
AD-A134 198 A COMPUTER PRUJRRM FOR RELIABILITY EVALUATION OF /

OPERATIONS RESEARCH CENTER II G RESENDE OCT 83

UNCLASSIFIED ORC-83-f6 DRAG2Si-K 8606 F/G 9/2 N

1 RE-REUIEED RIFRhE U E ELE E

TaII, e WV i - 7 . -- ;L.

11.6.

LIP11 -__

3!
SOMPUTER PROGRAM FOR RELIABILITY
:: ,pV ATION OF LARGE-SCALE UNDIRECTED

NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONS

fby
MAURICIO 0. C. RESENDE* I

LLJ
0.Q2

DTIC
OPERATIONS ELECTE

RESEARCH OCT28 I983

RENERH STATEMENT AB
CENTER L;-:.o,, .

UNIVERSITY OF CALIFORNIA • BERKELEY

83 !029 .

PolyChain

A COMPUTER PROGRAM FOR RELIABILITY EVALUATION OF LARGE-SCALE

UNDIRECTED NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONSt

Operations Research Center Research Report No. 83-10

Mauricio G. C. Resende

October 1983

U. S. Army Research Office - Research Triangle Park

DAAG29-81-K-0160

Operations Research Center
University of California, Berkeley

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

It

'Partially supported by Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico - CNPq, Brazil. Reproduction in whole or in part is per-
mitted for any purpose of the United States Government.

L

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN
THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD
NOT BE CONSTRUED AS AN OFFICIAL DEPARD=hNT OF THE
ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.

READ INSTRUT * IONS
___________ BEFORE COMPLETING FORM

STYPE OF REPORT &PERIODCOED

WALUATION Research Report

VIASPOLYGON-MING ORG. REPORT NUMBER -

9. CONTRACT OR GRANT NUMBER(s) .

DMG29-B1-K-01609 4 . r

10. PROGRAM ELEMENT. PROJECT. TASK .-
AREA & WORK UNIT NUMBERS

P-18195-M

12. REPORT DATE 9- 9 * ., - 4
October 1983

13. NUMBER OF PAGES ' *. *

na 27709 41 %*%

CnrligOfc)Is. SECURITY CLASS. (of this report).

Unclassified ___________

aS. DECLASSI FIC ATION/ DOWNGRADING ..
SCHEDULE

20. it different from Report) ~... .*p

fby block number) *'

Computer. Prga

SE aRTa CLStruICATuresTHSPC (o aanwd
..

:'7

,d

ABSTRACT

-'This report discusses the design and implementation of
PolyChain, a FORTRAN program for reliability evaluation of
large-scale undirected networks via polygon-to-chain reduc-
tions.

First .Flrstetical results presented by Satyanarayana and
Wood (1982) are briefly discussed. Then, the program's
design and its implementation in FORTRAN are described in
a system's manual. A user's guide contains instructions on
problem solving and output interpretation. Finally, some
large scale problems are tested to evaluate the code's
performance and capabilities.

Accession For 1 .

NTIS
DTIC T'B1 lar

Distribution/_

Availability Codes
Avail and/or

Dist i Special

, %

PolyChaini

A Computer Program for Reliability Evaluation of
Large-Scale Undirected Networks via Polygon-to-

Chain Reductions

by

Mauricio G. C. Resende

Operations Research Center
University of California, Berkeley

1. Introduction

The evaluation of network reliability CA83], is of great
importance in engineering. It is both an important design
and operations parameter in such systems as communications,
power, and computer, to name a few.

Satyanarayana and Wood [582J, [W82] introduced a linear time
algorithm for computing the reliability of a network with an
underlying series-parallel structure. This algorithm
employs the new polygon-to-chain reductions. They also
present an extension to the algorithm which enables the gen-
eration of a reduced network when the input network is not
totally reducible.

This report discusses the design and implementation of
PolyChain (Polygon-to-Chain), a portable FORTRAN program for
K-terminal network reliability evaluation via polygon-to-
chain reductions. Doubly linked multilists and linear
stacks are used in this implementation of the algorithm in
such a way that large-scale undirected networks are treated
efficiently. PolyChain is modular, thoroughly commented,
has input data consistency tests, and is structured whenever
possible, to facilitate maintenance. There are four output
options, which produce flexible, informative reports.

*i Section 2 briefly discusses some of the theoretical results
of polygon-to-chain reductions. In section 3, a system's
manual describes the algorithm's implementation in FORTRAN.
Section 4 consists of a user's guide to PolyChain. In sec-
tion 5, a number of large-scale problems problems are tested
on PolyChain, illustrating the code's performance capabili-
ties. Conclusions and recommendations are made in section

6.References are in section 7

-- 7

2. Polygon-to-Chain Reductions and Series-Parallel Graphs

For a complete discussion of polygon-to-chain reductions and
series-parallel graphs, see [S823, [W82]. In this section,
the K-terminal network reliability problem will be defined.
Basic definitions will be made so that the algorithm of
Satyanarayana and Wood can be presented.

2.1. K-Terminal Reliability

Let G=(V,E) be a graph, where V and E are respectively G's
vertex set and edge set. We assume that vertices function
perfectly and that edges have a probability of functioning,
which may be less than 1. Edge e(i) has probability p(i) of
functioning and q(i) = 1 - p(i) of not functioning. Associ-
ated with G is a subset of V denoted by K. These dis-
tinguished vertices are called the K-vertices of G. G(K) is
graph G with K specified. The K-terminal reliability of
G(K), RIG(K)], is the probability that, at a given time t,
all K-vertices are connected by working edges.

2.2. Simple Reductions

To compute the K-terminal reliability of G, it is desirable
to reduce the size of G. There are three well known simple
reductions: parallel reduction, series reduction and
degree-2 reduction. In parallel reduction, parallel edges
e(a)=(u,v) and e(b)=(u,v) are replaced by edge e(c):(u,v)
with edge probability p(c) I - q(a)q(b). In series reduc-
tion , edges e(a)=(u,v) and e(b):(v,w) are replaced by edge
e(c)=(u,w) with probability p(c) = p(a)p(b). Let u,v, and w
be edges in set K. Let deg(v) z 2 and consider two edges
e(a)z(uv) and e(b)=(v,w), such that u is not equal to w. A
degree-2 reduction substitutes edges e(a) and e(b) by edge
e(c)=(uw) with p(c)=p(a)p(b)/[1-q(a)q(b)] and R[G(K)J=[l-
q(a)q(b))R[G(K-v)], where G(K-v) is the new reduced graph.
These simple reductions are examples of reliability-
preserving reductions I where a graph G is replaced by a
reduced graph G', and R(G)=OMEGAOR(G'), where OMEGA depends
on the reduction.

2.3. Series-Parallel Reducible and Complex Graphs

A series-parallel graph is a graph that can be reduced to a
tree after successive series and parallel reductions. For a
given series-parallel graph G, G(K) may or may not be
reduced to a single edge by successive simple reductions.
This will depend on the elements of set K. G(K) is series-
parallel reducible if it can be reduced to a single edge by
successive simple reductions. It is series-parallel complex
if it is not series-parallel reducible.

-4-

2.4. Chains and Polygons

A chain X is an alternating sequence of distinct vertices
and edges, such that all vertices, except for the two end-
points, have degree 2. Let X1 and X2 be two distinct chains
with common endpoints. The union of X1 and X2 constitutes a
polygon.

