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EXECUTIVE SUMMARY

Purgose

During the past several decades problems of environmental contami-
nation have become increasingly important both from the scientific and
the legal standpoints. In recent years a great deal of attention has
been directed to the potential toxicity to aquatic organisms of chemicals
discharged into water bodies.

The U.S. Army, through activities such as munitions manufacturing,
operates a number of plants that produce, consume, or discharge a variety
of chemical substances. Some of these discharges enter bodies of water
inhabited by various aquatic species. Thus the Army must provide the
USEPA with safety data concerning the levels of such discharges and the
possible extent of resulting surface water and ecological contamination.
In order to develop such data the Army conducts both intramural and
extramural programs of aquatic toxicity testing.

Considerable amounts of time, money, and manpower are expended
by the Army in such aquatic toxicity testing programs. To make these
programs more efficient and more effective, the need has been felt for
a reexamination of some of the standard methods used. This has been
especially true of statistical methods involved in the design of testing
programs and the analysis of resulting data. This study is an effort
to make some progress in those directions.

The results in this study indicate areas where the conduct of and
the summarization and reporting of results from chronic aquatic toxicity
tests can be further standardized and made easier to understand. A
number of the statistical approaches and procedures discussed and/or
developed in this study have not to the authors' knowledge been pre-
viously applied to aquatic toxicity data. These improved methods provide
increased information, as compared with standard methodology, about the
structure, relations, and anomolies in the data. They enhance the sensi-
tivity of statistical analyses, so that greater precision of results can
be obtained without increasing the amount of testing. In brief this
study provides methods that should improve the reporting and statistical
analysis of data from chronic aquatic toxicity tests. This will enhance
the sensitivity of conclusions that can be derived from these tests,
thereby increasing their efficiency.
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Approach

All the statistical procedures discussed in this report are
illustrated with examples based on real data from chronic tests with
fathead minnows. At the outset of the study the principal investigators
visited the USEPA Environmental Research Laboratory at Duluth to become
oriented to the apparatus and procedures used in chronic toxicity tests.
Discussions were held with various investigators concerning the details
of their studies. Some of these investigators provided us with illust-
rative data to be used in our subsequent work.

A number of sets of experimental data were received from Duluth.
The literature pertaining to chronic toxicity tests in general and to
those tests in particular was reviewed and discussed between statistician
and toxicologist. Based on an understanding of experimental procedures
it was possible to then start considering the statistical aspects of the
problems. The statistical procedures discussed in the body of this re-
port represent a combination of methods taken from the statistical litera-
ture where appropriate or developed especially for aquatic toxicity
testing applications where standard procedures were felt not to be the
most appropriate.

Results

Arguments for the use of standardized fish stocks and standardized
data reporting formats are presented. Aspects of the statistical analysis
of toxicity data are discussed and the suggested procedures are illust-
rated with examples based on fish toxicity studies. Data analysis topics
discussed include: graphical displays, preliminary tests of tank to tank
heterogeneity within treatment groups, preliminary outlier detection
tests, overall tests of heterogeneity in response rates across treatment
groups, treatment group-control group pairwise multiple comparison pro-
cedures, the fitting of standard and nonstandard dose response curve
models, analysis of variance and multiple regression analyses on quanti-
tative responses, statistical power and estimation precision to be ex-
pected for various levels of sample size and suggestions for unequal
allocation of experimental effort across treatment groups with greater
effort expended on the control group and lower treatment groups.

Conclusions and Recommendations

1. The USEPA should revise and update the standard procedure for life
cycle tests on fathead minnows.

2. Standardized data reporting sheets are a very useful adjunct to
the categorization and analysis of chronic toxicity test data.
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Guidelines on disposal of potentially hazardous effluent from
chronic toxicity tests should be incorporated in the procedure.

Detailed procedures for chemical analysis and quality assurance
of chemical data should be incorporated in the procedure.

Some of the "standard" methods currently used for analyzing data
from aquatic toxicity tests can and should be modified. The data
should first be graphed, outlying observations or groups of
observations should be located and the reason for their aberrant
behavior determined, and tests for heterogeneity among tanks
within groups should be carried out. Based on the results of
these preliminary inferences, the data should be modified or
adjusted to account for possible heterogenelty or aberrant values
before going on to the inferences of primary interest.

If hypothesis tests are to be used to compare the treatment group

~ and control group responses they should be one sided tests which

are sensitive to monotone alternatives, rather tham overall
analysis of variance type "shotgun" tests.

Multiple comparison procedures and confidence intervals pro-
cedures should be used to determine specifically which treat-
ment groups have responses which differ from the control group
responses and whether the differences are of a specified
biological significance. Significance tests, by themselves, are
not adequate to define an "MATC" (i.e., maximum acceptable
tolerable concentration), Perhaps a confidence bound should be
routinely constructed at the MATC to determine just how much
worse than the control group the response at that concentration
could conceivably be. In general, confidence intervals impart
much more information than hypothesis tests and should be
routinely used.

A good way to place monotone response structure on the problem,
to amooth the data, and to convert a hypothesis testing prob-
lem into an estimation problem is to fit dose response curve
models to the data and to define the '"safe" concentration as
that which results in no more than a specified increment in
response from the control group. A number of nonstandard vari-
ants on the "standard" dose response models discussed in the
literature may be useful. A nonparametric approach to dose
response estimation is feasible, has been implemented in a
computer program, and may be preferable on occassion to some

of the standard parametric dose response models.
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Statistical power and estimation precision depend both on the

number of tanks run per group and the number of fish per tank. In
the presence of substantial tank to tank heterogeneity the effective
sample size may be more nearly the number of tanks than the number
of fish. Thus in the presence of tank to tank heterogeneity, dimin-
ishing returns result from increasing the number of fish used with-
out also increasing the number of fish tanks per group.

Under certain circumstances it is sensible to allocate experimental
resources so that the control group and lower concentration groups
receive more tanks and fish than the higher concentration groups.
Thais results in greater inference sensitivity in the region of the
MATC. Proportional diluters should be modified to permit such
asymmetrical allocations of tanks, at the discretion of the investi-
gator.

Statistical power or statistical precision goals should be stated
as part of the protocol for each individual toxicity test and
sample sizes should be determined accordingly.
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INTRODUCTION

During the 1960's and 1970's, environmental contamination in gene-
ral and water pollution specifically, became increasingly important as
legal and scientific problems. Regulatory agencies needed scientific
data to support the notion that a problem existed and also needed fact-
ual information for establishing tolerance limits for levels of chemical
discharges into surface waters. From that need evolved numerous standard
toxicity tests, including a test to determine the long term effects of
toxicants on a representative fish, the chronic toxicity test with fat-
head minnows.

Aquatic toxicologists and biologists evolved and refined an effect-
ive fish toxicity test. As data were analyzed and experiments designed,
the statistical considerations evolved to a more complex level. It be-
came clear that some of the statistical procedures needed for the design
of toxicity tests and for the analysis of chronic toxicity data may be
novel or unique and should be developed specifically for fish toxicity
tests.

Operational activities of the U.S. Army (e.g. munitions manufacture)
involve the production, use, and/or discharge of a variety of commercial
chemicals, Safety data must be provided to USEPA concerning surface
water contamination due to discharges of chemical intermediates or the
final product. In-house research of the U.S.Army with the standard fish
chronic toxicity test highlighted the need for a reexamination of the
standard procedures, especially regarding statistical techniques. The
main goals of this project are to suggest statistical procedures for
analyzing data arising from such toxicity tests, to provide recommen-
dations for a more accurate, reliable standard procedure, and to faci-
litate research in aquatic toxicology in general.

This precject was initiated as an interdisciplinary investigation
of the EPA chronic toxicity test for fathead minnows. It combined the
efforts of a toxicologist, a fish specialist, and statisticians. The
biologists functioned as advisors to the statisticians in regard to the
characteristics and limitations of the test animal, test procedures, and
chronic toxicity data and evaluated the test procedure from a toxicolo-
gical viewpoint.

The statisticians developed procedures for data storage, transform-
ation and analysis, scrutinized published statistical techniques for
their applicability to fish toxicity data, and devised new statistical
methods for analyzing data from fish toxicity tests when they were felt
to be more applicable than the standard methods.

This final report is the synthesis of a one year effort. It dis-
cusses both biological and statistical aspects of the planning, conduct,

reporting, and data analyses associated with toxicity tests on fathead
minnows.

xix
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Arguments for the use of standardized fish stocks and standardized
data reporting formats are presented. Aspects of the statistical ana-
lysis of toxicity data are illustrated with examples based on fish toxi-
city studies. Data analysis topics discussed include: graphical dis-
plays, preliminary tests of tank to tank heterogeneity within treatment
groups, preliminary outlier detection tests, adjustments in analysis
procedures due to tank to tank heterogeneity, overall tests of hetero-
geneity in response rates across treatment groups, treatment group-control
group pairwise multiple comparison procedures, the fitting of standard
and nonstandard dose response curve models, analysis of variance and
multiple regression analyses on quantitative responses, statistical
power and estimation precision to be expected for levels of sample size
and suggestions for unequal allocation of experimental effort across
treatment groups with greater effort expended on the control group and
lower treatment groups.

It is hoped that the results obtained in this study will contribute
to better, more reliable toxicity tests and data analyses. This in
turn should provide improved tools for the regulation of toxic chemicals
in aquatic environments and should suggest fertile areas for further

study and development.
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I. ASSEMBLE AND EVALUATE INFORMATION ON TEST METHODS

Although the scope of work specified that design and analysis of
chronic toxicity tests would be researched, it became clear early in the
v project that many aspects of statistical analysis could be pursued using
exemplary data from early life stage tests. Consequently, the review
of test methods and our literature search included both chronic life-
cycle tests and early life stage tests.

DS AR  §1

Three literature sets were searched by computer using appropriate
key words (fathead minnow, toxicity, chronic tests, etc.): Mechanized
Information Center, The Ohio State University; Oak Ridge National Lab-
oratory, Oak Ridge, Tenn.; Ohio Environmental Protection Agency, Columbus,
Ohio. The latter search encompassed 13 major data base searches (Amer.
Chem. Soc., Biol. Abstracts, etc.). The hundreds of citations received
were reviewed for relevancy and the important ones were abstracted and
filed. Reprints of copies or articles, 64 in all, that were considered
to be directly related to future tasks were assembled, catalogued and re-
viewed in detail.

These publications provided information on the fathead minnow in
regard to biology, life cycle events, duration of developmental stages,
nutritional information and reproductive characteristics. The papers
on test methods provided details of variation in design among invest-
igators and a large amount of experimental toxicity data for reference
and further discussion.

Papers and technical reports from E.P.A.-Duluth describing the
apparatus [1] and procedure [2] for chronic toxicity tests were reviewed
and studied in detail in order to understand the method of exposure,
physical arrangement of the delivery system and important variations
among investigators, e.g. the syringe delivery method of DeFoe [3]. The
literature search and research paper perusal was essential for the toxi-
cology group to authoritatively interpret biological factors, experi-
mental data or test methods in discussions with the statistical group
or to suggest limitations in design due to the animal or techmnique.
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II. CATEGORIZING DATA SETS

Early in the project, a number of sets of experimental data from
early life stage toxicity tests ~nd chronic life cycle toxicity tests
were received from and discussed with researchers in EPA-Duluth.
Various aspects of these data were reviewed with the statistical
group to clarify experimental procedures such as types of measurements
and how they were acquired, if measurements were destructive or
nondestructive, the replication of experiments and variation of chemical
concentration in the delivery system. These discussions brought out
the need for standardized data reporting sheets so that data could be
accurately categorized and recorded in a systematic manner for entry
into the computer and statistical analysis. A separate section on
standardized data sheets is included in this report.

The examples in this report are based on some of these experimental
data sets. In particular the data sets from early life stage toxicity
tests by

Benoit - compound A

DeFoe - compound C

Holcombe and Phipps - compound D
Jarvinen - compound B

are used. These data sets are listed in Appendix AII.
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. IIT. ORGANIZATION OF DATA: STANDARDIZED DATA RECORDS

i’ The early life stage data and chronic life cycle toxicity data sets

- were supplied by six different investigators. Each set of chronic data
was received in a unique format. Each set of data was reviewed for the

o experimental procedure (if available) in order to accurately categorize

- the data for storage on computer and subsequent statistical analysis.

~7,

Routine questions, e.g. how many days of exposure, and more complex

questions, e.g. are replicate tests genuine replications, were not easily

resolved by a review of the data sheets, nor was the comparability of

the same categories of data in similar experiments among the array of

investigators. Standardized data records have merit if they are

sufficiently versatile to meet most needs, clearly summarize the exposure
- conditions and facilitate transformation, computer storage, and

al statistical analysis of raw data. The latter task is often done by an

individual who is not an expert in biological research and unfamiliar

with operational details of toxicity tests.

‘34 Good laboratory practice regulations (GLP) have been adopted by
" FDA for nonclinical laboratory studies [4] to assure the quality of
data in support of product safety decisions. One component of the GLP
deals with specific record-keeping practices for experimental data.
The advantages of these required record-keeping practices have been
discussed in regard to vertebrate experiments [5] and would apply
equally as well to fish toxicity data to the benefit of investigators,
statisticians, and regulatory agencies.

Although there is some variation in the design of fish toxicity
tests, certain features are almost universal. For example, in a chronic
toxicity test, a flow-through apparatus is always used and standard
measurements include hatchability of embryos, fish length and weight,
survival (mortality), and spawning data. Consequently, standardized

recording sheets could be devised for summarizing exposure methods and
experimental data.

-~ Our standardized reporting sheets have two components: (a) a

b descriptive section summarizing the conditions of the experiment with
code words or letters to categorize or define data for the statistician,

.and (b) the raw data record sheet with no calculations or transforma-—

.. tions. These record sheets have been designed for data of early life

5 stage tests or chronic life cycle tests.

A. Composite of Experimental Conditions

1. Investigator

2. Toxicant ; Source and % purity

3. Starting Date of Test (Day Zero): /[ /.
D M Y
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4, Selection of embryos: Embryos selected randomly.

_____Embryos examined, only viable
eggs incubated.

Other (specify).
5. Are embryos from paired matings? Yes or no.

6. Fish I.D.: for use only with paired matings; use a unique ident-
ifier here.

7. Generation of embryos or fish? Zero or first?

(Note: 1In chronic tests, some investigators refer to spawnings of
exposed adults as first generation embryos, others, second generation.
We define zero generation as any stage or form used to start a test
and any stages during that generation, including adults. First
generation is any of the stages following zero generation adults.

One may argue against this system on a biological basis, but it dis-
tinguishes between the same stage of separate generations. With

this system there is no second generation in a standard chronic life
cycle test.)

8. Nominal Concentration: identify tanks by nominal concentration
of toxicant (mg/l, ug/l), "Solvent control" by "S", "water only
control by "W".

9. Identify replicate tanks in Nominal Concentration column by "REP"

e.g. 0.25 REP; identify equivalent tanks by "EQ", e.g. 0.25 EQ.

(Note: It should always be clear in original data sheets the re-
lation of replicate tanks of the same nominal concentration, a
crucial factor in deciding what statistical procedures to use. We
define replicate as the simultaneous exposure of fish to similar
concentrations of a chemical that are delivered independently, i.e.
two tanks containing nominal concentrations that originate from
separate syringes in the delivery system are replicates. We define
equivalent as the simultaneous exposure of fish to the same concent-
ration of a chemical that is delivered from a common origin, i.e.
groups of fish in several screened compartments of the same tank are
equivalent groups, as are fish in different tanks supplied equally
by tubing that is split after the final dilution. Replicate ("re-
peated experiment') does not distort the conventional meaning of that
term. The choice of equivalent (''equal in quantity'") was the best
approximation of what occurs.

10. Tank I.D.: identify multiple tanks of the same nominal concent-
ration and type (REP or EQ) by capital letters, e.g. Rep-A,
Rep-B, etc.

Ll




11.

12,

13.

14.

15.

Identify simultaneous incubations (same day, same tank) of embryos

from different spawnings by adding "x" to the '"No. of days since

day zero" entry, e.g. 32x, 32x ; for simultaneous incubations of
"t

eggs from the same spawning, add a "y", e.g. 32y, 32y.

Embryo cup I.D.: identify multiple embryo cups in the same tank
by Tank I.D. and number, e.g. A-1l, A-2.

Identify multiple spawnings on the same date by adding a lower
case letter to the entry, '"No. of days since day zero", e.g.
32a, 32b.

Initial exposure (day zero) as: embryos/fry/juveniles (circle one).

Data entries on one line are/are not from the same fish.

B. Data Sheets for Separate Categories of Data

1. Survival Data
a. Experimental conditions: use entries 1, 2, 3, 7, 8, 9, 10,
and 14 from part A to summarize the conditions of the exp-
eriment.
b. Data Sheet
Investigator Toxicant %4 purity
Starting date of Test (day zero): / /

D M Y
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No. days Nominal
since Concentration

day zero Tank I.D.
Initial No.

Alive

Alive, normal
days Dead

Lost

Total for
Interval

Alive

Alive, normal
days Dead

Lost

Total for
Interval

Alive
Alive, normal
days Dead
Lost

Total for
Interval

2. Fry length or weight
a. Experimental conditions: Use entries, 1, 2, 3, 7, 8, 9,10
and 14 from Part A to summarize the conditions of the exper-
iment.

b. Data Sheet

Investigator
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Toxicant % purity
Measurements taken days after first exposure of this stage.
Starting Date of Test (day zero): / [
D M Y
iﬁﬂ Nominal Tank Length (mm) or Weight (mg) of Individual Fry
. Conc. I.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1:

.l Il .

3. Hatchability of embryos

Sy
-
S

-
o

v

L

a. Experimental conditions: Use entries 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 and 12 from Part A to summarize the conditions
of the experiment.

b. Data Sheet

Investigator
Toxicant % purity
Starting date of Test (day zero): /]
D M Y
7
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Embryo Cup Fish No.days No.embryos Cum.no. Cum. no Cum. no.

Nominal I.D. I.D. since at start hatched unhatched unaccounted
Conc. Tank Cup day zero for

4. Spawning Data

a. Experimental conditions: use entries 1, 2, 3, 5, 6, 8, 10, and
13 from Part A to summarize the conditions of the experiment.

b. Data Sheet

Investigator
Toxicant % purity
Starting date of Test (day zero): /[ ]
D M Y
Nominal Tank Fish No. days No. of No.of Estimated Embryos used
conc. I.D. I.D. since spawnings embryos conditions subsequently?
day zero of embryos ves, No. Where?

5. Data on surviving adults
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a. Experimental conditions: Use entries 1, 2, 3, 6, 8, 9,
10, 14, and 15 from Part A to summarize the conditions
of the experiment.

b. Data Sheet

Investigator
Toxicant 7% purity
Starting date of test (day zero): /[
D M Y
Nominal Tank Fish No.days since Length Weight Sex
conc. I.D. I.D. day zero (mm) (mg) (m, £, im)

6. A data report sheet for chemical analysis of water should be
provided if detailed instructions for chemical analysis are
included in a revised procedure.

7. A separate sheet that need not be standardized should be
attached to the data records summarizing important conditions,
i.e. ph, temperature, photo period, flow rates, type of food
and feeding schedule, etc. and any limits of conditions that
vary during the test.

Transfer of Experimental Data to Standardized Data Sheets.

After considerable debugging of the data sheets and several
trials with actual data, the experimental data were transferred
to data sheets for storage on the computer.
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IV.

ANALYSIS OF AND COMMENTS ON THE TEST PROCEDURE

The published procedure for chronic toxicity tests [2] has not
been revised since 1972. Since that time considerable research on
the test per se has been done at EPA - Duluth and elsewhere to improve
reliability, reproducibility and accuracy. For example, some condi-~
tions specified in the 1972 procedure may be replaced by improved
techniques, e.g. handling and selection of embryos, use of paired
spawnings, etc. Those changes that could be incorporated as improve-
ments in the test procedure should be made and a revised version
published.

Following are comments about specific sections of the procedure,
using the number and letter designations of the procedure [2] as a
reference.

A. Physical System
4, TFlow Rate

Recent USEPA regulations [7] designate certain chemicals as
hazardous wastes if and when they are discarded. Guidelines and
recommendations on the treatment (clean up) of experimental tank
effluent should be included for a test system containing poten-
tially toxic chemicals in ten or more tanks, changing 6 to 10
tank volumes/24 hours in each tank, all operating continuously
for months.

1l4. Where surface water or municipal water is used, a filter
system should be considered.

B. Chemical System
2. Measurement of toxlicant concentration and
5. Methods

A much more detailed procedure should be incorporated in this
section in conjunction with a carefully formulated standardized
reporting sheet. The essence of this suggestion resides in the
absolute need to know the limits of chemical concentration changes
and to have assurance that the chemical analysis data are reliable.

10
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V. EARLY LIFE STAGFE TOXICITY TESTS

A. Background In recent years there has been some movement in the
direction of developing toxicity tests that provide much of the in-
formation relating to chronic and sublethal toxicant effects that is
obtainable from full life cycle tests, yet which require far fewer
resources of time, space, cost and which are simpler to carry out

and analyze. To accomplish these aims, the use of early life stage
toxicity tests has become more common. For fathead minnows such
early life stage tests require about thirty days of effort as compared
with 250 to 300 days for full life cycle tests. This permits a great
many more compounds to be tested.

Soa e

Dl N a0
PP
LIS S

A number of guidelines for conducting early life stage tests in
a standardized manner have been proposed [8, 9, 10]. In these tests,
organisms are exposed during part of the embryonic stage, throughout
the larval stage, and during part of the juvenile stage. The ration-
ale is that this represents the period of greatest sensitivity of
the fish, and so chronic and sublethal toxicant effects will be re-
vealed.

In one version of the test, groups of recently fertilized fish
embryos are placed in embryo cups within test chambers. There are
generally five or more toxicant groups and one or more control groups.
Each (treatment or control) group consists of two or more replicate
test chambers. The embryos are kept on test until they hatch (about
5 to 7 days), at which point the live, normal larvae are thinned to
the desired number per tank and these are kept on test for about an
additional four weeks, at which point the test is terminated. In a
variant on this approach, the embryos are thinned after just two days
on test. After hatch, all of the live larvae are released into the
test chambers for the rest of the test. This avoids handling the

newly hatched larvae at a time when they are most sensitive to the
toxicant,

B. Data The data recorded in such early life stage tests include
number of embryos per embryo cup, number of embryos hatched live and
hatched normal, number of fry in each embryo cup after thinming, number
of fry live at end of test and number normal, individual weights of
all fry alive at end of test, and periodic toxicant concentration
measurements within each tank.

Standardized data reporting sheets that facilitate the interpre-
tation of test results and the communication of these results among
investigators and laboratories have been developed by investigators
at USEPA - Duluth. They have been kind enough to supply us with such
sheets from about twenty early life stage tests (personal communica-
tion). Figure V. 1 illustrates such a basic data reporting sheet
based on the test of compound C carried out by DeFoe.

11

PR PP PP S . L AL, . S T S S S VP NP € T T T N T U R




et B Py
e e oot e,

A - ¢ DN

w

.

Land

ORI ]
AP

CEnr e Sint et - Sagnr i St Shads Yhush Aol egh kit Mgl Sk dhadh St S Shatts e Shass Sheiis Thadk S Bt sl St Seutt it St St Shast Jiuivt S A g

Page 1 contains embryo and fry survival and normality data and a
diagram showing the test layout. We see that in this test there was
a single control group (1), five treatment groups (2 to 6), two test
chambers per group, and a single embryo cup per test chamber. Page 2
contains individual weight measurements on all the fry that survived
the test. Page 3 contains the results of the individual toxicant
concentration measurements made in each chamber periodically through-
out the test. We have found these data reporting sheets to be very
easy to understand and very useful,

In order to work with the data it was necessary to put them
into computer readable form. The approach that we took to
accomplish this is illustrated in Figure V.2 for the data from
the test of compound C by DeFoe. The three types of data -- survival,
weight, and toxicant concentration-- are represented in three 'card
types." The data for each '"card type" are listed in Figure V.2.
Some applications call for use of just one card type while others
call for use of two or more card types. The first six entries on
each card are the same across card types -- treatment group (col 2),
replicate designation (col 4), card type (col 6), card member (cols
7-8), investigator code (cols 9-10), test code (cols 11-12). This
provides enough information to sort the cards by investigator, ex-
periment, type, group, and sequence should the data become disar-
ranged. Card type 1 (survival data) contains in addition number of
embryos tested (cols 16-20), number hatched live (cols 21-25), number
of fry tested (cols 31-35), number live at end of test (cols 36-40),
number normal at end of test (cols 41-45). Card type 2 (weight data)
contains number of weights recorded from that particular chamber
(cols 14-15), individual weights (5 cols per weight, up to 13 weights
per card). Card type 3 (toxicant concentration) contains month
(cols 16-17), day (cols 18-19), year (cols 20-21), toxicant concoen-—
tration (cols 32-38) —-- one determination per card. At the head of
each type of information several lines of descriptive text are given.
This text is informative when the data are printed out but is skip-
ped over for purposes of analysis.

We have found this data organization to be easy to prepare,

easy to maintain, and easy to use. Such data files represent the
"basic data" for all subsequent analyses discussed in this report.

12
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Figure V.2 Computerized data format for results of early life stage
test —-- compound C -- DeFoe
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VI. PRELIMINARY GRAPHICAL DATA DISPLAYS

Graphing the data is generally considered to be a good first
step in analyzing data. Graphs provide insights into the structure
of the data and reveal the presence of possibly unanticipated rela-
tions or anomolies in the data.

Figures VI.1 and VI.8 illustrate the kinds of information
that can be obtained from preliminary plots. They illustrate
percentage embryo and fry mortality and abnormality obseryved in
early life stage tests on fathead minnows conducted by DeFoe
with compound C and by Holcombe and Phipps with compound D. The
tests each consist of a control group (1) and five treatment groups
(2 - 6) with toxicant levels in roughly geometric progression. The
DeFoe test was run with four chambers per group. The plotting symbol
"A" represents a single response, "B" represents two coincident re-
sponses, etc.

Figures VI.1 and VI.5 reveal no trends in embryo mortality with
increasing toxicant level in either test. Tank to tank variation
within treatment groups appears to be approximately constant across
groups except for a single tank in Group 2 (Figure VI.1l) which has
about 50 percent greater embryo mortality than all the other tanks
in the vest. It appears to be an outlier, i.e. its response does
not seem to conform to the pattern of the bulk of the data.

Figures VI.2 and VI.6 show increasing trends in fry mortality
with toxicant concentration in each test. This pattern is to be
expected since the larvae are most toxicant sensitive shortly after
hatching. In each test tank to tank variation within groups is
greatest in the middle and least at the ends, in conformance with
binomial theory. No outlying tanks are evident with respect to fry
mortality. Note that in both tests the highest treatment groups
experience 100 percent fry mortality.

Figures VI.3 and VI.7 exhibit embryo abnormality in the two
tests. They are strikingly similar. In the control groups and the
four lowest concentration groups there is little or no abnormality
among newly hatched live larvae. However in the highest concent-
ration groups there is 100 percent abnormality among newly hatched
live larvae. 1t thus appears that very high concentrations of each
of these toxicants will penetrate the embryo.

Figures VI.4 and VI.8 exhibit fry abnormality in the two tests.
In brief, there is none. After 32 days the fry have either died or
are normal. Recall that the highest toxicant groups experience 100
percent mortality and so there is no abnormality data to plot.
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TESTING FOR TANK TO TANK HETEROGENEITY WITHIN TREATMENT GROUPS

A.

Background. In order to assess variability of response, toxicity
tests generally include several fish tanks, usually two to four,
within each treatment or control group. EPA guidelines for early
life stage and full life cycle toxicity tests with fathead minnow
[2, 8] call for at least two replicate test chambers for each
treatment group. Some tests use more.

An important preliminary inference of interest in toxicology
data analyses is to determine if there is any statistical evi-
dence of variation in response among tanks within treatment groups.
Such variation might be due to differences in location or handling
of individual tanks, to fungus or illnesses that might invade a
tank, to unforseen accidents during the test, etc.

If evidence of tank to tank heterogeneity exists then analyses
should be carried out on a per tank basis. If no evidence of tank
heterogeneity exists then data might be pooled across tanks within
groups and analyses carried out on a per fish basis, ignoring the
replicate tanks. For example, mortality rates could be compared
based on binomial theory. Such per fish analyses would provide
many more degrees of freedom to estimate random error than would
per tank analyses and so are more sensitive. For example if there
are four tanks per group and 25 fish per tank then a per fish
analysis might be based on 99 degrees of freedom per group where-
as a per tank analysis would be based on just three degrees of
freedom per group.

However the validity of per fish analyses rests on the absence
of tank to tank heterogeneity. If there is in fact variation in
response rate across tanks within treatment groups then variabi-
lity estimates based on per fish analyses will underestimate the
true variability of the estimates and test statistics. This
will result in standard error estimates that are too small, con-
fidence intervals that are too short, and hypothesis testing
procedures that falsely reject the null hypothesis more often than
their nominal rates (i.e. inflated alpha levels). It is thus
important to test for the presence of tank to tank heterogeneity
within treatment groups before proceeding on to the analysis
of nrimary interest,

Remarks on Some "Standard" Procedures.

Finney [11], section 9.1, pp 175 ff. suggests the following
procedure for testing tank to tank heterogeneity. Fit a probit
curve to the data based on pooled data across tanks within groups.
Fit a probit curve to the data using the individual tanks within
groups. The point estimates of the two probit fits will be
exactly the same. However the residual chi squares and their
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respective degrees of freedom will differ. The differences
between these two residual chi squares can be interpreted as
the chi square for heterogeneity among tanks within treatment
groups. Similar considerations hold for the usual chi square
test for homogeneity.

We have carried out this procedure using the probit fit and
using the usual chi square test for homogeneity. We compare the
results of these two tests. The theoretical bases of these
heterogeneity tests are discussed in Appendix AVII.

We illustrate these two heterogeneity test procedures on the
fry mortality data. First consider the test of compound C by

DeFoe.

Probit Fit

We fitted the probit model to the treatment groups using the
(natural) logarithm of concentration and excluding the control
group. (Note that the same fit was obtained when the control
group was included). The probit fits were carried out using the
PROC PROBIT procedure in the SAS statistical computing system
[12]. The data consist of I=5 treatment groups, J=2 tanks per
group. Thus there are 10 responses to which we fit the two pa-
rameter probit model,

p; = o(o-5 + BlogCi) i=2,...,6

Figures VII.1l, VII.2 contain the results of the probit fits to
the individual responses and to the responses pooled across
tanks within groups respectively. The analysis of variance ta-
ble, as suggested by Finney, appears in the bottom portion of
Figure VII.1. The upper 0.005 point of the chi square distrib-
ution with 5d.f. is 16.75. Thus this test for tank to tank het-
erogeneity within groups is "highly statistically significant".
At face value this suggests strong statistical evidence of vari-
ation in response rate across tanks within treatment groups.

Chi Square Fit

We now carry out a chi square test of heterogeneity in re-
sponse rates across tanks within groups based on the usual chi
square test of homogeneity across groups. Figures VII.3, VII.4
contain the results of the chi square tests based on the individ-
ual responses and on responses pooled across tanks within groups
respectively. Control group responses are included in these
tests. The tests were carried out using the PROC FREQ procedure
in the SAS statistical computing system [12 ]. The analysis of
variance table suggested by Finney appears below.
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Source d.f. oSS _
Lack of fit of pooled tanks 5 142,745
about model (homogeneity)
Variation of individual tanks 6 0, 8Y

w/i tmnt groups (by subtraction)

Lack of fit of individual tanks
about model (homogeneity) 11 183.675

Thus the heterogeneity chi square is very small. Thus there
is no statistical evidence of variation among tanks within treat-
ment groups.

