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ABSTRACT 

The problem we address is that of choosing a deployment 

and firing doctrine for defending separated point targets 

of (potentially) different values against an attack by an 

unknown number of sequentially arriving missiles.  We minimize 

the total number of defenders subject to an upper bound on the 

maximum expected value damage per attacking weapon.  We show 

that the Greedy Algorithm produces an optimal integral solu- 
tion to this problem. 

V 



1.   INTRODUCTION 

In the late 1950s and early 1960s, R.C. Prim and W.T. Read 

[5] at the Bell Telephone Laboratories and the Office of the 

Secretary of Defense developed a method to deploy and fire inter- 

ceptor missiles defending a collection of separated point targets 

against an attack by an unknown number of sequentially arriving 

ballistic missiles.  Basically, the scheme involved deploying 

and firing the interceptors in a manner that equalizes the prob- 

abilities that each of a prescribed number of attacking weapons 

destroys the target.  These deployments (and associated firing 

doctrines) have become known as "Prim-Read" deployments. 

In January 1964 a major study of limiting damage by civil 

defense and antiballistic missile defense was completed [1]. 

This study, performed under the direction of Glenn A. Kent, was 

highly influential in shaping United States policy with respect 

to strategic defense (see, for instance, [3] for background 

discussion).  The study used Prim-Read deployments and firing 

doctrines for interceptors. 

Optimality properties of the Prim-Read concept were estab- 

lished by Karr in [4].  Some background discussion of the 

development of the methodology is also contained in that docu- 

ment.  The work to date has been limited to continuous (i.e., 

not necessarily integral) firing doctrines. 

In the present paper, we focus on a particular class of 

deployment problems whose continuous solutions are shown in 

[4] to be of the Prim-Read variety, and develop a method that 

will produce globally optimal solutions of integer versions 



of these problems.  This class will thus be distinguished by 

two features:  (a) the number of defending interceptors allo- 

cated to each attacking missile is required to be an integer, 

and (b) these problems have non-integer versions for which 

(non-integer) Prim-Read deployments are known to be solutions. 

The underlying "physics" of the model, as described in the 

next section, is that of [1,4] and [2, p. 92].  The optimization 

problem that we study is taken from [4], with the sole modifi- 

cation that we add integer restrictions on the defense.  The 

authors do not wish to imply that the assumptions here are the 

only "correct" ones; numerous alternative models can reasonably 

be addressed. 

The problem that we initially address has the general form 

of minimizing the total number of Interceptors required to 

defend T targets against an attack of k missiles, where neither 

k nor upper or lower bounds on k are known to the defender in 

advance, subject to a given upper bound on the maximum target 

value destroyed per attacking weapon.  In the next section, we 

will introduce the specific problem assumptions and notation 

used to define the problem. 

In Section 3, we note the existence of a solution, and 

show that the multi-target problem reduces to a collection of 

single-target problems.  Section 4 presents some properties 

of solutions to the single target problem. 

Section 5 contains the main result of this paper, namely 

that the "Greedy Algorithm" solves the single-target case. 

Combined with the reduction result of Section 3, this completely 

solves the specific "Prim-Read" problem that we are addressing. 

Section 6 treats the special case of perfect interceptors, 

whose solution is very easily obtained and is shown also to be 

a limiting case of the solutions produced by the algorithm of 

Section 5.  Section 7 presents two detailed examples. 



2.   ASSUMPTIONS AND NOTATION 

The general problem we address has the form of minimizing 

the total number of interceptors required to ensure that the 

maximum possible damage under any attack is bounded by a linear 

function of the attack size.  The purpose of this section is to 

introduce specific assumptions and notation so that the problem 

becomes well-defined. 

(1) We assume that the defender must set his strategy 

first, and in ignorance of both the attacker's resources to be 

expended (i.e., total number of attacking weapons) and inten- 

tions concerning allocation of missiles among targets (i.e., the 

attacker's strategy).  We allow the attacker knowledge of the 

specific defense strategy adopted by the defender. 

(2) We assume that there are T targets, and that each 

target 1 has a value v(l) > 0.  The v(i) need not be Integers. 

(3) We assume that defending interceptors must be assigned 

to specific targets, i.e., they cannot be used in an "area 

defense" mode.  We also assume that the targets are separated 

to the extent that an interceptor assigned to defend a speci- 

fic target cannot be used to defend a different target.  More- 

over, an attacking missile directed at a specific target has 

no effect on the survival or destruction of a different 

target. 

(4) We assume that attacking weapons arrive sequentially 

(i.e., so that they can be labeled "first", "second", ...) with 

sufficient time between arrivals that the fate of any particu- 

lar attacking missile is independent of that of every other 

attacking missile.  The defender does not know either the 

attack size or any (nontrlvial) upper or lower bounds on it. 

The number of interceptors committed to a given attacking 

missile must be chosen with no knowledge concerning how many 

missiles will follow at the same target.  In effect the 



defender is thereby forced to assign Interceptors in advance to 

potentially arriving missiles at each target. 

(5) We assume that neither side can change his strategy 

during the attack.  Thus we are considering only non-adaptive 

strategies for both sides. 

Based on the above assumptions, we define a defense 

strategy d to be a semi-infinite matrix 

d(l,l)  d(l,2) 

d =   d(i,l)  d(i,2) 

d(T,l)  d(T,2) 

where d(i,j) = number of interceptors assigned at target i, t( 

be directed at the j   incoming attacking weapon (if there is 

one) at that target.  We will also use the notation d(i) to 
th 

denote the i   row of d.  Throughout this paper, the d(i,j)'s 

are restricted to be nonnegatlve integers.  In practice, all 

but a finite number of the dCi,j)'s will be zero. 

In a similar fashion, an attack strategy Is a vector 

a(l) 

a = a(i) 

a(T) 



where a(i) denotes the number of attacking weapons to be 

directed at target i; the a(l)'s are also restricted to be 

nonnegative integers. 

We remind the reader that the defender must choose d 

first, and the attacker Is then free to choose a, based on 

knowledge of d.  Note that we are giving the attacker knowledge 

of each d(l,j). I.e., he not only knows the number of inter- 

ceptors stationed at target 1, but he also knows the schedule 

by which these Interceptors will be fired. 

(6) Let q f    [0,1) denote the probability that an inter- 

ceptor engaging an attacking missile falls to destroy that 

missile.  We assume that different Interceptors deployed 

against a given attacking missile are Independent, and that the 

same q Is valid for every Interceptor and attacking missile 

engagement no matter how many Interceptors attack each missile. 

(7) We assume that an attacking missile that penetrates 

the defense will destroy Its Intended target with probability 

one. 