2.5. Polygon-to-Chain Reductions

The main result in [S82], [W82] follows. Let G(K) be a
graph that admits no simple reductions. If G(K) contains a
polygon, it is one of the eight types. A reliability
preserving reduction permits the replacement of the polygons
by chains with the new edge reliability computed according
to given formulas.

2.6. An OC(Ej) Algorithm for Series-Parallel Complex Graphs

An O(jEj) algorithm for a nonseparable series-parallel com-
plex graph is presented in [S82], [W82]. PolyChain is a
direct implementation of that algorithm utilizing extension
4' in place of step 4.

d -

-. * : .

-5-

. System's Manual

In this section, the code is briefly described. First, pro-
gramming is commented and data structures discussed. Next,
data consistency tests are considered. A data dictionary is
presented. The program's COMMON blocks and all procedures
are described, along with their corresponding inputs and
outputs. Finally, we comment on the code's debugging
feature.

* 3.1. Program Design and Implementation

.1.1. Programming

PolyChain is designed to be portable. All algorithmic rou-
tines are written in standard FORTRAN IV. Only output
related code is system dependent. The code is intended to
be friendly to both the person using it in an application
and the one extending or maintaining it. The program is
modular, has format free input and informative outputs.

3.1.2. Data Structures

The algorithm of Satyanarayana and Wood manipulates
* - undirected networks. These networks can be represented in

many ways in a computer code. Matrix representation has
many drawbacks. These matrices are, in practice, extremely
sparse. Densities of less than one percent are not uncom-
mon. Matrix representation is inefficient both with respect
to core usage and execution times. For a static network, an
efficient representation is a packed matrix. In the algo-
rithm considered here, the network is dynamic. Helgason and
Kennington [H80, Thesen [T78], Berztiss [B75], among many,
discuss efficient network representations using linked list
data structures. Thesen ET781 and Berztiss [B75] discuss
the implementation of linked lists in FORTRAN.

During the algorithm's reduction process, one or more edges
or vertices are removed from the network. In the data
structure, this corresponds to removing elements from the
lists. This process is repeated frequently in the algo-
rithm. Doubly linked lists [K73],[B75J, require more core,
but are more efficient when many element deletions are

": required. They are implemented in PolyChain. Each vertex
has a list of adjacent vertices, which besides indicating
whic" vertices are adjacent to it, also provides information
det mining whether the vertex and its adjacent vertices
'b.t)ng to set K. For every element of the list, there is a
pointer indicating the address where information about the
edge, corresponding to these two vertices, is kept. FigureI illustrates this multilist data structure for a small

. . .

-6-

.. network.

2a

e4

3

el

FIgure uii Da S

V3 - 1>III e3

CZ1 _1 --

e 5

Figure I - Multilist Data Structure

3.1.2.1. Data Structure Implementation

Next, we describe the FORTRAN arrays used to implement the
code's data structvres.

PTRADJ(i) points to the beginning of the list of vertices
adjacent to vertex i. If PTRADJ(i) is positive, vertex i
does not belong in set K. If PTRADJC±) is negative, then
vertex i is in set K. PTRADJ(i) may also be null. This
indicates that vertex i has been removed from the network.
Array ADJVRT(*) is the principal information element in the

*list structure. It contains an adjacent vertex to the ver-
*tex represented by the list in which it resides. If

ADJVRT(O) is positive, that vertex is not in K, and if it is
negative, the vertex is in set K. LNKDWN(i) points to the
next element (downwards) in the list of adjacent vertices.
If LNKDWN(*) = 0, this element is the last element in the
list. LNKUP(O) points to the element just above it in the
adjacent vertices list. If LNKUP(*) = 0, then this element
is the first in the list. EDGPRB(*) contains the edge reli-
ability. LNKEDG() points to the position in array

*- 4.. . .. , ' 4,,- 4 . ,- . ,

-. .-. 7- V-

-7-

EDGPRB(O) corresponding to edge [PTRADJ(i),ADJVRT(*)].
i AVSADJ is a pointer to the beginning of the list of avail-
* a able space [B75].

*- The algorithm also requires data structures for both the T
list and the chain. Since the order of the vertices in both

the T list and the chain is irrelevant to the code, linear
stacks are used to represent both structures. TLIST(*) con-
tains the stack of vertices, which are elements of the T
list. If TLIST(*) is positive, then that vertex is not in
set K. If it is negative, the vertex is in set K. TTOP
points to the top of the TLIST(*) stack. CHAINC) is a

stack of vertices belonging to a given chain. TOP points to
its top. As with TLIST(*), if CHAIN() is positive, then
that vertex is not in set K. If it is negative, the vertex
is in set K. ONLIST() = .TRUE. implies that vertex i is on
the T list, and ONLIST(i) = .FALSE. implies the contrary.
DEG(i) indicates the degree of vertex i. Figure II illus-

trates the use of some of these arrays in network represen-
tation.

2 p~el)=.5
el e p(e2)=.2

e3 4p(e3)=.3
e2 ep(e4)=.8

' 1 2 3 4

ONLIST(*) F T T F

DEG(*) 2 3 3 2
PTRADJ(*) 1 3 6 9

ADJVRT(*) LNKDWN(*) LNKUP(*) LNKEDG(*)
1 2 2 0 1
2 3 0 1 2
3 1 4 0 1
4 3 5 3 3
5 4 0 4 4

6 1 7 0 2
7 2 8 6 3
8 4 0 7 5
9 2 10 0 4

10 3 0 9 5

•.1 2 3 4 5

EDGPRB(') .5 .2 .3 .9 .8

Figure II - FORTRAN Implementation of List Structure

L-8-

3.2. Input Data Consistency Tests

As described later, the input of a vertex in set K will
require that its vertex number come preceded by a negative
sign. PolyChain tests consistency of the signs of the ver-
tices, and in this manner will cease execution if there is
any inconsistency in the sign of a vertex number. Edge
reliability is also tested for values less than zero or
greater than one.

3.3. Data Dictionary

Next, the code's variables are listed, with a brief descrip-
tion of each one.

ADJVRT(') vertex adjacent to vertex whose list it is on
ALFA reduction parameterAUX auxiliary variable

AUXPTR auxiliary pointer
AUXTOP pointer to next to the last element of a chain
AVSADJ pointer to beginning of list of available space
BETA reduction parameter
BOTTOM pointer to bottom of list
CARDE cardinality of set E
CARDK cardinality of set K
CARDL size of list after input
CARDV cardinality of set V
CCHAIN absolute value of CHAIN
CHAIN(*) chain stack
CTEST consistency test variable
D1 degree of vertex VI
D2 degree of vertex V2
DATE character string containiig date
DEG(*) degree of vertex
DELTA reduction parameter
DENDEN denominator in network density computation
DENSTY input network density
ECHOIN indicator of input echo
ECHOUT indicator of reduced network output
EDGOUT edge selected to leave network
EDGPRB(') edge reliability
EGOUTB selected edge to be deleted from network
EGOUTC selected edge to be deleted from network
ERRO indicator of error in some routine
FIRST key indicating first passage in output routine
FOUND indicator of whether or not a polygon was found