Note that the conclusions arrived at from this heterogeneity
chi square test are in direct contradiction to those arrived at
from the heterogeneity chi square test based on the probit fit.
What is the cause of the discrepancy?

There are two possible sources of difficulties. The first
concerns the probability estimates in the denominators of the
test statistics. In the probit based statistic the i-th group
response rate in the denominator is estiamted as

=05 = ¢(a -5+ BlogCi) whereas in the homogeneity chi square
based statistic the 1—th group response rate in the denominator
is estimated as Py = P = X44/Nyy for all i. The assumption of
congtant P values in the denominator is clearly not justified.
The assumption of Pj values based on the probit model is also
not good, as can be seen from the very large residual '"chi
square" value in Table VII.2. Thus the substantial differences
in the response rate estimates that appear in the denominators
of the two statistics, along with the probable inadequacies of
both sets of estimates, may account for at least a portion of
the discrepancy in chi square values.

The second possible source of discrepancy is based on the
validity of the chi square assumption itself. The validity of
the asymptotic chi square theory is dependent on the cell ex-
pected frequencies being large enough. In particular if any
b responses are observed in cells with very small expected fre-
[ quencies then very large cell chi squares can result which can
k. greatly inflate the statistic.

Consider the two chi square statistics for lack of fit from

o

t’ the probit model -- one for individual tanks and one for pooled
};: tanks. We break out the individual components of these statis-
o tics.
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Table VII.1 DeFoe Compound C Fry Mortality Data

Probit fit to groups 2, 3, 4, 5, 6 —— individual tanks
Chi square statistic for lack of fit to probit model

Mean (Xij) (Nij)

~ ~ A A 2

Grp Tank Conc Dead Live Total Pi Niipi NiiPiQi X

2 A 1.991 O 20 20 0.000015 0.000301 0.000301 0.000301

2 B 1.991 O 20 20 0.000301

3 A 5,976 O 20 20 0.002542 0.050830 0.050701 0.05096
- 3 B 5.976 2 18 20
- 4 A 14,812 O 21 21 0.0475 0.9975 0.9501 1.0473
- 4 B 14.812 1 19 20 0.95 0.9409 0.00276

5 A 48.307 4 16 20 0.4227 8.454 4.8805 4,0648

5 B 48.307 5 15 20 2.4444

6 A 146,984 20 0 20 0.88356 17.6713 2.05764  2.6355

6 B 146.984 20 0 20 2.6355

87.8165

This compares with XZ = 87.7666 calculated from SAS PROC PROBIT

Table VII.2 Probit fit to groups 2, 3. 4, 5, 6 -- tanks pooled within groups
Chi square statistic for lack of fit to the probit model

o Mean (X;,) Ny . . ~ A 5
. Grp Conc Dead Live Total Pi Ni+Pi Ni+PiQi X
2 1.991 0 40 40 0.700015  0.000602  0.000602 0.000602
3 5.976 2 38 40 0.002542 0.10166  0.10142 €35.532>
- b 14.812 1 40 41 0.0475 1.9475 1.855 0.484
- 5 48.307 9 31 40 0.4227  16.908 9.761 6.407
= 6 146.984 40 0O 40 0.88356  35.3426 4.11528 _5.271
. 47.695

This compares with X2 = 47.6775 calculated by SAS PROC PROBIT

Comparison of these two chi square values clearly shows the
source of the "significant” chi square for heterogeneity. Namely
the tanks from group 3 have very small expected frequencies (NP) yet
have observed responses. Thus these component chi square values
are large and dominate the overall chi square values.

If we remove the group 3 values from the chi square statistics
we have:
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Separate tanks: ¥ 87.8165 - 0.05096 - 74.9347 = 12.831
Pooled tanks: xz

47.686 - 35.532 12.154

The relation between these two chi square statistics is then
just like that of the chi square tests resulting from the con-
tingency table tests.

Moral: Uncritical use of the chi square test for homogeneity of
tanks within concentration groups recommended by Finney
can lead to completely incorrect results and results con-
tradictory to those of other homogeneity tests because
of:

® small expected frequencies within cells

@ response rate estimates based on particular (pos-
sibly inappropriate) model fitted

We repeated the same calculations on the fry mortality data
in the test of compound D by Holcombe and Phipps.

Probit Fit
Using all six groups, a logarithmic transformation of con-

centration, and Abbott's correction for background response we
obtain:

Source d.f. S.S.

Lack of fit of pooled tanks 3 0.5064
about probit model

Variation of individual tanks 18 21.7906
w/i tmnt groups (by subtr)

Lack of fit of individual tanks 21 22.2952

about probit model

The value 21.7906 is at the upper 24 percent point of a chi sq-
uare distribution with 18 d.f. and so is nonsignificant.

Chi Square Fit

There are I = 6 groups, J = 4 tanks per group. We carry out
chi square tests of heterogeneity in response rates across tanks

within groups based on the usual chi square test of homogeneity
across groups. We obtain:
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Source d.f. S.S.

Lack of fit of pooled tanks 5 389.676
about model (homogeneity)

Variation of individual tanks 18 10.198
w/i tmnt groups (by subtr)
Lack of fit of individual tanks 23 399.874

about model (homogeneity)

The heterogeneity chi square is again small. There is no
statistical evidence of variation among tanks within treatment
groups. Note however that there is strong statistical evidence
of variation in response rate from group to group, as would be
expected. Thus the weights in the denominator of the heteroge-
neity chi square statistic are suspect.

Separate Heterogeneity Tests Within Treatment Groups

We have seen for DeFoe's fry mortality data that we can obtain
diametrically opposite conclusions about heterogeneity of responses
within treatment groups depending on whether the test for homo-
geneity was based on a probit model fit or on a contingency table
fit. This was attributed to

1. differences in the weights used in the denominators of
the chi square statistics (based on the assumed model)

2. small expected frequencies within cells that invalidate
asymptotic distribution theory.

To accoun': for problem (1), we carry out separate chi square
heterogeneity tests within each concentration group, without

imposing any structure on the form of the concentration-response
relation. We do this by carrying out separate chi square tests
within each group and then pooling the results across groups.

There is however, a technical problem associated with this
approach. For many (if not most) of the responses of interest
the probabilities of occurrence are fairly close to 0 or 1. The-
refore the expected frequencies of occurrence can be rather small,
thus invalidating the use of asymptotic chi square theory. We
illustrate this phenomenon with the Holcombe and Phipps fry mor-
tality data, broken down by group. The output (from SAS PROC
FREQ) is shown in Figures VII.5> to VII.10

We see that groups 1, 2, 3, have small expected numbers of
dead fry (less equal to 2.0). Group 4 has expected dead = 3.3
and group 6 has expected live per tank = 0. Thus groups 1, 2, 3,
4, 6 have small expected frequencies in at least some of the cells
of the table.
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We use a (relatively stringent) criterion of applicability of
asymptotic chi square theory that requires that there be an ex-
pected frequency of at least 5 within each cell of the table.
Only group Slsatisfies this criterion within the Holcombe and
Phipps data. We must thus base some of the within groups heter-
ogeneity tests on exac-, small sample theory.

Thus we wish to pool across groups the results of tests of
homogeneity of responses among tanks within groups. Some of these
tests are based on asymptotic theory while others are based on
exact, small sample theory.

We have developed a computer program, EXAX2, to carry out
such a procedure. We discuss this program in detail and illus-
trate its application in the following section.

1Dixon and Massey [ 13 ] page 233, has a slightly more liberal cri-
terion, namely "...none of the F,'s (i.e. expected frequencies) is less
than 1 and not more than 207 of the Fi's are less than 5..." Again, only
group 5 would satisfy this.
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- VIII. EXAX2 -- A COMPUTER PROGRAM TO TEST FOR HETEROGENEITY OF RESPONSES
" AMONG TANKS WITHIN GROUPS
3

We saw in the previous section for DeFoe's fry mortality responses
from the test on compound C that we obtained diametrically opposite
impressions about the existence of tank to tank heterogeneity within
groups depending on whether we based our homogeneity test on a probit
model fit or on a congingency table fit. This was attributed to

. o
ot et

1. Differences in weights used in the denominators of the chi
square statistics (based on the assumed model)

2. Small expected frequencies that produce substantial departures
from the asymptotic distribution theory.

To take account of problem (1), we use the strategy of carrying out sep-
arate chi square heterogeneity tests within each concentration group,
without imposing any structure on the concentration response relation.

There is, however, a technical problem associated with this scheme.
For many (if not most) of the responses of interest the response proba-

bilities of occurrence are fairly close to O or 1. Therefore the ex-
pected frequencies of occurrence can be rather small, thus invalidating
the asymptotic chi square theory, upon which most of the standard tests
are based., We saw this in connection with the fry mortality data from
the Holcombe and Phipps test on compound D.

We have developed a computer program, EXAX2, that overcomes this
problem. It carries out separate chi square tests within each treat-
ment group, based on asymptotic theory when the expected frequencies
within cells are large enough and based on exact, small sample theory
when the expected frequencies within cells are small. Thus heterogene-
ity tests using EXAX2 are applicable even with the relatively small sam-
3 plesizes and relatively extreme response rates encountered in fish tox-

. icity tests. The theory underlying the program and instructions for its
! use are described in [14] which included as Appendix AVIII.Z. 1In the

. body of the section we describe the basis of the calculations in EXAX2
and illustrate its application with examples.

EXAX2 pools the results of tests for heterogeneity in each of
I(I>1) 2 x K independent contingency tables (representing I groups, K
tanks per group). The homogeneity test within each group is based on
b' the usual chi square statistic, using either its asymtotic distribution
.5 or its exact small sample distribution, as appropriate. The following
¥ approach is used.

1. Within each concentration group, the chi square for homogeneity
among the K tanks is calculated. Let Xij’ Nij represent the

) S ad e
} -
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number of dead fish and the total number of fish respectively in
the j-th tank of the i-th group. Let py beAa pooledAestimate of
response probability in the i-th group and q; = 1 - pj. Then the
chi square for group i is

If ﬁi = 0 or &i = 0 (corresponding to zero percent or 100 per-
cent observed mortality) the table is degenerate and Xi = 0 by
definition.

If all the expected frequencies (Ni.ﬁi, Nijai) are greater then

a specified cutoff value (we curren%ly use” five), asymptotic the-
ory is used. Thus the observed significance level of X? is

based on the chi square distribution with K - 1 d.f.

If one or more of the expected frequencies is less than the cut-
off level, then the exact distribution of X%, conditional on the
observed marginal totals, is used. The observed significance

level is based on this exact distribution. This approach is de-
scribed in Agresti and Wackerly [ 15]. The exact distribution

of X{ is computed by systematically enumerating all possible ta-
bles having the given margins using the algorithm in Boulton and

Wallace [ 16 ] and the associated probabilities due to March [ 18 ].

Let A; denote the observed significance level in the i-th group.
We pool the Ay's over groups to obtain an overall test by an
approach analogous to Fisher's method as described in Littell
and Folks [ 19, 20 ]. For each group we calculate, based on ex-
act or asymptotic theory, —ZKnAi and its mean and variance under
the null hypothesis of homogeneity.

The observed significance levels are pooled into a single sta-
tistic by calculating

- I
z (-2244)
zZ = -i=L

I 1/2
_ z E(-2£nA,;)

1/2
. -i=1

F I 1/2
D Var(-2ena)/4 Y E(-20nay)

-i=1 i=1

Z is referred to a standard normal distribution. ‘I'ne null hypo-
thesis of tank to tank homogeneity is rejected for large values
of Z. (The square root trancformation is used because it rep-
resents the variance stabilizing transformation, under asymptotic
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theory,for Z;(-2£nA;) and thus probably improves the normality
approximation.)

In addition to calculating preliminary tests of tank to tank
heterogeneity within treatment groups, EXAX2 can carry out several
other statistical procedures useful in the analysis of data from
aquatic toxicity tests. In particular it can:

® Pool data across tanks within groups and test for heter-
ogeneity of response rate across groups by use of the
chi square test and either exact small sample theory or
asymptotic large samle theory.

® Calculate confidence intervals on the odds ratios of
treatment groups to control group using the exact non-
central distribution of Fisher's exact test statistic.

These applications will be discussed in detail in later section.

We now consider several illustrations of the use of EXAX2 for
tests of heterogeneity among tanks within groups. The EXAX2 out-
puts are shown in the referenced figures. The observed and ex-
pected cell frequencies are indicated. 1If any of the expected
cell frequencies are lcwer than the (user-specified) cutoff of
5, exact distribution theory is used. The exact distribution
of chi square, conditional on the marginal totals, is enumerated
and displayed. The observed value of chi square, the observed
significance level, -2£nAy, E(-2{n A;), Var(-2{n A{) are calcu-
lated. The six independent tests are combined by summing
-2€nAi, E(-2€nAj), Var(-2£nAj) over groups and calculating Z.

DeFoe compound C
a) Embryo mortality
b) Fry mortality

Holcombe and Phipps, Compound D

a) Embryo mortality

b) Fry mortality
Jarvinen, compound B

a) Embryo mortality

b) Fry mortality
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DeFoe Compound C

Embryo Mortality

. There are two tanks per treatment group, 50 embryo per tank. The
. results from the EXAX2 calculations are shown in Figures VIII.1 to

i VIII.6 and are summarized below® The pocled significance level cal-
- culatattons (using Fisher's method) are presented below the results
for group 6. The probability of a standard normal deviate exceeding
0.865 is 0.19.

Embryo Mortality

- (Chi sq) (A1) (-2€nAg) E(-2€nAi) Var(-2£nA;)
r Trt Method XSQ¢BS AT YY EY VARY
-~ 1 asympt 0.37205 0.54189 1.22540 2.00 4.00
- 2 asympt 6.76271 0.00931 9.35371 2.00 4.00
- 3 asympt 0.38610 0.53436 1.25338 2.00 4.00

4 asympt 1.07250 0.30038 2.40541 2.00 4.00
- 5 asympt 1.05086 0.30531 2.37286 2.00 4,00

6 asympt 0.0 1.00 0.0 2.00 4.00

SY = 16.611 YMU = 12.00 SVARY = 24.00

- Z = 0.86483
Except for group 2, where the response from tank 1 appears to be an out-
1l lier, there is no statistical evidence of tank to tank heterogeneity

within groups.

Fry Mortality

There are two tanks per treatment group, 20 fry per tank. The result
from the EXAX2 calculations are shown in Fiecures VIII.7 to VIII.1l2 and
. are summarized below. The pooled significanc: level calculations are
- presented below the results for group 6. The probability of a standard
Y normal deviate exceeding 0.175 is 0.43.

. Fry Mortality
(Chi Sq) (Ai) (—ZtnAi) E(—ZZnAi) Var(—zznAi)
Trt Method XSQQBS Al YY EY VARY

1 (Row total = 0) 0.0 0.0 0.0

2 (Row total = 0) 0.0 0.0 0.0
! 3 EXACT 2.10526 0.48718 1.43825 0.70068 0.5168

4 EXACT 1.07625 0.48780 1.43568 0.70033 0.51499
) 5 EXACT 0.14337 1.00 0.0 1.12060 2.7544
. 6 (Row total = 0) 0.0 0.0 0.0
2 SY = 2.8739 YMU = 2.5216 SVARY = 3.7862
j Z = 0.17516

*Figures VIII.l to VIII.36 are countained in Appendix AVIII.I.
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Fry Mortality

(Chi Sq) (A7) (-24nAj) E(-2€nAj) Var(-2£nAj)

Trt Method XSQ@BS Al YY EY VARY

1 EXACT 0.70922 1.00 0.0 1.3544 2.7875

2 EXACT 1.08696  0.95647 0.08901 1.543 3.4415

3 EXACT 7.06870 0.07579 5.15948 1.543 3.4415

O 4 EXACT 5.21662 0.18667 3.35688 1.7349 2.6708
- 5 asympt 6.44967 0.01967 4.77915 2.0 4.0
- 6 (Row total = 0) 1.0000 0.0 0.0 0.0

SY = 13.385 YMU = 8.1752 SVARY = 17.341

;t. Z = 1.09755
=

Groups 1, 2, 4, 6 show no statistical evidence of tank to tank het-
erogeneity. Groups 3, 6 show some marginal suggestion of tank to
tank heterogeneity. It is interesting to note that in direct anal-
ogy with the results for embryo mortality, tank 3 of group 3 has
about twice the mortality of the other tanks in the group. This

- "coincidence" should be further investigated to determine if this

T increased mortality has a systematic cause. Overall, Z = 1.10. The
. probability of a standard normal random variable exceeding this val-
N ue by chance is 0.136. Thus there is at most a marginal suggestion
. of some possible tank to tank variation, but nothing conclusive.

Jarvinen Compound B

= Embryo Mortality

There are two tanks per treatment group, approximately 50 embryos
per tank (actually, between 48 and 57 with an average of 51.2). The
- results from the EXAX2 calculations are shown in Figures VIII.25 to
- VIII.30 and are summarized below. The pooled significance level cal-
) culations are given below the results for group 6. The probability
of a standard normal deviate exceeding 2.54 is 0.005.

Embryo Mortality

SY
Z

non

2.54488

, (Chi Sq) (A) (-24nA;) E(-2£nA;) Var(-2£nA;)
X Trt Method XSQOBS AT YY EY VARY
¥ 1 Asympt 6.51208 0.01071 9.07234 2.0 4.0

. 2 EXACT 1.78430 0.27477 2.58361 1.52817 3.23307
: 3 EXACT 3.05250 0.15951 3.67136 1.17120 2.77808
' 4 EXACT 0.00085 1.0000 0.00000 1.04511 1.38125
- 5 EXACT 0.74812 0.43704 1.65548 1.45242 2.94750
o 6 EXACT 4.75938 0.05966 5.63828 1.52125 3.17408
- 22.62107 YMU = 8.71816 SVARY = 17.51398
L

48
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Groups 1 and 6 show significant differences between mortality rates
in replicate tanks. Overall (Z = 2.54) the heterogeneity statistic
is significant at o = 0.005 level. Thus overall there is strong sta-
tistical evidence of tank to tank heterogeneity.

Group 1 shows considerable tank to tank heterogeneity in response,
group 6 shows moderate tank to tank heterogeneity in response, and
group 3 shows marginal tank to tank heterogeneity in response.

If we plot mortality rate by group number we obtain

Embryo mortality rate
.30 4
.25 4 %
.20 4
.15 4 X X
.10 4 X X

054 x x  x X
0

™
O M

—» Group

In agreement with the DeFoe and Holcombe and Phipps embryo mortality
results, we see no trend in embryo mortality rate with increasing
toxicant concentration., We see tank to tank heterogeneity in group
1 and to a lesser extent in groups 3, 6. There is the suggestion
that the response from tank 1 of group 1 might be an outlier. This
will be considered further in section X.

Fry Mortality

There are two tanks per treatment group, approximately 15 fry
per tank (between 14 and 16 with an average of 14.9). The results
from the EXAX2 calculations are shown in Figures VIII.31 to VIII.36
and are summarized below. The pooled significance level calcula-
tions are given below the results for group 6. The probability of
a standard normal deviate exceeding -0.84 is 0.80.

Fry Mortality

(chi sq) (Ag) (-2£nA;) E(-2€nA;) Var(24nA;)

r Method XSQOBS Al YY EY VARY
1 (Row total = 0) 0.0 0.0 0.0
2 (Row total = 0) 0.0 0.0 0.0
3 (Row total = 0) 0.0 0.0 0.0
4  (Row total = 0) 0.0 0.0 0.0
5 asympt 0.13393 0.71439 0.67264 2.0 4.0
6 (Row total = 0) 0.0 0.0 0.0
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SY = 0.67264 MU = 2.0 SVARY = 4.0
Z = -0.84013

"

This test does not reveal the concentration-response curve very well.
In groups 1-4 no fry died while in group 6 all the fry died. Thus the
tables are degenerate in 5 of the 6 treatment groups. In group 5 there
1s no suggestion of tank to tank heterogeneity. Thus overall, there

is no suggestion of tank to tank heterogeneity.

In summary we have seen several different degrees of tank to
tank heterogeneity within groups in the three toxicity tests studied.
With respect to embryo mortality the DeFoe test shows no suggestion
of heterogeneity with the exception of an isolated outlier, the
Holcombe and Phipps test reveals possible suggestion of heterogeneity,
and the Jarvinen test reveals strong suggestion of heterogeneity but
this may also be due to an outlier. With respect to fry mortality
the DeFoe and Jarvinen tests show no suggestion of tank to tank
heterogeneity within groups. The Holcombe and Phipps tests shows
possible suggestion of tank to tank heterogeneity but the abberrant
looking response originates in precisely the same tank as does the
aberrant looking embryo mortality response. This raises questions
about both responses. In brief, there does not appear to be very
much tank to tank heterogeneity within groups and that which does
occur may be due to isolated outlying results.
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ADJUSTMENTS TO ACCOUNT FOR TANK TO TANK HETEROGENEITY WITHIN TREAT-

MENT GROUPS

Background, Derivations, and Discussions

We have considered the problem of testing for tank to tank
heterogeneity within treatment groups. The results of such tests
will influence the way we treat the data in subsequent analyses.
Many methods for analyzing qualitative dose response data tacitly
assume that there is no tank to tank variation in response rates
within groups. Binomial distribution theory is used on data
pooled across tanks within groups. Sometimes the assumption of
lack of tank to tank heterogeneity is reasonable, as we have
seen with the DeFoe and Jarvinen fry mortality data. Sometimes
there is borderline statistical evidence of tank to tank hetervo-
geneity, as was the case with the Holcombe and Phipps test
(both for the embryo mortality and fry mortality data). In other
situations, such as in the embryo mortality data from Jarvinen's
test on methyl parathion encapsulated, there is stronger statis-
tical evidence of tank to tank heterogeneity, in at least some
of the treatment groups.

In this section we consider methods for accounting for tank
to tank heterogeneity when it exists. Three main approaches are
possible.

1. We can formulate models that explicitly account for tank to
tank heterogeneity within groups and fit these models to the
data by specialized techniques such as maximum likelihood
estimation, using special purpose computer programs. Two
such models are the beta binomial [21] and the correlated
binomial [22}. This approach requires the formulation of
specialized models and development of specialized programs
to implement these analyses. Thus such analyses will be
difficult for experimenters to carry out and the results of
such analyses will be more difficult to interpret.

2. We can carry out analyses on a per tank basis rather than
on a per fish basis. That is, summary values of such as
percent mortality, average weight gain, etc are calculated
within each tank and are then used as basic values for sub-
sequent analyses. This is currently the most commonly used
approach for analyzing fish toxicity data. While it does
correctly account for possible tank to tank heterogeneity,
it does so at the cost of considerable reduction in sensiti-
vity. Namely, the data from perhaps 50 to 100 fish or embryos
per group are summarized by just two to four summary values.
This leaves very few degrees of freedom for estimating error
and so diminishes the sensitivity of the subsequent procedures.
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3. We can adjust the data to reflect the increased variability
due to tank to tank heterogeneity and then use '"standard",
binomial based techniques on the adjusted 'data'". This third
approach is a workman-like approach and has the dual virtues
of being simple to carry out and of permitting the use of
"standard" statistical procedures and computer programs for
subsequent analyses.

Heterogeneity among tanks within groups can be alternatively re-
garded as correlation among the responses of the various fish within the
same tank. Such correlation is usually positive and this has the effect
of increasing the variability of statistics over and above that which
would be assumed under a binomial model.

The increased variability can be accounted for by reducing the
actual sample size in each tank to an effective sample size and then
disregarding the correlation. The number of responses is reduced propor-
tionately so that the observed response rate within each tank remains
constant. Suppose for instance there are 40 embryo in a tank and 8 die.
We thus have an observed response rate of 0.20. Suppose that the re-
sponses within each tank are positively correlated and the variance of

Py

p is inflated 20 percent by this correlation. That is

Var(p) = 1;22%%_:_21

Then we can regard the effective sample size within that tank as 40/1.2
= 33.33. To maintain the response rate at the observed level of .20 we
adjust the number of responses down to a corresponding effective number
8/1.2 = 6.67. We then analyze the data from this tank by ignoring the
correlation and treating the data as if we have 6.67 responses in 33.33
trials. All the standard analysis procedures, predicated on the assum-
ption of no tank to tank heterogeneity within groups, can be applied to
the modified '"data".

The per tank analyses mentioned in paragraph 2 can be regarded
as a limiting case of data adjustment where we adjust the effective
sample sizes within tanks all the way down to 1.

We now consider the calculation of adjustment factors. Motiva-
tion for the adjustment procedure comes from the form of the beta bi-
nomial model [ 21]. Namely suppose Xj; 1s the number of responses within
tank j of treatment group i. The beta binomial model extends the binom-
ial model to allow for tank to tank variation within groups. Thus we
assume

Xij "~ Binomial (Nij, pij) conditional on Pij i =1, ...,

where Py v Beta(ai, Bi)

and Nij are fixed.
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Then E(pij) =y Var(pij) = -w)y e
i

When Gi = 0, Var(pi.) = 0 and we are back to the case of no tank to tank
heterogeneity, at least within the i-th group. The larger 94 is, the
greater is the extent of tank to tank heterogeneity. 63 varies between
0 and <.

Now consider the distribution of Xij'

L(x 1J,le) ~ Binomial (Nj ij> piJ)

L(Pij) ~ Beta (Oti, Bi).

These two facts imply that Xi has the marginal beta binomial distribu-
tion with probability functlon

1-]Ji
.') (—e——+X,T'+NiJ-X)

(“i 1-111) x =0, 1, «eey Ny,
Beg7’> 77,
01 i
It can be shown directly that
E(XjJ) = N, J“i
. 1+ Ni,ei
Var(Xij) = Nijui(l - ui) 17 ei o<ei<w

We see that the variance of X;; is inflated over and above a binomial
variance by a multiplicative factor.

Suppose Ny =N;y J= 1,000 J. This assumption is reasonable in
fish toxicity testg where N;. represents the number of fish or embryos
within the j-th tank of the i—th group. In this case the multiplicative
factor becomes [(1 + Niei)/(l +64)] =Ky, §=1, ..., J. Thus
Var(}-’i ) = N, Kiui(l - ui) where liKiw. Define Pyy = xij/Nij' pij is
the observed response proportion.

Therefore

K
N i .,
Var(pij) = N Lli(l - Lli) i=1..,J
i
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Thus the effective sample size is Ni/Ki' As the extent of tank to tank
heterogeneity approaches O(i.e. 64> 0), K; approaches 1 and N;/K; ap-
proaches Nj. As the extent of tank to tank heterogeneity gets greater
and greater, K;> Nj and so Ni/Ki approaches 1. Thus the two extreme sit-
uations are not adjusting the within tank sample sizes at all and adjust-
ing the within tank sample size down to 1. The latter adjustment resem-
bles performing analyses on a per tank basis rather than on a per fish
basis. Thus method 2 for accounting for tank to tank heterogeneity can
be regarded as an extreme case of method 3. Note that if N; =N and

6; = 6 for all i, then K; = K for all 1.

The procedure suggested here for calculating adjustment factors
is motivated by the results based on beta binomial theory, but is simpler
to carry out.

Let Xj., Ny denote the number of responses and the total number of fish
respec%ively within tank j of group i, j = 1,..., J. Let ﬁi' = Xi’/Ni'
Let p; denote the average response rate within the i-th group. The actual

variance of ﬁij is the binomial theory variance multiplied by the infla-
tion factor K;. Thus

Var(f)\ijl

1 [P - e/

This suggests that we can estimate K; by estimating Var(ﬁij) and p; by
their sample analoguyes. Let
= . .-1J = -1.J A o
N, =J I, . z, - Bp..) = - - P

i j=1 Vi3> P1 J=liSIJ,Var(le) (J -1 Zj=1(pij P;)
denote the average sample size, the average observed response rate, and
the sample variance of response rates within the i-th group respectively.

Note that the Nij's are generally nearly equal in fish toxicity data. We
estimate Ki as

K

-1.J ~ 2

K, = Var(Pij)/[si(l - P /N

The numerator of this ratio is the observed variance among the ﬁij's
while the denominator is the variance that would be expected just due
to binomial variation. We adjust each Xi" Ni' in the group downward by
a factor ﬁi- 1 J

Notes:
1. Ky is necessarily greater than 1 but ﬁi may not be. If ﬁi<1 or
if there is no statistical evidence of tank to tank heterogeneity

then we should not adjust sample sizes.

2. Assuming binomial theory when there is in fact tank to tank het-
erogeneity results in underestimation of the variabilities of
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the various statistics calculated. Thus hypothesis tests comparing
treatment group and control group response rates will reject more
often than they should, thereby resulting in underestimation of no-
effect levels. However the opposite effect occurs with respect to
inferences about safe concentrations based on dose response curves.
Underestimation of variability results in overly large lower confi-
dence bounds on safe concentration. A nominal 95% lower confidence
bound may in fact be just an 80% lower confidence bound.

The decision as to when to adjust sample sizes downward should be
reasonably liberal, perhaps when there is statistical evidence of
tank to tank heterogeneity at the o = .20 or the a = .25 level.
However Ki must always be greater than or equal to 1.

The calculation of ﬁi by means of ratios of variances is ineffi-
cient. A more precise way of determining Kj would be to estimate

03 from the data by maximum likelihood estimation and substitute
this estimate, 04, into the expression for Ki. Such an estimate
would always be greater than or equal to 1. However such an app-,
roach would require special purpose programs. The estimation of Kj
as discussed in this section is simpler and can be carried out by
hand calculation. However in the future we will look in calculation
of Ki's by means of maximum likelihood estimation based on the beta
binomial model.

We can calculate separate Ki's for each treatment group based on
the responses solely from the tanks in that group. Alternatively
if Nj = N for all i and if 61 = 6 for all i then Kj = K for all
i. We can then calculate a common inflation factor K for all
treatment groups. The question of whether we should fit separate
adjustment factors within each group or a single common factor is
a research problem in its own right. We defer the answer to that
question to future work and in this report confine attention to
fitting common adjustment factors for all groups.

If 1t is sensible on biological grounds, results on tank to
tank heterogeneity observed in previous similar tests might be
combined with current results to obtain a more accurate adjust-—
ment factor.

The adjustment procedure might take into account the statistical
precisions of the estimates Kj, K. A conservative way to do this
would be to use upper confidence bounds on Ky, K as adjustment
factors rather than the point estimailes. This modification will
alsc await future work.

