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“ h Abstract

" This paper describes a new procedure for estimating parameters of

e
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a stochastic activity network of N arcs. The parameters include the

Pt e e

probability that path m is the longest path, the probability that
path m is the shortest path, the probability that arc i is on the
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longest path and the probability that arc i is on the shortest path. \ -~ -- —

The proposed procedure uses quasirandom points together with information
N-1H]+1

t; on a cutset H of the network to produce an upper bound of 0((log K) /K)
.fé on the absolute error of approximation where K denotes the number of

f? replications. This is a deterministic bound and is more favorable than

;3 the convergence rate of I/K]/2 that one obtains for the standard error
;g for K independent replications using random sampling. It is also shown
& how series reduction can improve the convergence rate by reducing the

Tfﬁ . exponent on log K . The technique is illustrated using a Monte Carlo

fs sampling experiment for a network of 16 relevant arcs with a cutset

< of H=7 arcs. The illustration shows the superior performance of using
:i quasirandom points with a cutset (plan A) and the even better performance
E; of using quasirandom points with the cutset together with series reduction
;: (plan B) with regard to mean-square error. However, it also shows that
computation time considerations favor plan A when K 1is small and olan B
’3 when K is large.
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:ig Longest path

;: : Monte Carlo methods

‘53 Network analysis

£: Quasirandom points

& Shortest path
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Introduction

Although comprehensive procedures have been developed for analyzing
an activity network with deterministic arc completion times (e.gq.,
Elmaghraby 1977), no comparable set of comprehensive procedures exists
for a network in which the arc completion times are random. In particular,
a stochastic activity network is properly characterized by distributional
information. For example, on independent passes through such a network
from source to sink, the network completion times on each pass usually
differ, as do the paths identified as the critical paths. Here, the
distribution function (d.f.) of network completion time and the frequency
with which each path is the critical path provide useful characterizations
for describing network behavior.

Whereas conventional search algorithms have been the principal tools of
analysis for the deterministic case, Monte Carlo methods have been the
principal tool for the stochastic case. For example, see Elmaghraby (1977)
and Sullivan, Hayya and Schaul (1982). However, the performance of the
Monte Carlo method has not been exceptional until recently when Sigal,
Pritsker and Solberg (1979) showed how one could use information on a
cutset of a network to improve the accuracy of estimate for a given cost.
More recently, Fishman (1983) showed how the cutset information can be

used together with quasirandom points and series reduction to estimate

the d.fs. of network completion time and shortest path time with upper
bounds on the errors of estimate that converge more rapidly than
O(]/K]/Z) , the rate for the standard error in a Monte Carlo experiment
using random sampling on K independent replications.

The purpose of this paper is to extend this combined cutset/quasirandom
points/series reduction approach to the estimation of the probability that

path m is the longest path, the probability that path m 1is the shortest

......... Tl N e e e JCOR KR . . N
"""""""" Tl el wAlad Tent i B el ol o A i A A Naiataal T

-




path, the probability that arc i 1is on the longest path and the
probability that arc i is on the shortest path. Section 1 introduces

the necessary notation. Section 2 describes the use of cutset information,
as proposed by Sigal, Pritsker and Solberg (1979), to estimate a parameter
by Monte Carlo methods with less variance than would obtain for the same
number of replications when using crude Monte Carlo techniques. Section 3

then describes how one can use quasirandom points with the cutset information

on each replication to make the error of estimate converge more rapidly than
in the case of random sampling. Section 4 extends the analysis to the

remaining estimators of interest. Section 5 describes how series reduction

in the network can work to advantage by reducing the number of dimensions
sampled. Section 6 then describes an experimental design for evaluating
the benefits to be derived from using cutset information together with
quasirandom points and series reduction. Section 7 presents an example
which assesses the benefits of each sampling plan versus its relative
computation time.
1. Definitions

Consider an acyclic directed network with a single source, sinqle sink,
N arcs and L paths. Let X]""’XN , the passage times for arcs 1,...,N,
be independent random variables where Xi has distribution function (d.f.)
F. on [0,») and inverse distribution function Gi(u) = min{x: Fi(x) > U,

i
0 <su<1]. The completion time of path m is

-

X, (1)
m i=1 i

imi = zielm
where aim=] if arc 1 1is on path m , aim=0 otherwise and Im denotes

the set of arcs on path m . Consider the network completion time

*
T = max(T],...,TL) (2)




i i atire. st S e Mot M s it et TRk Snaer s SLES AP iU A e S e i SO A A A A A P Rt A |
Ly ) . . .- . L. L - - - . - . - " -

...........

