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Abstract

This paper describes a new procedure for estimating parameters of

a stochastic activity network of N arcs. The parameters include the

probability that path m is the longest path, the probability that

path m is the shortest path, the probability that arc i is on the

longest path and the probability that arc i is on the shortest path. t --

The proposed procedure uses quasirandom points together with information

on a cutset H of the network to produce an upper bound of O((log K)N-IHI+l/K)

on the absolute error of approximation where K denotes the number of

replications. This is a deterministic bound and is more favorable than

the convergence rate of I/K1/2  that one obtains for the standard error

for K independent replications using random sampling. It is also shown

how series reduction can improve the convergence rate by reducing the

:exponent on log K . The technique is illustrated using a Monte Carlo

sampling experiment for a network of 16 relevant arcs with a cutset

of H=7 arcs. The illustration shows the superior performance of using

.:4 quasirandom points with a cutset (plan A) and the even better performance

of using quasirandom points with the cutset together with series reduction

(plan B) with regard to mean-square error. However, it also shows that

computation time considerations favor plan A when K is small and olan B

when K is large.
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Network analysis
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Shortest path

'.4 o .: :. .: ;.:'' , ':-: i' -. -:- - .i~ ' . :, , ( -'.'( , ., - :, ..



Introduction

Although comprehensive procedures have been developed for analyzing

an activity network with deterministic arc completion times (e.g.,

Elmaghraby 1977), no comparable set of comprehensive procedures exists

for a network in which the arc completion times are random. In particular,

a stochastic activity network is properly characterized by distributional

information. For example, on independent passes through such a network

from source to sink, the network completion times on each pass usually

differ, as do the paths identified as the critical paths. Here, the

distribution function (d.f.) of network completion time and the frequency

with which each path is the critical path provide useful characterizations

for describing network behavior.

Whereas conventional search algorithms have been the principal tools of

analysis for the deterministic case, Monte Carlo methods have been the

principal tool for the stochastic case. For example, see Elmaghraby (1977)

and Sullivan, Hayya and Schaul (1982). However, the performance of the

Monte Carlo method has not been exceptional until recently when Sigal,

Pritsker and Solberg (1979) showed how one could use information on a

cutset of a network to improve the accuracy of estimate for a given cost.

More recently, Fishman (1983) showed how the cutset information can be

used together with quasirandom points and series reduction to estimate

the d.fs. of network completion time and shortest path time with upper

bounds on the errors of estimate that converge more rapidly than

0(1/K 11 2 ) , the rate for the standard error in a Monte Carlo experiment

using random sampling on K independent replications.

The purpose of this paper is to extend this combined cutset/quasirandom

points/series reduction approach to the estimation of the probability that

path m is the longest path, the probability that path m is the shortest

.-. ..- -... -_',-'.-'. " . - -,,-/ -', " - 7. . '. _ - ' , . ". .. • . .. .• . .. .
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path, the probability that arc i is on the longest path and the

probability that arc i is on the shortest path. Section 1 introduces

the necessary notation. Section 2 describes the use of cutset information,

as proposed by Sigal, Pritsker and Solberg (1979), to estimate a parameter

by Monte Carlo methods with less variance than would obtain for the same

number of replications when using crude Monte Carlo techniques. Section 3

V then describes how one can use quasirandom points with the cutset information

on each replication to make the error of estimate converge more rapidly than

in the case of random sampling. Section 4 extends the analysis to the

remaining estimators of interest. Section 5 describes how series reduction

in the network can work to advantage by reducing the number of dimensions

sampled. Section 6 then describes an experimental design for evaluating

the benefits to be derived from using cutset information together with

quasirandom points and series reduction. Section 7 presents an example

which assesses the benefits of each sampling plan versus its relative

computation time.

