

.

Car Sant .

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

A184175

AFRAL-TR-82-3021

FLIGHT TEST OF ADVANCED DIGITAL CONTROL CONCEPTS

ПC

ECTE

OCT 3 1 1983

021

85 10

Richard F. Whitbeck James C. Smith Thomas T. Myers

Systems Technology, Inc. Hawthorne, CA

March 1982

FILE COPY

E

Final Technical Report for Period June 1980 - February 1982

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation wheteoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

David K. Bouser

DAVID K. BOWSER Project Engineer Control Dynamics Branch

FOR THE COMMANDER

JAMES D. LANG, Lt Colonel USAF Chief, Flight Control Division Flight Dynamics Laboratory

١.

RONALD O. ANDERSON, Chief Control Dynamics Branch Flight Control Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify_AFWAL/FIGC, W-PAFB, ON 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security **considerations, contractual obligations, or notice** on a specific document.

NOTICE

REPORT DO	CUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFWAL-TR-82-3021	2	A134/75	RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitio) FLIGHT TEST OF ADVA	NCED DIGITAL CO	NTROL CONCEPTS	5. TYPE OF REPORT & PERIOD COVERED Final Technical Report June 1980 - February 1982
			5. PERFORMING ORG. REPORT NUMBER
AUTHOR() Richard E Whitheck			8. CONTRACT OR GRANT NUMBER(*)
James C. Smith Thomas T. Myers			F33615-80-C-3612
PERFORMING ORGANIZATION	NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
Systems Technology, 13766 South Hawthor	Inc. ne Boulevard		Program Element 62201F
Hawthorne, CA 9025	0		24030543
. CONTROLLING OFFICE NAME Flight Dynamics Lab	AND ADDRESS	7TGC)	12. REPORT DATE March 1982
AF Wright Aeronauti	cal Laboratories	s, AFSC	13. NUMBER OF PAGES
MONITORING AGENCY NAME	ADDRESS(If different f	110 45455 rom Controlling Office)	120 15. SECURITY CLASS. (of this report)
			Unclassified
			15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (Approved for pub	of this Report) lic release; dis of the ebetrect entered in	Block 20, 11 different from	nited m Report)
DISTRIBUTION STATEMENT (Approved for pub DISTRIBUTION STATEMENT (of this Report) lic release; dis of the ebetrect entered in	stribution unlin Block 20, if different from	nited m Report)
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever	of this Report) lic release; dis of the obstract entered in	stribution unlin Block 20, if different from dentify by block number)	nited m Report)
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft	of this Report) lic release; dis of the obstract entered in of the obstract entered in control The	tribution unlin Block 20, if different from dentify by block number) OTY	nited m Report) Digital Control Systems
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control	of this Report) lic release; dis of the ebstrect entered in es eide if necessary and i Control The Digital Com	dentify by block number) ory	nited m Report) Digital Control Systems Variable-Stability Aircraft
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control Simulation Digital Control	of this Report) lic release; dis of the obstract entered in of the obstract entered in Control The Digital Com Airborne Co	dentify by block number) ory puters mputers	Digital Control Systems Variable-Stability Aircraft Frequency Response
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control Simulation Digital Control Flight Test	of this Report) lic release; dis of the ebstrect entered in es elde If necessary and i Control The Digital Com Airborne Co Flying Qual Servo Analy	dentify by block number) ory puters ities	nited m Report) Digital Control Systems Variable-Stability Aircraft Frequency Response Data Holds Scaled Dete
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control Simulation Digital Control Flight Test ABSTRACT (Continue on rever	of this Report) lic release; dis of the obstract entered in of the obstract entered in Control The Digital Com Airborne Co Flying Qual Servo Analy o side if necessary and is	dentify by block number) ory puters ities sis lentify by block number)	nited m Report) Digital Control Systems Variable-Stability Aircraft Frequency Response Data Holds Sampled Data
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control Simulation Digital Control Flight Test ABSTRACT (Continue on rever The overall obje simulation, new and of-freedom aircraft, mechanization. Fact digital to analog co primary digital artic	et this Report) lic release; dis of the ebstrect entered in control the Digital Com Airborne Co Flying Qual Servo Analy et de H necessary and to cotive of this r innovative digi including impl cors such as emu pupler (zero-ord facts considere	dentity by block number) ory puters mputers ities sis tentity by block number) esearch is to i tal control des ication to flyi lation (Tustin er hold versus d in this resea	Digital Control Systems Variable-Stability Aircraft Frequency Response Data Holds Sampled Data nvestigate, via in-flight dign concepts for six degree- ng qualities of digital transform) versus direct slewer data hold) are the rch effort.
Approved for pub Approved for pub DISTRIBUTION STATEMENT (SUPPLEMENTARY NOTES KEY WORDS (Continue on rever Aircraft Flight Control Simulation Digital Control Flight Test ABSTRACT (Continue on rever The overall objection simulation, new and of-freedom aircraft, mechanization. Fact digital to analog co primary digital artic	et this Report) lic release; dis of the abstract entered in of the abstract entered in control The Digital Com Airborne Co Flying Qual Servo Analy e side if necessary and is ective of this r innovative digi including impl cors such as emu pupler (zero-ord facts considere	dentify by block number) ory puters mputers ities sis lentify by block number) esearch is to i tal control des ication to flyi lation (Tustin er hold versus d in this resea	Digital Control Systems Variable-Stability Aircraft Frequency Response Data Holds Sampled Data nvestigate, via in-flight sign concepts for six degree- ng qualities of digital transform) versus direct slewer data hold) are the rch effort.

TABLE OF CONTENTS

in the set of the

ちょうちょう いっち

CONTRACTOR OF STREET

•...

			rage
I.	INT	RODUCTION	1
11.	TAS	K DESCRIPTION AND EQUATIONS OF MOTION	3
	A.	Introduction	3
	B.	Description of Task	3
	C.	Description of Baseline Experiment	4
	D.	Baseline Analog Configuration	9
	E.	In-Flight Vehicle Identification	9
	F.	VRA Setup for Analog Direct Force Tests of Ref. 1	11
	G.	YF-16 Bare Airframe Considerations	14
	H.	First-Order Form of Equations of Motion	15
	I.	Discrete First-Order Form (ZOH)	16
	J.	Discrete First-Order Form (Slewer)	16
111.	ZOH	DIGITAL CONTROLLER	18
	A.	Introduction	18
	B.	Review of the ESD Method	19
	C.	The Digital Controller Case	22
	D.	A Check Computation: Navion + Closed-Loop YF-16	25
	E.	ZOH ESD Control Laws	29
	F.	Defining Equations, in "TOTAL" Notation	32
	G.	Comparison Equations State Transition	33
	H.	w'-Comparison	33
	I.	Macros	34
	J.	ZOH, ESD Gains	36
	K.	Validation: Theoretical Controller, TOTAL Model of YF-16	36
	L.	Validation: Microprocessor-Based Control Law, Analog Computer Model of YF-16	42
	М.	Validation: Microprocessor-Based Control Law, Navion as YF-16 Simulator	42
		iii	

			Page
IV.	SLEV	VER CONTROLLER	45
	A.	Introduction	45
	в.	Synthesis Using a Generalized ESD Approach	45
	C.	Solution Via Wiener-Hopf	47
	D.	Spectral Factorization Solution Method	47
	E.	Key Features of the Solution	48
	F.	Illustrative Example	49
	G.	General Procedure	54
	н.	Slewer Control Law	55
	I.	Validation: Theoretical Controller,	
	_	Theoretical YF-10	58
	J •	Validation: Hardware-Based Slewer, Analog YF-16	58
	K.	Gain Allocation and Noise Problems	63
	L.	The Graceful Entry Problem	66
			<i>(</i>)
V.	CONC	CLUSIONS AND RECOMMENDATIONS	69
	A.		69
	₿•	Recommendations	69
REFER	RENCE	S	70
APPEN	DIX A	A. DATA FOR FIRST-ORDER FORMS	71
APPEN	DIX 1	B. VRA HARDWARE AND SOFTWARE SYSTEMS	81
APPEN	DIX (C. ANNOTATED TOTAL RUN	90
APPEN	DIX 1	D. VALIDATION OF ZOH CONTROL LAW, FREQUENCY RESPONSE	96
APPEN	DIX I	E. SLEWER FIRST-ORDER FORM	111
APPEN	DIX	F. SLEWER WIENER-HOPF EQUATIONS	115
APPEN	DIX (G. PROOF, $C_F^{-1}C_B = (\Gamma_1 \Gamma_m)^{-1} \Gamma_1 (\phi_m - \phi_s) \dots$	117
APPEN	DIX I	H. PHYSICAL REALIZATION OF THE SLEWER COUPLER	119
APPEN	DIX 1	L. ADDITIONAL SLEWER DATA AND TABULAR LISTING OF STEP RESPONSES	123

S. S. S. S. S. S.

いたたい

ないというない

Sector Property

1.1

十九人在死亡的

2.4 × 5.5 × 6.0

CENER S

1

i۷

LIST OF FIGURES

٠.

CONTRACTOR OF THE PARTY OF

A. W. A.

1. A. K.

<u>ل</u>ه.

シャンド

.

< * L x

1.	Tracking Kinematics and Dynamics Effect of Range	5
2.	Comparison of Heading Dynamics and Pipper Error Dynamics for Wings Level Turn	7
3.	Ideal Pilot Input Signal to Roll Autopilot	8
4.	Navion VRA	10
5.	VRA as Mechanized for Simulation	10
6.	Fourier Transformed Heading Responses, Configuration WLT1, Minimal Coupling	11
7.	Analog Test Setup	12
8.	Lateral VRA System, Prior to Ref. 1 Study	12
9.	"Analog" Test Configuration	14
10.	Digital Controller Configuration	22
11.	Test Configuration	30
12.	Digital Controller Configuration	30
13.	Bode Plots: r/δ_{cc} , β/δ_{cc}	40
14.	Bode Plots: p/δ_{cc} , ϕ/δ_{cc}	41
15.	Comparison of Theoretical Continuous Controllers with ZOH Controller on Hybrid Simulator	43
16.	VRA Flight Record of Wings Level Turns, ZOH Control Law	44
17.	Block Diagram for Software Realization	55
18.	Slewer Step Response	60
19.	YF-16 Model Response to a Step Pedal Input	61
20.	Zero-Order Hold Gain Configuration	63
21.	DFCS Gain Configurations Illustrating Within-Loop Placement of Scale Vectors	65

٠.•

۰.,

	· · · · · · · · · · · · · · · · · · ·	Page
22.	Resultant Gain Configuration Illustrating Simplification Brought About by Pre-Multiplication of Matrices	65
23.	ZOH Auto-Trim Algorithm	67
24.	Variable Response Research Aircraft (VRA)	82
25.	VRA Analog and Digital Systems Data Path Diagrams	84
26.	DFCS Hardware and Software	88
27.	Bode Plot γ/δ_{CC} , β/δ_{CC}	97
28.	Bode Plot p/δ_{CC} , ϕ/δ_{CC}	98
29.	Bode Plot ψ/δ_R , 10 Hz, 50 Hz	99
30.	Bode Plot β/δ_R	100
31.	Bode Plot p/δ_R	101
32.	Bode Plot ϕ/δ_R	102
33.	Bode Plot r/8 _C	103
34.	Bode Plot β/δ_C	104
35.	Bode Plot p/δ_{C}	105
36.	Bode Plot ϕ/δ_{C}	106
37.	Bode Plot r/8 _A	107
38.	Bode Plot β/δ_A	108
39.	Bode Plot p/δ_A	109
40.	Bode Plot ϕ/δ_A	110
41.	Zero-Order Hold Reconstruction	119
42.	An Incremental Implementation	120
43.	A Hardware Slewer	121
44.	Partially Software Implemented Slewer	122

vi

LIST OF TABLES

		Page
1.	s- and z-Plane Open Loop Plant Representations	31
2.	ZOH Gains	37
3.	w'-, s-Plane Comparisons	38
4.	Step Response	39
5.	Control Law Scale Factors	59
6.	VRA Control Characteristics	82
7.	Data for Γ_1 , Γ_2	123
8.	Slewer Step Responses	125

والمراجع المتراجع المراجع المراجع

<u>,</u> ••

· · · · · · ·

• • •

. . . .

SECTION I

INTRODUCTION

Philosophically, aircraft dynamic flying qualities requirements should be independent of the method of control system mechanization. However, from a practical viewpoint, it is known that the type of control mechanization employed does affect the aircraft response characteristics. Consequently, there is a need to practically assess, via in-flight evaluation, the extent of the control response modifications introduced by digital implementation.

All of the significant digital controller implementations (e.g., F-18 and Shuttle) as well as the system presently being developed for the F-5G, have utilized the emulation approach. Emulation is a process wherein an existing analog control law is "digitized" by the use of a so-called "substitution-for-s" rule, usually the Tustin transform. The verisimilitude of this approach is critically dependent on open-loop system bandwidth and sample rate.

In contrast, it is the objective of the present study to use direct digital design procedures and synthesize low data rate control laws for a conventional coupler (zero-order hold) and a more complex coupler which introduces less control roughness (slewer). These control laws will then be flight tested to evaluate the modifications introduced in a particular direct force mode.

Specifically, the analog fly-by-wire system of the Variable Stability Navion will be programmed to simulate an open-loop, lateraldirectional YF-16 at M = 0.8 and an altitude of 20,000 ft. A microprocessor-implemented controller is then closed around the bareairframe YF-16 simulation to force a wings-level turn (WLT) mode. These flight evaluations will replicate a previous, completely analog, in-flight simulation which will serve as a baseline configuration. An ultimate goal is to make flying qualities assessments, using paired comparisons between analog and the two forms of digital controllers. These assessments are beyond the scope of the present study.

The evaluation of the differences between baseline analog and digital controller cases will constitute a three-stage process. In the first stage the theoretical control law will be tested against an idealized analytical model of the open-loop YF-16. In the second stage the control law will be implemented in the microprocessor-based system and again flown against an idealized model of the open-loop system. Here a TR-48 analog computer will serve as a surrogate YF-16. In the third stage the hardware-implemented control law will be tested against a simulation of the open-loop YF-16, where now the Navion VRA will serve as the host aircraft. This three-stage procedure should be very effective in apportioning the errors introduced by the various interacting elements.

The report is organized into five sections and nine appendices. The heavy use of appendices serves to increase the flow of the development by removing routine developments (e.g., first-order forms of the equations of motion) and detailed theoretical proofs from the main body of the report.

Section II gives a brief description of the task and an overview of the "baseline" analog experiment, the WLT direct side force mode. Section III treats the ZOH control law synthesis and validation in much the same manner as is done for the slewer in Section IV. The report concludes with Section V, conclusions and recommendations.

SECTION II

TASK DESCRIPTION AND EQUATIONS OF MOTION

A. INTRODUCTION

This section focuses on a description of the baseline analog wingslevel turn (WLT) and those facets of the testing approach that are a necessary background for understanding the digital implementation. There is a brief description of the baseline analog task and experiment, together with a description of the feedforward and feedback filter sections used to cross-couple the controller and modify the open-loop dynamics of the simulator aircraft.

First-order forms for the equations of motion are given in the s- and z-domains and for the ZOH and slewer.

B. DESCRIPTION OF TASK

The purpose of the baseline analog flight test phase of the Reference 1 program was to fill gaps in the data base as required to develop a handling qualities criterion. A tight tracking task was required to separate good and bad configurations, i.e., to force the pilot to maxinum effort and thereby expose deficiencies which may not otherwise have been evident.

The primary task selected in Reference 1 was air-to-air tracking. This task was ideal because the target motions could be tailored to exercise a broad spectrum of frequencies in the tracking aircraft.

The control-configured vehicle (CCV) mode selected was the wingslevel turn (A_y) mode. This mode was selected because it has considerable potential for future CCV aircraft for air-to-air and air-to-ground applications. The approach of Reference 1 was to generate a series of configurations with adverse and proverse roll and yaw coupling in the wings-level turn mode. These configurations were designed to test the bandwidth hypothesis; that is to say, if the hypothesis is valid then

the pilot ratings should correlate with bandwidth regardless of the type of coupling. Based on this line of reasoning, the following configurations were developed:

- Wings-level turn with adverse and proverse yaw coupling designed to vary heading bandwidth from zero to nearly 7 rad/sec.
- Wings-level turn configurations with adverse and proverse <u>roll</u> coupling, designed to give the same heading bandwidth as the configurations in Item 1.

If the bandwidth hypothesis is valid, these configurations with similar values of heading bandwidth should receive similar pilot ratings and commentary.

C. DESCRIPTION OF BASELINE ANALOG EXPERIMENT

The tracking kinematics for the ideal case (no coupling or uncancelled aircraft modes) in the wings-level turn mode are summarized in Figure 1. The block diagram in Figure 1 indicates the interrelationship between the idealized aircraft dynamics, the air-to-air tracking kinematics, and the target heading, ψ_2 . The tracking kinematics appear in the feedback transfer functions of this block diagram and result in a numerator zero at U_{n}/R (aircraft speed/range). The effect of this zero on the piloted loop closure in attempting to null the aim error, ε , is shown in the root locus plot at the bottom of Figure la. The closedloop characteristic equation is seen to be well damped when U_{o}/R is small, that is, at large values of range. At low values of range, or when U_{a}/R is large, the closed-loop characteristic roots are seen to be lightly damped. Physically this stems from the fact that $\boldsymbol{\varepsilon}$ is primarily set by heading when U_{o}/R is large; whereas, when U_{o}/R is small, ε is strongly affected by lateral displacement (which involves an additional integration). Formation flying represents the limiting case of this with $R \stackrel{*}{=} 0$.

Due to structural limitations of the side force generators, the Princeton University Variable Research Aircraft (VRA) has a maximum maneuvering speed of 105 kt ---- well below typical air-to-air combat

7

For Wings Level Turn

くろうろうろう

Friends Strate States

というというないないで

SPECIAL CONTRACTOR - CONTRACTOR

R of 100-200 yards in Navion equals R of 600-1200 yards in typical air-to-air encounter

b)

5

.

It was therefore necessary to adjust the range between the apeeds. target and attacker in our experiment to make the parmeter U_0/R consistent with a typical air combat encounter. The effect of range on U_/R for our test conditions (105 kt TAS) is shown in Figure 1b. Here we can see that typical combat parameters of M = 0.86 at 20,000 ft and a range of 600-1200 yards converts to 100-200 yards at the VRA testing speed (105 kt). Shorter ranges result in relatively large values of U,/R, e.g., values which approach the piloted crossover region in the vicinity of 1 rad/sec. The effect of this on sight dynamics is shown in Figure 2 for the baseline configuration (WLT1) used in the flight test experiment. The frequency response phase plot in Figure 2 indicates that for frequencies below U_{o}/R the pipper error dynamics are very lightly damped, whereas for a large range of frequencies well above U_0/R the pipper error dynamics are equivalent to the heading dynamics. Hence, for values of range where U_0/R is well below the piloted crossover frequency, it is appropriate to use heading as the controlled variable when applying the bandwidth hypothesis. Tracking at close ranges, where U_{n}/R is large enough to be near the region of piloted crossover (1 rad/sec), was found to be impractical during initial flight test evaluation because of the very light damping of the pipper error dynamics. The formal runs were conducted so that the safety pilot had control over range and maintained the target aircraft at a nominal range of 150 yards throughout the data runs. This was accomplished by using a series of concentric range circles painted on the aircraft windscreen and sized so that the target aircraft's wingspan would be coincident with the target circle at a range of 150 yards.

The primary disadvantage of testing at speeds well below M = 0.8 is that it is not possible to correctly simulate the aircraft dynamics and the pilot acceleration cues simultaneously. This may be seen from the equation for lateral acceleration:

$$a_{y_{cg}} = U_0(\beta + r) - g\phi$$

the advertised and the second second second second second

ACCEPTED AND A CONTRACT AND A CONTRACT A CONTRACT AND A CONTRACTACT AND A CONTRACT AND A CONTRACTACT AND A CONTRACT AND A CONTRACT

Figure 2. Comparison of Heading Dynamics and Pipper Error Dynamics for Wings Level Turn

T. F. PATHA SEA

CARACCE.

Figure 3. Ideal Pilot Input Signal to Roll Autopilot

If the β and r responses are correct, the lateral acceleration will be scaled down by the inertial speed U_0 . In the present experiment we elected to maintain the integrity of the sideslip and yaw rate responses at the expense of side acceleration cues, which were about a factor of 5 less than those corresponding to M = 0.80. This was done in accordance with the notion that visual cues are more dominant than acceleration cues in air-to-air tracking; and with the VRA's maximum lateral acceleration (0.5 g) capacity. Lateral accelerations as high as 0.5 g were utilized frequently during the experiment. This would translate to about 2.5 g at M = 0.8.

The air-to-air tracking scenario was developed to maximize the probability of exposing deficiencies in the tracking aircraft. This was accomplished by controlling the target aircraft heading (ψ_2 in Figure 1) in a random-appearing fashion which resulted in a power spectrum concentrated in, but evenly spaced over, the frequency range of interest. I. A. M. Hall developed such a signal for the purpose of identifying the frequency response characteristics of aircraft in flight. The signal used is shown in Figure 3. The signal in Figure 3 was played through

the target aircraft lateral autopilot via a switch controlled by the target aircraft pilot. This signal resulted in approximately threequarters of full aileron travel at the testing speed of 105 kt. The target aircraft was maintained at constant altitude during the run. It was intended to utilize variations in the input series, such as playing it backwards or from the middle to the ends, etc.; however, the evaluation pilots felt that the task remained unlearned (random) and therefore such variations were not utilized.

D. BASELINE ANALOG CONFIGURATION

The Princeton University Variable Stability Research Aircraft (VRA) is a fly-by-wire response feedback simulation utilizing hydraulically actuated controls. These controls include flaps which move up as well as down and side force generators as sketched in Figure 4. A block diagram of the VRA as mechanized for the in-flight simulation in this program is shown in Figure 5. The C_B and C_F matrices in Figure 5 were calculated to allow the VRA to respond like the YF-16 at a flight condition of M = 0.8 at 20,000 ft. The generic variation of roll and yaw coupling in the flight test experiment was achieved via the aileron and rudder crossfeed boxes in Figure 5.

E. IN-FLIGHT VEHICLE IDENTIFICATION

オープノイントー

A primary problem with much of the DFC data generated to date is that the actual controlled element tested was not quantitatively defined. To avoid any uncertainties in defining the controlled element for each configuration tested in this experiment it was decided to run a frequency sweep between the DFC input and the aircraft heading which could then be Fast Fourier Transformed to obtain the frequency response directly. This technique had the secondary advantage of determining whether or not it is practical to write flying qualities criteria in terms of frequency response characteristics. The method for generating the frequency sweep was extremely simple in that the pilot simply exercised the DFC control (rudder pedals) at ever-increasing frequency during a single run. Rudder pedal input and output yaw rate were recorded

Figure 4. Navion VRA

i

1

Figure 5. VRA as Mechanized for Simulation

and Fast Fourier Transformed with excellent results, i.e., very little data scatter in the frequency range of interest. An example of a Bode plot generated in this manner is shown in Figure 6.

F. VRA SETUP FOR ANALOG DIRECT FORCE TESTS OF REFERENCE 1

STATES A

ST CONTRACT

The VRA setup for the analog simulation of the YF-16 wings-level turn is shown in Figure 7. In Figure 7, S refers to the simulator (Navion) while M refers to the model (YF-16).

The C_F and C_B matrices are a hardwired part of the analog control system; there is a pot to set for each element. However, the matrices do contain zero entries (e.g., $\phi + \delta_R$, $p + \delta_{SF}$). Some of these were not critical in the analog flight tests and were left at zero.

The "mixing box" and C_p matrix in Figure 7 need some explanation, which requires, as a prerequisite, a look at the lateral VRA system prior to the Reference 1 study (refer to Figure 8). In Figure 8 the

 $\delta_{\rm S} = (\delta_{\rm R} \text{ (rudder)}, \delta_{\rm SF} \text{ (side force)}, \delta_{\rm A} \text{ (aileron)})_{\rm Navion}$ $\delta_{\rm M} = (\delta_{\rm R}, \delta_{\rm SF}, \delta_{\rm A})_{\rm YF-16}^{\prime}$

 δ_p = Pilot input (rudder pedal deflection in Navion)

C_R = Response feedback (gain) matrix

C_F = Feedforward gain matrix (control crossfeed)

Figure 7. Analog Test Setup

ションチ

limited, existing control coupling gain matrix was not utilized. The feedforward gain matrix had too many zero entries to be useful; to remedy this the VRA personnel installed a "mixing box" to furnish the necessary feedforward gains. This box furnished a K_m matrix of gains (a 1×1 matrix) which interfaced with a 1×3 matrix "box" furnished by STI. This box, in turn, coupled with another 3×3 matrix of gains, C_F , furnished by Princeton. The K_m scalar was utilized as a pure gain during the course of the study; although provision was made for switching in an integrator ($K_m + K_m/s$).

The purpose of the STI-furnished box (C_p) was to provide control crossfeeds that were functions of frequency; to be specific, a 1×3 matrix of first-order filter sections.

With this configuration, the necessary control crossfeeds for the various YF-16 CCV modes could be implemented as filter sections (rather than just pure gains) and thus satisfy the frequency-dependent coupling numerator requirements of Reference 1.

For the present study, two possibilities exist as far as the feedforward matrix is concerned:

- 1) Princeton can expand the "old" CF matrix (with the many zero entries) to a more usable form.
- The mixing box can be reinstalled in the VRA to give a complete gain cross-coupling (feedforward) capability.

Approach 2 was the one ultimately implemented.

The filter break frequencies are very close for the wings-level turn and hence the crossfeeds can be approximated with pure gains.

Another important point concerning the Reference 1 test is that the analog gains (furnished by C_B and the "mixing box"/STI C_p filter matrix) were utilized to force the bare airframe Navion to give an equivalent lower-order model of a <u>compensated</u> YF-16 configuration (that is, a bare airframe YF-16 with all the relevant feedforward/feedback loops closed). The term "lower-order model" is used because the YF-16, with compensation networks, is a relatively high-order system. The lower-order

equivalent model was fourth order, which leads to a considerable simplification in the design of the wings-level task (see Section H).