: 3
o
(;‘ and the shortest path time
T, = min(TpeeeT) (3)
= Characterizations of the network include:
\ f a. pr(T* < t) 0t <~ |
N .
.tj b. ET
c. gm=pr(m is the longest path) m=1,...,L
d. ri=pr (arc i is on the longest path) i=1,...,N
e. pr(T,st) 0 St<w ‘
f. ET, .
é% g. hm=pr(m is the shortest path) m=1,...,L 5
vgs h. si=pr(arc i is on the shortest path) i=1,...,N . |
- Fishman (1983) describes a highly efficient method of estimating a, b, e |
'%a and f based on cutset information, quasirandom points, and series
;:é reduction. The present paper extends the method to the estimation of the
' probabilities {g : m=1,...,L} , (h s m=1,...,L} 4 {ry 3 i=1,...,N
';i and {s;3 i=1,...,N} .
ifﬂ 2. Cutsets
- Observe that
g = or(T > T 5nfm, n=l,..,l] mel,...,L . (4)
?i Because of the shared arcs among paths, T],...,TL are usually not
f: independent and therefore 9 generally has no readily accessible analytical
i& form. However, one can make use of the cutset information as in Sigal,
155 Pritsker and Solberg (1979) to derive a useful expression for estimating 9. -
i_ Let H denote a cutset of the network. As used here, a cutset denotes
Eh . a set of arcs that connects a set of nodes W containing the source with
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a set of nodes W containing the sink. Also assume that each path has
only one arc in H . If each arc in H points from W to w, H

is called a uniformly directed cutset (UDC). We assume that #H is a UDC.

Let
S =T - X, m=1,...,L
m m ]m
and
Y. = sup S ieH (5)
T o=, L™
aim=]

where im=1mr\H denotes the arc on path m that is in the cutset.
Then X1+Yi is the maximal time of all paths that use arc i ieH and

pr(m is the longest pathIS],...,SL)

/ [nieH Fi(t-Yi)]dFi (t-S) if ¥y =S

m (6)
=0 A m m
1f1m
=0 otherwise.
Therefore,
Am = Hi‘ﬁ Fi(Tm'Yi) if Tm=Y1.m+x].m (7)
1#1m
=0 otherwise

has expectation 9 - Let the subscript j denote replication j . Then

for K replications

A 1 K ,
= = - Y., .-X. .
ng K zj=] G(ij Y1mJ 1mJ )HieH Fi(ij'Yij) s (8)
1#1
m
where
6(x) =1 if x=0
=0 otherwise,




v " < LT ‘; Ny -

-5-

is an unbiased estimator of 9y If the replications are statistically

i

Y

independent, then var amK is proportional to 1/K .

TR BET AP SR Ry N

In principle, (8) is the estimator of g that Sigal, Pritsker

K

and Solberg propose. They note that it should give smaller variance for

K independent replications than the more conventional estimator

3 =& TN ST )
Imk = X j=1 J mj
where

*

Tj = max(T]j,...,TLj) .

However, both var amK and var amK converge as 1/K . In this
paper we propose the use of quasirandom points to speed up the
convergence of the error of estimate. See Niederreiter (1978) for a
comprehensive review of the associated theory.

3. Quasirandom Points

Suppose one wants to estimate the multivariable integral

1 1
0[ ..b[ f(x],...,xN) dx]...de (9)

)

by the summation

1 oK
oy = R'2j=1 f(u]j""’uNj)

where {u]j,...,uNj: j=1,...,K} is a sequence of points uniformly
distributed in the N-dimensional unit hypercube QN=[O,1]N . Let A(R:K)
denote the number of soints Ej=(u1j""’uNj) j=1,...,K that fall in the
region R ngN . Then 4,,...,y, are said to be uniformly distributed

in QN if
. AgR;K; -
Tim GURY C 1

K+ o

for all R={(x],...,xN): a; S X S Bi 3 i=1,...,N} . Here A(R) is the

) L e ¥ R P ¥ - N - . e P . - -
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measure of volume of R in QN . HWe define the extreme discrepancy

of u=g] s ’EK as

D

¢ = D (N,u) = sup ARK) _ A(R)‘ (10)

for R={(X]”"’XN): 0 < Xs S Bs i=1,...,N} . If f 1is of bounded

variation in the sense of Hardy and Krause, then

|6,-6< V(£,N)D, . (11)

where V(f,N) is a function of the bounded variation of f in N and

lower dimensions. Most importantly, uniform sequences exist for which

D, = 0((log V) . (12)

