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Research has been carried out in the areas of (1) Saturation spectro-

scopy including effects of level degeneracy, (2) Heating and cooling of

vapors using collisionally-aided radiative excitation, (3) Creation of

electronic state coherences in laser-assisted collisions, (4) Two-level

problem plus radiation pulse, (5) Photon as catalyst effect and (6)

Collisional processes in 4-wave mixing experiments.

(1) Saturation Spectroscopy Including Effects of Level Degeneracy

(C. Feuillade, P. Berman).

Owing to a favorable resonance transition frequency, Na has been the

favorite choice of experimentalists in laser spectroscopic studies. The

fine and hyperfine structure of Na leads to a multitude of levels, even in

the Na ground state. There have been no rigorous calculations that properly

incorporate the effects of fine and hyperfine structure, collisional effects

and optical pumping effects with Na as the active atom in a laser spectro-

scopy experiment. However, it is clear that optical pumiping of the ground

state, in particular, can severely modify the laser spectroscopic line

shapes.

Due to the fundamental importance of the Na system in laser spectro-

scopy, we have begun a prcject to include all fine and hyperfine structure

of the 3S, 3P and 4D levels of Na, interacting with two laser fields.

Both steady state and transient solutions will be sought, to clearly

isolate the effects of optical pumping. Eventually, collisional effects

will be included.

I
The first stage of this calculation has now been completed. Using

both an irreducible tensor and standard (m-basis) representation for atomic

density matrix elements, we have derived expressions for the probe absorption

line shape when a pump field of arbitrary strength and polarization drives

a transiticibetween two levels (each containing a number of degenerate

magnetic sublevels) and a probe field of arbitrary strength and polari-

zation drives a coupled transition. In essence, the calculation is one

describing the saturation spectroscopy of three-level systems including

effects of level degeneracy. The probe absorption line shape is calculated

"-1-



for each velocity subclass of atoms but, at this stage o. our wcrk, no

average over the atomic velocity distribution has been included. Results

are presented for weak probe fields as a function of pump field strength,

polarization and detuning. Effects of optical pumping are included.

The results clearly display the effects of pump field strength (Rabi

splittings), pump field polarization (position and number of Rabi split

resonance peaks) pump field detuning (position of resonance peaks) and

optical pumping (relative strengths of the resonance peaks). We have

shown that it is advantageous to use the m-basis rather than the irreducible
tensor representation provided that the laser fields are either circularly

or linearly polarized, if collisional effects are unimportant. We have

also shown how to predict the position of the resonance peaks using a

dressed-atom approach.
2

As they stand, the calculations can be used to describe the inter-

actions of laser fields with an atomic beam. The next step in the calcu-

lation will be to include an average over an atomic velocity distribution

so that laser field-atomic vapor interactions can be properly modeled.

(2) Heating and Cooling of Vapors Using Collisionally-Aided Radiative

Excitation (E. Giacobino, P. Berman).

Several years ago , we predicted that cooling or heating of an atomic.

vapor could be achieved using Collisionally-Aided Radiative Excitation

(CARE). In Prof. Stroke's laboratory, we are now trying to carry out an

experiment of this type. The reaction under investigation is

Na (3S + X + -M Na (3PI/2) + X

where X is a rare gas atom.

The energy defect between the photon energy fiQ and the 3P/2 - 3S1/2

transition frequency is provided by a corresponding change in the trans-

lational energy of the Na - rare gas system. To probe this energy change,

, . the velocity distribution of the excited state Na atom is monitored using

the tranvition to the 4D state. Calculationr; were trnde whIch inldicated

that heating of the Na should be detectable by this scheme uing a positive

-2-
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energy defect and heavy rare gas perturbers. Experimental confirmation of

the heating effect has now been achieved.4  With Ar or Xe rare gas per-

turbers, the excited state Na velocity distribution was considerably

broader than the thermal one, while with He perturbers [the "light" He

takes up the excess energy rather than the "heavy" Na] the normal thermal

width was observed.

.We are still interested in producing a macroscopic heating or cooling

of the vapor using CARE. It may be possible to produce such an effect

using a high density sodium cell. In that case, CARE is produced via

resonant collisions which have a relatively large cross section. Order of

magnitude calculations have been carried out5 . which indicate that measur-

able temperature differences can be achieved with Na densities of order

I015/cm3 . An experimental test of the predictions is envisioned.

(3) Creation of Electronic State Coherences in Laser-Assisted

Collisions. (P. Berman, E. Giacobino).

We have proposed a new method for generating electronic state co-

herences using laser assisted collisions. Both Collisionally-Aided
Radiative Excitation (CARE) and Radiatively-Aided Inelastic Collisions
(RAIC) can be used to generate such coherences. Two pulsed laser fields.

are incident on two atoms undergoing a collision.

In CARE (Fig. la),

Fg. la

A A
thisrepot.,' 1 i

An asterisk on a reference indicates that the reference is appended to
.this report.

°o3

-Y



'.

the reaction is

L1 A, + Al, + 4M + il A, A(2 3) + A,,

where A and A' are the atoms undergoing the collision and the notation

A(ij) is meant to indicate a coherence between states i and J. The fre-
quency difference S1 - Q must be close to the resonance frequency w3 2 for

-11 the coherence to be generated.

In RAIC (Fig. Ib),

-2

........ ......

A A'
Fig. lb

a typical reaction is A2 + Al, + i'i + Mi A 1 + A'(2'3') producing a

2'3' coherence in atom A'. This is a somewhat novel way to produce
electronic state coherences. In certain cases, it may be possible to

produce coherence between states of opposite parity, which could then

radiate sum frequency radiation. This process is under investigation.

(4) Two-level Atom Plus Radiation Pulse (E. Robinson,

P. Berman).

Research continues in the fundamentally important problem of a two-

level system coupled by a radiation pulse. In the large detuning limit,

we were able to show that certain classes of coupling pulses having the

same asymptotic Fourier trannforms will yield transition probabilities

that are related to each other by a simple scaling transforrintion.7*
Methods for evaluating the transition probabilitie s in the large-detunin

limit have also been developed, and we are trying to compare our results

%4
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with those of other authors.8'9 In particular, if we would like to under-
8stand the details of Crotber's calculations to see if they can be applied

to the general theory of laser-assisted collisions.

Work contiuues on an eigenvaluc method for solving the two-level

problem. Lig2nvalue expansions for the probability amplitudes hnve beer.

obtained, approximate positions of the eigenvalues (i.e. those field

strengths leading to zero transition probability) determined, and ex-

pressious for the transition probability to third order in the detuning

were derived.O*ll

(5) Photon as Catalyst Effect (A. Lau).

Using e-perimentally determined values for energiesa, tiensiti:n

moments and decay rates, the rate for bound-continuum transitions in 12

resulting from the photon as catalyst effect Lave been calculated.
1 2 .

By stimulated cmission, the laser field takes an 12 bound state to a

virtual inter--ediate state from which a transition to the continuum (-an
occur by the absorption of another photon. T.6r is no net photon asorption -

the laser field acts as a "catalyst".

(6) Collisional Processes in 4-Wave Mixing Experiments. (P. Berman)

In collaboratiou with J. Lam (Hughes Research), we are continuirg to

ettci-3t to develop a cone.stcnt theory of collis ion-induced structure in
13

/;--.;.ve mixing experitcnts th.at was discussed in last year's trinua. P.ero:t.

That there is or"ll consi-lerable e;,.erlwental interest in thi- area i ,

14
evidenced by tb; recent work in Bloembergen's group.

(7) licceil lneous

Our re'.!.e-,y article on lascr-ruc5sted collisions hs been publishec. 1 5
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COMBINED RADIATION FIELD - COLLICIOiNAL EXCITATION OF
ATOMS

PAUL R. BERMAN and EDWmiD J. ROBINSON
Physics Department, Ne, York University, 1 Washington
Place, New York, New York 10003 U.S.A.

Abstract The physical principles underlying the com-
binied radiation field - collisional excitation of atoms
are reviewed. A discussion of both collisionally-
aided radiative excitation ("optical co~iisiozis") and
radiatively-aided inelastic collisions ("radiative
collisions") is presented.

-NTODUCT.ON

The purpose of this paper is to present a simple discussion

of atomic transitions induced by the simultaneous acticn of

a laser field and a collision.

Consider a reaction of the general form

A +B+ Af + Bf(i)
if

where Ai, f and Bi, f are internal states of two atoms A and
B undergoing a collision and 0 is the frequency of a-,

applied radiation field. If, in the absence of the colli-

sion, one finds

~~A I +2fi *A i
Ai -- TQ Ai

B. + V 4 Bi

* while, in the absence of the external fiela, one has

A + gi A +

• i "

15
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P. R. BERMAi AND E. J. ROBINSON COMBINED 1LI,"

the reaction (1) is of a type that requires the simultan- enough to that or ,L

eous presence of both a collision.l interaction and exter- approximation to 1,

nal radiation field if either or both final atomic states tuned from exact 1.

are to differ from the initial ones. One may then speak of compared to the nta

"laser-assisted collisions" or "collisionally-assisted tion, but small cr

light absorption". These are processes which have been the With such a large

focus of a large number of experimental1 16 and theoreti- to excite atom A
17-46

cal investigations in the last decade. In this work, goes a collision i,

we discuss the physical principles underlying such reac- field, the probabl

tions; more detailed theoretical treatments may be found in hanced. The ener,

the literLturc. atomic tra ,sitioL

Reactions of the form (1) may be further classified ponding changc in

into two categories. The first of these we refer to as atoms.

Collisionally-Aided Radiative Excitation 3 7 (CARE) and has The second c.

been designated by others as "optical collisions". 1 9  The to as Radiative!)

CARE reaction is easy to visualize (see Fig. 1). An atom A has been designat-

or "LICET - Laser

fer".3 Atoms A an

2 Bi and, as a conr>

field interaction

0 W A and B The T
W f f

The transit.

1 assumed to be hit

in the absence o'

the photon a3 ir,

Figure I. A schematic representation of the CARE re- transition Ai +

action A1 + Bl+ I - A + BI . A laser field of fre- section will be
cto 1 +B+f~ 2 1

quency Q is incident on atom A and can drive the 1-2 to be resonant w

transition when atom A undergoes a collision with a and final coMPO

ground state perturber B. significant exci

tions, with the

ic irradiated by a laser field whose frequency 0 is close

16
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION

simultan- enough to that of an atomic transition for a two-level

and exter- approximation to be valid. The field's frequency is de-

en staes oftuned from exact resonance by an amount A which is large
en speak of compared to the natural and Doppler widths of the transi-

dsisted tion, but small compared to the thermal energy divided by-ti.
ave been the With such a large detuning, the probability for the field

-theoreti- to excite atom A is negligibly small. However, if A under-

Sthis work, goes a collision with atom B while interacting with the

Such reac- field, the probability for excitation can be greatly en-
be found in
be f dhanced. The energy mismatch hA between the photon and

"'-" atomic transition energies is compensated for by a corres-

lsified ponding change in the translational energy of the colliding
cr to as atoms.

.)and has19 a hThe second class of reactions of the type (1) we refer

The to as Radiatively-Aided Inelastic Collisions37 (RAIC) and
An atom A has been designated by others as "radiative collisions"1 7

or "LICET - Laser Induced Collisional Excitation Trans-

fer".3 Atoms A and B are prepared in initial states A and

ii
"" Bi and, as a consequency of the combined atom-atom and atom-

field interactions, they emerge in some new final states

Af and Bf. The process is depicted schematically in Fig. 2.

The transition between initial and fiiual states is

assumed to be highly improbable or energetically forbidden

in the absencc of the applied field. Thus, one can view

the photon as providing the energy to assist the inelastic

z CARE re- transition A + B *A + Bf. In general the RAIC cross-
i. i f ~, eeaof fre- section will be largest if the photon frequency is chosen

the 1-2 to be resonant with the energy difference between initial

with a and final composite atomic states. However, as in CARE,

significant excitation can occur under off-resonance condi-

" is tions, with the energy mismatch again compensated by a'. is close

176



P. R. BERM A1D E. J. ROBINSON C046.

vanish as

cos(Rt).

transitic.:

O i allowing

the fiela.
t

state 2 f
the atom-

f jV(t)
A B where ii iL

Schr~dingc

Figure 2. Atoms A and B undergo a collision in the pre- 
tions for

sence of radiation. The field frequency S is approxi- presentati

mately equal to a transition frequency in the composite 
component-

AB system. The RAIC reaction is of the form

Ai + B.I +  - Af + Bf.

2

change in translational energy.

Before examining CARE and RAIC in greater detail, it is where A

useful to review the problem of the interaction of a radia- coupling

tion pulse with a two-level atomic system. X(t) is sc,

The p

ATOM + PULSE followinc.

In this section, we examine the interaction 
of a two-level frequency

~ponents ch

atom with a radiation pulse whose electric field of polari-~of states

zation E may be represented by'" " ijustifyinc

-'"'. ,' -~E(t) =C E(t) cos (t) ,  dtnn

The smooth pulse envelope function E (t) is assumed to
0 | smooth pu]

18
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COMBINED RADIATION FIELD -COLLISIONAL EXCITATION

vanish as t *± and to vary slowly in comparison with

cos(1t). The difference ISI - wl, where w is the atomic

transition frequency, is taken to be much less than (w Q)

allowing one to neglect the "anti-rotating" components of

the field. For an atom which is in its lower state 1 at

t = ,we seek the probability that it is excited to

state 2 following its interaction with the pulse. Taking

the atom-field interaction to be

V(t)

v here ji is the atomic dipole uioment operator, one may use

Schr~dinger's equation to obtain the time evolution equa-

re- tions for the state amplitudes. In the interaction re-

presentation and with the neglect of the anti-rotating

e components of the field, one finds

i& = -iX(t) e at 2 (2a)

A= -iyx(t) e~A a,, (2b)

is where A = Q-w is the detuning, X(t) p.E (t)/2h is the
0

a- coupling pa~rameter, and vz = <ljp-4 2> = ii'. The frequency

X(t) is sometimes referred to as the Rabi frequency.

The problem is conveniently described in terms of the

following 7&raineters: (1) the pulse duration T, (2) the

frequency i- = k t/X(t) which determines the frequency comn-

* ponerits characterizing the pulse, (3) the natural lifetimes

* of states 1 and 2 which are taken to be much longer than T,

* I justifying the omission of decay terms in Eqs. (2), (4) the

* detuning A, and (5) the Rabi frequency X(t). As a simpli-

fication, we set f T1  which is a good approximation for

smooth puiRes.

S19
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P. R. BERMAN AND E. J. ROBaaSON COKI;LD

where
If the detuning and envelope function are such that

* tAIT >> 1, the pulse contains negligibly small Fourier VLS(t)
j-S

- components at the frequency needed to compensate for the It is implicit

detuning. In this limit, the pulse is said to be adiabatic. ally the eaze

That is, the excitation probability following the passage tronic confie I

[[" , of the pulse is vanishingly small, i.e., proportional to cient ener' t

exp(-21AIT) for typical envelope functions. It is inter- the field (see

esting to note that the excitation probability remains The effec

exponentially small regardless of field strength X(t), re- ation of the t

flecting the fact that the Fourier components needed to ciable Fourie:

"- 4 effect the excitation are essentially rbscnt. As the field frequencies t,

strength X(t) increases, the excitation probability, which components ler

is proportional to A2 = If(t)dtI2 for A2  1 1, exhbits probability w'
2

some type of saturation behavior for A > 1. Thus, with- associated w_,

out some additional interaction, an adiabatic pulse cannot "collisional:,o

appreciably excite the atom. The "additional interaction" action of th

can be provided by a collision.
I A + BI

41 1

CARE Thq state am,

Assume that the atom undergoes a collision with a perturber & =-i7

during its interaction with the adiabatic radiation pulse.

This collision occurs on a time scale T (typically & = -i)I

10 sec for the thermal atoms under consideration here)

which is short compared to T (typically -sec).subject to t

Sperturber can be considered as providing an effective time- 1(-1 --

dependent potential which modifies the energy separation of

states I and 2 in a transient manner. IfV i(t) is the
collision-induced modification of level i's energy, then

the instantaneous transition frequency is duration,

'.eV ()and v the it;
"Y" W(t) W + V W .t) r

:"- a • an impota.

20



COMBINED RADIATION FIELD - COLLISIONAL EXCITATION

where
ch that
urier Va(t) = v2(t) - v1(t).

for the 
-it is implicitly assumed that V l(t) # V2(t), as is gener-

adiabatic, ally the case if levels I and 2 belong to different elec-
passage tronic configurations.47 The collisioa does not have suffi-
nal to cient ener&y to cot'le levels 1 and 2 in the absence of

3 inter- the field (see Fig. 1).
.ains The effect of the collision-induced transient vari-
(tW re- ation of the transition frequency is to introduce appre-
ed to mcible Fourier componentc into the excitation nechanism at
the field -1 -frequencies up to W = T - >> T -

. These added Fourier
y, which

components lead to a new contribution to the excitation
exhibits probability which is much larger than the exp(-21AIT ) term9 with- associated with the atom-adiabatic pulse interaction. This

Scannot "collisionally-assisted" contribution leads to a CARE re-

raction"
action of the form

A1 + B1 + - A2 + B2 .