1. Definitions

Consider an acyclic directed network with a single source, single sink,

N arcs and L paths. Let XI,.,X , the passage times for arcs l,...,N

be independent random variables where X. has distribution function (d.f.)I:. 1

F. on [0,a) and inverse distribution function Gi(u) = min[x: F.(x) > u

0 ! u < 1] The completion time of path m is

Tm Ta. X. = [i X. (1)

ilim Yi l dmh', m m

L
I °

i
- where a. m1 if arc i is on path m , a. m otherwise and I denotes

im im

the set of arcs on path m . Consider the network completion time

T = max(T1,... IT (2)
." "' L )
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and the shortest path time

T, = min(TI,... ,TL) (3)

Characterizations of the network include:

a. pr(T* t) 0 5 t
*<

b. ET

c. gm=Pr(m is the longest path) m=l,...,L

d. ri=Pr (arc i is on the longest path) i=l,...,N

e. pr(T, !5 t) 0 :5 t< co

f. E T,

g. hm=Pr(m is the shortest path) m=l,...,L

h. si=pr(arc i is on the shortest path) i=l,...,N

Fishman (1983) describes a highly efficient method of estimating a, b, e

and f based on cutset information, quasirandom points, and series

reduction. The present paper extends the method to the estimation of the

probabilities {gm ; m=l,...,L} , {h m; m=l,...,L} , {ri ; i=l,...,N1

and {si ; i=l,...,N}

2. Cutsets

Observe that

Sgm = pr[Tm > T ; n~m, n=l,...,L] m=l,...,L . (4)

Because of the shared arcs among paths, TI,...,TL are usually not

independent and therefore gm generally has no readily accessible analytical

form. However, one can make use of the cutset information as in Sigal,

Pritsker and Solberg (1979) to derive a useful expression for estimating M

Let H denote a cutset of the network. As used here, a cutset denotes

. a set of arcs that connects a set of nodes W containing the source with

2-- .2
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a set of nodes W containing the sink. Also assume that each path has

only one arc in H. If each arc in H points from W to W, H

is called a uniformly directed cutset (UDC). We assume that H is a UDC.

Let

Sm = T m- X.im1
m

and

Y sup S iH(5
=m=l,...,Lm E(5

where i m=I m nH denotes the arc on path m that is in the cutset.

Then X.i+Y.i is the maximal time of all paths that use arc i iEH and

pr(m is the longest pathISl, ... 9S L)

=0f- [nicH Fi(t-Y.)]dF. (t-S ) if YV. M=S 6

-o0 otherwi se.

Therefore,

A = iH Fi(Tm-Y.) if Tm=Y. +Xi. (7)
m iEHi m m m 1

= -0 otherwise

has expectation g M Let the subscript j denote replication j . Then

for K replications

A 1 K*-. rr FT

giK Kj ( m-Y l mj '"iEH FTmj- 13 8

where

6(x) =1 if X=0

-0 otherwise,
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is an unbiased estimator of gm" If the replications are statistically

independent, then var mK is proportional to I/K

In principle, (8) is the estimator of g that Sigal, Pritsker

and Solberg propose. They note that it should give smaller variance for

K independent replications than the more conventional estimator

S j= (Tj-Tmj)

where

Tj = max(Tj,...,T.Q)

However, both var 4mK and var gmK converge as 1/K . In this

paper we propose the use of quasirandom points to speed up the

convergence of the error of estimate. See Niederreiter (1978) for a

comprehensive review of the associated theory.

3. Quasirandom Points

Suppose one wants to estimate the multivariable integral

1K 1

= f l f(xlX... N dx- dxN  (9)
i

q 
,0 0

ydenoe the number oints uj:(Uj,...,UNj) j=I,...,K that fall in the

i!',region RC .N Then ul,...,uK are said to be uniformly distributed

in % if

Ki A R;K) 1

wefor all Rxl"..., XN): i x i ; i=l,...,N} . Here x(R) is the

k~~~.'.-."........-... -; ---- ,Y " "
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measure of volume of R in N We define the extreme discrepancy

of U=Ul,...,UK as

BK DK(N,u) supA(R;K) X(R) (10)K KR CQNn  K

for R={(xl,...,x): 0 < x. ! 5 i ; i=l,...,N} If f is of boundedN1 1

variation in the sense of Hardy and Krause, then

K- I< V(f,N)DK (1l)

where V(f,N) is a function of the bounded variation of f in N and

lower dimensions. Most importantly, uniform sequences exist for which

DK 5 O((log K)N/K) (12)

This is an impressive result, for in the special case in which

{Uij: i=l,...,N; j=l,...,K} is a sequence of i.i.d. random variables

uniformly distributed on [0,1) , one has only

lim sup/ lo K w.p. 1, (13)SK-*- log10 -o K

a result due to Chung (1949) for N=l and to Kiefer (1961) for N>l

*Halton (1960) describes a uniformly distributed sequence for which

(12) holds. If R _> 2 is an integer, then every non-negative integer n

has an expansion of the form

n = a R a.E{O,l ,.. ,R-l1[,'i:O al i " (14)

0 5 i _< m and m=LlogR nj

Corresponding to this expansion one has the radical inverse function

0R(n) = 7m.=O aiRil . (15)

Then Halton shows that the sequence RJ .... (); j--,l.... ,K-l}
1 N

where RI,... ,RN are pairwise relatively prime, gives the bound (12).