This is an impressive result, for in the special case in which
{uij: i=1,...,N; j=1,...,K} 1is a sequence of i.i.d. random variables
uniformly distributed on [0,1) , one has only

. JXo
1141-»2 supﬁ- 1 w.p. 1, (13)
a result due to Chung (1949) for N=1 and to Kiefer (1961) for N»1 .
Halton (1960) describes a uniformly distributed sequence for which

(12) holds. If R > 2 is an integer, then every non-negative integer n

has an expansion of the form
= M i -
n = Zi=0 aiR ai€{0,],...,R ]} (]4)
0<i<m and m=L]oanJ .

Corresponding to this expansion one has the radical inverse function

1

¢R(n) = Y‘LO aiR_i— (15)

Then Halton shows that the sequence {¢R](j),...,¢R (3); 3=0,1,...,K-11 ,
N

where R],...,R are pairwise relatively prime, gives tne bourd {12).

N
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R We now specialize these results to the network analysis at hand.

Define for j=1,...,K

= G, (u. i=1,...,N 16)

Xij = G3(ugy) (
N

= ¥ . =1,...,L 17
Tng Li=1 3im%i 3 m=1 (17)
Y.. = sup T . =X, . ieH . (18)
YWooopel,.. st m Tmd

a1'm=1
Then it is not difficult to see that . can write g, 2as @

(N-|H{+1)-dimensional integral over ¢ [+ with integrand of bounded
variation and that (8), using (16), ( d (18), is an approximation
to this integral. As a result, one has tor a given network using the

Halton sequence the deterministic bound

\QmK~9m\ < o((10g )" 11T ) (19)

which makes clear the desirability of choosing as H the cutset of

maximal cardinality.

4., Estimating {ri} R {hm} and {si}

This section describes estimators analogous to (8) for

ro = pr (arc i is on the longest path) i=1,...,N (20)

h.=pr (m is the shortest path) m=1,...,L (21)
and

S; = Pr (arc 1 is on the shortest path) i=1,...,N. (22)

Before doing so, we explain the motivation for studying {ri} and {Si} .

If, say, rs turns out to be considerably greater than the remaining arc
probabilities on the longest path, then there is good reason to believe

that the completion time associated with arc 1 1is a principal determinant
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ii considerations apply to {s;} . Since
' _ ol

L i dp= 2 imIm

| SN

N one has the estimator

A _ L A
fik = In=1 3imdmk

”{; arc for the purpose of shortening the longest path time. Analogous

-
Moreover, it is easily seen that IQiK - ril < 0(log K)N ‘H'+]/K) for
the Halton sequence.
The estimation of {hm} follows closely that for {gm} . Let
Zi = inf Sm ieH
m=1,...,L
im
so that Xi+21 gives the minimal timc of all paths that use arc  i.
Then
. pr(m is the shortest path |s],...,sL)
= Of {n1€H []-F1(t-zl)]}dF1m(t-Sm) if Z‘in‘:Sm
. 1#1m
:” =0 otherwise.
Again, let the subscript j denote replication i . Alsoc let
A

c g m m
171
# m

s =0 otherwise.

of the longest path time. This knowledge of the relative importance of

arc i may lead to a modification of the activity associated with this
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Then

A 1K _ _

hok = & 221 Tmg = %5 57 %4 5) B (26)
is our estimator of hm and again for the Halton sequence one has

Lo N-TH|+1

|th hml < 0((log K) /K) .

For {Si; i=1,...,N} note that

= 27
S5 Zm=1 aimhm (27)
so that our estimator has the form

A _ oL A

Sik = Im=l Bintmk o (28)

. A -
with error lSiK'Si' < 9((log K)N IHM/K) for the Halton sequence.

