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Research has been carried out in the areas of (1) Saturation spectro-

,i: scopy including effects of level degeneracy, (2) Heating and cooling of
{\ vapors using collisionally-aided radiative excitation, (3) Creation of
‘%: electronic state coherences in laser-assisted collisions, (4) Two-level
?S problem plus radiation pulse, (5) Photon as catalyst effect and (6)

B Collisional processes in 4-wave mixing experiments.,

53 (1) Saturation Spectroscopy Including Effects of Level Degeneracy
(C. Feuillade, P. Berman).

X Owing to a favorable resonance transition frequency, Na has been the
favorite choice of experimentalists in laser spectroscopic studies. The
fine and hyperfine structure of Na leads to a multitude of levels, even in
i the Na ground state. There have been no rigorous calculations that properly
= incorporate the effects of fine and hyperfine structure, collisional effects
and optical pumping effects with Na as the active atom in a laser spectro-
e scopy experiment. However, it is clear that optical pumping of the ground
state, in particular, can severely modify the laser spectroscopic line
shapes.

Due to the fundamental importance of the Na system in laser spectro-
;f scopy, we have begun a prcject to include all fine and hyperfine structure
N of the 3S, 3P and 4D levels of Na, interacting with two laser fields.

Both steady state and transient solutions will be sought, to clearly

‘}j isolate the effects of optical pumping. Eventually, collisional effects
-3 will be included.
- The first stage of this calculation has now been completed.1 Using

both an irreducible tensor and standard (m-basis) representation for atomic
density matrix elements, we have derived expressions for the probe absorption
line shape when a pump field of arbitrary strength and polarization drives

-, a transitimbetween two levels (ecach containing a number of degenerate
magnetic sublevels) and a probe field of arbitrary strength and polari-
zation drives a coupled transition. In essence, the calculation is one

e describing the saturation apectroscopy of three-level systems including

o effects of level degeneracy. The probe absorption line shape 18 calculated
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for each velocity subclass of atoms but, at this stage o. our wcrk, no
average over the atomic velocity distribution has been included. Results
are presented for weak probe fields as a function of pump field strength,

polarization and detuning. Effects of optical pumping are included.

The results clearly display the effects of pump field strength (Rabi
splittings), pump field polarization (position and number of Rabi split
resonance peaks) pump field detuning (position of resonance peaks) and
optical pumping (relative strengths of the resonance peaks). We have
shown that it is advantageous to use the m-basis rather than the irreducible
tensor representation provided that the laser fields are either circularly
or linearly polarized, if collisional effects are unimportant. We have
also shown how to predict the position of the resonance peaks using a

dressed-atom approach.

As they stand, the calculations can be used to describe the inter-
actions of laser fields with an atowic beam. The next step in the calcu-
lation will be to include an average over an atomic velocity distribution

80 that laser fleld-atomic vapor interactions can be properly modeled.

(2) Heating and Cooling of Vapors Using Collisionally-Aided Radiativea
Excitation (E. Giacobino, P. Berman).

Several years agoB, we predicted that cooling or heating of an atomic
vapor could be achieved using Collisionally-Aided Radiative Excitation
(CARE)., In Prof. Stroke's laboratory, we are now trying to carry out an

experiment of this type. The reaction under investigation is

Na (35 ) + X + A0 + Na (3P ) + X

1/2

where X is8 a rare gas atom.

1/2

The energy defect between the photon energy il and the 3P1/2 - 381/2
transition frequency is provided by a corresponding change in tha trans-
lational energy of the Na ~ rare gas system. To probe this cnergy change,
the velocity distribution of the excited state Na atom is monitured using
the trancition to the 4D state. Calculations were made which indicated

that heating of the Na should Le detectable by this scheme using a‘positivc
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energy defect and heavy rare gas perturbers. Experimental confirmation of
the heating effect has now been achieved.a* With Ar or Xe rare gas per-
turbers, the excited state Na velocity distribution was considerably
broader than the thermal one, while with He perturbers [the "light" He
takes up the excess energy rather than the "heavy" Na] the normal thermal

width was observed.

We are still interested in producing a macroscopic heating or cooling
of the vapor using CARE, It may be possible to procduce such an effect
using a high density sodium cell. In that case, CARE is produced via
resonant collisions which have a relatively large cross section. Order of
magnitude calculations have been carried outs* which indicate that measur-
able temperature differences can be achieved with Na densities of order

lOlslcm3. An experimental test of the predictions is envisioned.

(3) Creation of Electronic State Coherences in Laser-Assisted

Collisions. (P. Berman, E. Glacobino).

We have proposed a new method for generating electronic state co-
herences using laser assisted collisions.ﬁ* Both Collisionally-Aided
Radiative Excitation (CARE) and Radiatively-Aided Inelastic Collisions
(RAIC) can be used to generate such coherences. Two pulsed laser fields

are incident on two atoms undergoing a collision.

In CARE (Fig. la),

J
0
A

Fig. la

* An asterisk on u reference indicates that the reference is appended to
this report,

-3 -




the reaction is

]
A1+A . +m+m1-»A1(23) +A1.

where A and A' are the atoms undergoing the collision and the notation
A(1]) 1s meant to indicate a coherence between states 1 and j. The fre-
quency difference 91 - Q must be close to the resonance frequency w32 for

the coherence to be generated.

In RAIC (Fig. 1b),

-— 3!
2
------- 2'
I — L
A A
Fig. lb

a typical reaction is A, + A!, + i + ﬁﬂl + A, + A'(2'3') producing a

2 1 1
2'3' coherence in atom A'. This is a somewhat novel way to produce
electronic state coherences. In certain cases, it may be possible to
Produce coherence between states of opposite parity, which could then

radiate sum frequency radiation. This process is under investigation.

(4) Two~-level Atom Plus Radiation Pulse (E. Robinson,
P. Berman).

Research continues in the fundamentally important problem of a two-
level system coupled by a radiation pulse. In the large detuning limit,
we were able to show that certain classes of coupling pulses having the
same asymptotic Fourler transforms will yield transition probabilities
that are related to each other by a simple scaling transformation.7*
Methods for evaluating the transition probabilities in the large-detuning

limit have also been developed, and we are trying to compare our regults

v
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vith those of other authors.8’9 In particular, if we would like to under-
‘atand the details of Crother's calculations8 to see if they can be applied
to the general theory of laser-assisted collisions.

Work continuwes on an eigenvaluc method for solving the two-level
problem. LEigonvalue expansions for the probability amplitudes have beern
obtained, approximate positions of the eigenvalues (i.e. those field
strengthslleadlug to zero transition probability) determined, and ex-
pressionus for the transition probability to third order in the detuning

were derived.m*’11

(5) Photon as Catalyst Effect (A. Lau).

Using eunperimentclly determined values for energies, ticnsiticn

woments and decsay rates, the rate for bound-continuum transitions in 12
12%

resulting from the photon as catalyst effect Lave been calculated.
Q: By stimulated ecwission, the laser field takes an 12 bound state to a3

. virtual interiediate state from which a trancition to the continuum can

ii occur by the zlsorption of another photon. Therc is no net photon alLsorvtion -

the laser field scts as a ''catalyst'.

(C) Collisional Processes in 4~Wave Mixing Experiments. (P. Berman)

In colleboratiou with J. Lam (Hughes Research), we are continuiry to
ettept to develop & concistent theory of collision-induced structure in
L-vave mixing expericcents that was discussed in last year's Annual Repo::.13
That there ie ntrill comsiderable erxperfuwental interest in thic areca i

evidenced by th: recent werk in Bloembergen's gtoup.14

(7) Miccellernoous

15*
Our rev'ew article on lascr-ascisted collisions has been published.

—— —— . ——— -
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COMBINED RADIATION FIELD - COLLISIOUAL EXCITATION OF
ATOMS

PAUL R. BERMALI and EDWARD J. ROBINSON
Physics Department, Nev York Universitiy, b Washington
Place, New York, New York 10003 U.S.A.

Abstract The physical principles uncderlying the come-
bined radiation field -~ collisionali excitation of atoms
are reviewed. A discussion of both collisionally-
aided radiative excitation ("opticel collisions") and
radiatively-aided inelastic collisions ("radiative
collisions") is presented.

INTRODUCTION

The purpose of this paper is to present a simple discussion
of atomic transitions induced by the simultanceous acticn of
a laser field end a collision.

Consider a reaction of the general form

Aj + Bi +hQ > AL Bf, i(1)

where Aj £ and Bi ¢ are internal states of two atoms A and
-9 14

B undergoing a collision and Q is the frequency of en

aprlied radiation field. If, in the absence of the colli-

sion, onc finds

Ai + hQ + Ai

B. +8Q + B
i i

while, in the absence of the external field, one has

Ay # By = Ay + oy,

R A 2 Lo o e s : adubae o aaac R PRV AR € S afeeT S g
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P. R. BERMAN AND E. J. ROBINSON

the reaction (1) is of a type that requires the simulten-
eous presence of both a collisionel interaction and exter-
nal radiation field if either or both final atomic states
are to differ from the initial ones. One may then speak of
"laser-assisted collisions" or "collisionally-assisted
light absorption". These are processes which have been the

focus of a large number of experimentallfl6

caln-h6

and theoreti-
In this work,
we discuss the physical principles underlying such reec-

investigations in the last decade.

tions; more'detailed theoretical treatments msy be found in
the literature.

Reactions of the form (1) may be further classified
into two categories. The first of these we refer to sas
Collisionally-Aided Radiative ExcitationS! (CARE) and has
been designated by others as "opticael collisions".19 The

CARE reaction is easy to visualize (see Fig. 1). An atom A

Q 4 w B,

A

A schematic representation of the CARE re-
action A+ Bl+-ﬂ9 Ayt Bl. A laser field of fre-
quency {1 is incident on atom A and can drive the 1-2
trangition when atom A undergoes a collision with a
ground state perturber B.

Figure 1.

i5 irradiated by a laser field whose frequency fl is close

16
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION

enough to that of an atomic transition for a two-level

approximation to be valid. The field's frequency is de-
tuned from exact resonance by an amount A which 1s large

f compared to the natural end Doppler widths of the transi-

! tion, but small compared to the thermal energy divided by .

‘ With such a large detuning, the probability for the field 4

to excite atom A is negligibly small. However, if A under-

&oes a collision with atom B while interacting with the

! field, the probability for excitation cen be greatly en-

The energy mismatch #iA between the photon and

) hanced.

atomic transition energies is compensated for by a corres-
ponding change in the translational energy of the colliding
atons,

The second class of reactions of the type (1) we refer
to as Rediatively-Aided Inelastic Collisions>! (RAIC) and
has been designated by others as "radiative collisions"17
or "Lf:f;CET - Laser Induced Collisional Excitation Trans-
fer".

Bi and, as & consequency of the combined atom-atom and atom-

Atoms A and B are prepared in initial states Ai end

field interactions, they emerge in some new final states
Af and Bf. The process is depicted schematically in Fig. 2.
The transition between initial end fiual states is

assumed to be highly improbable or energetically forbidden
in the ebsence of the applied field. Thus, one can view
the photon as providing the energy to assist the inelastic
transition Ai + B, * Af + Bf. In general the RAIC cross-
section will be largest if the photon frequency 1s chosen
t0 be resonant with the energy difference between initial

and final composite atomic states. However, as in CARE,
significant excitation can occur under off-resonance condi-

tions, with the epergy mismatch again compensated by &

17
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vanish as

cos(ft).
—_— f

transitic:

allowing -
the fielc.

3 t:..oo'vr.

state 2 ¢

‘ the atoun-
f i \ v(t)
A B | where )i i:

Schrodinge
Figure 2. Atoms A end B undergo a collision in the pre- tions for
sence of radiation. The field frequency Q is approxi- presentati
! mctely equal to & transition frequency in the composite component:
3
; AB system. The RAIC reaction is of the form 8 =
! . 15
Ai + Bi + A0 -+ Ag + Bf. :
é2 =
change in translational energy.
. Before exarining CARE and RAIC in greater detail, it is ‘ where 4 =
‘ useful to review the problem of the interaction of a radia- \ coupling v
: tion pulse with a two-level atomic system. 1 x(t) is s
j i The §
, ATOM + PULSE i following
! : frequen
] In this section, we cxamine the interaction of a two-level , 4 cyr
' s nents c¢h
! atom with a radiation pulse whose electric field of polari- pone
! a : of states
; zation € may be represented by 2 )
‘ { Justifying
i Ay B
{ E(t) = EE_(t)cos(at), | detuning b
I fication, !
3 The smooth pulse envelope function Eo(t) is assumed to ; ’1
¢ smooth pul
i
|
: 18 ]
i !
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COMBINED RADIATION FIELD -~ COLLISIONAL EXCITATION

vanish as ¢ * *» and to vary slowly in comparison with
cos(t). The difference |Q -~ w|, where w is the atomic
transition frequency, is taken to be much less than (w + Q),
allowing one to neglect the "anti-rotating" components of
the field. For an atom which is in its lower state 1 at

t = - ©, we seek the probability that it is excited to

state 2 following its interaction Qith the pulse. Taking

the atom-field interaction to be
v(t) = -p°E(t),

vhere )} is the atomic dipole moment operator, one may use
Schrodinger's equation to obtain the time evolution eque-
re- tions for the state amplitudes., In the interaction re-

' presentation and with the neglect of the anti-rotating

e components of the field, one finds
- s iAt
él = ~iy(t) e a, ' (2a)
_ -1At
&, = ~ix(t) e &), (2v)
is j vhere A = §-w is the detuning, x(t) = qu(t)/Qh is the
a~ : coupling porameter, and u = <l!£}€|2> = u?, The frequency

x(t) is sometimes referred to as the Rabi frequency.

The problem is conveniently described in terms of the
following peremeters: (1) the pulse duration T, (2) the
frequency t = X(t)/x(t) which determines the frequency com-
ponents characterizing the pulse, (3) the natural lifetimes

of states 1 and 2 which ere taken to be much longer than T,

Justifying the omission of decay terms in Eqs. (2), (L) the

i detuning A, and (5) the Rebi frequency x(t). As a simpli-

1

fication, we set £ = T ~, which is a good approximation for

snmooth pulses.

' 19
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P. R. BERMAN AND E. J. ROBiNSON

If the detuning and envelope function are such that
[a|T >> 1, the pulse contains negligibly small Fourier
components at the frejuency needed to compensate for the
detuning. In this limit, the pulse is said to be adiabatic.
That is, the excitation probability following the pascage
of the pulse is vanishingly small, i.e., proportional to
It is inter-
esting to note that the excitation probability remains
exponentially small regardless of field strength x(t), re-
flecting the fact that the Fourier components needed tc
As the field
strength x{t) increases, the excitation probability, vhich
is proportional to A% = lf:ox(t)dtl2 for A% << 1, exhibits
some type of saturation behavior for A2 > 1, Thus, with-
out some additional interaction, an adiabatic pulse cannct
The "additional interaction"
can be provided by a collision.

exp(-2]|A|T) for typical cnvelope functions.

effect the exciteticn are essentially sbgent.

appreciably excite the atom.

CARE

Assume that the atom undergoes a c¢ollision with a perturber
during its interaction with the adiabatic radiation pulse.
This collision occurs on a time scale T (typically
107Y%sec for the therzal atoms under consideretion herc)
which is short compered to T (typically 10"%ec). The

perturber can be considered as providing an effective time-

dependent potential which modifies the energy separation of

states 1 and 2 in a transient manner. If'ﬁvi(t) is the
collision~induced modification of level i's energy, then

the instantaneous transitiorn frequency is

w(t) = w+ Vls(t),

o
e et ea
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION
where
VLS(t) = Vz(t) - Vl(t).

It is implicitly assumed that V,(t) # V,(t), as is gener-
8lly the case if levels 1 and 2 belong to different elec~
tronie configurations.h7 The collision doés not have suffi-
cient energy to covple levels 1 and 2 in the absence of
the field (see Fig. 1). Coee

The effect of the collision-induced transient vari-
ation of the tramsition frequency 1s to introduce appre-
ciable Fourier components into ihe excitation mechanism st
frequencies up to w, = T;l >> T"l. These added Fourier
corponents leed to a new contribulion to the excitation
probability which is much larger than the exp(-2|A|T) term
associated with the atom-adiabatic pulse interaction. This
"collisionally-assisted"Acontrihution leads to & CARE re-
action of the form

A1+Bl+‘hQ*A2+B2.