* ' HOUR character string containing hour
GAMMA reduction parameter
IN value of FORTRAN input file
INON key indicating input echo option

%' IOUT value of FORTRAN output file
IPTR pointer
IPTR1 pointer

-9-

IPTR2 pointer
IPTRK pointer to vertex in set K
IPTRNK pointer to vertex not in set K
LINECT output line counter
LNKC pointer
LNKDWN(*) pointer to next element on list
LNKEDG() pointer to corresponding edge
LNKUP(*) pointer to element above in list
H product of all omegas, see [W82]
HAXCHN maximum number of elements in chain stack
MAXEDG maximum number of edges
MAXLST maximum number of elements in adjacent vertices list
MAXVRT maximum number of vertices
ICARDE cardinality of set E at start of procedure
MCARDK cardinality of set K at start of procedure
MCARDV cardinality of set V at start of procedure
MXSTKT maximum number of elements in T list stack
NEWEDG pointer to new edge
NR1 counter of reductions of type 1
NR2 counter of reductions of type 2
NR3 counter of reductions of type 3
NR4 counter of reductions of type 4
NR5 counter of reductions of type 5
NR6 counter of reductions of type 6
NTR7 counter of reductions of type 7
NR8 counter of reductions of type 8
NSR counter of series reductions
ND2R counter of degree 2 reductions
NUMDEN numerator in network density computation
OMEGA reduction parameter
ONLIST(') indicator of presence in T list
OUTON key indicating reduced graph output on report
OUTPUT final solution
PA reliability of edge a
PAGE output page counter
PB reliability of edge b
PC reliability of edge c
PD reliability of edge d
PE reliability of edge e
PF reliability of edge f
POINT pointer
PR updated edge reliability
PROB reliability of edge (Vl,V2)
PS updated edge reliability
PT updated edge reliability
PT13 pointer
PT23 pointer
PTR pointer
PTRADJ(*) pointer to beginning of list of adjacent vertices
PTRB pointer
PTRC pointer
PTRD2 pointer to VD2
PTRDG2 pointer to VDG2
PTRK pointer to vertex in set K

-::-'--: -:- :- -::: :::' : ::::.-"::: :: : ..: ::: .(.i : i- -i : -ii--.i:::: : : ::?!::.:.. .:.. ..:.- :: :. :: :::: ::

- 10 -

PTRNK pointer to vertex not in set K
PTRV pointer
PTRV1 pointer to vertex adjacent to V
PTRV2 pointer to vertex adjacent to V
PV1 pointer
PV2 pointer
PTVK pointer
PTVNK pointer
QA failure probability of edge a
QB failure probability of edge b
QC failure probability of edge c
QD failure probability of edge d
QE failure probability of edge e
QF failure probability of edge f
TEST key for debugging feature
TIME(*) execution time
TLIST(*) T list stack
TOP top of chain stack
TTOP top of TLIST stack
TYPE1 vertex type indicator for output
TYPE2 vertex type indicator for output
USEDGE core usage for edge
USVRTX core usage for vertex
USLIST core usage for lists
V vertex
Vl vertex
V2 vertex
V3 vertex adjacent to V2
V3V1 vertex adjacent to V1
V3V2 vertex adjacent to V2
V4 vertex
V5V1 vertex adjacent to vertex adjacent to V1
V5V2 vertex adjacent to vertex adjacent to V2
VD2 vertex with degree 2
VDG2 vertex with degree greater than 2
VK vertex in set K
VNK vertex not in set K
VRTX vertex
VV absolute value of V
VVl absolute value of VI
VV2 absolute value of V2
VV3 absolute value of V3
VV3V1 absolute value of V3V1
VVDG2 absolute value of VDG2
VVNK absolute value of VNK
W vertex
X vertex
XX absolute value of X
Y vertex
YY absolute value of Y
YEAR character string containing year

e." - 11 -

3.4. COMMON Blocks

Most of the variables, data structures, and parameters in
PolyChain are shared by the subroutines through COMMON
blocks. All of the dimensions of these COMMONs are deter-

-- mined in SUBROUTINE INILST, through the initialization of
variables MAXEDG, MAXVRT, and MAXCHN. We will use these
values when describing the blocks. Below is a list of all
COMMON blocks in the code.

COMMON/BLKO1/ DEG(MAXVRT)
COMMON/BLK02/ PTRADJ(MAXVRT),ADJVRT(2'MAXEDG),AVSADJ
COMMON/BLK21/ LNKDWN(2'MAXEDG),LNKUP(20 MAXEDG),LNKEDG(20 MAXEDG)
COMMON/BLK03/ EDGPRB(MAXEDG),EDGNUM(MAXEDG)
COMMON/BLKO4/ TLIST(MAXVRT),CHAIN(MAXCHN),TTOP,TOP,

ONLIST(MAXVRT)
COMMON/BLK05/ MAXEDG MGAXLSTMXSTKTMAXCHN

COMMON/BLK06/ CARDE,CARDV,CARDK
COMMON/BLKO7/ H
COMMON/BLK08/ IN,IOUT
COMMON/BLK09/ FOUND

* COMMON/BLK1O/ IPTR1,IPTR2,IPTR,VI,V2,DI,D2
COMMON/BLK11/ PTRV1,PTRV2,PTRV
COMMON/BLK12/ V3V1,V3V2,V3,V4,V5V1,V5V2
COMMON/BLK14/ PT13,PT23
COMMON/BLK15/ P315
COMMON/BLK30/ NR1,NR2,NR3,NR4,NR5,NR6,NR7,NR8,NSR,ND2R
COMMON/BLK31/ MCARDE,MCARDV,MCARDK
COMMON/BLK32/ DATE,YEAR,HOUR
COMMON/BLK33/ FIRST
COMMON/BLK34/ TIME(2),PAGE
COMMON/BLK35/ INON,OUTON

3.5. Description of Subroutines

Next, we present all SUBROUTINES in the code. Each pro-
cedure will be briefly described together with its input and
output.

3.5.1. MAIN Program

Description The MAIN program controls the basic steps in
the algorithm. From it, subroutines,
representing the various steps of the algo-
rithm, are called. The algorithm initiates
and terminates execution in the MAIN program.

Input An undirected network and edge reliabilities.

Output Network reliability, when network is com-
pletely reduced. Reduced network and M, when
total reduction is not possible.

°21

7 777 . .7 .71

I.I

p: - 12-

3.5.2. SUBROUTINE INILST

Description This subroutine initializes the code's most
important variables. It creates the list of
available space EB75], which is the first step
in the initialization of the list structures.

Input Variables and arrays not yet initialized.

Output Initialized variables and data structures.

The list of available space is also returned,
ready to be loaded in SUBROUTINE INDATA(V).

3.5.3. SUBROUTINE INDATACV)

Description This subroutine reads the input network. Out-
put options are read first. Each edge is read
on a separate line. Edges are indicated by
their corresponding vertices and reliability.
A vertex number is preceded by a minus sign if
the vertex is in set K. Consistency tests are
performed on the input data, and if any incon-
sistency is reported, execution is terminated.
Network multilist structure is loaded. Cardi-
nalities and degrees are computed. Finally,
the input network is optionally printed.

Input Free format input. Output options. Network
and edge reliabilities. No flags are needed
to indicate end-of-file.

