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Size Effect and Strength Variability of

Unidirectional Composites

by S. B. Batdorf and Reza Ghaffarian

Materials Science and Engineering Department
University of California, Los Angeles 90024

ABSTRACT

Statistical theories have been proposed for damage accumulation and

tensile failure of unidirectionally reinforced fibrous composites. These

theories involve the mechanical properties of the constituent fibers, the

geometry of the composite, and some inadequately known functions such as

stress distributions in the vicinity of single and multiple fiber breaks.

As a result in trying to correlate theory and experiment some quantities

have to be treated as unknown parameters.

It was found that use of Hedgepeth and Van Dyke's stress concentration

factors led to good agreement between theory and Bullock's data on graphite

epoxy only when the overloaded length of fiber at crack tips was assumed to

have an unrealistically large value. A possible explanation is that the

Hedgepeth and Van Dyke stress concentration factors were calculated for

composites with a geometrically perfect fiber array. In real composites

the fiber spacing is quite irregular. A theory is developed for strength

of irregularly constructed composites and compared with experiment.

Taking the effect into account improves agreement in the case of one

experiment and impairs agreement in the case of another.
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Introduction

Griffith, who is generally considered to be the father of fracture
'S

mechanics, postulated failure of isotropic materials by crack instability.

In his first paper ,on this subject [1), he gave as the criterion for

failure that the strain energy released during crack extension should be

equal to or greater than the energy required to create the resulting new

crack surfaces. In a second paper on fracture [2], he ;uggestt'd that

a crack is unstable when the material at the crack tip is stressed beyond

its intrinsic strength.

By an interesting coincidence the same two criteria are in use

today in the study of the strength of unidirectionally reinforced

composites. One school of thought, popular in England (3], and USSR [4],

uses energy balance as the failure criterion. The other, pioneered by

Rosen and Zweben in the USA [5] assumes that crack extension occurs when

the stress at the crack tip exceeds the strength of the adjoining unbroken

fiber. A feature of the second approach is that stable crack growth

will generally precede the final failure.

As a result of complexity of their analysis, Zweben and Rosen were

da unable to arrive at a general failure criterion for 3-0 composite. They

did, however, analyze the 2-D case (tapes one fiber thick) in some

detail and proposed the occurrence of the first double fiber break as a

conservative approximation to the failure load. By a new approach,

Harlow and Phoenix were able to find a virtually exact solution for

i,' the failure stress of highly idealized 2-D composites [6-9]. Among

other things, they showed for the first time that the effective Weibull

modulus of a composite is variable, and increases with increasing

"4 volume.

-I.4 2

.4

" 4 ." '' , ' b d'' l~~ 
- : ' "

" ' ' ; '-- ............. .. . . . -. .



Recently Batdorf [10] proposed a general solution to 2-D and 3-D

problems which is both simple and sufficiently accurate for most

practical purposes. In comparing the latter theory with experimental

data on the strength of graphite epoxy [11], Batdorf and Ghaffarian found

good agreement was obtained only when the ineffective length was assumed

to be nearly an order of magnitude larger than what is usually observed.

Here, the ineffective length is used to describe the overloaded portion

of undamaged fibers immediately adjacent to a break. This is the sum of

the transfer length and the length of broken fiber that is

debonded.

Up to this point all theories assumed that the fibers form a

perfect array, i.e. the distances from a crack (multiple break) to its

closest neighbors are all identical. In practice, construction is not

perfect and normally there Is a variation in these distances. As a

result there must be a distribution in the stress concentration factors

affecting the fibers adjacent to a crack. It has been shown (12] that

such a variation increases the effective stress concentration factor,

and this may make it unnecessary to assume an excessively large ineffective

length in order to get good agreement with experiment.

One purpose of this paper is to reanalyze the data given in (12]

together with additional data kindly supplied by Graham Dorey of the

Royal Aircraft Establishment, Farnborough, UK, to learn to what extent

the theory predicts the strength, effective modulus and ineffective

length for these two sets of data. A second objective is to determine

whether adequate characterization of a composite will in the future require

determination of the variability in stress concentration factors in

addition to the more familiar parameters such as basic structure, mechanical

properties of fiber and matrix etc.

S[ 3
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Theory

We first summarize the approximate theory reported in [10) For

simplicity, it was assumed that single fiber failure obeys the Weibul's

2 -parameter distribution, i.e., on the application of uniform stress a

over the fiber length L, the cumulative probability of failure is given

by

m

Pf 1 -exp[ -L(-) 1 (1)
0

where a0 and m are the scale parameter and shape parameter (Weibull

modulus), respectively.

On the assumption that the fibers carry the entire tensile load,

and matrix serves only the function of transferring tensile stresses from

one fiber to another through its shear stiffness, a simple relationship

between the number of fiber breaks of various multiplets as a function

of applied stress can be developed. If there are N fibers of length L

in composite, then the number of isolated fracture (singlets) that will

have been created by the time stress rises to a is given by:

m
Q, = N Pf - NL ( 2 (2)

ao

A singlet becomes a doublet when one of the neighboring fibers

breaks in its overstressed region. The number of doublets created in

loading to stress a is approximately

= Q, n1 X1 ( c- ) (3)

where nI is the number of fibers immediately adjacent to a given singlet,

cI is the stress concentration factor, X is the effective length of the

overloaded region, that is the length which would have the same Pf when

subjected to the uniform stress cla as the actual non-uniformly loaded

fiber segment has.

