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PREFACE

There are numerous operational requirements 4v-the-Aki-Fer-e for remotely

sensed ingery. The vast amounts of image data acquired in these applications

pose a particular problem for transmission to other locations. In order to

achieve real-time operation and to conserve communications channel bandwidth,

it is common to compress the image data. Suitable image compression techniques

reduce the required transmitted data rate by a factor of approximately 8-to-l,

while still maintaining acceptable image quality. Unfortunately, when an image

is compressed, it is much more susceptible to bit errors introduced by noisy

channels. nce noisy channel applications cannot be avoided, the investiga-

tion of imageicompression system performance over noisy channels is of prime

concern.
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SECTION I

SUMMARY

The Air Force has operational requirements for the transmission of com-

pressed imagery over noisy channels. Most image data compression studies assume

that the channel is ideal, and hence, error-free. Unfortunately, systems de-

signed in this manner are extremely vulnerable to errors in the transmitted

data. One method for providing protection against channel errors is to employ

forward error correcting (FEC) codes. However, in order to use channel coding

at a fixed transmitted data rate, some bits must be allocated to forward error

correction, thus reducing the bit rate available for source coding. Therefore,

it is desirable to devise methods that provide a reduction in channel errors,

or their effects, without reducing the number of bits available for source coding.

A method which satisfies this criterion is called bit weightinq (BW). In

bit weighting, available signal-energy is allocated to transmitted bits according

to the relative importance of each bit to the reconstructed image. Bit weighting

does not increase the complexity of the receiver and does not reduce the number

of bits available for source coding. A second technique, called soft decision

demodulation (SDD), tries to reduce the effects of bit errors by identifying

errors in significant bits and replacing the affected word with an estimated

word which has a smaller reconstruction error. Soft decision demodulation does

not impact the transmitter design and does not reduce the number of bits used

for source coding. It is noted that soft decision and bit weighting can be com-

bined to improve performance further.

This study investigated the utility of bit weighting alone, soft decision

demodulation alone, and combined bit weighting and soft decision demodulation.

* Additionally, some studies were performed to evaluate the usefulness of forward

error correction. The image compression scheme chosen for all of this work is

the two-dimensional discrete cosine transform (2D-DCT) over 16 by 16 blocks at

1,1
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1 bit/pel.

The following paragraphs summarize the efforts under the four tasks.

Task I - Derivation of Information Distribution for Coded Picture Elements

Quantities called A-factors represent the average reconstruction error

power in the image contributed by a bit error in a pulse code modulation (PCM)

symbol. The A-factors were calculated for Gaussian and Laplacian probability

density functions (pdfs), the natural binary code (NBC), the folded binary code

(FBC), and the minimum distance code (MDC), and 1-8 bit words. Using these A-

factors, optimum thresholds for soft decision demodulation were calculated. Bit

repeating with majority logic decoding was found to be an ineffective technique

for channel correction. More details on A-factors are presented in Section II,

and the results of Task I are employed throughout the remaining sections of the

report.

Task II - Modulation and Decoding Synthesis

For bit weighting, the A-factors were used to derive an energy weighted

PCM/phase shift keying (PSK) scheme which minimizes the number of bit errors in

the most significant bits while maintaining a constant average energy per block.

A dynamic programming algorithm was developed to optimize the energy allocation

among bits. See Section VI.

For soft decision demodulation it was determined that when a bit is declared

unreliable, it is more effective to "smooth" based on the transform coefficients

than on the reconstructed image. Both techniques were used, however. When

evaluating SDD performance, objective measures such as normalized mean squared

error and peak-to-peak signal-to-noise ratio were found to be useful. The final

performance criterion used was the subjective quality of reconstructed images.

,4 See Section IV.

Task III - Simulation of Error Control Methods of Compressed Images Over Non-

Ideal Channels

Nt*rerous Monte Carlo simulation runs were performed to evaluate bit weightng

2



alone, soft decision alone, and combined soft decision and bit weighting.

Also investigated was a forward error correction scheme which used a (7,4)

Hamming code to protect the most significant bits in a block (see Section V).

Bit weighting alone and soft decision alone each improve system performance,

with combined BW/SDD providing an additional 1.5dB and a clearly improved re-

constructed image. The channel coding scheme yields surprisingly good per-

formance over noisy channels with only slight degradation in the ideal channel

case when compared with allocating all bits to source coding.

Soft decision demodulation is trivial to implement since only six bits

out of 256 per block need to be monitored, and the estimate for an unreliable

word is based on coefficients from adjacent blocks. The concept of bit weighting

weights the relative signal energy for each PCM symbol in a word by its sensi-

tivity to digital transmission errors. This method applied at the transmitter

does effect the transmitter design. To reduce transmitter switching rates,

near optimum performance may be achieved by transmitting groups of PCM symbols

at the same energy level where the number of groups is less than the number

of bits in a PCM word. The digital noise is reduced by allowing more energy

to be used for the most significant bits of a PCM word resulting in a smaller

bit error probability. This is accomplished at the expense of less energy

on the least significant bits. The results indicate even though more total

errors are made they are not made on bits which are significant and performance

is improved.

Task IV - Spatial Image Coding

The goal of Task IV was to develop an image transmission system simulationK based on a spatial image coder which would provide good quality images, low

bandwidth requirements and error protection for non-ideal channels. This

suggested design utilizes a technique called Block Truncation Coding (BTC)

in combination with bit weighting and Quadrature Amplitude Modulation (QAM).
.o'3



An advantage of Block Truncation Coding is the ease with which it may be

matched to (QAM) with bit weighting. This technique matches the probability

of transmission errors for a given bit to the relative importance of that bit

within a digital word. This task then has developed a modified version of

BTC and describes the feasibility of matching this source coder to QAM, with

bit weighting. The combined simulation was conducted for binary symmetric

channels with Gaussian noise.

.44

i-a

,5-.

.

4

|,,'~~~~~~~~~~~~~.;, .*....., .....-...... ,,.....-....-,......,-.--S...-.-. • ... , ..... .* . . .,



P

SECTION II

A-FACTORS

1.0. INTRODUCTIONII
The quantities called "A-factors" by Rydbeck and Sundberg [1] represent the

average error energy in the reconstructed signal caused by errors in the different

bits of a transmitted codeword. The A-factors are useful for both bit-weighting

and soft decision since they indicate which bit errors produce the largest re-

construction error.

2.0. A-FACTOR CALCULATION

A block diagram illustrating the particular application of interest for

this work is shown in Fig. 2.1. As illustrated by this figure, the transform

coefficients are quantized, coded, and transmitted over a noisy channel, and then

resynthesized at the receiver. The total error power in the representation of a

particular coefficient is given by

2 A E {c - cid]2 (2.1)

where the expectation is taken over both the source and channel statistics.

2 2
It can be shown that 2 can be written as the sum of quantization noise eq

clipping noise c2, and noise due to channel errors ca2, so that

2= q + c + a  (2.2)

Focusing on the coefficient error power due to channel errors, the third

term in Eq. (2.2) can be written as

Ca 2 Ei, 2  {Ec - C^ 1 2

= P.E. {[c - 2  (2.3)

5
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In the above, the subscript "i" denotes the ith quantization level and the

subscript "I" indicates the Xth error sequence, shown as e Z in Fig. 2.1. The

quantity P I is the probability of occurrence of the ith error sequence as cal-

culated from the physical channel model. The quantities defined as "A-factors"

are the expectations in Eq. (2.3), viz

A i - i, ]2} o2 (2.4)

Thus, the number AI denotes the average coefficient error power caused by the

ith channel error sequence e .

For clarification purposes, consider the case on N-bit linear PCM so that

the compressor and expandor functions in Fig. 2.1 are straight lines with unity

slope. Then there are 2N-1 possible error sequences, and hence, there are 2N-l

A-factors, one for each error sequence. For ease of notation, the first N A-factors

correspond to the single bit error sequences, and eI = 1 0 ... 0 is the error se-
N-l

quence that causes a sign error. Naturally then, e2 = 0 1 0 ... 0 and so on.
N-2

Substituting Eqr. (2.4) into (2.3) yields

2

Ca = E P2kAX (2.5)

Since we are using coherent binary PSK modulation over an additive white Gaussian

noise channel, the channel errors are independent, and therefore, all m-bit error

sequences, regardless of their location, are equally probable. As a result,

Eq. (2.5) becomes

2 N 2

Ca = N pm(l-p)N'm s  A k (2.6)
M=l Z mf

bit A-factor subscripts

Now for a channel probability of error of 10- 2 or less, Eq. (2.6) can be approxi-

mated by

S Pa E Ak(2.7)

7



where multiple bit errors have been neglected due to their low probability of

occurrence.

The A-factors depend on the input signal pdf, the compressor/expandor func-

tions (quantization), the PCM code assignment, the number of quantization levels,

and the channel. Fortunately, for the present application, many of these quantities

are known or can be determined. 'First, for the discrete cosine transform (DCT),

the transform coefficients, except for the dc component, can be assumed to be

Gaussian, and the dc component has a uniform pdf. Thus, quantizers can be. chosen

to be matched in the mean squared error sense to a uniform pdf or a Gaussian pdf.

Since only single bit errors need be considered, all A-factors for N<8 can be

computed and tabulated. Next, the channel model can be limited to the binary

symmetric channel (BSC), where the probability of bit error is calculated from

the physical channel model and the modulation method described previously.

The only parameter not yet chosen is the code assignment. If only fixed-

length to fixed-length codes are considered, that is, no entropy coding, then

three possible choices are the natural binary code (NBC), the folded binary code

(FBC), and the minimum distance code (MDC). The FBC is preferred for the present

applications. The single bit A-factors for 1 through 8 bit codewords and the FBC

are shown in Tables 2.1 and 2.2 for Gaussian and Laplacian input probability

density functions, respectively.

3.0. COMPARISONS OF APPROXIMATIONS

* In [2], Sundberg discusses the effect of channel errors in PCM encoded signals

and how to improve performance using soft decision demodulation techniques. In

his paper, he makes approximations both in choosing the soft decision thresholds

and in calculating the overall system performance. It is instructive to review

his derivation and approximations, and compare his approximation of system per-

* forance to a more exact approximation.

8
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For an N bit quantizer, there are 2N-l different sequences which correspond

to possible channel errors. For each of these sequences there is an associated

A-factor which is the mean square error resulting from this sequence (averaged

over quantizer output statistics). The mean square error due to channel noise

* is then

a 2 N AiP i  
(2.8)

=: i a2i=l

where Pi is the probability that the error sequence "i" occurs. In [2], this

term is approximated by

2 N

SZ A' P. (2.9)

where V is the A-factor for a single bit error in bit "j", and P is the proba-J

bility of a bit error (BSC, independent bit errors). Equation (2.9) is exact if

the A-factor for a multiple bit error sequence is the sum of the corresponding

single bit A-factors. This occurs only for a linear, natural binary quantizer,

with uniform input signal density.

As in Sundberg's case, we will consider transmitting the N quantizer bits

independently through an additive white Gaussian noise channel using binary anti-

podal signalling. The M most significant bits of the codeword are monitored, and

if they fall within an erasure zone, the entire codeword is rejected and replaced

with an estimate. The following notation will be used:

E Signal energy

No/2 Double sided noise spectral density

N Number of bits in codeword

M Number of bits monitored for soft decision

Ti  Normalized threshold of erasure zone i

A. A-factor for noise sequence j (2N_1 )

3I
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A' A-factor for single bit error (N)

6S2  Mean square reconstruction error

P Bit error probability (hard decision)

Pui  Probability of undetected error in bit i:I
Pzi  Probability that bit i received in erasure zone

Pr Probability that a codeword is rejected

Straightforward calculation shows the probability terms are

P = Q(/ ) (2.10)

Pui = Q(V2-2E/No(Ti+I)) (2.11)

Pzi = Q(VW't7--(Ti+l)) - Q(v1E/No(l-Ti)) (2.12)

* The mean square error due to channel noise for a soft decision demodulation

system is

Ca 2 = Z2N-1  AjPj + SS2Pr (2.13)
a1 j=l

where P. is the probability that error sequency j occurs and that it is undetected

at the receiver. The probability, Pr, is the probability that at least one of

the monitored bits of the received codeword falls in the erasure zone. In this

exact form, calculation of the mean square error requires evaluating 2 N-1 A-factors

and probabilities.

The first simplification in calculating the channel noise requires use of

.4 Equation (2.9), which uses only single bit A-factors and assumes the summability

of A-factors. The approximation to the noise is

C2 Z -M A! Psi +iE A. Ph + 6S2Pr (2.14)

where

12
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Ps PR {undetected error occurs in bit i, and none of the other M-1 MSB

are received as unreliable}

Ph = PR (bit i received in error, and none of the other M-l MSB are

received as unreliable}

The expressions for these probabilities are

M
Psi  Pu. TI (0 - Pzj) (2.15)

j=l, jfi

M
Ph = P 11 (1 - Pz.) (2.16)

j=l

M
Pr = 1 - (1 - Pzj) (2.17)

j=l

Further simplification of the channel noise can be made by assuming that

the terms (l - Pz.) are very close to 1 and thus neglected in Equations (2.15)

and (2.16). Also the term Pr can be approximated by

M
Pr', = I - E Pz. (2.18)

j=l j

These approximations lead to Sundberg's form of the channel noise

2 M N
Ea =E A Pu. + Z A. P + 6S Pr' (2.19)

Using (2.19), a closed form solution to the optimum thresholds can be de-

rived and are

Ti(_r1 loge . (2.20)S2 M2/No) e6 2

The choice of M, the number of significant bits to monitor, is chosen as the

largest number such that AM - 6S2 > 1, in which case Ti is always well defined.

The optimum threshold for (2.13) and (2.14) cannot be calculateJ in closed form

and require considerable effort in using numerical techniques. For this reason,

13



we will assume that the thresholds of (2.20) are approximately optimum for (2.13)

and (2.14) also.

Example

For the purpose of comparing the three channel noise expressions (2.13),

(2.14), (2.19), consider the following example. Assume that the input signal

is distributed as N(0,l) and the quantizer is an 8-bit Max quantizer [1]. The

total mean square error for the system is

e2= C2 + C2 + C2  (2.21)a q T

where q and T are the noise terms introduced by the quantizer. The system

performance is described by comparing the output signal-to-noise ratio, SNRO,

to the channel signal-to-noise ratio, SNRCH, which are defined by

SNRO = 10 log1o (I/e2) (...22)

SNRCH = 10 loglo (2E/No) (2.23)

In Figures 2.2 through 2.5, the system performance is plotted for the different

design parameters, 6S2 and 2E/No. The first twu figures, with 6S2 = .1, represent

the case when a good estimate of the output is available. Figures 2.4 and 2.5,

with 6S2 = .5, represents the case where only a poor estimate of the output is

available. The other design value, 2E/No, represents the signal-to-noise ratio

of the channel on which the system is intended to be used. The channel signal-to-

noise ratios of 7 and 10 dB, correspond to bit error rates of approximately 1O
-2

and I0-3 respectively. Notice that in each of the graphs, the output SNR ratio

converges to about 33 dB as the channel SNR ratio becomes large. This value

represents the error due to the quantizer alone, with the error being introduced

by the channel being negligible. In every case, the exact form of the channel

noise gives higher output SNR than the two approximations. The two approximations

14
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tend to converge at high channel SNR and split at low channel SNR, with the

difference more pronounced for the good estimator (6S2 = .1). Also the approxi-

mate representations of the channel noise tend to be closest to the exact repre-

sentation at and around the design value for the channel SNR.

4.0. CONCLUSIONS

Sundberg's approximation to the channel noise given by Equation (2.19) is

not a close approximation to the actual channel noise at all channel SNR's, but

is much simpler and faster to calculate than the exact form, and results in a

useful lower bound to the output SNR of the system. The approximation given by

Equation (2.14) is more difficult to calculate than Sundberg's approximation

and does not show much improvement.
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SECTION III

DISTRIBUTIONS OF THE TWO-DIMENSIONAL OCT

COEFFICIENTS FOR IMAGES

1.0. INTRODUCTION

In image coding systems which use a two-dimensional Discrete Cosine Trans-

form (DCT) [1], there have been several different assumptions on the distributions

of the transform coefficients. Pratt [2] conjectured that the DC coefficient

should have a Rayleigh distribution since it was the sum of positive values,

and, that based on the Central Limit Theorem, the other coefficients should be

Gaussian. Netravali and Limb [5] agreed with the above assumption and also stated

that the histograms of the non-DC coefficients were roughly bell shaped. On the

* other hand, Tescher [3] indicated that the non-DC coefficients were not Gaussian,

:1 but Laplacian, and most recently, Murakami, et. al. [4] assumed that the DC coeffi-

cient was Gaussian and that the non-DC coefficients were Laplacian. These different

assumptions have led the authors to perform goodness-of-fit tests on the transform

coefficients in order to identify the distribution that best approximates the

statistics of the coefficients. In the tests, the Gaussian, Laplacian, Gamma,

and.Rayleigh distributions were considered.

This section shows that for many images the DC coefficient is best approxi-

mated by a Gaussian distribution and non-DC coefficients are best approximated

by Laplacian distributions, and that by using Laplacian quantizers for the non-DC

transform coefficients, the quality of the reconstructed image can be improved as

compared to Gaussian quantizers. This section is organized as follows. Sub-section

2.0 describes the goodness-of-fit test and how it was used with the transform coef-

ficients, and Sub-section 3.0 describes the results of the tests. In Sub-section

4.0, comparisons between the theoretical and actual quantization error for a two-

*dimensional DCT system are made for different assumptions on the distribution of

the coefficients.

