
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One assumption made throughout this writeup is that no tank to

tank heterogeneity is present within treatment groups. This implies

that the responses can be pooled across tanks within treatment groups

and summarized by a single binomial distribution per group. If tank

to tank heterogeneity exists it can be accounted for by adjusting the

data to reflect within tank correlation, by fitting more complex models

which explicitly account for such heterogeneity, or by carrying out

analyses on a per tank basis. The procedure discussed in this writeup

can be used in conjunction with the first adjustment approach.
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II. PROCEDURE

The aim is to calculate a lower confidence bound on the "safe"

concentration. The "safe" concentration is defined to be the greatest

concentration for which the response rate is at most lOOL% above the

control group response rate. Note that this does not imply that IOOL%

response to toxicant is considered to be "acceptable". We wish to

eliminate risk altogether. However, we can be confident with such a

criterion that at worst we have limited the risk to this level.

The procedure described in this section is a nonparametric approach

to determining such a safe concentration. Thus it is not necessary to

specify a particular parametric form for the dose-response curve. The

procedure was motivated by one discussed in Gross, Fitzhugh, and Mantel

(1970) for quantitative response, but differs from it in a number of

respects.

Consider a dose response curve relating percent response (e.g.

mortality) to toxicant concentration.

e
lloe

/J

0-
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We concentrate on the portion of the curve that is concave upward.

In the case of a probit or a logit model this would be all concentra-

tions below the EC50, if there is no background and even beyond the

EC50 if there is background response.

Suppose that the toxicity test involves several tanks per concen-

tration group and that we have determined which concentration are in

the concave upward portion of the curve (e.g. below the EC50). We

might do this by looking at a graph or by a preliminary analysis.

Let c., cl, c2 , c3, ... , cr denote these concentrations. Since we

assume the absence of tank to tank heterogeneity within groups, we

pool the responses across tanks within groups to obtain the estimated
A A A A

response rates P0.at c0(control), P1 at cl, P2 at c2, P3 at c3, ...,

Pr at cr. Let pO, pl1 P2 , P3 1 ""' Pr denote the "true" response

rates at these concentrations.

We wish to construct a lower confidence bound on the "safe" con-

centrati on.

Definition. A safe concentration is one that increases the response at

most L (limit) units above background.

Let CL denote this "safe" concentration. Suppose it can be

asserted on a priori grounds that CL lies in the interval (0, Ck)

where C1 <Ck <_Cr .
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( We construct upper bounds on the dose response curve. These

upper bounds will be used to construct lower bounds on CL. First

construct a chord joining (Co, po) and (Ck, Pk . Let a denote its

slope.

Pk -P O (1)Ck- CO

Concavity implies that the chord lies above the dose response curve

=-* .--...-.- 4 .--.'- -.
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throughout the interval (CO, Ck). Thus L/S is a lower bound on CL.

Let Pk be an exact upper confidence bound on Pk and let k0 be an

exact lower confidence bound on p. Expressions for such exact con-

fidence bounds on pO, Pk were derived by Clopper and Pearson (1934)

and are contained in Hollander and Wolfe (1973), pp. 23-24. Set

1(2)^Pk - k
au = Ck _ CO (2)

Then 8u is an upper confidence bound on a. Thus CO + L/au is a lower

confidence bound on L/$ and therefore also on CL. Since we assume

that CL < Ck, our final lower confidence bound on CL is

CL = min (C0 + L/Su, Ck) (3)

It may be possible to increase CL by including information from

Ck+l, ck+2, ... Cr in addition to that from CO , Ck. Namely, we fit

straight lines using (CO, Ck), (Co, Ck+l), (CO, Ck+2), ...1 (CO , Cr),

(CO, Ck, Ck+l), (Co, Ck, Ck+2), ..., (Co, Ck, Cr), (Co, Ck+l, Ck+2),

(CO, Ck+l, Ck+3), ..., (CO, Ck+l, Cr), ..., (CO , Ck, Ck+l, Ck+2 ,

C ). That is, we include CO and all possible combinations of

* (Ck, Ck+l, ..., Cr). Thus there will be 2(r-k+l) - 1 lines calculated

altogether. The lines are fitted by ordinary least squares.

Consider the caluclation of an upper bound on the slope of the

line based on the subset of concentrations: CO , Ckl, Ck2,

Ckd where Ck <Ckl Ck 2 : Ckd <C r . Denote this as the "s-th

subset" (in some ordering of subsets). Define
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C= (CO + Z  Ck )/(J + 1) (4)
j=l j

(CO - Cs)pO* + I (C k - Cs)Pkj
=~ j i3 (5)... U's  i

(C0 _S) + . ( C -

PO* = p0

kifCk < sjCk3

pj* = (6)
flu

ifCk > CsPj 3k

s 1 1, 2, ... , 2 (r-k+l) - 1. We let

iu  min au' s  (7)
-:1 S

CL = min(L/I%, Ck) (8)

There is a problem associated with simultaneous inference. We
wish to assert with a given level of confidence that au > B. It can

be proved that if < pj :< p3, j = 0, k, k+l, k+2, ... , r then > a.

