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SUMMARY OF RESEARCH COMPLETED

Research on free electron lasers (FELS) carried out over a three-year
period with support by the Office of Naval Research has resulted in a
number of significant contributions. The emphasis throughout this work has
been on FEL configurations which include a strong uniform axial guide mag-
netic field, since such a field is used in many experiments to guide the
electron beam. Moreover, as we shall discuss presently, the axial magnetic
field can introduce a number of physical features not present when this
field is absent. Some of these features can be deletereous to FEL opera-
tion; others can be advantageous.

Copies of all major publications which resulted from this research

program are appended to this report. A list of these papers follows:

PUBLICATION LIST

1. "Free-Electron Laser with a Strong Axial Magnetic Field," L. Friedland
and J. L. Hirshfield, Phys. Rev. Lett. 44, 1456 (1980).

2. "Electron Beam Dynamics in Combined Guide and Pump Magnetic Fields for
Free Electron Laser Applications," L. Friedland, Phys. Fluids 23, 2376
(1980).

3. "Orbit Stability in Free Electron Lasers,” P. Avivi, F. Dothan, A.
Fruchtman, A. Ljudmirsky, and J. L. Hirshfield, Int. J. Infrared and
Millimeter Waves 2, 1071 (1981).

4. "Degradation in Gain for a Free Electron Laser Amplifier Due to Electron
Momentum Spread,” A. Fruchtman and J. L. Hirshfield, Int. J. Infrared
and Millimeter Waves 2, 905 (1981).

5. "Theory of the Free~-Electron Laser in Combined Helical Pump and Axial
Guide Fields," Ira B. Bernstein and Lazar Friedland, Phys. Rev. A 23,
816 (1981).

6. "Exact Magnetic Field of a Helical Wiggler," S. Y. Park, J. M. Baird,
R. A. Smith, and J. L. Hirshfield, J. Appl. Phys. 53, 1320 (1982).

7. "Free Electron Lasers in the Collective Regime," J. L. Hirshfield, Proc.
Japan-U.S. Seminar on Theory and Application of Multiply-Ionized Plasmas
Produced by Laser and Particle Beams, Nara, Japan (1982) pp. 515-525.
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8. "Amplification of Frequency Upshifted Radiation by Cold Relativistic
Guided Electron Beams," A. Fruchtman and L. Friedland, J. Appl. Phys.
53, 4011 (1982).

9. "Amplification on Relativistic Electron Beams in Combined Helical and
Axial Magnetic Fields," L. Friedland and A. Fruchtman, Phys. Rev. A
25, 2693 (1982).

10. "Nonlinear Theory of the Free-Electron Laser with an Axial Magnetic
Field," Lazar Friedland and Ira B. Bernstein, Phys. Rev. A 26, 2778 (1982).

11. "Wiggler-Free Free Electron Waveguide Laser in a Uniform Axial Magnetic
Field: Single Particle Treatment,” A. Fruchtman, J. Appl. Phys. 54,

4289 (1983).

12. "Theory of a Nonwiggler Collective Free Electron Laser in Uniform
Magnetic Field,"” A. Fruchtman and L. Friedland, IEEE J. Quantum Elec-
tronics QE-19, 327 (1983).

Most of the published work is theoretical, although an important experi-
mental confirmation (paper 3) of one aspect of the work was obtained by the
Hebrew University group which has carried on a continuing collaboration with
the Yale group.

The key work underlying much of what followed is paper #2 (which was
actually submitted for publication prior to the letter #1). This work showed
for the first time that electron orbits in a helical wiggler with a super-
imposed axial guide magnetic field were not necessarily helical. Helical
orbits could be well approximated if the wiggler parameters and entrance

conditions were carefully chosen. But for carelessly chosen parameters, the

orbits would be strongly non-helical, thus rendering such a beam useless

in a FEL. However it was shown possible that one could operate close to a
point of transition where the equilibrium orbit would be nearly helical,
but where small perturbations (say due to a co-propagating electromagnetic
wave) would be strongly enhanced by coupling to a natural resonance of the
orbit. In paper #1, a single-particle analysis showed that considerable
small-signal FEL gain enhancement could be achieved, based on this phenom-

ena, without increasing the electron's undulatory velocity. (An increase
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in undulatory velocity gives rise to a decrease in the up-shifted frequency

which can be amplified; thus a higher beam energy would be required if a
given frequency were to be amplified; the aforementioned resonance with
the orbit's natural response makes these adjustments unnecessary.)

The experiment reported in paper #3 explores the transition from helical
to non-helical orbits, and the data show good agreement with theory for
the parameter governing this transition, as predicted in paper #2. Since
the work reported in paper #3, the Hebrew University group has continued
its work on beam diagnostics for FEL applications, under support by the
U.S.-Israel Binational Science Foundation.

Paper #4 shows the effect of a spread in axial electron momenta upon
the gain of a FEL operating in the collective regime, without the axial
magnetic field. Exact gain degradation results for a box-like axial
momentum distribution are presented, as are some approximate scaling laws
which can be useful for rough estimates.

Paper #5 is an extension into the collective regime of the calculation
given in paper f#1, using the fluid equations. This work applies either for
a magnetostatic or for an electromagnetic pump.

Paper #6 is a derivation for the exact magnetic field of a current-
carrying bifilar helix. The main point of this paper is to determine the
range of validity for the approximate formula for the field of a wiggler
commonly used in the literature [i.e. B(z) = Bo(éxsinkz - éycoskz)]. A
secondary point was to be able to calculate the higher spatial harmonics
of the field, so as to estimate their utility in a harmonic FEL.

Paper #7 reviews the theory of FELs in the collective regime with an

axial guide field, and cites some of the important experiments. The paper

also contains a proposal for a two-stage FEL to generate micron wavelength
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radiation using an intense electromagnetic wave, generated in the first stage,
as a pump in the second stage. Neither stage employs a magnetic wiggler.

The theory underlying the first stage of this proposed device is given in
detail in papers #8 and #12.

Paper #8 considers wave propogation along a cold electron beam with
pre-imposed spatially coherent helical orbits. Radiation at the Doppler-
shifted cyclotron frequency is amplified by such a system, but with higher
gain than for the case of spatially incoherent helical orbits.

Paper #9 is an extension of the work reported in paper #5. The govern~-
ing equations are reduced to a set of coupled first-order ordinary differ-
ential equations, with due attention to the problem of unstable equilibrium
orbits. The actual spatial evolution of the field along the axis of an
amplifying device is found.

Paper #10 gives a non-linear cold-fluid approximation for the theory
of a FEL with an axial magnetic field. As in paper #9, a coupled set of
non-linear first order ordinary differential equations is analyzed to give
both the initial linear regime of spatial growth, as well as the non-linear
saturation. Axial evolution is found.

Papers #11 and #12 treat a system of a beam of spatially coherent
helical orbits in a uniform magnetic field, but with no wiggler. Paper #11
is a single-particle treatment but for bounded TE and TM waves, and the
small-signal gain is shown to be larger than for the case with unbounded
waves. A practical amplifier based on this principal is proposed. Paper
#12 contains the collective theory for this interaction, and gain is com-
pared for beams with helical, bi-helical, and randomly phased cold distri-
butions. Orderly transaverse phase distributions are shown to provide greater

gain and bandwidth, than for the case of random phases.
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In summary, the body of published research which resulted from Office
of Naval Research support under this contract has extended knowledge and

understanding for an important class of free electron lasers, namely those
having an axial magnetic field. Other research groups have made contribu-

tions as well, but in many cases following the pace of the work presented

here.
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Free-Electron Laser with a Strong Axial Magnetic Field

L. Friedland and J. L. Hirshfield
Depariment of Engineering and Applied Science, Mason Laboratory,
Yale University, New Haven, Commecticut 06520 -
o (Received 27 February 1980)

A small-signal theory is given for gain in a free-electron laser comprising a cold
relativistic electron beam in a helical periodic transverse, and a strong uniform axial,
magnetic fleld. Exact finite-amplitude, steady-state helical orbits are included. If
perturbed, these orbits oscillate about equilibrium, so that substantial gain enhancement
oan occur if the electromagnetic perturbations resonate with these oscillations. This

® gain enhancement need not be at the cost of frequency upshift.

PACS pumbers: 42.55.~f, 41.70.+t, 41.80.Dd

Intensive activity is underway to exploit the known result® for G, in the single-particle limit
gain properties of a relativistic electron beam (i.e., when collective effects are negligible)
undulating in a periodic transverse magnetic tield,

i Such free-electron laser (FEL) conflgurations Go= {0y t/kee ) (koL /2 VF ). o

have provided oscillation at 3.4 (Ref. 1) and 400 Here w, and y are the beam plasma frequency
psm,’ and amplification at 10.6 um.> Theory has Ne?/me, and normalized energy W/mc?, k, and ¢

advanced apace,’ and elaborate schemes have are the helical transverse magnetic field wave
been proposed for obtaining high FEL efficiency.’ number 27/l and normalized strength eB,/mck,,
P A factor which limits the practical application of L is the interaction length, and F’(9) = ({d/d8)(sinf/
this interaction at wavelengths shorter than per-  6)? is the line-shape factor, with 6 =[kp,, - w(1
haps a few microns is the rapid decrease in ~v,40/c)] (L/2c), where v, i8 the unperturbed elec-
small-signal gain G, as the electron energy in- tron axial velocity. The peak gain occurs at 6
creases. This is shown explicitly in the well- =1.3, where F’(9) =0.54, For example, with y

® 1456 © 1980 The American Physical Society
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=10, I=1.05 cm, w,=5%X10" sec”!, £ =1 (B, =102
kG), and L =130 cm, the peak gain is G,, =0.002 47
at a wavelength of 105 um. For y =100, /=10.5
cm, w,=2x10° sec’!, £=1 (B, =1.02 kG), and L
=260 cm, the peak gain is G,, =0.003 16 at a wave-
length of 10.5 um. These gain values may be
large enough to sustain oscillations if highly re-
flecting mirrors are judiciously added but the
strong helical fields required (particularly the
10.2-kG case) may be beyond the capability of
present superconducting coil technology.’

A suggestion has appeared for enhancing the
small-signal gain above values given by Eq. (1)
(or for achieving comparable gains with smaller
B,) by employing a strong axial magnetic field so
as to exploit resonance between the cyclotron fre-
quency and the undulatory frequency.® The pres-
ent Letter presents a single-particle derivation
for the small-signal gain of a FEL in a uniform
axial magnetic field B,. We shall demonstrate
that careful adjustment of the system parameters
will allow enhancement of the FEL small-signal
gain by an order of magnitude or more (for the
above examples) without increasing the undulatory
velocity. This result goes beyond that predicted
by Sprangle and Granatstein® who have suggested
that the only effect of the axial magnetic field
would be to add a multiplicative factor (1 -Q/
k) ? to Eq. (1), due to the aforementioned res-
onance giving an enhanced undulatory velocity v,
where  =eB,/m. This result is in fact predicted
by our analysis as a limiting case. Of course,
any mechanism which increases the undulatory
velocity v, would increase the gain, but this
would also reduce the relativistic frequency up-
shift, since

Wk e(l ~vy/e) =22k ol +y% 2/c?) L,

If, for example, yv./c =1 without the axial mag-
netic field, then a given gain enhancement
achieved through this resonance alone would re-
sult in a reduction in frequency upshift by a fac-
tor (1 +n)/2. The process we describe in this
Letter will be shown to permit significant gain
enhancement without undue sacrifice in frequency
upshift. The gain enhancement originates when
the electromagnetic perturbations resonate with
the natural frequency of oscillation of electrons
on finite amplitude equilibrium helical orbits.
Prior workers have not considered this effect.

A {full derivation of our result .vill be presented
elsewhere.’ Exact unperturbed relativistic orbits
are considered in the customary FEL model mag-

netic field
B() =B,2,+B, @, coskez +2, sink,2). (2)

These orbits, which have been the subject of re-
cent study,'® can possess more than one steady
state, depending upony, B,, B, and k,. These
Steady states are characterized by the normalized
velocity components (i.e., ¥, =v,/c)

U020, Uy =k0€“30/(k(#307 -Q/c),

- 2)1/3’

3)

Ugo= (1 =tuye® =y

where the basis vectors é,(z) =-¢&, sink 2z +é,
Xcoskz, &,(2) ==&, coskz ~&,8ink 2z, and &,(z)
=g, have been introduced to track the symmetry
of the transverse magnetic field. Figure 1 shows
Uy, V8 Q/c for h,=6.0 cm™!, £=1.,0, andy =10,
For 0>9Q,, !Ie‘,t:f(yz = 1)V3 - g3R]32 4t i3 seen
that only one branch exists (branch C). But for
Q< Q. two additional branches (4 and B) are al-
lowed: Branch B has been shown to be unstable,
in that the orbits exhibit nonhelical, highly an-
harmonic motions, while branches A and C have
orderly helical orbits. Stability is insured if u?
2g? —bd >0, where a =R izt /yizg, b =Rt/ Vlhsq,
andd =k,c{/y. The quantity s is the natural res-
onance frequency in response to small perturba-
tions of the orbit: We shall show that strong res-
onance response of the electrons to electromag-
netic perturbation can lead to enhanced FEL gain
for small u, i.e., for £ close to Q.

The derivation of FEL gain proceeds by solving
the single-particle equations of motion, subject
to weak electromagnetic perturbing fields E :
=g E,cos(kz — wt) and B =&,(kc/w)E,cos(kz - wt),

T
1.0 A C
0.8

L B
1

v

300.6- 8 ; q
0.4} .
O2)  lagse

0 ' ‘
0O 20 40 60 80 100
Q/c (em’)

FIG. 1. Steady-state normalized axial velocity 4 ;
as a function of normalized axial magnetic field Q/c.
For this example 2, = 6.0 cm™!, ¢ = 1.0, and y= 10.
Gain enhancement discussed in this work is for orbits
on either branch A or branch C.
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about the equilibrium orbits on either branch A or C as discussed above. These equations are

U, = @ocus = 8/yk, = Rock/yMs= G /v, +€E,/mcy)kou,/w = 1), (@)
'.‘z"aoc"s)'n/?’)‘x"e/fha +@E,/mey)lkcuy/w ~1), (5)
'.‘s = (Roct/y, + (ke/w ~uy)G/v), (6)

where 7 =~ (¢/mc)u,E, +u,E,) and
2(E, +iE,) s =E  exp{il(k, +h)usct - wt +a]}

with a the random initial electron phase. When time variations and electromagnetic fields are absent,
Eqs. (4)-=(6) lead to the exact steady states given by Eq. (3). To linearize Eqs. (4)-(6), we introduce
the velocity perturbations w, =4, —u,, ¥4, and retain only the lowest-order quantities. This results in
%, +u%w, =AE, cos(ft +a), or

"_’_—n"u —5 [cos(8t +a) - cosut cosa +B/u) sinut sina ] +u” 4, (0) sinut, )

A=(@+B)(l —uy) +Duy, B=c(h +hJug~w, w>kc, w, (0)=€E,/2ymc)(1 ~u,y,) sina,
and 10,(0) =0. The other components follow from

W, ==aw, +@EE,/2mcy)(1 —wsy —u,") cos(Bt +a), w,(0)=0; (8)
and

by =dw, + @E o/ 2mcy gy (1 ~us) cos(Bt +a), w,(0)=0. (9)

Equation (7) for w, exhibits the aforementioned natural resonance at frequency 4, while the electromag-
netic perturbation drives the transverse motion at frequency 8. Gain enhancement can be expected
when 4 is close to 8.

The energy gain for an electron is calculated from bmc/e)dy/dt > —w.E y=W,E sy =uznE, . The first-
order variation in electric field E,, originates {from small phase variations as 4, changes. Thus this
becomes

mc/e)dy/dt = =w.E =10, E s = 3E (k +ko)ctha0 8in(Bt +a) fo'dt'w,(t'). (10)

The third term in Eq. (10) is much larger than the other two on account of the factor k& +k,. The domi-
pant single-particle energy transfer in the FEL (even with an axial magnetic field) is seen to be by
work ecu E, done along the transverse undulatory motion, enhanced by the strong variation in E, as its
phase varies through w,. The energy variation [Eq. (10)] is averaged over random phase a to give
(dy/dt), which in turn leads to the gain through G =2(€,E,?)" ‘Nmc?|; dt(dy/dt), where N is the beam
electron density and T =L/c is the total interaction time for the electrons in a system of length L.

The final result is

G-—‘-—ﬁun {[1 +-“£- (a +8 +1—"_f‘%;)] [F'(O)-F(a +9)=F( -<p)]

16y 3 2¢
F@+¢)-F@-9) _a [ , P(e+¢)-P(0—<p)]l
- - 1
T redbdl % f* an

where 0 =8T/2, @ =uT/2, F(x)=(simx/x)?, and r
Plx) =xF (x)/2; and where we have approximated mation we may write
& +k)(1 ~uy )=k, We shall examine Eq. (11) in ,
seve:)al llm;:)s. o b A u>>P3) =2(w,?/16y)kcu, 2 T F'(6) (12)

For u» 3, only the terms involving F’(6) and where Z=2+ pu~%ad+bd(1 —u,) "'} In the case
P/(6) in Eq. (11) are significant, and on branch where the axial magnetic field is absent, =0,
A the latter of these is smaller than the former B=08=RoCllyy > B, and u,=4§/y. Thus, Z=>2and
by at least a factor 2¢. Thus to a good approxi- Eq. (12) goes over to Eq. (1). When Q#0and u

1458




VoLUME 44, NUMBER 22

PHYSICAL REVIEW LETTERS

2 JuNE 1980

>» B8, gain enhancement can be achieved as claimed
by the prior workers,® due to resonant enhance-
ment of %, but not without sacrificing frequency
upshift, as discussed above.

However a more attractive possibility exists
when u is small, and approaches 3. Here one
can approximate Z = u~?bd(1 - u,5) "' >> 1; this re-
sults from resonance between the electromagnetic
perturbation which gives oscillatory motion to the
electrron at a frequency B3, close to its natural
oscillation frequency u. Gain enhancement due
to large Z is seen to be possible without simul-
taneously increasing u,,, so that the desirable
frequency upshift property of the FEL need not
be sacrificed,

We define a gain enhancement factor n=G/G,
to compare two free-electron lasers, identical
except that one has a strong axial magnetic field,
while the second does not. In the first laser, the
transverse magnetic field B, is reduced so that
Uy, i8 the same for both lasers. (This assures
that both enjoy the same frequency upshift.) Then

n=Z{1-[F(6+¢) - F(0-@))/2¢F'(6)}. (13)

We have evaluated Eq. (13} for two examples with
the parameters cited in the first paragraph of this
Letter, holding | 6(=1.3 where | F(8)| has its
maximum value. The results are shown in Fig. 2
for the y=10 example. In Fig. 2(a) we plot the
gain enhancement factor n as a function of the
transverse magnetic field normalized strength £
for the FEL with the axial guide magnetic field.
The solid curves are for steady-state orbits on
branch C; the dashed curves for branch A. On
branch A, gain occurs for >0, while on branch
C gain occurs for 6<0. Two transverse magnetic
fields for the FEL without axial field correspond-
ing to £ =1 and 0.5 are shown. Figure 2(b) shows
the required values of axial guide field. One sees
a gain enhancement of 31 (on branch C) at (=5
x10-3 for an axial guide field of 102 kG. The
transverse magnetic field required is reduced to
51 G, and the gain is increased to 0.0766 at a
=105 um. Higher gain is predicted on branch A.
For the y =100 example at A=10.5 um, we find a
gain enhancement of 16 (on branch A) at §¢=3x10?
for an axial guide field of 99.5 kG. The trans-
verse magnetic field required is reduced to 30,6
G, and the gain is increased to 0.0506,

Of course when the predicted single-pass gain
is large (say >0.1) this theory must be modified.
Furthermore, finite electron momentum spread
(neglected here) will mitigate against gain, as
for a FEL without a guide field. These effects

2
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0 0.01 0.02 0.03 0.04 0.05 0.06

FIG. 2. (2 Gain enhancement |7 and (b) correspond-
ing npormalized axial magnetic field /¢, vs transverse
magnetic field parameter ¢{. The values £, = 0.5 and
1.0 are for the FEL without axial field, and provide
the sgame u,, as do the indicated (smaller} values of
¢ for the FEL with the indicated axial field strength.
Example is for y= 10, ¥y =6.0cm”', and L = 130 cm.
Solid curves, orbits on branch C; dashed curves,
orbits on branch A. For high enhancement values,
such as on the £, = 1.0 branch A example, the numeri-
cal precision required to compute accurate results
suggests that the phenomenon is very sensitive to the
system parameters.

deserve careful study. However, to the extent
that these effects are negligible, our theory
shows that provision of a strong uniform axial
magnetic field can allow significant small-signal
gain enhancement, and significant reduction in the
required transverse magnetic field strength ina
FEL, without undue compromise in operating fre-
quency below that given by the idealized upshift
value 2y%k,c.

This work was supported in part by the U. S.
Office of Naval Research and in part by the U, S.
Air Force Office of Scientific Research.
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Electron beam dynamics in combined guide and pump
magnetic fields for free electron laser applications

L. Friedland
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The propagation of a cold relativistic electron beam in a free electron laser with an axial guide magnetic field
is considered. The possibility of several steady-state helical trajectories for the electrons is shown, and the
stability against perturbations and accessibility of such steady states is considered. Necessary and sufficient
conditions for the stability are derived and indicate the importance of the transition region at the entrance of
the laser. Possible modes of operation of the laser in different steady-state regimes are suggested and

illustrated by numerical exampies.

1. INTRODUCTION

The propagation of a relativistic electron beam in
transverse periodic magnetic structures has been stu-
died extensively in recent years. These studies were
stimulated by the first experimentally successful free
electron laser! which confirmed the theoretically pre-
dicted? possibility of using the energy stored in the
relativistic beam as a source of short wavelength co-
herent radiation.

The most frequently used periodic magnetic pump field
in a free electron laser is the transverse field produced
on the axis of a double helical current winding with equal
and opposite currents in each helix (a device usually
referred to as a magnetic wiggler). The unperturbed
motion of the electrons of the beam in the wiggler is
quite simple. The reason for simplicity is that the
magnetic field on the axis of a wiggler can be approxi-
mately described by a transverse vector potential A (2),
depending only on the distance z along the axis. There-
fore, the canonical transverse momentum P,=ymv,
~(e/c)A, of an electron is a constant of motion,? which
with the conservation of energy y =[1-~ (v,/c)?

- (v,/cPI2 =const, uniquely defines the perpendicular
and parallel components v, and v, of the velocity of the
electrons in the beam, for a given assignment of A (z).
It can now be easily shown* that the electrons in a mag-
netic wiggler have helical trajectories with the same
period as that of the wiggler. This simple model of the
motion has been exploited in many theoretical studies,
describing the operation and parametric behavior of the
free electron laser.®

In all experiments, however, there is also an axial
guide magnetic field.***'” This, of course, increases
the number of parameters characterizing the free elec-
tron laser, but at the same time introduces greater
complexity into the theory. The vector potential is now
dependent on x and y and the perpendicular canonical
momentum P, is no longer a constant of motion; as a
result, in general, no simple analytic solution for the
electron trajectories can be found. Although so called
“steady-state” helical trajectories with the same period
as that of the wiggler and constant values of |v,| and
|v,] are allowed by the system, they cannot be obtained
with arbitrary inlet conditions in the electron beam.
Nevertheless, these are the trajectories usually used in
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the theory,**® without studying the problem of how the
steady-state situation can be achieved. An additional
complication with the presence of an axial magnetic
field is that, as will be shown in Sec. II of this paper,
in general, there exist several possible steady-state
trajectories for the same values of the axial field and
wiggler parameters, and the question arises as to which
of these states is accessible with given inlet conditions
of the electron beam. Thus, in the presence of an ax-
ial guide field the initial conditions and the structure

of the transition region at the entrance of the free elec-
tron laser may be of crucial importance in regard to
the possible modes of operation of the device. These
factors become even more important if the idea of re-
cycling® is applied, and the electrons are forced to pass
the transition region many times.

This paper presents a study of these important ques-
tions. In Sec. II, we derive the possible steady states
in the homogeneous part of a free electron laser and
study the stability of these states to perturbations of
electron velocities. The transition region is included
in the theory in Sec. III, where the possible ways of
operating a free electron laser in different steady states
are suggested and illustrated by numerical examples.

I1. EQUATIONS OF MOTION AND STABILITY

Consider a cold relativistic electron beam moving in
a magnetic field of the form

B:ﬁ(z)e.-f-VXA, M
where l

A=-A(z)[e,cosp(z) +e, sind(z)], @
and

¢=./; ko(2')d2’ . (3)

For A and &, independent of z, the vector potential (2)
describes the field on the axis of an infinite magnetic
wiggler, where, as is well-known'?

A I[pky K, (ko) + K, (pk,) ], 4

where I is the current in the wiggler, p is its radius,
k,=27/1y, A, is the pitch of the winding of the wiggler,
and K, , are the modified Bessel functions of the second
kind. By using the more general form (2) for the vector
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potential, we have in mind primarily the possibility of
slow variations of the wiggler parameters p and &, with
z, and assume that in this case the magnitude A(z) in
(2) can be approximated by expression (4), where p and
k, correspond to the values of these parameters in the
nonuniform wiggler at point 2.

Although the magnetic field represented by the poten-
tial (2) does not satisfy v xB=0, it gives a good ap-
proximation of the exact curl-free field on an infinite
wiggler at small distances r from its axis. Indeed, as
was shown in Ref. 4, the relative deviation of the trans-
verse component of the field from that described by (2)
is of the order of (k,7*. Accordingly, if the beam ra-
dius [ is such that (k¥ <« 1, the actual transverse field
can be well represented by Eq. (2). The axial compon-
ent of the field of a wiggler near the axis grows! as
kyr; it can be neglected, however, in the presence of
a strong axial guide field. We will also limit ourselves
to low current beams so that the influence of the self-
space charge on the beam can be neglected. We thus
require that the transverse electrostatic field be much
smaller than v,B,/c =v,k,A/c, or, assuming axial sym-
metry of the beam, wlr <« 2ek,Av,/mc, where w, is the
plasma frequency. If, for example, r=0.3 cm, B=500
G, and v, >c, the maximum current density allowed by
the model will be approximately 250 A/cm®. The small
signal gain in a free electron laser at these conditions,
however, may be substantial !* so that the results of the

present work could be important in current experiments.

We now consider the momentum equation for the elec-
trons of the beam

2o =-LyxB, ®)
where

y=[1-(@?/c¥)] V2. (6)
Let

e (z)=-~e, sinp+e, cose,

e,(z)=-e, cosp - e, sing, ()]

e,(2)=e,.

Then, the cononical model vector potential is
A=A(2)e,, (8)
and
o dA -
B=B(z)e,~ Z8 ky Ae, . 9)

On expressing the velocity v in terms of the orthogonal
vectors e,, e,, and e, and using

de de
;i-ll =kov48;; E‘ ==koUs€, , (10)
one can rewrite (5) as
dy,
y=3 2 S YRV~ — (v,B +h,w,A),
dy, e A dA
y=3=—yk,v, c(le-fv,E) (11)

T T T ————

On using normalized velocities u, =v,/c and “time” 7
=ct and defining £(z) =eA/mc? and Q =eB/mc?, one can
write (11) in the form

Q\ kt
%, =u, (kou,—;)——g‘—ua, (12)
. Q) 14¢
uﬂ- ’ (kous ) Y dzugr (13)
ko§  _ldg
ds' v u, ydzu’ (14)

First consider the homogeneous case, where £ =0,
=const, k,=const, and £ =¢,=const. In this case, Eqgs.
(12)-(14) have a particular solution

%,0=0, wus, =const,
and
kngnl_lm/
which with the conservation of energy
1/P¥=1-dd~u2, (16)

defines the values of u,, and u,,. The question arises as
to how this steady-state solution can be achieved. One
can answer this question only by considering the transi-
tion region of the wiggler, where £ and k, may depend
on z. Here, one would expect that for initial conditions
in the beam u, =u, =0, when the vector potential £ grows
slowly enough with z, the velocities u, and », would
gradually approach their steady-state values u,, and
4, and at the same time », remains zero. It can be
shown, however, that, in general, this cannot be the
case. In fact, one gets from (13) that if » (2) =0,

iy~ B, (1 -5) -0, 1
and therefore u, = £/y, which, on using (12), requires
that 2(z)=0. Thus, in the presence of an axial magnetic
field and for the initial conditions on u considered here,
u, cannot remain zero in the transition region. The
maximum that can be expected is that the component u,
in the transition region remains small in comparison
with u, and u,. When this is the case, and, in addition,
u, remains small as the beam propagates in the homo-
geneous part of the wiggler we define the beam to be
stable and now proceed to the study of this special kind
of stability.

First, consider the homogeneous region of the device
and in this region let

u, () =w,(7), u(T) S +w,o(T), uy(T)=uy+w,(1), (18)
where u,, and u,, are given by (15) and (16), and w (7)
are small perturbations to the steady-state solution.
Then, on linearizing Eqs. (12)-(14) one gets

W, =aw, +bw, , (19)

W, =—aw, , (20)

wy=cw, , (21)
where
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=k -—c-020 20
@=Rolty Y ¥ g’ (22)
koky gy
b=k ——a%cd
o= ", Y 4y (23)
c=hkto/7. (29)
Equation (19) then gives
0, =aty + bibg =~ (a® - bc)w, . (25)

Thus, the necessary condition for the stability of the
electron beam is

a-bc>0, (26)
or

8 (Y

kogo(“:n) <t @

Further study of the stability problem must involve a
knowledge of u,, and uy. Let us combine Eqs. (15) and
{16); there results

Yy L
‘-"’»-(y)’m 7 (28)

This equation can be rewritten in the form
F=F, -F,=0, (29)
where

F, =_1_’?1‘ﬂa , . (30)

and

- (&/7)
F,-l+m. (31)

Assuming (£,/YP <1-1/9 for y large enough, the func-
tions F, and F, have the general form shown in Fig. 1
for various values of Q. It can be seen from Fig. 1(a)
that for Q =0, there are two solutions for u,, corres-
ponding to different directions of propagation of the

i 8,70
(b) )
3
1 2
] NN
1 L 1 L.
K (1] 1 uy -1 0 v, 1 vy
{c) 8,-4, )] 2,8,
t
4
1 \22 1 ¢
1 N 1
e | . 1 1
-1 O v,y vy 1 vy, - 0 vy, ¥ uy

FIG. 1. Schematic of the functions F, and F,, defining various
possible steady-state solutions for ug,.
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FIG. 2. The real positive branches of uy, vs the cyclotron
frequency §, characterizing the guide magnetic field.

electron beam. In the presence of a weak axial magne-
tic field, there exist two additional solutions for u,, ad-
jacent to the resonance velocity u,, =Q/k,y, as shown in
Fig. 1(b). If one continues to increase {1, a situation is
reached, where again there remain only two real solu-
tions for u,, [Figs. 1(c), (d)]. The diagram, where all
possible real positive branches of «,, are presented as
a function of 2, is given in Fig. 2 for a sample case in
which y=1.587, k,=1.5708 cm™, and £,=0.3873.

