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Abstract:

This paper presents a new feature extraction method for classifying a

texture image into one of the n possible classes, . i=1 ,...,n. The extracted

features are invariant under rotation or gray scak, changes. Two types of

random field models namely, Circular Auto Regressive model, and

Simultaneous Auto Regressive model are used to extract these features. These

models are fitted to a given MxM digitized image and their parameters are

estimated. These estimated parameters and some functions of them constitute

the desired rotation invariant feature vector. The classification power of this

feature vector is demonstrated through experimental results obtained with

twelve different classes of natural textures including both macrotextures and

microtex tures.

.r
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1. Introduction

Analysis and classification of the texture of digitized images has been the

focus of interest for the last 20 years. Briefly stated, there are a finite number

of classes Ci, i 1,...,n. A number of so called training images belonging to each

class are available. Based on the information extracted from these sets a rule is

designed which classifies a given test image of unknown class to one of the n

classes. The key step in any classification problem is the choice of a set of

features which reduces the dimension of data to a computation ally reasonable

amount while preserving much of the classifying information present in the

actual data.

A number of approaches to the texture analysis and classification problem

have been developed over the years. Most of the popular statistical methods

presented in the literature use features which are not rotation invariant.

Moreover these features generally result in accuracy rates in the 80 + percent

range which is not very impressive. More details about these methods and

their classification power could be found in [14] and [17). The aim of this paper

is to develop an algorithm for extracting features from a texture and classifying

it when the orientation of the test or training sample is arbitrary, iLe. the

accuracy of classification is not affected by the rotation of the texture. To

achieve this, a new model called circular auto regressive (CAR) random field

model is developed whose parameters are rotation invariant. The CAR

parameters along with two more features representing fineness and

directionality in the texture make up our rotation invariant feature set. The

other two features are obtained from simultaneous auto regressive (SAM)

random field models discussed in [151. Experimental results with different

natural textures indicates that a strong classification power is associated with
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our rotation invariant feature set.

2. Circular Auto Regressive (CAR) Random Field Model

Let {y(s),s=(s 1 ,s2)Efl} be the set of intensity values of a given MxM

digitized discrete image, fl={(s,s02 ), 0 < s,s 2 _ M-1}. These intensities are

only available on rectangular grids, meaning that s, and s2 could only have

integer values. The intensity value of any other point y(ij) where (ij) does not

correspond to a grid corner, is not given and may be interpolated.

We assume that {y(s),sEfl} is a realization of an underlying circular auto

regressive random field model,

y(s) = E y(sDr) + V/'(s), sEfl (1)
rEN,".

r (rl,r 2).

A finite lattice toroidal structure is assumed for the image, therefore a implies

addition modulo M. The circular neighbor set NI, consists of 8 symmetrical

pixels, all of which are located on a circle in the image plane centered at s with

a radius of one. NI, is illustrated in Fig. 1. w(s) in (1) is a sequence of i.i.d.

random numbers with zero mean and unit variance. a and f are the

parameters of the model. Note that (1) represents a model for a purely

circularly symmetric (isotropic) texture.

Four of the pixels of NI, correspond to grid corners and therefore their

intensity values are available. These four are pixels directly to the left, right,

above and below the pixel under study. The other four diagonal and off-

diagonal pixels do not fall on the grid points and their intensities should be

interpolated. Let t = (t1,t2 ) be one such pixel. Take s(i), i=1,2,3,4 as the

. . - . . . . . . . . . . . . . . . .
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Figure 1: Circular neighbor setN.
.X = original grid points

0 = Interpolated pixels
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coordinates of the four nearest grid points surrounding t. {y(s(i)), i=1,2,3,4} is

an obvious candidate from which y(t) could be interpolated. y(t) is assumed to

be a linear combination of {y(s(i)), i=1,2,3,4} weighted by normalized inversed

Euclidean distances between t and s(').

