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ABSTRACT

This report examines some statistical properties of a first-order,
stationary time series {xt} and of a series {yt} consisting of disjoint
sums of {xt}. A connection between continuous stochastic processes and
discrete time series is made via the concept of correlation time interval.
Expressions for the variances of the sum and average of {xt} for n terms
are derived. An asymptotic variance estimate of the average is derived
and is shown to be a reasonable upper bound.

General expressions are derived for the variance and autocovariance
of the integrated process {yt} in terms of the same properties for any
stationary process {xt}. These results are particularized for the case
in which {xt} is first-order. Expressions for the spectral densities
of X¢ and y, are given when {xt} is first-order. A computer program to
calculate the autocovariance and autospectrum of Yt is attached.



EXECUTIVE SUMMARY

This report is addressed to analysts with a good background in statistics
and with some exposure to time series analysis. Applications of time series
are found in a host of fields including the physical and biological sciences,
in economics, and in industrial processes. The principal products of this
study are derivations of certain equations and numerical illustrations of
their use. A computer program is provided to implement the calculations.
These results relate statistical properties of one time series to another
series whose elements are subsummed from those of the first. Special
attention is given the case in which the first series is related to itself
with first-order dynamics. The fluctuating behavior of the series studied
is assumed to be steady-state. The study results can assist in building
statistical models thru identification of proper functional forms and in
parameter estimation.
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DRSMC-SAS (R) September 1983

MEMORANDUM REPORT

SUBJECT: Statistical Properties of an Integrated, Stationary Stochastic Process

1. Background

In some applications where a random time series is studied, the questions
of interest are: What is the variance of the series sum? and What is the
variance of the average? In this kind of ‘application a member of the time
series is viewed as the rate of change of the quantity of interest. Such
might be the case, for example, in a series of production output rates.

The focus in this case is on the output of the process over some long time
interval. The latter is, of course, the integral (or numerical sum) of the
rate over this time period. Perhaps one cannot be assured that the rates

are statistically independent. Or perhaps -- as is often the case in a real
manufacturing process -- the rates are known to be autocorrelated. In this
case one might ask how precise is the estimate of the quantity of interest.

An example of an autocorrelated industrial process of military interest is

the production of batches of explosive Composition B [1]. Because of RDX-
batch mixing operations, successive batches of Comp B exhibit batch viscosities
which are not statistically independent.

Other applications may require the identification of an appropriate
stochastic model for a time series {yt} subsummed from another {xt}.
Successive members of {yt} do not share members of {xt}. For example, weekly
totals are obtained from daily quantities. Questions of interest in this
regard might be: How does the autocorrelation function of Y compare with
that of xt? or How do the spectra of these related processes compare?

[1] "Stochastic Model of the Batch Viscosity Generation Process in
Sequential Batches of Composition B ...", DRSAR/PE/N-88,
(AD B057395), April 1981.



Paraphrasing, one might ask how independent are {yt} relative to {xt} or,
relatively, how variable are the fluctuations of a particular duration in
the two series. Another challenging problem arises when only data for
subsummed series are available but one wishes to model {xt}. An example
of a stationary autocorrelated time series, in which subsummed data is
often published, is found in ballistic tests of large caliber artillery,
[2]. In some instances evidence of "ballistic memory" exists.

2. Objectives
One purpose of this report is to derive an expression for the variance of

the integral of a stationary stochastic process which is taken to be first-
order. This brief exposition will serve to quantify the effect of auto-
correlation in the rate process on the precision of sums (or integrals) and
averages of that process. Quantitative insights will be provided in the
discussion. Another objective is to derive expressions for the autocorrelation
function and the autospectrum of a first-order process {xt} and of the subsummed
process {yt}. These are compared in specific numerical examples.

3. Notation

The notational conventions of Jenkins and Watts [3] are followed here.
Consider the time series {xt} with integer index t. The time interval
separating successive members of the series is a constant A. If this

[2] "Statistical Evidence of a Memory Process in Cannon Artillery Weapons
and Its Implication for Testing," DRSAR/SA/N-76, (AD €013498),
January 1978.

[3] Jenkins, G.M. and Watts, D.G. Spectral Analysis and Its Applications,

Holden-Day, San Francisco, c. 1969.



series is derived from a continuous process, A is the sampling interval.