The state aplitudes now evolve according to

perturber Al = -ix(t)exp[iAt- iltVLS(t')dt']a 2  (3a)

ni pulse.

ee)(2 -iX(t)exp[-At+iftVL(t ' )dt ]al, (3b)
here) 20L

The subject to the initial conditions

Lve time- a1 (-.) = 1, a 2 (-) = 0. (3c

-ation of

, the In order to discuss CARE, it is useful to again refer
then to the various time scales in the problem. The collision

duration, r (b,v) U b/v, where b is the impact parameter
and vr the interatomic speed associated with a collision, is

an important time parameter. Although Te (b,v r) varies

21



P. R. BERMAN AND L. J. ROBINSON COMBINED . . .. :.

from collision to collision, we can define a representative (

time T c (b 0 r) in which V is the average interatomic Ia2(b LVr,'lI

relative speed and b is an impact parameter chosen to
0 and the corres)o.n,-

guarantee that T is "representative". Generally speaking,
cn a

bo will be that impact parameter for which the phase o(Vr) 2
do c r

- V Is(bVrt)dt takes on a value of order unity; a typi-

cal value for b is 10 -7cm. The dimensionless parameters 2(X.
0

which enter our considerations are kAIT which turns out to
The result (4-1- ) j

be unimportant, IAItc which critically categorizes the de-c ~smaller th-ui any
tuning, X(t)T which represents the strength of the atom- s

-TI pact cross-secti( :.

field interaction before and after the collision, and cT
the Fourier trwv..

.hich represents the strength of the atom-fiel1d interaction
over rhe range of

during the collision. The field strength x(t) is approxi- The impact rt

mately constant during a collision and X represents some:" . manner. If we we:
characteristic value of Ix(t)I for the pulse. As noted• - ation pulse into;-
above, T /T <4 1.

average, find a p.
Weak Fields: )T << 1 The CARE cross-s(

For weak fields, the excitation probability can be calcu- citation probabill

lated from Eqs. (3) using first-order perturbation theory. ( 2)
0

The results depend critically on the value of IAIf c .  If IJtc >

If lA[T c << 1, the only change in state amplitude a2  sion by the detu:

during the collision arises from the level-shifting term. sult is not valit.

The collision acts to provide a sudden change in the phase collision is to

* of a2 , given by 0(b (bv rt)dt. This im- that appreciable

pulse deztroys the adiabatic response of the two-level duced. If this.

system, and gives a final state amplitude CARL transition j

d i t' ei P *A4 T c(b~v rH. 110we'
a a -fc x(t') e- dt' + ei f X(t')e-itdt'J c

2  t origin may be rc-

-. _ 2i[X(t )/Ae " At e ei/2sin(/2) In drawing the c-
c V (t) < 0; the

where t is the time at which the collision occurs. Set- am obvious gener,

ting I(tc)I x, one obtains the excitation probability

22
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oepre2nta2 2

ineatmc a(b,V _')12= 4(XM)2 sin ( (b,v )/2] (4)
-oen to

and the corresponding CARE cross section
lly speaking,
phase a (v) 21fa 2(b,Vc )1

2 bdb (5a)

ity; a typi- crr

[ 2"2

parameters 2(/~ (rTb 2) (5b)
-. turns out to

izes the de- The result (4-5) is known as the "impact limit" since T is
- et-smaller than any other time scale in the problem. The im-

t'"hoe ato

:inandpact cross-section is independent of the sign of A~ since
Sthe Fourier transform of the collision interacticL is fist

I interaction
-- over the range of A rcpresented by AIT < 1.

3en" s some The impact result can be viewed in an alternative

-izs sohe -c

As noted manner. If we were to suddenly interrupt the atom-radi-
ation pulse interaction at any time t , we would, on

average, find a population [X(t )/A] in the upper state.

The CARE cross-section is equal to the product of this ex-
be calcu- citatior probability and the collision cross section

;ion theory. ( b rbe ti

- if alc > 1, the phase induced in a2 during the coli-

K 2litude a 2 siofl by the detuning is not negligible, and the impact re-
.ting term, suit is not valid. As we have seen, one consequence of the

S pcollision is to shorten the relevant time from T to Tc 50

This im- that appreciable Fourier components up to T are intro-

o-level duced. If this were all that occurred, one woula expect a

CARE transition probability that varied as sxpt-2In

eM'A dt T (bv)]. However, there is an additional effect, whose

origin may be seen in Fig. 3, vhich modifies this result.

In drawing the energy levels in Fig. 3, we have chosen

nL(t) < 0; the case for arbitrary Vtm(t) may be treated by
Ia. Set- an obvious generalization of the method given below.
obabilityry
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impact limit, t

have appreciab-
presence or abt

affect the exc,

IL 
In Contrr..

sion puwshes th
t 2[ : Fig. 3). The t

that the nonrc:

off exponentiai

Figure 3. Ener&v levels of atom A during a colli.i!ou. after o-,e avcr

-' "Instantaneous resonances" [ = w(t)] can occur- for Thus, the CARL

detunings A < 0 only; for A > 0, the collision detunes with an invers,

• the atomic transition further from resonance, and an exponeo,

file is shown i
The CARE cross section is a strongly asymmetric

function of A when IAIT > 1. For a given A < 0, colli-

sions can always produce we(t) = i for short times during

the collision; i.e., the systems become instantaneously

resonant with the field. Such times are labeled t1 and 10

" 2 in Fig. 3. The phase of a2 varies rapidly owing to

the factor exp(-iAt), except at tI and t2, where the

oscillation is suppressed by the factor exp [i 10-10

.t4VIs(t' )dt']. The major contributions to the excitation

amplitude are provided by these times of stationary phase.

The corresponding CARE cross-section varies as an inverse

power law in JAI, instead of the exponential that charac-

terizes other regimes. The fact that the points of

stationary phase provide the major contributions to a2( ) Figure 4. C2I
is linked to the condition AITc > 1. That is, the (pulse in the we&I

+ collision) does not contain the Fourier components at seetof in

A to appreciably excite the atom; in this case the in- as R (6

stantaneous resonances become a critical feature. In the b 1.x uIO
O0
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impact limit, the system of (pulse + collision) does

have appreciable Fourier coefficients at A so that the

presence or absence of instantaneous resonances does not

• 'affect the excitation amplitude.

In contrast to the A < 0 case, for A > 0 the colli-

sion pushes the levels further away from resonance (see

Fig. 3). The net result of this level displacement is

that the nonresonant side of the CARE cross section falls

off exponentially as a fractional power of AIt , ev.,en

Uision. after one averages over impact parameter.i9,46,0,50

for Thus, the CARE cross-section exhibits a marked asymmetry,

letunes with an inverse power law dependence on IAI on one side,

I."and an exponential decay on the other. A typical pro-

file is shown in Fig. 4.
'"C

luring

ieous ly

and 10

:to

e0

. . 10o
tat;on

phase. j_ _ _ _ _ _ _ _

nverse -6 -3 0 3 6

liarac- ATC

* a 2 (o) Figure . CARE crosc section as a function of IAI- c

(pulse in the weak field limit, XT c  I.OXlO . This cross

.8 at section is drawn for a level-shifting term which varies

as R 6 (R is the interatomic separation) and a value

'-In the b a l.lXl0-cm. (see Ref. 37).

-: 
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It should be noted that CARE cross-section in the bility of "inat,

weak-field regime can also be obtained using traditional the excitLtlol,

pressure broadening theories of linear absorption or Just as in the .

ems i 9-52 CARE cross-sect
I.I parameter fall,

i Strong Fields: XT > 1 
1e

of X'c.
As long as X < JAI, the previous perturbative treatment is x

~2
j valid and the CARE cross-section is propo"'ional to X •

If both XT > 1 and X > 1A1, the perturbation theory fails,

and a strong field theory is required. Space limitat.ons A typica. RAIC

preclude a detailed description of such a theory, which Ai + Bi +

is conveniently developed using a quantized-field "

dressed-atom approach, but we cite some of the results. is illustrated
For X > [61 and XT < 1 (which implies c << l), final state i:

c C

* one is still in the impact domain since the collision mediate statc:i

time Tc is the shortest time scale in the problem. If these states P-.

* the atom - radiation pulse interaction is interrupted at in nonresonext

I some arbitrary time, one would find an upper state popu- problem to th,.t

lation approximately equal to 1/2 since the field is effective oper

sufficiently strong (XT > 1) to lead to equal populations, product of th-

on average, in levels 1 and 2. (This factor of 1/? should sional intcr,

be compared with the average population (x/6)2 found in U(t)

" I the weak field case). Thus, in this limit, the CARE

cross-section is approxi=ately equal to r;bo/2, indepen- where C is B:

dent of both A and X. ( a> x) and\%

For X > JI and XTc > 1, an impact theory can no U(t) = 0 in tV

longer be uLqed. During the collision, the field is strong action occurs

enough to lead to rapid oscillations (so-called Rabi time T p]8ys

oscillations) in the state amplitudes. Since X > lAI, . scale in the I

these Rabi oscillations provide the dominant phase vari- The Iitr

ation for the state amplitudes; the effective detuning in bined AB syOt.

the problem becomes X instead of IAI. There is no possi-

26
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION

in the bility of "instantaneous resonances" here; consequently,

2 iditional the excitation probability varies as exp[-2Xrc(b,vr)].

. or Just as in the weak-field result for the A > 0 case, the

CARE cross-section obtained after averaging over impact

parameter falls off exponentially as a fractional power
O 19

" !atment is c

to X .

RAIC
ry fails,

" 4tations A typical RAIC reaction of the form

which A + B. +t - A + B

I f f

sults. is illustrated in Fig. 2. In going from the initial to

<< i), final state in the composite AB system, a number of inter-

sion mediate states may play a role. However, by summing over

If these states and neglecting the effect of small variations

pted at in nonresonant energy denominators, one mey reduce the

e popu- problem to that for a two-level system coupled by an

is effective operator U(t) which is proportional to the

ulations, product of the radiation field amplitude and the colli-

12 should sional interaction. Explicitly we write

und in U(t) = / Vc(t),

-kRE

"epen- where w is some representative frequency denominator

>> X) and V (t) is the collisional interaction. Since
c

a no U(t) = 0 in the absence of a collision, the RAiC inter-

3 strong action occurs duxing the collision only. Thus the pulse

ibi time T plays no role at all in RAIC - the relevant time

II, scale in the problem is the collision duration Tc

- vari- The Initial and final state amplitudes for the com-

"Aning in bined AD system (see Fig. 2) obey the equations

-J possi-

27
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P. R. BERMAN AND E. J. ROBINSON COMBI11LD IDIA'"

" &i  -i(x/Z)V (t)exp[iAt - if V (t')dt'] af (6a) collisional cou t;,, ,:
producing a relative,.

" . &f " -i(x/r)V(t)exp[-iAt + itVs(t')dt'l ai, (6b) energy levels. Sin-

the composite AB sy,!,
whereSheretime that the co11j I.

A fn - (Ef - E i) prising that the jzjxj
placed from A = o.

and VLS(t) is the same collisional energy level shift en- trong

* countered in CARE. An additional contribution to level To get some idea of

shifts resulting from the AC Stark effect will not be dis- (6) in the j.r.it th

cussed here, but can be included by redefining the energy term set equa3 to z-

levels at their Stark-shifted values. probability varen

.. Weak Fields

- A perturbative treatment is valid provided Iaf(t)I << 1, Is2(bVr'-)l so

in which case where

laf(-)l = I(X/_)f** Vc(t)exp[-iAt + iftV (t)dt'ldt. R(bVr)

If IAIT << 1, the amplitude for excitation is independent T"'C The RAIC cross-sccti

of A. For IAI-t > 1, one again finds an asymmetric lineow-c pact parameter for wl,'
Ing to the effects of instantaneous resonances which occur law potcntl V

for one sign of A but not the other.5 3  an ri aThe unciona foms f V t) nd V(t)detrmin an b varies a (x/v

c LS cross-section, which
where the maximum RAIC cross section occurs as a function ,varic as Y

of A. In a typical situation, the time-dependence of intensity for n=3) 1

* Vc(t) and VL (t) is roughly similar and the maxim ine RAICo tc. L fields, ovio g to Vic
cross section occurs for A = 0. However, the RAIC maximump- parameter collifJoL-5
may occur for A 4 0 if the duration associated with V (t)

c minor role for such
* is much smaller than that associated with VUS(t), as termined by the iv

33might be the case in RAIC charge transfer , where, for a+lX-a ' the inAc 1'
an Interatomic separaticn R(t), Vc(t) - exp[-CR(t)],

while VLS(t) [ [(t) -n. Under these conditions, the

28
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COMBINED RADIATION FIELD - COLLISIONAL EXCITATION

-- (6a) collisional coupling is significant only when VLS(t) is

producing a relatively large variation in the atoms'
ai, (6b) enery levels. Since the effective level separation of

the composite AB system is no longer Ef - Ei during the

time that the collisional coupling occurs, it is not sur-

prising that the maximum RAIC cross section can be dis-

placed from A = 0.

shift en- Strong Fields
tto level To get some idea of strong field effects, consider Eqs.I:-not be dis-
not b~(6) in the limit that A = 0 and with the level-shifting

term set equal to zero. In that case, the upper state

probability varies as

<< lIa2(b,vr, _)1
2  in 2[ R(b,Vr) 1,

where

"=t')dt' ]dt i. YRb,vr) = X )1Vc(b,Vr t)dt.

ndependent 2
The RAIC cross-section is equal to wb where b is an im-

-ic linecrv- R R
pact parameter for which 0R is of order unity. For a

ich occur power law potential V (t) [(t) , n > 3,OR  X/bnlvr

2and b varies as (X/V r  with a = (n - r)1 . The KAIC

..termine R -2
cross-section, which is proportional to X for weak

function 2/ (n-1)
'ft nfields, varies as X2  ( .e. as the square root of the'-.ce of

intensity for n=3) in the strong field limit. For strong
-u RAI C

fields, owing to the fact that b. C X, large impact
[C maximum

'thV t)parameter collisions only are important and V~ plays a
minor role for such collisions. The line width is de-

e, fr termined by the inverse collision time T = v r/b R
,.-e, for a m c r

vr • the RAIC profile narrows with increasing field

strength.
Sthe
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The ratio b /b can be used as a measure of the field a lecture g1Y!:

strength. If bR > bo, one is in the strong field region January, 19L0.

since the upper state amplitude saturates at radii where

the level-shifting effect is unimportant. On the other REFERENcES

hand, for bR << bo, the collisional coupling can not 1. S. E. :RLi dow ,
overcome the effects of level-shifting and a perturbative Laders i.Lasers ~
treatment is valid. Typically , the transition from weak T. Jacc*:.

to strong field occurs for field strengths of order 2. York, 19
2.R.W. yu'lc

Sl0W/cm2 . The strong field effects in RAIC and CARE are Harris, 1,

fundumentally different. In RAIC, the upper state proba- 3. Ph. CaIuz

bility is truly saturated by the field-collisional inter- 4. S.E,. l1 r:-.

* action. In CARE, on the other hand, the upper state J. .
and G. A.

probnbility amplitude is always small if XT >> 1. It is by H. Wal'C Berlin, T.
the rapid Rabi oscillations that lead to a decreasing 5. S. E. fat:

CARE cross section with increasing X when XTc >> 1 and Green, D.Wright, n.

X/'Ai > 1. Seventh I

edited by

CONCLUSION York, 19&,
6. C. Brecht:

We have presented explanations of the physical processes Rev. A 21

underlying combined radiation field-collisional exci- "k, 120 (1

tation of atomic systems. Alternative approaches could 8. y. L.
Phys. Fe,

involve a "dressed-atom" description or a molecular-state 9. J. L. Car
• 667 (197.

basis calculation. For a meaningful theoretical des- 0. A. M. Bor ,

cription of CARE and PAIC, one must use accui-ate inter- Fedorov,I ~ 909 (197(.'
atomic potentials and average all results over the spatial 11. R. D. Di],

and temporal extent of the laser pulse. It may be noted, 595 (197'

however, that experimental investigations of CARE and 12. J. L. Car
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RAIC have revealed many of the qualitative features dis- 13. M. G. Pa:,.

cussed above. 
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Theory of electronic state coherences produced in

combined laser field - collisional reactions

P.R. Berman and E. Giacobino

Physics Department, New York University, 4 Washington Place, New York, New York 10003

A method for producing electronic state coherences

using either CARE (Collisionally-Aided Radiative Excitation

or "optical collision") or LICET (Laser-Induced Collisional

Energy Transfer or "radiative collision") is proposed. Two

atoms, A and A', collide in the presence of two pulsed laser

fields having frequencies f and fi1 It is shown that, by

choosing (li ± Q) such that an energy conserving transition

can occur in the composite AA' system, one can create an

electronic state coherence in the A or A' atoms. The co-

herence can be produced between states of the same or of

opposite parity; if it is between states of opposite parity,

coherent emission at frequency (Q ± 1 is generated.
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I. Introduction

Over the past ten years , there has been increased interest in

reactions of the form

A +Ai, + i - Af + Aj,

in which two atoms or molecules (A and A') collide in the presence of a

laser field and undergo a transition from initial state (AIAi,) to final

state (AfAj,). It is assumed that the energy difference between the final

and initial states in each of the atoms as well as in the combined system

is such that no transition occurs in the absence of either the collision

or the radiation field. Since the simultaneous action of both the collision and

radiation field is needed to produce the transition, we refer to reactions

of type (1) as Combined Field-Collisional Transitions (CFCT). It has been

common practice to further separate the CFCT into two categories.