Illustrations

We illustrate the application of this adjustment procedure to several
sets of data. First consider the fry mortality data of Holcombe and Phipps
for compound D. From the preliminary test of tank to tank heterogeneity
within treatment groups we conclude that there is at most marginal
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statistical evidence of tank to tank heterogeneity within treatment
groups. (The observed significance level is 0.14). In this example

J =4, Nij = 25 for all i, j.
Group 1: Py = 0.08, P1g = 0.08, P13 = 0.04, Pig = 0.04, 51 = 0.06,

N, = Var(p_ .) = 5 (1 - 3.)/N.= 0.00226

Nl 25, Var(plj) 0.00053, pl(l pl)/Nl 0.0

o o ver(eyy) _ 0.00053 _ o,

1 [: a o )R] ~ 0.00226 :
LS RS ]

Group 2: 521 = 0.12, 522 = 0.04, 523 = 0.08, 524 - 0.08, p, = 0.08,

N, = 25, Var(p,,) = 0.00107, p,(1 -~ p,)/N, = 0.00294
~  Var(p,.) _0.00107 _
K - ~ ~ A - - 0.362
NN 0.00294
Py Pl /Ny
Group 3: Py = 0.08, py, = 0.00, Py = 0.20, py, = 0.04, 53 = 0.08,
Ny = 25, Var(By,) = 0.00747, p (L - p,)/N; = 0.0029%
~  Var(pyy) _0.00747 _
K_ ~ ~ __‘2.536
3 5. - 5 /8] 0.00294
P3 P3/ /84
Group 4: Py = 0.16, Pry = 0.20, Pyy = 0.16, Pyy = 0.00, 54 = 0.13,
N, = 25, Var(p,,) = 0.00787, p, (1 - p,)/N,= 0.00452
) Var(, )
K = 43 _ 0.00787 _
B -3y Ry | 0.0052 7 173
P, Py 1R,
Group 5:  pg; = 0.92, pg, = 0.84, p, = 0.64, b, = 0.76, py = 0.79
N = 25, Var(py,) = 0.01427, p.(1 - py) /N = 0.00664
~ Var(p..,)
_ 55 _ 0.01427 _
K 0.00664 ~ 2+130

[pg(1 - pg)/N,]
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Group 6: Pe1

1.0, N, = 25, var(p,.) = 0.0,
6]

~

p6(l - p6)/N6 = 0.0

~

K6 is indeterminate and so we take it to be 1.0.

Thus,

6

L Ki

- = 0.236 + 0.362 + 2,536 + 1.739 + 2,150 + 1.000

K = e 6 = 1.337

K is the average adjustment factor which is used to adjust
The sample sizes

the observed sample sizes to eifective sample sizes.
are adjusted downward so as to maintain the observed response rates with-

in each tank. The results of the adjustment procedure are presented in
Table IX.1l. These adjusted values are used as basic input "data" for
subsequent analyses. We then proceed as if there is no tank to tank
variation within groups. The extrabinomial variation has been accounted
for by the adjustment procedure.
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TABLE IX.1 EFFECTIVE SAMPLE SIZES AND RESPONSES IN HOLCOMBE AND PHIPPS
COMPOUND D FRY MORTALITY DATA AFTER ADJUSTMENT

FOR TANK TO TANK HETEROGENEITY

Group Tank A Tank B Tank C Tank D

1 Dead 1.50 1.50 0.75 0.75

ﬂ Live 17.20 17.20 17.95 17.95

i Total 18.70 18.70 18.70 18.70

2 Dead 2.24 0.75 1.50 1.50

! Live 16.45 17.95 17.20 17.20

Fe Total 18.70 18.70 18.70 18.70
r-‘\:,

- 3 Dead 1.50 0.00 3.74 0.75

x Live 17.20 18.70 14.96 17.96

P Total 18.70 18.70 18.70 18.70

' 4 Dead 2.99 3.74 2.99 0.00

Live 15.70 17.96 15.70 18.70

Total 18.70 18.70 18.70 18.70

5 Dead 17.20 15.70 11.97 14.21

Live 1.50 2.99 6.73 4.49

Total 18.70 18.70 18.70 18.70

6 Dead 18.70 18.70 18.70 18.70

Live 0.00 0.00 0.00 0.00

Total 18.70 18.70 18.70 18.70

; :




We next illustrate the adjustment procedure on the embryo
mortality data of Jarvinen for compound B. The preliminary test
of :tank to tank heterogeneity within treatment groups is highly signifi-
cant (Z = 2,54, corresponding to an observed significance level of 0.005).
This statistical significance is due to group 1 (control) which shows
strong tank to tank differences, group 6 which shows a moderate tank to
tank difference, and group 3 which shows possible indications -- but at
best weak statistical evidence -- of tank to tank heterogeneity.

In this example J = 2, Nj; are close to Ni (within 1) except for
group 2. We will assume here that Njj = Ni when calculating Ki's. This
assumption can be refined somewhat, if necessary, to calculate separate

adjustment factors for each tank, but we will not do that hgre. This_will
await the development of adjustment procedures based on maximum likelihood

estimation.

Group 1: ﬁll = ,235, f’lz = .04, P, = 14/101 = 0.138, Nll = 51, le =
50, ﬁl = 50.5
Var(p, ) = p.(1 - p)/N = 0.00236
Var(pij) 0.019 p,(1 pl)/ 0.0023
R Gar(aij) 019
Kl =z Z = = -'Osz‘g = 8.056
[P, (1 - p/Ny] .
Group 2: ﬁ21 = .105, f,, = .038, 52 = 8/109 = .073, N,; = 57, Ny, = 52,
N, = 54.5
Var(pzj) = .0022 p,(1 = p,)/N, = .00124
Var(f,.)
K = 2] - =0022
K, = z = Too124 - 1799

[p,(1 - b,)/F,]
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Group 3: Py = .04, Py, = 1.4, Py = 9/100 = .09, N31 = N32 = N3 = 50
Var(ﬁBj) = .005 53(1 - 53)/ﬁ3 = .0016
Var(f,.)
K, = o3 = =003 _ 3 053
3 . - P /E,] -0016 ™
3 37773
Group 4: B,y = -02, p,, = .021, p, = 2/98 = .020, N,, = 50, N,, = 48,
N, = 49
Var(ﬁ4j) = 3.4 x 1077 54(1 - 54)/134 = .00041
~ Var (9, .) -7 _
K4 - — 2] . _ 3.4 x 10 -8 x 10 4 -0
[p, (1 - p,)/N,] .00041
Group 5: Ps, = .077, Psy = .038, Py = 6/105 = .057, NSl = 52, N52 =
53, ﬁs = 52.5
Var(ﬁsj) = ,00077 55(1 - 55)/ﬁ5 = .00102
. Var (p;.) _ 00077 _ o
5 [2 a - Z 5 | .00102
Ps5 Pg/ s
Group 6: Pep = .02, gy = .137, Pg = 8/101 = .079, N6l = 50, \62 = 51,
N6 = 50.5

Var(p6j) = .00687

Var(ﬁ6j)

p6(l = p6)/N6 =

_ .00687 _

Iz6 =7z z -

T .00144
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E Assuming that the relatively high embryo mortality response in group 1

L tank 1 is not an outlier and that the inflation in variability is const-

;‘ ant across groups, we calculate an average adjustment factor across treat-
ment groups.

6/\
IK.

A ._q1
X g = i=1" _ 8.056 + 1.799 + 3.053 + O + 0.750 + 4.77 _ 3.071

.I 6 6

K is the average adjustment factor across groups. Alternatively we
. might use the separate adjustment factors within groups. The results of
- the adjustment procedure are presented in Table IX.2. These adjusted
g values can be used as basic input 'data" for subsequent analyses. We pro-
1 ceed with further analyses as if there is no tank to tank heterogeneity
i within groups.

Thus,
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TABLE IX.2 EFFECTiVE SAMPLE SIZES AND RESPONSES IN
JARVINEN COMPOUND B EMBRYN MORTALITY
DATA AFTER ADJUSTMENT FOR TANK

TO TANK HETEROGENEITY

Group Tank A Tank B
1 Dead 3.91 0.65
Live 12.70 15.63

Total 16.61 16.28

2 Dead 1.95 0.65
Live 16.61 16,28

Total 18.56 16.93

3 Dead 0.65 2.28
Live 15.63 14.00

Total 16.28 16.28

4 Dead 0.33 0.33
Live 15.95 15.30

Total 16.28 15.63

5 Dead 1.30 0.65
Live 15.63 16.61

Total 16.93 17.26

6 Dead 0.33 2.28
Live 15.95 14.33

Total 16.28 16.61
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OUTLIER DETECTION PROCEDURES

A.

Background

Another preliminary analysis of importance is the detection
of responses which do not appear to be in conformance with the
substantial majority of responses. Such exceptional responses
are often referred to as "outliers'. Outlier detection proce-
dures are used to decide how extreme a response must be in order
to rule out the possibility that its value is reasonably likely
to be due just to random variation. Consider for example the
percentage embryo mortality responses from DeFoe's test on

compound C that are displayed in Figure VI.l. We remarked that
the mortality rate in group 2, tank A appears to be widely
separated from the others. Can such a separation be explained

by random variation or is there some systematic factor peculiar

to this tank? Similarly, the percentage embryo mortality observed
in group 1, tank A in Jarvinen's test on compound B is widely
separated from the other responses. Can a separation of this
magnitude be reasonably explained by random variation or is there
some systematic factor peculiar to this tank?

Barnett and Lewis [ 23] describe a wide class of outlier de-
tection procedures, to screen out those extreme responses that
cannot be reasonably attributed to random variation. They inclu-
de a procedure appropriate for binomial responses (section 3.4,
pp 122-124). Their procedure is based on the assumption of n

independent responses Xy, ..., X,, each binomially distributed
with parameters m and p. They base their outlier test on the
exact conditional distribution of maxX: given Z.X. In our data

n represents the number of tanks per gtroup, m ig %he number of

embryos or fry per tank (assumed to be equal from tank to tank),
and X; is the number of responses (e.g. dead embryos) per tank.
Their tabulation, Table XIX (pp 320-322) includes only the range
of values n>3, m>10, X p) =W m - 1, m - 2. This is quite in-
adequate for the ranges of parameters and responses that arise in
toxicity tests. Thus their exact conditional test is not too

useful for our needs.

Barnett and Lewis state, on page 123, that an alternative,
approrximate approach to outlier detection in the binomial case
is to transform {X;/m} using the arc sine transformation and
then apply normal theory based procedures to these transformed
values. This approach, and variants on it, are in the spirit of
the methods that we recommend in the remainder of this section.
We consider both graphical and numerical procedures.

The theoretical bases of our suggested methods are discussed
in Appendix AX.
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B. Application of Outlier Detection Procedures to Fish Toxicity

q Data
1

We apply the transformations discussed in Appendix AX to
construct graphical outlier detection procedures based on normal
- probability plotting techniques and associated formal outlier
detection tests. We apply these procedures to the following
.’ situations:

DeFoe: compound C
embryo mortality data

S fry mortality data

Holcombe and Phipps: Compound D

embryo mortality data

fry mortality data

Jarvinen: compound B

embryo mortality data
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DeFoe compound C

I=6,J=2 (i.e. 6 groups, 2 tanks per group).

Embryo Mortality

Group 1 P = .41; all expected frequencies are greater than 5.
Group 2 p = .51; all expected frequencies are greater than 5.
Group 3 p = .37; all expected frequencies are greater than 5.
Group 4 p = .37; all expected frequencies are greater than 5.
Group 5 p = .39; all expected frequencies are greater than 5.
Group 6 p = .38; all expected frequencies are greater than 5.

We apply the transformation suggested in case 1. Data summaries are
ﬂ given below.

Y /2
Calculate ik
/N.Pq

= ]

-1/2

N
n 1/2 . . .
X, N ﬁ N.p (Njﬁé) Nj/N <1 - ﬁl> 4 J

.610
-.610

2.600
-2.600

0.621
-0.621

-1.036
1.036

1.025
-1.025

X N.P
(—l———~L—> for each tank within each group.

Pt o s el A I A M4 Tt S S e A




To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position 100 x
(i - 0.5)/12 on the probability scale. These values are indicated below.

i 1 2 3 4 5 6
Ordered Value -2.600 -1.036 -1.025 -0.621 -0.610 0
Plotting Position 4.2 12.5 20.8 29.2 37.5 45.8
i 7 8 9 10 11 12
Ordered Value 0 0.610 0.621 1.025 1.036 2.600
Plotting Position 54.2  62.5 70.8 79.2 87.5 95.8

The normal probability plot of these points is shown in Figure
X.1l. The plot appears perfectly symmetrical about O since J = 2 and so
the responses within groups have correlation -1.0. The effective sample
size is thus 6(J - 1) = 6(2 - 1) = 6 independent observations. The ref-
erence line in the plot is the standard normal distribution function. If
the response rates are homogeneous within groups then the standardized
values should lie near this line. If there is extrabinomial variation
in the data, that is random tank to tank variation within groups, then
the points should lie along a line or a curve with steeper slope than
the standard distribution function. If there are outlying responses in
the data then they should be far removed from the line or curve that
typifies the bulk of the data. This latter situation is seen to be the
case. The ».lk of the data lie very nicely along the standard normal
c.d.f. line. The values corresponding to group 2 are far removed from
this line.

To determine the extent of statistical evidence that the appar-
ent outliers did not occur just due to chance we calculate the probabi-
lity that the maximum absolute value of six independent standard normal
random variables exceeds 2.600. More precisely let Zj, Zj, ..., Zg be
six independent standard normal random variables. Then

P[. a Z, > 2.600] = P[at least one |Z,| > 2.600
[jop max | ]l > ] = Pla | J| > ]
=1 - P[all |zj| < 2.600] =1 - {p [[zl[ < 2.60011% = 1 - (.9907)°®

0.055

This is of borderline statistical significance. We can thus infer that
based on this test there is marginal statistical evidence that group 2
contains an outlying tank.
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The appearance of Figure VI.l suggests that the response from
Tank 2A is more than a marginal outlier. We can increase the sensitiv-
ity of the above outlier test by incorporating additional information.
If we assume that there is no trend in response rates across groups then
we can estimate the response rate based on all 12 tanks and can ignore
the correction factor (1 - NJ-/N)'1 2. In general this assumption will

not hold but it seems reasonable in this example based on the appearance
of Figure VI.1 and on toxicological considerations (i.e. relatively
little penetration of chemical into the embryo). The value of p based on
12 tanks is 243/600 = 0.405. The largest standardized value is that

from Tank 2A, namely

32 - (50) (.405)
[50(.405) (.595)]

172~ 3.385

What is the probability that the most extreme of 11 independent standard
normal random variable exceeds 3.385 in absolute value?

- b 11
P[j=11:u.a>.('12 |zj| > 3.385] =1 - {p [|zll < 3.385F 7 =1 - (.9997)

= 0,003

We can thus infer that, with the additional assumption of no trend in
response with increasing treatment level, there is strong statistical
evidence that the response rate in Tank 2A is an outlying value.

Note that just because the Tank 2A response is an outlier does
not in and of itself mean that the data should be discarded or disregar-
ded. Rather, the investigator needs to reexamine the records for this
tank to determine the reason for the atypical response. If it is due
to clerical error, to experimental mishap, to outbreak of a disease un-
related to the toxicant, etc then perhaps the Tank 2A response is inap-
propriate and should be disregarded. If it represents normal biological
variation then the response should be considered with the others. This
is a matter for biological judgement. Outlier detection procedures are
merely screening devices to direct attention to those places where such
biological judgement need be applied.

DeFoe compound C - Fry mortality

Group 1 p = 0;

Group 2 p = 0;

Group 3 p = 0.05;

Group 4 f = 0.024;

Group 5 p = 0.225; expected frequencies less than 5 in both tanks
Group 6 p=1.00 (§ =0

Thus groups 1, 2, 3, 4, 6 correspond to the Poisson case 2. (In group 6
we interchange the roles of p and q). Group 5 corresponds to case 3.
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N.\-1/2
For all groups but 5 we calculate ( - ﬁ%) 2 [/i; - /ﬁjb] . For group

5 we carry out an arc sine transformation

X, N p NP N/ (1 - Nj/N)-llz 2[/3?3_ - fﬁj—ﬁ]

k| | j
Group 1
Tank A O 20 0 0 .50 0
Tank B 0 20 0 0 .50 0
Group 2
Tank A 0 20 0 0 .50 0
Tank B 0 20 0 0 .50 0
Group 3
Tank A 0 20 .05 1.0 .50 -2.828
Tank B 2 20 .05 1.0 .50 1.172
Group 4
Tank A 0 21 .024 0.512 0.512 -2.049
Tank B 1 20 .024 0.488 0.488 0.843
~ ~ 1/2
X, N, N, N, /N 1- N./N) 2[/3'(7 - »/ﬁ.“]
J J 1 Jq J ( J ] Jq
Group 6
"Tank A O 20 0 0 .50 0]
Tank B 0 20 0] 0 .50 0
X, N, p b N p. fu-nwYY? 2K [arcsindf, -
h | J J J J ] ] ]
arcsin/g
Group 5
Tank A 4 20 0.225 4.5 0.50 0.20 -0.387
Tank B 5 20 0.225 4.5 0.50 0.25 0.372

To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position
100 x (1 - 0.5)/12 on the probability scale. These values are indicated
below.
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i 1 2 3 4 5 6 7 8 9
Ordered ;g7 2,049 -0.3837 0 0 O 0 0 0
. Value
=
2 Plotting , » 12,5  20.8 29.2 37.5 45.8 54.2 62.5 70.8
- Position
r:-;'_’. i 10 11 12
s'j‘-?
Ordered 0.372 0.843  1.172
g Value
ff? Plotting
» Position 79.2 87.5 95.8
-
; The normal probability plot of these points appears in Figure
X.2. We note two points well below the standard N(O, 1) line. These

points correspond to Tanks 3A, 4A. Both correspond to frequencies of

0, where the normal approximation is least reasonable.

Furthermore,

their companion tanks do not show up as outliers.

Thus before we say

there is an outlier, we should compare the proportions in the two repli-
cate tanks to see if there is any statistical evidence of differences.

There is an exact test for the equality of two Poisson means.
Nelson [24] discusses this test in detail.

In order to use this test for detecting outlier tanks we need to
test a slightly more general hypothesis. Namely consider the 2 x 2 table.

z: Replicate

ey A E

{ Live X Y
N Dead

:f: NA NB N

o Y

;ﬁ, If-g— <.1, r <.1 or if X >.9, — >.9 then we're in the Poisson case.
. N N N N

= A B A B

- ‘.l = P = i 1 = =

Ny Now AA NP,» Ag = NgP, implies that if P, = Py then AA/XB NA/NB.

I W S . P
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We thus wish to test the hypothesis
Ap Np

where P = —
B Ng

Nelson's test rejects Ho at level o if

¥ 1
=1 2 3 F(2X + 2, 2Y; 1 - 0/2)

or if
v 1 o1 1
x SpFQX 2¥+ 20/ = S¥oy T2, 2% 1= a/D

where F(vl, Vo; Y) represents the upper Y point of the F c.d.f. with

Vi, V2 degrees of freedom. If Y = 0, X>0 we can only carry out the one
sided test. (We have just one sided information concerning AB).

Ho: AA/AB =p vs le

Nelson's test rejects Ho at level a if X > pF(2, 2X; 1 - a).

MIAg 2P

We now apply this Poisson test to the outlier detection problem.
Consider groups 3, 4. These give rise to the two extreme points on the
plot:-2.828, -2.049. Let us see if these should be regarded as outliers.

Replicate
In Group 3 we have B
Dead 0 2
Live 20 18 38
20 20 40
Thus X = 0 X PO(AA) = PO(ZOPA)
Y =2 Y n PO(AB) = PO(ZOPB)

Since X = 0, we can carry out only a one sided test.

We reject H, at level o if Y > F(2, 2Y; 1 - a).
2. The critical value, F(2, 4; .95) is 6.94, which exceeds 2.

~
1]
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b is thus no statistical evidence of differences among the two responses
;'u in group 3. Thus Tank 3 A is not an outlier.

b aot

2

We now carry out the test for group 4. The situation is less
extreme than that in group 3, however we go through with the test for
illustrative purposes.

b Replicate
- In Group 4 we have A B
St: Dead 0 1 1
5‘ Live 21 19 40
3 21 20 41
= = 21
Thus X = 0 X" PoO‘A) PO( pA)
= = 20
Y =1 Y PO(AB) Po( Pg)

AN
H-%—ﬁ-z;—g—o.%z;p
o A

A
H1:—5->o.952

A

reject H if Y > p F(2, 2Y; .95) =
o — - NA

= .952F(2, 2Y; .9

In our case Y = 1, .952F(2, 2Y; .95) = (.952)(19.0) = 18,088

Thus we cannot reject H . There is no statistical evidence of
differences in response rates among the tanks.

Thus tank 4A is not an outlier.
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Holcombe and Phipps compound D Embryo Mortality

I=6, J=4 (i.e. 6 groups, 4 tanks per group)

Embryo mortality

L et Ml sy EIEM P BN
Tete ] d LGN

- Group 1 p = 0.35; all expected frequencies greater than 5.
- Group 2 p = 0.35; all expected frequencies greater than 5.
Group 3 P = 0.315; all expected frequencies greater than 5.
Group 4 P = 0.39; all expected frequencies greater than 5.
Group 5 p = 0.335; all expected frequencies greater than 5.
Group 6 p = 0.38; all expected frequencies greater than 5.

We apply the transformation suggested in case 1. Data summaries are
given below.

I saaney

N.\-1/2 /X, - N.P
Calculate (1 - ﬁl- —L___J_} for each tank within each group.
r
! x, N p Np  Apg wN (1o )R NP
- ] J | J J ]
/NP4

‘I J
- Group 1

- Tank A 17 50 0.35 17.5 3.373 0.25 -0.171
- Tank B 21 50 0.35 17.5 3.373 0.25 1.198
b Tank C 12 50 0.35 17.5 3.373 0.25 -1.883
F Tank D 20 50 0.35 17.5 3.373 0.25 0.856
t. Group 2
[ Tank A 19 50 0.35 17.5 3.373 0.25 0.514
4 Tank B 14 50 0.35 17.5 3.373 0.25 -1.198
Tank C 16 506  0.35 17.5 3.373 0.25 -0.514
Tank D 21 50 0.35 17.5 3.373 0.25 1.198
2 Group 3
: Tank A 15 50 0.315 15.75 3.293 0.25 -0.263
Tank B 12 50 0.315 15.75 3.293 0.25 -1.315
| Tank C 24 50 0.315 15.75 3.293 0.25 2.893
i Tank D 12 50 0.315 15.75 3.293 0.25 -1.315
s 72
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Group 4

Tank A 20 50 0.39 16.5 3.449 0.25 0.167

Tank B 21 50 0.39 19.5 3.449 0.25 0.502

Tank C 23 50 0.39 19.5 3.449 0.25 1.172

Tank D 14 50 0.39 19.5 3.449 0.25 -1.841
Group 5

Tank A 18 50 0.335 16.75 3.337 0.25 0.433

Tank B 19 50 0.335 16.75 3.337 0.25 0.779

Tank C 14 50 0.335 16.75 3.337 0.25 -0.952

Tank D 16 50 0.335 16.75 3.337 0.25 -0.260

Group 6

Tank A 14 50 0.38 19.0 3.432 0.25 -1.682

Tank B 16 50 0.38 19.0 3.432 0.25 -1.009

Tank C 25 50 0.38 19.0 3.432 0.25 2.019

Tank D 21 50 0.38 19.0 3.432 0.25 0.673

To prepare the normal probability plot we order the standardized
values and plot the i-th smallest against the plotting position 100 x
(1 - 0.5)/24 on the probability scale. These values are indicated below

i 1 2 3 4 5 6 7 8
Ordered _; g4 _1.841 -1.682 -1.315 -1.315 -1.198 -1.009 -0.952
Value
Plotting , 6.2  10.4  14.6  18.7  22.9  27.1  31.2
Position

i 9 10 11 12 13 14 15 16
Ordered _, 51, _0.263 -0.260 --0.171 0.167 0.433 0.502 0.514
Value
Plotting |\ 39.6  43.7  47.9  52.1  56.2  60.4  64.6
Position
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i 17 18 19 20 21 22 23 24

Ordered
Value

0.673 0.779 0.856 1.172 1.198 1.198 2.019 2.893

Plotting (g ;72,9  77.1 81.2 85.4 89.6 93.7  97.9
Position

The normal probability plot of these points is shown in Figure

X.3. Due to the within group correlation, the effective sample size is
6(J - 1) = 6(4 ~ 1) = 18 independent observations. 1Is the Group 3, Tank
C response an outlier? To determine the extent of statistical evidence
that the apparent outlier did not occur just due to chance we calculate
the probability that the maximum absolute value of 18 independent standa-
rd normal random variables does not exceed 2.893. Let Zl’ 22’ ""218
be 18 independent standard normal random variables.

18
P max = - = -—
[ e 1,...18 leI > 2.893] 1 P[all |Zj| < 2.893] 1 (09962)

= 0.066.

This is of borderline statistical significance. We can thus infer that
there is marginal statistical evidence that Group 3 contain an out-

lying tank.

Note that from the scatter plot of embryo mortality vs treatment
in Figure VI.5. It is clear that there is no trend in the data and that
the Tank 3C response does not stand out from those of the six groups as
a whole. 1If we knew that there was no trend over groups we could constr-
uct a more powerful test by pooling all the tanks and calculating a co-
mmon p. However there is no point in doing this since we see from the
scatter plot that Tank 3C is not out of line with respect to the pooled
responses, but rather just with those in Group 3. The reason for this,
if any, might be pursued.

Holcombe and Phipps compound D

I1=6,J=4 ( i.e. 6 groups, 4 tanks per group)

Fry Mortality

Group 1 P = 0.06

Group 2 § = 0.08

Group 3 p = 0.08

Group 4 p = 0.13; expected frequencies less than 5 in each tank.
Group 5 p = 0.79; all expected frequencies greater than 5.
Group 6 P = 1.00 (§ = 0).

correspond to Poisson case 2. Group 4 corresponds

Thus groups 1, 2
to case 2). Group 5 corresponds to case 1.

?
to case 3 (possib

=W
A

74

.....
PRI LT PP Y




AERAII e i At A il Ml i s o | A b M Al B Al A
R Attt sl Sl 2 B ot | S i i A M B AR R AAA

Thus for groups 1, 2, 3,
we calculate (1 - N /N) 12, ["Yj - Vﬁjﬁ].

For group 6 we calculate (1

-1/2 —_
Ny 2 [AE - AE]
For group 4 we calculate (1 - N:]/N).]'/2 2/ﬁ; arCSinJEE -

arcsin/p

_1/2 'X. - N.ﬁ
For group 5 we calculate (1 Nj/N) e

v’ﬁjﬁﬁ

X, N § N NN (1- Nj/N)-l/Z 2|'/>§- /tﬁf]

b L

Group 1

Tank A 2 25 .06 1.5 .25 0.438
Tank B 2 25 .06 1.5 .25 0.438
Tank C 1 25 .06 1.5 .25 -0.519
Tank D 1 25 .06 1.5 .25 ~-0.519
Group 2

Tank A 3 25 .08 2.0 .25 0.734
Tank B 1 25 .08 2.0 .25 -0.957
Tank C 2 25 .08 2.0 .25 0
Tank D 2 25 .08 2.0 .25 0
Group 3

Tank A 2 25 .08 2.0 .25 0
Tank B 0 25 .08 2.0 .25 -3.266
Tank C 5 25 .08 2.0 .25 1.898
Tank D 1 25 .08 2.0 .25 -0.957
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1Al
2
» \-1/2 i
:: (1 - Nj/N) ZJﬁgnérCSin/bj
: X, N N N./N P arcsin/x]
; IR LA L iy
N Group 4
Tank A 4 25 .13 3.25 .25 .16 .493
.2 Tank B 5 25 .13 3.25 .25 .20 1.094
- Tank C 4 25 .13 3.25 .25 .16 .493
j: Tank D 0 25 .13 3.25 .25 0 -4.259
o a '1/2 X, - N ﬁ
, xj Nj ) Njﬁ Nj/N Jﬁjp""q 1- NJ,/N j i
: AFT
< 4
%
ﬂ Group 5
Tank A 23 25 .79  19.75 .25 2.037 1.842
1: Tank B 21 25 .79 19.75 .25 2.037 0.709
A Tank C 16 25 .79 19.75 .25 2,037 -2.126
' Tank D 19 25 .79  19.75 .25 2.037 - .425
¥ N.-X, N, § N, N,/N (1 - N /N)‘l/2 2[/&3,—){. - A3
- kN 3 h| h| 3 i 3
> Group 6
x Tank A ] 25 0 0 .25 0
. Tank B 0 25 0 0 .25 0
N Tank C 0 25 0 0 .25 0
» Tank D 0 25 0 0 .25 0
To prepare the normal probability plot we order the standardized
. values and plot the i-th smallest against the plotting position 100 x
N (1 - 0.5)/24 on the probability scale. These values are indicated below.
g 1 2 3 4 5 6 7
A Ordered '
:: value -4.259 -3.266 -2.126 -0.957 -0.957 -0.519 -0.519
- Plotting
i Position 2.1 6.2 10.4 14.6 18.7 22.9 27.1
4
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8 9 100 11 12 13 14 15 16
Ordered _, ,»5 0 0 0 0 0 0 0.438
Value
Plotting
Pooftine 31.2  35.4 39.6 43.7 47.9 52.1 56.2 60.4 64.6

17 18 19 20 21 22 23 24
Ordered . 438 0.493 0.493 0.709 0.734 1.094 1.842 1.898
Value
Plotting ¢9 7 72,9 77.1 81.2 85.4 89.6 93.7  97.9
Position

The normal probability plot appears in Figure X.4. It appears

that the lowest 3 points are well below the N(O, 1) line. These three
points correspond to Tanks 4D, 3B, 5C. Tanks 4D, 3B each have observed
frequencies of 0. This is the region where the normal approximation is
the poorest. Thus before we say that there are any outliers, we should
compare the tanks within the treatment groups using a more appropriate
exact test.

First let's look at tank 3B.

Group 3:
Replicate
B C D
Dead 2 0 5 1 8
Live | 23 25 20 24 92
25 25 25 25 100

Tank 3 B is the suspected outlier.
in the other 3 tanks.

Let's compare its results to those

Replicate
B A, C, D
Dead 0 8 8
Live 25 67 92
25 75 100
77
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We can carry out an exact test by means of the Fisher - Irwin test. (See
Lehmann [ 25], section 4.5, Lieberman and Owen [26]).

To carry out the Fisher - Irwin test we adopt the following nota-
tional identifications for the table.

Grp 1 Grp 2
Spec. X k
Ordin. K -k
n N-n N

Where
k<N-k,n<N-mn, k<n,
i.e. k 1s the smallest marginal entry
n is the smallest marginal entry in the other margin.
X is the cell entry in the cell corresponding to the (n, k)
marginal categories.

In our example

B A, C, D
Deadl x=0 8 8=k (“special®™)
Live] 25 67 92

25 75 100 = N

”

n

Thus k = 8, n = 25, N= 100, X = x = 0. We enter the Lieberman and
Owen hypergeometric distribution tables at these parameters. We obtain
P(X < 0) = 0.091. Thus a two sided probability is 0.182. This is quite
marginal, at most.

Now group B was not chosen a priori, but rather as the most extreme
of the 4 responses. Thus to get a feeling for how extreme this behavior
is we carry out the following approximate calculation. P(most extreme of
4 independent responses is more significant than 0.182 level) = 1 - P
(all 4 responses less significant than 0.182 level) =1 - (1 - 0.182)4
= (0.55. We thus conclude that there is no statistical evidence that the
response rate in Tank 3B differs significantly from the responses rates
in the other tanks in that group. We conclude that the extreme behav-
ior of the standardized value is due to the inapplicability of the nor-
malizing square root transformation when X, = O.

3




We now consider the responses in Group 4.

Group 4
Replicate
A B C D
Dead 4 5 4 0 13
Live 21 20 21 25 87

25 25 25 25 100

Tank 4D is the suspected outlier. Let's compare its results to those
in the other 3 tanks.

D A, B, C
Dead 0= x 13 13 = k |
Live 25 62 87

25 75 100 = N

”

n

Thus here k = 13, n = 25, N = 100, X=x = 0.

Entering the Lieberman and Owen tables we find that
P(X < 0) = 0,018 this is a one sided probability

Thus the observed two sided significance level = 2(0.018) = 0.036

Now tank D was not chosen a priori. Taking selection into account we have
P (most extreme of 4 tanks more significant than 0.036 level) =
1 - P (all 4 tanks less significant than 0.036 level)
=1- (1-.036)" = 0.14.