20



2.0. GOODNESS-OF-FIT TEST

A well known test for goodness-of-fit of distributions is the Kolmogorov-

Smirnov (KS) test [8,9]. For a given set of data X = (xl , x2, ... , XM), the KS

test compares the sample distribution function FX(.) to a given distribution

function F(.). The sample distribution function is defined by

O, z < x

Fx(z) = j, X(n) < z < X(n+l) , n = 1, 2, ..., M -1, (3.1)

- x(M)

where X( n = 1, ..., M are the order statistics of the data X. The KS test

statistic, t, is then defined by

t = max IFx(x i) - F(xi)I. (3.2)
i=l, 2, ..., M

The KS test statistic is a distance measure between the sample distribution func-

tion and the given distribution function, with the distance defined by the maximum

difference between Fx(.) and F(.) evaluated at the sample points xi. When testing

the data against several distributions, the distribution that yields the smallest

KS statistic is the best fit for the data.

The KS test was used to test the distributions of the DCT coefficients with

* block sizes 8, 16 and 32 computed for the five images (Girl, Couple, Moon, X-Ray,

and Aerial) shown in Figure 3.1. These images have size 256 x 256 pels, with the

- gray levels PCM encoded at 8 bits/pel. For each image and block size, the KS

goodness-of-fit test was performed on the ten high energy coefficients in the

upper left hand corner of the transform block co0, c0 l, c02, c0 3 , C1 O, C1l, ci2,

c20, C21, and c30. The data for a given coefficient, 'ij', consisted of the points

ci4 (k), k = 1, ..., M, where the index k represents the position of the block in the

image, and the number of blocks, M, in a 256 x 256 image is related to the block

21
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22size N by M =(256/N). For these data points the sample mean and variance

c and Si. were calculated according to

M
ci = ci (k) (3.3)

-=11
k=1

* The data was then tested against the Gaussian, Laplacian, and Gamma distributions

which had mean and variance equal to the sample mean and variance, respectively.

In addition, for the DC coefficient, coo, the data points were tested against

the Rayleigh distribution which had variance equal to the sample variance.

3.0. KS TEST RESULTS

Partial results of the KS tests for coefficients c00 , c01 , and clO are shown

in Figures 3.2, 3.3, and 3.4, respectively, with each figure having a graph for

eacn of the tnree block.sizes 8, 16, and 32. These three coefficients were

chosen because they generally have the most effect on image quality. In each

graph the x-axis is composed of five discrete points representing the five test

images, with bar graphs representing the KS statistic for the given distributions,

Gaussian, Laplacian, Gamma, and Rayleigh. The Rayleigh distribution is investi-

*' gated only for the DC coefficient.

From Figure 3.2, it can be-seen that in every case the Gaussian KS statistic

is smaller than the Laplacian, Gamma, and Rayleigh statistics. Hence for all of

the images, it is reasonable to conclude that the DC coefficient, coo, is Gaussian

for all three block sizes in question. In almost all cases the Rayleigh distribu-

tion proved to be a very poor choice for modelling the DC coefficient. In most

cases for coefficients c01 and clO, the Gaussian KS statistic is larger than the

25
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Laplacian and Gamma, and hence the assumption that these coefficients are Gaussian

is unreasonable. The exception is the aerial image, for which the Gaussian KS

statistic is the smallest in almost every case, with the Gamma KS statistic

always the largest. In Figure 3.3, it can be seen that for coefficient c01 , the

Laplacian KS statistic is the smallest in most of the cases. In Figure 3.4, there

are approximately the same number of cases in which the Laplacian or Gamma KS

* statistic is the smallest. The results of the KS tests for the other high energy

coefficients were similar to the results for coefficients c01 and c10 , which gener-

ally showed that the coefficients were non-Gaussian and tended to be more Laplacian

than Gamma. This data indicates that for many images, it would be reasonable to

assume that all of the coefficients except c00 have a Laplacian distribution.

*| However, the results for the aerial image indicate that the Gaussian assumption

is reasonable for very 'busy' images with much detail.

4.0. SIMULATION RESULTS AT ONE BIT/PEL

*In light of the-results in Section 3.0, for block size N = 16 and average

rate of 1 bit per pel, the transform coefficients of the five images were quantized

* in two different manners. For the first method, it was assumed that the non-DC

coefficients were Gaussian, and thus, optimum non-uniform Gaussian quantizers

(see Max [6]) were used for all of the non-DC coefficients. In the second

method, it was assumed that the non-DC coefficients were Laplacian, and optimum

* non-uniform Laplacian quantizers were used for those coefficients. In both

methods a uniform quantizer was used for the DC coefficient, and the DC coefficient

* was assumed to be Gaussian. In all cases, the quantizers for the non-DC coeffi-

cient were scaled to the sample mean and variance of the coefficients for the

image, and the bits allocated to each coefficient were determined by the Wintz-

(urtenbach [7] scheme which is dependent on the sample variance of the coefficients

of the image. The theoretical error due to quantization can be expressed by

32
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q2 t (3.5)

where is the quantization noise and 2is the truncation noise which occurs
where Cqt

when a coefficient is allocated zero bits, and hence set to zero. If NBij repre-

sents the number of bits allocated to coefficient cij, the expression for quanti-

zation and truncation noise is given by

C 2 .. nq. S i,j = 0, 1, 2, ... , N - 1, (3.6)
q .lj

NBij > 0

and

2 t Sij ij = 0, 1, 2, ... , N - 1, (3.7)

Ij

NBij = 0

where nqij is the normalized quantization noise for the optimum NBij bit quantizer
for the given distribution and Si. is the sample variance as in Equation (3.4).

The theoretical and simulation performance for the three quantization methods

and the five images are presented in Table 3.1. In this table the theoretical

signal-to-noise ratio (SNR) is computed from

Theoretical SNR = S2/C 2  (3.8)
all i, j

while the simulation SNR is given by

(256)2

[Yi _ Y]2

Simulation SNR = i =1 (3.9)
(256)2

[Yi _ i]2

i =1

where Yi represents the ith o-iginal pel, y is the mean value of the original pels,

and Yi is the ith reconstructed pel.
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Table 3.1.I!

THEORETICAL AND SIMULATION PERFORMANCE (SNR)
FOR DIFFERENT QUANTIZERS

(DISCRETE COSINE TRANSFORM, 1 BIT/PEL, N = 16)

Image Gaussian LaDlacian

Girl Theory 19.48 dB 18.41 dB
Simulation 16.82 18.25

Couple Theory 18.51 17.40
Simulation 14.98 16.62

Moon Theory 1J4.57 13.53
Simulation 12.29 13.45

X-Ray Theory 11.13 10.07
Simulation 9.31 9.62

Aerial Theory l4.26 13.09
. Simulation 13.46 13.50

4'
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Ai Notice that when it is assumed that the non-DC coefficients are Gaussian,

the theoretical SNR is about 3dB higher than the simulation SNR, but when it is

assumed that they are Laplacian, the theoretical SNR is only about 1dB higher

than the simulation. In addition, using Laplacian quantizers in simulations

resulted in a gain of about 1dB over the Gaussian quantizers, which coincided

with slightly better quality in the reconstructed images, due to the Laplacian

quantized images having less blocking than the Gaussian quantized images. For

the aerial image, the actual SNR for-the Gaussian and Laplacian quantizers are

about the same, but the theoretical values differ, with the higher theoretical

* *. value for the Gaussian quantizer and a lower theoretical value for the Laplacian

quantizer. This result is consistent with the data from the KS tests which

indicated that the aerial image was best represented by a Gaussian distribution.

From these results it is evident that the Laplacian assumption for non-DC coeffi-

cients yields a higher simulation SNR and a much better agreement between theory

and simulation than the Gaussian assumption.

5.0. CONCLUSIONS

The results given in this section indicate that for a large class of images,

the DC coefficient is best modelled by a Gaussian distribution, and the non-DC

transform coefficients are best modelled by a Laplacian distribution, which agrees

with the assumption of [4]. Assuming that the coefficients are Gaussian will, for

most images, result in a higher theoretical performance than can actually be at-

tained. By modelling the transform coefficients as Laplacian and using the appro-

priate quantizers, not only can simulation performance be improved, but the theo-

retical performance will be much more indicative of the actual performance.

However, as in the aerial image, some images are best represented by Gaussian

statistics, and thus care must be taken to correctly classify the images that are

to be processed.
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SECTION IV

SOFT DECISION DEMODULATION

AND

TRANSFORM CODING OF IMAGES

1.0. INTRODUCTION

In order to transmit binary image data efficiently, it is necessary to employ

some method of bandwidth compression in the image coding system. The two most

popular methods that have been proposed for efficient coding of images are differ-

ential pulse code modulation (DPCM) and transform coding (TC). Due to the different

coding techniques used in these systems, channel errors that occur during trans-

mission have different effects on the reconstructed image. In DPCM systems, a

channel error causes a streak in the reconstructed image, while in TC systems a

channel error is averaged over all the pixels in a block, with the severity of the

error depending on the importance of the coefficient in which the error occurred.

The channel errors can be virtually eliminated by the use of forward error correcting

codes (FEC), [7,8], but the use of these codes increases the bandwidth necessary

for transmission, and thus reduces the efficiency of the coding system. Another

technique for reducing the effect of channel errors is to employ a receiver that

can detect channel errors, and if needed, modify the decoder output. The primary

advantages of these type systems is that they do not require an increase in the

transmitted data rate, and no special equipment is needed at the transmitter since

all of the error detection/correction is performed at the receiver. An example

of such a system for DPCM and PCM coded images can be found in Ngan and Steele [2].

In their system, after the image has been decoded, each pixel in the reconstructed

image is compared to the previous pixel in that row. If the difference of the

pixels is greater than a statistically determined threshold, then the pixel is

replaced by an estimate determined by averaging surrounding pixels. In [1],
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Sundberg presents a method of improving the performance of a speech coding system

using soft decision demodulation, in which certain of the received bits are moni-

tored for reliability, with the decoder rejecting an entire codeword and replacing

it with a suitable estimate if one of the monitored bits is received in error.

Although both of the systems employ error detection at the receiver, they differ

in that Ngan and Steele's method attempts to detect errors on the reconstructed

image while Sundberg's method attempts to detect errors at the output of the

channel, before the image is decoded; This section presents an image coding

system using transform coding for bandwidth compression, and Sundberg's soft

decision demodulation technique for error control.

2.0. SYSTEM DESCRIPTION

A block diagram of the coding system using transform coding and soft decision

demodulation is shown in Figure 4.1. The input, xi, is an N x N block of pixels

and H is a two-dimensional discrete cosine transform (DCT). Each of the coeffi-

cients in the N x N block at the output of the transform is quantized independently

by a Gaussian quantizer scaled to the mean and variance of the coefficient, with

the number of bits allocated to each coefficient determined by the Wintz-Kurtenbach

bit allocation scheme [3]. In this scheme, for a given number of bits per block,

the highest energy coefficients are allocated the most bits and the lowest energy

coefficient allocated the least bits (truncated coefficient). These bit alloca-

tions are held fixed for each of the N x N transform blocks of the image. Notice

that no error correction/detection techniques are implemented at the transmitter.

At the receiver, the codeword representing a coefficient is decoded to the cor-

responding reconstructed coefficient ci , but in addition, the most significant

bits (MSB) of the highest energy coefficients are monitored for reliability.

If it is determined that one of the MSB is unreliable, then the coefficient

corresponding to that codeword is rejected and replaced by an estimate. The
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reconstructed image, xi, is then obtained by the inverse DCT operation, H-

In this type of system, there are three types of events that can occur:

1. A channel error occurs, but the receiver does not detect it or

2. A channel error occurs, and the receiver detects it and replaces

the affected coefficient with an estimate, or

3. No channel error occurs, but the receiver thinks one has, and it

replaces the affected coefficient with an estimate.
'1

In designing a soft decision system it is desirable to minimize Type 1 events

(maximize Type 2 events) when channel errors have occurred and to minimize Type 3

events when no channel errors have occurred. Since increasing the probability

of a Type 2 event given that a channel error occurs also increases the proba-

bility that a Type 3 event will occur, the goals stated above are conflicting,

and some trade off must be made between the different types of errors. The

criterion used here in optimizing the system is the familiar minimum mean

squared error between the original and reproduced image. Although minimizing

mean squared error does not necessarily coincide with the best perceptual image,

it is useful in that it gives a basic framework for the initial design of the

N decoder.

3.0. SOFT DECISION DEMODULATION

To simplify notation, the N x N matrix of coefficients will be considered

as a I x N row vector, in which cI - cN is the first row of the N x N block,

CN+l - C2N is the second row of the N x N block, and so on. Consider coefficient
2N

i, c, which has average energy a and has been allocated NB. bits. The mean

squared error in reproducing ci at the receiver is

€i = (NBi) + E (NBi) + E2(i)] (4.1)
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where e2 and 2 represent the quantization and clipping noise introduced at theq rq c e

transmitter and a represents the noise introduced by the channel. Each of thesea
quantities are normalized, assuming that the input to the NB bit quantizer has

unit variance. The terms e and E2 depend on the number of bits allocated to

the quantizer and the probability density function of the input to the quantizer.

The sum e2 + C2 for unit variance optimum Gaussian quantizers of size one to
q c' 2

. eight bits can be found in Table 4.1 [4]. The channel noise term, E a depends

on the noise on the channel and the type of coding and modulation that is used.

Since the basis vectors of the DCT are approximately the same as the princi-

pal components, the mean squared error in the coefficients is approximately the

same as in the reproduced image, and since the basis vectors are virtually un-

correlated, the mean squared error in the coefficients is the sum of the terms

in (4.1). Thus, the mean squared error in the reproduced image can be expressed by

N
2

2= E s. (4.2)
T

j=1

For a system with no error correction/detection, the channel ncise can be expressed

as

NBi

.;" e2i) = P • E A(j, NBi) (4.3)
a

j l

where P is the probability of a channel bit error. The term A(j, NBi) is the

so called A factor, which represents the mean squared error in reproducing a

quantized codeword with a single bit error in bit j of an NBi bit quantizer

(averaged over quantizer output statistics) [l]. The A factors and quantization

noise for folded bi,!-ry Gaussian quantizers of size one to eight bits are shown

in Table 4.1 [6]. Following the development in Sundberg [l], we assume that the

bits of a codeword are transmitted independently as binary antipodal signals of
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97

energy E, and that the additive noise has double sided noise spectral density

N0/2. At the receiver the most significant bits of the highest energy coeffi-

cients are monitored for reliability. If the received signal for bit j falls
in the erasure zone (-Ti !, Ti v'), 0 < Tij < 1, then that bit is considered

unreliable, and hence the entire codeword is rejected. The number of MSB that

must be monitored and their associated thresholds Tij, are determined by the A

factors and the channel signal-to-noise ratio, 2E/N O.

The following derivation of optimum threshold levels is an adaptation of

the derivation in Sundberg [1], but it is included here because of the "two-

dimensional" notation and for clarity. The expression for the channel noise

with a soft decision receiver is

Mi  NBi

(i)= A(j, NBi ) Pu(i, j) + P A(j, NBi ) + ac7 Pri  (4.4)

j=l j=Mi+l

In (4.4) Mi is the number of most significant bits that are monitored, Pu(i, j)

is the probability that bit j is in error but the received signal is not in the

erasure zone, P is the channel error probability, Pri is the probability that at

least one of the Mi most significant bits were received unreliably, and Aoi is

the normalized mean square estimation error for coefficient i. The expressions

for the probabilities in (4.4) are

P = Q(PTENO) (4.5)

Pu(i, j) = Q(.1'E/NO (Tij + )) (4.6)

-13

where Q() is the Q function defined in [5]. To calculate Pri , it is useful to

introduce Pzij, which is the probability that bit j of coefficient i is received

i the erasure zone
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PZj : Q(.2OE/N (1 - Tij)) - Q(/2E/No (1 + Tij)) (4.7)

The probability, Pri, can now be expressed as

Mi  Mi

Pri - 1 - ]I (1 - Pzij) Z 5 Pzij (4.8)
j=l j=l

Optimizing (4.4) for Mi and Tij using (4.5) - (4.8) yields the optimum thresholds

3Tj loge (- 1l (4.9)ij =2(2E/No) e

and Mi is the largest j such that T i is defined and greater than zero.
The proposed estimate of ci given that a soft decision error has occurred,

is simply the average of the corresponding coefficients in neighboring blocks.

For example, assure that coefficient c1 in block (Z, m) has been determined to

be unreliable, then it is rejected and replaced by

cl(x, m) =I131 i ,m) +(1/(3)- l,m- 1) +

C (Z' m - 1)]. (4.10)

These three neighboring blocks will have already been decoded, and it is assumed

that they have been decoded correctly. In addition to the soft decision demodu-

lation, an averaging process is implemented on the high energy coefficients in

order to correct some of the errors that are undetected by the soft decision

receiver. For each block that is not on the edge of the image, the sample mean

, and variance of a coefficient in the eight neighboring blocks are calculated.
.If the variance is less than 20a. then the coefficient is replaced by the mean

of the neighboring blocks. The graphic location of these neighboring blocks is

shown in Figure 4.2. The blocks marked with an S are those used in the soft
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decision estimator, those marked with an A are used in the averaging procedure.

This averaging technique allows the correction of some of the errors that have

gone undetected (Type 1), especially in areas of the image that are constant,

but has no effect on blocks in regions where the intensity is changing rapidly.

4.0. SIMULATION

The system proposed above was tested by computer simulation. The images

used were of size 256 x 256 pixels and they were divided into 256 16 x 16 blocks

for processing (N = 16). The three highest energy coefficients, 1, 2, and 17,

were selected for soft decision monitoring. These coefficients are the three

coefficients in the upper left hand position of each block. Coefficient 1,

also known as the DC coefficient, contains the information on the overall in-

tensity of the transformed block, and has the highest energy (most variation)

of all the coefficients. Coefficient 2 contains the information of vertical

edges in the block and coefficient 17 contains information of the horizontal

-edges in the block, and they have approximately the same energy.

The choice of the Au2's for the three coefficients were obtained experi-

mentally by comparing the visual effects on the image. Since coefficient 1

is more highly correlated across surrounding blocks than coefficients 2 and 17,

the reconstruction error A2 is less than Ao or Au2. Due to the symmetrical

location of coefficients 2 and 17, the reconstruction errors for these coeffi-

cients were always assigned the same value.