Let us now find the frequency . at which the roots 2
and 3 on Fig. 2 become complex. This transition cor-
responds to the point A on the figure. One can find
by observing that the function F in Eq. (29) has only one
bounded maximum at the point u}, such that F’(x})=0,
or

“ ok’ (32)
where
2 \1/3

It is now clear that when F has four real roots, they
are contained in the following intervals: [-1,0], [0,4,,],
(45,5 u2], [u2,+1]. On the ends of these intervals the
function F changes its sign, which makes it easy to find
the four roots numerically. It is also clear that the
roots in the last two intervals become complex, when
F(u3)=0. Simple algebra then leads to the following ex-
pression for Q_,:

1 1/2
Qe =kgya®’? (1 - ?) : (34)

Considering our sample case shown in Fig. 2, Eq. (34)
gives the value 2., =0.763 rad/cm.

We now return to the question of stability. It is clear
that inequality (27) (which is the necessary condition for
the stability) is satisfied for branch 4 in Fig. 2, since,
according to (15}, u,, is negative on this branch. Simple
analysis also shows that branch 2 is stable, since the
left-hand side of (27) on this branch reaches its maxi-
mum value of 1 only at 2 =Q_; branch 3, in contrast,
is always unstable.
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iil. TRANSITION REGION

The inequality (27) is a necessary condition for sta-
bility of the electron beam in the homogeneous part of
free electron laser. This condition becomes sufficient
if the electron beam enters the homogeneous region with
small enough component #, in its velocity. We now pro-
ceed to the study of the transition region, where as will
be shown, special experimental steps must be taken in
order to get a stable electron beam, corresponding to
various branches on the diagram on Fig. 2. Let us as-
sume that the vector potential £ in the transition region
is a slowly growing function of 2. Experimentally, this
would be the case, for example, if one gradually de-
creases the radius p of the wiggler, or increases the
pitch length A, =2n/k, at the end of the device as can be
seen from Eq. (4). Following the ideas used in the pre-
vious section, one can find approximate soluticns of
(12)-(14) by using expansions (18), where u,, and uy,
are now functions of z and correspond to the components
of the velocity in the homogeneous case with param-
eters such as those at the point z in the transition re-
gion. Then, similar to (19)-(21) one has

b, =aw, +bw,, (395)
’i’: =—aw, +fuy, (36)
Wy =CW, = fthyg 37
where a, b, and ¢ are given by (22)-(24) and
_1de
= dz (38)

Taking the time derivative of Eq. (35) and assuming that
* the coefficients ¢ and b are slowly varying functions of
2, one gets the following equation

iy, =m:),+btb,+&w,+5w,=aﬁ1,+bw,

== (a® = bchw, +f(aty - buyy) , (39)
or, on using (22)-(24)
i, =- wdw, +g, (40)
where
w=a*-bc, (41)
and
g=u %:ng - (42)

Assuming that u is a slowly varying function of 7 one
can approximate the solution of the homogeneous equa-
tion

i'v, P “le , (43)
by the WKB solution
w, (1) = u™/3[C, cosy(7) +C, siny(7)], (44)
where
= [ uerar. 45)
b ]; w(r')dr (

Then, it can be easily shown, using the method of varia-
tion of constants in (44), that the solution of the inhomo-
geneous equation (40), with the initial conditions w, Io
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=1, |, =0, can be expressed as

1 2 4 l)
w;(T)"'“:/Z(,-) A ‘j'/(:(,./)

Thus, if the vector potential ¢ grows slowly in the tran-
sition region (the function f=1/y d¢/dz is small enough),
one expects the electron beam to enter the homogeneous
part of the wiggler with a small magnitude of w,, which
is sufficient for the stability of the beam in this region
if the inequality (27) is satisfied.

sin[y(r) - Y(7’)]d7’. (46)

In such an adiabatic case, one can also find the tra-
jectories of the electrons passing the transition region.
Expressing the radius vector r of the electrons in the
beam in terms of the unit vectors e,, e,, and e, [see
Eq. (T)], one has

r=r.e, +7,e,+ze,, 47
which on differentiation with respect to 7 gives

F=(F, - kgugry)e, + (7, +hau,r) e, + Ze,, (48)
and therefore the trajectories are described by

P u Ry, Py Uy~ RolhaT, (49)

This system of equations can be solved in the following
way: Let

(50)

Then, on multiplying the second equation in (49) by ¢ and
adding it to the first equation, one gets

R=r +ir,, U=u, +iu,.

R=U-iku,R. (51)
If one splits R into two parts

R=R,+R,, (52)
where

iRy= U/kguy, (53)

and R, is assumed to be small, then on linearization in
Eq. (51),

kx ==R, - ikgusR, -
The solution of this equation for R, is given by

(54)

R, =- f'ko(r') exp(-i{¢[z(T)]- o[z(T)]Pd7",  (55)
(]

where ¢ is defined by (3). Thus, if the velocities u,,
u,, and u, are slowly varying functions in the transition
region, R, remains small along the trajectories and
R~R,, or

(2)

7,(2) = Re(R,) ~ TRk (56)
r,(2) = Im(Ry) > - k—oé*)"u(:w« r(2), (57

and therefore the electrons in this case are moving on
helical orbits with adiabatically changing radius r,, and
the pitch period as that of the wiggler.

Thus, we have shown that, in principle, one can ob-
tain a stable electron beam in a free electron laser if
the variations of the parameters of the wiggler in the
transition region are slow enough. This conclusion,
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FIG. 3. The real positive branches of u3p vs £, (a) @
=0.6 rad/cm; ®) 8=1.0 rad/cm; (c) R=4.0 rad/cm.

however, is based on the approximate solution (46) for
w, and one has to check whether all the assumptions,
used in the derivation of this solution, are correct. One
of these assumptions was the slowness of variation of
the coefficients g and b in (35) as the beam propagates
through the transition region. Let us show now that, in
general, this is not guaranteed even if £ varies slowly.
The reason is that the real solutions for u,, and u,,,
which are used in the definitions of g and b, do not al-
ways behave continuously. We demonstrate such a pos-
sibility in Fig. 3. In this figure, one can see the dia-
grams of the possible real positive solutions for u,,, ob-
tained in a fashion similar to the diagram in Fig. 2, but
for constant values of  and varying £{. Our sample case
parameters ¥ =1.587 and &k, =1.5708 were again used in
these graphs. As mentioned previously, the variation
of ¢ with constant value of &, can be experimentally ob-
tained by varying the radius of the wiggler winding in
the transition region, holding the pitch length A, =21/k,,
coastant. In Figs. 3(a,b), we show two cases with the
values of §§ higher and lower than the critical value Q_,
in the homogeneous region (1, is defined by Eq. (34),
and in our sample case is equal to 0.763 rad/cm). For
Q<Q,, as { increases in the transition region, one
follows the path AB in Fig. 3(a) and passes continuously
to the homogeneous region corresponding to the point B
on the diagram (at this point £ =£,). The beam is stable
in this case. In contrast, if 2 is larger than ., one
arrives in the transition region at the point D [see Fig.
3(b)], where the branches 2 and 3 of u,, become complex
and the homogeneous region can be only reached on the
diagram by the discontinuous path DEF. The jump DE
in u,, leads to the fast variation on the right-hand side
of Eq. (12), which cannot remain small anymore, and

u, grows in amplitude, leading to the instability of the
beam. For sufficiently large values of , one can again
return to the stable regime. In fact, if u,, =0/vk,>1,
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FIG. 4. The z dependence of various components of the elec~
tron velocities for £=0.74 rad/cm.

the only possible real branch of u,, is branch 4 (see Fig.
2). This situation is illustrated in Fig. 3(c). The beam
follows a continuous path GH in the transition region in
this case and remains stable.

In addition to these qualitative considerations, we il-
lustrate the creation of the instability in the beam in
Figs. 4 and 5, where the numerical solutions of Eqs.
(12)-(14) for u, are presented for our sample case for
two values of @ =0.74 and 0.77 rad/cm (recall that .,
=0.763 rad/cm). We assumed in these calculations the
following z dependence of the radius p of the wiggler
winding in the transition region:

z220;

Py,
p= P+ (2/22, z<0, (58)
where p,=2.5 cm and z,=8 cm. The sudden transition
to the unstable behavior when one goes from Fig. 4 to
Fig. 5, where all the u,’s change rapidly (x, even be-
comes negative on the parts of the trajectory) is ob-
vious.

Thus, in conclusion, if the vector potential £ varies

(a) vy

(b) Yy N=0.77 rad/cm

vl [
LN N
-10 h 20

-0.2
-0.4
-0.6
-0.8

A,

FIG. 5. The z dependence of uy and ug for §: 0.77 rad/cm.
L. Friediand 2380

BT T S, AL WL L W S-S Y Sl S P




i IR Y v_"'._";‘l~_“.‘\ - VoW

~ SRR AN
o LR . et et e

slowly in the transition region, one can get a stable
electron beam for <Q,, and as the parameters of the
wiggler vary adiabatically, the beam follows branch

2 of the possible solutions for u,, on Fig. 2. One can
also have a stable situation for large axial magnetic
fields, when branch 4 remains the only possible one for
operation. One has to remember, however, that the
necessary condition for the last possibility is that in
the transition region u,,=Q/k,y >1. This condition can
easily be satisfied when the growth of £ in the transition
region is due to the variation of the radius p of the wig-
gler, when k,=const. If in contrast, p=const and &, is
increasing as one approaches the end of the wiggler,
larger values of the axial magnetic field are required in
order to operate the device on branch 4.

Let us finally consider the question of whether it is
possible with the initial conditions on the beam assumed
here (namely, u,|,=u,|,=0) to get a stable electron
beam at a larger region of branch 4, especially for
u,, = 1. As mentioned before, the necessary condition
(27) for stability is always satisfied on this branch,
which makes it more attractive. The perpendicular
component of the velocity on branch 4 can also become
very large, which is again very important for possible
electromagnetic wave amplification in the z direction.

The experimental scheme, which allows one to oper-
ate a free electron laser on branch 4 is shown in Fig. 6.
We are exploiting the stability of the beam for large
values of ) [as demonstrated in Fig. 3(c)] and are ap-
plying a strong axial magnetic field in the transition re-
gion of the wiggler. Then, after passing this region the
electrons will enter the homogeneous part of the wig-
gler, being on the upper part of branch 4 in Fig. 2. Now
in the homogeneous region, where & =£{,=const, one can
gradually reduce the axial magnetic field. The beam
will then follow the continuous branch 4 and one can
easily reach region @ ~Q_,, which was unstable with the
constant axial magnetic field. We demonstrate this
possibility in Fig. 7, where the solutions of Egs. (12)-
(14) are shown for exactly the same final @ and £, as in
the unstable case in Fig. 5. The same variation (58)
for p was used in the computations. The cyclotron fre-

e’n n
Q,
A 8 C
Q
2,
3 &
.

FIG. 6. Possible configuration of the pump and guide fields for
operating on branch 4 of the steady-state regimes. A-tran-
sition region for {; B-transition region for Q; C-homogenous
part of the device.
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FIG. 7. The z dependence of the electron velocities in oper-
ating on branch4 with varying guide magnetic field. Q
= 4 rad/cm, 0= 0.77 rad/cm.

quency was assumed to have the form
Q,, z2€2L,
Q= ~t-ar)?/ 12
0,-Q,)e +Q,, z2>2L,
where Q, =4 rad/cm, ©,=0.7T rad/cm, and L=4cm. It
can be seen from Fig. 7 that the beam remains stable
and corresponds to branch 4 with negative and larger

values of u,, than in Fig. 4, which corresponds to branch
2.

(59)

IV. CONCLUSIONS

(i) In operating a free electron laser with an axial
magnetic field, different steady-state regimes of the
helical motion of the electrons in the homogeneous part
of the wiggler must be considered.

(ii) The necessary condition for the stability of these
steady-state regimes is given by the inequality (27).

(iii) The transition region of a free electron laser
plays an important role in determining the sufficient
conditions for stability and in achieving the different
modes of operation of a free electron laser for a given
set of parameters of the homogeneous part of the de-
vice.

(iv) The following two models have been analyzed for
operating a free electron laser in different steady-state
regimes:

(a) The first is characterized by a constant axial mag-
netic field and gradual increase in the vector potential
in the transition region. The stability of this scheme is
limited by a critical value of the axial field given by
Eq. (34). The value of the perpendicular component of
the velocity is also limited in this steady-state regime.

(b) The second setup uses a strong axial magnetic field
in the transition region. The field is then adiabatically
decreased in the homogeneous part of the wiggler. This
regime is always stable and can operate with any value
of the axial magnetic field in the homogeneous region.
The only limitation is imposed by the increasing radius
of the helical trajectories of the electrons in the beam

L. Friedland 2381
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as the perpendicular component of the velocities grows
with a decrease in the axial guide field.
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ORBIT STABILITY IN FREE ELECTRON LASERS*
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Helical magnetic wigglers for free electron lasers can pro-
duce non-helical electron trajectories if a uniform axial
guide magnetic field is imposed. Friedland's necessary
criterion for the existence of helical orbits is reviewed
and shown to apply for non-relativistic electron energies.
An experiment designed to test this criterion is described
and results are compared with theory.

Key words: free electron laser, magnetic wiggler, elec-
tron orbits.

Introduction

Considerable effort is currently underway in the anal-
ysis (1), design (2), and construction (3) of free elec-
tron lasers for amplification of infrared and far infra-
red radiation. A typical device comprises a good quality
electron beam with energy of 10's of MeV which moves
through a periodic static pump magnetic field, termed a
magnetic wiggler. Radiation propagating along the elec-
tron beam has been shown experimentally (4) to be ampli-
fied, but the single-pass small-signal gain may be quite
small (7% was reported for a 520 cm length at A = 10.6u
in Ref. 4).
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Suggestions for enhancing the small-signal gain by
superposing a uniform axial magnetic upon the wiggler field
have appeared, based upon both single-particle (5,6) and
collective (7) models. The gain enhancement can result
from either increased equilibrium undulatory momentum (5),
or from dynamical resonance between induced electromagnetic t’
- perturbations and the natural oscillations of electrons on
; helical orbits (6,7). The increased undulatory momentum
. ) results in a decreased axial momentum, and thus a decreased
) Doppler up-shift, i.e. the laser output frequency is shif-
ted to longer wavelength. Gain enhancement may still be
achieved without this wavelength increase by operating the
device with a reduced wiggler field.

A necessary condition for achievement of the gain en-
hancement is that the equilibrium electron orbits in the
wiggler be nearly helical. Without the axial guide field
a helical magnetic wiggler produces a helical orbit; this
result follows from the constancy of canonical angular
momentum. But when the axial guide field is present, the
- orbits are generally not helical (8). They can be arranged
. to be nearly helical if the entry conditions into the
wiggler are suitably tailored, and if the wiggler and guide
field parameters are in a regime of stability, determined
from the orbit parameters (9).

In this paper, we shall review the basis underlying
the criterion for orbit stability, and shall present
results of an experiment designed to test this criterion
quantitatively.

Orbit Stability

Here we summarize (8) some aspects of the dynamics of
charged particles moving in a static magnetic field given
by

B(z) = ézBo + (excoskoz + éysinkoz)B*

1¢9)

=@

. 3lio-éB .

Z.L

Here B, is the magnitude of the uniform axial guide field,
and B. is the magnitude of the transverse helical field
with pitch 2, = 27/k,. It has been shown (1) that the
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charged particle dynamics in this field are described com-
pactly if a coordinate system with basis vectors (2;, 23,
23) is used, rather than the Cartesian system (&, éy, &,).
The coordinate transformations follow from the definitions
b of 2 and 23 given in Eq. (1), and by &) = &, x &j.

e i Koo

Y Y

Of course, the field given by Eq. (1) does not satisfy
Vv x B =0; it is however a good approximation to the actual
field near the axis of two identical interspersed helical
conductors carrying currents in opposite directions. The
exact field, and the precise nature of the approximations
" leading to Eq. (1) will be discussed in a forthcoming
paper (10).

For a particle of charge e, rest mass m, and relativ-
istic energy factor y, the steady-state solutions of the
equation of motion md(yyv)/dt=-ev x B {with B given by
Eq. (1)] are

k05u3

=03 2
“2 = Cupy - /e (2)

where u = v/c, Q = eBy/m, and § = eB./kymc. These compo-
nents correspond to ideal helical trajectories, since uy
*' and uj are constants. However, these steady-state values

can only be approached asymptotically, for an actual wig-
gler, because of coupling between the components in the
transition region at the entrance to the wiggler (8), and
because the form given by Eq. (1) is only an approximation.

The solutions given by Eq. (2) are depicted (for v =
10.0, k, = 6.0 cm™l, and £ = 1.0) in Fig. 1. For Q > Q.
the equations are single-valued, whilst for Q < Qs they
r' are triple-valued. The critical axial guide field cyclo-
tron frequency {., is given by

2 1/3 2/3,3/2
f, = kely® - DI - 5P L3
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Figure 1. Solutions for steady-state axial
momentum uj, as a function of axial magnetic
field, for v = 10, kg = 6 cm'l, and ¢ =

For smaller values of £ than that chosen for Fig. the
curves hug more closely the asymptotes ujy = (1 - y‘é)l/z
and uj = Q/kgecy. Perturbation theory shows (8) that
branches A and C in Fig. 1 are stable, whilst branch B is
unstable. Thus, if a particle enters a wiggler along a
gradually increasing guide field, it would move on a
stable helical orbit along branch A, but at 2 = ., the
orbit would become unstable and thus severely non-helical.
Examples of non-helical orbits are shown in Ref. 8. 1If
! = const and the wiggler field increases gradually, a
similar phenomenon occurs at Ecp» Where

1/3 2/3]3/2 i “)

= 17 - DY - e

1/3 2/3 3/2

or (8.8, = [(F = DYk ery?? - 1) (5)
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Thus for a charged particle moving through a wiggler
in a uniform axial guide field, the orbit can be nearly
helical if § < §., all along the wiggler but would depart
significantly from helicity if § > §...

Experiment

Although electron beams of interest for practical free
electron lasers have relativistic energies, the phenomenon
of helical orbit stability discussed above is not fundamen-

) tally a relativistic effect. Thus if the electron energy V
is much less than 511 keV, so that we approximate yz -1-=

” (2eV/mc?), we can write Eq. (5) as
- 2 2.2,1/3 3/2
(B+/Bo)cr [(8n mV/eBolo) 1]
(6)
=
= [r.2v}/ 2/ g 333 - 1132
oo
where, in the final expression, V is in volts, B, is in
gauss, and &, is in ecm.
o In the experiments to be described, electron beams in

the energy range 4-14 keV were employed; a simple dc low-
current (v 10's of uA) crt electron gun could then be used
to provide the electron beam with a diameter of about 1 mm
and energy resolution of better than 17%. The helical wig-
gler, to be described more fully below, had a period 2, =
3.6 cm. Thus, from Eq. (6), one sees that the transition
L J from stable to unstable orbits would occur for very small
wiggler fields indeed if the axial magnetic field were
adjusted to be slightly above 5.89V1/Z gauss, i.e. in the
range between 350 and 700 gauss. The axial magnetic field
was in fact adjusted to dc values between about 300 to 3000
gauss. For a given electron energy V and axial field B,
the wiggler field amplitude B, was varied continuously in
time by triggering a spark gap to discharge a capacitor in
series with the wiggler coil. The ensuing RC-decay could
be calibrated to give B, values as a function of time
during each discharge puise.

) The wiggler coil itself was a bifilar periodic winding
o of 3 mm diam conductor would on a 53 mm diam cylinder with
a uniform pitch of 36 mm. The uniform portion was 666 mm
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long, i.e. 18.5 periods. At each end the wiggler diameter
tapered outward to 100 mm over a 175 mm length. It was
found that, in addition to provision of these tapered end
portions, careful symmetrizing of the conductors at the end
turns was essential for obtaining stable beam transmission
through the wiggler. Furthermore, flux shunts at the ends
were required to produce a smooth uniformly tapered transi-
tion into the wiggler. A plot of one component of the
transverse field produced by this wiggler is shown in Fig.
2. (The uniform portion is not shown, as this portion is

.

Figure 2. Measured transverse magnetic field
at the entrance end of the wiggler.

relatively easy to produce.) This wiggler produced a field
of about 20 gauss/kA, and fields up to 250 gauss have been
routinely produced.

Several beam analyzers were constructed to examine the
properties of the beam within the uniform portion of the
wiggler. For the data to be presented in this paper, a
movable analyzer was used consisting of two parallel plates
spaced by 9 mm and positioned normal to the axial magnetic
field. The first plate had a 3 mm hole in its center
through which the beam would pass either in the absence of
any wiggler field, or for wiggler field values below the
critical value. In this case, paraxial helical orbits with
diameter less than 3 mm were ascertained to be produced, so
that the beam current was collected by the back plate. If
the orbit were to involve excursions of more than 3 mm away
from the axis, current would be collected by the front
plate. When the beam was seen to migrate back and forth
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between the two analyzer plates as the wiggler field decayed
with time, this was taken as direct evidence for a strongly
non-helical orbit. Two examples of this migration are

shown in Fig. 3, which is traced from oscillograms of the

V b
f
—
z
« b oo
= ]
v
f
| | l | N
0 0.2 0.4 0.6 0.8

TIME (msec)

Figure 3. Measured currents to front (f)
and back (b) plates of beam analyzer.
Arrows indicate abrupt transitions from
non-helical to helical orbits. Lower
example is for a lower axial field value
than upper example, so that transition
occurs at higher value of wiggler field.

current waveforms to the analyzer plates as a function of
time following firing of the wiggler field spark gap. The
examples are for two different axial field values (lower
for the bottom example than for the top). One sees the
beam gyrate wildly back and forth between the two plates
until a certain time, denoted by the arrows, when the wig-
gler field has decayed to a specific value. The transition
to beam collection by the back plate alone (i.e. paraxial
helical orbits) is seen to be abrupt. Values of wiggler
field were noted at each transition point observed when
axial field and beam energy were varied. These values are
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plotted in Fig. 4 as a function of the independent variable

R
10 T T 1] 1T

[(5.89v"YBo) " 1]

Figure 4. Measured values of B../B, at which
transitions from stable to unstable orbits
were observed, for electron energies between
4-14 keV. Solid line is theoretical pre-
diction.

(S.89V"L/2/Bc)2/3 - 1, as suggested by Eq. (6) for 2, =
3.6 cm. The straight line in Fig. 4 is this same variable
raised to the three-halves power.

Transitions from unstable to stable orbits have been
observed for wiggler fields as low as 2 gauss (lowest
datum in Fig. 4).

Discussion
Magnetic wigglers for free electron laser applications ‘

produce helical electron orbits in the absence of an axial
guide field, but may produce strongly non-helical orbits
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if an axial field is present. One predicted (8) conse-
quence of this phenomenon is an abrupt jump in the orbit
from non-helical to helical once the magnetic wiggler field
strength falls below a critical value, for fixed axial
field and beam energy. This behavior has been observed ex-
perimentally over a wide range of (non-relativistic) beam
energies and axial field strengths. The data follow an
approximaEeZtTyge-halves power law in the variable
(8n2mV/eBol ) - 1, as suggested by the theory. The data
fall systematically about 10-20% higher in this variable
than is predicted (corresponding to about a factor-of-two
smaller value of B.;./Bo than is predicted). An overestimate
in measured electron beam energies could explain the dis-
crepancy between theory and experiment, but measurement
accuracies are believed sufficient to rule this out. Finite
geometry effects, due either to off-axis departures of the
wiggler field from Eq. (1), or from the finite spatial
resolution of the analyzer, could also contribute to the
apparent discrepancy.

However, the crucial points for users of magnetic wig-
glers in axial guide magnetic fields are (1), the care re-
quired in wiggler construction (especially at the "first"
turn, and within a gradual transition region) in order to
observe a paraxial helical orbit at all; and (2), the clear
observation of an abrupt transition between stable and un-
stable orbits at (sometimes very low) critical wiggler
fields, much as had been predicted by theory.

It may be that the non-helical orbits will be of util-

ity, although it would be easy to despair in attempting to

@ formulate a theory for free electron laser operation with
such a complex equilibrium state. These orbits can possess
large amplitude harmonic overtones (10) which should radiate
incoherent radiation at wavelengths a few time shorter than
RO/ZYZ. It may even be possible to observe coherent ampli-
fication on such a spatial overtone of the fundamental

® ' wiggler period; but speculation carries risks....
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A finite spread in axial momentum for the electron beam in
a free electron laser amplifier is shown to decrease the
small-signal gain. For millimeter and sub-millimeter wave
amplifiers, where exponential growth dominates the gain, it
is shown that the gain is approximately 3 db below that for
a cold beam if the relative momentum spread (Au/u)/; =
(6,/248)1/2(2y/L), where Go >> 1 is the gain in db for the
cold-beam case, Ay is the magnetic wiggler period, and L is
the amplifier length. Exact numerical examples are given
for representative FEL amplifiers at 35 and 550 GHz.

Key words: free electron laser, amplifier, electron momen-
tum spread.

Most theoretical work concerning amplification of
radiation in free electron lasers (FELs) deals of necessity
with idealized models. One idealization widely employed
involves the neglect of finite momentum spread of the elec-
tron beam. The underlying mechanism for small-signal ampli-
fication involves axial synchronization in propagation ve-
locity between one of the allowed modes of radiation sup-
ported by the beam, and the beam itself. Thus when a spread
in axial beam momentum is present, a mixing-in-phase can be
expected to degrade the amplification which would ctherwise
be predicted for a cold beam. Prior workers (1,2) have
taken note of this fact and have provided estimates of the
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906 Fruchtman and Hirshfield

effect of momentum spread. This paper presents an exact
analytical model to account for finite momentum spread for
: _ a particular distribution function. When exponential

- growth dominates the gain, a simple approximate formula is
derived to estimate the loss in gain due to the momentum
spread. Exact numerical examples are also given for repre-
sentative FEL amplifiers at 35 and 550 GHz.

The basic FEL model adopted here is identical to that
- treated by Bernstein and Hirshfield (B-H) (3). That work
gave an exact small-signal solution of the Vlasov-Maxwell

‘ equations for the steady-state evolution of the co-propa-

- » gating disturbance which grows in space on a relativistic

- electrcn beam passing along the axis of a helical magnetic
T wiggler. The B-H theory was derived for a beam of arbitra-
- ry momentum distribution in a wiggler of arbitrary strength,
but the solutions presented were for the case of a cold
beam, viz.,

fo(a,B,U) = NOG(G)G(B)G(u-U) . (L)

X Here u and B are the two transverse components of canonical
-~ angular momentum Uy - eAx/mc2 and Uy - eAy/mcz, Ax and A
L are the components of the wiggler's vector potential, Uy

and U, are the transverse components of translational momen-
x tum, and U = (y2 - 1)1/2 is the total momentum as related
B to the relativistic energy factor . (All momenta are
., normalized to mc.) Eq. (1) thus describes a beam which,
prior to entering the wiggler, contains electrons possess-
S ing both zero transverse momentum and unique axial momen-
tum U.

- As mentioned above, an important source of degraded
C amplification is the finite spread of axial momentum on
. the electron beam. In the work reported here, we choose
the simplest distribution capable of describing such a
spread, viz.,

. H(u-Ul) - H(u-Uz)
" fo(G,BoU) = No5(<!)<5(8) 20 ’ (2)

where H(x) = 1 for x > 0, H(x) = 0 for x < 0, and AU =

Uz - U; > 0. This distribution can of course not be real-
ized in nature [in the same sense that the distribution {
: given by Eq. (1) cannot]. It may, however, not be a bad
o approximation for certain accelerators (except for the
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sharp edges); but its utility here is that it enables an
analytic form to be derived for the governing dispersion
relation.

The goal of the present work is identical to that in
B-H, namely to calculate the power gain G (in db) for a
single pass of electromagnetic radiation along a FEL ampli-
fier of length L.

108710 a,(Lay(L) - 1 (3)

Here a;(L) is the dimensionless wave electric field at the
amplifier output, normalized to unity at the input. The
subscript "2" labels one of the three polarizations per-
mitted, namely that which twists in space a quarter-period
behind the wiggler's vector potential. [Eqs. (35) and (37)
in B-H give the other two polarizations.]

The wave amplitude a;(L) is a superposition of several
co-propagating normal modes, each with its wavenumber kj,
viz.,

B(k,)
aZ(L) -Zﬁij{_) exp(ikjL) (4)
3 J

The relative mode amplitudes B(kj)/R'(k ) are prescribed
once boundary conditions are set. R(kj; = 0 is the disper-
sion relation for the system which determines the kj(w),
assuming R™!(k) to have simple poles. For the cold beam
case R(kj) is a sixth-order polynomial.

RGO = [ew)? - 62 @eeh) 1 1xex )% - 62 110ex ) - b2

) (5)

22,2 .,2,..2 )

+ £26% (x%-b?) (x +x§—b

where x = kc/w, X = koc/w; 6 = (wp/y)(U/YUg)l/z, b =
(1-U262)1/2, = y/U,, U, = (U2-£2)!/2, and £ = - eBy/mc2ky.

The wiggler field strength and wavenumber are B, and kg.
This equation has been obtained as well by Sprangle (1),
and related forms have been derived and discussed by
Kroll and McMullin (2) and by Kwan, Dawson, and Lin (4).
When 6§ << xg << 1, a reduced form of Eq. (5) is a good
approximation, namely

P W S eny vy
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RGO = [ ? - 621l - )] + 3 6%%x . (®

For ky/k ~ (14£2)/2y2 the maximum growth occurs near b+x,
-u = (6252xo/2)1/2. To requisite accuracy the roots are

X, =u + (62£2x0/2)1/3exp(—ni/3)

*
X, = x; @)
Xy = W - (GZEZxO/Z)l/3 .

These roots are of use in scaling estimates when exponen-
tial gain is dominant. Exact numerical evaluations given
in B~H show, however, that Eq. (7) cannot be used to deter-
mine the entire gain spectrum.

When Eq. (2) is employed as the distribution function
all the momentum-space integrals in the Vlasov formulation
can be expressed analytically. We then find

R(x) = [(x-ul) (x-uz) - 6'2(1+F,‘2)][(x+x0)2 - b'z]
(8)
x [(x—xQ)2 - %)+ g2 2 ed-ad Pl Yy

where

AU Y1 + Uzl)
wz 2
a1 LSl o1xetf1 1V |,
AU 2 Au U U
w zl z2

Ap = py - uy <0, Y%,Z =1+ U%’zs U%1,2 = U% 2 = gz’ and
H1,2 = 71,2/021,2-
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When AU/U << 1, 8u = - UAU(L +€2)yU3, &' = &, and
b' = d = b. Thus the only effect of finite momentum spread
in this limit is in the factor (x - up)(x - wy) = (x - 1)?2
- (8u/2)? in the first bracket in Eq. (8), where
T = (up + u2)/2. The close similarity between Eqs. (8) and
(5), and the simplicity of the former, make determination
of the roots kj a routine matter. This simplicity is not
enjoyed when :ge momentum spread is described by functions
fy(as8, U) with non-zero values of 3f,/3U in a finite
interval, because of wave-particle resonance effects.