For a given deployment d and a given attack strategy a, 

the probability that target 1 Is destroyed Is 

a(l)    ,.. . . 
1 -  n  (l-q'^^^'J^) ; 

with the convention that ^l   (') =1, this Is zero If a(l) = 0. 

Therefore •*• 

T 
V(d,a) = I     v(l) 

1 = 1 

a(l) 
1 -  n  (1-q^^ ''^■^1 . 

It Is this quantity that an attacker might seek to maximize for 

a given d, subject to an upper bound on the number of missiles 

to be expended. 



If the number of attacker's missiles to be expended were 

' known to the defender in advance to be, say, k, a reasonable 

problem to address might be 

T   "= 
minimize   J   J d(i,j) 
d(l,j)   i=l j=l 

subject to  V(d,a) _f_ u, 

■ . for all a such that 

I     a(i) < k , 
1=1 . -  -  _ 

where u is some prescribed upper limit on the expected target 

value damage.  However, in the current context, k is not known 

in advance.  The alternative that we address assumes instead a 

bound on the maximum expected damage incurred per attacking 

weapon.  This alternative is in the same spirit, but makes sense 

when k is not known in advance. 

3.   THE MULTI-TARGET PROBLEM AND SOME OF ITS PROPERTIES 

In Sections 3-5 we assume that 0 ■< q < 1.  The case q = 0, 
in which a single interceptor is certain to destroy an attack- 

ing missile, ls_ of physical interest and is treated in Section 

6 using arguments different from those in Sections 3-5.  As will 

emerge, the case q=0 is much easier to handle because non- 

integral numbers of interceptors would never arise in optimal 

solutions even if they were not forbidden, yet still this case 

can be regarded as a limiting verion of the case q>0. 

Let a real number s > 0 be given.  This number will serve 

as an upper bound on the maximum expected damage incurred per 

attacking weapon.  Some schemes for selecting reasonable values 

of s are given in [3]; we note just one here. 

If V is the sum of all of the target values, then V is 

a given upper bound on the total expected damage Incurred, and 

if the total number of attacker's weapons equals K, then 



s=V/K Is the corresponding upper bound on the maximum expected 

damage Incurred per attacking weapon Is the attacker commits 

his entire Inventory.  The problems presented below ensure that 

this average Is not exceeded even If the attacker holds back 

some missiles or builds new ones. 

The problem we address herein has the form 

T      CO 

minimize  22      ^d(l,j) 
d(l,j)   1=1 j=l 

P(s) 

subject to  V(d,a) £ s Z! a(l), for all a, 
1 = 1 

where, we recall, each d(l,j) and each a(l) Is further 

restricted to be a non-negative Integer. 

We note that problem P(s) has the equivalent formulatl on 

minimize J2     2^  d(l,j 
d(i,j)   1=1 j=l 

T 

subject to  max ] V(d,a) : J2  a(l)<_k ( £ sk 
'        1 = 1      ) 

for k = 1,2,3, 

and we will address this form in several of the proofs. 

Theorem 1 (Existence of a Solution):  Problem PCs) has a solu- 

tion for each value of s. 

Proof:  First note that the number of potentially - effective 
T 

constraints is finite.  Por^ if we set k = Z v(l)/s 
1 = 1 

we 

On those occasions where it is necessary to round non-integer quantities, 
we use the notation 

ILxJJ = max(1:1 Is Integer, 1 < x} 

iTx)] = mln{l:i is Integer, 1 > x}. 



note that the constraints for k, k + 1, . 

T 
since V(d,a) is bounded above by X] v(i) 

i=l 

are irrelevant 

Let 

X, 

f,(d) = max-ivCdja) : E a(l)<kl 
^      1=1     ' 

denote the k  constraining function, so that the k  constraint 

has the form 

fj^(d) < sk. 

Now define the function 

gj^(d) = V  I (1- n (l-q^^i^J))) 
1=1   J=l 

Where v = max{v(i):1=1,...,T}.  Since f (d) < g (d), it suffl -ces 
to establish feasibility for the constraints gj^(d) < sk 

(k=l,...,k-l).  Prom here, it is easy to show the existence 

of feasible solutions of the form 

d(i,j) = 

D  for j = 1,..., k-1, i = 1,..., T 

0  for j = k,...; i = 1,..., T , 

where D is chosen large enough that q^ <_ (l-(l - s^) 1/^) 
Tv 

for k=l,..., k=l, so that P(,s) is feasible.  This, together with 

the constraints that d(i,j) take on integer values, and the form 

of the objective function, guarantees that P(s) has a solution. D 

The next theorem establishes the result that the problem 

P(s) can be solved by solving a collection of single-target 

8 



defense problems, one for each target. This reduction permits 

us to focus attention In Sections 4 and 5 on the single-target 

problem P(r) to be stated momentarily. 

For convenience of notation, we define 

V^(d(l),k) = v(l) (l- ,n (1-qd^i'J))^ , 

where d(l) = (d(1,1),d(1,2),...) as ab ove.  Then 

V(d,a) = I    V.(d(l),a(l)) . 
1=1  ^ 

The proof of the following theorem depends on the fact that the 

expected damage Is the sum of the expected damage at each target, 

and this Is bounded above by the function sk, which Is linear 

In k. 

Theorem 2 (Reduction of the Multi-target Problem):  For each 

1 e {1,,..,T}, let d*(l) solve the problem 

P^(s): 

minimize   ^ d(l,j) 
J=l 

subject to  V.(d(l),k) ^ sk (k=l,2,...) 

Then d* = (d*(1),d*(2),...,d*(T)) solves P(s). 

Proof:  First note that d« Is feasible for problem P(s), since 

V (d*(l),a(I)) ±  sad) 

for any a(l), so that 

max |v(d*,a): I   a(l) < k £ sk 



for each k=l, 2, ... . ' ... 

Now suppose that d* Is not optimal for P(s); then by 

Theorem 1 there exists a feasible deployment d which satisfies 

II     d(l,j) < I        I     d*(l,j) , 
■  1=1 j=l 1=1 j=l 

so that, at some target I, we have 

.1  d(l,j) < I     d*(l,j) 
J=l J=l 

By definition. 

V (d(l),k) = I     V,(d(l),0) + V^(d(I),k), 
1 = 1  ^ ^ 
1?^I 

= v(d,k)    ' ■ 

where k Is the I   unit vector times k.  Since 

V(d,k) < maxjv(d,a): I     a(l) < k! < sk , 

we see that d(I) Is feasible to problem P-p(s), but entails a 

smaller total deployment than d*(I), contradicting the assumed 

optlmallty of the latter for P-r.(s). \\ 

Since we are now able to focus attention on the single- 

target problem. It Is convenient to simplify the notation.  To 

that end, we will now employ the symbol d to denote a vector 

whose ,1   component d(,i) denotes the number of Interceptors 

assigned to attacking weapon j.  Also, we Introduce the symbol 

r In place of s/v(l) and suppress reference to target 1.  Note 

10 



that the values of interest of r lie between zero and one (the 

value of a single target Is normalized to equal one). 