2
The first of these, Collisionally-Aided Radiative Excitation (CARE)2 ,

(also referred to as "optical collisions" 3),characterizes processes in which

the internal state of one of the reactants remains unchanged. That is,

CARE reactions are of the form

AA',+1i A2  A'

A + A I 2 1 (2)

subject to the condition that direct excitation of atom A by the radiation

field in the absence of the collision is energetically forbidden. In CARE

the collision provides translational kinetic energy to compensate for the

mismatch between the field frequency 2 and the 1-2 transition frequency of

2

I
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atom A. The CARE cross-section falls to zero for atom-field detunings

which correspond to energies that are larger than those available in the

colliding atoms' center-of-mass frame.

The second type of CFCT, Laser-Induced Collisional Energy Transfer

(LICET)4 [also referred to as Radiatively- Aided Inelastic Collisions

(RAIC)2 and "radiative collisions" 5, characterizes processes in which

both reactants change their internal states (see Eq. (1)]. The photon

energy iM is approximately equal to the difference between the final and

initial state internal energies of the atoms. As such, the radiation

field provides the energy to drive what would normally be an energetically

6
forbidden inelastic collision.

In principle, CFCT's can be produced using either CW or pulsed laser

fields. To date, LICET has been seen with pulsed excitation only, while

CARE has been observed with both CW and pulsed laser fields. In this work

we shall consider situations involving pulsed laser fields only. The

transition from initial to final state occurs during the application of

the pulsed laser fields; we calculate the final state density matrix

elements characterizing the atoms i-mediately after the passage of the

radiation pulses.

The calculation of CARE and LICET cross sections with pulsed laser

excitation has been the subject of a large number of theoretical and ex-

perimental studies.1 In a typical calculation or experiment, one determines

the excitation cross section as a fumction of the strength and frequency

-3-
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of the radiation field, and attempts to gain some information concerning

the initial and final state A-A' interatomic potentials. While most of

the calculations and experiments have concentrated on final state popu-

lations, there has been some recent work devoted to the investigation of

the possibility of creating coherences using CFCT with pulsed laser

fields. It has been shown 7,8 that, in cases where the final states con-

sist of a number of degenerate magnetic sublevels, CFCT can create co-

herences among these sublevels. The existence of such CFCT-induced

magnetic state coherences has been experimentally established for both

CARE9 and LICET.
1 0

In this article, we present a theory of a new type of CFCT, in which

it should be possible to produce electronic-state coherences using pulsed

laser excitation. The types of reactions to be considered are conveniently

represented in Figs. 1-3. In all cases, atoms A and A' are undergoing

a collision at some time during the application of one or more laser

pulses. The laser pulse durations T are much greater than the duration of

a collision, but much smaller than the lifetimes of the relevant atomic levels.

Following the pulses, we wish to determine whether or not any electronic

state coherences have been created by the CFCT. By convention, a state

written as A(fg), implies that the A atoms possess a coherence between

states f and g.

Corresponding to each figure, one can write a reaction that could

possibly lead to electronic-state coherences. For Fig. 1, the CARE re-

action is

-4-



1 + Al l + A(12) + Aj,  (3)

for Fig. 2, the CARE reaction is

A + Ai'+ t + *Wl A(2'3') + A' , (4)

and, for Fig. 3, the LICET reaction is

A2 + Ai'+ IM + i A 1 + A'(2'3')• (5)

A calculation of the actual macroscopic coherence, if any, generated

by reactions (3-5) is given in Secs. III and IV, following a discussion

in Sec. II, of the approximations and assumptions of the theory. In Sec. V,

we indicate methods for detecting the CFCT-induced coherence. TI.e choice

of detection scheme depends on whether the coherence is created between

states of the same or of opposite parity.

The level scheme of Fig. 2 has been analyzed for CW laser fields

by Bloembergen and coworkers 1, Grynberg 1 2 and others 3; in some sense,

our analysis for this case represents the pulsed field analogue of their

work. It may also be noted that our theory,while containing some features

found in calculations involving "adiabatic following" in two and three-

levels systems 1 4, differs considerably in spirit and content from those

calculations. There is a somewhat closer connection between the under-

lying theory in our work and that exposed in the recent article of

Agarwal and Cooper 1 5, but the approach and emphasis of the two calculations

differ appreciably.

-5-



II. Notation, Approximations and Assumptions

The main goal of this article is to illustrate the manner in

which CFCT using pulsed laser fields can create electronic state co-

herences. Consequently, we shall make a number of assumptions and

approximations to simplify the theoretical development. Most of these

assumptions can be relaxed in a more complete theory, but the basic

physical content of the theory would remain tmchanged.

Before listing our assumptions and approximations, it is useful to

introduce some notation. The atoms A and A' of Figs. 2 and 3 are sub-

jected to two laser pulses having amplitudes 6(t) and 61(t), frequencies
4

i and "l, and propagation vectors k and klrespectively. (The atoms of

Fig. 1 are subjected to one pulse only). The laser pulses have duration T

while the collision duration is Te" The detumings A and A refer to

atom-field detunings for single-photon transitions [e.g., in Fig. 2

A - 1 -W 2 1, Al = -.W 3 1 ; WiJ z (F. i L J)/] and X and X1 refer to the|3

Rabi frequencies [evaluated using values of (t) I or I 6(t)l averaged

over the pulse duration] for single-photon transitions. Spontaneous

decay rates are denoted by y and collision rates by r. The most probable

atomic speed is u.

The following assumptions or approximations are made: (1) The laser

pulse duration Is short enough to neglect any spontaneous emission during

the pulse,

yT << 1. (6)

-6-
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(2) The detunings JAI and Jal are sufficiently large such that

JAI T >> 1 ; I I T >> 1. (7)

This condition will ensure that there is negligible excitation in the

absence of the collision provided that ve also require JAI and IJA to

be larger than the Doppler widths associated with the transitions, i.e.

IAI >> ku ;IA I >> ku (8)

(3) The collision occurs on a time scale short compared with the pulse

duration

x /T << 1 (9)

(4) The collision may be treated in the impact approximation, implying

that

r Tc << (10)

JIT<< 1 ;JAlJ TC <<1c

XTc<< ; Tl << 1. (12)

Conditions (11) and (12) simplify the mathematical development, but are

not essential to the theory. (5) The ground-state lifetimes are infinite.

(6) Two-photon processes are resonant or nearly-resonant. For Fig. 2

this assumption takes the form

I- S1 - W32 IT < < 1 , (13)

while for Fig. 3a or Fig. 3b, it is

, - 312 ' IT < 1. (14)

where the "-" sign refers to Fig. 3a and the "+" sign to Fig. 3b.

-7-



Conditions (13) and (14) ensure tMat tine conerencee wnich are created

do not "wash out" during the laser pulse duration T. In parallel with

conditions (13) and (14). we must require that the fonaer shift@ mono-

ciated with two-ohoton transitions that are accumulated during the laser

pulse be negligible. For the case of Figs. 2 and 3a, we assume

jI k k1 IuT << 1 (15)

while for Fig. (3b), the condition is

+ i'k JUT < 1 (16)

(7) In order to be able to calculate the coherences using perturbation

theory, we assume that

I(IXI + I1 )/AIT << 1 (18)

(8) Finally, we must require that

rT << 1 (19)

to ensure that the coherence does not decay during the radiation pulse.

Together with Eq. (7), Eq. (19) implies that

r "< IAI r << i (20)

I,
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II. Generation of Coherences Using CARE.

A. Figure 1

We first turn our attention to the situation depicted in Fig. 1.

A laser pulse of the form

R t e ( k ' R - flt) + c.c. (21)
E(R,t) = 2 (,)•(1

is incident on a vapor containing A and A' atoms. In a field interaction

representation to be defined below and in the absence of collisions,

density matrix elements of atom A evolve according to

1
12 2 2  1 11  P22  (22a)

"22 2 - y2p2 2 + i[X(t)0 1 2 - X (t)D 2 1 ] (22b)

where y is the spontaneous decay rate of level i,

" - I (k.R-0t)
-12" ' 12 e , (23)

x(t) - < 21px j > L(R,t)/2 , (24)

A - Q - W21 (25)

and p is the x component of the atomic dipole moment operator.

In writing Eqs. (22), y1 has been set equal ro zero and the Doppler shift

has been neglected relative to JAI [Lq. (8)). In the impact approximation

[qs.(10-12)j, collisions are Incorporated into Eq.(22) by the addition

of a term (-r 120'12) to the right hand side of Eq. (22a) trIj Is the rate

at which collisions destroy ij coherence If, in addition, we use

condition (17) to set p11  I and p22 - 0 in Eq. (22a) (perturbation limit).

the appropriate equations ti be solved during the laser pulse are

-9-
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- 1 - I! ' 1-* =. _ , ,

P

12 Y2 + 12 A) 12 - ix(t) (26a)

: 22 - P 2 +22 +i[X(t) 2  X t) 2P (26b)

P"21 112)  (26c)

subject to the initial condition

P 2(T - 62 2 (T) - 0 , (26d)

where T is some time before the laser pulse.

Although we are primarily interested in the coherence at a time

T+ following the passage of the laser pulse, it is instructive to first

calculate 02 2 (T+). To second order in X, one can iterate Eqs. (26) to

obtain
T (T+-tI) t'

"- e x(t')dt' ' X (t") e 2  2 12  dt"

+ C.C. (27)

where T has been set equal to - without loss of generality. Since X(t")

in slowly varying compared with exp(iAt"), the t" integration is conveniently

carried out using integration by parts as

(28)

Substituting this result into Eq. (27), noting that

-T £ - ' 4. T-Y"T t)

eS ' Y*kr t ') .t')dt c.c - Y7.t) "
(29)

- 10-
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using Eqs. (6) and (20), and setting T+ = , one finds

2r 1 2 +Y2  Y2 ( 2= P22 ( =  [ 2& Xt dt

2r12  _ 1 2 (30)- Ix(tIldt. (o

2

Equation (30) vanishes if there are no collisions, r12 0 . In

that case, a more careful evaluation of Eq. (27) yields

S0 ( )  fetx(t)dt2

for r -0 (31)12 (1

This result is consistent with conservation of energy considerations. If

there are no collisions, then the excitation probability for a detuning A

is determined by the Fourier transform of the pulse envelope function

evaluated at A. If IAIT>>l as assumed in this work, the field does not

possess the proper frequency components to excite the atom (typically, the

excitation probability varies as exp(-21AIT) << 1]. Once collisions are

present, however, the effective time scale of the problem is changed from the

pulse duration T to the collision duration r • The collision does possessc

the Fourier components to excite the transition (T- 1 >> IAj) and, moreover,
c

provides a mechanism (change in center-of-mass translational energy of the

colliding atoms) allowing for conservation of energy in the total (absorption

+ collision) process. The corresponding collision enhanced excitation pro-

bability Is indicated in Eq. (30).

- 11 -



It might be thought that collisions could also lead to a non-negli-

gible macroscopic coherence p12 following the radiation pulse. Collisions

do, in fact, produce non-negligible coherence each time they occur during

the radiation pulse, but, on averaging over the various times during

the radiation pulse at which they occur, one finds that the coherence is

negligible. Formally, the result follows directly from Eq. (26a), i.e.

iT+ - Y2+rI2)(T
+-t') *

12i(Te) T 1 e e X (t')dt' (32)

Using Eqs. (6) and (20), and letting T+  in the integral, we obtain

a coherence

iAT+ iAt'
"12(T + )  -e -iT X* (t')e dt' (33)

which, for 161T >> 1, is negligibly small.

B. Figure 2

In order to produce coherences which do not dephase during the

radiation pulse, one can use the level scheme depicted in Fig. 2. Levels

2 and 3 are assumed to have the same parity which is opposite to that of

level 1. Laser fields of the form

- ,~ A Lk(' -)- t)

are simultaneously incident on the vapor. We wish to calculate the co-

. herence p2 3(T
+ ) using perturbation theory. In a field interaction re-

- 12-



representation defined by

ei(k'R-t)
12 ' l2 (35a)

° i(ki'R-Qt)
1 l3 (35b)

023 a p23 e R (35c)

density matrix elements evolve according to

) 2 ' )L (t)L(9 -9t) 3 it 3 . (36a)

-~- C.(36 )

@ _ j t)] (36c)

- "(36d)

where

- a-o21 -kv tv l-rw31- kl' (37)

and

-*) t, )(3 / t (38)

Equations for p22 and p33 need not be written since populations in these

states created by CARE excitation will not appreciably affect p13 when
12 13

crndition (18) holds. 1 2  To calculate p23, we set 022 033"032 " P23 O 0,

-13-
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and - 1 in Eqs. (36a) and (36b), owing to the perturbation limit.

With these simplifications, Eqs. (36) reduce to

L Y. XZI (.X t) (39a)
21

Y/v) 9-~ -,-i- _.,(- .9(3,c)

1- (39b)

V2 "6 ; t, L< .: 1' t 13

• -(39d)

The calculation of the coherence p23 parallels that for P22 given

above in Sec. A. If there are no collisions, the coherence created is

negligible. With collisions present, Eqs. (39a) and (39b) are integrated

by parts twice and the resulting values for P12 and 23 (neglecting terms
i3 *,

of order y/ItiI or X'/I']) are substituted into Eq. (39c) which is then

integrated to yield

/.. ". 7 ) 3k" Q

T +%

(40)

In arriving at Eq. (40), we have used the fact that

- 14 -



.w ' - . - . -- - . - . . .. . . .

k'.

• V <<1 (41)

which follows from Eqs. (7), (13) and (15). The last two terms in Eq.

(40) may be integrated by parts to give

ir C A,,,x 7, < .-- 6, , < d t'
-4i

"r'-t ) (t'-

(42)

Combining Eqs. (42) and (40), using conditions (6), (13) and (15) to

set the exponential appearing in the integrand equal to unity and taking

T -0 O, one finds

.,,) _- _ , , ( ,t) dt (43)

where the spatial dependence of the fields has been made explicit. Equation

(43) givesthe coherence created by CARE.

'1
- 15 -
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The result (43) can be viewed as the pulse analogue of pressure-

induced extra resonances discussed by Bloembergen et al 1, Grynberg12

andothrs.13 p 3 asmn
and others. 1  A steady-state value for P23 calculated assuming a

repetition rate for the radiation pulses has the same structure as one
11veI - 1 3

of the terms contributing to p23 given in the works cited above.

inere is an additional term, however, which appears in the CW calculation

that does not appear in our pulsed version. This additional term does

not vanish in the absence of collisions. Such terms appear typically

in steady-state theories (for example, a two-level atom driven by an

off-resonance CW field acquires a steady-state population X 2/ 2 for any

L ). However, even though such terms appear, one must probe the system

on a time scale shorter than 1/IAI in order to isolate their conrribution.

(i.e. to "see" the population in the two-level example mentioned above

one must turn off the field in a time which is small compared with

It might also be noted that the coherence P2 can be seen in the

CW experiments only if JA I (S Y2 + r23). The pulsed version

creates coherences over the much larger range of detunings IA-Al < T

Methods for detecting the coherence are discussed in Sec. V.

"4 - 16-
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IV. Creation of Coherences Using LICET (Figure 3)

In Fig. 3a or Fig. 3b, a coherence P2 3 ' is generated by the

LICET reaction

+ A', + -t; --4 A A'( Z'3') (44)

Once created, the coherence p2'3' oscillates at frequency w3 t2 ' = 11- 0

(Fig. 3a) or w3,2, 2 1' + 0 (Fig. 3b) so that it is possible to generate

coherences at either the sum or difference frequencies of the applied

laser fields. (In CARE, it is also possible to generate a coherence at

the sum frequency if one starts with atom A in an excited state).

To obtain equations describing the time evolution of atomic state

density matrix elements during the passage of the laser pulses which pro-

duce the LICET reaction, it is useful to note an important difference be-

tween CARE and LICET. In CARE, non-negligible excited state density matrix

-elements oi atom A (see Fig. 2) are produced during the laser pulses even

in the absence of collisions. However, in the absence of collisions, these

excited state density matrix elements adiabatically follow the field and

vanish at time T+ immediately after the passage of the laser pulses. Colli-

sions break this adiabatic following and lead to non-vanishing excited state

density matrix elements at time T + . Consequently, the equations that de-

termine the time evolution of excited state density matrix elements in CARE

contain a collision-independent contribution (the adiabatic - following term)

plus a collisional contribution. In general, the cullisional term can depend

on the laser field strength and the atom-field detuning; however, in the

impact approximation, the collisional contribution is independent of the

- 17 -



field variables and can be represented simply by the rates rij found in

Eqs. (36).