The state amplitudes now evolve according to
&) = -ix(tdexplist- /v (t")at' a, (3a)
- . t ‘
8, = —ix(t)exp[-iAtﬂf:'VIS(t Jat'Ja,, (3b)
subJect to Lie initial conditions
8,(=) = 1, ay(==) = 0. | (3c)

In order to discuss CARE, it is useful to again refer
to the various time scales in the problem. The collision
duration, tc(b,vr) = b/vr, where b is the impact parameter
and V. the interatomic speed associated with a collisgion, ig
an important time parameter. Although Tc(b,vr) varies

2]
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from collision to collision, we can define a representative
time T_ = Tc(bo’;r) in which ;r is the average interatomic
relative speed and bo is an impact parameter chosen to
guarantee that T, is "representative". Generally speaking,
bg Will be that impact psrameter for which the phase

-

I oV (b,?r,t)dt takes on a value of order umity; & typi-
cal value for bo is lO-ch. The dimensionless parameters
vhich enter our considerations are IAIT which turns out to
be unimportant, IAITc which criticually categorizes the de-
tuning, x(t)T which represents the strength of the atom-
field interaction before and after the collision, and XT
vhich represcrts the strength of the atom-ficld interaction
during the collision. The field strength x(t) is approxi-
mately constant during a collision and X represents some
characteristic value of |x(t)| for the pulse. As noted

above, TC/T << 1,

Weak Fields: T << 1

For weak fields, the excitation probability cezn be calcu-
lated from Eqs. (3) using first-order perturbation theory.
The results depend critically on the value of IAITC.

ir IAch << 1, the only change in state amplitude a,
during the collision arises from the level-shifting term.
The collision acts to provide a sudden change in the phase
¢ of a,; given by ¢(b,vr) = fj; VLS(b,vr,t)dt. This im~
pulsc destroys the adiebatic response of the two-level
system, and gives a final state amplitude

8

t ' 00 - '
o= -l S x(tr) e apr 4 10 fo X(xe 18t q¢1]

-18te 1¢/2 .

= - 21[x(t )/b]e sin(¢/2) ,

vheretcjs the time at which the collision occurs. Set-

ting |x(t )| 2 X, one obtains the excitaticn probability

1]
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COMBINED RADIATION FIELD ~ COLLISIONAL EXCITATION

la(b,v_,®) | %= 4(x/8)%81n" [6(b,v ) /2] (k) X
and the corresponding CARE cross section
00
= 2nf°|a2(b,vr,w)|2bdb

oc(vr) (5a)

2(x/8)%(m2) (50)

The result (L-5) is known as the "impact limit" since T, is
The im-

pact cross-section is independent of the sign of A since

smaller than any other time scale in the problem.

the Fourier transform of the collision interacticu is flet
over the range of A rcpresented by IAITc << 1.

The impact result can be viewed in an alternative
menner. If we were to suddenly interrupt the atom-radi-
ation pulse interaction at any time tc' we would, on
average, find a population [x(tc)/A]2 in the upper state.
The CARE cross-section is equal to the product of this ex-
citation probebility end the collision cross section
(= nbe).

: o

if !AITC > 1, the phase induced in &, during the colli-

sion by the detuning is not negligible, aﬁd the impact re-
sult is not valid. As we have seen, one consequence of the
collision is to shorten the relevant time from T to Tc, §0O
that appreciable Fourier components up to T;l are intro-
duced. If this were all that occurred, one would expect a
CARE transition probability that varied as exp[-2|A|
Tc(b,vr)]. However, there is an additional effect, whose
origin may be seen in Fig. 3, which modifies this result.
In drawing the energy levels in Fig. 3, we have chosen
VLS(t) < 0; the case for arbitrary VLS(t) mey be treated by

an obvious generalization of the method given below.
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Figure 3. Energy levels of atom A during a collisiou.
"Instantaneous resonances" [ = w(t)] can occur for
detunings A < 0 only; for A > 0, the collision detunes

the atomic transition further from resonance.

The CARE cross section is a strongly asymmetric
function of A when_lAch > 1. For a given A < 0, colli-
sions can always produce w(t) = Q for short times during
the collision; = i.e., the systems become instantaneously
resonant with the field. Such times are labeled t, and

1
t2 in Fig. 3. The phase of a_ varies rapidly owing to

the factor exp(-iAt). except it t, and t,, where the
oscillation is suppreésed by the factor exp [i

f:vls(t')dt']. The major coptributions to the excitation
amplitude are provided by there times of stationery phase.
The corresponding CARE cross~section varies as an inverse
power law in |A|, instead of the exponential that charac-
terizes other regimes. The fact that the points of

stationary phase provide the major contributions to az(w)

" is linked to the condition lAch > 1. That is, the (pulse

+ collision) does not contain the Fourier components at
A to eppreciubly excite the atom; in this case the in-

stantaneous resonances become a critical feature. In the
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impact limit, the system of (pulse + collision) does
have appreciable Fourier coefficients at A so that the
presence or absence of instantaneous resonances does not
affect the excitation amplitude.

In contrast to the A < Q case, for A > 0 the colli-
sion pushes the levels further awey from resonance (see
Fig. 3). The net result of this level displacement is
! that the nonresonant side of the CARE cross section falls

{i : of{ exporentially es a fractional power of IA]T s €ven
ﬁzlision. after one averages over impact parameter.lg’h6’ﬁg’50

'« for Thus, the CARE cross-section exhibits a marked asyunetry,
¥ jetunes with an inverse power law dependence on |A| on one side,
: end an exponential decay on the other. A typical pro-

file is shown in Fig. L.

.c

‘olli_ . . . ’ r
wluring
;xeously

; and 10} .________—ﬂ’, i

- o o
~® E;

iy 107'% -
" tation

. phase. e

averse . -6 =3 0 3 6
;'-.jharac- . ATC
E‘ az(w) Figure 4. CARE crosc section as & funﬁtion of IAlrc

(pulse ' in the veak field limit, Xt = 1.0x10" . This cross
:°8 at section ig drawn for a level-shifting term which varies
jl in- as RO (R i5 the interatomic separation) and a value
:;In the b, = 1.110" Tem (see Ref. 37).
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It should be noted that CARF cross~-section in the
veek-field regimre can also be obtained using traditional
pressure broadening theories of linear absorption or

em.istsion.hg'52

Strong Fields: YT > 1

As long as x < |A|, the previous perturbative treatment is
valid and the CARE cross-section is propor*ional to x2.
If both XT > 1 and x > |A|, the perturbation theory fails,
and a strong field theory is required. Spsce limitations
preclude a detailed description of sucu a theory, vhich
is conveniently developed using & quantized-field -
dressed-aton approach, but we cite some of the results.

For x > |A] and X, < 1 (which implies IAltc << 1),
one is still in the impact domain since the collision
time Te is the shortest time scale in the problem. 1If
the atom - rediation pulse interasction is interrupted at
some arbitrary time, one would find an upper state popu-
lation approximately equal to¢ 1/2 since the field is
sufficiently strong (XT > 1) to lead to equal populations,
on average, in levels ) and 2. (This factor of 1/2 should
be compared with the average population (x/A)2 found in
the weak field case). Thus, in this limit, the CARL
cross-section is approximately equal to nbglz, indepen-
dent of both A and Y.

For x > |A| anad XT, > 1, en impact theory can no
longer be used., During the collision, the field is strong
enough to lead to rapid oscillations (so-called Rabi
oscillations) in the state amplitudes. Since x > |4}, .
these Rabi oscillations provide the dominant phase vari-
ation for the state amplitudes; the effective detuning in
the problem becomes X instead of JA|. There is no possi-
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION ‘ f

bility of "instantaneous resonances” herc¢; consequently,
the excitation probability varies as exp[-2xtc(b,vr)].
Just as in the weak-field result for the 4 > 0 case, the
CAKE cross-section obtained after averaging over impact
parameter falls off exponentially as a fractional power

19
of xrc.

RAIC
A typical RAIC reaction of the form

A, +B, +5Q +A_+ B
i b g

i b

is illustrated in Fig. 2.
final state in the composite AB system, a number of inter-

In going from the initial to
mediate states may play & role., However, by summing over
these states and neglecting the effect of small variationms
in nonresonant energy denominators, one mey reduce the
problem to that for a two-level system coupled by an
effective operator U(t) which is proportional to the
product of the radietion field amplitude and the colli-

sional interaction., Explicitly we write

U(t) = n(x/w) vc(t),

vhere & is some representative frequency denominetor
(w >> x) and Vc(t) is the collisional interaction. Since
U(t) = 0 in the absence of a collision, the RAIC inter-
action occurs during the collision only. Thus the pulse
time T plays no role at all in RAIC = the relevant time
scale in the problem is the collision duration To

The initial and final state amplitudes for the com-
bined AB system (see Fig. 2) obey the equations
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& = -A(x/@V (t)explibt - 113V, (t")at'] a, (6a)
&, = ~1(x/W)V_(t)exp(-1at + if:'VIs(t')dt'] 8, (6b)
vhere
4 =10 - (E, - E,)

and VLS(t) is the same collisional energy level shift en-
countered in CARE. An additional contribution to level
shifts resulting from the AC Stark effect will not be dis-
cusged here, but can be included by redefining the.energy
levels at their Stark-shifted values.

Weak Fielgds
A perturbative treatment is valid provided |af(t)| << 1,

*in vhich case

lag(=)] = (x/@) /7, v (t)exp[-1at + if:VLs(t')dt']dtl.

1 IAltc << 1, the amplitude for excitation is independent
of A. For IAITC > 1, one again finds an asymmetric line ow-
ing tothe effects of instantaneous resonences which occur
for one sign of A but not the other.53
The functicnal forms of Vc(t) and VLS(t) determine
vhere the maximum RAIC cross section occurs as a function
of A. In a typical situation, the time-dependecnce of
Vc(t) and VLS(t) is roughly similar end the maxi~wm RAIC
cross section occurs for A = 0, However, the RAIC maximum
may occur for A ¥ O if the duration associated with Vc(t)
is much smaller than that associated with VLS(t), as
might be the cese in RAIC charge transfer33, vhere, for
an interatomic separsticn R(t), Vc(t) « exp[-CR(t)],
vhile VLS(t) « [R(t))™™. Under these conditions, the
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collisional coupling is significant only when VLS(t) is
producing a relatively large variation in the atoms'

energy levels. Since the effective level separation of
- Ei
time that the collisional coupling occurs, it is not sur-

the composite AB system is no longer Ef during the

prising that the maximuxm RAIC cross section can be dig=-
placed from 4 =

Strong Fields

To get some idea of strong field effects, consider Egs.
(6) in the limit that A = 0 and with the level-shifting
term set equal Lo zero. In that case, the upper state

probability varies as

lay(b,v @) |% = ain[ep(v,v )],

where

op(b,v ) = (x/B)7 v (b,v_,t)at.

The RAIC cross-section is equsl to ﬂb:
pact parameter for which ¢ is of order unity.
power law potential V (t) « [R(t))™®, n > 3, o © x/bn'lv
and b2 with a = (n - 1) 1" e RaTC

cross-section, which is proportlonal to x for week
2/(n-1)

where bR is an im-
For 8

r
varies as (x/v y2e

fields, varies as ¥
intensity for n=3) in the strong field limit.
fields, owing to the fact that bR « xu. large impact
pacameter collisions only are important and vLS plays &
The line width is de-
termined by the inverse collision time T;l = vr/bR «
Vra+1x-a; the RAIC profile narrows with increasing field
strength.

(i.e. as the square root of the
For strong

minor role for such collisions.
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strength., If bR > bo’ one is in the strong field region

since the upper state amplitude saturates at radii where

. . E o
the level-shifting effect is unimportant. On the other E—£E§§E£=§
hand, for bR << bo’ the collisional coupling can not 1. S. E. Va;:
overcore the effects of level-shifting and a perturbative t;?i:’ f'
S83Ers o
treatment is valid. Typicallyh, the transition from weak T. Jaecer,
to strong field occurs for field strengths of order 2 éosk’ri?Y
. Wo luaicC
108W/cm2. The strong field effects in RAIC and CARE are Herris, I
fundamentally different. In RAIC, the upper state proba- 3. igé ?ig??
bility is truly saturated by the field-collisional inter- L, S.I. Herr.
J. Lukesio
action. In CARE, on the other hand, the upper state and’G LA
probebility amplitude is always small if xTc >> 1, It is by H. Wel
Y bl
the rapid Rabi oscillations that lead to & decreasing 5. ot
CART. cross section with increasing ) when XTe >> 1 and Green, D.
N Wright, a:
X/l > 1. Seventh 1
edited by
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basis calculation. For a meaningful theoretical des- 10. A. M. Bon.
cription of CARE and PAIC, one nust use accurate inter-~ Fedorov,
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atomic potentials and sverage all results over the spatial 1 gO9D(1é;jv
and temporal extent of the laser pulse. It may be noted, 595 (1977’
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however, that experimental investigations of CARE and gevL A ?i
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Theory of electronic state coherences produced in
combined laser field - collisional reactions

*
P.R. Berman and E. Giacobino

Physics Department, New York University, 4 Washington Place, New York, New York 10003

A method for producing electronic state coherences
using either CARE (Collisionally-Aided Radiative Excitation
or "optical collision") or LICET (Laser-Induced Collisional
Energy Transfer or ''radiative collision") is proposed. Two
atoms, A and A', collide in the presence of two pulsed laser
fields having frequencies i and Ql. It 1s shown that, by
choosing (Ql $ Q) such that an energy conserving transition
can occur in the composite AA' system, one can create an
electronic state coherence in the A or A' atoms, The co-
herence can be produced between states of the same or of

opposite parity; 1f it is between states of opposite parity,

coherent emission at frequency (f t ﬂl) is generated.
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I. Introduction

Over the past ten yearsl, there has been increased interest in
reactions of the form

A1+A;, + 62 A +Aé, Q)

in which two atoms or molecules (A and A') collide in the presence of a

laser field and undergo a transition from initial state (AiAi') to final
state (AfAé,). It is assumed that the energy difference between the final

and initial states in each of the atoms as well as in the combined system

is such that no transition occurs in the absence of either the collision

or the radiation field. Since the simultaneous action of both the collision and
radiation field is needed to produce the transition, we refer to reactions

of type (1) as Combined Field-Collisional Transitions (CFCT). It has been

common practice to further separate the CFCT into two categories.

The first of these, Collisionally~-Aided Radiative Excitation (CARE)Z,
(also referred to as "optical colliaions"3),chatactetizes processes in which
the internal state of one of the reactants remains unchanged. That is,

CARE reactions are of the form

A1+A',+ﬁQ*A2+Ai, , (2)

subject to the condition that direct excitation of atom A by the radiation
field in the absence of the collision is energetically forbidden., 1In CARE
the collision provides translational kinetic energy to compensate for the

mismatch between the field frequency f} and the 1-2 transition frequency of

-~ " At S dnand, Y A



" atom A. The CARE cross-section falls to zero for atom-field detunings
k,
which correspond to energies that are larger than those available in the

colliding atoms' center-of-mass frame.

. The second type of CFCT, Laser-Induced Collisional Energy Transfer

(LICET)4 [also referred to as Radiatively- Aided Inelsstic Collisions
(RAIC)2 and "'radiative collisions"sl, characterizes processes in which
both reactants change their internal states [see Eq. (1)]. The photon
energy il is approximately equal to the difference between the final and
initial state internal energies of the atoms. As such, the radiation
field provides the energy to drive what would normally be an energetically

forbidden inelastic collision.6

In principle, CFCT's can be produced using either CW or pulsed laser
fields. To date, LICET has been seen with pulsed excitation only, while
CARE has been observed with both CW and pulsed laser fields. In this work

wve ghall consider situations involving pulsed laser fields only. The

transition from initial to final state occurs during the application of
the pulsed laser fields; we calculate the final state density matrix
elements characterizing the atoms immediately after the passage of the

radiation pulses.

The calculation of CARE and LICET cross sections with pulsed laser
excitation has been the subject of a large number of theoretical and ex-
perimental -tudies.1 In a typical calculation or experiment, one determines

the excitation cross section as a8 function of the strength and frequency
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of the radiation field, and attempts to gain some information concerning
the initial and final state A-A' interatomic potentials. While most of
the calculations and experiments have concentrated on final state popu-
lations, there has been some recent work devoted to the investigation of
the possibility of creating coherences using CFCT with pulsed laser

fields. It has been shown7'8

that, in cases vhere the final states con-
sist of a number of degenerate magnetic sublevelg, CFCT can create co-
herences among these sublevels. The existence of such CFCT-induced
magnetic state coherences has been experimentally established for both

CAR£9 and LICET.lo

In this article, we present a theory of a new type of CFCT, in which
it should be possible to produce electronic-state coherences using pulsed
laser excitation. The types of reactions to be considered are conveniently
represented in Figs. 1-3, 1In all cases, atoms A and A' are undergoing
a coliision at some time during the application of one or more laser
pulses. The laser pulse durations T are much greater than the duration of
a collision, but much smaller than the lifetimes of the relevant atomic levels.
Following the pulses, we wish to determine whether or not any electronic
state coherences have been created by the CFCT. By convention, a state
written as A(fg), implies that the A atoms possess a coherence between

states f and g.

