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Eigenvector Matrices of Symmetric Tri'diagonals

B.N. Plrrtettt and W-D Wut

ABSTRACT

A simple test is given for determining whether a given matrix
is the eigenvector matrix of an (unknown) unreduced symmetric
tridiagonal matrix. A list of known necessary conditions is also
provided. A lower bound on the separation between eigenvalues of
tridiagonals follows from our Theorem 3.

This paper is dedicated to Professor F.LBauer on the occasion of
* his 65th birthday.

AMS (MOS) subject classification. 6540
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L INTRODUCTION.

In a sequence of papers during the 1960's Slepian, Landau, and Pollack

investigated functions that are nearly time limited (supp f E[- T, T]) and nearly

band limited (sup I e-0.f]), see [S..1983]. Among other things they

discovered that the integral operator K on L2[-T. T] given by
~rsinOt -s)'

(Kf)(t) fr (t-s) f (s) ds, ,

commutes with a second order differential operator D given by

(DJ)(x) : ((T-zX) W()e - IF-zV (Z-)__

and zero boundary conditions. Here f' denotes the derivative of f. Moreover D

has a simple (point) spectrum. Consequently the eigenfunctions of K are the , .
PC.

eigenfunctions of D. The authors managed to generalize this result from z and

t in R to z and t in RN. A decade later Slepian demonstrated the discrete

t Mathematics Department, Utniveruity of California-Berkeley
$ Beijing Centre for Tnternattonal Economic Information
Me first author gratefully acknowledges support from ONR Contract N00014-76.C-0013.

-S.-.. . . . v. .



-2-

analogue [S., 1978]: K becomes a symmetric Toeplitz matrix with (,j) element

sin 2=0ej -D n: ) -

and D becomes a symmetric tridiagonal matrix. This is a rare example of a Toe-

plitz matrix which can be expressed as a polynomial in a non-Toeplitz matrix.

Recently Grunbaum has been extending these results in several directions.

For example, in [G., 1981] he describes all symmetric Toeplitz matrices which

admit some unreduced tridiagonal matrix in their commutators. It turns out

Nthat each such matrix is determined (essentially) by just three of its elements:
'N

(1,2). (1,3), and (1.4). In [G., 1982] he exhibits Hankel matrices (including the

Hilbert matrix) that commute with unreduced tridiagonals.

It is well known [M. & M., p.77] that if A commutes with M and A has simple

spectrum, then M is a pelynnial in A and they share the same eigenvectors.

What permits a symmetric matrix A to have a tridiagonal in its commutator is

that its set of eigenvectors is very special. The matrix of eigenvectors may be

taken as orthogonal and this communication characterizes the eigenvector

matrix of a symmetric, unreduced tridiagonal matrix by means of a simple test.

It turns out that the first two rows (or the last two rows) determine all the oth-

ers, because they fix the eigenvalues.

After introducing notation and reducing the general problem we give a list

of known properties of these eigenvectors. Our characterization is given in Sec-

tion 5. A bound on the number of zero elements in a row is given in Section 8

along with a result connecting eigenvalue separation and the top row of the nor-

malized eigenvector matrix.

Z NOATION AND DEFINmONS

Capital roman letters denote matrices, with A and T reserved for real sym-

metric matrices. The elements of B are written B(,j). Lower case letters z, y,

i l . .' . . .. .I . ..... .i ; - ' " - ' " " '" " : " ." ' ." ' ' - ' " . " "'
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denote column vectors, lower case Greek letters a,#, .... denote scalars, but

t. j, k, L, m, n are reserved for indices. G' denotes the transpose of G.

A matrix C is tridingoal if C(i,) = 0 whenever li-j I > 1. A tridiagonal

matrix C is unreduce if C(i, i+1) 0 0 and C(i+l, i) 0 0 for all relevant indices

i. The spectrum of C is the set of eigenvalues of C, ignoring multiplicity.

For brevity let UMln) be the set of fx7L real unreduced, symmetric, tridi-

agonal matrices. Let UST+(n) denote the subset of USr in which the (ii+l) ele-

ments are positive.