5. Series Reduction

As shown in Section 2, the rate of convergence of the error of
approximation (10) is bounded by a function O0((log K)N/K) . Using the
cutset H enables one to bound this convergence more tightly by
0((log K)N'|H|+1/K) and, presumably, using the cutset H with maximal

cardinality is best. In fact, any preanalysis that leads to a smaller

exponent for log K 1is desirable from the viewpoint of a tighter error

bound. The technique of series reduction is one such approach to

further reduction.

Figure 1 shows an activity network due to Rattersby (1970) for the

partial overhaul of a unit in an oil refinery. Table 1 shows the corresponding

incidence matrix. Note that arcs 17 and 18 are both on all eight paths.

Insert Fig. 1 and Table 1 about here.

Therefore, we can ignore these arcs and reduce the number of relevant arcs

for analysis from 18 to N=16 arcs without any effect on our results.

A a a o PP -
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Observe that €y, €3, €5, ¢, €9, € and €17 form a cutset H for the
networ«. Since N=16 arcs and |H|=7 the exponent for log K is
N-|H|+1=10 . Now note that arcs e, and e, occur only on paths 1 and
2 , eg and e,y occur only on path 5 , e, and €, Occur only on
paths 6, 7 and 8 and eg and ey occur only on paths 7 and 8 .
Suppose we now replace these arc pairs by single arcs e]+e4 s e6+e]5 s
e7+e]6 and e8+e]] . Then the network has N'=12 arcs and the cutset
H' with €) » B35 g, €pte ., €y , €, and ey has cardinality 7
so that N'-|H'[+1=6 is the resulting exponent for log K in the bound
A
on IﬁmK-gml and |th-hm| . Note that if one adopts this series
reduction it is not possible to estimate rs and S for those
original arcs in the reduction.

The feasibility of implementing this series reduction in practice

depends on whether or not the d.fs. of the summed arc times are convenient

for computation and on the relative computation costs with and without

series reduction. Suppose w],...,wn are independent exponentially
distributed random variables with distinct rates Bys--sBy - Then for

n>1 vn=w +...+wn has the d.f.

1

n n 4. -1 'Bit
Fy (8) =1- Loy 1y, (G sj/si) e . (29)
n j#i

For summed arcs 1n the cutset one need only replace their individual d.fs.

in (8) and (26) by the corresponding d.f. from (29). For summed arcs not in

the cutset one needs to solve the equation

L A I I I P UL S I S T Y I WG L P AU WIS Ui SAr SOy RN UNPUE DR NLE RSP UL WP LD NI REPULAY SU LAY LY SR RSy »
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for T' , v being the appropriate element of the Halton sequence. This

can be done readily by the Newton-Raphson method. A suggested starting

point for the iteration is

Ty = -[n(1-v) 155 % . | (31)

We evaluate this approach in our example where we study the relative
benefits of the cutset information, quasirandom points and series reduction.
As we show, the relative benefit of series reduction becomes more apparent
as the sample size K increases. In fact, for small K series reduction

may be less preferable.
6. Experimental Design

This section describes the layout for an experiment designed to
determine the extent to which quasirandom points lead to accelerated
accuracy when estimating {gm} and {hm} for the network in Fig. 1.

In particular, we introduce a degree of randomness into the experiment

in order to compute estimates of the mean-square errors of our point
estimates. We then study the behavior of these sample mean-square errors

as K increases. Note that we choose this method of evaluating our proposed
method merely because it is necessary to find a common basis for comparing
results based on a deterministic method with baseline results using random
sampling.

Consider an experiment consisting of Q statistically independent

blocks or macroreplications each of K microreplications. Let {v

im:
i=1,...,N; m=1,...,Q} denote a sequence of i.i.d. random variables

from u[0,1) and define

Cim = (c: ¢Ri(c) = Vim) i=l,...,N m=1,...,Q . (32)

PR W U W U WP S L K Dy —k B e BB A - ) LLL.A.A;“A'-_“I-AA'J
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Then on macroreplication m we use the quasirandom point

°R](C]m + J-l),...,¢RN(CNm + j-1) on microreplication j for j=1,...,K .