Output The loaded multilist data structure. Vertex
degrees. The input network is printed as a
report if it is so desired.

3.5.4. SUBROUTINE HEADER

Description This subroutine prints the page header of the
input network output.

Input Page number, date, year, and hour.

Output Page header with incremented page number, and
date, year, and hour of execution.

3.5.5. SUBROUTINE CONLST

Description This subroutine constructs the initial T list.

Input Degrees of all vertices.

Output A stack, TLIST(*), containing the vertices on

the T list. A pointer TTOP indicating the top
of stack TLIST(a). An array, ONLIST(),

" " - " w, -b ' ' - ' :

- 13 -

indicating if a vertex is on the T list.

3.5.6. SUBROUTINE SERIER(V)

Description This subroutine performs a series reduction on
vertex V not in set K.

Input Vertex V and the multilist structure.

Output The updated multilist structure, with V and
both of its edges deleted, and with a new edge
inserted. This new edge has its reliability
computed. New cardinalities of V and E.

3.5.7. SUBROUTINE DEG2R(V)

Description This subroutine performs a degree 2 reduction
on vertex V in set K.

Input Vertex V and the multilist structure.

Output The updated multilist structure, with V
deleted, along with both of its edges, and
with a new edge inserted. This new edge has
its reliability computed. New cardinalities
of V and E. The updated value of M.

-.5.8. SUBROUTINE SEARCH(V)

Description This subroutine controls the process of
searching for a polygon emanating from vertex
V, and, if one is found, reducing it to a
chain.

Input Vertex V and the multilist structure.

Output The updated multilist structure, with a
polygon-to-chain reduction performed. A chain
contained in stack CHAIN(*). Updated cardi-
nalities and degrees. Updated M.

3.5.9. SUBROUTINE TYPE8(V)

Description This subroutine searches for a polygon of type
8 (two parallel edges), emanating from vertex
V. If found, a reduction is performed.

Input Vertex V. The multilist structure.

Output The updated multilist structure. A chain con-
sisting of two vertices and one edge. An
Indicator (FOUND) is activated if a polygon
was found.

?. ,'-.:. .- -.. . - ..-.. ,..... ..--. : : ..
"% °'- . '* % ' • ".,' "I . " " - + . . - . ' " i,, ml 1 ,,, M .J

' '

-14 -

3.5.10. SUBROUTINE DELETE(V,PTR)

Description This subroutine deletes the element pointed to
by PTR from vertex V's adjacent vertices list.
Three cases are considered. The first, when
the element is first in the list. The second,
when it is last in the list. The last, when
the element is in the middle of the list. In
each case, the element is deleted by a dif-
ferent set of of commands.

Input The multilist structure. Vertex V. Pointer
PTR.

Output The updated multilist structure without the

specified element.

3.5.11. SUBROUTINE FINDK(V)

Description This subroutine is called from control routine
SEARCH(V), when vertex V is in set K. It con-
trols the search for a polygon and, when one
is found, its reduction to a chain. Only
polygons of types 2 or 3 may be found emanat-
ing from a vertex V in set K.

Input The multilist structure. Vertex V.

Output This routine outputs pairs of adjacent ver-
tices to vertex V, along with their degrees,
to more specialized search routines (POLY2(V)
and POLY3(V)). It also outputs the
corresponding pointers to these vertices in
vertex V's list. If a polygon is found, the
indicator FOUND is returned "on" to subroutine
SEARCH (V).

3.5.12. SUBROUTINE POLY2(V)

Description This routine checks if vertex V, and the pair
of adjacent vertices specified in subroutine
FINDK(V) form a polygon of type 2. If a
polygon of type 2 is found, this routine calls
routine REDUC2(V), which performs the
polygon-to-chain reduction.

Input The multilist structure. Vertex V and a pair
of vertices adjacent to V, along with their
corresponding degrees. Pointers to the pair

*of adjacent vertices, in V's list.J
Output Indicator FOUND is activated if a polygon of

type 2 is found.

*".

-15 -

3.5.13. SUBROUTINE REDUC2(V)

Description This routine is called from subroutine
POLY2(V), when a polygon of type 2 is found.
It reduces the polygon found to a chain of
three vertices.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(*). Updated value of M.

3.5.14. SUBROUTINE POLY3(V)

Description This routine checks if vertex V, and the pair
of adjacent vertices specified in subroutine
FINDK(V) form a polygon of type 3. If a
polygon of type 3 is found, this routine calls
routine REDUC3(V), which performs the

Spolygon-to-chain reduction.
p.

Input The multilist structure. Vertex V and a pair
of vertices adjacent to V, along with their
corresponding degrees. Pointers to the pair
of adjacent vertices, in V's list.

Output Indicator FOUND is activated if a polygon of
type 3 is found.

3.5.15. SUBROUTINE REDUC3(V)

Description This routine is called from subroutine
POLY3(V), when a polygon of type 3 is found.
It reduces the polygon found to a chain of
three vertices.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

3.5.16. SUBROUTINE FINDNK(V)

Description This subroutine is called from control routine
SEARCH(V), when vertex V is not in set K. It
controls the search for a polygon and its
reduction to a chain, when a polygon is found.
If vertex V is not in set K, any type of
polygon can emanate from it.

.*- : : . ..-.

-16-

Input The multilist structure. Vertex V.

Output This routine outputs to more specialized
search routines [POLY2P(V), PY3467(V), and
POLY15CV)] pairs of adjacent vertices of ver-
tex V, and their degrees. It also outputs the
corresponding pointers to these vertices in
vertex V's list. If a polygon is found, the
indicator FOUND is returned "on" to subroutine
SEARCH.

3.5.17. SUBROUTINE PY3467(V)

Description This routine checks if vertex V, and the pair
of adjacent vertices specified in subroutine
FINDNK(V) form a polygon of type 3,4,6, or 7.
If a polygon of type 3,4,6, or 7 is found,
this routine calls routine REDC3P(V),
REDUC4(V), REDUC6(V), or REDUC(V), respec-
tively, which performs the polygon-to-chain
reduction.

Input The multilist structure. Vertex V and a pair
of vertices adjacent to V. Pointers to the

, .pair of adjacent vertices, in V's list.

Output Indicator FOUND is activated if a polygon of
type 3,4,6, or 7 is found. All vertices in

*the polygon found, together with pointers
indicating their addresses, are passed to the
polygon-to-chain reduction routines.

3.5.18. SUBROUTINE REDC3P(V)

Description This routine is called from subroutine
PY3467(V), when a polygon of type 3 is found.
It reduces the polygon found to a chain of
three vertices.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

1.5.19. SUBROUTINE REDUC4(V)

Description This routine is called from subroutine
PY3467(V), when a polygon of type 4 is found.
It reduces the polygon found to a chain of
four vertices.

:. W.w- -'-~

- 17 -

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

3.5.20. SUBROUTINE REDUC6(V)

Description This routine is called from subroutine
PY3467(V), when a polygon of type 6 is found.
It reduces the polygon found to a chain of
four vertices.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

3.5.21. SUBROUTINE REDUC7(V)

Description This routine is called from subroutine
PY3467(V), when a polygon of type 7 is found.
It redces the polygon found to a chain of
four vertices.