On the other hand, atom A' excited-state density matrix elements

produced in LICET (Fig. 3) result solely from the combined radiation field-

collisional excitation; they are neglibibly small during the passage of

the laser pulses if no collision occurs. The coherence "2,31 can be created

4 directly during a collision; the average value for *2,y(R,T+ ) produced by

this "direct" excitation channel is calculated below. The coherence

P213, (R,T )can also be produced by an "indirect" process involving (a)

the generation of populations P2 ,2, or p3,3, by LICET at some time during

the laser pulses followed by (b) the laser fields, acting in the absence

of collisions, to generate the coherence 22'3 from the difference

(P3,3, - P2'2') In this indirect process, the population and coherence

are created sequentially during the same laser pulses. The contribution

to p,2 ,3 , from the indirect process, while easily calculable, can be

neglected relative to that of the direct process when condition

(18) holds.

In light of the above discussion, we proceed to obtain the LICET-in-

duced coherence P2'3' as follows: (1) the value of P2,3 ,(b,vr tc,R) re-

sulting from a single collision characterized by impact parameter b and

relative speed v is calculated for a collision occurring at a Aimn t
r c

and position R. (2) From this value for P2' 3 (b,v ,t ,R), we find the

average 2'-3' coherence following the laser pulses as

- 18 -



~~2'3.~~ TrT4  6 rWASTb~ ~ (V) V4  VL

A, -r ,N A _. . • .

T-

T

(45)

where NA is the density of A-atoms and W(v r) is the relative speed distri-

i bution.

The calculation of P2 ,3,(bVr tcR) is most conveniently carried out

using state amplitudes rather than density matrix elements. The laser

fields incident on the atoms are again given by Eq. (34). When a collision

occurs during the laser pulses, the state amplitudes change as a result of
". 7

three effects. First, there is a shifting of the levels owing to the

light-shift operator; for the perturbation calculation of this paper, this

term can be neglected. Second, there is a shifting of the levels owing

to a collisional operator. The collisional level shifts become important

for collisions with impact parameters less than or of the order of some

critical impact parameter b (typically of the order of the Weisskopf
0

radius associated with theories of pressure broadening). For collisions

* with b > bo, the collisional level shifts can be ignored; for collisions

with b < b there is a rapid phase variation of 2,3,(bv ,tcR) with b,
0 231 rc

leading to destructive interference in the integral (45). Thus, in calcu-

*+
lating p2 ,3, (R,T ), we should set the lower limit of the b integration

to b and neglect the effects of the collisional shift operator in treating
0

collisions with b > b . Third, there is the LICET transition operator
0

which couples the initial and final states of the AA' system and gives

- 19 -
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rise to the coherence 2,3,.

Matrix elements of the LICET transition operator between the

initial state 12 1' > and final state < lf'1 (f' 2' or 3') are given

by
7

T; t' Vt , t C.)

<~~ ~ ~~ c-" , -,"Ie'> <P-,e' V L RAA,,t,] [z '

e e tv .

4.) U-') )'
(46)

where
I --b /

6 ( t(47)

is the AA' collisional Hamiltonian evaluated along the classical

collision trajectory RAA,(b,v), and the sum is over all intermediate

states e and e' (primed (unprimed) quantities refer to atom A (A')].

Note that TfV represents the combined action of the radiation field

and collision and vanishes if eitherle f, or k is zero. In terms of the
44

matrix element (46), the final state amplitude alf,(b,vr,tc,R), calculated

-20-



in lowest order perturbation theory and in the impact approximation

" [Eqs. (10-12)], is given by
":' -, - AL;'t,-

(48)

where1 7

A N (49)- ,.€ -_ -(% .,.-, -,

%-~

(50

", , ,

and t- and t+ represent times before and after a collision centered at
C c

t = t • The value of P2,3' produced by this collision is

(51)

where

T'.. J t,' ) (52)

In carrying out the integration (45), we can take the exoonential fnctor In

Eq. (51) to be constant, owing to conditions (14) and (15). Bettina t a n
C

without loss of generality, we find the value of 0, 3 ,(RT ) following the
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la..r pulnes from Cns. (45) fnd (51) to #%e

T+

(53)

where T 2 ,3, is calculated from Eqs. (52), (50) and (46).

Without going into a detailed evaluation of Eq. (51), one can note

several general features of the result. First, the magnitude 2 R

is of the same order of magnitude as the populations (p21 2, or P3 ,3 ,) in-

duced by the LICET reaction. Second, states 2' and 3' can be of the same

. or opposite parity - the relative parity of the two levels determines

which part of the interatomic potential (i.e. dipole-dipole; dipole-

quadrupole, etc.) contributes in Eq. (46). Third, th' LICET cross section

is significantly enhanced if the energy of the intermediate levels

-* (e or e') in Eq. (46) is such as to lead to a "small" energy denominator

'. (4918
in Eq. (49) in that case, a single term dominates the summation in

Eq. (46). The ..xistence of nearly resonant intermediate levels has vlaved

a key role in all experimental observations of LICET to date.

The types of level schemes which lead to near-resonant enhancement

7have been discussed in a previous work. To illustrate this feature, we

consider the level schemes depicted in Figs. 4 and 5. In Fig. 4, contri-

bution to Eq. (46) with level r' as intermediate state is dominant. One

- 22 -



- can view the LICET process as a collisional exchange which takes atom A

from state I to f and atom A' from state I' to r' (the fr' state Is

virtual) followed by the field E taking atom A' from r' to 2' (leading

to the amplitude af2') or the field E1 taking atom A' from r' to 3'

(leading to the amplitude a"f3'). For this type of level scheme, levels

2' and 3' must be of the same parity. The value of W 21311 produced in

this LICET reaction may be calculated from Eqs. (46)-(53) and is found

to be of order
7

'Y (Lill) b

(54)

where

I ILI

/L (55)

u is the most probable relative speed, b , Is a radius which characterizes.. r r

-- resonant broadening of the r'-l' transition, and b is a radius at which

the collisional level shifting operator becomes Important (as such, it

is a characteristic radius of foreign gas broadening). Values of br, in

the 1OR to 20R range are typical as are ratios b ,/b f 4.r o

- 23-
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It would appear that a coherence between states of opposite

parity can be produced by the level scheme shown in Fig. 5 in which

there are two nearly resonant intermediate states r' and ri of opposite

parity. Assume that stateSl,l',rl,2' have parity "+" and states 2,r',3'

have parity "-". Then, a dipole-dipole collisional interaction followed

by field E acting on atom A' leads to a final state amplitude a12' a
N

the pathway 21' - Ir' * 12'. Similarly, a dipole-quadrupole collisional

interaction followed by field E1 acting in atom A' leads to a final state

amplitude '13' via the pathway 21' * lr' * 13'. Since the collision

operator ?t contains both dipole-dipole and dipole-quadrupole components,

the same collision creates both a12' and a13" Consequently, it would

appear that a coherence p2'3' with states 2' and 3' having opposite

parity, can be produced in LICET. The order of magnitude of this coherence

is given by an equation analogous to Eq. (54).

Although a given collision produces a coherence p2,3, one

finds that the macroscopic dipole moment, obtained by averaging over

all possible collision orientations, vanishes if states 2' and 3'

are of opposite parity. 1 9 In some sense, 7 one can view the production

of coherence P2'3' in the A' atoms as a four-wave mixing process;

the four fields are the two laser fields and the dipole and quadrupole

I collisional interactions acting on the A' atoms. The dipole and

quadrupole collisional interactions can be thought of as unpolarized

• 7
"fields"; for isotropic collisions, these fields are incident

- 24 -
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F.

from all directions with equal probability and the macroscopic co-

herence p2,3, vanishes. However, by velocity selecting either the

A or A' atoms (e.g. use velocity selective excitation of the A

atoms, use a beam of A or A' atoms, detect only those A' atoms in

a given velocity subclass), one creates an anisotropic distribution

of collision orientations. In effect, the collisional dipole and

quadrupole "fields" are no longer incident with equal probability

from all directions and it becomes possible to create a nonvanishing

macroscopic p2 '31 " A detailed calculation of P2'3' will be given

in a future paper; at this point, however, we note that it appears

that it is necessary to be detuned from exact resonance for one

of the LICET transitions in order to produce a nonvanishing macro-

scopic coherence.
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V. Detection

The result of the CARE or LICET reaction is to create a coherence

in one of the atoms, A or A'. The method of detection depends on whether

the final states have the same or opposite parity.

A. Final states having the same parity following the CARE or

LICET excitation.

The analysis is the same for both CARE and LICET; to be

specific, we analyze the CARE process. Immediately following the laser

pulses at t - T+ (which is now arbitrarily set equal to zero), a coherence

~~( 0) (56)

is created. Since states 2 and 3 have the same parity, one uses an

20
interrogation pulse to monitor the 2-3 coherence. Several methods are

20
available 0

, depending on the relative magnitudes of the decay rates and

the k and k vectors. We shall choose one, a detection scheme

similar to that employed in the tri-level echo 21; in using this scheme,

we assume that

* where

t(58)

is the total rate at which the ij coherence decays.
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The level scheme is as shown in Fig. 6. At time T1 after the

initial laser pulses, a third laser pulse

:v.~~K ) =  t) (59)

in near resonance with the 2-4 transition, is incident on the sample.

The pulse duration T is assumed to be short enough so that all relaxation

processes can be neglected during the pulse (i.e. y T << 1;

Iu <<« 1; k2uT " 1; - W4 2)T <K 1, etc.]. To calculate the

response of the system, we set
S-2 -' t

q' 5 - '( 3 (60a)

in anticipation of a signal being generated with propagation vector k
f

and frequency Qf. In addition, we write

- [ ( - .~) . _(60b)

At a time T just before the interrogation pulse is applied,

P24 P43 w 0. The coherence 0 23 has evolved freely to a value

P23 (R,O) exp[i(k-k )"(R-vT I) -i( -S'l)T - y43 T, which, together with

Eq. (61b), implies that P2 3 (T ) is equal to

L.[e [ (Y. ,t&n)] , _-T, (61)
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The laser field couples the coherences p2 3 and p43 Following the laser

pulse, p13 acquires a value proportional to p2 3 (R,T1); with the neglect of

all relaxation during the laser pulse and the use of an optimal pulse

(one having a pulse area of 7r/2), the value of P43 at a time T, immediately

following the laser pulse is

, , ) : L 2 (T-) (62)

For t > T1, p evolves freely according to
43

t
- (63)

Combining Eqs. (61)-(63), one finds that, for t > T19

4~ . 'f --,, -'

p -~F RQ -T ) -- f

-[ L :T,-L k) , '

t

X'- (64)

The coherence 043 generates a radiation field provided that the

phase-matching condition

-kjk (65)

- 28-



along with the subsidiary condition

SI - U,) L/- (66)

is obeyed (L * sample length). These phase-matching conditions can be

achieved by taking copropagating waves with (i-Q)=W32 and i2=w4 2. Assuming

the phase-matching conditions to hold and that the sample is optically thin,

jI it is easy to show that the power density exiting the sample is given by

A q- (67)
t I, F : 'J_ + ~ l -C ) L 14 .- ", ) l

where NA is the atom A density and the average is over the atom A velocity

distribution and any changes in p43 caused by the lack of spatial co-

herence of the laser fields. On integrating over velocities for times

(t-TI) > l/kfu, one finds a negligibly small p except when
f 43

(t -_T) - T (68)

For copropagating waves satisfying Eq. (65), this condition implies that an

echo can be produced at a time ta given by

T, (69),

* An echo is produced provided that k > k, an inequality that holds for the

system we have chosen. Combining Eqs. (64)-(68), we find that the maximum

* - 29-
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value for the echo power density exiting the sample is

th

TI 4

\(70)

Assizmng that PI3(R,O)>I can reach values of order 0.01, one finds power

2 15 3
densities of order 1.0W/cm for active atom densities NA  10 atoms/cm

b. Final states having opposite parity.

For the LICET reaction, it is possible to create an optical

coherence p2'3' in which states 2' and 3' have opposite parity. This co-

herence can be monitored by detecting the free-induction decay signal

emitted by the sample. At time T - 0 immediately following the LICET ex-

citation, a coherence

-,.,T 9 .( r +: .) e (71)

is created. This coherence then evolves freely so that at a time t > 0, one

finds phase matching can be achieved with copropagating fields having

kl-k = w 31 2 " Under phase-matching conditions, the power density exiting

the sample is given by an equation analogous to (67). On performing the
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necessary velocity integration assuming (k -k)u' >> y ,3  (u' - atom A'

most probable speed), one may obtain

?_ -

-, C_ -- (72)

where NA, is the A'-atom density. Although the value for the coherence

-I 2 , 3 ,(R,O)i is smaller than that in the case when levels 2' and 3' have

the same parity, (see discussion of Sec. IV), it would appear that there

is sufficient signal strength to detect the LICET induced coherent emission.
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VI. Conclusion

A method for producing electronic state coherences using Combined

Field-Collisional Transitions(CFCT) has been outlined. Such coherences

can be produced using either Collisionally-Aided Radiative Excitation

(CARE) or Laser-Induced Collisional Excitation Transfer (LICET). The

final state coherence may be created between levels having the same or

opposite parity. For final states of the same parity, the coherence can

be "stored"; at some later time, an interrogation pulse can be used to

*i trigger the emission of dipole radiation. For final states of opposite

parity, the system can radiate immediately following the LICET excitation.

In this way, one can use LICET for either sum or difference frequency

generation.

As noted above, some additional feature must be added to LICET

(i.e. velocity selection of either the A or A' atoms) to produce a final

* state coherences between states of opposite parity. Another way tb achieve

a final state coherence between tates of opposite parity using either

CARE or LICET is illustrated in Fig. 7. A coherence is created between

two states of atom A (i and iI) by a CW or pulsed field. From this initial

state, a CARE reaction produces a coherence P2 3 (Fig. 7a) while a LICET

reaction produces a coherence p2,3' (Fig. 7b) between states of opposite

parity. This technique could be used to produce radiation at the sum

frequency of the three laser fields.

In order to produce coherence using CFCT, the laser fields must be

temporally and spatially coherent. The relative phase of the two laser
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fields cannot vary significantly in times less than the pulse duration or

in distances less than a wavelength for the coherence to be produced.

Since the production of tri-level echoes requires the same coherence

properties and since tri-level echoes are readily observed with non-

- 21mode-locked lasers , it would appear that the cohc:ence criteria for

creating CFCT induced electronic state coherences can be achieved.
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for coments concerning methods for detecting coherences produced in CARE.
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Figure Captions

1. CARE reaction A + At, + t 2 ' A(12) + A,, [the notation A(ij) is used

to indicate a coherence between states i and J). The A and A' atoms

collide in the presence of a pulsed laser field whose frequency is

represented by an arrow in the figure. As noted in the text, the

coherence p1 2 vanishes on averaging over times during the laser pulse

at which the collision may occur.

2. CARE reaction A + A1 A
1 A~ i *A2)+A 1 . A oeec 23 i

created if i - f =  W
1 32'

3. LICET reaction A2 + A', + 4UI + fI A1 + A'(2'3'). A coherence p2 ,3,

is created iI1 - - w3 '2' (Fig. 3a) or al + W312 1 (Fig. 3b).

4. LICET reaction A , + I + fl * A + A'(2'3) with a nearly
2 1 +12ig 1 4A1 + (23 wihna

resonant intermediate state. The collisional interaction creates a

virtual state with energy close to that of level r' and the field

interactions complete the LICET process. States 2' and 3' must have

the same parity.

5. A LICET reaction similar to that shown in Fig. 4, but one for which there are

two nearly resonant intermediate states of opposite parity and for which

states 2' and 3' are of opposite parity. The r' and r' levels en-

hance the excitation probability for states 2' and 3', respectively.
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Figure Captions - Con't.

6. A scheme for detecting the coherence p2 3 created by a CARE reaction

at t 0. At time T a laser pulse of frequency 2 -42 is applied

to the atoms. At some time later, an echo signal can be generated

at frequency Q f2W 43.

7. A method for producing electronic state coherences between states of

I opposite parity by starting with atom A prepared in a coherent

superposition of states i and i1.

(7a) CARE reaction A(ii1 ) + A i , + cl + f I  A(23) + A

(Q + 0 + W -"jj "32

(7b) LICET reaction A(ii) + AI , + SR + tol A A + A'(2'3');

o."'"I~ ( +  f l +  i i " W , 2. "
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New results for transition probabilities in two-level systems: The large-detuning regime
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The problen of calculating transition probabilities it two-leel systems is studied in the
limit where the detulning is large compared to the inverse duration of the interaction. Cou-
pling potentials whose Fourier transforms i(o) are of the form fk' be for large fre-

quencies give rise to solutions which may be classifico into families according to the form of
]"(,) I. Within each family transition probabilities may be calculated from formulas that
differ only in the numerical ,alue of a scaling parameter. In cases where the coupling func-
tion has a pole in the complex time plane, the families are identified with the order of this
singularity. In particular, for poles of first order, a connection with the Rosen-Zener solu-
tion canl be made. The anal, sis is performed via high-order perturbation expansions which£ are shown to alw ays conserge for tso-level systems driven by coupling potentials of finite
pulse area.

