
AD-AI34 181 PROPAGATION OF SOUND THROUGH A GAS WITH AN1/
OVER-POPULATIONOF EXCITED VIN MISSISSIPPI UNI
UNIHERSIT DEPT 0F PHYSICS AND ASTRONOMY F SHIELDS

SSFE 0OT8 0048 -- 6 / 0 1 N

EELAOEEEEEEEEmmmmo



11111 1.0 1 f2.8  11*

11111=5

MiCROCOPY PESOLUTON TEST CHART
NA O A RAU OF STN.D-25 A

t)



I

:1

I
I
)



Technical Report on Research

Sponsored by the

Office of Naval Research

Contract NO0014-81-K-0691

PROPOGATION OF SOUND THROUGH A GAS WITH AN OVER-

POPULATION OF EXCITED VIBRATIONAL STATES

by

F. Douglas Shields

Department of Physics and Astronor.
The University of Mississippi

University, Mississippi

October 20, 1983E T Co ,o~oDTIC

OCT 2 8 1983

B
DIs~sTrrTnor STATMEN A

Approved tor public releasel I
Distributionl Unlimited

Reproduction in whole or in part is permitted for any purpose
of the United States Government.



SECURITY CLASSIFICATION F THIS PAGE (Wan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R PBEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACC''SION NO. 3 RECIPIENT'S CATALOG NUMBER

4 TITLE and SubtIIl) S TYPE OF REPORT b PERIOD COVERED

PROPOGATION OF SOUND THROUGH A GAS WITH AN OVER- Technical Report 1982-1983

POPULATION OF EXCITED VIBRATIONAL STATES
6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(l) B CONTRACT OR GRANT NUMBER(&)

F. Douglas Shields N00014-81-K-0691

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WO1K UNIT NUMBERS

The University of Mississippi NR 384-836
University, Mississippi 38677

I1 CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE10/20/83
Office of Naval Research, Physics Program 

13 NUMBERF PAGS

Office, Arlington, Virginia 22217

14 MONITORING AGENCY NAME & ADDRESS(If different from Controlllng Ofice) 15 SECURITY CLASS. (of this reporf)

Declassified
1S. DECLASSIFICATION OOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

1?. DISTRIBUTION STATEMENT (of the bstract eneed In Block 20. I1 dilfent from Report)

I. SUPPLEMENTARY NOTES

19 KEY wORDS (Continue on reverse side It necessary mnd Identity by block number)

Vibrational Relaxation
Sound Amplification

Vibrational Temperature

20 ABSTRACT (Continue on ro ese *de II necesary and Identify by block numberJ

'Calculations have been made which predict sound amplification under certain
conditions when propagated through a gas with an overpopulation of vibration-
ally excited states. Three metastable states have been analyzed where the
vibrational temperature is varying slowly on the scale of the sound period.
The first is that of a long-lived vibrational mode in a diatomic gas. Calcu-
lations were made for N2' CO, 02, and CI. The second is that of a fast v-v
exchange followed by a slow v-t. Calculations were made for CD14 as an example
of this situation. And the third is that of a slow v-v followed by a fast v-t

DO ,FA O EDITION OF INOV6 IS OBSOLETE

S N O10- LF- 014-s6Ol , SECURITY CLASSIFICATIO2
'lF THIS PAGE (When Daf

-a&



SECUiRITY CLASSIFICA671ON OF THIS PAGE ("On, Does Entor*4)

~Calculations were made for a mixture of N' 2/Cd'2/He as an example of thissituation. Some of the difficulties in experimentally observing the gainare discussed.