There is thus at most a marginal suggestion that the response rate in
Tank 4D differs significantly from the response rates in the other tanks
in that group. The very extreme appearance of the standardized value

on the normal probability plot is again due to the inapplicability of
the normalizing transformation when X, = 0.

3

We now consider the responses in Group 5.

W WY,
P
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Group 5 Replicate
A B C D
Dead| 23 21 16 19 79

Live 2 4 9 6 21

25 25 25 25 1100

Tank 5C is the suspected outlier. Let's compare its results to those in
the other three tanks.

C A, B, D
Dead 16 63 79
Live| 9 = x| 12 21 = k np = 5.25
25 75 100 = N
11]
n

In this case the "special' category is '"live". Thus k = 21, n = 25,
N =100, X=x = 9. Entering the Lieberman and Owen tables we find

that

P(X>9) =1-P(X<8) =1- .9638 = .0362.

Thus the two sided significance probability is 2(.0362) = .0724. This
is at best marginal. Now tank D was not chosen a priori. Taking
selection into account, we have

P (most extreme of 4 tanks most significant than .0724 level) =
1- (1~ .0724)" = ,260

Thus tank D is not significantly different than the others. Since

the expected frequenciés are fairly large in this example we can
also carry out an asymptotic test.
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C A, B, D

16 63
Dead (19.65) (59.25) 79
9 12 21
Live (5 55 (15.75)
25 75 100

Expected frequencies are in parentheses.

(12 - 15.75)2

2 g0 B _ (16 - 19.7% | (63 - 59.25)°, (9 - 5.25)%,
X E 19.75 59,25 5.25 15.75

Thus  y> = 4.53
2 2
Under the hypothesis of homogeneity, X 1is distributed as X1-

Thus xz is significant at the 0.033 level, in close agreement with the
results based on the Fisher - Irwin test, namely lack of statistical
evidence of differences when selection is accounted for.

Since the normalizing transformation is appropriate for the range
of responses in Group 5, we can also regard the normalized value from
Tank C, -2.126, as the minimum of 6 x (4 - 1) - 2 = 16 standard normal
deviates (we disregard those responses corresponding to Tanks 3B, 4D).
The probability that a standard normal deviate is less than -2.126 is
0.017. The probability that the minimum of 22 independent standard
normal deviates is less than -2.126 is thus 1 - (1 - 0.017)!® = 0.25.
Again there is no statistical evidence that this value is an outlier.

Jarvinen compound B

I=6,J=2 (i.e. 6 groups, 2 tank per group)

Embryo Mortality

The normal probability plot of standardized values (based on the
case 1 transformation) is shown in Figure X.5. The plot appears perfect-
ly symmetric about 0 since J = 2. The effective sample size is 6(J - 1)
= 6 independent observations. The reference line in the plot is the
standard normal distribution function.

The behavior of the plot suggests the presence of extrabinomial
variation (i.e. random tank to tank variation within groups) in the data
rather than outliers. This is seen by the fact that the points lie along
a curve with steeper slope than that of the standard normal distribution
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function. The extreme points are not outliers since they lie directly on
the curve determined by the other values. Thus the conjecture made in
section VIII concerning the presence of ocutliers is not horne out. Note
that this behavior is directly opposite to that observed in Figure X.1.

If we draw a line through the plotted points in Figure X.5 the
estimated standard deviation (corresponding to the difference between
the 84th and 50th percentiles) is about 1.7. Thus the estjmated variance
is (1.7)% = 2.9. This values is very close to the factor K = 3.07 that
we utilized in section IX to adjust these data.
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XI. TESTING FOR CONCENTRATION RELATED EFFECTS }

A. Background

After we have completed preliminary graphical displays, tests
for tank to tank heterogeneity, and outlier detection procedures
we are ready to proceed to the main portion of the data analysis.
This involves comparing responses across treatment groups to ar-
rive at an inference about what constitutes an "acceptable"
concentration. If no tank to tank heterogeneity is evident in
the data then the original data may be pooled across tanks within
groups and subsequent analyses carried out on a per fish basis
or alternatively the data can first be adjusted to reflect the
increased variation and the adjusted "data'" can be pooled across
tanks and analyzed on a per fish basis. As remarked earlier, we
prefer the latter appreach.

Before considering statistical procedures to determine accept-
able concentrations, we must first define what is considered to
be acceptable. According to the guidelines for early life stage
tests, [8], "...A lower chronic endpoint is the highest tested
concentration...which did not cause the occurrence (which was
statistically significantly different from the control at the
95% level) of any specified adverse effect and below which no
tested concentration caused such an occurrence...An upper chronic
endpoint is the lowest iested concentration...which caused the
occurrence (which was statistically significantly different from
the control at the 95% level) of any specified adverse effect
and above which all tested concentrations caused such an occure-
nce'". We are thus interested in determining which concentrations
yield (statistically) significantly different results than the
control group. In a later section we will present an alternative
notion of acceptable concentration.

Opinion: For the purpose of testing hypotheses concerning heter-
ogeneity of response rates across groups or of constructing con-
fidence intervals to compare treatment group and control group
response rates, unless there is relatively strong statistical
evidence of heterogeneity among tanks within groups (e.g. obser-
ved significance level less than 0.05 or 0.10) then act as if
there is not heterogeneity of response from tank to tank within
groups. Base subsequent tests and confidence intervals on the
original (i.e. unadjusted) data, pooled across tanks within
groups.

This suggestion reflects a conservative viewpoint with res-
pect to the conclusions drawn from such subsequent analyses.
Namely, suppose that such tank to tank variation within treat-
ment groups exists but we do not detect it. Then we proceed as
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o if none exists. Thus the "true" variability of the test statis-

: tics that we use will exceed the assumed variability. Thus if we
! carry out a test at nominal level o = 0.05, say, the "true'" alpha
level will in fact be greater than the nominal.

i SR NLNLIEAR

Y Inflating the actual & - level over the nominal level makes

b - the test more prone to reject the hypothesis of equality of treat-

ﬁ ment and control groups than an actual o - level test, Thus if
we err, it will be on the side of declaring a treatment group

significantly different from the control group when it in fact
is not. This is comnservative.

Carrying out analyses on a per tank basis drastically reduces
the degrees of freedom available for estimating variability of the
test statistics, especially when there are very few tanks per
treatment group. This diminishes the power of subsequent tests
to compare treatment groups with control group, thus causing
acceptance of the null hypothesis more often than necessary when
it is false. That is, suppose there is little or no tank to tank
heterogeneity within groups but we still carry out our analyses
on a per tank basis '"to be safe'. Then the reduced power of the
procedures based on per tank analyses will cause us to miss mode-
rate differences between treatment groups and control groups that
we might be able to detect if we were analyzing on a per fish basis.
Thus we would be erring on the side of failing to detect departures
from the control group response rates. This is unconservative.

It should be noted that exactly the opposite is true when we
. fit dose response curves to the data. Namely underestimation of
variability results in an increased lower bound on safe concent-
ration, which is unconservative. Thus for the purpose of fitting
dose response curves perhaps we should adjust for tank to tank
heterogeneity if the overall significance level is as great as
o = ,20 or perhaps even o = .50,

B. Chi Square Test of Homogeneity Across Treatment Groups

The most commonly used overall test for differences in mort-
ality or abnormality rates across treatment groups is the chi
square test for homogeneity. It is analagous to the shotgun
analysis of variance F test for quantitative data. Since the
preliminary tank to tank heterogeneity tests on the DeFoe and on
the Holcombe and Phipps data sets were at most marginal, we use
the original data. However the same test could be applied after
adjusting the data.

Let Pys Pys 05 Pg denote the response probabilities in the
I (treatment and control) groups. We wish to test the hypothesis
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The chi square test is an overall test of this hypothesis (i.e.
a shotgun test). It is based on the following statistic:

Let (Xjj, Nij) denote the number of responses and the number
of fish, respectively, in the j-th tank within the i-th treatment
group

i=1, ..., I;j=1, ..., J.

M

Let
J. I J. I J
N X = = =
ij’ “i+ 2, xij’ Nt 2 Nij’ X Z inj » Then
=1 j=1 i=1,j=1 j=1,j=1
is the estimate of the common value of p under Ho'
1 2
Xz =z (x1+ Ni+6++)

1 Ni+p++(1 - P++)

is the x2 test of H,. Under H,, X2 3 Xi—l' Since the chi square
test is sensitive to all kinds of departures from H,, it is not
tailor made to be sensitive to ordered alternatives, of the type
most commonly encountered in toxicology. We will discuss this
further later.

The chi square test is easy to carry out from a computational
standpoint since many standard programs are available. For ex-
ample the procedure PROC FREQ in the SAS statistical computing
system [12] can be used to carry out this test. The program
BMDPL1F in the BMDP statistical computing system [9] can also
be used for this purpose. Figure XI.1l illustrates output from
SAS PROC FREQ to test for homogeneity of response rates across
groups for the fry mortality data from the Holcombe and Phipps
test on compound D. This test is based on data pooled across
tanks within groups. Of course, the test rejects Ho very strong-
ly, as it should based on the appearance of the preliminary sca-
tterplot.
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We have also incorporated this test into our EXAX2 computer
program [ 14]. We pool responses across tanks witiiin groups and
compute the chi square test. If expected frequencies within
each cell exceed the cutoff, we evaluate the significance of chi
square based on its asymptotic distribution under Ho.

If any expected frequency is less than the cutoff we evaluate the
exact small sample distribution of chi square, conditional on the
margins, by enumeration as discussed in the section on the exact

chi square program.

We illustrate this feature of EXAX2 with the DeFoe compound
C and with the Holcombe and Phipps compound D data. We tested
for heterogeneity of response rates across groups for the fry
mortality and the embryo mortality data. The results of these
tests are shown in Figures XI.2 - XI.5.

Figure XI.2 illustrates the chi square test of homogeneity
across treatment groups for the embryo mortality data in the
DeFoe compound C experiment. It will be recalled that no tank
to tank heterogeneity within treatment groups was found by the
preliminary test, and so the data have been pooled across the
tanks within treatment groups. The first matrix displays the
observed 2 x 6 table. The second matrix displays the expected
(under H,) frequencies. Since each expected frequency exceeds
5 (by a great deal in this example) the test is based on
asymptotic theory.

NOTE THAT SINCE THIS IS A PRELIMINARY TEST WE SHOULD BE VERY
LIBERAL IN DECIDING WHEN TO REJECT H, AND TO GO ON TO MORE DE-
TAILED COMPARISONS. THUS A LARGE a~VALUE e.g. o = .20 or a = .25
SHOULD BE USED. THIS ENHANCES THE SENSITIVITY OF THE TEST TO
DETECT MODERATE DEPARTURES FROM H,.

We see from the bottom of Figure XI.2 that the observed signi-
ficance level is o = 0.31. Thus even by our liberal yardstick we
see no statistical evidence of group to group differences in
embryo mortality in the DeFoe data. This agrees with the appear-
ance of the preliminary scatter plots.

The same test was carried out for the DeFoe compound C
fry mortality data. The results are given in Figure XI.3.
Again, all the expected frequencies exceed 5.0 and so the
asymptotic theory is used. This time the chi square statistic
is highly significant. Chi square = 182.79 with 5 d.f. Thus
there is strong statistical evidence of group to group response
rate differences in fry mortality. This again agrees with the
appearance of the preliminary scatter plot.
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Figures XI.4, XI.5 contain the results of the chi square tests
of homogeneity across groups for the Holcombe and Phipps compound

D embryo mortality and fry mortality data respectively. Again the
data have been pooled across tanks within groups.

In both cases the expected frequencies exceed 5 and so asymp-
totic theory is used. We see for the embryo mortality data the
test is nonsignificant even at the liberalized a = .20. For the
fry mortality data the test is very highly significant (chi square
= 389.68 with 5 d.f.). Thus again there is no statistical evidence
of group to group differences with respect to embryo mortality
while there is strong statistical evidence of group to group
differences with respect to fry mortality. This is in good
agreement with the appearances of the preliminary scatterplots.

Figure XI.6, XI.7 contain the results of the chi square
tests of homogeneity across groups for the Jarvinen compound B
embryo mortality and fry mortality data respectively. The
data have been pooled across tanks within groups. In both
cases all the expected frequencies exceed 5 and so asymptotic
theory 1s used.

For the fry mortality data the test is very highly signifi-
cant, as was the case with the fry mortality data from the other
experiments considered. It is quite clear that the last two
treatment groups have substantially higher response rates than
the first two groups.

In contrast to the cases for the DeFoe and Holcombe and
Phipps data sets, there is some statistical evidence of group to
group differences in embryo mortality rates.

We also saw strong statistical evidence in Sections VII and X
of heterogeneity in response rates among tanks within groups. In

Section IX we calculated an adjustment factor of K = 3.071 for
these responses, to account for the tank to tank heterogeneity.
The effect of this adjustment on chi square is to adjust it down-

ward by the factor K. Thus with respected to the adjusted.''re-
sponses", the observed chi square value becomes 10.71426/ K =
10.71426/3.071 = 3.489. The probability that a chi square rand-
om variate with 5 d.f. exceeds 3.489 is 0.625. Thus the tank to
tank heterogeneity within groups accounts for the significant chi
square across groups. Thus again there is no statistical evidence
of variation in embryo mortality rate across groups.

One Sided Tests of Homogeneity Across Treatment Groups

The shotgun chi square test, although the most commonly used
test of homogeneity of response rates, is not the most appropriate
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test for application to toxicity data. The chi square test is
an overall test which is not designed to be particularly sensi-
tive to the one sided, monotone alternatives characteristic of
dose response tests. More speclalized tests have been designed
to be more powerful against alternatives of this type.

Several tests of response rate homogeneity against ordered
alternatives are discussed in the literature. Snedecor and Cochran
[28] section 9.11 and Steel and Torrie [29], section 22.10 extract
a single degree of freedom from the overall chi square test to
test for linear regression in 2 x K tables where the columns fall
in a natural order Scores, Zj, are assigned (arbitrarily) to the
columns to treat them as values on a continuous scale of measure-
ment. The weighted linear regression coefficient of mortality
probability on score 2y 1s calculated and tested for significance.
The major drawback of this method is the arbitrariness of the
scores. See [28, 29] for details.

An alternative approach to the construction of one sided
tests 1s by means of measures of association for ordered contin-
gency tables. Such measures can be thought of as analogs for
qualitative responses to correlation coefficients for quantita-
tive responses. Goodman and Kruskal [ 30, 31 ] have derived and
reported on a number of measures. Several commonly used measures
of association are Kendall's tau b, Stuart's tau ¢, Goodman and
Kruskal's gamma, just to name a few. For a given table each of
these measures ylelds different numerical values and so it is
not clear how to ascribe physical meaning to these values. How-
ever for each of the measures a value of zero means no monotone
association between categories and positive or negative values
mean positive or negative associations respectively. Thus a
test of homogeneity of treatment group response rates that is
sensitive to monotone, one sided alternatives can be constructed
by testing the null hypothesis that these measures are zero again-
st a one sided alternative. Brown and Benedetti [ 32 ] have cal-
culated improved standard error estimates for the various measures
that are appropriate studentizing factors to test the null hypo-
thesis that these measures are zero. They show empirically that
their new standard errors provide better approximations in small
and moderate samples than do the older standard error estimates
reported by Goodman and Kruskal [ 31]. Furthermore they show
that a number of measures, each having different numerical values,
result in identical "t ratios'" when normalized by their respect-
ive Brown and Benedetti standard error estimates. This is de-
sirable because we need consider just one "t ratio" rather than
five. Proctor [ 33] shows that tests based on measures of assoc-
iation are in fact much more powerful against one sided, monotone
alternatives than is the shotgun chi square test, as would be
intuitively expected.
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Agresti and Wackerly [ 15] also discuss one sided tests of
homogeneity based on measures of association. They discuss
Kendall's Y, in some detail. They illustrate an instance of the
increased sensitivity of such measure of association tests for
detecting ordered departures from homogeneity with the following
artificial example. Consider the 3 by 3 contingency table with
ordered categories:

A
High Medium Low

High 6 4 2
Medium 4 4 4
Low 2 4 6

There is clearly a positive trend in the table however the Fisher-
Irwin test (exact) shows significance level a = .514. This test
would thus miss the trend. However Kendall's 7, test (exact) is
significant at o = .053 and so would detect the trend.

Agresti and Wackerly also comment that the asymptotic normal
approximation to the distribution of the sample estimate of
may be quite poor for small sample sizes. They report that the
observed significance level can be substantially greater than
the nominal for small sample sizes; i.e. we reject H, when it is
correct far more than the nominal proportion of times. This is at
least in part due to the maximum likelihaod estimate of standard
erroer of ? having a negative bias. Based on Agresti and Wickerly's
example, asymptotic normal distribution theory would be suspect
at least for N below 50, Agresti and Wackerly suggest that an
alternative, exact conditional test against ordered alternatives
can be used, based on measures of association and enumeration of
tables, when the sample sizes are too small to apply asymptotic
normal theory.

The applicability of asymptotic distribution theory for the
sample sizes and magnitudes of response proportions encountered
in fish toxicity tests is a matter for detailed future study,

.- probably by simulation. This is too involved for us to consider
) here. However as we use this test only on pooled data (original
. or adjusted) across tanks within groups, the sample sizes would
I be expected to be reasonably large (N in excess of 200) and so

S we utilize asymptotic theory for the remainder of this section.

It should be noted that ordinal measures of association as-
9 sume that as one variable (e.g. concentration) increases the

. other variable (e.g. percent mortality or percent abnormality)
either increases monotonically or decreases monotonically.
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Nonmonotone relations (e.g. first increasing and then decreasing)
can well result in small or even zero values of the measures.
This is analogous to properties of correlation coefficients.

Goodman and Kruskal [ 30 ] define and discuss the properties
of a number of measures of association for cross classifications.
They include a section on measures for ordered categories (i.e.
ordinal data). They propose a measure, Y, which is defined as
follows:

Suppose two individuals are drawn at random from a population
described jointly by two discrete, ordered categories.

Category 1: i=1, ..., I
Category 2: j =1, ..., J

In our fish toxicity examples I = 2 (e.g. live, dead), J = C
(number of groups)

Let (4, j), (1',3') denote the (random) indices of these two
individuals within the two categories. If there is an ordered cor-
respondence between categories, we should see the same (or oppo-
site) orderings of each of the categories, depending on direction
of association.

Let T = P[(1>1' and 3>j') or (i<i' and j<j")]. = P{same}
nd = P[(4>1" and j<j") or (i<i' and §>j")]. = P{diff}
HtEP[i=i' or j=13i'l. = P{tie}

To avoid ambiguity they condition on the absence of ties.
The conditional probability of like orders given no ties is HS/
(1- Ht). The conditional probability of unlike orders given no

ties is Hd/(l - Ht). The difference of these two probabilities
is defined as Y . Namely

Goodman and Kruskal's Gamma

_ m - Ty m - 1
Y 1-10. - T_+1
t 8 t

In the situation when the two categories are independent HS =
Hd and so Y = 0. However the converse is not necessarily true

(except in the 2 x 2 case).
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The Kendall's Y% and Stuart's \, measures are related to vy .
Let m = min(I, J). Then

n -1
- s d
Tc " (m- )/m

This modification is made so that %c can nearly attain the

absolute value 1 for nonsquare tables when the entire population

- lies on a longest diagonal of the table.
i Kendall's %b is also related to Y. Namely, let pij denote
1 a cell frequency,
J I
pi.: Z Pij’ p.jsz pij' Then
j=1 i=1
Y:Hs-nd= g - Ty
- 1-1 I J I
t l—pr ~Ipl +I I
1=1 3 g=1-d g=1 g=1
- Iy - Ty
'\'b =

I J
\/[1-2;;2] [1-2;3]
=3 L =1 3

%, corrects for pairs of observations tied with respect to at
least one of the categorizations and ranges between -1 and +1.

Somer's d (asymmetric measure)

mn -1
d __8 d
R|C 1—1'[':'+Yo
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Hs - Hd

d o=
C[R T -T +X

Where Yo probability of tie in row only

probability of tie in column only

X
o

For all of these measures a zero value indicates a complete
lack of a monotone relationship between the two variables
(no association). A value of +1 indicate a perfect monotone in-
creasing relationship (perfect agreement) and a - 1 indicates
a perfect monotone decreasing relationship (perfect disagreement).
It should be noted that lack of a monotone relationship is not
the same as statistical independence. These measures will equal
zero when there is dependence of a complicated form. However,

when the variables are independent, the measures will equal zero.
Kendall's Tb differs from the others in that it can reach a value

of + 1 only for square tables, otherwise its maximum is lower.

Stuart's . is an adjustment of Y, that can attain value + 1 for

non square tables.

There is much discussion in the literature about which measur-
es most realistically portray strengths of monotone relations.
In general it is difficult to interpret the magnitudes of these
measures in any physically meaningful fashion. However we will
be using these measures of association only for tests of signif-
icance to detect departures from 0. For this application the
situation simplifies considerably since Brown and Benedetti,
page 311, show that basing a test of significance on %c’ Y, Tb’
dCIR’ deC all lead to exactly the same test statistic, sample

for sample. Thus we do not need to be concerned with differences
among the values of the measures. That is, Brown and Benedetti,

[125] have derived new estimates ASE, of the asymptotic standard

errors of the measures of association that are better than those
given previously in the literature for testing the null hypothesis
that the measure is zero. They report one set of standard errors
to use for testing purposes and another set of standard errors to
use for constructing confidence intervals. They show that

Voo Ry he e acik .
ASE_(Y) ASE_ (%) ASE (Y) ASE (dp )  ASE (d¢,p)
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which means that the five measures all give the same test of the
null hypothesis of no (monotone) association.

Brown and Benedetti report a simulation study of the use of
these T ratios to test the null hypothesis. They compared the
T-values to the percentage points of the standard nnrmal distri-
bution. They concluded that

1. The ASE 's give empirical type I error rates closer to the
nominal significance level and more consistent for different

patterns of non-association than do previously reported stan-
dard error estimates.

2. For N > 100 the T - value can safely be compared to the per-
centile points of the standard normal distribution.

3. For N £ 50 the distribution of the T - value seems to have
heavier than normal tails, and they recommend comparing it
to Student's t with approximate degrees of freedom (ADF) =
0.4N.

Their T - ratios for testing the null hypothesis of nonasso-
ciation (i.e. monotone) and (asymptotic) standard errors approp-
riate for constructing confidence intervals on the measures of
association are implemented in the BMDP [27 ] program BMDPIF,
measures of association for two way frequency tables. (Note that
BMDP1F was extensively rewritten and reissued in August, 1976.
Thus only versions of this program dated after August, 1976 are
based on the most up to date theory). We will illustrate the use
of this program in this section, with both artificial and real
data.

Proctor [33 ] has discussed the relative efficiencies of tests
of association for ordered two way contingency tables and has com-
pared these efficiencies with that of the chi square test. He
reports that in most cases of ordered alternatives, the efficien-
cles of tests based on the measures of association are much great-
er than that of tests based on chi square. For one example of a
6 x 6 ordered contingency table constructed from an underlying
bivariate normal distribution with correlation p = 0.80, the
efficiencies of the tests of association based on measures of
association relative to the chi square test were about 3.4. This
means that for the chi square test to attain the same power again-
st this alternative as a test based on the measures of associa-
tion, it would need to be based on more than three times as many
observations. In efficiency calculations based on other assump-
tions about .e alternatives, the chi square procedure was con-
sistently generally very much less efficient than test procedures
based on measures of association.
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To get some further feeling for the sensitivities to ordered
alternatives of tests based on measures of association as compa-
red with the chi square test we constructed several artificial
sets of data having varying degrees of monotone trend in response
probabilities. We tested the null hypothesis of no association
between mortality level and treatment group using the one sided
tests based on ordinal measures of association and the shot gun
chi square test. Both of these tests can be carried out using
the BMDP program [27] BMDP1F (versions subsequent to August,
1976). We should note that in these one sided tests we are
looking for counterassociation. That is, the probability of
being alive decreases as concentration group increases. We are
thus testing for departures from O in a negative direction.

Figure XI.8 contains instructions for using program BMDP1F.
Figures XI.9, 10 and 11 illustrate one sided and chi square tests
on tables (based on artificial data) that exhibit linear trends
of response probability with concentration group, but with dif-
fering slopes. They represent mild, moderate, and strong trends.
In each case the one sided test based on measures of association
reflects a much stronger association between categories than does
the chi square test.

In conclusion, we see that the various ordinal measures of
association provide equivalent tests of the null hypothesis of
no association between mortality rate and concentration group.
Further more all the tests are much more sensitive than the chi
square test to alternatives of a monotonic nature.

Appendix A5, pp 778-792, of the 1979 BMDP manual [27] and
Brown and Benedetti [32] are helpful in interpreting the output
from BMDP1F. Brown and Benedetti calculate two asymptotic stan-
dard errors for each measure, ASEO, ASEq. ASE; is derived as-
suming the alternative hypothesis is true; i.e. the measure is
not zero. It is obtained by the method of Goodman and Kruskal
[(31] and is appropriate for setting confidence limits on the
measures for large samples. Brown and Benedetti discuss the use
of ASE] in computing confidence limits and power in an unpub-
lished technical report that is available from the Health Sciences
Computing Facility at UCLA.

ASE, is computed under the null hypothesis that the measure
is zero. It was derived by Brown and Benedetti in the 1977
paper cited above.

The T-value for each measure is the ratio of each measure
to its ASE,. Brown and Benedetti report, based on simulation
studies, that the use of ASE, in the denominator of the T-stati-
stic rather than ASE; or other suggestions made in the litera-
ture gives superior results in that the attained type I error
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rates are closer to nominal and are more consistent for differing
patterns of probabilities.

-3

To illustrate the use of these one sided tests of association
vs ordered alternatives as compared with the chi square test of
significance, we ran the BMDP program, BMDP1F, on mortality data
data from the DeFoe compound C test and from the Holcombe
and Phipps compound D tests. The results are shown in Figures
XI.12-15, both for embryo mortality data and for fry mortality
data. Qualitatively there is no difference, in these data, in
the conclusions arrived at by each procedure. The relationships
between concentration and percent response are so strong in the
fry mortality data that the observed significance levels are 0
to many decimal places. For the embryo mortality data, neither
procedure reveals a statistically significant relation between
concentration and percent mortality. Since the observed mortal-
ity in the DeFoe embryo data is smaller at the higher concentra-
tions than at the lower, the measures of association are positive
and the observed significance level is higher for the one sided
test than for the chi square test. We almost have a significant
trend in the wrong direction! Why? It may be due to the outlier
tank in group 2.
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In conclusion it should be remarked that any overall test
for concentration related effects is just a screening device.
It merely states whether there is any statistical evidence of
concentration related effects but does not provide any indicat-
ion of which treatment groups have responses that differ from the
control group. That is the role of multiple comparisons. The
overall test is intended to screen out those data sets for which
multiple comparisons would be a futile exercise because no diff-
erences exist. In this regard it should be noted that since the
overall test is just a preliminary procedure, it makes sense to
use a very liberal o-level, like a = .20 or perhaps even a = .50,
This improves the sensitivity of the test to detect marginal
effects, but at the expense of an increased false rejection rate.
: However such false rejections of the null hypothesis will be de-
L tected later in the multiple comparison phase.
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CIGL TRT
FREQUENCL Y
. EXPECTED | FRY MOR THLH—Y
- CELL CHI2] -
- coL PCT | 12 I 2 t 3 I 4 I 5 (- | TOTAL
- + + + o — + +
DEAD | 6 | 8 | 8 | 13 1 79 | 100 ¢ 214
| 35.7 | 5.7 | 35.7 } 35.7 | 35.7 | 357 |
(| 24T | 21.5 | 215 | l4.4 | 526 | 116.0 |
f .00 | 8.00 | 8400 | 13,00 1 79.00 } 100.00 |
. J L 4 . L . 4 + .
LIVE | 9 | 92 | 92 | 87 } 21 1 i 366
) 6443 | 64.3 | 64,3 | 6403 | 64.3 | 643 |
' 13.7 . 119 11.9 ' 8.0 ’ 292 | 643 |
I 94,00 | 92,00 § 92400 | 87400 | 21400 | 000 |
TOTAL 100 100 100 100 100 100 600
STATISTICS FOR 2=-WAY TABLES
Cnl-SQUARE 389.676 DF= 5 PROB=0.0001
PrHi 0.806
CONTINGENCY CUEFFICIENT 0627
CRAMER®*S V 0.806

LIKELIHCOOD RATIO CHISQUARE a4 4e801 DF = 5 PROB=0.0001

Figure XI.1 SAS PROC FREQ output from chi square test for homogeneity
across groups applied to fry mortality data from Holcombe

and Phipps test on Compound D

. 101

"4"'44’4--'1,\\4'4'1.44 n;a_.,L.;A_‘J




T ETEe T 4T

S

Y

Bl

T O ®m " W W Y T T e TR WYY TR T T

sdnoag ssoade £3rsusfomoy jo 3se3 2aenbs Tyo -~ 3ndano IXVX3 Z°IX @2an81g

. —I.TL ﬁ*‘L
?.z—c:. 5135 .4 AMICH :do

LUt Oy S LAL fset 4 GULt el T T T T e = LAl

) CC0*u0l L0y tuy ~uQs*

T R AR 5 1 X0 A $ T2 | TUTTTTLCRYGy T T v
nc:.cc_ Cun v ou-"*

cuutulil . via iy M ¢

vt oLl BIVIRE U (VIS

R 71 ¢ 1A TV O £ 10 2 ¥) 20 U] 0 A~

: ' avier o Uy A

Lol LR g S -

S S S .
AT I DL o

IO

-

VIVIRTRVARY S AALOD ~C¢b0 a9 2 Led0bX (ONZAQ .8y U

g o - = bl e Lu Juu®en? = e Vit ¢ Uoc.hrm = SAYAV Tl

Tt ot o ; B #1 1 VR ¢ (o R § o Qacam o R ] $1 S A

cureel (o ® GOGY 1y

’ IV IVAN LN cor

: (VIS TR PN ; CQu .

[ e af o 1 1O e n 515 -,|t::......vdudo,@¢. Toom T
toLtuutl QST GLG® AL

Tl OV U GTANUTTY

f’

OCL® e

._~'_'NN -
b S YullasT ol

e e o S SR T AR ITUADNSON Y N

TERTETI TR . : e
»r....c!ot o.i!ﬁ‘ 2 oo o) u&!
EESAXEERE

.