Eigenvectors are defined only to within a scalar factor. However, the eigen-

vecrtor5 of a real symmetric matrix may be chosen to be orthonormal, and this

is a natural convention thM we too will follow. When A has simple spectrum we
9."

may speak of the eigenvector matrix G and write

A = GAGt

where A is diagonal and G is ortogona1. For a given ordering of the eigenvalues

in A the matrix G = (gl. ... ,:gn) is uwjgqUe (up to replacement of gi by -g ). If

T = Tj,n EUST we define its submatrix T,n by

Pj a1  + j
#1A Pj+1 ..

The characteristic polynomial of Tj n is

:.. Xj.a(f'l := det[CI-T..]

is abbreviated by X or X.. The spectral factorization of T = Ti. E UST(n) is

written

T = SS '
where := d (4, ... , ,O) with eigenvalue ordering

"$1 < 32 < " ' ' <' 3n,

and S (s, .... sn) is the orthogonal eigenvector matrix. Thus

.4 _
*2*~' ~ '~' .~5 *5 .. \a. .l .*lll ~ i . 4l.--
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Ts s t,.i = 1, .... ,. and ss 1.

3. PB REDUCTION.

The identity matrix I is tridiagonal and consequently any orthogonal matrix

is an eigenvector matrix of some tridiagonal. This case shows the importance of

insisting on a simple spectrum for T.

Consider next tridiagonal matrices T which are reduced

(T j + 1) - 0 for sone j) and yet have simple spectrum. Such rs are the direct

sum of two or more unreduced tridiagonals, say T = di g (TI. T2. Ts). with Tt Eusr.

Its eigenvector matrix is the corresponding direct sum of the eigenvector

matrices of TI. T2 . and T3 2 that the eigenvalues of Tt are kept together in

the ordering of the eigenvalues of T. However, no matter what the ordering of

the eigenvalues, T's eigenvector matrix is not fully indecomposable. We follow

the terminology of (M. & M., 1964] here; some authors would say that Ts eigen-

vector matrix is reducible.

* The* procedure for deciding whether a given orthogonal Q is the eigenvector

matrix of some tridiagonal with simple spectrum is to column-permute Q into a

direct sum of its fully indecomposable parts and then to determine whether

each part is the eigenvector matrix of some Tt in UST.

4. mKN N PIMCIUW

FACT 1. If TeUIT(n) then T has n distinct real eigenvalues.

Proof. The minor of the (1,n) element of T-CI is I T(i+,i) which vanishes

for no value of C. So rank (T-(I) a n-1. The eigenspace of each eigenvalue has

dimension 1. The result follows from the symmetry of T. l

WA]flNG: The eigenvalues of T may be very close indeed, even when the off

diagonal elements are not. small relative to the eigenvalue spread, but see

' .4 .',.. ,. .. , , ,.. . . .. .. . . , ,, . . .. . . L . .. ' . ' . ."",.



Theorem 3 in Section 6.

FACT 2. If TEUST(n) then the eigenvalues of T1j.-] separate those of TI., The

eigenvalues of T2., separate those of TI ..

Proof. See [ P., 1980, Chap. 10].

The next result, which uses the notation established in Section 2, was

extended by Gantmacher and Krein [G. & K., 1950] to the class of oscillation

matrices. Karlin has extended their results to include differential operators [K.,

19].

Recall that the eigenvalues of T1.n are ordered by

< ... <On.

We sketch a proof because it is short.

FACT 3. If TEUST+(v) then the number of sign changes between consecutive

components of Oj 's eigenvector si is n-i, for i = 1, .... n.

Proof. By the 3 term recurrence governing the XI.t one can verify that st is

proportional to

[l. x1(W/ P,. X2('d0)Te, P2- ...X'-100/ P, .. ""n -,]
and each P > 0. The polynomials I 1, .....n -1 form a Strum sequence. (See

[W., 1965, p. 300] but observe that detrT-¢]] = (-1)Xn( ) ). It follows that the

number of sign differences in J1Xjf(l.....Xn-&(O equals the number of eigen-

values of Ti.n greater than t, not less than . The result follows from Fact 2.

The following more detailed results can be found in [P., 1980, Chap. 7].