Corresponding to each figure, one can write a reaction that could
possibly lead to electronic-state coherences. For Fig. 1, the CARE re-

action 1s
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Al + Af + 1R+ A(12) + Ai. R (3)

for Fig., 2, the CARE reaction 1is

L 19 ]
A1+A1,+‘hﬂ+m1*A(23)+A1,, (4)

and, for Fig. 3, the LICET reaction is

L ] ]
Az + A1.+ "+ ﬁnl - Al + A'(2'3) . (5)

A calculation of the actual macroscopic coherence, if any, generated
by reactions (3-5) is given in Secs. III and IV, following a discussion
in Sec. II, of the approximations and assumptions of the theory. In Sec. V,
we indicate methods for detecting the CFCT-induced coherence., The choice
of detection scheme depends on whether the coherence is created betveen

states of the same or of opposite parity.

The level scheme of Fig. 2 has been analyzed for CW laser fields
by Bloembergen and covorkersll, Grynberglz. and other313; in some sense,
our analysis for this case represents the pulsed field analogue of their
work. It may also be noted that our theory,while containing some features
found in calculations involving "adiabatic following" in two and three-
levels aystemsla, differs considerably in spirit and content from those
calculations. There is a somewhat closer connection between the under-
lying theory in our work and that exposed in the recent article of
Agarwal and Coopetls, but the approach and emphasis of the two calculations

differ appreciably.
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I1. Notation, Approximations and Assumptions

The main goal of this article is to illustrate the manner in
which CFCT using pulsed laser fields can create electronic state co-
herences. Consequently, we shall make a number of assumptions and
approximations to simplify the theoretical development. Most of these
assumptions can be relaxed in & more complete theory, but the basic

physical content of the theory would remain unchanged.

Before listing our assumptions and approximations, it is useful to
introduce some notation. The atoms A and A' of Figs. 2 and 3 are sub-
jected to two laser pulses having amplitudesg(t) and El(t). frequencies
{ and Q;, and propagation vectors k and Il,respectively. (The atoms of
Fig. 1 are subjected to one pulse only). The laser pulses have duration T
wvhile the collision duration is Tee The detunings A and A1 refer to
atom-field detunings for single-photon transitions [e.g., in Fig. 2
b= 0= wy)y By =0y wgys
Rabi frequencies [evaluated using values of |£(t)]| or |E&(t)| averaged

= (Ei - EJ)/h] and x and ), refer to the

over the pulse duration] for single-photon transitions. Spontaneous
decay rates are denoted by Y and collision rates by I'. The most probable

atomic speed is u.

The following assumptions or approximations are made: (1) The laser
pulse duration is short enough to neglect any spontaneous emission during
the pulse,

YT << 1. (6)
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(2) The detunings |A | and |A1| are sufficiently large such that

lal T>>1 5 [a] 71> 1. %))

This condition will ensure that there is negligible excitation in the
absence of the collision provided that we also require |A| and |A1| to
be larger than the Doppler widths associated with the transitions, 1i.e.

>> . >» k
[a] >> ku; IAil v (8)

(3) The collision occurs on a time scale short compared with the pulse
duration

T /T << 1 . (9)
c

(4) The collision may be treated in the impact approximation, implying

that
r T, << 1 (10)
laf =, <<1 ;3 ) 1o <1, (11)
X T, << 1, x1 Te << 1. (12)

Conditions (11) and (12) simplify the mathematical development, but are
not essential to the theory. (5) The ground-state lifetimes are infinite.

(6) Two-photon processes are resonant or nearly-resonant. For Fig. 2
this assumption takes the form
|2 -9 - w32|T <«< 1 , 13)

vhile for Fig. 3a or Fig. 3b, it is

2+ @ - w,,,,|T << 1, (24)
where the "-" sign refers to Fig. 3a and the "+" sign to Fig. 3b.

-7 -
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Conditions (13) and (i4) ensure that the conerences which are created
do not '"wash out" during the laser pulse duration T. In parallel with

conditions (13) and (14), we must require that the Donoler shiftg ammo-

ciated with two-photon transitions that are accumulated during the laser

pulse be negligible. For the case of Figs. 2 and 3a, we assume

- -

|k - kllu'l' << 1 (15)
while for Fig. (3b), the condition is

I + illur <« 1 (16)

(7) 1In order to be able to calculate the coherences using perturbation

theory, we assume that

(X * I 12+ o h/e?irn << 1 an

andl2 2
I CIx| + lel )/A|T << 1, (18)

(8) Finally, we must require that
I'T << 1 (19)

to ensure that the coherence does not decay during the radiation pulse,

Together with Eq. (7), Eq. (19) implies that

P << |A] 3 T << |A1i . (20)
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II1. Generation of Coherences Using CARE.
A, Figure 1l
We first turn our attention to the situation depicted in FPig. 1.

A laser pulse of the form

1(f~§ - fit)

-f(-ﬁ,t) = —;' e(i,t)x e + c.c. (21)

ig incident on a vapor containing A and A' atoms. In a field interaction

representation to be defined below and in the absence of collisioms,

density matrix elements of atom A evolve according to

2 1 ) *
612 == G Yy, + 18D, - 1x (8)(py; = py,)

(22a)

. p) * L d ]

Ppp = = YoPap + UX(®)B), = X (t)by, (22b)

where Yi is the spontaneous decay rate of level {,
&> >
2 1 (k*R-0t)
Py, = Pyp ’ (23)
-

x(e) = < 2lp 1> £ (R, e)/28, (24)
1

A=Q - Wy (25)

and Py is the x component of the atomic dipole moment operator.

In writing Eqs. (22), Y, has been set equal ro zero and the Doppler shift
has been neglected relative to |A| [Eq. (8)]. In the impact approximation
(kqs. (10-12)], collisions are incorporated into Eq. (22) by the addition

of a term (-Flzsiz) to the right hand side of Eq.(22a) [F1’ is the rate

at which collisions destrov 1) coherence’®]. 1If, in sddition, ve use

condition (17) to set Py = 1 and Pyp = 0 in Eq. (22a) (perturbation limit),

the appropriate equations ts be solved during the laser pulse are

-9 -
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Py

.
A

Bl = Gy, + T, + 105, - 10 (26a)

:522 = - v,p,tilx()B), - X ()5, (26b)

?21 - ()" (26c)
subject to the initial condition

P1,(T) = 6,,(T7) = 0, (264d)

where T 1is some time before the laser pulse.

Although we are primarily interested in the coherence 512 at a time
T+ following the passage of the laser pulse, it is instructive to first
calculate 022(T+). To second order in X, one can iterate Egs. (26) to

obtain
+ +
+ T =y, (T -t") t' L -(% Y, + Ty, + 18t -t")
Pyo(T7) = f e x{t')dt' f x (t") e

-0 -0

dt"
+ c.c. (27

where T has been set equal to -® without loss of generality. Since x(t")
18 slowly varying compared with exp(iAt"), the t" integration is conveniently

carried out using integration by parts as
RS R PR DI 2 N

-1
< o—L_d)

St x@) e = ox*e) (2000

RV SRS
- x"¢) (2"l

-3
cOLE e (s

(28)
Substituting this result into Eq. (27), noting that
10 ‘g . T R AN YA
( e x e)dt e = -1, { taedl e dt,
- - 09
(29)
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using Eqs. (6) and (20), and setting T+ = © one finds

2l +y Y
Pyp(=) = [——Z—g—z- - Z% ] E,.lxmlzdt

2r
.12 rlx(t)l‘?d:. (30)
2 )

Equation (30) vanishes if there are no collisions, T 0. In

12 °

that case, a more careful evaluation of Eq. (27) yields

D,y (=) = |E;a’““xu:)dtI2

for r12 = 0, (31)

This result is consistent with conservation of energy considerations. If
there are no collisions, then the excitation probability for a detuning A

is determined by the Fourier transform of the pulse envelope function
evaluated at A. If |A|T>>1 as assumed in this work, the field does not
possess the proper frequency components to excite the atom (typically, the
excitation probability varies as exp(-2|A|T) << 1]. Once collisions are
present, however, the effective time scale of the problem is changed from the
pulse duration T to the collision duration Tc. The collision does possess
the Fourier components to excite the tramsition (Tzl >> |A|) and, moreover,
provides a mechanism (change in center-of-mass translational energy of the
colliding atoms) allowing for conservation of energy in the total (absorption

+ collision) process. The corresponding collision enhanced excitation pro-

bability 18 indicated in Eq. (30). |

PUPIPRE SFEFNINPUE TP SN DEUIDIE WA TP WS NP U U YU S P TR DR WP APy J“M‘A.Lw




LSRR At . e aaraou

|

It might be thought that collisions could also lead to a non-negli-
gible macroscopic coherence P12 following the radiation pulse. Collisions
do, in fact, produce non-negligible coherence each time they occur during
the radiation pulse, but, on averaging over the various times during
the radiation pulse at which they occur, one finds that the coherence is
negligible. Formally, the result follows directly from Eq. (26a), 1i.e.
-1at* JT+ e'(% Yo#Ty ) (17-t")

1At *
e

61,(T") = -te X (t")de’ (32)

-0

Using Egs. (6) and (20), and letting t+ + @ i{n the integral, we obtain

a coherence
v -1a1t x . 1At
plz(T ) = -le x (t)e de' (33)
-0

which, for |A|T >> 1, is negligibly small.

B. Figure 2
In order to produce coherences which do not dephase during the
radiation pulse, one can use the level scheme depicted im Fig. 2. Levels
2 and 3 are assumed to have the same parity which is opposite to that of

level 1. Laser fields of the form

- >
o - A ‘_\kk’ﬂt)
E\\R‘t) €(R,t)x € v C.C. (34a)

Al

M-

|
(&)
»
*
—

~ - ,
Eqkkat) I 1 ) rE R (34b)

are simultaneously incident on the vapor. We wish to calculate the co-

herence 023(T+) using perturbation theory. In a field interaction re-

-12 -
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representation defined by

> -
1(k*R-0t)

P12 " P12 © (35a)
~ 1(’ 5§- t)

p13 p13 e kl {h (35b)
Bys = 05 L (R =K) R~ (q -Q)t ] (35¢)

dengity matrix elements evolve according to

R,.) + LZ:"F) Q32 (36a)

é/. = - (';Yl*l-'lzri«ﬁv)q‘z 'Cx'a\(t)(’?;{
V-
» ‘ ¥ \M
E;; L‘L Yy ~ My LA',/)§3 M Lx‘;z(\t\)(QH-?") "Lx'zbkt g23 (36b)
= - > 3 ' 0
. ~ . ( ~ . r \‘v
é' {_i &Y;‘Ys)" [“13 * L(A:,’Av)} ng + le't)?‘a - X,J‘\t,ga‘ (36C)
23 T
g4 - fé' \'
*J . \S ., / (36>
where
; -O'-' 1‘ - —-p ..’
Av- ﬂ-un-k V’AV Ql w31 kl v (37)
and . .
Yoty = <2lp (1> Rt/ 2
2
-
. t) = <«3lp i £1(R,tc)/2“ (38)

3

Equations for 022 and 033 need not be written since populations in these
states created by CARE excitation will not appreciably affect 5i3 when

cendition (18) holds.12 To calculate 3;3, ve set p,, * 033"532 - 523 = 0,
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and P11 ™ 1 in Eqs. (36a) and (36b), owing to the perturbation limit,

With these simplifications, Eqs. (36) reduce to

. | ~ . »
5 - -L“;Yz."q\l""hv) ?\1 - '\,X/z.(t)

(39a)
W2
g - C(E T eAl)Q, - xS LY (39b)
V3
é s o s(arYy) fN, T L@V A G, e At)g I PAN
- (39¢)
‘gu SCUON (39d)

The calculation of the coherence 3;3 parallels that for Pyr given

above in Sec. A, If there are no collisions, the coherence created is

negligible. With collisions present, Eqs. (39a) and (39b) are integrated

by parts twice and the resulting values for 5&2 and 523 (neglecting terms

of order SE/|A|3 or i'/lA'|3) are substituted into Eq. (39c) which 1s then

integrated to yield

* ] . 1 _ ’ Le t'
é \ET') = A_Z gT clt/ S [."i(Yz*Ya)"r‘ta 0yt A"‘)sz;(e)xa'\ )
1% ! hs

20

. , [ 4 4
OIS Kyl X508 ”

)
N 4, -2 )J("t-t'))
X exf(-{_‘iv;’vs>"‘z3"( v v { .

(40)

In arriving at Eq. (40), ve have used the fact that
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. l -
\ 4y Av' «1 (41)
A

vhich follows from Eqa. (7), (13) and (15). The last twoc terms in Eq.

’l N (40) may be integrated by parts to give

T ’ : ¢ t * P
: BRI SRS MU EMER)
-2 ‘ TL‘ A'-Av) (T'—_‘t/) bjt/
» €Ay {‘['iqx'g)*'na (&y ) } .
| ' ] ¥ 4
- __L¢(y¢Y3)rf13»+LMJ—AV)] J X;&¢>13Jt)
5 (s N

_ oA AN T e’
x Cxp {‘(_ ?.KY;*Ys)rr‘zs (A" >J(T t’) g “2)

Combining Eqs. (42) and (40), using conditions (6), (13) and (35) to
set the exponential appearing in the integrand equal to unity and taking

T+ + o, one finds

~ ‘)..y r‘:l'r“i‘.ﬂza . —)f)x,* é’t)dt

where the spatial dependence of the fields has been made explicit. Equation

(43) givesthe coherence created by CARE.
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The result (43) can be viewed as the pulse analogue of pressure-
induced extra resonances discussed by Bloembergen et alll, Grynberg12
and others.13 A steady-state value for 5;3 calculated assuming &
repetition rate for the radiation pulses has the same structure as one
of the terms contributing to 523 given in the works cited above.ll-13
inere is an additional term, however, which appears in the CW calculation
that does not appear in our pulsed version. This additional term does
not vanish in the absence of collisioms. Such terms appear typically
in steady-state theories (for example, a two-level atom driven by an

off-resonance CW field acquires a steady-state papulation x2/A2 for any

4 ). However, even though such terms appear, one must probe the system

on a time scale shorter than 1/IA| in order to isolate their contribution.

(i.e. to "see' the population in the two~level example mentioned above
one must turn off the field in a time which is small compared with

Ny

It might also be noted that the coherence 523 can be seen in the
1 1
CW experiments only if IAV-Avlg (§~Y2 + F23). The pulsed version
-1
creates coherences over the much larger range of detunings [A—All <T ",

Methods for detecting the coherence are discussed in Sec. V.,

- 16 -
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IV. Creation of Coherences Using LICET (Figure 3)
In Fig. 3a or Fig. 3b, a coherence 5}.3. is generated by the

LICET reaction

Az+ Ay +HO+H0 — Ay m AT(2737) (44)
Once created, the coherence 5&.3, oscillates at frequency Wyrpe = Ql- f
(Fig. 3a) or w = O, + @ (Fig. 3b) so that it 1is possible to generate

3'2! 1

coherences at either the sum or difference frequencies of the applied
laser fields. (In CARE, it 1is also possible to generate a coherence at

the sum frequency if one starts with atom A in an excited state).

To obtain equations describing the time evolution of atomic state
density matrix elements during the passage of the laser pulses which pro-
duce the LICET reaction, it is useful to note an important difference be-
tween CARE and LICET. In CARE, non-negligible excited state density matrix
elements oi atom A (see Fig. 2) are produced during the laser pulses even
in the absence of collisions. However, in the absence of collisions, these
excited state density matrix elements adiabatically follow the field and
vanish at time T+ immediately after the passage of the laser pulses. Colli-
sions break this adiabatic following and lead to non-vanishing excited state
density matrix elements at time T+. Consequently, the equations that de-
termine the time evolution of excited state density matrix elements in CARE
contain a collision-independent contribution (the adiabatic - following term)
plus a collisional contribution., In general, the cullisional term can depend
on the laser field strength and the atom-field detuning; however, in the

impact approximation, the collisional contribution is independent of the

- 17 -
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field variables and can be represented simply by the rates rij found 1in

Eqs. (36).

On the other hand, atom A' excited-state density matrix elements
produced in LICET (Fig. 3) result solely from the combined radiation field-
collisional excitation; they are neglibibly small during the passage of
the laser pulses if no collision occurs. The coherence 5}.3. can be created
directly during a collision; the average value for 5&.3,(§:T+) produced by
this "direct” excitation channel is calculated below. The coherence
52,3.(§,T+) can also be produced by an "indirect' process involving (a)
the generation of populations Pyrgr OF 03.3. by LICET at some time during
the laser pulses followed by (b) the laser fields, acting in the absence
of collisions, to generate the coherence 52,3, from the difference
(03.3, - 02,2,). In this indirect process, the population and coherence
are created sequentially during the same laser pulses. The contribution
to 5;,3, from the indirect process, while easily calculable, can be
neglected relative to that of the direct process when condition

(18) holds.