5.0. RESULTS

The effects of channel errors and soft decision demodulation on two images

is shown in Figures 4.3 and 4.4. In these figures, the (a) images are the o 'tput

of the transform coding system with transmission rate 1 bit per pixel and no error

detection/correction or channel noise. When channel noise is introduced into the

-2system with probability of error 10- , the (b) images are the result. The (c)
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and (d) images are a result of introducing soft decision demodulation and the

averaging procedure described previously to the same channel noise that produced

the (b) images. The parameters of the soft decision system that produced images

(c) and (d) are in Table 4.2. For the (d) images, the Aa. parameter of coeffi-

cients 2 and 17 was decreased from that used in the (c) images, to increase the

width of the erasure zones for the bits of these coefficients. This change

increases the probability of Type 2 and 3 events, and decreases the probability

of Type I events that occur in these coefficients. In both (c) and (d) systems

only the two MSB of the three coefficients are monitored for reliability. Thus,
only 6 of the 256 bits received for each block of data need be monitored for

reliability.

In comparing Figures 4.3(b), (c) and (d) it can be seen that in this case, the

implementation of soft decision demodulation resulted in a very much improved image.

In Figure 4.3(c) six of the blocks Where a DC error occurred in Figure 4.3(b) have

been detected by the soft decision receiver and restored to very near their origi-

nal levels. An error in the DC coefficient can be recognized by a uniform change

in the intensity of all the pixels of the block in which the error occurred. The

most common result of an error in the DC coefficient is a block that is all white

or all dark, and has lost all of its detail. For example, in the dark block above

the flower on her left shoulder, the error in the DC coefficient was not detected

(Type 1) and hence the entire block has lost its detail. In Figure 4.3(c) there

are two blocks in the upper right part of the image that have contours introduced

by the channel noise. The vertical contour in the block near the top of the pic-

ture was caused by a Type 1 event in the second MSB of coefficient 2, and the

norizontal contour in the block near the center of the picture was caused by a

Type 1 event in the second MSB of coefficient 17. It should also be noted that

in this latter block, an error occurred in one of the least significant bits of

the OC coefficient, causing it to darken as seen in Figure 4.3(b). However, the
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Inage Coefficient Aa Bit Threshold Averaging
' 1 .3 1 .231 yes

2 .172

(c) 2 .8 1 .127 no
2 .055

17 .8 .1 .127 no
2 .055

1 .3 1 .231 yes
2 .172

(d) 2 .5 1 .179 yes
2 .115

17 .5 1 .179 yes
2 .115

TABLE 4.2. PARAMETERS FOR SOFT DECISION
SYSTEM

14

' 49



averaging procedure was able to restore the proper intensity of this block since

all of the neighboring blocks are approximately the same intensity. With the

wider erasure zones used for coefficients 2 and 17 in the system used for Figure

4.3(d), the errors that caused these contours were detected (Type 2) and the

contours eliminated.

The images in Figure 4.4 demonstrate some of the trade-offs involved in a

soft decision system. While most of the intensity errors in Figure 4.4(c) were

detected using soft decision, the demodulator was unable to restore all the blocks

to the original level. Only the black block above the man's left shoulder in

4.4(b) was restored correctly. A DC error was detected in the block in the upper

right hand corner, but since this block is decoded first and there were no pre-

vious blocks from which to base an estimate, the DC coefficient of this block was

-: replaced with the mean value, which results in the light block of Figures 4.4(c)

and (d). More interesting in this image is the introduction of errors in the

soft decision process (Type 3). Notice that two errors appear in Figures 4.4(c)

and (d) that are not in Figure 4.4(b). The first of these is inthe block on the

man's (right) shoulder, in which a false vertical contour appears. In this block,

the second bit of coefficient 2 was decoded as unreliable although it was not in

error. Due to the edge occurring in this block, it is dissimilar with the neigh-

boring blocks previously decoded, and thus the estimate for this coefficient is

poor. The other error introduced by the soft decision receiver is in a block

near the center of the image. In this block, the receiver decoded the first

bit of the DC coefficient as unreliable, and replaced the coefficient with an

estimate. Although the error is noticeable, it is not too severe since there is

not a sudden change in the intensity of neighboring blocks and thus a good esti-

mate could be obtained.

In Figures 4.5 - 4.7, the performance curves for the soft decision systems

are plotted. In these figures, the x axis, SNRI, represents the channel signal-

50

!,.

.

- . . . .

.

.. 

_.. . , ° o .° •

X . ,, , ' ."- . . '-,-. ., . . .". - - ••:: - " ':" "-" : ' " " " " = . . :



*.1

20

15-

- Hard Decision

Soft Decision

• 10

0

.

*5 -

*0. a I I I I

0 2 4 6 8 10 12 14 16

SNRI -dB

Figure "'Expected Performance for
. FHard and Soft Decision Receivers

51

S -----.- --- A



5,

20

Expected
(Theoretical)

/
15- / <. Actual

(Simulation)

10

.-. IO. . r o x e

55

0 I

0 2 4 6 8 10 12 14 16

SNRI-dB

Figure 4.6. Comparison of Expected and
Experimental Performance for
Soft Decision Receiver (Assuming
Gaussian Coefficients)

52



20

Expected
1 (Theoretical)

.: . _. Actual1
(Simulation)

10

5

A 0

4 0 2 4 6 8 10 12 14 16
4.

SNRI-dB

Figure 4.7. Comparison of Expected and Experimental
Performance for Soft Decision Receiver
(Assuming Laplacian Coefficients)

53
a,



,. ~ ~ , . ' . . .. ., - 7 -7 7.7 • ,P o .. ., . . . .. ' . _ - - . . . .. • . . , .

to-noise ratio 2E/N O, and the y axis, SNRO, represents the output signal-to-noise

ratio defined by

<(x. i) >
SNRO= (4.11)

<(xi - i)2>

where.x is the mean value of the image pixels and the xi's are the reconstructed

pixels.

In Figure 4.5, the expected performance for a hard and soft decision re-

ceiver for a I bit/pixel system are plotted. The soft decision system has the

parameters as described in system (d) of Table 4.3, with the soft decision thres-

holds fixed at their optimum values as in Equation (4.9) for an expected channe,

SNR of 7.35 dB (Pe = 10-2). The output SNR for the soft decision system was

calculated from Equations (4.1), (4.2), (4.4), and (4.5) - (4.8), and the out-

put SNR for the hard decision receiver was calculated using Equations (4.1),

(4.2), (4.3), and (4.5). From Figure 4.5, it can be seen that soft decision has

better performance than hard decision if the channel SNR is less than lOdB. At

the design value, SNRI = 7.35dB, the soft decision receiver shows about 2dB

improvement over the hard decision receiver. For SNRI greater than lOdB, the

hard decision receiver is only slightly better than the soft decision receiver,

and at very high SNRI, they both level off at SNRO = 19.2dB. This leveling off

represents the quantization noise introduced at the transmitter, since at high

channel SNR the probability of a channel error goes to zero. These curves are

in agreement with the images of Figures 4.3 and 4.4 which showed improvement when

the hard decision receiver for the noisy channel was replaced by a soft decision

receiver.

In Figure 4.6, the expected performance for the soft decision system is

compared to experimental results of a Monte Carlo simulation of the system (see

Appendix A.4). It is clear from this figure that the expected (theoretical) per-
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formarce curve does a very poor job in representing the actual system performance.

Notice that at high SNRI, the curves differ by more than 4dB, and since the quanti-

zation noise is dominant in this region, it can be inferred that the differences

in the curves arise from mismatched quantizer statistics. Thus, the original

assumption that the OCT coefficients are Gaussian distributed may be invalid

for a 16 x 16 transform block. Further investigation indicated that a Laplacian

distribution is a much better fit to the statistics of the OCT coefficients than

a Gaussian distribution, which is in contradiction with past practice [9, 10].

The expected performance for the soft decision system was recalculated assuming

that the coefficients were Laplacian and the result is shown in Figure 4.7 along

with the experimental results..

Since the A factors and quantization noise terms used in calculating the

system performance are dependent on the probability distribution of the input

to the quantizer, it was necessary to calculate new A factors and quantization

noise terms in order to obtain the expected (theoretical) performance curve in

Figure 4.7. In the Monte Carlo simulation, the system used optimum Gaussian

quantizers for the OCT coefficients. The expected performance for this system,

with the assumption that the input to the quantizer has a Laplacian distribution,

is obtained by calculating new A factors and quantization noise terms for the

Gaussian quantizers with an input that has a unit variance Laplacian distribution.

From Figure 4.7, it is seen that the expected performance for the Laplacian

assumption is a much better indicator of the actual performance than the origi-

nal Gaussian assumption. For high channel SNR, the expected performance levels

off a 16.5 dB which is just over 1 dB greater than the simulation results.

The results above confirm that the OCT coefficients are much closer to

Laplacian statistics than to Gaussian. This implies that the system performance

could be improved by redesigning the quantizers to match the Laplacian statistics.
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6.0. CONCLUSIONS

In soft decision demodulation, if certain bits of a received codeword are

unreliable, the codeword is replaced by an estimate. By monitoring only the two

most significant bits of the three highest energy DCT coefficients, the recon-

structed image can be considerably improved for a system transmitting over a

noisy channel. The main tool used in analyzing soft decision systems is the A

factor. The A factors are a function of the spacing of the quantizer, the code

assigned to the quantizer, and the probability density of the input to the quan-

tizer. The invalid assumption that the DCT coefficients were Gaussian distributed

resulted in incorrect A factors for the system and led to erroneous results for

expected system performance. The expected performance was corrected by assuming

that the DCT coefficients were Laplacian distributed.
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APPENDIX A.4

This appendix contains the details of the Monte Carlo simulation from which

the experimental performance curve in Figures 4.6 and 4.7 was obtained. For the

simulation, the transmitted data rate was fixed at 1 bit/pixel and the block size

was N = 16. The soft decision thresholds were fixed at the values of the (d)

system described in Table 4.2. The system was tested using the girl image for

channel error rates of 10 2 O 3 and 104, which correspond to channel SNR's

of 7.35 dB, 9.8 dB, and 11.4 dB respectively. For each of the three error rates,

25 channel simulations were performed. A simulation consisted of coding the DCT

coefficients into their binary representation using optimum gaussian quantizers

scaled to the mean and variance of the coefficients. The number of bits allo-

cated to the quantizer of each coefficient are in Figure A-l. For each coded

bit of the image, an independent gaussian random variable was generated. The

variance of this random variable was set so that Q(l/a) = Pe, where Pe is one

of the three channel error rates that was tested. These gaussian random variables

determined whether a bit was decoded correctly, incorrectly, or within the soft

decision erasure zone. In each of the 25 simulations a different sequence of

random variables was used, so that 25 different noisy reconstructed images were

obtained for each of the three error rates. The experimental output SNR for an

error rate was obtained by averaging the mean squared error of the 25 reconstructed

images.
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Figure A.4-1. Bits allocated to the DCT
coefficients in the 16 x
16 transform block.
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SECTION V

HAM14ING CODING OF DCT-COMPRESSED

IMAGES OVER NOISY CHANNELS

1.0. INTRODUCTION

In the transmission of images over a noisy channel using transform source

coding, reconstructed image quality is substantially degraded by channel errors.
As a result, for noisy channel applications it is necessary to correct the channel

errors or to devise methods for reducing the effects of the errors. Efforts in

this latter category include the work by Ngan and Steele [1], Mitchell and Tabatabai

(2], and Reininger and Gibson [3]. The research described in the present section

is concerned with the former approach, namely, forward error correction of trans-

mission errors. Previous work on forward error correcting (FEC) codes used in
S,.

conjunction with the discrete cosine transform (DCT) over noisy channels has

been performed by Duryea [43 and Modestino, Daut, and Vickers [5].

Duryea [4] conducted theoretical and simulation studies of three convolu-

tional codes and three block codes. The three block codes studied were the (3, 1)

repetition or majority vote code, the (7, 4) Hamming code, and the (23, 12) Golay

code. For his simulation studies, Duryea uses a bit error rate of 10"3 and con-
siders only two error protection schemes with the (7, 4) Hamming code. In the

first scheme, a (7, 4) Hamming code was applied to all bits, while in the second
method, only a 6 by 6 square block of the lowest frequency DCT coefficients were

protected by the (7, 4) Hamming code. While the mean squared error was reduced,

the quality of the reconstructed image was not clearly improved.

Modestino, Daut, and Vickers [5] primarily investigate convolutional codes,

although they briefly consider an (8, 4) Hamming code and a (24, 12) Golay code.

They consider the three options of coding all bits of each coefficient the same,

coding each bit of a specified coefficient the same with variation between coeffi-

cients, and coding each bit of each coefficient differently. Further, their work
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emphasizes rate l/n short-constraint length convolutional codes which allow the

use of Viterbi decoding (short constraint length) but limit channel coding flexi-

bility (rate 1/n). Their results indicate that for noisy channels there is a

distinct advantage to allocating additional channel bandwidth to channel coding

rather than to source coding.

The research described in the present section is an extensive study of

using Hamming codes with the two-dimensional DCT (2D-DCT) at a transmitted data

rate of 1 bit/pixel over a binary symmetric channel (BSC). The system configura-

tion of interest is shown in Fig. 5.1. The combination of Hamming codes with

the 2D-DCT is logical since both methods are block oriented. The (7, 4), (15, 11),

and (31, 26) Hamming codes are used to protect the most important bits in each

transformed block, where the most important bits are determined by calculating

the mean squared reconstruction error contributed by a channel error in each

individual bit. A theoretical expression is given which allows one to compute

the number of protected bits to achieve minimum mean squared reconstruction error

for each code rate. By comparing these minima, the best code and bit allocation

can be determined. The design bit error rate of interest is 10-2. Monte Carlo

simulation results and reconstructed images are presented to demonstrate the

utility of the method.

2.0. TWO-DIMENSIONAL OCT

The monochrome images used for this work consist of 256 by 256 pixels with

each pixel represented by an 8-bit word. The two-dimensional DCT (2D-DCT) is a

popular transform for image compression at 1 bit/pixel [6], and it is considered

exclusively in this work. The 2D-DCT is defined by

N-1 N-l

F(u,v) =2j c(U) c(v) f(j,k).
j=O k=O

• cos (2j + s)u (2k + l)7v
cos C oNs (5.1)
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for u, v = 0, 1, ... , N - 1, c(O) = 11v2 - and c(u) = I for u = 1, 2,

N - 1. The inverse 2D-DCT is

N-i N-i

f(jk) 2 ( F c(u) c(v) F(u,v) cos [(2j + 1)u]N 2N "

u=O v=O

(2k + 1)vrv,

s 2N (5.2)

for j, k = 0, 1, ... , N - 1. One advantage of the 2D-DCT is that it can be

computed using "fast" algorithms.

To use the 2D-DCT in a data compression system, F(u, v) in Eq. (5.1) is

calculated over an N by N block (N = 16 for this paper), the lowest energy

* coefficients are discarded, and the highest energy coefficients are quantized

and coded. The scheme used for bit allocation is due to Wintz and Kurtenbach

[7]. The coefficients were quantized using minimum mean squared error (MMSE),

nonuniform, Gaussian-assumption quantizers for up to 36-levels [8] and using

MMSE Gaussian-assumption, uniform quantizers for more than 36-levels. The

quantizer output levels are represented digitally by the folded binary code

(FBC). In the absence of channel errors, this method produces good quality

reconstructed images at a rate of 1 bit/pixel.

3.0. CHANNEL CODING

A bit error rate (BER) of 10- 2 causes substantial degradation in the 2D-DCT

coded images. To reduce or remove these channel error effects, (7, 4), (15, 11),

and (31, 26) Hamming codes are investigated. In order to apply these codes, it

it necessary to determine how many bits to protect and which bits to protect.

The latter question is answered first by calculating the mean squared recon-

struction error contributed by each of the 256 bits in a block and then ranking

these bits from largest to smallest error.
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Since the DCT is an unitary transform, the mean squared error (MSE) for

the reconstructed image in the spatial domain is the same as the MSE in the

transform domain. The MSE between an uncoded OCT coefficient F(i, j) and its

received version F(i, j) is given by

e(i,j) = E{[F(i,j) - F(ij)]2} (5.3)

where the expectation is taken over the source and channel probability measures.

Equation (5.3) can be separated into three components,

22 222(i,j) = [2(ij) + C (i,j) + E2(i,j)] a 2(i,j) (5.4)
a ~ q

where 2 is the MSE contributed by the channel, e2 is the mean squared quantiza-a q

tion error, E is the mean squared clipping error, and a2 is the mean squaredc
value of the coefficient. Each of the terms in brackets in Eq. (5.4) is norma-

lized to one. The mean squared quantization and clipping errors are dependent

on the number of bits assigned to the particular coefficient and the probability

density of the coefficient. The sum e2 + 2 is given in Table 5.1 for unit vari-

ance, nonuniform Gaussian quantizers with one through eight bits.

The MSE due to the channel is given by

e2(ij) = E{[F(i,j) - F(ij)]2

= Z P I(z = zZ) E{[F(i,j) - F(ij)]2  z = z}

= E PX(z = zZ) AV (5.5)

where AX is called the A-factor associated with error sequence z[lO]. The A-

factor is the average reconstruction error power caused by the digital error

sequence z for a given quantizer and binary code. For Pe < 10-2, the proba-

bility of two or more independent channel errors in z X is small, so Eq. (5.5)

can be simplified to
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M

£2(ij) Pe A (5.6)

where the channel errors are assumed independent with equal probability Pe and

the first M A-factors are defined to correspond to single-bit errors. Table 5.1

lists the single bit A-factors for a Gaussian quantizer and the FBC.

Using Table 5.1 and Eq. (5.6) in conjunction with the optimum bit alloca-

tion for a particular image, the relative importance of each bit in terms of
i its effect on mean squared reconstruction error can be computed.