1. INTRODUCTION ing remains to be investigated about the equations or
their solutions. Actually, there is very little known

In many areas of physics, one encounters prob- about the overall qualitative nature of the solutions
lems involving two states of a quantum-mechanical to Eqs. (3) for arbitrary A (). Apart from any in-
system coupled by a time-dependent potential.' - trinsic interest one might have in the dynamics of
In the interaction representation, the equations of two-level systems, such information could be useful,
motion for a, and a,, the probability amplitudes of for example, in applications where one wished to
levels I and 2, are of the form choose the pulse shape to maximize the excitation

iprobability for a given detuning A.
a V We t"'u, (1a) To appreciate that our assertion concerning the

ia, 1'0 e a , (lb) lack of knowledge about the behavior of systems
described by Eqs. (3) is valid, one need only recog-

where ol is the frequency separation of the states and nize that the answer to the following question is not
-Vt) is the coupling potential. Decay effects are known in general: Starting with initial conditions

neglected in Eqs. (I) (and throughout this paper), a,) - x)=1 and a,( - )=0, how does the proba-
and we work in a system of units in which h= 1. bility amplitude al(t) depend qualitatively on the

Equations of this type arise in many semiclassical pulse area S, defined by
problems. A problem of current interest to which
they apply is the coupling of two levels of an atom S = A (tdt

* " by a laser pulse that has a temporal width which is o- a d
small compared to the natural lifetimes of the levels. on the detuting, and on the shape of the envelope
The pulse [tt) is of the form function A (t)? A response to this query can be

made for a limited number of cases. Analytic solu-
S[(t =2A(tcosl1t , (2) tions are available if A (t) belongs to a class of func-

tions 5 (including the hyperbolic secant of Rosen and
where 1i is the central frequency of the pulse, and Zener 3) mappable into the hypergeometric equa-
2At ) is the envelope function of its amplitude. As- tion, or if '

suming that 11 -- t /(l 4to ) <<- 1, one can recast
Eqs. (I) in terms cf A, the detuning of the pulse A) =(const)exp( -a tt
from resonance (rotating-wave approximation), as

P'II or if .1)1() is a step ftinction (Rabi problem), or if the

I  1 It' a (3a) detuning is zero. (Kaplan- has also con,;idered cases
, Aaai . 3 where the detuning varies as presctibed functions ofthe amplitude and obtained closed-form expres-

Eqtat otis (3) or III are decepti,el simple in sions.) In addition, there are approximate solutions
form, and one might, at first glance, belies e that the available in adiabatic" or pert trbative limits. Yet.

0. sstem must be completely understood, so (hat noth- there remains a wide range of parameters and pulse
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111i i ' c 11,1te ehu ller 11 co toelts 111ll t oo sig ifi iiie 1i h1 sl t ha t l ic u its ,110 IlL-el si I I L1 II
&iii10i IS Iiilist Iii th C (iliiui ti e tRe cla 11 15 hlcl l 111l l hl i I

Lhii~ . IliL ili Iittiiiii h eilit I of 0 511 aIt - Cpcii
siashc cr' ii~III tsstl grea L'iiiltiiii II 0iL' T lieiici lc of thes related 011 sultiissilh s

p\riiieiiil[C i-,iyrle 1111 ati ps kf deit p- talisIi11cd 1a trOSII-hs1C -ter coiArIoi Tf ,ilrCA
ties- tfI) topfitci 0.re compten th o nuicaif- tl peiilhtin Senstillon.. ohic ht i cclls' S ers !guiea

sllt(iS of' EqS. 13 Ili this dcturiing range mayS he conditions. Lire coits ergcjfili iNkiso-les ci problem,, See
poNihle hult arc cr Cost!y In compu)Lter timec and( the Appendix). With Suitable scaling of' thle coI-
plaPued %kithi teechnical I dfficullies. pling. St reng~ths, the series for di ffcerit menmber,, of'

lfir the case Ac -, -I, we shiall estahlish the f'ol- particular Classes will he Seen) tio be identical Ii thle
loss iii results,, fl Loss-order per-turhative approxi- limit of' large ci ~iligs.

nis hor a,-f are n valid f'or arb iirar\ pulse The particular potentials anal ied in tisl' paper
aIrea ~.despite the fact that a> , rt'- I f'or ll I are Alt I whose Fourier iransf'ornis for large .)as-
11iliC An .*)iiterat is solution to Fq~s. , akla.s snetefr atxi-s eepi sloss IN

LOrICs ' far s ell-hlias ed eINCIeope fiiet ionIs. (3 varying Ii a frequency interval b and h is a
* AssIiipt o ic soluii oiis ii ir c ( i, tfinit c. mnay he easi- constant. It is convenient to make a variable

1\ I iind. hu; espreSSh ii. f'or ua -- 1 aire difficult to change, such that v = b (., and xv r / b .Conse-
ohtiii. 4, Ass niptotic: soilutions, f'or a, -,c- I call he quentlx, thL exponential decay factor Ii the Fourier
'htaliid f'or a limited class Of' pulJse-Ctt'Ipe funeII- transfOrni becomes. expi V I aiid the equations of
li i using conitiiur integration t:chiques. l'his is a motion transf'orm to
hiiader 'ithian that f'or which exact solutions LireIU jIX) a 3'
kino~ is i 'l[he as\ niptotie dependence o~f a,( x I i/Jixk taM
depeiids criiicall\ onl the tiature of' the singularities - j'(.i 1( U a3
of the pulse - ens elope luiettioniA 11, analytically
c-ilii ii ed Into thle comiiplex plane. 161 If' two pulse swhere (i - A and wkhere the dot now Signiifies
func:tions has e the Same Fourier transf'orms Ii tnc differenitiation with respect to x. [he qujantity /3.
Ii ni t of large f'requencies and if the domitnant pre% iousl v designated ats S, is the pulse area. 'Ihle rc-
depenidence of' tile triisflt is anl c.,potieitial decay dluced potential f'Ln~ctiol fi(X I is, cfiiied such that
fin the f'reqanv then the asymptotic f'orms of the f )dx-I
solutions a-,( -/- , f'or these f'unctions in) the limit of' J-
large A aire sirphN related. In this paper, we ad- The pulse area is invariaint underf the Indicated
dires,, points 1 1 1 (2i, (31, !rid (6); methods f'or actually change of' variable. Otn a also si rite Eqs. 13 as, a
ibi aituilig asymptotic Solutions, [points (4) anid 51] pair of' uncoupled slecotid-order equations,
will he discussed Ii a f'uture article, Ili the presett
(I discuLSSion1, the initial conditions are takenitas U , iIa 4- flfa I) '- ,I

a i ; i d a - 0.1 J

11. ASYMPTOTIC SOLUTIONS U 'J ( 'J a i 5h

\ have indicated, the Roscn-Zener' i hyper- 'It hee. eI koaset otl outo"o'Iq.Il
holic Secant coupling pulse) problem is otie of' the 'hr r soapcst h ouin fEs

* less f'or vi!.ich exact solutions, are kniowAi. Iii this or (5i. These aire thle CalCiiiaious Of the anlplit LICs
L:ase. a siniple expression gives the transition arnpli- at fiiiite and Iitfiniii tunnies. reSpeCtI' Ik hle former1C
ImdC Xs a functIOnl if' dtuniing aInd area f'OI all valujes arc of' Interest if' the raifilt11 Solutions .ire to hC
of t hese par.,.teirs. Naturall , Sinuce this l'ornili used it' Inipuits I ((tiler priib: 'S, sulch as' iiult pia-

toil ilili/atioil, wlel i le atl s\I iii i ich sic arec

a ~ ~ 1 i (. A ' ,4, oiiiiik eiiiicernicd here, gl es Ow~ tIlusitiul uIiipli-
I tUle U I f. 1 lie Isso Itmp)oral re-gimesC difle greatl

\khib I I, i c I ri cte t iini~m h ii if Ill us-, i ifIN l Ilk' iiiCtiiils IIIl Hiiis he us ') Ill glIflIIII A

0 % ld Il 1 1 1 C IJI , I O 11 1 1
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One m1a, Mrite th solutO111 to Eqs. (3, ais pCrtur- In tile Appendix, it Is l l il iliat tis ser'1s oii-

hation series ill the usual fashion, noting that onlx crgcs for all finite puke areas.
even ordCrs enter the expression for a I.hile onil For the rcmainder of the paper \%c \%ill restrict
odd orders appear in tie formula for a2. Ilic cx- oulsel es to the Case of -ussc, that are s\inlictrc inl

panSoni for a) is time and %%here (z --, l, the adiabatie or asxnip-
totic limit. The Fourier transform will be sym -

a , I , k , metric in v. We shall begin by comparing the finite
K. -, and infinite time solutions of the Rosen-Zener prob-

here lem, wvhich exemplify rele,,ant properties of transi-
S .. dtion amplitudes induced by smooth pulses.

J x With initial conditions aIt - or I anda,(- x )=0 with a pulse-envelope function

j, f.ie .. fx)=sech(nrx/2)/2, Rosen and Zener ' obtained
an analytic solution to Eqs. (3', of the form

d 1 1 \ , -"J ,a h c Z ' ( 6a)

Kz' '* c c* ,2- 6b)• a-"-c a-. lb -~,lc*,z , ib

Ot

u , ,'Ka -.* bF --_ a, b -2-c*,z , 6b'l

IX tanh I

- _ 4 ,- 2 1 iaii!
2 4-,

aid .i '.' iie h ,pergeomcric function. The form of a given by Eq. (6b) is valid for all x. while that
gi cn. ,I q t h iolds (ll\ for finite x. unless /3 corresponds to an eigenvalue, a pulse area for which

,j- , I .i:,h,' We, recall that a,( the transition amplitude for the Rosen-Zener problem, is given by
.l 4

\\c ni,-, ,htain the finite time solution by explicitly expanding the 2 F, function of Eq. (6b')

a v[" "scch -'-x I -,-- tanh 1--.-x I +
3- 2,

2 4 -,,

For large a, it is sufficient to retain the leading term vanishes when x -- x. Even including the third-
3 X and higher-order terms in the perturbation series via

-, - "sech . analogous sequences of parts integrations does not
enable one to obtain a nonzero amplitude as I *

This is equivalent to first-order perturbation theory Consequently, other methods are necessary to calcu-
in the adiabatic limit late a,( -Y .

It is clear from the preceding paragraph that for
I" i[ f . Je "*x' I large enough ax, first-order perturbation theory is aU isufficiently accurate approximation for most pur-

i, . ... poses, provided x is finite. For infinite times, not
P e onlv does tile adiabatic sequence of parts integra-

tions lead to an incorrect 1,( I ), but even an exact
-.here subsequent parts ititegrations are neglected, evaluation of the first-order integral may he insuffi-
siit he,, are 0)' I n ' 1. We i imic(iatcl scc cient. I-his is typified by the exact Rosen-Zener am -
that fill, sequence of parits integrallons is tll"lable pliude, Fq. 14l. ill which tile factor sinf3 does not
for caIculating a I since eacI eriini separate I reduce to it, first-order ]ilit of /1 unless /3 is
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small conparcd to unity. This failure of' the first- smooth pul, Sse' Thi, conjccturc proses not to hold
order theor, occur, no matter ho, larvc th. detun- in general. It is maniflestl\ false for asnllllctric
ing becomes. One must retain enough terms in the pulses and is not even %alid for all s\ mmetric
perturbation expansion to accurately represent the pulses.> What we shall show i,, that a kind of
sine function. Thus for the Rosen-Zener pulse, if Rosen-Zener conjecture does appl\ at large detun-
the coupling is great enough so that saturation ef- ings for pulses in which .1. x' has simple poles at
fects would appear at resonance, simple first-order x i. This lass does not apply to pulses ss lnch hasc
theories cannot be used for a nonresonant pulse of higher-order poles at this point, although scaling
the same strength. As we shall see, other smooth laws for these do exist, different for each order.
pulses also possess this "saturation memory." In The following theorem will be established. Let
fact, in some cases, a higher-order theory is neces- two coupling pulses fx) and f, tx) hae
sars off resonance even for a case where a first-order Fourier transforms i v) and '(v I. The Fourier
theory would suffice at resonance. This is exempli- transforms of both approach, for large .alues of the
fled by the formulas of Eqs. (9) below. argument, the same asymptotic form )v 1. Iff, is

Since each coupling function f(x) is different, one of the form d( v/e , where ( v ) is a slowly ,arv-
might be led to believe that separate calculations ing function of' v, then the asymptotic transition am-

. must be performed for each individual case. For- plitudes generated by the two pulses wkill be the
. tunately, as we have stated earlier, there prove to be same, provided that the pulse areas are both finite.

classes of pulses where, if one knows the functional A sufficient condition for the indicated asymptotic
dependence of the asymptotic transition amplitude beha,ior of the Fourier transforms is that they be
on a and /3 for one member of the class, one knows equal, for large v, to a contour integration \\hosc
it for all members of the class, although the actual value is given by the product of the residue at .c i
time dependence of the potentials may be drastically and the usual Cauchy factor 2-,i. If tsvo such pulses
different. What is significant is that their Fourier are to have the same 6(v), the\ must possess poles
transforms assume the same form as a x. of the same order at x uI-.

When Rosen and Zener deduced Eq. (4), they sug- The contribution of order (2k - I to the transi-
gested that similar formulas might hold for other tion amplitude may be rewritten slightly.

S2k-+l
,'k -I, f 

*  
iax t  2k + I Ja I . x

a, = J , (xI e 'dx, II lim f f(xj )e, ,d.
f~ I fA _0

The factors e do not affect the integrals. They are used to remove ambiguities as * -j in the treat-
ment below, where we express the amplitude in terms of integrals in the frequenc, domain. The limits ).j .0
are to be taken before the x, integration is performed. Expressing each 1x , j - 2. inl terms of' its Fourier

transform, we find
f2k + f X f v .J )x ,

U k.- f x )e k-,d l lim dx _ f I v)
... j2 j )

By working in the frequency domain, we shall be able to examine the structure of the integrals for a :t and
establish that the contribution from regions where the asymptotic form of'f is not valid is lower by Oi 1 /a

9 than the contributions from regions where it is valid.
The integrals over the xj are trivial to perform. We obtain

2k +1+2k Ij

a,2,k +11 2rn 1 f d f 2k I + I
1 a, (2 r) -1/2 j=2 J 2  

I

_ 2k+t j

We now proceed to determine the asymptotic form of these amplitudes. The analysis is easiest to follow for
the third-order contribution a',3' but exactly the same reasoning and conclusions will apply for the higher-
order terms. (The theorem is true by inspection in first order, since that contribution is, apairt front a constant
multiplier, just the Fourier transform itself. Thus if two coupling functions has e Fourier transfornis of the
same asymptotic form, their first-order transition amplitudes scale the same way with 13 and a.) The leading
nontrivial term is a "I Changing the dumniy variable v I to vj, we find

ff VI 1P 1 1) Y ~V 1  v. (i )dv dv2
(I- ,,, lira f f

0f
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where, without loss of generality, all <. and sums of k1j have been replaced by the single infinitesimal I.. ft is
coneneiei to make the change of variable v, ,t. On finds

a ; h i t V f ( I v , t( / .I ) 4 1d. ~f "f . .. ...
I - , j- /a 1  '(V '. >I(It 1  l , l) ldv

5 ---

v 1 , t - . ] I

where P indicate,, thi the inc rand c.ludCs infinitesimal regions near , - y, and Yj 1 1. We may forrnally
integrate the last tsko terms, 11 1 is f'ci:ed front the second of the two integrals, they combine to become

I- I

It is tnt ntediatelI, oh% ious thfat If thiese are parti- The only portion of the plane where the combined
toned according to the rule effect of the exponential factors leads to an overall

decay that is not faster than e is the range
lint f b x f , X dx , evI .-1, (J<-y, < 1-.v1. The integrand does notf X X. if f A I

i  change sign in this portion of -I .v space, which
the principal \aluC contributins exacth, cancel, encompasses an area ( - to be compared with the
while the t ternts are proportional to e a and are area of order I /a which was found for the
exponentially small compared to a , which decays nonasymptotic contribution). Note that there is no
only like e 1. [ci ns proporti(oal to expoiettials portion of the plane in which the integrand decays
which decay more rapidlx than c " do not contri- more slowly than e - a. Thus the nonasymptotic in-
bute to the asymptotic form. tegrand contribution is 0(1 /a) compared to that of

We no, proceed to examine the remaining contri- the asymptotic integrand. Similar considerations
butions a', where it is again understood that the enable one to deduce that one may also replace the