The reader should note that this change of notation 

(previously d was a matrixj and d(l) was a vector) will remain 

in place throughout the rest of the paper, except in Section 

6 and Example 2 of Section 7, where a multi-target problem is 

solved. 

The single-target problem thus becomes 
oo 

minimize Z- d(j) 

P(r): "^""^ 

subject to V(d,k) <   rk   (k=l,2,...) , 

k 

where V(d,k) = (l -  11  (l_q^*^J^ 

4.   THE SINGLE-TARGET CASE--MONOTONICITY AND ADMISSIB ILITY 

Defi nition:  Let d denote any deployment vector (d(l),d(2),...). 

We say that d is monotone if 

d(l) > d(2) ^ ...  . 

Under an attack by missiles arriving sequentially in time, 

a monotone deployment defends more heavily against the earlier 

attacking weapons, an action which seems reasonable. 

During the proof of Theorem 3 and for the remainder of the 

paper we suppress dependence on r and write "Problem P(r)" as 

simply "Problem P". 

Theorem 3:  For every r there exists a monotone optimal solution 

of problem P. 

11 



Prop f:  Let d* denote an optimal solution of problem P.  Then 

V(d*,k) = 1 -  n d-q'^*^'^"^) < rk,  k=l,2,...  . 

If d*(j) < d*(J+l) for some J, define the vector d from d* by 

Interchanging the components d*(J) and d*(J+l).  Both d and 

d* have the same component sum, and we note that 

V(d,k) = V(d»,k) for k 7^ J 

while 

V(d,J) < V(d*,J) 

so that d Is also feasible to problem P.  Sln3e It is easily 

seen that one can repeatedly Interchange adjacent components 

of d* that Increase, until one obtains a monotone solution of 

P, the theorem Is proven. Q 

Note that the above Interchange strictly decreased the 

value of V(d*,j), while keeping the other quantities V(d*,k) 

unchanged, i.e., with the same total number of Interceptors, 

the defender can limit his expected damage under an attack by 

k / y missiles to the same amount, and decrease this damage if 

attacked by J missiles.  This is obviously a desirable property 

from the defender's point of view, and motivates us to make the 

following definition. 

Defi ni tion :  A deployment d that solves problem P is admissible 

if there is no other deployment d such that 

(a) d also solves problem P 

(b) V(d,k) <_ V(d,k) for all k 

and    V(d,k) < V(d,k) for some k . 

12 



The proof of the previous theorem establishes that admis- 

sible deployments are monotone Cor else they could be "monoton- 

Ized", yielding deployments d having at least one strictly 

better value V(d,k)).  The next theorem establishes that 

optimal monotone deployments are, in fact, admissible. 

Theorem 4:  An optimal deployment d* of problem- P is monotone 

if and only if It is admissible. 

Prop f:  Let d* be an optimal monotone deployment, and assume 

that it is not admissible.  Thus there must be another optimal 

deployment d that also solves P, and for which 

V(,d,k) £ V(d*,k) 

for all k, with strict inequality holding for some k.  We can 

assume that d is also monotone (perhaps "monotonlzed" by the 

procedure established above). 

Since V(d,l) £ V(d*,l), it follows that d(l) >_  d*(l). 

Let k-, denote the smallest value of k such that d(k-,) > d*( 

We note, then, that 

VCd,k^) < VCd*,k^). 

CO 

Because both d and d* are optimal, we know that Zl dCk) = 
CO k=l 

z2    d*(k).  Now let k„ denote the smallest value of k > k-, such 
k=l ^ -1 

that 

^2.      ^2 
I   d(k) = I   d*(k) 

k=l     k=l 

We claim that V(d,k2) >V(d*,k2), ^^^^^ violates the assumption 

that d* was not admissible.  It suffices to show that 

13 



k=l k=l 

and this is a direct result of the following Lemma, if we set 

t = k2 - k^ + 1, a^ = d(i+k^-l), and b^ = d*(i+k^-l).      0 

Lemma:  Let a = (a.) and b = (b.) be a pair of positive 

monotonically nonincreasing vectors of size t such that 

s     s ■■ r 
(a) I] a  > Zlb.       for s = 1,2,..., t-1 ; 

i=l ^   i=l ^ 

t      t    ^_ 
(b) E a. = E (1-q ^) . 

i=l    i=l 

Then for qe(0,l), 

t     a.     t    b. 
n (l-q ^) <  n (l-q ^) . 

i=l ±»1 

Proof:  See Appendix A. ■ " ■ 

There may be more than one optimal admissible solution, as 

the following example exhibits. 

Example:  With r = 1/3 and q = 0.6, the deployments d« = 

(3,2) and 3 = (4,1) are both optimal, admissible solutions. 

We have ■,    . 

V(d*,l) = ,2160 V(d,l) = .1296 

^       V(d*,2) = .4982 V(d,2) = .6518 

V(d»,3) = 1.000 V(d,3) = 1.000 , 

14 



so that the solution (3,2) yields a higher expected damage if 

there is but a single attacker, but a lower expected damage if 

there are two attackers.  The average expected damage per 

attacker values are 

Ii^l^=  0.21 60 

1^^=  0.2491 

n^=  0.3333 

^^^^ = 0.1296 

^^%^ = 0.3259 

^^%^= 0.3333 , 

which are all, as required, bounded above by r = 1/3- 

5.   SOLUTION OF THE SINGLE-TARGET PROBLEM 

In this section, we present a proof that the "Greedy 

Algorithm" solves the single-target problem.  The method begins 

by computing the minimum number of defending interceptors 

necessary to ensure that the expected value of the damage from 

one attacker is at most r.  The iteration step assumes that 

k-1 attacking weapons have been assigned interceptors, and 

the minimum number of interceptors to be assigned to attacking 

weapon k is then computed, subject to the usual bound. 

The Algorithm: 

Let H'Cl) = in  V 
£n q and, given d(l),..., d(k-l), let 

d(k) = 

1- 1-rk 
n  ,    k-1     -r/ . s 

^^^   n (l-q^^^^ 
i=l  
in  q 

15 



for 2 < k < 1/r.  For k ^ 1/r, let d(k) = 0.  (Note that the 

general form for k ^ 2 is actually valid for k = 1, with the 
0 

convention that 11 (•) = 1.) 
1 = 1 

Theorem 5:  The above recursion yields an optimal solution of 

d of Problem P. 