Input The multilist structure. The vertices of the

polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

3.5.22. SUBROUTINE POLY2P(V)

Description This routine checks if vertex V, and the pair
of adjacent vertices specified in subroutine
FINDNK(V) form a polygon of type 2, when V is
not in set K. If a polygon of type 2 is
found, this routine calls routine REDC2P(V),
which performs the polygon-to-chain reduction.

Input The multilist structure. Vertex V and a pair
of vertices adjacent to V, along with their

corresponding degrees. Pointers to the pair
of adjacent vertices, in V's list.

Output Indicator FOUND is activated if a polygon of
type 2 is found.

,!

d,' , ' ' ''' , '4 , ' ' '' , ' , - , ' , ,, ' ,' '" .- , "" .

- 18 -

3. .23. SUBROUTINE REDC2P(V)

Description This routine is called from subroutine
POLY2P(V), when a polygon of type 2 is found
emanating from vertex V, when V is not in set
K. It reduces the polygon found to a chain of
three vertices.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

'* 3.5.24. SUBROUTINE POLY15(V)

Description This routine checks if vertex V, and the pair
aof adjacent vertices specified in subroutine

FINDNK(V) form a polygon of type 1 or 5. If a
polygon of type 1 or 5 is found, this routine
calls routine REDUCI(V) or REDUC5(V), respec-
tively, which performs the polygon-to-chain
reduction.

Input The multilist structure. Vertex V and a pair
of vertices adjacent to V. Pointers to the
pair of adjacent vertices, in V's list.

Output Indicator FOUND is activated if a polygon of
type 1 or 5 is found. All vertices in the
polygon found, together with pointers indicat-
ing their addresses, are passed to the
polygon-to-chain reduction routines.

3.5.25. SUBROUTINE REDUC1(V)

Description This routine is called from subroutine
POLY15(V), when a polygon of type 1 is found.
It reduces the polygon found to a chain of
three vertices.

Input The multilist structure. The vertices of the

polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(). Updated value of M.

3.5.26. SUBROUTINE REDUC5(V)

Description This routine is called from subroutine
POLY15(V), when a polygon of type 5 is found.
It reduces the polygon found to a chain of two

C.

-9

or four vertices, depending on the cardinality
of set K.

Input The multilist structure. The vertices of the
polygon, and their pointers.

Output The updated multilist structure. Updated
degrees and cardinalities. A chain in stack
CHAIN(*). Updated value of M.

3.5.27. SUBROUTINE CHNRED

Description This routine performs a complete reduction on
the chain resulting from a polygon-to-chain
reduction, when this reduction has not led to
a cycle. Vertices V and W are the chains end-
points. The routine analyzes three cases: a)
deg(V) > 2 and degCW) = 2; b) deg(V) = 2 and
deg(W) > 2; and c) deg(V) > 2 and deg(W) > 2.
When needed, series and degree 2 reductions
are performed and the T list is updated.

Input The multilist structure. The chain in tt-
CHAIN() array. The degrees of the vertices.
The ONLIST(") array. The T list.

Output The updated multilist structure. The updated
T list.

3.5.28. SUBROUTINE OUTGRF

Description This routine optionally prints out the network
when it has not been totally reduced to a
two-vertices-one-edge graph. A data file is
always written containing M and the reduced
network.

Input The multilist structure. The current value of
M.

Output A report is generated, if so desired, contain-
ing the edges of the reduced network, along
with each edge reliability. In this report,
the current value of M is also listed. A data
file with M and the reduced network.

3.5.29. SUBROUTINE HEADi

Description This subroutine prints the page header of the

reduced network output.