In light of the above discussion, we proceed to obtain the LICET-in-
duced coherence 32.3, as follows: (1) the value of 52.3.(b,vr,tc,§) re-
sulting from a single collision characterized by impact parameter b and
relative speed Ve i8 calculated for a collision occurring at a :ime t.
and position ﬁ. (2) From this value for 5}'3'(b’vr’tc'§)' we find the

average 2'-3' coherence following the laser pulses as

- 18 -
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§2’3‘ (é"T‘) = Na SUZRBJB So W) Vo d Va

x §dte 3 (kv t R)

(45)

where N, 18 the density of A-atoms and W(vr) is the relative speed distri-

bution.

The calculation of 5;'3'(b'vr'tc'§) is most conveniently carried out
using state amplitudes rather than density matrix elements. The laser
fields incident on the atoms are again given by Eq. (34). When a collision
occurs during the laser pulses, the state amplitudes change as a result of
three effects.7 First, there is a shifting of the levels owing to the
light-shift operator; for the perturbation calculation of this paper, this
term can be neglected. Second, there is a shifting of the levels owing
to a collisional operator. The collisional level shifts become important
for collisions with impact parameters less than or of the order of some
critical impact parameter bo (typically of the order of the Weisskopf
radius associated with theories of pressure broadening). For collisions
with b > bo’ the collisional level shifts can be ignored; for collisions
with b < bo there is a rapid phase variation of 32.3,(b,vr,tc,i) with b,
leading to destructive interference in the integral (45). Thus, in calcu-
lating 52,3.(§,T+). we should set the lower limit of the b integration
to bo and neglect the effects of the collisional shift operator in treating
collisions with b > bo’ Third, there is the LICET transition operator

which couples the initial and final states of the AA' system and gives

- 19 -
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rise to the coherence 3&.3,.

Matrix elements of the LICET transition operator between the

initial state |2 1' > and final state < 1f'| (f' = 2' or 3') are given

by7
Teo (b vyt Rot) = -6, (R, t) /2% ]
< ( <18 poB (ee><ee’ ] ULRLE] | 217>
y B, R
ee’ )ﬁ(wez v we"l’)
eV ULR (0] ee>Cee’l BRI 217>
+ e
) (“)6’,1 + W‘e'#'>
(46)
where
€, (R ) €R,t) f=2
R “ = - '
’ E1<K)t<.> -r/: 3 ?
(47)

ZZ is the AA' collisional Hamiltonian evaluzted along the classical
collision trajectory K;A,(b,vft), and the sum is over all intermediate
states e and e' [primed (unprimed) quantities refer to atom A (A')].
Note that Tf. represents the combined action of the radiation field

and collision and vanishes 1if eitheref. or /( is zero. 1In terms of the

matrix element (46), the final state amplitude alf.(b,vr,tc.ﬁ), calculated
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in lowest order perturbation theory and in the impact approximation

{Eqs. (10-12)], is given by

- R WA -
5 'y - ' t. £)
a":(b,\'n,tg;ﬂ) = R Tfr(b."n; <) .
(48)
where
— - ) - o
A - kv L= (W, wu\ -kev
A (5) = é -
\ "V cw ) m kY (49)
A\—-Rlnv - S\_‘—(ws‘ w)‘) &‘ v
te N
— -7 ~ (S , (50)
Toolb v b R) = 0 Tl v B, RS e)dt,

/
t ¢l

and t: and t: represent times before and after a collision centered at

t = tc} The value of 53.3. produced by this collision 1is

-

—LtAle"AvG’)]tg Tzi;' (b V/L»tg ) R) ’

~ -3
QzW‘(b“A'tu,R) = e
(51)
where
- e

- ~ - . f R)&

R - T.'l b,v ,tg P\) {_TJ'(b/V/L) < .
T»‘J‘ K\‘ v)l»ttp ) 8 ( ~ ) (52)

In carrying out the integration (45) we can take the exvonential factor in
Eq. (51) to be constant, owing to conditions (14) and (15), Bettina tc = N

without loss of generality, we find the value of 85.3.(§.T+) following the
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1amar pulmes from EBos., (45) and (51) to bhe

o0 oo
czx‘;’(P‘;T,) - Nn Sbo'z"\"’“’ SO W (v) Vi dVa

- Tt ¢ @
o § dte Top Cova, te f)
.-
(53)

where T2,3. is calculated from Eqs. (52), (50) and (46).

Without going into a detailed evaluation of Eq. (51), one can note
several general features of the result. First, the magnitude [52.3.(i,T+)i
is of the same order of magnitude as the populations (92'2' or p3.3.) in-
duced by the LICET reaction. Second, states 2' and 3' can be of the same
or opposite parity - the relative parity of the two levels determines
which part of the interatomic potential (i.e. dipole-dipole; dipole-
quadrupole, etc.) contributes in Eq. (46). Third, th- LICET cross section
is significantly enhanced if the energy of the intermediate levels
(e or e') in Eq. (46) is such as to lead to a "small' energy denominator
in Eq. (b9)18; in that case, a single term dominates the summation in
Eq. (46). The :xistence of nearly resonant intermediate levels has plaved

a key role in all experimental observations of LICET to date.

The types of level schemes which lead to near-resonant enhancement
have been discussed in a previous work.7 To 1llustrate this feature, we
consider the level schemes depicted in Figs. 4 and 5. In Fig. 4, contri-

bution to Eq. (46) with level r' as intermediate state is dominant. One
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can view the LICET process as a collisional exchange which takes atom A
from state { to f and atom A' from state 1i' to r' (the fr' state is

-y
virtual) followed by the field E taking atom A' from r' to 2' (leading

-
to the amplitude ;fZ') or the field El taking atom A' from r' to 3'

(leading to the amplitude 5}3.). For this type of level scheme, levels
2' and 3' must be of the same parity. The value of 135,3.| produced in
this LICET reaction may be calculated from Eqs. (46)-(53) and is found

to be of order7

" , -
N, Up | § X (R1E0) LR )
5

1o (R, T = in
2
-2 2
X (U-) Xy -wJIB ( bﬂ_’/bb) b/’(.’
(54)
where C . >
/ 2 - c2ietn’> RO /25
xzu&’LR't“) -
$ (th y = <3\ V> 51\@.&\/3“
3R . 55

u. 1s the most probable relative speed, br' is a radius which characterizes
resonant broadening of the r'-1' transition, and bo i8 a radius at which
the collisional level shifting operator becomes important (as such, it

is a characteristic radius of foreign gas broadening). Values of br' in

the 108 to 20% range are typical as are ratios br'/bo = 4,
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It would appear that a coherence between states of opposite

parity can be produced by the level scheme shown in Fig. 5 in which

1

2' have parity "+" and states 2,r’',3'

there are two nearly resonant intermediate states r' and r! of opposite

parity. Assume that statesl.l',ri,

Then, a dipole-dipole collisional interaction followed

have parity
-
by field E acting on atom A' leads to a final state amplitude 312. via
the pathway 21' -+ 1r' + 12°', Similarly, a dipole-}hadrupole collisional
Py

interaction followed by field El

amplitude 513. via the pathway 21' =+ lri + 13'., Since the collision

acting in atom A' leads to a final state

operator }/ contains both dipole-dipole and dipole-quadrupole components,

the same collision creates both 5&2. and 313,.

appear that a coherence 35,3, with states 2' and 3' having opposite

Consequently, it would

parity, can be produced in LICET. The order of magnitude of this coherence

is given by an equation sznalogous to Eq. (54).

v
s,

Although a given collision produces a coherence 52.3. s one
finds that the wmacroscopic dipole moment, obtained by averaging over
all possible collision orientations, vanishes if states 2' and 3'
are of opposite patity.19 In some sense,7 one can view the production
of coherence 35.3. in the A' atoms as a four-wave mixing process;
the four fields are the two laser fields and the dipole and quadrupole
collisional interactions acting on the A' atoms. The dipole and
quadrupole collisional interactions can be thought of as unpolarized

"fields";7 for isotropic collisfons, these fields are incident
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] from all directions with equal probability and the macroscopic co-

herence 3}.3, vanishes. However, by velocity selecting either. the

joed o

A or A' atoms (e.g. use velocity selective excitation of the A
atoms, use a beam of A or A' atoms, detect only those A' atoms in
b Y a given velocity subclass), one creates an anisotropic distribution
- of collision orientations. In effect, the collisional dipole and

quadrupole '"fields" are no longer incident with equal probability

from all directions and it becomes possible to create a nonvanishing
macroscopic 3;.3,. A detailed calculation of 3;.3. will be given

in a future paper; at this point, however, we note that it appears
that it is necessary to be detuned from exact resonance for one

of the LICET transitions in order to produce a nonvanishing macro-

scopic coherence.
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V. Detection

The result of the CARE or LICET reaction is to create a coherence
in one of the atoms, A or A'. The method of detection depends on whether
the final states have the same or opposite parity.

A. Final states having the same parity following the CARE or
LICET excitation.

The analysis is the same for both CARE and LICET; to be
specific, we analyze the CARE process. Immediately following the laser

+
pulses at t = T (which is now arbitrarily set equal to zero), a coherence
) - o O TT. 6
€ R0 = R, TTs0) e (56)

is created. Since states 2 and 3 have the same parity, one uses an
interrogation pulse20 to monitor the 2-3 coherence. Several methods are
availablezo, depending on the relative magnitudes of the decay rates and
the i and :1 vectors. We shall choose one, a detection scheme

similar to that employed in the tri-level echoZI; in using this scheme,

we assume that

-

t
Lk -k lu >> A (57)

where

yoooe (e Ye) s Ty (58)

is the total rate at which the ij coherence decays.
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The level scheme is as shown in Fig. €. At time Tl after the

initial laser pulses, a third laser pulse
5 -
~ R -3 A ,l_(kz‘ﬂ‘.n-;_t )

£, = 4 Liktixe (59)
in near resonance with the 2-4 transition, is incident on the sample.
The pulse duration T is assumed to be short enough so that all relaxation
processes can be neglected during the pulse [{i.e. YIJ T << 1;
- >
|k‘k1|UT << 1 kZUT << 13 (92 - Waz)T << 1, etc.]. To calculate the
response of the system, we set

- -7

kR Set)

a3 7 Ses3© (60a)

in anticipation of a signal being generated with propagation vector :

f
and frequency ﬂf. In addition, we write
_— "L.(‘;j)'k-;"ﬂlt) (60b)
qu ) Qll’ ) - .
[ (i‘?{‘ ‘?z)’R“\S\-{, 'Q;)t] . (60¢)
Q}% = q_z} S

At a time T; just before the interrogation pulse is applied,

Py 063 = 0. The coherence 023 has evolved freely to a value

323(5,0) exp[i(E-Kl)'(i-;Tl) -i(ﬂ-Ql)T TI]’ which, together with

t
17 Y23
Eq. (61b), implies that 523(TI) is equal to

- -~ - - - P
_L[k7; -(hl-k\vk)]-ﬂg;(k,-n)'v b

'

‘%23(‘-:) - 523@;‘0) e

z[m-(nz-h.*mlﬂe_-vfﬁ. (61)
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The laser field couples the coherences 523 and 553 . Following the laser
pulse, 3&3 acquires a value proportional to 523(§,TI); with the neglect of
all relaxation during the laser pulse and the use of an optimal pulse

(one having a pulse area of 1/2), the value of 543 at a time TI immediately

following the laser pulse is

3.,17) 7 L8, (62)

For t > Tl' 563 evolves freely according to

- - —
o t . ; .
., = L My - (O mwa) ke V15, . (63)
i

Combining Eqs. (61)-(63), one finds that, for t > Tl’

il
N A R R
Q}*ﬁﬁv ¢

.Lﬂ‘——LS‘L)‘_\‘L‘fﬂ)’]T‘ L.(QF'“"-XE)kt'T')
- t e

1]
~ .

_— >
?&SQR’V' t)

= - ~
[T Rk TTeY

X
* Le-TH]
. e TTas (64)
The coherence 5“3 generates a radiation field provided that the
phase-matching condition
. - - - I?
ke = Ra- kT (65)
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along with the subsidiary condition
< <
(g ~wos ) L /€ ! (66)

is obeyed (L = sample length). These phase-matching conditions can be

achieved by taking copropagating waves with (QI-Q)=w3 and Qz=w Assuming

2 42°
the phase-matching conditions to hold and that the sample is optically thin,

it is easy to show that the power density exiting the sample is given by

2 R - = - I
Mo lemlpalzo15(2¢) kg L7 1< QR v, 02 >17, 67
an &,

St -

where NA is the atom A density and the average is over the atom A velocity
distribution and any changes in 543 caused by the lack of spatial co-
herence of the laser fields. On integrating over velocities for times

(t-T;) > 1/k;u, one finds a negligibly small 543 except when

- -

f&(t Ty «(k-k )Ty =0 . (68)

For copropagating waves satisfying Eq. (65), this condition implies that an

echo can be produced at a time te given by
k.
- — 2 T
te ( k»-k‘fkv Yo (69)

An echo is produced provided that k., > k, an inequality that holds for the

1
system we have chosen. Combining Eqs. (64)-(68), we find that the maximum
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value for the echo power density exiting the sample is

z

N 2 >
G (trte) - A4l e ame) ke L

man “iv€e

-
-

- Z.v::a T Y:«(te—r‘)]

~ - A
PR T , (70)

o) -»>
Assuning that |<p..(R,0)>| can reach values of order 0.01, one finds power
3

densities of order l.Ow/cm2 for active atom densities NA = 1015 atoms/cm3.

bB. Final states having opposite parity.

For the LICET reaction, it is possible to create an optical
coherence 52,3. in which states 2' and 3' have opposite parity. This co~
herence can be monitored by detecting the free-induction decay signal
emitted by the sample. At time T+ = 0 immediately following the LICET ex-

citation, a coherence
= o -
. . N 5> (k-k )R
qu}ﬁ”c) = qu;(R,' =0) & (71)
is created. This coherence then evolves freely so that at a time t > 0, one
finds phase matching can be achieved with copropagating fields having
kl-k = w3'2" Under phase-matching conditions, the power density exiting

the sample is given by an equation analogous to (67). On performing the
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necessary velocity integration assuming (kl-k)u' >> 75,3, (u' = atom A'

most probable speed), one may obtain

2 -
V' | <37 P | Z—’>|‘a (2nc)kkl-k) L

S
4n €c
2 ,,3%, 2 - 2>
Sl (k)L 5 A
. lwe T 1l<g,, wo>l (72)
where N is the A'-atom density. Although the value for the coherence

A'
]52.3.(§,0)I is smaller than that in the case when levels 2' and 3' have
the same parity, (see discussion of Sec. IV), it would appear that there

is sufficient signal strength to detect the LICET induced coherent emission.
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VI. Conclusion R

A method for producing electronic state coherences using Combined
Field-Collisional Transitions (CFCT) has been outlined. Such coherences
can be produced using either Collisionally-Aided Radiative Excitation
(CARE) or Laser-Induced Collisional Excitation Transfer (LICET). The
final state coherence may be created between levels having the same or
opposite parity., For final states of the same parity, the coherence can
be "stored"; at some later time, an interrogation pulse can be used to
trigger the emission of dipole radiation. For final states of opposite
parity, the system can radiate immediately following the LICET excitation.

In this way, one can use LICET for either sum or difference frequency

generation.

As noted above, some additional feature must be added to LICET
(i.e. velocity selection of either the A or A' atoms) to produce a final
state coherences between states of opposite parity. Another way tb achieve
a final state coherence between . tates of oppcsite parity using either
CARE or LICET is illustrated in Fig. 7. A coherence is created between
two states of atom A (i and 11) by a CW or pulsed field. From this initial
state, a CARE reaction produces a coherence p23 (Fig. 7a) while a LICET
reaction produces a coherence Pyrgs (Fig. 7b) between states of opposite

parity. This technique could be used to produce radiation at the sum

frequency of the three laser fields.

In order to produce coherence using CFCT, the laser fields must be

OO By gutans]

temporally and spatially coherent., The relative phase of the two laser

oy
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fields cannot vary significantly in times less than the pulse duration or
in distances less than a wavelength for the coherence to be produced.
Since the production of tri-level echoes requires the same coherence
properties and since tri-level echoes are readily observed with non-
mode-locked laser521. it would appear that the cohc.ence criteria for

creating CFCT induced electronic state coherences can be achievad.
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Figure Captions

CARE reaction A, + A!, + i + A(12) + A!, [the notation A(ij) is used
to indicate a coherence between states i and j]. The A and A' atoms
collide in the presence of a pulsed laser field whose frequency is
represented by an arrow in the figure. As noted in the text, the

coherence P12 vanishes on averaging over times during the laser pulse

CARE reaction A, + A!, + KiQ + ﬁﬁl + A(23) + A!,. A coherence Pa3 is

32°
2 1 + 40 + ﬁQl A4 A'(2'3"). A coherence Pargr

(Fig. 3a) or Ql +Q=uw (Fig. 3b).