For those bits protected by channel coding, the probability of bit error

becomes Pec so the channel MSE expression becomes
r M

2 c A .+ Pe b At (5.7)
a PecA,+e

Z=I L=r+l

where r bits are assumed protected and errors with coding are independent and

equally likely. Since the DCT coefficients are approximately uncorrelated, the

total MSE for an N by N block is given by

N-1 N-1

£2= 'S 5. 2(i,j) (5.8)

j=0 i=O

The normalized mean squared reproduction error (NMSE) is the total error in

Eq. (5.8) divideJ by the sum of the variances of the coefficients.

The question of how many bits to protect involves a tradeoff between bits

allocated to source coding and bits allocated to channel coding with the overall

rate constrained to 1 bit/pixel. By using Eq. (5.8) with Eqs. (5.4) and (5.7),

the NMSE as the number of channel coding bits is increased can be computed.

Figures 5.2 - 5.4 for the girl image and Figures 5.5 - 5.7 for the aerial image

show how the NMSE varies as a function of the number of bits protected at a

design BER of 10-2. The minimum value of each of these curves is listed in
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Table 5.2. Since the statistics of the girl and aerial images are different,

their bits are ranked differently. As can be seen from Table 5.2, the (7, 4)

code yields the best performance and the optimal number of bits to code for

the girl image is forty-four, while for the aerial image the optimal number of

bits is forty. Since the NMSE does not vary much over this range, it was de-

cided to protect forty-four bits using the (7, 4) Hamming code.

Since the total transmitted data rate is fixed at 1 bit/pixel, using 33

bits per block for channel coding reduces the number of bits available for source

coding to 223. It is important to ascertain how much degradation in image quality

is imposed by this reduction of source coding bits when the channel is error-free.

Figure 5.8(a) shows the original girl image using 3 bits/pixel. Figure 5.8(b) is

the reconstructed image at 1 bit/pixel with no bits allocated to channel coding

and a zero BER, while Fig. 5.8(c) is the compressed image at I bit/pixel with

33 bits per block allocated to channel coding. As is evident, Figs. 5.8(b) and

5.8(c) do not differ substantially, and hence, allocating bits to channel coding

does not seriously reduce error-free system performance at 1 bit/pixel. Figure

5.9 illustrates the same behavior for the aerial image.

In Figs. 5.10 and 5.11, the receiver output signal-to-noise ratio (SNR), the

inverse of NMSE, is plotted versus BER for systems with and without channel coding
..

and for both images. At the chosen design error rate of 102, the channel error

protection provides an improvement over the no channel coding system of 5.18 dB

for the girl image and 2.5 dB for the aerial image. As is expected, as the BER

gets small, allocating bits to channel coding reduces the output SNR.
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TABLE 5.2. INO. OF BITS CODED THAT ACHIEVES

MINIMUM NMSE

Girl Image

Code rate Error rate No. bits coded NMSE

4/7 10- 2 44 2.273 x 10- 2

11/15 10- 2 66 3.036 x 1O2

26/31 10-2 78 4.544 x 10 2

Aerial Image

Code rate Error rate No. bits coded NMSE

4/7 102 40 5.850 x 1O-2

11/15 lO 2  55 5.997 x 10-2

26/31 102 78 6.869 x 10-2

4e
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4 Original Girl Image

(a)

Compressed Image without Compressed Image with
Channel Coding Channel Coding

(b) (c)

Figure 5.8. Original Girl Image and Data Compressed

Reconstructed Images with and without Channel Coding (Pe =0)
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Original Aerial Image
(a)

Compressed Image without Compressed Image with
Channel Coding Channel Coding

(b) (c)

Figure 5.9. Original Aerial Image and Data Compressed

Reconstructed Images with and without Channel Coding (Pe=O).
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4.0. SIMULATION RESULTS

Monte Carlo simulation results were obtained for each BER of interest by

processing each image 25 times with a different random error sequence for each

run. The average output SNR over each set of 25 runs is then computed for system

evaluation. Simulations were performed both for systems with channel coding and

without channel coding at BER's of l0-4, O"3 , 0- 2 , and 10-1. The simulation

results are plotted in Figs. 5.12 and 5.13 for the girl and aerial images, re-

spectively. At the design error rate of 10-2, channel coding provides a 3.2 dB

advantage for the girl image and a 1.7 dB advantage for the aerial image.

Figures 5.14 and 5.15 compare simulation and theoretical results for the

system with channel coding. For BER < 10-2 on the girl image, theory and simula-

* tion show a substantial disagreement. For the aerial image, simulation results

and the theory are in better agreement. The reason for this discrepancy seems

to be the assumption used for the theoretical calculations that the 2D-OCT coeffi-

cients are Gaussian. Recent studies [9] indicate that for the girl image the OCT

coefficients are more nearly Laplacian, but for the aerial image the OCT coeffi-

cients are nearer a Gaussian distribution.

Of course, the final important question is how much channel coding improves

the reconstructed image visual quality. To provide an indication of the full

range of possible reconstructed images over the many Monte Carlo runs, a sub-

jective selection of the worst and best images was made. Figures 5.16(a) and

{b) show the worst and best girl images without channel coding at a BER of 10-2,

and Figs. 5.16(c) and (d) show the worst and best images, respectively, for

Zhannel coding at a BER of 10-2. Figure 5.17 presents the same results for the

aerial image. Clearly, the channel coding scheme proposed here provides a sub-

stantial, noticeable improvement in reconstructed image quality.

The visible errors in Fig. 5.16(c) are due to the inducement of more than

ore channel error in the bits of a codeword, which, since, the (7, 4) Hamming
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Figure 5.16. Worst and Best Reconstructed Noisy Girl Images

without and with Channel Coding (P 10-2).
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Without Channel Coding Without Channel Coding

(a) (b)

With Channel Coding With Channel Coding

(d) Best Case

Figure 5.17. Worst and Best Reconstructed Noisy Aerial Images

without and with Channel Coding (Pe=10 2).
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code is single-error-correcting, causes a decoding error. There are many other

errors in Figs. 5.16(c) and (d) which are not evident upon visual inspection

since these errors occur in the lower energy OCT coefficients.

5.0. CONCLUSIONS

The results presented in this section indicate that using the (7, 4) Hamming

code to protect the most important 2D-DCT coefficients can substantially improve

reconstructed image quality at a BER-of 10-2. A surprising and important result

which runs counter to conventional "wisdom" is that the allocation of 33 out of

the 256 bits per block to channel coding does not noticeably degrade reconstructed

image quality in the absence of channel errors. This fact seems to be due pri-

marily to the property of transform coding systems which "averages" source coding

errors over the entire blocK.

Mean squared error proved 'to be a useful design criterion even though it is

well known that subjective image quality and mean squared error are not always

in agreement. Comparisons be.Veen theoretical and simulation results indicate

that a good estimate of the probability density function of the OCT coefficients

is necessary for the theoretical results to be accurate. While the standard

Gaussian assumption on the coefficients proved reasonably accurate for the aerial

image, the Gaussian assumption produced a large discrepancy between theory and

simulation for the girl image.

This work demonstrates that the judicious combination of source and channel

coding methods can produce a data compression system which has both the quality

and robustness necessary for realistic applications.
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Section VI

An Optimized Weighting

Algorighm for Variations in PCM

Energy Levels

1.0 Introduction

The concept of weighted Pul.se Code Modulation (PCM) was first intro-

duced by Bedrosian [I.]. Sundberg [2] has derived signal sets for

Pulse Code Modulation of speech signals. This application weights the

relative signal energy for each PCM symbol in a word by its sensitivity

to digital transmission errors. Near optimum performance may be achieved

by transmitting groups of PCM symbols at the same energy level where the

number of groups is less than the number of bits in the PCM word.

The total energy for each transmitted word remains constant. The

digital noise power in an arbitrary PCM system, assuming independent bit

errors, may be approximated by (6.1), see [2.- 5)..

N

Ea  =P • E A. 6.1i=l1

Digital noise power is the mean square noise associated with making a

digital error in bit i with a total of N bits in the PCM word. In this

formulation, Ai, is called the A-Factor for a single error in bit i. It

represents the noise power averaged over the input signal statistics caused

by a single error in PCM symbol i, where i = 1, 2, ..., N. The values of

the A-factors vary with input signal densities, the particular PCM code,

number of bits per PCM word, and companding law; see [3'- 5]. P is the

average bit error probability for a memoryless transmission channel and N
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is the number of bits in a PCM word. When transmission is assumed to

occur over an additive white Gaussian channel with spectral density No

(double sided), and the modulation is binary antipodal, P is given by

[6] to. be:

p:±Jb t 2  F
e -  d = b) (6.2)

b4 0

where Eb is the signal energy. For the average channel signal-to-noise

* ratio, Eb/No average, the minimum digital noise is given by

2- E bCa 2 N • Ao0 Q( (6.3)

where the constant A0 is the geometric mean of the single error A-factors

[2].

A simpler near optimum performance can be obtained by grouping bits

into J groups. Each group of symbols is transmitted at the same energy

level, with the same bit error probability. The digital noise is reduced

by allowing more energy to be used for the most significant bits of a PCM

word (resulting in a smaller bit error probability). This is accomplished

at the expense of less energy on the least significant bits (increasing

the probability of error on these symbols). The corresponding minimum

digital noise of J groups is given by Sundberg [2] to, be:

e R (V)(6.4)

a o N0
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In this expression R(-) is given by
x2In_]expression.s

R(x) (6.5)

N is the number of bits in a word, and Aoj is the geometric mean

realative to J groups. Hence Aoj may be expressed as

Ia,)n, a.),n,n

Ao0  NJ](/ " " (n2)n2 2 a (6.6)
1 2j

where aj is the sum of the A factors in group j

n is the number of bits included in this jth group

N is the total number of bits/word such that nl+n 2+...+n j .

To minimize (6.4) implies minimizing the geometric mean Aoj based upon

having derived or being given the A-factors. [2 - 3].

This paper then presents an efficient algorithm for optimizing the

number of bits allocated to J energy levels in order that the digital noise

is minimal (in the mean square error sense). The bit assignment (which bit

is assigned to what energy level) is accomplished solely on A-factors or the

bits relevance based on position. The particular relative energy level may

then be calculated from the bit assignment, see [2],

2. Dynamic Progranning Application to Minimize Aoj

The optimization problem may be stated as allocating the resources

available (the PCM symbols) to several relative energy levels while

minimizing the digital noise. Dynamic programming is used to develop an

algorithn to minimize (6.6).
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Let the number of groups J represent n particular stages in the

assignment process. So for a two level assignment, two stages may be

filled with bits until all bits have been assigned. But depending on the

A-factors and the size of the PCM word it may be more advantageous to

assign an odd number of symbols to one stage and even number of symbols

to the other stage. Three level or three stage assignment will depend on

what is optimum for the two stage assignment. The algorithm must therefore

be optimum at every stage. It is also reasonable to constrain every

stage to having at least one bit; otherwise there would be no reason for

having that level at all. We seek, therefore, a function which minimizes

Aoj, the geometric mean, to the constraint that each stage must have at

least one bit (i.e. zero stages or zero bits to any stage is not allowed).

The recursion formula then becomes:

rmin<d<s {[G (d)]d . [fnl(s-d)]Sd} I/s for n _ 1

A = fn(s) =

min

<d<s ([G n(d)]d}l/s for n = 1 (6.7)

f n(s) is the minimum Aoj overall possible values of d.

n is the current number of stages or energy levels n = 1, 2, ... ,

s is the total number of bits to be assigned.

d is a variable number of bits between 1 and s assigned to stage

n and is incremented until fn-l(s-d) is fn-l( 1 ) (i.e. d = s-l)

since fn-1(O) would represent 0 bits to the (n-1) stage and is not

allowed.
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s-d is the number of bits remaining to be assigned to stage n-I

after d bits are assigned to stage n.

The functions Gn (d) or fn (s-d) are simply the sum of the A-factors

for those PCM symbols or bits divided by the number of symbols used at

stage n or (n-1). Therefore
d s-d
11a. . a.

Gn (d) j= (6.8)Gn~d d ; n-l (s-d)

where aI represents the A-factor of the least significant bit of those

assigned to stage n.

a2 represents the A-factor for the next significant bit of those

assigned to stage n.

a d is the A-factor for the most significant bit of those assigned

to stage n.

Stage 1 in this procedure (i.e. (fl(s)) will always be the arithmetic

average. Since fo (s-d) cannot exist, by the zero stage constraint, the

minimization function is reflected in equation (6.7) for n1l. Now since

N = nI + n2 + ... + n for the geometric mean in (6.6), fl(s), n2 = n3 =

... w nj - 0, so N a n1 a d - s. Hence there is really no minimization

over d for fi(s) since d must equal s. However this represents the

initializaticn of the algorithm where the first staqe is always the stage

containing the least significant bits. An arithmetic average is then

calculated for each d between 1 and s. Each fl(d) is changed only by the

addition of a more significant A-factor corresponding to including the

next significant bit in the first stage unt2l all bits are utilized.
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For a two energy level (2 stage case) example the minimization function

is decided over the range of d given fi(s). Consider a 4 bit PCM word

being assigned two different energy levels to minimize A

I {[G 2 (1)] I [fi(3)] 3,1/4

f2(4) = min of {[G 2(2)]2 * [fl(2)]2}1/4  (6.9)

{[G 2(3)]
3 *[f1(1)]1}1

/4

The combinations represented are the most significant bit in stage 2

with the three least significant bits in stage 1; or alternately two bits

in stage 2, two bits in stage 1; or third the choice of three most signifi-

cant bits in stage 2 with the least significant bit in stage 1. The optimum

solution consists of the two most significant bits in stage 2, and the two least

significant bits in stage 1. For 4 bits and three levels of energy the

decomposition yields 1, 2, 1. This represents the most significant bit

in stage.3, the two next most significant bits in stage 2, the least

significant bit in stage 1.

To see how this result is obtained examine the recursion equation (6.7).

If the functional notation is replaced by the appropriate summations we

have:

d s-d

Min 1 1 ai d a
AoJZ fn(s) = l<d<s{[ d ]d . lis-dI/s (6.10)

for n>l levels.

In general the formulation of equation (6.10) is depicted in Figure (6.1).
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thth S t
n stage with (nth - 1) stage with 1 stage
d most signi- k next most signifi- last remaining
ficant bits. cant bits. bits.

Typical Stage Decomposition

Figure 6.1

Having calculated or being given the A-factors*, see [6.2], we initial-

", ize the algorithm. Let the A-factors be tabulated in decreasing order:

A1 weight of most significant bit 8.71606

A2 weight of next most significant bit 1.99617

A3 weight of third bit .62266

A4 weight of least significant bit .180237

For n=l: d
min E a

fY(s) = l<d<s {[ i=l a d}I/s (6.11)

Therefore, since fl(s) represents the last s bits remaining to be assigned

to the first stage, the first stage being represented as containing the

least significant bits, fl(s) is the arithmetic average of s bits by (6.11).

*Explicit conditions and assumptions for the A-factors are given in Appendix
6.1.
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min a
f l0 <d<l UE 1l aJ A4

21 A

mmin 1 E a 21 A +A3
fl(2) a l<d<2 {[ l ]2} 12 4

--- 2L -

A4+A3+A2

fl(3) ... . . . . . . . . . = 3
A4+A3+A2+AI

fl ( 4 )  = . . . . . . . . 4

Using the aforementioned A-factors we then substitute the calculated func-

tions fi(3), fl(2), fl(1) into equation (6.10). Equation (6.10) may then

be used directly to calculate the minimum f2(4) as given in equation (6.9).

Specifically this is:

.
f {(8.71606)l 1 (.933024)3}1/4

f2(4)'= min of ((5.356117)2 • (.401450)21/4 (6.13)
ot {(3.77829)3 . (.180237)111/4

which is:

1.63117
f2(4) = min of 1.4664

1.7657

By decomposing the minimum value (i.e. tracing backward those elements

which determined f2(4) to be minimum) f2(4) is minimum when f2(2)

and f,(2) are used. This result corresponds to the claim that 2

stages with 4 bits will have minimum digital noise when the two most

significant bits are assigned to stage 2 and the two least significant

bits are assigned to the first stage.
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Confirmation of the three stage case may be found using the same

A-factors. For clarification we shall use only the functional notation

of equation (6.7). Since we are limited to 4 bits and the constraint that

each stage must have at least one bit assigned the following combinations

are possible.

[[G3(1)]1 " [f2(3)]3}I/4

f3(4) min of {[G3(2)]
2 . f2 (2)]2}1/4 (6.14)

but f 23 m{[G 2(0 )] I • [f (2)] 2}/3
bu 23 f- 2i .of1 /

m {[G 2(2)]2 [1)]

and f2(2) = min of ({[G 20)] 1 [fl(1)] 1} /2

We notice however that fl(1), f(2) were already calculated. Intermediate

levels of f2(2) and f2(3) corresponding to two stages with the two least

significant bits and two stages with the three least significant bits

must be calculated. The respective minimums may then be substituted into

(6.14) enabling calculation of a minimun for f3(4), three stages and four

bits. Numerically (6.14) becomes:

f- {(8.7160616)1 " (.6760842)311/4

*, f3(4) = min of (6.15)
f4 m {(5.35611755)2 * (.3349929)2}1/4

Again decomposition of (6.14) yields the minimum when f3(l) and f2(3) are

used. f2(3) was minimum when the first stage contained the least signifi-

cant bit and the second stage contains the next two significant bits.