Let 8., denote an estimate of a particular quantity o

Jm
computed on microreplication j on macroreplication m . Then

e],...,eQ , where

Z§=1 Bim m=1,...,Q , (33)

are i.i.d. random variables with sample mean-square error

2 1

_ - =2
Sk = g-T Z,?F] (em-eQ)

(34)

where

It is the behavior of si versus K that interests us. Note again that
the only reason for randomizing the seeds {vim 3 i=1,...,N} on each of
the Q macroreplications is to enable us to derive the estimates of
mean-square error,
To provide an instructive normalization we also run M statistically
A A

independent macroreplications each of K=1 microreplication. Let e],...,eM

denote the resulting estimates of & each with sample mean-square error

2 _ 1 oM ~ 2
"y =TT Ine1 (8 - By) (35)
where
~ M
=W zm=1 6m )

Then the quantity wﬁ / Ksi should increase as K increases if accelerated

convergence is occurring,

PRIy - I I PRI . Al e’ o & a_ .a A A& a2 o.a L— LEEPY TR S z ER.S = CRN N
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N
o
4
E.
i 7. Example
s To illustrate the proposed procedures we use the network of Fig. 1
A
§ for which we estimate {9, m=1,...,8} and {hm; m=1,...,8} . Monte
Carlo experiments were performed using quasirandom points and the
. .
cutset H -{ez, €3, €5, €¢ + €155 €g> €1p> e]z} with
Plan A
No series reduction on the remaining arcs
(811 €42 875 €gs €175 8130 Bpgs €}
and then with
Plan B
Series reduction on the remaining arcs
(&) * &g )+ eyg, eg * €y €3, €]
Motivation for this choice of plans arose from the observation that
plan A requires (29) to be evaluated once per microreplication whereas
plan B additionally requires evaluation of (29) and its derivative
iteratively (by the Newton-Raphson method) for each of the three
reductions e + e » &y + &6 and eg + en - While it is true
that plan B also requires three less quasirandom points per micro-
replication, the relative cost for an iterative computation needs
to be considered explicitly.
Expression (8) and (26) were used to estimate each g, and h_
respectively. For the baseline case of pure random sampling I and
; were estimated by

~ _ 1M
)

M = M Li=)

s(TF - 7 )
iTom

and

H =

h
m
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R PP LY S AR YO, T VU Uil Wi Wl T DU . WU WL G G G- O R S WP . G u PRy VY




00

]

a0

"2 L

.
prery

ol

et
Pararatd

e

R R R R g

] Ll WA N Al )

3

»

0
-

& KRN W

s

'''''''''''

............ Eiadt St Bedra 0 @ 4 A 0 en ot
................... T L P A, -

-14-
respectively, where
T*j = mln(T]j,...,TLj)
and
T, = T T 5)
j—max( ]j:o--o LJ .

Note that estimates of {ri} and {Si} could in principle also be
computed at small marginal cost.
Let wﬁ(p)/K and Si(p) denote the sample mean-square errors for

the estimators of p . Then Table 2 lists for selected K the averages

By (M) = & 22=][w§<nm)/xs§(hm>]

for the shortest path using sampling plans W=A and W=B

Insert Table 2 about here.

in columns 3 and 4, respectively, and the averages

8 (W) = 3 zz: ][wﬁ(gm)/xsﬁ(gmn

for the longest path in columns 5 and 6 respectively.

These results are most encouraging for they indicate substantive
increases in these ratios as the number of microreplications K increases.
Also, they show the relative desirability of using series reduction as
K increases. Note that computation time considerations limited the
number of macroreplications for K > 2]] .

When evaluating a proposed accuracy accelerating technique one also
needs to study its cost relative to the cost of crude Monte Carlo sampling.

One way to make this assessment is in terms of the CPU times required

per observation with each sampling plan. To simplify the discussion,

T U I T A S . N
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let us concentrate on the estimation of, say, 9 - Suppose that a

single observation using pure random sampling has mean-square error V .
Then over K] independent observations or microreplications the resulting

estimate of 9 has mean-square error VK =V/K] . Suppose that for K

observations of the quasirandom point apprlach the estimator of 9 has
mean-square error Q. . Let o denote the ratio of cost per
microreplication for plan W using quasirandom points over the cost

per microreplication using independent random sampling. If we begin

by taking K observations using plan A and K]=mAK observations using
independent random sampling, then each experiment takes exactly the

same amount of time. Moreover, the ratio of their mean-square errors is

Let 61 denote the value of the estimate on independent observation
i=l,...,M . To estimate V we use wﬁ so that wﬁ/K is the estimate of
mean-square error V/K for the case of pure random sampling for any K .
Also {si : K=Zj s 3=7,...,14} are the estimates of mean-square errors
‘QK} for plan A for the selected values of K .