:.-d i  I /Ilt-s(')Il i-1,2,3,4

y(t) I di  diY(s(i)) (2)

The justification for using the above interpolation scheme is as follows. It

.. is a well known fact that each pixel of a rotated image is formed by

contribution of its four nearest neighbors in the original image. We claim that

the interpolation rule of (2) is a reasonable form of such a contribution for

textures. The validity of this claim is verified by generating a 30 0 rotated

wood grain texture from an unrotated original image by using interpolation

scheme of (2). The original and the interpolated rotated textures are shown in

Fig. 2. Their visual closeness implies the validity of the proposed interpolation

rule.

The interpolated pixels of NI, could be expanded in terms of their four

neighbor grid points. Then model of Eqn. (1) could be rewritten as,

y(s) = a gry(sEr) + v'rf(s), sEOl (3)
rENS,

where N2. is a set containing (0,0) plus its 8 surronding grid corners, N2, = {(-

1,-i), (-1,0), (-1,1), (0,-i), (0,0), (0,1), (1,-i), (1,0), (1,1)). The g, coefficients are

presented in Table 1.

* °°...,
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Table I Coefficients of NZ, set.

neighbor r g

(-11-i) .4005

(-1,0) 1.4336

(1, 1) .4005

(0,-i) 1.4336

(0,0) .13636

(0,1) 1.4336

(14-) .4005

(1,0) 1.4336

(1, 1) .4005



3. Parameter Estimation Algorithm

There are two popular estimation methods namely, least squares (L.S.)

and maximum likelihood (M.L.) techniques. L.S. method is used to estimate

the parameters of a CAR model fitted to a general natural texture. The use of

M.L. estimate is ruled out because of the following reason. A general natural

texture is normally nonisotropic and does not obey the ideal circular symmetry

property assumed for the CAR model. It can be basically divided into two

parts.

Y Y1 + Y2 (4)

where y represents the natural texture, Yi is the part of it which is rotation

invariant (circularly symmetric), and Y2 is the rotation variant (not circularly

symmetric) part. When a CAR model is fitted to such a texture, it tends to

only model Yi, the rotation invariant part. y2 would then be part of the

residuals of the model. Therefore, these residuals would be highly correlated

and i.i.d. assumption is no longer valid for them. This assertion will be

confirmed through an experiment in the next section. From this point on, the

correlated sequence v(s) will be used in place of i.i.d. w(s) to represent the

residuals for a natural texture. Then the CAR model will change to,

y(s) -a E gr y(sOr) + V'v(s). (5)
rENsa

Since v(s) represents the rotation variant part, its correlation structure and

other second order properties is of no interest to us. Our main interest lies in

the rotation invariant information supplied through a and #3 parameters

respectively. The use of the M.L. estimate is ruled out due to unavailability of

such second order statistics of the image. It is also impossilble to talk about

l .
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theoretical asymptotic properties of ( &fij ) such as their consistency or

efficiency. Recall that CAR model was introduced for classification purposes. It

was not intended to use it in any other application such as synthesis or

restoration of images. Therefore if ( &j,/ 3j ) work well in empirical

classification experiments, then there is no need to go after finding the complex

correlation structure and probability density of v(s). Two slightly different L.S.

estimates are presented here.

3-1. First L.S. Estimates

Let &I and 1- be the first L.S. estimates of a and/i.

Let f(s) = gry(sDr). (6)
? rEN:k

Note that (0,0) is included in N2, set. By substituting (6) into (5), the model

is written as,

y(s) = af(s) + /Vv(s), sefl. (7)

Then L.S. estimate of a will be

• =mina E y(s) - f(s) ]2  (8)

Minimizing (8) with respect to a results in,

.l= y()f(s)/ f2(s) (2)
sEf) sE.

1

= 2 [y(s)- f(s) 12. (10)
sEQ

To calculate & and / we need to find f(s) for each of the M2 pixels of the

image. This process could be easily described by thinking of neighbor set N2,



as a mask and g, values as the corresponding weighting factors of the

components of this mask. When placed on pixel (s), this mask would only

cover 8 surrounding grid points of (s) out of the whole image plus pixel (s)

itself. The intensity values of the nine pixels picked by the mask are

multiplied by corresponding g, values and the results are added up to obtain

f(s). By doing so, & and 13 could be recursively computed. We simply move

the mask pixel by pixel through the whole image and update Ey(s)f(s) and

-f2 (s) values for each pixel. Therefore, this estimation algorithm is rather fast

and cheap from the memor., space point of view.