To guarantee this, with specified probability 1 - a, we use Bonferroni's

inequality. Namely we calculate r-k+2 simultaneous two-sided 1 -

confidence intervals by calculating each two-sided confidence interval

at level 1 - a/(r-k+2). Thus, with probability 1 - a, at least, all

the intervals are assured of containing their "true" response rates.
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In the case of "large" samples we can calculate alternative upper

bounds on 6 by use of the normal approximation to the binomial

distribution. Assume for definiteness that the minimum cell

frequency is at least 5. That is, N 5, Njqj > 5, j = 0, k,

k+l, ..., r. (Actually Dixon and Massey (1969), page 238, state a

more liberal standard.) Then

J^

( C)P + (Ckj - >pk= , (9)
(Co - C + X(Ck - 2

0 s j=l kj

is a point estimate of

~J/

(Co s)PO + 1 (Ck "Cs)Pk

j=l k S

and -A

(Cp s)2 poq0  Pkjkj 1/2
A AA ( 0 -~) No + (Ckj- 5  NJ

(.a S) std.err. (Bs) = -0 (=l - 3 (1)

[(C0 - s)2 + (Ck -s)2]
2

Lj=1 k

Thus

U s  +z s.e. (as) (12)

is an upper 1 - a level normal theory confidence bound on a.
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To obtain simultaneous upper confidence intervals we use

Bonferroni's inequality for family size 2(r-k+l) - 1; i.e.,

individual intervals at level I - c/(2rk+l - 1). As before

Su = min aus (13)
S U'

CL min(L/ , Ck) (14)
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III. INSTRUCTIONS FOR PROGRAM INPUT

4' Mortality or Abnormality Data:

In this program, Subroutine RDSURV handles mortality data input.

The mortality or abnormality data is read from Fortran file 4. Each

input card of the mortality data must supply the program with the

following two numbers (in this order):

1. The number of organisms tested in each replicate of each

treatment, and

2. the number of organisms in each replicate surviving the

test (or surviving normally).

The data must be inputted according to increasing order of treatments.

Important. The user supplies the input format for the card image of

the survival data (see input card 4 in Fortran file 5) with

variable format statements.

Concentration (Dose) Data:

In this program, Subroutine RDCONC handles concentration data

input, The concentration data is read from Fortran file 9. Each

input card from this file must supply the program with the following

two numbers (in this order):

1. The treatment number, and

2. the concentration measurement corresponding to this

treatment number.
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Notes to the user:

1. The data must be inputted in increasing order of treatments.

2. The user may input many concentration measurements for a

given treatment since the program calcula.tes an average

concentration for each treatment.

Important. The input format for the card image of the concentration

data is user-supplied with variable format statements.

(See input card 6 in Fortran file5).
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Figure 2. Sample Card Input Deck on the AMDAHL 470 V6 Computer.
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DATA INPUT

Values Used by the Program:

The input cards are read from Fortran file 5. There must be 9

input cards in this file. An example input stream is illustrated in

Figure 1 and a sample deck suitable for card input on the AMDAHL 470 V6

computer is illustrated in Figure 2. The following descriptions refer

to the numbered cards in Fiaure 1.

Card #1 is the title card. The user is to choose a title or message

and place it anywhere in the first 72 columns of this card.

If the user does not wish to supply a title, this first card

must be blank.

A typical title is illustrated on the Fortran Coding Form,

line 1.

Card #2 contains the number of treatments and the number of replicate

tanks within each treatment. Suppose NI = number of trzatments

and N2 = number of replicates. Nl and N2 must be integer

values.

If 1 < Nl <9, place N1 in column 2 of this card.

If N1 = 10, place NI in columns 1 and 2 of the card.

If 1 < N2 < 9, place N2 in column 4.

If N2 = a two-digit number, place N2 in columns 3 and 4.

(See program limitation 1.)

An example of this card is found on Fortran Coding Form,

line 2. The numbers '6' and 'W indicate that there are

6 treatments with 4 replicates in each treatment.
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Card # 3 supplies the program with the number of descriptive cards

(lines) at the beginning of the mortality dataset. (A

descriptive card may be any card at the beginning of the

dataset which is not data; e.g., a typical card might

contain information about the contents of the dataset.)

The number on this card must be an integer from 0 to 99.

Suppose NS = # of descriptive cards.

If 0 < NS < 9, place NS in column 2 of this card.

If 10< NS < 99, place NS in columns 1 and 2.

Note: If the user has no descriptive cards in the mortality

dataset, place a '01 in column 2 of the card.

k An example of this card is found on the Fortran Coding Form,

line 3. The number '5' indicates that there are 5 descriptive

cards at the head of the mortality dataset.

