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responsibility for the accuracy, comp eteness or usefulness
4 of any information or process disclosed.
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ABSTRACT

N A simple test is given for determining whether a given matrix
; is the eigenvector matrix of an (unknown) unreduced symmetric
' tridiagonal matrix. A list of known necessary conditions is also
provided. A lower bound on the separation between eigenvalues of

tridiagonals follows from our Theorem 3. \g
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| 1. INTRODUCTION.

: In a sequence of papers during the 1980's Slepian, Landau, and Pollack |

investigated functions that are nearly time limited {(supp f €[-T7,T]) and nearly
band limited (supp f €[-Q.0]). see [S..1983]. Among other things they

X discovered that the integral operator X on LY ~-7,T] given by L 74

3

{ (RP)E) 1= [y SMES8) s (5) as

Dist

] commutes with a second order differential operator D given by ! 747 ‘

: (01 )(=) := (12291 () - (Bz2s (2) .
3 and zero boundary conditions. Here f' denotes the derivative of f . Moreover D 7 o, “\

has a simple (point) spectrum. Consequently the eigenfunctions of X are the N
eigenfunctions of D . The authors managed to generalize this result from z and

tin R tox and ¢t in RN. A decade later Slepian demonstrated the discrete

' 1 Hathematics Department, University of California-Berkeley
! $ Beijing Centre for International Economic Information
] The first author gratefully acknow!edges support from ONR Contract N00014-76-C-0013.
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analogue [S.,1978]: X becomes a symmetric Toeplitz matrix with (i,j) element

sinemo(i=i) . ;. on

2 (i-7)
and D becomes a symmetric tridiagonal matrix. This is a rare example of a Toe-

plitz matrix which can be expressed as a polynomial in a non-Toeplitz matrix.

Recently Grunbaum has been extending these results in several directions.
For example, in [G., 1981] he describes all symmetric Toeplitz matrices which
admit some unreduced t:ridiagonal matrix in their commutators. It turns out
that each such matrix is determined (essentially) by just three of its elements:
(1.2), (1,3), and (1,4). In [G., 1982] he exhibits Hankel matrices (including the

Hilbert matrix) that commute with unreduced tridiagonals.

It is well known [M. & M., p.77] that if A commutes with M and A has simple
spectrum, then M is a peolynmial in A and they share the same eigenvectors.
What permits a symme?.rie matrix A to have a tridiagonal in its commutator is
that its set of eigenvectors is very special. The matrix of eigenvectors may be
taken as orthogonal and this communication characterizes the eigenvector
matrix of a symmetric, \.mreduced tridiagonal matrix by means of a simple test.
It turns out that the first tv;o rows (or the last two rows) determine all the oth-

ers, because they fix the eigenvalues.

After introducing notation and reducing the general problem, we give a list
of known properties of these eigenvectors. Our characterization is given in Sec-
tion 5. A bound on the number of zero elements in a row is given in Section 8
along with a result connecting eigenvalue separation and the top row of the nor-

malized eigenvector matrix.