)
o
000*es V4 KIVAR
e ot
¢

:—Hr‘b U1L>Ld
el

I

1

dN g9

102

Al

. . N




D A "

-

v e Macat

Lt

‘-

r:“'!'\'ﬁ*-

sdnoa8 ssoaoe £3jsusBowoy jo 3Isa3j aaenbs Tyo> --Indano ZXVXI--

€ 1X °2ian31g

103

(-c.i!llti-‘
G'U = 1y )
e e v e e e o s e s s e el S dai P ¢ YT
> THG LS l1UidWAS T
AN ON daUNG |
3L LY. = As»cu LN au ¢ c,n.“m = vy vl ¢ 000 ac~ = IALIY TiviDL
0Oy Uy 1£9°8 a9clf 9 W5
T T T s e e s S TOCUTEY T TITESTR T T U6 el T T s T ATy
: VIR Sen vsl®le ” Tis)
Leuuh [ co°yg Y1y 1 13
cUutur | EEIY 598 1¢ E [}
N o . T oo T o306y BEED & 7= R E A% P T any
T91004 Gv . =AY
R i S AL S L LT S = sul0ek_ SuiANaiWEed 0O4dedYa
T = Taorel oawnzats e Guu®ey voo= gy IviGL Y Dyutorl - = ATV v
- T e TTOCTGY 1t A RNl O g 0%
QU0 L* QU6 TN am 5 109
wou* m&w. cC.Low C.Ci ; R 2 .d.‘,_,.\
. o i Cov®Qy RV O0u* :m. £ 07D
o T Tt Tttt .Ii.!lil!!dddidm R | 00u (W - Q5
GOutuy i G €05 ,%0n i 150
J.- Ot Gy 1ALV
Tt - oo TTrr T oo T T3 ey H >U?ﬁ.x UC h_f R M

ﬂﬁﬁﬂ§¢m4uwdﬂﬁﬂﬁﬁrw
rr...s_u.:.r!. 2 aNpodNOY 3033

aégg FEEERSEES:

FTTNEER

NGNS . QAR

JnNC YO

!
v ood

= s

O S R Y




IS Ml g

i

Capel ad e

vouTuy Ll = .Z:Z ii«c ¢ w09y T uvsg TeidL ¢ duutalt = ALY v}

sdnoad ssoade L3Tausalowoy Jo 3833 aienbs Fyd --jndino zZXyxiI-- #°IX 2an3tg

Ot e e e e e e U
o r\.”..s:t((\,\.«\(.;(li = M( = 7 N Lr).p..cJ— w‘ Y C )T:uﬂ&j i
T - T SToLu Ty =

N .u4m:

Comt DWGD 217 91 Loy Givratml 1

o o . RN *) 1 R V1 XS A S v7 SURRIR W o4 Sl -Yh SR S [l o
IYITI0E {95 °01 TEC 601 4 I0)
CO0*00¢c = LwS*GL fek bl v 0
Cuvtue? LI99°0uL Cee®b 7 . ¢ Flo
. LuULTC0C Lay®lL YL RS T y 1)
. TTo T Trm T T e TUTTTTTTUTRUOOCT0T T IS UL TEYETHCY T T S e
Ivi0) avIa SAIYY 3
L bubuLTs T 230000 Wlese’k = S80CSX__ sl :.ﬁ.n,wu.:,_.mt(-uw, e -
[
WSS AT | PR = Tvlal Lhivan b LOGY Ly = (vaQ wwioy ¢ (G N I} = AV vl
Tt T T T T T e e --)ndc.OON;: TTTOLOTIL T T TTOULTHET 9 TTT0)
Gu0°* 062 CIL 1o CoL kel < 0
. ) ) VUL UGC ccr.mh 000 2! A 100
- _ QU 0G S 0oLy  00U*IsY ,,Awu; o
o v VIC*T0T SCTGL T cooe*CErt 7T Y35~ T
VT A ] e LA Y] v00* Ut 1 143

i
Gvii GvLC ALY
- a4

T TSIV LTAINTOM NG 1 4anoYd

R e e S
I >r3§&ot oin Q GMOdWOD sdditig o IBWOION :
T TN Y PR AR R R AT S TR N TANT R EN IR A RN TR T e e s e




11\ - o TN

1

sdnoa8 ssoidoe L3Fausdowoy jo 3sa3 aaenbs Tyo --jndino ZxyXa-—- ¢G°IX 2an31g “

E

]

, y

) ]

: L

) '

. 3 :.:...lsub:s 3T Hiuts GoAlosue ]

; - T T T T e 7 e T T L A1 oy :

: R N TS v e v ey B GIdnkSY 1

. A3INT 3w ud S1S AL N UNsaliwd i :

._, - - - — - T s man et . e o o emm e s a s e e 0 — e - e —— ——— e o m— . - chmm . ——— . — - B . . P 9

” vt = ..q_c_ cz« y ¢ ciatvid = av> 6 IVIUL ¢ Lo .:m = “ALIY 0l m

. vou* 0 4999t Efx®wy 9 W) X o

g - - - ddﬂqﬂd,—rf:-!. L3705 T T RNy T § T30 7 .
! _ *oul : paw.um L tyy 4 R[]
; ccc LUt L9979t rUCeyy 13 WD

; . OCG° L0l Ly9°49¢ rye’hy 4 Tl K

: T e ¢ T To g o T9 b S A 10 ] T o 2T 1 ana K

. ' . Tvlod Gv.o ALY :

; . .. A .

L MDY um..,wslluumaElwli-ll.\.lc,wwm- 68k _ = SwudSX_  S3IION3NBLed GL4JId¥3 - . = M

v _ ) : . R

v _ wu = vicl GNVSLL 8 ouu*Yi¢ = Cv2C  viUL ¢ 00U0°*9%¢ = ALY viag "

St T T Tttt T PR {11 ¢ [0 S O L [ SLoTT T O 0 P I T 00 B

0gQ* ccq Uui el : LIV TT R 4 L[ - 4

GOU® 0G OG*Ci 000°*!.8 4 quJ h

occ.cc. Lo 0026 - t Q) . .

- Tt COO0YCO0T — 7 COC 8" "7~ 000 e T T oTTTIa0 . N

[SISTAARVIVRY Lol ty . COLuvn 1 RIS} '

17101 (a0 ALY E

. . = 8 LTS G $91 i1 S Hole I | alNi Y9 A

. ‘.

ALIIVANEN AVY
TN FTIENNETFERER

q 358:8

M&S& vy motou.Bz




sdnoa8 ssoade L3ysuadowoy jo 3s93 aaenbs jyo --3ndino ZXvXd-- 9°IX 2an3Tg

, _ v AT L AT Sun
”r. [ NOR ) . 30°*Q J;rox LEn . *
w. .;\.. o, : H >ﬂ4
. S L , o aZufgw0d S1S31TIN3ANIAIONT T T
LUt LY = IVI0L GNVES ¢ Q00°L¥ = QvIa  WIGL * 130°L9% = Al vyng
T 000°1QT TEL® L 09TvEL" 9 L¥l
006° 481 LEG*G €9h*Gh S iul
450686 205l 36y *Ch 9 Lul
. C 006°001 . §89°L  chede E L)
e - S QDG°B0T ~ T Thhes - 969°GOT Z 1c1
GOC*TO0Y teL L - 632°E6 1 L4l ©
JvL0L avig A1V ‘ 3 ,
| 00000°5 , = 330102 S ,_:uuuZuscmxm A5103eX3 | -
b 00G*»19 = vi0lL GNvYY 4 boo..m...ﬁ ... ®__Qv¥ia@ Y101l ¢ Q0C°L9S _ _=_ AATV .‘ Tying
& 300° 101 000°3 200°€6 9 Lul
: 060501 0009 600*66 S Lnl
, 0UC"® 66 000°2 00G*96 b 1l
L 0307001 00G*A o30:]e ¢ 19l
. C06° 60 600°3 30 5°1G1 Nl
. 030°101 500°%1 000°L% 1 Ll >
8 S - Al avsa u>HJq‘; -
9 1L AINGON: IND I d2u9
w so»w»¢o¢o¢¢v¢u»*woo¢*~¢cr-»»r&&y&;aﬂ;;.., TSP
L EM Ny Q ONNOI0D (VY NIAVIAY H .
h SEERRAREEERREEREREE RO EERRERES o
’
4
Wh
1.




i R
: k
”. sdnoa8 ssoide L3Fausdowmoy Jo 3sa3 aaenbs Tyo --andino ZXyXxd-- [°IX °2an3T14
| 1
m .
z VA = 1V =
CuSeu A | 4
c00*6Li = IV10L ONVED ¢ 000°9% = gv3g WioL ¢ 000° el = 3AL IveL 3
. A B TUUTE00%0E T TRGLtL T T U162%?7 9 ¥l :
J00° O¢ 60L°L 162222 S ivl 3
S A /e S | <t S I u
N O 0 eGLlh o 162%e oy b
s T S 060" 68 £55°L NS F o Inl p
. 000°0¢ 60L"! [62°2e 1 141 b
Ivial Gv=:0 anIdy ]
5 00006y = 4401ND T FTININUIEI GTL1ITaX ] ) o _
. _ = .
. . 4
. gogeLt = Vvy01 GNYY¥D ¢ 080°9% - = " QV3G._ 740l ‘. 90°gLl ‘.-i,.-.:-.wzu.q; Y104 “
. , 000° O 000°JE . o°c 9 .Lul %
) J0O° Ci 00091 000°%1 S vy N
02G°0¢ . G°C _..000°Q¢ z wuw A
000° 0¢ v*d 900 °0¢ 3 E
000°* 52 0°9 000*62 4 131 - )
000° Gt 0°0 00Q°CE i Ltul -
. . cLo.ooWadk o Gvid wz,.: . -
3I9VL AINIINTINDD 1 an0wd E

T ————- e e e . —— o o e e A-t\'l.!l‘lrill:ll gmeme s mm ¢ aee e an

QQQ'QQQ TTIITYY i’bfbiii*i*f L ’w*’i

- _ALTIVAVON Avd @ 938:8, -33%&.-

.

i

6&#’0*#**00.*0*#’*13' ke kk iii*&t*i

TV TN Y Y

e
Y

O] . G




ATdanWd weidoad ioj poaaynbax uoriewiojur Indug

D 900000T. L ERRERE

8°IX 2an31g

40°549) . —
LVYWY03 LNaNT

e ——— e e e

L T3NTVA ONISSIW

8L61 *HIGWIAON QISIAIN WY¥IOU4 NOILVIJOSSY 4O SIUNSVINW

— J.wﬂ_aﬁnJﬁaéda«oz:ﬂﬁﬁ;:mmmwmhmummr«

S5 Iv4vQ T soNIgVEN Oy %: ug Ll LndNp awinsy
!hnqsuu L R R I I R I SR IR m : *INY SHNNVIA
SNOTLVIWUDISNYNL 340339 a#uwzu INIVA INISSTIW ONY SITWIY
L A
e mu m«uxm* 30 ¥3qkaN iving
m * ISNOILYWHOISNVYL >m 300y SITVQVINVA 40 u3IAWAN
.. *NI Qv3Id OL SIVEVIHVA 40 d3IdWNN
w.ux:mﬁu.:\ ..<z.95 FOONTASTL ALTATITSNISS & o # o 73171 Wi tRowa~
— s sl
.o«uo.mz.: 34Y .~.muz<z AY ww: /
“nNgY S.m_uﬁmw 319Y424
ill....—dw.m...wz S FLREL] U A T7 17,7 A
LR nuo.» mn_pmammmll
o ANdANIZ
5*8&\ .

zcuhctxcmzu W0UINGD tsd&Oda

LL61

~IAVC. TVNANYH

TTEYINGOIITYY S0 ALISUIAINN u:w

°NOILONN4 LON S300 NOIL40 3INT430

B SRUERNL LIS, QBTSSR BRI

S

~uvyonua STHL 01 3ave o raNINv i el it Ot T S e

g Ja'amla kF P .I.n\ln

108

AR ARSI AR AN B




a4

S T a2 Man )

e et

B R PRy ge e g G T

..... e e = e e ey e 4 e e
13050 L YA
o T o o - o ..41..‘1.|IAI]]1|! T T T T e e - : ) m T -
ooonooo.oo.ooo..oocoo.....l.'.!."..l..b‘l..‘.b0...00.....rl..l........ln..OcQ'..OQ.0..0.0000!0.0....'c,oo.ooo.—oo.o.cco.u.v.co.o-noont

BTG CHCA (/M R +.4 1 i

#09%1- SE0'0  $G0°0-
796°1- 920°0  6¢0°0~
93¢ INIVA-L T3SV INTA .

S0 S WIS L
82nY¥l Sa7TvANIN
I-Nvy mh%x«:»m

——eeoo JLASTRVES  cd3

%05 °1-"280%0 ¢Zi0- Q S.d3nn3

v0s°1- 860°0 051°0- . TAWYS)
QAaNIYA-L X3SY  3INIYA ILSIAVLS |

109

9€18*0 g 0522 WYNOSTH) NOSAVI4
- -T90Nd 40 30WA AXLSIAYLS SHOMd %400 Elhl 7 8 —_ e --3TASTRYLS
stunanozus 1152 T 3HH) ST ARG OIN BRI, e 1
N R T L) ., - . 2 - Ad¥ T PR R L
T T T e e , . Qo3 §-MIS0-FP10du02 03153axd Dy INoN NimINTR

i0L

e e e et e -

001 001 001 001 001 091 RL70TY
16 26 €6 L4 00*2 Iy (2 WYA)
B B L9 0Q°l__. . av3e o _AMGHW
00°9 00°¢ c0°Yy 00t 00°2 00°T  *D3/°D3
:siitm.la!.iilu,,e;lelu.ln:;-.9-r.|«<y..f, NG T s e e e
. ) - ... _SINADI 23N3NG3In3 1133
(1 ¥vA) INOD SA (2 dva) 1 30w ¥ *ON 314wy

EA R R | Tete e e 0 MR R
L - A LN AR et e et
aa X PRSP feala’ala’s ala’a’sla’a’sl m

A
IR RN

S VN VLI I ) -AALJ

Y U

OO N WP SRS\




L
y
4
elep TETOTJTIAB UO 3IS3] UOTIIBTOOSSE JO IIANSE3W PIPTS auo woly Indino JTdAWd OT IX =2iIn81g
o
. " d
S ¢
ﬁ = - - - - - . e e e = e ——————— _— - e e . —— —
5 mwdoc @) P *ch E.Yzasxu. sy popS () "¢ ]
p. B o . 1
. S T ‘ [R-3-X %] ’ .tz.N [
. , R o S Yo 9]
“. e e e e et m—— e o oo = e« amt or o e et e e e~ — - - — - -
" »
F, o.cooouo.a-ooo'otl.-.lcoaoncoo....c00.....'4otc05'00.-Q‘o.o..l.'.l'..tv‘...l..tl.0...'...0‘.....0.o.l..l.'.00-..1..-..-nncoo'noococo 4
2T T669%Z= LIS T LR D= . YIW0 569°2< TL0°0  661°0- T : NEMn) .
2 ¢ omo.w- LIS 42378 a-0vi 9. 130aRaN T 66972= 110°0 ~ 681" @S e¥3W0S = _
3 _ 669°2- o~o,o 8L0°0- 2-nvL €. mx«:pm 669°2- 480° 8E2° 0~ TWWYD i
. 438 10IvA-L T38¢ 20VA L !s.qixltnwap TLVLS _ __°d3Q ANTVA-L. ;mn LANYA. o CANASEAYLS o
- . 1
', . _ ' 602°0 YYNOSIH SHVId o9
‘ ceQdd _*4°0 _INWA __ . iu.NBE:Mfl!-immpm__ ® %400 81K 3 ST ESTIvIY :
- : )
! 0 M z H™ zz:._: HO/ONY SMOY_INIQNTIIX -
W. . . silmw.—wZuPowMu‘M“wuw:z- 140 * zme mu,p.:nxou.wm_ m....:.mw_:m Y meee-
. : . . . 000° 11 ST 3INTIVA 03123dX3 OYIZNON WNWINIW
‘-.. .nolaQOOOIQQOO0.0..0.llll..‘ll.00000..0..0‘00."00...Q'..Q'lll...l...l."0..........l...l!....0.00...'.0...........0..!'0'...0.'”..
- T T TTO09T TTTTTOOT T UU0GT T T T O0T T T 90T T 6ot T T oot T T T Awidy T T T T T T .
3 ves I %8 98 as 06 26 96 . 002 HAIW (2 UVA)
. . 99 I _9t .. U . 2L ... __o1v .. .. .8 . .9 .. _____Q0Q1 _ . ow3e _ __ LHOW .
- Ivi0L 00°9 00°sg 00°% 00°¢ 00°2 00°1 *03/°03 .
. ) .
& i ttetty T T T T e TR0 T WA b 11T T 1 .
r. -“'-""‘-".‘"‘-"' -.
Y ) ‘ ) ; . . . ) SINPOD AININOIE4 1132
: (1 uvA) DD SA (2 uvA) 130mW T °ON 314V)




ataa

BlEp TEBYOTJT3IAR UC 1591 UOTIPTOOSSE JO SINSESW Papys auo mwoxj Indino JTJaud TT°IX °In31g -

\

T o sep A Ry sy IS :
e 12 =S "2 R :H\.t!mm‘ gYT T B

3 0 “
000.0-:000.-oulo'oa0‘.00".00.0Olocoooo'lluio..-Acl.00......0..0'0!'.0'.‘.Aﬁl’i".‘..!.4.1’1.'000'0..'..0.'...Oo IIXEXEREE NN N NN AR NN NE]
7 sELE- mm 0L0%0~- a-Sedik0s 1 8€EL %t~ €90°0 062°0- : a S«¥INOS — ._
IR igo: 9 it oL, Lani s 8€L %€~ SLQ°0 845Z°0- - YWy = 4
“d3Q_3INVIVA-L u. SY ,-:.m.wxw.mo;i e e+ e e o hw~ mi .}..EP wm*;nrn»mm«!, ANAA o JRASTAMS k
. ! A 2610°0 . § 87 €l . JUYNDSIHD NOSHV 3d
ﬁ . L;,ll..umaﬂnlihu»bl . ANIYA . . : EHEM[I’ - _*80Md [ *4°0 AYA - 211ST VRS
: surmannns "R 3, SRR AR
w. T T T T T e - oos €1 xmm u3<w hw_mum.: ZHON ::—amma -
...cooc..oo.noo...-cnao-u.,.,o..uMoh.o:m.».h!..hlolﬂ;..;..ﬂloUo-cH‘Wc‘-Ho.o..ooooooooovc-ooooctoc-o-.ocult,-‘cluo-ooonhko‘nhm.onoaoo;ooco-oo-oc LIXX LI
3 T T T 009 To0¥ oot 00T ool oot - 001 vint
1 ' 6ls 1 wN 2 S8 88 16 6 00°2 AIW (2 wiA)
V e B L X2 BT &L 2k . .69 . 0001 __ OV ___.lNOM.
X ’ wioL 00°9 00°S ‘00w 00°¢t 00°*2 oo0°*1 *t3/°03
4
N i T T - - RS G 7.1 R 17 J ) ) l.
; .. .. Siwho> Xwanbiaa 333
! (1 wA)  ONOD SA (Z  WYA)  1¥0W $  *OoN Juwa
a3 .
-.. ,
b* .
Y -” . . .

- L- IPRPRIN .Ibb.b fafata




BIRp T®al1 uo 3Indino JFTJAWE T°IX 2andtg

48°0= *mv.h aﬁ.aaonov\&h Qs&or\ ga%.m o:O e
,MA T T g ‘ R zst Mo

ST e e e (xAﬁul.ﬂJSﬂﬂﬂﬂfw )] T

. ..I...'...............................’............................................................5..0‘............‘.............
3 z eel 4290 vegrg . Q S3VINOS T T TZ°T 1%0%0  6S0°: . 0 syuawDs ’
2 wumnms ono“w {20°0 o B umxwm Ipzep | L5000 olge vHHYO o .
PP KA SR 1 0 T S 1 L4 11 ¢ SR PTTIE':1 S Ws £13 2 17 SOUN 1 773 117 S
8 . —
901€°0 ¢ §56°¢ JuvNnS IHY NOSNY3d
*90¥d  *3°C VWA . JMSMWS . *e0¥d Sgea  AMIVA_ . dusiavis
. \ *0Y¥37. 3V W NWN10 w0/aNy nI9x3
sarananozua 13 130 m: anlsn :m uw.. s VW e -
N Tt TET ST ST T s mmemms mememdmmm s \Ml AAAAAA le - Mu ug w ..w' N M.yi m~ dw_v “w w* m

NON WNWINIW

000 Q00800000 550000600000080008000 000 ...' (A XXX 1IN X AN TR L2 NY Y] ...........................‘.....l...............O......‘.‘..........

. 009 U _DOT " ©OT_ G0l '~ 00T — 00T 001 il

2 L€ 1 29 19 €9 €9 6 6% 00°? ALY (2 NYAY

. . . EWZ ) B€_ . 6€ €. e Y8 _ 1 00T . _avy LMW

wioL  00°9 00°s 00°y 0o°¢ 00°2 PO°T  *h3/°d3

s . : o - T T T ¥WAY T JWORNE U S o
o et SINNDY A2MAND3IWA M2 _

' (1 YYA) dJ¥Il¥L SA (2 ¥YA L9NW .— *ON 378V1

(] 3 WA) " B33 NI _SINOD A
vivd o m..ééa.d......«g

g [ d._.eQ x.Ec.ToZ ox.i..w ") %csoLEoU 9043




Py

eIBp Teal uo Indino JTQIWg €T°IX 23314

;1!Ix-;|f,: . U O, e }

S e ey s o |

- . T Teees W | | T QENW .sug B _

S T T e T B . S[AT] Z LT T
<, ...................0....'........O................I..........‘................‘................"......I...........0..............
Z2  S19°01- $£0°0  6L¢° T e HOS™ TTTELI9e01="620%0 T ¢Zsto- T T T 0 Sew3Nns - 1
r. el 2 aEk SR mee e " s
o °d30 WAL T3SV __ .E,. S »w ...»m i me«_ ».> 1+ 13T 1% e e ansTivIS
] 0°0 ¢ $8L°281 VNS IH v3 o
- 480¥d 3% WA 2I4SIAVIS 29034 40 .%:w&. . iotivie . o
b
\ | s P R R S hess |
A \ T s s o e ST12MI003N fed SR ALINS WY o Vowere ]
Y.
: .‘....................'.............‘....O.................’.........‘...................’........I.........A...Q...............Q. w
- B I {24 3] o 0y I 0% T T 08 T O T ‘ 1
5 : 681 1€ ov 8¢ -~ 0% oy 00°2 IALIY (2 WVA) K
£ R 1 A S 6 % ¥ Q. .0 . 00T __"avig * ivoW !
2 wvioL 00°9 00°g 00°% 00°¢ 00°2 . 00°T  *03/° 07 .
m. T N T N o [} ¢ UvA) d¥3LML T T . E m
? ‘ e el e . __SINM0J AONINO3¥I TVID S
& . ' . o
f (r YYA) du9L¥ML SA (2 HYA) 140w 1 *ON 378V)Y >
(13 WVA) aw¢m z— m Z_-aa -uzg EY 1 9INISN |
«o My 30 um #wa«z« n 1

a

- | _ ¥ £§z big O yumoduoy Sopq .

. s g

-

SO N S + REORIRN -+ VIS
L T8 i




ejep Teal uo 3ndino JTJaWd HT1°IX 2andtd

90 +muk.a§+¢aonw% Jo Rl pps V)

$9'0:20 . - | *uvkl QSNW Yyl

.1,% e e e e .mwjlésae

[ A XAl R AT R R X R X R R I Y N R Y Y N R N Y R Y R T Y Y P P Y TN YY) .............. GODCROGBOVG0OVS L0 G COOIDICBIVDOOBITINVCVIBASNICPIIBEOOS

t4 Y£9° 0~ omw Z10°0~ - M M._xwzom I ¢ #C9°0~-  $€0°0 220°0~ 0 S« HWW0S
€ 9° 0~ 0 910° 0~ ct:<~ VON3IN
69°0~- 2£0°0 Q20°0- J-Nvl Sell¥vNLIS $€9°0~ 140°0 920°0- VWR Y9
*d30 INWA-L ISV __ _3INWA___ R _ - UISIAVLS _ . *d30 3nVA-L _wm< INIVA . . _ _J11SIAvIlS
: fRE9®H ¢ oonom JHYNDSTHD NNSHY I ~
*g0Yd *4°qQ NTVA o o AMASILVLS ‘ *q0¥d  *J°a., WA, X ] TSIV LS H
, as,w.,,,w..ﬁwt? M 0D MOS0l SHOY IO 1o 1w
T T T B ™ moo.?. O QORI A BT e WAWTNTW
.0‘.0....‘.....'.........l..l..........‘.........Q..l....Q....0.......C.Q....l.............‘?.........‘...............'Il.l.......
0021 00z - 00T 002 002 002 002 7 Jviol o
oLL 21 € e2t LEY , 0oct 0 [ ] 4 JAINY (2  HWVYA)N
I R £ 4.4 9 »m— 8L . €9 . __ oL  __ _ omu-i-*.!.. Q01T - avan 10w
Ivi0L 00°9 00°s 00°*y 00°¢€ 00°2 00°1 *dysen3
AT WVA)  d¥OlMl oo
. . . . ) e L JSAINNDY CADNINRING N3FD ‘
(1 ¥YYA) d4¥W31¥L SA (2 MVA ) LY0W R, 1 SON 3748V}

(1 YyvYaA ) D3¥4 NI _SINAND AININDIYY IHL INTSN
ViVQO 3HL 40 ST STSAIVNY 3HL

YAYQ ALTIVYOW QANEWZ G 0NNOdWOD SJdINd ANy 38WOJI0H

DVROX S . PERFIINFIIIYS 3 CSCIUEP RN o A PGNP SN R SR




Blep Teax uo jndino JTJaAWd ST°IX 2inSTq

T T T T 0000 .\lmwmé\*uaomwv\% wmw) POPIS v:Q ¢ J

ST T ‘--,‘-_:$,,&o.o~yo S -.,@.\.u.:u.m.<o~ o ;

- ———— '.":.¢||l)||r‘lr|.t.'-‘ ——— J

T e i R — S[oad] g.%s:m, Py

......‘.................. ..........‘. (LX) '............'.......' .......‘."... s o000 .‘.‘................‘..'.... ........ ooscevsoesse

4 242" o N N T3 - | T T T9Z%62- 820°0° TEGcO~ ) TTT 70 SeuAW0S T
et dig i vsoxs, S MG vaeo e
 ~a30 TAET 43sY ?%*...;l . i:&m&: 430 &mnm.rlmm .... YA apsiiere
[Ta
. 0°0 ¢ 9L 9° 6RE JUYOADSIHD NNSHYIY i 4
*90¥d __ *3°a0  3nWA o i,fu:n:&.al;x ~280¥d. S4%@ WA T U T3paerpvis .
' SO432,3Y, 30NN S0 wosawy s MIGNIN3 1
N3IND VA aw VNISING 3H zwm aw NANDD INY SITISTIVIS TIW —mm e
T I T e s e J. $312n3M0av4_1133 1 T 199 mﬂ) oo nn INIVA Q3L H3axI o u Sz WOWINIW
olo.oooOOOOOIOO'00000000000000000.o.oooooooooo.o.oooooo000'0000ooo.o.o.oovcﬁoo0000000000ou..0CO.0C0000lt00000000000OQOOO..DOQ.OOOQO 4
ottt T ST T 009 T T o0y T .;.OOn I ) SEERA 1) ¢ ¢ ) § oarv B/ 6118 ’ B
8 R Z6 %6 OO. JAITY (2 NVA)
S -m ,_; mﬁ . sﬁi .? e 889 m oL T 'y I 1
J:.OF 00°*9 00 S 00°y 00°€ 00*2 00°1 oaw\oaw p
T o T WYAY CdyONE T T T T T e T L
— e e e .. SINDDD AININDINY I -
(T WYA] dusiulL SA (2 uvA) 190w 1 *on w.:::
(€ WHYA) LEL F) zﬁ m:-_.:u >UZuaau¢u L ..zun: : .4
YAVA M) 40 ST SISAT¥NY IM] !
bika ALITHIYOW A¥d @ aNnOgWOD SddTid GnY FBWOYTON 1

Y

1
R NRATERE- IO




4 . LARASEE S Sad Jar st o At Al v o 4 W s od L a Wit - o i S St (gt B Bt St St B Bl S TGl A S JRU o A A N D B St 4

b
N
L

XII. TREATMENT GROUP VS CONTROL GROUP PAIRWISE MULTIPLE COMPARISON
PROCEDURES

If the overall test rejects the hypothesis of no concentration
related effects we must determine which treatment group response rates
differ from the control group rate. A number of procedures can be used
for such inferences, some based on hypothesis testing and some based on
confidence interval estimation. In this section we consider several
approaches based on tests of hypotheses. The discussion is by no means
exhaustive. 1In the following section we discuss confidence interval pro-
cedures.

A common approach to multiple comparisons on qualitative response
rate data such as mortality rates is to carry out an arc sine normalizing
transformation on the observed response rate within each group and then
compare each treatment group with the control using Dunnett's or Williams'
procedures [34, 35, 36, 37]. Such procedures are based on asymptotic
theory whose validity is questionable if there are a numxber of small
expected frequencies.

i 4

An alternative multiple testing approach is to carry out a suc-
cession of 2 x 2 contingency table tests of homogeneity between each
. treatment group and the control group, based on Fisher's exact test
.. [13] or on asymptotic theory depending on expected frequencies. Our
" EXAX2 program will do this. A treatment group is said to be (statistica-
1ly) significantly different from the control group at e.g. the o = 0.05
level if the pairwise test rejects the null hypothesis after adjusting
for simultaneity by Bonferroni's method. (i.e. If we perform five pair-
wise comparisons and wish to guarantee an overall a = 0.05 type one error
level then each individual comparison must be made at the a/5 = 0.01
level). Note that this approach does not impose any monotonicity struc-
ture on the response rates and so may not be most sensitive to detect
small to moderate effects.

S - $ AR
‘ BTN
RS - AR

Dunnett [ 34, 35 ] presents a procedure for multiple comparison
of each of the treatment group responses with the control group response,
controlling the overall error rate for all comparisons. His procedure
is derived for quantitative responses, assumed to have equal variability.
He assumes equal replication among the treatment groups with equal or
possibly greater replication of the control group. We might apply this
procedure to qualitative response data from toticity tests after perform-
ing an arc sine variance stabilizing relat - on the observed responses.

A problem with the application of Dunnett's procedure to the
analysis of data from toxicity tests is that is does not take full accou-
nt of the structure of the problem. Namnely the various treatment groups
correspond to increasing toxicant levels. One might therefore assume
a monotone (increasing or decreasing) response level with increasing
group number. Since Dunnett did not build such a monotoxicity assump-
tion into his procedure, it loses some sensitivity.
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Williams [36, 37] assumes a monotone response function. He
estimates the treatment and control group response rates under the mono-
toxicity restraint and uses these estimates for treatment group - control
group comparisons. See Williams [36] for details. Chew [38, pp.26-27] brief-
ly describes Williams' method and presents tables for its implementation.
Williams [ 36 ] assumes equal replication for all concentrations (includ-
ing the control). He extends this procedure [ 37 ] to accomodate increas-
ed replication in the control group, two sided tests, and modificatiomns
to account for unequal replication among the treatment groups. As with
Dunnett's procedure, we can apply Wiiliams method to qualitative respo-
nse data after carrying out an arc sine transformation.

We illustrate Williams' method with several examples based on
results from fish toxicity tests. Consider first the fry mortality data
from the Holcombe and Phipps test on compound D. From the preliminary
scatterplot in Figure VI.6 and the overall tests of significance in
Section XI, it is quite evident that fry mortality increases with in-
creasing toxicant level. We wish to determine here which treatment groups
exhibit significantly greater fry mortality rates than the control group.
As the result of the within groups heterogeneity test was marginal
(o = 0.14, see section VIII) we do not adjust the data prior to carrying
out Williams' procedure.

The basic and transformed responses, pooled across tanks within
groups are:

Group (i) 1 2 3 4 5 6
Sample Size (“1) 100 100 100 100 100 100
Response Rate (p,) 4 g 0.08 0.08 0.13 0.79 1.00

P P\

2are sin B =W, 0.495  0.574  0.574  0.738  2.190 3,142

Since these estimates are already in monotone sequence, they do not need
to be modified. We declare the group i response rate to be significantly
different from the control rate 1if

/2

~

B,- 4, > te/mt

i 1

The factor t can be obtained from Williams' tables corresponding to the
5%Z or the 1% significance level. The yardstick t(2/n)1/2is based on the

assumption that the variance of 2 arc sin /5 is 1/n. In our example n =
100 and t = 1.756 (corresponding to 5 treatment sroups and a = 0.05).
Thus the response in group i is declared to differ significantly from
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the control group response if ﬁi > 0.495 + 1.756 (2/100)]'/2 = 0.743,

Groups 5 and 6 differ significantly from the control and group 4 is just
on the borderline.