3-2. Second L.S. Estimates

Another L.S. estimate for a and / could be reached by rearranging the

model in the following form. Take a subset of N2 , as N3c by excluding (0,0)

element. Let &2 and 12 denote the second L.S. estimates. Take,

h(s) = gr y(s(er), N&- N2 - (0,0) (11)
rEN,

By substituting (11) in (5) and using g(0,0)=.6636, the model could be written as

Y(s) ( 2 / 1 - .6636 2 )h(s) + ( V/2/ 1 - .6636 )v(s), sEf (12)

Take,

x 2 /1 - .6636 af 2  (13)

= V/'62 / 1 -. 6636 0 2  (14)

Then,
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y(s) = x h(s) + vy v(s) (15)

Take x and as L.S. estimates of x and y.

Sminx E [y(s) - x h(s) 12 (16)

i - y(s) h(s) / h2(s). (17)
sEn sE

S [y(s)- i h(s) 2 . (18)
M" En

After finding i and ', they are substituted in (13) and (14) to get &2 and P2.

&2 ( 1 + .6636x) (10)

:-m.' 2 : '(1 .. 36 s )2 ):
~2-Y~l~B&2)(20)

Calculation of &2 and #2 is equally as easy and cheap. The only difference with

the previous case is that the mask does not cover pixel (s) itself and only picks

up its 8 surronding neighbors.

4. Structure of Residuals

Once & and 5 are available, one can concentrate on the structure of v(s)

by studying the residuals. The residuals v(s) are found by,

v(s) = - y(s) - of(s)] sEf0 (21)

Substituting ( &j , # , i=1 or 2, for ( , 43) in (21) gives us an estimate of v(s)

sequence. This procedure was performed for a 64x64 sample of coffee beans

texture. The residuals were then calculated and displayed as an image. The

gray level values for both of the residual images and the original image is
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Fig. 3: above: Original coffee beans texture

left residuals with &,=.1396, fi1 .0773

right residuls with &2=.1384, /3=.0774

A-

*.. . .. . . . . .
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Fig. 4 Theresholded binary images of Fig. 3
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between 0 to 127. These images are shown in Fig. 3.

Some properties about v(s) sequence could be inferred by studying the

residuals and comparing them with the original image. The first point to

notice is the visual closeness of the two residual images with the original coffee

beans texture. This proves our earlier assertion that v(s) sequence is highly

correlated and i.i.d. assumption is not valid for it.

Another point to note about the residuals is that although they resemble

the original image, they carry edge information which is not present in the

original image. To show this property, the gray levels of images of Fig. 4 were

theresholded to yield a binary image. The thereshold values were set by trial

and error for the best possible result. The theresholded binary images are

* shown in Fig. 4. The binary residuals clearly carry edge information while the

binary original image does not.

5. Rotation Invaiant Features

In any classification problem a set of features need to be extracted from

the image in order to reduce the dimension of data to a computationally

reasonable size. Since an orientation invariant scheme is desired, the extracted

features should also be orientation insensitive. One such feature set is the

parameter vector of a CAR model fitted to a textured image. We claim that

this vector, (&, obtained by either methods, is rotation invariant and show

the validity of our claim through an experimental study. It should be

reminded that 6 is a measure of nonisotropy or roughness of texture.

Other features could also be extracted from another class of random field

models known as Simultaneous Auto Regressive (SAR) models. The details of

this class of models and the iterative method for the Maximum Likelihood
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estimation of their parameters could be found in [15 and [4]. Briefly stated, a

SAR model has the following form,

y(s) = O ey(s(r) + V'"w(s), sE0 (22)
rEN

where the neighbor set N is an appropriate subset of integer pairs with (0,0)

excluded. N obeys the same labelling convention used before.