This process is assumed covariance stationary. Without loss of generality

the mean of the process is taken as zero. Thus, with E denoting the

ensemble expectation operator,

E[Xt] =0
The variance, Vix,1, is denoted by YXX(O).
r 2

The process studied satisfies the first-order difference equation:

Xg = bXp gt 0y

with constant b and where
{nt} is a white noise.

Thus,
E[nt] =0
_ 2
Ypnl0) = o
Notationally, let
Yan(k) = EIxgyn, ]
Since future values of the noise in (3a) are uncorrelated with Xy
Yxn(k) =0 " k<0

The autocorrelation of {Xt} is denoted by pXX(k), where

Pyx (k) = vy (K) /v, (0)

(1)

(2)

(3a)

(3b)
(3c)
(3d)

(6)



4. Autocorrelation of x
From (3a),

Elxp o %] = Ef(bx, 41 * nt+k)(bxt-1 % nt)] , k>1

t

Using the results of equations (3) with the above,

WOE I%E? Yo (k1) (7

Clearly, for stability of the {Xt} process |b| <1 .

By multiplying both sides of (3a) by n and taking expectations,

t-k

Yxn(k) = b v, ,(k-1) + Ynn(k) . (8)

Using (3c) and (8) ,
_ .k

Yxn(k) = b Yxn(O) . (9)
With (5), equation (8) implies that

Yyn(0) = v, (0) = ol (10)
Hence, from (9)

Yxn(k) = bk 02 . (11)
Finally, (7) and (11) yield

() =2 (12)

XX 1-b2

from which

0, (K) = b (132)

with the variance (oxz) of {Xt} given by

_1 2
0 =Ly o (13)



5. Correlation Time Interval

A concept of considerable significance in time series analysis is correlation
time, t*. This notion is discussed at length by Fishman and Kiviat* in applica-
tion to analysis of stochastic simulations. Any stationary stochastic process
must be observed for a time interval of 2t* in order to derive information that
is equivalent to one observation of an uncorrelated random variable. Thus, the
number of equivalent degrees of freedom obtained by observing a stationary
process for time T is T/(2t*). For a continuous lst-order process, i.e., one

that is defined at every point in time -- say, z(t) -- the autocorrelation
function is shown by Fishman and Kiviat to have the form
_ =it

pZZ(t) = e s (14)
where A is a rate constant. Now, by definition, for a continuous process

* =

% fo o, (t) dt . (15)
Then, for the first-order continuous stochastic process

r§ = 1/x . (16)
Similarly, for a discrete process, the correlation time is defined as

* = 5t

T Mg Pux(K) (17)

where neighboring members of {xt} are separated by duration A. Using
(13a) and (17), the discrete first-order process has correlation time
w% = W/ (16) = (18)

It is worthwhile to compare the results of (16) and (18).

Suppose that the continuous process {z(t)} is time-sampled with sampling
interval A. In this case the process is observed only at times t = ka,
with k an integer.

* Fishman, G.S. and Kiviat, P.J. Spectral Analysis of Time Series Generated
by Simulation Models, RM-4393-PR, Rand Corp., Santa Monica, CA,
February 1965.




Then, the correlation function in (14) would be defined discretely as

k

p,, (k) =b (19a)

%z
with

b=et | (19b)
The constant b in the discrete process is related to the rate parameter
A of the continuous process by

A= -Inb/a . (20)
Using (16) and (20) ,
s = -1 (21)

The last equation should be compared with its counterpart for the discrete
process, equation (18). To give a numerical example, suppose that b = 0.9.
Then, the correlation time of the discrete process, from (18), is 10a. For
a continuous process having the same autocorrelation, the correlation time,
from (21), is 9.491a. One observes that the value of t* is slightly larger
for the discrete process. This would require a Tonger observation period
for the discrete (time-sampled) process than for the underlying continuous
stochastic process to achieve the same degree of statistical precision.
This result quantifies the information loss associated with coarse time-
sampling of a continuous process.

6. Variance of the Sum of {xtl

After the slight digression in paragraph 5, we return to the main task of
deriving an expression for the variance of the sum of the discrete time
series {xt}.