...
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We now specialize these results to the network analysis at hand.

Define for j=l,...,K

= Gi(ui ) i=l,...,N (16)Xij i i

T ml,... ,L (17)Tmj I Z=aim ij

Y = sup T . - X. idH (18)Yi3 m=l,..L mi 1 i

aim

Then it is not difficult to see that can write gm as a

(N-IHI+l)-dimensional integral over Hj.'l+l with integrand of bounded

variation and that (8), using (16), ( 'd (18), is an approximation

to this integral. As a result, one has tor a given network using the

Halton sequence the deterministic bound

JA 
(19)j~

gmK-gm I s 0((log K)NI+1K) ()

which makes clear the desirability of choosing as H the cutset of

maximal cardinality.

4. Estimating {ri} , {hm} and {si I

This section describes estimators analogous to (8) for

r. = pr (arc i is on the longest path) i=l,...,N (20)

h = pr (m is the shortest path) m=l,... ,L (21)

m

and

si = pr (arc i is on the shortest path) il,... N. (22)

Before doing so, we explain the motivation for studying {ri} and {s

If, say, r. turns out to be considerably greater than the remaining arc
1

probabilities on the longest path, then there is good reason to believe

that the completion time associated with arc i is a principal determinant



of the longest path time. This knowledge of the relative importance of

arc i may lead to a modification of the activity associated with this

arc for the purpose of shortening the longest path time. Analogous

considerations apply to {s0 . Since

r, = L aimgm

one has the estimator

A L A
riK = m-l aimgmK

+1
Moreover, it is easily seen that i- r.i < O(log K) /K) for

iK 1'

the Halton sequence.

The estimation of {hm } follows closely that for {g Letmi

Z. : inf S i- (25)

a. _'im

so that X1.+Z. gives the minimal tirmL of all paths that use arc i. H

Then

pr(m is the shortest path IS1,...,SL)

0 {7iEH [l-Fi(t-Zi)]}dF im(t-S in ) if Z. =S

m

0 otherwise.

Again, let the subscript j denote replication ,i Also let

Bmj iH [I-F i(T Z )] if - .=Z. .+X.mj iHj j 1 J
:-, m

=0 otherwi se



Then

A 1 K

mK :K lj=l mj mj Xim) Bmj (26)

is our estimator of h and again for the Halton sequence one has
m

hmK-hml 0((log K) N-lHI+/K)

For {s i=l,...,N} note that

= a h (27)si I mlaim m

so that our estimator has the form

A L A

SiK = Ym=l a imhmK (28)

.iwith error i W 0((log K)NIH +l/K) for the Halton sequence.

5. Series Reduction

As shown in Section 2, the rate of convergence of the error of

approximation (10) is bounded by a function O((log K) N/K) . Using the

cutset H enables one to bound this convergence more tightly by

*. 0((log K) N- H +/K) and, presumably, using the cutset H with maximal

cardinality is best. In fact, any preanalysis that leads to a smaller

exponent for log K is desirable from the viewpoint of a tighter error

bound. The technique of series reduction is one such approach to

further reduction.

Figure 1 shows an activity network due to Rattersby (1970) for the

partial overhaul of a unit in an oil refinery. Table 1 shows the correspondinq

incidence matrix. Note that arcs 17 and 18 are both on all eight Paths.

Insert Fig. 1 and Table 1 about here.

Therefore, we can ignore these arcs and reduce the number of relevant arcs

for analysis from 18 to N=16 arcs without any effect on our results.