M.L. estimate of p is denoted by p*. p* of a simultaneous auto regressive

model fitted to an image is a relative measure of fineness of the texture of that

image regardless of the neighbor set N used. Fineness is a property that does

not change under rotation. Therefore, p* of a SAR model with a symmetric

neighbor set N, = {(1,0), (-1,0), (0,1), (0,-i)) could be a useful rotation

invariant feature.

Another extractable feature from SAR models is a measure of

directionality in the texture. M.L. estimates, e, of SAR models show the

amount of dependency of an image pixel to one of its neighboring pixels (r).

The extent of variation of such a dependency in orthogonal directions is one

such measure. Orthogonal directions in the image plane consists of two

directional pairs, namely (horizontal, vertical), and (diagonal, off-diagonal).

These pairs could be represented by neighbor sets N1 and N2 where, N, =

(1,0), (-1,0), (0,1), (0,-I)), and N2 = ((I,), (-I,-I), (1,-i), (-1,1). A SAR

model with neighbor set N, is fitted to the texture and the M.L. estimates of

its parameters, ( , ) is calculated. Then a different SAR model with

neighbor set N2 is used to find (0(ji),9(,_) ). A function of these four

parameters f, where f Max(I 0(,,0)-8(O,), I (,l)-(l,_.)j) corresponds to

extent of variation in orthogonal directions could also be extracted as a

rotation invariant feature. The rotation independency of p* and f are

. . . .. ** . - -
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investigated in the next section. More discussions about these four proposed

features and their class separability power is provided in the experimental

study section.

6. Experimental Study

Let {y"(s), sEfl} be the set of grid point intensities of a MxM digitized

image. It is a well known fact that the first order statistics of {y"(s)} can be

directly affected by changes in illumination or quantizing schemes. To

overcome such effects all the images are subj ected to a gray scale normalization

procedure described in [12]. This algorithm flattens the images histograms and

guarantees that all the samples have identical first-order gray level statistics.

Let {y'(s), sEfl} be the histogram flattened version of (y"(s)}. The images are

* also normalized to have zero empirical mean and unit empirical variance. If

{y(s), sEfl} denote the normalized image then,

:-*. y(s) " ( y'(s)-a) / o, (23)

where, a -... L y (s), (24)