3!2! 3'2!

+ i +-ﬁQl + A, + A'(2'3") with a nearly

1
resonant intermedfate state. The collisional interaction creates a
virtual state with energy close to that of level r' and the field

interactions complete the LICET process. States 2' and 3' must have

A LICET reaction similar to that shown in Fig. 4, but one for which there are

two nearly resonant intermediate states of opposite parity and for which

states 2' and 3' are of opposite parity. The r' and ri levels en-

hance the excitation probability for states 2' and 3', respectively.
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Figure Captions -~ Con't.

A scheme for detecting the coherence 023 created by a CARE reaction

at t = 0. At time T. a laser pulse of frequency {, =

1 2 % Y

to the atoms. At some time later, an echo signal can be generated

is applied

at frequency Qf = W, qe

A method for producing electronic state coherences between states of
opposite parity by starting with atom A prepared in a coherent
superposition of states i and 11.

(7a) CARE reaction A(iil) + Al, + A0+ ﬁﬂl + A(23) + Al

@+ + “111) = Wy -

(7b) LICET reaction A(iil) + A!, + 80+ ﬁQl -+ A1 + A'(2'3");

(R+Ql+w111) = W

KAV
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New results for transition probabilities in two-level systems: The large-detuning regime

E. J. Robinson and P. R. Berman
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The problem of calculating transition probabilities in two-level systems is studied in the

limit where the detuning is large compared to the inverse duration of the interaction. Cou-

pling potentials whose Fourier transforms #e) are of the form fie e

b for large fre-

quencies give rise to solutions which may be classified into families according to the form of
ftw). Within each family transition probabilities may be calculated from formulas that
differ only in the numerical value of a scaling parameter. In cases where the coupling func-
tion has a pole in the complex time plane, the families are identified with the order of this
singularity. In particular, for poles of first order, a connection with the Rosen-Zener solu-
tion can be made. The analysis is performed via high-order perturbation expansions which
are shown to always converge for two-level systems driven by coupling potentials of finite

pulse area.
I. INTRODUCTION

In many areas of physics, one encounters prob-
lems involving two states of a quantum-mechanical
system coupled by a time-dependent potentia).!~!"
In the interaction representation, the equations of
motion for ¢, and a., the probability amplitudes of
levels 1 and 2, are of the form

ia, =Vie“y, (la)
ia,=Vine "a, (1b)

where @ is the frequency separation of the states and
Vi) is the coupling potential. Decay effects are
neglected in Egs. (1) (and throughout this paper),
and we work in a system of units in which fi=1.

Equations of this type arise in many semiclassical
problems. A problem of current interest to which
they apply is the coupling of two levels of an atom
by a laser pulse that has a temporal width which is
small compared to the natural lifetimes of the levels.
The pulse F2) is of the form

Vin=24(1cosdr , (2)

where () is the central frequency of the pulse, and
2410 is the envelope function of its amplitude. As-
suming that  Q -« /(Q +©) <], one can recast
Egs. (1) in terms cf A, the detuning of the pulse
from resonance (rotating-wave approximation), as

ia, =A10e%, | {3a)
ids = Arte g (3b)

Equations (3 or (1) are deceptively simple 1
form. and one maght, at first glance, behieve that the
system must be completely understood, so chat noth-
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ing remains to be investigated about the equations or
their solutions. Actually, there is very little known
about the overall qualitative nature of the solutions
to Eqgs. (3) for arbitrary A (1). Apart from any in-
trinsic interest one might have in the dynamics of
two-level systems, such information could be useful,
for example, in applications where one wished to
choose the pulse shape to maximize the excitation
probability for a given detuning A.

To appreciate that our assertion concerning the
lack of knowledge about the behavior of systems
described by Eqgs. (3) is valid, one need only recog-
nize that the answer to the following question is not
known in general: Starting with initial conditions
a,(—-x)=1and a,( - x )=0, how does the proba-
bility amplitude «,(1) depend qualitatively on the
pulse area S, defined by

S= f_iA(t‘dt .

on the detuning, and on the shape of the envelope
function A4(1)? A response to this query can be
made for a limited number of cases. Analytic solu-
tions are available if 4 (1) belongs to a class of func-
tions® (including the hyperbolic secant of Rosen and
Zener~') mappable into the hypergeometric equa-
tion, or if 1"

A(n)=(constlexpl —a |t]),

or if A (1) is a step function (Rabi problem), or if the
detuning is zero. (Kaplan™ has also considered cases
where the detuning varies as prescribed functions of
the amplitude and obtained closed-form expres-
stons.)t In addition, there are approximate solutions
available in adiabatic® or perturbative limits. Yet,
there remains o wide range of parameters and pulse

1022 = 1983 The Amencan Physical Society
Reproducti-» " - - P tied
for any puiieace oo oo e




-

27 NEW RESULTS FOR TRANSITION PROBABIHITIES IN TWO- .. 1023

“bapes tor which an answer to the basie question
Sannot be provided

In this papers we shall exan ne he solations to
Fogs 3 the hmie where the sroducr of the detun-
e A and the charactenstic pulse duration - has
A nnenitude greathy noescess of unity. Inother
wordss we are assuminy that the pulse does not pos-
sess the appropriate Fourter components 1o signifi-
canthy compensate for the detuning.  In conse-
quenve, the transition probability w,t o) T will al-
wavs be very small thut stll great enough to be ex-
penimentally measarable matomie vapors of densi-
e ~ 107 atoms/cm’. We note that numerical
solutions of Egs. 130 this detuning range may be
possible but are very costly i computer time and
plagued with technical difficulties.

For the case A7 -+ 1, we shall establish the fol-
lowmng results. 1 Low-order perturbative approxi-
mations for w5 are not vahid for arbitrary pulse
arca 5. despite the fact that s S0 1 for all
unie 2 An aterative solution to Egs. i1 always
converges for well-behaved envelope functions. (3
Asvmptotic solutions for ¢, (0, ¢ fimte, may be easi-
v found. but expressions for ¢« 0 are difficult 1o
obtain. 4 Asymptotic solutions for ¢.( ) can be
obtained for a limited class of pulse-envelope func-
trons using contour integration techniques. Thisis a
broader ~et than that for which exact solutions are
known 5 The asymptotic dependence of gl )
depends criically on the nature of the singularities
of the pulse-envelope function A (71, analytically
continued anto the complex plane. 160 If two pulse
functions have the same Fourter transforms in the
limit of large frequencies and if the dominant
dependence of the transform is an eaponential decay
in the frequency, then the asymptotic forms of the

solutions a0+ for these functions in the limit of

large A are simply related. In this paper, we ad-
dress pornts 111,02, (31, aad (6); methaods for actually
obtaining asymptotic solutions {points (41 and (51]
will be discussed in 4 future article. In the present
discussion,  the nitial  conditions  are taken as
a0 land et = »)=0.

I1. ASYMPTOTIC SOLUTIONS

As we have indicated, the Rosen-Zener— ' thyper-
bolic secant coupling pulset problem is one of the
few for which exact solutions are known. In this
case, a simple expression gives the transition amph-
tude as a function of detuning and arca for all values
of these para. .eters. Naturally, since this formula

sins

a s v 2 AAcAy 4

where s the Fourter transform of £ v evacr, it
s valid in the special case of the asvmptons himn

We shall shew thar there s an entite class of
pulses for which the asvmptotc transition amipl
tude as o function of S and AL may be witen by e
spection onee the Rosen-Zener problenn bas beey
solved. We shall alse detnonsirate thar vhere are
other clisses of pulses whose solutons as ¢+ e
unrcliated 1o Rosen-Zener but are connected 1o cach
other e the sense that once one has been solved. the
solutions for the enuire class may be obtained by -
spection.

The existence of these related solutions will be es-
tablishied via term-by-term comparison of nth-order
perturbation expansions which, under very general
conditions. arc convergent in two-level problems tsee
the Appendin). With suitable scaling of the cou-
pling strengths, the series for different members of
particular c¢lasses will be seen to be identical in the
limit of large detunings,

The particular potentials analyvzed in this paper
are A1) whose Fourter transforms for large ¢ as-
sume the form pleexpt — bew ), where pis slowly
varying in a frequency interval b ', and b s a
constant. It 1s convenient to make a variable
change, such that v= b wandx =1/ b . Conse-
quently, the exponential decay factor in the Fouricr
transferm becomes exp v and the equations of
motion transform to

iay = Bfixe'™a, 3ah
iay - Bfixie "a, (3h")
where « - HA  and where the dot now signtfies

differentiation with respect to x. The quantity 3.
previously designated as S, is the pulse arca. The re-
duced potential function fx)is defined such that

fx_ flxidx - 1.

The pulse area 15 anvanant under the indicated
change of variable. One may also write Egs. t3ras a
pair of uncoupled second-order equations

i | vialay B 0. (S
! ! i
d> " ; i fas o (B fas U Y

There are two aspects 1o the solutions of Egs. 13
or (5. These are the calculations of the amphtudes
at finite and imfinite times, respecter ely. The former
are of nterest i the transient solutions are to be
used as inputs to other probo -0 sauch as multipho-
ton iontzavon,' " while the Tatr with which we are
mainly concerned here, gives the transtmon amplr-
tude a5 o The two temporal regimes differ great
Iv i the methods that must be osed to perform ace
curate calculations
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One may write the soluttons to Egs. 13+ as pertur-
bation series in the usual fashion, noting that only
even orders enter the expression for . while only

For large a, it s sufficient to retain the leading term

3

of

nX
2

“”.\L’Ch

(7

¢

This is equivalent to first-order perturbation theory
in the adiabatic limit

()

X .
R i3 f fixhe dx
x

\/}/(“'(’ Hx

a
where subsequent parts integrations are neglected,
since they are O L7a ™o n 10 We immediately see
that this sequence of parts integrations s unsuitable
for calcuiating « -1+ 10 since cach term separately
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In the Appendix, 1t s shown that this series con-
verges for all finite pulse arcas.
For the remainder of the paper we will restrict

odd orders appear in the formula for v, The ea- ourselves to the case of pulses thut are ssmmetrie in
panston forast « x1is ume and where  « =1, the adrabatic or asymp-
. totic hmit. The Founer transform will be sym-
uy - 0y a Kotk metric in v, We shall begin by comparing the finite
k- and infinite ime solutions of the Rosen-Zener prob-
where lem, which exemplify relevant properties of transi-
g . aax, tion amplitudes induced by smooth pulses.
g = f x./""l le dx, With  imitial  conditions  a,(— )= 1  and
. el e a.(—x)=0 with a pulse-envelope function
-1 f fix, e ! (”"d_\‘] ' Slx)=sechtmx /2)/2, Rosen and Zener—" obtained
;o * an analytic solution to Eys. (3"} of the form
i‘ 7
; dpxe cFpabez, 16a!
doo Rz R g et~ b —c*+ 1,22 otz t6b)
(Rl
N Kz T o N E L e - b2 -t ), (6b")
W
X
tanh -1
. I we o 2 B
- y - b : - . ’
4 - |l ia
i - T
2 T
and 1 desiznates the hyvpergeometric function. The form of @ given by Eq. (6b) is valid for all x, while that
given by bygooeb o holds only for finite x. unless 3 corresponds to an eigenvalue, a pulse area for which
d ; vanshes” We recall that ¢« ), the transition amplitude for the Rosen-Zener problem, 1s given by
Fqg. 4
We may obtain the finite time solution by explicitly expanding the > F| function of Eq. (6b')
L BB
13 ax X | 77 7 X
ds ‘ ¢ "sech 1l - - tanh -~ +1 |+ -~
Ol \ 2 ia 2
1 it 3. a4
4 ! - 9y
[ 20 4y cn
—

vanishes when x — x. Even including the third-
and higher-order terms in the perturbation series via
analogous sequences of parts integrations does not
enable one to obtain a nonzero amplitude as -+ =,
Consequently, other methods are necessary to calcu-
late a2 ),

It is clear from the preceding paragraph that for
large enough a, first-order perturbation theory 1s a
sufficiently accurate approximation for most pur-
poses, provided x is finite. For infinite times, not
only does the adiabatic sequence of parts integra-
tions lead to an incorrect ¢.0 x ), but even an exact
evaluation of the first-order integral may be insuffi-
ctent. This is typified by the exact Rosen-Zener am-
plitude, Eq. t41, in which the factor sinfi does naot

reduce o s first-order mit of 2 unless I s

e P T U G G
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small compared to umity. This failure of the first-
order theory occurs no matter how large the detun-
ing becomes. One must retain enough terms in the
perturbation expansion to accurately represent the
sine function. Thus for the Rosen-Zener pulse, if
the coupling is great enough so that saturation ef-
fects would appear at resonance, simple first-order
theories cannot be used for a nonresonant pulse of
the same strength. As we shall see, other smooth
pulses also possess this “saturation memory.” In
fact, in some cases, a higher-order theory is neces-
sary off resonance even for a case where a first-order
theory would suffice at resonance. This is exempli-
fied by the formulas of Egs. (9) below.

Since each coupling function f(x) is different, one
might be led to believe that separate calculations
must be performed for each individual case. For-
tunately, as we have stated earlier, there prove to be
classes of pulses where, if one knows the functional
dependence of the asymptotic transition amplitude
on a and B for one member of the class, one knows
it for all members of the class, although the actual
time dependence of the potentials may be drastically
different. What is significant is that their Fourier
transforms assume the same form as @ — = .

When Rosen and Zener deduced Eq. (4), they sug-
gested that similar formulas might hold for other

\k+l' f f

i, II hmf

jaa Ry
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smooth pulses © This conjecture proves not to hold
in general. It is manifestly false for asymmetric
pulses and is not even valid for all symmetric
pulses.™® What we shall show is that a kind of
Rosen-Zener conjecture does apply at large detun-
ings for pulses in which fix1 has simple poles at
x =1 This law does not apply to pulses which have
higher-order poles at this point, although scaling
laws for these do exist. different for cach order.

The following theorem wil be established.  Let
two coupling  pulses  fixi and  fixi have
Fourier transforms fiv) and f,tv1. The Fourier
transforms of both approach, for lurge values of the
argument, the same asymptotic form f,(vo. If £, is
of the form d(vie™ ¥ | where div) is a slowly vary-
ing function of v, then the asymptotic transition am-
plitudes generated by the two pulses will be the
same, provided that the pulse areas are both finite.
A sufficient condition for the indicated asymptotic
behavior of the Fourier transforms is that they be
equal, for large v, to a contour integration whose
value is given by the product of the residue at x - §
and the usual Cauchy factor 270, If twa such pulses
are to have the same div 1, they must possess poles
of the same order at x =1.

The contribution of order (2k - 1) (o the transi-
tion amplitude may be rewritten slightly,

[l‘—lv'n<)\j]x

Ty
d.xj

A x . .
The factors ¢ 7/ do not affect the integrals. They are used to remove ambiguities ay X, » o the treat-
ment below, where we express the amplitude in terms of integrals in the 1rnqumu dommn The imits 2, -0

)
are to be taken before the x; integration is performed. Expressing each tx,), j > 2, in terms of its Fourter
transform, we find

. 2k + 1 R
ket 1 x —iax £~ iy, +0 1Ja ik jx
a; M=o f Sixyde de, [] 11m f dxj f five Py
(27 - x y :, »() - x

By working in the frequency domain, we shall be able to examine the structure of the integrals for u » A and
establish that the contribution from regions where the asymptotic form of j 1s not valid 1s lower by O/

than the contributions from regions where it is valid.