4



Generalizing these results

Tcia m (4)! Qi+l "Qi ni 'i (00) 4

i Thus

".4

o mi -1 m
Qi = NL (o) T c. n .x (5)

a j=l J

From (5) we see that a plot of In Qi vs In a is a straight line of

' slope im. The failure line is the envelope of the lines for the various

Q's, and the failure stress af is given by the intersection of the failure line

with the horizontal line y = in Qi = 0 corresponding to Qi = 1.

From (5) it is evident that Qi- NL. Thus when the volume

of the composite NL is changed, the failure stress of also will be

changed. A plot of In af vs In NL is a broken line similar to the

failure envelope. For a Weibull material a plot of In Yf vs in V is a

straight line of slope -1/m. For the composite a plot of In af vs In V

(where V-NL) is a broken line In which the segments have the slopes -1/m,

-1/2m, -1/3m, etc., as illustrated in Fig 1. The segment of slope (-1/m)

is a portion of the single fiber failure line. This segment covers the

stress range over which an isolated break (singlet) is unstable. In

general the segment of slope (-l/im) covers the stress range over which

1-plets are responsible for failure. Is , d ,t etc. are the stresses at

which singlets, doublets, triplets etc. first occur for a composite of the

size indicated.

The stress a, at the intersection of segments having the slopes -1/im

and -1/(1+l)m is found by equating Q1+1 and Qi in equation (4), that is
Qt~l c i a i m

Q n - 1 (6)

| .5
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or

a. 0 (7)oi =ci (niX "  7

When both the slopes of the line segments and the locations of the

transition from one segment to another are known, the failure line can

be readily constructed. Unfortunately, usually some of the quantities in

(7) are not known and the problem therefore has to be attacked
parametrically.

Every past theoretical treatment of composite strength, including

ours, assumed the fibers in a composite form a perfect geometric array.

However, micro-photographs of the real composites ( see for instance

Fig. 2 ) normally show.a variation in the distance between neighboring

fibers. Thus one would expect that the stress concentration factors must

vary correspondingly. In addition even in the regularly spaced fibers,

9 there is generally some variation in ci because of differences in the

number of broken fibers in the vicinity of an overloaded unbroken fiber.

To account for a distribution in ci, we rewrite equation (6) in the form

i  m nI m
A ( a- ) fI dn(ci) ci  = 1. (8)

0 01

Here, dn denotes the number of neighboring fibers having a stress

concentration factor in the range c1 to ci + dci,

To evaluate the integral in equation (8) we must choose a specific

distribution function. It turns out that use of the Welbull distribution

6
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facilitates a relatively simple analysis, so we choose it. Such a

distribution for Weibull modulus m'=4 is shown in Fig. 3. In general dn

is given by

dn - n. - (1 - exp -(.±Idc. (9)i dc1  c0.

which satisfies the necessary relation

ni
I dn =f -dc. n. (10)
00 dc~ 1 1

Substituting equation (9) into the integral of (8) and integrating

* by parts we obtain

-f cc 1~i c M dc. =: -g(c.) cm + m g(c.) C. M1dc. (11)
dc 1 0 0 1 1 1

where

i oi

* The integrated term vanishes. The remaining term can be rewritten:

m g(c.)C.M1d m m O e t t dt
1 1 dcC-i i0  0

C i r( i+ jr- (13)

Here

c me

~01
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Putting all this together, we obtain for the revised form of the expression

for the stress at the ith vertex in the failure curve:

a ~1/rn
a- °0 1(

1ci eff i X i

where

1/m

(c.) =c o Er( 1+ (16)
i eff 01 m

The effective value of c. exceeds the mean value by a factor A that

1

can be derived from the probability distribution. By definition, the

average stress concentration factor is given by

ami L 1 m

C= 0 c1  exp -(-- ) ] dc. = c r( 14-m, ) (17)
1 d c 1 o

Then, the ratio of effective stress concentration to average stress

* concentration can be found from

I/m
i- '  (ci~f [ "(+ )m I

- A (1 (18)
c r(l+ ,)

-.-

A plot of this factor is shown in Fig. 4. for several values of m, as a

function of the stress concentration shape factor (m').

Experimental Data

Bullock [13Jreported statistical data on the strengths of impregnated

tows of T300 fibers using Narmco 5208 as the matrix material and compared

the results with the tensile and bending strengths of laminated coupons

composed of such tows. His results are summarized in Table 1. In this

8'***.***



table of is the mean failure stress and m is the Weibull modulus of an

individual fiber. Here we consider only fibers and tows

In [11] ni was determined by assuming that multiplets are as nearly

penny-shaped as the geonetry permits and the stress concentration factors were

determined by passing a smooth curve through the values for c. given

by Hedgepeth and Van Dyke [14] for fibers forming a square array. The

results are shown in Table 2.

Since m and X are both unknown, they were treated as disposible

parameters. Failure lines were constructed for various assumed values of

m and X. Most of the failure lines missed the data point for 25mm tow

rather badly, but some combinations of m and X result in failure lines

that pass through tow data point. Such combinations include ( m=2, X=1.75

mm), (m=3, X= 1.25mm),( m=4, X= 1 mm). (m=7, X=.625 mm), leading to

effective Weibull moduli of 24, 30, 36, and 49 respectively. The best

choice, taking into account the observed effective shape parameter for

the tow was obtained with m=3 and X= 1.25 mm. