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SUMMARY OF RESEARCH COMPLETED

Research on free electron lasers (FELs) carried out over a three-year

period with support by the Office of Naval Research has resulted in a

number of significant contributions. The emphasis throughout this work has

been on FEL configurations which include a strong uniform axial guide mag-

netic field, since such a field is used in many experiments to guide the

electron beam. Moreover, as we shall discuss presently, the axial magnetic

field can introduce a number of physical features not present when this

field is absent. Some of these features can be deletereous to FEL opera-

tion; others can be advantageous.

Copies of all major publications which resulted from this research

program are appended to this report. A list of these papers follows:

PUBLICATION LIST

1. "Free-Electron Laser with a Strong Axial Magnetic Field," L. Friedland
and J. L. Hirshfield, Phys. Rev. Lett. 44, 1456 (1980).

2. "Electron Beam Dynamics in Combined Guide and Pump Magnetic Fields for
Free Electron Laser Applications," L. Friedland, Phys. Fluids 23, 2376
(1980).

3. "Orbit Stability in Free Electron Lasers," P. Avivi, F. Dothan, A.
Fruchtman, A. Ljudmirsky, and J. L. Hirshfield, Int. J. Infrared and
Millimeter Waves 2, 1071 (1981).

4. "Degradation in Gain for a Free Electron Laser Amplifier Due to Electron
Momentum Spread," A. Fruchtman and J. L. Hirshfield, Int. J. Infrared
and Millimeter Waves 2, 905 (1981).

5. "Theory of the Free-Electron Laser in Combined Helical Pump and Axial
Guide Fields," Ira B. Bernstein and Lazar Friedland, Phys. Rev. A 23,
816 (1981).

6. "Exact Magnetic Field of a Helical Wiggler," S. Y. Park, J. M. Baird,
R. A. Smith, and J. L. Hirshfield, J. Appl. Phys. 53, 1320 (1982).

7. "Free Electron Lasers in the Collective Regime," J. L. Hirshfield, Proc.
Japan-U.S. Seminar on Theory and Application of Multiply-Ionized Plasmas
Produced by Laser and Particle Beams, Nara, Japan (1982) pp. 515-525.
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8. "Amplification of Frequency Upshifted Radiation by Cold Relativistic
Guided Electron Beams," A. Fruchtman and L. Friedland, J. Appl. Phys.

* 53, 4011 (1982).

9. "Amplification on Relativistic Electron Beams in Combined Helical and
Axial Magnetic Fields," L. Friedland and A. Fruchtman, Phys. Rev. A
25., 2693 (1982).

* 10. "Nonlinear Theory of the Free-Electron Laser with an Axial Magnetic
Field," Lazar Friedland and Ira B. Bernstein, Phys. Rev. A 26, 2778 (1982).

11. "Wiggler-Free Free Electron Waveguide Laser in a Uniform Axial Magnetic
Field: Single Particle Treatment," A. Fruchtman, J. Appl. Phys. 54,
4289 (1983).

12. "Theory of a Nonwiggler Collective Free Electron Laser in Uniform
Magnetic Field," A. Fruchtman and L. Friedland, IEEE J. Quantum Elec-
tronics QE-19, 327 (1983).

Most of the published work is theoretical, although an important experi-

mental confirmation (paper 3) of one aspect of the work was obtained by the

Hebrew University group which has carried on a continuing collaboration with

the Yale group.

The key work underlying much of what followed is paper #2 (which was

actually submitted for publication prior to the letter #1). This work showed

• for the first time that electron orbits in a helical wiggler with a super-

imposed axial guide magnetic field were not necessarily helical. Helical

orbits could be well approximated if the wiggler parameters and entrance

* conditions were carefully chosen. But for carelessly chosen parameters, the

orbits would be strongly non-helical, thus rendering such a beam useless

in a FEL. However it was shown possible that one could operate close to a

* point of transition where the equilibrium orbit would be nearly helical,

but where small perturbations (say due to a co-propagating electromagnetic

wave) would be strongly enhanced by coupling to a natural resonance of the

* orbit. In paper #1, a single-particle analysis showed that considerable

small-signal FEL gain enhancement could be achieved, based on this phenom-

ena, without increasing the electron's undulatory velocity. (An increase

eb
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in undulatory velocity gives rise to a decrease in the up-shifted frequency

• which can be amplified; thus a higher beam energy would be required if a

given frequency were to be amplified; the aforementioned resonance with

the orbit's natural response makes these adjustments unnecessary.)

O The experiment reported in paper #3 explores the transition from helical

to non-helical orbits, and the data show good agreement with theory for

the parameter governing this transition, as predicted in paper #2. Since

• the work reported in paper #3, the Hebrew University group has continued

its work on beam diagnostics for FEL applications, under support by the

U.S.-Israel Binational Science Foundation.

* Paper #4 shows the effect of a spread in axial electron momenta upon

the gain of a FEL operating in the collective regime, without the axial

magnetic field. Exact gain degradation results for a box-like axial

• momentum distribution are presented, as are some approximate scaling laws

which can be useful for rough estimates.

Paper #5 is an extension into the collective regime of the calculation

given in paper #1, using the fluid equations. This work applies either for

a magnetostatic or for an electromagnetic pump.

Paper #6 is a derivation for the exact magnetic field of a current-

60 carrying bifilar helix. The main point of this paper is to determine the

range of validity for the approximate formula for the field of a wiggler

commonly used in the literature [i.e. B(z) - B ( xsinkz - y coskz)]. A

secondary point was to be able to calculate the higher spatial harmonics

of the field, so as to estimate their utility in a harmonic FEL.

Paper #7 reviews the theory of FELs in the collective regime with an

axial guide field, and cites some of the important experiments. The paper

also contains a proposal for a two-stage FEL to generate micron wavelength

60
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radiation using an intense electromagnetic wave, generated in the first stage,

* as a pump in the second stage. Neither stage employs a magnetic wiggler. 4

The theory underlying the first stage of this proposed device is given in

detail in papers #8 and #12.

• Paper #8 considers wave propogation along a cold electron beam with

pre-imposed spatially coherent helical orbits. Radiation at the Doppler-

shifted cyclotron frequency is amplified by such a system, but with higher

• gain than for the case of spatially incoherent helical orbits.

Paper #9 is an extension of the work reported in paper #5. The govern-

ing equations are reduced to a set of coupled first-order ordinary differ-

*ential equations, with due attention to the problem of unstable equilibrium

orbits. The actual spatial evolution of the field along the axis of an

amplifying device is found.

• Paper #10 gives a non-linear cold-fluid approximation for the theory

of a FEL with an axial magnetic field. As in paper #9, a coupled set of

non-linear first order ordinary differential equations is analyzed to give

*both the initial linear regime of spatial growth, as well as the non-linear

saturation. Axial evolution is found.

Papers #11 and #12 treat a system of a beam of spatially coherent

helical orbits in a uniform magnetic field, but with no wiggler. Paper #11

is a single-particle treatment but for bounded TE and TM waves, and the

small-signal gain is shown to be larger than for the case with unbounded
6

waves. A practical amplifier based on this principal is proposed. Paper

#12 contains the collective theory for this interaction, and gain is com-

pared for beams with helical, bi-helical, and randomly phased cold distri-
0

butions. Orderly transverse phase distributions are shown to provide greater

gain and bandwidth, than for the case of random phases.

I' , , , . , • -- . . : - ' - , % % , . , , : " ' .
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In summary, the body of published research which resulted from Office

of Naval Research support under this contract has extended knowledge and

understanding for an important class of free electron lasers, namely those

having an axial magnetic field. Other research groups have made contribu-

tions as well, but in many cases following the pace of the work presented

here.

-
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Free-Electron Laser with a Strong Axial Magnetic Field
L. Friedland and J. L. Hlrshfield

DePartmeut of Einfaeig and A~P~ied Science, Mason. Laboratory.
Yae. University. Nowu Haen, Connecticut 06520

* (Received 27 February 1980)
A emall-algae) theory is given for gain in a free-electron laser comprising a oold

relativistic electron beam in a helical periodic transverse, and a atrong uniflorm axial.
magnetic &Mel. Exact finite-amplitudie, steady-state helical orbits are Included. Uf
perturbed, these orbits oscillate about equilibrium, ma *ha substantial gain enhancement
can occur It the electromagneti perturibons resonate with these oscillatIons. This

* gain enhancement need not be at the coet of frequency upshift.

PACU numbers: 42.55.-f, 41.70.+t, 41.8O.Dd

Intesive activity is underway to exploit the known resul 6 for G, in the single-particle limit
gain properties of a relativistic electron beam (i.e., when collective effects are negligible)
undulating in a periodic transverse magnetic field. Go -.(w, t/kd)'(kL/2V)'F '(8). (1)
Such free-electron laser (FEL) configurations
have provided oscillation at 3.4 (Rlef.- 1) and 400 Here w, and y are the beam plasma frequency
I'm,' and amplification at 10.6 jim.' Theory has Wme 'E and normalized energy W/MC c, hk, and
advanced apaceP4 and elaborate schemes have are the helical transverse magnetic field wave
been proposed for obtaining high FEL efficiency.' number 2vr/L and normalized strength eBjlmckov
A factor which limits the practical application of L is the interaction length, and F'1(9) - (/dG) (sin9
this interaction at wavelengths shorter than per- 0)2 is the line-shape factor, with 0 B =[ kvp30- w(1
hap a few microns is the rapid decrease in -v,,/c)] (L/2c), where v30 is the unperturbed elec-
small-signal gain Go as the electron energy in- tron axial velocity. The peak gain occurs at 0
creases. This is shown expl[icitly in the well- -1.3, where F 1(0) =0.54. For example, with v

*1456 0 1980 The American Physical Society
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. -10, 1 a1.05 cm, a,=5X10 see', 4a1 (BLa10.2  netic field
kG), and L -O130 cm, the peak gain is Got0.00247 o
at a wavelength of 105 gm. For y =100, 1= 10.5 B~r -Bog .B.L..0 coskoz +0 sii*,Z). (2)

cm, wp,2x101 set " , t a1 (BL -1.02 kG), and L These orbits, which have been the subject of re-
- 260 cm, the peak gain is Gap a.0.003 16 at a wave- cent study,'* can possess more than one steady
length o 10.5 m. These gain values may be state, depending upon y, Bo, BL, and ko. These
large enough to sustain oscillations If highly re- steady states are characterized by the normalized
flecting mirrors are judiciously added but the velocity components (i.e., u, -v,/c)
strong helicl fields required (particularly the u, .0 u =k0 4u3 VAk. 3 0Y-n/C),

10.2-kG case) may be beyond the capability of 0 -
present superconducting coil technology. 7  (3)

A suggestion has appeared for enhancing the 30 (1-U2 0 - " 2)12,

small-signal gain above values given by Eq. (1) where the basis vectors i(z) ,- siinz +g,
(or for achieving comparable gains with smaller xcoskoz, i2(z) =-6,coskoz -gysinoz, andO3(z)
BJ by employing a strong axial magnetic field so -0, have been Introduced to track the symmetry
as to exploit resonance between the cyclotron fre- of the transverse magnetic field. Figure 1 shows
quency and the undulatory frequency.' The pres- u3 Vs a/c fork =6.0 cm0 ', =1.0, andy =10.
ett Letter presents a single-particle derivation For (I >0 mkoc[by - 1) /

3 - tz]3/2, it is seen
for the small-signal gain of a FEL in a uniform that only one branch exists (branch C). But for
axial magnetic field B o. We shall demonstrate a < n,, two additional branches (A and B) are al-
that careful adjustment of the system parameters lowed: Branch B has been shown to be unstable,
will allow enhancement of the FEL small-signal in that the orbits exhibit nonhelical, highly an-
gain by an order of magnitude or more (for the harmonic motions, while branches A and C have
above examples) without increasing the undulatory orderly helical orbits. Stability is insured if j 2

velocity. This result goes beyond that predicted =a2 - bd > 0, where a =kocuo4/yu2 o, b =0u~o/jUio,
by Sprangle and Granatstein' who have suggested and d =kdc4/y. The quantity M is the natural res-
that the only effect of the axial magnetic field onance frequency in response to small perturba-
would be to add a multiplicative factor (1 -0/ tions of the orbit: We shall show that strong res-
ko¢c) "2 to Eq. (1), due to the aforementioned res- onance response of the electrons to electromag-
onance giving an enhanced undulatory velocity v.,, netic perturbation can lead to enhanced FEL gain
where 0 =eBo/m. This result is in fact predicted for small 1, i.e., for 0 close to Oc,.
by our analysis as a limiting case. Of course, The derivation of FEL gain proceeds by solving
any mechanism which increases the undulatory the single-particle equations of motion, subject
velocity v1 would increase the gain, but this to weak electromagnetic perturbing fields E
would also reduce the relativistic frequency up- = 5 E o cos(bz - wt) and B =i,(kc/w)E o cos(kz - wt),
shift, since

w-kc(l -Vo/C)'= 2  oc(1 +y /c)'y . .0 A

, for example, yv 2c =I without the axial mag- 0.8

netic field, then a given gain enhancement q U3 B
achieved through this resonance alone would re- 0.6
sult in a reduction in frequency upshift by a fac-
tor (1 +qi)/2. The process we describe in this 0.4
Letter will be shown to permit significant gain
enhancement without undue sacrifice in frequency 0.2 incr/c
upshift. The gain enhancement originates when 0
the electromagnetic perturbations resonate with 0 20 40 60 80 100
the natural frequency of oscillation of electrons f/c (cm "1 )
on finite ampLitude equilibrium helical orbits. FIG. 1. Steady-state normalized axial velocity u 3 0

Prior workers have not considered this effect. an a function of normalized axial magnetic field i c. --"
A full derivation of our result .vill be presented For this example k0 = 6.0 cm- 1, 4 = 1.0, and y = 10.

elsewhere.9 Exact unperturbed relativistic orbits Gain enhancement discussed in this work is for orbits
are considered in the customary FEL model mag- on either branch A or branch C.

1457
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about the equilibrium orbits on either branchA or C as discussed above. These equations are

k, u*,vaU,-(lv)U,- *dClvly,- 6,1v)", + (eE/Mcy)(kcu,/w - 1), (4)

• k - o'A,) -Cu - lV, + eE, )6,l -1), (5)

where f, u- vlmc)(4,E, +u,) and

2(E,+iE,) -- Eoexp(i[((h+k 3Ct -t +al}

* with a the random initial electron phase. When time variations and electromagnetic fields are absent,
Eqs. (4)-(6) lead to the exact steady states given by Eq. (3). To linearize Eqs. (4)-(6), we introduce
the velocity perturbations w. -u 4 -u,,cujo and retain only the lowest-order quantities. This results in
01 +;2#W =AEo cos(8t +a), or

AE~ 7
r--A. [cos(8t +a) - cosg cosa +(8/A) sintt sinai + 'tb(0) sint, (7)

-where

A - ( +O)(1 -u 0 ) .bu3, uQk +kU,- w, w c, i(0)u (-E/2vmc)(1 -u Jsina,

and w(0) =0. The other components follow from

* a,,-aw E. ,yc)(1-u 0 -u. 2 )cos8t+a), w(0)O0; (8)

and

&, -dw, .+ Z0 /cY ,,(1 -u,) co(st +a), W,(0) -0. (9)

Equation (7) for w, exhibits the aforementioned natural resonance at frequency IA, while the electromag-
* netic perturbation drives the transverse motion at frequency 0. Gain enhancement can be expected

when p is close to 9.
The energy gain for an electron is calculated from (nc/e,/dt- -w E1o-W2E2o-u2oE21. The first-

order variation in electric field E, originates from small phase variations as U3 changes. Thus this
becomes

mc/e )dIdt = - ,Ej o - wlEon - EOO +k)cu. sin( t +a)fO t dt'w3 (t'). (10)

The third term in Eq. (10) is much larger than the other two on account of the factor k +k0 . The domi-
nant single-particle energy transfer in the FEL (even with an axial magnetic field) is seen to be by
work ec¢.E, done along the transverse undulatory motion, enhanced by the strong variation in E2 as its
phase varies through W3. The energy variation [Eq. (10)] is averaged over random phase a to give
(dvl/dt), which in turn leads to the gain through G =2(oEo')" 'Nmc2f[odt(dyl/dot), where N is the beam
electron density and T =L/c i the total interaction time for the electrons in a system of length L.

The final result is

G. n~a +I FO(9) -F (G p -F(
ly )AS,+ L ( 1 JU-'<'2(

+F( +,P)-F(-,) - -P 9( ) P(8 s+ P)-P(O- (p)] (,1)

where 0 -T/2, qs =jT/2, F(r) -(sr /x)', and
Pf) =xF()/2; and where we have approximated mation we may write

0 +k)(1-u ) ko. We shall examine Eq. (11) in > (12)
several limits.

For Ig o 0, only the terms involving F'(G) and where Z = 2 + 1 2 ta, + bd(l -u 3o)'j In the case
P(9) in Eq. (11) are significant, and on branch where the axial magnetic field is absent, n = 0,
A the latter of these is smaller than the former A = a = kocu3o >> 1, and U20 = 4/y. Thus, Z - 2 and
by at least a factor 2(p. Thus to a good approxi- Eq. (12) goes over to Eq. (1). When Q 0 and j,

1458
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>> 0, gain enhancement can be achieved as claimed 102

by the prior workers," due to resonant enhance-
ment of &h, but not without sacrificing frequency_ "-

upshift, as discussed above. C. = . \

However a more attractive possibility exists %
when k is small, and approaches 0. Here one uz

can approximate Z - 1-
2 bd(1 - us) " ">> 1; this re- 10

suits from resonance between the electromagnetic C =o

perturbation which gives oscillatory motion to the _ %

electron at a frequency 0, close to its natural .

oscillation frequency A. Gain enhancement due (a)

to large Z is seen to be possible without simul- 1

taneously increasing u20, so that the desirable 10'3  10,2

frequency upshift property of the FEL need not I.I III.1

be sacrificed. 65 tC o.s
We define a gain enhancement factor q= GIGo 60

to compare two free-electron lasers, identical E------------------------------------
except that one has a strong axial magnetic field, 5 5 C =0.5
while the second does not. In the first laser, the
transverse magnetic field B.L is reduced so that

umo is the same for both lasers. (This assures I
that both enjoy the same frequency upshift.) Then 0 0.01 0.02 0.03 0.04 0.05 0.06

ij=Z{I-[JqO+p)-F10- (p)/2pF'(8)}. (13) FIG. 2. (a) Gain enhancement i and (b) correspond-
ing normalized axial magnetic field f//c, vs transverse

We have evaluated Eq. (13) for two examples with magnetic field parameter 4. The values 40 = 0.5 and

the parameters cited in the first paragraph of this 1.0 are for the FEL without axial field, and provide

Letter, holding 10(= 1.3 where IF'(8) (has its the same u 2 as do the indicated (smaller) values of

maximum value. The results are shown in Fig. 2 4 fr the FEL with the indicated axial field strength.

for the V= 10 example. In Fig. 2(a) we plot the Example is for /= 10, k0 = 6.0 cm " , and L = 130 cm.
Solid curves, orbits on branch C; dashed curves,

gain enhancement factor '1 as a function of the orbits on branch A. For high enhancement values,

transverse magnetic field normalized strength C such as on the 4 = 1.0 branch A example, the numeri-

for the FEL with the axial guide magnetic field. cal precision required to compute accurate results

The solid curves are for steady-state orbits on suggests that the phenomenon is very sensitive to the
branch C; the dashed curves for branch A. On system parameters.
branch A, gain occurs for 0 > 0, while on branch

C gain occurs for 0 <0. Two transverse magnetic
fields for the FEL without axial field correspond- deserve careful study. However, to the extent

ing to P, = 1 and 0.5 are shown. Figure 2(b) shows that these effects are negligible, our theory

the required values of axial guide field. One sees shows that provision of a strong uniform axial

a gain enhancement of 31 (on branch C) at 4 = 5 magnetic field can allow significant small-signal
*10'3 for an axial guide field of 102 kG. The gain enhancement, and significant reduction in the

transverse magnetic field required is reduced to required transverse magnetic field strength in a

51 G, and the gain is increased to 0.0766 at A FEL, without undue compromise in operating fre-

= 105 Am. Higher gain is predicted on branch A. quency below that given by the idealized upshift

For the y = 100 example at x = 10. 5 in, we find a value 2y 2koc.

gain enhancement of 16 (on branch A) at 4 = 3 x 10' This work was supported in part by the U. S.

for an axial guide field of 99.5 kG. The trans- Office of Naval Research and in part by the U. S.

verse magnetic field required is reduced to 30.6 Air Force Office of Scientific Research.

G, and the gain is increased to 0.0506.
Of course when the predicted single-pass gain

is large (say >0.1) this theory must be modified.

Furthermore, finite electron momentum spread 1L. R. Eliga, W. M. Fairbank, J. M. J. Madey, H. A.

(neglected here) will mitigate against gain, as Schwettman, and T. I. Smith, Phys. Rev. Lett. 36,
for a FEL without a guide field. These effects 717 (1976).

1459
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ID. B. McDermott, T. C. 9arshal, and S. P. Schle- 5P. Spra nle, C.-M. Tang, and W. M. Manheimer,
ster, Phys. Rev. Lt. 41, 1308 (1978). Phys. Rev. A 21, 302 (1980).

)D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. W. B. Colson, Physics of Q uh~m Electronics
* Ramau , H. A. Schwettman, and T. I. Smith, Phys. (Addison-Wesley, Reading, Mass., 1977), Vol. 5.

Rev. Lett. 38, 892 (1977). TJ. p. Blewett and R. Chasman, J. Appl. Phys. 48,
1. B. Bernstein and J. L Hfrshfteld, Phys. Rev. 2692 (1977).

Lett. 40, 761 (1978); T. Kwan and J. M. Dawson, Phys. 'P. Sprangle and V. L. Granatstein, Phys. Rev. A 17,
Fluids 22, 1069 (1979); I. B. Bernstein and J. L. 1792 (1978).
Hfrshfleld, Phys. Rev. A 20, 1661 (1979); P. Sprangle 'L. Freidland and J. L. Hirshfield, to be published.
and R. A. Smith, Phys. Rev. A 21, 293 (1980). 1 L. Friedland, to be published.*
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* Electron beam dynamics In combined guide and pump
magnetic fields for free electron laser applications

L Friedland

Depatment 1 Cof QputerScimnc. Yak Unwenrit New Haven. Connecticut 06520
0 (RAceived 13 December 1979; accepted 21 August 1980)

The propagation of a cold relativistic ekctrion beam in a free electron laser with an axial guide magnetic field
is coniered. The possibility of several steady-state helical trajectories for the electrons is shown, and the
stability against perturbtions and acceasibility of such steady states is considered. Necessary and sufficient
conditions for the stability are derived and indicate the importance of the transition region at the entrance of
the aer. Possible modes of operation of the laser in different steady-state regimes are suggested and

* ilustrated by numerical examples.

I. INTRODUCTION the theory," without studying the problem of how the
steady-state situation can be achieved. An additional

The propagation of a relativistic electron beam in complication with the presence of an axial magnetic
* transverse periodic magnetic structures has been stu- field is that, as will be shown in Sec. U of this paper,

died extensively in recent years. These studies were in general, there exist several possible steady-state
stimulated by the first experimentally successful free trajectories for the same values of the axial field and
electron laser' which confirmed the theoretically pre- wiggler parameters, and the question arises as to which
dicted2 possibility of using the energy stored in the of these states is accessible with given inlet conditions
relativistic beam as a source of short wavelength co- of the electron beam. Thus, in the presence of an ax-
herent radiation. ial guide field the initial conditions and the structure

of the transition region at the entrance of the free elec-The most frequently used periodic magnetic pump field to ae a eo rca motnei eadt

ina l a etron laser may be of crucial importance in regard to

on the axis of a double helical current winding with equal the possible modes of operation of the device. These
and ppoitecurent ineachhelx ( deiceusully factors become even more important if the idea of re-and opposite currents in each helix (a device usually cycling' is applied, and the electrons are forced to pass

referred to as a magnetic wiggler). The unperturbed the transition region many times.

• motion of the electrons of the beam in the wiggler is

quite simple. The reason for simplicity is that the This paper presents a study of these important ques-
magnetic field on the axis of a wiggler can be approxi- tions. In Sec. II, we derive the possible steady states
mately described by a transverse vector potential A,(z), in the homogeneous part of a free electron laser and
depending only on the distance z along the axis. There- study the stability of these states to perturbations of
fore, the canonical transverse momentum P, =vmv, electron velocities. The transition region is included

• - (e/c)A, of an electron is a constant of motion, 3 which in the theory in Sec. III, where the possible ways of
with the conservation of energy y = [1- (vIc)2  operating a free electron laser in different steady states
- (v/c)rl / 2 =const, uniquely defines the perpendicular are suggested and illustrated by numerical examples.
and parallel components v. and v,, of the velocity of the
electrons in the beam, for a given assignment of A,(z). II. EQUATIONS OF MOTION AND STABILITY
It can now be easily shown 4 that the electrons in a mag- Consider a cold relativistic electron beam moving in
netic wiggler have helical trajectories with the same
period as that of the wiggler. This simple model of the a magnetic field of the form
motion has been exploited in many theoretical studies, B =E(z)e,+ VxA, (1)
describing the operation and parametric behavior of the where
free electron laser.'

In all experiments, however, there is also an axial A= A)[e~cosO(z)+esino(z)],

W guide magnetic field.' - 7 This, of course, increases and
the number of parameters characterizing the free elec-
tron laser, but at the same time introduces greater O=J ko(z')dz'. (3)
complexity into the theory. The vector potential is now 0
dependent on x and y and the perpendicular canonical For A and ko independent of z, the vector potential (2)
momentum P. is no longer a constant of motion; as a describes the field on the axis of an infinite magnetic
result, in general, no simple analytic solution for the wiggler, where, as is well-known"f

* electron trajectories can be found. Although so called
"steady-state" helical trajectories with the same period A [pko K0 (pk,) + K,(pko) (4)

as that of the wiggler and constant values of Ivj and where I is the current in the wiggler, p is its radius,
Iv1 I are allowed by the system, they cannot be obtained ko=2r/A0 , X, is the pitch of the winding of the wiggler,
with arbitrary inlet conditions in the electron beam. and Ko, are the modified Bessel functions of the second
Nevertheless, these are the trajectories usually used in kind. By using the more general form (2) for the vector
22
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potential, we have in mind primarily the possibility of On using normalized velocities u, =v/c and "time" T

slow variations of the wiggler parameters p and k, with =ct and defining 4(z) =eAn/c and 0 =eh/mc, one can
z, and assume that in this case the magnitude A(z) in write (11) in the form
(2) can be approximated by expression (4), where p and
ko correspond to the values of these parameters in the =u2 (kou 3 _.u 3, (12)
nonuniform wiggler at point z. \ Vi V

Although the magnetic field represented by the poten- .= 1. U3 - - L u3 (13)
tial (2) does not satisfy VxB=0, it gives a good ap- y) y dz
proximation of the exact curl-free field on an infinite -k u

ds U, L Us(14)
wiggler at small distances r from its axis. Indeed, as Y Y u(
was shown in Ref. 4, the relative deviation of the trans- First consider the homogeneous case, where 0 =00
verse component of the field from that described by (2) const, k0 =const, and 4 = ,=const. In this case, Eqs.
is of the order of (kor)2 . Accordingly, if the beam ra- (12)-(14) have a particular solution
dius I is such that (kl)2 << I, the actual transverse field
can be well represented by Eq. (2). The axial compon- u u=0, u3 fconst,
ent of the field of a wiggler near the axis grows 4 as
k0r; it can be neglected, however, in the presence of
a strong axial guide field. We will also limit ourselves k_u_/ (15)
to low current beams so that the influence of the self- U(5 )-Y
space charge on the beam can be neglected. We thus
require that the transverse electrostatic field be much which with the conservation of energy
smaller than v,B./c = vdkA/c, or, assuming axial sym- 1/y2 = 1 - U40 - U2 (16)

-metry of the beam, 4ac-< 2ekoAv,/mc, where ,is theplasm ofreuecy.m, for exa mpe, whe.3 cm, is the 5 defines the values of u2, and u3o. The question arises asSplasm a frequency. If, for exam ple, r =0.3 cm , B =500 t o h s s e d -t t o ui n c n b c i v d n
G, and v,, c, the maximum current density allowed by to how this steady-state solution can be achieved. One

*! the model will be approximately 250 A/cm2 . The small can answer this question only by considering the transi-
* signal gain in a free electron laser at these conditions, tion region of the wiggler, where 0 and ko may depend

however, may be substantial, so that the results of the on z. Here, one would expect that for initial conditions

* present work could be important in current experiments, in the beam u, =u =0, when the vector potential 4 grows
slowly enough with z, the velocities %2 and u3 would

We now consider the momentum equation for the elec- gradually approach their steady-state values u,, and
trons of the beam U3., and at the same time u1 remains zero. It can be

d e shown, however, that, in general, this cannot be the

Wt(v) =- -- v XB, (5) case. In fact, one gets from (13) that if u(Z)a0,

where

=[I - (V2/C2)1/3 2 (6) y d d(7 )

Let and therefore u2 = 4/y, which, on using (12), requires
e,(z)=-e , sinO+e,cosOp, that fl(z)a0. Thus, in the presence of an axial magnetic

%(z) =-ecos) - e sinop, (7) field and for the initial conditions on u considered here,
u, cannot remain zero in the transition region. The

e0(z) =e. maximum that can be expected is that the component u,

Then, the cononical model vector potential is in the transition region remains small in comparison
with %2 and us. When this is the case, and, in addition,

A A(z)e,(8) u remains small as the beam propagates in the homo-

and geneous part of the wiggler we define the beam to be
stable and now proceed to the study of this special kind

B = B(z)e, - ., el - ko Ae2 . (9) of stability.

On expressing the velocity v in terms of the orthogonal First, consider the homogeneous region of the device

vectors e, e, and e, and using and in this region let -

d t de (1

where U;o and u, are given by (15) and (16), and w,(T)
one can rewrite (5) as are small perturbations to the steady-state solution.

dv1 .kOv2 V e- _- (v 2 3+kov) '  
Then, on linearizing Eqs. (12)-(14) one gets

Sdt mC f , =aw +bw, (19)

" v OVV 3  V ), k.(11) = , (20)
S,=cw1 , 

(21)
dt mc kc -vT-z" where
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a 0  -kg(2 U3 0
a h o p , - = M = (2 2)

V V U.' 1.0
b = koo - kt f!!!m(23) 0.9

V Y Uo 0.8 4

c =koo/V. (24) 0.7 2

Equation (19) then gives 0.6
0.5-3E

iv -aib2+ b*-(42 - bc)w, .(2) 04

Thus, the necessary condition for the stability of the 0.3
electron beam is 0.2

1 e-bc>0, (26) 0.1 ,cr0.0 1 1 1 1 1 1 t 1 1

or 0.0 1.2 2.4 3.6 4.8 6.0f (rad/cm)

/ '<1. (27) FIG. 2. The real positive branches of ueo vs the cyclotron
kooU.) < frequency 0, characterizing the guide magnetic fie!d.

Further study of the stability problem must involve a
• knowledge of U2o and um. Let us combine Eqs. (15) and

(18); there results electron beam. In the presence of a weak axial magne-( tic field, there exist two additional solutions for u 3o ad-
430 -2 I (28) jacent tothe resonance velocity u3r=(/kov'as shown in

1 -Y- (u' A -7P Po ="Fig. 1(b). If one continues to increase n, a situation is

This equation can be rewritten in the form reached, where again there remain only two real solu-
tions for u, [Figs. 1(c), (d)]. The diagram, where all

F:F,- F, = 0, (29) possible real positive branches of u30 are presented as

where a function of 02, is given in Fig. 2 for a sample case in
which y=1.5 87, ko=1.5708 cm " 1, and to=0.3873.

F =(30) Let us now find the frequency n, at which the roots 2
and 3 on Fig. 2 become complex. This transition cor-

and responds to the point A on the figure. One can find '2.r
by observing that the function F in Eq. (29) has only one

F 1(o + kov). (31) bounded maximum at the point u*, such that F'(u*) =0,

or
Assuming (J,/v)2 

< 1- I/y2 for v large enough, the func-
tions F, and F, have the general form shown in Fig. 1 (32)
for various values of El. It can be seen from Fig. 1(a) U3ako '

* that for n0=0, there are two solutions for u. 0, corres- where
ponding to different directions of propagation of the 1

Of = 1 - 1 _ 1/y2) (3

n:0 a 0 It is now clear that when F has four real roots, they
(a) (b) are contained in the following intervals: [-1,0], [Ou 3 rJ,

[u 3 ,u3], [u3 ,+1]. On the ends of these intervals the

S3function F changes its sign, which makes it easy to find
the four roots numerically. It is also clear that the
roots in the last two intervals become complex, when

1 1 I F(u,) = 0. Simple algebra then leads to the following ex-

* pression for fl,,:

-1 0 1 30 -1 0 U3, 1 U3 , =ko, 3/2 (1 - /2 (34)

(c) 0320, (d)4 Considering our sample case shown in Fig. 2, Eq. (34)

gives the value 0,, =0.763 rad/cm.

We now return to the question of 9tability. It is clear
12.3 that inequality (27) (which is the necessary condition for

NZ -"the stability) is satisfied for branch 4 in Fig. 2, since,
Iii according to (15, u2o is negative on this branch. Simple

I I...,j . . ,J . analysis also shows that branch 2 is stable, since the
4 0 u3, u 3 1 v, -4 0 U3, 1 U30  left-hand sidc of (27) on this branch reaches its maxi-

FIG. 1. Schematic of the functions F, and F2, defining various mum value of 1 only at n =,,.r; branch 3, in contrast,
possible steady-state solutions for U30. is always unstable.
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III. TRANSITION REGION =0, can be expressed as

The inequality (27) is a necessary condition for sta- 1 =s[g(') "
bility of the electron beam in the homogeneous part of 1  /2 (T) f (sin

free electron laser. This condition becomes sufficient
if the electron beam enters the homogeneous region with Thus, if the vector potential grows slowly in the tran-
small one expects the electron beam to enter the homogeneous
ceed to the study of the transition region, where as will o the ler bam tonte h homogneoube shown, special experimental steps must be takcen in part of the wiggler with a small magnitude of w , which
brer on, secial experimenta stae elm ut kesnin t is sufficient for the stability of the beam in this region
order to get a stable electron beam, corresponding to i h nqaiy(7 sstsid
various branches on the diagram on Fig. 2. Let us as- if the inequality (27) is satisfied.
sume that the vector potential t in the transition region In such an adiabatic case, one can also find the tra-
is a slowly growing function of z. Experimentally, this jectories of the electrons passing the transition region.
would be the case, for example, if one gradually de- Expressing the radius vector r of the electrons in the
creases the radius p of the wiggler, or increases the beam in terms of the unit vectors e,, e2, and e3 [see
pitch length X0 = 2v/k, at the end of the device as can be Eq. (7)], one has
seen from Eq. (4). Following the ideas used in the pre-
vious section, one can find approximate solutions of r = r~e, + r~e. + ze3 , (47)

(12)-(14) by using expansions (18), where u,, and u, which on differentiation with respect to T gives
are now functions of z and correspond to the components = (i' - k~ur)e + (2 +kou3r)e2 + ie3, (48)

". of the velocity in the homogeneous case with param-
. eters such as those at the point z in the transition re- and therefore the trajectories are described by

gion. Then, similar to (19)-(21) one has'" t,=U,+kou3rs , rs =u,- koU~r," (49)

. = =aw 2 + bwv., (35) This system of equations can be solved in the following

" us =-awl +fU,0 P (36) way: Let

k3 =cwl -fu20 (37) R=r1 +ir2, Ufu, +iu,. (50)

. where a, b, and c are given by (22)-(24) and Then, on multiplying the second equation in (49) by i and

f1d ( adding it to the first equation, one gets

d (38) A = U- iko, R. (51)

Taking the time derivative of Eq. (35) and assuming that If one splits R into two parts
the coefficients a and b are slowly varying functions of
z, one gets the following equation R =Ro+R 1 , (52)

whereffi +s bk3 + 1 2 
+

6 
3 - ak. + bk wer

-(al - bc)w, +f(au. - bu), (39) iR U/koU, (53)

or, on using (22)-(24) and R, is assumed to be small, then on linearization in
o n g 2Eq. (51),

. Vh 1 :_w+g, (40) A, =-A 0 - ikouR. (54)

where The solution of this equation for RA is given by
"- p a- bc, (41)

=- fR 0 )(7') exp(-i{0[z(r)J - 0[Z(T')]}) d', (55)and" -'

g = .f. (42) where p is defined by (3). Thus, if the velocities u1,
kot u, and u. are slowly varying functions in the transition

rein zremains small along the trajectories and
Assuming that g is a slowly varying function of -r one region, Rr

can approximate the solution of the homogeneous equa- R R, or

tion r(z) (3 Re(Ro) (z)u(z )  (56)
= - M we,(3

by the WKB solution r,(z) - Im(Ro) - u -- Z) << r,(z) (57)

W, (r) =f J'l/alCl COSO({) + C' sino(T)], (44) ko(Z)U.(Z)

where and therefore the electrons in this case are moving on
helical orbits with adiabatically changing radius r, and

,-f M(1idr. (45) the pitch period as that of the wiggler.

Thus, we have shown that, in principle, one can ob-
* Then, it can be easily shown, using the method of varia- tain a stable electron beam in a free electron laser if

tion of constants in (44), that the solution of the inhomo- the variations of the parameters of the wiggler in the

geneous equation (40), with the initial conditions w, 1 0 transition region are slow enough. This conclusion,
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A. (a) O A= 0.74 rod/cm

allr,, W*.. ._ ;00.9

0.6- 0  - U 30.4-2

k~l I I U2 0 _&
* 0.0 a2 0.4 . -2

2 (b)0.2-

0.8 02 ~~~ 03

0.0 1 , ' FIG. 4. The z dependence of various components of the elec,
0.0 0.2 0.4 ,0.6 itron velocities for 0 = 0.74 rad/c m.U30L 'a H , (, ,

30 4 th only possible real branch of u3, is branch 4 (see Fig.0.3 se~g

0.6 2). This situation is illustrated in Fig. 3(c). The beam
0.4- follows a continuous path GH in the transition region in

0.2 this case and remains stable.0.01 1 1 1
0.0 0 0 0.6 In addition to these qualitative considerations, we il-

0.0 0.2 0.4 0.6 lustrate the creation of the instability in the beam in

FIG. 3. The real positive branches of u30 vs . (a) 0 Figs. 4 and 5, where the numerical solutions of Eqs.
=0.6 rad/cm; 0)) a= 1.0 rad/em; (c) D=4.0 rad/cm. (12)-(14) for u, are presented for our sample case for

IGOtwo values of 11 =0.74 and 0.77 rad/cm (recall that A,,
=0.763 rad/cm). We assumed in these calculations thehowever, is based on the approximate solution (48) for folwn zde nece fth raisp ftewglr

w, and one has to check whether all the assumptions, following z dependence of the radius p of the wiggler

used in the derivation of this solution, are correct. One winding in the transition region:

of these assumptions was the slowness of variation of ( P z > 0;
the coefficients a and b in (35) as the beam propagates p = + Z(0, (58)

* • through the transition region. Let us show now that, in
general, this is not guaranteed even if 4 varies slowly. where p0 =2.5cm and z,=8cm. The sudden transition
The reason is that the real solutions for u. and u ,, to the unstable behavior when one goes from Fig. 4 to
which are used in the definitions of a and b, do not a- F
ways behave continuously. We demonstrate such a pos- come ne e on the pas ofate raety is ob-

sibilty in Fig. 3. In this figure, one can see the dia-
* grams of the possible real positive solutions for u,, ob- vious.

tained in a fashion similar to the diagram in Fig. 2, but Thus, in conclusion, if the vector potential varies
for constant values of S2 and varying 4. Our sample case
parameters V - 1.587 and k, = 1.5708 were again used in
these graphs. As mentioned previously, the variation (a) u 3 "

of 4 with constant value of /o can be experimentally ob- -- -
tained by varying the radius of the wiggler winding ino

P the transition region, holding the pitch length A0 = 2w/ko, 0.4
constant. In Figs. 3(a,b), we show two cases with the 0.2

values of 0 higher and lower than the critical value n,, -io 00 20

in the homogeneous region [0,, is defined by Eq. (34), -.2-

and in our sample case is equal to 0.763 rad/cm]. For -0.4

Q <.., as 4 increases in the transition region, one -o.6-

* follows the path AB in Fig. 3(a) and passes continuously -o.8
to the homogeneous region corresponding to the point B (b) ul 6A=0.77 rod/cm
on the diagram (at this point 4 = J.). The beam is stable o.s
in this case. In contrast, if 0 is larger than fle, one 06

arrives in the transition region at the point D [see Fig. 0.4

3(b)], where the branches 2 and 3 of u,0 become complex o.2
and the homogeneous region can be only reached on the .lo _7- 2o

diagram by the discontinuous path DEF. The jump DE
in u. leads to the fast variation on the right-hand side -0.4

of Eq. (12), which cannot remain small anymore, and -0.6_

u, grows in amplitude, leading to the instability of the -o.!
beam. For sufficiently large values of n, one can again
return to the stable regime. In fact, if u3,f0i/yk, >1, FIG. 5. The z dependence of ul and uj for A 0 0.77 rad/cm.
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slowly in the transition region, one can get a stable ui
electron beam for Q < G., and as the parameters of the

" wiggler vary adiabatically, the beam follows branch

2 of the possible solutions for , on Fig. 2. One can 0.6

also have a stable situation for large axial magnetic 0.4
fields, when branch 4 remains the only possible one for 0.3
operation. One has to remember, however, that the o.2-
necessary condition for the last possibility is that in 10 0.1 2 30
the transition region u3 , z0/kov >1. This condition can
easily be satisfied when the growth of 4 in the transition

• region is due to the variation of the radius p of the wig- -0.3
gler, when k, = conat. If in contrast, p = conast and ko is -0.4
increasing as one approaches the end of the wiggler,-.- _2
larger values of the axial magnetic field are required in
order to operate the device on branch 4. -0.8 -

" Let us finally consider the question of whether it is FIG. 7. The z dependence of the electron velocities in oper-
" possible with the initial conditions on the beam assumed atingon branch4 with varying guide magnetic field. 0

here (namely, u, !o =u 1, =0) to get a stable electron -4 rad/cm, On 0.77 rad/cm.

beam at a larger region of branch 4, especially for
u, % 1. As mentioned before, the necessary condition
(27) for stability is always satisfied on this branch, quency was assumed to have the form

which makes it more attractive. The perpendicular (01, z 4 2L,
component of the velocity on branch 4 can also become =(59)
very large, which is again very important for possible (0L- 02 )C'',/L 2 + z (5L)

electromagnetic wave amplification in the z direction. where 0 = 4 rad/cm, 02 =0.77 rad/cm, and L = 4 cm. It
can be seen from Fig. 7 that the beam remains stable

The experimental scheme, which allows one to oper- and corresponds to branch 4 with negative and larger
ate a free electron laser on branch 4 is shown in Fig. 6. values of Usso than in Fig. 4, which corresponds to branch
We are exploiting the stability of the beam for large 2.
values of 0 [as demonstrated in Fig. 3(c)] and are ap-
plying a strong axial magnetic field in the transition re- IV. CONCLUSIONS
gion of the wiggler. Then, after passing this region the

* electrons will enter the homogeneous part of the wig- (i) In operating a free electron laser with an axial

" gler, being on the upper part of branch 4 in Fig. 2. Now magnetic field, different steady-state regimes of the

1*, in the homogeneous region, where c ==Const, one can helical motion of the electrons in the homogeneous part

gradually reduce the axial magnetic field. The beam of the wiggler must be considered.

will then follow the continuous branch 4 and one can (ii) The necessary condition for the stability of these
easily reach region 02 - 0,,, which was unstable with the steady-state regimes is given by the inequality (27).
constant axial magnetic field. We demonstrate this
possibility in Fig. 7, where the solutions of Eqs. (12)- (iii) The transition region of a free electron laser
(14) are shown for exactly the same final 0 and as in plays an important role in determining the sufficient

the unstable case in Fig. 5. The same variation (58) conditions for stability and in achieving the different

for p was used in the computations. The cyclotron fre- modes of operation of a free electron laser for a given
set of parameters of the homogeneous part of the de-
vice.

(iv) The following two models have been analyzed for
operating a free electron laser in different steady-state*regimes:

(a) The first is characterized by a constant axial mag-
A IBJ C netic field and gradual increase in the vector potential

in the transition region. The stability of this scheme is
I-" limited by a critical value of the axial field given by
I" Eq. (34). The value of the perpendicular component of

I'I'4 2  the velocity is also limited in this steady-state regime.

'"I o(b) The second setup uses a strong axial magnetic field
_Y_ to in the transition region. The field is then adiabatically

Z decreased in the homogeneous part of the wiggler. This

FIG. 6. Possible configuration of the pump and guide fields for regime is always stable and can operate with any value
operating on branch 4 of the steady-state regimes. A-tran- of the axial magnetic field in the homogeneous region.
sition region for 4; B-transition region for 0; C-homogenous The only limitation is imposed by the increasing radius
part of the device, of the helical trajectories of the electrons in the beam

2381 Phys. Fluids, Vol. 23, No. 12, December 1960 L. Friedland 2381

*



as the perpendicular component of the velocities grows 31. B. Bernstein and J. L. Hirshfield, Phys. Rev. Lett. 40, 761
with a decrease in the axial guide field. (1978).

4J. P. Blewett and R. Chasinan, J. Appi. Phys. 48, 2692 (1977).
ACKNOWLEDGMENTS 6Fo a review see P. Sprangle, R. A. Smith, and V. L. Granat-

stein, in Infrared and Millimeter Waves, edited by K. Button
The author wishes to express his appreciation to (Academic, New York, 1979), Chap. 7, p. 279.

* Professors 1. B. Bernstein and J. L. Hirshfield for IT. C. Marshall, S. Talmadge, and P. Efthixnlon, Appi. Phys.
many useful discussions. Lett. 31, 320 (1977).

TR. M. Gilgenbach, T. C. Marshall, and S. P. Schlesinger.
This work was supported in part by the Office of Naval Phys. Fluids 22. 1219 (1979).

Research and the Department of Energy. 6T. Kwan and J. M. Dawson, Phys. Fluids 22, 1089 (1979).
OL. R. Elias, Phys. Rev. Lett. 42, 977 (1979).

10W. R. Smythe, Static and Dynamic Electricity (McGraw-HI.
iL. R. Elias, W. M. Fafrbank, J. M. J. Madey, H. A. Srhwett- New York, 1950), p. 277.

2man, and T. 1. Smith, Phys. Rev. Lett. 36, 717 (1976). 11W. B. Colson, to Physics of Quantum Electronics (Addison-
H. Motz, J. Appi. Phys. 22, 527 (1951). Wesley, New York, 1977), Vol. 5, p. 152.

2382 Plhys. Fluids, Vol. 23, No. 12Z December 1980 L. Friedland 2382



International Jounal of Infrared and Millimeter Waves, Vol, 2 No. 5, 1981

ORBIT STABILITY IN FREE ELECTRON LASERS*

P. AvvA, F. Dothan, A. F 'chtman, A. Ljudmirsky, and
J. L. hirshfieldt

Center for Plasma Physics
Hebrew University
Jerusalem. Israel

Received June 2, 1981

0
Helical magnetic wigglers for free electron lasers can pro-

duce non-helical electron trajectories if a uniform axial

guide magnetic field is imposed. Friedland's necessary
criterion for the existence of helical orbits is reviewed

and shown to apply for non-relativistic electron energies.

• An experiment designed to test this criterion is described

and results are compared with theory.

Key words: free electron laser, magnetic wiggler, elec-

tron orbits.

Introduction

Considerable effort is currently underway in the anal-

ysis (1), design (2), and construction (3) of free elec-

tron lasers for amplification of infrared and far infra-

red radiation. A typical device comprises a good quality
Selectron beam with energy of 10's of MeV which moves

through a periodic static pump magnetic field, termed a

magnetic wiggler. Radiation propagating along the elec-

tron beam has been shown experimentally (4) to be ampli-

fied, but the single-pass small-signal gain may be quite
small (7% was reported for a 520 cm length at X = 10.6p

in Ref. 4).

W
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Suggestions for enhancing the small-signal gain by
superposing a uniform axial magnetic upon the wiggler field
have appeared, based upon both single-particle (5,6) and
collective (7) models. The gain enhancement can result
from either increased equilibrium undulatory momentum (5),
or from dynamical resonance between induced electromagnetic
perturbations and the natural oscillations of electrons on
helical orbits (6,7). The increased undulatory momentum
results in a decreased axial momentum, and thus a decreased
Doppler up-shift, i.e. the laser output frequency is shif-
ted to longer wavelength. Gain enhancement may still be
achieved without this wavelength increase by operating the
device with a reduced wiggler field.

A necessary condition for achievement of the gain en-
hancement is that the equilibrium electron orbits in the
wiggler be nearly helical. Without the axial guide field
a helical magnetic wiggler produces a helical orbit; this
result follows from the constancy of canonical angular
momentum. But when the axial guide field is present, the
orbits are generally not helical (8). They can be arranged
to be nearly helical if the entry conditions into the
wiggler are suitably tailored, and if the wiggler and guide
field parameters are in a regime of stability, determined
from the orbit parameters (9).

In this paper, we shall review the basis underlying
the criterion for orbit stability, and shall present
results of an experiment designed to test this criterion
quantitatively.

Orbit Stability

Here we summarize (8) some aspects of the dynamics of
charged particles moving in a static magnetic field given
by

B(z) = z B + (A xcosk z + y sink z)B

(1)
a 3 B - A2 B.

Here Bo is the magnitude of the uniform axial guide field,
and B, is the magnitude of the transverse helical field
with pitch Zo 21/ko. It has been shown (1) that the
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charged particle dynamics in this field are described com-
pactly if a coordinate system with basis vectors (&l, &2,
E3) is used, rather than the Cartesian system (&x &y, 6z).
The coordinate transformations follow from the definitions
of &2 and &3 given in Eq. (1), and by &l = &2 x e3 ,

Of course, the field given by Eq. (1) does not satisfy
V x B - 0; it is however a good approximation to the actual
field near the axis of two identical interspersed helical
conductors carrying currents in opposite directions. The

exact field, and the precise nature of the approximations
leading to Eq. (1) will be discussed in a forthcoming

paper (10).

For a particle of charge e, rest mass m, and relativ-

istic energy factor y, the steady-state solutions of the
equation of motion md(yv)/dt= -ev x B [with B given by

Eq. (1)] are

u= 0

k
u2 (2)koU3Y -

u3  u2 Y-2 1/2

where u = v/c, Q - eBo/m, and = eBi/komc. These compo-
nents correspond to ideal helical trajectories, since u2

and u3 are constants. However, these steady-state values
can only be approached asymptotically, for an actual wig-

gler, because of coupling between the components in the

transition region at the entrance to the wiggler (8), and

because the form given by Eq. (l) is only an approximation.

The solutions given by Eq. (2) are depicted (for y =

10.0, ko = 6.0 cm - , and & - 1.0) in Fig. 1. For > Rcr
the equations are single-valued, whilst for Q < 2cr they
are triple-valued. The critical axial guide field cyclo-

tron frequency Qcr is given by

2 1/3 2/3 3/2
Q c k 0CIO -1) -~I . (3)

cr

. . .|
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Figure 1. Solutions for steady-state axial

momentum u3 , as a function of axial magnetic

field, for y = 10, ko = 6 cm - 1, and 1 = i.

For smaller values of than that chosen for Fig. 1 the

curves hug more closely the asymptotes u3 = (1 - Y- )1/2

and u3 = Q/kocy. Perturbation theory shows (8) that
branches A and C in Fig. 1 are stable, whilst branch B is
unstable. Thus, if a particle enters a wiggler along a
gradually increasing guide field, it would move on a
stable helical orbit along branch A, but at I = 2 cr the
orbit would become unstable and thus severely non-helical.
Examples of non-helical orbits are shown in Ref. 8. If

= const and the wiggler field increases gradually, a

similar phenomenon occurs at &cr, where

%2 - 1/3 2/3 3/2
10 1) -(2/k c) ]-, (4)

2 1/3 2/3 3 / 2

or (B/B ) = [(y 1) (k c/) 11 /2 (5)

"' " -" ' . .. " " " i:'~ i:ocr: .. . '0 - - , . . . . .
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Thus for a charged particle moving through a wiggler
in a uniform axial guide field, the orbit can be nearly
helical if & < cr all along the wiggler but would depart
significantly from helicity if > &cr"

Experiment

Although electron beams of interest for practical free
electron lasers have relativistic energies, the phenomenon
of helical orbit stability discussed above is not fundamen-

* tally a relativistic effect. Thus if the electron energy V
is much less than 511 keV, so that we approximate y

2 - 1

(2eV/mc2 ), we can write Eq. (5) as

(B/B ) = [(82mV/eB) -1 3/2
o cr00

= [(21.2V
1 /2/B 0 )2/3 - 13/2

where, in the final expression, V is in volts, Bo is in
gauss, and to is in cm.

* In the experiments to be described, electron beams in
the energy range 4-14 keV were employed; a simple dc low-
current (n- 10's of PA) crt electron gun could then be used
to provide the electron beam with a diameter of about I mm
and energy resolution of better than 1%. The helical wig-
gler, to be described more fully below, had a period Zo =
3.6 cm. Thus, from Eq. (6), one sees that the transition

*from stable to unstable orbits would occur for very small
wiggler fields indeed if the axial magnetic field were
adjusted to be slightly above 5.89VlI/2 gauss, i.e. in the
range between 350 and 700 gauss. The axial magnetic field
was in fact adjusted to dc values between about 300 to 3000
gauss. For a given electron energy V and axial field Bo
the wiggler field amplitude B.,. was varied continuously in
time by triggering a spark gap to discharge a capacitor in
series with the wiggler coil. The ensuing RC-decay could
be calibrated to give B,. values as a function of time
during each discharge pulse.

The wiggler coil itself was a bifilar periodic winding
*of 3 mm diam conductor would on a 53 mm diam cylinder with

a uniform pitch of 36 mm. The uniform portion was 666 mm
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long, i.e. 18.5 periods. At each end the wiggler diameter
tapered outward to 100 mm over a 175 mm length. It was
found that, in addition to provision of these tapered end
portions, careful symmetrizing of the conductors at the end
turns was essential for obtaining stable beam transmission
through the wiggler. Furthermore, flux shunts at the ends
were required to produce a smooth unifnrmly tapered transi-
tion into the wiggler. A plot of one component of the
transverse field produced by this wiggler is shown in Fig.
2. (The uniform portion is not shown, as this portion is

Figure 2. Measured transverse magnetic field

at the entrance end of the wiggler.

relatively easy to produce.) This wiggler produced a field
of about 20 gauss/kA, and fields up to 250 gauss have been
routinely produced.

Several beam analyzers were constructed to examine the
properties of the beam within the uniform portion of the
wiggler. For the data to be presented in this paper, a
movable analyzer was used consisting of two parallel plates
spaced by 9 mm and positioned normal to the axial magnetic
field. The first plate had a 3 mm hole in its center
through which the beam would pass either in the absence of
any wiggler field, or for wiggler field values below the
critical value. In this case, paraxial helical orbits with
diameter less than 3 mm were ascertained to be produced, so
that the beam current was collected by the back plate. If
the orbit were to involve excursions of more than 3 mm away
from the axis, current would be collected by the front
plate. When the beam was seen to migrate back and forth
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between the two analyzer plates as the wiggler field decayed
with time, this was taken as direct evidence for a strongly
non-helical orbit. Two examples of this migration are
shown in Fig. 3, which is traced from oscillograms of the

b

fb-9
z
09 b

f

I lI I
0 0.2 0.4 0.6 0.8

* TIME (msec)

Figure 3. Measured currents to front (f)
and back (b) plates of beam analyzer.
Arrows indicate abrupt transitions from
non-helical to helical orbits. Lower

* example is for a lower axial field value
than upper example, so that transition
occurs at higher value of wiggler field.

current waveforms to the analyzer plates as a function of
time following firing of the wiggler field spark gap. The

SI examples are for two different axial field values (lower
for the bottom example than for the top). One sees the
beam gyrate wildly back and forth between the two plates
until a certain time, denoted by the arrows, when the wig-
gler field has decayed to a specific value. The transition
to beam collection by the back plate alone (i.e. paraxial

* helical orbits) is seen to be abrupt. Values of wiggler
field were noted at each transition point observed when
axial field and beam energy were varied. These values are
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plotted in Fig. 4 as a function of the independent variable

"/ .0

-2 +
10

12 +
14

162'

[(5.89V'6o / -12

Figure 4. Measured values of BL/Bo at which
transitions from stable to unstable orbits
were observed, for electron energies between
4-14 keY. Solid line is theoretical pre-
diction.

(5.89V1 /2 /Bo)2 /3 - 1, as suggested by Eq. (6) for Zo =
3.6 cm. The straight line in Fig. 4 is this same variable
raised to the three-halves power.

Transitions from unstable to stable orbits have been
observed for wiggler fields as low as 2 gauss (lowest
datum in Fig. 4).

Discussion

Magnetic wigglers for free electron laser applications
produce helical electron orbits in the absence of an axial
guide field, but may produce strongly non-helical orbits

. . . . . . . . . ... .
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if an axial field is present. One predicted (8) conse-
quence of this phenomenon is an abrupt jump in the orbit
from non-helical to helical once the magnetic wiggler field
strength falls below a critical value, for fixed axial

field and beam energy. This behavior has been observed ex-
0 perimentally over a wide range of (non-relativistic) beam

energies and axial field strengths. The data follow an
approxima~e 2 tbe-halves power law in the variable
(8irmV/eB0 ) - 1, as suggested by the theory. The data
fall systematically about 10-20% higher in this variable

than is predicted (corresponding to about a factor-of-two
* smaller value of B/B 0 than is predicted). An overestimate

in measured electron beam energies could explain the dis-
crepancy between theory and experiment, but measurement

accuracies are believed sufficient to rule this out. Finite
geometry effects, due either to off-axis departures of the
wiggler field from Eq. (1), or from the finite spatial

resolution of the analyzer, could also contribute to the

apparent discrepancy.

However, the crucial points for users of magnetic wig-
glers in axial guide magnetic fields are (1), the care re-
quired in wiggler construction (especially at the "first"
turn, and within a gradual transition region) in order to

• observe a paraxial helical orbit at all; and (2), the clear
observation of an abrupt transition between stable and un-

stable orbits at (sometimes very low) critical wiggler

fields, much as had been predicted by theory.

It may be that the non-helical orbits will be of util-
ity, although it would be easy to despair in attempting to

• formulate a theory for free electron laser operation with
such a complex equilibrium state. These orbits can possess
large amplitude harmonic overtones (10) which should radiate

incoherent radiation at wavelengths a few time shorter than

Zo/2v-. It may even be possible to observe coherent ampli-
fication on such a spatial overtone of the fundamental

* wiggler period; but speculation carries risks ....
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A finite spread in axial momentum for the electron beam in
a free electron laser amplifier is shown to decrease the
small-signal gain. For millimeter and sub-millimeter wave
amplifiers, where exponential growth dominates the gain, it
is shown that the gain is approximately 3 db b.elow that for
a cold beqm if the relative momentum spread (Au/u)1/2 =
(Go/248) 1/2 (o/L), where Go >> 1 is the gain in db for the
cold-beam case, Ao is the magnetic wiggler period, and L is
the amplifier length. Exact numerical examples are given
for representative FEL amplifiers at 35 and 550 GHz.

Key words: free electron laser, amplifier, electron momen-
tum spread.

Most theoretical work concerning amplification of
radiation in free electron lasers (FELs) deals of necessity
with idealized models. One idealization widely employed

hinvolves the neglect of finite momentum spread of the elec-
tron beam. The underlying mechanism for small-signal ampli-
fication involves axial synchronization in propagation ve-
locity between one of the allowed modes of radiation sup-
ported by the beam, and the beam itself. Thus when a spread
in axial beam momentum is present, a mixing-in-phase can be
expected to degrade the amplification which would otherwise
be predicted for a cold beam. Prior workers (1,2) have

taken note of this fact and have provided estimates of the
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0195-9271/0900-0905503.00/0 © 1981 Ptenum Publishing corporation



906 Fruchtma and Hirshrfid

effect of momentum spread. This paper presents an exact
analytical model to account for finite momentum spread for
a particular distribution function. When exponential
growth dominates the gain, a simple approximate formula is
derived to estimate the loss in gain due to the momentum
spread. Exact numerical examples are also given for repre-
sentative FEL amplifiers at 35 and 550 GHz.

The basic FEL model adopted here is identical to that
treated by Bernstein and Hirshfield (B-H) (3). That work
gave an exact small-signal solution of the Vlasov-Maxwell
equations for the steady-state evolution of the co-propa-

- gating disturbance which grows in space on a relativistic
electron beam passing along the axis of a helical magnetic
wiggler. The B-H theory was derived for a beam of arbitra-
ry momentum distribution in a wiggler of arbitrary strength,
but the solutions presented were for the case of a cold
beam, viz.,

f (a,B,u) = No6(a)6(8)6(u-U) . (1)

Here a and 8 are the two transverse components of canonical
angular momentum Ux - eAx/mc2 and Uy - eAy/mc2, Ax and Ay
are the components of the wiggler's vector potential, Ux
and U. are the transverse components of translational momen-
tum, and U = (y2 - 1)1/2 is the total momentum as related
to the relativistic energy factor . (All momenta are
normalized to mc.) Eq. (1) thus describes a beam which,

' prior to entering the wiggler, contains electrons possess-
ing both zero transverse momentum and unique axial momen-
tum U.

As mentioned above, an important source of degraded
amplification is the finite spread of axial momentum on
the electron beam. In the work reported here, we choose
the simplest distribution capable of describing such a
spread, viz.,

- H(u-U,&
f (a,O,u) = No )6 ), (2)

where H(x) = 1 for x > 0, H(x) = 0 for x < 0, and AU =
U2 - U 1 > 0. This distribution can of course not be real-
ized in nature [in the same sense that the distribution
given by Eq. (1) cannot]. It may, however, not be a bad
approximation for certain accelerators (except for the

i . . . . .
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sharp edges); but its utility here is that it enables an
analytic form to be derived for the governing dispersion
relation.

The goal of the present work is identical to that in
B-H, namely to calculate the power gain G (in db) for a
single pass of electromagnetic radiation along a FEL ampli-
fier of length L.

G/10*
= a2(L)a2(L) - 1 (3)

Here a2(L) is the dimensionless wave electric field at the
amplifier output, normalized to unity at the input. The
subscript "2" labels one of the three polarizations per-
mitted, namely that which twists in space a quarter-period
behind the wiggler's vector potential. [Eqs. (35) and (37)
in B-H give the other two polarizations.]

The wave amplitude a2(L) is a superposition of several
co-propagating normal modes, each with its wavenumber kj,
viz.,

a2 (L) R(k exp(ikjL) (4)

The relative mode amplitudes B(kj)/R'(kj) are prescribed
once boundary conditions are set. R(kj) = 0 is the disper-
sion relation for the system which determines the kj(w),
assuming R-1 (k) to have simple poles. For the cold beam
case R(kj) is a sixth-order polynomial.

R(x) - ((x-u) - 62 (l+ 2 )][(x+x)2 - b 2[(x-X) - b2

22 2 2 2 2 25)
+ 26 (x -b )(x +x -b2)

where x =.kc/w, xo = koc/w; 6 = (wp/w)(U/yUj)1/2, b =
(IU262)1/2, i = y/Uz, Uz = (U2-E2)1 2, and = - eBo/mc2ko.

The wiggler field strength and wavenumber are Bo and ko .
This equation has been obtained as well by Sprangle (1),
and related forms have been derived and discussed by
Kroll and McMullin (2) and by Kwan, Dawson, and Lin (4).
When 6 << xO << 1, a reduced form of Eq. (5) is a good
approximation, namely

LiI

- :- -, - " i . ,_ . _ _ - _' . . . . • -. - i . .. . .



we Fnachtman and Hishtid

R(x) [(x-u02  6 (1+& )](x -(b+x 1 2 20 (6

For ko/k (1+&2)/2-y2 the maximum growth occurs near b+xo
- =(6

2 E2x0 /2)1/
2. To requisite accuracy the roots are

x p. + (6 /2)l/exp(-7i/3)
1 0

x 2  x 1 (7)

2 (t 22  /)/3

These roots are of use in scaling estimates when exponen-
tial gain is dominant. Exact numerical evaluations given
in B-H show, however, that Eq. (7) cannot be used to deter-
mine the entire gain spectrum.

When Eq. (2) is employed as the distribution function
all the momentum-space integrals in the Vlasov formulation
can be expressed analytically. We then find

R(x) - [(x-ii1)(x-u12) - ' 62 (l+ 2)][(X+x 2- b' 2

X [(x-x 2 b' 2  + &21 x2d2X x2b
0 0

where
2

2 2 AU

2

b'2 1 _ IZn 2 z2
W2 AU Y + UI

W 2l l

d 1 U 2I~ APilU U I
W L Z1 z2/.

= - < 0 Y~2 =1 + U2  u2  
=u

2  
- ,and

141 , 2 : Y11,2/UZ1,2.
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*When AU/U -c 1, 64. -U&U(l + 2)yU3, 6, 6, and
b' 0d ab. Thus the only effect of finite momentum spread
in this limit is in the factor (x - 41i)(x - wZ) = (x - 0

-(64i/2)
2 in the first bracket in Eq. (8), where

- G1i + P2)/2. The close similarity between Eqs. (8) and
(5), and the simplicity of the former, make determination

* of the roots kj a routine matter. This simplicity is not
enjoyed when IF~ momentum spread is described by functions
foCa,s, U) with non-zero values of afo/aU in a finite
interval, because of wave-particle resonance effects.

As for the cold-beam case, where 6' - xo - 1, Eq.
(8) may be reduced to the approximate form

R (xx) 2- (Api/2) 2][x - Cb'+x 0)] + & 262 x 0/2 =0. (9)

If (LAi/2)2 << 3(t265I2xo/2)1/3, the roots of Eq. (9) near
b' + -o C26I;x 0/2)1/2 are approximately

262 1/3
X, P. + Q 0' /2)'exp(iwr/3)

+.!(Aip/2 )2(C26,2x /2)-1 'exp(-i~r/3)
3 0

* X 2 =x*(10)

-3 14 x 0/2)1/3 (AV/2) (E x 02/2) -/

Thus the spatial growth constant Iux1 is seen to decrease
on account of momentum spread as

I=mx F 4(262CO/2)l[ - (6 ]2 (11)x/

For pure exponential gain, i.e. excluding the 15.6 db input

* coupling loss (see B-H), one has

G - 54.58(L/X)Imx 1  db (12)

where A is the radiation wavelength. From Eq. (11) we can
write G - G - G1, where Go is the gain with no momentum

fe spread, and G, is the small decrease due to the spread
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G 0 54 58(L/) ( 262Xo2)i/3 db (13)

For 0.47, A - 4.9, xo - 2.73 x 10- 2, 62 - 3.80 x 10-6,
and L/A - 367 (corresponding to a representative FEL ampli-
fier to be discussed below), Eq. (13) gives Go = 39.1 db.
[If one subtracts the 15.6 db input coupling loss, the
actual gain would be 23.5 db (at a wavelength of 560 um).]
Now

G 54.58 L 2 1 2 2 -1/31, = - (AP) (~6 xo) db . (14)
8/3 X 6Xo-/

Substituting from Eq. (13) gives the value of Ap which
would bring about a gain loss G1

2 = 3 2(A) 5.37 x 10 G G 1(A/L) (15)

For the example cited above with L/A = 367 we find AP =
2.16 x 10- 3 for Go = 39.1 db and G1  3 db, i.e. for a
factor-of-two decrease in power amplification. This corre-
sponds to a relative momentum spread AU/U

jApj[yU3/U 2(l + &2)] of 0.041.

Equation (10) also suggests that the frequency at
which gain has its peak value will decrease as momentum
spread increases.

Exact numerical evaluations for small-signal gain G
have been carried out using the full dispersion relation
[Eq. (8)], and with amplitudes [see Eq. (4)] appropriate
to a perfectly matched amplifier output. One example is
for a ---wave amplifier employing an electron beam typical
of that produced by a small Febetron accelerator, with y =
1.78, J - 100 A/cm2 , x0 = 3.6 cm, = 0.2, and L = 36 cm.
Gain curves are shown in Fig. 1 for zero momentum spread,
and for finite momentum spreads between 5 and 20%. Gain is
seen to fall by one-half for AU/U = 0.15, and the frequency
for peak gain drops by about 6%. A second example is for a
sub--m wave amplifier employing a beam typical of the VEBA
accelerator at Naval Research Laboratory, with y = 4.9,
J - 6 kA/cm2 , o - 2.0 cm, & = 0.47, and L - 20 cm. For
this case the computed gain curves are shown in Fig. 2,
again for zero momentum spread and for spreads between
5 and 20%.

i
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7- FEL Amplifier Using Febetron Accelerator

6 26. 30 323c6 8 4
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a .. 1
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Figure 2. Gain curves for a FEL using a 2.0 kV '
electron beam, for electron momentum spread
between 0 and 20%.
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Comparisons between the exact results (Fig. 2) and the
approximate predictions [Eqs. (12-15)] are instructive.
The peak gain for the cold beam is 17.8 db (i.e. 60x) com-
pared with the approximate value of 23.5 db. The gain
drops by half to 14.8 db (i.e. 30x) for AU/U somewhat
greater than 10%; our approximate result is 4.1%. These

comparisons for the example presented in Fig. 1 are not
meaningful since the peak gain Go is less than 7.8 db (6x).

Finally, we point out the scaling laws suggested by
Eqs. (12-15), valid for high gain devices where exponential
growth dominates. For negligible momentum spread,

1/3 2/3 -2/3 -1/3
G J L X X dbo 0

or equivalently (16)

G 1/3 (L/o)2/3 y4/3 db

For the gain decrease G << Go due to finite momentum
spread we have

2 2 2GI G 0 (AU/U) (L/ ) (db) (17)

Eq. (17) indicates that high gain short amplifiers are less
susceptible to gain degradation due to momentum spread,

than are low gain long amplifiers. This scaling is inde-

pendent of X and y provided Go is high. For G1 = 3 db, the

numerical value for Eq. (17) gives (AU/U)1/2 = (G0 /248)1/2

(Xo/L), where (AU/U)1 /2 is the relative momentum spread for

a factor-of-two decrease in gain. Gain degradation for

long-wiggler FELs operating in the collective regime can

be expected to be serious unless AU/U << 1.

It should be added as a caveat however that momentum

spread may not always degrade gain in a FEL. The geomet-
rical optics theory for a FEL amplifier (5) shows that
gain may arise from a wave-particle resonance, provided

fo(c,8,u) is not symmetric in u about its maximum, and
provided afo/au has the requisite sign at the wave's phase
velocity. It is expected that this mechanism would compete
with that discussed in the present paper, and could in fact
allow substantial gain in the presence of tailored momentum
spread.

I i
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Theory of the free-electron laser in combined helical pump and axial guide fields

Ira B. Bernstein and Lazar Friedland
• Department of Engineering and Applied Science, Yale University. New Haven, Connecticut 06520

(Received 7 July 1980)

The linearized theory of a free-electron-laser amplifier consisting of a relativistic electron beam transported along
the axis of a helical wiggler in the presence of an axial guide field is solved exactly. With suitable re-identification of
parameters, the theory also applies to the case where the wiggler is replaced by a circularly polarized subluminous
radio-frequency pum. The dispersion relation is derived and numerical examples of solutions are presented. These

• indicate (a) that the use of an axial field permits operation of a laser of given high frequency and undulatory
transverse velocity of the unperturbed electron beam at lower values of the pump field, (b) that the gain can be
enhanced by approaching the condition of resonance between the effective frequency of the pump and the cyclotron
frequency, and (c) that the breadth in frequency of the region corresponding to spatially exponentially growing
operation can be much extended.

I. INTRODUCTION aN
at

The theory of a free-electron laser (FEL), con- and the momentum equation
sisting of a relativistic electron beam transported
along the axis of a helical pump magnetic field, (/ = -E (2)
has been given by Bernstein and Hirshfield.' Their ( at / -eE +V×)
analysis was valid for arbitrary pump strength but where m is the rest mass of the electron, and
weak rf fields, since it involved linearization in
the amplitudes of the high-frequency quantities. r = (1 -v 2/c) "' 2 (3)
Here we present the extension of that work to the If one forms the scalar product of (2) with y~ and

case where, in addition, there is an axial magnetic uses (3) to express v in terms of - , there results
field, conventionally present for beam collimation. the energy equation
It is also shown that with a suitable reinterpreta-

* tion of parameters, the same theory applies when +.rn c2',= - .(4)

the magnetostatic pump is replaced by a circularly (,,it
polarized subluminous rf pump. The axial field is Let B be a constant. It is convenient to introduce
shown to yield the additional benefits of permitting the electromagnetic potential A o and i via

the use of weaker pumps, providing enhanced gain

and yielding broader domains of spacial instability. B =B,+ v x A, (5)
* This is discussed in detail in Sec. VI.

The work proceeds as follows. The general E=-Vu,- - . (6)
mathematical description is developed in Sec. 1 at(

where the continuity and momentum equations de-
scribing the relativistic beam, and those govern- Then with 2 =eB/mC one can write (2) in the form

ing the electromagnetic fields are presented. / o (
Section H1I describes the properties of a helical + V
pump magnetostatic field, and Sec. IV those of a
circularly polarized subluminous rf pump. The x (V x
linearized equations governing the high-frequency at/- -
fields are derived in Sec. V. Section VI is devoted /e) c  A - )

to a brief discussion of the relati n of this work to n12,x + + + .-7+A-(7A). V)

its predecessors, to a description of the numerical
examples worked out, and conclusions concerning or on rearranging terms
the effects of the axial field.

a, t

11 GENERAL IATHEMATICAL DESCRIPTION = x + )[c K- +v. (8)

Consider a cold relativistic electron beam de-

scribed by the continuity equation It'follows from the Maxwell equations

23 816 0 19 11 rn .n'ri- In Ph' ,cji Sot .
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Xti for the associated magnetic field is, on choosing
CV x =4 +a, (9) the coordinate system so that X1 =0 and !koX1

LI .=B =-VX 2b,+Bo(e,coskz +Z, sinkoz). (21)
on employing (5) and (6), that

-' - The nonconstant part of (21) can be written as the
"- "a 2 _c-A I - 2 _ 4c curl of the vector potentialt:.+iC-- = 1~ -+f. -A, (11)

V6 V A (A-(B o/k0 )(G, coskoz +Z, sinkoz)• (22):,, _ Vz+4 Z -c" .-- (12)
at "Expression (22), valid only near the axis, is the

Thus if we adopt the canonical model of FEL the- form conventionally taken for the magnetostatic
ory, viz. pump field. A corresponding solution for the ve-

locity and density can be obtained from (1) and (8)
A=A.(z,t)e,+A,(z,t)e, (13) by introducing the lbasis vectors

-. =,(z, t) (14) Z, = - sinkoz + Z, coskoz, (23)

(note that the vector potential is written in the e, = - e , coskoz - , sink, (24)
Coulomb gauge) and assume that the only charged
particles present are electrons, whence T, -Ne e, =e,, (25)

- and J=-Nev, then (11) and (12) yield when on writing

82A C-2 a 2;[ t4VNe A =A4irj+Aj2+ Ase (26)
-c Fv- e_ ,-), (15)

it follows that

aza 9 a

IIl. MAGNETOSTATIC PUMP BA

Consider the case of a free-electron laser in Z2)

which the pump magnetostatic field is generated Thus (1) and (8) imply
by helical windings and the self-fields of the elec-
tron beam are negligible. Then in cylindrical co- - +-±.. N=-.(28)
ordinates p,&,z the vacuum magnetic scalar po- ,-at az z (28)
tential X will be helically invariant, viz. (a v)(- eA

X =X(p, 9 -koz), (17) +t 17) mc o 3, zc 2 9)
where 2r/ko is the pitch, and will satisfy Laplace's a.v, eA-- eA
equation t at ]\ mcl mci-:=" I A + (k ,.,: 8No

p a ( p a--1( . + - ) 3
The general solution of (18), regular at p=0, on at 8o

separation of variables is readily shown to be 4.L) Ica- 8 8Ar' -"I -" -V2' - 2 • ,v4 o,
Mc a Z 8z 2)A

X =-Bz+ xm.m(mkop)cos[m(O - koz)+ ,Q (31)

(19) Now on combining (22) and (25) one can write
2(19)

where the X, and X. are constants determined by Ao = (mc/e)A (32)

the details of the helical windings. Recall that the where o is a dimensionless constant. It is then
Bessel function readily seen that if also D,)=0, corresponding to

Eo =-V, 0 =0, then a solution is given by

Qs(m+s)! 0 =U+W;" (33)
N, = const, (34)

Thus if a is the radius of the windings and << 2r/ where u=const and w=const, satisfy (27)-(30)
- k, the potential is well approximated by the term w e t cons equent to (29)

-' " with m = I alone, with I, approximated by the lead- provided that consequent to (29)

ing term in the series. The resulting expression w= kocuo(kouo-IU)": (35)
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where where
B'- B- inc2 o(9

=[I _ (36) A 2 (49)

This solution and its experimental accessibility Ce l A o e

has been analyzed in detail by Friedland.' C

y' =oy'(l - voU/c), (50)
IV. RAD[O-FREQUENCY PUMP N'=N(I -voU/C 2 ), (51)

The solution given by (32), (33), and (34) with
* Eo=0 can also be adapted to describe the case of u'=-V5 (52)

a free-electron laser with an electromagnetic
pump which in the laboratory frame has a phase w/= W (53)
velocity less than the speed of light. One then 1- t, u/c 2  (
views the solution as given in the frame where the The inverse transformations to (50)-(53) can be
pump wave is at rest. Equation (15) then requires,
on using (32) and (33), that gotten by interchanging primed and unprimed vari-

on using ables and changing the sign of 1-,
-kc 0 =c w/c, (37) The counterpart of (35) is now

which on using (35) can be written w' = c~o(k~u' - c')[y,(k u - w') - t2 - . (54)

-koc = u?(kouy 0 - &1)', (38) Equation (38) is carried into

where the plasma frequency, defined using the (W, - ko c2)__(kiu, - w)[jo(k wu'- ,) - -.

rest mass, is (55)

W,=(41rN~e2/mY /2. (39) Equation (55) can be viewed as the dispersion re-

Let v, be the speed of the laboratory frame as lation for the pump electromagnetic field, but it
seen from the wave frame. Distinguish quantities is to be noted that the steady-state theory is not
in the laboratory frame by a prime. Then on Lo- restricted to weak pump fields and a linearized

* rentz transformation z' f 9(z - vrt), t' = (t - VoZ/ theory.
C

2
), and

u) -kovo , (40) V. STABILITY ANALYSIS

Let us work in the laboratory frame for the case
(41) of the magnetostatic pump and in the wave frame

where for the case of the radio-frequency pump. The

* - =(1- v/cZ) - /. (42) stability analysis is then common. Let

Clearly A =o - Re{(mc2/e)[1 1 (z)e(z)+ 42(z)e 2 (z)]e c t},

vO =-w/k , (43) (56)

is the negative of the phase velocity of the wave. +Re[Vez"eI, (57)

Moreover, 4) =0+Re[(mc2/e)(w1/kc)t3e - t], (58)

9o= 3 +B f[',cos(z' - w1't')+i, sin(k;z'- W't')], Y = /,+Re(r e-w), (59)

(44) N=No+Re(Ne " wtf). (60)

where Then (29) and (30) yield on linearization

B0 = fB0  (45) iU*! (y,, 4)-kur(+'V+C2

9' = _(w,'kcre x (46) koV 3(voW - C~) = -1IV (61)

Evidently the wave is transverse and circularly i(iW+!=)(rW .+oV2 +C -
2 )+kou(yoV,+ck,)=ZV.

polarized. The associated potentials are
Rather than use (31) it is convenient to employ the

0(47) linearized version of (4) which yields
4 =A'[-e3 cos(k~z'-w't')+e,sin(koz'- o't')],

(48) w+/ '---/ d- + c(62)(48) d z/ kc dz c "
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Linearization of (1) gives and

(-iw +!! + (d\(N. V3) =0, (63) T - W)- (kou -I/v 0)2 ]V' (80)
, _ The components of 0 are

while linearization of (3) implies 0i?- eL, I - c2(ko+ k2)/u? - to /ro ,2
r/c = (uv3+wV)/c 2  (64)

Equations (15) and (16) on using (27) yield = - 621 =-2ickok/u,
-. d2t .. . dt, O, U.V.2/* - 1 - dk'1 +-- =--V (65) . 1 -(k 2 + k)/w (81)

dz4220

d24 + 2  dg U? t I~(W2/)w[l + (U2/C2)(k2C2. w2)(ku- w~
dZ4 k- .42+ d 2  No +

23 + , 2 = -(1 / 0 )(ku- w))(w/w)(k - wu/c 2),w, d24 O N87 33 =l -(Wj/yo)(kU _ W)'(l U2 I2).
* W ___(67)

~c t = No The elements of _b are
Note that Eqs. (60)-(67) are a system of eight lin- -
ear ordinary differential equations with constant

* coefficients for the eight quantities V,, V2, V3 , r, U W

NI, , , and 43- Thus we may seek solutions
where all these scalars vary with z as ek ' . If we

" write li3 -i(ku - u w W kcw ku-w

E=Re[ta z)e" ], (68) c- w- + (Al, kTu-y 0 '

"* then it follows from (6) that 0 i ( w ) - ) (82)

(69) k(U2 + 0 ) k0 U Q/y U2 w

Equations (60) through (67) then imply \'u ku-W ku-w/'

i(ku - w)(yolV1 + ct,) - (k~u - fl/v 0 )(vV + w k(u + u - 1/

=(al)c + (a/y 0 )rw + kV 3(vW - c), (70) k -

(k - l o)(,o V , + c4,) x(uw w + kcw ku-w

+i(k u-W)(VoV 2+c 2+rw)=-(/, o)c 1,, (71) -)

r = W 3 4 ~ V33 = i W W / z s
-. r= -  (72) Qt= iawu

-
ku-l+ j

N(73) w ku - Qly uw W 4_k.cw ku- W~No kuo (7- uj' ='0 -33' +  o -lo"

r=(y.,/c2 )(uv3 + wv 2 ), (4Ii, -0c)(uV 0 +w]- k, (74) In the limit 0 -0, r vanishes and £ reduces tot,1- 2)/0%] (which apart from notation is the form found by

- -( l~,,)(V/lc), (75) Bernstein and Hirshfield.1

* ". (2ik0 kc2/0)4, + [1 - c2(k2+- k2)/U?]42  VI. THE DISPERSION RELATION AND NUMERICAL
(76) EXAMPLES

VN,/No=-(kcwt/ w). (77) In order that (78) have nontri,,i,, solutions it is
necessary that the determinafML

It is convenient to express r, N,, V,, V2, and V(
in terms of t,, 42, and 43. The result can be rep- D=det =0. (83)
resented in the form This yields an eighth-order polynomial equation

for k. In practice, for che cases of interest 01
=0, (78) << 0 and uc, and two of the roots are such that

where the dielectric tensor wok -c. That is, they propagate in the negative-
z direction counter to the beam and are substanti-

-f_+_ (79) ally unaffected by the tenuous beam. The remain-
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ing six roots correspond to waves which propagate Let 4 be the pump field parameter in the FEL

along the beam. When 0 -0 the two of these which without the guide field. The unperturbed electron
can be associated with cyclotron waves in the limit velocity components are then given by w/c = V,) 1

* of no helical pump disappear, and one recovers and u/c = [I - (1 + 4°)/lo2]' 2. Therefore, following

the result of Bernstein and Hirshfield.' These fea- Eq. (35), with the guide field
tures will be illustrated later when numerical ex- (4amples are discussed. 4o= (1- • (84)

Now Eqs. (61)-(67) comprise a tenth-order sys-
tem of linear ordinary differential equations which This equation demonstrates the intriguing possibil-

require for a unique solution the stipulation of ten ity of reduction of the pump field in an FEL as one

* boundary conditions. Since usually there is negli- approaches the cyclotron resonance condition 0/70

gible reflection of waves at the output end of an - k0u. Accessibility of the resonance, however,
FEL amplifier of finite length, two conditions are is not guaranteed, as was shown in the recent
the requirement that the amplitudes of the waves study2 of the unperturbed electron beam orbits in
propagating counter to the beam be zero. This an FEL with the guide field. It was demonstrated
requirement can be most easily dealt with via that for given values of -y, k,, to, and 0 the elec-

* solving the system of ordinary differential equa- trons can possess more than one steady state.
tions by means of a Laplace transform in z, as For example, Fig. 1 shows u/c versus Sl/c for

was done in Ref. 1, instead of the normal mode ko=6 cm "', yo= 3 , and 4o=0.5. For 0 > lQr it is

analysis. The dispersion relation, of course, de- seen that only one branch exists (branch C). But

termines the poles of the transform in terms of when Q< flcr two additional branches (A and B) are

which the inversion can be readily accomplished, allowed. It was also shown that the necessary con-

The resulting solution for 1(z) can be written in dition for orbital stability of the steady-state solu-

terms 1(0), assuming that all other first-order tions against small perturbations is given by the

quantities are zero at z =0 and involve linear com- inequality
binations of the six modes corresponding to the a J3

six roots with Rek> 0. Since in general these roots '-- k\u < 1. (85)
are nondegenerate, but differ by amounts of order
Ak much less than wic, there will be interference Branch C is always stable, since w<0 on this

m amongst their contributions to 1(z), which be- branch. On branches A and B, w> 0, but, as was
comes evident after a distance of order 2v/&k. shown, only branch A satisfied (85) and thus may

This feature has been examined in detail in Ref. be used in applications. Since the ratio w/u is

1. We will not pursue it further here, other than kept constant in our comparative study, one can

to note that the single particle theory in which one substitute the expression for 40 found from (35)
examines the second-order energy change in a into (85) and write the stability condition in the

* distance z of an electron moving in the zero- and following form:
first-order electromagnetic field, and identifies y k u
this with the gain in energy of the high frequency I < c - 0 u (86)1+ (w/uY'(6

field, is valid only for aAk< 1.fiel, i vald oly or z&k 1.valid for branches A and B. In our sample case
We now consider the dispersion relation (83) in o branches, and B. In rs case

an FEL with guide magnetic field. Because of the (=.= 3 , ko=6 cm'" , and =o.5) one has or/c

complexity of the dielectric tensor f [see Eq. (79)] =16.18 cm", and, therefore, according to (84),
it is convenient to study the dispersion relation by u/c

. comparing two FEL's, identical except that one 1.0- A
has an axial field while the second does not and
thus is characterized by the dispersion relation 0.8 "
Do -det(8)=0, the properties of which are well
understood. We make the comparison between the 0.6
two lasers by fixing the parameters of the FEL

without the guide field and adjusting the value of 0.4
the pump field parameter 0 in the laser with the
guide field so that the axial velocities u (and there- 0.2
fore also w) in both lasers are identical. This 0.0___

assures the same Doppler upshift of the frequen- 0 4 8 12 16 20 24 28

cies in the lasers. A similar comparison has been i/c (cm"1)
made by Friedland and Hirshfield for the single FIG. 1. Steady-state normalized axial velocity u/c
particle model of FEL.3 as a function of normalized axial magnetic field 1l/c.
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D 0 o (a)
2.0- I0.03j 0.02-o .02 1.4 .0./ .0 "1.0 11 .1

0.5 002

1.2 1.3 1.4 n

-05 ]f ' 6 0.03 (b3

-IO[0.02 "

-1.5 0 I I I 11
1.02 1.04 1.06 .o .10 1.1 1

-0.0- -0.02 - 1I
-0.0

FIG. 2. Dispersion function D' on branch A for the -0.02 /j

case yo-3, k=6 cm-1 , and/c=40cm- 1 . The dashed /.' I
curve represents the FEL without the guide magnetic
field and 4= 0.5. The solid curve is for the FEL with
the ulde field (fl/c -6.5 cm- 1 ), where smaller values
of J@ are used so as to provide the same values of a and 0.03 ()
w as for the dashed curve. 0.02

0.01 n6 n

" oon branch A cannot become less than 4,, = 1.562 0.00 I 1.01.02 1.4 1.06 11 1.12 1.14
X 10-2 . -0.01- //" n

We return now to the study of the dispersion re- -0.02
lation (83). The form of the dielectric tensor /1
[Eq. (79)] suggests that for values of w,, small-

enough, the function D will differ significantly FIG. 3. Graphical representation of the dispersion

from Do only in the regions where (ku _ W)2 _ (koU function on branch A for the case ye =3, k 0 -6 cm - ,

-A/ " 0, as a result of the resonance in the lc:0.5. /50 cm-', and increasing values of the
den/oiatr in as e emon snte guide field (the solid curves): (a) 0/c =14 cm "-, (b)
denominator in r [see Eq. (80)]. We demonstrate fl/c=15 cm - 1, (c) Q/c=16 cm "1 . The dashed curves
a typical effect of the axial guide field on the dis- correspond to the FEL without the guide field. Two
persion function D in Fig. 2, where the function pairs of roots of the dispersion relation become com-
D'=D[ku - w)/,(1 - u/c)]2/o (the full line) is plex as the real roots M3 and n4 are squeezed by the
shown versus n =ck/w for branch A in the sample resonances at n5 and no.

case when w/c=40 cm "1, /cZ =0.5 cm', and
0/c = 6.5 cm "i. In the same figure the dashed line
represents the case with no guide field, and the roots of the dispersion relation are corn-

It is well known that the unstable regime in an plex. When w continues to increase, n, becomes
FEL without the guide field can be described as a less than n,, the coupling diminishes, and one
coupling between the transverse electromagnetic again has a stable regime.
modes with the dispersion relation n,., = 1 * ck w New effects may occur when the resonances n,.
and the electrostatic beam modes characterized approach each other. This situation is shown in
by n,..=c/u*cw,/yowu. One can see from Fig. 2 Fig. 3, where the full line represents the disper-
that these four roots are only slightly perturbed sion function on branch A for increasing values of
by the presence of the axial field. There exist, Q. One can see in this example that even for w/c

however, two additional r*oots in the neighborhood =50 cm 1 in our sample case (all the modes are
of the resonance points n,., = c/u * (ko1w -Oc/ stable in this case if Q =0) it is possible just by
vuw). If the resonances are widely separated as changing P to squeeze the roots n, by the reso-
in the case of Fig. 2, the onset of the unstable nances n,,, so that two pairs of the roots become
mode is roughly the same as without the guide complex. For higher frequencies, when again the
field, namely, as the frequency w increases, the FEL without the guide field is stable (n, < n.) one
root n, moves to 1, passing the region n, <n< n can also get an unstable regime as is demonstrated
(since n,..-c/u). The modes couple in this region, in Fig. 4 for w/c= 100 cm "'. Our numerical study
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0 0.4
0.003 -1

0.002 (a 0.3 4
n n i 3

w j I 1 /31.0 1.06/ 1.071 ni- 1.09 1.10 1.11 E 0.2 1

-0.001 n
-0.002 I o

r0.1 f\

0 0.0
0.0(b0 50 60 70 s0 90 100

0.003I / a/C (cm-1)
0.002-Il
0.001 n. FIG. 5. Spacial growth rates Im(k) versus w/c on

.n branch A (solid curves) and C (dashed curves) for vari-0.000 I I I I I I I I

1.05 1.06 1.07 lh.0r .09 1.10 1.11 ous values of f/c: (1) fl/c =0, (2) 9/c =12 cm - 1 , (3)
-0.001 -T' n 12/c=14 cm -1 , (4) f/c=14.5 cm - , (5) /c=28 cm -1 ,
-0.002- (6) 0/c=23 cm -1 , (7) I/c=21 cm - 1 . For all the cases

y0 =3, k 0 =6 cm -1 , and 4'=0.5.

0.003 (C) characteristic of the FEL without the guide field.
0.003- As one approaches the resonance condition a

0.002-, =y/oUko (further increasing 0 on branch A or de-
0.001, creasing it on branch C) a completely different

. 6 7 . type of behavior is observed as is shown in Fig. 61.05 1 1.07 1.10 1.11 for 0/c = 15.25 cm 1 on branch A (the full line) and
-0.001 n 1/c1ci 18 cm 1 on branch C (the dashed line). The
-0.002 unstable region extends over the entire low-fre-

I quency range and there are two different unstable
FIG. 4. Graphical representation of the dispersion modes on branch A, as was mentioned previously.

function on branch A for the case y0 3, k o=6 cm- 1 , In addition there exist unstable modes in the high-
to =0.5, w/c =100 cm - t . The solid curves: (a) fl/c = 14 frequency region, which was totally stable before.cm- ; (b) al/c=15 cm-; (c) 2/c =16 cm - t . The dashed Note that the values of Imk in this high-frequency
curves correspond to the FEL without the guide field. regime are only weakly dependent on the frequency

shows that similar behavior is also characteristic itself.

for branch C with the only difference that there is Thus, in conclusion, we have demonstrated in

only one pair of unstable modes in the low and the
high frequency ranges, respectively.

We finally summarize our comparison of the 0.4r
FEL's with and without the guide field in Figs. 5
and 6, where the imaginary part of k is shown as 0.3 -
a function of w/c for various values of the axial
field in our sample case (y, =f3, ko =6 cm', 400 0.2
=0.5, ,/c 2 =0.5 cm2 ). Figure 5 is for 0<1/c
<14.5 cm-' on branch A (the full lines) and 21<12/c o., "
< 28 cm' on branch C (the dashed lines). The
resonances ns, are relatively wide apart from o.c
each other and formally the instability in this 0 20 40 60 80 100 120 140

range of 0 occurs similarly to the case of the las- W /C (Cm
"|

)
er without the guide field. Nevertheless, the FIG. 6. Spatial growth rates lm(k) In the sample case
presence of the guide field increases the instability (y0=3, k 0=6 cm- 1 , t° =0.5) versus w/c In the regime,
on branch A and tends to decrease it on branch C. where the cyclotron modes couple to the beam modesIn d(see Figs. 3,4). Branch A (solid curves): fl/c =15.25In addtio, the Iinewldth of the unstable regime is cm t . Branch C (dashed curves): 1/c =18 cm -1 . The
seen to be significantly increased at lower fre- unstable modes are extended over the low- and high-
quencies on branch A. Together with this, no in- frequency regions. There exist two different growth
stability exists at frequencies higher than those constants in this regime on branch A.
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our numerical examples that the presence of the =koWro.
guide field in an FEL introduces the following de- (iii) The linewidth of the unstable modes can be
sirable features: widely extended to both low- and high-frequency
(i) One can operate the laser with much lower ranges.

magnitudes of the pump field without sacrificing
the undulatory velocity of the electrons. This al-
lows one to use shorter periods of the wiggler with ACKNOWLEDGMENT
the same currents.
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Exact magnetic field of a helical wiggler
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Exact solutions are presented for the magnetic field of single and double current-carrying helical
windings. The latter is a configuration used widely in free electron lasers. Differences are shown
between the exact field and the simple form commonly assumed in analyzing free electron laser
interactions.

PACS numbers: 41.1O.Dq, 42.60.By, 85.70.Nk

1. INON In view of the widespread use of bifilar helical wigglers,

A spatially-periodic static magnetic field is a central it is of interest to have an exact result for the magnetic field.

part of most free electron lasers. While a linearly polarized Then the accuracy of an approximation, such as Eq. (1), can

magnetic field is used in some devices,' most employ a circu- be judged carefully for a given coil design. This is especially

laily polarized fid? Theoretical analyses? commonly as- critical when annular electron beams are used, and where

sume that this wiggler field can be represented, to a good the radial departure of the field from its value on axis can be

approxim ation, by 1.2 _._._._ ._. _._.

o 1(z) = Bi (OX. sin kz - i, cos kz), (1) 1.0"
where B(O) is the constant magnitude of the field, p = 2ir/k o.s (a)
is the period of the wiggler, and z is the symmetry axis. 0.6

Smythe4 has derived a formula for the transverse mag- E 0.4Irn
netic field on the axis of a single filamentary helical winding 1 0.2
of radius a and periodp. For the wiggler configuration usual- 0 o

* ly considered, two such windings are taken to be symmetri- E

cally interspersed, with currents flowing in opposite direc- : -0.4
tion in each winding. For this configuration the magnitude .0.6
of the transverse field on axis is twice Smythe's result, or -0.8

B B(O) = (2#01/pXka)K (ka), (2) - -I.0

• where lis the current in each winding and K(t ) is the Bessel -1.2 b()
function of imaginary argument. For most wigglers of prac- 1.4
tical interest the asymptotic representation for the Bessel 0 0.2 0.4 0.60.8 1.0 1.2 IA 1.6 1.8 2.0

function is a good approximation, i.e., r/a

K ' ,(t) - (ir/ t) '12e -  + _L + 57 + ... .
St 128t 2  1.0 ((b)

so that a handy result is 0.8
_~ 0 4~T /2-2/p06

(alp)' e 2 (2a0.4
I/ \

1 5 0.4 2g2)

wherep is in cm, B,(0) in gauss, and I in amperes. E 02
Blewett and Chasman' have presented a derivation of W

the magnetic field within a cylindrical current sheet of radius I Wva
a with a sinusoidal helical distribution, i.e., -0.2

j = ( ka,)(r a ) c - kz).a . .0.6 -

However, this current distribution is a rather imperfect ap- -o.8. R l
proximation to an actual helical winding; thus it is bound to . .0 c'-.
give rise to a different radial dependence than that produced 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
by a bifilar helix. In addition the ubiquitous spectrum of r/e
higher Fourier spatial harmonics produced by an actual FIG. I. Magnetic field amplitudes in (a) cylindrical and (b) helical coordi-
winding is totally suppressed if one chooses the above ideal- nates, for p/a - 2. These amplitudes only give that portion of the field with

ized current distribution. fundamental periodicity.
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larg. Furthermore, it is conceivable that a free electron laser16
could be operated on one of the higher spatial harmonics, so 1.4-
as to Produce radiation at a correspondingly shorter wave,. 1.0-
length. In this case, an accurate theory for the harmonic field .a
strengths would be indispensable. 06

The present paper presents an exact result for the mag- E.0.
netic field both in the interior and exterior of a single fila- a 0
mentarY helix, i.e., a winding with a wire of negligible thick. Y -0.2

*ness. Superposition of the fields of two such helices, with -0.4
oppostely directed currents, gives the results we seek. In -0.6

* addition to the mathematical results, we present graphs of -~-1.0-

the radial dependences for the fundamental and the first few -1.2
spatial harmonic components of the field for several values -1.4-(a

*of the radius-to-pitch ratio.-16 p)F

1I. FIELD OF A SINGLE HELIX -0.2 0.14 0.6 0.3 1!0'1.2'1.4 1.6 1.3 2.0
We take the current I to flow along a filamentary helix I/

of radius a and period p = 2r/k. The curent density is then 1.6..................
.91.4

0.kJ (3)
where i. and 0# are unit vectors along the axis and azimuth. ILU.r

0 .. . 6 0.3 10.21.161320

0.3 nae0'pa3

0.4 " A~r = .e.fd3' J-0.4(4

-1.

-0.2- vaibe-14Fn s h inma eisfo )

0 0.2 0.4 0.6 0. 1.0 1.2 1.4 1.6 1.8 2.0
f/a xcs~r/b

P0 FI-. Magnetic field amplitudes in (a) cylndrical and (b) helical coordi .
na0.5 (pa) na. wher2 .+,an
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(i~) m'(l-Im)!12x102M!(I - M)!

Then Eq. (5) becomes /
S-4

4w f - 06 0'

r). ~ ~ ~ A CCRO ,O 0 4
+t-aiff Cos*')× XI+ ( 2n) (6t-' ) E

n 2 + -8

where we have introduced the unit vectors -12
=i= cosf+i, sin, andi, = -i, sin-+i, cosi, so

6.that i, -i, sin 0' + 12 cos 0'. It is convenient to sepa- C -
rate the summation over n into even and odd sums, and to -20 (a)
use -24r

cos,,0=2_ +2 ( 2 . icos2mOl -28n 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

and 3r/aand 6xlO 3  . . . . . . . . . . . . . .

* cos"-'9 2n +  2  n - o2m - 1)O.

-; C

0.3 . . .

0.24

-~ 0.1 b.()a

a .0 -12
* E

* .1 .I-

E a 16-
-0.2 (b)

*r-20

* -0.3-

-0.4 -24 , . . . ... .. .. . . .
* a 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0ill r/a

-0. (a) FIG. 5. Magnetic field amplitudes in cylindrical coordinates for the (a) third

* -. (r) and (b) fifth axial harmonics, for p/a = 2.
-0.71

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 102

r/o
OL06

0.02
0~ 10

o-0.02 C °
o E -|*,.0.04 - S

E (a.C
w -0.06 - b#(r)

S 2~100 (b)
0-0. -

" 0.10 -- (a)
-0.12 ---0.14- (b)
-0.16 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
" r/a FIG. 6. Magnetic field amplitude on wiggler axis (r - 0) as a function of alp.

(a) Exact result (this paper) for a filamentary bifilar conductor, (b) asymptot-
FIG. 4. Magnetic field amplitudes in cylindrical coordinates for the (a) third ic approximation (Eq. 2a); (c) result for a sinusoidal distributed current sheet
and (b) fh axial harmonics, for p/a -3. (see Ref. 5).
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* Only terms in the integrand even in 0' will survive the integration over it'. After some rearrangement, the result follows as
,, , Go - G1

" - t -,, x+-" + 1i2 -o (n .o (n) - I (n + m)!(n - m)!

x 2G , cos 2mO + (- i sin 2mb + cos 2mo)G I' -'

- 1
r2." 1it sin 2mob + i2 cos 2mo)G 2 +

• _ _ (n + m - 1)!(n - m)!

4 U ->r,- cos(2m - l)o + (-it sin (2m - l)b + e2 cos (2m - 1b)

xGz'J-2 + (it sin(2m - l)o +i2cos(2m - l))G "_ ], (7)

where wherefl ---- + P, and K1 (m p) is the Bessel function of
Gimaginary argument. One can show that

1 \4 J 0  (G')'- G7"= -G'" - -Gm+.

r (-'(mp)'K(m p), m >0, The components of A(r) in cylindrical coordinates are
29 found, again after rearrangement of terms using

I- p''~ m oio M .0 - 4

ln oo - lni, m =0, l=0, tobe

~~2 C 2,, +2__ ~1
A 2(r) - t. n +2 .C2n+2m +2 2m+

"" ~ ~ I 1[v 2mS2'+ ,, (2m + S .+ 2.
""A, (r) =O1- 2n/ n 1 + 2m) - o

i (n+ 2)! +m (n+2m+1)!

* and (8)
Cob_+__+_ (2m +2n)C'~ _______

A1r)= ia 1[Ci+ + ( +2n) 2m+-_I + (2n +2m +1-)C 22.+.'

A -21r -on!.I (n+l (n-+2m)! M-o (n+2m+1)!

" where C7GwG'" cos mb and S G 7' sin mo. B,(r) B."(r), B .'"(rb)=b ."I(r) sin mb,
The associated magnetic field intensity follows from -0

* B=VXAor
B,,(r,b) B B '(r,O)=b "-(r) cos m, (9)

B = k{,', +J - aiOA + A;) + t, [A; #-o

whereA ~B.(r~) =mOB (mij)B mI."(rO1)=b I'I(p) cos mob,
+ F-'(A. -A j.]}, a~r¢ .'oa 7!,€1 Tllb",c ,

where.4 o/oandA '-- 13.ThecomponentsofB are where for, m#0,

{)I -- k (2n + m)G +m. + 2(a'G,+

2v1 R-0 n1(n + mlf
b "r}--- ° k _ m' + + - 2(n + m)(ar-G +.-()-G++
b~"~) ~ oai~ 2n m I,, 2## +q m '~~-2n +n Iv~

2i ,- ntln + ml
b 'mr),- k .2n(n +m)(a-'-'G ", +.,- (2n + M)-- 2G , ,

1? Po-o nl(n + m!
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and, form 0, - (r) cos (m +

b (,(r) -0,
- n(a-)-'G -(a-)-2G°+ with here

b I -o n!n ' b(m-(r)= [b ,m)(r) ± b ("m(r)]"

S-)-2G That is, to our knowledge, the first exact result for the
b 6-- kd o n + lIR magnetic field generated by a current flowing along a helix.

s- n!(n + 1)! On the axis (r = 0), the fields given by Eq. (10) reduce to
Alternatively, in the helical coordinates, B, 0,

B1 (r,*)}nB,(r4') cos 4 - B,(rb) sin 0B - 0
S B2 = - kj[Ugo(a-) + K,(a],=r--b 1,0(r) sin 41 + b (-+'(r) sin (m -1)0b 21r

L' which agrees with Smythe's result,4 and is equivalent to one

+ b''(r) sin(m + 1)0)], half of Eq. (2) since jK0 (a-) + K,(a" = - UK ; (-).

(10) III. FIELD OF A DOUBLE HELIX

B2(r, )iB,(r,4,) sin 4, + B4 (r,4,) cos For an arrangement of two symmetrically interspersed

= b 01(r) cos 0 + - (b ((r) cos (m - 1)t( helices carrying identical currents in opposite directions the
rn-1 current densityis

J= .+(, + ka,)6(r-a)1t(z- -")-8(z- + ±r)]. (11)
ka L,5 k/ - k

The magnetic field may then be obtained directly from Eq. (13)
(9) by forming D(r,4,) - D(r,4, + ir). Terms even in 4, cancel, B2(r,) =B,(rb) sin 0 + B,(r) cos 0
and the results are simply twice the odd parts of Eq. (9).

The fields of the double helix in cylindrical coordinates -b ()(r) + b 2 2l(r) cos 2mob1.•are thus ,.-1 I

,(r,,)== rwhere

S ob "(r) [b( " + "(r) + b 1'" - "(r)
B.(..4,) = ~' +

- ."(r.,), (12) + [b ,"+ (r) - b --i'"1-
M-0~

mO(2m) r { 2m + 11 r2m -"r

b, (r)=[[b, "(r)- b "(r)]
B,(r,4,) 'oB + [( +  I(r m b I"-(r)], (14)

from which the cartesian components of fields are readily and
calculated by

B, (r,*,z) = B,(r,*) cos 4 - B# (r,*) sin 2, b '(r)== [br) + b '(r)].

* B,(r,4,z) = B,(r,4,) sin 0 + B,(r,,) cos . Near the axis the fields, up to quadratic power in r, are

Also, the fields in helical .oordinates are B,(r,0) = b (121(r) sin 20,
B r, 4,)B ,fr,4) c c. 4- B,(r,4, sin B 2(r,O) = [b )(r) + b ()(r) cos 20], (15)

B.(r.O) = b ("(r) cos 0,= ±" b 2""(r) sin 2mn4, hr
.. , where

IIb r) = k! K'j - (-) + K.- (~a-)+ (I- - ) (a-)+ I(-- ]

r 2i 8d 4b•j)=- / -'

b r =11 - 1-/A2! k! I + -L (45) - --I g3(a-)] + 9[K2(3a-) + K,(3a I
Vr 2 a

kJ /2 e - + _) + _[ m (I + 2,(,

_2Y) 91 6dT 1- 816
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b2)(r) ° - 1+ 2a-"- Kk(-) + 9[K2(3a+ -- K,(3a)

A&01 ka[ 4-i" e _('+ -)+ ( 11)2 e 39 (1+ 32-9 )F2

--0 W( + 1

Again, in the limit r-4O, these reduce to the canonical fields, case over that for p/a -2 is partially mitigated by higher

B, =B = 0, space-harmonic components. This is shown in Fig. 4 for
p/a = 3, where the field components, in cylindrical coordi-

B2 - kK ; (a. (17) nates, are shown for the third [Fig. 41a)] and fifth [Fig. 4(b)]

Slspatial harmonics of the field. (Even space harmonics have
zero amplitude due to the symmetry of the windings.) The

IV. RESULTS harmonic amplitudes are not insignificant for r/a>0.4. For
In this section we present representative numerical re- comparison, Fig. 5 shows the same components forp/a = 2.

. suits obtained from evaluating the first several terms in the Here the harmonic amplitudes are seen to be less significant.
series expressions derived in the previous section. As stated Finally we show, in Fig. 6, a comparison with Fig. I of
in the Introduction, our objective is to illustrate limitations Ref. 5. This is a plot of I/pB1 (0) vs alp. Shown are three
to the use of the canonical form for the helical wiggler field as curves: (a) the result of this work, (b) the asymptotic form

S"given by Eq. 1. [Eq. (2a)], and (c) the result shown in Ref. 5. The latter (as
Results are shown for double-helix windings of three well as the asymptotic form) fails at low values of a/p. This

different pitch.to-radius ratiosp/a = 1,2, and 3. For smaller point is discussed in Ref. 1, but somehow never corrected.
values ofp/a the current required to achieve a wiggler field B The difference between our curve and that of Ref. 5 at large
(gauss) will exceed 100 Bp amperes; such currents pose seri- alp is due to the different current distributions in each mod-
ous practical design problems. For larger values ofp/a high- el. The asymptotic form is reasonably accurate for alp > 0.5.
er spatial overtones become significant for off-axis locations.

Figure I shows the radial variation of the field for V. CONCLUSIONS
p/a = 2. Figure 1(a) shows the components in cylindrical An exact result has been presented for the magnetic
coordinates, while Fig. l(b) shows the components in the field inside and outside a single and double helix winding.
helical representation. Specifically, Fig. l(a) shows b l,"(r), The results are expressed in both cylindrical and helix-like
b 1(r), and b (1(r), that is the amplitudes for components of coordinates, as space-harmonic series in (0 - kz). The radial
the field with the fundamental periodicity. Figure I(b) shows dependences are given in terms of Bessel functions K,(m p),
b '"r), b 1,2(r), b '"(r), and b (r). These are the components where p2 = k 2(r2 + a2). This representation is valid both in-

which, to lowest order, contribute to the field with funda- side and outside the helix. It has the advantage of faster con-
mental periodicity. The canonical field is b '(0), so that the vergence over the more common piecewise solutions in

respresentation of Fig. 1(b) is convenient for determining the terms of , fmkr) inside) and K fmkr) (outside).

magnitude of departures from the approximation The results show that, depending upon the helix pitch-

B(r,#,z) = i.b '(0). For example, at r/a = 0.3 one sees that to-radius ratiop/a, both the magnitude and form of the fieldb 2r) has increased by about 25% over b (0), while b (r) may differ considerably from the canonical form (Eq. 1). The

has become nearly equal to b (r). The orthogonal helical first competing term is B1 (r), which increases proportially
component b ,2)(r) has risen to about 25% of b 2(0) at with r for small r. For larger radii, as may be encountered in
./a = 0.3. free electron lasers using annular electron beams, strong ra-

Figure 2 shows the field components for p/a = 1, with dial gradients and higher spatial harmonics are prevalent.

the cylindrical coordinate case in Fig. 2(a) and the helical ACKNOWLEDGMENTS
coordinate case in Fig. 2(b). Here one sees that the current
required for a given on-axis field is about 16 times greater S. Y. Park and J. M. Baird would like to acknowledge
Sthan for p/a = 2 for the same pitch p. Deviations from the support in part by the Naval Research Laboratory. R A.

*I canonical value b 1(0) for finite r are more severe than for Smith and J. L. Hirshfield acknowledge support in part by
p/a = 2. the Office of Naval Research.
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Abstract

F:'ee electron lasers operating in the collective regime are

reviewed, with emphasis on effects associated with a strong

axial magnetic field. One example of such a device is discussed,

* which operates without a periodic static pump magnetic field.

This device, if operated at a wavelength of about one-half milli-

meter with a power output of about 600 MW, could act as the pump

for a second one micron laser with an output of over 1 GW.

I. INTRODUCTION

The purpose of this paper is to review certain recent accomplishments

in theory and experiment on free electron laser (FEL) interactions in the

regime where collective effects play an important role. For such an inter-

action, oftimes termed "stimulated Raman scattering," the beam electrons

move in electromagnetic fields which are themselves governed in both space

and time by the selfsame electron motions. The established theoretical

• apparatus of plasma physics is well-suited to this regime; whereas in the

opposite single-particle, or "stimulated Compton scattering," regime one

needs deal basically with one-body equations-of-motion in assigned

electromagnetic fields.

* The general theme of this Seminar stresses plasma interactions in the

optical portion of the spectrum, so that presumably the design of FEL's at

wavelengths below 10 um would be of great interest to this audience. A

FEL operating fully in the collective regime would probably not operate at

a wavelength shorter than about 100 pm. Thus the present paper attemps to

motivate interest in collective-regime FELs by re-introducing their

possible role as drivers in two-stage FEL systems yielding high-power tun-

able optical power. One example of a model two-stage system is given in

Sectior II of this paper, and its features are contrasted with tb. re

customary single-stage approach. Section III reviews the rapidly growing

body of experimental and theoretical work on collective-regime FELs, plac-

ing emphasis on effects of the ubiquitous uniform guide magnetic field.
S
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Section IV discusses a new collective FEL concept originated by Fruchtman

and Friedland [1], wherein no spatially periodic pump magnetic field is

required, and illustrates how this device is ideally suited as the driver

in a two-stage FEL.

II. TWO-STAGE FELs RE-EXAMINED

In 1979, Elias [2] proposed a two-stage FEL to produce kw-level tun-

able radiation in the 0.4 um wavelength range. His device was to utilize

two dc electrostatic accelerators at 2.13 and 9.38 MeV. A static magnetic

pump wiggler in the first stage with a 3.2 cm period allowed generation of

0.6 mm radiation, which in turn was to be upshifted to 0.4 Um in a 2.4 m

long second stage.

The device we describe here is conceptually similar to Elias', except

that in place of dc electrostatic accelerators - which are limited to

currents of tens of amperes - we envision two induction linear accelera-

tors, at 2 and 5 MV - each capable of kiloampere level currents, and

correspondingly higher peak powers [3].

In Section IV we shall describe a collective-regime FEL which is

capable of producing significant power at sub-mm wavelengths; we pick

532 pm as the design wavelength for the first stage output. So as not to

place undue requirements on the quality of the second-stage electron beam,

we choose a system length of 474 pump periods (or 0.252 meter) - identical

in number of pump periods to that put forward in a design example by

Kroll, Morton, and Rosenbluth [41. (For a tapered 2.3 cm period magnetic

wiggler, these authors placed an upper limit on beam energy spread

(Ay/y)max < 0.014; we shall adopt the same limit.) The wavelength ratio
ax2 2 2

(0 A i a) 532 = 4y,, for an electromagnetic pump; with y,, = yPUMP Optical
this gives a beam energy of 5.2 MV. The Colson single-particle one-pass

gain formula [5] can be written

2 3 -2G = (I/4270)E (7rN/y) (re k p) 2 F'(6) (1)

where F'(6) is the line-shape function (it's peak value is 0.54), I is

the beam current in amperes, E is the dimensionless pump parameter eA/mc,

with A the magnitude of the transverse component of the pump wave's

vector potential, r is the electron beam radius, and k = 2ir/X is the
e p p

pump wavenumber. The high-efficiency design in Ref. [4] required a

single-pass gain of 3.5. For the same gain value, and with r e 0.125 cm,j e
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Eq. 1 requires I = 2.78 amperes. The saturation-level output from the

first-stage collective FEL corresponds to to eEwave /mc kp = 0.01; if

this X - .5 - beam has a 1.25 cm diameter, we take a five-fold pump beam

diameter compression to give - 0.05. (The pump fields can be supported

by a parallel-plane waveguide, with gradually increasing spacing to pro-

*• vide pump amplitude taper.) Thus the required beam current is 1.11 kA,

and beam power is 5.78 GW. For 20% efficiency (see Ref. [4]) the peak

laser output power at X optical- 1 m would be 1.16 GW.

We now turn to the requirements this second-stage design would place

on the first stage. In terms of the normalized pump parameter E the

pump power is

P =1 e 2C5/e2 )kr)2 &2 (2)
pump 8 (4 oc /e 2)(kpre) 2

where We 0 m 2 cS5 /e 2 ) = 8.73 GW. The values 9 - 5 X 10-2 , r = 0.125 cm,

and 2r/kp = 0.0532 cm give P P 594 MW. A 2.04 MV, 3.34 kA electron

beam in the first stage would furnish this power level if the collective

FEL achieved an efficiency of 8.7%, which is well within predicted limits.

The wiggler-free collective FEL will require a strong uniform axial

magnetic field; for the example discussed here its strength is 20.1 kG,

well within available superconducting magnet technology. The required

interaction length is under 1 m.

A summary of the parameters of the proposed two-stage device is

given in Table I, together with the parameters given for the illustrative

device in Ref. [4].

III. REVIEW OF PRIOR WORK

Activity on FELs in the collective regime has intensified of late.

Work prior to 1980 is well summarized in review articles prepared by

Sprangle, Smith, and Granatstein [6], and by Marshall, Schlesinger, and

McDermott [71. Meanwhile, attention has focussed on the influence of an

axial guide magnetic field on the FEL interaction, since virtually all

collective-regime FEL experiments include such a field.

A major discovery in this area whose impact is still being appreci-

afed concerns the equilibrium orbits in a FEL helical magnetic wiggler

when a uniform axial magnetic field is imposed. Without the axial field,

the allowed orbits are of course helical, but as was dramatically shown

by Friedland [8], this is only an approximate result when the axial field



Stage I Stage II Single-Stage [4]

Ee  2.4MV Ee =5.2 MV Ee llMV
- Ie 3.34 kA Ie 1.1 kA Ie -l A

y - 5.0 y -1.5 y 218
v.. 0.1 c Ay/y 0.014 N -474

-vv,, 0.103 N - 474 - 2.3 cm
.I.M 3 cm-i L -25.2 cm -10.9m

- - link - 0.10 cm7-  re = 0.125 cm Q 100
" Bz 20.11 kG - 0.05 re= 0.125 cm

lne 8.7% Go  3.5 = 1.75-1.18 z/L
P =594 MW ne = 20% BW = 4.56-3.07 z/L kG
A - 532 Um P -1.16 GW ne 18%

X -1.0 Pm P -0.22 GW
X - 1.0 Pm

Table I. Examples of parameters of a Lwo-stage FEL (columns 1 and
2), compared with parameters of a single-stage devi:e (column 3) [4].

is present, and depends critically upon the wiggler parameters and the

entry conditions; orbits over most of the parameter range are strongly

non-helical. Stability analysis showed that electrons on a nearly helical

orbit have a natural resonance frequency for small oscillations about equi-

librium. Experiments performed by Avivi et al. [9] have confirmed the pre-

dicted [8] threshold for orbit stability. Fig. 1 shows the data from this

experiment, performed with a low-voltage, low current dc electron beam

(the stability properties are not a relativistic effect); the threshold

for orbit instability in this experiment was observed for wiggler field

amplitudes as low as 2 gauss.

Analytic solutions to the exact non-linear orbit equations in a

"canonical" helical wiggler field have been given by Smith et al. [10], and

by Freund and Drobot [11]. (The "canonical" approximation neglects the

off-axis gradients in the field of the bi-filer helix winding used to

generate the field.) These analytic solutions bear out the properties

discussed and shown in numerical solution by Friedland [8]. Exact analytic

solutions for the magnetic field of a bi-filar helical winding have bee,

recently obtained by Park, Baird, Smith, and Hirshfield [12]. These solu-

tions show that, for annular beams, the canonical assumption may be strong-

ly violated. In addition higher space harmonics may be significant.
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Diament has studied particle orbits in a more realistic wiggler field (131.

* The influence of the axial guide field upon FEL gain was first shown

theoretically by Friedland and Hirshfield [14] using a single particle

model. Gain enhancement of more than a factor of 10 was shown, above that

for an otherwise identical FEL without the axial guide field, as shown in

Fig. 2. This interaction was developed in a fully collective model by

Bernstein and Friedland [15], Freund, et al. [16], and Freidland and

Fruchtman [17]. Non-linear results have also bee-L obtained by Friedland

and Bernstein [18], including effects connected with non-helical orbits

and saturation; the saturation levels are shown to be greatly influenced

by large radial excursion of the orbits. Furthei detailed linear analysis

has recently been performed by Freund, Sprangle, Dillenburg, da Jornada,

Schneider, and Liberman [19].

The first experiment to show clear effects of the guide magnetic

field upon a collective FEL interaction was reported by Birkett and Mar-

shall (20]. Enhanced radiation was observed as a y = 2 electron beam

* passed along a helical wiggler with 18 mm pitch and 40 cm length. When

the guide field gyrofrequency and magnitude matched the sense and fre-

quency of the helically driven undulation, enhanced radiation resulted;

for reversed direction guide field the enhancement was absent. The authors

*explain the observed double resonance as a matching between either the

pump or scattered signal to the electron gyrofrequency. An alternative

explanation could lie in the strongly non-helical orbit which could have

been present near the resonance between the gyro-and wiggler-frequencies;

*slight retuning on either side of the resonance could have restored the

nearly helical orbit and thus provided the enhancement.

Using a similar electron beam generator the Ecole Polytechnique group

[21] observed orders-of magnitude enhancement in mm-wave radiation as the

guide field was adjusted near the aforementioned resonance, as shown in

Fig. 3. However the authors point out that non-adiabatic conditions as

the beam enters the wiggler could lead to poor beam quality, thus making

*imprecise the occurance of such a resonance in the orbits, especially in

avoiding strongly non-helical orbits.

The precise origin of these observed enhancements has been called

into question by Shefer and Bekefi 122]. These authors measured emission

* from a ' 1 MV, v 5 kA electron beam in both a uniform magnetic field, and
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in a uniform magnetic field superposed on a rippled magnetic field pro-

duced by a diffusive wiggler [23]. With the uniform field alone intense

microwave resonance emission is observed between 8 and 140 GHz. It was

shown that the conditions under which intense radiation is observed coin-

cided with a matching between the electron cyclotron frequency, or one of

its harmonics, and the cut-off frequency of one of five waveguide modes

supported by the 2 cm diameter stainless steel drift tube surrounding the

beam. The authors interpret this emission as being due to the cyclotron

maser instability [241. Imposition of the wiggler field did enhance the

aforementioned resonances, but did not lead to additional radiation at the

resonance between the gyro- and wiggler frequencies. The authors suggest

that their wiggler increased the perpendicular energy, and thus the growth

of the cyclotron maser instability, but did little else. No theory for

the collective FEL with an axial guide field in a waveguide has yet ap-

peared. It may be that the waveguide dispersive effects alter sufficiently

the conditions under which guide-field enhancement of FEL radiation is

expected. Be this as it may, some controversy does remain.

One further experiment deserves mention in this brief review: that

reported by the Naval Research Laboratory group in 1982 [25). These

authors made a major advance in the art of generating intense MV electron

beams by carefully designing the field-emission foil-less diode geometry

to produce kiloampere beams whose axial velocity spread is claimed to be

less than 0.1%. This is a requirement in the experiment reported, since
-i

the wiggler employed had p = 21 periods. Unless Lu/u << p , one would

expect phase mixing to wash out clear collective interaction between the

beam and the wiggler. A significant observation in this experiment is the

presence of two bands of mm-wave emission (X < 5 mm) on either side of the

resonance between gyro- and wiggler frequency, as shown in Fig. 4. The

orbit stability studies [8] show that helical orbits are not possible

close to this resonance, and the NRL group has found good agreement

between their observation and prediction of theory.

IV. FEL WITHOUT A WIGGLER

In 1979, Ride and Colson [26] published a single-electron calculation

of the stimulated emission from individual electrons on helical orbits in

a uniform magnetic field. Careful study of the orbit perturbations aris-

ing from a copropagating electromagnetic wave revealed that axial velocity

perturbations are present, in addition to the customary azimuthal velocity
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perturbations. For an ensemble of such electrons with randomly-phased

equilibrium helical orbits, the axial velocity modulation can give rise

to wave amplification for slow electromagnetic waves, whilst relativistic

energy changes give rise to amplification for fast electromagnetic waves

[27]; the effects compete for traveling waves, but not for standing

waves [28]. This class of interaction is widely exploited in gyrotron

devices [24].

But, when an ensemble of electrons have phase coherence in their heli-

cal orbits, the system has much in common with a FEL in a helical magnetic

wiggler. For the latter the equilibrium orbits are coherent helices with

axial period I equal to that of the static magnetic pump; for the former

the equilibrium orbits may be coherent helices with axial period k0

2vyu/Q, where u is the axial velocity and 0 - eB /m is the rest electron0

gyrofrequency. While the equilibria may be identical in the two configura-

tions, perturbations (i.e. stimulated emission) will differ, since the pump

magnetic field in the conventional FEL clearly influences the subsequent

motion. A principal difference between FELs with and without a periodic

magnetic pump is that the output wavelength for the former would be
2 2X /2y2 , whereas for the latter it would be X = 1o/2y nu/Oy. The use

of a uniform magnetic field FEL will not permit operation at wavelengths
-1

below about y mm, for magnetic field strengths below 100 kG.

The Ride-Colson analysis [26], and subsequent large-signal extensions

thereto [29] do not of course apply in the collective regime. However

electron beams in most experimental devices which operate in the Mu or

sub--- wavelength range are intense enough (kA currents) to require a

collective description. A collective theory has recently been developed

by Fruchtman and Friedland [1], who have shown that spatial amplification

rates for waves on a cold, spatially coherent beam of helically orbiting

electrons in a uniform magnetic field are comparable to those predicted

for conventional collective FELs in the same parameter regimes [16]. Here

we present a highly condensed version of the Fruchtman-Friedland analysis.

The authors consider wave propagation down a uniform magnetic field

B - zBo, along which an unbounded electron beam flows. The electron beam

is characterized by the cold velocity-distribution f(v,z) - N6[y - V(z)],

where V(z) - -w[x cos(koz + ) + y sin(koz + 0)] + u6z - -wd2 + uA3 , and N

is the beam density. The perpendicular and parallel speeds are w and u,
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* is a constant phase which assigns V(0), ko = eB o/myu, and (l,!2,3) is

the set of basis vectors which track the orbit helix [29]. Maxwell's equa-

tions for the fields, and momentum and energy conservation equations for

the particles are linearized, for the steady-state spatial evolution of the

perturbed quantities i.e., for the amplifier problem. In the helical coor-

dinate system these equations reduce to a set of eight first-order, linear,

ordinary differential equations, with constant coefficients - as long as

spatial evolution rates are on a scale much longer than c/w. Subject to

assigned boundary values, say at z = 0, one can then determine the spatial

evolution of the system in the form *(z) = kexp(ikz). Coupled algebraic

equations result for the three components of the velocity perturbation, for

the three components of the electric field of the wave, and for the per-

turbed beam density and electron energy. The equations may be rearranged

to appear in the form 11Elk + 12E2k = 0 and c21Elk + e22E2k ' 0, where

Elk and E2k are electric field amplitudes in the directions of A and ,,
A 2k 1

and where the cij are elements of a dispersion tensor. The dispersion

relation e22 - £1221 = 0 yields the allowed (possibly complex) values

of k for assigned values of w and the other parameters; this dispersion

relation is of eighth algebriac order in k. However, for k near k0
considerable simplification results, and the dispersion relation has the

approximate form
S (2 2) - /4 = 0 (3)

2= 2 3 2where A - ku/c - w(l u/c)/c, 8 k u/c - w(l - u/c)/c, W /y c
2 2w/c2 , and i = ko(1 - 2/A2) - w(l - u/c)/c. This dispersion rela-

0tion superficially resembles that for a conventional FEL [30], wherein

coupling between electromagnetic (A = 8) and beam (A=± ) modes leads to

wave growth where C2 2 is the (small) coupling constant. [If ii were to be

replaced by -2ko, Eq. (3) would be the reduced FEL equation.] But since W

in Eq. (3) is a function of A, the equation is of higher order (fifth) and

the solutions are more complex. In fact, two modes may be simultaneously

unstable.

Numerical results are shown in Fig. 5, where the spatial growth rates

for the two unstable modes are shown as functiins of frequency. Tt;o dif-

ferent combinations of axial magnetic field strength and beam energy are
2given, but tne product k Y is taken as 75 for botn examples, so that peak0

gain occurs for both examples at the same frequency (i.e. near w/c 118
! -o=.cm or A - 21T/118 - 0.0532 cm). The solid curves are for y - 5,
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k- 3 ca'; the dashed curves are for y = 2, k 0 18.75 cm'; both curves

are for (Wp /c) 2 2 cm"1 , corresponding to a current density of 2658 A/cm2 .

It is important to note the wide band width for the lower solid curve,

indicating the potential for generating intense wide-band power in the

sub-nm range using this interaction. The growth rate of 0.10 cm at the

peak of the upper solid curve in Fig. 4 suggests that the length of the

first stage can be less than 1 m if an 80-90Z reflection output coupler

is used. Preliminary non-linear studies (31] indicate that this inter-

action will begin to saturate when eEl/mc2 = 0.6 cm"1 , or when

o = e1E1/mc2kp " 5 x 10-3 ; we have adopted a fully saturated level
-2 p

to = 10 in our considerations in Section II.
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An amplifier on cold, relativistic, guided electron beams is considered. The problem is reduced
to a set of first-order, linear, ordinary differential equations. The dispersion relation governing

* the stability of the system is derived and its solutions are studied numerically. The results of the
calculations show that in the submillimeter regime, the spatial growth rates in the system may be
comparable to those predicted for Raman-free electron lasers.

PACS numbers: 42.55.Bi, 41.70. + t, 41.80.Dd

I. INTRODUCTION f(v.,v,v)1. _0 = A6(v. - v.o)6(v, - v,,)

A great experimental and theoretical effort has been X5(v. - v.o), (2)
made in recent years in developing powerful sources of co- where is the Dirac function. The interaction of such a beam
herent radiation, using relativistic electron beams. In freeeetradiations, us relativistc h elecron beams.e on r- with radiation in a uniform axial magnetic field can be de-
electron lasers, for example, the beams are scattered on en- scribed by the cold fluid model, as opposed to case (1), where
odic magnetostatic structures and amplify electromagnetic the study of the interaction of the beam with radiation re-
tial period of the scattering magnetic field and quires the Vlasov description.2 In Sec. II we will derive at i 1 - (v/c)2 2 is the relativistic factor, v being the e- simple set of equations describing the evolution of the elec-

y f thI - a. ( is the reavistic factso, v pbei t v tromagnetic field along the device, by using a method similar
locity of the beam.' These devices have shown a capability t htapidrcnl ofe lcrnlsr. nSc Iw• fo opraton n awid frqueny rngefro milimter to that applied recently to free electron lasers. 3 In Sec. III, we
for operation in a wide frequency range from millimeter will consider the momentum equation for the beam, which
waves to infrared. This broad spectrum of operation is ob- will determine the current sources in the field equations. In
tared by changing the energy of the electron beam, thus Sec. IV, we will reduce the dispersion relation governing our
varying the amount of the Doppler upshift in frequency, system and demonstrate that the cold beam (2) couples the

A different mechanism of amplification of a high-fre- longitudinal and transverse modes. This effect results in an
* quency radiation was suggested by Hirshfield et al.,2 who nhanced spatial growth in the amplifier, as will be demon-

denstratdtho wasssibilted by exploiing d heclt ma -ho strated in Sec. IV, where we will present numerical examplesdemonstrated the possibility of exploiting the cyclotron ma- and compare our results with the results of Hirshfield et al.2

ser type instability at Doppler upshifted frequencies. In con- and those predicted for free electron lasers, operating in a
trast to free electron lasers, the mechanism discussed2 does andpthose rediced
not need to have magnetostatic scattering and relies on the comparable regime.
electron beam gyrating in a strong uniform magnetic field.
The amplification of an electromagnetic signal is expected at II. FIELD EQUATIONS
frequencies at-?_2 f, where D = eB /mcr is the relativistic Consider an electromagnetic wave propagating along a
electron cyclotron frequency. As is common to many studies relativistic cold e!tctron beam, gyrating in a uniform mag-
of cyclotron masers, the electron beam2 was assumed to have netic field B - B0 2 . Adopting a one-dimensional model, we
the following velocity distribution function can describe the electromagnetic fields E(z,t) and B(z,t) by

f(v.,v,,v.) =f(ILv I,v.), (1) the system of Maxwell equations:

where, 1 is the velocity perpendicular to the magnetic field. 8B, E
Thus the direction of v, was assumed to be distributed uni- ce, X--- =- _ 4IreN V, (3)
formly. In this case the transverse and longitudinal electro- 8E, a3B,
magnetic modes in the system are decoupled and, as was - ce, x- = - , (4)
shown,2 one of the transverse modes is spatially unstable. 3z at

In the present paper we are also exploiting the idea of 9 E.,
using relativistic electron beams in strong uniform magnetic (9Z 47reN, (5)
fields. In contrast to Ref. 2, however, we consider a different
velocity distribution function. We assume that initially, at
the entrance into the interaction region, the distribution Here V(z,t) is the velocity of the electrons and N is the elec-
function is tron density, satisfying the continuity equation

4011 J. Appl. Phys. S(6), June 1982 0021-8979/82/064011-05502.40 ® 1982 American Institute of Physics 4011



+ -. (NVd ) = (7) In the absence of the electromagnetic fields, this equationt 0z describes a gyrating electron beam with

The subscript i in Eqs. (3) and (4) describes components of Vo = - w[i. cos(koz + 0 ) + i., sin(koz + qS )] + ui,
the electromagnetic field transverse to the z axis. (20)

We are considering a stationary amplifier problem,
namely, introduce an electromagnetic perturbation of fre- where u,w = Consz; k = eB/mcyu 2/u and defining
quency w at z = 0 and solve for the electromagnetic field in the velocity of the beam at z - 0. With no loss of generality
the device as a function ofz. Consistent with this problem we let us assume that 0 and define a rotating coordinate
write system with the base vectors

E(zct) ( R (c , - -- i. sin kz + z ", cos kor, (21)

\ e 6 e2 = -e cos kz - i, sin koz, (22)

B(z,t)= Re(-T- b(z)e'd/C (9) i3 = (23)
e Then Vo - w 2 + ui 3 and the linearized momentum equa-

V(z,t) Vo(z) + Re(v(z)e2/c -t)) (10) tion for perturbed velocities, in components along

N(zt) No + Re(n(z)e' -'zc ii (1) e(i = 1,2,3), becomes

where No = const and Vo(z) are the density and the velocity iw(u-1) + uAlv,
field characterizing the beam when the electromagnetic c L\c z

- wave is absent. Note that in Eqs. (8) and (9) we are consider- kow( -.- + -3 +( b,-a,), (241
* ing only rightward propagating waves, which is consistent cY'0  c / Y\ b

with the amplifier problem considered in this paper. Equa- l d1 u = - 2 b +
tions (3) and (4) can be now combined and yield on "r 0 r. o aj
linearization (25)

al da" 2v, +(12) Vl[oo(u- +u dIv3 =u-- + b, -a, (26)

di c dz C4 dz ro C
. where W2 = 4re2No/m. Similarly Eq. (5) reduces to where similar to EIs. (8H 11) we definedwheetsmilr t En. (H13) w(deine

."- -+n, (13) " = Yo + Re F (z)e" A' 1c - "), (27)

and the linearized continuity Eq. (7) becomes and

d a. + uz. (28)
i0~1) V~ n= W2 Th±L- + u-F.,C di (14) The energy conservation equation

Assume now that the various natural frequencies char- dr - e
acterizing the electron beam (such as o,, and D = eSomCy) dt mc-, (VIE, + VE 2 + V E,), (29)

are much less than wi. Then we expect the spatial variation of
a, b, v, and n to be on a scale slow compared to the fast can be employed, to get on linearization
oscillatory part e /c in Eqs. (8H 11). Namely, in order of ' = -- a2 - a 3  (30)
magnitude, for x = a, da/dz, v, n: c c

dlnxl Iw Finally, in the new coordinates, the field and density Eqs.

I dz c (16)-(18( become
With this assumption we can rewrite Eqs. (12H14) in the
following approximate form: da_ koa = . (31)dz 2C3 '

da,
_. -- v, + V ol n  (16) - +kad + 3  v w , (32)

dz 2c3  dz C31  P + n

a,=i n, (17) a3 =i (
WC (33)

I )-'. (18) V. dL +u1) + in P_ V. (34)

I1. MOMENTUM EQUATION Equations (24H26), (30), and (3 1H34) comprise a sys-
tem of first-order, linear, ordinary differential equations, de-

Consider now the momentum equation scribing our system completely for any given set of initial

+ ( d) e (VX [ B + B(z,t) + Elz,t)) conditions at z = 0. Note that due to the choice of the base
+ V2  (yV) C - - + vectors , (i = 1,2,3) we have a system of equations with con-

(19) stant coefficients, which allows us to seek the solution in
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the form O(z) = Ok exp(ikz), where b stands for An aposteriori check of this assumption has shown that it is
v,,a,,b,(i = 1,2,3), rand n. Then Eqs. (24H26) become satisfied for all the numerical examples considered in this

w!iko wuk, i/paper. Inequality (50) and additional assumptions of
i4VA =- V3k + ,k + -L 1, b2k , W/c 1/yo" and 1 - u/c<l, which are consistent with our

C 'Y 'YO C i(35) treatment of a high-frequency device, allow us to write the

I solutions of Eqs. (46H48) for V,, (i = 1,2,3) in the following

iAk = - iArk CWO' Yo(-
u bik + a2k (36) approximate form:

Cw 2 k a 2 k I . 2 I U C _]I2 2

u"V3,t = - dk .- +! -( I lbik -a 3k), (37) ViA = [1 [ Yoc 2 [1 -(u/c)][l- -( 2 /

where C+i I- (L ,
c )&Yo

A - -- 1 +k . (38) [ U W2  WPuw 2[l (uc)]
C C J C 4 [ c 1 22 2 cyo 2 _2- ) (52)

Similarly Eq. 130) reduces to Aw[ l -(U/C)]a 2 k

w u VA= (53)

iAr = -- a2k -- a3W, (39) c(A 2 - 2)yo
C C

and the field and density Eqs. (31 H34) give
IV. STABILITY ANALYSIS AND NUMERICAL EXAMPLES

ikatk - koa 2, = -VIk (40) On substituting Eqs. (51H53) into the field equations
(40) and (41), we can write the latter as

ikaik+k, lko - 2 (42)V2E + + wn.), (41)=0,
i k 2 k a k = 'el.l + 62€ ( 5 4 )
a3, n.t-- (42) c'21alk -+f 622a2k --- 0

2 where the dielectric tensor is
An k = -( -- (43) iW (I _ u/c)

* Expressions for b,, and b2 k in Eqs. (35H37) can be found ,= ik - ic 2r 1 A (55)
from Eq. (4): W 2wwk f 2' (l - u/c)1

ic2 = = -ko - Lw ( 1+), (56)
1= - a2 k + !Eika2k + kOalA), (44) 2-yc 44 2 yc 2(4 2 - .2 )J

w E2i = ko, (57)bk= a, k- -! ik [1 k] ~2).(5 W2W W, I Uc C 22 = ik - i___ w 2  ww 2 (1-

On using Eqs. (40) and (41) on the left-hand sides of Eqs. (44) 2c2(yo C C)2 c3(A 2 2)

and (45), substituting the resulting expressions and rk from (58)

Eq. (39) into the momentum Eqs. (35H37) and expressing Existence of a nontrivial solution of Eq. (54) for aIk a2 l

a3A through v3, via Eqs. (42) and (43) we get requires

( ) , (u "- iw2uk0 a2k D =- EE 2 2 - C12E2 1 = 0 (59)
C Iy 4c-3y0  which is the dispersion relation governing our system.

+ [ wkO+ P 2 (46) When the beam density goes to zero, the dielectric ten
c 1 Y Y , sor becomes c 1 = E22 = ik, C21 = - 12 = ko. The disper-

2 l a, I6u2 wU sion relation in this case yields k = ±ko, which, of course, is
+ 2j -- 2A T U 2+oU4A V3 the vacuum solution. This suggests, that for #2 : 0, but small

(47) enough, we can treat the terms proportional to wa in the
4w - u/c) a 2 WA expressions for ey, as small perturbations and seek solutions

(4 2 4 2 )v3,_A 2k-- + - Vk , (48) fork in the form k = ± k, + x, where Ix I<k. We will use
c yo 2rw'oc 2  this perturbative approach in the rest of the paper.

where First let k = - k, + x. Then if w/c .2koy2 , A is the

Wu2 o/2 rderofkand therefore4 2 2 --k 2 , so that the resonance
S 1(49) denominators in Eqs. (56) and (58) are relatively large. The

" Co\ C solution for x in this case is real, the mode is stable and does
is the plasma longitudinal response frequency. Assume now not contribute to the possible amplification in our system.
that Consider now the case k = k, + x. The values of A in this

2(sJ5u case will be of the order of x, if again w/c' 2koy-, and the

,* 2r 'c 14 1.(50) resonance denominatord 2 -42 in Eqs. (56) and (58) may
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become very small. The dispersion relation now has the fol-
lowing approximate form:

4 ~0.205 020 -.

where IF ,

E 0.15 -
B -- ( - 1) + k, ' (61) /
.C, _ - o -0.10 /

---- 'ko "- , (63) 0

0 2 80 100 120 140 160

and =wyo/c. 0)/C (crn 1)

* The dispersion relation (60) has ame features s .milar tothe case of a conventional free electron laser. The similarity FIG. 2. Spatial growth rates link vs normalized frequency cv/c. Thethcaef cntat ie electron parameters are yo = 5, ko = 3 cm- and o /c2 = 2 cm - 2 (solid linesi
is expressed in the fact that as in the free electron lasers .q. and W/c

2 
= 20 cm 2 (dashed lines).

{60) describes the coupling between the electromagnetic

JA =48) and beam (A1 +"modes and g can be viewed as
the parameter characterizing the strength of the coupling.
Moreover, Eq. (60) reduces to the dispersion relation for the
free electron laser3 if we set/s - - 2k o. Note, that for 4 , modes, which are present in the system, for fixed density of
and " 2 small e Eq. (0) predict a solution at 4 . the beam and two different combinations of the strength of

-. Then/-- - k and we can expect in this regime to have a the axial magnetic field and the beam energy. The combina-
solution of(60) for similar to the solution we have in a free tions were chosen so that koy 2 in both cases remains the

* electron laser with the same values of ko, yo, and the beam same. In addition we used wic = 0.1 in both regimes. The

density twice lower than in our device. Together with these comparison with the recent calculations for Raman free elec-
similarities, the apparent difference from the case of a free tron lasers,3 shows that for the case of higher energy of the

electron laser is in a more complicated form of/i which leads beam (Yo = 5) the maximm growth rate in our system is

in our case to the higher-order dispersion relation and, as about 30% lower than n the free electron laser with the
will be shown below, to coexistence of more than one unsta- same values of yo, w, and W2. If we use an approximate for-

ble modes. mula Imk = w0,/c2(2yo)IIf derived in Ref. 2 for the beam

We now present some numerical examples. Figure 1 (1), we find that for Yo = 5 the gain in our system is -40%

shows the calculated growth rates of the two unstable higher. For the second set of parameters, with lower beam
energy (Yo = 2), the maximum growth rate in our system
becomes considerably higher than that predicted in Ref. 2 in
this case (Imk _O. 1 cm- '). In Fig. 2 we present the cases of
two different beam densities, and fixed values of ko and yo.

/ rISignificant enhancement of the growth rate is evident with

Q2 5 - an increase of the beam density. For the higher density case
/ I (, 2/c2 = 20 cm-') the maximum growth rate is -0.23

0.20 / I cm-t as compared to -0.13 cm-' for the beam (1) in this
I case.

-- // I In summary, we have considered an amplifier based on
!015 ('I E05 the fully cold, guided, relativistic electron beam. It has been

00" demonstrated that such a system may be superior to the de-
. Ovice considered in Ref. 2. In the submillimeter regime the

" Igrowth rates of the unstable modes in our system are compa-

0.05 rable to those found in conventional free electron lasers. The_ I I use of only uniform guide magnetic fields allows one to ex-
_jplore electron beams with larger radial dimensions, as com-

0 100 120 140 160 pared to those used in free electron lasers, where the best

-1/C (Cm-1) operation is obtained close to the axis of a magnetostatic
scatterer. With all the aforementioned advantages, it is stillF " FIG. I. Spatial growth rates link vs normalized frequency w/c. The

parameters are w,2/c2 = 2 cm-
2 and :,, = 3 cm -', yo = 5 (solid lines) necessary to find the best experimental methods of achieving

and k, = 18.75 cm-', yo = 2 (dashed lines). For each set of param- the suggested configuration of the beam. The effects of a
eters. two unstable modes are present in the system. thermal spread in the beam on the growth rates in the sys-

4014 J. APPI. Phys.., Vol. 53, No. 6, June 1982 A. Fruchtman and L. Fnedland 4014



tern, as well as nonlinear saturation effects also must be con- Naval Research and by the U. S.-Israel Binational Science
sidered to provide better understanding of more realistic ex- Foundation.
perimental situations.

ACKNOWLEDGMENTS 'For a review of past work see P. Sprangle, R. A. Smith, and V. L.
Granatstein, "Free Electron Lasers and Stimulated Scattering from

The authors would like to thank Professor I. B. Bern- Relativistic Electron Beams" in Infrared and Millimeter Waves, Vol.
steinandProfessorF.Dothanfortheirhelpful I, edited by K. J. Button (Academic, New York, 1979), p. 279.

2j. L. Hirshfield, K. R. Chu, and S. Kainer, Appl. Phys. Lett. 33, 847
and suggestions in the preparation of this paper. The authors (1978).

also acknowledge the support in part by the U. S. Office of 'L. Friedland and A. Fruchtman, Phys. Rev. A 25, 2693 (1982).

0

0

0

4015 J. Appl. Phys., Vol. 53, No. 6. June 1982 A. Fruchtman and L. Friedland 4015



PHYSICAL REVIEW A VOLUME 25, NUMBER 5 MAY 1982

Amplification on relativistic electron beams in combined helical
and axial magnetic fields
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Jerusalem, Israel
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A free-electron laser with the guide magnetic field operating as an amplifier is
analyzed. A simple dispersion relation, similar in form with or without the guide field, is
derived. The study of the solutions of the dispersion relation indicates that the guide al-
lows us to (a) enhance the spatial instability in the amplifier, and (b) significantly extend
the frequency range of the instability to lower and higher frequencies. This improved
operation of the amplifier with the guide field may be achieved at lower values of the
pump helical magnetic field. An expression for the power gain in the amplifier as a func-

* tion of its length is derived and applied in numerical examples to demonstrate the effects
of the guide field.

I. INTRODUCTION electron laser with a guide magnetic field and con-
sider a conventional amplifier problem. In con-

Free-electron lasers, in which the energy of a re- trast to Ref. 9, where only the mode stability
lativistic electron beam is transferred into high- analysis was carried out, our aim will be to actual-
frequency coherent radiation, have been studied ex- ly find the spatial development of the electromag-
tensively in recent years.' One can schematically netic wave along the amplifier. We shall employ a
divide free-electron-laser experiments into two number of physical approximations which will re-
groups. The first is characterized by low beam suilt in a much simpler dispersion relation than
densities (IU I A) and high relativistic factors r that developed in Ref. 9. The problem is thereby
for electrons (y> 20 ).2.3 In these devices collective significantly simplified and leads to a clearer
plasma effects are usually unimportant and the understanding of the device.
single-particle theory is used to describe the in- The work proceeds as follows. In Secs. II and
teraction. The second group of experiments, for III a system of transport equations for the ampli-
example, -6 uses intense electron beams (I > 1 kA) tude of the electromagnetic wave in the amplifier
with relatively low energies (ry< 10). In such lasers is derived. Section IV deals with current sources
the collective interaction plays the major role. An in the transport equations by considering the
important feature of the latter group of experi- momentum equation for the electrons described by
ments is the presence of a strong axial guide mag- the cold fluid model. A simple dispersion relation
netic field, primarily designed to collimate the high is derived in Sec. V and there its sol,. ions are
current electron beam in the interaction region. analyzed both analytically and numerically. In
An analysis of the effects of the presence of the Sec. VI formulas for the z dependence of the am-
guide field was recently carried out.7- 9 The plitude of the electromagnetic wave in the amplif-
single-particle theory of such lasers showed that ier are obtained. We shall simplify these formulas
the addition of the guide field may provide a signi- in several limiting cases in this section and present
ficant increase of the small signal gain due to a numerical examples. Finally, conclusions are listed
resonance effect between the frequency of the scat- and discussed in Sec. VII.
tered electromagnetic wave and the natural
response frequency of the steady-state electron or- II. FIELD EQUATIONS
bits in the combined pump and guide fields. In Consider a cold relativistic electron beam pro-
addition, the cold fluid, fully collective theory of Consider aold elatistic con beathe laser' predicted an extension of the frequency pagating along the z axis of combined helical
rane ofse prdcth e d atial nsiy opump and axial guide magnetic fields described byrange of the spatial instability.

In this paper we continue the study of the free- W (z)= 10(6,coskoz +,ysinkoz)+_4o7e, (1)
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where Sp and Silo are constants. The helical In addition, we assume that the electromagnetic
part of a represents the field on the axis of a field is weak enough so that it only slightly per-
magnetic wiggler, commonly used in free-electron turbes the beam and one can write
lsas and ko=2ir/X, where X is the pitch of the
wiggler. N(zt)=No+Re m (z)e-  , (8)

In addition to the electron beam we introduce an

decromagnetic wave propagating in the same
direction as the electron beam. Our aim is to solve V(zt)=V(z)--Ref (z)e (9)

the conventional amplifier, namely, to find the where N0 =const and V0(z) are the density and the
electromagnetic field at a point z > 0 in the system velocity field characterizing the beam without the
if this field is known at z =0. presence of the eltromwwnetic wave and andP

We assume that the system is infinite and homo- are small perturbations. Equations (2) and (3) are
geneous in the direction perpendicular to the ide then combined and yield on linearization
field. Then the electromagnetic fields E(zt), B(z,t)
are described by d2L (z) + 2 - ,, - . .._~~~ ~ dz, - z i[ z+VoM(Z)] ,

A1  A, V dz 2  C2.PJI 4 ( rCF~iSe'X I -- -4,reN 41, (2) rO

5i X - a t W2(10)

8a. aBj where =41re2 No/m. The first term on the
- , X - at (3) right-hand side of the wave equation (10)

represents transverse currents induced by the elec-
S=- (4) tromagnetic wave, while the second term describes

az the axial bunching of the electron density due to

B,-0, (5) the pondermotive forces of the wiggler magneto-
static field and the magnetic component of the

where the cold fluid description of the electron wave. It is this bunching term which causes the
beam is used and N(zt) and VW,t) are, respective- free-eectron-laser instability and is the largest

* ly, the electron density and the velocity field. part of the source in the wave equation. The
They satisfy the continuity equation reason for the importance of the axial bunching is

(6) the strong coupling between the transverse ee-
" +- (NV,)=0. (6) tromagnetic wave and the axial motion of the elec-l atrons which travel with the velocities close to the

The subscript I in (2) and (3) describes the com- phase velocity of the wave. We shall demonstrate
ponents of the corresponding fields which are per- this effect later. Nonetheless, for simplicity, al-
pendicular to the z axis. Since a stationary prob- ready at this early stage, we neglect the first term
lem is considered here, we Fourier decompose in in the source in (10) and rewrite the wave equation
time various time-delendent quantities and seek as

' solution for E and B in the form
d2f.(z) 2

2(zt)=e "2fz~e *dz 2  +C2 C4:":: ] (7) 1
(11)

, i B(zt)f=te M (ff e- .

I The general solution of ( 1) is

C )/C C f dg (g)sin(z _- )E (= ff g (k . " + T in T 0+

= T,(o)(e 1(010+e _01/0s)- igT(0( kI(.M E /)
22/c

Thus, - 0
5 (g)ei(dh/eXZi) -- I./CXZ C)) (12)

hus, the full wave solution for the perpendicular component of the electric field becomes

t .
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j l) Re je((cI~ [j±0-. -~, - , fdg F~~ 21W
m 2  2Tl -- - -- g i(0 c

C .... E1 (0) ii11

+ e-[("/e+( /(04)+i.. J. (13)

In order to further simplify the problem we now (16). Then, on using (14)-(17) in Eq. (13), one
make the following assumptions. Firstly, con- gets
sistent with the amplifier conditions, we neglect in (
(13) the term proportional to i-(z)= (- c dgf(g)

exp[-i(oz/c +ft)]
which represents a constant amplitude wave pro- J
pagting in the negative z direction. Namely, we
set (18)

(0) Differentiation of this equation yields

.(14) d -Wo2(/ezd -()e2 (  9 (19)
Secondly, we assume that the frequency o of the dz ,0 "
amplified electromanetic wave is much larger Finally the equation for the z component of " is
than any other characteristic frequency of the sys- obtained from (4):
teni, such as the plasma frequency w.d, the effective
undulation frequency ck o of the wiggler, or the na- [i o Jd n(z)
tura response frequency cju of the eecton 7  (20)
also Sec. II). This assumption is common to
many treatments of free-electron lasers, where one
is usually interested in frequencies w of the order
of 2y2koc with appreciable values of the relativistic M. LAPLACE TRANSFORMATION OF THE
factor FIELD EQUATIONS

ml --(V/C]-1n "In order to solve the field equations (19) and (20)

Exploring this disparity in frequencies we assume we have to specify the unperturbed velocity Vo of
that the electron in the beam. We will use here the re-

(z) - (z)e.(0/), suits of a recent study7 of the unperturbed orbits in
(15) free-dectron lasers with the guide magnetic field.

There it was demonstrated that simple helical tra-
jectories, having the same pitch as the wiggler

with amplitude i and b varying on the scale much magnetic field and described by
slower than that described by the exponential fac-
tor in (15), namely, in orders of magnitude Vo:-w(i'cokoz+',sinkoz)+u-i, (21)

d Ina d Inb <<_. (16) are allowed in magnetic field configuration (1). In
dz' d 7 ¢ Eq. (21),

Accordiny, one can also write Pand A? and u= const,
t h e r e f o e F in t h e f m WU 1 / c n t( 2

P(z) -cV(z)ew koU --flll/ ' -const, (22)

k(z)==n(ze'"', (17) where ftjll=ea1 ,l1 /mc. There exists the possibili-

(, V (z) ,/, ty of several different solutions (22) for u and w
C C C2 (and therefore several different orbits) for a given

set of the values of a,, nlu, ko, and r. As an ex-

where V, n, and f satisfy inequalities similar to ample, Fig. I shows the axial velocity u/c versus
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We A i- -atcd J 3  c2 (28)

I.

OA -VA C' This system of equations can be solved by means
a" of a Laplace transformation. Namely, if one de-

fines

0ga =fo dx ai(z)e- -h, nk= fedz nt Wze-h,
| ffi fo ffif0

°€ (29)

I 0 , where link is negative enough to ensure conver-
4 ". 12 L ,gence, then (26)-(28) transforms into

0Q/c (cm "')

FIG. 1. Steady-state nomalized axial velocity u/c vs ika,-ka,=a(O)+ /C,]2 C
nonnalized axial ianet field 111/c. k-[k +2(wi/c)] 2  c4

(30)
" ll/c for the case ko=3 cm - 1, y=5, and (k+2(o/c)] ownk
li/yc =0.3 cm - . It can be seen in the figure ika2 k+koatk=a2(0)- k~-_k +2(0/c)] 2  C4
that for fll > l* only one solution (branch c) ex-
ists. But when all < l two additional branches (31)

* (A and B) are allowed. It was shown in Ref. 7
that only branches A and C are stable, ainst per- n(
turbstiom, while branch B is unstable and there- i +Jk -
fore cannot be used in applications.

We now proceed to the solution of Eqs. (19) and According to (15), kc/o,koc/o << 1, and therefore
(20) for the fields. First, we use a more natural
coordinate system in which the components of the we can write the field equations in the following
magnetic field (1) and of the unperturbed electron approximate form:
velocity (21) are constants. For this purpose let ika t-kOa ,=a(O) (33)

f1-~sink~z+ icoskoz , ia k'- a ,(4[]ika2k + koaot 2k +a2(0), (34)

E2 = -Cc koZ -isinkoz, (23) 2  2

'63 a~fi* •(35)
WiC

* T7hen
(24) Equations (33)-(35) must be supplemented by

i 9 (Z)=-. e2+0 3I~ , (24) the equation for the electron density perturbation
SVo(Z)zffiw-+U-, (25) nt. This is obtained by taking the Laplace trans-

zformation of the linearized continuity equation (6):

and, on writing 2 (u c k2 o +ck

i=a6 +a 2 - 2 +ai,, u /C u/ )+ku

Eqs. (19) and (20) become __W2 W / )+ k (36)
da! ~l -)k

#J--ka 2 =e -2./es-.." f ) '  It is the factor

- (26)
(26)o/[o(Il-u/c)-ku]>>l

da2 +kOa 1e- /2 ' i[f:z(g)eu('1cd9J which makes the bunching in the electron beam
dz+ a density so important and justifies the transition

(27) from Eq. (10) to Eq. (11).

.o
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IV. MOMENTUM EQUATION

In addition to Eq. (36) for the density one has to use the momentum equation

( (YV7). S. -L ! xc £(z)+(Z,:)J+E(zt) (37)

in order to find v3k in (36) and thus completely define the system of Eqs. (33)-(35). The components of
(37) in the natural coordinate system (23) are

V nV1 v [koV 3 -21 j (V3-V I 3 + V - -(-B2- , (38)

I_ 2 L E (,039)

I+v3- v3"f-V, -V3- -L' B2 -m21 +E (0

Here, energy conservation yields d -
iA. dvk-iA--

SI+ V3 - e (VE,+V2 E2+V 3 E3 ). C Yo

at41 az M2 4 -ok(6

Linearization of (41) gives (41) wher +1 )

I¢ I 1d +kK

(42)

where, similar to (7) and (IS), we defined and

1y=r0+Re[r(z)e-i[1-(&/€ )], 1(43) a =kou /c -flll/Cy1o=flu /cow , (47)

where yo is the unperturbed relativistic factor and b =k0 w/c -f1/cy0 =fllW/¢1cou , (48)
to orders of magnitude d (nr)/dz <</c.
Linearizing Eqs. (38)-(40) and taking the Laplace d =fli/Cyo , (49)

transformation we get g=wa/c+ub/c. (50)

IAvlk= av~k+b 3k+g L In order to eliminate bik and bxt from (44)-(46)
Y o we use Eq. (3), which reduces to

+o I bt= -a 2 + W[ikaa+koatk-a 2(O)], (51)

i&v2ki- -aV 1 5 -iA W C

c To b atk-9-1,ikank-koa~k-a(O)]. (52)

I -Lbk~~k(45) Further simplification is possible by using (33),
-To [C (34), and (36):
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W n i W cally change the value of p, and, for example, to

ba=-azk+w cp a2k i 3,, significantly decrease it. Then, as was demonstrat-

ed recently, s the response of the system to perturb-
(53) ing electromagnetic waves becomes very strong,

b2=a1 . (54) with a consequent increase in the gain of the am.
plifier. This effect of increased response at lower

F'mally the substitution of (53), (54), and (35) in values of/A on stable branches A and C (see Fig. 1)
(44)-(46) gives is clearly seen in solution (58) for vlk.

rk IU Ialk Substitution of vIk from (58) into (57) results in
i&vOk=av+bV3+g YO -l r iRA a2t d[l-(u/c)]A 2  alk

&Z_ A2r2 Y (A 2-&2)(&Z Iq 2) r0

(55). w _._tt [ [ _ } ~t were(61)

iAV2 =--avlk- 'i " ¢0 +  2Iw

-dS +E u ]  (62)2

• z2C4 y0o 3 (56) an

iAv3jt= dvijtiA u - - 2' dT 1 2  
2,22 22 (3

[". Co A o

C- 2yo 22A(57)

V. DISPERSION RELATION

Equations (55) -(57) for vit (U 1,2,3) are nowEaisolved ( -fr we ultiply 1, (5) re noSubstitution of (61) into (34) allows us to write'- easily solved& First, we mnultiply Eq. (57) by iA the field equations (33) and (34) in the form

and eliminate iAu2,, and iAu3A in the resulting
equation and finally, on using Eqs. (56) and (57), e1 al,+el 2a2k=a1 (O), (64)
we find C2lalk+E 22a2U=a2(0), (65)

(is2 _, 2)V1 -k iA I l - whereI ro ro (6IC Jra To e1 ik , (66)

c-- 0  A (58) 2ll
= - k o , (67)c ro Ax 2o w rI -(

where e2 =ko- -i -, (68)
=2C4 o (p

2 _A
2 )(A

2-. i
2 )

,-.-a 2 -bd, (59) 2

and 62=ik +I F • (69)
2c'yo (A1-- 7q)

S=a - a u -b w  =a - w g 2  Note that the resonances of A2=/42 and A2=2 ap-
C c cd ' pear in the present theory very naturally, in con-

trast to the previous results,9 where these physical
=b Wb+E effects were hidden by algebraic complexities of

2 c c C 2c 2d the reduced dielectric tensor.

The frequency p is the natural response frequency Solutions of Eqs. (64) and (65) can be written

to external perturbations.' It also defines the sta- at(O)E-a(0)f 2  (70)
bility of the orbits in the absence of the elec- D

tromagnetic field.7 In the limit of zero axial field,
#=kou, namely, A is in this case the undulation a,2 (71)
frequency of the electron beam in the wiggler. The D
addition of the guide field allows us to parametri- where
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D milj22-E12E2j

*) 2 2W ko -ulc)J4
2-kW2 +ko -  P R + (72)2c ro (A 2-A 2 ) &

In order to find the z dependence of the electric Now let k =ko+x. Assuming again the ex-
field of the wave we take the inverse Laplace istence of (74), we then have
trasformation of (70) and (71). As a preparaion A-P+xu/c <<kou/c, (77)
to this goal (which will be accomplished in Sec.
VI) we shall in this section study the dispersion re- where
lation

D(k)=0, (73) P-- I I+ko- (78)

which defines the poles of the right-hand sides of is the mismatch frquency, characterizing the
(70) and (71). We restrict ourselves to the case differnc between o and a~ [see (751. Thus, in
where the term in (72) proportional to w 2 is much diffs et,

less than k4 Then the zeros of (73) can be found
by using pturbatin analysis. To the lowest ord- _wi k0R
er, namely, for w.-, there ar two roots k -+ko. D_-2ox-k 2 A2
To the next order we seek solution of the form
k -±ko+x, with Ix I <<ko. where we neglected the second term in the large

First comider solutions of the form parentheses in Eq. (72), which is proportional to A.

k - - ko +x. Assume also that we are interested The dispersion relation then becomes
in frequencies w which satisfy

ow F -1 +kou <<kou (74) c

This digpmsion relation can be easily analyzed for

or the case
kou [ A 2 F P>>A2" (81)

o .- =1 +. ykou -wo, (75)
1-u/c C Only this case will be considered in this paper.

* Note that the inequality (81) still allows us to use
that is, in frequencies which are close to the dou- values of p sinSificantly lower, than (kou )2 and
bly Doppler upshifted frequency wo. characteristic thus explore the possibility of an enlarged electron
of free dectron lasers. In thi response to perturbations.' Consistent with (81) we

,.W1 ..-ko-+xu _-2kou/ have

*~ ~ C=1 -1- 0 + -- kuc _ 21 2 1 2 1

and therdore if ;2 < 4(kou/ )2 (this condition ex- 2ro lC2+ &2 C 2ro y U2

ists on branch A in Fig. 1, whe p <kou as well (82)
a on branch C for flll/ro<3kou then (73) yields

.2 N diS-2[ 2 -(u1)]ko(u/c)I and

Xt l6c2yo ki42 A -4k&,2/c 2  E--+ 1 1 1 2 2 (83)
+_ (1 _ I 76)

+ C " Finally the dispersion relation (80) becomes

The solution is real and no instability exists for (A-p)(a2 -- 12 )+a2,q2 .0 (84)

this mode. Moreover, the resonance condition where
A2=4kj2 in (76) cannot be sasily adheve go

that the values of xI are usually so small that they a 2  (85)
hardly affect the vacuum mode at k -ko. 4 3

: i _ , ., , ' " • . , '. i - . . ..-... . ..
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"-' Note, that the form of Eq. (84) is exactly the same 0.20

as the well-known and studied cubic dispersion re-
latiMo for the case without the guide field. In the . /
latter cue b =flllw/ou =0 and / 3-\\

2f I

Properties of the roots of (84) in this caw are well S .I
undatood. Foresample, when j<<ko<<,, two 1,I/II
f r o of (84) are complex in the interval''q" I IO4,. _a<p< ng1/3

-a P< . (87)

'4 go O 110 120 130

At P-0 the unstable roots of (84) have amax- (.c cm'l)
mmn imaginary part and the three roots are ap- FIG. 2. Spatial growth rates link vs normalized fre-
proximately quency adc on branch A (dashed lines) and C (solid

lines) for various values of r =flll/kouro: Curves 1,
x2=-(a 2= 2)'/, -(aQ2 )1/3[1/3 + r= ;2, r=O.5; 3, r=O.8; 4, r=0.9; 5, r-2.0;6,

'"3 X3.4( 0/o, [ 2 - 2 1r=l.5; 7, r=l.3; 8, r=l.26. In these calculations
yo= 5 , k0=3 cm-', 9=0.5, and w2/c2 =2.0 cm-2 .

(88) Note that in all the cases in the figre q2 > 0.
The prea-c of the guide magnetic field adds
several new effects. Here the behavior of the solu-

- ticra of the dispersion relation depends on the teristic to the Naval Research Laboratory VEBA
* branch of the steady-state orbits (branches A and accelerator conditions). It can be seen in the figure

* C in Fig. 1). In order to demonstrate the effect of that the parametric behavior of link on different
the guide field we shall make the comparison sug- branches (A or C) is different. On branch A,
gested in Refs. 8 and 9, between two free-electro bd >0 (since 0 11/7o<kou) and therefore ,i2 on this
lasers identical except that one has an axial guide branch is always larger than ,0 [Eq. (86)]. When
field, while the second does not. In the first laser 2 dcrese% 712 fi Me and so does link. A
the pump magnetic field is reduced so that similar effect of an increased response was also

w %/7o found in the single-particle theory.' Consistent
u kou -11yo (89) with (87) the upper frequency bound of the insta-

bility remains fixed in Fig. 2 and the lower fre-
is the same in both lase. If without the guide quency bound decreases with an increase of 712. In
field wic =g/'o then the latter condition defines contrast, on branch C, bd <0 (l/yO> k0u) and
the value of the pump field for a given value of therefore 92 decreases as t111/7O approaches k0u,
the axial field until ,/2 vanishes at flll/ro= 1.25k0 u. At this

point the coupling between the modes in (84)
fL-5-(kou -f 11/ro). (90) disappears and so does the instability. In order to

U understand this effect let us again consider Eq. (57)
In our comparison the guide field affects only the for v3k which, as we already know, defines the

*-i p naraeter ,2 in (93). Thus, if ,2>0, the use of bunching in the electron density, responsible for
differmt values of the field is equivalent to the use the free-electron-laser instability. The first three
of different beam densities. This means that for terms in this equation are important to the discus-

2 > 0 the general properties of the solutions of (84) sion that follows. The parts of these terms propor-
for k [(87) and (88), for example] remain the same tional to a2, describe (a) the effect of the pondero-
a in the case without the guide field. This effect motive force on the electrons due to the pump
is demonstrated in Fig. 2, where the imaginary field, (b) the relativistic effect of the change of v3
port of the solution of (84) for k is shown as a due to the force a2 in the perpendicular direction,
function of w/c for various values of the guide and (c) the ponderomotive force of the electromag-
field in a sample case ,=5, ko=3 cm -n1, =0.5, netic wave. It can be checked that these three fac-

- a,2/C 2-2 cm- ' (this set of parameters is charac- tors lead to the appearance of the quantity
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I/ e +bd/,u2 in the expression (82) for 72. On value for large enough values of P. This property
branch C the ponderomotive forces act in opposite of the solution can be seen directly from the
directions. This leads to a competition and to the dispersion relation (84) which at large P is approxi-
possibility that n2 vanishes. By simple algebra, we mately
find that this happens when

010o =kou ( 1+42) (91) The solutions
To

or in our sample case when 11 1o/yo=1.25kou. A=1+ku =+ 172 1+- /

This is consistent with the results in Fig. 2. At I
this point 2=O on branch C.

A new and important effect appears if one become purely imagina-y for large e(ough when
further decreases 11/ ro on branch C, thus forcing ,7 <0 and link approaches .( , )if.
1l2 to become negative. The formulas for the roots
of a cubic then indicate that the region of 9 where
(84) has complex roots is now defined by VI. INVERSION OF LAPLACE

222 1/3 TRANSFORMATION

S74 , (92) The z dependence of the amplitude of the trans-
verse electric field of the wave in the amplifier can

;< -a2 , (93) be found on applying the inverse Laplace transfor-
mation to Eqs. (70) and (71). We write the result-which is the region on the/P axis complementary ing expressions in the form

to the interval defined in (87). Thus the possibility

of getting negative values of q2 on branch C allows al(z)=-[a2(O)+il(O)IA,(z)+a(O)Cl(z), (94)
one to extend the range of the instability to both
lower and higher frequencies. This effect for our a2(z)=i[a2(0)+ia,(O)]A2(z)+a 2 (0)C2(z), (95)
sample case is demonstrated in Fig. 3, where Imk
on branch C is plotted versus ao/c for several where
values of In,, <1,. Note that in both regions (92) A (Z) f 0±12 egs
and (93) link approaches approximately the same 2v D (96)

Az(z)= -L f d021 ea,
U.22

.2 and33. Cl 1.= f dA E' +i12 ea=

2vC (z)= 2 d D (97)
22 C2(z)-- f dA el 1-1621 eL"

S0.. //and the integration in (96) and (97) is carried out

040. 2 in the upper half of the comples plane (Iink >0)
. and the path of the integration is taken to be above

all possible poles of corresponding integrands. We
will concentrate now on evaluation of the integrals
At, A,2 C1, and C2 in terms of the residues of the

(m') integrands.
,c (cm') The poles of the integrands in (96) and (97) are

FIG. 3. Spatial growth rates lik vs w / on brnb defined by the roots of the dispersion relation
C in the sample case (o=5, ko-3 cin- ', g-0.5, D =0. It was shown in Sec. V that four such roots
,2/C2=2 cm-) in the regime fill < fllo(1(2 <0). Each are of interest. One of these roots k I ko +xI
curve corresponds to different value of r =fll,/kouyo: is located near the point -k 0 . The remaining
Curves 1, r -1.2; 2, 1.15; 3, r 1l., three roots k,=ko+x (i=2,3,4) are all in the
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nighbr-hood of the point ko, so that they are well where
separated from k,. Consider first the residues as- AO+xu/c (i=2,3,4)
s.eiated with the roots k2,4. In this case in the
neighborhood of thes roots we write k =ko+x, are the roots of the cubic (84). Thus

with Ix I <<ko and thus [see (66)-(69), (82), and

E12  E21  u (A 2 - 2 )
fn=iko+iX , (98) D D 2c(A--A2)(A-A 3 )(A-A 4 )

f12--ko (99) (103)

" 2 1 ko, (100) E22"iE12  iXu (A 2 -912) + 2i2 2 C

Epuiko+iX +i 2 72) (101) D 2Ck(A-A2)(A-A3)(A--A4)

()hav do the deri(104)
Hem we have neglected additional term in e2 l (see EO1-iE 21  ixu (A2 _1 2 )(68)] as we also have done in the derivation of the D- = cOA A)A_3(-
dispersio relation (84). The determinant D then

becomes (see Eq. (84)1: (105)

2koc
D2o- 2,[(A_)(A2_,q2)+a 27j2] On employing the equality

U(A-- _) IXjU (A2-12)= -a 2712c (i =2,3,4)
2koc

~2 -o) (A- 2 X 3)(A- ) , we now find the integrals associated with the
(102) modes k2 ,k3 ,k 4 :

A (2z4)nS = A(2..4)(Z)

ia272 X8 - + e X3+ e X2eI$t X 2 u(A2 -A 3 )(A 2 -At) X 3 u(A3_A 2 )(A 3 -&) X 4 U(A 4 -A 2 )(A4-A 3 ) e

(106)

a 2 712 k2 s _________ e 'X3iko0.3.4) -' 1 '4 (z) =+ I+ + Je2 2k0  (A2 -A 3)(A2-A. 4 1 (A3 -A 2 )(A3 -A 4 ) (A4 -A 2 )(A4-A3)

(107)

Since j xJ << ko, the contribution the integrals C, and C2 make in Eqs. (94) and (95) can be neglected and
therefore the part of the solution for aI(z) and a 2 (z) associated with the modes k2, k 3, and k 4 can be writ-
ten

'" (4)(._= _ (2,4) = a1 (0)-7ia2(0) •2  + e

2 2 P2(P-P3)(P2-P4) P3(P3 -P 2 )(P3 -P 4 )

e I ik4x

P4(P4-P 2)(P4-P 3) e  (108)

where P, -xju /c.
In order to find the contribution of the remaining mode k -I ko+x I one can use the initial conditions,

rather than find the integrals (96) and (97) directly. Namely, on writinig

a,(z)=Qen&.n+a (I2
4 )(z), (109)

a2(z)=9 2e +a2 2,3 "(z),

we find
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Q, =a (0)-a3' 0=a,(0)+ a0-2(0 a271 H,
2 (11 0)

a 2(O)+iat(0 2  ,
Q2=a2(O)+ 2

where

1 1 1 1
P2(P2-P 3XP2-P 4) 

+ P3(P3-P 2)(P3-P 4) P4(P4-P 2)(P4-P 3) P2P3P4

On the other hand from (102),

P2P 3P4=( &2-/)(A -)(A 4 -)-- a272, (112)

and therefore

a1 (0)+ia2(O)
Q =iQ2= 2 (113)

Thus, finally, the full solutions for the amplitudes are

al(z)= -ia(z)--I[a(O)+ia 2 (0)]e- (kO- 1)

- .[aj(O)-ia2 (0)]12,7 2 eLV28 e b2Z

P2(P2 -P 3 )(P2 -P4) P3(P3 -P 2 )(P3 -P4)

+ P4(P4-P2)(4-P3) e 
"  (114)

* Assume now that initially

a1(0)+ia2(0)=0, (115)

namely, no electromagnetic energy is stored in the k1 mode. Then, on using (111) and (112) we write (114)
as

a(z)-- a 2(z)=a,(0) f 1 122 1  I +eX2 
I

P2(P2 -P3)(P2 -P 4) 
+ P3(P3 -P 2)(P3 -P 4)

+ -e IXeUioZ.(16+ P4(P4-P 2)(P4-P 3 ) 11 116)

In several limiting cases this expression can be simplified and reduced to already familiar results.
(a) In the first example let Ixiz I << I. In this case we expand the exponentials in 116) in powers ofxjz,

by using

O, n =0
2p + P4()+ o, n=1 (117)(P2-P3XP2-P4) +(P3 -P2)(P3-LP4) + (P4 - P2(4 - P3) 1, =qP I1, n=2

we obtain the approximation
I C3G2?] 2Z3 1i~

a,(z)=-ia2 (z)=a,(0) 1+1 6u 3 2Z e (118)

A similar result was obtained in Ref. 10 for the case without the guide field. In contrast to Ref. 10, howev-
er, we did not assume conditions of maximum spatial growth in the deriviation of (118).

(b) In the second example we consider the case when one of the roots of (84), say root A2, is close to
(namely, 1 &2 - J «Pf ) and the two remaining roots satisfy I A31, I A41 < <,6. These conditions are



2704 L FRIEDLAND AND A. FRUCHTMAN 25

fulfilled when

1 >max f1 (119)

and then

P2 =x2 /c=A2-g - -n2 (120)

P3 4 -X 3,4 UA =1&3,4-P= -P± (u2j11 +.~ (121)

Thus, in (116),

P 2(P 2 -P 3 )(P2 -P 4 )--a 2,q 2
, (122)

P 3(P 3 -P 2 )(P 3 -P 4 )=20& 3 , (123)

P4(P4 -P 2 )(P4 -P3)=-2PA 3. (124)

Thus, for I I > 1, we rewrite Eq. (116) in the approximate form

Theroe, on defining the power gain as

lal(z)1 2+ 1a2(z 12  aI(z)a()
-1- -1+ (126)j1) aj(011) Ia2(0)12 a I MOa( --1 126

we find from (125) that

G(z) _2 Z sin(cjz/u)=2 c3a2_3 z sin(cz/u)(127)
(cjz/u)2

The same formula for the pm was derived in the greatly extended. In Fig. 5 we present the z depen-
single particle, small gain theory.! Thus the dence of the gain in the amplifier on branch C in
single-particle theory corresponds to the region in our sample case. The values of r =illl/kouyo
parameter space defined by inequality (119), which =1.1 at a/c=145 cm - ' (curve 1 in the figure)
was used in reducing Eq. (127). and r=2.0 at w/c =105, 112, and 125 cm - 1

We finally present a numerical example of the (curves 2a, 2b, and 2c) were again used in the cal-
application of Eq. (116) in our sample case. Figure L. iations. The oscillations in G at short distances
4 shows the frequency dependence of the power are due to the spatial interference of the modes in
gain at 25 wiggler periods for three values of the amplifier. It is seen that only at relatively
r=fl/kouo-=0.8 (branch A), 1.1 and 2.0 (branch large distances does the spatial instability take over
C). It follows from (91) that for r =0.8 and 2, and the growth of the gain becomes exponential.
72 > 0, while fo r - 1.1, q2 < 0. It can be seen in
the figure that the frequency dependence of G for VII. CONCLUSIONS
positive and negative values of q2 is completely
different which reflects different type of depen- We have the following conclusions.
dence of link on w (see Figs. 2 and 3). If for (1) The free-electron-laser amplifier with a guide
12 > 0 we see a relatively narrow frequency range magnetic field was analyzed, using the cold fluid

for significant gain, then for ,2 <0 this range is description of the electron beam.
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_ _ _ and one of them may be spatially unstable. The
competition between these three modes defines
various regimes of operation of the amplifier.

(3) A simple disersion relation fow -the-raupIdd
modes was derived and analyzed. The form of the
dispersion relation is similar to the well-known cu-

I \bic dispersion relation for the case without the
I 2guide field, which makes the mode stability

p. i/'\ \analysis easier.
S/ (4) The mode analysis gives the basis for the

/, *~~3 construction of the actual electromnagnetic fields
along the interaction region in the amplifier. Vari-

S -ous limiting cases were considered and agreed with
I Ithe results of existing theories. The power gain
I versus the length of the interaction region was
ii found numerically in a sample case. The calcula-
___ __tions demonstrated the effect of spatial interference

80 c0 ,20 ,,0 M of the modes at shorter interaction lengths and
c./c (cm " )

FIG. 4. Frequency dependence of the power gain in transition to exponentially growing gain at dis-
the amplifier at the distance of 25 wiggler periods in the tances when the spatial instability becomes impor-

sample case. Different curves correspond to different tant.

values r =fl/kouy0o: Curves l, r=0.8 (branch A); 2, (5) The main effects due to the presence of the

r =2.0 (branch C. 712>0); 3, r=l.l (branch C, 12<0). guide field can be summarized as follows:

(i) Two types of helical orbits of the electrons can
(2) It was shown that in a large region of param- be used in the amplifier with the guide field

eters space, similar to the case without the guide (branches A and C in Fig. 1) for given values of
field, the amplified electromagnetic wave splits ro, k0 , and Il1 .
into four modes propagating in the direction of the
electron beam. Three of the modes are coupled (ii) On branch A the response of the electrons to

electromagnetic perturbation and therefore also the7 spatial instability can be enhanced if the natural
I i'i response frequency (see Sec. IV) of the electrons

I becomes small. This effect is equivalent to the in-
2bi crease of the density of the electron beam.

I I (iii) On branch C there exists an axial field al1o
;I [see Eq. (91)] for which the coupling between the
I ,modes disappears as well as the spatial instability.

IThis effect is the result of the competition between
the ponderomotive forces on the electron due to the

" / pump and electromagnetic waves. For fill > il oI 2a/ the parametric behavior of the modes is similar to
- // ///J 2 that on branch A. If lll <lll, however, the fre-

.- /-/, quency range of the instability extends significantly
- /// -,I to both lower and higher frequencies in contrast to

branch A (and branch C for all > fl110 ) where this
0 4 s , 6 2 24 n 2s range is relatively small and usually has an upper

FIG. 5. Power gain in the amplifier vs the length of limit close to wo0 =2ko0c.
the interaction region measured in numbers of wiggler
periods for the parameters of the sample case: Curves (iv) The effects described in (i)-(iii) can be
I, ll/0= I Ikou, 'i/c = 145 cm-'; 2, fl1' 1/y 0=2kou, a. achieved for given helical orbits in the presence of

/= 105 cm', b, w/c = 112 cm-, c, wc/c 125 the guide field at much lower values of the pump
cm-'. field.
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Nonlinear theory of the free-electron laser with an axial magnetic field
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A nonlinear, one-dimensional formulation of the free-electron laser with an axial mag-
netic field is presented. The problem is formulated in the cold-fluid approximation for the
electron beam, and is reduced to a system of the first-order, nonlinear, coupled, ordinary

* differential equations. Nonlinear effects due to the departure of the electrons in the beam
from the conventional helical orbits are considered and illustrated in numerical examples.
The formalism also allows the study of the initial phase of saturation in the laser. In the
presence of the axial magnetic field the saturation is shown to be mainly due to the
development of undesirable large radial excursion of the electron trajectories.

I. INTRODUCTION ample, under certain conditions, the frequency
range of the free-electron laser instability may be

Free-electron lasers operating in the Raman re- substantially extended to both lower and higher fre-
gime are believed to be promising sources of intense quencies. The effect was explained in Ref. 10 by
submillimeter coherent radiation. This prediction the presence of an unstable beam mode in the sys-
was tested in experiments at the Navy Research tern.
Laboratory (NRL) and Columbia University,' -4 All this complex behavior, induced by the pres-
and recently with improved electron beam quality ence of the guide field in the system, has been stud-
at NRL.5 ,' 6 The Raman free-electron lasers operate ied in Refs. 7-10 on the basis of linearized
with relatively low electron energies (relativistic theories. The linearization procedure itself was
y r< 10) and high beam currents (1> 1 kA). These based on two assumptions. First of all it was as-
experimental conditions, especially the high beam sumed that the perturbing electromagnetic fields
currents, necessarily require the presence of an axial were so weak that all the induced nonlinear effects
guide magnetic field, in addition to the magnetic were small and could be neglected. Second, the as-
wiggler, conventionally used in free-electron laser sumption was made that the unperturbed electron
experiments. As was demonstrated in recent beam propagated on one of the helical orbits

• theoretical studies by Friedland et al., 7- 0 the sim- [branches A or C (Refs. 8-10)] and the linearized
pie addition of the guide field results in many non- perturbation analysis was performed around these
trivial consequences. For example, in the presence steady-state trajectories. Both these assumptions
of the guide field electron trajectories may become impose serious limitations on the theory. Indeed,
very complex, and, only for certain combinations of the linear theories predicted the possibility of very
injection conditions on the electron beam, the elec- high gains, so that the nonlinear electromagnetic ef-
trons will move on simple helical orbits. 7 More- fect might become important and lead to saturation
over, even on the helical orbits, in combined guide after the radiation traversed a relatively short dis-
and wiggler magnetic fields, the beam response to tance. Moreover, as was already mentioned, the
perturbations is characterized by an additional helical orbits, in the presence of the guide magnetic
response frequency, which may be varied without field, are exceptions rather than the rule. In case of
changing the helical orbit itself. It was shown in a departure of the beam from the helical orbits, the
the single-particle theory of the laser that the reso- electron dynamics becomes intrinsically nonlinear,
nance between this natural response frequency and which may play an important role in realistic sys-
the frequency of a driving electromagnetic wave can tems even when the radiation fields are weak.
be exploited to provide higher gain in the system. In this paper we present a nonlinear theory of the
These predictions were confirmed by the self- free-electron laser with the guide field and consider
consistent collective theories9" ° which also demon- both aforementioned nonlinear effects. A nonlinear

'S strated the presence of additional effects. For ex- theory for the laser without the guide field was

26 2778 ® 1982 The American Physical Society
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given by Sprangle et al.11'12 Their approach was aB.
primarily designed to study saturation effects due to -- 0 (6)
particle trapping in the ponderomotive potential of
the wave and the wiggler field. The trapping occurs Here the electron beam propagates in the z direction
on a scale length comparable to the wavelength of and is described in the cold-fluid approximation.
the electromagnetic wave. The number of test par- The electron beam density N and velocity V, and
ticles, separated initially by distances short com- the electromagnetic fields E and B, in Eqs. (1)-(6)
pared to the period of the wave, were necessary to are assumed to depend only on z and time, and the
model the saturation effects. Here we present a subscript I describes directions perpendicular to the
more simple approach based on the cold-fluid z axis. Moreover, we are interested in solutions of
model of the electron beam. The method requires (1)-(6) periodic in time with period 2r/w and con.
one to follow only one test particle along the laser. sequently subtract off the time-averaged parts
Although the trapping effect, in principle, cannot -2r/ N
be described by our formalism, its use is very con- (NV) 2= NV dt
venient in describing all the effects occurring on the
scale length long compared to the wavelength. We (N)av -,o Ndt (7)
will show that in the presence of the guide field, 21r a

both the departure from the helical orbits and the of the sources in Eqs. (1), (3), and (5).
initial saturation phase belong to this class of slowly The periodicity condition allows one to expand
varying effects, and thus can be treated within the the electromagnetic fields in the Fourier series
cold-fluid approximation.

The scope of the paper is as follows. In Sec. II E(z,t)= Kwe -

we derive a reduced system of equations for the am- 8=
plitude of the radiation field. In Sec. III we consid-
er the momentum equation defining the sources in = j Re[En(z)e-"I,
the field equations. A complete set of first-order, X-1
coupled, nonlinear ordinary differential equations (8)
governing our system will be presented at the end of B(z,t)= G Re[B(z)e-, ].
Sec. III. This set of equations, in Sec. IV, will form
a basis for the discussion of possible nonlinear ef- R=fects in the system, which will be illustrated by nu- We assume now that only the n = I component in
merical examples. (8) is excited, which is the usual case in free-electron

lasers operating in the linear regime. The coupling
to higher harmonics is a second-order nonlinear ef-

II. FIELD EQUATIONS fect, as can be seen from Eqs. (1) and (3), and we
will neglect this effect in the present work. Thus

Consider a one-dimensional model of a free- we write
electron laser, where the electromagnetic field is Kz,t)=Re[t(z)e-Uaj,
described by the Maxwell equations (9)P a~l a~lB(z,t)=Re[Bj(z)e- "

*ce5 X- = - -4ire (NV- (N 1 )v), and accordingly

(I) N(z,t)---No(z) +Re[Nt (z)e-/],10

aE aB V(zt)=Vo(z)+Re[V(z)e-,] .a cj , x.---- (2)z at We also assume here that o is much larger than

aE, various characteristic frequencies of the electron
t 4re (NV - (NV , (3) beam (such as the plasma frequency cop, the undula-

tion frequency, the natural response frequency,'
-=0, (4) etc.). Then we can separate "fast" spatial oscilla-
at tions in (9) and (10) from the slow ones which are

dE, imposed by the presence of the electron beam.
.= -41re(N - (N)(5)), Namely, we write
oz
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-. ic 2  On expressing v2 via (17), and substituting it into
S C- z)et , (16) we have

mC
2

e (111 +a

N (z)= '-- v2(ze" "' , ) cc dzC

41tre2 'Note that in (18)

•where in order of magnitude for X --a~bv2,u, c c c 2 7.

dh J<<*__ (12) where y, is the relativistic factor associated with the
c axial velocity of the electron beam. Therefore for

ao/c .2 ko, which is characteristic of free-electron

Note that at this point we have excluded from the lasers with a pitch is2i/k0 , we have

* analysis all waves with wave vectors in the direction

opposite to the direction of propagation of the elec- W IinE =40
tron beam. These backward waves can only arise c
from noise and their amplitudes are assumed to be
negligible in comparison with the main amplified and thus (18) indeed describes variation of a,(z) on

signal which propagates in the direction of the a scale long compared with the fast oscillations of
beam. Although in some cases the backward waves the electromagnetic field.

are absolutely unstable 13 they are characterized in Equation (17) can be also used to eliminate v2

such cases by long wavelengths and therefore can be from Eq. (15), which then becomes

easily suppressed by appropriate construction of the di 1  _ 2

amplifier Cavity.'13  d-i '2 V 01 (I,2,+ i.c 2a,)
We now proceed to the derivation of the approxi- d. 2c3 V0, "

mate equations, describing the slowly varying am- (19)
plitudes of the electromagnetic fields. First, we
combine (1) and (2) to give the wave equation The form of the operator in the square brackets

in Eq. (18) suggests the use of an independent vari-
- at .A!r( ( able other than z, namely, we introduce variable ra2 :. 1 2E 4re (NV,) (13)

az2  C1 at2  C2 a via

Substituting (9) and (10) into (13), applying defini- dz = V(Z) (20)

tions (11), and neglecting the higher-frequency har- dr

monics, we get Then for any quantity of the form

d 2 i, w di1  W 2- (21
-= -(ov+Vov). (14) X(z,r) =X(z)e( " cxc) (21)

dz2  C we have

Finally, exploiting the assumption of the weakness
of the z dependence of dil/dz, we neglect the I dX + a a
second-order derivative in Eq. (14) and rewrite it in c C [a + V,

the approximate form [a, 1 I Va.

* d11  = - . (15) c

dz Lc3 1w V

In the notation of (11), Eq. (5) '.ecomes + V, _jx . (22)

do, V2
+, i. !"(16) Therefore (18) can be rewritten ast ac $-- -. 2(16)w'

and (3) can be written as cd = - (23)

-i a,- (0,2 v, + VoV2)-0. (17) In addition to simplifying the notation, r has an im-
c c
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portant physical interpretation: It measures the III. MOMENTUM EQUATION
time along the trajectory were the electron to move Consider the momentum equation describing the
with velocity Vo(z). As we will show in the next electron beam
section, convective derivatives similar to d/dr in
Eq. (23) appear naturally in the momentum equa- f V _ 1y)= e
tion for the electron beam. Thus, in the following + + E x(+4)

we will adopt r as the independent variable in the (25)
problem. Consistent with this approach we alsorerteE.-1)inte omwhere the static magnetic field is given byl rewrite Eq. (19) in the form

= (z) -e$1 (z)9 1 +e'.V (26)'.-" I d- .c a

c --r C a with the vector

iP(z)= -(e. coskoz + , sinkoz) (27)

+ -- [raw v-Voxw +.ac )]. representing the direction of the helical field on the
axis of a magnetic wiggler commonly used in

(24) theories of free-electron lasers. Substituting (9) and
(10) into (25), using definitions (11), and retaining

% Equations (23) and (24) are the desired equations for only the first-tirme harmonic in the resulting equa-
the electromagnetic field. tion, we have

fdV 0  (0oia vo~
r +V +V- roVo)+V +--vVg=-c 2 i+ X Ivx (28)

rot(vz19o+ dz dz 2 cICJ

Here we defimed fl =e a/mc,

r=ro+ Re[g(z)e (ICO/XZ - )]  (29)

and ("')=[-io(1- Vc/c)+Vodl/dz](."). In the last term on the left-hand side of Eq. (28), which is the
only nonlinear term of the third order, in view of (12), we have neglected dV/dz and dg/dz compared with
i((a/c)V and i(a/c)g, respectively. An equation for the quantity g in (28) is obtained from the energy balance

"W ~ I at aE (30)

which yields

dro (1.. = -,- - o- a •(31)

Also, it follows from (2), that

bL= -X i-i+ (32)

Then in (28)

I I(I0 d CI

The appearance of the dotted quantities in Eqs. (28), (31), and (33) suggests that one change from the vari-
able z in these equations to the time r along the steady (time-independent) component of the electron motion
in the z direction [see the definition in Eq. (20)]. Then, on using notation (21), observing that
Xexp[i(WO/c)(z -- t)]=dX/d" and VodX/dz=dX/d-r, and substituting (33) into (28) we get
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dV*. -_ - C gcdil _2-, V0p

F. d - dVo .. , do ioi..,(7p;d- (Y V~lg - -  1 2:" g  (34)

where V' has components F,, F., and F, etc., and where according to (31)

0 FT dro-Vo'f (35)
dr Vo, "

Because of the form of the helical part of the magnetostatic field . it is convenient in the following to in-
troduce a rotating coordinate system defined by the base vectors

f, =-& sinkoz +t, coakoz, f' ,

iP3 =f:. -(36)

Then, finally, components in Eqs. (23), (24), (34), and (35) become

- =koV0 3 f 2 - I- --- I a, +V03 ?- OI Von((4i, +iW+ i 3)J , (37)
W dr I C]I 2d3

=r f -V- WI 2112+ 2d[a,, V02 F2 - V02(Oii3 +F3a T)], (38)

(39)

o-0--. = dm n -- -C 3 1 F)-okoVoVol
r r dr 0) d-r dj r0

- _dVo, .d. . I _(40
-- dV03 FV ±r , (40)-g Id-T € vo 0 3j V+ -

[d c82- +~k+C dF3 d dV0 2 .. ,V

-=(c- 1-' - V 3 drv=-F -c +-V I , (42)

rudr 03 J Cajj- ---
-dro +j

V= V0111 - V021T- V°3IT3 F3 d" " (43)

Equations (32)-(43) describe the nonlinear evolu- which can be solved numerically with an appropri-
tion of the time-dependent parts of various quanti- ate set of initial conditions. In order to do so, we
ties characterizing the free-electron laser. These still have to. complete this system by the equations
equations are combined here into a system of first- for the steady (time-independent) parts of various
order, nonlinear, coupled differential equations, quantities (o,yoVo). One such equation is ob-
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FIG. 1. Dependence of the absolute value of the per- FIG. 2. Spatial growth rates (link) vs ow/c in the linear
pendicular component of the electric field on z. A: regimes in the sample case. Solid and dashed lines are
r=0.868 (branch A) cw/c=75 cm - '. B: r=1.077 the results of the linear theory (Ref. 9) for r=O.868 and

" (branch 0, wI/c =75 cm - . C: r=1.077, wI/c =130 r=1.077, respectively. The dots are the results of the
cm-1. In all the examples o,,2/c-=0.5 cm -2 , yo=3, present calculations., e =6 cm - ' , and g =0.5.

tained from the continuity equation d-o ()

aN a dr-c
- - (NV,)=o, (44)(I-a ('2'3) +. (48)

* the time-independent part of which is

_d 2  And, finally, an equation for V0 is obtained by con-
)=0 sidering the steady part of the momentum equation

(25), which can be written in components asor, on using (17)
d 2JM kV3 2_ - - _I0ov3= (iVo3)I.o 1 d ToI ro J o To

I +-'-- 1 (f, '3 + +ac2(',ff )-, [(49)
• 03 (46) d V02 (49)

where we have used the notations . Vol koV03 + (50)

()+ Re~a *P),do
(a,)- 1 (47) d = Vol ilol ,+ 3 (51)
(a) -L Im(af) dr o T

Silhilarly to (45) the steady part of (30) gives where

~Vol ±r + L(-o( 3i -) +Vol (F 3 )_)+k 0 ( V02 (fifr)+-+-V03 (0'2 )+ + 0(r 2f 3 ) +)+c(V 3 1)+

(52)

A 2 -V2 -+-c(ro(iF 3 2 )+Vo 2(F3i)-)_ko(Vot(iT 3i + + Vo3(i'y)++To( 3T F)+)+c(3f2 ) +
dr c

(53)

dr c
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to

-2 a2 0. -

0.6 -
-4 A

0.4-

_.a 5 0.2 /

0 0

-0 C -0.2

-12 -0.4-E l I I I I I I I
0 10 20 30 40 so -0.6

z(cm) 26 30 34 38 42 46 50

FIG. 3. Effects of the departure from the steady-state i (c)
trajectories on the gain in the amplifier in the sample FIG. 5. z dependence of real parts of a2 (the solid line)
case All the curves correspond to initial value of and a3 (the dashed line) in the saturation phase. The
r=0.868andwn/c=75cm- t . A: 0=0. B: 0=0.1. C: parametersaren/c=75cm-',*=O,r=0.868.
,=0.3.

As a first application we will assume that as in
IV. NUMERICAL EXAMPLES Ref. 9 the electron beam enters the interaction re-

gion on one of the two possible "steady-state" heli-
In the following numerical applications we will cal orbits (branches A and C of Ref. 9). These two

consider the case where k0 =6 cm - t and initially regimes are characterized in the linear theory by
the beam is characterized by o- 3 and nI/c- 0.5 different ranges of parameter r =l 11 1/yOkOVO3 (on

* 11-2. This sample case has been studied in the re- branch A, r < 1, while on branch C, r > l). In these
cent linear theory of the laser,9 and therefore pro- calculations we will change r by varying l1 . We
vides a convenient example of our nonlinear formu- will simultaneously adjust f 1i so that in all the ex-
lation. amples, initially at r=O, we will have V0 c =g/ro

with g'=0.5. In Fig. I we present some typical re-
suits of the nonlinear calculations of the evolution

0.10 1.0 of the absolute value of the perpendicular com-
ponent of the electric field i iJ. I along the amplif-

V03 /c ier. The cases r =0.868 (branch A) with ni/c =75
0.061 0.3 cm - ' and r=1.077 (branch C) with (o/c=75

t (CM) V0 3 /c cm - 1, 130 cm - 1 are shown. It can be seen in the

0.06 0.6 figure that the evolution of the electromagnetic sig-
*nal in the device passes through the qualitatively

different stages. At short distances the interference
0.04 0.4 of the linear modes in the system leads to a non-

i - trivial occasionally oscillatory dependence of I i 

0.02 0.2 on z. At longer distances the electromagnetic gain
in the amplifier is linear and the corresponding

100 *slopes of the curves in Fig. 1 are determined by the
0 10 20 30 40 so maximum spatial growth rate (Ink) in the system

I (cm) as described in the linear theory. Finally, when the

FIG. 4. Axial, time-independent component of the intensity of the wave becomes large enough, the
velocity V03 and electron displacement R vs z in the sam- nonlinear effects start playing a major role and the
pie case. Initially (at z =0) in the figure r =0.868 and wave enters the saturation stage. We will discuss

/c =75 cm - . The dashed lines represent the case 0=0 the saturation effects in our system later in this sec-
(steady-state trajectories) and the solid lines correspond to tion and now proceed with a more detailed compar-
0-0.3. ison with the results of the linear theory. Figure 2
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.0 ,(solid lines). For 0=0.3 we see the development of
Vo2 / o., Vo3 /- R(cm oscillations in V03 with the natural response fre-
V02/c quency7 and period of - 12 cm. The same frequen-

0.6 - 0cy is present in the dependence on z of the radical
displacement, where we also see additional rapid os-

"0.4 0.16 cillations with the period of the helical field (-1
-0.2 V02 / cm). Note that with an increase of 0 the radial dis-

0.12 placements of the trajectories increase, which may
lead to the violation of the conventional assumption

0.0 in the theory that the beam is close to the axis of
the magnetic wiggler. i-creased radial excursions

-0.4 -- of the beam require inclusion of the radial com-
-0.6 0_o ponent of the magnetic field of the wiggler and may

34 36 38 40 42 44 46 48 50 result in additional destruction of the gain.
z (cm) Finally, we discuss nonlinear saturation effects

FIG. 6. Time-independent components Vo2, Vo3, and due to the radiation field itself. In the following ex-
radial displacement R vs z in the saturation phase in the ample we assume that the beam initially is on
amplifier. The curves cor~espond to the case (o/c =75 branch A with r =0.868. The z dependence of the
cm-i, 0, r =0.868. real parts of a2 and a 3 for this case in the satura-

tion phase, is shown in Fig. 5. The reason for the
saturation in its initial stage becomes clear from

frequency depen- Fig. 6, where the z dependence of V03, V02, and R is
presnts ucha coparson.Theshown at saturation distances. We see in this figure

dence of the linear spatial growth rates on branches thatnthe saturation ocsan ly de to the deu-- A r =.868andC~r 1.77) shon i thi fiure that the saturation occurs mainly due to the des-
A (r =0. 868) and C (r = 1.077), shown in this figure truction of the electron trajectory. The beam slows
has been obtained from the results similar to those don, th latn nectry te for the
shown in Fig. 1. An excellent agreement with the down, thus violating necessary conditions for the
linear theory9 is obvious. instability. In addition the radial excursions of the

Next we proceed to the study of nonlinear effects. trajectories increase significantly.

First consider the effects due to the departure of the It can be seen in Fig. 5 that at the late phase of
beam from the saturation, the amplitude of the electromagnetic

bafrmthe steady-state branches A and C. This filstrsoilangwhicesngrqucys
. situation is likely t occur in experiments as a result field starts oscillating with increasing frequency as z

of an inaccurate rjignment of the direction of injec- increases. When the wavelength of these oscilla-
tions becomes comparable to the wavelength of the

tion of the beam into the amplifier. In Fig. 3 we
demonstrate the effects on the gain of the departure wave (-0.08 cm in the example in Fig. 5), inequali-

-. *. from the helical orbits. We present the case of ty (12) is violated and our formulation becomes in-
-al/c =75 m - , for which the gain on branches A valid for larger values of z. In Fig. 5 this happens

and C is maximum, and assume that at r=O, at z-49 cm. At this stage, new nonlinear effects

Vor =#/o (on the helical trajectories 0=0) and occurring on a scale comparable with the wave-

V so that as before length of the electromagnetic wave may take place.
SVo1  .o / The three curves in the figure One such effect is the trapping of the electrons in a

correspond to r o0.868 and 4=0,0.1,0.3. strong ponderomotive potential. Our method can-

Note that even for #=0.3 the reduction of the gain not describe such effects and a more complicated
is not very significant, although the z dependence of approach, similar to that used in Refs. I I and 12

the gain becomes more complex. Note also that in must be applied at this stage. Nevertheless, the
the examples in Fig. 3 the intensity of the radiation present theory is still valid at the onset of the sa-

* field is relatively weak and the nonlinear depen- turation and describes its initial phase.

dence of the gain is a result of the nonlinear dynam- ACKNOWLEDGMENTS
ics of the beam in combined helical pump and axial
guide magnetic fields. We demonstrate this non- This work was supported in'part by the Office of
linear behavior in Fig. 4, where the time-averaged Naval Research and by the National Science Foun-
axial velocity V03 and radial displacement R of a dation. The authors are also grateful to Mr. A.
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Wiggler-free free electron waveguide laser in a uniform axial magnetic field:
Single particle treatment

A. Fruchtman
Center for Plasma Physic. Racah Institute of Physics, Hebrew University of Jerusalem Jerusalem Israel
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A wiggler-free free electron laser operating in a waveguide is analyzed by using a single particle
treatment. The use of either a TE or a TM mode is shown to enhance the gain for a resonant
frequency much higher than the cyclotron frequency. It is demonstrated that a source of a
submillimeter radiation, based on this analysis, may have output power comparable to that of a
wiggler-type free electron laser.

0 PACS numbers: 41.70. + t, 52.25.Ps, 42.55. - f, 41.80.Dd

I. INTRODUCTION single-particle model are not easily identified in their treat-

Considerable effort has been made in recent years to ment. Moreover for practical devices the applicability of the
develop sources of coherent radiation, using relativistic elec- thin beam model may be limited. The main role of this paper

* tron beams moving along helical trajectories. The radiation is to study the influence of the waveguide modes on the inter-
wavelength in these so-called "free electron lasers" (FELS) is action within the framework of a single-particle approach.
the Doppler-shifted pitch of the electron motion LA ,o/2y 2  The two aforementioned sources of bunching which cancel
where A. is the electron pitch, = [I - (v/c) 2] - 

1/
2 is the that part of the gain proportional to L 3 will be shown here

relativistic factor, and v is the velocity of the beam. One class not to do so when, as in the case of waveguide modes, propa-
of such devices is the wiggler-type free electron laser,' where gation is not exactly parallel to the magnetic field. There is a
a periodic magnetic structure forces the electrons into hell- residual term proportional to L , similar to the case of a
cal motion. Most of the experimental and theoretical re- wiggler-type free electron laser. Thus the use of waveguide
search up to now has been aimed at this type of FEL. modes may enhance the gain. This enhanced gain mecha-

Recently interest arose in a second class of FEL, the nism can be exploited for the design of a practical device for
"wiggler-free free electron lasers." Here the electrons move submillimeter wave generation or amplification within the
on helical orbits in a simple uniform magnetic field (which is constraints of a single-particle interaction. A practical ex-

* different from the longitudinally2 or transversaly 3 modulat- ample, similar to that in Ref. 9, will be described based on the

ed axial magnetic field). In contrast to the gyrotron,' the present analysis.
frequency here is the Doppler up-shifted cyclotron frequen- Electron beam sources of radiation for the submilli-
cy. Chu and Hirshfield5 treated the collective interaction meter portion of the spectrum usually employ high current
and showed the existence of an unstable growing mode. densities, where collective effects play an important role.
They also compared in detail the two bunching mechanisms. The present single-particle calculation, by describing clearly

* Later it was demonstrated that gain enhancement can be the physical picture, may be used as an important first step
achieved by a careful choice of the electron momentum dis- for a self-consistent collective description in future work.
tribution function.6

The various gain mechanisms were clearly explained
using a single-particle approach.... Ride and Colson" II. THE EQUATIONS OF MOTION
showed that two sources of bunching exist as a result of the A relativistic electron beam is guided by a uniform mag-
electron-wave interaction. One source of bunching is the netic field along a waveguide within which an electromag-
ponderomotive force due to the product of the perpendicular netic wave propagates in the same direction. The gain is
component of the electron equilibrium velocity and the mag- found by calculating the energy loss of the electrons as they
netic vector of the electromagnetic wave. The second source pass through the structure. In doing it, two assumptions are
of bunching is the modulation of the cyclotron frequency used. The first is that the intensity of the radiation is big
due to the relativistic change of the electron mass. Each one enough (or the electron density low enough), so that the wave
of the sources causes gain proportional to L 3 (L is the length amplitude remains constant. Secondly we assume that the
of the amplifier), but acting simultaneously they nearly can- intensity of the radiation relative to the magnetostatic field is
cel each other. There remains a lower order gain proportion- small enough to allow the use of a perturbation method to
ad toL solve the electron equations of motion. The uniform magnet-

In all these previous papers the wave was assumed to ic field is
propagate parallel to the direction of the uniform magnetic (1)
field. In a realizable device there must be a waveguide within = Bee.
whicb the radiation propagates. Ott and Manheimer pub- For simplicity we choose a waveguide made of two infi-
lished a collective theory for a thin slab beam in a parallel nite plane parallel plates with distance a between them. The
plate waveguide.' The difference between bunching mechan- wave is assumed to be coherent and is either a TE or a TM
isms for TE and TM modes which we describe below using a mode. Its components are' 0
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E* = - (A4 '~eolkl)cos(kxlcos,8z - 't )' e,(zob) = - e. sin(ko z + o) + ey cos(koz + b

B~ " (A4 '8/k±)os~klx)os,Bz - o0 t},~ TE mode, e2(z,b0) = - e. cos(ko z + bo) - e, sin(k o z + 0o), (6)

B; = A 'sin', x)sin(8z - w't),J e3(z,vo) = e,,
(2) ko is chosen later. Let us use the following notations:

u = v/c, r' = tc, E = eE'/mc 2,
E;= 'sin(kxsin(Bz- 't), } B =eB'lmc2 , w = ce, A = eA 'lMC2, (7)
E; =(/k. ,A4Ccos(kx)co -. ,),).I TM mode. 2 =eo/,,2c.

B; - (€o/kzc)A cos(k x)cosfz - . With these notations Eq. (5) becomes

' is the wave frequency, x is the coordinate perpendicular to i = u2(kou3 - 12 y)
the plates, and P and k, are the components of the wave -u + -(u_ u2B3 - E),
vector related by + -

"" fi~2 =- u(kou3 -12/)
S(I'/c) 2 = k +, p2. (3) U u (u 3 B 3 uB/7)

U 2  (U3B u B3 + 2),

ki will have discrete values y y

k, = (nrla) n = 1,2.... (4) L - 3  1
i43 -(u B 2 - U2B + E 3),r r'

The equation of motion of the electron is
where

d --- vX(Bo+ B') e E'. (5) E3 = 0, TE mode,
mc m (9)

e and m are the electron charge and mass, respectively. The B3 -0, TM mode,
equation of motion is easily solved by using a rotating system and the dot represents differentiation with respect to r'. Con-
ofcoordinates which is better suited to this problem, because servation of energy dictates that the energy change of the
of the helical nature of the electron orbit. A similar system of electrons equals the work done by the wave fields:
coordinates was used previously in dealing with the wiggler-
type FEL problem. 3.32 For an electron, whose perpendicu- - (10)

lar velocity in the entrance makes an angle 0, with the nega- The components of the wave in the rotating system of co-
" tive x axis, we define ordinates are

E, = - (Al2k)coslkx)cos [ L8 + ko)z - w(r + o) + 0 o,

E 2 = (A/2k)co(k:x*.sJL + ko)z - ,(r +o)+ 1, mode
B, = -(81w)E, B2 =f (8/a)E,, I md

B3 = A sin(kx)sin Lz - Or + ro)1,

E 1 = - (Afl8/2kL)os(kLx)sinf ( + ko)z - (r + ro) + bo,

E2 = - (Aj/2k1 cos(kx)cos[j( + ko)z -w(r+ to) + , TM mode.
B , = - (wl/ E2, B2 = (w / W1,,

E 3 = A sin(k.x)sin Lz - ar + ro)(11)

Terms which oscillate with high frequency were omit- The equations of motion are
ted keeping only terms which might be resonant. r, is the 1i o = U2o(kou3o - -0 /Yo),

time the electron is at z = 0, and r is the time which has '2 =0(030 - 2(
passed since then. U3o = Uo(kou3 o - f2/), (13)

The equations of motion (8) are solved perturbatively. U3o = 0.
First we find the steady-state electron orbit in the absence of The third of these equations yields u, = u= const. The
the wave. Then its perturbed velocity and position sre calcu- definition of our rotating system of coordinates is completed
lated when the EM fields are taken along the steady-state by setting ko = 12/oU o, in which case u, and u2o are con-
orbits. The energy transfer is found only in the second order. stant too. We are still free to choose u,o and u,,, with ;bo

To zero order there are no wave fields: determining :he initial velocity of each electron. For our

" E B = O, Y Yo. (12) convenience, u,o is set equal to 0, in which case for each
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electron u2 = U0 and e2 is always in the direction of the r E,o
perpendicular velocity. This means that ei can be different WY = kou2 ow3 + kou 3o- + - (gu3 o - 1),
for different electrons. The electrons are assumed to enter
the waveguide with the same velocity components parallel 1b, = - uo P + _(gU~o 30 1), (23)
and perpendicular to the magnetic field. The solution of Eq. ro ro
(13) is therefore =- !30 - + loU 20,

* Uo= 0, u2o - const, U30 = const, (14) where Y Yo

o =(1 - 3U 0 -Uo) - 2 . g =fi/ w, TE mode,

The x and z coordinates of the electron position are to zero (24)

order g = wifi, TM mode.
Zo(r) = U3or, The third of Eqs. (23) shows that the longitudinal velocity is

= perturbed by two forces. The first term on the right-hand
S= (r) = x- ro sin(kou3o- + b, (15) side of this equation gives rise to the cyclotron maser insta-

r o = u20/kou 30 , bility. Its origin lies in the relativistic change of mass of the

ro is the Larmor radius. From now on assume electrons. The second term represents the ponderomotive
force of the magnetic component of the wave on the perpen-

k t ro 1. (16) dicular velocity of the electron. This force drives the Weibel-

* Due to Eq. (16) we approximate the amplitude of the wave in type instability. A detailed comparison of these two bunch-
the first-order equations of motion ing mechanisms was given by Chu and Hirshfield 5 and also

cos(k, xo) - cos p, by Ride and Colson.' To first order the energy Eq. (10) is

sin(kxo) = sin p,, (17) Pi = - u20 2 0  (25)

p. = ktx,, The solutions of Eq. (23) using Eq. (25) are
* and exclude the excitation of higher cyclotron harmonics.