2. NOTATION AND DEFINITIONS

Capital roman letters denote matrices, with A and T reserved for real sym-

metric matrices. The elements of B are written B(i,j). Lower case letters z, y,

~~~~~
----




..............................................

... denote column vectors, lower case Greek letters .8, ..., denote scalars, but
i,7.k,l, m, n are reserved for indices. G! denotes the transpose of G.
A matrix C is iridiagonpal if C(i.j) = 0 whenever |i—j| > 1. A tridiagonal
matrix C is unreduced if C(i, i+1) # 0 and C(i+1, i) # O for all relevant indices
R i. The gpectrum of C is the set of eigenvalues of C, ignoring multiplicity.
For brevity let UST(n) be the set of nxn real unreduced, symmetric, tridi-

agonal matrices. Let UST,(n) denote the subset of UST in which the (i,i+1) ele-

ments are positive.

Eigenvectors are defineéd only to within a scalar factor. However, the eigen-
vecrtor; of a real syrnmetrie matrix may be chosen to be orthonormal, and this
is a natural convention tha"‘t: we too will follow. When A has simple spectrum we
may speak of the eigenvectbr matrix G and write

A = GAG
where A is diagonal and G is grthogonal. For a given ordering of the eigenvalues
in A the matrix G = (g;, ....;-g,.) is unique (up to replacement of g; by —g; ). If
T = T; o €UST we define its s;bmatrix Tjn by

< ey By
ﬁj Qj+1 ﬁju
T,,‘ = ﬂjﬂ :
Bn -1
ﬂa-—l an

The characteristic polynomial of T} , is

Xs.n(¢) := det[{1-T; 5]
X1 is abbreviated by x or x,. The spectral factorization of T =T, , € UST(n) is

written

Q": e

b
(]

, T = 5@S"
where @ := diag (¥, ..., ¥, ) with eigenvalue ordering

01<T,g< M <1’ﬂ'
and S:=(s;,....s,) is the orthogonal eigenvector matrix. Thus
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Ts; =s;%,i=1 ...n,andsfs; = 1.

3. PROBLEM REDUCTION.

The identity matrix I is tridiagonal and consequently any orthogonal matrix

is an eigenvector matrix of some tridiagonal. This case shows the importance of

insisting on a simple spectrum for T.

Consider next tridiagonal rmatrices T which are reduced
i [T(j.j-l-l) = 0 for some j] and yet have simple spectrum. Such T's are the direct
| sum of two or more unreduced tridiagonals, say T = diag (T, T, Ty), with T, €UST.
Its eigenvector matrix is the corresponding direct sum of the eigenvector
matrices of T, T, and T3 provided that the eigenvalues of T; are kept together in
the ordering of the eigenvalues of T. However, no matter what the ordering of

the eigenvalues, T's eigenvector matrix is not fully indecomposable. We follow

the terminology of [M. & M., 1964] here; some authors would say that T°s eigen-

vector matrix is reducible.

The procedure for deciding whether a given orthogonal Q is the eigenvector
matrix of some tridiagonal with simple spectrum is to column-permute Q into a
direct sum of its fully indecomposable parts and then to determine whether

each part is the eigenvector matrix of some T¢ in UST.

4. KNOWN PROPERTIES.

\ FACT 1. If TeUST(n ) then T has n distinct real eigenvalues.

"

. Proof. The minor of the (1,n) element of T—¢{l is Tf T(i +,i) which vanishes
{=]

., for no value of {. So rank (T—¢l) @ n-1. The eigenspace of each eigenvalue has

dimension 1. The result follows from the symmetryof T. «

WARNING: The eigenvalues of T may be very close indeed, even when the off

diagonal elements are not small relative to the eigenvalue spread, but see
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Theorem 3 in Section 8.
FACT 2. If TEUST(n) then the eigenvalues of T ,-, separate those of T,,. The
eigenvalues of Tz, separate those of T) . ».

Proof. See [ P., 1980, Chap. 16].

The next result, which uses the notation established in Section 2, was
extended by Gantmacher and Krein [G. & K., 1950] to the class of oscillation
matrices. Karlin has extended theér results to include differential operators [K.,
19].

Recall that the eigenvalues of fi‘,_,. are ordered by

1’[ <11’2 < tet < 1’“.