G. YF-16 BARE AIRFRAME CONSIDERATIONS

Using the VRA's analog fly-by-wire capability to go directly from the bare airframe Navion to a compensated YF-16 is a reasonable approach for an analog fly-by-wire mechanization. For the digital tests this process would obscure the artifacts introduced by the zero-order hold, variation in the data rate, etc. For the digital tests it is desirable to utilize the <u>analog</u> fly-by-wire system to force the Navion to appear as a bare airframe YF-16. Then the Micro-DFCS can be used to implement the digital controllers. Thus the implementation of Figure 9, where C_F and C_B are "analog" gain matrices (furnished by some combination of either existing VRA capabilities or in combination with the mixing box) will allow an <u>exact</u> replication of the bare airframe YF-16 by the Navion. The context of "exact" must wait upon the expository material of a later section.

Figure 9. "Analog" Test Configuration

H. FIRST-ORDER FORM OF EQUATIONS OF MOTION

Let the time invariant model of the aircraft to be simulated (YF-16) be

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{F}_{\mathbf{M}}\mathbf{x}_{\mathbf{M}} + \mathbf{G}_{\mathbf{M}}\boldsymbol{\delta}_{\mathbf{M}}$$
(1)

while the simulation aircraft dynamics are modeled as

$$\dot{\mathbf{x}}_{\mathrm{S}} = \mathbf{F}_{\mathrm{S}}\mathbf{x}_{\mathrm{S}} + \mathbf{G}_{\mathrm{S}}\delta_{\mathrm{S}}$$
(2)

The components of x are yaw rate (ψ) , sideslip (β) , roll rate (ϕ) , and roll angle. The control components are rudder (δ_R) , side force (δ_{SF}) , and aileron (δ_A) .

Given the stability axis state vector, the F matrix has the generic form

$$\mathbf{F} = \begin{bmatrix} \mathbf{N}_{\mathbf{r}} & \mathbf{N}_{\mathbf{B}} & \mathbf{N}_{\mathbf{P}} & \mathbf{0} \\ (\mathbf{Y}_{\mathbf{r}}/\mathbf{V}) - \mathbf{1} & \mathbf{Y}_{\mathbf{B}}/\mathbf{V} & \mathbf{Y}_{\mathbf{P}}/\mathbf{V} & \mathbf{g}/\mathbf{V} \\ & & & \\ \mathbf{L}_{\mathbf{r}} & \mathbf{L}_{\mathbf{B}} & \mathbf{L}_{\mathbf{P}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$
(3)

For the three lateral controllers, the control effectiveness matrix has the generic form

$$G = \begin{bmatrix} N_{\delta_{R}} & N_{\delta_{SF}} & N_{\delta_{A}} \\ Y_{\delta_{R}}/V & Y_{\delta_{SF}}/V & Y_{\delta_{A}}/V \\ L_{\delta_{R}} & L_{\delta_{SF}} & L_{\delta_{A}} \\ 0 & 0 & 0 \end{bmatrix}$$
(4)

F is a 4×4 , but the control effectiveness matrix is a 4×3 (not square). The entries of Equations 3 and 4 are tabulated in Appendix A.

1. DISCRETE FIRST-ORDER FORM (ZOH)

The discrete version of Equation 1 (or Equation 2) has the format

$$X_{k+1} = \phi X_k + \Gamma \delta_k \tag{5}$$

where

$$\phi = \chi^{-1} [Is - F]_{t=T}^{-1}$$
 (6)

$$\Gamma = \mathcal{L}^{-1} \left(\frac{(Is - F)^{-1}}{s} \right) G \Big|_{t=T}$$
(7)

 $\phi(t)$ and $\Gamma(T)$ are tabulated in Appendix A.

J. DISCRETE FIRST-ORDER FORM (SLEWER)

The discrete version of Equation 1 is

$$\mathbf{X}_{k+1} = \phi(\mathbf{T})\mathbf{X}_k + \Gamma_1 \delta_k + \Gamma_2 \delta_{k-1}$$
(8)

where

SCHELSKID .

$$\phi = \chi^{-1} [I_8 - F]^{-1}$$
 (9)

$$\Gamma_{1} = \chi^{-1} \left. \frac{1}{T} \left(\frac{(I_{s} - F)^{-1}}{s^{2}} \right) G \right|_{t=T}$$
(10)

$$\Gamma_2 = \Gamma_{\text{ZOH}} - \Gamma_1$$
 (See Eq. 7 for Γ_{ZOH}) (11)

As an alternative,

a start a start a

S. M. M. M. M. M. C.

C. Martine Co.

1. C. S. Y.

$$\Gamma_{1} = \frac{1}{T} \int_{0}^{t} \phi(t - \xi) \xi G ds \Big|_{t=T}$$
(12)

$$\Gamma_{2} = \frac{1}{T} \int_{0}^{t} \phi(t - \xi) [T - \xi] G d\xi \Big|_{t=T}$$
(13)

See Appendix A for numerical listings.

SECTION III

ZOH DIGITAL CONTROLLER

A. INTRODUCTION

Support of the support of the support of the support

A digital control law, using a zero-order hold as the coupler between the digital computer and the control actuators is synthesized directly in the z-domain. That is, the "emulation" approach of digitizing an existing analog control law is avoided. The approach is to develop discrete models of the open-loop YF-16 and then apply an extension of the equivalent stability derivative (ESD) approach to synthesize the control law. An overview of the ESD method, and the extension (which uses a pseudo inverse), is described first. After this, the computational details of implementing the approach and validating the control laws are taken up.

An important point concerning the analog baseline experiment (Reference 1) is that analog gains were utilized to force the bare airframe Navion to give an equivalent lower-order model of a <u>compensated</u> YF-16 configuration (that is, a bare airframe YF-16 with all the relevant feedforward/feedback loops closed). The term "lower-order model" is used because the YF-16, with compensation networks, is a relatively high-order system.

The VRA's analog fly-by-wire system was used to go directly from the bare airframe Navion to a compensated YF-16 in the analog tests. For the digital tests it is desirable to utilize the <u>analog</u> fly-by-wire system to force the Navion to appear as a bare airframe YF-16. Then the Micro-DFCS can be used to implement the digital controllers.

The point is a crucial one and deserves elaboration. If the digital control law is designed to force the open-loop Navion to look like a closed-loop YF-16 (at the sampling instants), then (in the inter-sample period) the Navion will respond like a Navion -- not the open-loop YF-16. Consequently, one must first "wrap" an analog fly-by-wire system around the Navion to insure that the inter-sample aircraft performance resembles that of an open-loop YF-16. This is especially critical if one intends to evaluate the effect of a relatively low data-rate digital control working against a relatively wideband open-loop system.

In view of this, there is an additional requirement to exercise the ESD method and define the (continuous) feedback and feedforward gains that force the Navion to emulate the open-loop YF-16 model.

The validation procedure is a three-step process. First, the theoretically derived control law is tested against a theoretical continuous model of the open-loop YF-16. This was done using the TOTAL program (Reference 5). Various metrics, such as w'- and s-plane comparisons, and frequency response and step response comparisons were used to assess the verisimilitude of the results.

Second, the control law was implemented into microprocessor hardware and validated against a theoretical model of the YF-16, that is, flown against an analog computer model of the YF-16.

The last step is the actual flight test, with the Navion VRA simulating the open-loop YF-16. As will be seen, the pseudo inverse generalization of the ESD approach does an excellent job of matching the digitally controlled open-loop YF-16 to the low-order closed-loop model.

B. REVIEW OF THE ESD METHOD

An important design approach to in-flight simulation is the equivalent stability derivative (ESD) technique. This approach can force the responses of a simulator aircraft to "perfectly" match those of a model aircraft if certain constraints pertaining to the number of controllers and states are satisfied.

Let the time invariant (lateral-directional) model of the aircraft to be simulated be

$$\dot{\mathbf{x}}_{\mathbf{m}} = \mathbf{F}_{\mathbf{M}} \mathbf{X}_{\mathbf{M}} + \mathbf{G}_{\mathbf{M}} \delta_{\mathbf{M}}$$
(14)

while the simulation aircraft dynamics are modeled as

$$\dot{\mathbf{x}}_{\mathrm{S}} = \mathbf{F}_{\mathrm{S}}\mathbf{x}_{\mathrm{S}} + \mathbf{G}_{\mathrm{S}}\delta_{\mathrm{S}} \tag{15}$$

The components of x are yaw rate $(\dot{\psi})$, sideslip (β) , roll rate (ϕ) , and roll angle (ϕ) . The control components are rudder (δ_R) , side force (δ_{SF}) , and aileron (δ_A) .

Given the stability axis state vector, with F and G matrices having the literal form

$$\mathbf{F} = \begin{bmatrix} \mathbf{N}_{\mathbf{r}} & \mathbf{N}_{\mathbf{B}} & \mathbf{N}_{\mathbf{p}} & \mathbf{0} \\ (\mathbf{Y}_{\mathbf{r}}/\mathbf{V}-1) & \mathbf{Y}_{\mathbf{B}}/\mathbf{V} & \mathbf{Y}_{\mathbf{p}}/\mathbf{V} & \mathbf{g}/\mathbf{V} \\ & & & \\ \mathbf{L}_{\mathbf{r}} & \mathbf{L}_{\mathbf{B}} & \mathbf{L}_{\mathbf{p}} & \mathbf{L}_{\boldsymbol{\phi}} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$
(16a)

$$G = \begin{bmatrix} N_{\delta_{R}} & N_{\delta_{SF}} & N_{\delta_{A}} \\ Y_{\delta_{R}}/B & Y_{\delta_{SF}}/V & Y_{\delta_{A}}/V \\ \\ L_{\delta_{R}} & L_{\delta_{SR}} & L_{\delta_{A}} \\ 0 & 0 & 0 \end{bmatrix}$$
(16b)

it is apparent that three controllers can provide "perfect" model following (subject to control actuator limitations) since the fourth row of Equation 16 is an identity (it requires no "matching") for both model and simulator. Equation 26 can no longer be forced to look exactly like Equation 23 because Γ_8^{-1} does not exist (it is a 4 × 3). Furthermore, the fourth row is non-zero, so that working with a row-reduced version of Γ_8 is not feasible. However, the pseudo inverse continues to work and one may define

$$C_{\mathbf{F}} = (\Gamma_{\mathbf{s}}^{\prime}\Gamma_{\mathbf{s}})^{-1} \Gamma_{\mathbf{s}}^{\prime}\Gamma_{\mathbf{m}} , \quad C_{\mathbf{B}} = (\Gamma_{\mathbf{s}}^{\prime}\Gamma_{\mathbf{s}})^{-1} \Gamma_{\mathbf{s}}^{\prime}(\phi_{\mathbf{m}} - \phi_{\mathbf{s}}) \quad (27)$$

as the best mean square fit.

To demonstrate these points, consider a two-state, single-controller example:

$$\dot{\mathbf{x}}_{\mathbf{s}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x}_{\mathbf{s}} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \delta_{\mathbf{s}}$$

$$\dot{\mathbf{x}}_{\mathbf{m}} = \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} \mathbf{x}_{\mathbf{m}} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \delta_{\mathbf{m}}$$
(28)

A straightforward computation yields

$$C_{F} = (G_{s}G_{s})^{-1} G_{s}G_{m} = -1$$

$$C_{F} = (G_{s}G_{s})^{-1} G_{s}(\phi_{m} - \phi_{s}) = [-10 -4]$$
(29)

Clearly,

$$\mathbf{\dot{x}_{s}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x_{s}} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \{-\delta_{m} + [-10 & -4]\mathbf{x_{s}}\}$$
$$= \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} \mathbf{x_{s}} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \delta_{m}$$
(30)

and the simulator exactly matches the model.

However, the discrete models no longer exhibit the s-plane identity in the first component:

$$\mathbf{x}_{\mathbf{s}_{k+1}} = \begin{bmatrix} 2e^{-T} & -e^{-2T} & e^{-T} & -e^{-2T} \\ ------ & ----- & ----- \\ -2e^{-T} & +2e^{-2T} & -e^{-T} & +2e^{-2T} \end{bmatrix} \mathbf{x}_{\mathbf{s}_{k}}$$

$$+ \begin{bmatrix} 1/2 & -e^{-T} & +(1/2)e^{-2T} \\ ------ & -e^{-2T} & -e^{-2T} \end{bmatrix} \delta_{\mathbf{s}_{k}}$$
(31)

$$\mathbf{x}_{\mathbf{m}_{k+1}} = \begin{bmatrix} 4e^{-3T} - 3e^{-4T} & e^{-3T} - e^{-4T} \\ -2 - 2e^{-3T} & -2e^{-4T} & -3e^{-3T} + 4e^{-4T} \end{bmatrix} \mathbf{x}_{\mathbf{m}_{k}}$$

The pseudo inverse still yields an answer, but it lacks the power of the s-plane result, since the fit is no longer exact (it is a mean-square fit). Thus,

$$\delta_{\mathbf{s}_{k}} = C_{F} \delta_{\mathbf{m}_{k}} + C_{B} \mathbf{x}_{\mathbf{s}_{k}}$$

with

PAREN BAR

PARTICULAR STATES

$$C_{F} = (\Gamma_{s}\Gamma_{s})^{-1} \Gamma_{1}\Gamma_{m}$$
, $C_{B} = (\Gamma_{s}\Gamma_{s})^{-1} \Gamma_{1}(\phi_{m} - \phi_{s})$ (33)

will not give Equation 32 "exactly."

D. A CHECK COMPUTATION: NAVION \Rightarrow CLOSED-LOOP YF-16

The "model" for the digital in-flight simulation is the YF-16. A first step is to wrap analog loops around the simulator aircraft (Navion) so that the digital control loops presume an <u>open-loop</u> YF-16. To demonstrate the mathematical process we will first present a check computation to verify the Reference 1 gains used to force the Navion to look like a <u>closed-loop</u> YF-16. The matrices needed (see Appendix A) for both the Navion and YF-16 are tabulated below. The YF-16 flight condition is for 20,000 ft and Mach 0.8.

Navion

$$\mathbf{F_g} = \begin{bmatrix} -0.777 & 4.68 & -0.432 & 0 \\ -1.0 & -0.3556 & 0 & 0.172 \\ 1.27 & -12.8 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(34a)

$$G_{g} = \begin{bmatrix} -6.1 & 2.41 & 0.314 \\ 0.0725 & 0.237 & 0 \\ 0.77 & 0 & 21 \\ 0 & 0 & 0 \end{bmatrix}$$
(34b)

The next set gives the F and G matrices for the YF-16, with a vertical canard (CCV vehicle) as per the flight tests of Reference 1 (i.e., the analog flight tests). The 3,4 entry of the F matrix changes dramatically from a value of -0.2077 with no canard to a value of -25.0 with the canard (this is the fourth-order equivalent model used in the Reference 1 tests).

$$\mathbf{F}_{\mathbf{m}} = \begin{bmatrix} -3.105 & 8.917 & -0.272 & 0 \\ -0.9796 & -0.2965 & 0 & 0.03795 \\ 6.564 & -47.71 & -8.359 & -25 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(35)

$$G_{\rm m} = \begin{bmatrix} -3.925 & 4.766 & 1.897 \\ 0.02988 & 0.01802 & -0.0336 \\ 7.178 & 5.655 & 49.6 \\ 0 & 0 & 0 \end{bmatrix}$$
(36)

Next are the F and G matrices for the bare airframe YF-16 CCV (with canard but no loops closed).

Bare airframe YF-16 with canard

$$\mathbf{F}_{\mathbf{m}} = \begin{bmatrix} -0.431 & 10.2 & -0.0416 & 0 \\ -1.0 & -0.306 & 0 & 0.0388 \\ 1.67 & -50 & -2.33 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(37)

$$G_{\mathbf{m}} = \begin{bmatrix} -4.17 & 4.62 & 2.17 \\ 0.0318 & 0.0191 & -0.0357 \\ 7.63 & 5.93 & 49.1 \\ 0 & 0 & 0 \end{bmatrix}$$
(38)

For all cases, the state vector is

$$\Delta X = [\Delta r \ \Delta B \ \Delta P \ \Delta \phi]' \tag{39}$$

and the control vector is

$$\Delta \delta = \left[\Delta \delta_{\mathbf{R}} \Delta \delta_{\mathbf{SF}} \Delta \delta_{\mathbf{A}} \right]^{\prime} \tag{40}$$

First, compute the gains (which determine the pot settings for the analog fly-by-wire computer) which force the Navion to have the ESD (equivalent stability derivative) model of the YF-16 CCV, canard, loops closed. Since this is an s-plane computation we elect to use Equation 20. The first part of Equation 20, which has the form

$$\mathbf{C}_{\mathbf{B}} = \widehat{\mathbf{G}}_{\mathbf{S}}^{-1} (\widehat{\mathbf{F}}_{\mathbf{m}} - \widehat{\mathbf{F}}_{\mathbf{S}})$$
(41)

is rewritten in a form suitable for solution using either Cramer's rule or Gaussian elimination. That is,

$$G_s C_B = (F_m - F_s)$$

This gives

$$\begin{bmatrix} -6.1 & 2.41 & -0.314 \\ 0.0725 & 0.237 & 0 \\ 0.77 & 0 & 21 \end{bmatrix} C_{B} = \begin{bmatrix} -2.328 & 4.237 & 0.16 & 0 \\ 0.0204 & 0.0591 & 0 & -0.13405 \\ 5.294 & -34.91 & -1.759 & -25 \end{bmatrix}$$

(42)

Gaussian elimination then gives (nine-place accuracy is used only to facilitate checking the answer):

$$C_{B} = \begin{bmatrix} 0.359857139 & -0.456220933 & -0.019653205 & -0.144939218 \\ -0.024006931 & 0.388928345 & 0.006012056 & -0.521273868 \end{bmatrix} (43)$$

0.238900576 & -1.645652851 & -0.081612716 & -1.185161753 \end{bmatrix}

To compute C_F , the second part of Equation 20 is also written in a form suitable for Gaussian elimination.

$$\hat{G}_{s}C_{F} = \hat{G}_{m}$$

$$\begin{bmatrix} -6.1 & 2.41 & -0.314 \\ 0.0725 & 0.237 & 0 \\ 0.77 & 0 & 21 \end{bmatrix} C_{F} = \begin{bmatrix} -3.925 & 4.766 & 1.897 \\ 0.02988 & 0.01802 & -0.0336 \\ 7.178 & 5.655 & 49.6 \end{bmatrix}$$
(44)

The solution is

AND AND AND A

のためまた

and the second sec

$$C_{F} = \begin{bmatrix} 0.603820992 & -0.683783153 & -0.436629058 \\ -0.058637225 & 0.285207927 & -0.008204191 \\ 0.319669421 & 0.294357763 & 2.37791449 \end{bmatrix}$$
(45)
These gains agree with the Reference 1 results. Next, compute the gains for Navion to <u>bare airframe</u> YF-16. Since the previous sample calculations document the solution procedure for solving C_B and C_F , we will dispense with the details and present the results.

 $\mathbf{C_B} = \begin{bmatrix} -0.051566838 & -0.653322784 & -0.066549239 & -0.198437737 \\ 0.01577466 & 0.409138817 & 0.020357890 & -0.501321790 \\ 0.020938403 & -1.747473404 & 0.205773472 & 0.007276050 \end{bmatrix} (46)$

$$C_{F} = \begin{bmatrix} 0.641584848 & -0.661386936 & -0.478658047 \\ -0.062088192 & 0.282913725 & -0.004207981 \\ 0.339808556 & 0.306631807 & 2.355646033 \end{bmatrix}$$
(47)

Next, compute the digital gains which force the bare airframe to match the closed-loop YF-16 (at the sampling instants). First, the plant equations must be properly discretized, taking into account both the sample rate and the data hold. This is done in the next section, where the focus is on the ZOH.

E. ZOH ESD CONTROL LAWS

To review, the Navion's analog system will be utilized to force the Navion to appear as the open-loop (bare airframe) YF-16 with canard. (In Figure 11, the subscript C refers to the continuous gain.) In turn, the Navion's Micro-DFCS is then used to implement feedforward and feedback gains to make the open-loop YF-16 appear as a closed-loop YF-16 (Figure 12).

The task now is to find the ESD gains given finite T. Recall that the continuous gains were found very easily; given three controllers and four states (one being an identity), exact matching was possible. For finite T, this fortunate situation no longer pertains; the fourth equation is no longer an identity. This is best illustrated with the aid of Table 1, which describes the ZOH case (T = 0.1, YF-16 CCV canard, bare airframe):

X

Starker.

A CARLE & CARLER

Figure 12. Digital Controller Configuration

TABLE 1. s- AND z-PLANE OPEN LOOP PLANT REPRESENTATIONS

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\delta$

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU BMAT (ROU BMAT (ROU BMAT (ROU BMAT (ROU	1)- 2)- 3)- 4)- 2)- 3)- 4)-	431000000 -1.00000000 1.670000000 	10.2000000 305000000 50.00000000 4.520000000 .1910000000 5.930000000 0.	4160000000E-01 0. -2.330000000 1.00000000 2.17000300 357000000E-01 49.10000000 0.	0. .3880000000E-01 0. 0.
--	---	---	---	--	-----------------------------------

$$X_{k+1} = Fx_k + G\delta_1$$

FINAT (ROU	1) -	.90856TT123	.9755276552	3502672856E-02	.1926755760E-02
FMATCROU	2)-	9471662993E-01	.9204149530	.3626869048E-03	.3756696670E-02
FMATCROU	3)-	.3670070570	-4.234745790	.7912792594	8716315341E-02
FMAT (ROU	4)-	.1524291762E-01	2246473026	.8917931248E-01	.9997011628
GHAT (ROU"	17-	4010594654	.4443513628	-1978434172	
GMAT (ROU	S) •	.233436023 4E-01	2042352531E-01	1334271711E-01	
GMAT (ROU	3)+	.6097314035	.5949648390	4.419801283	
GMAT (ROU	4)+	.3320928555E-01	.2942249255E-01	.2287260839	

Observe the identities in the fourth row of the A and B matrices (0, 0, 1, 0 and 0, 0, 0). The fourth row of F and G must take on the numerical values dictated by

$$\phi(T) = \mathcal{L}^{-1} [IS - A]^{-1}_{t=T}$$
 (48)

and

TANK TOTAL AND A PARTY

 $\Gamma(T) = \int_0^T \phi(t - \xi) B d\xi \qquad (49)$

and hence the identity is lost. Thus the time domain procedure of throwing away the fourth equation, to obtain a reduced control effectiveness matrix that is <u>invertible</u>, is no longer possible. To preserve the ESD concept we may appeal to the pseudo-inverse, and then check, via w', to see how good the result is. The pseudo-inverse equations are described next. F. DEFINING EQUATIONS, IN "TOTAL" NOTATION*

いたちとうないたろうと

ちんてんどん

Let the time domain equations for the open-loop YF-16 (the "simulator," subscript s) be

$$\dot{\mathbf{x}}_{\mathbf{g}} = (\mathbf{IMAT})_{\mathbf{g}} \mathbf{x}_{\mathbf{g}} + (\mathbf{JMAT})_{\mathbf{g}} \delta_{\mathbf{g}} \qquad \text{OL YF-16} \qquad (50)$$

Let the time domain equations for the closed-loop YF-16 (the "model," subscript m) be

$$\dot{\mathbf{x}}_{\mathbf{m}} = (\mathbf{XMAT})_{\mathbf{m}} \mathbf{x}_{\mathbf{m}} + (\mathbf{YMAT})_{\mathbf{m}} \delta_{\mathbf{m}} \qquad \text{CL YF-16} \qquad (51)$$

Use Option 87 to get the discrete (ZOH) form:

$$\mathbf{x}_{k+1} = (LMAT)\mathbf{x}_k + (MMAT)\delta_k$$
 CL YF-16 (Model) (52)

$$\mathbf{x}_{k+1} = (\text{NMAT})\mathbf{x}_k + (\text{OMAT})\delta_k$$
 OL YF-16 (Simulator) (53)

Since OMAT is the control effectiveness matrix of the "simulator" (OL YF-16), we need its pseudo-inverse. Let

$$PMAT = (OMAT)T = [0' 0]^{-1} 0'$$
(54)

where † indicates the pseudo-inverse.

Clearly, the feedforward gain matrix, $C_{\rm F}$, is given at

$$QMAT = C_F = (PMAT)*(MMAT)$$
(55)

In a like manner, the feedback gain matrix, C_{B} , is given by

$$UMAT = C_{R} = (PMAT)[LMAT - NMAT]$$
(56)

*For a description of TOTAL matrix notation and analysis options, see Reference 5.

Equations 55 and 56 define the gain matrices. We must now check by substituting Equations 55 and 56 back into the equations for the open-loop system (Equation 53) and see how well the result compares with the model (Equation 52).

G. COMPARISON EQUATIONS - STATE TRANSITION

With the control law

$$\delta_{\mathbf{k}_{\mathbf{S}}} = C_{\mathbf{B}} \mathbf{x}_{\mathbf{k}_{\mathbf{S}}} + C_{\mathbf{F}} \delta_{\mathbf{k}_{\mathbf{m}}} = (\mathbf{U}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{x}_{\mathbf{k}_{\mathbf{S}}} + (\mathbf{Q}\mathbf{M}\mathbf{A}\mathbf{T})\delta_{\mathbf{k}_{\mathbf{m}}}$$
(57)

Equation 53 becomes

Contraction of the second seco

$$\mathbf{x}_{k+1} = [NMAT + OMAT*UMAT]\mathbf{x}_{s} + (OMAT)(QMAT)\delta_{m}$$
$$= RMAT\mathbf{x}_{s} + SMAT\delta_{m}$$
(58)

Since the model is

$$\mathbf{x}_{\mathbf{k}_{\mathbf{m}}} = (\mathbf{LMAT})\mathbf{x}_{\mathbf{k}_{\mathbf{m}}} + (\mathbf{MMAT})\delta_{\mathbf{k}_{\mathbf{m}}}$$
(59)

compare RMAT with LMAT and SMAT with MMAT (this is done in Appendix C).

H. W'-COMPARISON

Given

$$\mathbf{x}_{k+1} = \phi \mathbf{x}_k + \Gamma \delta_k \tag{60}$$

take the z-transform to form

$$[\mathbf{I}\mathbf{z} - \boldsymbol{\phi}]\mathbf{x}(\mathbf{z}) = \Gamma \delta_{\mathbf{k}} + \mathbf{z}\mathbf{x}(0) \tag{61}$$

Substituting and clearing gives [for convenience, drop the prime on w' and set x(0) = 0],

$$\left[\mathbf{Iw} + \frac{2}{T} (\mathbf{I} + \phi)^{-1} (\mathbf{I} - \phi)\right] \mathbf{X}(\mathbf{w}) = \frac{2}{T} [\mathbf{I} + \phi]^{-1} \left(-\frac{\mathbf{w}}{2/T} + 1\right) \Gamma \delta(\mathbf{w})$$
(62)

First, generate the w' format for

$$\mathbf{x}_{k+1} = RMAT\mathbf{x}_k + SMAT\delta_m$$

We can define this to be

$$\left| \mathbf{Iw} + \frac{2}{T} (\mathbf{I} + \mathbf{RMAT})^{-1} (\mathbf{I} - \mathbf{RMAT}) \right| \mathbf{X} = \frac{2}{T} [\mathbf{I} - \mathbf{RMAT}]^{-1} \mathbf{SMAT} \left(-\frac{\mathbf{w}}{2/T} + 1 \right) \delta(\mathbf{w})$$
(63)

$$[Iw' + WMAT]X = EMAT\delta_{m} \left(-\frac{w}{2/T} + 1\right)$$
(64)

This can be compared with the continuous model. That is, compare

$$(Is - XMAT)X(s) = [YMAT]\delta_{s}$$
(65)

against

1534744 Store

Calebra Calebra

00000000000

MUNICIPAL STREET

$$(Iw + WMAT)X(w) = [EMAT]\delta_{s}$$
(66)

See Appendix C for a specific comparison.