":V2 _ 1 ('s)-i (25):"
~~~(M2-1) E "

Note that a and a2 will be the same for all the samples. Throughout the

experimental study we always use the normalized zero mean unit variance

version of an input textured image.

Twelve different textures, (a) Calf leather (D24), (b) wool (D19), (c) beach

sand (D29), (d) pig skin (D92), (e) plastic bubbles (DI12), (f) herringbone weave

(D17), (g) raffia (D84), (h) wood grain (D68), (i) grass (Dg), (j) straw (DIS), (k)

,%° .
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Fig 5: 0 ,64x64 windows of textures.

From above left to right

cifl leather, wool, sand, pig skin. pk$ sic bu lblls , herinlgbole weiv,

raffia, wood, grass, straw, brick wall, bark of tree.
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brick wall (D95), (1) bark of tree (D12) were chosen from the photo album by

Brodatz [21. Seven rotated 512 x512 digitized images with relative angles of

rotation of 00 30 0, 60 g0 , 1200 1500, and 2000 are taken from each

class of texture. The gray scale value range is between 0 and 255. Each

512x512 image was first reduced to a 1 28 x 128 by averaging every 4x4 window

into a single pixel. Each 128x 128 image is then segmented into 4 64x64

images. 2 of them are used for training and the remaining 2 for testing.

Therefore 14 training and 14 test samples from each class of textures are ;

available. One of the 64x 6 4 digitized window of 0 0rotated version of each

texture is shown in Fig.5

To get the featui es the CAR model is fitted to each of the training images

and its parameter vector (&,j ) is estimated by one of the discussed methods.

Two different SAR models with neighbor sets N, and N2 are also used to

extract p* and respectively from all the training images.

6-1. Properties of the Features

Before proceeding with classification experiments, we should confirm the

validity of the rotation invariancy of the suggested feature vector. To do so

the sample means and standard deviations of differently oriented samples of

each texture is calculated. Tables 2 and 3 summarize the results for raffia

texture. There are 4 unidirectional samples per rotation per texture. The

sample means and standard deviations of all the four features for each of the

respective rotations are presented. The numbers in Table 2 show that &I

values for different orientations are very close to each other. The smallness of

their standard deviations is an indication that very little variation exists among

the 4 &1 values of each rotation. The same argument holds for /i1 values



although the standard deviations are generally bigger than those of &I.

Therefore both &I and /ij could be taken as good rotation invariant features.

The p* and values are not as tightly close as &I and f?1 although they are

close enough to be taken as rotation invariant.

Table 3 exhibits the results for &2 and fi.The P' and c values are the

same ones as Table 2. The same arguments could be repeated here. Again

&2 and I02 values are tightly closed and rotation invarint. Notice that &2 are

generally smaller than &I and I 2 is very close to I~*The values for other

eleven textures which are not presented here due to space considerations also

support the validity of our ascertation.

The overall sample means and standard deviations of all the 14 training

features for each texture are also tabulated in Tables 4 and 5. Note that these

numbers include the overall effect of all the seven rotations. Studying the

values of Table 3 reveals that &I values for differemt classes are very close

together except for herringbone weave and raffia textures. It should also be

mentioned that the standard deviation of &I is very small for all the classes.

This suggests that these values do not change much and although they are

close, but they contain some class separability property. On the other hand #I

values show more class separability property and are not so close to each other.

Note that f is large for herringbone weave which is highly circularly non-

symmetric and and is small for plastic bubbles which is not. The standard

deviations of them are also small. The fineness feature p* is high for busy

textures such as calf leather, grass, sand ,and weave. The standard deviation

of p* are generally higher than #Ig. This property can be seen very clearly for

wood and straw textures. Since both p' and j measure the roughness of

texture to some degree, then they may carry similar information. Their values
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Tablet2: Sample means and standard deviations of features

of raffia texture.

(4 unidirectional 64x64 samples per angle)

Features

Rotation Angle Mean STD Mean STD Mean STD Mean STD

0 .1750 .0050 .3465 .0106 .3599 .0086 0965 .0144