Prop f:  The first component d(l) solves 

minimize d(l) 

subject to 1 - (l-q^*--^^) < r 

th and the k   component d(k) solves the problem 

minimize d(k) 

subject to 

1 "(!v'"'''"') (lV<'')) dV''') < rk 

for 2 <_ k < 1/r, as is easily verified.  i 

Let n = lil/r^J .  Clearly, if d(l), ..., d(n) is any sequence 

feasible for the first n constraints, then d(l), ..., d(n),0,0, 

...is feasible for all constraints, as the (n+1)^^, (n+2)^^, 

... are redundant. 
i 

Let i      ■     ■ 

C={xeR^:x^O, V(x,k) < rk;  k=l. ,n} 

(the members of C are not restricted to have integer components) 

and let L denote the lattice of points with integer coordinates 
n + 

in (R ) .  We note that 

d t C n L , 

16 



and we must show that d e COL implies that 

n        n 
I   d(l) > I   d(i) 

1=1      1=1 

,1 We define, for each i  =   1,   ..., n, a deployment d by 

setting 

d^l) = 

d(l) If 1 7^ £ 

d{l)   -   1     If 1 = £ 

None of these deployments can be feasible, because 6.(1) was 

the smallest d(il) to satisfy constraint £, given d(l), ..., 

d(£-l). 

Let 

K = {d: I     d(l) = I     d(l) - 1} 
1=1       1=1 

so that we need to show that cn(KnL) = 0.  The points d 

are those elements In KO L that are "nearest" to d.  In what 

follows, we will show that other points In KHL (which are 

farther away from d) would have more difficulty In being 
0 

feasible than any of the d 's, so that all of KHL lies outside 

of C. 

,1 
Any element d In KHL can be obtained from an element In 

.n {d ,...,d } by a sequence of transformations that simultaneously 

Increase a component of d  by 1, and decrease another component 

of d^ by 1. 

Now fix some I,   and let 1-, and Ip be distinct integers 

between 1 and n.  Define 
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d^(l^) +1        1=1^ 

d(l) = i d^(l2) - 1        ^ = ^2 

d (1)   _ 1 i-   i^, i^ , 

so that d is in KPiL.  We want to show that d / C; for other- 

wise, d would be a better feasible solution than d. 

The first component of d that differs from d must offer 

an increase in that component because of the way d was con- 

structed.  But we can assume that d differs from d in components 
~   i o 

i-j^j %,   and i^ (if i-]_ = I,   then d = d '^j which is known to lie 

outside of C).  Thus, we can assume that 

i-, < min{ip,£} 

We claim that 

V(d,m) > V(d^,m) , (1) 

where m = max {i^,^}.  Since we know that V(d ,m) > rm, it 

will follow that d / C.       ■  ■ 

Rewriting (1), we see that it is equivalent to 

dV-,)+l     d^i„)-l        d^i.)     d^(i„) 
(1-q       )(l-q    '^        ) < (1-q    ^   )(l-q    ^ ) j' 

which further is equivalent to 

q   '^   (1-q) < q^ '"^'(q-^-1) , 
d^d-,) d^(i^) 



q 11. 

which is certainly true if d^Ci-,) - d^Clp) + 1^0, i.e., if 

d(l^) + 1 > d(i2) (2) 

(d  is the same as d, except in component i).     Now, while the 

d produced by the Greedy Algorithm may not be monotone, at 

least we see by construction that we always have d(i) + 1 > 

d(i+l), so that (2) is satisfied. 

The procedure extends inductively to any element in K HL 

and the theorem is proved. [j 

Before proceeding to the next section, we point out 

that Burr has derived a different algorithm based on an 

equivalent formulation of the problem.  It is included in 

Appendix B of this paper, and has a similar "greedy" nature, 

but (unlike this method) always produces monotone deployments. 

6.   THE CASE q = 0 

For this section we revert to the multiple-target formula- 

tion and notation of Sections 2 and 3.  When q = 0, interceptors 

are perfectly effective and the defender ensures destruction of 

an attacking missile by committing just one interceptor against 

it.  Hence we may and do restrict attention to deployments 

d = (d(l,j)) for which d(i,j) is either zero or one for each 1 

and j.  Furthermore, it is evident that no optimal solution d* 

to the basic problem P(s) can have (for some i) d*(i,j) = 0 but 

d*(i,j') = 1 for some j < J" (since the deployment obtained by 

changing d*(i,j') to zero has the same payoff function but 

strictly fewer interceptors).  Thus we consider only deployments 

d of the form 
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d(i,j) = 

1, j=l,...,5(l) 

0, j>5(i) 

where the 5(i) are nonnegatlve integers.  (If 6(1) = 0, then 

d(i,j) = 0 for all j.)  The deployment d is completely speci- 

fied by the 6(1), so we take the 5(1) as the choice variables 

of the problem, which now becomes 

P'(s) 

T 
minimize   ^ 6(1) - 

6(1)    1=1 

T 
subject to V(d,a) < s I  a(l), for all a 

1=1 

The Interpretation of 6(1) is the number of attacki m 
missiles against which target 1 is defended and, because q = 0, 

s t to which it is invulnerable.  Against the (6(l)+l)   attacking 

missile it is completely defenseless and would be destroyed.  It 

follows that the payoff function V assumes the simplified form 

V(d,a) = E v(i)l(a(i)>6(i)) , 
1 = 1 

where for an event A, 1(A) is the indicator function of A.  (If 

A occurs, then 1(A) = 1 and otherwise 1(A) = 0.) 

Problem P'(s) is virtually trivial to solve. 

Theorem 6:  The unique solution to Problem P'(s) is given by 

« 
(i)= ^4^-1^ . i = l     T 

Prop f:  If the constraints of P^(s) are satisfied, then in 

particular 
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v(l) < s(5(l)+l) (3) 

for every i.  Conversely, If (3) holds for every 1, then for 

each attack allocation a 

T 

V(d,a) < E s(6(l)+l)l(a(l)>6(i)+l) 
1=1 

T 

<_ s Z- a( i) . 
1=1 

Thus Problem P'(s) reduces to the problem 

T 

minimize 2^  5(1) 
6(1)    1=1, 

subject to  v(l) <_ s(6(i)+l) ,    1 = 1,...,T , 

and of course, subject also to the constraint that each 6(1) 

be a nonnegatlve integer.  The unique optimal solution to this 

latter problem is as given above. (j 

The optimal deployment 6* is monotone at each target, 

which Is consistent with results in Section 4.  Also, taking 

limits as q ->-0 in the algorithm of Section 5 yields the deploy- 

ment 

d(k) = lim 
q-^0 

1, 

log(rk) 
log q 

if k<v/s 

if k>v/s 

which is the same deployment as 6 from Theorem 6. 