Let

Ve T Tkl K¢ (22)
Since {xk} has zero mean,

Ely,] =0 (23a)
and

Viy,) = EE1 (23b)



The variance of {yt} is also denoted by 05. With (22) and (23b),

t-1 t i

V[yt] = E[z X; ] + 2E[z1 =15 k=1 X Xl (24)

Also
VIl = Ezb ) 61+ BB, )

t- 1 t -i t

+ 2E[z =1 X5%; k] + 21 E[x Xt+1] (25)
By comparing (24) and (25)
VIygeq) = Viyed +v,,(0) + 22k Max(K) s 2l (26)
With (12), (13), and (26),
_ 2
V[‘yt+1] - V[.yt] + GX (1+28t) ’ tl]- H (27&)
where
_ .t k
or
8, = b(1-b%)/(1-b) . (27¢)
From (22),
_ 2
V[.yl] - GX (28)
From (27a) and (28), by induction,
2 _ t-1
VIy 1/of =t + 25,28, » t22 . (29)
Using (27c) the last term on the right-hand side of (29) can be written as
t
_2b . _ (1-b%)
S, = 15[t 5] - (30)
Finally,
02/02 i it S (31)

Y X t



This is one of the expressions of interest. Note that an uncorrelated series,
with b=0, would produce the familiar result that the variance of the sum is
the sum of the variances, i.e.,

05 = tol . (32)

The effect of autocorrelation on the ratio 05/05 is to increase the

effective series length relative to an uncorrelated series by S
As noted in pgf. 4, the magnitude of b must be less than unity.

t

7. Variance of the Average of {x kb
Suppose that the variable of interest is the estimated mean (§£) of the
time series {xt}, where

Xy = yt/t . (33)
Since t is a constant in (33),
= m . 2
Vixgd = Viy,1/t% . (34)
From (31) and (34),
-, _ 2 2
V[xt] = oy (t + St)/t . (35)

If the {xt} process 1is uncorrelated, one has the conventional result

-
V[Xt] = ox/t . (36)
However, for Tong correlation intervals and relatively short sampling
intervals, one may expect St to be larger than t. In this case the

variance of the average should be calculated from (30) and (35) using
the best estimate of b.

8. An Asymptotic Result

As t becomes large, the second term on the right in (30) becomes small
relative to the first. Asymptetically, the variance of the estimated mean,
given in (35), becomes

VXD = (o3/t)(1#b)/(1-b) . (37)



Thus, for a positively autocorrelated first-order time series, the variance
of the average is amplified by a factor of at most (1+b)/(1-b) relative to
that of an uncorrelated time series of the same Tength.

9. A Numerical Example

To provide a feeling for magnitude relative to this problem, consider
the following special case. Suppose that {xt} is a first-order time series
obtained by sampling a continuous stochastic process every minute. The
continuous process is claimed to have a correlation time of 20 minutes.
This implies that every 40 samples are "worth" one degree of freedom.

From (18), solving for b gives

b=20.95.

Then, the variance of the estimated mean is given by (30) and (35) as

of [t + 38 (t - 20 (1 - 0.95%)))/¢2
The variance of an uncorrelated series of length t is, by contrast,
2
ox/t
The asymptotic variance estimate for this example, from @37, sis
2
390X/t

To yield a reasonable approximation, the asymptotic result should only be
used when time exceeds, say, 20 correlation time intervals. These variance
values are shown in Table 1.

10. Autocovariance of an Integrated Process

The variable (yt) characterizing the integral of a stationary stochastic
process is given in discrete form by equation (22). Suppose that successive
values of Yy are formed from disjoint sums of n successive values of the
{xt} series thus

_.n
Y3 7 221 X4(n-1)j



TABLE 1

VARIANCES FOR THE ESTIMATE OF THE MEAN
OF A FIRST-ORDER STOCHASTIC PROCESS

Parameters:

Correlation time (t*) 20 minutes
Sampling interval (A) 1 minute
Autocorrelation constant (b) 0.95

Time, ta ta/t* V[?i]/of Uncor. Asymp.
; = 2 ==y 12
(min) V[xt]/oX V[xt/ox]

2 0.1 0.9750 0.5000 —

20 1.0 0.7311 0.0500 —

120 6.0 0.2723 0.0083 —
240 12.0 0.1493 0.0042 0.1625
480 24.0 0.0780 0.0021 0.0812
960 48.0 0.0398 0.0010 0.0406

10



Note that yj is not a conventional moving average of the x-series. Since

{xt} is covariance stationary with mean zero, {yt} also has these properties.