Av(A

Di t

S N 0 102- LF- 0 14- 6601

SECURITY~ CLASSIFICATION 0f THIS IPAGE Who* Dom. Entorod)



The Propagation of Sound Through a Gas with
an Over-Population of Excited Vibrational States

F. Douglas Shields

Department of Physics and Astronomy
The University of Mississippi

University, MS 38677

Abstract

Calculations have been made which predict sound amplification under

certain conditions when propagated through a gas with an overpopulation

of vibrationally excited states. Three metastable states have been

analyzed where the vibrational temperature is varying slowly on the scale

of the sound period. The first is that of a long-lived vibrational mode

in a diatomic gas. Calculations were made for N2, GO, 02, and Cl2. The

second is that of a fast v-v exchange followed by a slow v-t. Calcula-

tions were made for CDh. as an example of this situation. And the third

is that of a slow v-v followed by a fast v-c. Calculations were made

for a mixture Of NZ/C0 2/Hle as an example of this situation. Some of the

difficulties in experimentally observing the gain are discussed.
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Propagation of Sound through Gases
with an Overpopulation of Excited Vibrational States

Introduction

The propagation of sound through gases under a variety of non-equi-

librium conditions has been studied the past ten years. These studies

have predicted sound amplification in the presence of a chemical reac-

tion or optical pumping of vibrational states . Bauer and Bass

have named the later process "SAGER", which is an acronym for t"sound

amplification from controlled excitation reactions." The predicted ampli-

fication is attributed to the preferential heating of the compression part

of the sound wave either by the pumping process or the relaxation process

or both. The amplification due to pumping results from the selective

absorption of pumping energy in the compression part of the sound cycle.

The amplification due to relaxation results from the temperature and

pressure dependence of the vibrational energy transition rate. The

increase in the rate of v-t energy transfer with temperature and pressure

causes the relaxing vibrational energy to be selectively "dumped" into

the hot (or compressional) part of the sound cycle. When the sound wave

is propagated in the presence of pumping, both effects are likely to be

operative and the two will be difficult to separate. In addition, the

non-equilibrium conditions produced by the pumping make accurate measure-

ment of the sound amplification or absorption difficult.

A situation more amenable to experimental study results if the pump-

ing process can be terminated and a metastable state allowed to develop

in the gas before the sound wave is introduced. In this case it is

obvious that the decay time must be long compared to the sound period.

Three typical situations where such a condition could be produced by



pumping energy into a particular vibrational mode are:

(1) A single long lived relaxing mode. Most stable diatomic gases

fall into this category. Bauer and Bass have considered the case of a mix-

ture of CO and H2 and predict large amplification when the period of the

wave is close to the relaxation time of the excited state7 . As mentioned

above, if the measurements are made after the pumping mechanism is removed,

frequencies in this range are ruled out. This study considers the possi-

bility of observing the amplification when the sound has a period that is

short compared to the relaxation time.

(2) Fast v-v and slow v-t exchange. For most pure polyatomic gases,

and in some gas mixtures, vibrational energy exchanges rapidly between

modes by a fast v-v exchange and then more slowly with translation by a

slow v-t exchange. It was early recognized that such a "fast series pro-

cess" would lead to single-relaxation-time sound absorption and dispersion

curves and the process was invoked to explain the single-relaxation times

observed for most polyatomic gases8'9

If a vibrational level of such a gas is pumped, a metastable state

with different vibrational modes at different temperatures results. The

whole manifold of vibrational states then decays at a slow rate. The reso-

nant v-v exchange within a given mode is still fast compared to v-v exchange

between modes. An example of this situation treated below is CD4. In this

gas the v-v rates are about 400 times the v-t rate and the gas behaves

much the same way as the diatomic gas with a single relaxing mode. How-

ever, this gas is more amenable to experimental study since the vibration

can be excited optically and the relaxation times are shorter allowing

measurements at higher frequencies and with smaller volumes.

(3) Slow v-v and fast v-t. In some cases the v-v rate may be slower

than the v-t rate. SOz is an example of this situation1 2 . The v-t rate
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is about 10 times the v-v rate. In this case, which might be compared to

the two step decay of a radioactive isotope, energy pumped into the long-

lived mode feeds by v-v transfer a second mode that is communicating with

translation by v-t transfer and maintains its vibrational temperature above

the equilibrium value for periods comparable to the v-v relaxation time

rather than the v-t time. The metastable condition requires that the

energy flow out of the pumped mode, through the other modes and into trans-

lation at a constant rate. This rate is determined by the first v-v trans-

fer time which is long compared to the sound period. In this case also

experimental observation of sound amplification may be possible and measure-

ments may give valuable knowledge about the energy transfer process.