, small rc, 1- neighborhood of vI - -.'vl and Fourier transforms in the higher-order integrals by
y; " I r(. fontm the integrals. For all re- their asymptotic forms. We thus conclude that if
gions c re /v < a 1 . where a the time dependences of two coupling functions are

- is a numbt (r unity, J(tvY may be replaced such that the asymptotic forms of their Fourier
by its asymptotic tornt !,a ' 0. Thus for the entire transforms are identical and of the indicated form,
.v -_v, plane, except where yv -0, Y, (- but not the large-detuning transition amplitudes are the
both simultaneously) and v- -V, - I, the numerator same.
tf the integrand is well represented by its as\ mptotic As we have indicated, a sufficient condition that
form. Furthermore. since at most one of the three two pulses have the same a,( x ) for large u is that
Fourier-transform factors departs from its ay mp- both asymptotic Fourier transforms be equal to con-
totic form in any gien region of space. the area it tour integrations given by (2-,ri)[Res(x =i)]. We

the yj v, plane ((cr which one of the f both compare the hypeibolic secant of Rosen and
departs from its asyntptotic form and decas 11 Zener, f Tsech( -rx/2), with the Lorentzian
more rapidly than e a is O I !/w. It is, of course. J ( I / +',I l X ) 1. The corresponding .4 (x)
implicitly assumed that the exact and asymptotic /3f x) are
forms of the Fourier transforms remain bounded as [/
their arguments approach zer(t. For the former, this ) 1 -
is equivalent to the requirement, which we have al-
ready stated, that [3 be finite. 13

No" consider that portion (f the v) v' planc ..Ilj x ,ech
% here all factors in the nutmeralor are xsell approxi-
mated by their as npiotic forms. Examine in par- The transforms for both Ia\ e ca l lted N13 con-
ncular the exponential dc'a factorsl tour tilegrations. The l.orent itan case is ri\ ial and

a V a1 Y. V . V T

c e . apphes to all t, i(t Just large freqcuncies. We
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choose a contour that runs along the real axis from For the hyperbolic secant pus, 'le tlalatiiti .Il-

-R to +R and is closed by a semicircle in tic plitude van lhes for pulse areas /, n- n itcgril.

upper half plane. The contribution to tile contour for all det, iings. he zcros of t . oil the tlhir

integral from the arc vanishes as R so that tile hand, occur for 13, n, - for /ero dclonil ii. \lii i
Fourier transform is identical to the contour in- those for large detuning arc J3, 2n,-_ 1 hose of
tegral, whose value is determined by the residue at go from n- at a t 0 to n ,/2 as (a

the simple pole at x i. The result is The existence of a pole at x - i is a Suff'.iciit, btl

131, not a necessary, condition that the asymptotic
AL e - Ta) Fourier transform of a coupling pulse 'ary as

v 2, p (w)e - ,. For example, the function (I - x 2 / 1

For the hyperbolic secant we choose a rectangular has an asymptotic Fourier transform proportional to
contour which runs from -R to +R along the real vi/ 2 e-". The factor v 1/2 precludes deducing the
axis, and is continued by rectangular segments asymptotic transition amplitude from the Rosen-
parallel to the imaginary axis from the points Zener formula. Similarly, tIe squares of the hyper-
(+R,O) to the points (+R,2i), and is closed by a line bolic secant and of the Lorentzian each hale poles
parallel to the real axis which runs from (R,2i) to of second order at x =i with the consequence that,
(-R,2i). The two vertical segments give vanishing for both of these, i. ,-vle - " , so that while these
contributions as R - oc, and the horizontal segment will have asymptotic transition amplitudes that are
off the real axis goes exponentially to zero compared related to each other, they' cannot be obtained by
to the segment along the real axis as v-. oc. Thus scaling from Eq. (4). In a future paper, we shall
for the hyperbolic secant, the Fourier transform is show how to calculate asymptotic transition ampli-
identical to that of the Lorentzian in the asymptotic tudes when the coupling pulse has second- and
region. For large v it is given by higher-order poles at x =i. For now, we merely

- 2/3j present the formulas for the transition amplitudes
,411 - - e (7b) generated by the squares of the hyperbolic secant

2 7-and Lorentzian

Since the Rosen-Zener solution gives the transi- 1/1

tion amplitude for all detunings, according to Eq. a2(H2)= -1 27, e a sin IC12
(4), as (recall that A =1f=Sf) c2

-iv2rfa(a)sinf3jj)

this formula must be valid asymptotically also. As
we have shown that the asymptotic FourierC2 [ 143 i/2

r

transforms of the Lorentzian and hyperbolic secant a,(L 2)= -i2 e a sin C
are proportional for large detunings, the Lorentzian C 2-,
must induce a transition amplitude that obeys a for- I 1/2
mula similar to Eq. (4). From Eqs. (7), we see that xsinh C i9b)

to construct the Lorentzian and hyperbolic secant 2,
Fourier transforms so that they are asymptotically I I I

identical, it is necessary to choose the Lorentzian where C = I + -' , + + - . . 1.198. Equationpulse area 3L to be twice that of fl3. Since fA = 2fj, (9a) can be obtained from Eq. (9b) by scaling tech-

and /31, =3L /2, the asymptotic transition amplitude niques derived in this paper. Equation i9al is %alid
for the Lorentzian pulse may be obtained from the only for (3, < I a , and Eq. (9b) for (3 ., 2a
known result for the hyperbolic secant pulse as

/31. III. SUMMARY AND CONCLUSION
a ,, iV2 7r2f (a sin 2 (a) In this paper, we have demonstrated that pulse

This result has been independently obtained by car- shapes A,(1l whose Fourier transforms as\ nilptotical-
rying out an asymptotic solution of Eqs. (3).12 One ly approach the form olc) v ' ,. ,erc , i, ,hox~lx

can also show that for the pulse varying, may be categorized into familics \hich

differ according to til function d!. WHIM eachi
faniily, the transition anplitudes a -, avc re lated

the appropriate scaling law% is by simple scaling laws, so that if one: is ihlc lt,
dcroe aii expression for the transition aniplihtide

(.,, = t " J u lsi22fl r. Sb, gnierated by one mniber of the fiiil,,. correpld-
ing formilais Ioi all other rleimbeis of the imiiik

I 6- - . . . . . . . . .. . . .i, =-
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may be written down by inspection, times.) With stitahhe ,.',i,-,s of ratios (of pul,,

A sufficient condition that the Fourier transform areas, corresponding terms in the series for different

be of the required form is that it be obtainable in the members of the same family will be identical.

asymptotic region as a contour integral evaluated In a future paper,' 2 we shall present method, for

from the residue at a single pole on the imaginary explicitly calculating transition amplitudes that ap-

time axis. For the case where 4 t) has simple poles, ply to higher-order, as well as simple poles. Thus

a-( ) may be inferred from the solution of the we are not restricted in practice to ssring scaling

Rosen-Zener problem, 2 ' known for 50 years, by a laws for pulses which may be compared in the

trivial scaling operation. asymptotic region to the hyperbolic secant.
Our results were obtained by examining the struc-

ture of the terms in perturbation expansions for ACKNOWLEDGMENTS
transition amplitudes. (We have demonstrated that
these sequences always converge in two-level prob- The authors are indebted to Dr. A. Bambini for
lems provided that the pulse areas are finite. Low- interesting discussions of this and related problems.

order approximations, however, are frequently not This work was supported by the Office of Naval
useful for t-x even when they are valid at finite Research.

APPENDIX: CONVERGENCE OF PERTURBATION THEORY FOR THE TRANSITION AMPLITUDE

We demonstrate here that the perturbation series for a2 converges for all finite pulse areas. The contribution
of order (2k + 1) is

b',tk , =i132k + Ia2 2k + I

k f 2d J f 1  I .
1 kAld- 13 -1) A)(Al1)

j=2

Now assume that A (x) is of a single algebraic sign. Without loss of generality we may take this to be positive.
We compare the series with the corresponding expansion for a =0,

i 3 k2k +- I x

f (x, )dx,I f (f(x1 )dx A2)
jZ2

e 2k *l

/2k +1(_ I )k f .(x 1 ) dx, II f _ _ J dx1  (A2')

Invoking the theorems on repeated integrals of the same function

l _ _ if3'k I k f f2k + I

0 (2k _I)!- ffx)dx

and the terms are recognized as identical to those for the series - i sin/3. Now consider the series
Ff r 32!k i - ]( ) k -+I f 3 2k, I

/3k -'A 2FP) bit) (2k t- Il f ,)dx 2k-lI!

This is evidently the series for sinh/3, which converges as long as f3 is finite. Hence, the series of Eq. (A2) is ab-

solutely convergent. Now

t32k f f )e _ tax 2k 4- Xi (x
bk . k 1f2X xI H f fx )e - I " dx

j=2

_< + _ f xi dx 1I fk j- If (xj)Idx

j=2

so that the series, Eq. (A 1 is also absolutely conk er- that f ftx3'dx 3x) is of one sign and finile.

gent, and our result is established. If fix) changes sign, the results will still he \alid
We note that lite same arguments will apply to pro, ided the generalited area f f') d. is

perturbation series at finite times, provided mercly finimt,
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A simple case where the convergence theorem dtiidual terms beyond first order may not CCH ex-
does not apply is the coupling functiod ist. (IThe first-order contribution wvill I finite, ,ice

the Fourier transform for this pulse exist,, for v , 0.
A (x)=(const)(tanhnx/2)/x , In this case, we note that the infinite area doe-, not

since P is logarithmically divergent. In addition, imply a pulse of infinite energy, so that it theoreti-

since the pulse area is proportional to the Fourier cally could exist. One evidently cannot use the

transform at zero frequency, the multiple integrals methods developed here to describe the dynamics.

in the frequency domain for the third- and higher- At the ery least, decay would have to be included

order contributions to the perturbation series contain in the analysis, and a completely nonperturbative

regions where the integrands blow up, so that the in- treatment utilized.)

IL. Allen and J. H. Eberly, Optical Resonance and Two- 7A. E. Kaplan, Zh. Eksp. Teor. Fiz. 68, 823 1975) [So%.
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Abstract

With a expeimental values of energies, transition

moments and decay rates as input, our calculated results show

that photon-catalyzed bound-continuum processes can be ob-

served for the first time using 12 in a cell or a molecular-

7 2
beam experiment at laser intensities as low as 10 W/cm and

105W/Cm 2 , respectively. Two new features, post-saturation

quenching of fluorescence and huge ( >150-fold) enhancement

of fragments, are shown for the first time.
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Interest in laser-induced multiphoton bound-continuum processes

(e.g. ionization, autoionization, dissociation and predissociation)

1 gase2
in gases and condensed phases continues to grow. In view of the

-* TAet high nonlinearity (direct 33-photon ionization) obseTved inA
multiphoton bound-continuum processes with net absorption, it is

surprising that there is so far no experimental demonstration of the

lowest-order (two-photon) process in another kind of multiphoton

bound-continuum transitions,

AB + Nh w,[AB'+ (Ial)h ] w A + B + Nhw , (1)

which conserves the total number N of photons in a given mode of the

electromagnetic field. In reaction (1), A and B refer to neutral or

charged fragments, and the square brackets denote an intermediate

state. An example is given in Figure 1. Since the rate in the

reaction (1) is enhanced by the photons without their being consumed

in the transition (while there are usually some losses or gains due

to other unavoidable processes present in an experiment), this

multiphoton process has been called the photon-as-catalyst effect

3
(PCE). It can be viewed in general as a bound-continuum state mixing

due to the external coherent iadiation and as a nonstoichiometric use

4-8
of laser photons. When a resonant intermediate discrete level in

absorptive multiphoton processes (AMP) is imbedded in a vibrational
4'6

or ionization 5'7'8 continuum, PCE may occur simultaneously (and some-

times unsuspectedly) with the AMP.

The considerable amount of recent theoretical works 3- 8 have

heightened the interest for an observation of the PCE. To facilitate

this goal, we propose here two such experiments and show their feasi-

bility with detailed analyses on the bound-continuum process: photon-

catalyzed predissociation of 12 in selectively ex ted BO+vJ
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states, as explained in Fig. 1. The unpopulated high-lying XO v'J'
g

states are chosen as intermediate states. 4 Our calculation shows

for the first time that the PCE could cause a new characteristic

post-saturation quenching in the BvJ -XvJ 1 fluorescence (a phenomenon

new to AMP as well) and a huge (> 150-fold) enhancement of the atomic

iodine fragments. Our results indicate that the PCE induced by l-Is

laser pulses could be observed in a cell experiment monitoring the

7 1 M
fluorescence with laser intensity I z 10 W/cm or a molecular-beam

experiment monitoring the fragments at I z 105 W/cm 2 . This range is

many orders of magnitude lower than the requirements (v -10 W/cm 2

calculated for other systems. 7,8 In this note we describe these key

findings.

Our calculation is based on the published analytic results (Eqs.

(2.28) and (2.30) of Ref. 5) of a theory of resonant photon-catalyzed

bound-continuum transitions (via a bound intermediate state as illus-

trated in Fig. 1) regardless whether the continuum is vibrational

or electronic and whether the system is in the gaseous or the condensed

phases. The main approximation is that the laser is a square pulse of

constant intensity I and duration T. According to Section III of Ref.

5, some favorable conditions for observing the PCE are (1) resonant

intermediate states; (2) large transition moments; (3) long-lived

bound states (and long laser pulse) for long interaction time; and

(4) small competing spontaneous bound-free transitionA. Indeed 12

9possesses these advantages: (1) the X-B transition frequencies being

in the tunable range of narrow-band dye lasers; (2) favorable elec-
10

tronic transition moments and Franck-Condon factors and densities 
;

(3) long lifetimes (- lws) of BvJ and Xv'J' states 11 1 2 ; and (4)

weak natural predissociation ((10 6s-).l These explain the low

II



L4
intensity requirement and huge fragment enhancement in our results.

In contrast, the other calculated systems suffer the disadvantages

of shorter-lived states, large competing spontaneous autoionization

8 7
rate and far from resonance or small transition moments.

Our first set of results is applicable to an 12 cell experiment

in which a resolved BvJ - Xv J1 fluorescence line is monitored. The

BvJ level can be selectively populated from the ground state by a

11
dye-laser pump pulse. A second time-delayed dye-laser pulse (the

PCE laser) is incident on the excited I2, and the monitored fluorescence

line is integrated over the PCE-pulse duration T. The parameters of

the level system defined in Fig. 1 (chosen to match the optimum power

output of laser dyes and for their favorable Franck-Condon densities)

-1
are: Xv J = X, 0, 38; w = 17,688.936 cm ; BvJ = B, 18, 37; wf =

0 0 pf
-1

17,475.806 cm ; Xv J 1 = X, 1, 38; Xv'J' = X, 7, 36 and the BvJ-Xv'J'

-1
frequency w0 = 16,228.577 cm . A first step in the experiment is to

tune the PCE-laser frequency w into resonance with w 0. Our calculated

results on the integrated fluorescence signal (IFS) versus Wshow a

(power-broadened) dip at w0 ' With w locked at wO, the next step is to

increase the PCE-laser intensity I and record the IFS versus I. Our

calculated values for the 12 vapor pressure 0.36 Torr (at 3000K)

are plotted in Fig. 2. Considering first the resonance curves (labelled

by 0) for l0-ns pulses and starting from the low intensity region,

we note the decrease in the IFS due to laser-stimutated B - X transfer

of population, and then the coherent saturation of the B - X transition,

13
a known phenomenon. For 1-is pulses, the resonance IFS has already

reached saturation at I = 102 W/cm2 . Then at still higher intensity,

if the PCE were to remain negligible, the IFS would stay constant (the
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flat dotted curves in Fig. 2). In fact, however, our calculations

(the solid lines) reveal a new feature: a laser-intensity-dependent

*i decrease beyond the saturation region. This is due to the fact that

the laser-stimulated bound-free absorption in the second (and bottle-

neck) stage of the PCE (hence the whole process itself) dominates

over all the other loss mechanisms of the bound-state population. The

resulting inflection region between the two quenching regimes would

be a readily recognizable feature in an experiment. This inflection

-i
persists for detunings up to about 0.03 cm but disappears for

A > 0.3 cm . In the latter case, the mark of PCE is quenching the

fluorescence to vanishing values at higher intensity without ever reaching

saturation, as shown in Fig. 2. From the A = 0 curves, we see that the

8 27
PCE could be identified at I e 10 W/cm for 10-ns pulses and at I :i07

W/cm 2 for 1-us pulses.

If the sharp resonance dips at characteristic frequencies WO and

the quenching beyond saturation were observed in an experiment, we think

they would constitute sufficiently strong evidence for the PCE. The

dependence on w means that the level Xv'J' must play a critical role.