FACt' 4. (C.C. Paige). If TFJMn) then

a) (1)'x'(') = X..(,)

c) st(1)s(n)X'(e,) = 1P,-( ... P1-1.
COROUAR'. st(l) ,, OAs(n) ,, 0,, i = 1. ..... n.

Proof. By Fact 2, Xe(4i) - 0, X,_(,iO) io 0. By Fact 1, X'(I) i 0..

4' . ,* - **.L*' 4 . 4



The corollary is a well known necessary condition for an orthogonal matrix

to be an eigenvector matrix for some TEUS. In the next section we generalize

this result to the other rows.

If TCUST'n) then there is no loss of generality in assuming that TCUb-(n).

More precisely, if TEUST then there is a diagonal matrix A with A(i,i) = 1 such

that ATA E USr 1 . If S is the eigenvector matrix of T, then AS is the eigenvector

matrix of ATA. Moreover, we may take st(1) > 0. i = 1. .... n.

FACT 5. (Uniqueness of Reduction.) If Q'AQ = T E UST+(n) , and Q is orthogonal,

then Q and T are determined by A and q I or by A and qn.

Proof. See [P., 1980, Chap. 7].

COROLLARY. Let SOS' = TD'Fs(n) be the spectral factorization of T. Both

* T and S are determined by 9 and eI S or by 9 and sS. Our last fact makes expli-

cit the dependence of Q on q, and A in Fact 5. The formula goes back at least to

C. Lanczos.

FACT . Let T = QWAQ c USl" (n) with Q orthogonal.

q l= ( qI/(,. .fifor j= 1...n1..

Proof. See [P., 1980, p. 116].

5. CHARACE, 7ATION OF THE EIGENVER MATRID

There is a whole family of tridiagonas which share a common eigenvector

matrix.

LEMMA 1. If TCUST+ then \T-aIE:UST+ for all a and all A > 0. Moreover T and

XT-aI have the same eigenvector matrix.

Proof. The first asertion is trivial. The second uses the orthogonality of the

sigenvector matrix S; T = SOSI implies XT-al = S(XO-aI)S .

This trivial lemma is the key to a simple characterization of S. It shows that

in the search for a T there is no loss in taking a, = T(1, 1) = 0 and f = T(1,2) = 1.

S- . . * - % e .i . .
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THEOREM 1. Let G = (gi. ..., g,) be orthogonaL GO is the eigenvector matrix of

some TEUSMn) if and only if the following conditions hold.

(1) gI(i) iO.i = 1 ... , n.

(2) The numbers Oi are all distinct, where i g2(i)/g 1(i). 1 = 1 .... n.

(3) GO 9GEUST, where 0 = diag (01 .... On

Proof. Condition 1 was established as the Corollary of Fact 4.

Because G is orthogonal, GO OG = T can be rewritten (G = GT. Equating

column 1 on each side yields

u 1 =g-- lal +g 2 11.

By Lemma I there is no loss in taking a, = 0. = 1, to obtain

.tgl(') = g 2(i),. = 1. 2. ... , . Thus 0 is determined by g, and g2. By Fact 1 the

41 must be distinct. This is condition 2.

If GOAGEUSr(n) for some A = dig (A.... ), then, by the previous para-

graph. AgI = g aI + g Z81 for some alpl and thus Xt = a, + OtlPi = 1...., n.

Consequently G'1G = (G'AG-ajI)/PE1UST n) as well. This establishes condition

3.a.

Condition 3 is easily stated but will fail for most orthogonal matrices satis-

fying conditions 1 and Z We can replace (3) with a sequence of necessary condi-

tons. As soon as one fails, we know that GO cannot be an eigenvector matrix.

DECISION PROCEDURE. Given distinct values 15 := g 2(i)/g (i), i = 1, ... , n,

-, and = diag (13, ... , d,) proceed as follows:

for j2 .... -1, do

-"'. , form g t:: ft - gja, - gJ-4- ,

where al := ggj. , 4 - j,.

If g1.1 0 j t/ IIg-+zII thenexit and report failure.

f no failure then GO is an eigenvector matrix for the T defined by the at and Pt.