To estimate the average ratios of mean-square errors for equal run

times (using K]=wwK) we use Bh(w)/mw and sg(w)/ww for sampling plans
W

A,B . For the case of pure random sampling one microreplication
required an average of 7.37 microseconds on an IBM 4341/M2 whereas
plan A required an average of 12.25 microseconds per microreplication.
Plan B required an average of 14.85 microseconds per microreplication.
Therefore, I/wA=7.37/]2.25=.60 when comparing random sampling to

plan A and 1/wB=7.37/14.85=.49 when comparing random sampling to
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plan B. Columns 7 through 10 show sh(A)/wA , sh(B)/wB , Bg(A)/“A
and eg(B)/mB , respectively for selected numbers of micro-
replications K .

These results are sobering for they show that the relative desirabiiity
of series reduction in the noncutset arcs does not set in until K=2'l
for {hm} and for {gm} . Let us now put this cost analysis
into perspective. Since wp and wg are essentially independent of K
and gene-ally wg > wp there is always a crossover point K* for each
network at which one prefers plan A to plan B whenever K < K* and
prefers plan B to plan A whenever K > K* . Since for an arbitrary network
one does not know K* , the choice between the two plans is not trivial.
Therefore, the advice to do series reduction whenever possible cannot be
accepted unqualifiedly unless the planned number of microreplications K

is substantially large.
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Figure 1. Battersby Network
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Table 1

Incidence Matrix for Battersby Network

a.

im
Path m
Arc i A 1 4 5 6 7 8
e 16 1
e, 16 1
ey 8
e, 6 1
eg 16 1
es 40 1
e, 24 1 1 1
eg 16 1 1
€y 16 1
€10 24 1
e 8 1 1
€7 4 1
13 36 1
e 12 1
e 8 1
€6 24 1 1 1
€4 8 1 1 1 1 1 1
e 24 1 1 1 1 1 1




N L
w :
b -
' 4
) g
L F
“« |
,_ 4
_ p
[ ]
ﬂ ¢
A k
p
3 06°€2 L pL CR 2'L2 8L°8Y 25" 92 b 0L AT Y v q
4 Ot"22 6L°6 6t 2 28722 LL*St LE°§1 86° 6V 02°LE £ 12 ¢ ]
X L1791 €0°0L LL12 Al 10°€€ 2L°91 AN 90°62 212 o .@
d 56°6 25°L £9°8 L£°8 1£°02 5721 19°£1 G6°€1 L2 2 _w
3 $6°G 56°9 22°s 05°9 2Lzt 85" 11 99°01 ¥8°01 = : “
g & L€'y 12'v oLy 16"t 08°8 20°¢L [£°8 61°8 6 2 ]
. ' 4
§ L0°€ pL b 6" 1 98°2 92°9 06°9 99°¢ 9"t ¥ /2 .4
" 62°2 99°2 ov-L €0°2 19" AR 58°2 6 "€ x: 2
. €L 19°1 € L v6°2 89°2 2Lz 89°2 7 L 0L L
9
, B b b b © 4
i Bo(9)’s  Yos(0)°s | Bosa)ly VYos(u)de (9)9 (V)9 (a)"9 (v)'s % b )
) suoLjest|dad suorjedst|daa - 4
- -0ud tw -o4o8uw "
3 40 "ON 40 °ON .._
% (1) (6) (8) (£) (9) (s) (1) (€) (2) (1) K

S3|NSdY |eIuswWLAICX] o

\ 2 91qel x




Auib il diiomd et Sl A= ALY A SR

-20-

References

Battersby, A. (1970). Network Analysis for Planning and Scheduling,
John Wiley and Sons, third edition.

Chung, K.L. (1949). "“An Estimate Concerning the Kolmogoroff Limit
Theorem," Trans. Amer. Math. Soc., 67, 36-40.

Elmaghraby, S.E. (1977). Activity Networks: Project Planning and
Control by Network Models, John Wiley and Sons.