Then from energetic and symmetry considerations, the only possibility

of a laser-stimulated decay from the Xv'J' level, and out of the co-

herently superposed B-X states, is a transition to the lu or A dissocia-

tive states. The dependence on the Xv'J' levels would also eliminate

the possibility of the observed behavior being caused by (a) single-

photon dissociation, nonresonant Raman or Raleigh scattering, all from

the BvJ level; or (b) resonant Raman or Raleigh scattering, or resonant

multiphoton dissociation or ionization via some discrete levels

higher than BvJ, since no higher levels possess the identical spectrum

as the B-X transitions.
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Our second set of results is applicable to a crossed laser-molecular-

beam experiment with the apparatus similar to those in double absorption

photofragment spectroscopy, capable of mass, translational-energy and

14
angular-distribution resolution. The molecular beam, the nearly coaxial

pump- and PCE-laser beams, and the quadrupole mass spectrometer are

oriented along the x, y, z axes respectively (see inset in Fig. 3). The

atomic-iodine fragments (as the signal) are collected during the PCE-

laser pulse and afterwards. To eliminate the background noise arising

from Xv0 J0  (lu,A) photodissociation fragments due to the weaker pump

pulse, its linear polarization E' should be oriented along the

14
detection z-axis (under the axial-recoil approximation, fragment an-

gular distribution -sin 2e, with e measured from E'). For the same

purpose, the frequency w of the time-delayed PCE-laser pulse is chosen

-1
to be smaller than the dissociation energy D0 ( 12,440 cm ) of the

ground level. To maximize the PCE-fragment signal the linear polariza-

tion of the PCE-laser should be oriented at 450 from the z-axis,

2 2since the PCE-fragment angular distribution is given by cos sin2€,

with i being measured from E.

The level system (see Fig. 1) for the fragment calculation is given

-1
by: Xv0J0 = X, 0, 54; wp = 17,280.974 cm ; BvJ = B, 14, 53; wf =

16,856.283 cm- 1; Xv1J1 = X, 2, 54; w0 
= 12,168.112 cm and Xv'J' =

11
X, 26, 54. The BvJ level is chosen for its small predissociation rate

and the Xv'J' level for w <D . The calculated total fragments collected

(S) with the PCE-laser on, showed a resonance peak at w = w0 " Observation

of such peak would ensure the r itical role of the Xv'J' level and

eliminate the possibility of other processes, as discussed under the6
fluorescence results. Figure 3 gives our results for the fragment

enhancement ratio, R = S (with PCE-laser on)/S (without PCE-laser). At
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resonance, R reaches the value 2 at I as low as 105 W/cm2 and the maximum

value 152 at 1 -10 7 W/cm 2 . At low intensity where the PCE is negligible,

notice that R can be (slightly) less than 1 owing to laser-stimulated

B-X population flopping. Observation of the resonance peak and of the

intensity-dependent enhancement in I-atom fragments at the expected

* imass, translational energy, and angular distribution would constitute

direct proof of the PCE.

g Based on our earlier preliminary results on the fluorescence system,

an experiment to observe the PCE was attempted by Brechignac, Cahuzac

~15
and Vetter, using a narrow-band (30 MHz), single-mode, YAG-pumped

dye laser (T -10ns). Only the fluorescence line (and not the fragments)

was monitored in their cell experiment. The predicted resonance dip

was observed. In the intensity study, they reported an IFS decrease of

8 2
40% at 2 x 10 W/cm , of 20% and 10% at lower (but unmeasured) inten-

7 2sities, and no decrease below 2 x 10 W/cm . We find that all their

results can be accounted for by the A = 0.3 cm-  solid curve in Fig.

2. A detuning of 0.3 cm might be due to a reported frequency-drift

problem in their dye laser. If so, their data point with the highest

intensity (2 x 108 W/cm 2) has just reached the region where the case

with PCE begins to differ from the case with only stimulated emission

(see Fig. 2). As such, their results probably could not be considered

as clear evidence nor as a disproof of the existence of the PCE in 12

(BvJ).

The study of Brechignac et al. prompted us to check the effects

of spatial and spectral averagings of the pulses and of optical Stark

shifts. Of these, only spectral averaging (over a Gaussian line

profile of FWHM 0.03 cm resulting from overlapping Doppler-broadened

16
hyperfine lines of the B-X transitions ) changes significantly the

approach to saturation for the A = 0 curve, while leaving its
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PCE-dominant region and the entire curves for A = 0.03 and 0.3 cm-

essentially the same as the t-,averaged curves (see Fig. 2). Also, our

calculations can reproduce quite satisfactorily the shapes of the three

experimental saturation curves (each with 5 data points) in the ion-dip

13
spectroscopy of 12* From these checks, we believe our present results

are reliable. We hope these results would stimulate and aid experimental

efforts to observe this effect. We also hope that this work would

stimulate studies of PCE in other areas of physics and chemistry, since

theories3 ,5 (without restricting the nature of the bound and the continuum

states) indicate that the PCE is also applicable to other bound-continuum

transitions: those involving electronic motion 7 ,8 and those occuring

in liquids and solids.'
1 7
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Figure Captions

Fig. 1. The photon-as-catalyst effect (the solid-line arrows) on 12 in a

BvJ level consists of the stimulated emission to an unpopulated

intermediate level Xv'J' and the absorption to the vibrational

continua of lu and A states. W, W and wf are the PCE-laser,P

pump-laser and fluorescence frequencies, respectively.

d Fig. 2. Integrated fluorescence signal versus laser intensity

for 10-ns (unlabeled) and l-ps pulses, plotted relative to the

natural fluorescence amount (normalized to the same dashed curve

for both l0-ns and 1-Ps cases). Each pair consisting of a solid

curve (case with PCE) and of a dotted curve (case with i-r bound-

bound transition but without r-f bound-free transition) is labeled

by the detuning in cm -
. The pair labeled by 0 is for zero de-

tuning with spectral averaging.

Fig. 3. Enhancement ratio of fragments versus laser intensity

for 1- is pulses. Each curve is labeled by the detuning in cm .
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THE EIGENVALUE PROBLEM FOR TWO LEVEL SYSTEMS

E.J. Robinson

New York University
Physics Department
4 Washington Place

New York, N.Y. 10003 USA

INTRODUCTION

-"The study of two-level ato,.r coupled.by e:.t:ena! fields i1s
more tha.n 50 years old, but continues to be of i .r...t.1 1U Our
purpose here is to d.2een tih A- eigctnv.lehod, an approach
to this problem introduced recently."

Except for a few potentials, closed-form solutions are not
known. 2 '4 1 Rcentlv, Bambini and Birman8 (B and B) found a class
of coupling functions for whici, the two-state equations of notion
could be solved analytically. The set includes tl,2 hyperbolic
secant of Rosen and Zener as a special case2. Apart from this,

* all mn-i )rs of the set are tenporally asvr-,netric. For these, B
and B shoed that there are no coupling strengths where the
transition probability vanishcs, except oa resonance.S This
differs from the hyperbolic sccant, where P = 0 for any pulse
area A cqual to an Integral rmltiple of r, regardless of A. 2 It
is also Lno.:n that other teTnn.orally sym=ietric pulses have pulse
areas for P - 0 off resonance.

Thit; suggests that it may be true in general that symmetric
(asym.,ctric) pulses possess (lack) nodes in P(A). Th,' author
studied this point by regardin9 the equations of rotion as an
eigcrvalue (EV) problem for A2 . By determnivn ,itcn these EV
werereal or complex, he was able to peieralize the B and B re-
suit , finding, that synrettic pulses always have nodes, but
asymmetric pulses do not, except under over-determined condi-
tiorns.9

su rofled t' 11:, 1 0 ', (ifproduci' ii v'.'od er in 'jI j ij.,Surpor'ed t'y (?: 0 U S .O . of i lc £:scarch to any!' put : , la U H'd ", . C Ii: al,:,t,;(.

,i:: .... ... ....... ............................. ...... .... ... ... .... .............. ....
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In the present pnper, we direct our attention to actually
determining EV and indicating how. one may perform accurate
approximate calculations of then. We shall present exar.npies
where this knowledge provides partial undcr:;tanding of spectra.
In addition, we shall demonstrate how to express tran.;1ition ampll-
tudes in terms of the EV and eigenfunctions and, in turn, will
exhibit an approximation method for P.

THE EIGENVALUE PROBLEM AND ITS VARIATIONAL ATP-OXIMATION

The time-dependent Schr~din;cr equation for amplitudes a
and a 2 is, in RWA with detuning A,

i a 1 I V(t) e V2t (la)

i a ' V(t) e a I , (ib)2

for real potcntials. Equivalently

- Y + iA) 1 + V2 a 1  0 (2a)

a2 2' a2- (\- iA) '+V a2  0 .(b

Consider now envelope functions of a singcl algebraic.,an, and
define z - f f (t') dt'- ! , where f (t) V (t) /A, with
A f V(t) dt. Then

2

Sal ia Al- A2 aI  0, (a

a L a '+ A 2 a 2  0 (3b)
2 f 2.

Writing
fAt -iAt

2 2
Sa ib 1 e ,a 2 *:b2 e

-bl __ -- __A--) b-A 2 bl(a" A 2  2Af2 2

b2 2 ) b 2  2 (4b)
4f 2f

Eq. (3a) is subject to thc fnftla3 conditon : a2 (- )
a' (- ) - iAe', € real. but arbitrary. .or certain A ,

(the E A_) a2( ) also vanishes. W- have previously shown that
n 2A2 is real if f(t) is tc;unporally svmnetric t,'hile it is ordinarilv

complex for a;y;Mretric potentia]:, and A # 0. 9  The eigenfunctions
corresponding to A2 are a2n and 12n in the t:o representations.



We shall restrict the remainder of the discussion to potentials
that are symmetric in the time (and in z).

Eq. (4b) resembles a one-dimensional, time-independent
Schrodinger equation for a particle in a complex "potential." Be-
cause of the non-1h1rmiticity of the "HziAltonian", a generali-cd
form of the usual eigenfunction exnansion is approp;riat ,l l  In
prticu~ar, the correct normalization integral is f'2 b dz, notn
,Ibi dz, and matrix elements of operator 0 are _given by

n2
0-  =n b 0 b dz. Then A' is given by (bn normalized to 1)

1 A2 - b"b dZ f b2  2 +  f' dz. (5)
n 1i n 1) 4 f'- 2f 2

If b is exact, Eq. (5) gives A" without e)ror. One may al-:o In-
n

terpret it as a variational prihcLpal for A' " with b 1now a triAl
function, which, if arbitrarily flexible, g.dncratcs an Euler--
Lagrange equation that is Eq. (41). If b is a function of a
finite nt ,ber of parameters, Eq. (5) provides a varitional ap-
proximation for the eigcnvalues of Eq. (4b).

APPLICATION OF THE E!GENVAJUE fZ'fhOD
In this section, we shal demonstrate how the c. genvalue

method can predict cualitative features of two-level spectra. We
address the question cf the validity of the Dloscn-Zt-- r conJ cc-
turC 2 for A small. For the hyperbolic secant

P- 2 T sin A/A2, (6)
2where2V is the Fourier transfort of V(t) - A f(t). 2 onen and

Zener surnised that Eq. (6) miioht be true for all s-:ooth \(t).

repl,-ing cnly the Fourier trai.cform of the hyperbci c sccant
with :iat of V. Since the result holds for A 0. ore might e,-

,-.'.. pect a region of approximate validity for symetrlc pulses at
" small detunIngs. It can be establiched thal; this i ; lndecd th,.

Case, in the sense that corr :ctions are 0(ii) if V is differ-
entiable at A - 0. For the Lorentzian, V is not differentiable at:
A - 0. By calculating an eigenvalue for that potcatial, the R-Z

* conjecture will be silown to be invalid for sma]l A JL that case.

On resonance, the firnt node in the transition a:iplitude

* occurs, for any pul.se shape, at A IT. For the purpoec at hand,
it in sufficient to demonstrate that, for small A, tii(re: is a
linear correction in this first ejigenvn.u for the ),orcxtzian.
Off-resonance, we choose a trial cigenrfunction which reduces to
the known resonant b as A - 0. This is

n
"S'



4

•-jAt 1 1____
bT 2n e +/ t2  I+2 +L7 cY+2t2

where N in a normalizing factor, and pass to the licift c c 0.
This leads to

1 + I

a correction to R-Z linear in A. A leading correctioii to the
eigenvalue that is line,-rr in A cannot be the si-naturn of a ler-
ing quadratic correction to the transiticu un: itudc. T.his cri,-k"
trial function gives a result thar. is an excelenc ... " satia
to the true eigenvalue for A = 0.1.
AN EIGENFUNCTION EXPANSION FOR TRANSITION AIYLITUDES

Since the. b are complete, on. may use th,n- as a is for
expressing unknown functions. In particular, if b2 is the solu-
tion to Eq. (4) for A2 -7 A 2 ,we n-'ay expanj h) in t.rn:,; of the 1)
for - < z < .. Then 1) may be deducCd £onI the e::p:rsiofl
standard procedures.

Thus

b 2 (z) E a b(z) Z2 b(z) f~b (z')b(z') dz' (7)

Equations for bn, b2 are

2 2 A2  2_b - [2f- -2 
.

f + -. j b2 = A 22,(

2f2

-b [-I + b ,2, (b)S- 2 f2 n u n

2f 4f

Multiply Eq. (Sa) by b, Eq. (Sb) by b 2 , subtract and integrate
over all allowed z. This yields, using Grc>n 's thec-CM,

[-(b2'b n - b2 b') ] = (A2 
- A2 ) f,_b (') b (z) dz (9)

and
* b 2 ( ) b n'()

n2 2
n

b'( ) b(z)ab (z)* -b 2 (Q) Z n 2 1b(z) Z n bn (z) 200F A2  A2
n
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or
201) - __b 2 (z)

u2/ ;/-b n ( ) bn(Z) -

b nA2 _ A2 (0

A -A n

. - As..A * 0, b 2 (z) is correctly given by first-order theory

b ~ b~( (Z)b(I) 
2

2. b () bn(z)

n n

-A
2

n

Since first order theory is also exact for all A as z + - ,

b '( ) b (Z)

b 2 ( ) - b ) (-) Lira E2-z 4 - - A2  (11)

bn() bn(Z)2 2

b (z) b((z')

A sumnation of the form E is the Green's function._ A 2

G(X,z,z'), satisfying

d A
2  iAf' A 2

f 6(z -z') (12)
dz2  2f2  4f2

* . Accordingly, b2 ( ) b I ) ( ) Lim _ G(O,z,z')
",z - z' __

- .. . ./a G(A2,z, z ' )

For problems whose expact solutions are not lknown, G may be approxi-
*mated by means of a variatio:nal. principle. .

L" ~~~~~.._ ... . . . . i': . . _ . - . . .... .. . .. ... .... ...... . . .
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L Production of "hot" excited-state atomis in collisionttlly aided radiative transitions

E. Giacobino,* M. Tawil, P. R. Berinan. C). Redi, and H1. If. Stroke
-. 4ioacd[; t'& ti C~c~U ~ ~:u&sics Dc'pur,-ment, New Ycrk Umicrs, v :"New York, New Yvk 10)003 ii',:Q. a,

~.~der Coiat~ct j~j~j~n'jj~.~;{ U~3(cc~iyed 13 June. 1983) 101 / f;cu 'a.:j :
Cvflr~iunally aided fonP Inv excitation of atoms uving a lscr dtuned to tbe Wle is shown to ild to

hceLing of tWe external dereii of frcedor. The sclocity, distribution of Wbc ecttd atomrs A studcd ex-
petirnutally cnd compIid '~ith theoretical preictions.

AFR233 1983 PACS numbers 34.SU.Lf-

Ti' cornbincdl effect of collisina and radiative' intcrac- case wi!H be esaent')' tdentical to il. ixeli'ovV't
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using standard meuthods t :
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power broadening (the natural width and lifs can be neglect- TABLE 1I. Comnparison of the e~pcriment3l1Y obtjined widths
ed here). Study of the dependence of thc widths upon lascr with theory (p~ower and pressure bro.Adening extracted). All values
power shows that the power broadening is significant. How- are in Gllz.
ever, at a laser power of 50 niW, which was used in all the ____________________ ______

experimental runs, it is rather small and is accounted for in
*our data processing at the same time as pressure broaden- Thermal Doppler Theoretical width Experimental

ing, as shown below. For the analysis of pressure broaden- Gas width including: heating Doppler width
* ing effects, we rely on previous experimental studies"9

which indicate that the pressure broadening coefficients for
heiuaro, n xnn r tesaewihn 5 frt~e Ar 1.8 2.9 2.4

Xe 1.8 M. 2.8
* 3P- 4D transition. We have thus assumed the same

Lorentzian widths for the heavy rare gases as for helium at
the same pressure, and we have used the values of the
Lorentuian widths experiaentally determined hy the decon- fects are very difficult to estirnate quantitatively. In order
volution of the curves obt:-ined with helti to iaterpret thc to study them it would be necessary to perform experiments,

- absorption curves obtained with argon and XLflon. We oh- at lower sodium and rare-es pressures, which we were utt-
tained the Doppler cofitril-otionis to the lineyidths for the ablc to do ticcaUSe of signsnl-to-noist: ratio :onsideratioins.