As for the cold-beam case, where §' << x5 << 1, Eq.
(8) may be reduced to the approximate form

R = (- = @/ %)0x - B4 )] + g6 %% /2 = 0. (9)

If (Au/2)% << 3(526'2xo/2)1/3, the roots of Eq. (9) near
b' + xo - 0 = (526'2x0/2)1/2 are approximately

X, = u+ (626'2x°/2)1/3exp(1n/3)

+ %—(Au/Z)Z(EZG'Zxo/Z)-l Bexp(-in/3)

* (10)
|
xy = & = (€26 /M3 - SawrPels B

Thus the spatial growth constant Imx; is seen to decredse
on account of momentum spread as

(.22 V3 N 2,2, X33
tax, =2 (g § "o/z) -1 (5-) (5 s xo/2) . Ay

For pure exponential gain, i.e. excluding the 15.6 db input
coupling loss (see B~H), one has

G = 54.58(L/A)Imx1 db (12)

where A is the radiation wavelength. From Eq. (11) we can
write G = G, - G}, where Gy is the gain with no momentum
spread, and G; is the small decrease due to the spread
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G, = 5&.58(L/A){g (£262x°/2)1/3 db . (13)

For £ = 0.47, X = 4.9, x5, = 2.73 x 1072, §2 = 3.80 x 10-6,
and L/Xx = 367 (corresponding to a representative FEL ampli-
fier to be discussed below), Eq. (13) gives G5 = 39.1 db.
[If one subtracts the 15.6 db input coupling loss, the
actual gain would be 23.5 db (at a wavelength of 560 um).]
Now

54.58 L 2,1 2.2 ~-1/3
G, == = (M)"(=£%6"x) db . (14)
1 8/3 A 2 o

Substituting from Eq. (13) gives the value of Au which
would bring about a gain loss G;

3

(aw)? = 5.37 x 10” cocl(x/r_)2 ) (15)

For the example cited above with L/X = 367 we find Ay =
2.16 x 103 for Go = 39.1 db and G, = 3 db, i.e. for a
factor-of-two decrease in power amplification. This corre-
sponds to a relative momentum spread AU/U =

|au} [vud/u2(1 + £2)] of 0.041.

Equation (10) also suggests that the frequency at
which gain has its peak value will decrease as momentum
spread increases.

Exact numerical evaluations for small-signal gain G
have been carried out using the full dispersion relation
[Eq. (8)], and with amplitudes [see Eq. (4)] appropriate
to a perfectly matched amplifier output. One example is
for a mm-wave amplifier employing an electron beam typical
of that produced by a small Febetron accelerator, with y =
1.78, J = 100 A/cm®, Ay = 3.6 cm, £ = 0.2, and L = 36 cm.
Gain curves are shown in Fig. 1 for zero momentum spread,
and for finite momentum spreads between 5 and 20%. Gain is
seen to fall by one-half for AU/U = 0.15, and the frequency
for peak gain drops by about 6%. A second example is for a
sub-mm wave amplifier employing a beam typical of the VEBA
accelerator at Naval Research Laboratory, with y = 4.9,

J =6 kA/cm?, Ao = 2.0 cm, £ = 0.47, and L = 20 cm. For
this case the computed gain curves are shown in Fig. 2,
again for zero momentum spread and for spreads between

5 and 20%.
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Figure 1. Gain curves for a FEL using a 400 kV
electron beam, for electron momentum spread
between 0 and 20%.
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Figure 2. Gain curves for a FEL using a 2.0 MV

electron beam, for electron momentum spread
between 0 and 20%.
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Comparisons between the exact results (Fig. 2) and the
approximate predictions [Eqs. (12-15)] are instructive.
The peak gain for the cold beam is 17.8 db (i.e. 60x) com-
pared with the approximate value of 23.5 db. The gain
drops by half to 14.8 db (i.e. 30x) for AU/U somewhat
greater than 10%Z; our approximate result is 4.1%. These
comparisons for the example presented in Fig. 1 are not
meaningful since the peak gain G, is less than 7.8 db (6x).

Finally, we point out the scaling laws suggested by
Eqs. (12-15), valid for high gain devices where exponential
growth dominates. For negligible momentum spread,
Go n Jl/3L§2/3x-2/3A;1/3 db

or equivalently (16)

2/3 4/3
Y

1/3
G, v I/ )E b .

For the gain decrease G; << Gy due to finite momentum
spread we have

2 2 2
6,6, ~ (AU/LT(L/2 )" (db) . (17

Eq. (17) indicates that high gain short amplifiers are less
susceptible to gain degradation due to momentum spread,
than are low gain long amplifiers. This scaling is inde-
pendent of A and vy provided G, is high. For G; = 3 db, the
numerical value for Eq. (17) gives (AU/U);/; = (00/248)1/2
(Ao/L), where (AU/U),/, is the relative momentum spread for
a factor-of-two decrease in gain. Gain degradation for
long-wiggler FELs operating in the collective regime can

be expected to be serious unless AU/U << L.

It should be added as a caveat however that momentum
spread may not always degrade gain in a FEL. The geomet-
rical optics theory for a FEL amplifier (5) shows that
gain may arise from a wave-particle resonance, provided
fo(a,s,u) is not symmetric in u about its maximum, and
provided 3f,/3u has the requisite sign at the wave's phase
velocity. It is expected that this mechanism would compete
with that discussed in the present paper, and could in fact
allow substantial gain in the presence of tailored momentum
spread.
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Theory of the free-electron laser in combined helical pump and axial guide fields

Ira B. Bernstein and Lazar Friedland
Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520
{Received 7 July 1980)

The linearized theory of a free-electron-laser amplifier consisting of a relativistic electron beam transported along
the axis of a helical wiggler in the presence of an axial guide field is solved exactly. With suitable re-identification of
parameters, the theory also applies to the case where the wiggler is replaced by a circularly polarized subluminous
radio-frequency pum,.. The dispersion relation is derived and numerical examples of solutions are presented. These
indicate (a) that the use of an axial field permits operation of a laser of given high frequency and undulatory
transverse velocity of the unperturbed electron beam at lower values of the pump field, (b) that the gain can be
enhanced by approaching the condition of resonance between the effective frequency of the pump and the cyclotron
frequency, and (c) that the breadth in frequency of the region corresponding to spatially exponentially growing

operation can be much extended.

I. INTRODUCTION

The theory of a free-electron laser (FEL), con-
sisting of a relativistic electron beam transported
along the axis of a helical pump magnetic field,
has been given by Bernstein and Hirghfield.! Their
analysis was valid for arbitrary pump strength but
weak rf fields, since it involved linearization in
the amplitudes of the high-frequency quantities.
Here we present the extension of that work to the
case where, in addition, there is an axial magnetic
field, conventionally present for beam collimation,
It is also shown that with a suitable reinterpreta-
tion of parameters, the same theory applies when
the magnetostatic pump is replaced by a circularly
polarized subluminous rf pump. The axial field is
shown to yield the additional benefits of permitting
the use of weaker pumps, providing enhanced gain
and yielding broader domains of spacial instability.
This is discussed in detail in Sec. V1.

The work proceeds as follows. The general
mathematical description is developed in Sec. II
where the continuity and momentum equations de-
scribing the relativistic beam, and those govern-
ing the electromagnetic fields are presented.
Section III describes the properties of a helical
pump magnetostatic field, and Sec. IV those of a
circularly polarized subluminous rf pump. The
linearized equations governing the high-frequency
fields are derived in Sec. V. Section VI is devoted
to a brief discussion of the relati 'n of this work to
its predecessors, to a description of the numerical
examples worked out, and conclusions concerning
the effects of the axial field.

Il. GENERAL MATHEMATICAL DESCRIPTION

Considcr a cold relativistic electron beam de-
scribed by the continuity equation

e S aba tadadad ab el sl t

POy S GNP D W O €

aN .
o7+ =0 (1)

and the momentum equation

3 . - - . B

<—+Vov)(myv)=-e(E+vX—), 2)

at ¢

where m is the rest mass of the electron, and
y=(1-2v%/2)" 2 (3)

If one forms the scalar product of (2) with y¥ and
uses (3) to express v in terms of 7 , there resulits
the energy equation
3 . = .
(3—!+V-V)mcly--eE-v. (4)

Let é be a constant. It is com_/.enient to introduce
the electromagnetic potential A and ¢ via

B=B3,+VxA, (5)
- 3 (A
E==Vd - -a—t' (;:‘) . (6)

Then with € =eB/mc one can write (2) in the form

3 . = -
A
<at +V ) (myv)

—(E)(—CV¢—’)—A» +Tx (¥ KX)+1}§><E,)
C at

= nQE,XV+(§) <CV¢ +%1; +TI-VK-(§'K)-\7) 7

or on rearranging terms

3 . =\ . eK)
(57”"’)(”-%
- - ¢ - -
=Qe,xv+<m)[fv¢—(vm'v]. (8)

It follows from the Maxwell equations
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Y for the associated magnetic field is, on choosing
cvxB= 41’-“‘3[ , (9 the coordinate system so that A, =0 and 3k,
- ==B,,
v-E=drz, (10) .

on employing (5) and (6), that

va_c‘*%?A- < )J v(c %w A) (11)

V@ +4nZ =~ “V--—?-. (12)
Thus if we adopt the canonical model of FEL the-
ory, viz.

A =A(z,t)8,+4,(z, 18, , (13)
& =%(z,t) (14)

(note that the vector potential is written in the
Coulomb gauge) and assume that the only charged
partxcles present are electrons, whence Z=-Ne
and J—-Nev, then (11) and (12) yield

A 0K (4uNe)

3%~ eE T F-82, V), (15)
2

%-fl 4rNe . (16)

III. MAGNETOSTATIC PUMP

Consider the case of a free-electron laser in
which the pump magnetostatic field is generated
by helical windings and the self-fields cf the elec-
tron beam are negligible. Then in cylindrical co-
ordinates p,6,z the vacuum magnetic scalar po-
tential x will be helically invariant, viz.

X=X(0,9-koz), (17)

where 27/k, is the pitch, and will satisfy Laplace’s
equation

z)(:MD( ) <k2+?\)§;-)(5 0. (18)

The general solution of (18), regular at p=0, on
separation of variables is readily shown to be

x=-Bz+ Z Xl n(mky p) coslm(8 - kyz)+1 ],
(19)

where the x,, and A are constants determined by
the details of the helical windings. Recall that the
Bessel function

1,(0)= Z Gom? (20)

stim+s)l

Thus if a is the radius of the windings and p«< 27/
k,, the potential is well approximated by the term
with m =1 alone, with /, approximated by the lead-
ing term in the series. The resulting expression

e PADIP T YORP WY WA UPUE PUE WA W 1. R Py S

B =-Vx =BE,+B(&,cosk,z +8, 8inkz) . (21)

The nonconstant part of (21) can be written as the
curl of the vector potential

K =~(B,/k,)(8, coskyz +3, sinkyz) . (22)

Expression (22), valid only near the axis, is the
form conventionally taken for the magnetostatic
pump field. A corresponding solution for the ve-
locity and density can be obtained from (1) and (8)
by introducing the tasis vectors

8, ==8, sink,z +&,co8kz , (23)
Ez =~@, COSkyZ — 'é, sinkyz , (24)
8, =¢,, (25)

when on writing
A=AB +A,+Az%, (26)
it follows that

5 (G- wafar (o)

2A
+—a§' g . (27)
Thus (1) and (8) imply
3 wv,9 Nov
—_— i = e —
(Bt + az) TR (28)
8 b8 4, e2)-_o
E;+3Z YU~ o —kovg YUy~ ==dt,,
(29)
3 ) eA
(a—t +%3z—) (yvz - m?) + kova(‘/U1 - ——l> =Qu, ,
(30)
3 v,9
PR et
(at+ az)("”’)
e cad 3A aA
=(;E)(-87-I"T;_v28 kval+kvA)
(31)

Now on combining (22) and (25) one can write
B, =(mc2/e)E8,, (32)

where £, is a dimensionless constant. It is then
readily seen that if also $,=0, corresponding to
E,=-V%,=0, then a solution is given by

Vo=u 8, +we,, (33)
N,=const, (34)

where u =const and w =const, satisfy (27)-(30)
provided that consequent to (29)

w=kyculy(buy,~2)*: (35)
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. where where
. ’ 2
: vo=ll= W+ u)/c2] /3 (36) Aje-go=fe= ¢ (49)
[+ 0
! ® This solution and its experimental accessibility Clearly A’ i Lorentz invariant. Also
. has been analyzed in detail by Friedland.? early o 1s a Lorentz invarant. 218
3 v/ =y (1 =vu/c?), (50)
) IV. RADIO-FREQUENCY PUMP N'=N$(1- vou/cz) , (51)
_The solution given by (32), (33), and (34) with -
E,=0 can also be adaptgd to describe the case of u’ =m-oﬁ? , (52)
a free-electron laser with an electromagnetic
pump which in the laboratory frame has a phase wr = w/P (53)
velocity less than the speed of light. One then 1o/

views the solution as given in the frame where the
pump wave is at rest. Equation (15) then requires,
on using (32) and (33), that

~kct=wlw/c, 37
which on using (35) can be written
~kyC = Bulkguy, ~ )", (38)

where the plasma frequency, defined using the
rest mass, is

<.J,=(4111V°e’/m)‘/2 . (39)

Let v, be the speed of the laboratory frame as
seen from the wave frame, Distinguish quantities
in the laboratory frame by a prime. Then on Lo-
rentz transformation 2/ = ¥(z = vyt), t' = $(f - v,z/

*), and

W' ==ky,? , (40)

ki=hy?, (41)
where

7=(1-03/c)2, (42)
Clearly

vy==w/kj, (43)
is the negative of the phase velocity of the wave.
Moreover,
Bl =88, +B}[%, coslklz’ - w't')+ 8, sin(kiz’ - w't')],

(44)

where

By=7B, (45)
and

El=(w/kic)e, x B, . (46)

Evidently the wave is transverse and circularly
polarized. The associated potentials are

®:=0, (47)
A;=Al[, cos(kiz’ — w't')+ 8, sin(ksz’ - w't’)],
(48)

T T e - gt
- . WS SR, WA LA VAT WL SRV P et 2 detedetedh ot

The inverse transformations to (50)-(53) can be
gotten by interchanging primed and unprimed vari-
ables and changing the sign of .

The counterpart of (35) is now

wr = cE(kiu’ = cg)lygllgu - ') = 2] . (54)

Equation (38) is carried into
(W = kyZc?) = wi(kge’ = W)y glkgu = w) = Q] .
(55)

Equation (55) can be viewed as the dispersion re-
lation for the pump electromagnetic field, but it
is to be noted that the steady-state theory is not
restricted to weak pump fields and a linearized
theory.

V. STABILITY ANALYSIS

Let us work in the laboratory frame for the case
of the magnetostatic pump and in the wave frame
for the case of the radio-frequency pump. The
stability analysis is then common. Let

A =E, - Rel(mc?/e)[£,(2)8,(2) + £,(2)8,(2) Je™ i},

(56)
¥=¥,+Rel[V(z)e¥*], (57
& =0+Rel(mc?/e)w/kc)Ee ], (58)
vy =y,+Re(T e ¢f) (59)
N=Ny+Re(N,e™t4*) (60)
Then (29) and (30) yield on linearization
d
(-iw+ u E;)(yon +cE) = k(T +y,V,+cE)
=k V,lyow = c&)==QV, (61)

(-iw+%)(l"w+yovz+ k) +kauly V +cE ) =0V, .

Rather than use (31) it is convenient to employ the
linearized version of (4) which yields
it £
(-iw+u—-d>l"=(-w—u)d£3 Slewdy

dz kc /] dz c (62)
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Linearization of (1) gives

. ud d

ot @s,
while linearization of (3) implies

TA=uV,+wV,)/c2. (64)
Equations (15) and (16) on using (27) yield
d? dt, of WAV,
T - - 2+ e, (65)
d? d w? w? N
R )("“f‘) > (69)
w d*, & N,
kad E N (67

Note that Eqs. (60)=(67) are a system of eight lin-
ear ordinary differential equations with constant
coefficients for the eight quantities V,, V,, V,, T,
Ny, &, &, and §,. Thus we may seek solutions
where all these scalars vary with z as ef**, If we
write

E =Re[a(z)e'**], (68)
then it follows from (6) that
A=~i(mcw/e)t. (69)

Equations (60) through (67) then imply
il = Wy oV, + c&,) = (kg = /v o)y Vy + c&,+ Tw)
=(R/yo)ck, + (/v )Tw+ kVylyw = c&),  (70)
(gt = /v My oV, + c§y)
+i(ku = Wy Vy+ cky+ Tw) = -(sz/yo)cgl , (1)

C=G3/A)uV,+wV,), (74)
(1= (3 + ) /u? Jg, = (2ikkc®/WP)E,

= =(uB/ANV, /C), (15)
(2ikokc?/wP)E, +[1 = (B + 12)/PE,

== (wB/P)(V,/C)+ (w/c)(N/N,) , (76)

Ny /Ny==(kcw/uw)E, . ()]

It is convenient to express I', N,, V,, V,, and V,
in terms of £,, £;, and £,. The result can be rep-
resented in the form

e E=0, (78)
where the dielectric tensor

€ =0+ (wit /0wl (79)
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and

T=(Q /4 )Nu = W = (u ~ Q/r ] . (80)
The components of 6 are

0, =1 = A+ )/ = w2 fy 0t ,

b03=6, =0,
0,=-06, = =2ickk /P ,
6, =1~ E(K+ )/ u? (81)

~(W} o)1+ (w2 /)2 - P lu - w)2],
0,3 205, = =(Wwhfy  Mku = w) 2w/ w)k - wu/c?),
byg =1 = (W/ro)m = w)H(1 - u?/c?).
The elements of § are

by =k - /v,

- uw  w EkyCw ku-w)
by = =il - w Fhu-w Wi ku=R7,)"

Y =i(ﬂ%lﬁl - “’) , | (82)
() Yoty 270 ),
(30 Jrazot

><(uw w_ Sokgcw ku-w)
Z tu-w oy ku=R/,/’

d)n=iww/u,
_ww kgt = Q/vg w ow )
Pz u ku - w 1+?; hu-w/’

Yt Th—o \ @ Ri—w' o Fu-Gk,

In the limit €~0, 7 vanishes and € reduces to ¢ ,
which apart from notation is the form found by
Bernstein and Hirshfield.!

_ww kou-ﬂ/yo(uw w EokoCw  ku-w )

VI. THE DISPERSION RELATION AND NUMERICAL
EXAMPLES

In order that ('78) have nontri'ti<l solutions it is
necessary that the determinau.

D=dete=0. (83)

This yields an eighth-order polynomial equation
for k. In practice, for the cases of interest o}

« w? and u~c, and two of the roots are such that
w/k=~c. That is, they propagate in the negative-
2 direction counter to the beam and are substanti-
ally unaffected by the tenuous beam. The remain-
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ing six roots correspond to waves which propagate
along the beam. When 0 =0 the two of these which
can be associated with cyclotron waves in the limit
of no helical pump disappear, and one recovers
the result of Bernstein and Hirshfield.! These fea-
tures will be illustrated later when numerical ex-
amples are discussed.

Now Eqs. (61)-(67) comprise a tenth-order sys-
tem of linear ordinary differential equations which
require for a unique solution the stipulation of ten
boundary conditions. Since usually there is negli-
gible reflection of waves at the output end of an
FEL amplifier of finite length, two conditions are
the requirement that the amplitudes of the waves
propagating counter to the beam be zero. This
requirement can be most easily dealt with via
solving the system of ordinary differential equa-
tions by means of a Laplace transform in z, as
was done in Ref. 1, instead of the normal mode
analysis. The dispersion relation, of course, de-
termines the poles of the transform in terms of
which the inversion can be readily accomplished.
The resulting solution for 3(z) can be written in
terms 3(0), assuming that ail other first-order
quantities are zero at 2 =0 and involve linear com-
binations of the six modes corresponding to the
gix rootg with Re%2> 0. Since in general these roots
are nondegenerate, but differ by amounts of order
Ak much less than w/c, there will be interference
amongst their contributions to d(z), which be-
comes evident after a distance of order 27/Ak,
This feature has been examined in detail in Ref.

1. We will not pursue it further here, other than
to note that the single particle theory in which one
examines the second-order energy change in a
distance z of an electron moving in the zero-~ and
first-order electromagnetic field, and identifies
this with the gain in energy of the high frequency
field, is valid only for zak<1.

We now consider the dispersion relation (83) in
an FEL with guide magnetic field. Because of the
complexity of the dielectric tensor ¢ [see Eq. (79)]
it is convenient to study the dispersion relation by
comparing two FEL’s, identical except that one
has an axial field while the second does not and
thus is characterized by the dispersion relation
D, =det(9) =0, the properties of which are well
understood. We make the comparison between the
two lasers by fixing the parameters of the FEL
without the guide field and adjusting the value of
the pump field parameter £, in the laser with the
guide field so that the axial velocities » (and there-
fore also w) in both lasers are identical. This
assures the same Doppler upshift of the frequen-
cies in the lasers. A similar comparison has been
made by Friedland and Hirshfield for the single
particle model of FEL.?

Let £ be the pump field parameter in the FEL
without the guide field. The unperturbed electron
velocity components are then given by w/c=E8nN,
and u/c=[1-(1+£3)/42]' 2. Therefore, following
Eq. (35), with the guide field

=§0 Q

so-g,,(l "75507) . (84)
This equation demonstrates the intriguing possibil-
ity of reduction of the pump field in an FEL as one
approaches the cyclotron resonance condition Qh,
- k. Accessibility of the resonance, however,
is not guaranteed, as was shown in the recent
study? of the unperturbed electron beam orbits in
an FEL with the guide field. It was demonstrated
that for given values of v, k,, &, and Q the elec-
trons can possess more than one steady state,
For example, Fig. 1 shows u/c versus §/c for
k=6 cm™, y,=3, and §,=0.5. For Q>Q,, it is
seen that only one branch exists (branch ). But
when 0 <Q,, two additional branches (A and B) are
allowed. It was also shown that the necessary con-
dition for orbital stability of the steady-state solu-
tions against small perturbations is given by the
inequality

3

L (1"-) <l. (85)

Choo\ U

Branch C is always stable, since w <0 on this
branch. On branches A and B, w>0, but, as was
shown, only branch A satisfied (85) and thus may
be used in applications. Since the ratio w/u is
kept constant in our comparative study, one can
substitute the expression for §, found from (35)
into (85) and write the stability condition in the
following form:

¥ oFott

T+ (w/a (88)

R<Q,=

valid for branches A and B, In our sample case
(v=3, k,=6 cm™, and £3=0.5) one has ,/c
=16.18 cm™, and, therefore, according to (84),

v/c
1.0+ A

0.8 c

LI S|

0.6

0.4

L L L

0.2 Q,/c

0.0 ) U S W | W T W T U N SN D S |
o 4 8 12 16 20 24 128
Q/¢ (em™)

FIG. 1. Steady-state normalized axial velocity « /¢
as a function of normalized axial magnetic field Q/c.
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FIG. 2. Dispersion function D’ on branch A for the -0.02
case yp=3, k=6 cm~!, and w/c =40 cm™!, The dashed
curve represents the FEL without the guide magnetic
field and £§=0.5. The solid curve is for the FEL with ;
the guide field (/¢ =6.5 cm~!), where smaller values 0
of £§ are used so as to provide the same values of 4 and 0.03[- ()
w as for the dashed curve. 0.02f
0.0l I~ " j ng
=1. [ U S U S {6 (R B A O A
501%:12 branch A cannot become less than . =1.562 000k 0a 106 /Ir 0 2 T4
° 001} / n
We return now to the study of the dispersion re- 002k /
lation (83). The form of the dielectric tensor € -

(Eq. (79)] suggests that for values of w, small
enough, the function D will differ significantly
from D, only in the regions where (ku —w)* - (kg
~Q/y,)°~0, as a result of the resonance in the
denominator in T {see Eq. (80)]. We demonstrate
a typical effect of the axial guide field on the dis-
persion function D in Fig. 2, where the function
D’=D{ku - w)/w,(1 = u*/c*)}* /v, (the full line) is
shown versus n =ck/w for branch A in the sample
case when w/c=40 ¢cm™, «}/c*=0.5 cm™, and
R/c=6.5 cm™,. In the same figure the dashed line
represents the case with no guide field.

It is well known' that the unstable regime in an
FEL without the guide field can be described as a
coupling between the transverse electromagnetic
modes with the dispersion relation n, , =1% cky/w
and the electrostatic beam modes characterized
by n, ,=C/uscw,/vouu. One can see from Fig. 2
that these four roots are only slightly perturbed
by the presence of the axial field. There exist,
however, two additional roots in the neighborhood
of the resonance points 7, o =c/us(ck,/w -Qc/
yuw). If the resonances are widely separated as
in the case of Fig. 2, the onset of the unstable
mode is roughly the same as without the guide

feld, namely, as the frequency w increases, the
root n, moves to 1, passing the region n,<n<n,
(since ny ,=c/u). The modes couple in this region,

PEPRE WP . WA I W T NP, S

FIG. 3. Graphical representation of the dispersion
function on branch A for the case v, =3, k¢=6 cm™!,
£3=0.5, w/c =50 cm~!, and increasing values of the
guide fleld (the solid curves): (8) 2/c=14 cm™!, (b)
Q/c=15 cm™, (c) R/c =16 cm™~!, The dashed curves
correspond to the FEL without the guide field. Two
pairs of roots of the dispersion relation become com-
plex as the real roots ny and n, are squeezed by the
resonances at ng and ng.

and the roots of the dispersion relation are com-
plex. When w continues to increase, n, becomes
less than »n,, the coupling diminishes, and one
again has a stable regime.

New effects may occur when the resonances n,
approach each other. This situation is shown in
Fig. 3, where the full line represents the disper-
sion function on branch A for increasing values of
. One can see in this example that even for w/c
=50 em™ in our sample case (ail the modes are
stable in this case if =0) it is possible just by
changing f3 to squeeze the roots n, , by the reso-
nances n, q 80 that two pairs of the roots become
complex. For higher frequencies, when again the
FEL without the guide field is stable (n, < n,) one
can also get an unstable regime as is demonstrated
in Fig. 4 for w/c=100 em™, Our numerical study
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FIG. 4. Graphical representation of the dispersion
function on branch 4 for the case y, =3, k=6 cm™!,
£3=0.5, w/c =100 cm™'. The solid curves: (a) 2/c=14
em™!; (b) 2/c =15 cm~!; (c) ¥/c =16 cm~!. The dashed
curves correspond to the FEL without the guide field.

shows that similar behavior is also characteristic
for branch C with the only difference that there is
only one pair of unstable modes in the low and the
high frequency ranges, respectively.

We finally summarize our comparison of the
FEL’s with and without the guide field in Figs. 5
and 6, where the imaginary part of %2 is shown as
a function of w/c for various values of the axial
field in our sample case (y,=3, k,=6 cm™, £
=0.5, w}/c*=0.5 cm®). Figure 5 is for 0<Q/c
<14.5 cm™ on branch A (the full lines) and 21 <Q/c
<28 cm™ on branch C (the dashed lines). The
resonances n, , are relatively wide apart from
each other and formally the instability in this
range of § occurs similarly to the case of the las-
er without the guide field, Nevertheless, the
presence of the guide field increases the instability
on branch A and tends to decrease it on branch C.
In addition, the linewidth of the unstable regime is
seen to be significantly increased at lower fre-
quencies on branch A. Together with this, no in-
stability exists at frequencies higher than those

RSN Sl e S i Haat Bl e
P -, A

D S ORAL e drin o M At Aadh et

IRA B. BERNSTEIN AND LAZAR FRIEDLAND 23

0.4

LI

e 03|
< L
=02 }
E
ol
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FIG. 5. Spacial growth rates Im(k) versus w/c on
branch A (solid curves) and C (dashed curves) for vari-
ous values of &/c: (1) @/c=0, (2) Q/c=12cm™!, (3)
Q/c=14 em™! @) Q/c=14.5 cm™!, (5) R/c=28 cm!,
6) R/c=23 cm™!, (7) 2/¢=21 em~!. For all the cases
Y9=3,k¢=6 cm™!, and £ =0.5.

characteristic of the FEL without the guide field.
As one approaches the resonance condition £
=74k, (further increasing Q on branch 4 or de-
creasing it on branch C) a completely different
type of behavior is observed as is shown in Fig. 6
for /¢ =15.25 cm™ on branch A (the full line) and
©/c=18 cm™ on branch C (the dashed line). The
unstable region extends over the entire low-fre-
quency range and there are two different unstable
modes on branch A, as was mentioned previously.
In addition there exist unstable modes in the high-
frequency region, which was totally stable before.
Note that the values of Imk in this high-frequency
regime are only weakly dependent on the frequency
itself.

Thus, in conclusion, we have demonstrated in

im (k) {em™)

100 120 140

w/c (<m'|)

FIG, 6. Spatial growth rates Im(k) in the sample case
(vo=3, kg=6 cm™!, £2=0.5) versus w/c In the regime,
where the cyclotron modes couple to the beam modes
(see Figs, 3,4). Branch A (solid curves): 2/c=15.25
em~!, Branch C (dashed curves): Q/c =18 cm-!. The
unstable modes are extended over the low- and high-
frequency regions. There exist two different growth
constants in this regime on branch 4.
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our numerical examples that the presence of the
guide field in an FEL introduces the following de-
sirable features:

(1) One can operate the laser with much lower
magnitudes of the pump field without sacrificing
the undulatory velocity of the electrons. This al-
lows one to use shorter periods of the wiggler with
the same currents.

{ii) The laser can be operated in higher gain re-
gime by approaching the resonance condition

=kolty .