Therefore f3(4) corresoonds to f3(0), f2(2) 3nd f2(1) respectively. This

confirms the placement of bits in three energy levels as 1, 2, 1.
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This recursive optimization conforms to the optimal policy that what-

ever the initial states or decisions are, the remaining decisions also

constitute an optimal policy with regard to the states resulting from the

previous decisions. This allows rapid decomposition in computing while

calculating only two stages at a time. That is, for a large PCM word and

several energy levels stage n is considered relative to the optimi-

zation of stage (n-l). Stage (n-l) may be decomposed into the

two stages that made that decision optimal and stage (n-2) may also be

decomposed. The algorithm then becomes general and computationally efficient

when more than one energy level is needed and the PCM symbols represent a

large word. Figure 2 depicts the algorithm decomposition for 3 levels of

energy with an 8 bit PCM word. The calculations are slightly more involved

but follow the same process as with 4 bits. Returning to the functional

form of equation (6.7) we seek the minimum of f3 (s) where s is 8 bits. By

including our constraints for each stage:

a I [G3()]l7,1/8

•C G3(1)
1 "f 2 (7)] f

{[G 3(2)]
2  [f2(6)]6}

I/8

{[G 3(3)]3  [(5)]
f3 (3) = min of 3(42 4 1/8~~{[G3(4)] 4  [f2(4)]4} /

{[G 3(5)]
5  [f(3)]

{[G 3 (6)]
6 . f2 (2)]2}I/

8

G3(i) where i = 1 to 6 is readily calculated. Functions f2 (2) through

f2 (7) are intermediate levels and must be calculated but each must be a

minimum for all possible two stage combinations. The A-factor weights for

this example are tabulated in Appendix 6.1.
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Stage 3 Stage 2 Stage 1

{CG 2(l)]
l  E fl(6)3}, / 7

[[G 2(2) ] 2  C [f,(5)]} I / 7

{[G3(1)1.[f2(7))7}1/8 {G2(3)] 3  f (4)]) 1/ 7 - - --  min
([G 2(4)] 4  f Il (3)]}1' / 7

[[G. (5• f f(2)]) Il / 7

[G2(6) ]6  f (1)]) 1/ 7

ff 2i] M 11 pl(5)]} 1/ 6

{D2 ( 2 ) ]  " [ fl (4)] }1/6

min {[G3 (2)].f2(66}1/8 {'2(3) ] 3  [ f,(3)]}i i n
(b: { (4) ] • C f (2)31/

2~~~(5)] 5  • [f ()} /

. JIG2(1] [ f 140]} 1/ 6

ICG2 2 [ f 1()}1/5

W 3(8) m rin of {[G3(3)]3.[f2(5 )]511/8 ([G2 ) ] 2 . [ fl(2] I / 5  i

3 G 2(3)) ]3 0 f, (2fl /
2 )  /5

CG(4)] [L 2)J115
2I)]l  [ f, (3)]} 1' / 4

f[G 3 (4)]4.[f2 (4)] 4 })/ 8 [{(2(2)]2 C f fl}(2)]}1 / 4' -- -  min
";2(3) ]3 r fl (0M}i/4

2 1/4

.

3 1/ 8 • f1 (2)] ) 1/ 3

. {[2 1(5)].f2(3)]/} ]2G3..__:.[G (2 f fl1 I / 3  -  min

{[G 3(6)] 6.f2 (2) 2 1/8 [G (1)]11 f1(f)'---- min

Figure 6.2. Three stage decomposition for an
8 bit PCM word

96



As seen by figure (6.2), a minimum for 3 levels and 8 bits occurs for 2 bits

I (most significant) residing in the third stage while 6 bits are allocated

to the n-i (2) remaining stages. From calculation of intermediate levels

the minimum digital noise is achieved when the 3 least significant bits

are grouped in stage 1 and the three next most significant bits are

allocated in stage 2.

Application of this technique to minimize equation (6.6) has been

accomplished for image processing. In this application, the transmitted

words have variable bit assignments and this algorithm efficiently cal-

culates the number of bits to be assigned to any number of levels. Table

6.1 demonstrates the versatility by listing several PCM word lengths and

the desired number of energy levels (stages) for which bits are assigned.

Note that the value of Aoj is independent of the (Eb/rlo) relationship

depending only on the A-factors in each group level. The A-factors

however are dependent 3n signal densities, coding technique, modulation,

etc. For methods of deriving the A-factors see [2-5].

3.0. Image Processing Example of Dynamic Programming Selection of

Minimal Aoj and Resulting Performance

The chosen application for this technique was that of bandwidth

compression of images. The concept includes the partitioning of an N x N

pixel (data point) image into smaller blocks of ?i x M pixels where N is an

integer multiple of M. These smaller blocks are sequentially mapped to a

frequency or sequency space. The transformed coefficients are then coded

to minimize the mean squared error. These techniques have been thoroughly

documented and are independent of this investigation, see [7 9].
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Table 6.1
Output of Dynamic Programming

for
Minimization of Aoj

" Number of Number of Bits/Level oj
bits Levels MSB-.LSB Minimum

14 2 7 7 0.1497 x 10

13 2 6 7 0.2315 x 10-1

12 2 6 6 0.3493 x 10-

11 2 5 6 0.5481 x 10 -1

10 2 5 5 0.8378 x 10-1

9 2 4 5 0.1342 x 10+0

8 2 4 4 0.2088 x 10+0

":7 2 3 4 0.3443 x 10+0

, 6 2 3 3 0.5510 x 10+0

5 2 2 3 0.1124 x 10+1

4 2 2 2 0.1466 x 10+1

3 2 1 2 0.1942 x 10+1

2 2 1 1 0.2357 x 10+1

14 3 4 5 5 0.4361 x 10 2

13 3 4 5 4 0.7500 x 10 - 2

12 3 4 4 4 0.1258 x 10 1

11 3 3 4 4 0.2216 x 10-1

10 3 3 3 4 0.3890 x 10-1

9 3 3 3 3 0.6634 x 101

8 3 2 3 3 0.1199 x 10+0

7 3 2 3 2 0.2175 x 10+0

6 3 2 2 2 0.3801 x 10+

5 3 1 2 2 0.8992 x 10+0

4 3 1 2 1 0.1281 x 10+

3 3 1 1 1 0.1721 x 10+ 1

14 4 3 3 4 4 0.2562 x 10- 2

13 4 3 3 3 4 0.4606 x 10-2

12 4 3 3 3 3 0.8138 x 10 2

11 4 2 3 3 3 O.1510 x 101

10 4 2 3 3 2 0.2319 x lo-1

9 4 2 2 2 3 0.5181 x 10-1

8 4 2 2 2 2 0.9331 x 10-1
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Table 6.1 - Output of Dynamic Programming for Minimization of A

Number of Number of Bits/Level Aoj
bits Levels MSB-*LSB Minimum

7 4 1 2 2 2 0.1776 x lO 0

6 4 1 1 2 2 0.3421 x lO 0

5 4 1 2 1 1 0.8369 x 10+ 0

4 4 1 1 1 1 0.1182 x 1O +1

14 5 2 3 3 3 3 0.1895 x 10- 2

13 5 2 3 3 3 2 0.3595 x 10 2

12 5 2 2 3 3 2 0.6761 x 10 2

11 5 2 3 2 2 2 0.1257 x 10"

10 5 2 2 2 2 2 0.2304 x 10-1

9 5 1 2 2 2 2 0.4426 x 10 1

8 5 1 2 2 2 1 0.8615 x 10-1

7 5 1 2 2 1 1 0.1667 x lO+0

6 5 1 1 1 1 2 0.3176 x 1O+ 0

5 5 1 1 1 1 1 0.7899 x lO+0
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This coding, however, usually results in a variable number of bits

being assigned to different coefficients. Thus a new dimension to the

optimization problem of assigning bits to variable energy levels as pro-

posed by Sundberg [2] must be achieved. The efficient algorithm proposed

here was utilized to determined the optimum allocation of bits for a given

number of energy levels.

Two original test images were each compressed in dimensionality from

8 bits/pixel to an average bit rate of 2 bits/pixel and 1 bit/pixel.

Standard dimensionality reduction techniques using a cosine transform were

used, see (10]. Binary Symmetric transmission over an additive white

Gaussian noise channel utilizing Monte Carlo cimulations was performed at

a bit error rate of 102.

Performance evaluation was made by absolute error (ABSE), (6.17),

peak signal-to-noise ratio (PSNR), (6.18) and visual inspection as criteria,

see [6.9).

B N Il x
ABSE (256)2 i (xij-xij)i (6.17)

N NI r. . (xijXd2

PSNR - -10 go 5) (6.18)
log10 (256)2

where x are the pixels of the original image and xid are the reconstructed
pixels.

The single error A-factor used were those given in Appendix I for

a folded binary code. Since each set of transformed coefficients exhibits

a variable length code it was arbitrarily-chosen to select four energy

levels for each transformed coefficients being coded with four bits or

1% greater while any code word less than four bits would use the sare number

of energy levels as bits allocated to that coefficient. Figures [6.3-6.5)
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are examples of the normalized signal-to-noise ratio output

as a function of average energy to noise ratio in db for 4, 3, 2 and 1

energy levels. The improvement in signal-to-noise ratio by choosing

four levels where possible is apparent and is nearly optimum [2]. The

number of bits to be allocated at each energy level or stage was deter-

mined by the previously defined algorithm. The relative energy for

these bits or groups of bits at a particular level is given by Sundberg

to be (6.19):

T- ao. R (6.19)

0 th
where n & aj are the number of bits in the J level and ad is the sum of

these respective A-factors. E is defined as the average energy and E =

e i E is the energy of the i level.

Table [6.2] gives the numerical results obtained in this simulation.

It is noted that both ABSE and PSNR are improved utilizing bits allocated

to multiple stages or energy levels by this algorithm. As predicted more

.- errors occurred at lower relative energy levels or on bits placed in the

-a first stage while fewer errors occur in the most significant stages

(higher energy levels). The total number of errors was actually higher

for the image in which multiple energy levels were used but did not

hinder performance because these errors occurred for less significant bits.

A comparison of the variable energy encoding and single energy encoding

for binary antipodal modulation may be made by the signal to noise ratio

(SNR) required for a 10-2 bit error rate (BER). The SNR for the single

energy encoding is 7.347 db, assuming a spectral density of N0 (double

sided). The variable energy encoding distributes the energy relative to

the average level resulting in each'energy level having its own BER. The
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average SNR required for the variable energy encoding was 6.95 db, 6.22 db,

4.57 db, for 4 bit, 6 bit, and 8 bit words respectively. These average

SNR's correspond to I0"2 BER for the single energy level case. Table 6.3

summarizes the relative energy, the BER and corresponding SNR for 4, 6, 8

bit words.

Perceptual improvement is demonstrated in Figure [6.6 - 6.7]. The high bit

error rate of 102 significantly affects compressed images. This agrees

with the intuitive concept of the less redundancy there is, the higher

the probability of error. However, by the judicious placement of bits to

multiple stages under the constraint of minimizing digital noise power,

visual perception is improved for high error rates.

IV. Conclusion

A recursive optimzation algorithm for minimizing digital noise

power at various energy levels has been formulated. The application of

this Technique to speech and image processing affords rapid efficient

variational energy coding with variable bit assignments for each PCM word

at any number of energy levels. The perceptual and quantitative improve-

ments are demonstrated by a bandwidth compression example where the

transmitted image is subjected to a high bit error rate in an additive

white Gaussian noise channel. This method therefore provides a robust

approach for transmission of coded images without increasing the trans-

mission rate for a non-ideal channel.

41
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Section VII

Task IV: Spatial Image Coding

for Non-ideal Channels

1.0 INTRODUCTION

The goal of the research presented in this task is to develop an

image transmission scheme based on a spatial image coder which will

provide good quality images, low bandwidtherequirements, and error

protection for non-ideal channels. The complexity of the hardware

required to realize this coding and transmission scheme is considered,

and emphasi's is placed on developing a system which requires a relatively

simple hardware implementation.

The problem of developing an efficient image transmission system

is of concern in fields such as broadcast and. relay'television, remote

image sensing, fascimile transmission, biomedical imaging and surveil-

lance. The efficiency of an image transmission system may be defined in

terms of the quality of the reproduced images, the time and channel band-

width required for transmission, the performance of the system in the

* presence of channel errors, and the complexity of the hardware required

to realize the system,

'A general block diagram of an image transmission system is presented

in Figure 7.1.
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Image Source Channel

Source Coder Coder

- Channel

Noise

Channel Source I Image

Decoder Decoder Destination

Figure 7.1. General Image Transmission System Block Diagram

The model contains a source of images obtained from some fascimile

scanner, television scanner, or other imaging device. For the purposes

of this research, it is assumed that the source image is monochrome, and

is presented in digital form as an array of discrete points of picture

elements or "pixels". Each pixel is coded to 8 bit resolution in the

source image, so that each pixel may take on one of256 different shades

of gray.

Given a digitized source image, the source coder transforms the

image data into a form with minimal transmission requirements. It is

the source coder which is the primary subject of the research described

in this paper.

- - 111
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The data output from the source coder is converted by the channel

coder to a format suitable for transmission. This step involves modula-

tion of the transmission carrier and possibly the addition of error

correcting codes to the source data in order to provide protection against

channel errors. The channel decoder and source decoder operate on the

received signal, inverting the coding process and producing the recon-

structed images. The image destination may consist of an image display

or recording device, which often serves to present the data to the human

viewer.

As noted above, the majority of the research discussed in this paper

is concerned with the development of an image source coder. Most of the

image coders developed to date may be classified as belonging to one of

the following three categories: frequency domain, spatial domain, and

hybrid. In general, frequency domain coders provide a high degree of

data compression but require large amounts of storage and complex, high-

speed hardware for their implementation. Spatial domain coders often

require only small amounts of storage and relatively simple hardware

implementations, but result in a lower compression rate for a given level

of image quality [1]. Hybrid coders, such as the DPCM scheme discussed by

Habibi [2], attempted to achieve a compromise between frequency and spatial

domain coders with respect to implementation speed, hardware complexity,

and image quality.

When a complete image transmission system is being considered, the

image (source) coder must also be evaluated in terms of error susceptibility.

Traditionally, the frequency domain coders, also known as transform coders,

have proven to be much more robust in the presence of channel noise than

4.1
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spatial domain or hybrid coders [3].. Thus, the frequency domain coders

which provide high compression rates and good performance in the presence

of noise are often computationally intensive, while the spatial coders

which impose a light computational load suffer from low compression

capability and error susceptibility.

A new spatial coding technique has recently been developed by Dep

and Mitchell [4] which has the advantages of providing a good match to

the human visual system and producing immediate source code with data

rates in the 1.5 to 2.0 bits per pixel range. This technique, called

Block Truncation Coding (BTC), uses a two-level nonparametric quantizer

which adapts to local properties of the image. As is true in general

for spatial coding schemes, BTC is computationally simple and requires

only one pass through the image. A further advantage of BTC is that it

is easily matched to a standard digital modulation method such as

Quadrature Amplitude Modulation (QAM).

QAM is an attractive modulation method because of its high theoret-

ical efficiency (4 bits/s/Hz) [5] , [6] and its wide acceptance. As

Sundberg [7] has suggested, QAM is also attractive because it may be

easily modified through & technique known as bit weighting. This

technique matches the probability of transmission errors for a given

bit to the relative importance of that bit within a digital word, while

keeping the total transmitter energy per word constant. Bit weighting

is applicable to the source code produced by BTC and would provide error

protection with no increase in bit rate.

The research described in this paper consisted of developing a

modified version of BTC though the application of DPCM and an unsuper-

vised learning algorighm. The feasibility of matching this source coder

to QAM with bit weighting was demonstrated, and the combined source and
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- Ac.' -



channel coding system was simulated over binary symmetric channels with

Gaussian noise. The performance of this system was compared to that of

a scheme using standard cosine transform coding with binary antipodal

modulation.

The metric used throughout the research for the purpose of evaluating

image quality was mean square error (MSE). In the discrete domain, the

MSE between an image F(i,j) and its coded reconstruction F'(i,j) is defined

to be

J K
Z E [F(j,k) - F'(j,k)]

= j=l k=l (7.1)
EMS E JoK

where J and K are the dimensions of the images in pixels. Although MSE

is a mathematically tractible metric, Pratt [81 and others have found

that MSE sometimes correlates poorly with subjective image evaluations.

For this reason, visual results as well as MSE figures will be presented

at key points in the report.

1
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2. BLOCK TRUNCATION CODING

Block Truncation Coding (BTC) is a spatial domain coding scheme

recently developed at Purdue University [4]. This source coding tech-

nique shows the potential for achieving good performance with respect to

image quality and excellent efficiency in terms of computational require-

ments. The algorighm operates on small blocks of the image, usually

4 X 4 pixels. The local block moments are determined, and the mean

(first moment) and variance of the block are quantized and coded. A

threshold for a one-bit quantizer is determined based on the sample

moments, and the individual pixel values are then quantized. Pixel

values above the threshold are assigned a code of "1", while values

below the threshold are assigned a "0", resulting in a binary bit map

for the image block. The block is reconstructed from the bit map dnd

the coded quantities for the mean and variance.

The choice of a quantization scheme is a critical factor in BTC.

This choice influences coder performance in terms of image reproduction

quality, computational load, and hardware complexity. In order to

utilize the classical quantizer design of Max [9], which minimizes

mean square error, the probability density function of the data to be

quantized must be known or approximated. With respect to BTC, this

would require knowledge of the probability density function of the pixel

.values within each block. This stringent requirement, which also exists

for the minimum absolute error quantizer of Kassam [10), led Delp and

Mitchell to the choice of a nonparanietric quantizer for their coding

scheme [11).
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Nonparametric quantizers as a general class are those which may

be formulated without a priori knowledge concerning the istribution

parameters of the data to be quantized. Parametric quantizers incor-

porate the distribution parameters into the quantizers formulation, and

thus require knowledge (or estimates) of these parameters for the real-

ization of the quantizer. Typical distribution paramaters which may be

considered on the formulation of parametric quantizers are the mean and

variance for a Gaussian distribution, or the variance for a Laplacian

distribution.

The use of a nonparametric quantizer elimates the requirement ofprior knowledge of the pixel value probability density functions. A

nonparametric quantizer may be designed to minimize mean square error

(MSE) in a BTC scheme as detailed below; alternatively, the quantizer

could be designed to minimize mean absolute error (MAE) or preserve the

sample moments.

In general the threshold which defines the boundary between the

" :4upper and lower quantizer levels may be either fixed or variable. In

the fixed threshold case, the threshold is defined to be some function

(the sample mean or nth sample moment, for example) of the input data

statistics. In the case of a variable threshold, the threshold is not

specified a priori, but is considered as a variable in thp quantizer

formulation and may be selected along with the quantizer output levels

in order to satisfy some metric such as minimum MSE.