, "-", "-. ", "'"',' . ": . "'"'" " ."'" .." . ' ',:,.. . .•" "- . . . - ."" - '""



Proof. By Fact 5 (uniqueness of reduction) there is a .unigu orthogonal

matrix G and a u T+ in U=+ satisfying

"+ = GOG, Oq = gI.

All T in USr orthogonally similar to e are given by

T = AT+ A = AG8 OGA

with diagonal A and A(i,i) = ±1. Hence Ge 'GEUS if and only if G = GA for some

A.

The algorithm in the procedure is simply the construction of the matrix U

column by column together with the test qj = *g. 4.

There is a result dual to Theorem 1 which uses the last row instead of the

first one. We state it without proof.

Theorem 1'. Let G = (i 1. ... , gn) be orthogonal. G9 is the eigenvector matrix

of some TELSr(n) if and only if the following conditions hold.

V1g' (i/) e 0. i/ -- 1. ..... n.

2.' The numbers gt(:= g,-_j(i)/gf(i)) must be distinct.

' G84GEUS Twhere 0 = dtag(gol..., 0).

Since different normalizations are involved, we will not have dj = got in gen-

eral. However they must be lineraly related,

4ji - #a -j = , /, a. 1 .. n.

In practice the decision procedure could work simultaneously from the top

row and the bottow row towards the middle.

6 ZJW NIZUNTS.

THEOREM 2. If S is the eigenvector matrix of TCUSTIn) then the number of

zero elements in its j'th row is at most min 0-1, n-j).

Proof. Since T = ATA for TE:UST and A(i.i) = ±I there is no loss in consid-

ering TcUSfT(n). Apply Fact 6 to the relation T = SIS' to conclude that

. .. . --.
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St fej+I(#,.•)= # t(9)St e, i.e.,

st (i 1)(f= #j) (6)st (1). i =1. n.
Now, Xj is a polynomial of degree j and independent of it. It can have at most j

zeros and so S(j + 1,.) can have at most j zero elements. These occur when, and

only when, an eigenvalue of T is also an eigenvalue of a submatrix Tjj.

By Fact 5 (uniqueness of reduction) T and S are also determined by 9 and

sn. The analogous formula is

s,(j+l)(Pj+ .. pm) = Xj+I.,1 (4,)s,(n). i = 1 .... I.

Since y5 +j. is of degree n-j-1, S(j+1..) can have at most n-j-1 zero ele,-ients and

these occur when an eigenvalue of T is also an eigenvalue of Tj+.. G

Our last result concerns the separation of the Ws.

THEOREM 3. For T E-UST+(n),

(11 -- j/P = 1/1 'LS(1,L) nhtv

Proof. Define

B:=diag PPz... lP .. O
E.:=diW(S(1,1),S(1,2 ) , .. ,S(1,nt)).

The displayed equation in the proof of Theorem 2 implies that

S=B-CE, where C(ij):= X-i(&j).

By standard properties of determinants and Vandermondes

-ft detC = detV = (0-- .O,

where V(,j)=5- 1 . Since S is orthogonal,

*1 = detS = detC x detE/detB.

By our normalizations, including S(1.1) > O, the right side is positive and so det S

=+1. Finally

detB = . _1 Jn- J -
*Simi

* . . .AL
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detE = fJS(1,) n ( - n .

The last inequality comes from the generalized Arithmetic-Geometric mean rela-

tion. •

We quote without proof the analogous result using the last row of S.

THEOREM 4. For T EUST1.(n),

ft(6 -j/Pj-1= 1/] 1IS(n.1) I _ n

These results are informative. As P, -0 so can one or more of the

differences dt+1-i O without violating the lower bound. Of more interest is the

case of known fixed fl's. The differences of Vs is bounded above by the spread

i..O- which is itself bounded by 21IT11. This yields a crude but explicit lower

bound on rin(di +-a6) in terms of the fl's and 11 T 11. Although eigenvalues of Ts

in USr(n) can be surprisingly close to each other, they cannot be arbitrarily

close when the fl's are given.

The relationships are even clearer in the special but important case of

= 1 for all i. For small values of nL the presence of tiny S(1.1) precludes close

Vs but as n increases this effect weakens rapidly. Wilkinson's matrix Wg'j is an

example of this phenomenon. See [Wp.308] for more information on this

matrix.
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