(iii) The linewidth of the unstable modes can be
widely extended to both low- and high-frequency
ranges.
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; Exact magnetic field of a helical wiggler
: S. Y. Park and J. M. Baird
) B-K Dynamics, Rockville, Maryland 20850
. R.A. Smithand J. L. Hirshfield
P Mason Laboratory, Yale University, New Haven, Connecticut 06520
p: (Received 25 September 1981; accepted for publication 3 November 1981)
; Exact solutions are presented for the magnetic field of single and double current-carrying helical
windings. The latter is a configuration used widely in free electron lasers. Differences are shown
between the exact field and the simple form commonly assumed in analyzing free electron laser
o interactions.
PACS numbers: 41.10.Dq, 42.60.By, 85.70.Nk
1. INTRODUCTION In view of the widespread use of bifilar helical wigglers,
’ A spatially-periodic static magnetic field is a central it is of interest to have an exact result for the magnetic field.
o of most free electron lasers. While a linearly polarized Then the accuracy of an approximation, such as Eq. (1), can
g part of m y po. . f o e o .
. . magnetic field is used in some devices,' most employ acircu- ¢ judged carefully for a given coil design. This is especially
% larily polarized field. Theoretical analyses® commonly as- critical when annular electron beams are used, and where
. sume that this wiggler field can be represented, to a good the radial departure of the field from its value on axis can be
¥ approximation, by 12
o B(z) = B, (ONé, sin kz — é, cos kz), (1) b o~ ]
4 1.0¢ b‘“(f) -4
- where B, (0) is the constant magnitude of the field, p = 27/k osf * (a) 1
is the period of the wiggler, and z is the symmetry axis. ~ o6} ]
Smythe* has derived a formula for the transversemag- £ o 4| ]
netic field on the axis of a single filamentary helical winding g ¢of b‘l’(f) ]
of radius a and period p. For the wiggler configuration usual- 2 9 e — ]
o ly considered, two such windings are taken to be symmetri-  § o
cally interspersed, with currents flowing in opposite direc- 5 o4l ]
tion in each winding. For this configuration the magnitude 2 0.6k ]
of the transverse field on axis is twice Smythe’s result, or < 0" i ]
! 5 -0 ]
. B,(0) = (201 /p)ka)K | (ka), 2 ® .o} . 1
) where 7 is the current in each winding and X, (¢ ) is the Bessel ‘121 by{r) ]
: function of imaginary argument. For most wigglers of prac- o § 1
tical interest the asymptotic representation for the Bessel 1600204 060810 12 14 1618 ‘2_0
function is a good approximation, i.e., t/a
1/2 57 1.2 gy
Kie)~ — (m/2) -'[1+—+ 4 ]
< 128¢2 o} (b)
A so that a handy result is X ]
- B, (0 *
. PR A oppire-amn, 9 3 °¢
I 5 § 0.4}
. where p is in cm, B, {0} in gauss, and / in amperes. ~ 02}
€ Blewett and Chasman® have presented a derivation of ~ §
. the magnetic field within a cylindrical current sheet of radius ~ § 0
a with a sinusoidal helical distribution, i.e., 8 02
I -0.4}
J=-£-(a,+kaé,)a(r-a)cos(¢-kz). 3 o:
2 However, this current distribution is a rather imperfect ap- .0.8
| _ proximation to an actual helical winding; thus it is bound to P
give rise to a different radial dependence than that produced "0 02 0406 08 1.0 1.2 1.4 16 18 20
by a bifilar helix. In addition the ubiquitous spectrum of r/a
higher Fourier spatial harmonics produced by an actual FIG. 1. Magneti . . L . )
A i X . 1. Magnetic field amplitudes in (a} cylindrical and (b) helical coordi-
winding is totally suppressed if one chooses the above ideal- nates, for p/a = 2. These amplitudes only give that portion of the field with
A ized current distribution. fundamental periodicity.
./
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large. Furthermore, it is conceivable that a free electron laser
could be operated on one of the higher spatial harmonics, so
as to produce radiation at a correspondingly shorter wave-
length. In this case, an accurate theory for the harmonic field
strengths would be indispensable.

The present paper presents an exact result for the mag-
netic field both in the interior and exterior of a single fila-
mentary helix, i.e., a winding with a wire of negligible thick-
ness. Superposition of the fields of two such helices, with
oppositely directed currents, gives the results we seek. In
addition to the mathematical results, we present graphs of
the radial dependences for the fundamental and the first few
spatial harmonic components of the field for several values
of the radius-to-pitch ratio.

I. FIELD OF A SINGLE HELIX

We take the current 7 to flow along a filamentary helix
of radius g and period p = 2w/k. The curent density is then

I, ..
3= = (& + kat, oir - a)s (z— %) (3)

where é, and é, are unit vectors along the axis and azimuth.

Bp/) (gouss-cm/ampere)

.7
0 0204 06 0810 12 1.4 16 1.8 20
t/a :

04
0.3

0.2
01
o

-0.0

Bp/! (gavss-cm/ampere)

-0.2

-0.3

'0.4 SR DU WY U SR WP P SR ST
0 02 0406 08 10 12 1.4 16 18 20

t/o

FIG. 2. Magnetic ield amplitudes in (s) cylindrical and {b) helical coordi-
nates, forp/a = 1.
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Bp/! (gauss-cm/ampere)

0020406081012 14 151320
r/a

T p—"— Y v ™

-0.2F
-0.4f
-0.6
0.8
<10t
-1.2}
-l.4

8p/1 (gauss-cm/ampere)

0 0204060810 1214 157520
r/a

FIG. 3. Magnetic field amplitudes in (a) c)hndnul and (b) helical coordi-
nates for p/a = 3.

We first seek the vector potential
, I
Ar) = Lo f asy 4
{r) o v —r] (4)
Now,r=¢é,7cos ¢ + é,7sin ¢ + é,z, so that
Ir=r|=[7+7r*+(z—2) — 27 cosip — ¢ )]"/. After
carrying out the r and z integrations, Eq. (4) becomes

A= 2L [ agR g0, + a2, ), (5)
where

R2(¢l)=a—2=F1+(¢'_i]z~247003(¢'—¢):

with @ = ka, 7 = kr, and 7 = kz. We introduce the helical
variable ¢ = ¢ — 7 and use the binomial series for R ~ "),

ie.,
R = (7 +99 14 3 () (Z)

A=t
cos™(y’ — o) ,
(P + vy
where 52 = @ + A, and
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Then Egq. (5) becomes
A= &L f T aW(F + WG, — dsiny
, ar\" cos"(¢’ — ¢)
+620008¢)X[1+.gl( )(2 ————(ﬁa+¢,,),].(6)

where we have introduced the unit vectors

é=é cosZ+é,sinZ,andé,= —é, sinZ+é, cosZ %0
thaté,. = — é, sin ¢’ + &, cos ¢'. It is convenient to sepa-
rate the summation over n into even and odd sums, and to
use

or0=22[(Z)+2 § (|2 )owane]

#olg=g-rt § ( )cos(Zm—l)0

0.3
0.2
01

0.1}
0.2}
03
0.4
-0.5
0.6
07

Bp/| (gavss-cm/ampere)

0 02 04 06 0.0 10 1.2 14 16 1.8 20

LY Y —
oosf b ]
o002}
0
-0.02|
.0.04}
-0.06}
.0.08
.0.10}
.oaz}
-0.14

-0.16

0185204 oo 08 10 12 14 16 18 20

t/a

FI1G. 4. Magnetic field amplitudes in cylindrical coordinates for the (a) third
and (b) ifth axisl harmonics, for p/a = 3.
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FIG. 5. Magnetic field amplitudes in cylindrical coordinates for the (a) third
and (b) fifth axial harmonics, for p/a = 2.

7IIIIIIIITFTIIIIII

I/Bl(o) p (amp/gauss.cm)

0 01 020304 050607080910
a/p

F1G. 6. Magnetic field amplitude on wiggler axis (7 = 0) as a function of a/p.
{a) Exact result (this paper) for a filamentary bifilar conductor; {b) asymptot-
ic approximation (Eq. 2a); (c) result for a sinusoidal distributed current sheet
(see Ref. $).
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Only terms in the integrand even in ¢’ will survive the integration over . After some rearrangement, the result follows as

ng G 2n = 2 1
Alr) = [ a .-o (n!)z & 2 o (n!)? ..21 T m)iin — m)!

[—ZGu cos8 2my + ( — €, sin 2my + é, cos 2my)G 3T !

1
n-lm-l (n+m—1)(n —m)

+ (é, sin 2my + é, cos 2my)G ¥~ + ‘] +

[—ZG’"“cos(Zm — )¢ + (— &, sin (2m — 1)¢ + é, cos (2m — 1)y)

XGI=? + (& sin2m — 19 + & cosom — lmaz,-,]] m
where where 52 = @ + P, and K,(m /) is the Bessel function of
( imaginary argument. One can show that
or ) s T
T Vigm+d v @rr=2067=1ter - Ler,.
= (a__r)‘(m /p)K,(m p), m>0, The components of A(r} in cylmdncal coordinates are
found, again after rearrangement of terms using
_ - ( _ m_
2 7 ,m—O,laﬁO, nzlmz-:f mglngfn+m-l’
=lno —Inp, m=0, =0, ' to be
1
A,(l’) - [ C:’:-&- 2m + 2 i anmfz'm+ 1 ]’
’l' m-l("+2'n)! m=0 (n+2"l+1)!
Afr)= uol i [ 2mS3 am 1 Z (2m + 1)S 37, ]
n-On! m-l ("+2m)' m=0 (n+2m+l)!
and (8)
Al = ﬂol 2 [ Convt $ (2m +2r)C 37, 5 + § (2n+2'n+l)C§.’§'Iz‘...]
LontLn41) & (n + 2m)! o (m42m 4+ 1) ’
[
where C =G " cos my and S7=G ' sin my. Bir¥)= 5 By B™(ryi=b " sin my,
The associated magnetic field intensity follows from m=0
B=VXA o0 .
’ . Birdi= 3 Brnw), BOIrpi=bncosmy,  (9)
. . . me=0
B=k{e(F'4, +4,) -6, +4))+¢,[4; .
+F I(A‘ - A )]}’ B,(ry) = zo B(x""(’.'/’). B (zm‘(’r'/’)Eb Lm)(’) cos my,

where A =94 /dpand 4 ‘=34 /7. Thecomponentsof Bare  where for, m #0,
]

5™ (r)me — “"Ika z 2n+mG7%, . +2(5;)—|G,2,:'+m ,
=0 nl(n + mj
Yy — MG,y m_y + 20+ mGAT'GT, o ~ M) G s
b= '20 e |
bl‘m\(,)_ﬂkaa 2 28(n + m)@ "Gy m_ 1 — (20 +m)@)2GT . .. |
T oe=o nl(n + m)!
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and, form =0,
b%n =0,
- (a_)-ngn +1

- —1p0
b9 = “°’ %5 nién "Gz,

A= aln!

(E)_zcgn +2

[lol =2 (n+ l)(a—)—lclu-o-l

b =2 ka

o 4 .2.:0 nln + 1)
Alternatively, in the helical coordinates,

B\(r,y¥)=B,(r.¢) cos Y — B,(r,{)) sin ¢
= [ ~bPsing+ S b(rsinlm — 1y

+ b'2(r) sin(m + W)].
(10)
Byr =B, (r)sin ¥ + B, r.¥) cos ¥
=[pomeosv+ S BTcosim— 1w

J= (€, + kaé,)b(r — a)[&(z - =

L
ka

The magnetic field may then be obtained directly from Eq.
(9) by forming B(r,¥) — B{r,¢ + ). Terms even in ¢ cancel,
and the results are simply twice the odd parts of Eq. (9).

The fields of the double helix in cylindrical coordinates
are thus

B(r¥) = 5:08‘,‘"“1r.¢).
Brél= 3 BY"* Yy, (12)

m =0

Birw)= 35 B '),

m=0
from which the cartesian components of fields are readily
calculated by

Bx(”‘iz) = Br("‘) cos ¢ - B¢(’»¢’) sin ¢o
B,(r.$,2) = B,(r.¥)sin ¢ + B,(r,¥) cos ¢.
Also, the fields in helical coordinates are
B\(r,¢)=8,(r,¢) cos ¢ — B,(r¢¥)sin ¢
= 3 52"t sin 2my,

b9t = — £ i

- ()"

e g0 %)

~xi@+ L[~ Lra+(1-

— b"™(r) cos (m + 1)¥)|,

with here
b'P(n=4[b(r) £ 65N]-
That is, to our knowledge, the first exact result for the

magnetic field generated by a current flowing along a helix.
On the axis (r = 0), the fields given by Eq. (10) reduce to

B, =0,
B,= — ‘ika[axo(a) + K@),

which agrees with Smythe’s result,* and is equivalent to one
half of Eq. (2) since aKy(d) + K,(@) = —aK (a).

lil. FIELD OF A DOUBLE HELIX

For an arrangement of two symmetrically interspersed
helices carrying identical currents in opposite directions the
current density is

(1n

(13)
By(r,¢) =8,(ry)sin ¢ + B,(r¥)cos ¢ -

= [b‘z‘"(r) + i b¥™(r) cos 2my ],

m=)

where
b=y (62" n) + 627~ Vr)]
+4[65m = b5 "],
b=y (b7 * ) — b7~ Yr)]
+ 463 + 637", (14)
and
b= [63(n + 65 (N].
Near the axis the fields, up to quadratic power in r, are
B\(r,$) = b ) sin 29,
By(r) = [6D4r) + bP(r) cos 2¢]), (15)
Brd)=brjcosy,

where

@+ x|

b= — ’—‘dka {[(l + -_—I)Kz@ - ‘;KJ@] + 9[K2(3ﬂ + —-K,(3¢7)”

- S5 (e )+ (&) (i B

1324 J. Appl. Phys., Vol. 53, No. 3, March 1982
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52
by = Ji'-’-kai-[—[(u 2
r 8
~— lb_’ka[_(L)‘”,—a(l _7_) (L
T or 2 twlt 6d
b= — el iz 7k @
T
~ 2z (L) o1+ D)7
T 2 8a
Again, in the limit 7—0, these reduce to the canonical fields,
Bl =B‘ = 0,

8, = L ka1 (@) (17

IV. RESULTS

In this section we present representative numerical re-
sults obtained from evaluating the first several terms in the
series expressions derived in the previous section. As stated
in the Introduction, our objective is to illustrate limitations
to the use of the canonical form for the helical wiggler field as
given by Eq. 1.

Results are shown for double-helix windings of three
different pitch-to-radius ratios p/a = 1,2, and 3. For smaller
values of p/a the current required to achieve a wiggler field B
(gauss) will exceed 100 Bp amperes; such currents pose seri-
ous practical design problems. For larger values of p/a high-
er spatial overtones become significant for off-axis locations.

Figure 1 shows the radial variation of the field for
p/a = 2. Figure 1(a) shows the components in cylindrical
coordinates, while Fig. 1{b) shows the components in the
helical representation. Specifically, Fig. 1(a) shows 4 \"(r),
b)), and b '(r), that is the amplitudes for components of
the field with the fundamental periodicity. Figure 1(b) shows
b'™r), b'H(r), b'V(r), and b P(r). These are the components
which, to lowest order, contribute to the field with funda-
mental periodicity. The canonical field is 5 £(0), so that the
respresentation of Fig. 1(b) is convenient for determining the
magnitude of departures from the approximation
B(r,9,2) = é,b‘™0). For example, at 7/a = 0.3 one sees that
b ™(r) has increased by about 25% over b X0}, while 5{()
has become nearly equal to b §(). The orthogonal helical
component b ?'(r) has risen to about 25% of b 2(0) at
r/a =0.3.

Figure 2 shows the field components for p/a = 1, with
the cylindrical coordinate case in Fig. 2(a) and the helical
coordinate case in Fig. 2(b). Here one sees that the current
required for a given on-axis field is about 16 times grearer
than for p/a = 2 for the same pitch p. Deviations from the
canonical value b ‘?(0) for finite  are more severe than for
. /a = 2.

b ? Figure 3 shows the field componehts for p/a = 3. Here

the current required to achieve a given field, at fixed pitch, is

2.5 times less than for p/a = 2. Furthermore the off-axis de-

viations of the field from its value on axis are smaller than for
/a = 2.

7 However, the apparent attractiveness of the p/a =3
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case over that for p/a = 2 is partially mitigated by higher
space-harmonic components. This is shown in Fig. 4 for
p/a = 3, where the field components, in cylindrical coordi-
nates, are shown for the third [Fig. 4(a)] and fifth [Fig. 4(b))
spatial harmonics of the field. (Even space harmonics have
zero amplitude due to the symmetry of the windings.) The
harmonic amplitudes are not insignificant for /a>0.4. For
comparison, Fig. 5 shows the same components for p/a = 2.
Here the harmonic amplitudes are seen to be less significant.
Finally we show, in Fig. 6, a comparison with Fig. 1 of
Ref. 5. This is a plot of 7 /pB (0) vs a/p. Shown are three
curves: (a) the result of this work, (b) the asymptotic form
[Eq. (2a}], and (c} the result shown in Ref. 5. The latter (as
well as the asymptotic form) fails at low values of a/p. This
point is discussed in Ref. 1, but somehow never corrected.
The difference between our curve and that of Ref. 5 at Jarge
a/p is due to the different current distributions in each mod-
¢l. The asymptotic form is reasonably accurate fora/p > 0.5.

V. CONCLUSIONS

An exact result has been presented for the magnetic
field inside and outside a single and double helix winding.
The results are expressed in both cylindrical and helix-like
coordinates, as space-harmonic series in (¢ — kz). The radial
dependences are given in terms of Bessel functions X, (m p),
where p? = k %(? + a?). This representation is valid both in-
side and outside the helix. It has the advantage of faster con-
vergence over the more common piecewise solutions in
terms of I, {mkr) (inside) and K, (mkr) [outside).

The results show that, depending upon the helix pitch-
to-radius ratio p/a, both the magnitude and form of the field
may differ considerably from the canonical form (Eq. 1). The
first competing term is B, (r), which increases proportially
with 7 for small 7. For larger radii, as may be encountered in
free electron lasers using annular electron beams, strong ra-
dial gradients and higher spatial harmonics are prevalent.
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Abstract

Fr-ee electron lasers operating in the collective regime are
reviewed, with emphasis on effects associated with a strong
axial magnetic field. One example of such a device is discussed,
which operates without a periodic static pump magnetic field.
This device, if operated at a wavelength of about one-half milli-
meter with a power output of about 600 MW, could act as the pump

for a second one micron laser with apn output of over 1 GW.

I. INTRODUCTION

The purpose of this paper is to review certain recent accomplishments
in theory and experiment on free electron laser (FEL) interactions in the
regime where collective effects play an important role. For such an inter-

" the beam electrons

action, oftimes termed "stimulated Raman scattering,
move in electruvmagnetic fields which are themselves governed in both space
and time by the selfsame electron motions. The established theoretical
apparatus of plasma physics is well-suited to this regime; whereas in the
opposite single-particle, or "stimulated Compton scattering," regime one
needs deal basically with one-body equations-of-motion in assigned

electromagnetic fields.

The general theme of this Seminar stresses plasma interactions in the
optical portion of the spectrum, so that presumably the design of FEL's at
wavelengths below 10 um would be of great interest to this audience. A
FEL operating fully in the collective regime would probably not operate at
a wavelength shorter than about 100 um. Thus the present paper attemps to
motivate interest in collective-regime FELs by re-introducing their
possible role as drivers in two-stage FEL systems yielding high-power tun-
able optical power. One example of a model two-stage system is given in
Sectior II of this paper, and its features are contrasted with th. - re
customary single-stage approach. Section III reviews tne rapidly growing
body of experimental and theoretical work on collective-regime FELs, plac-

ing emphasis on effects of the ubiquitous uniform guide magnetic field.
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Section IV discusses a new collective FEL concept originated by Fruchtman
and Friedland [1], wherein no spatially periodic pump magnetic field is i
required, and illustrates how this device is ideally suited as the driver
in a two-stage FEL.

II. TWO-STAGE FELs RE-EXAMINED
In 1979, Elias [2] proposed a two-stage FEL to produce kw-level tun- |

able radiation in the 0.4 um wavelength range. His device was to utilize

two dc electrostatic accelerators at 2.13 and 9.38 MeV. A static magnetic

pump wiggler in the first stage with a 3.2 cm period allowed generation of

0.6 mm radiation, which in turn was to be upshifted to 0.4 um in a 2.4 m ‘

long second stage.

The device we describe here is conceptually similar to Elias', except
that in place of dc electrostatic accelerators - which are limited to 4
currents of tens of amperes - we envision two induction linear accelera-
tors, at 2 and 5 MV - each capable of kiloampere level currents, and

correspondingly higher pes% powers [3].

In Section IV we shall describe a collective-regime FEL which is
capable of producing significant power at sub-mm wavelengths; we pick
532 um as the design wavelength for the first stage output. So as not to
place undue requirements on the quality of the second-stage electron beam,
we choose a system length of 474 pump periods (or 0.252 meter) - identical
in number of pump periods to that put forward in a design example by
Kroll, Morton, and Rosenbluth [4]}. (For a tapered 2.3 cm period magnetic
wiggler, these authors placed an upper limit on beam energy spread
(Ay/y)max & 0.014; we shall adopt the same limit.) The wavelength ratio

Apump/optical
this gives a beam energy of 5.2 MV. The Colson single-particle one-pass

) 2532 = 47% for an electromagnetic pump; with y% = YZ

gain formula [5] can be written

¢, = (1/427o>52<nN/y)3(rekp)’2F'(e) (1)

where F'(68) is the line-shape function (it's peak value is 0.54), I is

b - the beam current in amperes, § is the dimensionless pump parameter eA/mc,
with A the magnitude of the transverse component of the pump wave's
vector potential, r, is the electron beam radius, and k = 2n/Ap is the
pump wavenumber. The high-efficiency design in Ref. [4] required a

single~-pass gain of 3.5. For the same gain value, and with r, = 0.125 cm,
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Eq. 1 requires EZI = 2.78 amperes. The saturation~level output from the

wave
this A = .5 mm beam has a 1.25 cm diameter, we take a five-fold pump beam

first-stage collective FEL corresponds to Eo = eE /mczkp = 0.01; if

diameter compression to give £ = 0.05. (The pump fields can be supported
by a parallel-plane waveguide, with gradually increasing spacing to pro-
vide pump amplitude taper.) Thus the required beam current is 1.11 kA,
and beam power is 5.78 GW. For 20% efficiency (see Ref. [4]) the peak

laser output power at Aoptical = ] uym would be 1.16 GW.

We now turn to the requirements this second-stage design would place
on the first stage. In terms of the normalized pump parameter £ the
pump power is
1 25,2 2,2
Ppump 8 (Aneom c /e )(kpre) 4 (2)

where (41re°m2c5/e2) = 8.73 GH. The values £ = 5 x 102, r, = 0.125 cm,

and 21r/kp = 0.0532 cm give Ppump = 594 MW, A 2.04 MV, 3.34 kA electron
beam in the first stage would furnish this power level if the collective
FEL achieved an efficiency of 8.7%, which is well within predicted limits.
The wiggler-free collective FEL will require a strong uniform axial
magnetic field; for the example discussed here its strength is 20.1 kG,
well within available superconducting magnet technology. The required

interaction length is under 1 m.

A summary of the parameters of the proposed two-stage device is
given in Table I, together with the parameters given for the illustrative
device in Ref. [4].

I11. REVIEW OF PRIOR WORK

Activity on FELs in the collective regime has intensified of late.
Work prior to 1980 is well summarized in review articles prepared by
Sprangle, Smith, and Granatstein [6], and by Marshall, Schlesinger, and
McDermott [7}. Meanwhile, attention has focussed on the influence of an
axial guide magnetic field on the FEL interaction, since virtually all

collective-regime FEL experiments include such a field.

A major discovery in this area whose impact is still being appreci-
ated concerns the equilibrium orbits in a FEL helical magnetic wiggler
when a uniform axial magnetic field is imposed. Without the axial field,
the allowed orbits are of course helical, but as was dramatically shown

by Friedland [8], this is only an approximate result when the axial field
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Stage 1 Stage 1I Single-Stage [4]
Ee = 2.04 MV Ee = 5.2 MV Ee = 111 MV
Ie = 3.34 kA Io = 1.1 kA Ie =114
Yy =5.0 y = 11.5 Yy = 218
ve =0.1 ¢ Ay/y = 0.014 N = 474
v,/v, = 0.103 N = 474 Ap = 2.3 cm
ko, = 3 cm~! L =25.2 cm P-1009m
Imk = 0.10 cm™! Te = 0.125 cm Q = 100
B, = 20.11 kG £ =0.05 r, = 0.125 cm
ne = 8.7% Gy = 3.5 £ =1.75-1.18 z/L
P = 594 MW ne = 20% By = 4.56-3.07 z/L kG
A =532 ym P=1.16 GW ne = 18%
A=1,0 um P=0.22 GW
A=1.0 um
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Table I. Examples of parameters of a two-stage FEL (columns 1 and
2), compared with parameters of a single-stage devicze (column 3) [4].

is present, and depends critically upon the wiggler parameters and the
entry conditions; orbits over most of the parameter range are strongly
non-helical. Stability analysis showed that electrons on a nearly helical
orbit have a natural resonance frequency for small oscillations about equi-
librium. Experiments performed by Avivi et al. [9] have confirmed the pre-
dicted [8] threshold for orbit stability. Fig. 1 shows the data from this
experiment, performed with a low~-voltage, low current dc electron beam

(the stability properties are not a relativistic effect); the threshold

for orbit instability in this experiment was observed for wiggler field

amplitudes as low as 2 gauss.

Analytic solutions to the exact non-linear orbit equations in a
“canonical" helical wiggler field have been given by Smith et al. [10], and
by Freund and Drobot [11]. (The “canonical' approximation neglects the
off-axis gradients in the field of the bi-filer helix winding used to
generate the field.) These analytic solutions bear cut the properties
discussed and shown in numerical solution by Friedland [8]. Exact analirtic
solutions for the magnetic field of a bi-filar helical winding have beeu
recently obtained by Park, Baird, Smith, and Hirshfield (12]. These solu-
tions show that, for annular beams, the canonical assumption may be strong-

ly violated. 1In addition higher space harmonics may be significant.
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Diament has studied particle orbits in a more realistic wiggler field [13].

o The influence of the axial guide field upon FEL gain was first shown
theoretically by Friedland and Hirshfield [14] using a single particle
model. Gain enhancement of more than a factor of 10 was shown, above that
for an otherwise identical FEL without the axial guide field, as shown in
Fig. 2. This interaction was developed in a fully collective model by
Bernstein and Friedland [15], Freund, et al. [16], and Freidland and
Fruchtman [17]. Non-linear results have also bee. obtained by Friedland
and Bernstein [18], including effects connected with non-helical orbits
and saturation; the saturation levels are shown to be greatly influenced
by large radial excursion of the orbits. Further detailed linear analysis
has recently been performed by Freund, Sprangle, Dillenburg, da Jornada,
Schneider, and Liberman (19].

@

The first experiment to show clear effects of the guide magnetic
field upon a collective FEL interaction was reported by Birkett and Mar-
shall [20]. Enhanced radiation was observed as a vy = 2 electron beam
J. passed along a helical wiggler with 18 mm pitch and 40 cm length. When

the guide field gyrofrequency and magnitude matched the sense and fre-

quency of the helically driven undulation, enhanced radiation resulted;

for reversed direction guide field the enhancement was absent. The authors
® explain the observed double resonance as a matching between either the
pump or scattered signal to the electron gyrofrequency. An alternative
explanation could lie in the strongly non-helical orbit which could have
been present near the resonance between the gyro-and wiggler-frequencies;
slight retuning on either side of the resonance could have restored the

nearly helical orbit and thus provided the enhancement.

Using a similar electron beam generator the Ecole Polytechnique group
[21] observed orders-of magnitude enhancement in mm-wave radiation as the
guide field was adjusted near the aforementioned resonance, as shown in
Fig. 3. However the authors point out that non-adiabatic conditions as
the beam enters the wiggler could lead to poor beam quality, thus making
» imprecise the occurance of such a resonance in the orbits, especially in

avoiding sctrongly non-helical orbits.

The precise origin of these observed enhancements has been called
into question by Shefer and Bekefi [22]. These authors measured emission

froma v 1 MV, ~ 5 kA electron beam in both a uniform magnetic field, and
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in a uniform magnetic field superposed on a rippled magnetic field pro-
duced by a diffusive wiggler [23]. With the uniform field alone intense J
microwave resonance emission is observed between 8 and 140 GHz. It was

shown that the conditions under which intense radiation is observed coin-
cided with a matching between the electron cyclotron frequency, or one of
its harmonics, and the cut-off frequency of one of five waveguide modes 1
supported by the 2 cm diameter stainless steel drift tube surrounding the
beam. The authors interpret this emission as being due to the cyclotron
maser instability [241. Imposition of the wiggler field did enhance the

aforementioned resonances, but did not lead to additional radiation at the

resonance between the gyro- and wiggler frequencies. The authors suggest
that their wiggler increased the perpendicular energy, and thus the growth
of the cyclotron maser instability, but did little else. No theory for

the collective FEL with an axial guide field in a waveguide has yet ap-
peared. It may be that the waveguide dispersive effects alter sufficiently
the conditions under which guide~field enhancement of FEL radiation is

expected. Be this as it may, some controversy does remain.

One further experiment deserves mention in this brief review: that
reported by the Naval Research Laboratory group in 1982 [25]. These
authors made a major advance in the art of generating intense MV electron
beams by carefully designing the field-emission foil-less diode geometry
to produce kiloampere beams whose axial velocity spread is claimed to be
less than 0.1%. This is a requirement in the experiment reported, since
the wiggler employed had p = 21 periods. Unless Au/u << p-l, one would
expect phase mixing to wash out clear collective interaction between the
beam and the wiggler. A significant observation in this experiment is the
piesence of two bands of mmwave emission (A < 5 mm) on either side of the
resonance between gyro—- and wiggler frequency, as shown in Fig. 4. The
orbit stability studies [8] show that helical orbits are not possible
close to this resonance, and the NRL group has found good agreement

between their observation and prediction of theory.

IV. FEL WITHOUT A WIGGLER

In 1979, Ride and Colson [26] published a single-electron calculation
of the stimulated emission from individual electrons on helical orbits in
a uniform magnetic field. Careful study of the orbit perturbations aris-
ing from a copropagating electromagnetic wave revealed that axial velocity

perturbations are present, in addition to the customary azimuthal velocity
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perturbations. For an ensemble of such electrons with randomly-phased

equilibrium helical orbits, the axial velocity modulation can give rise
to wave amplification for slow electromagnetic waves, whilst relativistic
energy changes give rise to amplification for fast electromagnetic waves
[27]; the effects compete for traveling waves, but not for standing
waves [28]. This class of interaction is widely exploited in gyrotron
devices [24].

But, when an ensemble of electrons have phase coherence in their heli-

cal orbits, the system has much in common with a FEL in a helical magnetic
wiggler. For the latter the equilibrium orbits are coherent helices with
axial period £ equal to that of the static magnetic pump; for the former
the equilibrium orbits may be coherent helices with axial period 20 =
2ryu/Q, where u is the axial velocity and @ = eBo/m is the rest electron
gyrofrequency. While the equilibria may be identical in the two configura-
tions, perturbations (i.e. stimulated emission) will differ, since the pump
magnetic field in the conventional FEL clearly influences the subsequent
motion. A principal difference between FELs with and without a periodic
magnetic pump is that the output wavelength for the former would be

A= 2/2y2, whereas for the latter it would be A = 20/272 = mu/Qy. The use
of a uniform magnetic field FEL will not permit operation at wavelengths
below about Y-l mm, for magnetic field strengths below 100 kG.

The Ride-Colson analysis [26], and subsequent large-signal extensions
thereto [29] do not of course apply in the collective regime. However
electron beams in most experimental devices which operate in the mm or
sub-mm wavelength range are intense enough (kA currents) to require a
collective description. A collective theory has recently been developed
by Fruchtman and Friedland [1], who have shown that spatial amplification
rates for waves on a cold, spatially coherent beam of helically orbiting
electrons in a uniform magnetic field are comparable to those predicted
for conventional collective FELs in the same parameter regimes [15]. Here

we present a highly condensed version of the Fruchtman-Friedland analysis.