The Reaction Equation

The sound absorption (or amplification) and velocity can be obtained

from the imaginary and real parts of the propagation constant for plane

waves (ks). For this purpose we write

= T Cv (1)ks V T ,V E-)

where . is the angular frequency, M is molecular weight, R is the gas con-

stant, T is absolute temperature, and Cv and Cp are the specific heat at

constant volume and pressure. In the presence of relaxation, Cv and Cp are

time dependent or, for a sinusoidal wave, complex and frequency dependent.

The sound absorption (as) and velocity (vs) are given by

s= Imaginary part of ks

V .a x [Real part of ks] - 1 (2)

The problem of calculating the sound absorption and velocity is thus reduced

to finding the real and imaginary parts of the complex, frequency-dependent

specific heats, Cv and Cp.
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For this purpose, we begin with the reaction equation which gives

the time rate of change of energy in a vibrational mode. We will assume

that the normal modes of vibration can be treated as harmonic oscillators

and that resonant exchange of energy between the vibrational levels within

a single mode rapidly establish a Boltzmann distribution within the mode

characterized by a "vibrational temperature" 1 3' 1
4. In the metastable

state here considered, the vibrational temperatures for the different modes

may differ from each other and from the translational temperature and will

be changing slowly on the time scale of the sound-wave period.

The time rate of change of energy in the ath vibrational mode can be

written as
2 5

a ihv " bncq"(a)ng(b)

Ea ,jh a j 0670 k Nb

- k i- ,+j (~b)na+i(a)n +j (b)).(3

Nb 
(3)

This equation assumes that mode "a" is exchanging energy with a second

mode "b", and with translation. Modes a and b can be in the same molecule,

or, in the case of a gas mixture, in different molecules. The inclusion

of additional modes of interaction is straight forward' s. a and a refer

to the vibrational quantum number of modes a and b, h is Planck's con-

stant, va is the fundamental vibrational frequency of mode a, l is pres-

sure, Nb is the total number of molecules carrying mode b, na and n are

the number of molecules with a and a quanta in modes a and b, respectively,

ka-a+i'a-a+j(a,b) is the composition-averaged rate constant in the dimen-

sions (time x pressure)-' for the particular process in which a changes to

a+i and 3-a+J in the mixture. The summations over a and a gives a net

rate constant for transitions where mode a gains i quanta and mode b gains

j quanta. In general, only transitions where i and j have different signs
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are likely to occur, i.e., mode a gains i quanta and mode b loses j

quanta or vice versa.

For linear pertubations of harmonic oscillators,

I ka-*o-i' -6+J(a,b) = {[a(a-l)-...(a-i+l)] x [(a+j)(6+j-l)

•...( +l)]/i!j!} x ki °O'° )J(a,b) (4)

In terms of collision efficiencies, k L-+ i ,a- + j can be written

k-p+i,a-$+J - EpxpMpPa o+i,- +J(a,b,p), (5)

where Pa-ne+i, '6+J(a,b,p) is the collision efficiency for the designated

transitions, p denotes the collision partner (if the collision does not

allow the transition P = 0), and Mp is the collision rate of a molecule

of type a in a gas of type p at unit pressure. MpPc-L+ia-f+J(a,b,p) is,

therefore, the usual rate constant. Xp is the mole fraction of gas of

type p.

We now assume that resonant exchanges of energy between levels of a

single mode rapidly establish a Boltzmann distribution of energy within

each mode so that we can write

no = no(a)e
- hh va /k Ta = Na(l-e-hVa/kTa)-ahva/kTa .  (6)

Na is the number of molecules with mode a. Thus, each mode has its own

temperature which in the general case is different from the translational

temperature. Following conventional notation we set

hVa = a, and 1-e-6a/T _ Xa(T). (7)
k

(Note that this is a change in notation from ref. 15.)

Using equations 4 and 6, the reaction equation (Eq. 3) can be summed

over a and B. For this .urpose not that
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ZCL (Q+i) (t+i- 1) .. . (U+ xa dx-L dl I ( 1x)i+l

After summing over a and 8 Eq. 3 becomes

Ea i~jiNahvak -[kiO, o-j(a,b)e-i6a/Ta-ko-i,ij-o(a,b)e-Jib/Tb]/

([Xa(Ta)]i[Xb(Tb)]J). (8)

For a discussion of the case where the modes are degenerate, see ref. 15.