Input Page number, date, year, and hour.

~~~~~~~~~~~~~~~~~~~~~~~~~~..--.. .... .___......... -- .--..-....-.... ".-. . ..............--.-.... . ..- ._.. "-..:.-- .--.- .,-.-.
%" . • .• % % ., -. -. -. . ..- % .". - " "/ - . .' . . .• . - •. .. -. . " . -o', , " ,- ., -', "...,". . -.



- 20 -

Output Page header with incremented page number, and
date, year, and hour of execution.

3.5.30. SUBROUTINE OUTREL

Description This routine prints out the network when it
has been totally reduced to a two-vertices-
one-edge graph.

Input The multilist structure. The current value of
"~ M.
.14

Output A report is generated, containing the

network's reliability.

3.5.31. SUBROUTINE HEAD2

Description This subroutine prints the page header of the
intermediate and final results output.

Input Page number, date, year, and hour.

Output Page header with incremented page number, and
date, year, and hour of execution.

3.6. Debugging Feature for Program Maintenance

A desirable feature in any code, is the possibility of hav-
ing intermediate printouts of important variables and
arrays, so that maintenance can be simplified. In this
code, most SUBROUTINEs have a LOGICAL variable named TEST
which, when "turned on", i.e. when made equal to .TRUE.,
will activate such a debugging feature.

%..4-

0 ~ . . .



- 21 -

4. User's Guide

In this section of the report, a user's manual is presented.
First, we present a guide for using PolyChain in an applica-
tion. The input file and outputs are then described.
Finally, two test problems are run on the code to illustrate
outputs.

4.1. Executing PolyChain

Here, we comment on how the program is executed. The algo-
rithm requires that the network be nonseparable. An algo-
rithm that tests for this condition using Depth First Search
is found in [A74]. To run the code, first the dimension
parameters and the COMMON blocks must be adjusted. Then, an
input data file must be prepared. Both of these topics are
presented below.

4.1.1. Dimension Parameters

The first step in running PolyChain, is adjusting the dimen-
sion parameters SUBROUTINE INILST.

These parameters are: MAXRT - maximum number of vertices
MAXEDG - maximum number of edges

If the dimension of the problem being run is smaller than
the dimensions already specified in this subroutine, no
adjustment is needed. But if the network's dimensions
exceed what has been specified, the values of MAXEDG and
MAXVRT must be altered. Note that paramete.- MAXCHN need not
be modified.

After adjusting the dimension parameters, all COMMON blocks
containing arrays must be changed accordingly. These COMMON
blocks are adjusted with the dimensions specified below.

COMMON/BLK01/ DEG(MAXVRT)
COMMON/BLK02/ PTRADJ(MAXVRT),ADJVRT(2*MAXEDG),AVSADJ
COMMON/BLK21/ LNKDWN(2aMAXEDG),LNKUP(2aMAXEDG),LNKEDG(2*MAXEDG)
COMMON/BLKO3/ EDGPRB(MAXEDG),EDGNUM(MAXEDG)
COMMON/BLK04/ TLIST(MAXVRT),CHAIN(MAXCHN),TTOP,TOP,

ONLIST(MAXVRT)

4.1.2. Input Files

Inputing data is very simple in PolyChain. All input is
format free, i.e., data is not restricted to specific
columns of the input line. No flag is needed to indicate
end-of-file.

... 7



- 22 -

The first line of the input file contains the system output
options. There are two entries on this line: ECHOIN and
ECHOUT. Set:

C 1 - if a report of the input network is desired{0 - otherwise

I - if a report of the reduced series-parallel
I complex network is desired

ECHOUT 1
-0 - otherwise

Setting ECHOUT to "0" will not hinder PolyChain from writing
a data file with M and the reduced network, when the input
network is series-parallel complex.

The edges are entered one by one on each line. To specify
an edge, enter both vertices of the edge followed by the
edge's reliability. If a vertex is distinguished, that is,
belongs to set K, it should be preceded by a minus sign.
Below, we illustrate an input file, for the network in fig-
ure III.

2

3

Figure III - Network for Example Input File

For this network, the input file is given below. Here we
wish no input network report, but require a report of the
reduced series-parallel complex network.

0 1
-1 2 .8
- 3 .3

2 3 .2

VS , , . -- . -. .. . . . .-.... . ... . • . . . . .- .. '. . . ':'
P: : ., -'-.'." . ....-:.-- .---.--.-- ... - . ....• .. .-- . .- 3':: :.:.;



-23-

2 -4 .7
3 -4 .9

4.1.3. Program Outputs

In this section PolyChain is tested with two different test
problems illustrating the program's outputs.

4.1.3.1. Problem One

Consider a modification of the ARPA Computer Network in fig-
ure IV.

142

.,

Figure IV - Modified ARPA Computer Network

Consider edge reliabilities for this network varying between
0.1 and 0.9. Both output options are set to "1". The input
file for this network is given below.

1 1
-1 2 .1
-1 3 .2
2 3 .3
2 4 .4
2 6 .5
3 5 .6
4 5 .7
5 8 .8
5 20 .9
6 11 .1
6 20 .2

. .. .* .- *-.- . .° ,... *.. - . .*

%" % °Q " % "* ** . *s. ° / . .fr ° ..-



7,-7vr

-24-

6 7 .3
7 10 .4
8 9 .5

10 15 .7
11 12 .8
12 13 .9
13 14 .1
13 -21 .2
14 15 .3

9 16 .4
16 17 .5
17 18 .6
18 19 .7
19 -21 .8

The modified ARPA network is series-parallel reducible.
PolyChain was run with the above input data. For this type
of network the code generates a two part report. The first
part describes the input network, edge by edge, with edge
numbers, vertex numbers and types (K=K-vertex, nK=non K-
vertex), and edge reliability. This section also summarizes
the input network data and core usage. The second part of
the report indicates that the network is series-parallel
reducible, contains the K-terminal network reliability, sum-
marizes the reductions performed by the algorithm and indi-
cates the CPU time (excluding I/0). The three page report
generated by PolyChain for the above file follows.

. .. . ..- ~.



-25-

PolyChain - Version 83.1 Page 1
Polygon to Chain Reductions
in Network Reliability

Date : Tue Jul 26 1983
Time : 12:59:52

Input Network

lEdge 1' Vertex ' Type :: Vertex Type : Reliability
------------------ -- 4.------------------------+----------------------

a----+.----------------+--------------+----------- +4------------------------
1 1 I K 1 2 nK H'.10000000d+00

'4* 4

a----44-------+--------+4--------------+----------- 4.-------------------------a
2 H 1 K : 3 nK 11.20000000d+00

------------------- --- +.----------------------- +4-----------------------

S 31: 2 [nK H 3 nK 'H.30000000d+00
----- 4-------+--------+--------------+----------- +4-------------------------a

4 H 2 1 nK 4 4 nK [ .40000000d+00
- - ------- --------------------- +-----------------

5 H 2 1 nK 6 1 nK 11.50000000d+00
------ 4-------+---------+4--------------+----------- +4------------------------

6H 3 I nK H 5 1 nK I.60000000d+OO
a-----+v--------+--------4.--------------+----------- +4-------------------------a

7 Ht 4 1 nK ' 5 1 nK ' .70000000d+00
a I 4

------------------------------ -------------------------
8 5 5 nK H 8 1 nK 1.80000000d+00 I

a-----------+-----------------------+------------4-------------------------a
9 H 5 1 nK 1 20 1 nK 1H.90000000d+00

a-----4-------4---------4.--------------4----------- 4.------------------------

- 10 H 6 nK H 7 nK ,.10000000d+O0
a------4------------------------- -------------------------

a 11 H 6 1 nK 1 11 1 nK 11.20000000d+00
------ +----------------+--------------+----------- +4-------------------------a

12 H 6 nK H 20 1 nK ::.30000000d+00
a-----4-------+--------+4--------------4----------- +4-------------------------a

13 H 7 1 nK H 10 1 nK ' .40000000d+00
----- +-----------------+4--------------4----------- +4-------------------------a

a 14 II 8 nK H 9 1 nK 11.50000000d+00
a-----+----------------4.--------------+----------- +4------------------------

15 H 9 nK H 16 1 nK 1.70000000d+00
---- .

16 U 10 nK [ 15 1 nK I:.80000000d+O0
.--- ...- + ---------- .-------.--- ------------------------------------

a.17 1 11 nK H 12 nK 1.90000000d+00
----.--------------------------- - ------------------ -------------------

a•18 H 12 nK 1 13 1 nK 11.10000000d+O0
-'--------------------.--------------------------------

a 19 H1 13 1 nK 14 1 nK 1.20000000d+00
---------- . ----------------------------------------------

20 13 1 nK H 21 1 K 1130000000d+00
------------------------------------.---------------------------------

21 14 1 nK H 15 1 nK 1.40000000d+00

---------. :- .-.



-26-

PolyChain - Version 83.1 Page 2

Polygon to Chain Reductions
*. in Network Reliability

Date : Tue Jul 26 1983
Time : 12:59:52

Input Network

Edge I Vertex Type I Vertex Type I Reliability
---------- +----------------------------------------------------

------ +----------------+--------------+-----------+-------------------------a
22 1 16 nK ' 17 nK H'.50000000d+00

.---------------- +4------------------ 4-----------------

23 1 17 1 nK H 18 nK II.60000000d+O0

------------------- --- 4------------------------ 4.----------------------
24 H 18 nK H 19 nK H'.70000000d+O0

------------------- -- 4.------------------------ 4.-----------------------

25 H 19 nK H 21 K ',.80000000d 00

Summary of Input Network Data

Number of Vertices .................. 21

Number of Edges ......................... 25
Number of K-Vertices .................... 2
Network Density ....... ... ... ... .......... 0.119

Summary of Core Usage

Variable Current Usage
Name Value

MAXEDG 5000 25 0.5
MAXVRT 2000 21 1.0

V.*



-27-

PolyChain - Version 83.1 Page 3Polygon to Chain Reductions
in Network Reliability

Date : Tue Jul 26 1983
Time : 12:59:52

p

Network Series-Parallel Reducible

Network Reliability ..... O.87028600d-02

Reductions Performed

Series .......... 19
Degree 2 ........ 0
Type 1.......... 3
Type 2 .......... 0
Type 3.......... 0
Type 4**.... .. 0
Type 5.. ........ 0
Type 6 .......... 0
Type 7 .......... 0
Type 8 .......... 1

Solution Time z 0.02 Secs.

.... .....~~~~~~~~~~~~~~~~~~~~~~. .. ..... .. . . ,.. ... . •.. ... .. .. . . . . . . . '.,; _ . . ,,, , ._ . L. ..,



-28-

4.1.3.2. Problem Two

We now consider a series-parallel complex network, the ARPA
computer network, in figure V.

Figure V - ARPA Computer Network

This network's input file is given next. Edge reliabilities
vary from 0.1 to 0.9, while output options are both set to

11

-1 2 .1
-1 3 .2
2 3 .3
2 4 .4
2 6 .5
3 5 .6
4 5 .7
5 8 .8
5 20 .9
6 11 .1
6 20 .2
6 7 .3
7 10 .4
8 9 .5
9 10 .6

10 15 .7
11 12 .8
12 13 .9
13 14 .1
13 -21 .2
14 15 .3

-:: --- '- :: .4.:::::::: ::::: :: ::::::::::::::::::::: :: , -: ::.::-::( :::-: : :-: : .. i: - :i:!: :. .



-29-

9 16 .4
16 17 .5
17 18 .6
18 19 .7
19 -21 .8

For series-parallel complex networks, PolyChain also gen-
erates a two part report together with an output file. The
first section of the report is identical to the series-
parallel reducible case, that is, contains the input net-
work. The second part indicates that the network is
series-parallel complex, contains the reduced network, the
updated value of M, and summarizes the reductions performed,

" - including percentage reductions in the network's dimensions.
CPU time (excluding 1/O) is also indicated. The four page
report generated by the code for the ARPA computer network
is given next.

• ,d e.t'-',':. . . - :.::' . :.- -, ;_, . , . . . . . . ..



-30

PolyChain - Version 83.1 Page 1I" Polygon to Chain Reductions
in Network Reliability

Date : Tue Jul 26 1983
Time : 12:58:26

h. Input Network

Edge 11 Vertex Type H1 Vertex 1 Type H Reliability
-.. ------------ ----------------------------------------------------

1 H 1 K 11 2 1 nK '.10000000d+00

a-----+-------+-------+--------------+--------------------------------------
2 H' 1 K 11 3 1 nK H.20000000d+00

I------+----------------+--------------+-----------+------------------------

S.: 3 HI 2 nK H 3 nK !:.30000000d+00
---- -------------- -- +------------------------+----------------------a

..4 H 2 nK '1 4 1 nK Hi.40000000d+00

------------------ -- +------------------------+-----------------------

5 H 2 nK II 6 nK l ',.50000000d+00
-------- ...-----------------------------------------------------------------

6 ' 3 nK H 5 nK ''.60000000d+oo
4------------------- 4 ------------ -----------------------

7 4 nK H 5 1 nK H'.70000000d+00
------- .---.......----------------...---------------------------------------

8 H 5 nK Ho 8 nK l ',.80000000d+00

a-----+-------+--------+--------------+----------- +4-------------------------I

9 H 5 nK H 20 1 nK 11.90000000d+0
a----4-------+--------+--------------+-----------4-------------------------I1

10 II 6 nK It 7 nK 11.10000000d+00

*------4----------------+--------------+-----------4------------------------
11 H 6 nK I 11 1 nK 11.20000000d+00 1

--------------------------- -------------------------------

12 I 6 nK 1 20 nK 11.30000000d+00 1

a-----4-------+--------+--------------4-----------4-------------------------I1
1 13 11 7 1 nK 1 10 1 nK l.40000000d+00 I
------ 4----------------+--------------4-----------4-------------------------I

.14 ll' 8 nK H 9 nK 11.50000000d+00
* S------+------------------4--------------+-----------+-------------------------a

15 H 9 I nK H 10 1 nK 11.60000000d+00
--------------------- ----------------- -----------------

16 H 9 nK Ho 16 nK It.70000000d+00
-------- ------------------- +----------+----------------------

17 11 10 nK H 1 15 nK 1.80000000d+00
------------------ -- +------------------------4----------------------

a-18 ' 11 nK '' 12 nK 11.90000000d+00
, ------ --------- -----... . . -------- ---- ---- ---- ---- ---

1 19 H 12 1 nK H1 13 nK 1.10000000d+00

------------------------------------------- -+----------4------------------------
20 H 13 nK i 14 1 nK H.20000000d+0O