* . A one bit minimum MSE quantizer may be developed for BTC in the

following manner [4]. Assuming that the BTC algorithm operates on image

blocks of n X n pixels. Them m=n 2 pixels will be contained within each

b loc k . G ive n a set of data po in ts (pixe l va lue s ) [Xl X2...,Xm ] a4
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threshold XTH may be indirectly defined by picking some number of the

data points to lie above the threshold. If the data values are sorted

from least to greatest, and if q is defined to be the number of Xi's

greater than XTH, the quantizer output levels a and b may be found by

minimizing

m-q-E 2 m (Xi-b) 2  (7.2)
J MS E CX (X-a) + E 1Xb

1=1 1 i=m-q

where

1 m-q-1-- Z" Xi  (7.3)a m-q i_,

b 1 m
q i=q1 (7.4)

This quantizer may be optimized by solving the first equation for all

possible values of q, and then using the value of q which results in

the minimum JMSE

Thus, the implementation of a nonparametric minimum MSE quantizer

would require an exhaustive search for the optimum value of q within each

n X n image block. If n=4, m=n2=16, and since q may take on m-1 values

* for the two-level quantizer, the equation for JMSE must be solved 15

times for each block.

'1.1
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The development of a nonparametric minimum MAE quantizer also

leads to the need for an exhaustive search of all possible thresholds

in order to determine the optimum quantizer for each block. In either

the minimum MSE or minimum MAE case, the quantizer formulation is not

available in closed form. The lack of a closed form solution leads to

a heavy computational demand through the need for exhaustive searches.

As an alternative to minimum MSE or minimum MAE quantizers, Delp

and Mitchell [12] investigated the development and performance of a

one-bit nonparmetric quantizer based on the fidelity criterion of

preserving the sample moments of the input data. Their investigation

led to the determination of several desireable properties of such

quantizers with respect to image coding. The development of such a

quantizer is presented below.

For image blocks of n X n pixels, m=n2 pixel values are to be

quantized, each into one of two levels. For the original pixel values

.I X;' ,X2,...,xm] , it is desired to preserve the first two sample moments,

defined by

M m
Ml Z X.i  (7.5)

'i M
M2-M il (7.6)

In general,

=i E[X] (7.7)

where E C.] is the expectation operator. Two output levels a and b and

a threshold XTH are defined for the quantizer,such that

-. 1
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if Xi > XTH output = a

if Xi < X TH output = b (7.8)

if Xi  XTH output = b

for i-1,2,...,m.

The threshold XTH may be set equal to the first moment in order to

simplify quantizer formulation, or may be evaluated as a variable in

order to enhance performance.

For the case in which XTH=MI, if q is defined as the number of

Xi
's greater than XTH, then to preserve M1 and M,

mM1 = (m'- q)a + qb

mM2 = (m - q)a2 + qb2  (7.9)

The above equations may be solved for the quantizer output levels a and

b (see [7.4]), with the result that

a = MI - (M2 - M12 m qm=1-( 2 M j- - (7.10)

b = M1 + (M2 - MI1 ) m (7.11)
q

-. Note that the quantity M2 - M1
2 is the variance a2 of the input data,!2

. and thus each block may be represented by the values of Mi, a
2 , and an

n X n bit plane consisting of l's and O's indicating whether the given

pixel value fell above or below XTII.

-. 1.19
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For the case in which XTH is evaluated as a variable, it is possible

to preserve the third sample moment as well as the first and second

moments. The third moment is defined as

m
M X (7.12)

The quantizer formulation then involves solving the equations

mM1 = (m - q)a + qb

mM2 = (m - q)a2 + qb2  (7.13)

mM3 = (m- q)a3 + qb3
i3

for the variables a, b, and q. The value of q obtained, rounded to the

nearest integer, defines XTH since it specifies the number of Xi's greater

than XTH.

The system (7.8) has the solutions (see [13]):

M2 q
a = M1 - (M2 - M) m - q (7.14)

b = MI1 + (M 2 - M1 2 m - q (7.15)

q

q 1 + 2 + 4 -1/2 (7.16)

where

A 3-m I 2 - 3 2-(MI)3 (7.17)

if a is not equal to zero. If a=O, equations (7.10) and (7.11) imply that

a =b M 16
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Note that for either the fixed or the variable threshold case, the

image block is represented by the block mean, the standard deviation,

and an n X n bit map. If the mean and standard deviation are each

assigned 8 bits, the average data rate for either case is 2 bits/pixel.

Note also that for either the fixed or variable threshold case, the

moment preserving quantizer formulation is available in closed form. The

fact that a closed form solution exists for this class of quantizers

greatly reduces the computational load required for implementation.

Furthermore, investigations by Mitchell and others [3], [4], [11]

have shown that BTC with a moment preserving quantizer performs well in

subjective evaluations.

The performance of BTC relative to a high-quality cosine transform

coder was considered by Delp and Mitchell [4] and by Goeddel and Bass

[I.]. .These studies compared the performance of BTC to that of the Chen

and Smith [14] two-dimensional cosine transform coder at bit rates of

1.63 and 1.875 bits/pixel respectively. The Chen and Smith coder is

* considered to be among the best of the published frequency domain coders

developed to date (1]. Both groups concluded that under error free

conditions, BTC did not perform as well as the Chen and Smith coder. Both

subjective eveluations by professional photo interpreters and mean square

error figures were used in arriving at this conclusion. However, both

*.: groups concluded that a high channel error rate (10- to 10-2) has a

greater effect on the transform coding scheme than on BTC.

An example provided from the study sporsored by Delp and Mitchell

dealt with an aerial scene coded at an average rate of 1.63 bits/pixel.

With no channel errors, the MSE resulting from BTC and Chen and Smith

•P . 121
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coding were 84.22 and 67.13 respectively. Under an average bit error

rate of 10-3 , BTC produced an image with a MSE of 115.09, while the

transform coding yielded a MSE of 115.31. The Goeddel and Bass study

provided similar results; see [1].

Furthermore, BTC imposes a significantly lighter computational

demand than the transform coder. Rough arithmetic counts [1] indicate

that the Chen and Smith coder performs three passes through the data,

with a total of 5.6 ' 106 additions and 0.4 • 1O6 multiplications. BTC

also imposes smaller memory demands, since only n2 (typically 16) pixels

must be stored at a given time, while the cosine transform technique

requires that the entire frame of 5122 pixels be stored.

An additional advantage of BTC is that it provides a good match to

the human visual system [4]. This effect is due to the fact that BTC

codes the largest intensity changes within a block. If no large changes

are present, the most significant small variations are coded. The human

visual system is also insensitive to small luminance variations in the

presence of large variations 115]. . BTC thus takes advantage of the

*noise masking property of human vision.

Bit Weighting

Weighted pulse code modulation was introduced by Bedrosian [16]

in 1958. This technique, later modified and extended by others [17]-

(19), is based on the idea that typically the individual bits within a

pulse code modulation (PCM) word are of different importance to the

122
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reconstructed signal, since each bit denotes the presence or absence of

a different power of the base 2. Weighting PCM redistributes the energy

used to trnasmit a PCM word so as to minimize the effect of transmission

errors.

For an arbitrary PCM system operating over a memoryless transmission

channel with independent single-bit errors of probability P, the digital

noise is approximately [19]

2 (7.18)C a P E A i (.
ai=1

where n is the word length in bits. The terms Ai, where i=l,2,...,n, are

called the A-factors for a single error in bit i. Each A-factor Ai

represents the average noise power caused by a single error in bit i, where

the average is formed over the input signal statistics [19]. The values

of the A-factors vary with input signal density, the particular PCM code

used, companding law, and a number of bits per PCM word.

Sundberg [7] derived the signal sets for weighting PCM of speech

signals utilizing binary antipodal modulation over an additive white

Gaussian channel with noise spectral density N0 . For an average signal to

noise ratio of E/No, the bit error probability is

P = Q~ ) -- (7.19)

where Q(.) is the standard Q function [20]. The optimum weighting scheme

provides n different energy levels for each word of n bits. In this case,
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II
the energy assigned to each bit is matched exactly to the importance of

that bit within the digital word. The digital noise for the weighted

system becomes

S2 nv ioQ
a i=  Ai Q(V() (7.20)

where Ei is the energy in the binary antipodal signal used to transmit

symbol i. The total energy per PCM word is kept unchanged so that

n
n-E = E Ei  (7.21)

i=l

where E is the average energy per bit.

The energy levels Ei to be used in particular application are

determined by minimizing (7.18) subject to the energy constraint (7.19).

Suboptimum schemes may be developed in which the number of energy

levels is less than the number of bits per word. Such a scheme would

have the advantage of reducing the energy switching rate required at the

transmitter for a given bit rate. In these cases, n bits are grouped

into J groups, where J < n. All PCM symbols within a single group are

transmitted with equal energy, and thus equal probability of error. The

expression for the digital noise for the general suboptimum case is given

by Sur,,berg [7] to be

ca  n AOJ (7.22)

where

R(x) = • . 2 eX12 (7.23)
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n is the number of bits per word, and A 0  is the geometric mean of the

particular grouping of the A-factors into J groups. Thus A0i may be

expressed as

A0J - ( (7.24)

where a. is the sum of the A-factors in group j

nj is the number of bits in the jth group

n is the total number of bits per word..

The groupings of the ai's within the J groups must be optimized to

yield a minimum value of A 0  in order to obtain the minimum value of the

- digital noise.

The relative energy levels for this scheme are given by

j = . R- I n (7.25)

where aj, ni, and A 0  are defined in (7.22) and R(-) is defined in (7.21).

The actual energy levels may be found from the relative energy levels

through the relation

Ei = ei * E (7.26)

where E is the average bit energy.

For a given set of A-factors, the jigital noise c may be plotted

as a function of the number of allowed energy levels J, and the average

signal to noise ratio E/NO. Figure 7.2 (page 127) provides an example of
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this type of plot. In this case, the A-factors given by Sundberg L7]

for 8 bit folded binary code with U-law companding (V. = 100) have been

used, and the resulting digital noise is plotted for suboptimum schemes

J=2,3,4, and for the unweighted case (J=l) and optimum (J=8) cases.

Note that the use of two levels provides a significant reduction in

the digital noise when compared to the unweighted case. The beneficial

effect of increasing J is reduced for larger values of J, with the

result that for an 8 bit word, 4 energy levels provides performance just

slightly below the optimum 8 level case.

The above considerations have been concerned with binary antipodal

modulation. The concept of bit weighting may be applied to a wide variety

of modulation methods, however. Sundberg [7] has outlined the application

of bit weighting to 16 level Quadrature Amplitude Modulation (QAM). This

application will be considered in detail in Chapter IV, where a weighted

QAM scheme is derived for the modified BTC technique developed in Chapter
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3. INVESTIGATION AND MODIFICATION OF BTCi
The Block Truncation Coding technique described in Section 2

was chosen as the basis of the source coder to be used in this research

for the following reasons:

1) it provides relatively good compression rates (1.5 to 2.0

bits/pixel) for a spatial coder;

2) it imposes relatively small computational and storage

requirements;

3) it suffers less from the effects of channel errore than

many other coding techniques.

BTC thus seems well suited for applications which demand good

performance in the presence of noise, a moderate degree of compression,

and a minimum degree of implementation complexity.

This chapter will describe the primary investigation which were

performed on the BTC technique, leading to the development of a modified

form of this coding.

Implementation of Basic BTC

The basic BTC coder as described by Delp and Mitchell [11] was

first simulated at a data rate of 2 bits/pixel over an ideal (error free)

channel. This simulation served as a benchmark with which to compare all

future versions of the coder, and provided a measure of the performance

of this technique relative to the standard two-dimensional cosine transform

coding.
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As discussed in the previous chapter, the implementation of BTC

requires the determination, within each block, of the mean, the standard

deviation, and the n X n bit map. Each Block is then reproduced from

these three parameters. The threshold used to quantize and code the

actual pixel values may be either fixed or variable. For either method

of threshold selection, however, the block means and standard deviations

are constant for a given image.

Three test images will be considered throughout this paper: a Girl

image, a Moon image, and an Aerial image. The BTC block means and

standard deviations which result from these images are presented in the

form of histograms in Figures 7.3 through 7.8 (pages 130 through 135).

For the initial 2 bits/pixel simulation, the block means and block

standard deviations were each coded with 8 bits. The block size used for

all simulations was 4 X 4 pixels. The bit map thus required 16 bits,

resulting in an average bit rate of (8 + 8 + 16). bits/(16) pixels = 2

bits/pixel.

1
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The results of this initial simulation, for both the fixed and the

variable threshold implementations, are presented in Table 7.1.

TABLE 7.1. MSE FOR IMAGES PROCESSED BY BTC

AT 2 BITS/PIXEL

Image Threshold Selection

Fixed Variable

Girl 35.83 35.07

Moon 38.06 39.53

Aerial 137.98 130.84

The results presented above dernonstrate that for the three images

of concern here the variable threshold coder provided only a question-

able level of improved performance over the fixed threshold coder. For

the sake of consistency, however, all of the following simulations will

be performed using the variable threshold scheme.

In order to reduce the data rate below 2 bits/pixel, fewer bits

must be allocated to code the block means and standard deviations. The

following section is concerned with the effect of varying these bit

allocations.

Sensitivity of BTC to Qiantizer Coarseness

In order to determine the sensitivity of BTC to the coarseness of

the mean and standard deviation quantizers, a variable-bit uniform

.1 4
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quantizer simulation was developed. Uniform quantizers were used for

both the block means and block standard deviations in this simulation

for the reasons detailed below.

The distribution of the block means can take on many different

forms (see pages 130 through 132), and in general a particular mean may

take on a value in-the range 0.0 to 255.0 when the original image pixels

are allowed to take on values from 0 to 255. The distribution of the

block standard deviations takes on a roughly exponential form for many

types of images (see pages 133 through 136), but this distribution is

also highly variable. One common characteristic of the block standard

deveations is that values greater than 96.0 were vary rare, and no

standard deviation greater than 128.0 was found to exist for any of the

images studied.

Therefore due to the lack of a general form for the distributions

of the means and standard deviations, uniform quantizers were used in

the determination of the sensitivity of BTC to quantizer coarseness.

The quantizer for the block means was defined over the range 0.0 to

256.0; for an allocation of m bits, this quantizer will consist of 2m

input ranges, each with a corresponding output value. The size of the

input ranges, Am, as a fuction of bits allocated is thus

256Am - 2m (7.27)

The quantizer for the standard deviations was defined over the range

0.0 to 128.0. For an allocation of s bits, this quantizer will contain

2= input ranges of size As, where As is given by

A = 128 (7.28)
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The sensitivity of BTC to the coarseness of the individual quanti-

zers was determined by performing the BTC simulation assuming an ideal

channel while varying the bit allocations for each quantizer. To

determine the effect of the coarseness of the means quantizer, the

standard deviation quantizer was assigned a fixed allocation of 8 bits

(s=8), and simulations were performed for m=8,7,6,5,4. Thus, As=O.5,

while Am was varied over the range l<Am<16. Similarly, to determine

the effect of the coarseness of the standard deviations quantizer, the

mean quantizer was fixed at m=8 (Am=l), while the input range size for

the standard deviation quantizer was varied over the range O.5<As<16.

For all simulations, the variable threshold option was used.

The results of the initial sensitivity tests for the Girl images

are provided in Table 7.2. The upper section of this table is concerned

with the effect of the coarseness of the quantizer for the means. The

MSE between the iput and output of the means quantizer is tabulated

(QMERR), as is the MSE of the standard deviation quantizer (QSERR). The

values of QMERR and QSERR provide an estimate of the relative error due

to each quantizer.

As can be seen from Table 7.2, in terms of MSE, the effect of a

given level of coarseness in one quantizer is quite similar to the effect

of the same level of coarseness in the other quantizer. The visual

effects are noticeably different, however. The result of coarsely

quantizing the block means is that a number of false contours appear in

low variance regions of the image. Conversely, coarse quantization of

the standard deviations leads to a grainy effect distributed over the

entire image. Both effects are detrimental to image quality. From
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TABLE 7.2. RESULTS OF THE QUANTIZER SENSITIVITY TESTS

FOR THE GIRL IMAGE

Am  As  Image MSE QMERR QSERR

1.0 0.5 35.06566 0.08368 0.02161

1.0 1.0 35.14143 0.08368 0.08417

1.0 2.0 35.57709 0.08368 0.34712

1.0 4.0 36.14406 0.08368 1.19090

1.0 8.0 39.50471 0.08368 4.50202

1.0 16.0 59.43402 0.08368 22.92423

1.0 0.5 35.06566 0.08368 0.02161

2.0 0.5 35.33759 0.34517 0.02161

4.0 0.5 36.25166 1.27751 0.02161

8.0 0.5 39.91125 4.95567 0.02161

16.0 0.5 55.52716 20.60512 0.02161

these preliminary sensitivity investigations, it can be seen that an

attempt to reduce the bit rate substantially by reducing the number of

bits allocated to either of the quantizers will result in image

degradation when independent uniform quantizers are used.

The effect of reducing the bit allocation to both quantizers

simultaneously was also investigated. Simulations were performed in

which quantizers were allocated 7 bits, 6 bits, 5 bits, and 4 bits. These

simulations correspond to average data rates of 1.875, 1.75, 1.625, and

1.50 bits/pixel respectively. Table 7.3 contains the results of these

simulations for the Girl image.
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TABLE 7.3. EXTENDED RESULTS OF THE QUANTIZER SENSITIVITY

TESTS FOR THE GIRL IMAGE

4.

Bits/pixel Am As  Image MSE QMERR QSERR

1.875 2.0 1.0 35.48068 0.34517 0.08417

1.750 4.0 2.0 36.57942 1.27751 0.34712

1.625 8.0 4.0 41.02132 4.95567 1.19090

1.500 16.0 8.0 60.35036 20.60512 4.50202

The results provided in Table 7.3 demonstrate that an attempt to

achieve a bit rate of 1.5 bits/pixel using the BTC scheme described

thus far will result in a substantial sacrifice in image quality.