The authors consider wave propagation down a uniform magnetic field
B = ézBo' along which an unbounded electron beam flows. The electron beam
is characterized by the cold velocity-distribution f(v,2) = Né|v - V(2)],
- = - +
where V(2) -w[éxcos(koz + ¢) + éysin(koz +¢)] + ué, wéz ué3, and N

is the beam density. The perpendicular and parallel speeds are w and u,
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¢ is a constant phase which assigns V(0), ko = eBO/mYu, and (él,éz,é3) is

the set of basis vectors which track the orbit helix [29]. Maywell's equa- 1
tions for the fields, and momentum and energy conservation equatioans for

the particles are linearized, for the steadv-state spatial evolution of the
perturbed quantities i.e., for the amplifier problem. 1In the helical coor-

dinate system these equations reduce to a set of eight first-order, linear, 1

ordinary differential equations, with constant coefficients - as long as

spatial evolution rates are on a scale much longer than c/w. Subject to
assigned boundary values, say at z = 0, one can then determine the spatial
evolution of the system in the form y(z) = wkexp(ikz). Coupled algebraic #
equations result for the three components of the velocity perturbation, for
the three components of the electric field of the wave, and for the per-
turbed beam density and electron energy. The equations may be rearranged 4
to appear in the form ellElk + 512E2k = 0 and EZlElk + 522E2k = 0, where
E1k and l:".2k are electric field amplitudes in the directions of él and éz,
and where the Eij are elements of a dispersion tensor. The dispersion
relation €11522 ~ €12621 0 yields the allowed (possibly complex) values
of k for assigned values of w and the other parameters; this dispersion
relation is of eighth algebriac order in k. However, for k near ko
considerable simplification results, and the dispersion relation has the
approximate form

(8 - 822 - ¢h - %P = 0 (3
where A = ku/c - w(l = u/c)/c, B =k u/c - w(@l -vu/e)/e, T 2 & w2/73c2,
Ez =y w /c , and p = k (1 -¢ /A ) - w(l - u/e)/e. This disper51on rela-
tion superficially resembles that for a conventional FEL [30], wherein K
coupling between electromagnetic (A = B) and beam (A=*7) modes leads to
wave growth where 52;2 ie the (small) coupling constant. [If b were to be
replaced by -Zko, Eq. (3) would be the reduced FEL equation.] But since u
in Eq. (3) is a function of A, the equation is of higher order (fifth) and 4
the solutions are more complex. In fact, two modes may be simultaneously

unstable.

Numerical results are shown in Fig. 5, where the spatial growth rates
for the two urstable modes are shown as funciions of frequency. Two dif-
ferent combinations of axial magnetic field strength and beam energy are
given, but <he product koyz is taken as 75 for both examples, so that pezk
gain occurs for both examples at the same frequency (i.e. near w/c = 118

cm-l or A = 2n/118 = 0.0532 cm). The solid curves are for y = 5,
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ko = 3 cn-l; the dashed curves are for vy = 2, ko = 18.75 cm_l; both curves
F’ are for (up/c)2 =2 cm.l, corresponding to a current density of 2658 A/cmz.
It is important to note the wide band width for the lower solid curve,
indicating the potential for generating intense wide-band power in the
sub-mm range using this interaction. The growth rate of 0.10 cm-l at the
peak of the upper solid curve in Fig. 4 suggests that the length of the
first stage can be less than 1 m if an 80-90Z reflection output coupler

is used. Preliminary non-linear studies [31] indicate that this inter-
action will begin to saturate when e|E|/mc2 = 0.6 cm.l, or when

Eo = elEI/mczkp= 5 x 10-3; we have adopted a fully saturated level

£, = 1072 in our considerations in Section II.
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Figure 1. Measured values of B../B, at which U SEPR SR U T R
transitions from stable to unstable orbits 0 0.01 0.02 0.03 0.04 0.05 0.06
were observed, for electron encrgies between FG. 2. (@ ¢ In'and &) o
4-14 keV. Solid line is theoretical pre- - 2. (@) Gain enbancement eorrespond=
dictio:. [9] ine s eoretical pre ing normalized axial magnetic field /¢, vs transverse

magnetic fleld parameter {. The values {, = 0.5 and
1.0 are for the FEL without axial field, and provide
the same u,, as do the indicated (smaller) values of
¢ for the FEL with the indicated axial field strength.
Example ig for y= 10, ;= 6.0cm™*, and L = 13C cm.
Solid curves, orbits on branch (; dashed curves,
orbits on branch A. For high enhancement values,
such as on the {, = 1.0 branch A exampie, the numeri-
cal precision required to compute accurate results
suggests that the phenomenon is very sensitive to the
system parameters. [14])
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Fig. 3. Microwave power as a function of the pump field strength for
frequencies preater than 100 GHz and three values of the longitudinal
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Amplification of frequency upshifted radiation by cold relativistic guided
electron beams
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An amplifier on cold, relativistic, guided electron beams is considered. The problem is reduced
to a set of first-order, linear, ordinary differential equations. The dispersion relation governing
the stability of the system is derived and its solutions are studied numerically. The results of the
calculations show that in the submillimeter regime, the spatial growth rates in the system may be
comparable to those predicted for Raman-free electron lasers.

PACS numbers: 42.55.Bi, 41.70. + t, 41.80.Dd

I. INTRODUCTION

A great experimental and theoretical effort has been
made in recent years in developing powerful sources of co-
herent radiation, using relativistic electron beams. In free
electron lasers, for example, the beams are scattered on peri-
odic magnetostatic structures and amplify electromagnetic
signals at a wavelength A~A4,/2y%, where A, is the spa-
tial period of the scattering magnetic field and
y =[1 — (v/cf*]~"/? is the relativistic factor, v being the ve-
locity of the beam.! These devices have shown a capability
for operation in a wide frequency range from millimeter
waves to infrared. This broad spectrum of operation is ob-
tained by changing the energy of the electron beam, thus
varying the amount of the Doppler upshift in frequency,
which is proportional to ¥*.

A different mechanism of amplification of a high-fre-
quency radiation was suggested by Hirshfield ef al.,> who
demonstrated the possibility of exploiting the cyclotron ma-
ser type instability at Doppler upshifted frequencies. In con-
trast to free electron lasers, the mechanism discussed’ does
not need to have magnetostatic scattering and relies on the
electron beam gyrating in a strong uniform magnetic field.
The amplification of an electromagnetic signal is expected at
frequencies w2212, where {2 = eB /mcy is the relativistic
electron cyclotron frequency. As is common to many studies
of cyclotron masers, the electron beam? was assumed to have
the following velocity distribution function

f(U,.U,,U,) =f(|'1|'vz)’ (1)
where v, is the velocity perpendicular to the magnetic field.
Thus the direction of v, was assumed to be distributed uni-
formly. In this case the transverse and longitudinal electro-
magnetic modes in the system are decoupled and, as was
shown,? one of the transverse modes is spatially unstable.

In the present paper we are also exploiting the idea of
using relativistic electron beams in strong uniform magnetic
fields. In contrast to Ref. 2, however, we consider a different
velocity distribution function. We assume that initially, at
the entrance into the interaction region, the distribution
function is
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f(vx’vy’vx)lz-o =A5(vx —Ux )6(0)’ - vyo)
Xy, —vy,), 2)

where § is the Dirac function. The interaction of such a beam
with radiation in a uniform axial magnetic field can be de-
scribed by the cold fluid model, as opposed to case (1}, where
the study of the interaction of the beam with radiation re-
quires the Vlasov description.’ In Sec. II we will derive a
simple set of equations describing the evolution of the elec-
tromagnetic field along the device, by using a method similar
to that applied recently to free electron lasers.® In Sec. ITI, we
will consider the momentum equation for the beam, which
will determine the current sources in the field equations. In
Sec. IV, we will reduce the dispersion relation governing our
system and demonstrate that the cold beam (2} couples the
longitudinal and transverse modes. This effect results in an
enhanced spatial growth in the amplifier, as will be demon-
strated in Sec. [V, where we will present numerical examples
and compare our results with the results of Hirshfield e al.?
and those predicted for free electron lasers, operating in a
comparable regime.

Il. FIELD EQUATIONS

Consider an electromagnetic wave propagating along a
relativistic cold e!sctron beam, gyrating in a uniform mag-
netic field B = B¢, . Adopting a one-dimensional model, we
can describe the electromagnetic fields E(z,¢) and B(z,z) by
the system of Maxwell equations:

ce,x%=i:-:——4ﬂe1\’vl , (3)

—ce ><£=ﬁ (4)
oz ar’

JE,

?= — 4meN, )]

B, =0. 05

Here V(z,¢) is the velocity of the electrons and N is the elec- -

tron density, satisfying the continuity equation
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The subscnpt 1 in Egs. (3) and (4) describes components of
the electromagnetic field transverse to the z axis.

We are considering a stationary amplifier problem,
namely, introduce an electromagnetic perturbation of fre-
quency @ at z = 0 and solve for the electromagnetic field in
the device as a function of z. Consistent with this problem we
write

J 2 v = ™)

_ _’"_‘-’2 iaXz/c = 1)
Eizt)= Re( . aiz)e ) , (8)
B(z,t) = Rc(—mei b(z)ei#/ ¢ ’) , (9)
Viz,t) = Vy(z) + Re{v(z}e*< — 1)), (10)
N(z,t) = Ny + Re{n(zje™=< =), (11)

where N, = const and Vz) are the density and the velocity
field characterizing the beam when the electromagnetic
wave is absent. Note that in Eqgs. (8) and (9) we are consider-
ing only rightward propagating waves, which is consistent
with the amplifier problem considered in this paper. Equa-
tions (3) and (4) can be now combined and yield on
linearization

dz.l wd'l.
2,—-=—-mv + Vo, n), 12
iz + c dz 'c (@pv, o1n) (12)
where w? = 47e’Ny/m. Similarly Eq. (5) reduces to
. @ d)a n
—_——t—, = -, (13
(’ c dz s )

and the linearized continuity Eq. (7) becomes

1{. Vo:_) i]__,(.g i)
—c—[la)(—c— 1 +Vo,dzn— a),,lc+dzv,.
(14)
Assume now that the various natural frequencies char-
acterizing the electron beam (such as , and 12 = eB,/mcy)
are much less than w. Then we expect the spatial variation of
a, b, v, and n to be on a scale slow compared to the fast
oscillatory part ¢ “““ in Eqs. (8)~{11). Namely, in order of
magnitude, for x = a, da/dz, v, n:
dinx < i::_ . (15)
With this assumption we can rewrite Egs. (12)—(14) in the
following approximate form:

da
-—‘——(w v, +Von), (16)
dz
a, =i——, (17)
wcC
V 2
l[im(;"- 1)+ v, i]n: —i%2,
¢ c daz c
IIl. MOMENTUM EQUATION
Consider now the momentum equation
(i +, i)qu) - - i(ix (B + Bizs)] + Eizt )) .
at dz m\c¢
(19)
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In the absence of the electromagnetic fields, this equation
describes a gyrating electron beam with
Vo= —wl[é, coslkoz + @) + &, sin(kyz + ¢ )] + ué, ,
(20}
where u,w = Const; k, = eBy/mcyu = 2 /u and ¢ defining
the velocity of the beam at z = 0. With no loss of generality
let us assume that ¢ = 0 and define a rotating coordinate
system with the base vectors

&, = —@& sinkyz+ & coskyz, 21)
&= —@&, coskz— &, sinkyz, (22)
8, =8,. (23)

Then V, = wé, + ué, and the linearized momentum equa-
tion for perturbed velocities, in components along
&, (i = 1,2,3), becomes

[ 1
L ia)(-u—— l)+u—é- v,
ci \¢ dz]
I
= kow( —+ fi) + i(i by — a.) , (24
€Y ¢ Yo\ C
—l-riaz(i— l)~+—ui v, = —w%——-l—(ib. +az>.
cl \c¢ dz| €Y  Yo\€
(25)

—

W ’
__ia)(-li—l)-{r-uiu}:u r +L(-'£-b|—03),(26)
cl \e dz] Y Yo\c

where similar to Eqs. (8)—(11) we defined

y = 70 + Re(r(z)enmz/c - n)’ (27)
and
r= -—l—[iw(-“— - ) +u —]r (28)
¢ c
The energy conservation equation
d
&Y o — £ _V\E, + V.E, + V,E,), (29)
dt mc*
can be employed, to get on linearization
r,= —ﬂaz—ia3. (30)
¢ ¢

Finaily, in the new coordinates, the field and density Egs.
(16}~ 18) become

da, @, WpUy

=k , 31

TS .

@‘2"*',‘0“1 =-——{w2vz+wn), (32)

dz 23°°

a,=i;n;-, (33)
2

i[zw(i— l) + ui n= — I'E)LU:‘ . (34)

¢ c dz ¢

Equations (24)}~(26), (30), and (31}—(34) comprise a sys-
tem of first-order, linear, ordinary differential equations, de-
scribing our system completely for any given set of initial
conditions at z = 0. Note that due to the choice of the base
vectors €, {i = 1,2,3) we have a system of equations with con-
stant coeflicients, which allows us to seek the solution in
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the form ¢z) = ¢, explikz), where ¢ stands for
v,,a,,b,(i = 1,2,3), I" and n. Then Eqgs. (24}{26) become

idv, = wfo Uy + wiky r, +_1_(lb2k _alk) ’

% Yo\ €
(35)
idvy,, = — ‘Ark —_— —( by + azk) (36)
€Yo %o
idvy, = —idl, = + —‘(_ by — ask) ' (37)
€Yo Yo\C€

where

=%(%—l)+k—':-. (38)

Similarly Eq. {30) reduces to

ar, = —%azk ——:’askr (39)
and the field and density Egs. (31)+34) give
2
()
ika\, — kopy = 2—:,' Uik » (40)
. 1
ikay, + kg = szvu + wn,), (41)
. My
3y =1, (42)
wc
any = 2%, . 43)
[4

Expressions for b,, and b,, in Egs. (35}37) can be found
from Eq. (4):

by = —ay +§(ikazk + Kok ) (44)
ic,.
by =ay, “;(‘kau — ko) - (45)

On using Egs. (40) and (41) on the left-hand sides of Egs. (44)
and (45), substituting the resulting expressions and /", from
Eq. (39) into the momentum Eqgs. (35){37) and expressing
a,, through v,, via Egs. (42) and (43) we get

wu jwuk
a 2 )v ={Z— wuke .
'( + 2ywct) ( )— ey, Ac’yo

+""‘°[1+ wpu” ]v,k, (46)

¢ 424r
mu w  u w  whuw
{4+ (_+_-1y____v ,
( 2y 3 ¢ Yo 2yc'd F
47)
CAw(l — a wlwd
B2 =2y, =i 2= W/0) B | BBE a8
¢ Yo 2yewc

where

_ 0'2, —ﬁ——w__z-]l/z
o=[2(-5-2)"

is the plasma longitudinal response frcquency. Assume now
that
wiu

— 50
Ty ld | %0
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An a posteriori check of this assumption has shown that it is
satisfied for all the numerical examples considered in this
paper. Inequality {50) and additional assumptions of
w/c$1/y, and 1 — u/c«1, which are consistent with our
treatment of a high-frequency device, allow us to write the
solutions of Eqs. (46}—{(48) for v, (i = 1,2,3) in the following
approximate form:
2 2

wkoazk[l+ W} [l—(u/c)][l—(wz/Zcz)]]

Vig =

Al e 4r-¢*
+i(1—i)a”‘ : (1)
¢/ 4y,

7 2 2uwill —
Uzk=mi[l—i_iz'—wpu4w[ 2 (“/:')] » (52)
4, ¢ ¢ 2&*yld -6

idw[l —(u/c)la
Uy = 5 2) = (53)
dd* =5,

IV.STABILITY ANALYSIS AND NUMERICAL EXAMPLES

On substituting Eqgs. (51}{53) into the field cquatlons
(40) and (41), we can write the latter as

€118y + €128y =0,

(54)
€14y + €328, =0,
where the dielectric tensor is
iw?(l — u/c
€l|=ik—_—’¥’ (55)
2%*rA
wyw’k o3(1 — u/c)
€= — ko — —F 0 [1 P
12 0 zyoc.‘A 2 + }’ocz(A 7 ;2) (56)
€1 =k, . (57)
2 2
€2 ik__':)__ 1_3___:4_)2__:»«034(21 —uz/c)
2cyod c ¢ Adi—¢?

(58)

Existence of a nontrivial solution of Eq. (54) for a,,, a,,
requires

D =¢€6;, — €26, =0, (59)

which is the dispersion relation governing our system.

When the beam density goes to zero, the dielectric ten
sor becomes €,, = €, = ik, €;,, = — €,, = k,. The disper-
sion relation in this case yields k = + k,, which, of course, is
the vacuum solution. This suggests, that for »? #0, but small
enough, we can treat the terms proportional to wf, in the
expressions for €,;, as small perturbations and seek solutions
for k in the form k = + k, + x, where |x| <k, We will use
this perturbative approach in the rest of the paper.

First let k = — k, + x. Then if w/c>~2k,)*, 4 is the
orderof k,and therefored 2 — £ *~k 3, sothat the resonance
denominators in Eqgs. (56) and (58) are relatively large. The
solution for x in this case is real, the mode is stable and does
not contribute to the possible amplification in our system.
Consider now the case k = k, + x. The values of 4 in this
case will be of the order of x, if again w/c~2k,y", and the
resonance denominator 4 2 — £ 7 in Egs. (56) and (58) may

A. Fruchtman and L. Friedland 4013
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become very small. The dispersion relation now has the fol-
lowing approximate form:

B-anat-¢h+ =0, (60)

where
w u u

5_—.?(}-—1)+k0?, (61)

‘= _¥ 62

8 ﬂ+k0(l C), (62)

2

u=ﬂ'—ko-j—,. (63)

and § = wyy/c.

The dispersion relation (60) has some features similar to
the case of a conventional free electron laser. The similarity
is expressed in the fact that as in the free electron lasers Eq.
{60) describes the coupling between the electromagnetic
{4=8) and beam (A= + { ) modes and £ can be viewed as
the parameter characterizing the strength of the coupling.
Moreover, Eq. (60) reduces to the dispersion relation for the
free electron laser’ if we set u = — 2k,. Note, that for 4 ¢S
and ¢ 2 small enough, Eq. (60) predicts a solution at A=~(.
Then u= — k, and we can expect in this regime to have a
solution of (60) for 4 similar to the solution we have in a free
electron laser with the same values of k,, 7,, and the beam
density twice lower than in our device. Together with these
similarities, the apparent difference from the case of a free
electron laser is in a more complicated form of 4 which leads
in our case to the higher-order dispersion relation and, as
will be shown below, to coexistence of more than one unsta-
ble modes.

We now present some numerical examples. Figure 1
shows the calculated growth rates of the two unstable

A\
/
a5 /)
/)
0.20f- /|
= /|
Eosl 7 NI
< oo
0.05 H
L 1l
80 100 120 140 160
w/e (cm")

FIG. 1. Spatial growth rates Imk vs normalized frequency w/c. The
parameters are w}/c* =2 cm™? and ko =13 cm~', y, =5 (solid lines)
and k, = 18.75 cm ™', y, = 2 (dashed lines). For each set of param-
eters, two unstable modes are present in the system.
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80 100 120 140 160
w/c (emN)

FIG. 2. Spatial growth rates /mk vs normalized frequency w/c. The
parameters are ¥, =5, ko =3 cm ™', and w}/c* =2 cm~? (solid lines)
and !/c* = 20 cm~? (dashed lines).

modes, which are present in the system, for fixed density of
the beam and two different combinations of the strength of
the axial magnetic field and the beam energy. The combina-
tions were chosen so that ;) in both cases remains the
same. In addition we used w/c = 0.1 in both regimes. The
comparison with the recent calculations for Raman free elec-
tron lasers,® shaws that for the case of higher energy of the
beam (¥, = 5) the maxim':m growth rate in our system is
about 30% lower than :n the free electron laser with the
same values of ¥,, w, and w?. If we use an approximate for-
mula Imk = ww,/c*(2y,)"’* derived in Ref. 2 for the beam
(1), we find that for ¥, = 5 the gain in our system is ~40%
higher. For the second set of parameters, with lower beam
energy (¥, = 2), the maximum growth rate in our system
becomes considerably higher than that predicted in Ref. 2 in
this case (Imk~0.1 cm™'). In Fig. 2 we present the cases of
two different beam densities, and fixed values of k, and ¥,.
Significant enhancement of the growth rate is evident with
an increase of the beam density. For the higher density case
(@2/c¢* =20 cm™? the maximum growth rate is ~0.23
cm™' as compared to ~0.13 cm™"' for the beam (1) in this
case.

In summary, we have considered an amplifier based on
the fully cold, guided, relativistic electron beam. It has been
demonstrated that such a system may be superior to the de-
vice considered in Ref. 2. In the submillimeter regime the
growth rates of the unstable modes in our system are compa-
rable to those found in conventional free electron lasers. The
use of only uniform guide magnetic fields allows one to ex-
plore electron beams with larger radial dimensions, as com-
pared to those used in free electron lasers, where the best
operation is obtained close to the axis of a magnetostatic
scatterer. With all the aforementioned advantages, it is still
necessary to find the best experimentai methods of achieving
the suggested configuration of the beam. The effects of a
thermal spread in the beam on the growth rates in the sys-
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Amplification on relativistic electron beams in combined helical
and axial magnetic fields

L. Friedland®* and A. Fruchtman
Center for Plasma Physics, Racah Institute of Physics, Hebrew University of Jerusalem,
Jerusalem, Israel
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A free-electron laser with the guide magnetic field operating as an amplifier is
analyzed. A simple dispersion relation, similar in form with or without the guide field, is
derived. The study of the solutions of the dispersion relation indicates that the guide al-
lows us to (a) enhance the spatial instability in the amplifier, and (b) significantly extend
the frequency range of the instability to lower and higher frequencies. This improved
operation of the amplifier with the guide field may be achieved at lower values of the
pump helical magnetic field. An expression for the power gain in the amplifier as a func-
tion of its length is derived and applied in numerical examples to demonstrate the effects

of the guide field.

I. INTRODUCTION

Free-clectron lasers, in which the energy of a re-
lativistic electron beam is transferred into high-
frequency coherent radiation, have been studied ex-
tensively in recent years.! One can schematically
divide free-electron-laser experiments into two
groups. The first is characterized by low beam
densities (I ~1 A) and high relativistic factors y
for electrons (¥>20).>? In these devices collective
plasma effects are usually unimportant and the
single-particle theory is used to describe the in-
teraction. The second group of experiments, for
example,*~¢ uses intense electron beams (I > 1 kA)
with relatively low energies (¥ < 10). In such lasers
the collective interaction plays the major role. An
important feature of the laiter group of experi-
ments is the presence of a strong axial guide mag-
netic field, primarily designed to collimate the high
current electron beam in the interaction region.

An analysis of the effects of the presence of the
guide field was recently carried out.”~® The
single-particle theory of such lasers® showed that
the addition of the guide field may provide a signi-
ficant increase of the small signal gain due to a
resonance effect between the frequency of the scat-
tered electromagnetic wave and the natural
response frequency of the steady-state electron or-
bits in the combined pump and guide fields. In
addition, the cold fluid, fully collective theory of
the laser’ predicted an extension of the frequency
range of the spatial instability.

In this paper we continue the study of the free-

23

electron laser with a guide magnetic field and con-
sider a conventional amplifier problem. In con-
trast to Ref. 9, where only the mode stability
analysis was carried out, our aim will be to actual-
ly find the spatial development of the electromag-
netic wave along the amplifier. We shall employ a
number of physical approximations which will re-
sult in a much simpler dispersion relation than
that developed in Ref. 9. The problem is thereby
significantly simplified and leads to a clearer
understanding of the device.

The work proceeds as follows. In Secs. II and
III a system of transport equations for the ampli-
tude of the electromagnetic wave in the amplifier
is derived. Section IV deals with current sources
in the transport equations by considering the
momentum equation for the electrons described by
the cold fluid model. A simple dispersion relation
is derived in Sec. V and there its sui. "ions are
analyzed both analytically and numerically. In
Sec. VI formulas for the z dependence of the am-
plitude of the electromagnetic wave in the amplif-
ier are obtained. We shall simplify these formulas
in several limiting cases in this section and present
numerical examples. Finally, conclusions are listed
and discussed in Sec. VIL.

II. FIELD EQUATIONS

Consider a cold relativistic electron beam pro-
pagating along the z axis of combined helical
pump and axial guide magnetic fields described by

B (2)=B (€, coskoz + E,sinkoz) + B |0€; (n
2693 ©1982 The American Physical Society
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where & o and @, are constants. The helical
part of & represamtheﬁeldonthemsofa
magnetic wiggler, commonly used in free-electron
lasers and ko=2r/A, where A is the pitch of the
wiggler.

In addition to the electron beam we introduce an
electromagnetic wave propagating in the same
direction as the electron beam. Our aim is to solve
the conventional amplifier, namely, to find the
electromagnetic field at a point z > 0 in the system
if this field is known at z =0.

We assume that the system is infinite and homo-
geneous in the direction perpendicular to the guide
fidd. Then the electromagnetic fields E(z,1), B(z,1)

are described by
3B, oE
¢€, X azl = a—" —4meNV, )
dE, aB

—c'e’,x—a?l a:L , 3)

dE, :
=— 4
% 4meN , . @
B,=0, (5)

where the cold fluid description of the electron
beam is used and N{z,¢) and V(z,2) are, respective-
ly, the electron density and the velocity field.
They satisfy the continuity equation

oN d

3t + 3 (NV,)=0. (6)
The subscript 1 in (2) and (3) describes the com-
ponents of the corresponding fields which are per-
pendicular to the z axis. Since a stationary prob-
lem is considered here, we Fourier decompose in
time various tim t quantities and seek
solutions for E and B in the form

- 2
E(z,1)=Re [ﬂ"—ﬁ:‘(z)e -“‘] ,
¢ ™

- 2
B(z,t)=Re [—mf—ﬁ(z)e "“"l .

|3 S

()
51(2)=E1(0)008-a-’-z+£1( ) in @
< a/c
b =1 Helelr |, —ita/elsy i£ 1(0)
H =7E(0)e +e ) /e

TRV Y R

“-— V.-I-;x
a S

(el(o/ch_

_ZL:’_ foldg-F'(g)e;(./t)(l—‘)_e—l(U/t)(t—f)) .
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In addition, we assume that the electromagnetic
field is weak enough so that it only slightly per-
turbes the beam and one can write

M (z)e '™

N(z,‘) N0+Rc ’ (8)

Viz,0)=Vo(2)+Re[ Pz)e—*] , ©)

where No=const and V(z) are the density and the
velocity field characterizing the beam without the
presence of the electromagnetic wave and Mand P
are small perturbations. Equations (2) and (3) are
then combined and yield on linearization

d’E (2
dzz

2 PN - A
+-a—’z-f1(z)=i%[(o: V() +VoM(2)] ,
4

(10)

where &} =4me’Ny/m. The first term on the
right-hand side of the wave equation (10)
represents transverse currents induced by the elec-
tromagnetic wave, while the second term describes
the axial bunching of the electron density due to
the ponderomotive forces of the wiggler magneto-
static field and the magnetic component of the
wave. It is this bunching term which causes the
free-clectron-laser instability' and is the largest
part of the source in the wave equation. The
reason for the importance of the axial bunching is
the strong coupling between the transverse elec-
tromagnetic wave and the axial motion of the elec-
trons which travel with the velocities close to the
phase velocity of the wave. We shall demonstrate
this effect later. Nonetheless, for simplicity, al-
ready at this early stage, we neglect the first term
in the source in (10) and rewrite the wave equation
as

dzfl(l)

2 ey -
— +%fl(,)-_-.-:’—‘vmmz)=x=(z).

(11

The general solution of (11) is

C % eBprein @
+< [ dEF@sinTz -6

e-l(u/c)z)

(12)

Thus, the full wave solution for the perpendicular component of the electric field becomes

- s = & . _® s
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Ey(z,1) . i£ (0
h 0"1':3; =%Re,¢‘[(~/¢h-“l [EL(O)— ml/( ) [f dgF(g)e—l(m/c)f_e-ﬂ(w/c)xf dgF(g)el(a/c){]

+e-l[(o/¢h+ﬂ] IE (0)+i

In order to further simplify the problem we now
L make the following assumptions. Firstly, con-
sistent with the amplifier conditions, we neglect in
(13) the term proportional to

exp{ —i(wz/c +ot)]

which represents a constant amplitude wave pro-
pagating in the negstive z direction. Namely, we
set
£ (0)

E\(0)+i — e =0
Secondly, we assume that the frequency o of the
amplified electromagnetic wave is much larger
than any other characteristic frequency of the sys-
tem, such as the plasma frequency w,, the effective
undulation frequency ck, of the wiggler, or the na-
tural response frequency cyu of the electrons’ (see
also Sec. III). This assumption is common to
many treatments of free-electron lasers, where one
is usually interested in frequencies @ of the order
of 2y%koc with appreciable values of the relativistic
factor

y=[1—(v/c)P]"'72.

Exploring this disparity. in frequencies we assume
that

(14)

E(Z) =-£(z)cl(0/t)8 ,
E(z)s -b.(z)e“./‘h .

"' with amplitude T and b varying on the scale much
slower than that described by the exponential fac-
tors in (15), namely, in orders of magnitude

dina dinb @
=’ s <<c. (16)

I~ Accordingy,onemahowrite P and M and
therefore F in the form

Plz)=cV(z)e!w/en
M(2)=n(z)e' @/,

{15)

(amn

vOl n(z) i(e/c)2

Flz)=T(z)e*/2=i 2 :
c (4

where ¥, n, and T satisfy inequalities similar to

fo )|

(13)

—
(16). Then, on using (14)—(17) in Eq. (13), one
gets

al(z)-al(O)——— [ defi

_p—lasernf® Ulw/e)f
e—Ulate fodgf(g)e o/el |

(18)
Differentiation of this equation yields
d-a.l - 2 ©
T=e 2A(w/c)z fo dg ?(g)ell( /e .

Finally the equation for the z component of ¥ is
obtained from (4):

(19)

2 (20

III. LAPLACE TRANSFORMATION OF THE
FIELD EQUATIONS

In order to solve the field equations (19) and (20)
we have to specify the unperturbed velocity V, of
the electrons in the beam. We will use here the re-
sults of a recent study’ of the unperturbed orbits in
free-electron lasers with the guide magnetic field.
There it was demonstrated that simple helical tra-
jectories, having the same pitch as the wiggler
magnetic field and described by

Vo= —w(€,co8koz +€,sinkoz) +u€, ,  21)

are allowed in magnetic field configuration (1). In
Eq. (21),

u = const,
UOL/‘Y

=t —0,/7 = const , 22)
where (1, =e®, ;/mc. There exists the possibili-
ty of several different solutions (22) for 4 and w
(and therefore several different orbits) for a given
set of the values of 2;, ), ko, and 7. As an ex-
ample, Fig. 1 shows the axial velocity u /c versus

Al ek b

o i1 o
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“Ic. A o  d n
5 c l?-{-z a3=—?. (28) #
on I
L [
N ! This system of equations can be solved by means
. of a Laplace transformation. Namely, if one de-
- ' fines
|
y | J
L : A= fo dza/(2)e~"®, n,= fo dzn(z)e~%,
o3 : Q9)
L I qe
| Pale where Imk is negative enough to ensure conver-
: CEE T gence, then (26) —(28) transforms into
Qgic l(em™
FIG. 1. Steady-state normalized axial velocity u /c vs ika—k =a,(0) 2 fwum
normalized axial magnetic field Q) /c. K1 —Kobzk=0110)+ ki—[k +2@/0))F c* '
(30)

Q,/c for the case ko=3 cm™~, y=5, and wn
Q,/yc =0.3 cm~". It can be seen in the figure ikagy +koa x =a,(0)— zlk +2w/c)] 3 b "‘
that for Q) >0|°| only one solution (branch ¢) ex- ko—[k +2w/)) ¢
ists. But when ﬂ" <ﬂ|‘| two additional branches 31
(A and B) are allowed. It was shown in Ref. 7
that only branches A and C are stable, against per- ,
turbations, while branch B is unstable and there- !
fore cannot be used in applications.