,!---
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Observe that e2, e3, e5 , e6, e9 , e10 and e12 form a cutset H for the

netwoYK. Since N=16 arcs and IHI=7 the exponent for log K is

N-IHn+l=1O , Now note that arcs e1  and e4 occur only on paths I and

2 , e6 and e15 occur only on path 5 , e7 and e16 occur only on

paths 6, 7 and 8 and e8 and e11  occur only on paths 7 and 8

Suppose we now replace these arc pairs by single arcs e+e 4 , e6+e15

e7+e16 and e 8+e Then the network has N'=12 arcs and the cutset

H' with e2 , e3 , e5 , e6+e15 , e9 , e10  and e12 has cardinality 7

so that N'-IH'j+l=6 is the resulting exponent for log K in the bound
A

on lImK-gmI and hmK-hi Note that if one adopts this series

reduction it is not possible to estimate ri and si for those

original arcs in the reduction.

The feasibility of implementing this series reduction in practice

depends on whether or not the d.fs. of the summed arc times are convenient

for computation and on the relative computation costs with and without

series reduction. Suppose W1,... 9Wn are independent exponentially

distributed random variables with distinct rates l,..,n Then for

n>l VnW +...+W has the d.f.

nFl n= 1- ;~ yl )1 -it
F n  n j e (29)

For summed arcs in the cutset one need only replace their individual d.fs.

in (8) and (26) by the corresponding d.f. from (29). For summed arcs not in

the cutset one needs to solve the equation

v = FV (T') (30)
n



F .'r.-.-11-

r*.

for T' , v being the appropriate element of the Halton sequence. This

can be done readily by the Newton-Raphson method. A suggested starting

point for the iteration is

We evaluate this approach in our example where we study the relative

benefits of the cutset information, quasirandom points and series reduction.

As we show, the relative benefit of series reduction becomes more apparent

as the sample size K increases. In fact, for small K series reduction

may be less preferable.

6. Experimental Design

- This section describes the layout for an experiment designed to

determine the extent to which quasirandom points lead to accelerated

accuracy when estimating {gm} and {h m } for the network in Fig. 1.

In particular, we introduce a degree of randomness into the experiment

in order to compute estimates of the mean-square errors of our point

estimates. We then study the behavior of these sample mean-square errors

as K increases. Note that we choose this method of evaluating our proposed

method merely because it is necessary to find a common basis for comparing

results based on a deterministic method with baseline results using random

sampling.

Consider an experiment consisting of Q statistically independent

blocks or macroreplications each of K microreplications. Let fVim:

i=l,... ,N; m=l,...,Q} denote a sequence of i.i.d. random variables

from U[0,l) and define

Cim : (c: *Ri(C) : Vim) i=l,...,N m=l,...,Q (32)
'c R )
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Then on macroreplication m we use the quasirandom point

OR I(C m + j-I),...'R (CNm + j-1) on microreplication j for j=I,...,K
1 NLet e. denote an estimate of a particular quantity a

computed on microreplication j on macroreplication m . Then

_. ,... , . where

5m = A m=1,...,Q , (33)
m K ~j1 jm

are i.i.d. random variables with sample mean-square error

2 = & Q (34)

where

It is the behavior of s K versus K that interests us. Note again that

the only reason for randomizing the seeds {vim ; i=l ,... ,N} on each of

the Q macroreplications is to enable us to derive the estimates of

mean-square error.

To provide an instructive normalization we also run M statistically

independent macroreplications each of K=l microreplication. Let M

denote the resulting estimates of e each with sample mean-square error

2 1 M _ M2

w M = m- 1 ( M) (35)

where

l Ml

M =  Lm= m

Then the quantity wM / Ks2 should increase as K increases if accelerated

convergence is occurring.
,p

-p' , -: .":'. . .i . . ,-.:. -, , . _. . .. . . . .. . . .
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7. Example

To illustrate the proposed procedures we use the network of Fig. 1

for which we estimate {g; m=l,...,8} and {hm; m=l,...,8} Monte

Carlo experiments were performed using quasirandom points and the

cutset H'={e 2, e3, e5, e6 + el5, e9, elO, el2} with

Plan A

No series reduction on the remain 4 ng arcs

{e,, e4, e7, e8 , ell, e,3, el4, e16 }

and then with

Plan B

Series reduction on the remaining arcs

. {e1 + e4, e7 + e16, e8 + ell, e13, e,41

Motivation for this choice of plans arose from the observation that

plan A requires (29) to be evaluated once per microreplication whereas

plan B additionally requires evaluation of (29) and its derivative

iteratively (by the Newton-Raphson method) for each of the three

reductions e1 + e4 , e7 + e16  and e8 + ell . While it is true

that plan B also requires three less quasirandom points per micro-

replication, the relative cost for an iterative computation needs

to be considered explicitly.