I. MACROS

Three macros were used to implement the previously described computational algorithms. The first, AKEY, sets up the state transition model, from the time domain model, for both the simulator (Equation 50) and the model (Equation 51). OFTION >CREATE, AKEY, COPY, XMAT, AMAT, COPY, YMAT, BMAT, 87, COPY, FMAT, LMAT, >COPY, GMAT, MMAT, COPY, IMAT, AMAT, COPY, JMAT, BMAT, 87, >COPY, FMAT, NMAT, COPY, GMAT, OMAT

Next, BKEY computes the pseudo-inverse and the feedback/feedforward gains. It lists LMAT, MMAT, NMAT, OMAT, PMAT, QMAT, UMAT.

OPTION >CREATE,BKEY,COPY,OMAT,AMAT,76,COPY,CMAT,PNAT,COPY,CMAT,AMAT, >COPY,OMAT,BMAT,74,COPY,CMAT,AMAT,75,COPY,CMAT,AMAT,COPY,PMAT,BMAT, >74,COPY,CMAT,PMAT,COPY,PMAT,AMAT,COPY,MMAT,BMAT,74,COPY,CMAT,QMAT, >COPY,LMAT,AMAT,COPY,NMAT,BMAT,73,COPY,CMAT,BMAT, >COPY,PMAT,AMAT,74,COPY,CMAT,UMAT,LMAT,MMAT,NMAT,OMAT,PMAT, >QMAT,UMAT

Next use CKEY to check the results. C_B and C_F are substituted into the "simulator" equations, and this result is then compared against the "model" equations.

OPTION >CREATE,CKEY,COPY,OMAT,AMAT,COPY,UMAT,BMAT,74,COPY,CMAT,BMAT, >COPY,NMAT,AMAT,72,COPY,CMAT,RMAT,COPY,QMAT,BMAT,COPY,OMAT,AMAT, >74,COPY,CMAT,SMAT,COPY,RMAT,BMAT,COPY,VMAT,AMAT,72,COPY,CMAT,AMAT, >75,COPY,CMAT,BMAT,COPY,ZMAT,AMAT,74,COPY,ZMAT,TMAT,COPY,VMAT,AMAT, >COPY,RMAT,BMAT,73,COPW.CMAT,BMAT,COPY,TMAT,AMAT,74,COPY,CMAT,WMAT, >COPY,TMAT,AMAT,COPY,SMAT,BMAT,74,COPY,CMAT,EMAT,COPY,WMAT,BMAT, >COPY,HNAT,AMAT,74,COPY,CMAT,AMAT,71

An annotated run for the 10 Hz case is given in Appendix C.

J. 20H, ESD GAINS

The C_B and C_F gains are tabulated in Table 2. The printout rounds the gains to four figures, although the internal precision is much higher. To check the sensitivity to roundoff, we reran CKEY for the 5 Hz and 10 Hz cases using the four-place numbers printed in Table 2. There were no significant changes in the closed-loop plant description, indicating four-place accuracy is sufficient.

K- VALIDATION: THEORETICAL CONTROLLER, TOTAL MODEL OF YF-16

The first method for validating the theoretical controller against the theoretical YF-16 model was outlined in Section H. For the 10 Hz case, C_B and C_F are substituted into the "simulator" equations, resulting in the closed-loop format

$$(Is - XMAT)X(s) = [YMAT]\delta_{s}$$
(67)

This can be compared against the YF-16 s-plane reference model, given by

$$(Is + WMAT)(X(w) = [EMAT]\delta_{g}$$
(68)

This is carried out in Table 3. As can be seen, even at 10 Hz the pseudo inverse has done an excellent job of matching the digitally controlled open-loop YF-16 to the desired closed-loop YF-16 configuration.

The second method of validation is to compare the frequency response of the continuous variables of the discretely controlled continuous system against the frequency response of the baseline closed-loop YF-16. A typical (10 Hz) set is given in Figures 13 and 14. The matches are extremely good at low frequencies and exhibit the properties one expects of digitally controlled systems at higher frequencies. A more comprehensive set (10 Hz and 50 Hz) is listed in Appendix D. The third method for comparison is to match step responses (a step of pedal input). These are extremely close and a comparison of printed data is required in order to see the differences (see Table 4). TABLE 2. ZOH GAINS

1/T (Hz)	T (sec)		c _F			в С		
1	1.	-1.620 1.672 .4114	2.946 2.858 6572	2.202 1.596 1827	4.891 5.188 -1.527	7.084 4.880 7911	2100 9990E-01 1213E-01	-1.009 7243 .9032E-01
2	0.2	1.306 .5885 2070	1428 .6530 .1836E-01	1.192 1.156 .2113	1.244 .8593 3098	-1.229 -2.108 .9655	1635 1410 3590E-01	-1.027 8550 3679E-02
10	0.1	• 9392 • 1189 •• 6614E-01	6880E-01 .8297 .1004E-01	6380E-01 1443 .7689	.6448 .1264 7467E-01	• 3834 • 2180 • 3024	5682E-01 3784E-01 8553E-01	3444 1260 3017
15	0•06667	.9024 .4333E-01 3659E-01	2810E-01 .9125 .4270E-05	6322E-01 1457 .8524	.6040 .4327E-01 3870E-01	•4744 2940E-01 •1800	6147E-01 4578E-01 9161E-01	3359 1074 3481
20	0•05	.8991 .2010E-01 2492E-01	1632E-01 .9466 3220E-02	3285E-01 1137 .8879	.6013 .1992E-01 2558E-01	.4646 .9796E-02 .1299	6573E-01 5211E-01 9415E-01	3495 1171 3675
40	0.025	•9108 •1083E-02 •1067E-01	1416E-01 .9840 4473E-02	.2234E-01 5271E-01 .9409	•6136 •1856E-02 •1053E-01	.4025 .2144E-01 .6276E-01	7159E-01 6160E-01 9812E-01	3782 1414 3958
50	0.02	.9154 6248E-03 8244E-02	1631E-01 .9891 4108E-02	• 3266E-01 -• 4077E-01 • 9520	.6180 .3107E-03 8087E-02	.3850 .1866E-01 .5004E-01	7246E-01 6328E-01 9900E-01	3841 1466 4016
100	0.01	•9265 2059E-02 3780E-02	2346E-01 .9966 2687E-02	.5114E-01 1862E-01 .9752	• 6286 -• 9408E-03 -• 3721E-02	.3459 .9108E-02 .2499E-01	7376E-01 6625E-01 1009	3954 1567 4136
1000	0•001	.9388 1124E-02 2007E-03	3329E-01 1.000 5731E-03	.6451E-01 1414E-02 .9974	.6400 6363E-04 3571E-03	.3067 3503E-02 .2760E-02	7433E-01 6842E-01 1027	4046 1650 4248

37

TABLE 3. w'-, s-Plane Comparisons

Ę.

and an interview and the second

- Charles

ううつかうかつ

AND WISHY

MORDHYN - DIJUURAS - READINYN, ENGEDDINY,

C. 2445.2

	1104		COLUM	k	
	KUW	1	2	3	4
XMAT	₩ 351	-3.105 9796 6.564 0	8.917 2965 -47.71 0	2720 0 -8.359 1.000	0 • 3795E-01 -25• 00 0
WMAT	4 3 2 1	3.140 .9775 -6.580 .2355E-01	-9.044 .3245 45.39 .1143	• 2562 - 1929E-02 8• 216 -• 9845	6619E-01 3865E-01 23.99 .4501E-01
EMAT	7 35 1	-3.925 .2988E-01 7.178 0	4.766 .1802E-01 5.655 0	1.897 3360E-01 49.60 0	
YMAT	4 3 5 F	-3.946 .4171E-01 6.758 .2042E-01	4.755 .3806E-02 5.557 .4213E-02	1.768 4036E-01 47.64 .8822E-01	

ESPONSE
STEP R
4.
TABLE

TIME		\$			••		•		- T
	CONT.	DISC.	CONT.	DISC.	CONT.	DISC.	CONT.	DISC.	
(
0	-0.00000017	0.018304812	-0.000000004	0.004820652	-0.030651121	-0-030645887	0.000000024 -0.001690086	-0.001416650	
	0.035110104	0.035151039	0.007806208	0.007783140	-0.043086926	-0-043473064	-0.005517618	-0.005047682	_
	0.049166021	0.049219275	0.009179154	0.009148255	-0.041094386	-0.041897130	-0.009824885	-0.009275901	
	0.059827180	0.059890768	0.009302422	0.009266177	-0.030114681	-0.031161178	-0-013437395	-0.012917862	
•••	0-06/04/7/6	0.067117145	0.08550286	0.008510529	-0.015287922	-0.016348992	-0.015721016	-0.015305989	
	0.071179588	0.071247888	0.007271251	0.007229344	-0.000544843	-0.001425508	-0.016499426	-0.016224603	
	0.072800400	0.072860271	0.005757446	0.005714553	0.011631962	0.011050595	-0-015917003	-0.015784134	
	0.072571265	0.072616759	0.004230742	0.004187999	0.020068907	0.019823899	-0.014298808	-0.014286232	_
	0.071132345	0.071160221	0.002841689	0.002800227	0.024590824	0.024653091	-0.012034438	-0.012108355	
1.0	0.069037389	0.069047530	0.001677014	0.001637879	0.025671786	0.025970629	-0.009495707	-0.009619636	
	0.067721372	0.066716421	0.000771800	0.000735820	0.024122820	0.024570463	-0.006987841	-0.007129174	_
	0.064493384	0.064477878	0.000123269	0.000090941	0.020850933	0.021362041	-0.004728490	-0.004862072	
_	0.062546517	0.062525830	-0.000296003	-0.000324572	0.016697052	0-017201326	-0.002846872	-0.002956131	
	0.060977446	0.060956797	-0.000526751	-0.000551846	0.012344987	0.012793063	-0.001395467	-0.001471827	
5.1	0.059809878	0.059793576	-0.000614201	-0.000636428	0.008286273	0.008650287	-0.000367884	-0.000409195	
	0.059017764	0.059008774	-0.000601851	-0.000622036	0.004823887	0.005094543	0.000281846	0.000273232	
	0.058545707	0.058545509	-0.000527622	-0.000546687	0.002099326	0.002281159	0.000621625	0.000640724	
	0.058325257	0.058333969	-0.000421964	-0.000440812	0.000130490	0.000236733	0.000726994	0.000767731	
	0.058286783	0.058303441	-0.000307414	-0.000326833	-0.001148624	-0.001100660	0.000670766	0.000727097	
2.0	0.058367189	0.058390114	-0.000199143	-0.000219741	-0.001852171	-0.001844685	0.000516475	0.000583091	
	0.058514145	0.058541314	-0.000106075	-0.000128252	-0.002113635	-0.002130740	0.000315066	0.000387727	
	0.058687644	0.058717011	-0.000032251	-0.000056196	-0.002064921	-0.002093947	0.000104070	0.000179683	
	0.058859676	0.058889421	0.000021796	-0.000003922	-0.001822980	-0.001854877	-0.000091503	-0.000014995	
	0.059012757	0.059041438	0.000057795	0+000030450	-0.001482793	-0.001511914	-0.000257278	-0.000181086	
2.5	0.059137881	0.059164502	0.000078727	0.000049998	-0.001115241	-0.001138754	-0.000387175	-0.000311889	
	0.059232332	0.059256341	0.000088037	0.000058226	-0.000768325	-0.000785471	-0.000481036	-0.000406835	
	0.059297635	0.059318871	0.000089109	0.000058530	-0.000470403	-0.000481760	-0.000542490	-0.000469316	
	0.059337819	0.059356427	0.000084926	0.000053876	-0.000234348	-0.000241196	-0.000577191	-0.000504876	
	0.059358061	0.059374396	0.000077908	0.000046644	-0.000061849	-0.000065688	-0.000591486	-0.000519839	
0°0	0.059363706	0.059378241	0.000069866	0.000038591	0.000052669	0.000050445	-0.000591498	-0.000520348	
	0.059359643	0.059372890	0.000062039	0.000030900	0.000118793	0.000117074	-0.000582567	-0.000511788	
	0.059349954	0.059362401	0.000055179	0.000024267	0.000147629	0.000145656	-0.000568982	-0.000498489	_
	0.059337786	0.059349855	0.000049650	010610000.0	0.000150073	0.000147429	-0.000553920	-0.000483665	-
	0.059325368	0.059337391	0.000045539	0.000015178	0.000135744	0.000132288	-0.000539525	-0.000469482	
3.5	0.059314115	0.059326331	0.000042750	0.000012645	0.000112436	0.000108231	-0.000527068	-0.000457225	-
	0.059304787	0.059317342	0.000041081	0.000011195	0.000085983	0.000081208	-0.000517140	-0.000447485	
	0.059297652	0.059310617	0.000040287	0.000010573	0.000060364	0.000055249	-0.000509842	-0-000440361	
	0.059292645	0.059306027	0.000040123	0.000010533	0.000037983	0.000032753	-0.000504958	-0.000435632	_
	0.059289497	0.059303262	0.000040369	0.000010858	0.000019997	0.000014841	-0.000502098	-0-000432981	-
4.0	0.059287843	0.059301931	0.000040843	0.000011374	0.000006663	0.000001716	-0.000500803	-0.000431708	-
-									-

T = .1, ZOH

Figure 13. Bode Plots: r/S_{cc}, B/S_{cc}

Contraction of the second

SADIO-CO-CA-

A STATE AND A

Figure 14. Bode Plots; P/δ_{cc} ; ϕ/δ_{cc}

L. VALIDATION: MICROPROCESSOR-BASED CONTROL LAW, ANALOG COMPUTER MODEL OF YF-16

The ZOH control law was implemented in the microprocessor and validated on the analog computer using an "ideal" aircraft model. The wings-level turn was successfully flown. A comparison between the theoretical response and digital implementation in the hybrid simulation is given in Figure 15.

As can be seen by inspection, the response characteristics of the micro-processor coupled controller closely match those of the continuous model. The magnitude differences between the two sets of curves were due to scaling limitations imposed by the coupling between the micro-processor and the TR-48 bare airframe simulation. The more favorable scaling dynamics of the coupling between the microprocessor and the Navion's analog system assured us that the ZOH would function appropriately under actual flight test.

M. VALIDATION: MICROPROCESSOR-BASED CONTROL LAW, HAVION AS YF-16 SIMULATOR

The microprocessor-based control law was installed in the Navion Variable Stability Aircraft and a wings-level turn successfully flown (see Figure 16). The pedal was ramped in and held at about 70 percent full deflection. A wings level, essentially zero sideslip turn near the Navion limit of $a_y \doteq 1/2$ g was observed in flight. That the turn is wings level is evidenced by the roll rate trace in Figure 16 which remains near zero throughout the maneuver. For a steady 1/2 g turn

 $r = \frac{0.5g}{U_0} = \frac{0.5*32.2 \text{ ft/sec}^2}{177 \text{ ft/sec}} * 57.3 \text{ deg/rad}$ = 5.2 deg/sec

would be expected. The yaw rate in Figure 16 approaches this, but is effected by limiting in the telemetry system.

In summary, it has been demonstrated that the digital implementation of the ZOH controller performed properly -- both in the hybrid simulation and in VRA flights.

Bank .0 Angle 0 φ -.01 (rad) -.02 .04 Roll .02 Rote 0 р -.02 (rad/sec) .04 .Öŀ Sideslip .005 Angle 0 β -005 (rad) -.01 ŀ Yaw .05 Rate 0 ٢ -.05 (rad/sec) -.1 .4 Lateral Acceleration ,2

0

-.2

0

ay

(g's)

a) Theoretical Response of Continuous Controller to Step Input of Pedal (I radian Canard Command Step)

2

Time(sec)

3

b) IO Hz ZOH Controller with Microprocessor Coupled to TR-48 Analog Computer Response to Pedal Step Input

CALCULAR DE

CANESCONDING ST

シントランシンシン

21.5.999.999.

SECTION IV

SLEWER CONTROLLER

A. INTRODUCTION

This section describes the control law synthesis procedure and validation process for the slewer. Because of "structural" differences between the ZOH and slewer first-order equations of motion for the YF-16 it was necessary to "invent" a generalization of equivalent stability derivative (ESD) model matching approach. The nature of the solution is described first, with crucial theoretical proofs relegated to appendices. A low-order example is given to illustrate the mathematical process and a general four-step synthesis procedure is outlined.

Next, the control law for the slewer/YF-16 combination is given, with the intermediate numerical details given in an appendix. The control law is theoretically validated by running step responses with the theoretical controller working against an analytical model of the openloop YF-16. The generalized ESD approach does an excellent job of matching the simulator to the model.

Next, the details of validating the hardware (microprocessor) based control law against an analog (TR-48) model of the YF-16 are described. The control law is validated, as is the physical implementation of the slewer (in terms of hardware integrators and a "software differencing" format.) Noise problems surfaced in the next stage which prevented the flight validation phase from being carried out. These problems are described in some detail.

B. SYNTHESIS USING A GENERALIZED ESD APPROACH

A radical departure in the format of the first-order form occurs when the slewer is used as the coupler. The first-order form (see Appendix E for a derivation) becomes

$$\mathbf{X}_{\mathbf{s}_{k+1}} = \phi_{\mathbf{s}} \mathbf{X}_{\mathbf{s}_{k}} + \Gamma_{1} \delta_{\mathbf{s}_{k}} + \Gamma_{2} \delta_{\mathbf{s}_{k-1}}$$
(69)

while model equations remain the same

THE NEW MARKE

and the second second

antimate stational transmission waterson and

$$\mathbf{X}_{\mathbf{m}_{k+1}} = \phi_{\mathbf{m}} \mathbf{X}_{\mathbf{m}_{k}} + \Gamma_{\mathbf{m}} \delta_{\mathbf{m}_{k}}$$
(70)

The pseudo inverse, which was very effective in the ZOH case, will no longer work. To see this, transform the above equations and substitute the control law

$$\delta_{\mathbf{g}} = C_{\mathbf{F}} \delta_{\mathbf{m}} + C_{\mathbf{B}} \mathbf{X}_{\mathbf{g}}$$
(71)

into the simulator equation. The result is (see Appendix F):

$$[\mathbf{I}\mathbf{z} - \boldsymbol{\phi}_{\mathbf{S}} - (\Gamma_{1} + \Gamma_{2}\mathbf{z}^{-1})C_{\mathbf{B}}]\mathbf{X}_{\mathbf{S}} = [\Gamma_{1} + \mathbf{z}^{-1}]C_{\mathbf{F}}\delta_{\mathbf{m}}$$

$$[\mathbf{I}\mathbf{z} - \boldsymbol{\phi}_{\mathbf{m}}]\mathbf{X}_{\mathbf{m}} = \Gamma_{\mathbf{m}}\delta_{\mathbf{m}}$$
(72)

Thus an exact match requires

$$\begin{bmatrix} C_{\mathbf{F}} \\ C_{\mathbf{B}} \end{bmatrix} = \begin{bmatrix} \Gamma_{1} + \Gamma_{2} \mathbf{z}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} \Gamma_{\mathbf{m}} \\ \\ \\ \phi_{\mathbf{m}} - \phi_{\mathbf{s}} \end{bmatrix}$$
(73)

which is, in general, unattainable for two reasons. The first is that $[\Gamma_1 + \Gamma_2 z^{-1}]^{-1}$ is not invertible. The second problem is that, even if the inverse exists, $[\Gamma_1 + \Gamma_2 z^{-1}]^{-1}$ may have poles exterior to the unit circle and therefore produce an unstable controller. Needed is a synthesis procedure that generalizes the ESD approach, can treat non-square matrices, and insures a stable controller. The Wiener-Hopf approach satisfies these criteria and is discussed next.

C. SOLUTION VIA WIENER-HOPF

Given the equation set (Equation 72) the W-H equation becomes (see Appendix F):

$$\frac{(\Gamma_1 + \Gamma_2 z)(\Gamma_1 + \Gamma_2 z^{-1})}{z} \left[c_F \mid c_B \right] - \frac{(\Gamma_1 + \Gamma_2 z)}{z} \left[\Gamma_m \quad \phi_m - \phi_S \right] = \psi$$
(74)

If one considers $[C_F | C_B]$ as a single matrix, and thus in a certain sense <u>one</u> unknown, the problem posed in Equation 74 becomes clear; there is only one (matrix) equation but <u>two</u> unknowns. That is, treating $[C_F | C_B]$ as one unknown, the other unknown is the matrix ψ . All we know about ψ is that it must have poles exterior to the unit circle; that is, a <u>property</u> of ψ is known. The trick is to "pick" a $[C_F | C_B]$ matrix that is stable, substitute it in Equation 74, and find, after the evaluation, that ψ has the desired property.

D. SPECTRAL FACTORIZATION SOLUTION METHOD

Equation 74 has the form

$$\phi \mathbf{Y} - \mathbf{N} = \boldsymbol{\psi} \tag{75}$$

If a factorization of ϕ exists such that

$$\phi = \phi_{1+}\phi_1 \tag{76}$$

where ϕ_1 has the poles interior to the unit circle and $\phi_{1\star} = \phi'(1/z)$ has poles exterior to the unit circle, then the solution can be written as

$$Y = \phi_1^{-1} [\phi_{1\star}^{-1} N]_+$$
(77)

where []₊ signifies a partial fraction expansion in which only the terms associated with poles interior to the unit circle are retained. We must verify that Equation 77 produces a ψ -vector that has all of its poles exterior to the unit circle:

$$\Phi Y - N = \phi_{1*} \phi_1 \phi_1^{-1} [\phi_{1*}^{-1} N]_+ - \phi_{1*} \phi_{1*}^{-1} N = \psi$$

= $\phi_{1*} [(\phi_{1*}^{-1} N)_+ - \phi_{1*}^{-1} N]_- \psi$ (78)

Write

$$\phi_{1*}^{-1}N = [\phi_{*}^{-1}N]_{+} + [\phi_{*}^{-1}N]_{-}$$
(79)

where $[]_+$ is the sum of the partial fraction terms interior to the unit circle and [] is the sum of the terms exterior to the unit circle. Thus

$$\phi_{1*}[(\phi_{1*}^{-1}N)_{+} - (\phi_{*}^{-1}N)_{+} - (\phi_{*}^{-1}N)_{-}] = \psi$$
(80)

and

$$\Psi = -\phi_{1*} \left[\phi_{*}^{-1} N \right]_{-} \tag{81}$$

which is guaranteed to have all poles exterior to the unit circle, verifying Equation 77 as a solution of the W-H equation.

The difficulty with the approach is that the spectral matrix ϕ has to be factored into the product of two matrices, one which is analytic in the interior of the unit circle, the other analytic in the exterior of the unit circle. This is a formidable task. However, the factorization approach does give key insights into the properties of our particular W-H equation, a matter to be discussed next.

E. KEY FEATURES OF THE SOLUTION

From the previous discussion, if the spectral matrix can be written

$$\phi = \phi_{1,\phi_1} \tag{82}$$

the

$$\mathsf{let} \, \phi \, \bullet \, \mathsf{det} \, \phi_1 \tag{83}$$

and we see that the poles of ϕ interior to the unit circle must be the poles of ϕ_1 and the poles of ϕ exterior to the unit circle must be the poles of $\phi_{1,\star}$. A key observation is therefore that the poles of the solution vector Y are already known; we need only determine the zeros of Y. To do this assume the numerators of Y are unknown polynomials divided by the "stable" poles of ϕ . Substituting Y into Equation 75 must lead to a ψ which has only poles exterior to the unit circle; therefore the numerator polynomials must be selected so that the poles of ϕ_1 cancel out of Equation 75. This is the "direct" approach for solving W-H equations that is described in detail in Reference 3.