The fields along the steady-state trajectories are c= ( 2 ) [cos . os(vr + vr sin f. ]

E - (Eo/2)sin(vr + 4'), ( 2,yo ! C+

E2= -(E,/2)cos(vr+4., (18) + ( E )(1 -gU 3 )r sin,

* 
where

EOA wkL2 =( AO !& )[sin (v-r + '-sin "]Eo =A(olukj)cos I/,, 1 TE mode, W ~)~~i ~+i-sn
= - oro + o + r/2,I 

0

(19) = A(EO°(S3)[sin(v'r+ )sin], (26)
E= A (o.Ikl)cos 0,, mode. 2yo v

* - 4 -w, b. _ I+ U2g
S1 = $11 - gU 30 ) + ko20 g,

The "resonance parameter" v is

v = (8 + ko)u3o - w. (20) S2 = I -gU 30 -U ,

The interaction between the electrons and the wave fields is S3 = U20(g - U30).
strongest when the resonance condition is fulfilled, namely

* when v,0. In order that the resonant frequency will be high III. THE ENERGY GAIN
we require that ,9>k, and that U30>U20 .
Then We solved the equations of motion to first order. This

W=- k o -2koo. (21) enables us to calculate the net energy loss of the electrons to

1 -- U3 0  second order, which is the lowest order where it does not

* B3 or E30 were omitted because they oscillate with high vanish. To second order Eq. (10) is

frequency. We linearize the electron velocity and energy. r = - w1E10 - w2E 20 - u20E2 1 - w 3E3 - U3OE 3I.

U= = w,(i-,ro), (27)

u 2 0 + w2(r, ro), For the TM mode E30 = E 3 1 =0 . The net energy transfer is

(22) found by averaging on to, the time of entrance ((...) denotes
this averaging). It is in fact averaging on , which means that

S3 u30 + w3(r,ro), the distribution of 00 is irrelevant. This distribution has an
r = ro + r (r,ro). influence on higher cyclotron harmonics; it also can be im-

Next we write the equations of motion for these perturbed portant when collective effects become dominant.6

quantities Thus
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wE ))'0 mode. Until now the gain for the TM case due to the work0- ) 8= (sin v,2 - Vr COS VT) done on tht electrons by the perpendicular fields is low and

1proportional to I/v only. But for this mode there is still the
+(0 -gU 30 r cos V7 1 , work done by the axial electric field of the wave.

E 2  The work done on the electrons by the axial field is
wE2o)=- ( sin vr. (28) composed of two terms. The first term is - w3E3o and its\8Y0  V average vanishes since E3, oscillates with high frequency.

The resonant term in E2, is due to modulations in axial posi- The second term is u3o)E3 E3, contains resonant terms. The
tion dz. perturbation on the axial field due to the perturbed trajec-

A w =tory is, after linearization
E3,3 dT £31 = A (cosp,)(kjAx)sin[IfiU3o - W).r - W'ro. (35)

= (- 2o (_ [ _ 'h-vr sin _ cos(vr + -) + cos - High frequency terms were omitted. Only terms linear in Ax
2 o Av or Az were kept.

(29) Using the rotating coordinate system Ax is
Using again the fact that the wave is only a perturbation on Ax = - Ax sin(kou3or + 0b0)
the steady-state orbit, E2, is _ ( U20 Ax3 + Ax2)cos(kouor + ,). (36)

E2 , 0 ( B) + ko),z sin(vT +~ (30) U30
2 Equations (35) and (36) yield for E,

and the energy transfer is A (cosp,)k [Ax cos(vr +

-U2 0E2 1) _E ) ( U2O3 2
k8ro kV,2  

-~( 20AX 3 +X 2 )sin(vr + (37)
X(ko +fi)(vr cos vr - sin vr). (31) , U30

Adding the terms in Eqs. (28) and (31) we obtain the contri- The next step is to calculate the Ax, and Ax 2. Using the
bution to total energy transfer from the perpendicular part of identities
the radiation el = kou 3e2 , e = - kou3el, (38)

= -( )[2(1 _gu3o)sin vr - uvwr cos vr] we obtain the equations

S2 A.i = Wl + kou30Ax 2,
+ - ~(f 2) (w -fg)(sin vr - vr Cos vr). (32) Ax 2 = W2 - kou 30AX] -- W3. (39)

v28y U30

The last expression is different foi the two modes The solutions of these equations (keeping resonant terms

- g = k 1a, TE mode, only) e- r

(33) Ax,=(E (1 -g9 U
30 ) r sin(vr+-)-sin4" ]

a-gg=0, TM mode. ( 2 ,) kou30  V '

For the TE mode there remains the term proportional to / Ax 2 = ( (
v2, whilst it vanishes for the TM mode. This residual term 2yo kkU 3 0
proportional to I/v2 is the major contribution to the gain. X [ cos(vr + cos " + v-r sin
Thus the gain for the TE mode is -St+v i

) U2 (34) -(l- g,o)r sin (40)
r. 1O20 k~ si'-~oV (44)8yc 2Th rf r th wokd n byt eailfld s

"' When the wave propagates parallel to the magnetic field Therefore the work done by the axial field is
k, = 0 and the gain is the first term in Eq. (32) only, and is U 30E31 k,
proportional to I/v instead of to l/vs. This result, when k, is 8Y fl
0, agrees with Ride and Colson's result." Thus the use ofa TE [ ( )
mode may indeed enhance the gain. use0vi cos VT-sin V

It is interesting to note that in the opposite case, namely (I - gU30 ) sin vr ] (41)
when # = 0 and k, = w, our result for the TE mode gain kouo v "
agrees with the gain in the gyrotron.7 In fact, being near
cutoff the magnetic component of the wave is in the z direc- The main contribution to the gain comes from the term pro-

tion only, and the ponderomotive force, which is one of the portional to 1/v2 . Thus the gain for the TM mode is

two bunching sources, vanishes. The second bunching 2(E~o)U k ( VcosVT-sinv)

source exists alone; this is the cyclotron maser bunching (\2)Tf ) - 6 V:'
mechanism. This case does interest us since f = 0 gives no (42)
Doppler up-shift. The gain for both the TE and the TM mode may be

Let us now complete our study of the gain of the TM written in a similar form
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(L20 2 Of v vT - sin vr Sinceko/wU Z land (kro)2<l thislast ratio issmailerthan
k o V2 Ii -. The gain here, even though enhanced relative to the case

P= w, TE mode, without waveguide, is still small relative to the case where
-- -=6, T mode one uses the wiggler. Yet the advantages gained by the sim-P = 6, TM mode. plicity of the magnetic configuration and the possible use of

The total energy loss of an electron along the amplifier is large interaction volume could outweigh the somewhat
obtained by integrating (r) smaller gain in many situations.

(4r)=o()d-. (44) IV. DISCUSSION
The energy gain of the wave is the energy loss of all the Here we sketch a possible practical device based on the
electrons divided by the energy of the fields at z = 0 across ideas described hitherto.
the plates A magnetron injection gun emits an electron beam into

(A y) TmC2No a hollow coaxial cylindrical waveguide. The inner and outer
,() ( y) , (45) radii are 10 and 13 cm, respectively. Since the gap 3 cm is

W... small relative to each radius our analysis of the two infinite
where no and W, are the electron and the initial wave energy plane parallel plates may be applied here. The electron beam
densities, respectively. (AY)T is the sum of energy changes fills the waveguide uniformly [in contrast to the case in Eq.
across the plates. The electron beam is assumed to fill uni- (9)]. A radiation of wavelength 785 /rm is launched into the
formly the gap between the plates. waveguide. The fourth mode has k, = 4.2 cm- '. The elec-

Thus trons are injected with yo = 5 (energy of 2 MeV). They enter
f', a owith perpendicular velocity u2o = 0.1. We apply a uniform

(Ar)r = J (4T )dx,, magnetic field of 16.5 kG which yields k, = 2cm- '. Follow-
(g ing Eq. (21) the above wavelength is resonant. k, ro is 0.2 and

(MC2 )2A 2 (46) obeys the condition (16). For a gain of 10% the required

.. )= e2 a( L)2. current density is 6 A cm 2 or a total current of about 1.2 kA.W --- e16r k, Other modes are not excited for L:-I 00 cm since

Writing L = u3o r where L is the length of the amplifier, the AvL = AfL, #A# = kAki, and Ak, = ir/a yield
gain along the amplifier is AvL = (k, 1 f)(ir/aL > r. In order to satisfy the resonance

2 kcondition for gain, AvL should be less than 2r, where Av is
G(L -- 1

2 
2- u 3 F'(fl, TE mode, due to the spread in energy and angle in the initial electron

8 c2 y ul3 beam. From the definition of v [Eq. (20)] it follows that
(47) Aa/a(tgamus2olou) should be less than A /LUo, and y/y

I W,2 fk 2u20
G(L)=- -- I U 20 L 3 F'(O), TM mode, lessthan l/N(-2r/koL).

3  We now compare the proposed device to a wiggler-type

where F'(0) is the line-shape function FEL. Imagine that the electrons in the wiggler-type FEL
F sin ) 2, move on similar helical orbits. By Eq. (49) the current den-

F(e)f 0- ' sity needed is 0.6 A/cm2 only. On the other hand when
k= = 2 cm- the pitch of the wiggler is 3.1 cm. Considering

---- vthat the desired wiggler-field is only at a radius of less than
2- ( 0.3 cm,' 4 the volume of interaction has a cross section of 0.3

The gain for the TE mode is higher by the factor (w/l) than cm2 . In our device it is much bigger, about 200 cm2 so that its
for the TM mode. In our case, far from cutofffl -w, the gain power output would undoubtedly be larger. In addition, the
in both cases is about the same. The form of the gain (47) is current required to create the wiggler-field (320 G) is about
very similar to the form of gain obtained for the wiggler-type 15 kA. In view of these facts the advantage of the wiggler-
FEL." As a matter of fact we can write a general expression type FEL on the proposed device is not clear.
for the gain in these devices. In summary, we have demonstrated the possibility of

( =U 2  operation of a novel source of submillimeter radiation. It is
GO= .

3
U&2)o L 3F'(0 ), built simply from a waveguide immersed in an intense uni-

form magnetic field in which a relativistic electron beam
17WI'SL ko, interacts with one of its modes. By amplifying the Doppler-

,r I= k 0)/ 3 , shifted electron cyclotron frequency, it becomes, in terms of

=I-- k 2/oi
2U.3 (49) its gain and its simplicity, a viable source of submillimeter

1 30.(4911 radiation.
WFEL denotes wiggler-type FEL.
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Theory of a Nonwiggler Collective Free Electron
Laser in Uniform Magnetic Field

A. FRUCHTMAN AND L FRJEDLAND

Ajmm-A nowiw r teel ~mm tna, open in ealfoem pd the relativistic factor of the beam) than the wavelength XG of
Wi k.b andysi liimp1sl, prbkm 6 sovs A- the pump wave [11. For >>I the coefficient ais4o f2.

eam *m o. er lb~ d* he ernlmy. It is ioalt at 0.I% oid dmhld diibmt eom dor I b Anoa depending on whether the pump is a regular electromagnetic
e& to & oouph8 btws wti e m d ep poop~ vmoh& wave or a magnetosiatc spatially periodic field. The latter is
T I* rm ahme , the - i th mvWI@. Inthe em, ofa W typically produced on the axis of a malntk wiggler (a bif iar
bam. wOsh tbS delsem DimUfa d, ratdy. tdw spddr ow D helical current winding with equal and opposite currents in
cdle tim r. m d Uo (M)l.) is ompmbIe so io each helix).
foand i, cemtiood fm d- S trs opumrn i o i a i e ' Since the first successful operation of FEL at Stanford Uni-

vershy [21, wigglers became an integral pert in most FEL
!. Iwml OpuciiO, . experiments. Nonetheless, both theory 131, 141 and experi-

*_ (9 ONVENTiONAL free electron laners (FEL's) explore the ments 1S1 showed that special care should be taken in con-
idea of backscattering of a low-frequency pump wave by structing wigglers and in choosing radial dimensions and

relativistic elecuon beams. The pump wave forces the beam entrance conditions of the beam in order to observe co-
to owcllate coherently, resulting in possible stimulated eaMi- herent helical electron orbits in the laser. Together with
som at a wavelength shorter by roughly a factor a-? (y being this it was appieciated recently that spatially coherent un-

dulation of the beam, and therefore also Doppler upshifted
ua.,cript eiva Jae 11. 1982 revised October 12, 192. Thk stimulated emission, can be caused not only by a wijler but

"Swi wm uppovtud o pan by the U.S. Office of Naval Resarch d also by the natural gyration of the electron beam in a uniformby th 1US |sred ftelaws~ Seim=l Foursn"to.

1Wh we te t er Cer fo Piv uM csm, Raab Imsttwsa guide magnetic field. In fact, in a cold beam, the electrons
ulqaimct, Hebrew Uamvurmt of lernlem. Jerunmlem, Israel. move on coherent helical orbits with the pitch )h ryu/12

O18-9197/33/0300-0327S01.OO0 1983 IEEE
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where n is the nonelativistic cyclotron frequency, character- and the density modulation R, (or the axial density bunching)
* izing the guide field, and u is the velocity of the electrons in can also drive transve e modes of the system.

the direction of the guide field. Thus, amplification in the An example of a nonwiggler FEL with an azimuthally asym.

,.. system is expected at a wavelength ) )/29 - Wu/'yln. metric electron beam was recently studied in 1101. The beam

Single particle calculations of small and large signal ains in was assumed to be cold, and the momentum distribution at

such a nonwigller FEL 161. 171 confurmed the attractive pos. the entrance into the device was taken to be

sibility of replacing the wigglers by a uniform guide field, No

which was, as a matter of fact, almost always present in con- f(p., ps, 0) N - (p.L - .w) b(Ps - Pso) 6(0 - 00.) (6)

ventional FEL experiments. However, the encouraging predic- 2p.j

tiom of the single particle theories could not be applied to the We will use the term "helical beam" to describe such a beam
collective regime of operation, when intense electron beams configuration. It was demonstrated in 1101 that in a aset the

(> 1 kA) with relatively low energies (y< 10) were used. helical beam provides enhanced spatial gain compared to that

The collective interaction, usually termed "stimulated Raman found with a randomly gyrophased electron beam. The origin

scattering," had to be treated by a self-consistent theory. of the pin enhancement is the aforementioned increased role

Ott and Manheimer published a theory for a thin slab beam of the axial bunching in driving the instability.

in a waveguide 18). The first study of a nonwiggler FEL This paper presents a kinetic theory of nonwiggler FEL's in "

operating in the collective regime in free space was given by a uniform guide magnetic field. We consider an arbitrary @

Hirshfield et &1. (91, who showed the existence of a spatially dependence of the electron momentum distribution function

unstable mode at the Doppler upshifted cyclotron frequency. and, in contrast to the cold fluid model of [101, we b2.. the

They considered a randomly gyrophased electron beam, in theory on a Maxwel-Vlasov description. The scope of the

which the momentum distribution function of the electrons paper is as follows. In Section 11 the Maxwell equatio'" are

was reduced to a sin; te set of frust order ordinary diflT .al
(1) equations for the electric component of the electior;.: ic

field in the system. The current and density sources f .:e

Here p.L and p, are the momentum components, perpendicular field equations are found in Section i1. In Section v e

and panllel to the direction of the guide field, and @ is the apply the Laplace transformation to the field equatio ,)d

azimuthal angle (i - Pylp.1 It was also shown in [91 that derive the dispersion relation governing the stabli;ty c, ,w

the longitudinal and transverse modes of the system are de- system. Finally, in Section V the dispersion relation b s!- d

coupled and only the azimuthal bunching mechanism drives a numerically for several configurations of the electivi. ai.

cyclotron maser type instability. In this respect, the device, In the same section we also solve the field equations : ,ly

considered in [91 and based on randomly gyrophased beams, and find the actual gin in a fite length nonwi&&,x :i:L

differs significantly from the conventional FEL's, where the amplifier.
axial density bunching is primarily responsible for the spatial

instability. I!. FIELD EQUATIONS

We now show that the mode decoupling described in 191 is Consider an electromagnetic wave propagating along a rela-

the result of the random gyrophase distribution of the elec- tivistic electron beam, gyrating in a uniform mag.lnec field

trons in the beam. We write the distribution function in the $- o .- Assuming a one-dimensional model, we can de-

form scribe the electromagnetic fields £(z, t) and 5(z, 1) by the

( Z. ) = AP, Z. t) (z t) . ) system of Maxwell equations
where cf8 X - + 4 1  0

a t af zt)4 = ds - 1. (3

transverse~CE fils as wrte-sB - (F)lLet kn .*+j ad+ R"•, , where ?. and N are the a a1
values of f and N when there are no perturbing electromag- aE, -e_ too.
nebc fields. Then the linearized perturbed transverse electron - 4we

current, which is the source in the Maxwell equations for the
transverse fields, is written as B1 0

eN,(w,.) e(.L.o )R, (4) where JL and N are the self.consistent transverse current and

where electron density perturbations caused by the presence of the
electromagnetic wave.

w.1 ) a fv. dpp. - 5,e) dp (5) We restrict our analysis to the stationary amplifier problem
namely, we introduce an electromagnetic perturb2tio'n of fre.

and the subscript I denotes components transverse to the quency w at : u 0 and solve for the electiomagnetic fields a
guide field. In the cae of the random gyrophase distribution given z > 0. Respectively, we write
(i). (@,a) vanishes and, as a result, only the transverse velocity
perturbation (#.,i) contributes to J. If, however, the momen- £(2,) Re "  ) (i!
turn distribution has an azimuthal asymmetry, then (#,o) 0 0

• ,A. . .
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b)( w t .(23)
Re[. ~)] TV-

(13) If initially (at .0) we have

N[t 0I Re n(Z) (14) fJ(Ps,P ,O)" M G(p,,pj,0) (24)

where then (22) yklds (24

ca fo(Ps, P., 0.,z)" 7-- , j,- xz). ,5

* ex p ( - c J . ( 1 ) 4 w

Consider now the first-order linearized Vlasov equation
Note that consistent with the amplifier problem we left in
(11)-(14) only waves propagating in the positive z-direction, *Is -- -- (+ X K) --
which Is also the direction of propagation of the electron at 3 C ap
beam. Equations (7) and (8) can be combined and yield onlinearization ne L• V+ • f (26)

_ + V- -- - A& - (16) Similarly to(ll)-(14) let
d2  c dz cA

Simularly,(9) becomes .Rc 4 m ( ')

c dt, 3 c2Then(26) becomes
Assume now that various frequencies characteristic to the elec.
tron beam (such as the plasma frequency w., and the cyclotron ( I b's ate
frequency 1 .a e~o/mc) are much less than w. Then we ex- ( C)+V Iz 5

* pect 1, n, and bto vary on the scale much longer than .4,0c2 
*(t -Xb .K

uWc, or more precisely in order of magnitude for X a J., n, a, b C / -(

d In X Jc w .. Expressing b through a from (8), it can be shown i
dz c 18) we can approximate

This disparity in scales allows us to simplify (16) and (17) + Xb i (+ - 2 ±1
significantly and rewrite them in the following approximate C c
form:

do, 3 = (29)
dzi

It is convenient now to introduce the folloing orthorormal

ds . (20). set of base vectors

These are the desired field equations, describing the electro. - I=( )
magnetic wave propagating along the amplifier. 0

Ill. PERTURBED CURRENT AND ELECTRON DENmsTY. "

At this sta we adopt the kinetic description of the electron Then, on writing @ a .. $ 4 a+. t., substituting (29) into t281,
beam, introduce the electron momentum distribution function using (25) and expanding
fi p, z, t), and employ the Vlasov equation Anel e  (31)

- ~-+A- +-x(3+ 0. (21)'L J a A M C e' . G G, G e'" . ,32,

* Choosing the cylindrical coordinate system (0,. f,. ##) in the 42
p-space and writing fofo(s.p.L.*.z) +f(ps.p.$L.:,t) Note that the coefficientsAo andA 1 are the ony) ,, .eces.
where ft is the perturbed part of the distribution caused by smary to know in order to find the perturbed curient and den-
the electromagnetic wave we let in the zero order sity in the field equations (19) and (20). Indeed,

* . 0x O (22) n-fff*pL. dp. a. 2wffAopL dp,, dp,. (33)
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S"and distribution function of the electrons at z a 0. At this point.
we restrict our analysis to distribution functions of the form

* A "ffw[ p 4,l' dP 3 : d*+ Wfi. + ,./. (34)2
wheaetj G(Ps . P.L, 0)"aG~p3 .p ,t 6(p1 - pso) b(pj - p.'c)r(h)" (41)

it I:/Ti ,A( In this case
,It, m* 2 iJwAap dPidlps. (35)2

'" ;-i. - 5 (p. - p3*)6(p, - p~o)g. e 'I 'XZ (42)
On Solving (29) for A9 and A,,, substituting the solutions cm 5ip)

into (33) and (35), and integrating in the resulting equations --pd

by pars in order to eliminate the derivatives of the coefficients where g, = gfoTw g exp (-b) d*1 /2w. Thus, after performing
C, with respect top.L and p,, we finally get the integration with respect to p .and p, in (36) aind (37), we

n lmcfddps ~dte-L(I {UC. 2 (I+iJA.+i (41-C. 1  - 1irnoff'o, (i0 "}
1-c- 2 (o.C, +a.C.,) (36)

,L Co., + z e&AfdCjt ±T.~.?W2ffdp.1 413 j 'aC, - A~ (&C a- ~ ' 2eA

where A, z ' n the constants K1 are chosen uo ta e #.CO (I (A2+ ( V2:!

l,!,.o~1 +0 Pn - _. , C ,2 ,:, ,,

J(- +& (37)
-( I (38) 0 ''oZ' :

and X
... 0t i +:x. (39) i; R, +fo dr'Aze-* :AX$ (:')

According to (25) and (32) dz'

C, - G, e- '
U

.  (40)

Note that the last expression for C., after being substituted where I' I Xe a /'1o V3o, 4 -i(*/j1. 0)(l - V.0 ").
into (36) and (37), allows one to express n and/I through the 1/. 1 - V'elc2 - PV.o/C 2, and if we define et maoeixe'

then*: Re -O (45):

a -to [also +a' 1 - (a8..C + -, ) (4(-

a a.. [, . (a4.-ao)].,. , (41,
(? -t-2 so -- 2 2

5.,..+;1 [,,e.o, ] , .[(, ci., o],.oa..o';'3-a-----[a"'a'8. r ]aK, e
S,. 31 .- --1[(!2-) n -. o0B , 'o +"°-,

%24 3 ,m . Ia" 5 ,o Ik, ! l 7 , , -2-,.].. .. . t,. &"go)

gin k2 W _2 s 1:1 J+ 7 '08 I (I NI (-J 492 '0 iuni ( 14-2 +jo 8 1 iyg e son;

1 0&JS

'Wvi C 0* 0 .i-: ;. . - * *. -
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Finally. we substitute (43) and (44) into the field equations and

(19) and (20) and we get the following complete set of intepo- -

differential equations describing the evolution of the electro- A - - (I - j+ kv (62)

, magnetic wave along the amplifier.

LI * Zn-- (W; Xo). (63)

The dispersion relation is now defined via Det e 0. The

.dR[ eb':A[AzSt(z') + Q(z')I (51) knowledge of the roots k-k(w) of this dispersion relation
*j[ ) allows one. in principle, to apply the inverse Laplace trans-

• formation to the solution sk of (56) and thus find td, actual

as J-:Ae }Ai S,(z') + (09VA zdependence of the amplitude of the wave along the ampli-

CW a. fier. Nevertheless, because of the complexity of the dielectric

tensor e, the inversion of the transforms in our case is a rather
(52) complicated algebraic procedure. Usually in such situations

IV. ANALYSIS OF THE FIELD EQUATIONS one restricts the study to the search of the roots of The disper-

sion relation only, which allows one to find the s ;totic

Equations ( w) and (52) comprise a set of linear intepo- z.dependence of spatially unstable modes. We use i :s ap.

diffeential equations with all interals in the form of con- proach in the next section and find roots of the d;c rsion

volutons. Thus, we can solve this system by means of the relation for several configurations of electron bear, s. ) i, addi.

Laplace transformation. Namely, if we dlefine for/ -*(z) tion, in order to avoid complexity of taking the inverse La.

place transformation, but nevertheless willing to f. d the

(53) z.dependence of the fields, we solve the field equatioi,: i:ectly

in thenext section. With this purpose in mind, we trn'nsforn

here the field equations (51) and (52) into a system of first
where n k is assumed to be negative enough to assure con-

ver gnce, we can apply transformation (53) to the field equa- derine

tions and get
[R S.k + 0 14 lo. d" '2 " S.(Z') (64)

#*,( * YA) ,, r _k.T&_6r+___ 
f(

+ 4 (o) (54)(64)
P , dce*: ( ( (65)

i r s o.e ( $(a. +k) ((55i ) ao

a +L ik - where a is- or 0. Then (51) and (52) can be rewri! _v as

On using the expressions for the transforms Soc, Qo,, R,,.
Sta, and Qit, we can rewrite (54) and (55) in the following d*I - L ( +vet frm o (R± * zJ + Ill (66)

vetrform. 
dz US 1( ~0 as. =. ~' .&~aa (67)

* C~e__*a a ,. u :()1 (56) L

. es- e 5 0/\asl and, differentiating (64) and (65),

where the dielectric tensor e is given by -= + S. (68)
rw dt

92t a, I [k T X +--- zi] (57) d169
[k .. ,2  10A r _-- + •Q S.. (69)

e c4 U'* ( -use (581 Equations (66) -(69) comprise a complete set of firs' order dif-
LC-1 I j ferential equations, which can be solved numerically with an

. wr] appropriate set of initial conditions.

* 1 2;1c"1.A2 LC~ V. STAUILITY ANALYSIS AND DIREcT SOLUTION OF THE

2w" .2 4'¢i .. ) FIELD EQUATIONS

C3* !J + vx %oa] (60) In this section we apply the theory to the following three
a" KICCA - -- W election momentum distribution functions.

2 )1 ) A randomly Drophased electron beam. characlerized by
cgs ' I- -2( W Ck) (61) 1,(so that jo I and -0(n f:t1,12, ")

-" ,--a
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004f- aq

! I
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(b) 03
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(a. aC b (he t

F. 1. Schematic of trasvers8 C1o1 sctuoas of vaou beam con- Fig. 2. Spatial powth rates Im k versus normakl ed frequency W/C.fllpa t:1o0" () Rand n 8Ymphasd beam. (b) double helical The parameters atm 2 s  2 , -2. 1o •  , 0 = ,an

bam, (c) helical bum. The arows show the directions of tarn010ole= 0.1. (a) Randomly ayrophased beam, (b) double helical
Wamns velocuties of idividud eectr in th be=. beam. (c) helical bum.

2) A double helical beam with r [8(# - 0) + 6(# - jr)1. relation in cases 2) and 3), their analytic study becomes
In this casem 2  a I and .10 (m -0,±l, ±2, .- ). difficult. We therefore find the roots numerically for the

3) A helical beam, described by g(O) - 2wS (0 -0) and sample case: w/c a  2 cm-'. X - 3 cm- n, ro - 5, and
I (Aa 0. 11, 12,-.). 11ese three types of the electron wie/c= 0.1. This set of parameters is typical of a collective

beam arn Illustrated schemadticaly in Fig. 1. type Raman free electron laser. In Fig. 2 we compare the
In the case of an azlmuthaly symmetric electron beam computed growth rates for the three distribution functions

(cae 1)] all the off-diagonal elements of the dielectric ten- 1), 2), and 3). The solid lines represent the solutions of
sor 1 vanish and the dispersion relation simply becomes the dispersion relation for the sample case, and the dots were
e.., = -s u0. In this cme the three possibilities t.., e., found by solving the field equations directly for large values
ani ea = 0 correspond respectively to the right-hand trans- of z. where the exponentially growing modes with the largest
verse wave, the left-hand transverse wave, and the relativistic growth rates are dominant. We see from the figure that in
Iongltudinal space-charge wave. The equation e.. a 0 is case i) (the randomly phased electron beam) the maximum
identical to the dispersion relation derived in [9] for the growth rate is 0.044 cm" in agreement with (70). For the
cas We/ >> Xo. As was shown in 191, q*o 0 yields for A double helical beam [case 2)1 the growth rate at maximum is
unall enough and large w a pair of complex roots for k, one 0.087 cm-'. The growth rates found for the helical beam
of which has a negative iriagnary part (case 3)] agee well with the results of the cold fluid theory

[101 and for both cases 2) and 3) are comparable in magni-
Im k"- V5- Cu. (70) tude with the growth rates one has in conventional FEL's

Cegg ,. operating in similar regimes [11]. Thus, we see in Fig. 2 that

and therefore decribes a spatially unstable mode in the the coupling between the transverse modes in case 2) enhatnes
amplifier, the gain. In case 3) the enhancement effect comes from the

We now consider cases 2) and 3). In case 2) the dispersion coupling to the space-charge modes, which enables the axial
relation is liven by density bunching to drive the instability.

The improved operation of the amplifier in the cases of the
(e.s...- - )as a 0. (71) helical and double-helical beams is demonstrated in Fig. 3,

We we t.ht the left-hand and right-hand modes are coupled. where the actual z-dependence of the gain along the amplifier
Noevrthelm, as in case 1) the space-charge mode is still un- is shown for aforementioned three distributions in the sample
coupled. The rewon for this is that both distributions 1) and case. These results were obtained by solving the field equa.
2) are azimuthally symmetric and, therefore, the average tions (66)-(69) directly. We see in the figure that the ex-
unperturbed transverse velocity in the beam (uj.e) is zero (see ponential growth for distribution I) becomes dominant only
Section I). after the beam passes 60-100 cm along the device, while in the

In contrast to cases 1) and 2), the distribution function of cases of the helical and double-helical beams the growth is
the electrons in case 3) is azinuthally asymmetric, and as a exponential already at -30 cm and its actual value quickly
result all the off.diagonal elements of the dielectric tensor are becomes very high.
nonuero. In this case the space-charge mode couples to the These results should motivate attempts to generate helical
transverse modes. Because of the complexity of the dispersion beams for a practical nonwiggler FEL. One way is to shoot
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