Healy and Mitchell [21] have proposed an alternate method of

quantizing the block means and standard deviations of BTC. Noting that
grey level quantization error is most visible in low variance regions

of an image, they proposed a two-dimensional quantizer which simultan-

eously codes the mean and standard deviation using 10 bits. The

quantizer is designed so that the quantization error for both inputs

increases as the standard deviation increases. The results of using

this quantizer scheme are compared in Table 7.4 to the results obtained

by separately quantizing the mean and standard deviation using five bits

each.

.
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TABLE 7.4. COMPARISON OF THE 10 BIT TWO-DIMENSIONAL

QUANTIZER TO TWO INDEPENDENT 5 BIT QUANTIZERS

(MSE)

Image Simultaneous Quantizer Independent Quantizers

Girl 37.00244 41.02132

Moon 42.05714 46.20068

Aerial 138.65907 137.73419

" The results given in Table 7.4 indicate that the two-dimensional

quantizer generally provides a slight improvement in a MSE sense. A

reduction of the false contours artifact is also provided through the

use of this quantizer, though in some images (the Aerial image, for

example), there is little perceivable visual improvement. Though the

two-dimensional quantizer of Healy and Mitchell does usually provide

some degree of improvement over the independent quantization scheme; it

is not apparent if a more efficient 10 bit two-dimensional quantizer may

be designed, and there is no provision in the design of this quantizer

which would allow it to adapt to varying distributions of the input

.. . parameters. Also, the data rate is fixed at 1.625 bits/pixel with this

quantizer; operation at a different data rate would require that the

quantizer be redesigned.

Based on the simulation results detailed above, it was apparent

that modifications of BTC beyond the introduction of a two-dimensional

quantizer were required in order to achieve acceptable image quality at

data rates in the 1.50 to 1.75 bits/pixel range. It was determined that
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the introduction of a Differential Pulse Code Modulation (DPCM) loop

into the BTC scheme provided enhanced performance at these low data

rates. The details of this modification and the results it provided

are the subject of the following section.

Application of DPCM to BTC

A block diagram of a generalized DPCM system is shown in Figure 7.9

(page 143). For every input signal xN, the linear predictor generated a

prediction value XN which is calculated from N-l preceeding samples

according to the relation

N-l
xN = Z (7.29)
N= i N-1

Only preceeding transmitted samples are used for the prediction, so that

the receiver is also able to calculate XN" The predictor coefficients a.

are optimized to yield a predictor error

eN = xN " XN (7.30)

with minimum variance. This error value is then quantized. The recon-

structed input signal xN is created at the receiver and the transmitter

by adding XN to the quantized prediction error eN. The reconstructed

value x' thus differs from the original sample by the quantization error

q = e N - eN = XN - XN - (xN - xN ) =xN -XN. (7.31)
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When operating on data samples in which there exists a degree of

linear statistical dependency, the prediction errors will have a smaller

variance than the original sample values [27]. Due to the smaller

variance of the signal to be quantized, coded and transmitted, the

amplitude range of the quantizer may be reduced, a smaller number of

quantizing levels may be used, and fewer coding bits are required for a

given signal to noise ratio than in a non-predictive system.

Thus, DPCM systems may be used advantageously in situations in

which there exists a degree of correlation between data samples. With

respect to BTC, it seems reasonable to assume that, in general, successive

samples of the block mean will be correlated, as will successive samples

of the block standard deviations.

The form of DPCM chosen for use with the BTC technique utilizes a

first order linear predictor. Following (7.27),

xN = a1XN-1 (7.32)

The prediction for the current data sample is based simply on a linear

function of the preceeding sample. The effect of different values of

the predictor constant al will be discussed later.

A number of images were sampled to determine general distribution

functions for the differences of the block means and block standard

deviations. The shape of these distributions was of interest in choosing

the quantizer to be used in the DPCM loop. Histograms of these differents

for the three dimages discussed previously (Girl, Moon, and Aerial) are

provided in Figures 7.10 through 7.15 (pages 145 through 150). All distri-

butions are of Laplacian form, with means essentially equal to zero. The

variance of a particular distribution was found to depend on the data
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type (differences of means vs. differences of standard deviations),

and also on the image from which the data was derived.

Based on the reasoning and results presented above, the DPCM system

was implemented as follows: two DPCM loops were used, one each for the

block means and the block standard deviations. The n X n bit map for

each block remained unaffected by these DPCM loops. First order linear

predictors were used for both loops, and the quantizers were of the form

optimized for Laplacian distributions, from Adams and Giesler [23].

The specific quantizer values used in a particular simulation were

determined from this general Laplacian form and the pre-calculated value

of the variance of the data entering the DPCM loop.

For example, the variance of the differences of the block means for

the Girl image was found from prior calculations to be 306.426, while the

variance of the standard deviations was determined to be 51.879. These

values would then be used to scale the Laplacian quantizers within the

respective DPCM loops. This approach has the obvious disadvantage of

requiring the variances of the data to be determined in advance; a

method of avoiding this severe limitation while improving the DPCM system

performance will be presented in the next section.

Simulations of this BTC/DPCM system were performed using both 4 bit

and 5 bit Laplacian quantizers within the DPCM loop. An ideal channel

was assumed in all cases. These simulations correspond to average data

rates of 1.50 and 1.625 bits/pixel respectively. The results of these

simulations for the three images under consideration are listed in

Table 7.5.
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TABLE 7.5. RESULTS OF THE BTC/DPCM SIMULATIONS

(MSE)

Image 1.50 bits/pixel 1.625 bits/pixel

Girl 44.79852 37.60272

Moon 49.79671 42.31354

Aerial 146.05792 135.07271

The results given in Table 7.5 were obtained with the predictor

coefficients for both DPCM loops set to unity. Further simulations

".. suggested that the performance decreases slightly for coefficients of

magnitude less than 1.

The MSE figures listed in Table 7.5 for the average bit rate of

1.625 bits/pixel may be compared to the figures given in Table 7.4

(page 141)for the simultaneous two dimensional and independent uniform

quantizers. It can be seen that the DPCM scheme provides performance

comparable to that obtained using the simultaneous or independent

quantizer techniques. The images produced by the DPCM scheme are

comparable in quality to those rendered by Mitchell's two-dimensional

quantizer in the respect that the problem of false contouring which

often results from coarse quantization of the block means is not apparent

to the eye. In addition, the problem of excessive graininess, a symptom

of coarse quantization of the block standard deviations, is not apparent

in the DPCM images.
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The results described above provided an indication that the

application of DPCM to BTC was a feasible and productive modification.

Unlike Mitchell's two-dimensional quantization scheme, which was derived

on a strict empirical basis, the DPCM scheme is easily modified to

provide higher or lower bit rates simply by varying the number of bits

assigned to the Laplacian quantizers within the DPCM loops. A further

advantage of the DPCM scheme is that its performance may be enhanced

through the application of a learning algorithm which operates on the

DPCM quantizers. The development of this learning algorithm and its

application to the BTC/DPCM scheme is the subject of the following section.

Development and Application of an Unsupervised Learning Algorithm

The DPCM scheme described above involved the use of two Laplacian

quantizers with variances which were fixed for each image. Improved

performance may be realized by allowing the quantizers to adapt to

changes in the distribution of the data within the image. In general

adaptivity may be realized through midification of either the predictor

or the quantizer within the DPCM loop, but Mussman [24] has shown that

any adaptive predictor may be interpreted as an adaptive quantizer. The

following discussion will therefore deal exclusively with the adaptive

quantization problem.

Various investigators [ - 28] have considered adaptive quanti-

zation schemes. Most techniques developed to date may be considered to

be members of either the forward adaptive class or the backward. adaptive

class. Forward adaptive systems derive variable quantizer step size
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based on the quantization error. Both forward and backward adaptive

systems typically seek to modify the parameters of a single general

quantizer in order to reduce quantization error.

A more general- scheme has been developed by Griswold and Sayood

[29] based on the estimation theory work of Patrick [30]. This

method involves classifying input values as belonging to one of several

possible probability distributions. Estimation techniques are employed

to choose the most probable distribution from which the current data

values are being drawn; this chosen distribution is referred to as the

"active" distribution. In the unsupervised learning approach, the

technique of modifying the dynamic range of a single quantizer is replaced

by the process of selecting a single distribution from a group of possible

distributions and utilizing optimal quantization.

An outline of the development of the unsupervised learning algorighm

is now presented.

Given a set of data values denoted by an L-dimensional column vector

x,

x2

X (7.33)

XL

It is assumed that a feature extraction or processing operation had made

the conversion to an L-tuple. A sequence of n vectors is denoted by

4 = ~(7.34)
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where the vectors X., i = 1,2,...,n are understood to be members of some

observation space 0 of column vectors.
Suppose that associated with each of the samples Xl  , is a

probability distribution with the possibility of some of the samples

being drawn from, for example, F(X al), some from F(X a2), etc., where

_1 and a2 are parameter vectors which characterize the probability

distributions F(XLal) and F(Xa 2). A family of distributions may be

defined as

- : F(XIa); a e A, Xc VL (7.35)

where A is the space of parameter vectors characterizing the probability

distributions of interest, and VL is the vector space containing the

observation elements Xi , i = 1,2,...,n. For values of ai and i2 in A,

any sample of X (X e VL) could be from any one of the member distributions

in the family 8.

A finite mixture distribution (see [30] ) may be defined as

N
H(X) = Z F(X ai)P(ai) (7.36)

- =1 -1

where a i, i = 1,2,...,N form the parameter space A, and P(a.i), i =

1,2,...,N are the unknown mixing parameters.

Given the mixture of H(X), the samples X1 , X2, Xn, some of which

are from F(X Ta,), some from F(Xla2), etc., and the distribution family 8,

unsupervised learning is concerned with the attempt to decide which

samples are from which distribution, for the purposes of estimating the

parameters characterizing that distribution.
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The problem in the application of unsupervised learning to adaptive

DPCM (ADPCM) is to resolve the mixture (unknown) into the "active"

distribution which defines the current source event [29]. With respect

to DPCM, the samples Xi, i = 1,2,...,n are vectors whose elements are the
-4

differences to be coded, and we have the condition that any sample

difference input to the quantizer in the DPCM loop could be from any

member distribution. The task is then to assign the input value to one

of a finite number of quantizers, and to estimate the parameters for

the particular "active" quantizer.

If the number of distinct quantizers is m (finite) with corresponding

parameter points b,,...,b and associated class probabilities

PP2 , then following Patrick [30] we may define

b = b1,b ,.e..,bm PI P2,Pm  (7.37)

where b c AM X P4 (Cartesian product) and m < M; AM is the vector space

of distribution parameters, and Pil is the mixing parabeters. The mixing

distribution conditioned on b is

M
1(X b) = Z F(X i,b.i)P i  (7.38)

where

M
E Pi = .I and Pi > 0 for all i. (7.39)

,-i=l 11

Equivalently, the mixing density conditioned on b is given by

M
h(X rb) = I f(X bi)P. . (7.40)
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assuming the densities f(X bi) exist.

The application of unsupervised learning involves resolving this

finite mixture density by estimating or searching for a solution vector

b. Estimating b identifies which probability density function is active

at a given time. Bayes or Maximum Likelihood estimation proceedures

may be used for this purpose just as if there were no mixture density

[29], [30]. -Patrick [30] has developed an expression for f(BX)

based on the "decision directed" estimator of Bayes. The decision

directed approach uses decisions made on past samples to approximate the

classificaiton of the current sample. The use of Bayes Theorem allows

the problem to be converted from one requiring "a priori" information to

one requiring "posteriori" information. From [30], the expression for

f(b. X) in terms of posteriori information is

* .r f(b. X 1, if E (Wi) > (W.)-n - iVj nn

f(bj in n)n (7.41)

1f(Xn I)f(b. II)f(X- - , otherwise
f(X j)

where

(W (Pi)n-If(-X i, (bi)n-l )
"' (WOn = m

k. 1. (Pk)n-l f(X k,(bk)n-l)~k=1

., is a sequence of vectors X at stage n

n is the stage of iteration

.. is the ith distribition which defines a

quantizer through parameter bi
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j is the jth distribution which defines a

quantizer through parameter b..
-3-

The mixing parameters (Pkdn remain to be defined.

The term Z (Wi) above is the probability that the kth quantizerik n
is not "active" given a data sequence X. (Wk)n is the probability that

the kth distribution, which is associated with quantizer k, did cause the

data sequence at stage n. Note that equation (7.39) above presumes the

initial distribution estimates to be reasonably good approximations of

the actual distributions within the image and therefore the decisions of

the classifier will be generally correct. Therefore, the distribution

defining parameters are updated only when the data indicates that another

class of distribution is "active". If only one distribution is allowed

to be active at any one time, the unsupervised learning problem may be

converted into a supervised learning situation in which the decision

directed estimates defining the active distribution are based on the

last n-i decisions as training sets.

For the BTC/DPCM case of interest here, the family of distributions

to be considered is the zero mean Laplacian, defined by

kLaplacian = exp (. -k (7.42)

where

a i  A, -!k C VL

For this case, the parameter defining a particular distribution is

based on the scaler quantity a.i, the standard deviation of that distri-

bution. In the supervised learning framework, the decision directed
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estimate for the parameter of distribution k at stage n is given by

(see [29]):.

(a) (W) > (W )
k)n- 1  if i~k in kn

(akI n-i (k)n'l otherwise

The terms E (Wi) n and (W )n are defined as for (7.39). Since the

probability that the current data value xk came from the kth distribution

is related to the posteriori parameter estimate through the mixing

parameter Pis an estimate of these paremeters is , iuired. These para-

meters must satisfy two conditions, namely

n
E. (P) =, (P) (7.44)i=l I n kn ' (

where m is the number of distinct quantizer classes. If the range of

the quantizer spans the range of observations, then for any data vector

Q1 with probability P1

Q2 with probability P2
X .(7.45)

,. with probability m
1.

where Qi, i = 1,2,...,n denotes the ith quantizer. For any specific

sequence X we have a multinomial distribution for which we are required

to estimate P, where P = [P1P 2 ,...,Pm]. Following [30], it is
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assumed that the density function f(P) is Diriclet and reproducing,

leading to the expression (see [29]):

(11)n n + no + (v-i)

kn n + no +v n+n + v (Pkn-1 (7.46)

where

1 if (Xe) £ k at iteration n

n 0 if (X1) t k at iteration n

V

i (P On =I
-i-

n is the current iteration or stage

n. is the total number of data points

v is the number of possible "active"

distributions.

Equations (7.41) and (7.44) above provide expressions for both the

posteriori parameter vector and the mixture parameters at any stage n

based on a previous sequence of samples. These equations were directly

applicable to the BTC/DPCM loops. For the purposes of this research,

four different quantizers were allocated for each of the DPCM loops. The

*quantizer parameters (variances) and mixture parameters (class probabil-

ities) were updated within the two DPCM loops according to equations

(7.41) and (7.44). This scheme, comprised of BTC with DPCM and unsuper-

vised learning, represents the end result of the investigation presented

in this section. The next section will briefly discuss the application

of bit weighting to this BTC/DPCM unsupervised learning scheme in an
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attempt to provide a degree of error protection within the channel

without sacrificing bandwidth. Finally, the performance of the coding

scheme developed above will be discussed in Section V.
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4. APPLICATION OF BIT WEIGHTING

As discussed in Section II, the application of bit weighting to

a modulation method provides a degree of error protection without

requiring the addition of channel coding bits to the source data. For

I the case in which the number of different energy levels J is less than

the number of bits per word n, the relative energy levels for the binary

antipodal case were given by (7.17).

Bit weighting may also be applied to multilevel signalling techniques

such as QAM. From a channel efficiency standpoint, QAM, with 4 bits/

symbol, has a much higher performance potential than binary signalling

techniques. Assuming ideal Nyquist pulse shaping and a channel bandwidth

of B Hertz; QAM attains a bit rate of 4B bits/s, while binary antipodal

modulation is limited to 2B bits/s under the same ideal conditions [31],

[6]. It is this theoretical factor of two increase in bit rate which

makes QAM attractive.

The signal space diagram for a Grey-coded QAM scheme is presented

in Figure 7.16.
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Figure 7.16. Signal Space for Grey-Coded QAM

Assuming additive white Gaussian noise with variance No/2 (see [20]),

with an average channel symbol energy of E, the probability of a symbol

error for the QAM scheme is given by [7.31], [7.32]:

P = 3Q (7.45)

where d is the signal spacing as denoted in Figure 7.16, and it is

assumed that all signals are equiprobable. The individual bit error

probabilities are not all equal, however, due to the nature of the Grey

coding. Assuming bit 0 is defined to be the least significant bit within

a word, and bit 3 the most significant, Sundberg [7] finds the

individual bit error probabilities to be
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0 O P1 =  E~

(7.46)

P = f' 2" _Nri

where P. is the bit error probability in QAM bit i. Thus, the signal
1

set shown in Figure 7.16 is already "weighted" due to the fact that the

error probability for bits 2 and 3 is half of the error probability for

bits 0 and 1. This signal set is thus naturally used in such a way that

the most significant bits within an input digital word are placed in the

bit positions 2 or 3.

The signal set described above may be modified in order to accomo-

date situations in which bit probability of error ratios of other than

2:1 are required. The development of a scheme in which two distinct

energy levels may be specified is described below.

Considering one quadrant of the signal space, as shown in Figure

7.17, two distances d, and d2 and a related angle 0 may be defined as

shown. For the unweighted signal set, dl=d 2=d and tan 6=1/3.