A Single Long-Lived Relaxing Mode

If the vibrational temperatures can be determined, Eq. 8 allows the

determination of the sound absorption and velocity in the excited gas.

The three cases discussed in the introduction would be delineated by the

choice of transition rates. To illustrate, we specialized first to the

simplest case, that of a gas with a single long-lived relaxing mode. In

this case j = 0 and i = 1. The sum over i and j has only one term and

Eq. 8 becomes, after some manipulation,

Ea = - k l' Xa(T)[Ea(Ta) - Ea(T)], (9)

where Ea(Ta) = Nakeae-Oa/Ta/Xa(Ta) and Ea(T) = Nakgae-Oa/T/Xa(T). This

of course, is the expected relaxation equation with the relaxation time,

T, equal to [ k10Xa(T)]
- 1.

Now consider the case where a sound wave is propagated through a

slowly relaxing gas. Either by differentiating Eq. 9 or be differentiating

Eq. 3 and the summing over a and 8, we obtain

i dd{[ T I dk 0  6ae ea/T %aE(Ta)-AE.(T)}a j oE [ + - d- "T×a) ],AT - T A" (10)
Aa-a p dT dk -rT- Xa(T

Here we make use of the fact that the transition rate is a function of

translational temperature only and we neglect higher order terms in the

,



sound variables. E°, Ta and T now represent unperturbed values, i.e.,

values without the sound wave. Introducing the sinusoidal time dependence

and setting !Ea(Ta) = Ca(Ta)i!Ta, lEa(T) = Ca(T),T, and o= Ea(Ta)-Ea(T)
a T

this equation becomes
A~~~a -Oa/T 3 aT

TI+wr "E- - [ I dkl' (a) 6ae] C((l=T T tCa(Ta) p dT -"' dT TzXa(T) Ca(Ta)

In this form, it is easy to see the effect of the overpopulation of

excited states on the usual absorption due to relaxation. In the "usual

case", that is when the gas has not been "pumped", io = 0, and Ta = T, and

the right hand side of Eq. 5 is unity. Then Ta/AT = (i+IwT)- . Writing

the frequency independent part of the specific heat as C., the frequency

dependent specific heats become

Cv(w) = C-o + CaATa/AT = C + Ca(l+fw) -  (12)

and

Cp () = Cv () + R (13)

The familiar absorption and velocity versus frequency curves are

those corresponding to a single-relaxation-time process.

When Ta # T, io # 0 and the frequency dependent specific heats are

Cv() C. + CG/(l+#r) (14)

with

0 e-ea/ T

C9 = 0o [ + d[lnkio(a)]/dT - TXa(T) ]+Ca(T) (15)

and

Cp(W) Cv(w) + R -(I+T (16)
T(1+lwut)
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Here R is the universal gas constant and - P has been given its ideal gas
p dT

value of - The extra term in Cp results from the fact that, at constant

pressure, 3p/3T = 0.

It is possible, therefore, to plot Cp(w) and Cv(w) as w-0, and the

sound absorption and dispersion in a particular gas as a function of the

decay rate, Ea. Bauer and Bass have done this for a CO/H2 mixture, treat-

ing the CO as having two vibrational states. If E is set equal to the

negative of their pumping rate, the tvo treatments give similar results.

For the purposes considered here, it is more useful to set

ao = -T_1 [Ea(Ta) Ea(T)] (17)

and express the results in terms of the vibrational temperature Ta. Sound

amplification will occur when C becomes negative. (Note that E is nega-

tive.) We now seek to determine values of Ta needed to produce this sound

amplification, the magnitude of the amplification, and the experimental

conditions under which it can be observed.

Bauer and Bass point out that when Ca(w=O) < -C-(w=O) the gas is

unstable. This means that it is not possible to maintain a steady differ-

ence between Ta and T large enough to make Ca('=O) < -C.(w=0) by controlling

the pumping rate. This restriction upon the difference between Ta and T

does not apply in the metastable case where Ta and T are changing but on

a time scale slow compared to the sound period.