7.   EXAMPLES 

In this section, we present two examples in order to 

Illustrate the method and to compare the results with those 
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obtained by ignoring the integer restrictions.  The first exam- 

ple addresses a single target case and is solved for a wide 

range of r values, while the second example addresses a nation- 

wide case for one value of the parameter s, and the target 

values set to be the populations of U.S. cities. 

Solution of a Single-Target Case 

The defender wishes to defend a single target against an 

attack of unknown size.  He decides that he will surrender the 

target if 8 warheads are directed against it, but wishes to 

structure a defense against attack sizes of 0,1,...,7.  The 

defender decides to set his defense so that the maximum proba- 

bility of target destruction (as a function of the attack size) 

is bounded above by a linear function of the attack size k. 

Thus he decides to set an upper bound of min {k/8,l} on the 

probability of target destruction. 

In this example, the defender's interceptors have a kill 

probability of (1-q) = 0.4. 

According to the algorithm, we compute 

d(l) = 

d(2) = 

In  0.125 
£n 0 .6 = 5 

iln(l 
1   - 

1-Co 

2/8\ 

£n  0.6 
= 4 

d(3) 

d(4) 

d(5) 

d(6) 

d(7) 

3 

4 

3 

2 

2, 
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and d(8) = d(9) = ... =0.  With this deployment, the defender 

will assign five interceptors to the first attacking missilej 

four to the second, and so on. 

Note that this deployment Is not monotone.  An equivalent 

monotone solution is d = (5,^,4,3,3,2,2,0,...).  Both d and d 

use 23 Interceptors. 

The attacker's optimal probability of target destruction 

as a function of the attack size is listed in Table 1, for both 

d and d, and plotted in Figure 1.  Note that d yields a better 

defense against an attack of size three than does d. 

We go on to compute the optimal defense for all values of 

r in the range [1/10, 1).  Table 2 contains the results.  In 

[4], Karr derives the optimal total 

-5,n((|)! 

In  q 

when 1/r is an integer and the integer restrictions on the 

components of d are dropped. These totals are included In 

Table 3.  Figure 2 displays information from Tables 2 and 3. 

Solution of a Nationwide Case 

In this example, we take cities in the U.S. as targets, 

with their populations in thousands as values.  Population data 

are from the I980 Census as reported in the I983 U.S. Almanac. 

The value of s is 200 (the defense is to be set so that no 

single attacking weapon can kill more than 200,000 people) and 

q = 0.5.  Table 4 presents the continuous solution computed 

from the method of [4], the continuous solution rounded up for 

each attacking weapon at each target, and the integer solution 

from applying the algorithm of Section 4.  The required inter- 

ceptor stockpiles are 349, 446 and 4l4, respectively, as shown 

in Table 4. 
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Table 1 PROBABILITY OF TARGET DESTRUCTION 

k V(^.k) v(a,k) 
1 0.07776 0.07776 

2 0.19728 0.19728 

3 0.37057 0.30121 

4 0.45223 0.45223 

5 0.57055 0.57055 

6 0.72515 0.72515 

7 0.82410 0.82410 

8 1 .0 1 .0 

9 1 .0 1 .0 

4- •- i 
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Table 2 SOLUTION OF THE SINGLE TARGET CASE 

r Range d via the Greedy Algorithm 
Optimal 

Sum 

[     1/10 0.1004) 

[0.1004 0.1019) 

[0.1019 0.1046) 

[0.1046 0.1087) 

[0.1087 1/9  ) 

[     1/9 0.1130) 

[0.1130 0.1141) 

[0.1141 0.1209) 

[0.1209 1/8  ) 

[     1/8 0.1267) 

[0.1267 0.1287) 

[0.1287 0.1296) 

[0.1295 0.1338) 

[0.1338 0.1353) 

[0.1353 0.1404) 

[0.1404 1/7   ) 

[     1/7 0.1458) 

[0.1468 0.1550) 

[0.1550 0.1588) 

[0.1588 0.1644) 

[0.1644 1/6  ) 

[     1/6 0.1726) 

[0.1726 0.1878) 

[0.1878 1/5  ) 

[     1/5 0.2063) 

[0.2063 0.2160) 

[0.2160 0.2491) 

[0.2491 1/4  ) 

[     1/4 0.2664) 

[0.2664 1/3  ) 

[    1/3 , 0.3432) 

[0.3432 0.3600) 

[0.3600 0.3720) 

[0.3720 1/2  ) 

[    1/2 ,  0,6000) 

[0.6000 1     ) 

5 

4 

4 

4 

4 

4 

4 

4 

4 

3 

3 

3 

4 

4 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

1 

4 

4 

4 

4 

4 

4 

3 

3 

3 

4 

3 

3 

3 

3 

3 

3 

3 

3 

2 

3 

2 

2 

2 

2 

2 

1 

1 

1 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

■16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 
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Table 4.     SOLUTION OF A NATIONWIDE CASE 

X 

Target 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

Prim- Read Integer 
Value Stockpile Rounded Stockpile 

7071 134.92 153 139 
3005 40.37 49 43 
2997 40.20 45 42 
1688 16.85 21 1   19 
1594 15.22 17 16 
1203 9.54 14 12 

904 5.93 8 8 
876 5.60 8 7 
787 4.48 5 5 
785 4.47 5 5 
765 4.30 5 5 
763 4.28 5 5 
701 3.72 5 5 
679 3.50 5 5 
646 3.15 5 5 
638 3.06 5 4 
637 3.04 5 4 
636 3.03 5 4 
574 2.42 3 3 
565 2.37 3 3 
563 2.35 3 3 
557 2.31 3 3 
541 2.21 3 3 
494 1.86 3 3 
491 1.84 3 3 
456 1.55 3 3 
453 1.52 3 3 
448 1.47 3 3 
425 1.26 3 3 
425 1.26 3 3 
424 1.25 3 3 
403 1.03 3 3 
385 0.94 
385 0.94 
371 0.89 
366 0.87 
361 0.85 
361 0.85 
358 0.84 
355 0.83 
347 0.79 
345 0.79 
339 0.75 
332 0.73 
331 0.73 
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Table 4. SOLUTION OF A NATIONWIDE CASE (Continued) 

Prim-Read Integer 
rget Value Stockpile Rounded   Stockpile 

46 329 0.72 
47 314 0.65 
48 312 0.64 
49 298 0.58 
50 284 0.51 
51 279 0.48 
52 276 0.46 
53 272 0.44 
54 270 0.43 
55 267 0.42 
56 262 0.39 
57 242 0.28 
58 237 0.24 
59 237 0.24 
60 232 0.21 
61 224 0.16 
62 222 0.15 
63 219 0.13 
64 219 0.13 
65 218 0.12 
66 215 0.10 
67 206 0.04 
68 204 0.03 
69 204 0.03 
70 204 0.03 
71 203 0.02 
72 200 0.00      ( 3        0 