Fishman, G.S. (1983). "Variance Reduction in the Simulation of Stochastic
Activity Networks," TR 83/2, Curriculum in Operations Research and
Systems Analysis, University of North Carolina at Chapel Hill.

Halton, J.H. (1960). "On the Efficiency of Certain Quasirandom Sequences
of Points in Evaluating Multi-dimensional Integrals," Numerische
Mathematik, 2, 84-90.

Kiefer, J. (1961). "On Large Deviations of the Empiric d.f. of Vector
Chance Variables and a Law of the Iterated Logarithm," Pacific J.
Math., 11, 649-660.

Niederreiter, H. (1978). "Quasi-Monte Carlo Methods and Pseudo-random
Numbers," Bull. Amer. Math. Soc., 84, 957-1041.

Sigal, C.C., A.A.B. Pritsker and J.J. Solberg (1979). "The Use of Cutsets
in Monte Carlo Analysis of Stochastic Networks," Mathematics and
Computers in Simulation, 21, 376-384.

Sullivan, R.S., J.C. Hayya and R. Schaul (1982). "Efficiency of the
Antithetic Variate Method for Simulating Stochastic Networks,"
Management Science, 28, 563-572.




T a— T gl oy T Ty ~

UNCLASSIFIED
SECUMNITY CLASSIFICATION OF THIS PAGE (When Nata Enterad)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
‘. REPORT NUMBER 2. GOVT ACCESSION NO.[ 3 RECIPIENT'S CATALOG N_MHBER
UNC/ORSA/TR-83/5
4 TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ESTIMATING CRITICAL PATH AND ARC PROBABILITIES /A/| TECHNICAL REPORT

STOCHASTIC ACTIVITY NETWORK

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(a)
GEORGE S. FISHMAN N00014-76-C-0302

. S 10. PROGRAM ELEMENT, PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRES D EMEN T P RO E

CURRIC. IN OPERATIONS RESEARCH & SYSTEMS ANALYSIS AR
SMITH BUILDING 128A
UNIV. OF NORTH CAROLINA  CHAPEL HILL, NC 27514

V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

ALY ES—PROSRAN AUGUST 1983

OFFICE OF NAVAL RESEARCH 3%, NUMBER OF PAGES

ARLINGTON, VA 22217

14. MONITORING AGENCY NAME & ADDRESS(/{ different from Coatrolling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

18a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thlia Report)

" DISTRIBUTION STATEMENT A
Approved tor public release)
Distribution Unlimited iy

DISTRIBUTION OF THIS bOCUMENT IS UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Longest path, Monte Carlo methods, Network analysis, Quasirandom points,
Shortest path

20. ABSTRACT (Continue on reverse aide if necessary and identity by bdlock number)

This paper describes a new procedure for estimating parameters of a
stochastic activity network of N arcs. The parameters include the probability
that path m is the Tongest path, the probability that path m s the

shortest path, the probability that arc i is on the longest path and the

DD . 55", 1473  e€oimion oF 1 nov 63 13 oBsOLETE
JAN 73 S/N 01021 F 01 es0n UNCLASSIFILD

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

PR R PSR \UIN dhtlon b dhn e .

B




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whea Date Entered)

probability that arc i is on the shortest path. The proposed procedure

uses quasirandom points together with information on a cutset H of the
N-JH|+]

network to produce an upper bound of 0((log K) /K) on the absolute
error of approximation where K denotes the number of replications. This 1s
a deterministic bound and is more favorable than the convergence rate of

]/K]/Z

that one. obtains for the standard error for K independent
replications using random sampling. It is also shown how series reduction can
improve the convergence rate by reducing the exponent on log K . The
technique is illustrated using a Monte Carlo sampling experiment for a rietwcrk
of 16 relevant arcs with a cutset of H=7 arcs. The illustration shows the
superior performance of using quasirandom points with a cutset (plan A) and the
even better performance of using quasirandom points with the cutset together
with series reduction (plan B) with regard to mean-square error. However, it

also shows that computation time considerations favor plan A when K is small

and plan B when K is large.

K
:
:
:

i Al
-

[

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

A - Svied

—

B

PP P P U YRS VDY Y SR et R PP . W 3




-

Fa. « @i

i, T ey T Ly SN X h

g

Ry T

o .. - J
L e E e rxr &

LTS e

Aa

S S UG