Calculation and Observation of the Sound Amplification: For most dia-

tomic gases, (the halogens would be an exception), the relaxation time is so

long in the pure gas that collisions with impurity molecules usually con-
d(inkj0)isfthoretrol the relaxation process. For such collisions, d n ) t

dT so h re

of a few one hundreds1 6 and amplification will occur when Ta-T is a few

tens of degrees.
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However, observing this amplification in a metastable state in the

absence of pumping is difficult. For frequencies where the sound period

is short compared to the relaxation time (a requirement for the meta-

stable state to persist over a number of sound vibrations), _r will be

large and the gain per unit length of sound path will be small. Further-

more, the length of the sound path is restricted since the transit time

for the sound wave through the gas must be small compared to the relaxa-

tion time.

This means that high vibrational temperatures are needed to produce

observable amplification of the sound in the diatomic case. Table I gives

values of the gain in db/wavelength for some typical diatomic gases as

calculated from Eqs. 1,2,11,12 and 13. In these calculations Jr is set

equal 100 and, in this range, the gain is approximately inversely propor-

tional to wr. However, values much smaller than 100 violate the metastable

state requirement since at this value t corresponds to approximately 16

dT
sound periods. The value of lT nklo has been taken to be 0.01, which,

as mentioned above, seems to be representative.

Table 1. Sound amplification in db per wavelength for typical diatomic
gases at 300 0K with elevated vibrational temperatures, Ta. The
derivative of the natural logarithm of the transition rate,
d(lnklo)/dT, has been set equal to 0.01. The amplification is
approximately inversely proportional to wT.

Gas v(cm - ) Amplification Factor (dB/X)

Ta'500K 1000*K 2000-K ' 3000-K 4000K 6000-K

N2 2331 0.0027 0.082 0.52 1.1 1.7 2.9

CO 2143 0.0042 0.10 0.56 1.2 1.8 3.0

02 1556 0.015 10.18 0.73 1.4 2.0--

C1, 557 0.075 0.37 1.00 ---......
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For the temperature and WT values considered in Table 1, the sound

velocity will differ at most by only a few tenths of a percent from the

high frequency sound velocity calculated with Ta = T.

To get the expected gain in the sound wave in transversing the

excited gas, the values in Table I are multiplied by the number of wave-

lengths in the sound path. However, this path length is limited since the

transit time for the sound to pass through the gas must be short in com-

parison to the relaxation time for the excited states. Making use of the

fact that the gain at high frequency is approximately inversely propor-

tional to wT

Gain - cioo x -O x (transit time/relaxation time) (18)

where aA 1 03 represents values in Table 1. If the ratio of the transit

time to the relaxation time (t.t./r.t.) is not small the overpopulation

of excited states decays away before the sound wave can transverse the

gas. Further, the translational temperature is increasing as the vibra-

tional temperature decreases. For t.t./r.t. =0.10, the vibrational tem-

perature decreases about 10% while the sound wave transverses the gas and

the total gain obtainable independent of frequency is about 1.6 times the

values in Table 1.

Polyatomic Molecules with v-v and v-t Exchanges

The case of a small amplitude sound wave propagating in a metastable

gas with more than one excited vibrational mode can be treated by either

differentiating Eq. 3 and summing over the vibrational levels in each

mode or by summing first to get Eq. 8 and then differentiating. By the

chain rule of differentiating a product, the result can be written as

.1



12

AEa - iNahval {kio,OJ(ab)e Ta [p+ Ak.'J(a,b)

,J Xa (Ta)iXb(Tb)j -i~a -i0a

+ Aka(Ta)-iXb(Th)-Jl + Ae Ta + kOi  (ab)e T Ap

Xa(Ta) i(b (Tb)J -La +e Ta -jeb

AkoiiJo(a,b) A[Xa(Ta)-iXb(Tb) -j ]  Ae Ta
+ +] (19)

k iJ(ab) Xa (Ta)Xb(Tb -i e T

e

The A's indicate changes produced by the sound wave and, according to the

small amplitude assumption, only first order in the A's has been retained.