We sketch a proof because it is shert.
FACT 3. If TeUST,(n) then the number of sign changes between consecutive

components of ¥, 's eigenvector sy isn-i, fori= 1, ..., n.

Proof. By the 3 term recurrence governing the x;; one can verify that s; is
proportional to
[1 (87 B1. Xa(8)ABrBa ... Xn-a(B)/ B - -+ Baca]t
and each 8; > 0. The polynomials §1,x,,....Xxa-1} form a Strum sequence. (See
[W.. 1965, p. 300] but observe that det|T—¢1] = (=1)"xn(¢) ). It follows that the
number of sign differences in §1,x:(¢).....xn-1{¢)} equals the number of eigen-

values of T, , greater than ¢, not less than ¢ . The result follows from Fact 2.
The following more detailed results can be found in [P., 1880, Chap. 7].

FACT 4. (C.C. Paige). If TEUST{n) then

a) 5:(1)%¢ (%) = xen (%¢).

b) 8(n)B(8;) = xn-1(:),

c) s(1)sy(n)x'(%;) =Bz * Bn-r
COROLLARY. s;(1) # 0,5i(n)#0,,i=1, .., n

a 8 A~

Proof. By Fact 2, xaa (%) # 0, Xn-1(¥¢) # 0. By Fact 1, x'(%;) # 0. «.
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The corollary is a well known necessary condition for an orthogonal matrix

to be an eigenvector matrix for some TEUST . In the next section we generalize

this result to the other rows.

If TEUST(n) then there is no loss of generality in assuming that TEUST.(n).
More precisely, if TEUST then there is a diagonal matrix A with A(i,i) = £1 such
that ATA € UST, . If S is the eigenvector matrix of T, then AS is the eigenvector
matrix of ATA. Moreover, we may take s;(1) >0,i =1, ..., n.

FACT 5. (Uniqueness of Reduction.) If QAQ = T € UST,(n), and Q is orthogonal,

then Q and T are determined by A and ¢, or by A and gq,.

Proof. See [P., 1980, Chap. 7].

COROLLARY. Let S@S* = T€UST(n) be the spectral factorization of T. Both
T and S are determined by ® and e} S or by ® and e$S. Our last fact makes expli-

cit the dependence of Q on ¢; and A in Fact 5. The formula goes back at least to
C. Lanczos.

FACT 8. Let T = QAQ € UST,(n) with Q orthogonal.
@541 = X5(A)g1/ (B - - - By). for j=1,....n -1,

Proof. See [P., 1980, p. 116].
5. CHARACTERIZATION OF THE EIGENVECTOR MATRIX

There is a whole family of tridiagonals which share a common eigenvector
matrix.
LEMMA 1. If T€UST, then AT-gl€UST, for all ¢ and all A > 0. Moreover T and
AT-cl have the same eigenvector matrix.

Proof. The first asertion is trivial. The second uses the orthogonality of the
eigenvector matrix S; T = S8S! implies AT-ol = S(A@—cI)S*. «

This trivial lemma is the key to a simple characterization of S. It shows that

in the search for a T there is no loss in taking a; = T(1,1) = 0 and 8; = T(1,2) = 1.
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THEOREM 1. Let G =(g,. ..., gn) be orthogonal G! is the eigenvector matrix of

some T€UST(n) if and only if the following conditions hold.
(1) g1(}) #0,i=1, ... n.
(2) The numbers ; are all distinct, where ¥; := g(i)/ g.(i).i =1, ..., n.
' (3) G'OGEeUST, where 8 = diag (3, ..., B ).
Proof. Condition 1 was established as the Corollary of Fact 4.

Because G is orthogonal, G*@G =T ean be rewritten 8G = GT. Equating
column 1 on each side yields
8g, = g1 + 9281
By Lemma 1 there is no loss in taking a;=0,8; =1, to obtain
8,9,(i1) =go(i),i =1, 2, ..., n. Thus O is determined by g, and g,. By Fact 1 the
9; must be distinct. This is condition 2.

I G!AGEUST(n) for some A = diag (A, ..., An). then, by the previous para-
graph, Ag; =g.1a; + g2, for some 5,8, and thus ;; =, + %811 =1, ..., n.
Consequently G*8G = (G*AG—a,/)/ §,€UST(n) as well. This establishes condition
3. s

Condition 3 is easily stated but will fail for most orthogonal matrices satis-

fying conditions 1 and 2. We can replace (3) with a sequence of necessary condi-

tons. As soon as one fails, we know that G* cannot be an eigenvector matrix.

DECISION PROCEDURE. Given distinct values 3; := go(i)/g,(i), i = 1, ..., n,
and @ = diag (¥, ..., ¥,) proceed as follows:
for j =2,....,n-1,do

form g 541 := 8g; — g5a; = g5-1;- .

where a; :=gf@g; B;.  af- 4.