F. ILLUSTRATIVE EXAMPLE

Refocusing our attention on Equation 74, we show how the thought process described earlier can be used to effect a solution. A simple illustrative example is used to facilitate the discussion. Suppose

$$\mathbf{x_{s_{k+1}}} = \begin{bmatrix} 1 & 0 \\ \\ \\ -1 & 0 \end{bmatrix} \mathbf{x_{s_k}} + \begin{bmatrix} 1 & 1 \\ \\ \\ 0 & 1 \end{bmatrix} \delta_{\mathbf{s_k}} + \begin{bmatrix} 1 & 0 \\ \\ \\ \\ .75 & -.25 \end{bmatrix} \delta_{\mathbf{k}-1}$$
(84)

$$\mathbf{x}_{\mathbf{m}_{k+1}} = \begin{bmatrix} 2 & 2 \\ \\ 0 & 1 \end{bmatrix} \mathbf{x}_{\mathbf{m}_{k}} + \begin{bmatrix} 1 & 2 \\ \\ 2 & 1 \end{bmatrix} \delta_{\mathbf{m}_{k}}$$
(85)

Thus

$$\phi_{\mathbf{m}} - \phi_{\mathbf{s}} = \begin{bmatrix} 1 & 2 \\ \\ 1 & 1 \end{bmatrix}, \quad \Gamma_{\mathbf{m}} = \begin{bmatrix} 1 & 2 \\ \\ 2 & 1 \end{bmatrix}$$
(86)

and

$$\Gamma_{1} + \Gamma_{2} z^{-1} = \begin{bmatrix} 1 + z^{-1} & 1 \\ & & \\ .75z^{-1} & 1 - .25z^{-1} \end{bmatrix} = \frac{\begin{bmatrix} z + 1 & z \\ .75 & z - .15 \end{bmatrix}}{z}$$
(87)

$$\Gamma_{1}^{\prime} - \Gamma_{2}^{\prime} z = \begin{bmatrix} z + 1 & .75z \\ . & . \\ 1 & -.25z + 1 \end{bmatrix}$$
(88)

The spectral matrix Φ is

$$\Phi = [\Gamma_1' + \Gamma_2'z][\Gamma_1 + \Gamma_2z^{-1}] = \frac{\begin{bmatrix} z^2 + 2 \cdot 5625z + 1 & 1 \cdot 75z^2 + \cdot 8125z \\ \cdot 8125z + 1 \cdot 75 & - \cdot 25z^2 + 2 \cdot 0625z - \cdot 25z - \cdot 25z \\ z \end{bmatrix}}{z}$$
(89)

det
$$\phi = -.25z^4 + 1.0625z^2 - .25 = -.25[z^4 - 4.25z^2 + 1]$$
 (90)

The roots of Equation 90 are

D = (z - .5)(z + .5)(z - 2)(z + 2)

and therefore select

$$\Delta = (z - .5)(z + .5) = z^2 - .25$$
(91)

as the poles for all the entries of C_F and C_B . Equation 74 has the form, for C_F :

$$\begin{bmatrix} z^2 - 2 \cdot 5625z + 1 & 1 \cdot 75z^2 + \cdot 8125z \\ \cdot 8125z + 1 \cdot 75 & - \cdot 25z^2 + 2 \cdot 0625z - \cdot 25 \end{bmatrix} \begin{bmatrix} a_0z^2 + a_1z + a_2 & b_0z^2 + b_1z + b_2 \\ c_0z^2 + c_1z + c_2 & d_0z^2 + d_1z + d_2 \end{bmatrix}$$

$$z^2 \qquad (z - \cdot 5)(z + \cdot 5)$$

$$-\frac{\begin{bmatrix} 2 \cdot 5z+1 & 2 \cdot 75z+2 \\ - \cdot 5z+3 & - \cdot 25z+3 \end{bmatrix}}{z^2(z - \cdot 5)(z + \cdot 5)} z(z - \cdot 5)(z + \cdot 5) = \psi \qquad (92)$$

In Equation 92 the $(\Gamma_1'\Gamma_2 z)\Gamma_m/z$ has been augmented by a $z\Delta$ factor, in order to force a common denominator. We must pick the unknown coefficients of C_F so that each numerator of Equation 92 contains $z^2(z - .5)$ (z + .5), in order that ψ will be free of poles interior to the unit circle. One property of the solution is therefore immediately apparent; setting z = 0 gives, for the numerator of Equation 92,

$$\begin{bmatrix} 1 & 0 \\ \\ \\ 1.75 & .25 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ \\ \\ c_2 & d_2 \end{bmatrix} = 0$$
(93)

Since det $\begin{bmatrix} 1 & 0 \\ 1.75 & .25 \end{bmatrix} \neq 0$, we are assured there is the unique solution

 $\begin{bmatrix} a_2 & b_2 \\ & \\ c_2 & d_2 \end{bmatrix} = 0$ (94)

This is a general result; all numerator entries of C_F and C_B must contain a free z. The free z in C_F and C_B will force a cancellation of one of the z's in the first term of Equation 92. This step is of such importance that we emphasize it by simplifying Equation 92:

$$\begin{bmatrix} z^{2}+2.5625z+1 & 1.75z^{2}+.8125z \\ .8125z+1.75 & -.25z^{2}+2.0625z-.25 \end{bmatrix} \begin{bmatrix} a_{0}z+a_{1} & b_{0}z+b_{1} \\ c_{0}z+c_{1} & d_{0}z+d_{1} \end{bmatrix}$$

シジングジック

$$\begin{bmatrix} 2 \cdot 5z + 1 & 2 \cdot 75z + 2 \\ .5z + 3 & .25z + 3 \end{bmatrix}$$

$$-\frac{z(z - \cdot 5)(z + \cdot 5)}{z(z - \cdot 5)(z + \cdot 5)} = \psi \qquad (95)$$

There is now only one free z in the denominator of Equation 95. The numerators of Equation 95 must all contain a free z, in order for the z in the denominator to cancel out of ψ . Setting z = 0 gives

$$\begin{bmatrix} 1 & 0 \\ \\ \\ \\ 1.75 & -.25 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ \\ \\ c_1 & d_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ \\ \\ \\ 3 & 3 \end{bmatrix} (-.5) (.5)$$
(96)

or

La mananan di

A REAL PROPERTY AND

2012102020

THE A DESCRIPTION OF THE PARTICULAR A SECOND PROPERTY A

$$\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} = \begin{bmatrix} -.25 & -.5 \\ ..25 & -.5 \end{bmatrix}$$
(97)

The next step is to pick (a_0, b_0, c_0, d_0) so that $\Delta = (z - .5)(z + .5)$ is not a root of ψ . However, for those values of z such that $\Delta(z) = 0$, Equation 95 simplifies tremendously and we obtain another general result

$$\phi C_{\mathbf{F}} \equiv 0 \quad \text{when} \quad \Delta(z) = 0 \tag{98}$$

This result, however, must be treated with care; it does not mean that $C_F = 0$ for these values of z since ϕ^{-1} does not exist. That is,

det
$$\phi \equiv 0$$
 for z such that $\Delta(z) = 0$ (99)

The correct usage of Equation 98 is

$$\begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} a_0 z + a_1 & b_0 z + b_1 \\ & & \\ c_0 z + c_1 & d_0 z + d_1 \end{bmatrix} = 0$$
(100)

$$\begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} a_0 z & b_0 z \\ & & \\ c_0 z & d_0 z \end{bmatrix} - -\phi \begin{bmatrix} a_1 & b_1 \\ & & \\ c_1 & d_1 \end{bmatrix}$$
(101)

Clearly, since det $\phi = 0$ for z = 0.5, -0.5, the two equations of ϕ are linearly dependent; thus we need only one of them. Suppose we choose the first row:

$$\begin{bmatrix} (z^{2} + 2.5625z + 1) & 1.75z^{2} + .8125z \end{bmatrix} \begin{bmatrix} a_{0}z + a_{1} & b_{0}z + b_{1} \\ & & \\ c_{0}z + c_{1} & d_{0}z + d_{1} \end{bmatrix} = 0$$

where
$$z = .5, -.5$$
 (102)

When z = 0.5,

$$\begin{bmatrix} 2.53125 & .84375 \end{bmatrix} \begin{bmatrix} .5a_0 + a_1 & .5b_0 + b_1 \\ .5c_0 + c_1 & .5d_0 + d_1 \end{bmatrix} = 0$$
(103)

Solving for (a_0, b_0, c_0, d_0) in terms of (a_1, b_1, c_1, d_1) gives

$$C_{F} = \frac{\begin{bmatrix} -z^{2} - .25z & z^{2} - .5z \\ 2z^{2} + 1.25z & z^{2} - .5z \end{bmatrix}}{(z - .5)(z + .5)}$$
(104)

Using the same procedure, except substituting $\phi_m - \phi_s$ for Γ_m , gives

$$C_{B} = \frac{\begin{bmatrix} -.25z & z^{2} - .5z \\ z^{2} + .25z & z^{2} - .5z \end{bmatrix}}{(z - .5)(z + .5)}$$
(105)

This illustrative example was chosen so that $\Gamma_1 + \Gamma_2 z^{-1}$ would be invertible and give the reader an opportunity to verify the answer using Equation 83. However, bear in mind that the W-H approach works when $\Gamma_1 + \Gamma_2 z^{-1}$ is not invertible. Before, leaving the example, perform the computation

$$c_{\mathbf{F}}^{-1}c_{\mathbf{B}} = \begin{bmatrix} 1/3 & 0 \\ 0 \\ 1/3 & 1 \end{bmatrix}$$
 (106)

and observe another property of the solution, namely that $C_F^{-1}C_B$ is always a matrix of constants. It is given explicitly by the equation (see Appendix G for proof):

$$C_{F}^{-1}C_{B} = (\Gamma_{1}^{\prime}\Gamma_{m}^{\prime})^{-1}\Gamma_{1}^{\prime}(\phi_{m} - \phi_{s})$$
 (107)

G. GENERAL PROCEDURE

SCORE ST

The steps used in the illustrative example are a good basis for a general procedure. First, let

$$C_{\rm F} = \frac{z C_{\rm F}^{\rm adj}}{\Lambda}$$
, $C_{\rm B} = \frac{z C_{\rm B}^{\rm adj}}{\Lambda}$ (108)

where C_F^{adj} , C_B^{adj} are the polynomial adjoint matrices of Δ , and rewrite Equation 74 as

$$\frac{[\Gamma_{1} + \Gamma_{2}z][\Gamma_{1}z + \Gamma_{2})[C_{F}^{adj}] - [\Gamma_{1} + \Gamma_{2}z][\Gamma_{m}(\phi_{m} - \phi_{s})]\Delta}{z\Delta} = \psi$$
(109)

There are four steps in the procedure:

- 1) Evaluate det $[(\Gamma_1 + \Gamma_2 z)(\Gamma_1 z + \Gamma_2)]$, select the interior roots for $\Delta(s)$.
- 2) Set up C_F^{adj} and C_B^{adj} with unknown polynomial entries. The order of each polynomial is equal to the order of $\Delta(z)$, with all z° terms set to zero.

3) Solve for $C_F^{adj}(0)$, $C_B^{adj}(0)$ using

$$\begin{bmatrix} \mathbf{C}_{\mathbf{F}}^{\mathbf{adj}} & \mathbf{C}_{\mathbf{B}}^{\mathbf{adj}} \end{bmatrix} = (\mathbf{r}_{1}^{\prime}\mathbf{r}_{2})^{-1} \mathbf{r}_{1}^{\prime} [\mathbf{r}_{\mathbf{m}}] (\phi_{\mathbf{m}} - \phi_{\mathbf{s}}) \Delta(0) \quad (110)$$

4) Find the remaining equations by evaluating appropriate rows of

$$(\Gamma_{1} + \Gamma_{2}z)(\Gamma_{1}z + \Gamma_{2})[c_{F}^{adj} | c_{B}^{adj}] = 0$$
, $\Lambda(z) = 0$ (111)

Next, we apply the procedure to the slewer controller use and tabulate the $C_{\rm F}$ and $C_{\rm B}$ matrices.

H. SLEWER CONTROL LAW

ALLERAN TARABE SUBSIDE CONSIST AND ALLERANCE ALLERANCE

CONTRACT, STREETWARD, C.

Figure 17a has a matrix C_p premultiplying the C_p matrix. As in the case of the ZOH, this is the matrix which couples the model inputs to force a wings-level turn. As in the case of the ZOH, it is a 3 × 1 matrix, but the entries are slightly different.

Figure 17. Block Diagram for Software Realization

The idealized configuration of Figure 17a must be modified for the slewer since we have no physical implementation of a completely hardware nature for implementing

$$M = \frac{(1 - e^{-sT})^2}{Ts^2}$$
(112)

We choose to implement the slewer by "breaking up" Equation 112 according to Figure 17b. In Figure 17b the basic transfer function of the digital/analog converter as a ZOH has been retained, while the additional $(1 - e^{-sT})/T$ has been moved back into software as (z - 1)/Tz. A physical (analog) integrator has been inserted as a prefilter to the controllers. This is an implementation that theoretically matches the characteristics of Equation 112. The theoretical details are discussed in Appendix H.

We will solve for the C_F and C_B matrices using the procedure outlined above. The computational details are very extensive and for that reason we relegate the input data and numerical computations to Appendix I. However, we must first discuss the structure of the control law.

Each entry of C_B and C_F is a ratio of polynomials in z. Dividing through by the highest power of z gives a large number of terms that will be multiplied by delay operators such as z^{-1} , z^{-2} , etc. We will group all such operations involving "past" values of the data in a background computation. We proceed as follows, defining:

$$C_{B} = \frac{z[B_{2}z^{2} + B_{1}z + B_{0}]}{\Delta(z)}$$
(113)

$$C_{P}C_{F} = \frac{z[c_{2}z^{2} + c_{1}z + c_{0}]}{\Delta(z)}$$
(114)

$$\Delta(z) = z^3 + a_2 z^2 + a_1 z + a_0 \qquad (115)$$

From Figure 17b,

$$\delta = C_{\rm F} \delta_{\rm P}^{\rm T} + C_{\rm B} X^{\rm T}$$

$$= \frac{z [C_2 z^2 + C_1 z + C_0]}{\Delta(z)} \delta_{\rm P}^{\rm T} + \frac{z [B_2 z^2 + B_1 z + B_0]}{\Delta(z)} \qquad (116)$$

Dividing through by z^3 gives

$$[1 + a_2 z^{-1} + a_1 z^{-2} + a_0 z^{-3}] \delta = (c_2 + c_1 z^{-1} + c_0 z^{-2}) \delta_m^T + (B_2 + B_1 z^{-1} + B_0 z^{-2}) X^T$$
(117)

The recursion equation is

$$\delta_{\mathbf{k}} = -a_2 \delta_{\mathbf{k}-1} - a_1 \delta_{\mathbf{k}-2} - a_0 \delta_{\mathbf{k}-3} + C_2 \delta_{\mathbf{P}_{\mathbf{k}}} + C_1 \delta_{\mathbf{P}_{\mathbf{k}-1}} + C_0 \delta_{\mathbf{P}_{\mathbf{k}-2}} + B_2 X_{\mathbf{k}} + B_1 X_{\mathbf{k}-1} + B_0 X_{\mathbf{k}-2}$$
(118)

Define the "background" computation as:

$$b_{k} = -a_{z}\delta_{k-1} - a_{1}\delta_{k-2} - a_{0}\delta_{k-3} + C_{1}\delta_{P_{k-1}} + C_{0}\delta_{P_{k-2}} + B_{1}X_{k-1} + B_{0}X_{k-2}$$
(119)

Thus the "foreground" is

$$\delta_{\mathbf{k}} = C_2 \delta_{\mathbf{P}_{\mathbf{k}}} + B_2 \mathbf{X}_{\mathbf{k}} + B_{\mathbf{k}}$$
(120)

In addition, we need

$$\delta_2 = \frac{1}{T} \left[\delta_k - \delta_{k-1} \right] \tag{121}$$

When new data are taken in, the microprocessor will compute the first component of Equations 118 and 121 (the rudder control law), enable an interrupt and output to the rudder. It will then repeat this process for the side force controller and the aileron controller. In the remainder of the frame time, the background computation, Equation 119, will be updated. The data for the matrices are given in Table 5.

I. VALIDATION: THEORETICAL CONTROLLER, THEORETICAL YF-16

The control law defined by Equations 118, 119, and 120 was theoretically validated by running step responses. These are shown in Figure 18. The agreement between the slewer-based system and the continuous baseline is very good. The step responses are also tabulated in Table I-1 of Appendix H (these can be compared against Table 4 of Section III).

J. VALIDATION: HARDWARE-BASED SLEWER, ANALOG YF-16

Figure 19 shows a time response from a hybrid simulation of the slewer-controlled YF-16. The control law is implemented in the micro-processor with the YF-16 model on the TR-48 analog computer.

The input to the YF-16 model is a step input of direct force command (pedal) from a switch on the TR-48. This analog signal enters the microprocessor and is processed according to the slewer control law, which puts out canard, rudder, and aileron surface rate signals.

The YF-16 canard rate command, $\delta_{\rm C}$, is shown in the top trace of Figure 19. There is a "ringing" noise signal superimposed on the rate command signal. This noise is much larger than the rate signal itself. This suggests an improper scaling of one of the channels which is allowing a noise response of an element of the matrix digital filter to be incorrectly added to the pedal command. We shall have more to say about this noise problem at a later point.

TABLE 5. CONTROL LAW SCALE FACTORS

こうとばれたたた

A. 4. 4. 4.

4 . 4 . 4 . 4 . 4 . 4 . 4 .

CARTAGENESS SAMANDAL SAMANDAL

S. S. S. S. S. S.

	46	18	66				•	a Ro	ôSF	ô,	4			ø	ы	• م	ı	÷	
	058	092	235					N	N	Ň				Ħ	N	H		H	
ບິ	1.1512	1.2088	-0.3251				٤.	10	δ2	6,	ר			хı	X2	۲٦	n 	X4	
	1,1	820 2,1	178 3,1		0.555540645	2.545350641	-0.833278666	-3. 240818380			0.677934236 1.907148562	-0.726319404	-2.939232566				0.092079740	-0.530540814	0.059743647 0.138754410
5 0	2.68220	2.871006	-0.774749		3,1	3,2		, ,			3 , 1		3,4				3,1	3,2	3, 3 4
	1,1	2,1	3, 1	B ₂	74065982	22108030	06413878 27026872	7/0466/7	в,	7	94195416 17506600	75939779	81266284		g	0	34231749	14538939	57570771 79447161
c_2	1.533456216	1.667517094	-0.450580559		2,1 -2.3	2,1 -7.7	2,3 2.4	0.0			2,1 -2.8 2.2 -4.7	2,3 1.7	2,4 7.6				2,1 -0.4	2,2 2.6	2,3 -0.4(2.4 -1.3
	1,1	2,1	3, 1		304930639	358020110	299806817 929042824	110110(1)			472652250 083980375	587500000	944045322				72272240	425/0/8C	1/0633/22 98452885
	2.286091850	1.618495105	0. 330906674		I,I -1.5	1,2 -6.	1,3 2.5				1,1 -1.4 1.2 -3.0	1,3 1.6	1,4 6.5					L, Z Z, J	1,3 -0.4 1,4 -1.4
	82	a I	а ₀																

Note:

 1.51134

 1.4355

 -.38896

Cf =

Slewer Step Response Figure 18. . .

Figure 19. YF-16 Model Response to a Step Pedal Input

The C_p matrix of Figure 17 breaks the signal up into three components to generate three surface rate signals which are integrated by an analog integrator on the TR-48. This simulates the analog integrators in the VRA "mixing box." The YF-16 canard position command, from its integrator, is shown in the second trace. It is seen that the δ_C signal has been properly integrated to a step, with a small 10 Hz noise component superimposed. The slow drift in δ_C (and the response signals) is due to the bias in the D/A converters, which input the analog integrator balancing circuits.

AND AND A DESCRIPTION OF A DESCRIPTION AND A DESCRIPTION OF A DESCRIPTION AND A DESC

The yaw rate response shown in the bottom trace has a "steady-state" value of

$$\frac{\mathbf{r}}{\delta_{\rm C}} \stackrel{\bullet}{=} 0.08 \quad (\text{deg/sec})/\text{deg}$$

which compares well with the calculated value of 0.059 (deg/sec)/deg (considering the drift). The transient response shows the appropriate rise time and overshoot.

The sideslip, roll rate, and bank angle traces remain essentially zero (when the integrator drift is allowed for) as required for the wings-level coordinated turn.

It was necessary to keep signal levels low because larger inputs caused the noise component to limit the surface rate channels. However, because the simulation is linear, it can be seen that the slewer controller performs properly over the frequency region of interest for control of the YF-16 dynamics.

In essence, the problems noted in the traces, such as the unusually sensitive response to digital noise, are not properties of the slewer control law but properties of <u>any</u> recursive control law. That is, D/Aand A/D interfaces imply a ratioing between physical variables and machine variables. If the gain of a machine variable is too high, the system will always be responding to digital noise or bit dither. Thus the problem is to properly proportion physical variables and machine variables, a process which requires a systematic technique for performing the scaling. Unfortunately, our original plan for gathering the data needed for the scaling was not workable. The microprocessor speed prevented a real-time printout of the states and controllers, since we were working with a TR-48, which would only work in real time. These problems are described next.

K. GAIN ALLOCATION AND NOISE PROBLEMS

Katherine Richt

A LEVEL STATEMENT &

One of the major obstacles to successful evaluation of the slewer control law and, in fact, a major consideration in any digital control environment, may be termed the gain allocation problem. Consider, for illustration, the zero-order hold case (Figure 20a).

Figure 20. Zero-Order Hold Gain Configurations. a) Standard Nomenclature, b) Equivalent Configuration vs. Implemented in DFCS Control Hardware/Software

In the present digital implementation the computations are structured according to the alternative form (Figure 20b).

If, for checkout purposes and computational convenience, one desires to enter the gains for C_F and C_B in physical units, it is necessary to introduce additional scale vectors (Figure 21), where A and B are vectors of dimension 3 and 4, respectively, which convert command and state A/D voltages to physical units; and C is a vector of dimension 3, which converts control and physical units to the correct voltage units for driving the servo buffer amplifiers.

This particular form worked well in earlier assembly code versions of the control program. However, in the later, more computationally advanced versions, performing the vector-matrix operations

 $\delta_{\mathbf{x}} \times \mathbf{B} \times \mathbf{C}_{\mathbf{B}} \times \mathbf{C}$ and $\delta_{\mathbf{m}} \times \mathbf{A} \times \mathbf{C}_{\mathbf{F}} \times \mathbf{C}$

could not be reliably accomplished within the 100 msec time frame. This problem was solved by premultiplying the scaling vectors prior to entering the control loop, thus:

$$\hat{\mathbf{C}}_{\mathbf{F}} = \mathbf{A} \times \mathbf{C}_{\mathbf{F}} \times \mathbf{C}$$
 and $\hat{\mathbf{C}}_{\mathbf{B}} = \mathbf{B} \times \mathbf{C}_{\mathbf{B}} \times \mathbf{C}$

Now the real-time calculations revert to the simplified form (Figure 22) and are easily accomplished within the designated time frame. Although the slewer case is intrinsically more complex, the same operational principles apply to the digital code.

In the ZOH case the magnitudes of C_F and C_B fell between ± 1.2 . In the slewer case, however, the presence of the hardware integrators forced the conditioned gains $(\hat{C}_0, \hat{C}_1, \hat{C}_2)$ to vary over a much wider range (± 40) . While the range of intermediate products was not observed, we estimate that transient values exceeding 10^3 may have occurred during slewer control law operations. The presence of high gains and uneven gain distributions makes digital systems highly vulnerable to digital artifacts such as bit dither, roundoff, and truncation errors. In the slewer case, additional problems of analog noise sensitivity in the A/D

STATES OF

ADDADA ANDARAL SHARES AN ANALASIN ANA

Figure 21. DFCS Gain Configurations Illustrating Within-Loop Placement of Scale Vectors

Figure 22. Resultant Gain Configuration Illustrating Simplification Brought About by Pre-Multiplication of Matrices

converters and offset sensitivity in the hardware integrators compounded our difficulties.

It should be noted here that sensitivity problems of this nature are extremely hard to identify, especially due to the dynamic requirements of the slewer. It is nearly impossible to capture intermediate values with the slewer running in real time due to the intolerance of the frame epoch for additional code, especially I/O. Another approach would be to slow down the TR-48 to match the frame rate of a modified slewer with I/O in the control loop. This procedure, however, is resisted by operational limitations of the TR-48. A general solution of minimizing the range of conditioned gains $(\hat{C}_0, \hat{C}_1, \hat{C}_2)$ was attempted by using internal analog scaling to reduce the internal gain distribution from ± 40 to ± 9 . This was somewhat successful in that it resulted in the only stable data obtained on the slewer. However, analog noise external to the digital system was exacerbated.

Future efforts would definitely include a systematic attack on scaling problems of this type, since they appear to be the root of many digital control system problems.

L. THE GRACEFUL ENTRY PROBLEM

あんないろう

Although it is generally considered appropriate to trim an aircraft to stable level flight prior to engaging an autopilot, it has long been recognized that some sort of autotrim mechanism is necessary for smooth engagement since perfect level flight is seldom extant at engage time.

The Princeton VRA represents no exception to this rule. Minimization of engage transients is extremely critical to the Navion due to the high angular accelerations available at the control servos.

The VRA's analog system has an active continuous autotrim which is highly effective. For the micro-DFCS, however, it is necessary to implement the autotrim in software. The Figure 23 flow diagram illustrates how this is done, again, using the zero-order hold case as an example. An important consideration in dealing with control law calculations on the micro-DFCS is that the numerical basis for the A/D and

. С.

4

Figure 23. ZOH Auto-Trim Algorithm

D/A peripherals is offset binary, i.e., 0 = -10V, $2048_{10} = 2^{11} = 0V$, $4096_{10} = 2^{12} = +10V$. Since the same numerical basis is used for both A/D and D/A operations it is considerably more efficient to perform control law calculations with the offset in place. This means, using the ZOH case as an example, for small state and command perturbations centering around 0 ± 2.0 VDC, control law products are in the range $1.0 \times 10^3 < P < 5.0 \times 10^3$ or 11-13 bits. Since the autotrim calculations which are applied to the ZOH case operate in the same magnitude range they pose no threat of digital saturation even with the binary offset present.

ANALY STRATED AND ANALY STRATES

A CARLES AND A CARLES

and all the second second

In the slewer case, however, an entirely different set of parameters was found to apply. First, there is an order of magnitude differential between A/D incoming volts and D/A output volts due to the present of the hardware integrators. Second, the presence of the 11 bit binary offset, coupled with the relatively larger gains and greater number of computational terms produced intermediate products which apparently caused saturation of the 9511 match chip. For these reasons, the ZOH autotrim algorithm would not work for the slewer. Additionally, it was found that the slewer control loop computations were numerically incorrect when performed in offset binary. Although modifying the control loop routine to take out the offset immediately following A/D input, and reinserting it immediately prior to D/A turned out to be fairly simple, modifying the autotrim required a major code rework which could not be accomplished in the remaining time at Princeton.

The slewer was evaluated on the TR-48 by initializing the analog computer in a manner that simulated autotrim. (Digital autotrim was disabled for these test runs.) An analogous simulation in the VRA could not be accomplished due to the design of the VRA analog system. This was the major impediment to flight testing the slewer on the VRA.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

From a theoretical viewpoint, both the direct synthesis ZOH and slewer control laws achieve the design objective of emulating the baseline wings-level-turn direct side force mode. In the ZOH case the equivalent stability derivative (ESD) model follower simulator approach was enhanced by the innovative use of a pseudo inverse.

A major theoretical addition to in-flight simulator technology was achieved in the slewer design with the introduction of a Wiener-Hopf optimization algorithm for augmenting the basic ESD approach. This is of great value in that other configurations (other than the slewer) lead to the same class of problem. For example, digital controllers utilizing ZOHs, wherein computer throughput delay is of concern, produce the exact same problem formulation.

The ZOH control law was hardware validated against both the TR-48 (functioning as a surrogate YF-16) and the Navion VRA (with analog closures to simulate an open-loop YF-16).

The slewer controller was validated in hardware against a surrogate YF-16 (TR-48). This is significant in that the input to the actuators, from the hardware integrators, possessed all the correct attributes even though a "continuous" slewer term, $1 - e^{-sT}$, was implemented in software as (z - 1)/Tz. Thus, one possible physical realization of the slewer coupler was realized.

On the negative side, largely unanticipated problems involving the scaling of physical and machine variables between the A/D computer and D/A modules led to an inordinate and unacceptable level of digital noise (bit dither, rounding, etc.). This noise was a major impediment to flight validation of the slewer. Another major obstacle was the lack of an adequate digital autotrim algorithm for the slewer. This created an engage-transient or "graceful entry" problem which precluded flight test of the slewer.

B. RECOMMENDATIONS

There are four recommendations. First, two software routines need to be written for the slewer/microprocessor/Navion combination:

- 1) An autotrim algorithm for the YF-16 program that provides graceful entry into the test run.
- 2) A program for optimizing the relative ratios between physical variables and machine variables so as to eliminate or minimize the digital noise problem.

With the control of the digital noise, the integrator drift problem will probably disappear. If it remains, then we need:

3) A slewer realization that resets the integrator every T seconds.

Implementation of Recommendations 1 and 2 should be straightforward since both issues underwent preliminary attack immediately prior to the termination of our last flight test effort at Princeton. The autotrim problem is easily solved, but was unanticipated until our last minute review of slewer computations was made. The realization of the first two recommendations (and if necessary the third) would set the stage for carrying out the fourth recommendation:

> 4) Pilot evaluation flights to furnish paired comparisons between the ZOH, slewer, and baseline analog configurations.

REFERENCES

- Hoh, Roger H., Thomas T. Myers, Irving L. Ashkenas, Robert F. Ringland, and Samuel J. Craig, <u>Development of Handling Quality</u> <u>Criteria for Aircraft with Independent Control of Six Degrees of</u> Freedom, AFWAL/TR-81-3027, Apr. 1981.
- 2. Whitbeck, R. F., <u>Wiener-Hopf Approaches to Regulator, Filter/</u> <u>Observer and Optimal Coupler Problems</u>, ONR-CR215-260-1, Jan. 1980.
- Whitbeck, R. F., "'Direct' Wiener-Hopf Solution of Filter/Observer and Optimal Coupler Problems," J. Guidance and Control, Vol. 4, No. 3, May-June 1981, pp. 329-336.
- 4. Whitbeck, R. F., "Digital Controller Effects on the ESD Approach to Model Following," <u>Proc. of Joint Automatic Control Conference</u>, Vol. I, Charlottesville, VA, 17-19 June 1981.
- 5. Larimer, Stanley J., <u>An Interactive Computer Aides Design Program</u> for Digital and Continuous Control System Analysis and Synthesis, AFIT/GGC/EE/78-2, Mar. 1978.

APPENDIX A

DATA FOR FIRST-ORDER FORMS

This appendix gives data for the first-order forms of the equations of motion. The continuous system has the form

 \dot{X} = (AMAT)X + (BMAT) δ

whereas the ZOH forms are

States of the states

Part Cherry

ALCONTRACT.

たたたたたとい

$$X_{k+1} = (FMAT)X_k + (GMAT)\delta_k$$

Data are for open-loop Navion, YF-16 CCV with canard (the bare airframe), and the YF-16 CCV with canard and FCS loop in (the closed-loop, reduced-order model). Sample rate varies from 1 to 100 Hz. Æ I -- T+1

NΛ	37	т	n	N	
мд	Υ.	*	ν	7.4	

AMAT (ROU AMAT (ROU MAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU FHAT (ROU FHAT (ROU FHAT (ROU FHAT (ROU	1)	7770000000 -1.000000000 1.270000000 -6.100000000 .72500000000 .7700000000 .7700000000 4075412400 1551241565 .3669224081	4.68000000 355600000 -12.8000000 0. 2.41000000 0. 2370000000 0. 9390138680 3838344962 .6128786254	432000000 0. -6.60000000 1.00000000 3140000000 0. 21.00000000 0. .4293097259E-01 .2389389190E-01 4385726603E-01	0. .1720000000 0. 0. .2046989908 .5992906255E-01 9280900090E-01
FIAT (ROU GNAT (ROU GNAT (ROU GNAT (ROU GNAT (ROU	4)= 1)= 2)= 3)= 4)=	.4186501074 -1.526753013 1.371944289 -2.500348506 -1.014895194	5395872145 .9162311377 4438240609 .8810645890 .3290076095		•.9280900090E-01 •9301757677

YF-16 CCV Canard Bare A/F

CASE III -- T-1

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)- 2)- 3)- 4)-	4310000000 -1.000000000 1.670000000	10.20000000 306000000 -50.00000000 0.	4160000000E-01 0. -2.330000000 1.000000000	0. .3880000000E-01 0.
BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	1)+ 2)+ 3)+ 4)+	~4.170000000 .3180000000E-01 7.630000000 0.	4.620000000 .19100000000 -01 5.930000000 0.	2.170000000 3570000000E-01 49.10000000	
FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)+ 2)+ 3)+ 4)+	6572296784 .5050769285 E-01 2.119849638 2.363943008	3871536087 7476665708 7.661676086 -2.563065399	.2385575652E-01 .4549435916E-02 .7858333945E-02 .3446968122	.6403866666E-01 .8276581092E-03 9944693746E-01
GMAT(ROU GMAT(ROU GMAT(ROU GMAT(ROU	1)+ 2)+ 3)+ 4)+	4684180033E-01 .6623635154 -7.309111147 -1.949465070	.1989741295 6763966931 12.91651424 5.642783658	.2045705577 1374128646 22.14587124 14.37868337	5656165969

YF-16 CCV Canard FCS Loops Closed

CASE II -- T+1

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)= 2)= 3)= 4)=	-3.105000000 9796000000 6.564000000	8.917000000 2965000000 -47.71000000 0.	2720000000 0. -8.359000000 1.000000000	0. .3795000000E-01 -25.00000000
BHAT (POU BHAT (POU BHAT (POU BHAT (POU	2)- 3)- 4)-	-3.925000000 .2988000000E-01 7.178000000 0.	4.766000000 .1802009000E-01 5.655000000 0.	1.897000000 3360000000E-01 49.60000000 0.	
FRAT(ROU FRAT(ROU FRAT(ROU GRAT(ROU	1)+ 2)+ 3)+ 4)+	1647293396 2770410484 E-01 4343475822 .1520723612	.1684792288 1025779173 1.263840151 2465090960 F-0 1	.5506900077E-02 1699009604E-02 6278117903E-02 .2085476608E-02	2931554793E-01 2654919693E-01 5307241723E-01 .5251806333E-01
GMAT(ROU GMAT(ROU GMAT(ROU	2)+ 3)+ 4)+	2115582524 .4262370630 5826510360 4549428843	.3495927831 4745105578 .7361260345 1.060727086	.2256656150 1272278461 .3927491796 2.201845451	

CASE 1 -- T+.2

A REAL PROPERTY OF

AMAT (ROU	1)=	7770000000	4.680000000	4320000000	0.
AMAT (ROU	2)=	-1.000000000	3556000000	C.	.1720000000
AMAT (ROU	3)=	1.270000000	-12.80000000	-G.60000000	0.
AMAT (ROU	4)=	9.	6.	1.00000000	0.
BNAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	1)= 2)= 3)= 4)=	-6.100000000 .7250000000E-01 .7700000000 0.	2.41000000 .2370000000 0. 0.	314000000 0. 21.00000000	
FMAT(ROU	1)=	.7638201656	.8734526537	4088771668E-01	.1554957149E-01
FMAT(ROU	2)=	1720708623	.8410590820	.7465474683E-02	.3215391975E-01
FMAT(ROU	3)=	.2779824494	-1.226753688	.2575694151	2739705798E-01
FMAT(ROU	4)=	.2763312714 E-01	1592852208	.1103686365	.9979399271
GMAT(ROU	1)+	-1.088635063	.4524869698	1685774105	
GMAT(ROU	2)+	.1251228024	.3970933440E-03	.1753197902E-01	
GMAT(ROU	3)+	~.9512640391E-01	.2884523906E-01	2.309064565	
GMAT(ROU	4)+	1650785217E-02	.1560467561E-02	.2817568625	

YF-16 CCV Canard Bare A/F

CASE III -- T=.2

AMAT(ROU	1)=	4310000000	10.20000000	416000000E-01	0.
AMAT(ROU	2)=	-1.000000000	3060000000	0.	.3880000000E-01
AMAT(ROU	3)=	1.670000000	-50.00000000	-2.330000000	0.
AMAT(ROU	4)=	0.	0.	1.000000000	
BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU	1)• 2)• 3)• 4)•	-4.170000000 .3180000000E-01 7.630000000	4.62000000 .1910000000E-01 5.930000000	2.17000000 3570000000E-01 49.10000000	
FMAT (ROU	1)•	.7318284667	1.798616821	5428346869E-02	.7372047226E-02
FMAT (ROU	2)•	1730440775	.7523851752	.1287590071E-02	.7027636713E-02
FMAT (ROU	3)•	1.024821400	-6.888606229	.6225241588	3081227258E-01
FMAT (ROU	4)•	.8309475710 E-01	7941307365	.1595835351	.9978105376
GMAT (ROU	1)+	7447458733	.8261207402	.3495396442	
GMAT (ROU	2)+	.8316230277E-01	8098278965 E-01	4190035662E-01	
GMAT (ROU	3)+	.8458638785	1.315060244	8.044217665	
GMAT (ROU	4)+	.1094266806	.1232560490	.8575517720	

YF-16 CCV Canard FCS Loops Closed

CASE II -- T.2

AMAT (RCU AMAT (ROU AMAT (ROU AMAT (ROU	1)+ 2)+ 3)+ 4)+	-3.105000000 9796000000 6.564000000	8.917000000 2965000000 -47.71000000 0.	2720000000 0. -8.359000000 1.000000000	0. .3795000000E-01 -25.00000000 0.
BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU	2)= 3)= 4)=	-3.925000000 .2988000000E-01 7.178000000	4.76600000 .1802000000E-01 5.655000000	1.897000000 3360000000E-01 49.60000000 0.	
FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)• 2)• 3)• 4)•	.4074418431 1314973514 .7113296577 .9096334565E-01	1.309025344 .7988423546 -2.922093678 4705547884	1275477179E-01 .2674845925E-02 .1131844369E-01 .8117236063 <u>E-01</u>	.6458359475E-01 .1373731217E-02 -2.047166570 .7145802362
GMAT(ROU GMAT(ROU GMAT(ROU GMAT(ROU	1)• 2)• 3)• 4]•	5585048934 .6692142842E-01 .2115638959 .5394908806E-01	.6523271267 6804147674E-01 .8840816074 .9566196556E-01	.1419336178 2395987392E-01 4.214517195 .5774663642	

AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4)=	7770000000 -1.000000000 1.270000000 0.	4.68000000 3556000000 -12.80000000	4320000000 9. -6.600000000 1.000000000	0. .1720000000 0. 0.
BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	1)= 2)= 3)= 4)=	-5.100000000 .7250000000E-01 .7700000000	2.410000000 .2370000000 0. 0.	3140000000 0. 21.00000000 0.	· · · · · · · · · · · · · · · · · · ·
FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)+ 2)+ 3)+ 4)+	.9005375284 9363477977E-01 .1378664855 .6760554231E-02	.4598270385 .9418349233 8863597096 5026331294E-01	2987563193E-01 .2364184296E-02 .5142138486 .7311505762E-01	.3990407457E-02 .1676410940E-01 8645289826E-02 .9996937882
GMAT(ROU GMAT(ROU GMAT(ROU GMAT(ROU	1)• 2)• 3)•	5814275833 .3637102593E-01 .1141512336E-01 .1636999808E-02	.2353585281 .1154709769E-01 .4380530530E-02 .1147306212E-03	6556590545E-01 .3265167507E-02 1.533293396 .8514173945E-01	

YF-16 CCV Canard Bare A/F

CASE 111 -- T-.1

AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4)=	431000000 -1.000000000 1.67000000	10.2000000 305000000 -50.00000000 0.	4160000000E-01 0. -2.3300000000 1.000000200	0. .3880000000E-01 0.
BMATCROU	11-	-4.170000000	4.62000000	2.170000000	
BMATCROU	210	-3180864084E-01	.19100000 0-01	35/000000E-01	
BINAT (ROU	31-	7.630000000	3.330000000	49.10000000	
DINI KUW		V.			
PINHICKUS	1.7	• 3092011153	• 3133610336	35060168506-06	·19601221005-05
FNATCROU	<u> </u>	9471662993E-01	.9204149530	·3656862048F-03	•3756696670E-02
FMAT (ROU	3)-	.3670070570	-4.234745790	.7912792594	8716315341E-02
FMATCROU	4)+	.1524291762E-01	2246473026	.8917931248E-01	.9997011628
GMAT (ROU	110	-,4010594654	.4443513628	.1978434172	
CMAT (ROU	2)•	.2334360234E-01	2042352531E-01	1334271711E-01	
GMAT (ROU	31.	6097314035	.5949648390	4.419801283	
GHAT (ROU	41.	3320928555E-01	.2942249255E-01	2287260839	

YF-16 CCY Canard FCS Loops Closed

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)- 2)- 3)- 4)-	-3.105000000 979600000 6.56400000	8.917000000 2965000000 -47.71000000 0	2720000000 0. -8.359000000 1.00000000	0. .3795000000E-01 -25.00000000 0.
BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU	2)• 3)• 4)•	-3.925000000 .29883000000E-01 7.178000000	4.765000000 .1802000000E-01 5.655000000	1.897000000 3360000000E-01 49.60000000 0.	
FRAT(ROU	1)•	.6913534975	.7847118229	1445263004E-01	.2438014138E-01
FRAT(ROU	2)•	8143829476E-01	.9306333501	.1026091597E-02	.2738524359E-02
FRAT(ROU	3)•	.5050337166	-2.793147507	.3561891237	-1.626384125
FRAT(ROU	4)•	2782339729E-01	1696921813	.6479790890E-01	.9054019678
GHAT (ROU	1)-	3369331513	.3982455362	.1136179162	
GHAT (ROU	2)-	.2023112757E-01	1874449879E-01	9625423529E-02	
GHAT (ROU	3)-	.3508569708	.4959675280	3.272450037	
GHAT (ROU	4)-	.2310227340E-01	.2585590160E-01	.1892645608	

٠٦

CASE 1 T-1/15

199

Ś

STATES A STATES - STATES

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)= 2)= 3)= 4)=	7770000000 -1.000000000 1.270000000 0.	4.680000000 3556000000 -12.80000000	4320000000 0. -6.600000000 1.000000000	0. .1720000000 0.
BHAT(ROU BHAT(ROU BHAT(ROU BHAT(ROU	1)• 2)• 3)• 4)•	-6.100000000 .7250000000E-01 .7700000000 0.	2.41000000 .2370000000 0. 0.	3140000000 0. 21.00000000	
FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)= 2)= 3)= 4)=	.9383143219 6393779430E-01 .9034754103E-01 .2958693533E-02	.3096458333 .9661950935 6675638125 2418446712E-01	2253006438E-01 .1138803461E-02 .6428389070 .5390706991E-01	.1782414534E-02 .1129209760E-01 4159728345E-02
GNAT (ROU GMAT (ROU GMAT (ROU GMAT (ROU	1)= 2)= 3)= 4)=	3946575033 .1797272883E-01 .2170703941E-01 .1047484156E-02	.1584265226 .1034727325E-01 .1398732707E-02 .2422028064E-04	3746658817E-01 .1232907956E-02 1.131119438 .4048356976E-0 1	

YF-16 CCV Canard Bare A/F

CASE III -- T-1/15

AMAT (ROU	1)+	4310000000	10.20000000	4160000000E-01	0.
AMAT (ROU	2)+	-1.00000000	3060000000	0.	.3880000000E-01
AMAT (ROU	3)+	1.67000000	-50.00000000	-2.330000000	0.
AMAT (ROU	4)+	0.	0.	1.000000000	0.
BMAT (ROU BMAT (ROU BMAT (ROU	2)= 3)= 4)=	-4.170000000 .3189000000E-01 7.630000000	4.62000000 .1910000000E-01 5.930000000 0.	2.170000000 35700000002-01 49.10000000 0.	······
FMAT(ROU	1)=	.9494344256	•6627364428	2492658100E-02	.8656843351E-03
FMAT(ROU	2)=	6454926763E-01	•9575563303	.1671091566E-03	.2541175261E-02
FMAT(ROU	3)=	.2042464420	-2•995950275	.8558111402	4021544870E-02
FMAT(ROU	4)=	.5820256384 <u>E-02</u>	-•1036480637	.6174066395E-01	.999900099
GHAT(ROU	1)=	2719177536	.3012317087	.1364919874	
GMAT(ROU	2)=	.1119295553E-01	8788073625E-02	6878441879E-02	
GMAT(ROU	3)=	.4435147884	.3910320437	3.047796792	
GMAT(ROU	4)=	.1554306657E-01	.1302126060E-01	.1040095882	

CASE II -- T-1/15

YF-16 CCV Canard FCS Loops Closed

AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4]=	-3.105000000 9796000000 6.564000000	8.917000000 2965000000 -47.71000000 0.	2720000000 0. -8.359000000 1.000000000	0. .3795000000E-01 -25.00000000
BMAT(ROU	1)•	-3.925000000	4.76600000	1.897000000	
BMAT(ROU	2)•	.2988000000E-01	.1802000000E-01	3360000008-01	
BMAT(ROU	3)•	7.178000000	5.655000000	49.60000000	
BMAT(ROU	4)•	0.	0.	0.	
FMAT(ROU	1)•	.7929440685	.5494393477	1207281251E-01	.1234319886E-01
FMAT(ROU	2)•	5792803295E-01	.9620117449	.5219054695E-03	.2179316420E-02
FMAT(ROU	3)•	.3710752075	-2.248227289	.5314737571	-1.255750750
FMAT(ROU	4)•	.1312179935E-01	8467970511E-01	.5010148620E-01	.9538412096
GMAT (ROU	1)=	2373145125	.2825025632	.54065247020E-01	
GMAT (ROU	2)=	.9948800860E-02	8340187072E-02	5406877956E-02	
GMAT (ROU	3)=	.3055951759	.3443364719	2.512771007	
GMAT (ROU	4)=	.1199475075E-01	.1181732408E-01	.9206478638E-01	

CASE I -- T-.04

MAT(ROU	1)=	7770000000	4.680000000	4320000000	0.
Amat(Rou	2)=	-1.000000000	3556000000	0.	.172000000
Amat(Rou	3)=	1.270000000	-12.80000000	-6.60000000	0.
AMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	4)+ 2)+ 3)+	6. -6.100000000 .7250000000E-01 .77000000000	6. 2.410000000 .2370000000 0.	1.00000000 3140000000 0. 21.00000000	
FMATTROU	1)=	.9653025756	.1867461509	1491312120E-01	.6432824454E-03
FMATTROU	2)=	3904748090E-01	.9821326052	.4375688368E-03	.6822711531E-02
FMATTROU	3)=	.5311019486E-01	4417088909	.7675373788	1596940856E-02
FMATTROU	4)=	.1048205181E-02	9284539859E-02	.3514969324E-01	.9999781788
GMAT (ROU GMAT (ROU GMAT (ROU GMAT (ROU	1)+ 2)+ 3)+	2398825142 .7683918776E-02 .1999808306E-01	.9567140852E-01 .7503300938E-02 .3257385388E-03 .3376613923E-05	1893215507E-01 .3728614911E-03 .7378144217 .1540865728E-01	

YF-16 CCV Canard Bare A/F

CASE 111 -- T=.04

1444444

A CONTRACTOR OF A CONTRACTOR OF

A LASS SEAL "APPARAME" APPARAMENT A CONSTRUCT

AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4]=	4310000000 -1.000000000 1.670000000	10.20000000 305020000 -50.00000000 0.	416000000E-01 0. -2.330000000 1 <u>.000000000</u>	0. .3880000000E-01 0. 0.
BMAT (ROU BMAT (ROU BMAT (ROU BMAT (ROU	1)• 2)• 3)• 4)•	-4.170000000 .3180000000E-01 7.630000000	4.62000000 .1910000000E-01 5.930000000	2.170000090 3570000000E-01 49.10000000 0.	
FHAT (ROU FMAT (ROU FMAT (ROU FMAT (ROU	1)• 2)• 3)• 4)•	.9748103413 3930584452E-01 .1013993812 .1803056655E-02	.4025218296 .9797568870 -1.879432731 3839724481 <u>E-01</u>	1566478786E-02 .6184057166E-04 .9109187967 .3819146932E-01	.3139188721E-03 .1538349980E-02 1489813099E-02 9999799274
GMATTROU GMAT (ROU GMAT (ROU GMAT (ROU	2)+ 3)+ 4)+	1649053236 .4566014355E-02 .2826611323 .5808274716E-02	.1826802021 2892618326E-02 .2340721474 .4694081842E-02	.8396093475E-01 3091213386E-02 1.880484558 .3815443411E-01	

YF-16 CCV Canard FCS Loops Closed

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)= 2]- 3)=	-3.10500000 979600000 6.56400000 0.	8.917000000 2965000000 -47.71000000 0.	2720000000 0. -8.359000000 1.00000000	0. .3795000000E-01 -25.00000000 0.
BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU	1)= 2)= 3)= 4]=	-3.92500000 .2988000000E-01 7.178000000 0.	4.76600000 .180200000 5.655000000 0.	1.897000000 33600000000 49.60000000 0.	40200225845-02
FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)+ 2)+ 3)+ 4)+	.8755142184 3652123063E-01 .2389593799 .4938820713E-02	.3413154467 .9814276240 -1.556608858 3339426577E-01	.2087635817E-03 .6985810643 .3375706817E-01	.1433196768E-02 8451940165 .9820997563
CHAT (ROU GMAT (ROU GMAT (ROU GMAT (ROU	1)* 2)* 3)* 4)*	1483598848 .4142719572E-02 .2219255433 .4858124306E-02	2834450828E-02 .2138328753 .4355657517E-02	2608657566E-02 1.684841571 .3562179926E-01	

CASE I -- T-.05

XCHORORATES

AND AND A REAL AND A

AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4)=	-,7770000000 -1,000000000 1,270000000 0,	4.680000000 3556000000 -12.80000000 0.	4320000000 0. -6.600000000 1.000000000	0. 0. 0.
BMAT(ROU	1)=	-6.10000000	2.410000000	314000000	· · · · · · · · · · · · · · · · · · ·
BMAT(ROU	2)=	.7250000000	.2370000000	0.	
BMAT(ROU	3)=	.770000000	0.	21.00000000	
BMAT(ROU	4)=	.7700000000	0.	0.	
FMAT(ROU	1)+	.9555316015	.2330558656	1796767751E-01	.1004345292E-02
FMAT(ROU	2)+	4849401955E-01	.9765307325	.6671421219E-03	.8507226727E-02
FMAT(ROU	3)+	.6695093648E-01	5322224088	.7182447813	2435565041E-02
FMAT(ROU	4)+	.1648367882E-02	1416026187E-01	.4257594997E-01	.9999581460
GMAT (ROU	1)=	2984446796	.1193158269	2540478969E-01	
GMAT (ROU	2)=	.1106887586E-01	.8769265325E-02	.6255871934E-03	
GMAT (ROU	3)=	.2170181841E-01	.6165845330E-03	.8935773618	
GMAT (ROU	4)=	.6808687877E-03	.7988999976E-05	.2357427800E-01	

YF-16 CCV Canard Bare A/F

CASE III -- T-.05

AMAT (ROU	1)-	4310000000	10.2000000	4160000000E-01	0.
AMAT (ROU	2)-	-1.000900000	306000000	0.	.3880000000E-01
AMAT (ROU	3)=	1.67000000	-50.0000000	-2.330000000	0.
AMAT (ROU	_4)=	<u>0.</u>	0	1.000000000	0.
BMAT (ROU BMAT (ROU	1)-	-4.170000000 .318000000E-01	4.620000000 .1910000000E-01	2.170000000 3570000000E-01	
BMAT(ROU	3)• _ <u>4)•</u> _	7.63000000	5.93000000 0.	49.1000000 0.	
FMAT (ROU	1)-	.9660797195	•5010062428	1925524494E-02	.4892360520E-03
FMAT (ROU		4887522366E-01	•9722327856	.9564466181E-04	.1917067339E-02
FMAT(ROU	3)*	.1368891187	-2.311075252	.8898722311	2303271656E-02
FMAT(ROU	4)*	.2991324989E-02	5936267154E-01	.4719503489E-01	.9999611015
GMAT (ROU GMAT (ROU	1)+ 2)+	2053658134 .6721352123E-02	4738986258E-02	.1040021563 4358271650E-02	
GMAT (ROU	3)+	.3457365581	.2925526513	2.325886636	
GMAT (ROU	4)+	.8952949095E-02	.7326948138E-02	.5919413131E-01	

YF-16 CCV Canard FCS Loops Closed

CASE II -- T+.05

AMAT (ROU	1)=	-3.105000000	8.917000000	2720000000	0.
AMAT (ROU	2)=	9796000000	2965000000	0.	.3795000000E-01
AMAT (ROU	3)=	6.564000000	-47.71000000	-8.359000000	-25.00000000
AMAT (ROU	4)=	0.	0.	1.000000000	0.
BMAT (ROU	1)=	-3.925000000	4.76600000	1.897000000	
BMAT (ROU	2)=	.2988000000E-01	.1802000000	3360000000E-01	
BMAT (ROU	3)=	7.178000000	5.655000000	49.60000000	
BMAT (ROU	4)=	0.	0.	0.	
FMAT(ROU	1)-	.8444610734	.4213275315	1007440058E-01	.7401204421E-02
FMAT(ROU	2)-	4482256768E-01	.9747742525	.3136369660E-03	.1739461895E-02
FMAT(ROU	3)-	.2910955121	-1.845387524	.6329338519	-1.012203501
FMAT(ROU	4)-	.7591677878E-02	5043493463E-01	.4041157983E-01	.9727991840
GNAT (ROU GNAT (ROU GNAT (ROU GNAT (ROU	2)+ 3)+ 4)+	1826709617 .6051094183E-02 .2587699885 .7267305823E-02	.2183750549 4583226766E-02 .2638005832 .6744890998E-02	.7323600726E-01 3580530460E-02 2.020510386 .5417478726E-0 1	

CASE 1 -- T-.02

Ŧ	AMAT(ROU AMAT(ROU AMAT(ROU AMAT(ROU	1)= 2)= 3)= 4)=	7770000000 -1.00000000 1.270000000 0	4.680000000 3556000000 -12.80000000 0.	4320000000 0. -6.60000000 1.00000000	0. .1720000000 0.
	BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	1)= 2)= 3)= 4)=	-6.10000000 .7250000000E-01 .7700000000 0.	2.41000000 .2370000000 0. 0.	3140000000 0. 21.00000000 0.	
	FMAT(ROU FMAT(ROU FMAT(ROU FMAT(ROU	1)• 2)• 3)• 4)•	.9835451199 1976761620E-01 .2603042592E-01 .2582943506E-03	•9356434665E-01 •9919767251 •2377387318 •2437058699E-02	8026174145E-02 .1149278850E-03 .1762314076 .1873548183E-01	.1609741472E-03 .3426722506E-02 4191740962E-03 .9999971709
	GMAT(ROU GMAT(ROU GMAT(ROU GMAT(ROU	1)- 2)- 3)- 4)-	1210102458 .2655609736E-02 .1267403872E-01 .1357845151E-03	.4803255323E-01 .4243415067E-02 .4490647334E-04 .2350923155E-06	7956939811E-02 .7860836784E-04 .3933640141 .4020525562E-02	

YF-16 CCV Canard Bare A/F

CASE III -- T-.02

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)• 2)• 3)• 4)•	4310000000 -1.0000000000 1.670000000	10.20000000 306000000 -50.00000000 0.	4160000000E-01 0. -2.330000000 1.000000000	0. •3889000000E-01 0.
BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	1)+ 2)+ 3)+ 4)+	-4.170000000 .3180000000E-01 7.630000000	4.620000000 .1910000000E-01 5.930000000 0.	2.170000000 3570000000E-01 49.10000000 0.	
FNAT(ROU	1)+	.9893772443	.2027706864	8083110994E-03	•7884315984E-04
FNAT(ROU	2)-	1983944718E-01	.9918682480	.1577175559E-04	•7731044228E-03
FNAT(ROU	3)+	.4226453740E-01	3700397241	.9544504647	•3802625596E-03
FNAT(ROU	4)-	.3934530725E-03	9800581432E-02	.1954103847E-01	•9999974520
GMAT (ROU	1)=	8298243611E-01	.9193036413E-01	•4271056099E-01	
GMAT (ROU	2)=	.1464060722E-02	5379547149E-03	•1137872572E-02	
GMAT (ROU	3)=	.1471457657	.1175089202	•9606686627	
GMAT / ROU	4}=	.1489947893E-02	.1178197980E-02	•9677019529E-02	

YF-16 CCV Canard FCS Loops Closed

CASE II -- T..02

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)= 2)= 3)= 4)=	-3.105000000 9796000000 6.564000000	8.917000000 2965000000 -47.71000000 9.	2720000000 0. -8.359000000	0. .3795000000E-01 -25.00000000
BHAT (ROU BHAT (ROU BHAT (ROU BHAT (ROU	1)= 2)= 3)= 4)=	-3.925000000 .2988000000E-01 7.178000000	4.76600000 .1802000000E-01 5.655000000 0.	1.897000000 33600000000E-01 49.60000000	
FMAT(ROU FMAT(ROU FMAT(ROU EMAT(ROU	2)+ 3)+ 4)+	.9377770289 1892568168E-01 .1254679558 .1274224413E-02	.1746757479 .9923652712 8631235396 8929501842E-02	4840832552E-02 .5640188019E-04 .8412450672 .1838468656E-01	.1325894921E-02 .7467331653E-03 4599560387 .9952692512
GMAT(ROU GMAT(ROU GMAT(ROU	2)= 3)= 4)=	7636796768E-01 .1349787841E-02 .1266971358 .1322227582E-02	.9210287677E-01 5512878322E-03 .1098774464 .1109280185E-02	.3420301581E-01 1013843279E-02 .9145976885 .9399519380E-02	

CASE I -- T..0125

South (Supposed) and a second

1.20

AMAT (ROU	1)•	7770000000	4.680000000	4320000000	0.
AMATICOU	S)•	-1.00000000	3556000000	0.	1720000000
AMAT (ROU	3)+	1.27000000	-12.80000000	-6.600000000	ρ.
AMATIROU	4)+	0.	0.	1.000000000	<u>A</u> .
BMATTROU	1).	-6.10000000	2.410000000	314000000	
BMAT (ROU	2)-	.725000000E-01	.2370000000	0.	
BMAT (ROU	3)-	.7700000000	0.	21 0000000	
BMATCROU	4)+	0.	A .	0	
FMATCROU	D •	.9899286253	5849783300F-01	- 51569434435-03	650000 10 /0F-07
FMATCROU	•(Ś	1241007876F-01	9951998693	45737031405-04	-06009510785-07
FMATCROU	3).	1612929741F-01	- 1527612544	•	•C1779005005-02
FMATCROU	4).	10020251575-07	- 96965249975-93	+ JEV (003030	100/8021281-03
GMAT (ROU	1).	- 75869267976-01	30061751475-01	- 45038466466-01	•222222
GMATCRON	21.	13785623405-02	27681926116-01		
GHAT (ROU	31.	85564439425-02	11907343045-04	+C899(99559E-09	
CHAT (ROL	4).	.55507464125-04	-1103/J7J04E-04	.6519683650	
		122021-04166-04	· 39335385305~0/	·1220520010F-05	
CASE III	Te	.0125	YF-16 CCV Canard	Bare A/F	
AMAT (ROL	1)-	431000000	19.2000000	- 4150000005-01	۵
AMATIROU	21.	-1.00000000	- 3060000000		V. 3880000005 01
AMATIPOU	31-	1 670000000	-59 00000000		· 3880866886F-01
AMATIPOL	A1-	A	~50.00000000	-2.330000000	σ.
BMATION		-4 17000000	4.65000000	1.00000000	
BHAT (DOLL	31			2.170000000	
DMATIDAU	5/-	-318000000E-01	-131000000E-01	3570000000E-01	
DINT LOU	3/2	(.030000000	2.230000000	49.10000000	
				0	
FRATCOU	1.	.9938580655	.1270405060	5108504318E-03	.3084586472E-04
FINI CRUU	2)	1243920345E-01	.9953876977	•6206153958E ~05	.48 39450630E ~03
PRIMICRUM	37-	-2436901531E-01	6133245727	•9712884452	1496768819E-03
PHHICKUW-		1450813907E-03_	<u>3857651595E-02</u>	1231969689E-01	.999993744
GRIATCRUU	1.1	5197017096E-01	•5757545600E-01	·2685873820E-01	
GMATEROU	51.	·7215721478E-03	1213981239E-03	6129946312E-03	
GNATCROU	3)•	·9327162452E-01	.7365239741E-01	.6053496619	
GMATCROU	4)•	•2873774656E-03	.4612306361E-03	.3800817208E-02	
CASE II -	- 1•,	0125 YF-16	CCV Canard FCS Loc	ops Closed	_ ·
AMATCROU	1)-	-3.105000000	8.917000000	2720000000	υ.
AMATCROU	2).	979600000	2965000000	0.	.3795000000E-01
AMATCROU	31.	6.564000000	-47.71000000	-8.359000000	-25.0000000
AMATIROU	4)+	0.	0.	1.000000000	
BMATIPOU	11.	-3.925000000	4.766000000	1.897000000	
BMAT (POU	25.	2988000000E-01	.180200000 0E-01	3360000000 E-01	
BMATIPOL	31.	7,178000000	5.65500000	49.6000000	
BMAT (DOLL	41.	A.	0.	0.	
	-71-		.1100587149	3162405534E-02	.5325623816E-03
CHAT (DAL	212	1109467005F-01	9956241283	.2267550034E-04	.4709993003E-03
FINITRUU	5/	20204C0400E-41	- 5603306928	8988316140	2966565147
FINICKUU		- 13137030335-VI E034431073E-03	3576340101F-02	1186083171E-01	.9981132427
FUHICKUU				2222406262E-01	
GMATCHOV	11	486J41301JL-01	- 1343636466-03	- 5575070930F-03	
GNATCROU	<u> </u>	.00933839(3C-03	-+13763330702703 60407067036-04	5893724494	
GNATCROU	37.	.830541/4395~01	A36A361361362-03	37466965506-02	
ABA 7 / 0/011	- 16				

CASE I -- T-.01

1.1.

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)• 2)• 3)• 4]•	7770000000 -1.00000000 1.270000000 0.	4.68000000 355600000 -12.8000000 0.	4320000000 0. -6.600000000 1.000000000	0. .172 00000000 0.
BMAT (ROU BMAT (ROU BMAT (ROU BMAT (ROU	1)= 2)= 3)= 4)=	-5.100000000 .7250000000E-01 .7700000000	2.410000000 .2370000000 0. 0.	3140000000 9. 21.00000000	
FMAT(ROU	1)=	.9920000036	.4680115171E-01	4153647039E-02	.4025012640E-04
FMAT(ROU	2)=	9942633432E-02	.9962162200	.2945506434E-04	.1716811258E-02
FMAT(ROU	3)=	.1286448839E-01	1233444327	.9361034362	1073975789E-03
FMAT(ROU	4)=	.6405413975E-04	6244045283E-03	.9677050337E-02	.9999996398
GMAT (ROU	1)=	6075759491E-01	.2405958227E-01	3570163506E-02	
GMAT (ROU	2)=	.1027569263E-02	.2245565580E-02	.1771492273E-04	
GMAT (ROU	3)=	.7015329178E-02	.6386603604E-05	.2031979441	
GMAT (ROU	4)=	.3621511445E-04	.1714434361E-07	.1027204472E-02	

YF-16 CCV Canard Bare A/F

CASE III -- T+.01

AMAT(ROU 1) AMAT(ROU 2) AMAT(ROU 3) AMAT(ROU 3)	4310000000 -1.000000000 1.670000000	10.20000000 3060000000 -50.00000000 0.	4160000000E-01 0. -2.330000000 1.00000000	0. .3880000000E-01 0.
BMAT(ROU 1) BMAT(ROU 2) BMAT(ROU 3) BMAT(ROU 3) BMAT(ROU 4)	-4.170000000 .3180000000E-01 7.630000000 9.	4.520000000 .1910000000E-01 5.930000000 0.	2.170000000 35700000000E-01 49.10000000	
FMAT(ROU 1)	.9951875200	.1017103534	4101666451E-03	.1975111292E-04
FMAT(ROU 2)	9961500945E-02	.9964358261	.3981578242E-05	.3873411156E-03
FMAT(ROU 3)	.1894283792E-01	4925337505	.9769652730	9603515182E-04
FMAT(ROU 4)	.9099833036E-04	2475132779E-02	.9884386482E-02	.9999996791
GMAT(ROU 1)	4160268085E-01	.4609019745E-01	.2153024875E-01	
GMAT(ROU 2)	.5255320796E-03	3965890725E-04	4639650323E-03	
GMAT(ROU 3)	.7495969660E-01	.5898754909E-01	.4856092049	
GMAT(ROU 4)	.3770519690E-03	.2954250251E-03	.2436981830E-02	

YF-16 CCV Canard FCS Loops Closed

CASE 11 -- T+.01

33.365

AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU AMAT (ROU	1)= 2)= 3)= 4]=	-3.105000000 9796000000 6.564000000	8.917000000 2965000000 -47.71000000	2720000000 0. -8.359000000 1.000000000	0. .3795000000E-01 -25.00000000 0.
BMAT(ROU BMAT(ROU BMAT(ROU BMAT(ROU	2)+ 3)+ 4)+	-3.925000000 .2988000000E-01 7.178000000 0.	4.76600000 .1802000000E-01 5.655000000 0.	1.897000000 3360000000E-01 49.60000000	
FMAT(ROU	1).	.9689126843	.8827758866E-01	2567176464E-02	.3440086304E-03
FMAT(ROU	2).	9629390870E-02	.9966056658	.1465171999E-04	.3776502744E-03
FMAT(ROU	3).	.6419997708E-01	4539311793	.9185402417	2398168580
FMAT(ROU	4).	.3234115495E-03	2307934166E-02	.9589170877E-02	.9987840890
GHAT (ROU	1)•	3872084600E-01	.4685342750E-01	.1801119674E-01	
GMAT (ROU	2)•	.4887348029E-03	5060593333E-04	4248695386E-03	
GMAT (ROU	3)•	.6749271715E-01	.5572655178E-01	.4763139338	
GMAT (ROU	4)•	.3445 490309E-03	.2799897326E-03	.2414096702E-02	

APPENDIX B

VRA HARDWARE AND SOFTWARE SYSTEMS

VRA SYSTEMS OVERVIEW

たちからないです

00000 SCA

いたのから、「「「「

The Princeton Flight Research Laboratory's Variable Response Research Aircraft (VRA) (Figure 24) consists of a modified NAVION aircraft with independent control of lift, sideforce, thrust, pitch, roll and yaw. Mediating between the evaluation pilot and actual aircraft control are a specially constructed analog computer system and a digital microprocessor (Micro-DFCS), which, in the present research application, accepts 8 channels of analog sensor and command data and supplies three channels of output control which, in turn, drive control surfaces actuators.

Independent control of three forces and three moments is provided by commands to the elevator, ailerons, rudder, throttle, direct-lift flaps and side-force panels. The control surfaces are driven by hydraulic servos capable of high surface accelerations (some were originally fitted to the B-58 aircraft). The modified VRA units incorporate solenoid actuated valves with force-override features for quick disen-Characteristics of the control surface effectors are sumgagement. marized in Table 6. Surface rate limits are seen to range from 60 to 110 deg/sec. Bandwidths are given for flat response and 6 db attenuation (in parentheses), except that the thrust bandwidth is specified by the frequency for 3 dB attenuation. The aircraft's normal operating speed range is 65 to 120 kt; maximum specific forces and moments ("control power") are given for 70 kt airspeed. At IAS = 105 kt maximum direct lift and side-force accelerations are 1 g and 0.5 g, respectively.

SENSORS AND COMMAND SIGNALS

The sensors used for most flight testing include angular rate gyros and linear accelerometers for all three axes, vertical and heading

 うちょう こうちょう あいろう しょうしょう

ことでしたとう

-5

Figure 24. Variable Response Research Aircraft (VRA)

CONTROL	DISPLACEMENT LIMIT (deg)	RATE LIMIT (deg/sec)	BANDWIDTH (Hz)	MAXIMUM SPECIFIC FORCE OR MOMENT (IAS = 70 kt)
Roll	±3 0	70	5 (10)	4.1 rad/sec ²
Pitch	+15 -30	70	5 (10)	4.4 rad/sec ²
Yaw	± 15	70	5 (10)	1.9 rad/sec ²
Thrust			0.6	0.1 g
Side Force	±35	60	2 (3)	0.25 g
Normal Force	±3 0	110	2 (3)	0.5 g

TABLE 6. VRA CONTROL CHARACTERISTICS

. . .

gyros, dual angle-of-attack and sideslip angle vanes, radar altimeter, indicated airspeed, control surface positions and cockpit control positions.

In conventional application of the VRA (Figure 25a), aircraft sensor signals and command signals from the evaluation pilot's controls are fed into the VRA analog system which can be set with the necessary gains and crossfeeds to emulate performance characteristics of a variety of other aircraft. The .iicro-DFCS was originally conceived as a research tool for the evaluation of digital systems in flight control. As presently implemented in the VRA, the Micro-DFCS operates in parallel with the analog system. Although capable of exerting full 6-axis control, the digital system is usually enabled in only 3 axes, with the analog system supplying the remaining vectors.

For the present research application, the VRA's analog simulation and the Micro-DFSC serve complementary roles. The analog system is set to emulate the lateral directional characteristics of the bare-airframe YF-16; however, the gains mediating pilot commands through it are reduced to zero. Thus, all of the command augmentation for the present problem is supplied by the digital system, while the analog system, responding only to feedback, maintains the bare-airframe YF-16 configuration. This relationship is summarized graphically in Figure 25b.

MICROPROCESSOR DIGITAL FLIGHT CONTROL SYSTEM

The Micro-DFCS has undergone substantial evolution since the beginning of the contract period, due largely to FRL's recognition of deficiencies in the original system in terms of throughput delay and program memory. They have also expanded program development capability and facilities. Concomitantly, STI has become increasingly sophisticated in the use of the software development resources available.

Initially, the Micro-DFCS was configured with Intel SBC family boards. The processor board (ISBC 80-05) contained an 8085 microprocessor running from a 2 mHz system clock. In order to perform floating point operations, an Intel ISBC-310 "high speed math unit" (a separate

All the Letter

a) VRA System Modules

b) DFCS Module Interconnections

Figure 25. VRA Analog and Digital Systems - Data Path Diagrams

. . .

multibus board) was also installed. In addition, several boards of RAM (memory) were also required. Control software, a 6K byte assembly language program (CAS-1) was written to operate in this environment.

In September 1980, the Intel 80-05 board was replaced with a Monolithic Systems 80-04 processor board containing a Z-80 microprocessor with 32K bytes of onboard RAM, a 4 mHz clock and a single-chip floating point math unit (AMD 9511), with capabilities considerably beyond the iSBC-310 math unit. By this time, the CAS-1 control program had evolved to CAS-4 which, like its predecessors, still accessed the iSBC-310 math board for floating point calculations. An upgraded version called CAS-6 was written for the new Z-80 based system; however, the enormous inconvenience of adapting the assembly code to accommodate the different coding convention required by the AMD-9511 math chip dictated that CAS-6 also use the ponderously slow iSBC-310 math board.

SOFTWARE DEVELOPMENT SYSTEM

STI's initial adaptations of FRL's software to the YF-16 problem centered around the CAS-6 program. However, when certain subtle discrepancies in the responses of the YF-16 zero-order-hold problem were observed, an extensive static check of the longitudinal modes of CAS-6 was performed by J. Smith and T. Myers of STI. In the course of this check, it was discovered that a serious "scramble" existed in the gain selection algorithm of CAS-6 and that, apparently, the program had not been thoroughly static-checked by its original author. This discovery hastened FRL's decision to abandon the assembly language code and pursue the installation of higher level language software which would support the onboard floating point capability of the MSC 8004 hardware.

Up to this point, program development for the CAS series of assembly language programs had been accomplished using a FORTRAN cross assembler resident on Princeton's IBM 3033 timesharing system. Assembly code would be written using the 3033 system editor facilities and the resulting source code assigned as an input file to one of several disk resident cross assemblers. The cross assembler, in turn, created an output file in standard Intel hex format which was then loaded on to the 80-04 microprocessor over a standard voice-grade phone link at 300 baud. When the relative inefficiency of this system became obvious, FRL, with some counsel from STI, made the decision to implement a local disk-based development system using a processor compatible with the Z-80 on the 80-04 board. They acquired a MSC-80-09 processor board from Monolithic systems, which represented one of the most advanced single-board computers available. The 80-09 contained a Z-80 processor, 9511 math unit, floppy disk controller, ROM with bootstrap for a standard CP/M operating system, two serial RS-232 ports and 32K of RAM on a single multibus board. Additional elements included dual 8 in. floppies (adapted from an earlier system), a LSI ADM-31 CRT terminal, and an Anadex DP-9501 matrix printer.

MONITOR AND LANGUAGE SELECTION

The selection of CP/M as the operating monitor for the development system opened a choice among a number of higher level languages which could be used to generate Z-80 code acceptable to the MSC 80-04 board which remained as the heart of the Micro-DFCS. Two versions of the PASCAL language, FORTRAN and a compiler version of BASIC, were evaluated for suitability and benchmarked for object code efficiency. The definitive winner was PASCAL/MT v. 3.2, created by MT Microsystems of Carlsbad, CA. At the time of the benchmark runs, PASCAL/MT 3.2 had already been obsoleted by PASCAL/MT v. 5.x. The latter, however, while containing more convenience features than its predecessor, generated markedly less compact object code. Even using the less replete of the two PASCAL, the execution module for a PASCAL equivalent of CAS-6 still contained 2-3 times the number of instructions of the assembly code CAS-6. Nevertheless, the introduction of the PASCAL-based system rendered floating point operations and program logic much more accessible than was possible with the assembly language code. This permitted much more flexibility in terms of control algorithms, and, in general, saved considerable time and effort in the development of the revised ZOH and slewer code.

SOFTWARE DEVELOPMENT FOR SLEWER CONTROL LAW

During the course of the contract period, two major efforts at Slewer implementation were mounted. The first effort (February 1981) centered around a formulation which had the capability of handling three model input vectors. This formulation was coded into an adaptation of the FRL CAS-6 assembly language code. Although it was immune from the gain selection glitch inherent in the Zero Order Hold, it nevertheless proved extremely resistant to static check. This served as a beginning object lesson in the validation of slewers, i.e., that careful formalized validation procedures whose numerical performance can be compared to theoretical check cases are a prime necessity.

The second major onslaught against the Slewer occurred after the decision had been reached to abandon the assembly language version of CAS-6 in favor of the framework of R.V. Walters' PASCAL language code Groundwork was laid by first adapting the Zero Order Hold (DCAS). within the pCAS framework, and performing extensive validation work to assure ourselves that the software was indeed performing to specification. The first PASCAL slewer embodied the February 1981 Slewer algorithm; however, that effort was truncated when the excessive computational load of that model became apparent. A second (October 1981) slewer formulation proved to be computationally more congenial for two reasons. First, it utilized only pedal command input; second, it had a more balanced distribution of foreground and background computation than its predecessor. Rough-out code for this latter version of the Slewer were completed and a preliminary compiled version generated.

Overall structure of the software is shown in Figure 26. The slewer control program SLEW2 contains two functional modes of operation which can be selected by the evaluation pilot using the cockpit Termiflex control console. Mode "E" initiates ZOH operation and mode "S" initiates slewer operation. Because of the RAM space required by the additional gains and constants associated with the Slewer, it was necessary to strip out all of the longitudinal axis setup and control routines as well as some of the analog test utilities from the currently operational

Figure 26. DFCS Hardware and Software

.

88

version of pCAS (ver. 4.3). In addition, several alternative versions of the slewer control program had to be compiled in order to address certain validation problems. These will be discussed later on. It should be noted that the pCAS control program containing the ZOH controller also contained an operational slewer. However, the scaling and graceful entry problems discussed earlier in the text made it too hazardous to engage mode "S" during any of our last three flights.

NUMERICAL VALIDATION OF THE SLEWER ALGORITHM

1000 A

Due to the dynamic structure of the Slewer algorithm, a static endto-end I/O check was not possible using the procedures developed for the ZOH case. It was necessary, therefore, to compile a special validation version of the Slewer in order to verify the internal calculations of the real-time flight controller program (SLEW2). The validation program (SLTST) differed from the real-time controller in three regards:

- The analog drivers were disabled so that the program could function using the 80-04 processor in a stand-alone environment.
- LPRINT statements (PASCAL printer output commands) were inserted into the control loop section of the source code in order to print out intermediate and output variables at every sample frame.
- 3. Unity values were substituted for the front- and back-end conversion scale factors so that values in pure physical units would be displayed.

In order to validate the numerical output of the Micro-DFCS, a validation case consisting of output values for three controllers were worked out using the discrete model with constant pedal input and fixed (constant) feedback variables. Numerical validation of the October 1981 algorithm was obtained after resolving some tricky problems resulting from uninitialized variables in the PASCAL code.

APPENDIX C

BARARY ANALYSIS ANALYSIS

states in the second between the second

ALL PROPERTY AND A DESCRIPTION OF

.