TOTALS 34i 446 414 
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Note that the attacker's optimal strategy Is not deter- 

mined here. For a given number k of attacking missiles, his 

problem Is 

where 

V(d,a) = E v(i: 
1=1 

maximize  V(d,a) 

subject to 

H    a(l) £ k, 
1 = 1 

■■1 

/    a(l)  '      _   '  ■ 

(i- n (i-(o.8)'^^^"^'^) 

with d as in Table 4.  This is a non-linear "knapsack" type 

problem whose solution could be found by dynamic programming 
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PROOF OF THE LEMMA 

Lemma:  Let a = (a^) and b = (b.) be a pair of positive, 

monotonically nonlncreaslng vectors of size t such that 

s      s 
(a)  I a >  lb 

1=1 ^  1=1 ^ 
for s = 1,2,...j t-1 ; 

(b)  I a. = I  b 
1=1 ^   1=1 ^ 

Then for q « (0,1), 

n (i-q^M < n (l-q M 
1=1^       ^     1=1^       ^ 

Proof:  We first show that there exists a txt doubly stochastic 

matrix M such that 

b = Ma, 

Let 

Ai-i-a^  a,-b-. 

1 = \a^-a-) M. = 

a^-b^ b^-a2 

0 

0 

0    1 

. ON 

. 0 

. 0 

N 0      0 

Note that M, is doubly stochastic. 

A-1 

0 ... ly 

Let a  = M,a and note that 



^1 = ^] 

1 
^2 = 

1 a-, = a. 

^1 + ^2 ^ > ^2 

1 

In general, we will have a vector a   such that 

a^   = b^ for i = 1,...,k-l 

s      s  , _-, s 
I a = ^ a >  I b 

1=1 ^  1=1 ^. 1=1 ^ 

t  , , t 

1=1 1=1 

for s = k,...jt-1 

and if we pre-multiply such a vector by the doubly stochastic 

matrix 

\ = ( k-l' k-l) 
k   k+1' 

t-k-iy 

we obtain a new vector a which has the above properties^until 

k = t - 1, when a ~  = b. . 
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Since the product of doubly stochastic matrices remains 

doubly stochastic, the matrix 

M = M^_^ ... M^ 

has this property, and also 

b   =  Ma   . 

Let   M  =   (X..)   so   that 

t 
b,   =     y   X..a.    - 

1        jii   IJ   3 

where 

t 
' y x.. = 1,   X.. > 0 . 
j=i "^      '    ij - 

Since the function £n(l-q ) Is strictly concave as a 

function of z, we have 

b.     t      /  a.\ 
£n(l-q ^)   >     I   X^. ilnll-q ^j 

so that 

J=l 

t  /  a \^lj 
= £n  n  ( 1-q 'J J   , 

j=l \     / 

t       b.     t     t  /  a.v^lj 
I     £n(l-q ^) > I      in  II      (l-q ^ ) 

1=1 1=1   J=l \     / 

t   t /   a.\^i 
I n  n (i-q J I 
1=1 1=1\       / 

= In 
■ " J 

t 
I X.. 

1=1 ^J 

= 9n n (l-q 0 

A-3 



But since M is doubly -stochastic, V X. . = 1, so that 

b \    t /  a A 

)'Ah 1■ n (l-q 
i = l\ 

which completes the proof, \1 
We note the dependency on log-concavity in this proof. 

This property arises in several instances, and seems to be an 

essential feature of the problem.  See also Appendix B. 
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ANOTHER ALGORITHM FOR THE ALL-INTEGER VERSION 
OF THE PRIM-READ MODEL 

1 .   Introduction 

Falk [3] has given an algorithm for finding an optimal 

all-Integer solution of the Prim-Read allocation model.  We 

present here another such algorithm.  This algorithm requires 

time proportional to log p, where p Is the price; the algorithm 

of [3] requires time proportional to p.  Thus, the present 

algorithm Is probably superior for hand computation at least; 

for machine computation, both are so fast that there Is pre- 

sumably no great advantage.  However, our main purpose In 

presenting another algorithm Is not computation but Insight 

about the validity of the original (non-Integral) Prim-Read 

model.  This model has many very attractive properties (see 

[4]), but of course the non-integral assignments produced are 

not feasible.  The Integral assignments produced by our 

algorithm can be readily compared with the semi-Integral model 

of [1].  The latter model can in turn be (somewhat less readily) 

compared with the original Prim-Read model.  Our ultimate goal 

(among others) is to provide easily computed,guaranteed bounds 

for the optimal Integer solution in terms of the Prim-Read 

solution.  This note is the third (after [1,2]) of a series 

aimed at that goal. 

2.   Characterizing an Optimal Solution 

Before giving the algorithm we must establish some results 

which will characterize the particular solution it will find. 

As usual, the optimization problem to be solved is as follows: 

(2.1) minimize ^  =   l   d(l) , 
1 

subject to the constraints 

5-1 



(2.2) V(d,a) = 1 -  n (1-q^^^^) < a/p , 
1 = 1 

for all positive Integers a, where the d(l) are required to be 

non-negative Integers.  As discussed In [1] and [2]. p need 

not be an Integer; of course, p > 0.  By Proposition 3.1 of [1]. 

there always exists a solution for which d(j) >_ d(j+l) for all j 

that Is, a monotone solution. 

We may describe such a solution, as in-[1], by a sequence 

of positive Integers x, > x„ > ... > x : 1-2—    -£ -, 

d(l) = a 

d(l) = £-1 

(2.3) 

d(i) = 2 

d(l) = 1 

d(l) = 0 

0 < 1 < X, 

^ii " ^ 1 ^5,-1 

X^ < 1 <_ Xp  , 

X  < 1 £ X-, , 

X,  < 1 

Of course. It Is clear that at the optimum, x. = {p} - 1, 

where {p} denotes the least Integer >_ 

D is given by x, +...+ x . 

We also note that 

Clearly, we could now restate the optimization problem 

(2.1-2) in terms of the x, , and Indeed this was done, for non- 

integral X , as formulas (4.1-4) of [1],  We do not do this 

now; but we do need the notion of an x, not being tightly con- 

strained.  Call X, in a feasible set of x-^- free if the set 

(x'. }, defined by x'. = x. for £ > 1 > k, 
J J    J       -     ■ 

., X, = X, - 1, and '  k   k    ' 

x'. = x^ for k > j ^1, is also feasible.  (Note that this 

entails x, > x, ,-, . )  That is, the set of d's starts out the k   k+1 ' 

same, but the value k - 1 starts one step earlier, and then 



continues to the end.  If x  = 1, the effect of setting xj' = 

X  - 1 Is the same as that of replacing £ by £ - 1. 