Using previous notation, the autocovariance of the {yt} process is given as

Yyy(k) = E[‘yj+k .Yj]

For notational simplicity the number (n) of members of {xt} in each Yi is
not noted explicitly here. For the case in which n=2, from (38),

=%y * i

Vg g iy
and so forth.
Then,

E[y§]= E[x§ + 2x X, + xg]

or
Yyy(o) =2y, (0) + 2y (1)
If {xt} is a first-order process, from (13),
Ty (1) = v, (0)b
Then,

Yyy(o)/yxx(o) =2 + 2b,

which agrees with (29) for the special case of t = 2.

Pursuing this special case where n = 2,

ELy o) = ElxgXg + XpXp + XoXg + XoX, ]

or

Yyy(l) = Yy (1) *+ 2y (2) + v  (3)
Similarly,

Yyy(2) = 1 (3) + 2y, (8) + v, (5)
and °

Yyy(3) = 1, (5) + 21, (6) + v, (7)

11

(39)



By induction, one infers that

Yyy(j) = v (23-1) + v, (23) + T (23¥1) g2l (46)

for this case (n=2).

11. Consider another special case for the {yt} process in which n=3 in
equation (38). Following the same procedure used in developing (46), one
finds

Yyy(J) B My

+ 3y, (39) + 2y, (35+1) + v (3542) . (47)

(33-2) + 2y, (33-1)

One can generalize the results presented this far by applying mathematical
induction to the case in which n is not assigned a specific value in
equation (38). The general result is

Yyy(J) = Zk=1 k YXX(n(j—l) + k)
+ 7 Ky i) - k) j>1 (48)
k:l YXX J s J_ .
A compact expression, which is equivalent to (48), is
oy .2n-1 .
vyy(a) = Iog S Yoy (N(3-1)+k+1)
with
Cok = ln - ]int[(n+1)/2] 5 k” s el ¢ (49)

Note that the expressions in (48) and (49) are not restrictive regarding
the form of the autocovariance of {xt}. Only the assumption of stationarity
is involved.

12. A Variance Relationship for {y. }

t—

The procedure followed in deriving the relationship between the auto-

covariance of an integrated {yt} process and the autocovariance of the {xt},
or rate-, process involved mathematical induction at several places. A
similar procedure is followed in obtaining the textbook formula for the
variance of {yt}.

Yyy(0) = nv, (0) + 2227 (n-k) v, (K) . (50)

12



13.  An Autocorrelation Relationship

Often the analysis of an autocorrelated time series involves a comparison
of an empirical autocorrelation function with several theoretical alternatives.
To facilitate the comparison, autocorrelations are used instead of autoco-
variances. The following autocorrelation function relating the {yt} and {x }
processes 1is, in general, rather complicated. Calculation of pyy(j) is best
done via computer. The computer program which does this is in Annex 1.

Since

pyy(j) = Yyy(j)/Yyy(O) ,
o Yyy(3) vy, (0)
oy = RO, T S

But, from (50),
Yy (0)74,,,(0) = n + 25071 (i),
And, from (48),

Vyy (D77, (0) = T(n,3) + U(n,3) (53a)
with
T(n,3) = £,y ko (n(j-1) + k) (53b)
U(n,3) = Zpog ko (n(G+1) - k) . (53¢)
Finally, from (51, 52, 53),
(j) = T(n,j) + U(n,j) 54
Pyt n+ ZZE;i (n—k)pxx(k) 5

This result is also one of the study objectives.

13



14. To corroborate the expression for the variance of an integrated first-

—
order process -- equation (31) -- we substitute
- 1 ol
Yxx(k) ey b (55)
into (50), obtaining
2 n p=pl
Yyy(O)/cX =n+ Zb[‘l—_‘E - 1-b | I (56)

Apart from notational differences, equations (31) and (56) are identical.