The integrals over the x; are trivial to perform. We obtain

*oatr RS k41 fh'j)

2k 4 . .

as = lim - f dvy - dvy o f | 3 vi—a T
)'I*'() (2”)k71/2 J [71‘ 1k-}-l

i=2 S vt t-Dla—iky)
=2k +3-

We now proceed to detcrmmc thc asymptotic form of these amplitudes. The analysis is casiest to follow for
the third-order contribution a'', but exactly the same reasoning and conclusions will apply for the higher-
order terms. (The theorem is true by inspection in first order, since that contribution is, apart from a constant
multiplier, just the Fourier transform itself. Thus if two coupling functions have Fourier transtorms of the
same asymptotic form their first-order transition amplitudes scale the same way with 3 and a.) The leading
nontrivial term is a4, Changing the dummy variable v, to v;, we find

. v jl\,i/l\u)jt\l¢\~——(Hd\,d\~
o lim f f .
TR P N VIR U T P Q)

A




Mt e Sl S S an - 4 i et S AU Jushe Avan S Rt 2

1026 E. J. ROBINSON AND P. R. BERMAN 27

where, without loss of generality, all 4, and sums of A4, have been replaced by the single infinitesimal 4. Te1s
conventent to make the change of variable v, -~y . One finds

ay = lim
A0\ 2

1

v2

. o fray o)
17 him f dy- N

. b-ve an

[fl(l_b’: l]-\fn a) l

1 f x f % f“'."l '/\“”.\': ’.ft(ll‘_\'l ¥ l Nedvdy

T A R A P

o « « frav ) fravs flaty « vy - Ddydys
S |

T x U DR

N

where P indicates that the mte rand excludes mfinitestimal regions near v = -y, and y; = 1. We may formally

mtegrate the last two terms. I

N . . 1
17 hm f dv-frai[frayo ] - ;
o B - B S AR

It s immediately obvious that if these are parti-
tioned according to the rule

. . ‘)‘ al .
Itm f iy I’f Gy imdoxg o,
[ X A S

1€ XX,
the principal value contributions  exactly  cancel,
while the (% terms are proportional to ¢ ™ and are
exponentially small compared to U:l , which decays
only hke ¢ “ Terms proportional to exponentials
which decay more rapidly than ¢ ¢ do not contri-
bute to the asymptotic form.

We now proceed to examine the remaining contri-
butions *y a5, where it is again understood that the

small re, he neighborhood of ps - -y and
yp=1are i from the integrals. For all re-
grons . re ¥y o< a/a . where
1s a numbe werunity, flay) may be replaced

by its asymptotic torm f tayl. Thus for the entire
Vi —¥. plane, except where 3y ~0, y» =0 thut not
both simultaneously) and y; + 3.~ 1, the numerator
of the integrand is well represented by its asymptotic
form. Furtherniore, since at most one of the three
Fourier-transform factors departs from its asymp-
totie form in any given region of space, the area in
the v, v» plane over which one of the f both
departs from its asymptotic form and decays no
more rapidly than ¢ @18 O11 /. Tt is, of course,
imphaointly assumed that the exact and asymptotic
forms of the Fourier transforms remain bounded as
their arguments approach zero. For the former, this
1s equivalent to the requirement, which we have al-
ready stated, that /3 be finite.

Now consder that portion of the v, vy plane
where all factors in the numerator are well approxi-
mated by their asymptotic forms. Examine m par-
ticular the exponential decay factors

@ y. nmoy. LS
¢ e ¢

P VP S T —— S S R

Loas factored from the second of the two integrals, they combine to become

1

l*_"j*,‘[/‘,

The only portion of the plane where the combined
effect of the exponential factors leads to an overall
decay that is not faster than ¢ ~“ is the range
Qeyy a1, Ocpsel—yp,. The integrand does not
change sign in this portion of y, —y> space, which
encompasses an area ~ 5 (1o be compared with the
area of order 1/a which was found for the
nonasymptotic contribution). Note that there is no
portion of the plane in which the integrand decays
more slowly than ¢ 7% Thus the nonasymptotic in-
tegrand contribution is O (1/a) compared to that of
the asymptotic integrand. Similar considerations
enable one to deduce that one may also replace the
Fourier transforms in the higher-order integrals by
their asymptotic forms. We thus conclude that if
the time dependences of two coupling functions are
such that the asymptotic forms of thneir Fourier
transforms are identical and of the indicated form,
the large-detuning transition amplitudes are the
same.

As we have indicated. a sufficient condition that
two pulses have the same a-t <) for large «a is that
both asymptotic Fourier transforms be equal to con-
tour integrations given by (2m/)[Res(x =i)]. We
compare the hypeibolic secant of Rosen and
Zener, [ = %sech(m' /2), with the Lorentzian
S =/zl+x5)" Y The  corresponding A (x)
=ffix) are

B3 s
A 0x) e x=y 'y

“

. B p
Aptx L, e 1 N

The transforms for both may be calculated via con-
tour mtegrations. The Lorentzian case s trivial and
apphes to all v, not just large frequencies. We
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choose a contour that runs along the real axis from
—R to +R and is closed by a semicircle in the
upper half plane. The contribution to the contour
integral from the arc vanishes as R » o, so that the
Fourier transform is identical to the contour in-
tegral, whose value is determined by the residue at
the simple pole at x =i. The result is

Y

AL = v In € . (7a)

For the hyperbolic secant we choose a rectangular

contour which runs from —R to + R along the real
axis, and is continued by rectangular segments
parallel to the imaginary axis from the points
{+ R,0) to the points (+R,2i), and is closed by a line
parallel to the real axis which runs from (R,2{) to
(—R,2i). The two vertical segments give vanishing
contributions as R — «, and the horizontal segment
off the real axis goes exponentially to zero compared
to the segment along the real axis as v— . Thus
for the hyperbolic secant, the Fourer transform is
identical to that of the Lorentzian in the asymptotic
region. For large v it is given by

- 2By

Ay~——=—e¢" Y . (7
I V'ZT,-L b)

Since the Rosen-Zener solution gives the transi-
tion amplitude for all detunings, according to Eq.
(4), as (recall that A =Bf =S§f)

—iv 27 fyla)singy,

this formula must be valid asymptotically also. As
we  have shown that the asymptotic Fourier
transforms of the Lorentzian and hyperbolic secant
are proportional for large detunings, the Lorentzian
must induce a transition amplitude that obeys a for-
mula similar to Eq. (4). From Egs. (7), we see that
to construct the Lorentzian and hyperbolic secant
Fourier transforms so that they are asymptotically
identical, it 1s necessary to choose the Lorentzian
pulse area B, to be twice that of By,. Since f =2/
and f3;; =f3, /2, the asymptotic transition amplitude
for the Lorentzian pulse may be obtained from the
known result for the hyperbolic secant pulse as

A . B
a»; = —1V 2w 2f; ta)sin 2’* . (8a)

This result has been independently obtained by car-
rying out an asymptotic solution of Egs. (3)."* One
can also show that for the pulse

A, =B.x cosechmx ,

the appropriate scaling law is

|

L

as,= -1 = folaisin2fi, 18b!

[ ]

PPN WA IPU L R 1P DU . O O S S Wl A--'A-‘“LAJ'_".J444“~

For the hyperbolic secant puls: he transition an -
plitude van'shes for pulse areas oy nmonntegral.
for all dets nings. The zeros of gy, on the other
hand, occur for 3, nm for zero detumng, winle
those for large detuning are 3, - 2n7. Those of o
gofromnmata- Otonm/2asa »».

The existence of a pole at x i 1y a sufficient, but
not a necessary, condition that the asymptotic
Fourier transform of a coupling pulse vary as
plwle™ “ . For example, the function (1 +x°1 /"
has an asymptotic Fourier transform proportional to
v!7%¢ =¥ The factor +'/* precludes deducing the
asymptotic transition amplitude from the Rosen-
Zener formula. Similarly, the squares of the hyper-
bolic secant and of the Lorentzian each have poles
of second order at x =/ with the consequence that,
for both of these, J,, ~vle™ v, so that while these
will have asymptotic transition amplitudes that are
related to cach other. they cannot be obtained by
scaling from Eq. (4). In a future paper, we shall
show how to calculate asymptotic transition ampli-
tudes when the coupling pulse has second- and
higher-order poles at x =i. For now, we merely
present the formulas for the transition amplitudes
generated by the squares of the hyperbolic sccant
and Lorentzian

1/2
a;(HZ):_[ZTZe— % sin |C B ’ l
12
xsinh |C laB| , {9a)
— ‘ B J/:‘
a)(L2)=—i>5e” “sin C *‘(;'_" ‘
[ ) ‘ 1/2’
x sinh | C LaB , 19b)
‘ 27 /

where C =1+ —:‘ + :lh + ;l_. + -+ ~1.198. Equation
{9a) can be obtained from Eq. (9b) by scaling tech-
niques derived in this paper. Equation (9a) s valid
only for |, < ja ,and Eq. (9bi for . 3 < 2u«

III. SUMMARY AND CONCLUSION

In this paper, we have demonstrated that pulse
shapes A4 (1) whose Fourier transforms asymptotical-
ly approach the form dtviie VL where d s slowhy
varying, may be categorized into families which
differ according to the function . Within cach
family, the transition amplitudes ¢t ¢+ are related
by simple scaling laws, so that 1f one s able to
derive an cxpression for the transtnon amphitude
generated by one member of the fanily. correspond-
g formulas for all other members of the fanily
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may be written down by inspection.

A sufficient condition that the Fourier transform
be of the required form is that it be obtainable in the
asymptotic region as a contour integral evaluated
from the residue at a single pole on the imaginary
time axis. For the case where 4 (¢) has simple poles,
a-lx) may be inferred from the solution of the
Rosen-Zener problem,™ known for 50 years, by a
trivial scaling operation.

Our results were obtained by examining the struc-
ture of the terms in perturbation expansions for
transition amplitudes. (We have demonstrated that
these sequences always converge in two-level prob-
lems provided that the pulse areas are finite. Low-
order approximations, however, are frequently not
useful for t— x even when they are valid at finite

times.)  With suitable chaices of ratios of pulse
areas, corresponding terms in the series for different
members of the same family will be identical.

In a future paper,’” we shall present methods for
explicitly calculating transition amplitudes that ap-
ply to higher-order, as well as simple poles. Thus
we are not restricted 1n practice to writing scaling
laws for pulses which may be compared in the
asymptotic region 1o the hyperbolic secant.
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APPENDIX: CONVERGENCE OF PERTURBATION THEORY FOR THE TRANSITION AMPLITUDE

We demonstrate here that the perturbation series for a, converges for all finite pulse areas. The contribution

of order 2k + 1) is

ki .p2 Dk
blk :lB-k-#-la:J\%—l

s = _ 2k -+ x, 1 a
= BFH Dk [T papeT Mdx T 7 frxpe’ My (A1)
x J:: - 4

Now assume that 4 (x) is of a single algebraic sign. Without loss of generality we may take this to be positive.
We compare the series with the corresponding expansion for a =0,

- 2k 1 x
bk = g DR [T fix)dx, " fixdx (A2)
. i Jj_, 1%,
N x 2k + ) X
= Bk fﬁ Slx) dxy | f fix) dx, . (A2
JEE R

Invoking the theorems on repeated integrals of the same function

'

T ML 0 <
bk = B <~H"\f fix)dx

2k o+
2k + 11 l

and the terms are recognized as identical to those for the series -7 sinf3. Now consider the series

N x
F(B):Z b[f) ;Z I?_ﬂl\ +i)3 'frxf(.\')dx

/jlka]

=2 (2k + 10

This is evidently the series for sinhf3, which converges as long as 3 is finite. Hence, the series of Eq. {A2) 1s ab-

solutely convergent. Now

2k +1

Y x . -
bt = gt [T e ]

2k +1

f‘l" ( H-IJaxld
. flxjle x;

< [T I fxn dx [12 S g,
j=

bl!l

so that the series, Eq. tA 11 is also absolutely conver-
gent, and our result s established.

We note that the same arguments will apply 1o
perturbation series at finite times, provided merely

L e

-
that f'tr_/‘lx'ldx’ = Bix) is of one sign and finite.
If fix) changes sign, the results will sull be vahd
provided the generalized area Fixdy s
fimte.

M
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A simple case where the convergence theorem
does not apply is the coupling functioa

A4 (x)=(const}tanhmx /2)/x ,

since B is logarithmically divergent. In addition,
since the pulse area is proportional to the Fourier
transform at zero frequency, the multiple integrals
in the frequency domain for the third- and higher-
order contributions to the perturbation series contain
regions where the integrands blow up, so that the in-

dividual termis beyond first order may not even ex-
ist. (The first-order contribution will be finite, since
the Fourier transform for this pulse exists for v - Q.
In this case, we note that the infinite area does not
imply a pulse of infinite energy, so that it theoreti-
cally could exist. One evidently cannot use the
methods developed here to describe the dynamies.
At the very least, decay would have to be included
in the analysis, and a completely nonperturbative
treatment utilized.)
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Abstract
X Y .

With accgﬁte exp%ﬁmental values of energies, transition
moments and decay rates as input, our calculated results show
that photon-catalyzed bound-~continuum processes can be ob-
served for the first time using I2 in a cell or a molecular-

. 7
beam experiment at laser intensities as low as 10 W/cm2 and
IOSW/:mZ, respectively. Two new features, post-saturation

quenching of fluorescence and huge ( >150-fold) enhancement

of fragments, are shown for the first time,

Reproducticti in volle Wb 0 };‘: g A
e ot o MO for any purpose of the Uniled Statss Guvernment

under Contract No. N00013-77-C-0553.




4

Interest in laser-induced multiphoton bound-continuum processes
(e.g. ionization, autoionization, dissociation and predissociation)
L
in gases1 and ,condensed phases2 continues to grow. In view of the
A
recent,
geeefit high nonlinearity (direct 33-photon ionizationakobse ved in

multiphoton bound-continuum processes with net absorption,1 it is

surprising that there is so far no experimental demonstration of the
lowest-order (two-photon) process in another kind of multiphoton

bound-continuum transitions,

AB + Nhw - [AB'+ (Mx1)hw]) > A + B + Nhw , (1)

which conserves the total number N of photons in a given mode of the
electromagnetic field. In reaction (1), A and B refer to neutral or
charged fragments, and the square brackets denote an intermediate
state. An example is given in Figure 1. Since the rate in the
reaction (1) is enhanced by the photons without their being consumed
in the transition (while there are usually some losses or gains due
to other unavoidable processes present in an experiment), this
multiphoton process has been called the photon-as-catalyst effect
(PCE).3 It can be viewed in general as a bound-continuum state mixing
due to the external coherent :adiation and as a nonstoichiometric use
of laser phatons.[‘-8 When a resonant intermediate discrete level in

absorptive multiphoton processes (AMP) 1is imbedded in a vibrationala’6

or 1onization5’7’8 continuum, PCE may occur simultaneously (and some-

times‘unsuspectedly) with the AMP.

The considerable amount of recent theoretical woz'k33—8 have
heightened the interest for an observation of the PCE. To facilitate
this goal, we propose here two such experiments and show their feasi-

bility with detailed analyses on the bound-~continuum process: photon-

]
catalyzed predissociation of 12 in selectively exé%ed Bo:vJ

e




states, as explained in Fig. 1. The unpopulated high-lying XOEV'J'
states are chosen as intermediate states.a Our calculation shows
for the first time that the PCE could cause a new characteristic

post-saturation quenching in the BvJ-+Xv1J1 fluorescence (a phenomenon

new to AMP as well) and a huge ( >150-fold) enhancement of the atomic
iodine fragments. Our results indicate that the PCE induced by 1l-us

laser pulses could be observed in a cell experiment monitoring the

m
fluorescence with laser intensity I = 107 W/cm orAa molecular-beam

experiment monitoring the fragments at I = 105 W/cmz. This range is
many orders of magnitude lower than the requirements (01011-1012 W/cmz)
calculated for other systems.7’8 In this note we describe these key
findings.