300 .1717 .0039 .3804 .0038 .4920 .0070 .0521 .0313
0 .1701 .0045 .3705 .0098 .4461 .0125 .0963 .0192

g0" .1737 .0057 .3388 .0206 .3517 .0203 .1040 .0102

1200 .1693 .0027 .3753 .0145 .4801 .0223 .0586 .0277
15o 0  .1701 .0070 .3723 .0154 .4508 .0215 .1001 .0089

2000 1.1709 .0073 1.3601 .0106 1.4276 .0140 1.0634 .0313
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Table 3: Sample means and standard deviations of

features of raffia texture.

(4 unidirectional 64x64 samples per angle)

Features

&2 A2

Rotation Angle Mean STD Mean STD Mean STD Mean STD

0 .1628 .0041 .3496 .0100 .3599 .0086 .0065 .0144

7300 .1581 .0033 .3843 .0039 .4920 .0070 .0521 .0313

BOO .1573 .0037 .3741 .0100 .4461 .0125 .0063 .0102

0 .1620 .0044 .3417 .0212 .3517 .0203 .1040 .0102

1200 .1564 .0025 .3789 .0149 .4801 .0223 .0586 .0277

1500 .1572 .0058 .3759 .0159 .4508 .0215 .1001 .0080

2000 .1586 .0060 .3634 .0110 .4276 .0140 .0634 .0313
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Table 4 Sample means and standard deviations of training features utilized

in classification.

(14 differently oriented 64x64 samples per class)

Features

ek 1

TEXTURE Mean STD Mean STD Mean STD Mean STD

Calf Leather .1553 .0049 .5595 .0420 .6401 .0705 .2000 .0256

Wool .1447 .0023 .2149 .0124 .2444 .0175 .0521 .0143

Sand .1563 .0023 .4078 .0166 .4903 .0266 .0586 .0201

Pig skin .1553 .0016 .3211 .0145 .3818 .0196 .0626 .0223

Pl. Bubbles .1445 .0016 .2009 .0104 .2312 .0170 .0453 .0162

Herringbone .1763 .0099 .6951 .0311 .8342 .0290 .0251 .0097

Raffia .1718 .0055 .3656 .0208 .4328 .0566 .0802 .0297

Wood .1474 .0054 .3530 .0395 .2030 .1190 .4984 .0263

Grass .1475 .0034 .4710 .0179 .5710 .0226 .0753 .0135

Straw .1407 .0057 .3675 .0696 .3171 .1740 .3743 .0771

Brick .1451 .0027 .2258 .0308 .2349 .0589 .2511 .0539

Tree .1454 .0008 .2236 .0200 .252 1 .0287 .0908 .02 17
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Table 5 Sample means and standard deviations of training features utilized

in classification.

(14 differently oriented 64x64 samples per class)

Features

&22 P

TEXTURE Mean STD Mean STD Mean STD Mean STD

Calf Leather .1325 .0071 .5690 .0437 .6401 .0705 .2000 .0256

Wool .1405 .0019 .2156 .0125 .2444 .0175 .0521 .0143

Sand .1438 .0014 .4114 .0171 .4903 .0266 .0586 .0201

Pig skin .1469 .0016 .3232 .0147 .3818 .0196 .0626 .0223

P1. Bubbles .1406 .0013 .2053 .0129 .2312 .0170 .0453 .0162

Herringbone .1228 .0111 .7230 .0335 .8342 .0290 .0251 .0097

Raffia .1590 .0048 .3691 .0213 .4328 .0566 .0802 .0297

Wood .1386 .0054 .3553 .0401 .2030 .1190 .4984 .0263

Grass .1332 .0023 .4760 .0185 .5710 .0226 .0753 .0135

Straw .1319 .0045 .3700 .0700 .3171 .1740 .3743 .0771

Brick .1406 .0022 .2266 .0311 .2349 .0589 .2511 .0539

Tree .1409 .0008 .2243 .0202 .2521 .0287 .0908 .0217

. . . . .
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have the same trend for all the textume. When I is high so is p* and vice

versa. This suggests that only one of them may be useful as a feature for

classification. Since f is a better and more consistent rotation invariant value

with smaller standard deviations, then it would be preferred over 9*. The

extent of variations in orthogonal directions, , is only high for wood grain, calf

leather, straw, and brick and is tightly close for the other textures. Again

some class separability power could be detected in this feature making it useful

in recognition of the texture.

The same arguments also hold for (&2,2P) values given in Table 5.

Notice that &2 values are generally smaller than their &I counterparts. Since

both (6 1,01~) and (&2,#32) basically follow the same trend, it will be logical to

expect that they be equally uqeful as classifying features. A set of classification

experiments were performed in order to evaluate these features and the

disscussed observations about them.

6-2. Classification Experiments

As the first experiment, classification of the test samples using(&,ip)

as the feature vector is tried. The classifier used in this study is a distance

classifier which basically measures a weighted distance of the feature set oi the

test sample to the mean of the training samples of each class. The test sample

is then classified to the class which exhibits the lowest distance. Details of this

classifier is presented in [16]. The classification result is tabulated in Table 6 in

the form of a confusion matrix. To the left of the matrix, the textures are

listed. Each row shows how a specific set of samples was classified. The

diagonal numbers show how many out of 14 test samples for each class were

correctly classified, for example all 14 test samples of leather were classified
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correctly while only 9 wool samples were recognized as wool. 3 of them were