15. Autocorrelation of an Integrated First-Order Process

A general equation for the autocorrelation function of an integrated
first-order process is obtained by substituting bk for pxx(k) in equations
(53) and (54). This operation- yields

(5) = &nsb) p"(3-1) 4 p(n,b) BV

Pyytd? = n + 2D(n,b) 21, (57a)
where

C(n,b) = ) k b¥ (57b)

C(n.b) = b(1-b;) _ np™

(1-b) (1-b)

and

D(n,b) = 22;% (n-k) bX

D(n,b) = 5 - ?giﬂ?zl : (57¢)
As an example, for n=2,

() = WBL B85 (58)

Pyy b

16. The Autospectrum

The discussion of autocovariance and autocorrelation concerns the
temporal relationship between members of a time series. An alternative
means of studying the dynamics of a stochastic process is set in the
frequency domain. The variance (or power) of a process is decomposed

14



into the variance components associated with each of its Fourier frequencies.
This form of expressing process dynamics is calculated via the autospectrum
of the process. The kind of question answered by spectrum analysis is the
following: How does the variance associated with process fluctuations of
one temporal period (or reciprocal frequency) compare with those of other
periods? Altho the autospectrum of a continuous stochastic process x(t)

can be defined in terms of the Fourier integral of x(t), an equivalent
("indirect") method is used here, which involves the autocovariance of x(t).

17 Notationally, the autospectrum of x(t) is expressed as a function of
angular frequency w as

r (m):

XX

) =2 [ v (6] cosuthat (59)

The autospectrum is often expressed in terms of the natural frequency
v in cycles per unit time:

rxx(v) = 27 F;x(m) . (60)

From p. 259, Jenkins and Watts (1968), [3], the smoothed (or estimated)
autospectrum of the discrete process {xt} is

- pAe® -jemvka
Pxx(v)"AZk=-m w(k) yxx(k)e ;

using complex notation with j = /=1
Alternatively,

PXX(\)) = ZA[YXX(O) + 2 Z:=1 w(k) y__(k)cos 2mvka] , © <v <1/(2a) . (61)

XX

The weight function w(k), of Tag k, is bounded between zero and one. When
w(k) is set to unity for all k, the unsmoothed autospectrum is obtained.
To smooth out the random variation occuring in the estimate of Yxx(k), a
variety of forms for w(k) may be used. Some are suggested in [3] and

[3]1 Jenkins, G.M. and Watts, D.G. Spectral Analysis and Its Applications,
c. 1968.

15



[41. A1l w(k) have the property:

wik) =0 , |k| >m,
for some integer m.
However, we are only concerned with the theoretical autospectrum here, since
the exact expression for yxx(k) is available. Hence, w(k) will be set to
unity in analytic applications. When calculating a spectral density via
direct numerical evaluation of (61), it is necessary to truncate the
infinite sum at some maximum lag m. This procedure is equivalent to
assigning w(k) the boxcar function:

wik) =1 , Jk] <m,

wk) =0 , k| >m.
High frequency perturbations are superposed on the spectrum due to this
truncation -- the Gibbs' phenomenon (p. 73, [4]). To minimize this effect,

the boxcar weight function (or lag window) should not be used. A better
choice, used in the annexed computer program, is the Tukey lag window.

18. To compare the autospectra of time series having different variance
values, it is convenient to use a normalized autospectrum, the spectral
density:

Ty(v) =1 (v)7y, (0) . (62)
From (61) and (62) ,

T (V) = 20[142z, g w(k)pxx(k)cos ka] , 0 <kr<m (63)
where
A= 2mvA . (64)

[4] Hamming, R.W. Digital Filters, Prentice-Hall, Englewood Cliffs, NJ,
c. 1977.

16



19. Autospectrum of a First-Order Process
Consider {xt} to be first-order so that (13) applies.
Then, with (63),

- _ ® k
Ty (V) = 28[1+2%, _; b7cos ka] . (65)

To obtain the sum in (65), one can use the following result from Gradshteyn
and Ryzhik (1965), [5]:

=1l kCOS kx = LzPcos x - p"cos nx + pn+1cos (p+1)x
k=0 P 1 - 2p cos x + p¢ (66)
For |p| <1, as n approaches «,
z:=1 pkcos kx = p(cos x - p) 5 . (67)
l1-2pcos x+p
Using (67), equation (65) becomes
2
F&x(v) - ZAZ(1 o (68)
1+b~-2bcos a

Parenthetically, the last result could have been obtained by another method.

This method uses the fact that a first-order time series is a first-order
digital filter of white noise. Thus,

xt+1= b xt + nt

Taking Fourier transforms on both sides of this equation gives the transfer

function H(w), whose square is given by

HEES) = Wiz 6% = 215 coswil .