We now proceed to the solution of Eqgs. (19) and
(20) for the fields. First, we use a more natural
coordinate system in which the components of the

14

") i
9 .k -——
p +K |ap cz (32)

According to (15), k¢ /w,koc /0 << 1, and therefore
we can write the field equations in the following

magnetic field (1) and of the unperturbed electron Pi te form:
velocity (21) are constants. For this purpose let ikax —koaz=a;(0) (33)
€= —¢€,8inkyz + €, coskez ,
G y ikay +koa e =2 +a,(0) , (34)
€= — €, coskoz —&,sinkez , 23) 2 ¢
=G, . =i
. 3 2 a;k—(m . 35)
Then
- - - Equations (33)—(35) must be supplemented by
B(2)=—B10€,+ B 0¢3 » 24) the equation for the electron density perturbation
Volz2)=we, +us, , 2 n;. This is obtained by taking the Laplace trans-
oz Swerue @9 formation of the linearized continuity equation (6):
and, on writing S . S
1=a,¢,+4a,¢;+4a,¢;, k=T wluse —)+ku *

Eqgs. (19) and (20) become ~—at——2 .
~—a)p (e /e —D)+ku Uk (36)

X B kgayme—twreng,. [ '?(g)e““""‘dﬁl ,
F dz : fo It is the factor
- da 26) o/[o(l—u/c)—ku]l>>1, d
F 7:—+koa| =g~ YUlw/hg,. [ f o’ ?(g)e”"/‘"dg‘] . which makes the bunching in the electron beam
density so important and justifies the transition

27 from Eq. (10) to Eq. (11).
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IV. MOMENTUM EQUATION
° In addition to Eq. (36) for the density one has to use the momentum equation
[—+ YV)-:—;— —X[.’(Z)+B(Z,1)]+E(ZJ) (37)
in order to find v, in (36) and thus completely define the system of Egs. (33)—(35). The components of
(37) in the natural coordinate system (23) are
o
a . 23 9] a 5t |7 v
1
3;+ng Vlﬂyz koV;-T}L]—TV3—V|__+Tn£; %Bz—Ell, (38)
) 3
_+V — 1
o d F ] 3 1az ]
al+VJaz V2=—Vl koV;——ru' -—Vz—_’r_——mLY ‘?J'Bl-i-Ez , (39)
) 3
] 9 Q, a” Vja Y e | Vi v,
@ a:*’y’az V3=7V1—V3 ” —‘—-—m—r ~ BB\ +E; (40)
I
Here, energy conservation yields T
» ' lAvu=dvu—tA£—y:—
® [a +Vig (1= -~ (ME+ ViE+ VIEs)
ot oz 1
+7— (46)
(]
Linearization of (41) gives “n
where
, d
® r'= ie) o -1 +"Z]r=_m’-“” A=Y _ |k
cle- ¢
42)
where, similar to (7) and (15), we defined and
y=vo+Re[['(z)e % =(e/=] 43) a =kou /c —Qy/cvo=0yu /cyow , @7
- where 7, is the unperturbed relativistic factor and b=kow/c —Q,/cro=Qw/cyou , 48
to orders of magnitude d(Inl')/dz <<w/c. d=0./ 49)
Linearizing Eqgs. (38)—(40) and taking the Laplace =%1/¢Y0,
transformation we get g=wa/c+ub/c . (50)
iAvy= avu+b"3t+8& In order to eliminate b, and b,x from (44) —(46)
o Yo we use Eq. (3), which reduces to
1 |u
— |[=bu— , (44) ic .
+ vo lc * 91k l b= —ﬂu+i":‘['kazk+ko¢|k—az(°)] ,» (51
Ty
= —I'AE'— i
@ {802 W1k ¢ Y busalk—flikalk—koau —01(0)] . (52)
- YL [%b“-{-au ] , (45) Further simplification is possible by using (33),
° (34), and (36):
@
A
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iw Mk _wf, w
bu=-azk+£":;=-—azk~l;c-3xvsk '
{(53)
by=ayy - (54)

Finally the substitution of (53), (54), and (35) in
(44)—(46) gives

Ty u an
idvy=avy+bosy +g—+ |——-1|—,
1k 2k 3k 870 (‘_ | %
(55)
[Avy = —au,k-—iA—ul—k—+ £ Zu
¢ Yo < Yo
2
LD yw |
+i—t— vy, 56)
%t o A H (
Ty waxn
iAvy=do—iat -2 B2
K 1k c 70 Yo
P R (57
i —~———ps .
czyo 202 A 3k

Equations (55)—(57) for v, (i =1,2,3) are now
easily solved. First, we multiply Eq. (57) by iA
and eliminate i Au,, and iAuy, in the resulting
equation and finally, on using Eqs. (56) and (57),
we find

(= Al =i | L | 2R gl
" . [C Yo Yo
2
i (58)
cp A
where
wr=a*-bd , (59)
and
2
=g — lg¥ —p¥ | =g _ WE
S=a ac bc] a d '
2,2
T=b4+L g% _p¥ |op WH
g it T B

The frequency u is the natural response frequency
to external perturbations.® It also defines the sta-
bility of the orbits in the absence of the elec-
tromagnetic field.” In the limit of zero axial field,
t=kou, namely, 1 is in this case the undulation
frequency of the electron beam in the wiggler. The
addition of the guide field allows us to parametri-

cally change the value of y, and, for example, to
significantly decrease it. Then, as was demonstrat-
ed recently,® the response of the system to perturb-
ing electromagnetic waves becomes very strong,
with a consequent increase in the gain of the am-
plifier. This effect of increased response at lower
values of ¢z on stable branches A and C (see Fig. 1)
is clearly seen in solution (58) for vy;.

Substitution of vy from (58) into (57) results in

iRA Ox  d[1—(u/c)]A? aun

Vg = .
*TA_n? vy (pE-ANA-D) Yo
61)
where
ds w u
= — ==, 62
ReES ] &
and
2
2. @ dT v _w
n—?;; pOTTR Ly (63)

V. DISPERSION RELATION

Substitution of (61) into (34) allows us to write
the field equations (33) and (34) in the form

€10+ €120 =a;(0) , (64)
€210 )k + €220 =a2(0) , (65)
where

€”=ik ’ (66)
€=—ko, 67)

2

WpW d[1—(u/c)]A
& =ko——L , (68)
AT 2etyy (2—AAT—p?)

2

=ik +ile R __ (69)

2y, (A—ph)

Note that the resonances of A’=pu? and A%=17? ap-
pear in the present theory very naturally, in con-
trast to the previous results,® where these physical
effects were hidden by algebraic complexities of
the reduced dielectric tensor.

Solutions of Egs. (64) and (65) can be written

a|(0)€u—az(0)€u

alk= D y (70)
Ole;,—a, (0
gy = az( )€||Dd|( )Gzl , 1
where

PPN ULy - .
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kod[1—(u/c)]A

In order to find the z dependence of the electric
field of the wave we take the inverse Laplace
transformation of (70) and (71). As a preparation
to this goal (which will be accomplished in Sec.
VD) we shall in this section study the dispersion re-
lation

D(a,k)=0, (73

which defines the poles of the right-hand sides of
(70) and (71). We restrict ounelvestothewe
wherethewrmm(n)pmpomcmltom is much
less than k3. 'l‘hu:thewaof(73)mbefmnd
bym;paturbcmnmnlym. To the lowest ord-
er, namely, fo:m =0, there are two roots k = +k,.
Tothenextada'weleeksoluuomoftheform
k=1+ko+x, with | x| <<kq.

First consider solutions of the form
k =—ko+x. Assume also that we are interested
in frequencies & which satisfy '
» [%—1 +kou | <<kou (74)
or
ol u
o= —ale ™ Il+ p lﬂkou =a)y , (75

that is, in frequencies which are close to the dou-
bly Doppler upshifted frequency wy, characteristic
of free electron lasers. In this case

—ko +x—-~—2kou/c ,

L

A=2
¢

and therefore if u® < 4(kou /c)? (this condition ex-
ists on branch A in Fig. 1, where u <kou as well
as on branch C for 0/7o < 3kou then (73) yields

d{S —2[1—=(u/c)]kolu/c)}
i —ak3u?/c

w 1—1”. (76)
[ [

The solution is real and no instability exists for
this mode. Moreover, the resonance condition
p2mdakiu? in (76) cannot be easily achieved, so
that the values of x; are usually so small that they
hardly affect the vacuum mode at k = —k,.

‘”p wa:
16¢3y, kiu

Xy =

- 2‘.470 (AZ_"Z) + “Z_AZ

PP PO ST T S DIPT PR S D Y W T
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(72)
M
Now let k =ko+x. Assuming again the ex-
istence of (74), we then have
A=B+xu/c <<kou/c , (77
where
o |u u
B—c Ic-l]+koc (78)

is the mismatch frequency, characterizing the
difference between w and wq [see (75)). Thus, in

this case,

wpwo kR
2y, Al—q?
where we neglected the second term in the large

parentheses in Eq. (72), which is proportional to A.
The dispersion relation then becomes

D~—2kox — , (19

2
(A—BXAl -yt 42220 0.  (30)
v ¢
This dispersion relation can be easily analyzed for
the case
ui>> A%, (81)
Only this case will be considered in this paper.
Note that the inequality (81) still allows us to use
values of u? significantly lower than (kqu)? and
thus explore the possibility of an enlarged electron
response to perturbations.® Consistent with (81) we
have
2

Z_i 1 u_ ﬂ o, _ bd
= czy - c? +=
() [ c 70 x
(82)
and
d w| u W 1 bd
-— —|l==|=+=]. (83
R “1+c Y, 2] (83)
Finally the dispersion relation (80) becomes
(A—-BAA —nP)+a’n’=0 (84)
where
_ow (85)
kl
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Note, that the form of Eq. (84) is exactly the same
as the well-known and studied cubic dispersion re-
lation for the case without the guide field. In the
latter case b =ﬂ||W/Yoll =0 and
2
/2 (86)

z=
o ¥ Y:

Properties of the roots of (84) in this case are well
understood. For example, when 7 <<k <<, two
roots of (84) are complex in the interval'

27a’nd 1
4

(87)

-a’<B<

At 8=0 the unstable roots of (84) have a max-

imum imaginary part and the three roots are ap-
proximately

v3 i

——+—

x3=—(a*})?, x;4=(a?p})'" 3 3

(88)
The presence of the guide magnetic field adds
several new effects. Here the behavior of the solu-
tions of the dispersion relation depends on the
branch of the steady-state orbits (branches A and
C in Fig. 1). In order to demonstrate the effect of
the guide field we shall make the comparison sug-
gested in Refs. 8 and 9, between two free-clectron
lasers identical except that one has an axial guide
field, while the second does not. In the first laser
the pump magnetic field is reduced so that

0,/7

w 17 70

At 4 (89)
u koll —0""0 !

is the same in both lasers. If without the guide
field w/c =£ /7, then the latter condition defines
the value of the pump field for a given value of
the axial field

ﬂl=‘c‘§'(koll —n"/}'o) . (90)

lnourcompmnonthegmdeﬁeldaffecuonlythe
parameter 7% in (93). Thus, if #>> 0, the use of
different values of the field is equivalent to the use
of different beam densities. This means that for
7% >0 the general properties of the solutions of (84)
for k [(87) and (88), for example] remain the same
as in the case without the guide field. This effect
is demonstrated in Fig. 2, where the imaginary
part of the solution of (84) for k is shown as a
function of w/c for various values of the guide
field in a sample case yo=35, k=3 cm~!, £=0.5,
o} /c?=2 cm™? (this set of parameters is charac-

= 0.2

tmk{cm™)
S
-
~—
7,
=

1 g .
90 100 10 120 130
weliem™

FIG. 2. Spatial growth rates Imk vs normalized fre-
quency @/c on branch A (dashed lines) and C (solid
lines) for various values of 7 =0 /kouye: Curves 1,
r=0;2,r=0.5;3r=0.8;4,r=0.9; 5, r=20; 6,
r=1.5;7 r=13; 8, r=1.26. In these calculations
Y0=S5, ko=3 cm~", £=0.5, and 0} /c?*=2.0 cm~2.
Note that in ali the cases in the figure 7> 0.

teristic to the Naval Research Laboratory VEBA
accelerator conditions). It can be seen in the figure
that the parametric behavior of Imk on different
branches (A or C) is different. OnbmnchA

bd >0 (since Q) /7o < kou) and therefore 1> on this
branch is always larger than 73 [Eq. (86)). When
2 decreases, 7° increases and so does Imk. A
similar effect of an increased response was also
found in the single-particle theory.® Consistent
with (87) the upper frequency bound of the insta-
bility remains fixed in Fig. 2 and the lower fre-
quency bound decreases with an increase of 7°. In
contrast, on branch C, bd <0 (Q;/70> kou) and
thu'efore n* decreases as ),/v0 approaches kqu,
until 5? vanishes at 0)/70=1.25kou. At this

- point the coupling between the modes in (84)

disappears and so does the instability. In order to
understand this effect let us again consider Eq. (57)
for vy, which, as we already know, defines the
bunching in the electron density, responsible for
the free-electron-laser instability. The first three
terms in this equation are important to the discus-
sion that follows. The parts of these terms propor-
tional to a,, describe (a) the effect of the pondero-
motive force on the electrons due to the pump
field, (b) the relativistic effect of the change of v;
due to the force a, in the perpendicular direction,
and (c) the ponderomotive force of the electromag-
netic wave. It can be checked that these three fac-
tors lead to the appearance of the quantity

PO P DR PSP S S S L AP
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1/} +bd /us? in the expression (82) for 7% On value for large enough values of 8. This property
branch C the ponderomotive forces act in opposite of the solution can be seen directly from the
> directions. This leads to a competition and to the dispersion relation (84) which at large B is approxi-
possibility that 7 vanishes. By simple algebra, we mately
find that this happens when —B(A )+ =0.
0
O kgu(1+8Y 91)  The solutions
Yo \2
2
b or in our sample case when €),0/70=1.25kou. A=B+ku=+ |7 1+Z
This is consistent with the results in Fig. 2. At B
this point 7%=0 on branch C.
A new and important effect appears if one bwome purely imaginary for 8 l"{”"ff"@ when
further decreases 0),)/o on branch C, thus forcing 7’ <0 and Imk approaches +(|7*|)
o n? to become negative. The formulas for the roots

of a cubic then indicate that the region of g where
(84) has complex roots is now defined by

2
B> 31‘—:2—’1— , (92)
B<—-a?, (93)

which is the region on the B axis complementary
to the interval defined in (87). Thus the possibility
of getting negative values of 7? on branch C allows
one to extend the range of the instability to both
lower and higher frequencies. This effect for our
sample case is demonstrated in Fig. 3, where Imk
on branch C is plotted versus o/c for several
values of Q; <{2j;o. Note that in both regions (92)
and (93) Imk approaches approximately the same

wre (em™)

FIG. A Spcmlmwthnmlmkw»/conbnnch
C in the sample case (yo=35, kg=3 cm™', 5-0 s,
w}/c*=2 cm=?) in the regime 0 < Qyo(n?<0). Each
curve corresponds to different value of 7 =£)y/kou yo:
Curves 1, r=1.2; 2, 1.15; 3, r =1.1.

VL. INVERSION OF LAPLACE
TRANSFORMATION

The z dependence of the amplitude of the trans-
verse electric field of the wave in the amplifier can
be found on applying the inverse Laplace transfor-
mation to Eqs. (70) and (71). We write the result-
ing expressions in the form
a,(2)=—[a,(0)+ia,(0))4,(2) +4,(0)Cy(2) , (94)
82(2)=i[02(0)+ia|(0)142(2)+¢2(0)C2(2) ’ (95)

where

)=l 2 i
A= [ dk—te™,

(96)
1 &
Ay(2)= - [ dk X
and
i
c.(z)=3'— f dkeil#e“".
v o

f dk ‘ell lh

and the integration in (96) and (97) is carried out
in the upper half of the complex plane (Imk > Q)
and the path of the integration is taken to be above
all possible poles of corresponding integrands. We
will concentrate now on evaluation of the integrals
Ay, Ay, C,, and C, in terms of the residues of the
integrands.

The poles of the integrands in (96) and (97) are
defined by the roots of the dispersion relation
D =0. It was shown in Sec. V that four such roots
are of interest. One of these roots k; = —ko+x,
is located near the point —k,. The remaining
three roots k; =ko+x; (i =2,3,4) are all in the

Cz(z)—

R
1
E
i
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neighborhood of the point kg, so that they are well where
seperated from k. Consider first the residues as- .
sociated with the f00ts ks 3 ¢. In this case in the A=Bt+xu/e (i=234)

neighborhood of these roots we write k =k, +x, are the roots of the cubic (84). Thus
with | x| <<ko and thus [see (66) —(69), (82), and
(83)] _ 2 _ € _ u(A?—n?)
en=iko+ix , . (98) D D 2c(A-A)NA-A)A-A)
Gu:—ko ’ (99) (103)
€=xkg , (100) enti€n ixu (A —n?)+ 2ia’n’c
exymiko+ix +i A c_ (101) D 2cko(A—A) A=Az A-AY)
Here, we have neglected additional term in €,, [see . 3 2 .2
(68)] as we also have done in the derivation of the e"D:ez. =~ 203 UZ‘((AA—Z ))(A .
dispersion relation (84). The determinant D then o(A—4;)A—As)0A—-Ay)
becomes [see Eq. (84)): (108)
2% . .
v Zk- xu (A ~p¥)= —alp’c (i =2,3,4)
mm —4A—-A5)A-Ay), we now find the integrals associated with the
(102) modes kz,k;,k‘:
J
A 2)= —a3Y(2)
. ixy2 ixq3 ix,z
S—Lazflzc ¢ + e + [ elkol ,
2 X0 (B —AsHA—4y)  x3u(A;—A) A —Ay)  xu(A—A))A—Ay)
(106)
2.2 7% ixyz ez
23,0, _ _ (234, &1 e e e ks
Nt M U o el vy v 7wy vy Ry vy vy vy vy ey vy vy vey v fl M
(107)

Since | x; | <<kq, the contribution the integrals C, and C; make in Egs. (94) and (95) can be neglected and
therefore the part of the solution for a,(z) and a,(z) associated with the modes &,, k3, and k, can be writ-
ten

) ixz ixyz
2300 o i (238 () a,(0)—ia,(0) , , e e
arra)=—iaga) 2 " | B PP =Pyt PyiP,—P.XP,—Fu
xg2
e ikoz
’ 108
PP —P P —Py |° (108)
where P, =x,u /c.
In order to find the contribution of the remaining mode k| = —kq+x, one can use the initial conditions,
rather than find the integrals (96) and (97) directly. Namely, on writing
a.(z)=Q|e_&"+a‘|2'""(z) » (109)
ay(2)=Qqe " 1alF (),
we find
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(0)—ia,(0)
01 =0,(0)—a**(0)=a,(0)+ T2 p2n2y
2 (110)
0)+ia,(0)
0,=0,(0)+ Lﬂ%—a’q’ﬂ
where
He 1 ! + 1 — (111)
Py(Py—P;}P,—P,) * P3(Py—Py){(Py—P,) ' Py(P4—P,)(Py—P3) P,P;P,
On the other hand from (102),
PyP3Py=(8;—BNA;—BNA—B)=—an?, (112)
and therefore
0)+ia»(0)
Ql=,‘Q2=_aL(_).-;_wz_ . (113)

Thus, finally, the full solutions for the amplitudes are

a,(2)= —iay(z)=+[a;(0)+ia,(0)]e "o ~*1*

{ ixyz ixyz
—3(a,(0)—ia,(0)]a’n? ¢ + ¢
Py(P,—P3}P,—P,) " P3(P;—P,)(P;—P,)
k,x
¢ ot | (114)

t PP, —PNP,—Py |°
Assume now that initially

a,(0)+ia,(0)=0, (115)

namely, no electromagnetic energy is stored in the k, mode. Thén, on using (111) and (112) we write (114)
as

an? | 1—e" 1—e™¥*
M@= o= O L+ | B B —PF =Py T FilP PP, Py
x4z
l1—e 4 lkog
t PP—PP—Py ||© (116)

In several limiting cases this expression can be simplified and reduced to already familiar results.
(s) In the first example let |x;z| << 1. In this case we expand the exponentials in (116) in powers of x;z,
by using

Pi P + i g' n=<1) (17
(P, —P3XP;—P,) | (Py—PNP,—Py) T (Pe—P,)Pe—P;) — i
we obtain the approximation
3.2.2.3
a,(2)= —ia,(2)=a,(0) 1+i‘—°;u’1,—’— et . (118)

A similar result was obtained in Ref. 10 for the case without the guide field. In contrast to Ref. 10, howev-
er, we did not assume conditions of maximum spatial growth in the deriviation of (118).

(b) In the second example we consider the case when one of the roots of (84), say root A,, is close to 8
(namely, |A;—B8| << |B|) and the two remaining roots satisfy | A;|, | A¢| <<B. These conditions are
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fulfilled when
o5 |
>>max (1, | = (119)
Ea B
and then
. 2
Pz=::;,u/c:=A2—B=—a—z'!L , (120)
B
2 a?
Py 4=x34u/c ==A3'4—B= —B+ |n l+7 (121)
Thus, in (116),
Pz(Pz—P;)(Pz—P‘)‘z—azﬂz ’ (122)
Py(Py—P,)Y(Py— P )=28%A, , (123)
PyPy—P ) Py—P3)=—28%A, . (124)
Thus, for | Bz | > 1, we rewrite Eq. (116) in the approximate form
2 cA
a,(2)= —ia,(z)~a,(0) PLx L JETT VR
ﬁzAg 3
~a,(0) | 4iECTE  ictse | ot (125)
Bu
Therefore, on defining the power gain as
|a1@) |2+ |ax(2) |2 | ay(z)a}(z)
G(z)= 126
1a1(0) |24+ |a2(0 |2 a,(00a%(0) (126
we find from (125) that
a’n’z c aﬁl sin(cBz /u)
G(2)~2<E 1 2 in(chz /u)=2 23 (127)
Bu Be/u (cBz/u)?

The same formula for the gain was derived in the
single particle, small gain theory.! Thus the
single-particle theory corresponds to the region in
parameter space defined by inequality (119), which
was used in reducing Eq. (127).

We finally present a numerical example of the
application of Eq. (116) in our sample case. Figure
4 shows the frequency dependence of the power
gain at 25 wiggler periods for three values of
r =0 /kou70=0.8 (branch A), 1.1 and 2.0 (branch
C). 1t follows from (91) that for » =0.8 and 2,
7%>0, while for 7 =1.1, 5? <0. It can be seen in
the figure that the frequency dependence of G for
positive and negative values of 7 is completely
different which reflects different type of depen-
dmeeoflmkonm(seeﬁgs 2 and 3). If for
7°>0 we sec a rehmvely nan'ow frequency range
for significant gain, then for 7% <0 this range is

r

greatly extended. In Fig. 5 we present the z depen-
dence of the gain in the amplifier on branch C in
our sample case. The values of 7 = /kouy,
=1.1 at @/c =145 cm ™' (curve 1 in the figure)
and r =2.0 at w/c =105, 112, and 125 cm ™!
{curves 2a, 2b, and 2c) were again used in the cal-
¢.iations. The oscillations in G at short distances
are due to the spatial interference of the modes in
the amplifier. It is seen that only at relatively
large distances does the spatial instability take over
and the growth of the gain becomes exponential.

VII. CONCLUSIONS

We have the following conclusions.

(1) The free-electron-laser amplifier with a guide
magnetic field was analyzed, using the cold fluid
description of the electron beam.
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20 140 0
w/c(cm™

FIG. 4. Frequency dependence of the power gain in
the amplifier at the distance of 25 wiggler periods in the
sample case. Different curves correspond to different
values r = /kouyy: Curves 1, 7 =0.8 (branch A); 2,

r =2.0 (branch C, 7°>0); 3, r =1.1 (branch C, 72 <0).

(2) It was shown that in a large region of param-
eters space, similar to the case without the guide
field, the amplified electromagnetic wave splits
into four modes propagating in the direction of the
electron beam. Three of the modes are coupled

> L 1
[} 4 8 2 » 20 2 a 28

FIG. 5. Power gain in the amplifier vs the length of
the interaction region messured in numbers of wiggler
periods for the parameters of the sample case: Curves
1, n"/}’o=’ lkou, w/c =145 cm"'; 2, n||/)’o=2koll, a,
w/c=105cm~', b,w/c =112cm~', ¢, w/c =125
cm™'.

and one of them may be spatially unstable. The
competition between these three modes defines
various regimes of operation of the amplifier.

(3) A simple dispersion relation for the soupled
modes was derived and analyzed. The form of the
dispersion relation is similar to the well-known cu-
bic dispersion relation for the case without the
guide field, which makes the mode stability
analysis easier,

{4) The mode analysis gives the basis for the
construction of the actual electronrzgnetic fields
along the interaction region in the amplifier. Vari-
ous limiting cases were considered and agreed with
the results of existing theories. The power gain
versus the length of the interaction region was
found numerically in a sample case. The calcula-
tions demonstrated the effect of spatial interference
of the modes at shorter interaction lengths and
transition to exponentially growing gain at dis-
tances when the spatial instability becomes impor-
tant.

(5) The main effects due to the presence of the
guide field can be summarized as follows:

(i) Two types of helical orbits of the electrons can
be used in the amplifier with the guide field
(branches A and C in Fig. 1) for given values of
Yo kO) and ﬂl'

(ii) On branch A the response of the electrons to
electromagnetic perturbation and therefore also the
spatial instability can be enhanced if the natural
response frequency (see Sec. IV) of the electrons
becomes small. This effect is equivalent to the in-
crease of the density of the electron beam.

(iii) On branch C there exists an axial field Q0
[see Eq. (91)] for which the coupling between the
modes disappears as well as the spatial instability.
This effect is the result of the competition between
the ponderomotive forces on the electron due to the
pump and electromagnetic waves. For ;> (o
the parametric behavior of the modes is similar to
that on branch A. If ), <Q,0, however, the fre-
quency range of the instability extends significantly
to both lower and higher frequencies in contrast to
branch A (and branch C for Q> o) where this
range is relatively small and usually has an upper
limit close to wy=2kgyic.

(iv) The effects described in (i) —(iii) can be
achieved for given helical orbits in the presence of
the guide field at much lower values of the pump
field.
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Nonlinear theory of the free-electron laser with an axial magnetic field
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A nonlinear, one-dimensional formulation of the free-electron laser with an axial mag-
netic field is presented. The problem is formulated in the cold-fluid approximation for the
electron beam, and is reduced to a svstem of the first-order, nonlinear, coupled, ordinary
differential equations. Nonlinear effects due to the departure of the electrons in the beam
from the conventional helical orbits are considered and illustrated in numerical examples.
The formalism also allows the study of the initial phase of saturation in the laser. In the
presence of the axial magnetic field the saturation is shown to be mainly due to the
development of undesirable large radial excursion of the electron trajectories.

L. INTRODUCTION

Free-electron lasers operating in the Raman re-
gime are believed to be promising sources of intense
submillimeter coherent radiation. This prediction
was tested in experiments at the Navy Research
Laboratory (NRL) and Columbia University,'—*
and recently with improved electron beam quality
at NRL.%*® The Raman free-electron lasers operate
with relatively low electron energies (relativistic
Y < 10) and high beam currents (I >1 kA). These
experimental conditions, especially the high beam
currents, necessarily require the presence of an axial
guide magnetic field, in addition to the magnetic
wiggler, conventionally used in free-electron laser
experiments. As was demonstrated in recent
theoretical studies by Friedland et al.,’~'° the sim-
ple addition of the guide field results in many non-
trivial consequences. For example, in the presence
of the guide field electron trajectories may become
very complex, and, only for certain combinations of
injection conditions on the electron beam, the elec-
trons will move on simple helical orbits.” More-
over, even on the helical orbits, in combined guide
and wiggler magnetic fields, the beam response to
perturbations is characterized by an additional
response frequency, which may be varied without
changing the helical orbit itself. It was shown in
the single-particle theory of the laser® that the reso-
nance between this natural response frequency and
the frequency of a driving electromagnetic wave can
be exploited to provide higher gain in the system.
These predictions were confirmed by the self-
consistent collective theories®!® which also demon-
strated the presence of additional effects. For ex-

26

ample, under certain conditions, the frequency
.range of the free-electron laser instability may be
substantially extended to both lower and higher fre-
quencies. The effect was explained in Ref. 10 by
the presence of an unstable beam mode in the sys-
tem.
All this complex behavior, induced by the pres-
ence of the guide field in the system, has been stud-
jed in Refs. 7—10 on the basis of linearized
theories. The linearization procedure itself was
based on two assumptions. First of all it was as-
sumed that the perturbing electromagnetic fields
were so weak that all the induced nonlinear effects
were small and could be neglected. Second, the as-
sumption was made that the unperturbed electron
beam propagated on one of the helical orbits
[branches 4 or C (Refs. 8—10)] and the linearized
perturbation analysis was performed around these
steady-state trajectories. Both these assumptions
impose serious limitations on the theory. Indeed,
the linear theories predicted the possibility of very
high gains, so that the nonlinear electromagnetic ef-
fect might become important and lead to saturation
after the radiation traversed a relatively short dis-
tance. Moreover, as was already mentioned, the
helical orbits, in the presence of the guide magnetic
field, are exceptions rather than the rule. In case of
a departure of the beam from the helical orbits, the
electron dynamics becomes intrinsically nonlinear,
which may play an important role in realistic sys-
tems even when the radiation fields are weak.

In this paper we present a nonlinear theory of the
free-electron laser with the guide field and consider
both aforementioned nonlinear effects. A nonlinear
theory for the laser without the guide field was

2778 ©1982 The American Physical Society
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26 NONLINEAR THEORY OF THE FREE-ELECTRON LASER WITH ... 2779
given by Sprangle et al.'"''* Their approach was 9B,
primarily designed to study saturation effects due to 3z =0. (6)

particle trapping in the ponderomotive potential of
the wave and the wiggler field. The trapping occurs
on a scale length comparable to the wavelength of
the electromagnetic wave. The number of test par-
ticles, separated initially by distances short com-
pared to the period of the wave, were necessary to
model the saturation effects. Here we present a
more simple approach based on the cold-fluid
model of the electron beam. The method requires
one to follow only one test particle along the laser.
Although the trapping effect, in principle, cannot
be described by our formalism, its use is very con-
venient in describing all the effects occurring on the
scale length long compared to the wavelength. We
will show that in the presence of the guide field,
both the departure from the helical orbits and the
initial saturation phase belong to this class of slowly
varying effects, and thus can be treated within the
cold-fluid approximation.