We will show that we can always find an optimal solution 

in which no x, is free; we begin with a simple algebraic 

proposition.  We note in passing that it is equivalent to the 

fact that 1 - q  is log-concave in t. 

Proposition 2.1:  If d >_ e + i and e >_ 0, then 

Proof: 

(l-q'^-^)(l-q^ + ^)   -   (l-q'^)(l-q^) 

d-1 e+1   ,      d   ,      e 
=   -q -q +q+q 

e,^      ,   d-e     d-e-1) =   q   (1-q+q        -q 

=   q^(l-q)(l-q'^-^-^)   >   0    . 0 

Armed with this, we can prove a crucial fact.  We have to 

state the result a bit more technically than one would like 

because of the possibility that x,_, = x,_p (in which case, no 

d(i) is equal to k - 2). 

Proposition 2.2:  Let x,, ..., x. define an optimal 

(feasible) solution to (2.1-2), as in (2.3), and suppose that 

X, is free, where k > 1.  Let k' be the largest value for which 

x^, = Xj^_^.  (Usually, k' = k - 1).  Then if x, is replaced by 

Xj^ - 1 and Xj^, is replaced by x, ,+1, the resulting sequence 

(xl} is again an optimal solution. 
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Proof:  Since D is unchanged, we need only check that the 

resulting set of x. Is feasible.  Consider first the (non- 

monotone) sequence of d(l) that comes from (2.3) by setting 

d(x, -1) = k - 1 and d(x,_-,) = k.  Clearly D Is unchanged. 

Moreover, this new solution obviously satisfies (2.2) for 

a > X, -, , and It satisfies (2.2) for a < x, , because x, was — k-1' k-1 k 
free.  Now we make this allocation monotone.  Set d(x, -, ) = 

k-1, d(x, ,+1) = k'.  By the definition of k'  x, , + 1 = k-1 '  k-1 
X, , + 1 and k' Is one greater than the old value of 

d(x,_-,+l) = d(x, ,+1), so that the new assignment has the same 

stockpile D as before.  But this assignment Is also feasible 

by Proposition 2.1.  Since this Is just the assignment speci- 

fied by the sequence {x!}, the proof Is complete. 0 

The above proposition leads Immediately to the following 

theorem, which completely characterizes one solution to the 

all-Integer problem. 

Theorem 2.1:  There is a unique feasible allocation of type 

(2.3) for which no x, is free, and this allocation is optimal. 

Proof:  Clearly, there is only one choice of x„ that Is 

(feasible, but) not free.  Once x^, is specified, there is only 

one choice of x._-, that is not free, and so on.  Therefore, 

the X. are completely specified in turn by the conditions on 

them.  (We will shortly consider how to calculate the x..)  To 

see that this solution is optimal, we need only show that an 

optimal solution can be converted to it while remaining optimal. 

Consider any such optimal solution.  If no x. is free, 

we are done.  Let k be the largest index for which x, is free. 

We cannot have k = 1, for then the solution would not have 

been optimal.  By Proposition 2.2, it is possible to reduce 

X, by one and still have an optimal solution.  If the resulting 

X  is still free, we may continue the process until it is no 
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longer free.  (If k = £, this could involve reducing x. to zero 

and hence replacing £ by £ - 1.)  In any case, this process 

leads to an optimal solution in which the largest j for which 

X. is free is < k.  If we continue to do this, we eventually 

arrive at an optimal assignment for which no x. is free.  This 

completes the proof. U 

3 .   The Algorithm 

Theorem 2.1 characterizes an optimal solution, and one 

may clearly derive an algorithm from it.  Like Falk's algorithm 

[3], it is a greedy algorithm; but it is greedy in the x. of 

(2.3), not in the d(i) of (2.1-2).  Its solution will in 

general be different from Falk's, since it produces monotone 

d(i), but of course the resulting stockpile D will always be 

the same. 

Of course. Theorem 2.1 does not give an algorithm in itself, 

since we must make explicit how to choose the x  so that they 

are not free.  We now state a complete algorithm.  Although 

it looks tedious, the algorithm is actually rather easy to 

apply.  We use the notations [t] and {t} to denote the greatest 

integer <_ t and the least integer > t, respectively. 

Algorithm:  Set I  =   {-log p/log q} and set 5. = -logd-q-^), 

J = Ij 2, . . . , 5,.  Also, set x^^-j^ = 0, e^ = 0.  Then, for j = £, 

£ - 1, 

(3.1) 

(3.2) 

(3.3) 

2 set in turn 

a. , 
J-1 

- 1/ 

*• 

J-1 ' 

=   ^---i^^^J   +   log(l-[a^._^]/p) , 

6j_l^aj_l^ + logd- {a._^}/p)   if {aj_^}/p < 1 

0 otherwise. 

J-1   J-i^ J 

*i'-i 
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(max((f):  ,(})"  ) - 
(3.4)    X. =' ^^i—i^^ 

(3.5)     0.,=e.+(5.,-5.)x. . 

Finally, set x, = {p} - 1.  Note that the calculation of G-, may 

be omitted. 

We must show that this works; we state that as a theorem. 

Theorem 3.1:  The above algorithm produces a feasible 

?nce of X. such that no: 
J 

sent an optimal allocation. 

sequence of x. such that none are free; they therefore repre- 

Proof:  Of course, i  must be great enough so that the 

solution is feasible for the first attacker, so that we must 

have, from (2.2), 

T /        1 / -,     d ( 1 ) s I 1/p ^ 1 - (1-q ' ') = q  , 

so that ■    ^,- 

- log p ^ £ log q, 

and hence 

£ _> {-log p/log q} . 

On the other hand, if I is strictly greater than this, x must 

be free since even x„ = 0, x._-, = {P} - 1 is feasible. Hence, 

i   = {-log p/log q} . ■,    ■ 

The remainder of our proof is closely related to ideas 

developed in Section 4 of [1].  In particular, V(a,d) for any a 

in the range x. < a <_ x._-, is given, for some 6, by 

B-6 

I 



V(a,d) = 1 - exp(0-5 . -,a) , 

since 

X . 

V(a,d) = 1 -  n'^d-q'^^^^) • (l-q<^'-^)^~''j 
1=1 

X . 
d(i) -X . 