We now examine the effect on the outcome of this procedure of
applying an adjustment for tank to tank heterogeneity. From Section IX
B we see that this factor is K = 1.337 for the above data. Thus the
"effective'" sample size per group is 100/1.337 = 74.79 and the decision
point for Williams' procedure becomes 0.495 + 1.756(2/74.79)1/2 = 0.782.
Group 4 is no longer borderline.

We now apply this same procedure to the embryo mortality data
from the Jarvinen test on compound B. The result of the within groups
heterogeneity test was highly significant (a = 0.005) and so we first
adjust the data prior to carrying outayilliams' procedure. From
Section IXB the adjustment factor is K = 3.071. The basic and trans-
formed responses along with effective sample sizes, pooled across tanks
within groups are:

Group (i) 1 2 3 4 5 6

Effective Sample

2 32.89 35.49 32.56 31.91 34.19 32.89
size (nilK)

Response Rate (ﬁi) 0.139 0,073 0.090 0.020 0.057 0.079

2 Arc sin /B, U, 0.764 0.547 0.609 0.284 0.482 0.570

For the sake of simplicity we will utilize an average sample size of
33.32 within each group, but the calculation could alternatively be
carried out based on the individual group sample sizes. Since {“i} are
not in monotone sequence we must first modify them by an averaging pro-
cess discussed in Williams [ 36 ] or in Chew [ 38 ] until the resulting
estimates satisfy the monotoxicity constraint. We obtain 0.537, 0.537,
0.537, 0.537, 0.537, 0.570. We declare group i significantly greater

than the control group if ai > 0.764 + 1,756 (2/33.32)1/2 = 1.194, Ob-
viously no treatment groups have significantly greater response than the

control group. (Interestingly if we carry out Williams' procedure on
these data to look for a monotone decreasing trend in response rate,
we arrive at the same conclusion. That is, no group has significantly
lower response rate than the control group).

Dunnett's and Williams' procedures are based on asymptotic
theory. 1If the response frequencies do not justify the use of
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asymptotic theory we can carry out a succession of exact, small sample

2 x 2 treatment-control comparisons by means of Fisher's exact test,
adjusting for simultaneity by Bonferroni's method. Consider for example
the comparison of treatment group 4 with the control group for the fry
mortality data from Holcombe and Phipp's test on compound D. We have
the following 2 x 2 table.

CONTROL  GROUP 4

DEAD 6 13 19
LIVE 94 87 181
100 100 200

Here, in the notation of Lieberman and Owen,

k 19
n = 100
N = 200
X 6

Interpolating in the Lieberman and Owen tables [ 26 ]

between N = 100 and N = < we have

N = 100 P(X<6) = .062 1/N = .01
N = P(X<6) = .0835 1/N = 0
N = 200 P(X<6) = ? 1/N = .005

Thus P(X<6) = 1/2(.0835 + .062) = .073

Thus this table is significant at the .07 level (not accounting
for simultaneity).

This exact test procedure is thus seen to be somewhat less sen-
sitive than Williams' procedure applied to the same data. This is under-
standable since it does not incorporate the monotonicity structure of the
response rates,

Ehat)
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CONFIDENCE INTERVAL PROCEDURES FOR COMPARISON OF TREATMENT GROUP
AND CONTROL GROUP RESPONSE RATES

A, Introdu;tion

We have previously considered overall tests of hypotheses to
compare response rates in replicate tanks within treatment groups
and to compare response rates across treatment groups. In this
section we consider procedures for constructing confidence inter-
vals to compare response rates in the treatment groups with that
in the control group on a pairwise basis.

It is well known that hypothesis testing procedures are some-
what limited in their conclusions. They merely state whether the
null hypothesis was accepted or rejected but give no indication of
the extent of the effect. Thus we have no idea of the biological
significance of the effect (as opposed to its statistical signi-
ficance). The rejection or nonrejection of a null hypothesis is
often more a result of sample size than of the biological import-
ance of the effect. The determination of acceptable concentrations
should be based on what are biologically significant effects rather
than on the power function of a hypothesis testing procedure.

Confidence intervals are more informative than tests of hypo-
thesis. The widths of the confidence intervals indicate the degree
of precision in the data concerning the estimates of the quantities
of interest in our inferences. Narrow confidence intervals signify
precise infarences while wide confidence intervals signify imprecise
inferences.

In the discussion in this section we consider the case of no
tank to tank heterogeneity within groups. Thus we pool responses
across tanks within groups to arrive at average response rates with-
in groups. The presence of tank to tank heterogeneity can be accoun-
ted for by

1. Fitting a model which explicitely accounts for heterogeneity
of response rates across tanks -- for example the beta bi-
nomial extension of the binomial model, the negative binom-
ial extension of the Poisson model, or a variance components
extension of a fixed effects analysis of variance model for
quantitative responses.

2. By carrying out analyses on a per tank basis rather than
on a per fish basis. This approach is conservative and
greatly diminishes the number of degrees of freedom avail-
able for error estimation.

3. By adjusting the data to account for the extent of tank to
tank variation. Namely tank to tank variation can be
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regarded as correlated responses within tanks, generally
positively correlated. Thus the variability of the average
responses within tanks is greater than would be the case if
the responses were independent within tanks. Such reduction
in variation can be simply accounted for by reducing the
"effective" sample size within tanks to a lesser value and
then ignoring the within tank correlation and proceeding
with binomial based procedures or the like. The reduction
in “effective" sample size reduces the precisions of the
estimates and test statistics just as does correlation
effects.

The procedures discussed in this section, although based on binomial
theory, can be used in conjunction with adjustment method 3. Thus they
are also relevant in the case when tank to tank heterogeneity exists.

Consider the Holcombe and Phipps compound D fry mortality data. We
wish to compare the response rate in treatment group 4 with that in trea-
tment group 1 (the control group). The basic data, pooled across tanks
within groups, is

CONTROL GROUP 4
DEAD 6 13 19
LIVE 94 87 181
100 100 200

Fisher's exact test (without simultaneity adjustment) says that P4 is
"significantly" greater than p; at the a = 0.07 level. However a sig-
nificance statement such as this says nothing about the magnitude of
p4/pl. Estimating the value of this ratlo is important for assessing
whether there is a biologically significant increase in mortality between
the control group and group four. Confidence interval procedures enable
us to estimate p4/p1 and determine the precision of our estimate as well

determine whether p, 1s (statistically) significantly greater than Py.

There are three approaches to the construction of confidence inter-
vals in the case of quantal response data.

® Large sample normal theory confidence intervals.

® Exact, small sample confidence intervals based on the noncentral
distribution of the 2 x 2 contingency table, conditional on the
margins. (See Thomas [ 39]) for the theory and the algorithm.

We have implemented this algorithm in EXAX2[14].
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@ Approximate confidence intervals based on Poisson theory.
These intervals are most appropriate when the response pro-
babilities are small (usually under .10).

It should be noted that these procedures do not take the monotonic nature
of the response probabilities into account. We consider each of these

approaches in turn.

B. Method 1 Asymptotic Approach

To use the asymptotic normal approach we adopt a conservative
yardstick and require that each cell in the 2 x 2 table under consi-
deration contain at least 5 responses.

For most situations of practical interest both Py and P, will be

relatively far from 1. Certainly if P> the mortality rate in the
control group is close to 1, the test will be terminated. If p, is
very close to 1 while Py is close to 0, there is no need in calcula-
ting confidence intervals on their ratio. Group 4 will be obviously
unsatisfactory.

We wish to calculate an asymptotic theory confidence interval
on the ratio

6 = p4/pl

Let

¢ = &nb = an4 - anl

We estimate ¢ by

©n
1

= Qnﬁ4 - lnﬁl

N, = «© with P1s Py fixed

q q
if;L_ + ir:&.
1P1 V4Py )

Thus an approximate 95% confidence interval on ¢ is

¢ is approximately N<¢,

1/2 1/2

q q
l.|._4

¢ - 1.96
NPy Ny
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In the case of the Holcombe and Phipps example

N, =N, = 100 §, =1-.06=.9
f, = 6/100 = 0.06 g, =1-.13= .87
§, = 13/100 =  0.13

Substituting §., §., p,, §, for the corresponding parameters in the
standard error formula we have

. L/2
G .4 o e M
Np, ' N8, 100(.06) * 100(.13) '

Thus an approximate 95% confidence interval on 9 is
(0.773 - 1.96(.473), 0.773 + 1.96(.473)) = (-.154, 1.700)

Therefore, (e-'154, el'700)
on 0 = p4/pl.

is an asymptotic 957 confidence interval

This interval ig
(0.857, 5.474)

The conclusions from this confidence interval calculation are

® P, is not "significantly" different from py at the .05

level since the confidence interval contains 1. (Note

that we observed borderline significance with Williams'
procedure at a = 0.05).

® P, is not very much smaller than p; (at least 86% of P1)
but may be much larger than P (as much as 5.5 times pl)

Y p4/pl is not determined very precisely by the data,based

on such a comparison.
We have thus quantified the relation between Py and P,
We now calculate 95% confidence intervals to compare the response

rates in each of the other treatment groups with that in the control
group.
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GROUP 3 GROUP 4 GROUP 5 GROUP 6

CONTROL GROUP 2
DEAD 6 8 8 13 79 100
LIVE 94 92 92 | 87 21 0
100 100 100 ] 100 100 100

Holcombe and Phipps Compound D Fry Mortality Data Pooled Across
Tanks within Treatment Groups

We are not particularly interested in comparing group 6 with the control
since it is obviously inferior. We thus compare groups 2, 3, and 5 with
the control group by means of asymptotic 957 confidence intervals.

Group 2 vs Control

6 = p,/p,
$ = 2nd = anz - lnpl
¢ = lnﬁz - lnﬁl = 4n0.08 - %n0.06 = 0.288
A q q, J1/2 1/2
o 2 1 _ .92 .94 _
stderr(¢) =) g5~ + 53 100(.08) T 100(.08) | 0.521
252 11
¢+ 1.96 stderr(9) = 0.288 + 1.96(0.52) = (-.733, 1.309)
Thus an asymptotic 95% confidence interval on 6 is (e—'733, e1'309) =

This implies that there 1s no statistical evidence at

(0.480, 3.703).
Furthermore the present

the .05 level of a difference between p; and p;.
data do not determine this ratio very precisely.

Group 5 vs Control

~

¢ = Qnﬁs - lnﬁl = £n0.79 - n0.06 = 2,578

+

A~ ~ 1/2
_ .21 .94 _ 1/2 _
stderr(9) = [100(-79) 100(.06)] = (.159) = (0.399

”~ A ~
¢ + 1.96stderr(9) = (1.794, 3.362)

1.794 3.362, _
sy € )"

Thus an asymptotic 95% confidence interval on 6 is (e
(6.011, 28.859). There is thus overwhelming statistical evidence that

the response rate in group 5 is substantially greater than that in the
control group, by at least a factor of 6. The interval however is very
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wide and so we cannot determine the ratio very precisely.

We may wish to modify these intervals for simultaneity. Since we
are calculating 4 confidence intervals we can adjust their levels to
attain a familywise confidence level of 0.05. The simplest way to do
this is by means of Bonferroni's inequality. Namely we construct each

interval at individual confidence level 1 -(.05/4) = .9875. The approp-
riate normal distribution factor then becomes 2.50.
A A A 4 A 1/2 _
exp[ln(pj/pl) + 2.50[qj/ij + ql/Nlﬁl] J=2,3, 4,5

These intervals are:

Group 2 vs Control (.363, 4.906)
(.363, 4.906)
(.664, 7.067)

(4.857, 35.712)

Group 3 vs Control
Group 4 vs Control

Group 5 vs Control

We thus conclude that there 1s strong statistical evidence that
group 5 has at least 5 times the response rate of group 1 but there is
not enough statistical evidence to distinguish the response rates at
groups 2, 3, 4, from that at group 1. Furthermore the data are not
sufficient to make precise inferences about the ratios of treatment
group to control group response rates without putting further structure
on the problem such as assuming some sort of dose response relation.

We will consider this approach in subsequent sections.

C. Method 2 Exact, Small Sample Confidence Intervals

If the sample sizes are not sufficiently large to apply the
asymptotic confidence interval procedure (method 1) and if response pro-
portions are not sufficiently small to apply Poisson theory (method 3),
then confidence interval comparisons between treatment groups and control
group can be made by an exact, small sample procedure. This procedure
is based on the non null distribution of Fisher's exact test in 2 x 2
contingency tables.

Consider a 2 x 2 contingency table to compare the response rate
in a particular treatment group with that in the control group.

Control Group 2 Total
Dead X1 X2 Xl + X2
Live m - X1 m - X2 m+n - (X1 + X2)
m n m+n
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Let pl, p2 denote the response probabilities (e.g. probability of
death) within the control group and treatment group respectively. We can

test the hypothesis
Ho: pl = p2
vs Hl: Py # Py

by means of Fisher's exact test (Lehmann [ 25], Lieberman and Owen [261),
conditional on the margins of the table being fixed. This test is based

on the hypergeometric distribution. We reject Ho if X2 is too extreme.

The nonnull distribution of X2 conditional on Xl + X2 =t is

P(X, = x|x1 +X,=1t)= Ct(o)(éﬁa(ﬂbpx x=0,1, 2,...,t
where Ct(p) is a normalizing constant and

) pllq1
p2/q2

P

The quantity p is known as the odds ratio and is very important for
power calculations and for calculating confidence intervals to compare
the response rates in the treatment and control groups on a pairwise
basis.

The odds ratio is a quantity between O and ®. p = 1 if and only if
Py = Py- If p > 1 then pl/p2>1 and if p<1 then pl/p2<l. The size of

the confidence interval on o indicates how precisely this quantity can
be estimated from the data.

Thomas [39)] presents an algorithm for calculating exact, small
sample confidence intervals on p based on the distribution of X;, condi-
tional on the margins of the table. We have implemented Thomas' algo-
rithm in EXAX2 [14] and illustrate the calculation of the confidence in-
tervals with several examples.

We first consider the Holcombe and Phipps compound D fry mortality
data. The output appears in Figure XIII.1l. The first page of the out-
put defines the odds ratio explicitly in terms of the order of the
groups and the order of the response categories. Subsequent pages pre-
sent the individual 2 x 2 tables to compare treatment groups with the
control group on a pairwise basis, a point estimate and confidence in-
terval on the odds ratio and the one sided significance level of Fisher's
exact test for equality of the two response probabilities.

It should be noted that the quantities ALPHAL and ALPHAU, which
specify the probability inequalities governing the upper and lower
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confidence limits are under the control of the user. They can be adjust-
ed to yield one sided upper or lower confidence bounds in place of two
sided intervals or to account for simultaneity by means of Bonferroni's
method.

In the present example individual 957 two-sided confidence intervals
are calculated on the odds ratios of each treatment group with the control
group. The conclusions are similar to those arrived at with the asympto-
tic intervals. Namely the response rates in groups 2 and 3 cannot be
distinguished from that in the control group. The fry mortality rate in
group 4 is marginally worse than the control group rate. The lower con-
fidence limit of 0.13 suggests that the fry mortality rate in group 4
could be substantially worse than the control rate. The upper confidence
limit of 1.27 is not too far removed from 1.0. This implies that the
fry mortality rate in group 4 is not significantly different from that
in group 1 at o = 0.05 but would be significant at a slightly higher
a -level. (o = 0.07 suffices here). The odds ratios comparing the re-
sponses rates in groups 5, 6 to that in the control group are very small
and the upper bounds are very small. There is thus strong evidence that
these groups have significantly higher fry mortality rates than the con-
trol group and substantilly so.

The large widths of the confidence intervals imply that the odds
ratios cannot be determined very precisely.

We next consider the Holcombe and Phipps compound D embryo mortality
data. The output format is the same as that for the fry mortality data
and appears in Figure XIII.2. We see that none of the treatment group
response rates are significantly different from the control group rate.
The confidence intervals all straddle 1 and so the treatment group re-
sponse rates cannot be distinguished from the control group response
rate., This is in conformance with the results of our preliminary ana-
lyses.

The previous discussion pertained to construction of exact, small
sample confidence intervals on the odds ratio

) P /9y
pZ/q2

P

However p has no direct physical interpretation. A parameter such as
0 =rp,/p;
is more physically meaningful. How can we construct confidence intervals

on 6 based on the confidence intervals we have constructed on p? We can
express O in terms of P and pl. Namely
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1
o+pl(l - p)

If p<1l then O decreases as 1 increases from O to 1.
If 0>1 then 6 increases as Py increases from 0 to 1.

For fixed pl, 0 decreases as p increases from 0 to «

n
Suppose ( p,0) is a confidence interval on p and suppose

"
(Rl’ Pl) is a confidence interval on p,.

Then a conservative confidence interval on ¢ i-

1 R 1
N, * ny %k
o+pl(l—o) p+p1 (1 -90)

-~

P* - Rl N 71 LE Rl <1
1 v 2 Pl P1 Tl a8 Pt
Py

Where

The confidence interval on the odds ratio ¢ comes from the EXAX2 program
output. Confidence intervals on p, can be calculated by the Pearson-
Clopper method. Namely if
X
5 -1
Py = then

Ny

Nl - Xl + 1 -1
pp = {1+ F(N) - 2X +2, 2X;5 1 - a/z)]

Xl 1
= 0 if kl =0
+ P . -
1 Xl 1 F(2Xl + 2, 2N1 2X1, 1-oa/2
= 1 if Xl = Nl

These confidence intervals are given in chart form. See for example Box,
Hunter, and Hunter [40], pages 642, 643 or Dixon and Massey [13], pages
501-504.
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We apply this conservative procedure to the Holcombe and Phipps comp-
ound D fry mortality data and compare the results with those calculated
by tue asymptotic approach.

In the control group X, = 6, N. = 100.

1 1
Thus ﬁl = 0,06. A 99% 2 sided ronfidence interval on Py is, from the

Pearson-Clopper charts entered at § = 0.06, n = 100, (0.02, 0.15) =
n
(Rys PP

n
The 95% confidence intervals on the odds ratio p, namely (p, p) are
"

Group 2 vs Control (0.2018, 2.5238)
Group 3 vs Control (0.2018, 2.5238)
Group 4 vs Control (0.1278, 1.2743)
Group 5 vs Control (0.0055, 0.0467)
Group 6 vs Control (O, 0.0027)

Combining these results as discussed previously, we obtain:

Groups 2, 3 vs Control

Since 3>1, p<1l we have
~\

1 1
’Q = ~ ~ = 5 2 T ) 2 = 0.401
S+p,(- b 25238 ¥ 00201 - 2.573)

~

- 1 _ 1 _
8- o+ p (1 - P 0.2018 + 0.02(1 - 0.2018) 4.592
[a¥}

This would be a conservative 100(1 - .05 ~ .01) = 94% confidence inter-
val.

The corresponding 95% confidence interval based on asymptotic normal
theory (0.480, 3.703). We see that the two intervals are qualitatively
similar but that the conservative interval is longer, as would be ex-
pected.

We now compare the conservative small sample with the approximate
large sample intervals for comparisons of groups 4, 5, 6 with the control
group. The calculations proceed analagously.




N S

el 28

Conservative, Small Sample Approximate, Large Sample

Interval on 6 Interval on 6
Groups 2,3 vs Control (0.401, 4.592) (0.480, 3.703)
Group 4 vs Control (0.788, 6.885) (0.857, 5.474)
Group 5 vs Control (5.272, 39.856) (6.011, 28.859)
Group 6 vs Control (6.566, 50) large sample interval

not calculated

We see that the two sets of intervals are qualitatively similar how-
ever the conservative, small sample intervals are 30%-51% longer than
the corresponding asymptotic intervals.

An alternative approximation can be used to calculate conservative
confidence intervals on GEpzlpl. Consider again the 2 x 2 table.

CONTROL GROUP 2
DEAD X1 X2
LIVE Yl Y2
N1 N2

Let Pys Py denote the probabilities of death in groups 1, 2 respectively.
We wish to construct a confidence interval on p2/p1 = 0.

Now N_, N2 were fixed by the experimenter. Let r = N,/N,. Suppose
we assume the fiction that N1 %PO(A), N2 N Po(rk) and that Nl’ N2 in the
data are realizations of these two independent random variables. Then
Xl’ XZ’ Yl, Y2 can be treated as independent Poisson random variables
with means plk, pzk, q. A, qzrk respectively. Confidence intervals on
p,/p, can be constructeé by methods like those discussed in connection

with the Poisson approximation approach, (method 3). Namely

X P X, +1
S T o rars weat-E b el C T
Xl + 1 F( X1 + 2, 25 1 r P 1
1l - az)% >1-o0
where al + a, = a. Now these confidence intervals are conservative because

we are introducing additional variability by assuming that Nl, N2 are

random variables rather than fixed constants. The variances of X X
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are inflated from Nlplql’ N2p2q2 to Nlpl’ N2p2 by this assumption. Thus
the greater are pl, Pys the more conservative this procedure will be.

We illustrate the application of these intervals with the Holcombe
and Phipps compound D fry mortality data and the DeFoe 1, 1, 2, trichloro-
ethane fry mortality data.

First consider the Holcombe -nd Phipps compound D fry mortality data.
The comparisons of Groups 2, 3, 4 vs Control, based on the Poisson appro-
ximation, are quite similar to the conservative small sample confidence
intervals discussed earlier in this subsection.

Now consider comparisons of Groups 5, 6 with the Control group.

Group 5 vs Control: X_ = 79, X

5 =6,N. =N =100, o, = a, = 0.025

5 1 1 2

1
Thus

(79 1 » 80 p(160, 12; .975)) =<¥(1-94)—1.

7 F(14, 158; .975) 6

?(2.77)) = (5.82, 36.93)
is an approximate 957 confidence interval on pS/pl.

Group 6 vs Control: X, = 100, X, = 6, N, = Nl = 100, a, = o

6

6 1

Thus

|
100 1 101, _ (100 1 101 |
7 F(14, 200; .975)° 6 [(202, 1Z; '975)> <7 1.79 ° 6 1

(2.75)) = (7.98, 46.29)

is an approximate 95% confidence interval on p6/p1.

These intervals compare with the conservative, small sample intervals
calculated earlier as follows:

Conservative, Small Sample Approximate Poisson

Group 5 vs Control (5.27, 39.86) (5.82, 36.93)
Group 6 vs Control (6.57, 50) (7.98, 46.29)

These intervals are seen to be quite similar.
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We now consider the DeFoe 1, 1, 2, trichloroethane data and calculate
approximate confidence intervals to compare Groups 5, 6 to the control
group. Since X1 = (0 we can only calculate lower confidence bounds.

Group 5 vs Control: X

=9, X;=0, N.=N =40, a, =0.05, a, = 0.

5 5 1 1 2

Thus

9 1 9
1 ¥z, 20; .95) _ 3.49 - 28

is a 95% lower confidence bound on pS/pl.

Group 6 vs Control X, = 40, X. = 0, N_=N_ = 40, a

6 = Vg 0.05, a

|
o

6 2

1
Thus

40 1 _ 40
1 F(2, 82; .95) 3.12

is a 95% lower confidence bound on p6/p1.

= 12.82

Thus there is strong statistical evidence that the response rates in
groups 5 and 6 are substantially greater than that in the control group.
The response rate in group 5 is at least 27 times that in the control
group.

D. Method 3 Poisson Approximation

We now consider method 3 for placing confidence intervals on ratios
of parameters. This method is based on the Poisson approximation to the
binomial distribution and so requires that each p be less than 0.1 or
that each p be greater than 0.9 in order that the Poisson approximation
be reasonably accurate. Operationally, we will use this approximation
if each p is less than 0.1 or if each p is greater than 0.9. The proto-
type situation is

Control Group 2
Dead Xl X2
Live N1 - Xl N2 - X2
Ny N,

Let p., p, denote the response probabilities in groups 1, 2 respectively.
We wish to construct 1 - o confidence intervals on p2/p1.
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NyPys Ay = Nopy.
Then if p1<.1, p2<.1 Xiiq)(kl), XZ&PO(AZ). We can thus pose the problem
as one of placing confidence intervals on the ratio of two Poisson means.
If p >.9, p,>.9 it is probably of more interest to place a confidence in-
terval on tﬁe ratio 9, /q,, where q. =1 -p.,q, =1-p,. We are then

1 1’ 72 2
back in the above Qituat on,

Let Al

Nelson [ 24 ] shows that a 1 - o confidence interval on A2/A1 is

X2 1 X2+l

+ 1 F(ZX + 2, 2x2, 1 - al)’ X

F(2%, + 2, 2X;5 1 - a,)

’
Xl 1 1
where F(v_, Vo3 Y) represents the upper Y point of the F-distribution

with d.f. Vis Vo and oy + o, = Q. Now

Azlxl = (szz)/(Nlpl) = (NZ/NI) (pzlpl)

Thus multiplying the above confidence bounds by the factor N1/N2 yields
confidence bounds on pz/pl. Namely

X, N N, X, +1 N
- =, —— FQX, +2, 2X,; 1 - a,)
X, ¥1 F(X +2, 2%,; 1 - a;) N X 2 1 2N,

is a 1 - o confidence interval on p,/p,. Often we take a_,, o, to be

a/2. However for one sided confidence intervals we takeoc1 =a, a, = 0
or a, = 0, a, = Q.
If X, = 0 or if X, = 0 we have only one sided information about

Pys Py respectively. Thus we can only construct one sided confidence
bounds on their ratio. Namely if X. > O, X2 = 0 then set the lower con-
fidence bound equal to O and upper confidence bound on p2/p1 becomes

N
- 2 F2, x
2 %

1-a) if X, = 0, X,>0.

1} 2 1

If X. = 0, X,>0, then we can only get a lower bound on p2/p1. Set
the upper bound equal to » and the lower confidence bound becomes
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If Xl = 0, X2 = 0 the problem is indeterminate.
Nelson [ 24] presents charts which facilitate the construction of
two sided 90%, 95% or 99% confidence intervals on A, /A.. However his
charts do not apply for the situation when Xl = 0 or X2 = 0. In fact

they effectively apply only when 0.1<X /lelO. The charts are shown in
in Fieures XIII.3, XTIII.4, XIII.S.

To use the Nelson charts

1. Enter the value of X2/X1 on the horizontal axis.

2. Go up to the curve labelled with the X1 value. (There are two

sets of curves, corresponding to upper and lower confidence
limits).

3. Read the upper and lower limits on the vertical scale.
4., Multiply the resulting limits by the ratio N1/N2.
We illustrate the use of this Poisson based procedure on several sets of

data. First we consider the Holcombe and Phipps compound D fry mortality
data. We pool responses across tanks within groups.

Rtk ot e e JIN L v wL P TMTINTTR LY Y YOY LT Ow

CONTROL GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6
DEAD 6 8 8 13 79 100
LIVE 94 92 92 87 21 0
100 100 100 100 100 100

We compare various treatment groups with the control group. We will cal-
culate two sided 95 percent, nonsimultaneous confidence intervals. Groups
2 and 3 appear to have response probabilities around 0.10 and group 4 does
not seem to be too much beyond this level. We thus stretch our criterion
a bit and calculate confidence intervals to compare groups 2, 3, 4 with
the control groups.

Note that we could modify the confidence intervals for simultaneity
by using Bonferroni's inequality.
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Groups 2, 3 vs Control:

2 1 2 1 1 2

Thus
8 1 9 - 8 -1 9 _
(7 F(i4, 165 975) * 6 F(18, 12; .975) = 7(2.83) R (3.11))

(0.404, 4.665).

Group 4 vs Control:

X4=13,X1=6,N2=N1=100,a1=a2=.025
Thus
13 1 14 _ 13 -1 14 _
(7 F(14, 26; .975) °* g—-F(ZS, 12; .975) = 7 (2.45) ' 3 (2.98)) =

(0.76, 6.95)

Comparing the confidence intervals obtained by methods 1, 2, 3 we
see that

Conservative Poisson
Asymptotic Small Sample Approximation

Group 2, 3

vs Control (.480, 3.703)

(.401, 4.592) (.404, 4.665)

Group 4

vs Control (.857, 5.474)

(.788, 6.885) (.76, 6.95)

Thus the asymptotic intervals are shorter than either of the small sample
intervals. The small sample intervals are thus more conservative.

We next consider the DeFoe compound C fry mortality data. We
again pool across tanks within groups.

CONTROL GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6

- e T T e Y.

DEAD 0 0 2 1 9 40
LIVE 40 40 38 40 31 0
40 40 40 41 40 40

Since there are zero responses in the control group (i.e. Xl = 0), we can

only calcualte lower confidence bounds.
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Group 2 vs Control: Since Group 2 has 0 responses also, the situation
is indeterminate.

Group 3 vs Control: Choose al = .05, a,=0 X =2

Then

1 _ 2 B
7CZ, 4; .95) _ 6.94 = 9-%°

2
1

is a 95 percent lower confidence bound on p,/p,. Thus there is no statisti-
cal evidence, at the a = .05 level, that p3>pl.

Grogp 4 vs Control: X4 =1, Xl =0 N4 = 41, N1 = 40 Choose al = .05,
a, = 0.
2
Then
11 40 _40 1 _ oo
1 F(2, 2; .95) 41 41 19.0 :
is a 95 percent confidence bound on pa/p . Thus there is no statistical

evidence, at the o = 0.05 level, that p4>p1.

In general the confidence intervals that we have calculated are too
wide to determine the ratios of the various probabilities with much
precision. We must conclude that the data are not sufficient to esti-
mate these ratios very precisely without placing further structure on
the problem. One way of imposing such further structure will be dis-
cussed in the following sections.
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Figure XIII.4 Poisson two sample confidence interval charts -- 95 percent (from Nelson, 1969)
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XIV. DOSE RESPONSE CURVE ESTIMATION -- PROBIT ANALYSIS

A. Introduction. Dose Response Estimation vs Hypothesis Testing

An alternative approach to estimating acceptable concentration
levels is based on fitting dose response models to the data and
estimating that concentration, CL’ which results in an increase
of at most L in the response rate over and above background level.
The dose response curve formulation is pictured schematically in
Figure XIV.1l. The problem of determining a safe concentration
has been transformed from a testing problem (determine which re-
sponse rates are significantly different than the control rate)
to an estimation problem (calculate a lower confidence bound on
CL).

The two formulations are conceptually different and lead to
different implications. With the classical hypothesis testing
formulation the larger and more precise the experiment the more
powerful will be the hypothesis test. Thus lower concentration
levels will be found significantly different from the control
group and so the acceptable concentration will be decreased.

By contrast, with the dose response curve estimation formulation
the larger and more precise the experiment, the higher will be
the lower confidence bound on C. and so the acceptable concent-
ration will be increased. This latter situation seems more
natural to us for two reasons.

1. There is no need to specify rigid sample size requirements
in the protocol. People could present any level of evidence
regarding safe concentrations that they wish. The more ex-
tensive the experiment, the higher will be the lower con-

fidence bound on CL'

2. An investigator conducting toxicity tests in support of
petitions to the EPA for discharge permits is induced to
carry out more extensive and more precise experimentation
by the economics of the situation. He is rewarded for his
efforts by demonstrating a greater safe concentration.

OPINION: We feel that increased emphasis should be placed on the fitting
and use of dose response curve models in the design of and analysis of
data from aquatic toxicity tests.