Substituting wCa(Ta)ATa for AEa, this equation can be written as

CaaATa + CabATb + CacATc + ... = CaTAT. (20)

There will be a similar equation for each relaxing mode, and the left side

includes a term for each mode exchanging energy with mode a. The coeffi-

cients are given by

Caai [e- _ -(i-I) a/Taki o -oj(a,b)_e-JOb/Tbkoio(a,b),
i,j,b Xa (Ta) i-I xb(Tb) e k Ba b eua

2  -(i-l)Oa/Tae-6b/Tbki ' °o j (ab) - e Tae Tbkoi jO(ab)

Cab =  - .TI J e . (a ,
ii ea Tb [  Xa (Ta) i-2Xb (Tb) j+i

a Ta 
2  6)[ka(o (aboe-(a/Ta(

CaT = i Z ieea/Ta &- - "+ d T

Xa (Ta) 2Xb (Tb) T dT

~OijO -JbIb~ +dlnk'°3 (a, b) -iea i)]
-koi,jO(a,b)e-J b/Tb( 1  dT -T 2 

- j (21)

where the sum over b indicates a sum over modes coupled to mode a.

In most cases, two modes are coupled by a specific type of v-v

exchange, i.e., a one quantum for one quantum exchange or a one quantum

for two quantum exchange and the sum over i and j has only one term.

Unfortunately, the matrix of coefficients in the coupled equations is not

symmetric, and therefore, not amenable to an eigenvalue analysis. However,

the equations can be solved for the complex, frequency dependent ratios

*.
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'Ta/.T, --rb/1T, ... and the complex frequency dependent specific heat at

constant volume obtained by an extension of Eq. 12. This solution will

have to be repeated for Cp(w) since the CaT coefficients in this case will

not contain the L term which arises from (dT)v"

Fast v-v Slow v-t

The two types of metastable states for polyatomic molecules that

were discussed above correspond to the proper choice of transition rates

and vibrational temperatures in Eq. 2. As an example of the fast v-v

exchange with a slow v-t consider the gas CD4 which has the properties

that make it amenable to experimental investigation. The V4 mode can

be pumped by readily available high-powered C02 lasers and its relaxation

time is relatively long (for a polyatomic) allowing the acoustic measure-

ments at experimentally accessible frequencies. In addition, the large

vibrational specific heat at room temperature gives rise to a large

relaxation absorption (or gain). A variety of measurements have indicated

that energy deposited in the V4 mode by the absorption of laser light is

quickly shared by a one-for-one quantum exchange with the v2 mode and a

two-for-one quantum exchange with the V3 and vi modes1 7.

After the vibrational modes have equilibriated by such exchanges, the

whole manifold of vibrational energy relaxes with a relaxation time of

approximately 4.2 psec atm which corresponds to a transition rate of 2.4

x 10Ssec-latm "1. From the rate of rise of flourescent radiation from the

V3 mode, previous studies indicate the v-v exchanges are on the order of

400 times this rate. dlnk1  for the v-t transition to the lowest mode
dT

(0) is approximately 0.009 (*K)-1 8 . If we assume that the different

modes have equilibriated in the metastable state by the fast v-v trans-

fers, then the ratios of the vibrational temperatures are fixed by the

condition that
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kkio e-ialTa - kOi e-Jeb/rb, (22)
oj jo

which expresses the principle of detail balancing. Since k' and k ' are

functions of translational temperature only, 
iO /k°i = e (ia-j~b)/T and

Eq. 22 leads to the familiar expression
1 1 relating translational and vibra-

tional temperatures in a metastable state

iaa-jeb = iia - jib (23)
T Ta Tb

An examination of Eq. 19 shows that the v-v terms produce no gain, since

the modes coupled by v-v exchange are in metastable equilibrium.

Sound amplification and velocities calculated for CD4 are given in

Table 2. The v-t relaxation is assumed to take place through the lowest

energy mode 4. A one for one quantum exchange is assumed between mode 4

and mode 2 and a two for one between modes 2 and 3. Modes 1 and 3

with corresponding degeneracies, are lumped together into a single mode

with an assumed frequency equal to the average of the two. The tempera-

ture of V4 was assigned values shown in the table and the temperature of

the other modes calculated using Eq. 23. As in Table 1, wT is set equal to

100, where T is the v-t relaxation time for v 4 given above (= 4.2 Psec atm).