incorrectly classified as plastic bubbles and 2 as bark of tree. A total

classification rate of g2% is achieved. Classification rates for individual classes

are listed to the right of each row. 8 of the classes are classified with 100

percent accuracy. The classification results of the other 4 classes are 93, 79, 64,

and 64 percent. This result shows that there is a strong classification power in

The same experiment performed in the previous case was repeated with(

422P,) Table 7 is the result of classification experiment with the same 12

textures. A classification rate of g2% is achieved. The results are the same as

the previous case. This the previous observation that both L.S. estimates of

CAR parameters ,although different, basically carry the same classification

power. In order to investigate the classification power of smaller number of

features, two more experiments were performed. In the first experiment(

&21 2 ) were used as the features and the other two features were dropped.

The result is presented in Table 8. An overall classification rate of 69% is an

indication of some classification power but apparently not enough. In the

second experiment( & 2 , 2 were utilized. Table 9 shows the outcome of

the experiment. 91% accuracy rate is an indication that the dropped feature

set p* carries little classification power and we could do almost as good without

using it, although its utilization will increase the accuracy rate by one percent.

This supports our other suggestion that both #i2 and p* carry the same

information. In the third experiment (p*, is used and the CAR parameters

are dropped. Table 10 shows the result. Again a 79% classification rate is an

indication of a not very powerful feature set.
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. S. B. T. ace.%

Calf Leather 14 100

Wool 9 3 2 64

Beach Sand 14 100

Pig Skin 14 100

- .. Plastic Bubbles 2 11 1 79

Herringbone 14 100

Raffia 1 13 93

Wood Grain 14 100

Grass 14 100

Straw 1 4 9 64

Brick 14 100

Tree 14 100

Table 6: Classification result using (&I , f, , ) as feature.

Total error: 14 in 168 test samples.

Classification rate: 92%.

• -'.? - - - .-'-" - '. .. ." -"." . - .. . ."

'-'. ,,.... . -. -,' ." ., .,... .... .. ., .•. .. ,
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. S. B. T. ace.%

Calf Leather 14 100

Wool 9 3 2 64

Beach Sand 14 100

*Pig Skin 14 100

Plastic Bubbles 2 11 1 79

Herringbone 14 100

Raffia 1 13 93

Wood Grain 14 100

Grass 14 100

Straw 14 9 64

Brick 14 100

Tree 14 100

Table 7 Classification result using (&2, 02 p , )as feature.

Total error: 14 in 168 test samples.

Classification rate: 92%.



27 -

Assigned Class Class.

L. W. S. P. B. H. R. W. G. S. B. T. ace.

Calf Leather 13 1 03

Wool 2 3 33 14

Beach Sand 12 2 86

Pig Skin 14 100

Plastic Bubbles 1 12 1 86 -

Herringbone 14 100

Raffia 1 13 93

Wood Grain 3 B 1 4 43

Grass 14 100

Straw 3 3 8 57

Brick 1 5 6 2 43

Tree 1 4 7 2 14

Table 8 Classification result Using (62, P2) as feature.

Total error: 52 in 168 test samples.

Classification, rate: 69%.
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. S. B. T. ace.%

Calf Leather 14 100

Wool 8 4 2 57

Beach Sand 14 100

Pig Skin 14 100

Plastic Bubbles 3 101 1 71 9

Herringbone 14 100

Raffia 1 13 93

Wood Grain 14 100

Grass 14 100

Straw 14 9 64

Brick 14 100

Tree 14 100

Table g Classification result using (&2, 02') as feature.

L Total error: 16 in 168 test samples.

Classification rate: 91%.
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. S. B. T. acc.%

Calf Leather 14 1 100

Wool 6 4 4 43

Beach Sand 11 2 1 79

Pig Skin 13 1 93

Plastic Bubbles 5 8 1 57

Herringbone 14 100

Raffia 4 4 6 43

Wood Grain 14 100

Grass 14 100

Straw 1 4 7 2 50

Brick 3 11 79

Tree 14 100

Table 10 Classification result using (p* , ) as feature.

Total error: 36 in 168 test samples.

Classification rate: 79%. "
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6-3. Experiments with Less Condensed Textures

In order to show the robustness of the proposed feature set, another set of

experiments were performed with some of the previous textures viewed from a

closer distance. This was achieved by reducing each 512x512 image to a

256x256 instead of a 128x128 by averaging each 2x2 window into one pixel.

The 256x256 image was then segmented into 16 64x64 windows, 8 of which

used for training and the remaining 8 for testing. Since 7 rotated images exists

for each class of textures, then 56 training and 56 test samples are available for

each class. One of the 64x64 digitized window of 0 rotated version of each

texture is shown in Fig. 6. Comparison of these textures with those presented