It should be noted that just because we define CL in terms of the
concentration associated with an increase in response rate of L units
over background does not mean that we consider killing 100L percent of
the fish to be "acceptable". No increased mortality is really desirable.
However by adopting this formulation we can argue that we are limiting

our risk to an upper bound on L. The choice of L in a particular situa-
tion would of course need to be a biological and a regulatory decision.

145




T T ————39° IR AR A e A AR A Al - A S S R St S T :“‘,'.".‘"1

We have fitted (or attempted to fit) a number of dose response models
to the embryo and fry mortality data. Some of these models are standard
while others are nonstandard. Among the standard models fitted are the
probit model (Finney [ 11]) with either logarithmic or untransformed con-
centration and the logit model with either logarithmic or untransformed
concentration levels, Both of these models classically account for back-
ground variation by means of Abbott's correction. For example a probit
model with Abbott's correction might state

p(conc) = P, + (1 - pO) ® (B0 + Bl fn (conc))

where p., p(conc) are the response rates at the control and at conc re-
spectivély, ¢(+) is the normal c.d.f., and p,, B.,, B, are unknown param-
eters to be estimated from the model fit. Such a probit model can easily
be fitted to the data using SAS PROC PROBIT [ 12]. The 1979 version of
the BMDP package [ 27 ] contains a stepwise logistic regression program.

Among nonstandard dose response models tried are a nonstandard probit
type model and a '"nonparametric" dose response model. The nonstandard
probit type model differs from the standard model in the way it handles
background response. One version can be written as

p(conc) = ¢ (ao + al n (conc + c))

where p(conc) 1s the response rate at conc, ¢ accounts for the background
response, and 0., 0., c are unknown parameters to be estimated from the
model fit. A cgiti ism of Abbott's correction is that it tacitly assumes
that background related response and toxicant related response are due to
different and independent mechanisms. The nonstandard model assumes that
background related responses and toxicant related responses are due to
similar mechanisms and thus that background acts like an incremental to-
xicant level c. Which (if either) model is more appropriate in a given
situation depends on how well they fit the data and on biological judge-
ment. The nonstandard probit model and a large family of other standard
and nonstandard dose response models can be fitted by the use of nonlinear
regression programs such as SAS PROC NLIN [ 12 ] and BMDP programs BMDP3R,
BMDPAR[ 27 ] (program versions 1977 or later).

fk We have developed a ''monparametric" dose response model that differs
" from the more usual parametric models in a number of ways.

-. 1. There is no need to make strong parametric assumptions about the
iﬁ form of the dose response model.

b 2., There 1is no need to be concerned with transformations of the
concentration levels.

3. There is no need to worry about the parametric form used to
correct for background variation.
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Exact, small sample theory 1s used to construct conservative
lower bounds on safe concentration.

We have developed a special purpose computer program to carry out such
nonparametric dose response analyses. It is described in detail in
Feder and Sherrill [ 41 ], which is included as an appendix to section

XVI.

We now illustrate inferences about safe concentrations based on the
various dose response models discussed above.

B.

Probit Analysis Using SAS PROC PROBIT

In this subsection we fit probit models to the fry mortality
data from the DeFoe test on compound C and from the Holcombe and
Phipps test on compound D. Although we do not adjust the data
for tank to tank heterogeneity, the same analyses can be carried
out after such adjustments have been made.

We first consider the DeFoe data. The basic data are listed
in Figure XIV.2, There are two tanks per treatment group. Con-
centration values for each group (in units of ug/liter) have
been determined as average values over all determinations and
over all tanks within each group. These are denoted as CONCMEAN.
Other variables of importance are

DEADESUM = # dead embryos in the tanks after hatch. (after
about 5 days).
DEADFSUM = # dead fry after 32 days.

PRPDEADE, PRPDEADF = proportions of dead embryos and fry
respectively.
LOGCONC = loglo(CONC)

Note that the measured concentration in the control group is not
zero here and that no fry mortality has occurred in the control
group. It is unclear from preliminary plots of proportions of
dead fry vs arithmetic and logarithmic concentration (not shown)
whether a probit model would better be fitted to arithmetic or
to logarithmic concentration. We will try both fits and

compare them.

We first fit a standard probit model using arithmatic concen-

tration. The specific model fitted is
p(CONC) = ¢+ (1 - ¢) ¢(Bo -5+ BlcONC)

where ¢(+) is the standard normal c.d.f., BO and Bl are unknown
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model parameters that characterize the shape of the response
curve, and c¢ is the unknown model parameter that specifies

the background rate. (The quantity 5 in the argument of ¢(+) is
due to probit convention). We fit this model to the data with
SAS PROC PROBIT by maximum likelihood estimation. The output
resulting from this fit appears in Figures XIV.3 - XIV.6. The
interpretation of this output is as follows:

<:) Summary of the maximum likelihood iteration process.
Intercept, Slope +* Bo, Bl respectively in the probit model.

¢ <> background rate, or threshold rate.
(Note that if ¢ goes negative at an iteration step
it is set to 0.).

MU,SIGMA (u,0) correspond to the mean and standard deviation
of the dose-response distribution.

U, O are related to BO’ Bl as
B, =35 -wo, B =1/0

These relations can be verified from the entries given in
the output.

(:) The estimated asymptotic variance-covariance matrix of (Bo,
31, ¢). This is based on the Fisher information's inverse.

<:> The estimated asymptotic variance-covariance matrix of ({I,

(8, ). This is based on the inverse of the estimated Ficher
information matrix.

These estimated var-cov martices are the basis of the confidence

interval calculations made by the program. The validity of these var-cov
estimates depends on having the true state of nature and the maximum like-
lihood estimates interior to the parameter space. In this fit & = 0.003
with an estimated standard error of 0.03. We thus might consider drop-
ping ¢ from the model.

(:) Chi square test for lack of fit of the probit model.

Degrees of freedom = number of groups - number of
parameters = 6 - 3 = 3,

Under the null hypothesis of no lack of fit to the model
this statistic has a chi square distribution with 3
d.f.
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(:) A plot of the fitted straight line in the probit domain,
with the estimated probits of the dose response rates at
each concentration level in the data indicated as X's on
th~ plot.

Notes: 1. Probit (0) =5 + ®—l(0) = -, However it is
plotted as O because that is the smallest value
used. Similarly, Probit (1) = 5 + ¢~11(1) = =,

but it is plotted as 10 because that is the large-

st value used.

2., The observed thresholds at probit values of 0
and 10 seem far away from the fitted line. The
standard errors of these points are also very
large, so these points are discounted when dete-
rmining a probit fit. In particular,

Var[probit(p)] = p(1 - p)/n¢(®-l(p)) + @ as
p~>0or 1.

Thus these points carry very little weight in the
straight line fit in the probit domain.

3. The estimated background response rate has been
removed from the plot. Thus estimates represent
increments over background.

(:) Plot of &(B_ - 5+ B, CONC) vs CONC.

For various percentiles of the fitted dose response curve
(after adjusting for background), the point estimates of
CONCMEAN are given as well as 957 lower and upper confidence
bounds on these points.

Note: These percentiles are percentages of the population
responding due to the toxicant, after adjusting for
background effects.

The point estimates correspond to the percentiles indicated
on the plots.

These lower confidence bounds are just the quantities needed to cal-
culate confidence bounds on safe concentrations. Lower 957 two sided
bounds correspond to lower 97.5% one sided bounds. Suppose we are will-
ing to tolerate an increase in response of 10 percent due to toxicant
causes, What is a lower confidence bound on safe dose?

Consider the dose response curve (adjusted for background rate).
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Now d = = 32.65 from Figure XIV.6.
.10 A

1

The lower 97.5 percent confidence interval on 4 19 is - 45.97. It is
thus totally uninformative due to the gentle slope of the dose response
curve (0.036) and relatively large standard error of the slope (0.014).

Note that the confidence bounds on the percentiles of the dose response
curve are based on Fieller's theorem. See Finney { 111, section 4.7
(esp.eqns (4.37), (4.38)) for details.

We now consider the chi square test statistic for goodness of fit
in more detail. The chi square statistic can be used for a number of
purposes. The statistic given in (%) is

S (0 - Niﬁi)z
CHI-SQUARE = z EE

= TiPis
L Where 0i = {f observed responses in the i-th treatment
t group
1 Ni = # fish in the i-th treatment group
le A

P; = estimated response probability in the i-th
i treatment group.
E qi = 1 - p.
3
.
b
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py=e+(Q-98 09 ((!30 -5) + §ldi) =

~

di - Uu
e+ (1 -2 @-—75——— i=1, ..., 6.

The values of these quantities for the 6 treatment groups are as follows:

A2
(0 - NP)
Trt Grp O N P NP NEQ NPQ
1 0 40 0.0100 0.3996 0.3956 0.4036
2 0 40 0.0115 0.4586 0.4534 0.4639
3 2 40 0.0154 0.6152 0.6058 3.1655
4 1 41 0.0300 1.2300 1.1931 0.0443
5 9 40 0.2397 9.5876 7.2896 0.0474
6 40 40 0.9979 39.9144 0.0854 0.0858
ﬁ X = 4.2105
3 We see that this chi square statistic agrees with that calculated
. in @) of the PROBIT output. We should break out the cell by cell con-
- tributions in order to ensure that a large value of chi square is not
. due to one or a few cells with very low expected frequency. Just one
P observed response in such a cell can inflate the chi square statistic
S tremendously. In our case this does not occur.
: Note that the applicability of the asymptotic chi square approxima-
y tion to the distribution of X% is doubtful here due to the small

expected sample sizes. Namely

1 1 2 3 4 5 6
NPi | 0.40 0.46 0.62 1.23 9.59  39.91
N§i |39.60 39.54  39.38 39.77  30.41 0.09

Dixon and Massey [ 13 ] page 238 state that for the approximate a-
symptotic ¥¢ distribution to be close "the sample size N must be suf-
ficiently large that none of the Fi's (i.e. Niﬁi or Niﬁ,) is less than
1 and not more th:1 20 per cent of the F;'s are less than 5." This
criterion is clearly not met in the above example.

Since no control group mortality was observed and since the esti-
mated background rate is compatible with 0 (& = 0.0031, stderr(2) = .0288)
it was decided to refit the model specifying that ¢ = 0. This simplifi-
cation will reduce the standard errors of estimates considerably.
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The fit is shown in Figure XIV.7 and the associated confidence in-
tervals are given in Figure XIV.8. The point estimates the slope and
intercept are seen to be very similar to those based on the threshold
model fit in Figure XIV.3., In particular

8, 8, ¢ 8By 8B 3®
Threshold Model 2.537 0.036 0.003 0.834 0.014 0.029

No Threshold Model 2.616 0.035 0 (by 0.257 0.006 O0(by defn.)
defn.)

We see that the point estimates of B,, By, c¢ have not changed by much,
but the standard errors have decreased markedly. Thus if there is no
statistical evidence of background mortality we should eliminate it from

the model to increase estimation precision.

Let's see how this affects the percentile point estimates and lower
confidence bounds on them.

Threshold Fit No Threshold Fit
Lower 97.5 Per- Lower 97.5 Per-
Point cent Confiden- cent Confidence
Percentile Estimate ce Bound Point Estimate Bound
i 3.773 -157.377 1.657 -17.646
3 16.086 -109.518 14,388 0.000
5 22.606 - 84.331 21.130 8.900
10 32.647 - 45,967 31.511 21.622
15 39.421 -~ 20.657 38.515 29.364
20 44,805 - 1.246 44.082 35.034
30 53.572 27.152 53.146 43.539
50 68.064 54,847 68.130 56.372
70 82.557 67.675 83.115 68.459
80 91.323 73.775 92.179 75.594

We see that the point estimates under the nonthreshold fit are
slightly lower than the point estimates under the threshold fit in the
lower portion of the curve.

"

However the increased precision of estimation under the nonthresh-
hold fit results in substantial increases in the lower confidence bounds.

v

Suggestion:

1. TIf there is no observed response in the control group.

152

TR e T g

P L . . T : e L LR : el g s S a3 .- a..a A_LAAJ




and 2. If the control group response rate, as estimated from the
dose response fit - including threshold - is nonsignificant.

and 3. If there is no a priori reason to expect background rate
then, eliminate background threshold parameter from the model.

This raises in a conjecture: Suppose we fit a nonthreshold model even
when a non zero background rate exists. We conjecture that the point
estimates of nonthreshold response rates will be estimates of quantities
lower than the true response rates. However the increased precisions of
these estimates may well result in more accurate lower confidence bounds
on the '"true'" response percentiles. This is a bias-variance trade off.

It is interesting to note that Charles Stephan [ 42 ], page 78 ff
discusses Abbott's correction in connection with the estimation of LC-
50 concentration in acute toxicity tests. He comments '"...Abbott's
formula ... is a statistically sound way of correcting for control mort-
ality if, and only if, the cause of the control mortality does not make
the rest of the test organisms more susceptible to the toxicant. This
assumption is usually questionable in acute mortality tests with aquatic
animals., ... If control mortality is below a specified minimum...it should
be reported along with the results of the test, but correction of the
LC50 for this mortality would seem to be a meaningless exercise. ..."

It is interesting that we arrive at a similar suggestion, based on dif-
ferent reasoning. Our motivation is a bias-variance tradeoff.

The previous PROC PROBIT analyses on the DeFoe data treated concent-
ration without any transformation. We also tried to fit a probit model
using log concentration. Folklore states that a probit or logit fit
will better fit the response vs logarithmic concentration relation than
the response vs arithmetic concentration relation.

Finney [ 11] page 8-13 recommends using log concentration. Stephan
[ 42] also recommends the use of a logarithmic transformation of
concentration on a routine basis.

Finney, pages 9ff states '"The frequency distribution of
tolerances, as measured on the natural scale (i.e. arithmetic
scale - P.F.) is usually markedly skew, but often a simple
transformation of the scale of measurement will convert it to
a distribution approximately of the familiar Gaussian or nor-
mal form ... normalization can often .e effected by expressing
the tolerances in terms of the logarithms of the concentrations
instead of the absolute vlues. Indeed this transformation is
now standard practice ... the justification is the widespread
applicability of the normal distribution as an adequate appro-
ximation to the truth. ..."
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Stephan, page 75, states "...Whenever any method is used to analyze

concentration mortality data, whether or not a transformation such as
probit, logit, or angle is used on the mortality data, the logarithmic
transformation should probably be used on the concentration data. All
of the methods assume that the concentration-mortality curve is linear,
and it seems to be generally accepted that the curve is more likely

to be linear if log concentration is used. "

We show by example of the DeFoe 1, 1, 2, trichlc:-oethane data that
the logarithmic transformation of concentration provides a much poorer
fit of the probit model than does arithmetic concentration. The moral
is that each time we fit a probit, logit, or other dose response model
we should have an open mind as to using untransformed concentration,
logarithmic concentration, or some other function of concentration. We
should transform concentration in a manner suitable for each individual
data set.

We first tried to fit the probit model with background response to
logarithmic concentration. The attempted fit would not converge. To
improve convergence performance we refitted the DeFoe data with logari-
thmic concentration using a specified background rate of O (the obser-
ved level). The output appears in Figures XIV.9., The maximum like-
lihood algorithm converges, however the resulting probit model is not
an adequate fit to the data as indicated by the highly significant re-
sidual chi square statistic. (Chi square = 47.6774 with 4d.f.)

We break out the components of the chi square statistic by group, as
discussed previously, to determine whether the very large chi square
value is due just to one or two components with very small expected re-
sponses but with one or two observed responses. Such components can
greatly distort the overall chi square.

2

(0 - Np)
LoglO(Conc) Trt Grp O N p NP Npq NPq
-1.3098 1 0 40 0.0000 0.0000  0.0000 0.0000
0.29907 2 0 40 0.000015 0.00060 0.00060 0.00060
0.7764 3 2 40 0.0025428 0.10171 0.101455 35.518
1.1706 4 1 41  0.0476 1.9516  1.8587 0.4872
1.6840 5 9 40  0.4227 16.908 9.7610 6.4068
2.1673 6 40 40  0.884 35.36 4.102 5.249

47.662

We see the thbird treatment group contributes the most to the statis-
tic. It has a very small expected frequency and two observed responses.,
If this were the only .arge deviation between data and model, we might
be inclined to consider the possibility of a reasonable probit fit with
the exception of an outlier group. However, even if we disregard this groun,
the components of chi square from the remaining cells sum to 12.144 with
3d.f. This value is still significant at the 0.01 level, even after the
largest component has been deleted. We thus conclude that the model
does not fit the data well. This, coupled with probit plots suggests
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the inappropriateness of the probit fit after a logarithmic transform-
ation of concentration. Ths probit fit to untransformed concentration
is swnerior in this case.

We now consider the Holcombe and Phipps compound D data. A listing
of these data is contained in Figure XIV.10. The variable names corre-
spond to those of the DeFoe data. The test consisted of six groups
(control + 5 toxicant concentrations) and four tanks per group. Note
that the control group concentration is 0 and there is a nonzero thresh-
old response rate.

Probit models were fitted to the fry mortality data after pooling
tanks within concentration groups. SAS PROC PROBIT was use to fit pro-
bit models both to concentration and to log. . (concentration). These fits
included background effects, to be fitted by maximum likelihood.

The probit fit vs untransformed concentration appears in Tigures
XIV.11, XIV.12. The residual chi square statistic is quite small (0.3361
with 3d.f.) siguifying a good fit to the data. Figure XIV.12 contains
the estimated percentiles of the probit response curve, adjusted for
background, along with lower and upper 95 percent confidence limits cal-
culated by use of Fieller's Theorem. For example for the 10th percentile
the estimate for C is 78.77 while a lower 97.5 percent confidence

0
bound 1s 58.72. 1

One difference between the fits to the DeFoe and to the Holcombe and
Phipps data should be noted. In the DeFoe data no mortality was observea
in the control group and the threshold response rate was estimated to be
¢ = 0.003 with an asymptotic standard error of 0.029. Thus there was no
evidence of background mortality and we markedly improved precision of
the fit by deleting the background correction.

In the case of the Holcombe and Phipps compound D data we observe X = 6
deaths within the control group, with each of the 4 tanks exhibiting at
least one death. Thus we know that there is background variation. From
our probit fit with arithmetic dosage we estimate ¢ = 0.0718 with an a-
symptotic standard error of 0.016. Thus ¢ is 4.5 asymptotic standard
deviations from O and so is highly statistically significant.

We now fit a probit model to the same data using log (concentration).
The estimated parameter values, their estimated asymptotic¢ variance-co-
variance matrix, and the residual chi square statistic appear in Figure
XIV.13, The residual chi square statistic is 0.5046 with 3d.f., which
is very small, thus indicating a good fit to the data'. We thus have

lNote that the chi square value 0.2287, given by SAS in Figv-e XIV,
13 is incorrect in this case. It seems to be omitting the control group
contribution to the chi syuare statistic. This problem has been brought
to the attention of the program developer and has been corrected in later
versions of the program.
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good probit fits to the data using both arithmetic and logarithmic con-
centration.

The estimatec oackground level is ¢ = 0.0738 with a standard error of
0.0156, Thus & is 4.73 standard deviations from O and so is highly sta-
tistically significant.

The estimated percentiles (after adjusting for control group mortality)
and 95 percent confidence intervals {by Fieller's theorem) are shown in
Figure XIV.1l4. The lower confidence bound is a 97.5 percent one sided
bound. This display is analogous to that in Figure XIV,12.

We have thus fitted two distinct models which seem to fit the data
well: the probit model with arithmetic concentration (Figure XIV.1l1)
and the probit model with logarithmic concentration (Figure XIV.13).

The parameter estimates associated with these two fits are somewhat dif-
ferent. Namely

Arithmetic (StdErr) Logarithmic (StdErr)
n 109.916 (3.638) 2.028 (0.016)
g 24,300 (3.861) 0.1044(0.015)
é 0.0718(0.,016) 0.0738(0.016)

We see that the estimated background levels are somewhat similar, how-
ever the estimates U, O are very different.

Even though the parameter estimates differ considerably, ine model
fits may still be very similar. We compare the estimated response dis-
tribution percentiles and associated lower confidence bounds in Figures
XIV.12, XIV.1l4 for the arithmetic and logarithmic concentration fits
respectively. These are shown below.

Arithmetic (Figure XIV.12) Logaorithmic (Figure XIV.14)
Lower 97.5% Lower 97.5 % Conf
Percentile Estirmate Conf. Bound Estimate Bound
1 53.39 22.40 60.97 45.76
2 60.01 31.92 65.10 50.13
3 64.21 37.95 67.87 53.12
5 69.95 46.15 71.83 57.47
10 78.77 58.72 78.38 64.83
15 84.73 67.13 83.14 70.29
20 89.46 73.77 87.12 74.92
30 97.17 84.43 94.03 83.01

The point estimates of the response distribution percentiles corres-
ponding to the arithmetic and logarithmic fits are quite similar beyond
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the third percentile. However there is considerable discrepancy between
corresponding lower confidence bounds on safe dose, based on each of the
two fits —- below the 10th percentile! Below the third percentile the
discrepancy is fifty percent or more.

How can we choose between the two fits?

1. Prior knowledge or mechanistic information

None here. Since the probit model is an empirical model, no much
in the way of mechanistic arguments will distinguish between the two
fits.

2., Magnitude of residual chi square

Arithmetic fit Residual chi square = 0,336 with 3d.f.
(@ = 0.953)

Logarithmic fit Residual chi square = 0.505 with 3 d.f.
(o = 0.918)

Both chi square values are quite small and the question of which one is
larger is probably just a matter of chance fluctuations. Therefore we
should not use these two statistically insignificant values to distinguish
between the fits.

3. Appearances of plots of predicted and observed responses

Scatterplots of predicted and observed responses vs arithmetic
concentration are shown in Figures XIV.15, XIV.16. Similar plots vs
logarithmic concentration are shown in Figures XIV.17, XIV.18. The
probit plots (Figures XIV.15, XIV.17) indicate greater discrepancies be-
tween observed and predicted responses (after adjusting both for back-
ground) at the low percentiles of the logarithmic concentration fit than
of the arithmetic concentration fit. Similarly at the highest treatment
group. Thus the arithmetic concentration fit seems to be a (slightly)
better approximation to the data at the low percentiles than does the
logarithmic concentration fit.

4. Conservativeness. Below the 25th percentile the lower confidence
bounds based on the arithmetic concentration fit are lower than those
based on the logarithmic concentration fit, The discrepancy is especi-
ally noticeable for the low percentiles, in particular below the 10th
percentile. Above the 10th percentile both lower bounds are similar.
Thus the arithmetic concentration fit seems to be more conservative than

the logarithmic concentration fit at the low percentile.

Opinion T would prefer the arithmetic concentration fit in this case.

However further experimentation at the low concentrations would be needed
to distinguish between the differing conclusions at the low percentiles.
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Alternative analysis ignoring background

We remarked with respect to the analysis of the DeFoe data that an
alternative way of handling background mortality is to ignore it. The
hope is that the improved precision will offset the downward bias and
result in higher values for lower confidence bounds on safe dose.

Note: If the control group response rate is significantly different
from 0, as is the case with the Holcombe and Phipps data, we would not
expect the dose response fit ignoring background to be a good fit to the
data., Probit models ignoring background response, fitted to both arith-
metic and logarithmic concentrations, show large and highly significant
residual chi square statistics 28.96 and 65.03 respectively with 4d.f.
The plots of fitted and observed responses vs concentration also show
discrepancies.

We now compare the percentile point estimates and their lower confidence
bounds based on the fit ignoring background response with those based on
the fit including background response. Comparisons pertain to the fit
vs untransformed concentration.

Background Included Background Excluded
Point Lower 97.5% Point Lower 97.57%
Percentile Estimate Conf. Bound Estimate Conf. Bound
1 53.39 22.403 -7.48 -24.234
3 64.21 37.946 13.37 0.648
5 69.95 46.147 24,41 13.197
7 74.05 52.006 32.33 21.991
10 78.77 58.715 41.42 32.626
15 84.73 67.135 52.89 45.860
20 89.46 73.775 62.01 56.369
25 93.53 79.421 69.83 64.178
50 109.92 101.288 101.40 97.761

We see that in this example, with the background level many standard
deviations from O, the bias-variance trade off is such that it does not
pay to reduce the assumed background response level to 0 in order to
lessen the standard deviation.
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Figure XIV.l1 Schematic representation of dose response curve formulation
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Figure XIV.3 Output from PROC PROBIT fit to DeFoe fry mortality data —- arithmetic concentration
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XV, DOSE RESPONSE CURVE ESTIMATION -- MAXIMUM LIKELIHOOD ESTIMATION BY
NONLINEAR LEAST SQUARES REGRESSION

We have seen iIn the previous section how standard dose response
models can be fitted to the data by use of SAS PROC PROBIT. This pro-
cedure fits a probit model to the data, with several possible variations.
Namely it fits the model

p(x) =c+ (1 - c)®(B, + B;x)

5 where x = concentration or log (concentration), ¢ is the background rate,
'y and Bo’ Bl are unknown parameters to be estimated from the data. p(x) is
y the response probability corresponding to x. The value of ¢ may be known
? or unknown. Estimation is done by maximum likelihood, based on binomial
: theory.

- Jennrich and Moore [ 43 ] show that for distributions in the ex-

e &
bl

ponential family, maximum likelihood calculations can be carried out by
means of nonlinear least squares regression calculations. This applies,
in particular to models based on the binomial distribution.

TR,

L .
&

Thus dose response curves can be fitted to the data by use of
appropriate nonlinear regression programs. Both SAS [ 12 ] (PROC NLIN)
and BMDP [ 27 ] (P3R and PAR) contain nonlinear regression programs that
can carry out these calculations. See Jennrich and Moore [43] for a
discussion of the theory underlying the relation b:stween maximum 1ikeli-
. hood estimation and nonlinear regression in the exponential family. We
X illustrate the methodology with the use of SAS PROC NLIN. However any
nonlinear regression program with capability to carry out iteratively
reweighted least squares (i.e. allow weights to be functions of the model
paramters) would suffice.

S

N

SAS PROC PROBIT also calculates lower and upper confidence bounds
on concentration values corresponding to various response curve percen-
tile (after adjusting for background), by use of Fieller's theorem (Fin-
ney [ 11] pp 78-79). We illustrate how these confidence bounds can be
calculated, based on the parameter estimates of the fit and their asym-
ptotic variance-covariance matrix.

Before discussing the details of fitting dose response curves by
means of nonlinear regression programs. We discuss some of the reasons
that one might wish to do this.

1. The data analyst may have a general purpose nonlinear regression
program available but no special purpose dose response estimation
program. Thus the general tool can be used without modification
instead of having to write a special purpose program.
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2. A very wide variety of models can be fitted to the data by use
of general nonlinear regression. PROC PROBIT is rather limited
in the extent of models it will fit. Namely it will fit only a
probit model using concentration or log concentration. It will
adjust for background effects only by Abbott's correction.

We may wish to fit models other than the probit, e.g. the
logit model, or even more complex models that incorporate both
the probit and logit models as special cases. Background effects
might be modelled as additive concentrations rather than by
Abbott's correction. Namely,

p(x) = <I>(Bo + Bllog (c + co))

where c,, the background effect, represents an alternative way

of accounting for background. Such a model, although non-

standard, can easily be fitted by nonlinear regression techniques.
Also, transformations of concentration levels other than the
logarithmic are useful. For example the square root transformation.

3. PROC PROBIT automatically inflates variance and covariance estimates
estimates and confidence interval bounds by heterogeneity factors
whenever the probit model does not fit the data (as determined
by the residual chi square statistic). This is not always what
we wish to do. PROC NLIN does not inflate variance estimates by
heterogeneity factors.

4. We can calculate and save predicted and residual values and thus
easily construct residual plots.

It should be noted that PROC NLIN will not compute confidence in-
tervals on response curve distribution percentiles by use of Fieller's
Theorem, as PROC PROBIT does. However we show in the subsequent dis-
cussion how we can carry out these calculations fairly easily, using
either a hand calculator or a small computer program, once the para-
meter estimates and their asymptotic variances and covariances have been
determined.

We now consider three examples of fitting dose response models
to fry mortality data by use of SAS PROC NLIN. We use the Holcombe and
Phipps fry mortality data in all the examples. The models fitted are:

p(cone) = ¢ + E@(Bo + Blconc)

B, + B,conc B, + B,conc
p(cone) = c+ce 0 1 /(l + e 0 1 )

p(conc) = ¢(BO + Blloglo(conc + ¢))
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All the models are fitted based on binomial distribution theory after
pooling data across tanks within groups. This is the way that PROC PRO-
BIT fits models and is appropriate if there is no tank to tank hetero-
geneity within groups. 1In the presence of tank to tank heterogeneity we
can first adjust the data by an adjustment factor and then pool across
tanks within groups.

The first model fit is a repeat of a model we fitted by PROC PRO-
BIT and serves to verify that we can duplicate the PROC PROBIT fits by
nonlinear regression. The second model is a logit model and illustrates
that we can fit alternative models with PROC NLIN and that the probit and
logit model fits result in very similar inferences.

The third model fit treats the background as an additive concent-
ration rather than adjusting for it by Abbott's correction. This sort of
model would be appropriate if the mechanism of response due to background
sources is the same as the mechanism of response due to the substance
under test.

We now discuss the formulation of fitting dose response curves
by means of nonlinear regression techniques.

Suppose that there are I concentration groups (both control and
treatment) and that the i-th group contains N, subjects and has X, re-

sponses. Let pi(g) denote the response probability within the i—%h
group. Then X, " Binomial (Ni’ pi(Q)).

The form of pi(g) is specified by the form of the dose response
model. For example in model 1, pi(Q) =c + c@(BO + Blconci), where
Q = (Bo, Bl, c) is the unknown parameter vector, to be estimated by
least squares.

Under the model assumptions X has meen ui(b) and variance

oi(e) where

w Q) = N.p, (9)

T (®) = Np, (@ - p,®)).

The nonlinear regression procedure optimizes the function

-

_ 2
W = D & -y @)@
where wi(g) = lloi(g). Jennrich and Moore [43] show that optimizing Q(?)

by the Gauss-Newton method i1s equivalent to fitting the dose response
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curve by maximum likelihood estimation.
We fit the models to the Holcombe and Phipps compound D data.
We first consider, py(8) = ¢ + cd(By + Biconcy). The results of

fitting this model in the standard manner with PROC PROBIT are shown
in Figure XIV.11.

We first discuss the NLIN commands needed to produce the output.
See the SAS 79 manual [12], pp 317-329, for further details.

The model is

M Q) = Nyle + cd(B) + B,d)] = Np (D)

where (Bo, Bl, c) =  are to be estimated by weighted least squares. The

weights are w, S wi(Q) = l/[Nipi(Q)(i - pi(Q)]. The fitting algorithm
also uses the derivatives of the mean value function. These,are:

u/3By = N co(B, + B,d,)
3u/38) = Nycd,0(By + B d,)
3u/de = N, [1 - ¢(By + B,d,)]

where ¢(x), ®(x) represent the standard normal probability density funec-
tion and cumulative distribution function respectively.