* latter two p~ssby a deconvolution also assumning a Voizt The partizil them ialization in the 3P level m iv aLso cxpt. :n
* profi!c (this assumption will be discussed below). Thus we why the ext ernncntal abso' ption line sle(i>i. 4) fer thle

obtained values for the Doppler widthis which are no longer 3P - 4D transition differs fromt the theo~ctjcnl preimced
dependent on the foreign Fgs jiressure. one (Fig. 2), a'nd justifies Our use of a Vo:1gt p-olfile in lit-

These aro shown in Tabic 11, along with the. theo.-etiC,, tinc the dlta.
predictions. For both arFEon Lnd xenon, it cani tc seen thtIn concla'ian, our cxt-rimen t has sliov.:: evidenice for

-the expcriw.entAl values are significantly lagrthan tlhe, sig~nif-icant "hcatir' g asom,-- with teclKii y~
thermnal Ucpple r widthi. This givcs cvidtenie for thet radi;,tivc xItra ef the 3i) 1!orls uising a Jc.:>o,, v) m
prcdicted hetrN cfc.?eve:rthelcs;, the_ effe ct is be blue. it' a !", qe eno)uFI reior~~f ii- I 1
smaller than theoretically cclte.On,: can account for beam nd~'e such, a trons'li., this (he~t l!It I. to

t!!; cnn m e:e thecese that tc':i thec -msw MealSUr1d): I inttr aI~t0l the v~ :, (VC a
in th!! 3P s' ; Fi sI. onct cxcited, to the ))_ ae n bfe- new netho: of' ase r caJu;or co ' ,~

fore absoioi:-n i second lu:rphuton, the sodiuri. a-tenn out that ccJ;-_: C i..s.ot InL r'iso-v ad ni t1 111 ' :,(:'d m~e,
may unergo crIgsions p;it Ueprturbers wh;;ich tend to re - Ce est after one- mbaption1 fro e ii: 11U-I trd
turn the ve"Q: Qai nstr~iam to he-i thernial one. V;(- nozte the: mcd sidec ot' tiec li:.e, orl*!s atom., ca o 1 , XL 'l,,i I row,

N! that the ls r o%%e: d: m.1,it y i c C!g f"~t or the the men jj; 1 :te, -and -re f_-juwaT 11- atx o
3P - 4D) it~s~m to bu lcac.ti y saturated, which reduces tyditbie which ca n t,4r _',own to ic je

* heeveo~ycanes c ca~,the, reabso,.rpzion of rec-o- Nias'.vclian o!.,_. 1 :1I this ea5;e, dlic grolw O'i , crul.A '

*nance photonls, w;hich provides, an alternative mechnismJ51 tra
excite atoiits fron- hica ground statc, has the ,asIne cffcct of One of us(.. wudVc to thani F. f'.B 1',rt n L-1

*washing out the particul;ar velocity distribution of the 311 11. 11. Stlo!,e for the kind lso,.ptdiiy do in',; r s'" , "t5,v
atom by AR!. Although we- wvork at eniasof N bdiun York Urmiversi,.y. We wish to the-k \V. P riT L'rneCjn

where the o.ptdae depth for rLeonant light is Iiithe transit University, 1',,r providing; us w ith aairci! tcL-1s
time of an atomi rxcited by CA RE thro-Agh0i the scm beam is she irult; ai si:-r-s of this %woik. '111ir; work \k-- 1Apo edb

*smm'!I, so th'dl icte sorption events take place- ma;inly outlsidr; tire U.S. Ofiive cif Naval aecr l,' -Nihwder Girants
of the laser be-am, where we do not (;etect themn. These ef. 1No. 7i921530 and No. PH-Y820-11102-01.

*Perm-anent rr&dress: Laboritoire dc Spectroscopie Hcertzienne de I' 5E. Giacobino anmd P. R. lPr~aIrocecdrreaF c' th-c "'Vor:,!op oil
Ecolc Nornirl': Suprciiurc!, ti rm Pierre ct miric Curie, 4 Spzctro..copic A ppl,,ado'rs of StnAtum irw m Nat. 3.
Flace Juasirou. F-7523) Paris,. Crtx05 France. Stand. (ItS ) P'tt;:ieamion No. ,y (UnmlojH;rcrt).
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Cooling of Vapors Using Collisionally Aided Radiative Excitation

E. Giacobino and P.R. Berman

Physics Department, New York University, New York, N.Y. 10003

Collisionally aided radiative excitation (CARE) is proposed as a

mechanism for cooling an atomic vapor. With a CW laser power of

1.0 W/cm 2 and the resonant dipole-dipole interaction providing the colli-

sion mechanism, we estimate that temperature gradients of tens of degrees
16 3per cm can be achieved at vapor densities of order 10 atoms/cm

Key words: cooling, collisions, resonant broadening, laser assisted

collisions.

1. Introduction

Over the past several years, there has been considerable interest in colli-

sional processes that occur in the presence of radiation fields such as reactions

of the form

A1 + B + W*A + B
1 1 2 1

(Ai, atom A in state i; Bi, atom B in state 1), which are commonly referred to as

collisionally aided radiative excitation (CARE) [1]. Host experimental studies

to date have concentrated on measurements of either the CARE cross sections or the

frequency distribution of the reemitted light. However, it can easily be seen

that CARE also produces a change in the atoms' translational energy and, as such

may have potential use as a method for heating or cooling an atomic vapor [2).

*Supported In part by NSF Grant INT 7921530 and by the U.S. Office of Naval
Research.

* "roduction i-i cr ii prt is permitted Sgppo$ rd by the U.S. 0;ice of N M-I RtsIArch
for Ay purpose of the United States Government 11 2 under Contract No. NOO01l-C0553.



Let us consider radiation of amplitude E and frequency Q acting on a two-

level atomic system whose Bohr frequency is w - A-A (IAI >> Doppler width). As

a result of the interaction with the field, the atom may scatter a Rayleigh photon

or be excited to its upper state. The latter process, although possible without

collisions in strong fields, is greatly enhanced by collisions (1]. Since the

final energy level of the atom is different from the energy of the absorbed photon,

the energy difference must be compensated by a change in the translational energy

of the colliding atoms. As pointed out previously (2] the net result is a cooling

- or a heating of the vapor. Tuning with Q > w produces heating and that with Q 4 w

produces cooling.

2. Expected Cooling

The magnitude of the effect depends strongly on the detuning A -f - w: each

time an atom interacts with a photon the energy hA Is removed or added to the vapor.

* One may choose hA to be an appreciable fraction of kT (at 5000K kT corresponds to
4 2 Cul

a frequency of 10 GHz or a wave number of 3 x 10 cm-), so that velocity changeo

* are large compared with those of order 1.0 cm/sec which occur as a result of photon-

recoil processes.

Of course, the process considered here involves a non-resonant atom-field

* interaction and the rate of excitation is reduced compared to a resonant excitation

by a factor r 2/A2 where r is the collision rate. (For the sake of simplicity we

use expressions calculated using the impact limit of line broadening). We shall

consider the case of resonant broadening; i.e. the resonant dipole-dipole inter-

action between two atoms of the species gives rise to the rate .r.

The rate of excitation to level 2 from level 1, Is given by

2X2  n (1)
-2  2 (n- 2

where n1 is the population of state I, X is the Rabi frequency defined by

X "(2)

and p is the dipole matrix element for the transition. If nI >> n2, the steady-

* state upper population of state 2 is
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where y is the decay rate of the upper level. For cooling to actually occur, the

atom must decay back to the ground state via spontaneous emission rather than via

stimulated emission (stimulated emission would "heat" the atom if absorption cools

it). This means that it is advisable to restrict the laser power such that

a 2 (4)
f2

beyond this limit, any additional laser power is useless since there is as much

* stimulated emission as absorption.

For an atomic density N and cylindrical interaction volume of length L and

cross-sectional area A, the power dH/dt removed from the sample is

dH 2x NAL, (5)
dR

which may be rewritten as

dH I (
t-1YrNL' ('<P m)  

(6)

where P is the laser power and P is the maximum laser power consistent with con-
U

dition (4). This result suggest a potentially large heating or cooling effect.

Taking

4f&/kT - 0.1 (A/2w - 103 GBz) ; y/2w - 10 MHz;

P/P I 10 7  Q = 5.0 W/cm2 ; N a 1015 cm-3

one finds

1 dH = 6 1 sec- 1  (7)

NAL dt

Under such conditions, the time scale at which the energy is removed or doubled is
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1.0 sec. In calculating dH/dt, we assumed the medium to be optically thin.

The above calculation has to be modified when effects of radiation trapping are

taken into account. Equation (4) must be replaced by

2

where y' is the effective upper state decay rate in the presence of radiation

trapping. Typically, one finds [3J

Y y/[KL (w n Xf121, 1L >> 1) (9)

where

K N O (y/ D) (10)

is the absorption coefficient for resonant radiation in a Doppler broadened medium

(wD - Doppler width). The cross section is given by

.2 2  ,X2/2Oo c c y (/2)

where V is the dipole matrix element and X the wavelength for the transition.

The rate of energy loss for the sample is now given by

.J;-ldH M P
dliL. (P < F') (12)

where P' Is the maximum laser power consistent with condition (8). Note that
m

P' may be considerably less than P . However, since P'/y' - P /y, Eq. (12) may
am, m m

. be recast in the form

d= L- NAL . [P < " -Pi (y'/y)] (13)

Equation (13) Is identical to the result (6) which we found in the absence of

radiation trapping, except that P is limited to a smaller value.
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Even though P is limited to a value equal to P'. significant cooling can

still be achieved. For example, for the parameters chosen above, one can use:...: 1 -6
Eqs. (9-11) to estimate P'/P y'/y a 10 , assuming a cell length on the order

of 5cm. Since P/P was taken equal to 10"7 , one finds P = 10- P' which does notM m
violate the condition P < P' Thus, the expected cooling is the same as that
found in Eq. (7).

3. Temperature Gradient

We can now estimate the temperature gradient in a cell created by this

cooling. Considering that the atoms are perfectly thermalized on the wall of

the cell, the amount of energy we must remove per second, to keep a temperature

gradient dT/dr between the laser interaction region and walls is

:'.-. 1dH ,dT
=" K D-H T (14)

S dt dr

where S Is the surface of the laser beam IS = 2/i - IL; beam circumference

- 11 and K is the thermal conductivity of the gas approximately given by

' = ku/oc  (15)

where k is the Boltzmann donstant, u a mean speed, and a a collision cross section.C

Combining Eqs. (14) and (13) and dividing by the wall temperature Tw we obtain

tdT - c 4MLrL NAL . (p <F) (16
TWdr Cu/Y)LkTw(P(16

We may also note that the limiting value P determined from condition (.4] is given
M

by

p- 2 NY A (17)

To optimize the temperature gradient which can be obtained, we proceed as follows:

(1) We choose a density N such that the optical depth for the laser radiation is
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equal to unity. That is, we set

N - 2A2/(o Lry) (18)

For L * 5cm, and r determined from theories of resonance broadening [4] (i.e.
* 3r - 0.023 N A y), X a 600 ua, and the values of A and y used above, one finds

16 3N 2 x 1016 atoms/cm . By choosing an optical depth of unity, we ensure that

* each photon "does its duty" in removing energy from the sample. (2) For this

value of N, Eq. (9) yields a value y'/y - PM/P = 10-  (3) Using Eq. (17),

we estimate the maximum allowed value P' for P to be~m

P.,a x10- 7 P'm -. 2W/cm 2
--"lx --"0.2 •i~AA

2(4) Since this value of P'/A is readily obtainable with a CW laser for A < 5 cm

we set P/P equal to its maximum allowed value (P'/P.) in Eq. (16). Moreover,

we take No 0.1 r/u* to finally obtain
c

L- dT ry' A101

d .1 .(lx lO . (19)

For A 4.0 cm2  r 0.6 x 1010 sec -1 u2 a 10I0 cm/sec,(iA/kT) =0.1,

L. dT = 0.1 (20)
Tv dr

The temperature gradients predicted by Eq. (19) (of order 10 degrees/cm)

may be somewhat optimistic. However, this order of magnitude calculation does

seem to indicate that significant cooling can be achieved using collisionally

aided radiative excitation.

One of us (E.G.) would like tothank Dr. F. Laloce for stimulating discussions

on this subject.

*We assume that the excited state population is close enough to saturation to

ensure that it is resonant collisions that provide the major contribution to

the thermal conductivity.
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*6

* Over the past several years there has bceen, cur>;idorabIC einterest in col-
7 lisional processes that occur in the prcsOelcL of I"ser fiveld3 M1 such as,

* A +B + hil -~ A + B
1 12 1

BThis class of reactions is coimonly referred to ;!,CARIE (CoiJlisionai.Jy Aided
-Radiative Ecitation). If the laser Isdeub0 ite1-trniin r--

p.quency by A, the collision provides trainslatiwoi V 1inetic tenerf,,' to cor.i)eii-

-sate for the mismatch hA betwe.,en the fj.el.d .,w l at~om~ic tiicnSition , which
leids to a corresponding chnnge in the vulO -; y h I tm: involved jin

* 10 the process. This change in translational eit-~ry is dist-rilutad betweeen. 7

the active atom (A) and the pcrturber (B e' gon their relativc mlasses.

11 4

we have studied the ease of the soclhxn-r i- Sv r(: ubjected to laser;
irradiat ion detuncd from the 3S - 3P t ra it rrI!gEfeqec ;

12 The velocity distLribution of sodium exci ted 3' 1 ' hns 1,cc-i calculated

for v'arious rare gases using a hiard splhere CCl 1 -*(,. kcraiiu. Thle distribu-
13 tion obtained with holium pertitrbers i.- very c- to the iitial M.zxwllian

* distribU tion, sinIce hlIiu)M inS raLCh liZghter0 hlJ tal C-m nrdt rcra ti cally

all tecess energy. In contrast, whecn argol xenon i.3 1.y;cd, the sod *ifll
atoms are predicted to undergo large velt-city t 'earid tHi Doppler line-
shape deviates from a Gaussian lineslia),p. 15

Experl mentally, the velocity di-stribu!tion olf ti:(n 3P atoms was monitored

Is by lookingp at the Doppler !)rtor!deflcnd resonance:;;ctd w.itli the absorption -

on a second transition 3P - 4D.

17 wid_
We observed a significant diffurence beweaL): jDoppu 0r i of the .J

3P' - 4D trans it ion for heliu~m argon and xenon p>-. Liirbers (seTable 1)

Table 1: VWidthS of the absorpt.i on resoniance on th probe 31' 41) in G11z

The accuracy is about 0.1 Ghiz.

Rare Cas Pressure-Torr Na-He0 1", 1Ar Pa-Xe

5 2.7 3. 0

10 2.7 3.2 3.5 2
20 3.1 3 4.0

30 3.33.

'To preci nely check by how much the- Dopp 1 or wid; 1;, mod if I c by the'hat
]nTg" cffr:ct , we haid to extriacti the effcct. of pa-t- i' nd powe-r bioadczaj J it'
on the 3P~ :I, 4D pro~be I Eaflsit ifl. Ji)fct: W41cC (I [ -,!1 n d ill III(: C-.SC!; of I1c]. itizi

where there is no hieating, fol ,1 cuvlt1, ieC:c letl.Vi~

- a ~Suptio.-ted Ij lk U.^. VO (C c .' ~'J~I~.
ui der Coclti-ri 1:.. Ij)1 Y/C il3 Ntt 1 7 .~ ~

- .. 9
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profile, assuming a Doppler width determined by the Maxwel] ian. velocity di!-

1 tribution. We made the assumption that the pressure and power broadening
.. effects leading to the Lorentzian line width were the same for the same pres-

sure of helium, argon and xenon perturbers; this is justified by the fact
_ -- that the pressure broadening coefficients on the 31' - 4D transition have

been shown to be very close to each other for these three rare gases [2].
3_

Then a coarse deconvolution, assuming a Caussian shape for the Doppler

4 broadened part of the line, gave us the FWIH of this Doppler broadened part,
--- to be compared with the predicted theoretical value (Table II) and with the

5 width given by the axwellian distribution.5 5

Table II: Comparison of the experimentally obtained width with theory

6 (power and pressure broadening extracted).

7 Thermal Doppler Theoretical width Experimental

Gas width including heating Doppler width

: Ar 1.8 2.9 2.4

* Xe 1.8 3.5 2.8
* 9 9

10 There is an obvious heating effect of the 3P atoms, although it is less .
tlian theoretically predicted. We interpret this discrepancy as a result of -

re-absorption of- resonance photons which excite atoms from the ground state
11 without changing their velocities, and of the velocity changing collisions

- undergone by the 3P atoms after it has been excited. Studies at lower sodium

.12 pressures are in progress to check this point. 1"

* 13 In conclusion, we have demonstrated velocity changes subsequent to CARE.

If the efficiency of the process is high enough, that is, if we are able to

accelerate or slow down enough atoms, this should lead to a macroscopic local
14_ heating or cooling of the vapor, as predicted [3].

15 This work was supported by the U.S. Office of Naval Research, NSF Grant 5

S--INT 7921530, and NSF Grant PHY 8204402-01.

* 16 6
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J. Phys. B20 1953 (1981) - A. Flusberg, T. Mossberg and S.R. llartmann,
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