The scope of the paper is as follows. In Sec. II
we derive a reduced system of equations for the am-

. plitude of the radiation field. In Sec. III we consid-

er the momentum equation defining the sources in
the field equations. A complete set of first-order,
coupled, nonlinear ordinary differential equations
governing our system will be presented at the end of
Sec. III. This set of equations, in Sec. IV, will form
a basis for the discussion of possible nonlinear ef-
fects in the system, which will be illustrated by nu-
merical examples.

II. FIELD EQUATIONS

Consider a one-dimensional model of a free-
electron laser, where the electromagnetic field is

described by the Maxwell equations
. 8B, OE
ce,x-aT‘——é—‘—we(Nvl—(Nvl)“)
(1
_ _9E 3B, o
€ X3z = a
dE,
a‘— 2T z/av) > (3)
28, -0 .
5 =0 @)
dE,
-~ =—4ne(N-(N),,), (5)
oz
Lo oo

hokadanintudadhichatdmndadaiaihiistaodtiodios

Here the electron beam propagates in the z direction
and is described in the cold-fluid approximation.
The electron beam density N and velocity V, and
the electromagnetic fields Eand B, in Egs. (1)—(6)
are assumed to depend only on z and time, and the
subscript 1 describes directions perpendicular to the
z axis. Moreover, we are interested in solutions of
(1)—~(6) periodic in time with period 27 /w and con-
sequently subtract off the time-averaged parts

- w v/ .
(NVYo== [ NV ar,

() r/w
(Mw=5- [, Nar, )

of the sources in Egs. (1), (3), and (5).
The periodicity condition allows one to expand
the electromagnetic fields in the Fourier series

- to .
Ezt)=7 3 E,(z)e~™
n=—a

0

= 3 Re[E,(z)e "],
n=]

(8)
B(z,)= 3, Re[B,(z)e "] .

n=ti

We assume now that only the n =1 component in
(8) is excited, which is the usual case in free-electron
lasers operating in the linear regime. The coupling
to higher harmonics is a second-order nonlinear ef-
fect, as can be seen from Egs. (1) and (3), and we
will neglect this effect in the present work. Thus
we write

E(z,t)=Re[ﬁ.(z)e s I

. - . 9)
B(z,t)=Re[B,(z)e ~®'],
and accordingly
_ —iot
N(z,t)=Ny(z)+Re[N(2)e ~*¥], (10)

Viz,0)=Vo(z) + Re[V (2)e =] .

We also assume here that @ is much larger than
various characteristic frequencies of the electron
beam (such as the plasma frequency w,, the undula-
tion frequency, the natural response frequency,?
etc.). Then we can separate “fast” spatial oscilla-
tions in (9) and (10) from the slow ones which are
imposed by the presence of the electron beam.
Namely, we write
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2
= mc” .
E\(2)=—"— d(z)ef @k,

— 2 —
B,(2)= T b(z)e! @k,
¢ (1)

Ny(2)=-T5Vz)el @/
4gre

Vi(z)=V(z)e! @R,
where in order of magnitude for X =a,b,v*,v,

dlnX
dz

<«<=. (12)
¢

Note that at this point we have excluded from the
analysis all waves with wave vectors in the direction
opposite to the direction of propagation of the elec-
tron beam. These backward waves can only arise
from noise and their amplitudes are assumed to be
negligible in comparison with the main amplified
signal which propagates in the direction of the
beam. Although in some cases the backward waves
are absolutely unstable'’ they are characterized in
such cases by long wavelengths and therefore can be
casily suppressed by appropriate construction of the
amplifier cavity.

We now proceed to the derivation of the approxi-
mate equations, describing the slowly varying am-
plitudes of the electromagnetic fields. First, we
combine (1) and (2) to give the wave equation

FE, 1 IE dmre 3, o
E—;—:,——at—zw—c—,auvvl). (13)

Substituting (9) and (10) into (13), applying defini-
tions (11), and neglecting the higher-frequency har-
monics, we get

da di

21 s 28

dz ¢ dz
Finally, exploiting the assumption of the weakness
of the z dependence of dd,/dz, we neglect the
second-order derivative in Eq. (14) and rewrite it in
the approximate form

a3,

dz
In the notation of (11), Eq. {5) »ecomes

da, . v
—d?+l?a,=—? (16)

and (3) can be written as

=::’—‘<w;vl+vm¢> . (14)

= ?:T(m;mwm#) : (15)

, 1 2
—1—;a,—:,-(w,v,+Vo,13)=0. an

On expressing v via (17), and substituting it into
{16) we have

U
a="bL. 18

o 1

c 2’

where v, is the relativistic factor associated with the
axial velocity of the electron beam. Therefore for
w/c~2v3k,, which is characteristic of free-electron
lasers with a pitch A=2w/k,, we have

Vor

l——

a4

A
c

zko

and thus (18) indeed describes variation of a,(z) on
a scale long compared with the fast oscillations of
the electromagnetic field.

Equation (17) can be also used to eliminate v
from Eq. (15), which then becomes

dd, i - Yo .
7 = ;c—s- [W:VL—K((JJ:U, +l&)€2ﬂz)

(19)

The form of the operator in the square brackets
in Eq. (18) suggests the use of an independent vari-
able other than z, namely, we introduce variable 7
via

dz
= Voel2) . (20)
Then for any quantity of the form
X(z,r)=X(z)e"\&/cNs—en) 21
we have
1d¥ 19 3 |5
cdr ¢ 81'+V°'az X
=ell@/cHz—er) —-i2 l—&
¢ c
Ve d
—c—z X. (22)
Therefore (18) can be rewritten as
143, oy
cdr = o U; . (23)

In addition to simplifying the notation, 7 has an im-
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portant physical interpretation: It measures the
time along the trajectory were the electron to move
with velocity Vo (z). As we will show in the next
section, convective derivatives similar to d/dr in
Eq. (23) appear naturally in the momentum equa-
tion for the electron beam. Thus, in the following
we will adopt 7 as the independent variable in the
problem. Consistent with this approach we also
rewrite Eq. (19) in the form

+ ?lT[w‘,zV(,,%L—Vm(m:f’} +iwc25',)] .

24)

Equations (23) and (24) are the desired equations for

the electromagnetic field.
1

=

dyo

. .. d =
YoV+Vo§ +0; Z(‘I’ovo” Vo Z =

Here we defined Q =e & /mc,
y=y°+Re[g(z)e“"/‘x' —ct)]
and (-+*)'=[ —ia(1~ Vo /c)+ Voed /dz)(-+

v,
g——+V— [+

i @ o 2
1D eve——
c”xg ¢

2781

III. MOMENTUM EQUATION

Consider the momentum equation describing the
electron beam

S,y 4= E+-‘1x(§+5)
TR ¢
{25)
where the static magnetic field is given by
B(2)=—8,(2)B,+6,3, (26)
with the vector
&,(2)= — (&, coskoz +8@, sinkoz) 27

representing the direction of the helical field on the
axis of a magnetic wiggler commonly used in
theories of free-electron lasers. Substituting (9) and
(10) into (25), using definitions (11), and retaining
only the first-tirse harmonic in the resulting equa-
tion, we have

-

a+—Xb |-
[+

—

VX Q. (28)

(29)

). In the last term on the left-hand side of Eq. (28), which is the

only nonlinear term of the third order, in view of (12), we have neglected d¥/dz and dg/dz compared with
(@ /c)V and i (@ /c)g, respectively. An equation for the quantity g in (28) is obtained from the energy balance

atVi [1=VE
which yields

dve
g=—v— . —Vo a.

Also, it follows from (2), that
ds
bl——l—-e,x i— i]ﬁ"f
Then in (28)
Vo | ic c di
'a’+—chb ——a1+e, [— [a1 ;?‘

+a,

(30)
(31)

(32)

-

i V,
IC = P ol
~—a,4+8& |— 3, +a; (33)
) ¢

The appearance of the dotted quantities in Egs. (28), (31), and (33) suggests that one change from the vari-
able z in these equations to the time 7 along the steady (time—independent) component of the electron motion

in the z direction [see_the definition in Eq. (20)].

Then, on using notation (21), observing that

X expli(w/cNz —t)]=dX /dr and Vo, dX /dz =dX /d, and substituting (33) into (28) we get
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AV _ gl g g i | Vaz o
° L vodf Vixa dr G At
—_——— AR A [l A4 '] R 34
Vd(yovo)gd vdT+2cv,g (34)
where V' has components 7, 7, and , etc., and where according to (31)
o = Vo3 35
dr Voo dr ' (35)
Because of the form of the helical part of the magnetostatic field 4 it is convenient in the following to in-
troduce a rotating coordinate system defined by the base vectors
°® €, = —&, sinkoz +&, coskyz, &=¢,,
&=¢ . (36)
Then, finally, components in Eqs. (23), (24), (34), and (35) become
dal - , -~ 1 2 -~ 2~ , 2
) 7?=koyo3¢2—-la) —— d|+;c_3‘[a),yo3‘rl-- V°|(0,03+mc i;)] ’ (37)
v
da, . Vo3 1 - S
—2T—=—koyogd| -l [l-—T ]E’z-i-;c—s[w,zlfmvz—l’m(w:u, +MDC2E3)] ’ (38)
da 2
= 2, (39)
® dr ¢ )
dv - a7 - _  icd | da - 7 | d
Yod—fl=YokoVos”z—Von;ﬁ'—nﬂ’s-ﬂnvz——:;‘ [El‘-ko"osaz _7_3__ ;(YOVOI)—YO,COVOZVM
[ 4V =80 | 0 _en ~
° . f —koV2Vo3 "”l'd_‘r'"‘z”; 18 » (40)
dv, ' . dg - ic’ | dd, ~ by | d
Yoz=—1’o’¢oVosvl-Voz;$‘+ﬂuvl—‘w— 7;'4"‘0"0301 7 27 Yo¥a2) +roko¥or Vo3
.|V _ Y i@ g ~
. -8 [‘;“*kon Vos -"rd—r'*"z—‘z‘" HIZT (1)
dv; a8 s d Vos dyo 4V  iw o
—=(c -~ - —_— ——— U) =4 =—— = F——— + — 30T 42
Yo dr (c —Vg3) [dr cds |+ Vs dr Yo |1 - + 0,5, —; dr g dr + hv;v , (42)
L 4 i‘Z”Vma'l—Vma'z‘-Voaa's——i’“s"‘ﬂ)’ . (43)
dr Vo; dr
f
. Equations (32) —(43) describe the nonlinear evolu- which can be solved numerically with an appropri-
@ tion of the time-dependent parts of various quanti- ate set of initial conditions. In order to do so, we
ties characterizing the free-electron laser. These still have to'complete this system by the equations
equations are combined here into a system of first- for the steady (time-independent) parts of various
order, nonlinear, coupled differential equations, quantities (w,,¥p, Vo). One such equation is ob-
ko
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FIG. 1. Dependence of the absolute value of the per-
pendicular component of the electric field on z. A:
r=0.868 (branch A) w/c=75 cm~'. B: r=1.077
(branch O, w/c=75 ecm~!. C: r=1.077, w/c =130
cm~'. In all the examples w}/c?=0.5 cm~2, y=3,
ko=6cm~", and £ =0.5.

tained from the continuity equation

oN 3

2.2 = 44

x T az(NV‘) o, (44)
the time-independent part of which is

2 @3t (vP0) )=0, @s)

or, on using (17)
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FIG. 2. Spatial growth rates (Imk) vs w/c in the linear
regimes in the sample case. Solid and dashed lines are
the results of the linear theory (Ref. 9) for » =0.868 and
r =1.077, respectively. The dots are the results of the
present calculations.

dy - . .
T )~ (a0~ (D)

—(0yd3) ., . (48)
And, finally, an equation for V,, is obtained by con-

sidering the steady part of the momentum equation
{25), which can be written in components as

2 2 dVO'_V kaV, Ly _&y +_A_‘
0,703=((0,V03)|,-o dr =¥o |"o¥"0 Yo Yo 03 Yo ’
+VL03'((0’2(336'3)++(0€2<53I73)_) ’ (49)
(46) Ve o] a
where we have used the notations —dr—=-—Vm koVo3———= |+—, (50)
Yo Yo
(aB),=7Re(a’g),
f)s : (47) oy o, B b 51)
(aﬁ)-=-;lm(a'ﬁ) . dr Yo Yo
Sitilarly to (45) the steady part of (30) gives where
J
d . o~ o~ o i
A|=—V017?+%(Yo<'73'71>_+Vot("38)-)+ko( VoalT38) + + Vo3 (028) 4 +70( 0303 ) ) +edT3d)) 4
(52)
d S~ S A Ty S~y
Azz—ym7?+%(}'o<v~gﬁ'z)_+Vm(ﬁgf)_)—ko( Vor{0:8) + + V03<018)++Yo<0301)+)+C(Usaz)+ ,
(53)
d
A,:-Vo,{fﬂ-%(m)_-c((m, JORCE AN (54)
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FIG. 3. Effects of the departure from the steady-state
trajectories on the gain in the amplifier in the sample
case. All the curves correspond to initial value of
r=0.868 and w /c=75cm~". 4: ¢=0. B: $=0.1. C:
$=0.3.

IV. NUMERICAL EXAMPLES

In the following numerical applications we will
consider the case where ko=6 cm™' and initially
the beam is characterized by yy=3 and o} /c?=0.5
cm~2, This sample case has been studied in the re-
cent linear theory of the laser,” and therefore pro-
vides a convenient example of our nonlinear formu-
lation.

o —~r—r-rTT"T"TTT 10
0.08 - v03 e 0.8
R (em) b r i Vos/t

0.06F 1| | o6
oot 4 l .J l ”1 l ‘ l} 1 i L o
0.02 ;n n , l ] }” 0.2

o — llahl 210 : 3: . :0 S0 0

z (em)

FIG. 4. Axial, time-independent component of the
velocity Vg, and electron displacement R vs z in the sam-
ple case. Initially (at 2 =0) in the figure » =0.868 and
w/c=75cm™". The dashed lines represent the case y=0
(steady-state trajectories) and the solid lines correspond to
¥=0.3.

1.0

~
Redy 0.8}
RC ‘;3
0.6

0.4

0.2

-0.4

0.6 L1 } | | I ] LJ
26 30 34 38 42 46 50
z {em)

FIG. 5. z dependence of real parts of @, (the solid line)
and &, (the dashed line) in the saturation phase. The
parameters are  /c =75 cm ™', ¢ =0, r =0.868.

As a first application we will assume that as in
Ref. 9 the electron beam enters the interaction re-
gion on one of the two possible “steady-state” heli-

" cal orbits (branches 4 and C of Ref. 9). These two

regimes are characterized in the linear theory by

- different ranges of parameter r =0 /yokoVo; (on

branch 4, r <1, while on branch C, 7> 1). In these
calculations we will change r by varying ). We
will simultaneously adjust £, so that in all the ex-
amples, initially at r=0, we will have ¥V, /c =£/7,
with £=0.5. In Fig. 1 we present some typical re-
sults of the nonlinear calculations of the evolution
of the absolute value of the perpendicular com-
ponent of the electric field |, | along the amplif-
ier. The cases » =0.868 (branch A) with w/c =75
cm™! and r=1.077 (branch C) with w/c =75
em~!, 130 cm™"' are shown. It can be seen in the
figure that the evolution of the electromagnetic sig-
nal in the device passes through the qualitatively
different stages. At short distances the interference
of the linear modes in the system leads to a non-
trivial occasionally oscillatory dependence of |4 |

on z. At longer distances the electromagnetic gain
in the amplifier is lincar and the corresponding
slopes of the curves in Fig. 1 are determined by the
maximum spatial growth rate (Imk) in the system
as described in the linear theory. Finally, when the
intensity of the wave becomes large enough, the
nonlinear effects start playing a major role and the
wave enters the saturation stage. We will discuss
the saturation effects in our system later in this sec-
tion and now proceed with a more detailed compar-
ison with the results of the linear theory. Figure 2
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FIG. 6. Time-independent components Vg, Vo3, and
radial displacement R vs z in the saturation phase in the
amplifier. Tke curves cor.espond to the case w/c =75
cm~!, $ =0, r =0.868.

presents such a comparison. The frequency depen-
dence of the linear spatial growth rates on branches
A (r =0.868) and C (r =1.077), shown in this figure
has been obtained from the results similar to those
shown in Fig. 1. An excellent agreement with the
linear theory’ is obvious.

Next we proceed to the study of nonlinear effects.
First consider the effects due to the departure of the
beam from the steady-state branches A and C. This
situation is likely t.; occur in experiments as a result
of an inaccurate s.ignment of the direction of injec-
tion of the beam into the amplifier. In Fig. 3 we
demonstrate the effects on the gain of the departure
from the helical orbits. We present the case of
@/c =75 cm™!, for which the gain on branches 4
and C is maximum, and assume that at r=0,
Vor=¥/vy (on the helical trajectories =0) and
Vm=(§z—¢2)m/yo. so that as  before
| Vou|lrm0=&/Yo.- The three curves in the figure
correspond to 7 |,.0=0.868 and ¢=0,0.1,0.3.
o Note that even for $=0.3 the reduction of the gain
- . is not very significant, although the z dependence of

- the gain becomes more complex. Note also that in
" the examples in Fig. 3 the intensity of the radiation

field is relatively weak and the nonlinear depen-
dence of the gain is a result of the nonlinear dynam-
T ics of the beam in combined helical pump and axial
- guide magnetic fields. We demonstrate this non-
linear behavior in Fig. 4, where the time-averaged
- axial velocity Vj; and radial displacement R of a
- typical electron trajectory are shown as functions of
e z in the cases $=0 (the dashed lines) and ¢=0.3
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{solid lines). For yy=0.3 we see the development of
oscillations in ¥y; with the natural response fre-
quency’ and period of ~ 12 cm. The same frequen-
cy is present in the dependence on z of the radical
displacement, where we also see additional rapid os-
cillations with the period of the helical field (~1
cm). Note that with an increase of ¢ the radial dis-
placements of the trajectories increase, which may
lead to the violation of the conventional assumption
in the theory that the beam is close to the axis of
the magnetic wiggler. In.creased radial excursions
of the beam require inclusion of the radial com-
ponent of the magnetic field of the wiggler and may
result in additional destruction of the gain.

Finally, we discuss nonlinear saturation effects
due to the radiation field itself. In the following ex-
ample we assume that the beam initially is on
branch 4 with r =0.868. The z dependence of the
real parts of a, and a; for this case in the satura-
tion phase, is shown in Fig. 5. The reason for the
saturation in its initial stage becomes clear from
Fig. 6, where the z dependence of V3, Vi, and R is
shown at saturation distances. We see in this figure
that the saturation occurs mainly due to the des-
truction of the electron trajectory. The beam slows
down, thus violating necessary conditions for the
instability. In addition the radial excursions of the
trajectories increase significantly.

It can be seen in Fig. 5 that at the late phase of
the saturation, the amplitude of the electromagnetic
field starts oscillating with increasing frequency as z
increases. When the wavelength of these oscilla-
tions becomes comparable to the wavelength of the
wave ( ~0.08 cm in the example in Fig. ), inequali-
ty (12) is violated and our formulation becomes in-
valid for larger values of z. In Fig. 5 this happens
at z~49 cm. At this stage, new nonlinear effects
occurring on a scale comparable with the wave-
length of the electromagnetic wave may take place.
One such effect is the trapping of the electrons in a
strong ponderomotive potential. Our method can-
not describe such effects and a more complicated
approach, similar to that used in Refs. 11 and 12
must be applied at this stage. Nevertheless, the
present theory is still valid at the onset of the sa-
turation and describes its initial phase.
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Wiggler-free free electron waveguide laser in a uniform axial magnetic field:

Single particle treatment
A. Fruchtman

Center for Plasma Physics, Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel
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A wiggler-free free electron laser operating in a waveguide is analyzed by using a single particle
treatment. The use of either a TE or a TM mode is shown to enhance the gain for a resonant
frequency much higher than the cyclotron frequency. It is demonstrated that a source of a
submillimeter radiation, based on this analysis, may have output power comparable to that of a

wiggler-type free electron laser.

PACS numbers: 41.70. + t, 52.25.Ps, 42.55. - f, 41.80.Dd

I. INTRODUCTION

Considerable effort has been made in recent years to
develop sources of coherent radiation, using relativistic elec-
tron beams moving along helical trajectories. The radiation
wavelength in these so-called “free electron lasers” (FELS) is
the Doppler-shifted pitch of the electron motion A=~4,/2y
where 4, is the electron pitch, ¥ =[1 — (v/c)?]~"/? is the
relativistic factor, and v is the velocity of the beam. One class
of such devices is the wiggler-type free electron laser,' where
a periodic magnetic structure forces the electrons into heli-
cal motion. Most of the experimental and theoretical re-
search up to now has been aimed at this type of FEL.

Recently interest arose in a second class of FEL, the
“wiggler-free free electron lasers.” Here the electrons move
on helical orbits in a simple uniform magnetic field (which is
different from the longitudinally’ or transversally® modulat-
ed axial magnetic field). In contrast to the gyrotron,* the
frequency here is the Doppler up-shifted cyclotron frequen-
cy. Chu and Hirshfield® treated the collective interaction
and showed the existence of an unstable growing mode.
They also compared in detail the two bunching mechanisms.
Later it was demonstrated that gain enhancement can be
achieved by a careful choice of the electron momentum dis-
tribution function.®

The various gain mechanisms were clearly explained
using a single-particle approach.”® Ride and Colson’
showed that two sources of bunching exist as a result of the
electron-wave interaction. One source of bunching is the
ponderomotive force due to the product of the perpendicular
component of the electron equilibrium velocity and the mag-
netic vector of the electromagnetic wave. The second source
of bunching is the modulation of the cyclotron frequency
due to the relativistic change of the electron mass. Each one
of the sources causes gain proportional to L * (L is the length
of the amplifier), but acting simultaneously they nearly can-
cel each other. There remains a lower order gain proportion-
altoL?2

In all these previous papers the wave was assumed to
propagate parallel to the direction of the uniform magnetic
field. In a realizable device there must be a waveguide within
which the radiation propagates. Ott and Manheimer pub-
lished a collective theory for a thin slab beam in a parallel
plate waveguide.”? The difference between bunching mechan-
isms for TE and TM modes which we describe below using a
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single-particle model are not easily identified in their treat-
ment. Moreover for practical devices the applicability of the
thin beam model may be limited. The main role of this paper
is to study the influence of the waveguide modes on the inter-
action within the framework of a single-particle approach.
The two aforementioned sources of bunching which cancel
that part of the gain proportional to L * will be shown here
not to do so when, as in the case of waveguide modes, propa-
gation is not exactly parallel to the magnetic field. Thereisa
residual term proportional to L >, similar to the case of a
wiggler-type free electron laser. Thus the use of waveguide
modes may enhance the gain. This enhanced gain mecha-
nism can be exploited for the design of a practical device for
submillimeter wave generation or amplification within the
constraints of a single-particle interaction. A practical ex-
ample, similar to that in Ref. 9, will be described based on the
present analysis.

Electron beam sources of radiation for the submilli-
meter portion of the spectrum usually employ high current
densities, where collective effects play an important role.
The present single-particle calculation, by describing clearly
the physical picture, may be used as an important first step
for a self-consistent collective description in future work.

Il. THE EQUATIONS OF MOTION

A relativistic electron beam is guided by a uniform mag-
netic field along a waveguide within which an electromag-
netic wave propagates in the same direction. The gain is
found by calculating the energy loss of the electrons as they
pass through the structure. In doing it, two assumptions are
used. The first is that the intensity of the radiation is big
enough (or the electron density low enough), so that the wave
amplitude remains constant. Secondly we assume that the
intensity of the radiation relative to the magnetostatic field is
small enough to allow the use of a perturbation method to
solve the electron equations of motion. The uniform magnet-
ic field is

B, = Bge,. (1)

For simplicity we choose a waveguide made of two infi-
nite plane parallel plates with distance a between them. The
wave is assumed to be coherent and is either a TE or a TM
mode. Its components are'®

® 1983 Amarican Institute of Physics 4289
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E; = —(d''/k,c)costk, x)cos(fz — w't),

B =(4'B/k,)coslk, x)cos{Bz — w't), TE mode,
B = A'sinl" x)sin(fz — o't ),
(2)
E; = A'sin(k, x}sin{fz — 't),
E; = (8/k A coslk xlcos(fz — w't), } TM mode.

B = (w'/k,c) "costk, x)cosiBz — o't ).

@' is the wave frequency, x is the coordinate perpendicular to
the plates, and 5 and k, are the components of the wave
vector related by

@/ =k} +B2 (3)
k, will have discrete values
k, ={nm/a) n=12... (4)

The equation of motion of the electron is
d e , €
L= - S vx(B,+B)- =E. (5)
dt mc m

e and m are the electron charge and mass, respectively. The
equation of motion is easily solved by using a rotating system
of coordinates which is better suited to this problem, because
of the helical nature of the electron orbit. A similar system of
coordinates was used previously in dealing with the wiggler-
type FEL problem.'"!? For an electron, whose perpendicu-
lar velocity in the entrance makes an angle ¢, with the nega-

tive x axis, we define J

B g R Seat g, e S fhete g Shad At ARl A

e,(z,¥p) = —e, sinfkoz + ) + e, cos(koz + ¥y),
&(2,¥) = — e, coslkoz + o) — e, sin(ky z + ¢), {6)
eS(Z"pO) = ez'

k, is chosen later. Let us use the following notations:
u=v/e, =t E=¢eE/mc,
B=eB/mc®, w=w'/c, A=ed'/mc, (7
2 = eBy/mc?.
With these notations Eq. (5) becomes
Uy = uylkous — 12 /y)
: 1
~ 2y + — (0B, — u,B, — E)),
14 14

Uy = — u,tkous — 2 /)

- ﬁ?’— l(“331 —u,By + E), {8)
Y Y
. u; N 1
U= — =y — —(uB; —u,B, + Ej),
14 14

where

E;=0, TE mode,
(9
B, =0, TM mode,

and the dot represents differentiation with respect to 7’. Con-
servation of energy dictates that the energy change of the
electrons equals the work done by the wave fields:

y= —wE. (10)

The components of the wave in the rotating system of co-
ordinates are

E, = —{Ao/2k, Jcostk, x)cos[(B + kolz — a{r + 75) + ),

E, = (Aw/2k, )costk, x)sin{(B + kojz — w{r + 7o) + ¥ol,
B,= —(B/w)E,, B,=|B/w)E,
B, = A sinlk, x)sin[Bz — ot + 7)1,

TE mode,

E,= — (4B /2, )costk, x)sin[(B + kolz — o7 + 7o) + Y5,

E, = — (AB/2k,)coslk, x)cos[(B + kolz — ot + 7o) + ¥o),

B,= —(w/B)E,, B,=(w/B)E,,
E, = A sinfk, x}sin[fz — o7 + 74)].

Terms which oscillate with high frequency were omit-
ted keeping only terms which might be resonant. 7 is the
time the electron is at z =0, and 7 is the time which has
passed since then.

The equations of motion {8) are solved perturbatively.
First we find the steady-state electron orbit in the absence of
the wave. Then its perturbed velocity and position dre calcu-
lated when the EM fields are taken along the steady-state
orbits. The energy transfer is found only in the second order.

To zero order there are no wave fields:

E=B=0, 7=7 (12)
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T™ mode.
(11)

]

The equations of motion are
10 = tyolKotiso — 2 /7o)
Uyo = tyolkot3o — 12 / Vo) (13)
1.430 = O-
The third of these equations yields u, = u,, = const. The
definition of our rotating system of coordinates is completed
by setting k, = £2 /¥,i4, in which case u,, and u,, are con-
stant too. We are still free to choose u,, and u,,, with ¢,

determining the initial velocity of each electron. For our
convenience, u,, is set equal to 0, in which case for each

A. Fruchtman 4290
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electron u, = u,, and e, is always in the direction of the
perpendicular velocity. This means that e; can be different
for different electrons. The electrons are assumed to enter
the waveguide with the same velocity components parallel
and perpendicular to the magnetic field. The solution of Eq.
(13) is therefore

u,0=0, u,,=const, u;,=const,
(14)
Yo= (1 — w3y —udo) "2

The x and z coordinates of the electron position are to zero
order

Zo(7) = usot,
Xo = (1) =X, — ro sinlkqtt3o7 + Yol (15)
ro = tzo/kolt30.
ry is the Larmor radius. From now on assume
k,r,<l. (16)

Due to Eq. (16} we approximate the amplitude of the wave in
the first-order equations of motion

cos(k, xo) = cos p,.,
sin(k, x,) = sin p,, (17)
pe = klxv

and exclude the excitation of higher cyclotron harmonics.
The fields along the steady-state trajectories are

E\p = — (Ey/2sin{vr + &),

Exy= — (Eo/2cosivr + §), 18)
where

Ey=A(w/k Jcos ¢,, ] TE mode,

= —ory+ ¢+ 7/2,

(19)

Eo=A(w/k1)°°S'/'.,] T™ mode.

= -+ ¥,
The “resonance parameter” v is

v=(8+ kolizo — @. (20)

The interaction between the electrons and the wave fields is
strongest when the resonance condition is fulfilled, namely
when v=O0. In order that the resonant frequency will be high
we require that Sk, and that u;,>» u,,.

Then '

W=~ ko ~2koV3. (21)

1 — uy,
B,, or E,, were omitted because they oscillate with high
frequency. We linearize the electron velocity and energy.

u, = w,(1,7q),

Uy = Uz + Wy(T,To),

(22)
Uy = Usg + W7, 7o),
Y =Yoo+ (1,7
Next we write the equations of motion for these perturbed
quantities
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. r E
Wy = KolioWs + Koltot30 — + f {guso — 1),
(V] (1]
Lb2= band ﬂr+ @(gun"—l): (23)
Yo Yo
iy = — Yoy By
Yo V1o
where

g=pB/w, TE mode,
(24)
g=w/B, TM mode.

The third of Egs. (23) shows that the longitudinal velocity is
perturbed by two forces. The first term on the right-hand
side of this equation gives rise to the cyclotron maser insta-
bility. Its origin lies in the relativistic change of mass of the
electrons. The second term represents the ponderomotive
force of the magnetic component of the wave on the perpen-
dicular velocity of the electron. This force drives the Weibel-
type instability. A detailed comparison of these two bunch-
ing mechanisms was given by Chu and Hirshfield® and also
by Ride and Colson.” To first order the energy Eq. (10) is

rl = — Uk (25)
The solutions of Eq. (23) using Eq. (25) are

w,=(%";)(%)[cos§—cos(w+§’)—wsin§]

+ (ZL;:,)“ — gus)Tsin §,

N RTEATH o

wz—-(zyo)( ” )[sm(vr+§) siné ],

o Eo \( S5 o L

w,-(zyo )( ” )[sm (wvr+&)—siné ], (26)

Sy = A1 — guyo) + ko8,
S, =1 — guso — ul,

S3 = ty0(8 — u39).
Ill. THE ENERGY GAIN

We solved the equations of motion to first order. This
enables us to calculate the net energy loss of the electrons to
second order, which is the lowest order where it does not
vanish. To second order Eq. (10) is

r= —w\E\g — wyEa — uyokEs — wiEsy — usoksy,.
(27)

For the TM mode E,, = E;,; = 0. The net energy transfer is
found by averaging on 7,, the time of entrance ({...) denotes
this averaging). It is in fact averaging on £, which means that
the distribution of ¢, is irrelevant. This distribution has an
influence on higher cyclotron harmonics; it also cani be im-
portant when collective effects become dominant.®

Thus

A. Fruchtman 4291




(—wkE,) = (g )[(%2‘- )(sin VT — vT COS v7)
o}

+ (1 — gusg)r cos w],

(—wyEy) = (f—:’ )( % )sin vr. (28)

The resonant term in E,, is due to modulations in axial posi-
tion 4z.