The SAS commands needed to generate this fit are given below

I PROC NLIN BEST=20 METHOU=GAUSS;
2 PARAMETERS 8C=z=5,0 TO -4.0 BY (.25
....... 51=0.0 10 0.10 BY 0.0z%
L L €c=0,.03 13 C.1}! BY 8,623 e
3 BOUND 0<=(<=1.0}
ARG=BO+B1*CONCMEANS
. ARG=MAX(ARG,-5e0)3
ARG=MIN(ARG,5,0)3 . e ~
BIGPRI=PROSENCRMTARGYS
. SMLPHI=0,3589%EXP(=0,5%ARG**2);
PROR=C+(1.0-C )*RIGPHI;
4 MODEL DEADFSUM=PRCB*FRYSUM; ) I o
_ 5‘DER.BD=$l.O-C)*gMLPHX*FRYSUM:
DERBl={1,C~C )*CONCMEZAN*SMLPHI*FRYSUM;
‘DER,C=(1.0-BIGPHI)*FRYSUM; _ _ o
__&OUTPUT CUT=HULPRIA PREDICTZD=PRDFSM RESIDUAL=RSDFSM;
§ WEIGHT_=1.0/ (FRYSUMXPRUE*(1.,0-PRU%) ) 3 _ ) |
TITLE2 PROBIT MCDzL FIT WITH ABBOTT™S CORKICTION--UNTRANSFCRMED ~“ONCENTRATIC
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Line 1 instructs NLIN to fit by the Gauss-Newton method. NLIN
can also fit models by use of the method of steepest descent or the
Marquardt method. The Marquardt method is a compromise between Gauss-
Newton and steepest descent, Sometimes near the optimum, steepest de-
scent or Marquardt methods take smaller steps and in different direc-
tions than the Gauss-Newton method and so are less prone to overshoot the
optimum. Thus one optimization method will sometimes produce conver-
gence when another one does not. The BEST = 20 command instructs NLIN
to print out the locations and error sums of squares values that it cal-
culates in the preliminary grid search to determine starting values for
the iterative portion of the search.

Dt 3t O

Line 2 specifies parameter values and/or ranges of parameter
values that NLIN should use for a preliminary grid search to arrive at
starting values for the iterative phase.

e~
. .

Line 3 specifies bounds on the parameters. If the parameters
exceed these bounds at any time during the iterative process they are
forced back into the permissible region.

Line 4 contains the model specification. The variable DEADFSUM
represents the mortality within the i-th group. FRYSUM is the total
number of fish exposed (pooled over tanks within groups) and PROB is the
response probability in the i-th group. The SAS program statements be-
tween lines 3 and 4 are used in the specification of the model in line 4.

Line 5 contains expressions for the derivatives Bu/BBO, Bu/aﬁl,
du/dc respectively.

Line 6 specifies that the predictions and residuals from the fit
be calculated and saved for future use.

Line 7 specifies the weights that are to be used in the weighted
least squares fit. Note that these weights are functions of the model
parameters (through PROB). They are updated following each iteration.

The output from these commands appears in Figures XV.1 to XV.4.
Figure XV.1l contains a listing of the Holcombe and Phipps data. Figure
XV.2 contains a summary of the parameter values and residual sums of
squares associated with the 20 best points in :le preliminary grid
search. The point with smallest weighted residual sum of squares is
used to start the iterative Gauss-Newton search procedure. The results
of the Gauss-Newton iteration are summarized in Figure XV.3. It conver-
ges after 8 steps. Figures XV.4 contains statistics based on the model
converged to in Figure XV.3. The upper portion of the page contains an
analysis of variance table based on weighted sums of squares. The middle
portion of the page contains parameter estimates and asymptotic standard
errors. The bottom of the page contains the asymptotic correlation mat-
rix among the parameter estimates. We compare these results with those
in Figure XIV.11.
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Several points need to be remembered in making the comparison.

1. We are fitting the model p(§) = c + E@(Bo + B,conc) whereas PROC
PROBIT parameterize§ the model as p(Q) = c + E@((ﬁo— 5) + Blconc).
Thus the estimates Bl’ ¢ in the two fits should agree while the
PROC NLIN estimate of @0 should be 5 smaller than the correspond-

ing PROC PROBIT estimate. Comparison of the estimates shows that
this is the case.

- 2. The residual chi square (0.3361) calculated by SAS PROC PROBIT
= is the same as the (weighted) residual sum of squares in the
t.: PROC NLIN fit. Thus this residual sum of squares provides a
h test of goodness of fit of the model.

3. The asymptotic variances and covariances calculated by PROC NLIN
need to be adjusted before being compared to those calculated by
PROC PROBIT. In particular, combining the asymptotic standard
errors and the asymptotic correlation matrix obtained by PROC NLIN,
we calculate the asymptotic variance covariance matrix.

0.066928 - 0.000543 - 0.000618
-0.000543 0.00000455 0.00000468
-0.000618 0.00000468 0.00002797

This matrix looks nothing like the asymptotic variance covariance
matrix that is calculated by SAS PROC PROBIT. The reason for
o this is as follows. We stated that X, has mean ui(g) = Nipi(g)

and variance Ui(g) = Nipi(g)(l - pi(gi). However the weighted
least squares fit is carried out assuming that Var(Xi) = ko%(g).
where k is a constant to be estimated from the data. Thus the es-
timates of the variances and covariances given by PROC NLIN as-

- sume Gar(X ) =Aﬁ0i(§). Thus all variances and covariances are
multiplied by k.

- How is k estimated? Just as in the case of weighted linear
- regression, k is estimated by the residual mean square. Namely,

k = weighted residual mean square = 0.11203710

Our maximum likelihood model, though, tells us that k = 1. We
thus need to adjust all variances and covariances to this value
S of k., To do this, we simply divide the above variance covariance
matrix by k. When this is done we obtain

0.5974 -0.00485 -0.00551
-0.00485 0.0000405 0.0000418
-0.00551 0.0000418 0.000250
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This matrix is nearly the same as that calculated by PROC PROBIT.

An important purpose for fitting the probit model is to calculate
lower confidence bounds on safe concentrations by use of Fieller's theo-
5 rem (Finney [11], pp 78-79). That is, we wish to calculate a lower
e bound on the concentration such that ¢(8. + Blconc) = L, where L is some
specified response rate. Such lower con?idence bounds, at (one sided)
confidence level 97.5 percent are a standard part of the PROC FROBIT out-
put. They are given in Figure XIV.12 for the Holcombe and Phipps compound
D data with untransformed concentration. We indicate below how to calcu-
late these bounds for any confidence level, based on the output from
PROC NLIN. The theory underlying these calculations is sketched in App-
endix AXV,

The fitted model is p(conc) = & + @@(BO + Blconc).
We wish to construct a 1 - o level confidence interval on that CONC such
that

¢(BO + BlconcL) =L |
where L is specified (e.g. 0.01, 0.05, 0.10 etc.). L represents the

response level attributed to toxicant (i.e. over and above background).

The point estimate, conc,, is

L’

cone, = (871(L) - B)/B, = (£, - B/B,.

N A

Let the asymptotic variance-covariance matrix of (BO, Bl) be denoted as

gh ) Var (8) Cov(B,, B,)
hj/) \Cov(By, B) Var(s))

A 1 - a confidence interval on conc, is shown in Appendix AXV to be

A —Bt/ﬁz - 4AC
L 2A
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zo‘/2 is the upper 0/2 point of the standard normal distribution.

The quantities BO’ B1> g, h, j are obtained as output from NLIN. The
results of the calculations are given below.

Holcombe and Phipps -— Compound D —-- Untransformed Concentration
Results from calculation of upper and lower 95 percent
confidence bounds on various percentiles of PROBIT fit -- by Fieller's

Theorem

L fL = Q_l(L) Lower 95% conf.limit upper 957 conf.limit
0.01 -2.345 22,958 69.385
0.03 -1.88 39.00 78.23
0.05 -1.645 47.07 82.73
0.07 -1.48 52.73 85.91
0.10 -1.28 59.96 89.78
0.15 -1.03 68.06 94.66
0.20 -0.83 74.80 98.62
0.25 -0.68 79.82 101.63
0.50 0 101.69 116.15

These confidence bounds are seen to agree very closely with the
bounds calculated by SAS PROC PROBIT and which appear in Figure XIV.12,

The previous dose response model fitted by use of PROC NLIN was a
repeat of a model that has also been fitted by PROC PROBIT. Comparisons
of the PROC PROBIT and PROC NLIN outputs verified that dose response
models can in fact be fitted by nonlinear regression programs and helped
to interpret the various features of the PROC NLIN output.

We now consider the fitting two dose response models that cannot be
fitted by PROC PROBIT. This of course is the reason for considering the
application of PROC NLIN for dose response estimation in the first place.
We first consider the logistic model and then look at an alternative to
Abbott's correction for accounting for background response.

The logistic model is a commonly used dose response model and gives
results very similar to probit fits, at least between the 2nd and 98th
percentiles. The logistic c.d.f. is

184




.............

X
F(x) = ——e—x' =< x<®
l+e

and is a symmetric unimodel distribution like the normal, but has heavier
tails. We fit the dose response model

p(conc) = ¢ + EF(B0 + Blconc)

in direct analogy to the probit fit that appears in Figures XIV.1l.

The results of the Gauss~Newton interative process are given in
Figure XV.6. The Marquardt algorithm converges whereas the Gauss-Newton
algorithm does not because the Marquardt algorithm can take smaller steps
and is more flexible in direction. However both algorithms arrive at
nearly the same parameter estimates. The summary of the fitted dose
response model appears in Figure XV.7. We can compare this fit to the
probit fit in Figure XV.4.

We see that both the logit model and the probit model fit the data
quite well (residual sums of squares are quite small). The background
mortality rate is estimated to be about 0.07 by each model. The asympt-
otic variance-covariance matrix of the logit fit parameters is estimated
to be

~ 1 0. 48086 0 0 1.0000 -0.988351 -0.550366
Var = m—g 0 0.00388 0 -0.988351 1.0000 0.520791
) 0 0 0.00518/ \~0.55036 0.520791 1.0000
0.48086 0 0 2.46095 -0.019626 -0.01459
0 0.00388 0 = [-0.019626 0.000160 0.000111
-0 0 0.00518 -0.01459 0.000111 0.000286
g *
={h *
*

We now apply Fieller's procedure for calculating lower end upper con-
fidence bounds on distribution percentiles of the dose response fit. We
need only modify the calculations done for the probit fit by defining
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- -1 = L =
fL =F (L) n 1-71 - logit (L)

and using the appropriate point estimates and variance-covariance matrix.

Holcombe and Phipps -- Compound D -- Untransformed Concentration
Results from calculations of upper and lower 95 percent
confidence bounds on various percentiles of LOGIT fit —- by Fieller'sc

Theorem

L £ = fn _L lower 952 upper 95% LOGIT PROBIT Point

L 1-I. conf.limit conf.limit point estimate estimate
0.01 -4.5951 2.515 66.209 45,31 52.931
0.03 -3.4761 26.859 78.151 61.205 64.231
0.05 -2.9444 38.390 83.863 68.757 69.942
0.07 -2.5867 46.127 87.726 73.838 73.952
0.10 -2,1972 54.526 91.957 79.370 78.812
0.15 -1.7346 64.454 97.031 85.940 84.887
0.20 -1.3863 71.879 100.900 90.888 89.747
0.25 -1.0986 77.967 104,142 94.974 93.392
0.50 O 100.441 117.293 110.578 109.916

The point estimates of the probit and logit fit percentiles are pre-
sented side by side for comparison. Except at L = 0.01 they are very
close and even at L = 0.01 they are similar. The situation is a bit
different with respect to confidence bounds on the safe concentration.
The logit confidence bounds are to be compared with the probit confidence
bounds. We see that the upper logit and probit confidence bounds are
very similar at each percentile., However the lower confidence bounds
for the logit fit are somewhat lower than the lower confidence bounds
for the probit fit at the low distribution percentiles.

For L20.07, the lower confidence bounds for the logit and probit
fits are rather similar, the lower logit bounds being constantly small-
er than the lower probit bounds. For L below 0.05 this phenomenon is
accentuated, especially at L = 0.01. This the region in which mortali-
ty due to background is the first order effect while toxicant related
mortality is secondary. Thus the data and the fitted model reflect pri-
marily the background effects and provide little direct evidence about
toxicant related mortality. Since the tails of the logistic distribu-
tion are heavier and steeper than the tails of the normal distribution,
changes in parameter values perturb percentile estimates in the normal
distribution much less than they do in the logistic distribution. Thus
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the lower logistic confidence limits become much wider than the correspo-
nding lower normal limits as L -~ 0. This phenomenon holds very strongly
in this example at L = 0,01 and to some extent at L = 0.03, 0.05. 1In
this region the data provide little basis to choose between the logit and
probit fits. Both models fit the data well and yield very similar point
estimates. Thus we learn the following lesson:

THE LOWER CONFIDENCE BOUNDS ON ''SAFE" CONCENTRATIONS CORRESPONDING TO
LOW PERCENTILES OF THE DOSE RESPONSE DISTRIBUTION MAY BE SENSITIVE TO
THE PARTICULAR FORM ASSUMED FOR THE DOSE RESPONSE RELATION, EVEN THOUGH
SEVERAL MODELS MAY FIT THE DATA EQUALLY WELL AND PROVIDE SIMILAR POINT
ESTIMATES OF PERCENTILES. THE DATA MAY NOT BE SUFFICIENT TO DISTINGUISH
BETWEEN THE MODELS.

This phenomenon is observed quite frequently in very low dose extra-
polation based on results of carcinogenesis experiments. However in
those applications the extrapolation is much more extreme than in fish
toxicology applications, However this example illustrates that even in
fish toxicology situations the inference about safe dose can be very
sensitive to model assumptions, even at the first to the third per-
centile. The extent of background effects may prevent us from disti-
nguishing among alternative models which fit the data about equally but
which yield qualitatively different inferences about safe concentrations
corresponding to low distribution percentiles.

To partially circumvent this problem we consider an alternative
approach to dose response estimation based on fewer assumptions about
the shape of the response distribution. See the following section for a
discussion on this nonparametric approach to dose response estimation.

We consider now a third example of fitting dose response models by
means of nonlinear regression. This example involves a nonstandard model
which provides an alternative to Abbott's correction to account for back-
ground response. Abbott's correction is appropriate when the mechanism
associated with background effects is independent of the mechanism asso-
clated with toxicant effects. For example toxicant mortality may be due
to chemical effects whereas background mortality may be due to increased
handling of the fish.

However Stephan [ 42 ] criticizes the assumption that the control
mortality mechanism is totally independent of the toxicant mortality
mechanism. He states that stressing the fish during the acclimation or
testing periods may make them more susceptible to the toxicant. Thus
background effects may act like additions to the toxicant concentrationms.
Stephan suggests not correcting for control mortality when assessing
the effects of various toxicant concentrationms.

An alternative way to reflect the dependence between background and
toxicant mortality mechanisms is to fit a model which reflects the fact
that background may function as an addition to the effective toxicant
concentration. Assume that background effects are equivalent to an
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addition of c ug/liter in toxicant concentration. The quantity ¢ is a
model parameter to be estimated from the data. (Note that the usage of
{ the notation c is completely different in this example than in the pre-
vious examples in this section. Here it is being used as a concentration

o
:g whereas in previous examples the symbol ¢ represented a probability.

o

Eﬁ Consider the following models based on an assumed normal dose

<~ response curve.

D (1) p(conc) = <I>[B0 + Bl(conc + ¢)]

2

)

3 (2) p(conc) = &[B, + B,(log, (conc + ) - 3.0)].

.t These models are to be fitted to the data by maximum likelihood esti-

- mation, based on binomial distribution theory. The parameters Bo, 81,

A ¢ are to be estimated from the data. The first model is over parameter-
2 ized, in that B, and ¢ cannot be separated from one another. Thus to

;: fit model (1) we fit

p(cone) = @[(B0 + Blc) + Blconc] = ¢(a0 + Blconc)

using PROC PROBIT with untransformed concentration and no "background"
effect included.

- 8 44
AP YN

The centering cgnstant 3.0 in model (2) is intended to reduce the

correlation between B, Bl thereby improving the covergence properties
s of the fitting algorithms. To fit model (2) we carry out a maximum like-
1lihood analysis using PROC NLIN. The output from this analysis is shown
in Figures XV.8, XV.9. The Marquardt algorithm again achieves convergence
. whereas the Gauss-Newton algorithm does not. Note however that the Gauss-
" Newton algorithm attains a smaller residual sum of squares due to the

- difference in weighting. (The distinction between attaining the smallest
: residual sum of squares and attaining a stationary point corresponds to
the difference between minimum chi square estimation and maximum like-

- lihood estimation. This distinction is discussed in Jennrich and Moore
-, [43], page 10, and in the BMDP manual [27]. Both of these methods are
i asymptotically equivalent. The summary of the Marquardt algorithm fit

o is presented in Figure XV.9. The residual sum of squares represents a
N chi square test for goodness of fit of the model. We see that

residual chi square = 59.32 with 3d.f.

Thus the model does not seem to fit the data. We break down this re-
sidual chi square into individual cell components to determine whether
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the large residual chi square represents consistent lack of fit or the
contribution of a single aberrant cell.

We see that the expected frequencies, Nf, N§, are quite large under the
model fit and that there is a systematic discrepancy between model and
data. Namely the model underestimates at the lower and upper ends and
overestimates p in the middle.

We thus conclude that model (2) is not appropriate for this set of
data. However this or similar models may be appropriate for other sets
of data. The point is that the use of nonlinear regression techniques
to fit dose response curves greatly expands the variety of models that
we can fit to the data.

Since model (2) does not fit the data well we do not use it to calcu-

late lower confidence bounds on "safe'" dose. However these calculations
can easily be made by use of asymptotic maximum likelihood theory.
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XVI., NONPARAMETRIC LOWER CONFIDENCE BOUNDS ON SAFE CONCENTRATIONS

In this section we again consider the estimation of "safe' con-
centrations based on fitted dose response curves. We wish to estimate
a lower confidence bound on that concentration, Cp for which the respo-

nse rate 1s no more than L greater than the control group rate. The
value of L is specified by the user. We present this situation picto-
rially below.

Response Rate

| -

C+L

i i |
T T T

= CONC.

|
1
0 1 g seeee cL..... Cproveee cr

The dose response curve is assumed to be concave upward at the lower
percentiles. For a logit or probit fit this would be below the median
of the distribution. The solid portion of the illustration represents
the region where the dose response curve is concave upward.

The upper bound on the upward concavity region is denoted UCR.
UCR 1is specified by the user.

Let c0 < cl < c2 £ e £ cr < UCR denote the test concentrations (treat-
ment and control) in the upward concavity region. o the control group
concentration, would often be O.

The standard method of estimating c_ by means of dose response
curves is to assume a specific form for the dose response curve such as
probit or logit in concentration or in log concentration and then fit the
model by means of maximum likelihood estimation, based on all the data.
SAS PROC PROBIT or a nonlinear regression package can be used to fit
such models.

The procedure discussed in this section has a number of import-
ant differences from these standard parametric dose response models.
Among these are

1. Inferences about safe concentrations can sometimes be rather
sensitive to the particular form of the dose response curve
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assumed. Yet it may not be possible to distinguish among
such competing models based on the data at hand. The need
for such strong parametric assumptions is alleviated with
the procedure in this section.

Once a functional form 1s chosen for the dose response curve,
there is still the question of the dose metameter. Different
lower bounds may result depending on whether the probit (say)
model is chosen with respect to concentration, log (concent-
ration), or some other function of concentration. There is
no need to worry about the specific form of the dose meta-
meter with the nonparametric procedure of this section.

The parametric dose response models assume a specific func-
tional form for the correction for background responses;
Abbott's formula (Finney, [11 ], ppl25-126) is commonly used.
However estimates of the low percentiles of the dose response
curve can be sensitive to the specific form of background
correction used. The procedure in this section does not
require the specification of any particular functional

form for background response.

The standard method of fitting a parametric dose response
model is by means of maximum likelihood estimation. The
theoretical justification is based on the assumptions of
large samples and asymptotic normality. These assumptions
may not be entirely satisfied in the case of relatively
small sample sizes or of many response group probabilities
at or near 0 percent or 100 percent. By contrast, the
method discussed in this section is based on exact small
sample theory and so is appropriate irrespective of small
sample sizes or extreme response rates. We also present

an alternative confidence bound calculation which may yield
higher lower bounds, however this alternative approach depe-
nds on large sample theory and asymptotic normality. Both
estimates are routinely calculated by our computer program.

The standard parametric probit or logit dose response curve
fits utilize the information from all the test concentrations,
including those high concentrations at the upper end of the
dose response curve, far away from the safe concentration.

In fact, these upper concentrations, with high response rates
are very instrumental in determination of the slope estimate
and assoclated precision estimate. These high concentrations,
thus carry considerable weight, through the specification of
the model, in estimating response behavior at the low concen-
trations. This is not desirable, since the same functional
form may not be appropriate throughout the entire range of
concentrations. By contrast, the method in this section

uses information only from those concentration groups where
the dose response curve is concave upward. This is generally
in the region below the median of the dose response curve.
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One assumption made throughout this section is that the response
results can be modelled with the binomial distribution within each tank
and that there is no evidence of tank to tank heterogeneity within treat-
ment groups. The responses can then be pooled across tanks within treat-
ment groups and we can assume a single binomial distribution for the
pooled responses within each treatment group. This distributional as-
sumption is made in our program.

What do we do if there in fact is evidence of heterogeneity with-
in tanks? There are three approaches to account for this situation. See
Section IX for detailed discussion. Briefly these approaches are:

1. Carry out analyses on a per tank basis rather than on a per
fish basis. This is the approach that is currently being
used by some researchers. However this approach greatly
reduces the number of degrees of freedom available for
analysis. 1 feel it is too comnservative.

2, Fit distributional models to the data that explicitely ac-
count for such tank to tank heterogeneity. Several such
models proposed are the beta binomial model (Williams [21])
or the correlated binomial model (Kupper and Haseman [ 22 ]).
These models generalize the binomial distribution model and
can be incorporated into a dose response curve estimation
model. The fitting would be by maximum likelihood estima-
tion and the statistical inferences would be based on asy-
mptotic normal distribution theory.

3. We can adjust the data to reflect the within tank correlation.
Namely tank to tank heterogeneity reflects itself as varia-
tion in response rate from tank to tank within treatment
groups. This can also be regarded as correlation of respon-
ses within individual tanks. The effect of such correlation
is to reduce precisions of estimates as compared to what they
would be in a binomial model, since the correlations will
usually be positive. This reduced precision can be account-
ed for in a workmanlike manner by reducing the effective
sample size within each tank. Namely suppose we have 4 tanks
per group, 25 fry per tank, and responses 1, 3, 8, 7 respecti-
vely. The effect of assuming a binomial model would be to

pool data across tanks within groups, sqq;ha;_ng have 100

fry and 19 responses. Thus § = .19 and VVar(f) =

V(.19)(1 - .19)/100 = .039. However correlation within tanks
inflates the variability by a factor h. (h>1). Reduce the
assumed sample size within each tank from 25 to 25/h. Cor-
respondingly reduce the effective number of responses within
each tank to 1/h, 3/h, 8/h, 7/h, for a total of 19/h. Thus

p = (19/h)/(100/h) = .19 still. However VVar(ﬁ)

N(.19)(1 - .19)/(100/h) = .039Vh. We then disregard the
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tank to tank hetercgeneity and utilize the binomial based
procedures, such as the computer program discussed in this
section.

This method of adjustment to effective sample sizes is
approximate and somewhat crude, however it has the advant-
age of simplicity and no special computer programs need be
used. Namely, the same methods that are utilized in the
absence of tank to tank heterogeneity are used in the pre-
sence of such heterogeneity, only with reduced sample sizes.
This allows for the use of standard analysis tools in non-
standard situations.

Looked at from the perspective of reducing sample sizes
to an effective sample size, carrying out analyses on a per
tank basis is like reducing the effective sample size in a
tank all the way down to 1. I feel that this is going a bit
too far.

In particular the methods discussed in this section can be
utilized following such adjustments to account for tank to
tank heterogeneity. Thus from now on in this section we
ignore the question of tank to tank heterogeneity within
groups and discuss our procedure, based on binomial dis-
tribution theory, as if there were no tank to tank hetero-
geneity.

We now consider the details of the nonparametric dose response

procedure.

Assume that
fied by the

cHL

P,=

k is such that o < cr, < Cr < UCR. The value of k is speci-
user of the program.
Response Rate
B
!
> CONC
C
o CO+B/L . k C,

LIPUULEPAL P SO s
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Let p , p, denote the true response rates at c,, ¢, respectively. Draw

a chord joining the points (co,po), (Cp’ pk). Let B denote the slope of
this chord. Thus ’
g ="k Po
ck - co

Upward concavity implies that the chord lies above the dose response
curve throughout the region (co,ck). The concentration at which this

chord crosses the value ¢ + L on the response scale is co + L/B. If
c, = 0, this concentration is L/B. Thus

<
<, + L/B Se

and so 1f we can place a lower confidence bound on ¢g + L/B, then this
also serves as a nonparametric lower confidence bound on e

Let p , ﬁl, ceesy ﬁr be the estimated response rates based on bi-
nomiai theory at concentrations Cy» Cps =ees C respectively. Then
Niﬁi.q' B(Ni’pi) i=0,1, ..., r when Ni is the number of animals on

test in the i-th treatment group pooled across tanks and 1 is the true
response probability within the i-th treatment group.

Let p, denote a lower confidence bound on p,, 3k denote an upper
confidence bound on Px. Such exact lower and upper confidence bounds
were derived by Clopper and Pearson [ 46 ] and are valid for small sample
sizes. Expressions for them are contained in a number of sources, in-
cluding Hollander and Wolfe [ 47 ], pages 23, 24. Charts for these con-
fidence intervals are given in a number of places, including Dixon and
Massey ([13] pp 501-504. Expressions for these confidence bounds are
given in Appendix AXVI.}.

An upper confidence bound, BU, on B is

",
B = pk -Po
U ck - co

Thus a lower confidence bound on cL is ¢ + L/BU. This confi-
dence bound is valid in small samples. °

The results in the concentration groups c +1° Sk + 2% v S,
can be used to improve on the confidence bound discussed above. The de-
tails of this procedure, along with a description of an alternative con-
fidence bound, valil in large samples, are discussed in the writeup "A
Computer Program to Calculate Nonparametric Lower Confidence Bounds on

203

e e Te e, .. . e co. B T e, - . .
e o, il L > 2 M S AL W ..} - — ISP U’ W Sy 3 [P PSP Sl T G T Sy . N i P WPy ey Sy W) LIPS WE VU R SRR .




Safe Concentrations in Quantal Response Toxicity Tests" by Feder and
Sherrill [41]. This writeup also describes in detail the use of a
computer program to implement this procedure. This document is included
as an appendix to this section. We illustrate the results of this pro-
gram by example in the remainder of this section and compare the results
of the nonparametric estimates of safe concentration with those based on
the logit or probit fits.

We first consider the DeFoe compound C fry mortality data.

We have seen from previous sections that there is no evidence of tank to
tank heterogeneity within treatment groups.

The various portions of the computer program output are numbered
and we discuss them in detail.

As a number of the parameter values used in the program were
chosen rather arbitrarily (e.g. UCR) we should regard the output as il-
lustrative of the algorithm's working rather than as a definitive ans-
wer in this particular case. We know that the algorithm will give con-
servative answers. The question is just how conservative the algorithm
is.

We know from the preliminary plots and tests of homogeneity that
there is no concentration related trend in embryo mortality. Such pre-
liminary analyses are very important to carry out, in order to gain an
understanding of the structure of the data. This helps us to interpret
the results of the procedures such as the one in this section.

The numbered descriptions below refer to the similarly numbered
descriptions in the computer printout for the DeFoe fry mortality data.

1. The title of the output. This title appears at the head of
every page.

2. The basic data are presented for each tank within each con-
centration group (treatment and control). Numbers of fry
per tank, numbers survived, and toxicant concentration are
given.

3. The number and the proportion of dead fry within each group
are given. These values are calculated by pooling across
tanks within groups.

4. Basic parameter values for the procedure.

L

response rate, over and above the control rate, at the
"gafe" concentration.
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k = the index of assumed upper bound on the "safe" con-
centration, Cp-

i.e. ¢ < ¢

<
[o] -

L - %k*
UCR = upper limit of the concave upward region in the dose

response curve.

A number of confidence bound calculations are carried out for
differing combinations of (L, kK, UCR). In this example UCR is specified
as 50. This places it just above the fifth treatment group. (ﬁs = ,225
66 = 1.000).

Thus r = 5 and e = 48.3074 in this problem.

L and k are varied. 1

.01, .05, .10 !
3, 4, 5. |

L
k
L= .01, k=3, UCR = 50.0 in the first calculation.

5. Simultaneous confidence interval adjustments are made in this
run by means of Bonferroni's inequality with familywise confi-
dence level 0.95. Thus all small sample confidence intervals
are calculated at individual confidence level 1 - (.05/4) =
0.9875.

6. Upper and lower confidence intervals are calculated at each
concentration group. These are exact, small sample confi-
dence intervals, calculated as discussed by Clopper and
Pearson using the expressions in Appendix AXVI.],

7. Straight line approximations to the dose response curve are
calculated using the combinations of treatment groups shown.
The specific method of calculation of the slopes is discus-
sed in the program documentation in Appendix AXVI.2. (Feder and
Sherrill [41]). For each combination of concentrations
CONC MEAN is the arithmetic average of the concentrations,
slope (normal approx) and slope (small sample) are the cal-
culated values of BU based on either asymptotic theory or
exact small sample theory. See the program documentation
for details.

8. Lower confidence bounds on ¢ are calculated using the mini-
mum of the slopes in paragraph 7 (in this case ,0056 for
the normal approximation and .0084 for the exact approach).
The values given under "calculated safe dose'" are cj + L/BU.
These are .0494 + .01/.0056 = 1.845 and .0494 + .01/.0084 =
1.24 respectively for the normal theory and small sample
calculation.
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Since we have taken k = 3, ¢, 3 ¢

K 5.9762 is an upper bound
by assumption. Thus

3

on ¢,

1.85

fi

EL(normal) = min(1.85, 5.98)

GL(small sample) = min(1.24, 5.98) = 1.24

Since the response rates are so extreme in 5 of the 6 groups (i.e. close
to 0 or 1) we have small expected frequencies in many of the cells and
asymptotic normal theory is suspect here. We will thus confine attent-~
ion to calculations based on exact small sample theory for the remainder
of the section.

9. We modify the parameters defining the procedure. The values
k, UCR remain at 3, 50.0 respectively, however L is changed
to 0.05. We thus define the "safe" concentration as that
which yields a response rate of .05 above control.

10. Proceeding through the same calculations as before we find
that the minimum slope (small sample) is .0084. Thus

¢ + L/BU = .0494 + .05/.0084 = 5,98

Since e = ¢y = 5.9762 we estimate
GL = min (c + L/BU, ck) = min(5.98, 5.98) = 5.98
11. We now alter L to 0.10, leaving k and UCR as before.

12. EL = min(cl + L/BU, ck) = min(.0494 + .10/.0084, 5.9762) =
min(11.954, 5.9762) = 5.9762,
Thus ¢, is constrained by overly conservative
assumption about Crr

13. We now set k = 4 (c4 = 14.8125) and set L back to 0.01

14. We now calculate slopes, but we have fewer to work with.
Namely we use o 4o Cg in various combinations.

15.

EL = min(c1 + L/BU, ck) = min(.0494 + .01/.0082, 14.8125) =
1.2625 !
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16.

17.

18.

19.

20.

21.

22,

23.

25.

5

We now change L to 0.05, leaving the other parameters as
before.

GL = min(c1 + L/BU, ck) = min(.0494 + .05/.0082, 14.8125)
min(6.1145, 14.8125) = 6.1145

We change L to 0.10 leaving k, UCR unchanged.

EL = min(c1 + L/BU, 14.8125) = min(.0494 + .10/.0082,
14,8125) = min(12.1796, 14.8125) = 12.1796

We now change k to 5 and set L back to 0.01.

Thus Cp = g = 48.307