I gyes # £g 41/ |§ 5+1]| then exit and report failure.

if no failure then G* is an eigenvector matrix for the T defined by the a; and §;.
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Proof. By Fact 5 (uniqueness of reduction) there is a unique orthogonal
matrix G and a unigue T, in UST, satisfying
T+ = 5‘06. gl =g

All T in UST orthogonally similar to ® are given by

T = AT, A = AG*OGA
with diagonal A and A(i,i) = +1. Hence G*@G<cUST if and only if G = GA for some

A

The algorithm in the procedure is simply the construction of the matrix G
column by column together with the test g; = +3;. »

There is a result dual to Theorem 1 which uses the last row instead of the
first one. We state it without proof.

Theorem 1'. Let G = (g, ..., g») be orthogonal. G! is the eigenvector matrix
of some Te€UST{n) if and only if the following conditions hold.
1) ga(t)#=0,i=1,..,n.
2' The numbers ¢;(:= gn-1(1)/ gn(i)) must be distinct.
3. G'®GeUST, where & = diag(y,, ..., ¥n).

Since different normalizations are involved, we will not have ¥; = ¢; in gen-

eral. However they must be lineraly related,

Y =Pp-1pi=Cp,t1=1,..., 0.

In practice the decision procedure could work simultaneously from the top

row and the bottow row towards the middle.

6. ZERO ELEMENTS.

THEOREM 2. If S is the eigenvector matrix of TEUST(n) then the number of

zero elements in its j’th row is at most min (j-1, n-j).

Proof. Since T = AT A for T,€UST, and A(%,i) = +1 there is no loss in consid-
ering TEUST,(n). Apply Fact 8 to the relation T = S8S* to conclude that




....................

S‘eji'l(ﬂl e ﬁJ) = x,-(@)S‘e,. ie.,

SG+D@E - B) = x)s(1) i =1 .n
Now, x; is a polynomial of degree j and independent of ¥;. It can have at most j
zeros and so S(j +1,.) can have at most j zero elements. These occur when, and

only when, an eigenvalue of T is also an eigenvalue of a submatrix T, ;.

By Fact 5 (uniqueness of reduction) T and S are also determined by @ and
Sp. The analogous formmula is
$i(G+1)(Bjsr1 " Bn) = Xjria(W)si(n), i =1, ..., n
Since Xj+1,» is of degree n-j-1, S(j +1,.) can have at most n-j-1 zero ele.nents and

these occur when an eigenvalue of T is also an eigenvalue of Tj4+yp. o

Our last result concerns the separation of the ¥'s.

THEOREM 3. For T €UST,(n),

ln[ (By—0)/ B = 1/ f[s(u) >nkn
<, <-3l =1
Proof. Define

B:=diag (1,81,8182.....6182-Bn-1).
I:=diag (S(1,1),5(1,2), - - - ,S(1,n)).
The displayed equation in the proof of Theorem 2 implies that

S=B7ICZ, where C(i,j) := x;-1(9;).
By standard properties of determinants and Vandermondes

detC = detV = ]] (3;=8,) >0,
‘i’<=jl
where V(i,5)=9}"". Since S is orthogonal,

+1 = detS = detC x detl/ detB.
By our normalizations, including S(1,l) > 0, the right side is positive and so det S

= +1. Finally

dets = BP718pE oo = T1 60

1
<
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The last inequality comes from the generalized Arithmetic-Geometric mean rela-

tion.

We quote without proof the analogous result using the last row of S.
THEOREM 4. For T €UST,(n),
I1 500785 = 1/ TTISr)) = .

<j

These results are informative. As £;+0 so can one or more of the
differences 9;,,—3; 0 without violating the lower bound. Of more interest is the
case of known fixed f's. The differences of ¥'s is bounded above by the spread
¥, —9; which is itself bounded by 2||T]|. This yields a crude but explicit lower
bound on min(¥;,;—8;) in terms of the g's and || T||. Although eigenvalues of T"s
in UST(n) can be surprisingly close to each other, they cannot be arbitrarily

close when the 8's are given.

The relationships are even clearer in the special but important case of
B = 1 for all i. For small values of n the presence of tiny S(1,l) precludes close
¥'s but as n increases this effect weakens rapidly. Wilkinson's matrix W3, is an
example of this phenomenon. See [W,p.308] for more information on this
madtrix.
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