4z = fw,dr
0

=(2£;;)(%)[ —vrsiné —cos(vr + &)+ cos £ ).
(29)

Using again the fact that the wave is only a perturbation on
the steady-state orbit, E,, is

E, = (—'il)mkom sinfyr + £), (30)

and the energy transfer is

e=(E) 2

X (ko + B)(vr cos vr — sin v7). (31)
Adding the terms in Egs. (28) and (31) we obtain the contri-
bution to total energy transfer from the perpendicular part of
the radiation

2
(M) = L(E—"—)[Z(l — 8uso)sin v — uovr cos vr]
t v 870
1 (Eé) 2 :
+ — | — Jusplw — Bg)isin vr — vr cos vr). (32)
v\ 8%,

The last expression is different for the two modes

o —Bg=ki/w, TE mode,
(33)
o —Bg=0, TM mode.
For the TE mode there remains the term proportional to 1/

v?, whilst it vanishes for the TM mode. This residual term
proportional to 1/+7 is the major contribution to the gain.

Thus the gain for the TE mode is
: E3\, ki (sinvr—vrcosvr
R e ) 64
o 1) 2

When the wave propagates parallel to the magnetic field
k, = 0 and the gain is the first term in Eq. (32) only, and is
proportional to 1/v instead of to 1 /v, This result, when k, is
0, agrees with Ride and Colson’s result.” Thus the use of a TE
mode may indeed enhance the gain.

Itis interesting to note that in the opposite case, namely
when 8 =0 and k, = w, our result for the TE mode gain
agrees with the gain in the gyrotron.” In fact, being near
cutoff the magnetic component of the wave is in the z direc-
tion only, and the ponderomotive force, which is one of the
two bunching sources, vanishes. The second bunching
source exists alone; this is the cyclotron maser bunching
mechanism. This case does interest us since 8 = O gives no
Doppler up-shift.

Let us now complete our study of the gain of the TM
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mode. Until now the gain for the TM case due to the work
done on the e'ectrons by the perpendicular fields is low and
proportional to 1/v only. But for this mode there is still the
work done by the axial electric field of the wave.

The work done on the electrons by the axial field is
composed of two terms. The first term is — w,E;, and its
average vanishes since Ej, oscillates with high frequency.
The second term is u,,E,,. E,, contains resonant terms. The
perturbation on the axial field due to the perturbed trajec-
tory is, after linearization

E; = A{cosp, )ik, Ax)sin[{Bu;o — o)t — w75}, (35)

High frequency terms were omitted. Only terms linear in 4x
or 4z were kept.
Using the rotating coordinate system 4x is

4x = — Axl sin(k0u3o7' + ¢0)
—_ (E-AX3 + sz)COS(kolle + w())' (36)

Usg

Equations (35) and (36) yield for E;,
A
Ey,= B (cos p. )k, [Ax, cos(vr + &)

- (-239- Ax; + sz)sin(vr + & )]- (37)

Uz
The next step is to calculate the Ax, and Ax,. Using the
identities

e, = kouse,, e;= — kguse,, ' (38)
we obtain the equations
Ax, = w, + koltyodx,,
Ak, = wy — kgedx, — 222 .. (39)
Uy

The solutions of these equations (keeping resonant terms
only)z-
Ax =(ﬂ) (1 —gusg) [ sinfvr 4+ &) —siné ]
l 2%, ko3 v

an= (2 Nz )
2%, kot 3o

X[Sl[ cos(v1'+§)——c_os§ ,+V‘rsin§]

VZ

— {1 — gusg)rsin & l (40)
Therefore the work done by the axial field is

()

VT COS V7 — Sin vr

V2
_ {1 = guy) sinvr ] (1)
kou3o v

The main contribution to the gain comes from the term pro-
portional to 1/v?. Thus the gain for the TM mode is
(F) o = (f_é )“io i( VT COS vT - sin v7 )
870 B '
(42)
The gain for both the TE and the TM mode may be
written in a similar form

Y

v
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S TRE———

o

(f)=(£§)u§°%( vr cOS vr — sin vr )’ @3)

8% v
P= -, TE mOde,

P=p, TM mode.

The total energy loss of an electron along the amplifier is
obtained by integrating (")

(ay) = _[: (I)dr. (44)

The energy gain of the wave is the energy loss of all the
electrons divided by the energy of the fields at z = 0 across
the plates

(4y) rmcN,

Gin= — — (45)

"o
where noand W, are the electron and the initial wave energy
densities, respectively. (4y) . is the sum of energy changes
across the plates. The electron beam is assumed to fill uni-
formly the gap between the plates.

Thus

@y} = f: “(apds.,
(46)

- (mCZ)ZAza(i)Z
"o 2167 k ]

Writing L = u,, 7 where L is the length of the amplifier, thé
gain along the amplifier is

2 2 2
1 @ ki u3

GL)=+ 2 ZLE8 13 p49), TE mode,
0= 3 2L |
(47)
2 k2 2
GL)= — L2250 B 15 pig), TM mode,
8 & yo' ul

where F’(0) is the line-shape function
Fio)=(282Y,
0

=¥
o= (48)

The gain for the TE mode is higher by the factor (w/8 ) than
for the TM mode. In our case, far from cutoff S~w, the gain
in both cases is about the same. The form of the gain (47) is
very similar to the form of gain obtained for the wiggler-type
FEL." As a matter of fact we can write a general expression
for the gain in these devices.

02
G=( &;r )m‘goz. 3F6),

]

Nwrer = Ko,
N = k i/ mu309
Nrae = k2 /wuly. (49)
WFEL denotes wiggler-type FEL.
The gain in the proposed wiggler-free FEL is decreased
relative to the wiggler-type by the factor
Gre ki ko

= -
Gwrm wkouls Wljoltze

(ky rol’. -~ (50)
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Since ko/wu3, 2 1and (k, 7,)* <1 thislast ratio is smaller than
1. The gain here, even though enhanced relative to the case
without waveguide, is still small relative to the case where
one uses the wiggler. Yet the advantages gained by the sim-
plicity of the magnetic configuration and the possible use of
large interaction volume could outweigh the somewhat
smaller gain in many situations.

IV. DISCUSSION

Here we sketch a possible practical device based on the
ideas described hitherto.

A magnetron injection gun emits an electron beam into
a hollow coaxial cylindrical waveguide. The inner and outer
radii are 10 and 13 cm, respectively. Since the gap 3 cm is
small relative to each radius our analysis of the two infinite
plane parallel plates may be applied here. The electron beam
fills the waveguide uniformly [in contrast to the case in Eq.
(9)]. A radiation of wavelength 785 um is launched into the
waveguide. The fourth mode has k, = 4.2 cm™". The elec-
trons are injected with ¥, = 5 (energy of 2 MeV). They enter
with perpendicular velocity u,, = 0.1. We apply a uniform
magnetic field of 16.5 kG which yields k, = 2 cm . Follow-
ing Eq. (21) the above wavelength is resonant. k, 7, is 0.2 and
obeys the condition (16). For a gain of 10% the required
current density is 6 A cm? or a total current of about 1.2 kA.
Other modes are not excited for L~100 cm since
AvL =ABL,PAB =k, Ak,, and Ak, =n/a yield
AvL = (k,/B)w/a)L > w. In order to satisfy the resonance
condition for gain, AvL should be less than 27, where v is
due to the spread in energy and angle in the initial electron
beam. From the definition of v [Eq. (20)] it follows that
Aa/a(tga=u,,/u,;) should be less than A /Lu3,, and 4y/¥
less than 1/N (= 2n/koL ).

We now compare the proposed device to a wiggler-type
FEL. Imagine that the electrons in the wiggler-type FEL
move on similar helical orbits. By Eq. (49) the current den-
sity needed is 0.6 A/cm? only. On the other hand when
ko =2 cm™" the pitch of the wiggler is 3.1 cm. Considering
that the desired wiggler-field is only at a radius of less than
0.3 cm,'* the volume of interaction has a cross section of 0.3
cm?. In our device it is much bigger, about 200 cm? so that its
power output would undoubtedly be larger. In addition, the
current required to create the wiggler-field (320 G) is about
15 kA. In view of these facts the advantage of the wiggler-
type FEL on the proposed device is not clear.

In summary, we have demonstrated the possibility of
operation of a novel source of submillimeter radiation. It is
built simply from a waveguide immersed in an intense uni-
form magnetic field in which a relativistic electron beam
interacts with one of its modes. By amplifying the Doppler-
shifted electron cyclotron frequency, it becomes, in terms of
its gain and its simplicity, a viable source of submillimeter
radiation.
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Theory of a Nonwiggler Collective Free Electron
Laser in Uniform Magnetic Field

A. FRUCHTMAN anp L. FRIEDLAND

Abstrect ~A nonwiggier {ree slectyon lasse, opersting in uniform guide

s The amplifiez problem is soived sl-
congistently on the basia of the kinetic theory. [t is shown that the
ssymmetzy in the azimuthal distribution of the slectrons’ momentum

1. INTRODUCTION

ONVENTIONAL free electron lasers (FEL's) explore the
idea of backscattering of a low-frequency pump wave by
relativistic elecuon beams. The pump wave forces the beam
to oscillate coherently, resulting in possible stimulated emis-
sion at a wavelength shorter by roughly s factor ay® (y being

Manuscript received June 11, 1982 revised October 12, 1982. This
work was supporied in part by the U.S. Office of Naval Reseasch and
by the U.S lssasl Binstional Science Foundation.

The suthors are with the Center for Plasmas Physics, Racah Instituts
of Physics, Hebrew University of Jerusalem, Jerusalem, 1srael.

the relativistic factor of the beam) than the wavelength g of
the pump wave [1]. For ¥ >> | the coefficient « is 4 or 2,
depending on whether the pump is a regular electromagnetic
wave or 3 magnetosiatic spatially periodic field. The latter is
typically produced on the axis of a magnctic wiggler (a bifilar
helical current winding with equal and opposite currents in
each helix).

Since the first successful operation of FEL at Stanford Uni-
versity [2], wigglers became an integral part in most FEL
experiments. Nonetheless, both theory [3], [4] and experi-
ments [S] showed that special care should be waken in con-
structing wigglers and in choosing radial dimensions and
entrance conditions of the beam in order to observe co-
herent helical electron orbits in the laser. Together with
this it was sppreciated recently that spatially coherent un-
dulation of the beam, and therefore also Doppler upshified
stimulated emission. can be cavsed not only by a wiggler but
also by the natural gyration of the electron beam in a uniform
guide magnetic field. In fact, in a cold beam, the electrons
move on coherent helical orbits with the pitch Ay = Swyu/Q
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where Q is the nonrelativistic cyclotron frequency, character-
izing the guide field, and v is the velocity of the electrons in
the direction of the guide field. Thus, amplification in the
system is expected at a wavelength A=No/27" = wu/¥S2.
Single particle calculations of small and large signal gains in
such a nonwiggler FEL (6], {7] confirmed the sttractive pos-
sibility of replacing the wigglers by a uniform guide field,
which was, as a matter of fact, almost always present in con-
ventional FEL experiments. However, the encouraging predic-
tions of the single particle theories could not be applied to the
collective regime of operation, when intense electron beams
(> 1 kA) with relatively low energies (y <10) were used.
The collective interaction, usually termed “stimulated Raman
scattering,” had 10 be treated by a self-consistent theory.

Ott and Manheimer published a theory for a thin slab beam
in 3 waveguide [8]. The first study of a nonwiggler FEL
operating in the collective regime in free space was given by
Hirshfield er al. [9], who showed the exisience of a spatially
unstable mode at the Doppler upshified cyclotron frequency.
They considered a randomly gyrophased electron beam, in
which the momentum distribution function of the electrons
was

f(pl!Plt.)sf(pl)px)- (l)

Bere p, and p, are the momentum components, perpendicular
and paralle] 10 the disection of the guide field, and ¢ is the
azimuthal angle (t,¢ =P, /p,). It was also shown in [9] that
the longitudinal and transverse modes of the system are de-
coupled and only the azimuthal bunching mechanism drives a
cyclotron maser type instability. In this respect, the device,
considered in {9] and based on randomly gyrophased beams,
differs significantly from the conventional FEL's, where the
axial density bunching is primarily responsible for the spatial
instability.

We now show that the mode decoupling described in [9] is
the result of the random gyrophase distribution of the elec-
trons in the beam. We write the distribution function in the
form

1.2, =f(p, 2. 1) N(2,1) Q)
where
ff(p,z.r)d’p-n. A3)

Let =7 +f, and N=Ny+N, where fo and N, are the
values of £ and N when there are no perturbing electromag-
netic fields. Then the linearized perturbed transverse electron
current, which is the source in the Maxwell equations for the

transverse fields, is written as .
J;'Cﬁg('&.)* ¢(’1.)ﬁ| 4)
where
(v, 'f';fg d". (0,0) 'j.lfo d" (5)

and the subscript 1 denotes components transverse to the
guide field. In the case of the random gyrophase distribution
(1), (9,4) vanishes and, as a result, only the transverse velocity
perturbation (#,,) contributes toJ,. If, however, the momen-
tum distribution has an azimuthal asymmetry, then (9,4} % 0
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and the density modulation N, (or the axial density bunching)
can also drive transve se modes of the system.

An example of a nonwiggler FEL with an azimuthaHy asym.
metric electron beam was recently studied in {10]. The heam
was assumed to be cold, and the momentum distribution at
the entrance into the device was taken 1o be

S(P1,Ps. 8) = -2%-’- 8(P1 - Pio) 8(Ps - P2o) 5(¢ - o). (6)
P1

We will use the term “helical beam™ to describe such a beam
configuration. It was demonstrated in [10] that in a lases the
helical beam provides enhanced spatial gain compared 1o that
found with a randomly gyrophased electron beam. The origin
of the gain enhanczment is the aforementioned increased role
of the axial bunching in driving the instability.

This paper presents a kinetic theory of nonwiggler FEL's in
a uniform guide magnetic field. We consider an arbitrary ¢
dependence of the electron momentum distribution function
and, in contrast to the cold fluid model of [10], we base the
theory on a Maxwell-Viasov description. The scope of the
paper is as follows. In Section Il the Maxwell equatio-: are
reduced to a sim;ie set of first order ordinary diff- - .-
equations for the electric component of the electiom::  ic
field in the system. The current and density sources f .. the
field equations are found in Section IIl. In Section " wve
apply the Laplace transformation to the field equatioi - »d
derive the dispersion telation governing the statility c. s
sysiem. Finally, in Section V the dispersion relation is 2 ¢
numerically for several configurations of the electic: - .».
In the same section we also solve the field equations 2. .y
and find the actual gain in a finite length nonwiggier © L
amplifier.

1l. FiELD EQUATIONS

Consider an electromagnetic wave propagating afons a rels-
tivistic eleciron beam, gyrating in a uniform magne:ic field
8= 8,6,. Assuming a one-dimensional model, we can de-
scribe the electromagnetic fields E(z,7) and B(z,?) by the
system of Maxwell equations

a8, af, .9
c?,X-Sz—'-s-'—'fhrll ™ ;
- 2, 28, & |
o8y X » ™ ( ‘

%l-‘,gﬂ la"-l

8'-0 (‘o,

where J, and N are the self-consistent transverse current and
electron density perturbations caused by the presence of the
electromagnetic wave.

We restrict our analysis to the stationary amplifier P"’b“mﬁ

namely, we introduce an electromagnetic perturbztion of fte.-
quency w at 2 = 0 and solve for the electromagnetic fields 3'
given 2 > 0. Respectively, we write

a
E(z,1)=Re [—""i a(2) o]

ar

e v

Py

|
|
|




B(z.1)=Re [%’ 16 0] (12)
Ji(z. 1) = Rej— 1;(:) ¢] (13)
N(z,1)= Re [Tme’- n(z) Q] (14)
where .
QSexp[i%(z-ﬂ)]. (1%)

Note that consistent with the amplifier problem we left in
(11)-(14) only waves propagating in the positive z-direction,
which is also the direction of propagation of the electron
beam. Equations (7) and (8) can be combined and yield on

Assume now that various frequencies characteristic to the elec-
tron beam (such as the plasma frequency w, and the cyclotron
frequency 2 = e8y/mec) are much less than w. Then we ex-
pect /i, n, @, and b to vary on the scale much longer than
wjc, or more precisely in order of magnitude for X =j,,n,a,b

dinx
Tda

This disparity in scales allows us to simplify (16) and (17)
significantly and rewrite them in the following approximate

<<— (18)

These are the desired field equations, describing the electro-
magnetic wave propagating along the amplifier.

I11. PERTURBED CURRENT AND ELECTRON DENSITY .

® At this stage we adopt the kinetic description of the electron
beam, introduce the electron momentum distribution function
J(p.2,1), and employ the Viasov equation

Lodefetxan] oo o

® Choosing the cylindrical coordinate sysiem (&,.&;.&,) in the

pspasce and writing f=fo(P;.P1.9.2)+ [1(Ps.P;.0.2,0)
where f; is the perturbed part of the distribution caused by
the electromagnetic wave we get in the zero order

—s=0 (22)

& L w d
dz_.’l* 2]‘?%3i%h. (16)
Similarly, (9) becomes
d
(55 an-

form:
h .
&= —“; . (20).
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with
= i ("3

x 70 )
If initially (atz = b) we have

fo(P;.p,,9.0) = “ Ol 0(Ps.PL®) (29)
then (22) yields

m
Jo(Ps.P1.9.2) = et GPs.PL#- x2). 125

Consider now the first-order linearized Vlasov equation

h,, % _ ¢ Lo
a Ty c(oXS) E™
=¢(E+'):')-%j;—'. (26)
Similarly to (11)-(14) let
fi =Re [% ¥(p;.Ps. o,z)d»]. (7
Then (26) becomes
) )
oo (- 2)en (G ox)]o
= 45¢°c? (a + 222 : ’) 5;'& . (28
Expressing & through @ from (8), it can be shown i}z in (°0)
we can approximate
+'x'--i—[-iu(l-—+v e
c W c * 3z )™
+(% ‘a4 a,) é. (29)

It is convenient now to introduce the following orthonormal
set of base vectors

boo Tzl - )
¢ '?(5 +ie,) (3%

Then, on writing @, = a,é, +a_¢&_, substituting (29) into (28),
using (25) and expanding

¥ Y Ape® (€3]
Ao

Coe™. G= 3 Gpe™. G

4:0’ ,.Z.. . .,Z_. " !

Note that the coefTicients 4o and 4., are the only nuz; neces.
sary 10 know in order to find the perturbed cunent and den-
sity in the field equations (19) and (20). Indeed,

ﬂ'ff Vp, dp; dp, 40'2"]“/:40?1 dp, dp, (33)




and

A =fjjuvm dp, dpy dé=éuju s 8. J.
where '

| *ﬁﬂff;lz 1P dp, dp;.

On Solving (29) for Ay and A,,, substituting the solutions
into (33) and (35), and integrating in the resulting equations
by parts in order to eliminate the derivatives of the coefficients
- C,, with respect to p; and p,, we finally get

‘ n= zxmt’ffdm dp, (f’ dz' e % {a,C, % (1

(34)

33)

sz,_
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distribution function of the electrons at 2 = 0. A1 this point,
we restrict our analysis 1o distribution functions of the form

G(ps.p:.0)= 7§- 8(Ps - Pso) (P - Pic)E@®).  (41)
In this case
z
Ca= 2np, 5(?: P1o) 8(Ps - Pio)8ne e~ inxs 42)
where g, = [ /0" g exp (-in¢) d#]/2x. Thus, after performing

the integration with respect to p, and p; in (36) and (37), we

A jwA i}
-..;’_) (1 + lt:‘ z)+f:;3: @.Cy -a,C.;)

. iwaz [ ﬁ) )
[l + m ( p ] Yo 5 @.C,; +a, -,)}) (36)
i-t\ﬁtbnc’ffdpdp(v‘l *"ac-ﬁ(ac-ac +f‘dz'¢"“ac of
* < 1 &Ps Viw =Fate ™ a2 - 3708 o %21 v?
e f-g)2) (105 22 1-5)-2))
[1 * s ( {l "’} : \/_"”s [(ﬂ G° "Co) e c iy L] “ c ? Y
) Q, { 1A V2ifw, ) -
(‘-Cz + .oc:g) e {l % } + Yo, 'ng} + K* (3 '}
where Az =z -2’ and the constants K, are chosen 50 that get
J ! e ¥0,and 2 e
T . n=Ry+ f d:z' Aze "“So(z')
° W - D, (]
a=-—= (l - -‘) (38) : .
- % ¢ + f dz' e **%* 0, (") (43)
. and °
' ] -agAz ’
\ a; = ao tix. (39) i:'Ra"'j; dz'Aze ' S,(2)
According to (25) and (32) f: atas
dz'e ™ ' 4
: Ca 'G.G"““. (40) + ) e 0.(z") (44)
Note that the last expression for C,, after being substituted where j, -j,e x. = /9 Ugq, 03 = ~i(W/vz0)() - 50 7).
y into (36) and (37), allows one to express n and j, through the 1/y3 =1- v3, /c - v3/c®, and if we define g} =g, e
“ then
Ro=0 (35;
‘e lw’c’ ’ Iv , , ﬂ
. c’
' Qo = .7_’.,2 ;80 ( ) T (a_g., - .8, )] (47)

ic?wl oy
"—L [ -a: 80 : o ("-l: - U'Jo)] "K:G:‘x"

St (312 e
o e ’

------

i ’ ’
[‘s‘n 4 %0? (l + 2‘?) (043 = ‘ol_g) -

vLo S0
a.xo) [ 1- — ] 2 ,w'; (4-13 + ‘olo)}
(=9)
iv,0Sts0 V320
2:.2“’1 ( -‘3 *‘o‘o) Yo WVs0 todg} . (S0)
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Finally, we substitute (43) and (44) into the field equations
(19) and (20) and we get the following complete set of integro-
differential equations describing the evolution of the electro-
magnetic wave along the amplifier.

. 1
& Pt s

L ®
'{R, +f dz’ ¢"'“[Az$,(z') + Q(z')]} (51)
.

o= é {[ a' e":“ [A2So(2') + Q.(z')]} .

(52)

IV. ANALYSIS OF THE FIELD EQUATIONS
Equations (51) and (52) comprise a set of linear integro-
differential equations with all integrals in the form of con-
volutions. Thus, we can solve this system by means of the
Laplace transformation. Namely, if we define for § = §(2)

he [ e ™) dz (53)

where Im k is assumed to be negative enough to assure con-
vergence, we can apply transformation (53) to the field equs-
tions and get ,

' ] _ S _Qu
k¥ xd o= 75 [Rat 3 ,:;,)z * (ag?ik)]
+a,(0) (54)
) - _i_ SQk __Qot
.8. w[(as + ik)z + (ag + ik)] . (55)

On using the expressions for the transforms Sox. Qox: Risx»
S.a, and Q,,, we can rewrite (54) and (55) in the following
vector form.

€oe €. Cop ‘: & "0(0)
€. 6. e \lax]=[a0) (56)
€ge €3 €53/ \8ak 0

where the dielectric tensor ¢ is given by

2 .

€s =i [k‘x.* ,:::’1". (l 2 _,?A ‘Z,)] (X))
iwivies )

"'.-—i#[k;n ("“f!')] (58)

3
VipWp fsy jw v
Cgn3d ~h-=2 3
3" Tt [c (’ c )* k x'] 9
o wigs, ( o0 , k). Xo¥m
‘::.‘W-L-qohi } ¢ + u)); " (60)

.,._ﬁ’r_(-!’:;. (w* ck) (1)

and
Av-w(l-—vf-)*kv,. (62)
3
2, =- -"fg;“l k% x0). (63)

The dispersion relation is now defined via Det ¢ = 0. The
knowledge of the roots k = k(w) of this dispersion relation
allows one, in principle, to apply the inverse Laplac: trans-
formation to the solution @, of (56) and thus find th. actual
z-dependence of the amplitude of the wave along the ampli-
fier. Nevertheless, because of the complexity of the dielectric
tensor ¢, the inversion of the transforms in our case is a rather
complicated algebraic procedure. Usually in such situatjons
one restricts the study to the search of the roots of the disper-
sion relation only, which allows one to find the 2s;. [totic
z-dependence of spatially unstable modes. We use ¢ s ap-
proach in the next section and find roots of the di-  rsion
relation for several configurations of electron bearns. }:: addi-
tion, in order to avoid complexity of taking the inverse La-
place transformation, but nevertheless willing 10 :.id the
z-dependence of the fields, we solve the field equatio:: itz ectly
in the next section. With this purpose in mind, we transform
here the field equations (51) and (52) into a system of first

order ordinary differential equations.
Define
n= _‘: ds’ ¢;°:"S.(z') (64)
3= J; Caet [Qa(2") - 2'Salz")} (65)
where ais +, - or 0. Then (51) and (52) can be rewrit!.ui as
-‘!;;—* Fixo0: = ;:3 Ry +215 +13) (66)
0= G141, 6
and, differentiating (64) and (65),
%’- =-aQ/{ +S, (68)
%" =-a3/3 + Qo - 25a. (69)

Equations (66)-(69) comprise a complete set of first order dif-
ferential equations, which can be solved numerically with an
appropriate set of initial conditions.

V. STABILITY ANALYSIS AND DIRECT SOLUTION OF THE
F1ELD EQUATIONS

In this section we apply the theory to the following three
electron momentum distribution functions.

1) A randomly gyrophased electron beam. characierized by
g(¢)=1,s0thatgo=1andg, =0 (n=21,22," ).

Aam
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Fig. 1. Schematic of transverse cross sections of various beam con-
figurations. (3) Randomly gyrophased beam, (b) double helical
beam, (c) helical beam. The arrows show the directions of the
transverse velocities of insdividual electrons in the beam.

2) A double helical beam with g(¢) = x [5(¢ - 0) + §(¢ - #)].
Inthiscase g2, = 1 and g3, 0 (m=0,21,22,-- ).

3) A helical beam, described by g(#)=2#5 (¢ - 0) and
Sa®1(n=0,21,22,---). These three types of the electron
beam are illustrated schematically in Fig. 1.

In the case of an azimuthally symmetric electron beam
[case 1)] all the off-diagonal elements of the dielectric ten-
sor ¢ vanish and the dispersion relation simply becomes
€.,€__t;s=0. In this case the three possibilities ¢,,, €__,
and ¢, =0 correspond respectively to the right-hand trans-
verse wave, the left-hand transverse wave, and the relativistic
longitudinal spacecharge wave. The equation ¢,,=0 is
identical to the dispersion relation derived in [9] for the
case w/e >>xy. As was shown in [9], e, =0 yields for A
snall enough and large w a pair of complex roots for k, one

of which has a negative imaginary part
Imk - —gle e 70
= ot @)
and therefore describes a spatially unstable mode in the
smplifier.

We now consider cases 2) and 3). In case 2) the dispersion
relation is given by
(€ase. - €,.0.,)¢;=0. ()

We see that the left-hand and right-hand modes are coupled.
Nevertheless, as in case 1) the spacecharge mode is still un-
coupled. The reason for this is that both distributions 1) and
2) are azimuthally symmetric and, therefore, the average
unperturhed transverse velocity in the beam (v, ) is zero (see
Section I).

In contrast to cases 1) and 2), the distribution function of
the electrons in case 3) is azimuthally asymmetric, and as a
result all the off-diagonal elements of the dielectric tensor are
nonzero. In this case the spacecharge mode couples to the
transverse modes. Because of the complexity of the dispersion

T T -1 -

3'!9’ -y

120
w /g {em-)

Fig. 2. Spatial growth rates Im k versus normali ed Jrequency wle.
The panameters are wi/c® =2 cm™, xo=3 am™, 7o =5, and
vio/c = 0.1. (a) Randomly gyrophased beam, (b) double helical
beam, (c) helical beam.

relation in cases 2) and 3), their analytic study becomes
difficult. We therefore find the roots numerically for the
ample case: wi/c?=2cm™, xo=3em™, ¥=5, and
0i0/c =0.1. This set of parameters is typical of a collective
type Raman free electron laser. In Fig. 2 we compare the
computed growth rates for the three distribution functions
1), 2), and 3). The solid lines represent the solutions of
the dispersion relation for the sample case, and the dots were
found by solving the field equations directly for large values
of z, where the exponentially growing modes with the largest
growth rates are dominant. We see from the figure that in
case 1) (the randomly phased electron beam) the maximum
growth rate is 0.044 cm™ in agreement with (70). For the
double helical beam [case 2)] the growth rate at maximum is
0.087 cm™. The growth rates found for the helical beam
fcase 3)] agree well with the results of the cold fluid theory
[10] and for both cases 2) and 3) are comparable in magni-
tude with the growth rates one has in conventional FEL's
operating in similar regimes [11]. Thus, we see in Fig. 2 that
the coupling between the transverse modes in case 2) enhances
the gain. In case 3) the enhancement effect comes from the
coupling to the space-charge modes, which enables the axial
density bunching to drive the instability.

The improved operation of the amplifier in the cases of the
helical and double-helical beams is demonstrated in Fig. 3,
where the actual z-dependence of the gain along the amplifier
is shown for aforementioned three distributions in the sample
case. These results were obtained by solving the field equa-
tions (66)-(69) directly. We see in the figure that the ex-
ponential growth for distribution 1) becomes dominant only
after the beam passes 60-100 cm along the device, while in the
cases of the helical and double-helical beams the growth is
exponential already at ~30 cm and its actual value quickly
becomes very high.

These results should motivate attempts to generate helical
beams for a practical nonwiggler FEL. One way is to shoot

d
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Ol % W

2 (em

40
Fig. 3. The square root of the relative power gain P = i¢ (2)i/ie (O)1
versus the interaction distance in the sample case for w/c = 120 cm™*.
(s) Randomly gyrophased beam, (b) double helical beam, (c) helical
beam.

the beam at an angle to the magnetic field. Perhaps more
promising is to pass the beam through a magnetic “kicker”
which will give all the electsons the same perpendicular mo-
mentum component,

In conclusion,

1) We have presented a kinetic theory of nonwiggler FEL
opersting in strong uniform guide magnetic fields. The am-
plifier problem is reduced to 2 solution of a system of first
order ordinary differential equations for the electric com-
ponent of the elecrromagnetic field.

2) Our numerical examples demonstrate the potential of
operating 3 nonwiggler FEL in the collective regime, where
the spatial growth rates can be comparable to those in the
convential FEL’s.

3) The form of the azimuthal distribution of the momen-
tvm of the electrons in the beam in the nonwiggler FEL is
extremely important and influences the growth rates in both
their magnitude and form. The asymmetry in the azimuthal
distribution results in higher gains in the system due to the
coupling of the transverse and space:charge modes.
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