Expression (8) and (26) were used to estimate each gm and h

respectively. For the baseline case of pure random sampling gm and hri

were estimated by

4mM = M ij=l (T -T .)

and

1 M

mM My j=l 6(T~j - Tmj)
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respectively, where

Tj = min(Tlj,...,TLj)

and

Tj = max(Tl,... ,TLJ)

-" Note that estimates of {r i  and {s i} could in principle also be

computed at small marginal cost.

Letw2(p)/K and s2(p) denote the sample mean-square errors for

the estimators of p . Then Table 2 lists for selected K the averages

1() 1 8 w [W(h )/Ks 2(h)
S= m= 1

for the shortest path using sampling plans W=A and W=B

Insert Table 2 about here.

in columns 3 and 4, respectively, and the averages

a8(W)- 1 1V [2g )'Ks2' (gg 8 Or [1 (g K m

for the longest path in columns 5 and 6 respectively.

These results are most encouraging for they indicate substantive

increases in these ratios as the number of microreplications K increases.

Also, they show the relative desirability of using series reduction as

K increases. Note that computation time considerations limited the

number of macroreplications for K > 211

When evaluating a proposed accuracy accelerating technique one also

needs to study its cost relative to the cost of crude Monte Carlo sampling.

One way to make this assessment is in terms of the CPU times required

per observation with each sampling plan. To simplify the discussion,

i . .-
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let us concentrate on the estimation of, say, gm Suppose that a

single observation using pure random sampling has mean-square error V

Then over K1  independent observations or microreplications the resulting

estimate of gm has mean-square error VK =V/K l  Suppose that for K

observations of the quasirandom point approach the estimator of gm has

mean-square error PK * Let wW denote the ratio of cost per

microreplication for plan W using quasirandom points over the cost

per microreplication using independent random sampling. If we begin

by taking K observations using plan A and KI=wAK observations usina

independent random sampling, then each experiment takes exactly the

same amount of time. Moreover, the ratio of their mean-square errors is

VK I V/KI =1. V/K

*K K WA RK

4 Let 8. denote the value of the estimate on independent observation
411

i=,...,M .To estimate V we use w2 so that w2/K is the estimate of

mean-square error V/K for the case of pure random sampling for any K

Also {s2 : K=2 j ; j=7,...,14} are the estimates of mean-square errors
4K

(. KI for plan A for the selected values of K

To estimate the average ratios of mean-square errors for equal run

times (using Kl=WWK) we use Bh(W)/WW and Bg(W)/Ww for sampling plans

W=A,B . For the case of pure random sampling one microreplication

required an average of 7.37 microseconds on an IBM 4341/M2 whereas

plan A required an average of 12.25 microseconds per microreplication.

Plan B required an average of 14.85 microseconds per microreplication.

Therefore, l/wA=7 .37/12 .25=.60 when comparing random sampling to

plan A and /wB=7.37/14.85=.49 when comparing random sampling to

, *1 % ° .. . .
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plan B. Columns 7 through 10 show ah(A)/wA , h(B )/ B , (A)/wA

and Bg(B)/w B , respectively for selected numbers of micro-

replications K .

These results are sobering for they show that the relative desirability

of series reduction in the noncutset arcs does not set in until K=211

for {h } and for {gm. Let us now put this cost analysis

into perspective. Since wA and B are essentially independent of K

and gene-illy B > wA , there is always a crossover point K* for each

network at which one prefers plan A to plan B whenever K < K* and

prefers plan B to plan A whenever K > K* . Since for an arbitrary network

one does not know K* , the choice between the two plans is not trivial.

Therefore, the advice to do series reduction whenever possible cannot be

accepted unqualifiedly unless the planned number of microreplications K

is substantially large.

.. ..... . . .. - --. .: - . . . . - _ .. .. . . . . . . . -
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Table 1

41 Incidence Matrix for Battersby Network
a.im

Path m

Arc i 1 2 3 4 5 6 7 8

e 16 1 1

e 16 1

V
4

4

"'.e 3  8 1

: e4  6 1 1

,5  16

.,4 e 40

16
.,e e7  241 1

e 8  161 1

.1 e9  16
.el 24

e10  2

e 41
el 12

e13  36

e. e14 121

e 15 8

e 24

8 81

e18  24 1 1; e~~18 2

4,

4 , - . .. ..
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