The velocities are given as a ratio of v to the high-frequency velocity

( - vRT(C+)/(MC,)). It might be worth noting that as w-', v approaches

v,. from below if Ca < -Co, and from above (as in Bauer & Bass) if Ca < -Cm.
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Table 2. Sound amplification in CD4 . The translational temperature is 300*K,
dlnkjO/dT = 0.009*K -1, and ;T = 100. Ta is the vibrational temper-
ature of mode 4 (v=995.6cm-1). The vibrational temperature for the
other modes are calculated using Eq. 23 assuming a one-for-one quan-
tum exchange between modes 4 and 2 and a two for one quantum
exchange between modes 2 and I and 3. Velocities are given as a
ratio between the calculated velocity and the high frequency sound
velocity (v.= ,RT(Cw+I)/(MC_.)).

Tal 500 1000 2000 3000 40000 K

a (db/X) 0.095 0.60 1.65 2.48 3.12

1.000 0.997 0.986 0.974 0.962
_ _ _ _ _ _ _ _ I _ _ __ __ _ _

Slow v-v followed by fast v-t

The third situation where a metastable state can exist is the case

where an excited mode decays slowly by a v-v exchange into a mode decaying

more rapidly by v-t. An example of this situation is a mixture of N2 , CO2

and He. The N2 vibration is strongly coupled with the v3 mode in C02.

These two modes together relax slowly by v-v processes involving multiple

quantum exchanges with the vj and v2 modes in CO2 . The v1 and v2 modes are

also strongly coupled by a Fermi resonance. Practically all of the vibra-

tional energy gets into translation through a v-t transfer from the lowest

level of the v2 mode in COa/He collisions.

Therefore, we can diagram the relaxation process as follows:

E(Na,v 3) + E(1v,v2) - Translation.

For a 50,25,25%mixture of He, N2, C02 as an example, the first step takes

place at a composition-averaged rate of about 4.5 x 104 sec-latm- 11 . The

second step takes place at a rate of about 2 x 106sec-latm-1 due primarily

to COz/He collisions, and the value of dlnkiO/dT for this v-t rate is

about 0.00319.
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Now, if the angular sound frequency is large compared to 4.5 x 104

sec-latm- 1 the vibrational temperature will be changing little in a sound

period. The long-lived (N2,V 3) vibrational feeds the Vlv2 modes maintain-

ing them above the translational temperature while energy passes through

them at a constant rate.

The temperature of V2 can be calculated using Eq. 8. Since the amount

of energy in v2 is changing slowly

3Nhvzo 31 3e 2/T2 k03 3/]3Nh= - [k (2,3)e-3 zTZk1O(2,3)e-O3Ta
E2  XZ(T 2 )

3' 3 (T3)

Nh-2 (k'(2)e- z/Tz- k"(2)]= 0.
xz(T 2 ) - ( =

Here we have assumed a 3 for I quantum exchange between vz and V3. As

an example when T is 300*K and T2 is 400*K, this equation gives T3 - 1163,

when the rates have the values listed above. Figure I shows the sound

absorption when the vibrational temperatures are equal to the transla-

tional temperature (curve A) and the sound amplification (notice the

change in scale on the negative axis) when T - 300, Tz = 400 and T3 -

1163 °K (curve B). TV as determined from T2 by Eq. 23, is 341*K.
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Conclusion

Calculations have shown that sound will be amplified when propagated

through a gas with an overpopulation of vibrationally excited states.

However, the conditions under which the gain can be experimentally observed

are difficult to obtain. In the case of a single long-lived vibrational

mode observable gain results from vibrational temperatures of a few

thousand 'K. The case of fast v-v followed by slow v-t is very similar

to the diatomic case but the vibrational modes are likely to be more

easily excited optically. The case where the most gain is likely to be

observed is that of slow v-v followed by fast v-t. Calculations indicate

that for this case significant gain should be possible at experimentally

obtainable conditions.
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