ANNOTATED TOTAL RUN

This run checks verisimilitude of pseudo inverse, ZOH matching of continuous system by comparing s-plane matrices (continuous modeí) against w'-matrices (simulator).

| CONTENTING CONTINUED AND CONTENT AND AND CONTENT AND | COPY COMPLETE C > P PMAT 4 AUGUS VILLETE V A | DEY CUMPLETE ONAT + AM AT
ECHATI - EANATI FRANSPUSED | COPY CONFLETE F = N } K_{Hy} (NMAT) K_{JA} (MAT) K_J (MA | EURTUTING FAMI & GMAI FROM AMAI & GMAI & G
NY FOWER SERIES EXPANSION.
ENTER NUMBER OF TEAMS TO BE EVALUATED >100 | | ³
³
³
³
³
⁴
⁴
⁴
⁴
⁴
⁴
⁴
⁴
⁴
⁴ | 11 2 11 2 12 2 13 2 14 1 14 2 14 1 14 </th <th>Row Col 2 1 1 2 2 2 -23 3 -742 -23 3 -742 -24 3 -742 -24 3 -742 -24 3 -742 -24 3 -24 -24 1 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 3 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 2 -24 -24 1 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 2 -24 -24 2 -24 -24 3 -24 -24 1 -24<!--</th--><th>AT)S fractures
AT)S fractures
AT)S fractures
S = (AMAT)Y - (BMAT)S.
S = (AMAT)Y - (BMAT)S.
AT) * OMAT]
AT) * OMAT]</th><th>$\dot{x} = (AMAT) + (BA= (XMAT) + (BAAT) + (TMAT) + (TMA$</th><th>T
AI & BMAT
VELUNTITI = VI
X, = (ZM
X, = (ZM
X, = (ZM
X, = (ZM
Y, = (
Y, = (
Y, =)
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0)²
= (0)²
=</th><th>YATT J AN
YATT J AN
YATT J AN
S CHAL FROM AN
F THE J J
TIME T J I
TIME T J L
TIME T J L
THE A A
F J A
A ANSFORM AN
F J A A
A ANSFORM AN
F J A A
A A A A
A A A A
A A A A A
A A A A</th><th>OFTION CANEY
COFFICING FAME
ENTER SAMELING
CONFILTE
ENTER SAMELING
CONFILTES ENTER
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
ENTER MUMBER OF
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
CONFILTE
COPY CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONF</th></th> | Row Col 2 1 1 2 2 2 -23 3 -742 -23 3 -742 -24 3 -742 -24 3 -742 -24 3 -742 -24 3 -24 -24 1 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 3 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 2 -24 -24 1 -24 -24 1 -24 -24 1 -24 -24 2 -24 -24 2 -24 -24 2 -24 -24 3 -24 -24 1 -24 </th <th>AT)S fractures
AT)S fractures
AT)S fractures
S = (AMAT)Y - (BMAT)S.
S = (AMAT)Y - (BMAT)S.
AT) * OMAT]
AT) * OMAT]</th> <th>$\dot{x} = (AMAT) + (BA= (XMAT) + (BAAT) + (TMAT) + (TMA$</th> <th>T
AI & BMAT
VELUNTITI = VI
X, = (ZM
X, = (ZM
X, = (ZM
X, = (ZM
Y, = (
Y, = (
Y, =)
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0MY)⁻
= (0)²
= (0)²
=</th> <th>YATT J AN
YATT J AN
YATT J AN
S CHAL FROM AN
F THE J J
TIME T J I
TIME T J L
TIME T J L
THE A A
F J A
A ANSFORM AN
F J A A
A ANSFORM AN
F J A A
A A A A
A A A A
A A A A A
A A A A</th> <th>OFTION CANEY
COFFICING FAME
ENTER SAMELING
CONFILTE
ENTER SAMELING
CONFILTES ENTER
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
ENTER MUMBER OF
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
CONFILTE
COPY CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONF</th> | AT)S fractures
AT)S fractures
AT)S fractures
S = (AMAT)Y - (BMAT)S.
S = (AMAT)Y - (BMAT)S.
AT) * OMAT]
AT) * OMAT] | $\dot{x} = (AMAT) + (BA= (XMAT) + (BAAT) + (TMAT) + (TMA$ | T
AI & BMAT
VELUNTITI = VI
X, = (ZM
X, = (ZM
X, = (ZM
X, = (ZM
Y, = (
Y, = (
Y, =)
= (0MY) ⁻
= (0MY) ⁻
= (0MY) ⁻
= (0MY) ⁻
= (0MY) ⁻
= (0) ²
= | YATT J AN
YATT J AN
YATT J AN
S CHAL FROM AN
F THE J J
TIME T J I
TIME T J L
TIME T J L
THE A A
F J A
A ANSFORM AN
F J A A
A ANSFORM AN
F J A A
A A A A
A A A A
A A A A A
A A A A | OFTION CANEY
COFFICING FAME
ENTER SAMELING
CONFILTE
ENTER SAMELING
CONFILTES ENTER
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
ENTER MUMBER OF
COPY CONFILTE
COPY CONFILTE
COPY CONFILTE
CONFILTE
COPY CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONFILTE
CONF |
|--|---|--
--|---|--|--
--
--
--
--|--|--|---|--
---|
| | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Continuities $C = 0$ with the contract $C =$ | The there is a constraint form of the form of the form of the form of the form the | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Convertise fast a montane man and a montane man | *
M | ., | COL > 1
ROW | at)*0 mar] | CMAT = [(OM | 2.673
2.725
19.63 | . 1851
. 5527
. 527 | 1.0345
1.281
1.281
2.554
2
2.554
2
2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | Continue of the contract of t | The value is constrained from the form of | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | The reaction of the reaction | | ATRIX: | E CMAT J M | | | £ | () | COL 1
ROM |
| Col. I 2 3 E CMAT 3 MATRIX: Row $1.53A5$ 1851 2.623 Row $1.53A5$ 1851 2.623 2.525 2.725 2.725 2.525 2.725 2.725 2.525 2.725 2.725 2.525 2.725 2.725 2.525 2.725 2.725 2.525 2.725 2.725 2.525 2.725 2.725 2.725 2.725 2.725 2.725 2.725 2.725 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Constructions in Market Cartello Market Cartello Market Cartello Market Construction 2 and | COMPT LE CONT + Andr
COMPT - CAMPT FRANSPOSED
COMPT - CAMPT FRANSPOSED
COMPT - CAMPT - CAM | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | CURTING FRANT BANT BANT BANT BANT BANT BANT BANT B | L-N => [Fm-Fg] | TE CT | COPY COMPLE
COPY COMPLE
COPY COMPLE
(AAT) = (A | | | r = [do] | IX: CMA | L CMAL 1 MAIRI |
| $\begin{bmatrix} Chal T & hairex i \\ Chal T & hairex i \\ Chu & 1 & 2 & 3 \\ Char T & insti & insti & 2.623 \\ Char T & insti & insti & 2.623 \\ Char T & insti & insti & 2.623 \\ Char T & insti & insti & 2.725 \\ Char T & inst & 2.725 \\ Char T & inst & 2.725 \\ Char T & insti & 2.725 \\ $ | $ \begin{array}{rrrrr} \begin{tabular}{c c c c c c c c c c c c c c c c c c c $ | Continuers and the control matrix $C_{04}T = (G_{04}T)^2 - (M_{11}T)^3$
$C_{01} = 1$ 2 3 4
$C_{01} = (G_{01}T) = (G_{$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $ | The formation of the shart of | G M A T | 0 | | | [ح 0] | set up | | CUES CONTETE
CUES CONTETE
CUMBED - CANAED |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | C01 × 1 2 3 4 C MAT] MATRIX: 200, 100, 100, 100, 100, 100, 100, 100, | Constraints $C_{MAT} = (6MAT)^2 - (7MAT)^3$
$C_{MAT} = (5MAT)^2 - (7MAT)^3$
$C_{MAT} = (5MAT)^2 - (7MAT)^2 $ | OFY CUMPLETE OMAT - Mak Readformul grin CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT is mur als preade drume CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT is mur als preade drume CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT is mur als preade drume CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT is mur als preade drume CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT is mur als preade drume CCMAT - EMAT RANSPOSED RAMAT STANDARD PAAT STANDARD COPY COMPLETE PAAT RANSPOSED PAAT RANSPOSED COPY COMPLETE PAAT RANSPOSED | COPY CONFLETE $F = N$ } χ_{hula} (mAT) (χ_{hula} (MAT) χ_{hula} (MAT) (χ_{hula} (MAT) (χ_{hula} (MAT)) (χ_{hula} (χ_{hula}) | TOUR MARK OF TEAM TO MART & BANT & T
TOUR MARK OF TEAM TO MART & BANT & T
TOUR SERVES RAME FROM THE PANT AND | $\sum_{r=0}^{30E-01}6330E-01$ | 192 - 688
89 - 829
14E-01 - 100 | 1
2
3
66 | hopeter PMAT | intermedieto | r d | 20
1
1
1 | oren conectine. ↓ |
| The constant $C = P$ some d an indumulation lement mAr $\frac{1}{3}$ -16614E-01 -16800-01 -16800-01 -16800 CMAT = $C_F = QMAT$
The constant $0 \rightarrow B$ 3 such and $[d'O]$
The constant $0 \rightarrow B$ 3 such and $[d'O]$
The constant $0 \rightarrow B$ 3 such and $[d'O]$
The constant $0 \rightarrow B$ 3 such and $[d'O]$
Constant matrix $C mAT = [d'O]$
Constant | COL 1 2 3 4 E CMAT] MATRIX: 22 4 J E CMAT] MATRIX: 22 4 J E CMAT] MATRIX: 22 4 D E M J F E M J E E CMAT] MATRIX: 22 4 D E M J E E M AT] C 24 2 9 T T C 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CORT MATHIX: CMAT = (OMAT) - (MAT)
COPY COMPLETE P = A
COPY COPY COPY COPY COPY COPY COPY COPY | CHAT I FRANSPOSED
COAT - FAMAT REAMSPOSED
COAT - FAMAT FRANSPOSED
COAT - FAMAT FRANSPOSED
COAT - FAMAT - FAMAT
COAT - FAMAT - FAMAT - FAMAT - FAMAT
COAT - FAMAT | CPY CONFLETE $F \rightarrow N$ } $\chi_{nu} = (n_n \pi_1)\chi_{nu} + (m_n \pi_1)\chi_{nu$ | The real is don't from that it have all of the real interval of the rea | - m | C1 0 | COL > 1
ROW | | .2287 | 4.420 | 1334E-01 | 3 .1278 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | COLOR 1 2 3 4 E CHAT] MATRIX: Jut P& M, feel forward gain | COMPTING CONFLETE C P MAT 4 2004
COPY CONFLETE P A
COPY CONFLETE P A | COPY CUMPLETE OMAT - AMÅT Realforend grive
COMPLETE C > P PMAT is anue als prealforends grive
COMPLETE P > A
COPY COMPLETE P > A
CO | CPY CONFLETE $F \rightarrow N$ } χ_{hulp} (MAT) χ_{h} + (MAT) - (MA | The provertise fields a solution from the shart of the series of the se | (assign to QMAT) | | | | .3321E-01
.2942E-01 | .5930
.5930 | .2334E-01
2042E-01 | 1 -, 4011 |
| $\begin{bmatrix} -4011 & -3341 - 0 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3321 - 01 & -3322 & -3610 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 & -3600 - 01 &$ | | COPY COMPLETE C > F FMAT 4 JULY - COPY COMPLETE P > A FMAT 4 JULY - COPY COMPLETE P > A COPY COMPLETE P > A COPY COMPLETE N > B | COPY COMPLETE OMAT - AMÅT freedformuld grine COPY COMPLETE C -> P PMAT is mur the presed formula formula formula formation for the second formula | COPY CONFLETE $F = N$ } $\chi_{H_1 _{a}}$ (mAT) $\chi_{f_1 _{a}}$ (mAT) $\chi_{f_2 _{a}}$ ($\chi_{f_1 _{a}}$ ($\chi_{f_2 _{a}}$) ($\chi_{f_2 _{a}}$ (χ | The function of the form of the form of the form of the formation of the | est up P* M, feed forward gains | ATRIX: | C CMAT J M | | 4 | т | ы | C01 × 1 |
| CONTINCT FAIL FOR MART & FOR TANT & FOR TAN | The number of the solution of | OPEUTING FART & GAAT FROM AMAT & BMAT & 7
Y FOURT SERIES EYFANSION.
WIER NUMBER OF TEXAS TO BE EVANUATED > 100
AFF NUMBER OF TEXAS TO BE EVANUATED > 100
OF TOWFLETE F = X } X_{HUP} (NMAT) X_A + (SMAT) S_ OL YP-14
OF TOWFLETE F = X } X_{HUP} (NMAT) X_A + (SMAT) S_ OL YP-14
OF TOWFLETE F = X } 164.1 -1862 6.822
OF TOWFLETE F = X } -1.820 6.820 6.822
OF TOWFLETE F = X } +1.820 6.820 6.807
OF TOWFLETE F = X } +1.820 6.820 6.807
OF TOWFLETE F = X } +1.820 6.807
OF TOWFLET | COMPUTING FAAT & GMAT FROM AMAT & BMAT 87
AY FOWER SERIES EXFANSION.
INTER NUMBER OF TERMS TO BE EVAN UMTED >100 | | | ٤٩
۴ | TE C A A
TE C P - | COFY COMFLE
COPY COMFLE
(CMAT) = (A |) 5 - (AMAT) 4 - (BAAT) 5.
5 - (AMAT) 4 - (BAAT) 5. | 14T) X + (m MAT.
4T) + (T MAT) § | X4+1 = (21
X = (ZM | 1
1
1
1
1
1
1
1
1
1
1
1
1
1 | COPY CONFLETE
LOPY CONFLETE
LOPY CONFLETE
GOPY COMPLETE
ENTER SAMPLING |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | BEY CONFLETE $f \rightarrow h$ $\chi_{++1} = (\mu A \pi)\chi_{+} + (m A \pi)\xi_{+} = CLYP-UC$
OFY CONFLETE $f \rightarrow M$ $\chi_{++1} = (\mu A \pi)\chi_{+} + (m A \pi)\xi_{+} = CLYP-UC$
OFY CONFLETE $f \rightarrow M$ $\chi_{++} = (\mu A \pi)\chi_{+} + (m A \pi)\xi_{-} = (\mu A \pi)\chi_{-} = (\mu A \pi)\chi_{$ | OFY CONFLETE $f \rightarrow h$ $\chi_{h+1} - (laky)\chi_{h} + (mAr)\chi_{h}$ $CLYP-UC OFY CONFLETE f \rightarrow h \chi_{h+1} - (laky)\chi_{h} + (mAr)\chi_{h} (char) + ($ | OF CONFLETE $f \rightarrow L$ $f \times_{k+1} = (lakt) A_k + (mmAT) A_k$ $CLYP-IG$
OF CONFLETE $f \rightarrow m$ $f \times_{k+1} = (lakt) A_k + (mmAT) A_k$ $CLYP-IG$
OF CONFLETE $f \rightarrow m$ $f \times_{k+1} = (lakt) A_k + (mmAT) A_k$ $COPY$ CONFLETE $d = p \rightarrow B$
OF CONFLETE $f \rightarrow m$ $f + (lakt) + (lakt) A_k + (lakt) A_k + (lakt) A_k$ $(lakt) = (mAT) = (mAT) = (mAT) = (lakt) A_k$
ONFUTING FAAT 3 GNAT FROM AMAT 3 BMAT F $(lakt) A_k + (lakt) A_k + (lakt) A_k$ $(lakt) = (mAT) = (mAT) = (lakt) A_k$ $(lakt) = (lakt) = (lakt) A_k$ $(lakt) = (lakt) = (lakt) A_k$ $(lakt) = (lakt) = (lakt) = (lakt) A_k$ $(lakt) = (lakt) = (lak$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | COPY CONFLETE F -> L } X_{++} = (LMAT)X_{+} + (MMAT)S_{-} CLYP-16
COPY CONFLETE F -> M } X_{++} = (LMAT)X_{+} + (MMAT)S_{-} CLYP-16
COPY CONFLETE F -> M } X_{++} = (TMAT) S = (AMAT)Y + (BMAT)S_{-} COPY CONFLETE S -> M
COPY CONFLETE T -> B } X_{+} = (TMAT) X + (TMAT) S = (AMAT)S_{-} (CMAT) = (AMAT) * (RMAT) * (RMAT) | 4ET05 -7464. [60] = CMAT
47Et05 -7660. [60] = CMAT
5. 2061. | 746405 -284
746405 -284
547660 | - 0 6 | | 001 | AT & BNAT
VELUATITE 21 | L GHAL FROM AN
S EXFANSION.
F TERMS TJ RC E | CONFUTING FMAT
BY FOULK SERTES
FUTER NUMBER OF |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} Definition First Generic from And is BMAT is Generic from And And And And And And And And And And$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | CONVITING FINIT & GHAT FLOM ANAL & BHAT
SY POUR LY REFEATION ANAL & BHAT
SY POUR LY REFEATION
THER NUMBER OF FENSE TO RE EVALUATION
SY POUR LEFE $\frac{1}{7} + \frac{1}{7} + \frac{1}{$ | CONTITING HART & GHALTKOM ANALE BHAT
BY FOLLE STREES EXFANSION
FUER MUGIER OF TEAMS TO THE EVELIDATION
OF Y CONFLETE $F \rightarrow L$ $X_{A+1} = (LAAT)X_A + (M.MAT)S_A$ $CLYP-IG$
OF Y CONFLETE $F \rightarrow L$ $Y_{A+1} = (LAAT)X_A + (M.MAT)S_A$ $CLYP-IG$
OF Y CONFLETE $F \rightarrow M$ $Y_{A+1} = (LAAT)X_A + (TMAT)S_A$ $CLYP-IG$
OF Y CONFLETE $F \rightarrow M$ $Y_{A+1} = (LAAT)X_A + (TMAT)S_A$ $(CLYP-IG$
OF Y CONFLETE $F \rightarrow M$ $Y_{A+1} = (LAAT)X_A + (TMAT)S_A$ $(CLYP-IG$
OF Y CONFLETE $F \rightarrow M$ $Y_{A+1} = (LAAT)X_A + (TMAT)S_A$ $(CLYP-IG$
OF Y CONFLETE $F \rightarrow M$ $Y_{A+1} = (LAAT)X_A + (TMAT)S_A$ $(CLYP-IG)S_A$ $(CMAT) + (AMAT)S_A$ $(CMAT)S_A$ $(CMAT)S_A$ $(CMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ $(CMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ $(CMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(TMAT)S_A$ $(CMAT)S_A$ $(TMAT)S_A$ | CONTITIVE HMAT'S GHAT FROM ANAL & BHAT
SY FOULK STRIES EXPANSION.
FUTER MURGER OF TERMS TO THE EVELUATION = 100
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{A}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}} + (\mathbf{M}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}}$ $\mathbf{CLYP} - \mathbf{I}\mathbf{G}$
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{A}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}} + (\mathbf{M}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}}$ $\mathbf{CLYP} - \mathbf{I}\mathbf{G}$
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{A}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}} + (\mathbf{M}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}}$ $\mathbf{CLYP} - \mathbf{I}\mathbf{G}$
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{A}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}}$ $\mathbf{CLYP} - \mathbf{I}\mathbf{G}$
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{A}_{\mathbf{A}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{A}} + (\mathbf{I}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{A}}$ $(\mathbf{COMPLETE}$ $\mathbf{C} \rightarrow \mathbf{A}$
COPY CONFLETE $\mathbf{F} \rightarrow \mathbf{A}$ $\mathbf{A}_{\mathbf{A}+1} = (\mathbf{I}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S} = (\mathbf{A}\mathbf{M}\mathbf{K}\mathbf{T})\mathbf{V} + (\mathbf{B}\mathbf{M}\mathbf{T})\mathbf{S}_{\mathbf{C}}$ $(\mathbf{C}\mathbf{A}\mathbf{T}) = (\mathbf{A}\mathbf{M}\mathbf{T})\mathbf{S}_{\mathbf{A}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{A}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}}$ $(\mathbf{C}\mathbf{M}\mathbf{T}) = (\mathbf{C}\mathbf{M}\mathbf{T}) + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}}$ $(\mathbf{C}\mathbf{M}\mathbf{T}) = (\mathbf{C}\mathbf{M}\mathbf{T}) + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}}$ $(\mathbf{C}\mathbf{M}\mathbf{T}) = (\mathbf{C}\mathbf{M}\mathbf{T}) + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}}$ $(\mathbf{C}\mathbf{M}\mathbf{T}) = (\mathbf{T}\mathbf{M}\mathbf{T}) + (\mathbf{T}\mathbf{M}\mathbf{A}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{T})\mathbf{S}_{\mathbf{C}} + (\mathbf{T}\mathbf{M}\mathbf{T})\mathbf{S}_{\mathbf{T}} + (\mathbf{T}\mathbf{T}\mathbf{T})\mathbf{T} + (\mathbf{T}\mathbf{T})\mathbf{T} + (T$ | 1
1 | 2 | COL V | 147)5 frallender
(47)5 frallender | <u> </u> | 5 | VAAT AAA
VAAT BAA | CONY CONFLUT 1
CUPY CONFLUTE
ENTER SAMPLING |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | BY COULT I WATTOR ANT $f = (MAT) + (BMAT) $
WER COULT WATTOR $f = (T + T_1) + (BMAT) $
WER COULT WARTOR $f = (T + T_1) + (T + T_1) $
WER COULT WARTOR $f = (T + T_1) + (T + T_1) $
$f = (T + T_1) + (T + T_1) + (T + T_1) $
$f = (T + T_1) + (T + T + T + T + T + T + T + T + T + $ | BUT CONTLIC MATT A MAT $3 = (MAT) + (BMAT) = (MAT) + (MAT) + (MAT) = (MAT) + (MAT) + (MAT) = (MAT) + (MAT) = (MAT) + (MAT) + (MAT) = (MAT) + (MAT) + (MAT) + (MAT) = (MAT) + (MAT) + (MAT) + (MAT) + (MAT) = (MAT) + (MAT) + (MAT) + (MAT) + (MAT) + (MAT) + (MAT) = (MAT) + (MA$ | The control that the first $x_{1} + y_{2} + y_{3} + y$ | COPY CONFILIT YART- ANT $\dot{x} = (AMAT)x + (BMAT)S$ $f_{aut} = 0$ $COL > 1$ 2 3
EVEY CONFILIT YART- BAAT $\dot{x} = (AMAT)x + (BMAT)S$ $f_{aut} = 0$ $COL > 1$ 2 3 3
EVEY CONFILIT YART- BAAT $\dot{x} = (AMAT)x + (PAAT)S$ $f_{aut} = 0$ $COL > 1$ 2 3 3
EVEY CONFILIT YART- BAAT $\dot{x} = (AMAT)x + (PAAT)S$ $f_{aut} = 0$ $COL > 1$ 2 3 3 3 3 3 3 3 3 3 3 | COPY CONFLUE X_MAT - MAAT $\dot{x} = (AMAT) x + (BMAT) S$ f_{mat} $col > 1$ 2 3
CUPY CUMULTE Y_MAT - BMAT $\dot{x} = (XMAT) y + (YMAT) S$ f_{mat} $col > 1$ $(2703 \pm 10^{2} - 2774 \pm 10^{2} - 2744 \pm 1$ | | | | 1, 2 7 | | | | OPTTON DANEY |

ALTERNON ALLEND SAMPLES

L X X X X

(=# 0) [' =1-

PMAT

6.822 6.986 -1.870

-.1862 -.2976 -.2914

164.1 168.3 -45.30

7.341 9.922 -2.348

COL >

ю

2

PMAT, OMAT, UMAT

KANNON CAL- ANAL Contraction of the second A REAL DAY

(CHAT) - (AMAT) * (BMAT) E CMAT J MATRIX:

T		0 M A T
vwn -		C _B =
ຄິ	4	3444 1260 3017
ه [۲-۷] م	m	5482E-01 3784E-01 8553E-01
F	N	.3834 -2180 .3024
. J MATRIX:	-	.6448 .1264 7467E-01
E CHAT	KOU KOU	CI M

ETE	
сомрі	
COFY	

	LMAT
4	.2438E-01 .2739E-02 -1.626 .9054
ы	1445E-01 .1026E-02 .3562 .6480E-01
61	.7847 .9306 -2.793 -1696
1	.5914 8144E-01 .5051 .2782E-01
COL.	

ю	.1136 9625E-02 3.272	.1893
Ci	.3982 1874E-01 .4960	.2586E-01
T	3369 .2023E-01 .3507	• 231 0E - 01
נט ^ד 92	- 01 M -	Ŧ

MMAL

0447

-.3444 -.1260 -.3017

-.5682E-01 -.3784E-01 -.8553E-01

.3834 -.2180 .3024

.6448 .1264 -.7467E-01

< NOIT ON >

COL > 1 ROW .6448 1 .6448 2 .1264 3 -.7467

m

N

QMAT

-.6380E-01 -.1443 .7689

-.6880E-01 .8297 .1004E-01

.9392 .1189 -.6614E-01

м

N

COL > 1 ROW

	NMAT	
4	.1927E-02 .3757E-02 8716E-02 .9997	
n	3503E-02 .3627E-03 .7913 .8913E-01	
C1	. 9700 . 9204 . 4. 230 2246	
1	-,9086 -,94726-01 -3670 -15246-01	
COL ROW		

OFFLON DHAT 10<mark>0</mark>

,	•1978 -•1334E+01 4.420 •2287	
,	- 4444 - 29426-01 - 5950 - 29426-01	
I	4011 .2334E-01 .6092 .3321E-01	
RDW		

OMAT

0F1106

"here on treated - subscience (
it's and cp into similator equ	ative 1 1.691 .75144:E-01 .2439E ative 28125E-01 1.930 .930.E-03 .2315E-02
th 0 - 3 th 0 - 8 (AMAL) + (1914,t) (02 YF-16) - (argue age	int 4 :2330E-01 -11492 16462E-01 1.916 CM
HAIRIVE "Madel" excertion . ()	COPY COMPLETE C - C A STDRING INVERSE OF (AMAT) TO (CMAT):
1 2 3 4 Oller	COMPARIAL C CHAI J MATRIX:
21721908100%E-01 .2247E-01 W'AU 1347E-01 .9364E-02 .58876E-031442E-02 1383 1.4414352 -1.618	underter my one ROW 1 2 3 4
Control 10-341481 - 10-305-10 - 10-34145-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LETE C -> B , OU NOW D LETE N -> A (AMAT) + (BMAT)	2011
MATRIX: Computer [N+0+V], outpr "Mode A Computer [N+0+V], outpr "Mode	1 COPY COMPLETE CT+RMATT - BMAT COPY COMPLETE - T-RMATT - BMAT (CMAT) = (AMAT) * (BMAT) - AMAT - AMAT
1 2 3 4	C CHAT] HATRIX: <u> <u> </u> </u>
0713	
2330E-011472	NUM 1 11.57 -4.522 .12813310E-01 2 .4887 10.169643E-031932E-01 3 -3.290 22.65 14.11 12.00
	4 .1177E-01 .5717E-014923 10.02
(амат) * (имат) ^{Маткт} * (имат) Маткт * (омат) © М ат)	COPY COMPLETE AF [T + R = A + T = T = A + A + A + A + A + A + A + A + A + A
1 · · · · · · · · · · · · · · · · · · ·	E CHAT] MATRIX:
3369 . 5982 . 1136 2038E-01 - 1868E-01 8801E-02 SMAT 3510 . 4960 3.273 SMAT	COL > 1 2 3 4 ROW
1954E-01 .2442E-01 .1695	1 .30877847 .1445E-012439E-01 2 .8125E-01 .7022E-019503E-032315E-02 35053 2.794 .6439 1.627 42330E-01 .14926662E-01 .8444E-01
LEFE R-PB LEFE colored = VMAT -> AMAT CONTE F (OUTUP)	COFY COMPLETE [T.A]+ B COFY COMPLETE 2 F- AN TAAL - 4AAL-

LECTRON CONCERSION

3 4 3 4 5562 66619E-01 1929E-02 3865E-01 233.99 .4501E-01 233.99 .4501E-01 3 <i>E</i> MAT 1056E-01 M 1056E-01 M 10822E-01 6 10822E-01 1 11AT -233.99 3 -3865E-01 1929 -3365E-01 19345 -14501E-01 19345 -14501E-01 19345 -14501E-01 1026 -14501E-01	2 3 4 2 3 4 -9.041 .2562 6419E-01 .3245 1929E-02 3865E-01 .3245 9.214 23.99 .1143 .2562 4619E-01 .3245 9.214 23.99 .1143 9845 .4501E-01 .3559 9.244 .756 .4755 1.768 .4764 .4755 1.768 .4764 .4755 .4756 .4764 .4755 .4756 .4764 .4755 .4756 .4764 .4755 .4756 .4764 .4755 .4756 .4764 .4755 .4744 .4764 .4755 .4744 .4764 .4715 .4744 .4764 .4755 .4744 .4764 .4755 .4744 .4764 .4755 .4744 .4764 .5557 .4764 .23656 .4755 .4744 .23656 .5557 .4764		11.73 544 3 (-2.423 + J(64.25 544 2 (-3.440 + J(178.2 (-3.440 + J(178.2 544 1 (-3.440 - J(178.2 544 1 - J(- J(178.2 544 1 - J(-	OPTION SRMAT, LHAT	COL > 1 2 3 4 ROW	4 .2350E-01 -11472 .6662E-01 .9156	COL > 1 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(we define thopped OFTION > SHAT, WHAT		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	COL > 1 2 3 ROW
	-9.044	T++ (MHT)	4 6619E-0 :-023865E-0	845 .4501E-0			3 6 11	.768 40345-01 7.64 38226-01	07	1AT	3 4 2362	VVALUES OF (AMAT)

· · · · · ·

2

.

÷.

١.

÷.,

• • • •

 \sim

فيدعد فيقدم فيتوتع تعاليه تعديد المتعالية

.