* ~~~ I------+-----------------------------------+-------------------------a
a 21 i 13 nK 11 21 1 K H.30000000d+00-



-31-

PolyChain - Version 83.1 Page 2
Polygon to Chain Reductions
in Network Reliability

Date : Tue Jul 26 1983
Time : 12:58:26

Input Network

Edge 1 Vertex Type 11 Vertex Type 11 Reliability
------------------------------ ------------

-- +--------- ------------+ ---------

22 H 14 nK H 15 nK H .40000000d+00

23 Ho 16 nK '1 17 nK II.50000000d+00

24 H 17 nK H 18 nK 11.60000000d+00

25 H1 18 nK II 19 nK 11.70000000d+00
--------------------------- +4-------- --------

26 H 19 1 nK H 21 1 K 1.80000000d+00

Summary of Input Network Data

Number of Vertices ................ 21
Number of Edges ...................... ... 26
Number of K-Vertices .................... 2
Network Density ....... .................. 0.124

Summary of Core Usage

Variable Current Usage %
Name Value

MAXEDG 5000 26 0.5
MAXVRT 2000 21 1.0

L -. . . ' " . ' . ' .. " - . " " . ' " "." . -' ".: " .i " - - . '" " " " " "



-32-

PolyChain - Vcraion 83.1 Page 3
Polygon to Chain Reductions
in Network Reliability

Date : Tue Jul 26 i983
Time : 12:58:26

Network Series-Parallel Complex
Reduced Network

Edge II Vertex ' Type 11 Vertex ' Type I' Reliability
--- 4------------------------

- +------------------------------ ------------------------

14 1 : K H 9 nK ::.31422812d+O0
- ----------------- 4------------------ 4-----------------

5 H 1 :K H 6 nK HI.53817522d+00
S4..---------------- ------------------ 4-----------------

19 H 6 nK H 13 nK H:.18000000d-01
*------..----------------4.--------------4----------- 4.------------------------

13 H 6 1 nK H 10 nK '.40000000d-01
S--------------------------------------------------------

- 26 H 9 : nK H 21 K I'.11760000d+00
------- 44-------4---------4.--------------4----------- 4.------------------------

15 1 9 1 nK H 10 1 nK 'H.60000000d 00
- --------------- ----------------- --------------------

22 H 10 1 nK H 13 1 nK H1.64000000d-01
------ 4-------4---------4.--------------4----------- 4.------------------------

C 21 H 13 1 nK H 21 K ',.30000000d+00

--

..! *



- 33 -

PolyChain - Version 83.1 Page 4
Polygon to Chain Reductions
In Network Reliability

Date : Tue Jul 26 1983
Time : 12:58:26

Updated value of H 0.21679720d+00

Reductions Performed

Series ........ 15
Degree 2 ...... 0
Type 1 ........ 3
Type 2 ........ 0
Type 3 ........ 0
Type 4 ........ 0
Type 5 ........ 0
Type 6 ........ 0
Type 7 ........ 0
Type 8 ........ 0

Original Reduced % Reduction
Network Network

Edges .......... 26 8 69.2
Vertices ....... 21 6 71.4
K-Vertices ..... 2 2 0.

Solution Time = 0.02 Secs.

..



• , - 3M -

For the series-parallel complex case, PolyChain also writes
a file with the updated value of M and the reduced network.
We next present the file, named "polychain.out", generated
in this example. This file can be used as input to a fac-
toring algorithm program.