in Fig. 5 can convey the scale difference property. Three classes of textures

namely, brick wall, straw, and bark of tree were dropped from the database.

The reason was since each 64x64 window contains more dispersed texture, then

we tend to lose the basic texture in these classes. For example the micotexture

inside each brick will be more dominant in a 64x64 window than the structure

of the brick wall itself.

The classification results with (&I , !,) and ( &2 f2 , # ) are presented

in Tables 11 and 12. Note that p* is not used because the experiments showed

that it will not improve the results. Classification accuracies of 96% and 97%

indicates that the proposed method works for this database as well and its

performance is not limited to one particular set.

* . *<,**. '.



Fig 6: 0 64x64 windows of less condensed textures.

From above left to right

call leather, wool, sand, pig skin, plastic bubbles, heringbone weave,

raffia, wood, grass. -
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. ace. %

Calf Leather 55 9 8

Wool 53 2 1 05

Beach Sand 53 2 1 05

Pig Skin 6 50 g0

Plastic Bubbles 1 2 53 95

Herringbone 56 100

Raffia 2 54 03

Wood Grain 56 100

Grass 56 100

Table 12 Classification result using (61 # f1 , as feature.

Total error: 18 in 504 test samples.

Classification rate: 96%.
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Assigned Class Class.

L. W. S. P. B. H. R. W. G. ace.%

Calf Leather 55 1 98

Wool 54 1 1 96

Beach Sand 53 2 1 95

Pig Skin 4 52 93

Plastic Bubbles 3 53 95

Herringbone 56 100

Raffia 2 54 03

Wood Grain 56 100

Grass 56 100

Table 1: Classification result using (&2, #2, ') as feature.

Total error: 15 in 504 test samples.

Classification rate: 97%.
• ,%° .-

'4.:
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7. DIscussion of the Results

The experimental results showed that the two different L.S. estimates of

CAR parameters, (&1,An)and (&,,2), basically carry the same classification

power and neither one really can be preferred over the other. Furthermore the

experiments confirmed that fli and p* contain similar information about the

degree of roughness of the texture and only one of them could be useful for

classification. Aj was preferred over p" since it is a more consistent rotation

invarint feature with smaller standard deviation values. In fact dropping p"

from the feature set resulted in only one percent or less decline in overall

classification rate. f and " features exhibit a more pronounced class

separibility property than &j. Experiments with reduced number of features

suggested that although their combined effect is very powerful, each of them

individually is not very powerful. 92 percent accuracy rate obtained with 12

different classes of natural textures is an indication of the power and

appropriateness of the feature set.

Experiments with a different resolution database showed the generality

and robustness of the method. A 97 percent accuracy rate obtained with 9

higher resolution classes of textures is a very good result.

The method was implemented on a PDP-11/45 computer. Feature

extraction from each 64x64 digitized texture takes around two minutes. Its

classification only takes a fraction of seconds. Therefore the method is fast and

as mentioned before requires very little memory space.

It should be noted that although the experiments were carried out using

seven rotation angles, the method is generally orientation independent and

works for any arbitrary oriented train and test samples of texture.

N ,,



. ...

35

8. Summary and Conclusions

An algorithm for extracting a couple of rotation invariant features based

on a new class of random field models, called circular auto regressive (CAR)

models, was developed. The estimated parameters of this model when fitted to

a texture are taken as the desired features.

A different class of random field models known as simultaneous auto

regressive (SAR) models was utilized in order to obtain two more rotation

invariant features. One being a measure of the fineness of the texture, and the

other a measure of the extent of variations of the texture in orthogonal

directions.

The classification power of these features was investigated in classification

experiments involving twelve and nine different natural textures with samples

having different orientation. It was concluded that the combined effect of these

features carries a strong classification power for a database consisting of both

microtextures and macrotextures. Considering that this study was done in

spatial domain and only four features were used, a 92% and 97% classification

rate for arbitrary placed texture is a rather promising and encouraging result.

--. °,.
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