Our calculation is based on the published analytic results (Egs.
(2.28) and (2.30) of Ref. 5) of a theory of resonant photon-catalyzed
bound-continuum transitions (via a bound intermediate state as illus-
trated in Fig. 1) regardless whether the continuum is vibrational
or electronic and whether the system is in the gaseous or the condensed
phases. The main approximation is that the laser is a square pulse of
constant intensity I and duration T. According to Section III of Ref.
5, some favorable conditions for observing the PCE are (1) resonant
intermediate states; (2) large transition moments; (3) long-lived
bound states (and long laser pulse) for long interaction time; and

rotes
(4) small competing spontaneous bound-free transitionA. Indeed 12
possesses these advantages: (1) the X-B transition frequencies9 being
in the tunable range of narrow-band dye lasers; (2) favorable elec-
tronic transition moments and Franck-Condon factors and densitieslo;

(3) long lifetimes (-~ lus) of BvJ and Xv'J' statesll'lz; and (4)

6 -1, 11
weak natural predissociation (€10 s 7). These explain the low
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intensity requirement and huge fragment enhancement in our results.
In contrast, the other calculated systems suffer the disadvantages
of shorter-lived states, large competing spontaneous autoionization
rate and far from resonance8 or small transition moments.7

Our first set of results is applicable to an 12 cell experiment
in which a resolved BvJ -+ leJ1 fluorescence line is monitored. The
BvJ level can be selectively populated from the ground state by a
dye~laser pump pulse.ll A second time-delayed dye-laser pulse (the
PCE laser) is incident on the excited Iz, and the monitored fluorescence
line is integrated over the PCE-pulse duration T. The parameters of
the level system defined in Fig. 1 (chosen to match the optimum power
output of laser dyves and for their favorable Franck-Condon densities)
are: XvyJg = X, 0,38; w = 17,688.936 e '; BvJ = B, 18, 37; u, =
17,475.806 cm 3 Xv,J, = X, 1, 385 Xv'J' = X, 7, 36 and the Bvl-Xv'J'
frequency wy = 16,228.577 cm_l. A first step in the experiment is to
tune the PCE-laser frequency w into resonance with Wy Our calculated
results on the integrated fluorescence signal (IFS) versus wshow a
(power-broadened) dip at Wy With w locked at Wy s the next step is to
increase the PCE-laser intensity I and record the IFS versus I. Our
calculated values for the I, vapor pressure 0.36 Torr (at 300°K)
are plotted in Fig. 2. Considering first the resonance curves (labelled
by 0) for 10-ns pulses and starting from the low intensity region,
we note the decrease in the IFS due to laser-stimulated B - X transfer
of population, and then the coherent saturation of the B - X transition,
a known phenomenon.13 For 1-us pulses, the resonance IFS has already

reached saturation at I = 102 w/cmz. Then at still higher intensity,

if the PCE were to remain negligible, the IFS would stay constant (the

“ - . -
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flat dotted curves in Fig. 2). In fact, however, our calculations

(the solid lines) reveal a new feature: a laser-intensity-dependent
decrease beyond the saturation region. This is due to the fact that

the laser-stimulated bound-free absorption in the second (and bottle-
neck) stage of the PCE (hence the whole process itself) dominates

over all the other loss mechanisms of the bound-state population. The
resulting inflection region between the two quenching regimes would

be a readily recognizable feature in an experiment. This inflection
persists for detunings up to about 0.03 cm-l, but disappears for

A > 0.3 cm_l. In the latter case, the mark of PCE is quenching the
fluorescence to vanishing values at higher intensity without ever reaching
saturation, as shown in Fig. 2. From the A = 0 curves, we see that the
PCE could be identified at I = 108 W/cm2 for 10-ns pulses and at I:$107
w/cm2 for 1-pus pulses.

If the sharp resonance dips at characteristic frequencies wo and
the quenching bevond saturation were observed in an experiment, we think
they would constitute sufficiently strong evidence for the PCE. The
dependence on Wy means that the level Xv'J' must play a critical role.
Then from energetic and symmetry considerations, the only possibility
of a laser-stimulated decay from the Xv'J' level, and out of the co-
herently superposed B-X states, is a transition to the lu or A dissocia-
tive states. The dependence on the Xv'J' levels would also eliminate
the possibility of the observed behavior being caused by (a) single-
photon dissociation, nonresonant Raman or Raleigh scattering, all from
the BvJ level; or (b) resonant Raman or Raleigh scattering, or resonant
multiphoton dissociation or ionization via some discrete levels
higher than BvJ, since no higher levels possess the identical spectrum

as the B-X transitions.
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Our second set of results is applicable to a crossed laser-molecular-
beam experiment with the apparatus similar to those in double absorption
photofragment spectroscopy, capable of mass, translational-energy and
angular-distribution resolution.14 The molecular beam, the nearly coaxial
pump- and PCE-laser beams, and the quadrupole mass spectrometer are
oriented along the x, y, z axes respectively (see inset in Fig. 3). The
atomic-iodine fragments (as the signal) are collected during the PCE-
laser pulse and afterwards. To eliminate the background noise arising
from Xv,J, + (1u,A) photodissociation fragments due to the weaker pump
pulse, its linear polarization €' should be oriented along the
detection z-axis (under the axial-recoil approximation,14 fragment an-
gular distribution.“sinze, with 6 measured from €'), For the same
purpose, the frequency w of the time-delayed PCE-laser pulse is chosen
to be smaller than the dissociation energy DO( 12,440 cm—l) of the
ground level. To maximize the PCE-fragment signal the linear polariza-
tion & of the PCE-laser should be oriented at 45° from the z-axis,
since the PCE-fragment angular distribution is given by cosz¢ sin2¢,
with ¢ being measured from E.

The level system (see Fig. 1) for the fragment calculation is given
1

s BvJ = B, 14, 53; we =

= 12,168.112 cm ! and Xv'J'

by: XvgJy = X, 0, 543 w, = 17,280.974 cm

-1, = .
16,856.283 cm 5 Xv,J; = X, 2, 545 w,

X, 26, 54. The BvJ level is chosen for its small predissociation rate11

and the Xv'J' level for w <DO. The calculated total fragments collected
(S) with the PCE-laser on, showed a resonance peak at w = Wy Observation
of such peak would ensure the r itical role of the Xv'J' level and
eliminate the possibility of other processes, as discussed under the

fluorescence results. Figure 3 gives our results for the fragment

enhancement ratio, R = § (with PCE-laser on)/S (without PCE-laser). At

o
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resonance, R reaches the value 2 at I as low as 10 W/cm2 and the maximum

value 152 at I-"lO7 W/cmz. At low intensity where the PCE is negligible,
notice that R can be (slightly) less than 1 owing to laser-stimulated
B-X population flopping. Observation of the resomnance peak and of the
intensity-dependent enhancement in I-atom fragments at the expected

mass, translational energy, and angular distribution would constitute
direct preoof of the PCE.

Based on our earlier preliminary results on the fluorescence system,
an experiment to observe the PCE was attempted by Brechignac, Cahuzac
and Vetter,15 using a narrow-band (30 MHz), single-mode, YAG-pumped
dve laser (T ~10ns). Only the fluorescence line (and not the fragments)
was monitored in their cell experiment. The predicted resonance dip
was observed. In the intensity study, they reported an IFS decrease of
407% at 2 x 108 W/cmz, of 20% and 10% at lower (but unmeasured) inten-
sities, and no decrease below 2 x 107 W/cmz. We find that all their
results can be accounted for by the & = 0.3 f:m-1 solid curve in Fig.
Z. A detuning of 0.3 cm_l might be due to a reported frequency-drift
problem in their dve laser. If so, their data point with the highest
intensity (2 x 108 W/cmz) has just reached the region where the case
with PCE begins to differ from the case with only stimulated emission
(see Fig. 2). As such, their results probably could not be considered
as clear evidence nor as a disproof of the existence of the PCE in I,
(Bv]).

The study of Brechignac et al. prompted us to check the effects
of spatial and spectral averagings of the pulses and of optical Stark
shifts. Of these, only spectral averaging (over a Gaussian line
profile of FWHM 0.03 cm_1 resulting from overlapping Doppler-broadened

16
hyperfine lines of the B-X transitions™ ) changes significantly the

approach to saturation for the A = 0 curve, while leaving its




PCE-dominant region and the entire curves for A = 0.03 and 0.3 cm—l

essentially che same as the uv.averaged curves (see Fig. 2). Also, our
calculations can reproduce quite satisfactorily the shapes of the three
experimental saturation curves (each with 5 data points) in the ion-dip

spectroscopy of 1 From these checks, we believe our present results

9
are reliable. We hope these results would stimulate and aid experimental

efforts to observe this effect. We also hope that this work would

stimulate studies of PCE in other areas of physics and chemistry, since

3,

theories (without restricting the nature of the bound and the continuum

states) indicate that the PCE is also applicable to other bound-continuum

- . . . 7
transitions: those involving electronic motion’’®

7,17

and those occuring

in liquids and solids.

We wish to thank J. L. Picqie, J. Vigue, G. Mainfray, J. Wessel,
S. Yang, J. Bernholc and the authors of Refs. 9(b)-(d), 12 and 15 for
helpful discussions. This work is supported in part by the U. 5.

Office of Naval Research.
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Figure Captions

Fig. 1. The photon-as-catalyst effect (the solid-line arrows) on I, in a

2

BvJ level consists of the stimulated emission to an unpopulated
intermediate level Xv'J' and the absorption to the vibrational
continua of 1lu and A states. W, wp and we are the PCE-laser,

pump-laser and fluorescence frequencies, respectively.

Integrated fluorescence signal versus laser intensity

for 10-ns (unlabeled) and 1-ps pulses, plotted relative to the
natural fluorescence amount (normalized to the same dashed curve
for both 10-ns and 1-us cases). Each pair consisting of a solid

curve (case with PCE) and of a dotted curve (case with i-r bound-

bound transition but without r-f bound-free transition) is labeled
by the detuning in cm-l. The pair labeled by 0 is for zero de-

tuning with spectral averaging.

Enhancement ratio of fragments versus laser intensity

-1
for l1-us pulses. Each curve is labeled by the detuning in cm .
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THE El1GENVALUE PROBLEM FOR. TWO LEVEL SYSTEMS

E.J. Robinson

New York University
Physics Department

4 Washington Place

New York, N.Y. 10003 USA

INTRODUCTION

The study of two-level atons coupled by external fields is
more thzn 50 years old, but contiaues to be of funverest.,1™1U Qur
purpose here 1s to deepen the A eigenvalue method, an approach
to this problem introduced receantly.?

‘Except for z few potentials, closed-form sclutions are not
known .2, % Recently, Bambini and Berman® (B and £) found a class
of coupling functions for whigh the twvo-state equations of motion
could bte scived analytically. The set includes the wvperbolic
secant of Rosen and Zencr as a special case.¢ Apart from this,
all mewbers of the e2r are temporally asvimetrie. TFor these, B
and B shicied that there are no coupling strengths vhere the
transition probability vanishes, except on resonance.®  This
differs from the hyperbolic sccant, where P = 0 for any pulsc
area A cqual to ar integral ultiple of ©, regardless of A2 1t
is also lknown that other temporally syrmmztric pulscs have pulse
arcas for P = 0 off resonance.

This suggests that it may be true in general that symmetric
(asymrctric) pulses possess (lack) nodes in P(A), The author
studiced this point by reparding the equations of totlon as an
efgenvalue (EV) problem for_AZ.9 By deternining whcen these EV
were rcal or complex, he was able to gencralize the B and B re-
sult”, finding that symaetric pulses alwaye have nodes, but
agymuetric pulses do not, except under over-determined condi-~
tions,

. L . .
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In the present paper, we dircct
determining EV and indicating how one
approximate calculations of them. Ve
where this knowledge preovides partial
In addition, we shall demonstrate how
tudes in terms of the EV

THE EIGENVALUE PROBLEM

The time-dependent Schrodingcer

and a, is, in RWA with detuning A, 1
ta =v Mo, . Qa)
ta,=v() 0, ~(1b)

for real potentials., Ecuivalently .

v . 2
1" (? +18) a; + V7 a; = 0, (2z)
ve 4 .
By - (- 18) &y + Vi a, = 0. (2b)

Consider now_envelope functions of a single zlgebraic sipn, and

defing z = S e £(c') det - Y, where £(z) = V(t)}/4, with

A «x f o V(t) dt. Then ‘

w _ 36 4, (2 - ERY
ay ra] - A ay 0, (3a)
w38 2 .
Writing
1At ~1ht
2 2
al = b1 e » 8y ¥ b) c ’
Aé iAf' 2
e T G ST (42)
/% 2f
2 '
- b2" - (éuz + i§£_) b2 A2b2 . (4b)
4f ZE
Eq. (3a) is subjcct to the 4pitia) conditions a ( -k) =

a,' (%) = - 1ae”, & real but arbitrary.

(the LV Az) 32( 5s) also vanishes W=

Ah is real if £(t) is t«.pozally syrmetric, vhile it is owdinarily

complex for asymmetric potentials and
corresponding to A arc a and b,
‘n ©%2n 2n

and eipenfunctions and,
exhibit an approximation method for P.

AND ITS VARIATIONAL APPIROXIMATION A

equation for amplitudcs a

in the two represcutations.
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We shall restrict the remainder of the discussion to potentials
that are symmctric in the time (and in z).

Eq. (4b) resembles a one~dimensional, time-independent
Schrodinger equation for a particle in a complex "petential.' Re-~
cause of the non-Hermiticity of the "llamiltonian', a peneralizod
form of the usual eigenfunction expaunsion is appropriatg. In

particular, the correct norrmalization integral {is f“ b~ dz, not
klb | dz, and matrix elemcnts of operator 0 are 5ven by
omn-- _;i_bm 0 b dz. Then A is given by (b DO‘Mulled to 1)

'
nu_ fli b " b dz - f"“fli tzl (A +_I_‘;§_§__) dz (5)
4f" 2f
If b 1is exa ct, Ea. (5) gives a2 without cgror One may alco in-
terpret it as a varilational principal for ;_ ,with b now a trisl

function, which, if arbitrarily flexible, gLneratcg an Euler--
Lagrange equaticn that 1s Lqg. (4b). If b_ {is a function of a
finite nuv:ber of parawmeters, Eq. (5) prov?dcs a variational ap-
proximation for the eigenvalues of Eg. (4b).

APPLICATIOV OF THE EIGENVALUL MIETHOD

In this section, we shall demonstrate how the cipgenvalu=n
method can predict gualitative features of two-level spectra, Ve
address the question of the validity of the Rosocn~Zener conjes-
turc® for A small., For the hyperbolic secant

P = 21 |V()|? sin® A/42, (6)
vhere.V is the Fourier transfort of v(it) = A f(t).2 Rosen and
Zener” surmised that Eq. (0) might be true for all srwoth V(t),
replo~ing cnly the Fourder tronsform of the hyperbolic sccant
with vaat of V. Since the resulr holds for A = 0. one wmight cx-
pect n reglon cof approximate validity for symmetric pulses at
small detunings. It czn be esteblished thaf, this 1s indeed the
case, in the sense that corrections are 0(4A“) 4f V is differ-
entiable at A = 0. For the Lorentzian, V is not diffcrentiable at
A » 0. By calculating an eigenvalue for that potcatial, the R-Z
conjecture will be snowa to be invalid for smzll & in that casc.

On resonance, the first node in the transition amplitude
occurs, for uny pulse shape, ot A = W, TFor the purpcse at hand,
it 4o sufficient to decmonstrate that, for gmall A, there 1s a
linear correcticn in this filrst eigenvalue for the lorentzian.,
Off-reconance, we choose a trlal eigenfunction which reduces to
the known resonant bn 2as A - 0., This {18
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b o= Ne~ift 1 1

T 2
Y1+ ¢2 '/1 + ol

where N i8 a normalizing factor, and pass to the limit
This leads to

2 2 1+ 35 |a]
Al b if:fl .

a corrcction to R-Z linear in A. A leading correctjioun
eigenvalue that is linecr in A carnot be the signatuve
ing quadratic correction to the transitica amnlitude,

to the
of a lead-
This crvdre,

trial function gives a result thar is an excellent approximaticn

to the true eigenvalue for & = 0.1,

AN EIGENFULCTION EXPANSION FOR TRANSITION AMPLITUDES

Since the b are complete, one may use them as a bosis for

expressing unknown fugctions. In particular, 41f b, is
tion to Eq. (4) for A< ¢ A%, we may expand ba in téris
for - < z <!,

standard procedures.

Thus

. 1
by(z) = Zabd (2) = Ib_ (2) _{;bn(z')bz(z') dz'

Equations for bn, b2 are
2

]
I
2f He”
2
]
NPT RIS
1 2f 4t n non

the solu-
of the b

ot 7 11
inen bz(k zay ba deducced {ron the exprnsion by

(7

(€2)

(8v)

Multiply Eq. (8a) by b, Eq. (8b) by by, subtract and fntegrate

n
over all allowed z.

This yielde, using Green's thecrem,

' 11X 2 2 i . .
[-(bZ bn - ben )3%=(A - An) f?% b2(ﬁ) bn(“) dz ®
and o . bal b0 ’
LAY
n
- b "0 b (2)

2 2

b.(z) = £ &b (z) = b.(%) &
2 . nn 2 A2 . An




WP

- . - ST Bé(z)

;;_b_n_'(’i) bn(z) .
2 2
AT - A xc)

T As A+ 0, bz(z) is correctly given by first-order theory

bgl)(Z)

b ' () b (=)
2

-A
n

by ()

Since first order theory is also exact for all A 2s z + - L,

bn'(%) bn(Z)

(1)
b, () = b2’ Lin L —mp——
22 2 Y _ A2 _ _ (11)

—
g (Y b
bn (21 bn(Z)

Az - Az
n

k4

bn(z) bn(z')

A surmation of the form L -
4 A= A2
n

is the Grecen's function

G(A,z,z"), satisfying

2 \ 2
[: -4 5 - 1A§ 4 5 - A G = = 8(z -~ z') . 2)
3 4f

M oy Lin G(0,z,2")

Accordingly, bz(k) = b, 9
z+ <k 3z'
L
2""413“ C(AZ.Z,Z')
9z'

For problems whose exact solutions are not,known, G may be approxi-
mated by means of a variational principle. ' .
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pc;wcr broadening (the nawral width and Ifs can be neglect-
ed here). Study of the dependence of the widths upon laser
power shows that the power broadening is significant. How-
ever, at a laser power of 30 mW, which was used in sll the
experimental runs, it is rathcer small and is accounted for in
our data processing at the samc time 4s pressure broaden-
ing, as shown bclow. For the analysis of pressure broaden-
ing effects, we rely on previous experimental studies®®
which indicate that the pressure broadening coefficients for
helium, argon, and xenon are the same within 15% for the
3P — 4D transition. We have thus assumed the same
Lorentzian widths for the hcavy rure gases as for heliumn at
the same pressure, and we have used the values of the
Loreatzian widths experimentally determined by the decon-
voluticn of the curves obtzined with helium to interpret the
absorption curves obtained with argon and xcnon. We cb-
tained the Doprpler contributions to the linewidths for the
latter two passcs by a deconvolution also assuming a Voig
profile (this assumption will be discussed below). Thus we
obtzined values for the Deppler widths which are no longer
depcindent on the foreign gas pressure.