0.21679720d+00
-1 9 0.31422812d+00

-1 6 0.53817522d+00
6 13 0.18000000d-01
6 10 0.400000OOd-01
9 -21 0.11760000d+00
9 10 0.60000000d+00

10 13 0.64000000d-01
13 -21 O.30000000d+00

The reduced network obtained by PolyChain for the ARPA com-
puter network is given in figure VI.

*Z 1

m6

9

Figure VI - Reduced Network

.

-- -** %"

.o' . .

*1 '



L71

- 35 -

5. Large-Scale Networks

Next, we test PolyChain with a number of large-scale net-
works. These networks help us understand PolyChain's
behavior when treating large networks and enable the estima-
tion of CPU times for even larger problems. A random net-
work generator was used to provide the series-parallel corn-
plex networks, while the series-parallel reducible networks
were built aggregating a number of 150 vertex, 208 edge net-
works. Problems were run on the VAX 11/750 of the
Etcheverry Hall VAX/UNIX CAE Laboratory, at Berkeley. The
code was compiled on the UNIX f77 compiler using the -0
optimizing option. The code was run under the UNIX operat-
ing system. CPU times were measured through the "dtime"
system routine. Table I contains a summary of the networks
tested.

Prob Edges Vertices K-Vertices Density Reducible ?- -m

1 208 150 63 .019 Yes

2 418 300 126 .009 Yes

3 838 600 252 .005 Yes

4 1258 900 328 .003 Yes

5 2518 1800 756 .002 Yes

6 211 150 63 .019 No

7 428 300 126 .010 No

8 840 600 252 .005 No

9 1272 900 328 .003 No

10 2521 1800 756 .002 No

Table I - Large-Scale Test Problems

The results obtained for these problems are contained table

~Z1

,_ .,

_. .



.-.7 7. - -7 s7

-36-

R E D U C T I 0 N S Mean
Prob CPU

Ser Deg2 Tyl Ty2 Ty3 Ty4 Ty5 Ty6 Ty7 Ty8 Time

1 87 56 8 24 3 0 5 0 1 17 0.27s

2 174 114 16 49 6 0 10 0 2 35 0.57s

3 348 230 32 99 12 0 20 0 4 71 1.09s

4 522 346 48 149 18 0 30 0 6 107 1.60s

5 1044 694 96 299 36 0 60 0 12 215 3.23S

6 52 9 0 1 0 1 0 0 0 3 0.30s

7 98 18 1 1 0 0 0 0 0 1 0.60S

8 216 50 0 2 0 0 0 0 0 4 1.14s

9 330 36 2 1 0 0 0 0 0 1 1.66s

10 583 101 0 2 1 0 0 0 0 1 3.58S

Table II - Test Results

Each test problem was run 10 times. The problems, however,
do not cover a very wide spectrum of networks and therefore
some bias may exist in our conclusions.

The tests agree with the classification of the algorithm as
being 0(!E!). The network size (IED processed per CPU
second varied from 733.33 to 784.28 edges/sec for the
series-parallel reducible networks tested and from 694.08 to
766.26 edges/see on the series-parallel complex networks.
The mean network size (IED processed per CPU second was,
respectively, 775.37 and 725.17 edges/sec for the reducible
and complex networks.

These first results show that PolyChain is feasible for com-
puting K-terminal reliability of large-scale series-parallel
reduoible networks. With 1 min. CPU, one should be able to
compute the K-terminal reliability of a series-parallel
reducible network upwards of 35,000 edges.

.. I. . . .... .. .



- 37 -

6. Conclusions and Recommendations

6.1. Conclusions

This report discussed the design and implementation of
PolyChain, a portable FORTRAN code for evaluating undirected
network reliability via polygon-to-chain reductions, [S823,

V. [W82J. The code's implementation facilitates further exten-
sons and enhancements. It uses a multilist data structure
representation of the network, which enables good core
management and efficient network manipulation. Input is
simple and format free. Input data is tested for con-
sistency and execution is terminated, when inconsistent data
is detected. Outputs are detailed and a data file, contain-
ing the reduced network, is written, when the network is
series-parallel complex.

The code was tested on large-scale networks and the results
are encouraging.

A copy of the program's source code is available through the
author.

6.2. R m ations

Further testing is still needed to ensure the code's
correctness. A random network generator is also required,
so that large-scale networks can be further tested on
PolyChain. This generator should have the capability of
generating both series-parallel reducible and complex net-
works.

The algorithm has a constraint on the topology of the input
network. The network must be nonseparable. In the present
version, PolyChain does not test for this requirement.
Since these networks may occur in practice, a routine to
check for this condition is desirable. Aho, Hoperoft, and
Ullman, [A74], present a Depth First Search based algorithm
for determining all nonseparable components of a network.

To insure the evaluation of the K-terminal network reliabil-
ity for any network, this code should encorporate a factor-
ing algorithm. In this manner, the program could oscillate
between both algorithms until a final result is attained.

,: . ' ' .' . :.J . '.. . , - '. '. '. .- " . . .. . + ..- '- " .. + - .. . ; .' . . . + . . . . . . . . . ., .



- 38 -

7. References

[A741 Aho,A.V.,Hopcroft,J.E.,Ullman,J.D., The Design and
Analysis of Computer Algorithms, pp. 185-186,
Addison-Wesley Publishing Company, 1974

[A83] Agrawal,A.,Barlow,R.E., "A Survey of Network Reli-
ability", ORC 83-5, Operations Research Center,
University of California, Berkeley, 1983

[B75] Berztiss,A.T., Data Structures: Theory and Prac-
tice, Academic Press, 1975

(H80] Helgason,R.V.,Kennington,J.L., Algorithms for Net-
work Programming, John Wiley and Sons, 1980

[K73] Knuth,D.E., The Art of Computer Programming,
Volume One: Fundamental Algorithms, Addison-
Wesley, 1973

[T78] Thesen,A., Computer Methods in Operations
Research, Academic Press, 1978

ES82] Satyanarayana,A.,Wood,R.K., "Polygon-to-Chain
Reductions and Network Reliability", ORC 82-4,
Operations Research Center, University of Califor-
nia, Berkeley, 1982

[W82] Wood,R.K., "Polygon-to-Chain Reductions and Exten-
sions for Reliability Evaluation of Undirected
Networks", Ph.D. Thesis, Dept. of Industrial
Engineering and Operations Research, University of
California, Berkeley, 1982

.*,

,. ".,',.-, , ,' .,.. . , ,' ° ," • .."->,"..• "[..-. -.. . . . . . . . .. . . . . . . . . . . . . . . ... .-.. . . . . . . . . . . . . .. . . . . . .4. , .-...



Po lyCha in

.' A COMPUTER PROGRAM FOR RELIABILITY EVALUATION OF LARGE-SCALE
" 'UNDIRECTED NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONSt

Operations Research Center Research Report No. 83-10

Mauricio G. C. Resende

October 1983

U.S. Army Research Office - Research Triangle Park

DAAG29-81-K-0l60

Operations Research Center
University of California, Berkeley

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

tPartially supported by Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico - CNPq, Brazil. Reproduction in whole or in part is per-
mitted for any purpose of the United States Goverment.



THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN
THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD
NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.



00

IIAI

~ it0 4

A ~ 
'.4-

00 
it'

Nil. 

4i.

irk4 

' ~~ 
4