1 -  n d-q'^^^^) . Cl-q^""^)  -^"-expC-S. ,a) 
1 = 1 J-1 

where we take 9 to be the natural logarithm of the product and 

the following factor.  We will set 9 = 9._-, In any such range; 

we must show that 9._-, Is as defined in the algorithm.  Of 

course, 9, = 0 in the first range, as It should be.  For any- 

other range, x. Is the value of a at the intersection of the 
J 

curves v = 1 - exp(9   -6   a) and v = 1 - exp(9.-6.a); this 

easily leads to 

(3.6) a = X. =  J'"^ J   , 
J   5 . -,-6 . ' 

J-1  J 

which is equivalent to (3.5).  (Formula (3-6) already occurs 

in the proof of Theorem 4.1 of [1], except that there it was 

stated in terms of Y. = - 9..) 
J      J 

Of course, before we can determine 9._-|5 we must determine 

X..  We must choose x. as small as possible consistent with the 
J J 

requirement that the curve v = 1 - exp (9 ._.,-6 . _ a) lies on or 

below the line v = a/p at all integer a.  If they were tangent, 

the point of tangency would be at a. . = p-l/6._ ; this is 

formula (4.5) of [1],  However, since only integer values of 

a are to be considered, we need that the curve lies on or below 

the line at a = [a._^] and a = (a   }, unless (a. ,} > p, in 

which case this point should be Ignored.  If the curve v = 1 - 

exp(9-6j_^a) goes through the point (a,v) = (a,a/p), then we 
have 

exp(9-6   a) = 1 - a/p ,   ;   ' 

r 
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so that   - , . 

(3.7) e = 6. na + log(l-a/p) .       • 

Prom this we see that (J)'. _  and 4)'.'   in (3.2-3) are the 9 

of (3.7) corresponding to a = [a._-,] and a = {a._-,}, respectively, 

provided {a._-,} < p.  Consequently 9 = max((J)'. -. ,(^".      ) is the 
«J J~-'-j~J- 

smallest 9 for which v = 1 - exp( 9-6._-, a) does not go above 

v = a/p at any Integer point.  (Note that, in the case (a._-,} 

>^ p, 9 = 4>!_-j_ since the latter is positive, which is as it 

should be.)  Hence, by (3.6), we need to have, and need only have. 

X . 
max((})' ^,(J)"_^) - 

J--L J. 
3 6.., - 6. 

in order for x. to produce a feasible solution.  Therefore, if 
J 

we take x. to be as small as possible, but still an Integer, 
J 

x. will not be free.  This gives us (3.4).  Finally, it is 

clear that x, = {p} - 1.  This completes the proof.        [] 

The form of (3.1-5) permits rather ready com.parison with 

the results of the algorithm for the semi-integral model 

presented in Theorem 4.2 of [1].  This fact is a primary 

motivation for developing the above algorithm; however, such 

a comparison will be deferred to a later note. 

4.   Numerical Examples 

We discuss here two numerical examples, hand-calculated. 

In a later note we will give more extensive numerical results 

produced with the aid of a computer.  First, consider the 

case q = .25, p = 50, considered in [1] and [3].  We have 

i  =   3,   and 6^ = .2877, S^  " -06454, 6  = .01575, x^ = 0, 

3 
= 0.  Then, 

a.^   =   34.51 , 

^^   =  1.0549, *2 = 1.0549 , 
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and, 

115. 

X  = {21.62} = 22 , 

82 = 1.0734 , 

a^ = 46.52 , 

<j)j_ = 10.708, (j)!^ = 10.708 , 

X2 = {43.17} = 44 , 

finally, x^  =   49. The total stockpile Is D = 22 + 44 + 49 = 

Some remarks are in order here.  First, we have left off the 

unnecessary calculation of e-^^.  Second, the stockpile agrees 

with the corresponding one in [3], as it must.  Moreover, the 

numbers of 3's, 2's, and I's tally exactly with those in [3], 

but of course -the sequence is different.  It seems likely that 

such an exact tally should always occur, but this has not been 

proved.  Finally, note the surprising fact that in each case, 

(f)'. = (j)'.'.  This is not a coincidence; in fact we will prove in 

the last section that it always happens when p - q"'^ is an 

integer.  Thus, when q = .5, .25, .2, .1, ... and p is an 

integer, this applies, a useful fact for hand calculation. 

Now we let q = .2, p = 50, again considered in [1] and 

[3]. We have £ = 3, 6^ = .2231, 65 " -04082, (, = .OO8032, 
x^ = 0, 6^ = 0.  Then, 

a2 = 25.50 , 

<J)^ = (|)^ = .3274 , 

X3 = {9.985} = 10 , 

62 = -3279 , 

a^^ = 45.51 , 

<^^ = 4.^ = 7.737 , 

X2 = {40.65} = 41 , 

and x-^ = 49.  This time, D = 10 + 41 + 49 = 100. 
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As before, even the individual x. agree exactly with 

the corresponding numbers of 3's, 2's, and I's In [3]. 

5.   Conditions for a Simplified Calculation 

It has been already said that (f)'. = cj)'.' whenever p - q"*^ 

is an integer.  Although this is a rare event for p and q 

completely arbitrary, it will often occur for the values 

typically chosen, simplifying hand calculation.  For this . 

reason, it is worthwhile to prove this, and a little more, 

explicitly. _    ■ 

Proposition 5.1:  For 1 1 j 1 £, it will happen that 

<t>\   =   (f)': in the algorithm of Section 3 if and only if either 
j    j _. 

p - 1/6. or p - q ^ is an Integer. 
J 

Proof:  If p - 1/6. = a, is an integer, then [a.] = {a.} 

and the result is trivial.  Otherwise, we may set [a.] = a, 

{a.} = a + 1.  In this case, (p[   =   (p'l  yields 
J J    J 

0 = <^'' - 4,' = 6.(a+l) + logCl - (a+l)/p) - 6.a log (1-a/p) 
J    J    J J 

c-  IT   p — a— 1   -,   p— a ...■ ■    = 5. + log   - log - 
, " v J P P 

„,T   p-a-1 = 5 . + log ~  
J     ^  p - a 

so that 

~    T   p - a - 1 -6, = log ^ 
p - a 

But 6. = -log(l-q^), so 

1 _ qJ = P-a-1 = 1 _ ^ 
p - a p - a  ' 
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which Is equivalent to 

a = p - q"^ . 

Since a is an integer it is necessary that p - q"-^ be an 

Integer In this case. 

To prove that this condition is also sufficient, we 

need only show that 

P - q"'^ £ p - 1/6 £ p - q 'J + 1 , 

which is equivalent to 

q'^' 1 6.   < l/(-q"J+l) = qV(l-qJ) . 

But since 0 < q"^ < 1, we may expand 6. = -log(l-q"') and 
,J /n _r,J J 
q'^/d-q'J) In series; the above is then equivalent to 

q"^" < q"^' + q^^'/2 + q^'^'/S + ... 

£ q"^ + q "^ + q^"^' + . . . ; 

this is obvious, so the proof is complete. H 
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