These 2re shown in Tabice 11 along with the theoretical
predictions. For both argon and xenon, it can be seen tha
the experimente! values are significantly larger than the
thermal Loppler widths,  This gives evidence for the
predicted “‘heatine™ cffect. Nevartheless, the effect is
sraaller than theoretically CEX(“'L{(C" One can account {or
s the processes that thorm :’ 7e the ~roms

K Lnd bee

/. i ene consider
in the 30 Fist, once excited to the 39
fore absorbing & seeond luser pheton, the sodivm 2toms
may urdsrgo coliisions with the periurbers which tand to re-
turn the velocity distiivuiien to the thermal one. We now
that the l'sur power donsity is larges creuph for the
3P — 4D itrinsition to be partly saturated, which reduces
these velocily changes. Sccond, the reabsorpiion of reso-
nance photons, which provides an aliernative mechanism 1o
excite atoms from fhe ground state, has the same clfect of
washing out the particular velocity disiribution of the 307
atoms by CARE. Although we work at densitics of sbdium
wlere the opticel depth for resonant light is Ligh, the transit
time of an atemn excited by CARE through the laser beam is
small, so that rechsorption events take place mainly outside
of the laser beam, where we do not detect them. These cf-

o AL Bl g i A b i 8 2T A e At b ool AN o8 me~ g ﬂ
S A . - . . ritiiat ) e
LR - . - - R,

TABLE Il. Comparison of the experimentally obtained widths
with theory (power and pressurc bro.mcmng extracted). All values
are in GHa.

~ Thermal Doppler Theoretical width Experimental
Gas width including heating Doppler width
Ar 18 29 2.4
Xe 1.8 35 28

fects are very difficult to estimate quantitatively. In order
to study thcm it would be necessary 1o perfotm experiments-
at lower sodium and rare-gas pressures, which we were un-
able to do because of signal-to-noise rstio considerations

The partiz! thermahization in the 3P level may zlso expliin
why the cxperimentzal absorption line shape (iip. 4) {or the
3P — 4D wrausitien differs {rem the theoretically predicted
one (Fig. 2), zad justifics our use of a Voirt profiic in fit-
ting the data,

In conclus<ion, our experrimant has shovi evidence for
significant “‘heating™ assoniated with the coltinionsdly aided
radiative excitatian ef the 37 atenis using @ boer detuned 0
be blue. il a torse enourh troction of the wootas in the Liser
becam undurroes such a transition, this (‘f:.\l it H lLog 1o
measurabls teroperaiure vudictions in th g viding
new micthoe of lascr beadng or cooling,
cut that codling curaot Le ahserved i the eveirnd state, ot
least after one absorption Proy Wothe Nicer i tinea o
the red side of thie lise, only 2t ators, can ke excired trom:
the ground stare, and are dowed doang rosilin. inoa ~2ioci
ty distribution which ¢an e shown to De Llondes) to the
Maxweliian oue’ I this case, the ground stais is cool=d |
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Cooling of Vapors Using Collisionally Aided Radiative Excitation
E. Giacobino and P.R. Berman
Physics Department, New York University, New York, N.Y. 10003

Collisionally aided radiative excitation (CARE) 1is proposed as a
mechanism for cooling an atomic vapor. With a CW laser power of
1.0 w/cm2 and the resonant dipole-dipole interaction providing the colli-
sion mechanism, we estimate that temperature gradients of tens of degrees

16 3

per cm can be achieved at vapor densities of order 10~ atoms/cm”.

- ; Key words: cooling, collisions, resonant broadening, laser assisted

collisions.
1. 1Introduction

Over the past several years, there has been considerable interest in colli-
sional processes that occur in the presence of radiation fields such as reactions

of the form

A1+Bl+f19"A2+Bl

(Ai' atom A in state 1; B,, atom B in state 1), which are commonly referred to as

collisionally aided radiative excitation (CARE) [1]. Most experimental studies
to date have concentrated on measurements of either the CARE cross sections or the
frequency distribution of the reemitted light. However, it can easily be seen
that CARE also produces a change in the atoms' translational energy and, as such

may have potential use as a method for heating or cooling an atomic vapor [2].

*Supported in part by NSF Grant INT 7921530 and by the U.S. Office of Naval

Research.
Reprocuction in wtolz cr in part is permitted $upported by the U.S. Gilice of Nacal Research
for any purpose of the United States Government, , 112 under Contract No. N0O014-77-C-0553.
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Let us consider radiation of amplitude E and frequency 2 acting on a two-
level atomic system whose Bohr frequency 1s w = f-A (|A| >> Doppler width). As
a result of the interaction with the field, the atom may scatter a Rayleigh photon
or be excited to its upper state. The latter process, although possible without
collisions in strong fields, is greatly enhanced by collisions [1]. Since the
final energy level of the atom is different from the energy of the absorbed photon,
the energy difference must be compensated by a change in the translational energy
of the colliding atoms. As pointed out previously (2] the net result is a cooling
or a heating of the vapor. Tuning with > w produces heating and that with § < w

produces cooling.
2. Expected Cooling

The magnitude of the effect depends strongly on the detuning A = {2 ~ w: each
time an atom interacts with a photon the energy fil 1s removed or added to the vapor.
One may choose iA to be an appreciable fraction of kT (at 500°K kT corresponds to
a frequency of 104 GHz or a wave number of 3 x 102 cm-l), so that velocity changes
are large compared with those of order 1.0 cm/sec which occur as a result of photon-
recolil processes,

Of course, the process considered here involves a non-resonant atom~field
interaction and the rate of excitation is reduced compared to a resonant excitation
by a factor I‘ZIA2 where ' 18 the collision rate. (For the sake of simplicity we
use expressions calculated using the impact limit of line broadening). We shall
consider the case of resonant broadening; i.e. the resonant dipole-dipole inter-
action between two atoms of the species gives rise to the rate I,

The rate of excitation to level 2 from level 1, is given by

R 2
u, = 2§7£ (n1 - n2) 1)

vhere B, is the population of state i, X is the Rabi frequency defined by
x=% @)

and u 4{s the dipole matrix element for the transition. If o, >> By, the steady-
state upper population of state 2 is
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vhere v is the decay rate of the upper level. For cooling to actually occur, the
atom must decay back to the ground state vis spontanecus emission rather thsn via
stimulated emission (stimulated emission would "heat" the atom if absorption cools

. it). This means that it is advisable to restrict the laser power such that
2°r |
T <Y . (4)
a

Beyond this limit, any additional laser power is useless since there is as much
stimulated emission as absorption.

For an atomic density N and cylindrical interaction volume of length L and
cross-sectional area A, the power dH/dt removed from the sample is

2
SH o XLy, (5)
de 2
a
which may be rewritten as
di KA P
rrl v NAL, (P <P) (6)

where P is the laser power and Pn is the maximum laser power consistent with con-
dition (4). This result suggest a potentially large heating or cooling effect.
Taking

£A/KT = 0.1 (A/27 = 10°

-7
l’/l’“l * 10

GHz) ; Y/2n = 10 MHgz;

(P =5,0 H/cn2 s N= 1015 cm.3),

one finds

1 dH 1

m—&- 6 hA sec (7)

Under such conditions, the time scale at which the energy is removed or doubled is

D o i g R
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1.0 sec. In calculsting dH/dt, we assumed the medium to be optically thin.
The above calculation has to be modified when effects of radiation trapping are
taken into account. Equation (4) must be replaced by

20T oo
K

’ (8)

vhere Y' 1is the effective upper state decay rate in the presence of radiation

trapping. Typically, one finds [ 3]

y' = y/[kL (v 2o KL)Y2], @ >> 1) (9)
vhere

K = No_ (Y/wD) (10)

is the absorption coefficient for resonant radiation in a Doppler broadened medium
(mD = Doppler width). The cross section LA is given by

2
o =28 U .52, (11)

o eoc fiy
where u is the dipole matrix element and A the wavelength for the transition.
The rate of energy loss for the sample is now given by

Y, o, @<p) | 12)
m

vhere P; is the maximum laser power consistent with condition (8). Note that
P; may be considerably less than P . However, since P;/Y' - Pmly. Eq. (12) may

be recast in the form

di %A P '
= Ty P—‘ NAL . [P < Py =P (v /v)] 13)

Equation (13) is identical to the result (6) which we found in the absence of
radiation trapping, except that P is limited to a smaller value.
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- Even though P is limited to a value equal to P;, significant cooling can
still be achieved. For example, for the parameters chosen above, one can use

| Eqs. (9-11) to estimate P;/PIll - y'fy = 10-6, assuming a cell length on the order

3' . of S5cm. Since P/Pln was taken equal to 10.7, one finds P = 10-1 P; which does not

violate the condition P < P;. Thus, the expected cooling is the same as that

found in Eq. (7).

3. Temperature Gradient

R LAY
. e .

l'l [

We can now estimate the temperature gradient in a cell created by this

}

[
"D;
i.. .
k-

cooling. Considering that the atoms are perfectly thermalized on the wall of
the cell, the amount of energy we must remove per second, to keep a temperature

gradient dT/dr between the laser interaction region and walls is

1 dH dT
Sk~ ar a4
where S 18 the surface of the laser beam {S = 2/7AL = %L; beam circumference
= 2] and x is the thermal conductivity of the gas approximately given by
K = ku/oc (15)

where k 18 the Boltzmann éonstant, u a mean speed, and oc a collision cross section.
Combining Eqs. (14) and (13) and dividing by the wall temperature T, we obtain

W
L dr T HANP Y maL oo

We may also note that the limiting value P determined from condition (L] 1s given
by

Pn-Z—TF—-A . (17)

To optimize the temperature gradient which can be obtained, we proceed as follows:
(1) We choose a density N such that the optical depth for the laser radiation is
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cquil to unity. That is, we set

No ry

Lele= L H
L 282 ’

Ne 2A2/(00LI‘7) (18)

For L = Scm, and T determined from theories of resonance broadening [4] (i.e.

' = 0,023 N Asy), A = 600 nm, and the values of A and vy used above, one finds
N> 2 x 1016 ltona/cn3. By choosing an optical depth of unity, we ensure that
each photon "does its duty" in removing energy from the sample. (2) For this
value of N, Eq. (9) yields a value Y'/y = B/B, = 10”7 (3) Using Eq. (17),
we estimate the maximum allowed value P; for P to be

Pp -7 Pa

1—5 1x10 A_= 0.2 w/cm2 .

(4) Since this value of P'/A is readily obtainable with a CW laser for A< 5 cm2
we set P/P equal to its maximum allowed value (P /P ) in Eq. (16). Moreover,
ve take No = 0.1 P/u to finally obtain

= 0.1 ( T, ) 2 (1 x10 ) (19)

For A = 4.0 cnz. I'= 0.6 x 1010 sec-l. u2 = 1010 cm/sec, (RA/kT) = 0.1,

= 0.1 (20)

The temperature gradients predicted by Eq. (19) (of order 10 degrees/cm)
may be somewhat optimistic. However, this order of magnitude calculation does
seen to indicate that significant cooling can be achieved using collisionally
aided radiative excitation,

One of us (E.G.) would like tothank'Dr. F. Laloe for stimulating discussions
on this subject.

*We assume that the excited state population is close enough to saturation to
ensure that it is resonant collisions that provide the major comtribution to

the thermal conductivity.
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' 5 &
. 6 &
- Over the past several years there has bceen considerable interest in col-

T 7 __ lisional processes that occur in the presence of laser ficlds [13 such as,

o A, + B, + hQ > A+ B, . -
} 1 2 1 .

I g This class of reactions is commonly referred to &s CARE (Collisionally Aided

o Radiative Excitation). If the laser is detuncd “rom the 1-2 transition fre-"~ -
v g guency by A, the collision provides translation .l hinetic cnergy to compen-—

’a ’

-~ sate for the mismatch hd between the ficld and the atomic tyinsitiorn, which =
;. leads to a corresponding change in the velocity o the atons involved in
ﬁ_ 10 the process. This change in translational envrry is distriluted between R
.the active atom (A) and the perturber (B) deponding on their relative masses.
. ' : 1
We have studied the case of the sodium-rare car systen subjected to laser 7
jrradjation detuned from the 35 ~ 3P transitici: tcward high frequencies.
% The velocity distribution of sodium excited 37 atcerse has been calculated S
for various rare gases using a hard splicre collicicin kernel. The distribu-
13 tion obtained with helium perturbers is very <!vuse to the indtial Maxwellian
distribution, since helium is wmuch lighter ¢han vodivm”and tales praciically
34 all the cxcess encrgy. In contrast, when argon ov xenon is used, the sod}um'h,
" atoms arc predicted to undergo large velocity c¢honges, and the Doppler line-
shapc deviates from a Gaussian linceshape. .

»

Experimentally, the velocity distribution of tlhe 3P atows was monitorcd

16 by looking at the Doppler broadened resonance nnsociated with the absorption .
on a second transition 3P = 4D. '

15 » 15.

17 . cre . . .
- We observed 2 significant difference betwecn ticn Doppler width of the -
3P - 4D transition for helium, argon and xznon jporlurbers (sce Table ).
s _ : 18
Table 1: Widths of the absorption resohance on tha probe 3P*4D in GHz —-==
The accuracy is about 0.1 Glz.
QLI e e 12
Rare Gas Yressure-Torr Na-He Ra-Ar Na-Xe
20 _ ' o » !
5 2.7 R PR .
21 10 2.7 3.2 3.5 ! o
e T .- 20 3.1 3.7 4.0 -2l
':-.. 30 3.3 3.6
N e e . o
'? To preciuely check by how much the Doppler widil: win modificd by the "heat- »
L 2u dng" cffect, we had to extract the effect of proconre and pover beoadening . i
E’ on the 3P = 4D probe transition. These were deverined dn the cose of helium, ;
g where there is no heating, from the deconvolution o the cxperimental Voipt o :
Suppo:icd by the UT. Oiice of feead Resmarch Poproduct e i TOs o i ot i potdied ' |
| under Contrart Ko, HCOIA-T7 €053, Jor eny Jon Suoabineed Shaen Guatnienb '! :
!
ﬁ.‘l’/'.nn»l’ll‘?h-,'h'!' Voo Do o Bl o o %, e 0 9 0 AL M '
- ,':;\' R T TR TR .7:-;.- o A; . .__'_._; Lo = ;'-A ~ ‘&“ ’;._l-.“;- e mlataam Aa ala_al
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profile, assuming a Doppler width determined by the Maxwellian.velocity dis-
1__ tribution. We made the assumption that the pressure and power broadening
effccts leading to the Lorentzian line width were the same for the same pres-
, Ssure of helium, argon and xenon perturbers; this is justified by the fact
-“-- that the pressurc broadening coefficients on the 3P + 4D transition have
been shown to be very close to each other for these three rare gases [27.
3 - . 3
Then a coarse deconvolution, assuming a Caussian shape for the Doppler
4 broadened part of the linc, gave us the FWHM of this Doppler broadened part,
" to be compared with the predicted theoretical valuc (Table II) and with the
width given by the Maxwellian distribution.

Table II: Comparison of the experimentally obtained width with thcory
(power and pressure broadening extracted).

. 6 5

N 7 Thermal Doppler Theoretical width Experimental »
i Gas . width : including heating Doppler width o

- . 1.8 2.9 2.4 8 :
h xe . 108 3-5 ’ ) 2.8

; 9 )

10 There is an obvious heating effect of the 3P atoms, although it is less
— "~ than theorctically predicted. We interpret this discrepancy as a result of - -
re-absorption of- resonance photons which excite atoms from the ground state
1 _ without changing their veclocities, and of the velocity changing collisions ...l

undergone by the 3P atoms after it has been excited. Studies at lower sodium
12 pressurcs are in progress to check this point.

Ty

EA ¢ ek

2

-1

In conclusion, we have demonstrated velocity changes subsequent to CARE.

13 L
—— If the ecfficiency of the process is high enough, that is, if we are able to -—
accelerate or slow down cnough atoms, this should lcad to a macroscopic local
EL—-heatlng or cooling of the vapor, as predicted [31. . . R L
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