The relative bit error probabilities may now be difined as a

function of the angle 0, and the relative energy levels el and e2 may be

optimized as a funciton of the A-factors of the bits of interest and the

average channel signal to noise ratio E/N0 . Appendix A details the

deriviation of the equation for the optimum angle e as a function of the

A-factors and E/No. From Appendix A, it is found that the optimum 0 is
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Figure 7.17. Distance Definitions for Two Level Weighted QAM

determined by solving

i1

a r.2Wm
I ,'~ 0 =2 E: Ai* NN E ) ) (7.47)

i0O 1 i=Oosin(E - [14 cos(E - (

3 rE
1 E A. EE

2 =21 , N sin J ,/ N" cos
.'2

where

1 (_x2
O(x) 2 exp ( 2) (7.48)

and Ai is the A-faccor for bit i.
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The two level weighted QAM scheme may be applied to the BTC/DPCM

source coder output on the following manner. The output of the coder

consists of two classes of data: 1) Laplacian quantizer code data from

the DPCM loop, and 2) pixel code (bit map) data from the quantization

of the actual pixel values. The signal spaces required to implement

bit weighting must be derived through application of the A-factors of

these two data classes to equation (7.47).

The A-factors for the 4 bit Laplacian quantizer code words were

derived according to the procedure outlined by Rydbeck and Sundberg

[7.19]; these A-factors are listed in Appendix B. In the case of the

pixel code bits, all bits are of equal importance regardless of position

since each identifies the correct quantizer level for a given pixel.

Assuming that all pixels within a block are of equal importance, it is

required that the A-factors for all the bits in the pixel code be equal

in order to force equal probability of error for all bits. Since it is

the relative magnitude of the A-factors within a word which influences

e in (7.47), rather than their absolute value, all A-factors for pixel

code bits were assigned a nominal value of 1.

The application of two level weighted QAM to the BTC/DPCM source

code thus involved solving (7.47) based on the two sets of A-factors

and the particular channel signal to noise ratio (SNR) of interest.

For each value of channel SNR, two QAM signal spaces were required:

one "weighted" scheme for the Laplacian quantizer code bits, and an

"unweighted" scheme for the pixel code bits.

An example of each of the two signal spaces may be found on pages

and . Both plots were generated for the case E/No = 13.9 dB, which
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corresponds to an average bit error rate of 102 for this modulation

method. Note that the signal space for the Laplacian quantizer code

has been distorted in such a manner that the most significant bits

(2 and 3) are prot4ected at the expense of a higher probability of

error for bits 0 and I.

Equation (7.47) was solved numerically for each E/No value of
r0

interest, resulting in a value 0o. The relative energy levels were

then found from ( see [7]):

e= lOsin 2

0
(7.49)

2 11e= 5 sin2(- ) ,

where e, is the relative energy assigned to bits 0 and 1, and e2 is the

relative energy assigned to bits 2 and 3. The individual bit error

probabilities are then (see Appendix A)

P e 0,I = Q

O'l 5N0

(7.50)

,.".....P e 2 3 =  Q  e2
e 2 ,3 -T e2  -N

where Q()is the standard Q-function [20], and E/No is the channel

SNR.

The error probabilities defined in (7.50) were used in a channel

simulation routine which simulated bit errors for the complete forward

and inverse BTC/DPCM coding operation. These simulations were performed

-6 -4
for bit error rates of 10 , 10 , and 1O2 for the BTC/DPCM coder
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described in Section 3. As a basis of comparison, standard cosine

transform coding at the same bit rate (1.5 bits/pixel) was also

simulated at these error rates. The results of these simulations are

presented in the following section.
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5. CHANNEL SIMULATION RESULTS

The goal of this research was to develop an image transmission scheme

which would yield images comparable in quality to transform coding schemes

under noisy channel conditions while requiring only a relatively simple

hardware implementation. As directed in Sections 1 and 2 , the BTC spatial

coder was chosen as the basis for this image transmission system because of

its implementation simplicity and its good performance in terms of image

quality.

The performance of the basic BTC coder at 2 bits/pixel was discussed

in terms of MSE in Section 3 (see Table 7.1, page 136). The performance

- - of this coder in visual terms may be evaluated by comparing Figure 7.20 to

Figure 7.21 on page 172. Figure 7.20 is the original Girl image, coded at

8 bits/pixel. Figure 7.21 is coded using BTC at 2 bits/pixel with uniform

quantizers for the block means and standard deviations. Figure 7.22 shows

the result of attempting to reduce the bit rate of this basic BTC scheme to

1.5 bits/pixel. Severe false contouring is apparent in this image.

Figure 7.23 demonstrates the result of the BTC/DPCM coding with unsuper-

vised learning at the rate of 1.5 bits/pixel. Note the improvement obtained

in relation to the image of Figure 7.22. One deficiency apparent in Figure

7.23 is that of the verticle stripes, which are most apparent in the left-

hand "background" section of this image. These stripes occur at the begin-

ning of the DPCM stripes, which run horizontally, and are due to the fact

that 4 bit uniform quantizers were used to code the block means and standard

deviations at the beginning of the stripes. The 4 bit uniform quantizers
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Figure 7.20 Figure 7.21
Original Girl Image Unmodified BTC (Uniform Quan-tizers) at 2.0 bits/pixel;

10-6 BER

Figure 7.22 Figure 7.23

Unmodified BTC (Uniform Quan- BTC/DPCM at 1.5 bits/pixel;
tizers) at 1.5 bits/pixel; 10-6 BER

lO6 BER
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were used in order to realize a bit rate of 1.500 bits/pixel. If a small

increase in bit rate could be tolerated, these initial blocks could be

coded with 6 bit uniform quantizers; Figure 7.24 (page 174) was coded in

this manner. The bit rate for this image is 1.531 bits/pixel.

All of the images described above were uncorrupted by channel errors.

However, as noted previously, a realistic image transmission system must

consider the effect of channel errors on the output images. Figure 7.25

demonstrates the effect of a 102 bit error rate (BER) on a 1.5 bit/pixel

cosine transform coded image. Transform coding typically distributes the

effect of channel errors throughout the transform blocks, which in this

case were 16 X 16 pixels each. Figure 7.26 illustrates the effect of a

10-2 BER on an image coded at 1.516 bits/pixel with the BTC/DPCM unsupervised

learning scheme without bit weighting. Figure 7.27 is also the result of

the BTC/DPCM coder, at I0" 2 BER, but bit weighting was implemented in this

case. Though the visual improvement is not dramatic in this particular image,

the general effect of bit weighting was to decrease the number of serious

errors at a cost of -increasing the number of minor errors.

The MSE results for all of the images discussed above are tabulated in

Table 7.6.

.17
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BTC/DPCM at 1.53 bits/pixel; Cosine Transform Coding at

Fi ur 76 4 1. 17bit l l s /p ixel;

Figure 7.26 Figure 7.27
BTC/DPCM at 1.51 bits/pixel; BTC/DPCM at 1.51 bits/pixel;

102 BER 102 BER
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TABLE 7.6. MSE RESULTS FOR THE IMAGES OF FIGURES 7.20-7.27

Figure No. Bits/Pixel BER MSE

20 8.000 0 0.0

21 2.000 0 35.07

22 1.500 0 60.350

23 1.500 0 42.298

24 1.532 0 39.443

25 1.500 lO-2  336.787

26 1.516 lO-2  178.015

27 1.516 0-2  86.874

The figures listed above for the BTC/DPCM coder (Figures 7.26 and 7.27)
are the result of a slight modification of the scheme described in Section

III. During the initial channel simulations of this coder at high error

rates, it was discovered that image quality decreased rapidly at error rates

in the neighborhood of 1O"2. This effect was due to the distruptive effect

of errors on the unsupervised learning algorithm. At high error rates, the

insupervised learning loop in the receiver was unable to track the decisions

made by the loop in the transmitter, with the result that the unsupervised

learning increased the degradation effect of the channel errors.

It was determined that this negative effect of the learning could be

eliminated by inhibiting the updating process whenever an error occured.

It was not necessary for the receiver to know the precise bit in error, or
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have the capability of correcting the error; the inhibit could be performed
by simply knowing which word contained an error. This level of error

detection could be realized through the use of a two-dimensional parity

code. This code naturally adds overhead bits, but the increase in data

rate is slight; if data blocks of 32 words by 32 words (16 X 16 BTC image

blocks) were coded using a two-dimensional parity code, the increase in

bit rate would be 0.0156 bits/pixel. All results for the BTC/DPCM coder

presented here have been generated on the assumption that such an error

detection scheme is operating.

The MSE results of the BTC/DPCM channel simulation for all three images

are summarized in Table 7.7 (page 179).

-. As can be seen from the results given in Table 7.7, the relatively

small error rate of 10"4 had little effect on system performance, while the

high error rate of 10-2 did result in noticeable degradation. Bit weighting

in general improved the system performance at this high error rate, however.

The results of the BTC/DPCM coding used in conjunction with weighted QAM

are shown in Figures 7.28 through 7.30 (pagel77) for the Moon image, and in

Figures 7.31 through 7.33 for the Aerial image.

The MSE results for cosine transform coding channel simulation of the

*three images are provided in Table 7.8 as a basis for comparison with the

BTC/DPCM coded images.
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Figure 7.28
Original Moon Image

Figure 7.29 Figure 7.30
BTC/DPCM at 1.51 bits/pixel BTC/DPCM at 1.51 bits/pixel

with bit 6weighting 102BER
106 BER
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4 Figure 7.31
Original Aerial Image
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Figure 7.32 Figure 7.33

BTC/DPCM at 1.51 bits/pixel BTC/DPCM at 1.51 bits/pixel
;10 6 BER 10-2 BER
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TABLE 7.7. RESULTS OF THE BTC/DPCM CHANNEL SIMULATIONS

(MSE)

" Without With

Image BER Bit Weighting Bit Weighting

Girl 10- 6  42.298 42.298

10-4  42.381 52.426

10-2  178.015 86.874

- Moon 0-6 46.109 46.109

10-4  46.277 46.351

I02 141.149 101.601

Aerial 106 147.358 147.358

10 149.149 149.204

i0-2 450.546 277.933

t.1
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TABLE 7.8. RESULTS OF COSINE TRANSFORM CODING CHANNEL SIMULATIONS

Image BER Image MSE

Girl 10- 6  32.407

10"4  37.516

I0"2  336.787

Moon 10-6 31.024

10- 4  33.084

10-2 186.112

Aerial 10- 6  50.385

10- 4  53.074

102 287.647

Inspection of Tables 7.7 and 7.8 reveals that although the BTC/DPCM

.scheme with unsupervised learning was unable to match the very good perfor-

- mance of the cosine transform coder under ideal (error free) conditions,

the transform coder suffered greater degradation at an error rate of 10-2.

With the application of bit weighting, the BTC/DPCM scheme provided notice-

ably improved performance for both the Girl and Moon images at l02 BER.

When operating on the Aerial image, the BTC/DPCM system with weighting

provided only a marginal improvement over the transform coder at this error

rate.

The conclusions drawn from these simulation results are summarized in

the following section.
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I.

6. CONCLUSIONS

As stated in the introduction, the goal of the research presented

in this task was to develop the basis for a workable image transmission

system which would provide good quality images, low bandwidth requirements,

and error protection for non-ideal channels.

A spatial coding method (Block Truncation Coding) was chosen as the

basis for the system source coder due to the excellent efficiency of BTC

in terms of image quality relative to computational requirements. As

demonstrated in Section III, the basic BTC coder proposed by Delp and

Mitchell in [4) performed well at a bit rate of 2.0 bits/pixel, but its

performance deteriorated seriously as the bit rate was decreased to 1.5

bits/pixel. Based on this observation, and noting the need to achieve as

low a bit rate as possible in order to satisfy the bandwidth constraint, a

modified form of BTC was developed. This modified form incorporated a DPCM

loop into the BTC coder, and utilized a novel adaptive quantization scheme

based of an unsupervised learning algorithm developed by Griswold and

Sayood (29].. This source coder operates at 1.51 bits/pixel without the

need for complex, high-speed implementation hardware.

The modified source coder was shown to be compatible with a weighted

QAM modulation scheme. The~weighted energy levels were calculated for the

source code produced by the modified BTC coder, and channel simulations

were performed at bit error rates of 10 6, l0"4 , and l0-2. To aid in

evaluating the performance of the proposed system, these simulations were

also performed on a cosine transform coder operating at 1.5 bitx/pixel.
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As indicated by the numerical (MSE) and visual results presented in

Section V, the source coder developed as a result of this research performs

well at high error rates in comparison to the cosine transform coder.

Under error-free conditions, The performance of the modified BTC coder

does not match that provided by the transform coder, though for two of the

three images tested (the Girl and Moon images) the difference in performance

was not substantial.

A fair evaluation of the modified BTC coder must consider the decrease

in performance which occurs when images such as the Aerial image are being

processed. This degradation appears to be a result of the two-level

quantizer inherent in the BTC technique; in images such as the Aerial in

which there exists a high degree of variability in the pixel values within

a block (4 X 4 pixels), the two-level quantizations scheme naturally leads

to a relatively large error between the coded and original images. It

should be noted, however, that the cosine transform coder also suffered a

degradation in performance when operating on the Aerial image as compared

to the Girl and Moon images.

In general, the image coding and transmission scheme developed in the

course of this research satisfies the original goals as outlined in the

introduction of this paper. The modified source coder required only

relatively simple computations to be performed for its implementation,

thus leading to a straightforward hardware realization. The weighted QAM

technique provided a degree of error protection while attaining efficient

use of available channel bandwidth. This scheme shows promise in applica-

tions in which a relatively simple hardware realizaion is required, Band-

width is constrained, and a high channel error rate is unavoidable.
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APPENDIX A

It is required to optimize the two level signal set defined in

Figure 7.17 (page 165)for minimum digital noise as a function of

the signal set parameters d1 and d2 , or alternatively, as a function

of the single parameter e. Following the procedure given in [20]
for determining the probability of bit errors for an arbitrary

rectangular signal set (see page 254 of this reference), it is found

that for the signal set defined in Figures 7.16 and 7.17 in the

presence of additive white Gaussian noise with variance N,/2, the

individual bit error probabilities are given by

P[E) a PE)1 = Q [ii...+ 1/2 Q L 1~ (1)
r2d 2 +d1i[ 1

P(E12 = PE)3 =1/2 Q I +1/2Q (2)

where Q(d/v7Nio) is the probability of error for two signals separated

by a distance d. Based on these bit error probabilities, the digital

noise as defined by Sundberg [7.7] is given by

1

1j A1 [Q(d/N) + 1/2 Q(2d, + d /v&N)]o- i-O 7O- .

4
+ Z Ai [(1/2)Q(2d2 + d1/v' I )
i-3

+ (/2)Q(dl/vo) A (3)
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Solving for the digital noise in terms of the angle 6 and simplifying

yields

1
E Ai Q(V71o sin ((H1/4) - e))

i=O 0

3
+ Z AI (I/2)Q(V7WO sin e).

i=20

This equation may be optimized by taking the partial derivative with

respect to e and setting the resulting equation to zero. This operation,

accomplished through the application of Leibnitz' rule (considering the

Q-function in its integral form), leads to equation (7.47) of the text.

41
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APPENDIX B

I The A-factors for the 4-bit Laplacian quantizers discussed in the

text were determined to be:

Bit # A mfactor

0 0.646091

1 2.003751

-~2 5.378554

3 18.955492
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SECTION VIII

COMBINED BIT WEIGHTING AND

SOFT DECISION DEMODULATION

1.0. INTRODUCTION

Bit weighting (BW) and soft decision demodulation (SDD) as described in

the preceding sections are obviously quite different approaches to the problem

of reducing channel error effects in data compression systems. Bit weighting

is used at the transmitter to increase the transmitted energy of significant

bits, while soft decision is implemented at the receiver to protect against

catastrophic errors in the most significant bits. These two techniques are

complementary and can be employed simultaneously in a data compression system.

2.0. COMBINED BW/SDD SIMULATIONS

The combined BW/SDD simulations were performed for an additive white Gaussian

noise channel with a channel SNR = 7.35 dB for an unprotected independent bit

error probability of 10"2. Laplacian quantizers were used for the coefficients,

and the bit weighting energies for one through eight bits are listed in Table 8.1.

For SDD, the four most significant bits (MSBs) of coefficient I (dc coeffi-

cient), the three MSBs of coefficient 2, and the three MSBs of coefficient 17

were monitored. The soft decision thresholds for these bits are given in Table 8.2.

Monte Carlo simulation runs were performed to compare bit weighting alone,

soft decision demodulation alone, and combined bit weighting and soft decision

demodulation. For these experiments, images were coded at 1 bit/pel using the

2D-DCT with 16 by 16 blocks.

Table 8.3 lists the average SNR of SDD alone, BW alone, and combined BW/SDD

for the Monte Carlo runs performed at a BER a 10-2. In terms of SNR, BW and SDD

achieve almost identical performance, while joint BW/SDD provides a 1.6 - 1.7 dB
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TABLE 8.2. SOFT DECISION THRESHOLDS

Coefficient Bit No. Threshold

c1  1 1.92922994E-01

2 2.50516981E-O

3 1.69860646E-O1

4 3.28001715E-02

C2  1 1.25782982E-01

2 1. 66228101 E-O1

3 7.80232921E-02

C17  1 1.25782982E-01

2 1.66228101E-O1

3 7.80232921E-02
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TABLE 8.3. COMBINED BIT WEIGHTING/SOFT

DECISION PERFORMANCE (BER=10 2)

Combined
SDD BW BW/SDD

SNR(dB) 10.66 10.56 12.26
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improvement over either technique alone.

Figures 8.1 - 8.3 shown typical reconstructed images corresponding to the

comparison in Table 8.3. Figure 8.1 shows a reconstructed image at a BER = 10-2

for SOD alone, Figure 8.2 is BW alone, and Figure 8.3 shows combined BW/SDD.

The improvement in Figure 8.3 is obvious, and using BW and SOD together always

has produced a better image.

3.0. CONCLUSIONS

Joint BW/SDD is recommended whenever the specific application admits their

implementation.

.19
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Figure 8.1. SDD Alone at BER 10 ic2

Figure 8.2. BW Alone at BER 10=

Figure 8.3. Combined BW/SDD at BER 10=
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