	•	0: 37955-01 aked infut -25.00 0: deta	cleck injut data	Cleet on EMAT, VAIAT,	4 HMAT 0. 20.00	4 0. 1.000	• • • • •	le clarge l'and
	м	2720 0. 1.000 1.000	3 1.897 3360E-01 49.60 0.		м 0.000 0.000 0.000	м 00. 0000 0000		met) sample)
	N	8.917 2965 -47.71 0.	2 4.766 5.655 0.	. НМАТ	2 20.00 0.	2 0. 0. 0.	0. -1.000 0.	ZMAT new a leste or
UPITUN ZAMMERTMAI	COL > 1 ROM		COL > 1 ROW - 3.925 1 - 3.925 2 - 2988E-01 3 7.178 4 0.	UP110N > ZMAT, UMAT	COL > 1 ROW 2 2 0.00 3 0.	COL > 1 ROW 1 - 1.000 2 0.000 4 0.	COL > 1 RDW - 1 1 -1.000 3 0. 4 0.	oftions note a line a U M
		WMAT	XM AT		MA [-	AT	check Inquel data	ok unput delte
		4 6619E-01 3865E-01 23.99 .4501E-01	•• • • 3795E-01 XMAT • 25.000		EMAT	Ym 4T	3380E-01 Cheek Input clark	check enject delte
		3 4 .25626619E-01 1929E-023865E-01 B.216 23.99 9845 .4501E-01	Compose 3 (Compose 2720 0:3795E-01 XMAT 25:00 1.000 0.		3 1,768 -,4036E-01 47.64 .8822E-01 6mpor	3 -11897 -1350E-01 49.60 0.	3 4 4150E-01 0. -2.330 0. -2.330 0. 1.000 0.	3 2.170 3570E-01 chuek enpiel delter 47.10 0.
		2 3 4 -9.044 .25626619E-01 .32451929E-023865E-01 45.39 8.216 23.99 .11439845 .4501E-01	2 3 3 (Enport 8.917 -:2720 0:3795E-01 XMAT -:2965 0: 3795E-01 XMAT -47.71 -8.359 -25.000 0: 11.000 0:		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 4 10.20 1160E-01 0. 3020 0. -50.00 -2.310 0. -2.310 0. 1.000 0.	2 3 4.6?2 2.170 .1919E-013570E-01 check under decker 5.940 0.
	WAT • XMAT	1 2 3 3 4 3.140 -9.044 .25526619E-01 .9775 -32451929E-023865E-01 .6.580 45.39 8.216 -02 -3365E-01 .2355E-01 .11439845 .4501E-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	И УЕМАТ,ҮМАТ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1 2 3 -3.25 -3.255 4.766 1.897 -2.938E-01 -1.3360E-01 YMAT 7.178 5.555 49.60 0. 0. 0.	1 2 3 3 4 - 4310 10.20 - 4160E-01 0. - 1000 - 3050 0. - 50.00 - 2.330 0. - 3880E-01 Cheek Inpub clehe	1 2 3 3 -4.120 4.620 2.120 .ATABE-01 -13570E-01 chuk mpich decker .2.650 0.910 0.100

95

. . .

. 1

APPENDIX D

VALIDATION OF ZOH CONTROL LAW, FREQUENCY RESPONSE

A A A A A

A Start Start

A comparison of the theoretical controller working against an ideal model of the open-loop aircraft was carried through using the frequency response concepts of Reference 2. A comprehensive set, at 10 Hz and 50 Hz, follows.

and wat at

Figure 36. Bode Plot ϕ/δ_{C}

No.

Contraction 1 and the second

Services - Services

SLEWER FIRST-ORDER FORM

Given

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{122}$$

the Laplace transform is

$$X(s) = [Is - A]^{-1}x(0) + [Is - A]^{-1}BU$$
 (123)

If the continuous control vector is a reconstructed signal, using slewer data holds, then

$$U(s) = M(s)R^{T}(s)$$
(124)

where M is the s-plane transform of the data hold. For the slewer, if R^{T} is the sampled input,

$$U(s) = \left[\frac{\left(1 - e^{-sT}\right)^{2}}{Ts^{2}}\right] R^{T}$$
$$= \left[\frac{1 - e^{-sT}}{Ts^{2}} - \frac{e^{-sT}}{s}\right] R^{T} + \left[\frac{1}{s} - \frac{1 - e^{-sT}}{Ts^{2}}\right] E^{-sT} R^{T}$$
$$= M_{1}(s) R^{T} + M_{2}(s) \left(R^{T} e^{-sT}\right)$$
(125)

The motivation for partitioning Equation 125 in this particular manner is clear when the impulse responses of M_1 and M_2 are plotted.

From Equation 125 write the impulse responses:

$$M_{1}(t) = \begin{cases} t/t & 0 \leq t \leq T \\ 0 & Elsewhere \end{cases}$$
(126)

$$M_2(t) = \begin{cases} 1 - (t/T) & 0 \le t \le T \\ 0 & \text{Elsewhere} \end{cases}$$
(127)

From Equation 125,

$$X(s) = [Is - A]^{-1}x(0) + [Is - A]^{-1}B[M_1R^T + M_2R^Te^{-sT}]$$
(128)

Let

54144

$$[Is - A]^{-1} = \phi(t)$$
 (129)

and write the inverse of Equation 123:

$$\mathbf{x}(t) = \phi(t)\mathbf{x}(0) + \left[\int_{0}^{t} \phi(t - \xi)BM_{1}(\xi) d\xi\right]\mathbf{r}^{T}(t) + \left[\int_{0}^{t} \phi(t - \xi)BM_{2}(\xi) d\xi\right]\mathbf{r}^{T}(t - 7)$$
(130)

Using the definition of Equation 126 and 127, substituted into Equation E-9, yields the explicit solution

$$\mathbf{x}(\mathbf{t}) = \phi(\mathbf{t})\mathbf{x}(0) + \left[\int_{0}^{\mathbf{t}} \phi(\mathbf{t} - \xi) \frac{\mathbf{B}}{\mathbf{T}} \xi \, d\xi\right] \mathbf{R}^{\mathrm{T}}(\mathbf{t}) \\ + \left[\int_{0}^{\mathbf{t}} \phi(\mathbf{t} - \xi)\mathbf{B} \, 1 - \frac{\xi}{\mathbf{T}} \, d\xi\right] \mathbf{R}^{\mathrm{T}}(\mathbf{t} - \mathbf{T})$$
(131)

Next, turn the integral equation into an integro-recursion equation by setting

 $t = kT + \tau$, $k = 0, 1, ..., 0 \le \tau \le T$ (132)

Clearly, in the recursion

1 . . .

مالا المرغان المرعات

19. 19 A. 19

$$x(0) \implies x(T)$$

$$x(T) \implies x(2T)$$

$$\vdots$$

$$x(kT) \implies x[(k+1)T]$$

Substituting Equation 132 into 131 gives the first-order form

$$\mathbf{x}(\mathbf{k}\mathbf{T} + \tau) = \phi(\tau)\mathbf{x}(\mathbf{k}\mathbf{T}) + \left[\int_0^0 \phi(\mathbf{t} - \xi) \frac{\mathbf{B}}{\mathbf{T}} \xi \, d\xi\right] \mathbf{R}^{\mathbf{T}}(\mathbf{k}\mathbf{t} + \tau)$$

+
$$\left[\int_{0}^{t} \phi(t - \xi)B[1 - (\xi/T)] d\xi\right]_{t=T} R^{T}[kT]$$
 (133)

Finally, suppress the redundant notation with regard to T, and thus verify the slewer first-order form

$$\mathbf{x_{k+1}} = \phi \mathbf{x_k} + \Gamma_1 \mathbf{r_k} + \Gamma_2 \mathbf{r_{k-1}}$$
(134)

where

$$\phi = \left[\mathbf{Is} - \mathbf{A} \right]_{\mathbf{t}=\mathbf{T}}^{-1} \tag{135}$$

$$\Gamma_{1} = \frac{1}{T} \int_{0}^{t} \phi(t - \xi) B d\xi = \mathcal{L}^{-1} \left[\frac{1}{T} \frac{[Is - A]^{-1}B}{s^{2}} \right]_{t=T}$$
(136)

$$\Gamma_{2} = \frac{1}{T} \int_{0}^{t} \left[\phi(t - \xi) B[1 - (\xi/T)] d\xi \right]_{t=T}$$
(137)

In going from Equation 133 to Equation 134 we make use of the discrete nature of R^{T} , specifically,

$$R^{T}[(k + 1)T] \equiv R(kT)$$

$$R^{T}[(k - 1)T] \equiv R(kT)$$
(138)

since the sampling value is determined at the start of the frame time.

Finally, observe

19. S. V.

1. 1. 1. S. S.

$$\Gamma_2 \stackrel{\text{\tiny def}}{=} \Gamma_{\text{ZOH}} - \Gamma_1 \tag{139}$$

APPENDIX F

SLEWER WIENER-HOPF EQUATIONS

Given a discrete set of equations of motion for the model

$$\mathbf{x}_{\mathbf{m}_{k+1}} = \phi_{\mathbf{m}} \mathbf{X}_{\mathbf{m}_{k}} + \Gamma_{\mathbf{m}} \delta_{\mathbf{m}_{k}}$$
(140)

one desires to modify the simulator, modeled by the slewer data hold equations

$$\mathbf{x}_{\mathbf{s}_{k+1}} = \phi_{\mathbf{s}} \mathbf{X}_{\mathbf{s}_{k}} + \Gamma_{1} \delta_{\mathbf{s}_{k}} + \Gamma_{2} \delta_{\mathbf{s}_{k-1}}$$
(141)

to match the model. Take the z-transforms, setting the initial condition vector equal to zero:

$$[\mathbf{Iz} - \boldsymbol{\phi}_{\mathbf{m}}]\mathbf{X}_{\mathbf{m}} = \Gamma_{\mathbf{m}}\delta_{\mathbf{m}} \qquad (142)$$

$$[\mathbf{I}\mathbf{z} - \boldsymbol{\phi}_{\mathbf{s}}]\mathbf{X}_{\mathbf{s}} = [\Gamma_1 + \Gamma_2 \mathbf{z}^{-1}]\delta_{\mathbf{s}}$$
(143)

Given a control law of the form

$$\delta_{\mathbf{s}} = C_{\mathbf{F}}\delta_{\mathbf{m}} + C_{\mathbf{B}}X_{\mathbf{s}}$$
(144)

Equation 143 becomes

$$[\mathbf{I}z - \phi_{g} - (\Gamma_{1} + \Gamma_{2}z^{-1})C_{g}]X_{g} = [\Gamma_{1} + \Gamma_{2}z^{-1}]C_{F}\delta_{m} \qquad (145)$$

The relationships

$$[\Gamma_1 + \Gamma_2 z^{-1}]C_F = \Gamma_m$$
(146)

and

1. a. 1.

A STATES

一次次が決めた

C. A. L. M. S. T. C.

$$[\Gamma_1 + \Gamma_2 z^{-1}]C_B = \phi_m - \phi_s \qquad (147)$$

cannot be identically satisfied, since $[\Gamma_1 + \Gamma_2 z^{-1}]^{-1}$ does not, in general, exist. Taking a mean-square approach, form the vector E according to Equation 148,

$$E = \begin{bmatrix} \Gamma_1 + \Gamma_2 z^{-1} \end{bmatrix} \begin{bmatrix} C_F \\ C_B \end{bmatrix} - \begin{bmatrix} \Gamma_m \\ \phi_m - \phi_s \end{bmatrix}$$
(148)

to set up the integrand of the performand index

Contraction of

Shyabball - Latanta Are succession

$$J = \frac{1}{2\pi j} \int_{\Gamma} E'(z)E(z) \frac{dz}{z}$$
(149)

The gradient of E'(z)E(z) with respect to $[C_F(1/z) | C_B(1/z)]$ gives the W-H equation:

$$\frac{1}{z} \left[\Gamma_{1}' + \Gamma_{2}' z \right] \left\{ \left[\Gamma_{1} + \Gamma_{2} z^{-1} \right] \left[\begin{array}{c} C_{F} \\ C_{B} \end{array} \right] - \left[\begin{array}{c} \Gamma_{m} \\ \phi_{m} - \phi_{s} \end{array} \right]' \right\} = \psi \quad (150)$$

This verifies the W-H equation given for the slewer in the text.

APPENDIX G
PROOF,
$$C_{\mathbf{F}}^{-1}C_{\mathbf{B}} = (\Gamma_{1}^{\prime}\Gamma_{\mathbf{m}})^{-1}\Gamma_{1}^{\prime}(\phi_{\mathbf{m}} - \phi_{\mathbf{B}})$$

The relationship

$$c_{\rm F}^{-1}c_{\rm B} = (r_1'r_{\rm m})^{-1}r_1'(\phi_{\rm m} - \phi_{\rm s})$$
 (151)

can be proven by using the properties of spectral factorization. Let

$$\frac{(\Gamma_1 + \Gamma_2 z)(\Gamma_1 + \Gamma_2 z^{-1})}{z} = \phi \qquad (152)$$

have the factorization

$$\phi = \phi_{1\star}\phi_1 \tag{153}$$

and write

$$\phi_{1\star}\phi_{1}[c_{\mathbf{F}} \mid c_{\mathbf{B}}] - \frac{[r_{1} + r_{2z}]}{z} [r_{\mathbf{m}} \mid \phi_{\mathbf{m}} - \phi_{\mathbf{s}}] = \psi \qquad (154)$$

The symbolic solution is

$$\begin{bmatrix} \mathbf{C}_{\mathbf{F}} \mid \mathbf{C}_{\mathbf{B}} \end{bmatrix} = \phi_{\mathbf{\overline{1}}}^{-1} \left[\phi_{\mathbf{1}\star}^{-1} \frac{\left[\Gamma_{\mathbf{1}} + \Gamma_{\mathbf{2}} \mathbf{z} \right]}{\mathbf{z}} \left[\Gamma_{\mathbf{m}} \mid \phi_{\mathbf{m}} - \phi_{\mathbf{s}} \right] \right]_{+}$$
(155)

But $\phi_{1\star}^{-1}$ and $\Gamma_1 + \Gamma_2 z$ have no poles interior to the unit circle. Therefore, only the pole at the origin can contribute to the partial fraction expansion. Thus,

$$\begin{bmatrix} c_{\mathbf{F}} & c_{\mathbf{B}} \end{bmatrix} = \phi_{1}^{-1} \begin{bmatrix} \phi_{1\star}^{-1}(0) & \Gamma_{1}'\Gamma_{\mathbf{m}} \end{bmatrix} = \phi_{1\star}^{-1}(0) & \Gamma_{1}'(\phi_{\mathbf{m}} - \phi_{\mathbf{s}}) \end{bmatrix}$$
(156)

Since

Sectors of the sectors of the sectors

16.25.5.26.24.1

$$c_{F}^{-1} = (r_{1}' r_{m})^{-1} \phi_{1*}(0) \phi_{1}$$

then

$$c_{F} c_{B} = (r_{1} r_{m})^{-1} \phi_{1*}(0) \phi_{1} \phi_{1}^{-1} \phi_{1*}^{-1} r_{1}'(\phi_{n} - \phi_{s})$$

or

 ₹.

$$C_{F}^{-1}C_{B} = (r_{1}'r_{m})^{-1}r_{1}'(\phi_{m} - \phi_{s})$$

APPENDIX H

PHYSICAL REALIZATION OF THE SLEWER COUPLER

This appendix reviews the conversion of a sampled sequence to a continuous variable using a zero-order hold. One particular realization of the ZOH can be considered to be an incremental hold.

A. CONVENTIONAL ZERO-ORDER HOLD

AND AND ADDRESS AD

A TANKARA

たちていたたいとう

E. K. C.

Consider the impulse sampling of a time signal x = t, with a transform of

$$x = 1/s^2$$
 (157)

Reconstruction, via a ZOH (Fig. 41a) gives

$$Y = \frac{1 - e^{-sT}}{s} X(s) = \frac{1 - e^{-sT}}{s} \frac{Tz}{(z - 1)^2}$$

$$= \frac{1 - e^{-sT}}{s} \times T \frac{1}{z} + \frac{2}{z^2} + \frac{3}{z^2} + \cdots$$
 (158)

Figure 41. Zero-Order Hold Reconstruction

The reconstruction, using Eq. 158, is represented schematically in Fig. 41b.

Figure 41b represents a hardware implementation using a clamping circuit. That is, a constant level of voltage (or current) is held for T seconds and then (physically) removed. The control law then (essentially instantaneously) supplies a new pulse, which is clamped (held) for the next T second interval. The data hold is $(1 - e^{-sT})/s$.

Figure 42. An Incremental Implementation

B. A PARTIAL SOFTWARE IMPLEMENTATION

Suppose the decision is made to relegate the transcendental element of the clamping circuit to software (Fig. 42). The describing equation is

$$Y = \frac{1}{s} \frac{z - 1}{z} \left[\frac{Tz}{(z - 1)^2} \right] = \frac{T}{s} \left[\frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right]$$
(159)

The implication is (Fig. 42b) that each T second an increment to the control action is added to the signal already present. The data hold is 1/s.

C. THE SLEWER DATA HOLD

またい いってい ろうしょう

and a state of the second

a state and

The preceding viewpoints transfer readily to the slewer data hold.

$$M_{slew} = \frac{M_o^2}{T} = \frac{(1 - e^{-sT})}{Ts^2}$$
(160)

The hardware implementation (Fig. 43) interprets the output

$$Y = \frac{(1 - e^{-sT})^2}{Ts^3} \frac{Tz}{(z - 1)^2} = \frac{(1 - e^{-sT})^2}{Ts^2} \frac{1}{z} + \frac{1}{z^2} + \frac{3}{z^3} + \cdots$$
(161)

Figure 43. A Hardware Slewer

as being built from shifted triangles while a more software-oriented implementation might retain an integrator and a ZOH (in hardware) and relegate the remainder to software (Fig. 44). This tends (Fig. 44) to have the appearance of an incremental controller.

Constanting of the

10.00 M 14.00

STATES I

Figure 44. Partially Software Implemented Slewer

The point we wish to make at this juncture is simple. The analytical model used in the synthesis process can differ from the physical implementation; however, the derived control law properties remain intact.

APPENDIX I

ADDITIONAL SLEWER DATA AND TABULAR LISTING OF STEP RESPONSES

The matrices involved in the slewer solution are ϕ_s , ϕ_m , Γ_m , Γ_1 , and Γ_2 . These are, with the exception of Γ_1 and Γ_2 , listed in Appendix A. Define

$$\Gamma_{1} = \begin{bmatrix} R_{101} & R_{102} & R_{103} \\ R_{104} & R_{105} & R_{106} \\ R_{107} & R_{108} & R_{109} \\ R_{110} & R_{111} & R_{112} \end{bmatrix}, \quad \Gamma_{2} = \begin{bmatrix} R_{121} & R_{122} & R_{123} \\ R_{124} & R_{125} & R_{126} \\ R_{127} & R_{128} & R_{129} \\ R_{130} & R_{131} & R_{132} \end{bmatrix}$$
(162)

Data for Equation 162 are listed in Table 7.

TABLE 7

DATA FOR Γ_1 , Γ_2

R101 = -0.283	742140	R121 =	-0.197317335
R102 = 0.115	668810	R122 =	0.218682553
R103 = 0.102	104000	R123 =	0.095739417
R104 = 0.008	363868	R124 =	0.014969735
R105 = -0.006	567369	R125 =	-0.013856154
R106 = -0.005	131947	R126 =	-0.008120770
R107 = 0.332	982000	R127 =	0.277639404
R108 = 0.294	238000	R128 =	0.300734839
R109 = 2.287	250000	R129 =	2.132551283
R110 = 0.010	283700	R130 =	0.022925586
R111 = 0.009	357000	R131 =	0.020065493
R112 = 0.076	482000	R132 =	0.152324084

In addition, the step transient responses of the closed-loop system, in increments of 0.1 seconds, are listed in Table 8. In this table,

STATES -

1. 1. 1. C. 1. 2.

$$R_{01} = X_{1} = \beta \qquad R_{13} = \delta_{1} = \delta_{R}$$

$$R_{02} = X_{2} = r \qquad R_{14} = \delta_{2} = \delta_{SF}$$

$$R_{03} = X_{3} = p \qquad R_{15} = \delta_{3} = \delta_{A}$$

$$R_{04} = X_{4} = \phi$$
(163)

TABLE 8. SLEWER STEP RESPONSES

Car Sector

W.M.

BALS & 334536838	A A/8707050	201= 0.067496061	0.060167828	8.868434966	0.060677115	0.060788469	0.060630303
		Pa2= 8 981247178	8.888368214	8.00062153	0.000322119	0.000646129	8.000762000
KASS A. Dankining	0.00811/652	ROC- 01001273130	8.885729329	-0 002199974	-8.000107033	8.008821235	0.0000102023
682= 8 .8998884444	-0.013466723	RUJ* 0.02J710776	-9 669294114	-0 000720751	-8.001729304	-8.881265243	-0.0000000000
R84= 0.800000 000	-0.815747898	X84 ≠ -0.0 883833560	-0.00009114	-0.000120331	01001327304	0.001203213	-0.0012/2412
•			0.004100700	1 077/ 10110	9 979471751	0 077715505	
R13= 1.533456216	8.696242196	R13= 1.147232834	0.074187399	1.83/649412	0.7/2939231	0.2///10070	1.014115340
R14= 1.667517994	8.665216749	R14= 1.229792917	0.894826382	1.187724311	0.937333531	1.834175438	1.040527945
R15+ -8.458538559	-0.172334136	R15= -0.333396952	-0.245968690	-0.297762217	-0.271497306	-0.277453132	-0.235834349
A.	5.	18.	15.	20.	25.	39.	35.
	••						
501- 0 0170700CE	A 07000151	PR1= 0 965195370	0.060130317	8.060366755	0.060864974	0.060629684	0.868744982
ROI- 0.011010000	0.070002432	RA2= 8 000865573.	0.000254143	0.008348312	0.000656774	8.808768689	9.888668851
KACa 8.044545113	0.000428972		8.002019030	-0.001557794	-0.000215081	0.000233323	-0 0000000414
KA?= -0.0201005553	0.000508122	BOA 0 002402710	-9.999427312	-8.888928712	-8.981313972	-8.001230086	-0.001277172
894= - 0 .003035233	-0.016446332	K07+ -0.000+70/10					0.001233100
			1 079157247	8 944919971	8.996671833	1 001599991	0.0507/0176
R13= 0.562121392	1.168622941	RIJ= 0.34503/393	1 155774945	0.744710031	1 057959579	1 027927932	8.738(472(8
R14= 0.548256696	1.249593669	R14= 0.835675474	1.1JJJJJ405J	0.73425/110	-0.00700444	-0 201510104	1.009033263
R15= -0.139155544	-8.334843938	R15= -0.229132429	-0.311/52351	-0.262222740	-0.203904441	-0.201310404	-0.270829096
1.	6.	11.	16.	21.	26.	51.	36.
					*		
PO1- 8.034367119	6 671179194	R01= 0.063568499	0.059793981	0.060713305	0.068676733	0.060761370	0.060641053
801- 0 007577757	0.005140052	R82= 8.888249189;	0.000584925	8.000672744	0.060795131	8.009652156	0.000753592
ROZ+ 0,007 JELT JE	0.003140030	FR3= 8.918731427	8.000344499	-0.081594104	0.000237276	-0.000034765	8.888857272
RUJ= -0,037459977	0.013033762	P94= _0 004393959	-0.000316309	-0.981864382	-0.001345226	-0.001241732	-8 841275345
X844 -8.0802022.70	-0.013651312	NUT- 01001077030					01001210000
		017- 1 102770/50	8.912353295	1 021050000	8.933746719	8.978218276	1 010776917
R13= 1.243 711964	0.754954354	X13= 1.120/32430	916146710	1.000715707	1 881229771	1.024476647	1.010/20040
R14= 1.351209724	8.7293 47837	K14= 1.209111466	-0.251714201	1.000/10/7/	-9 275760145	-0 774257915	1.046942329
RIS= -0.360449478	-0.1948041931	RIS= -0.327836899	-0.2J1/14201	-0.292388530	-0.213307140	79	-8.28/525465
2.	7.	12.	17.	22.	۲۰.	34.	37.
	-						
201# 0.043053173	8.971952527	R01= 0.061817274	0.060121379	0.060592210	8.068329573	8.060624713	0.060743023
902x 8.903924367	8 997491572	R92= 0.000327694	0.000479761	8.888847969	0.000646621	0.000764782	0.090674233
ROT= -0.073737752	A 021176203	R03= 0.014521491	-0.001438832	-0.000731215	0.000096470	8.989145433	-0.000089615
DA4A Q10247044	-0.021110207	R84= -8.002722226	-0.000369937	-0.001297846	-0.001238267	-0.001275251	-0.081236893
NA4AIG16740044	-9.913349630						
		P17= 8 272982715	1.956326991	8,959443596	0.986508160	1.003447031	A. 954684257
KIJ= 0.041050233	1.1605857.31	DIA- 6 040407097	1.129996334	0.971588620	1.045306317	1.032901599	1 007201220
R14= 8.613394953	1.241854593	DIE0 070000007	-8.384193961	-8.267935919	-0.230461021	-0.283897092	-0 3207/0000
R12= -0.1222/1322	-0.335335891	KLJ= "0.23070997/	18.	37	28.	33.	-0.207340370
3.	8.	13.	••••	£3.		431	38.
					0.044240004	0 0/07/0000	
181= 0.0 57994422	8.969299985	x01= 0.0610 78210	0.060026363	0.060547493	0.000044341	0.050/9373	0.050(59319
R02= 0.903774122	0.002435993	R02= 0.000972326	0.809761494	8.000672025	0.000777393	0.000668323	0.000754335
R#3= -4.023722643	8.825334534	R03= 0.009217262	-0.001529390	-8.088763155	0.880301296	-0.020072491	8.888943919
RA4= -0.013674183	-4.011570742	R04= -0.001549529	-8.808542463	-0.001257643	-0.001310256	-0.001232690	-0.001278361
R17+ 1 184979977		R13= 1.102411803	0.929134323	1.003353222	0.993421795	8.963917495	1.022339242
814- 1 371057004	0,595J2)[92 0 7:0/68/04	R14= 1,192785757	0.935728663	1.072311418	1.013446629	1.0161494-7	1.852253211
	0.707173121	£15z -8.328821375	-0.257063607	0.287332363	-0.273695153	-0.272657047	-8.233649013
K137 ~8.3332/5545	-0.2145/5553		13.	21	29.	34.	79
4.	7.	17.		6.76		• •	a . •

25 +U.S.Government Printing Office: 1983 - 759-062/505

B