One then uses the following theorem relating the spectra of the {xt} and
{nt} processes to obtain equation (68):

(o) = W (), O<w<up

—

—
=

—
|

ozA/n

—

—
€

~—
]

Equation (13b) is also employed to obtain the spectral density in (68).

[5] Gradshteyn, I.S. and Ryzhik, I.M. Tables of Integrals, Serijes, and
Products, Academic Press, N.Y., c. 1965.
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20. Autospectrum of an Integrated First-Order Process

One can substitute the expression for p v (57) in lieu of Py ? into
the general equation for a spectral density (equation 63). This process
yields an equation for the autospectrumof an integrated first-order
process. Except for special values of n, this process is messy. The
computer program for obtaining numerical results is found in Annex 1.

The particular case of an integrated first-order process for n=2 is
tractable. In this case, Pyy is given by (58). Substitution of this
expression for the autocorrelation into (63), with w(k) set to unity,
yields

= } (14b) = 2k
Pyy(v) 2a[1 + B g b™™ cos ka] . (69)

Using (67) with (69),
2
- _ (1+b)b{cos A» - b")
1-2b” cos A + b

21. Numerical Results

A numerical example will facilitate the comparison of properties of first-
order {xt} with integrated first-order {yt} time series. Let the
parameters b = 0.9 and A = 1 minute. Equations (13a) and (58) are used to
calculate autocorrelation functions, and (68) and (70) are used for spectral
densities. Autocorrelations are tabulated in Table 2 and plotted in
Figure 1. The autocorrelation for the integrated (n=2) process displays
a much more rapid decrease with increasing lag. For lags k>1, the auto-
correlation pyy(k) for the integrated process is linear on a log-uniform
plot. However, unlike pxx(k), pyy(k) has a change of slope on this plot
at k=1. The autosE?ctra are compared in Figure 2. Notice that f&y(v) is
much flatter than Fxx(v). This illustrates the approach of the integrated
process toward white noise. However, for this degree of integration (n=2)
and range of frequency v, the two autospectra have quite similar shapes.
With a change in parameter b to 0.82 in T%X(v), the spectral densities are
nearly conformable. In practical terms, this implies that the estimated
autospectrum of an integrated (n=2) first-order process would be nearly
indistinguishable from that of a first-order process for certain parameters.

18



TABLE 2
COMPARISON OF AUTOCORRELATIONS OF A

FIRST-ORDER AND AN INTEGRATED*
FIRST-ORDER TIME SERIES

Autocorrelation parameter for {xt}: b =0.9

Lags k ‘ pXX(k) pyy(k)
0 1.0000 1.0000
1 0.9000 0.8550
2 0.8100 0.6926
3 0.7290 0.5610
4 0.6561 0.4544
5 0.5905 0.3680
6 0.5314 0.2981
10 0.3487 0.1283
20 0.1216 0.0156

* Two terms are in the sum.
= ik
Pyx(k) = b

pyy(k) = ((14)/2)p7K]
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22. Summary
This report has examined and compared statistical properties of

stationary, first-order time series and integrated first-order series.
A connection between continuous stochastic processes and time series
was made thru the concept of correlation time. Expressions for the
variance of the sum and average of a first-order series were derived.
Asymptotic results for large samples were shown to be reasonable.

When {yt} consists of disjoint sums of any stationary process {x s

the autocovariances and autospectra of these processes are re]ated
These realtionships were derived, and were particularized for the case
in which {xt} is first-order. Numerical examples were provided and
discussed. A computer program is provided to evaluate special cases.
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ANNEX 1

COMPUTER PROGRAMS

This annex contains the computer program used to calculate the
autocorrelation function and spectral density of a general, integrated
first-order stochastic process. The main program (SA.DRIVER) and
subroutines are written in SIMSCRIPT 2.5. They have been run on the
PRIME 550 minicomputer in an interactive mode. However, no commands
specific to PRIME are used. The program listing is quite English-like
and, with internal comments, is essentially self-documenting. Conversion
to Fortran is straightforward. The autocorrelation functions of both
the x-series -- pxx(k) -- and integrated x-series (or y-series) are sent
to the terminal for output. At the user's option the spectral densities
of the x- and y-series are also calculated and printed. By changing only
the formula for pxx(k), one can obtain these statistical properties for
integrals of other-than-first-order processes.
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