Card #4 contains the format for the input line image of the mortality

data. This format must supply the program with the following

two values (in this order): The number of objects tested

within a given replicate of a given treatment, and the

number of these objects surviving the test (or surviving

normally). Line 4 on the Fortran Coding Form contains a

typical variable format statement. This format indicates

to the program to tabulate to column 16 of the card, skip

15 spaces, and read the next 2 values from the card.
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Card #5 contains the number of descriptive cards at the head of the

concentration dataset. This card is similar to Card # 3.

*Suppose NC = number of descriptive cards.

If 0 < NC < 9, place NC in column 2.

If 10 < NC < 99, place NC in columns 1 and 2.

An example of this card is line 5 on the Fortran Coding Form.

The number '5' indicates there are 5 descriptive cards at

the head of the concentration dataset.

Card #6 contains the format for the input image of the concentration

(dose) data. This card is similar to Card #4. The format

of this card must supply the program with the following

two numbers (in this order): an integer value for the

treatment number, and a real value for the concentration

measurement within that treatment.

Note line 6 on the Fortran Coding Form. This variable

format instructs the program to read an integer value

from the first 2 columns, tabulate to column 30, and

read the real value beginning in that column.

Card # 7 contains the user's choices for 3 parameter values:

1. the upper bound on the upward concavity region (UCR),

2. the level of sigrificance, or alpha level (ALEVEL),

3. the value of a flag indicating the user's desire for

simultaneous confidence intervals. (IFLG1)
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The user should place UCR in columns 1-8 with a decimal

point in column 4. This allows the user to specify a

number as large as 999.9999. ALEVEL is placed in columns

11-16 with a decimal point in column 12. Note that this

value must be a number between 0 and 1. If the user

desires simultaneous confidence intervals, the value of

IFLGI must be 1. Place a 'I' in column 19, if this is the

case; otherwise, leave the column blank.

Note line 7 on the Fortran Coding Form. The number '15.0'

indicates that the upward concavity region lies between

0 and 15.0 (0 and 15.0 are possible concentration values.)

( The number '0.05' indicates the level of significance, and

the 'I' in column 19 tells the program that a simultaneity adjusto

is desired, (Thus 0.05 is interpreted as the familywise error rat

Card #8 contains the number of values of k to be considered in the

analysis, followed by the actual k values. (Recall that

the safe concentration is assumed to lie between CO and Ck.)

The values given on this card must be integers. Suppose

NK = number of k's to be considered.

If 1 < NK < 9, place NK in column 2 of this card.

If NK =10, place NK in columns 1 and 2.

Leave columns 3 and 4 blank. Columns 5-24 contain the

actual values of k. Each value is allotted 2 columns;

e.g., columns 5 and 6 contain the first value of k, and

columns 7 and 8 contain the second value, etc.
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If the value for k is a treatment number from 1 to 9,

place the value in the rightmost column of the field.

Otherwise, the value for k would equal 10 and both columns

are used for this two-digit number.

Note: NK must equal the number of actual values placed

on this card.

Line 8 on the Fortran Coding Form is a typical

example of Card Number 8. Column 2 contains the number

13', indicating that 3 values for k are to be considered.

The numbers '3', '4', '5', are these k values,

Card #9 contains the number of L's to be considered followed by

the actual values for L. (Recall that L represents the

incremental response rate over background, associated with

the "safe" concentration.)The values on this last card

are as follows: Columns l and 2 contain an integer value

for the number of L's. Suppose NL = number of L's. If

1 < NL < 9, place NL in column 2. If NL = 10, place NL in

columns 1 and 2. Columns 3 and 4 are to be left blank.

Beginning with column 5, the remaining columns are used to

specify the desired values of L. Each value of L uses

6 columns; e.g., the first value appears in columns 5-10

with a decimal point in column 6. A decimal point must

be placed in the second column of a given field.

Note that L must be a number from 0 to 1. The user is

allowed at most 4 digits to the right of the decimal

point. The example of Card Number 9 is found on the

Fortran Coding Form, line 9. A '3' appears in column 2
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indicating that 3 values of L are to be processed. These

three values are '0.01', '0.05', and '0.10'.
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PROGRAM LIMITATIONS

Array Size Limitations:

1. The number of treatments may not exceed 10 and

(the number of treatments) X (the number of replicates per

treatment) may not exceed 40. For example, the program

could handle as many as 10 treatments with 4 replicates each,

or 8 treatments with 5 replicates each.

2. The user can supply this program with no more than 10 values

for k (input card 8 in Fortran file 5). Similarly, the

user is allowed no more than 10 values for L (input card 9

in Fortran file 5).

Output Limitations:

1. Only one title card is allowed and the user must restrict

his title to the first 72 columns of the title card. (See

input card 1. in Fortran file 5.)

2. Subroutine WRITEI prints the dat4 summary

found on the first page of output.

The number of objects tested and the number of

survivals are each printed in format F6.0. Therefore, any

quantity greater than 99999. will not print correctly.

Similarly, the concentration for each treatment is printed

in F8.4 format. Numbers greater than 999.9999 will not

print correctly.
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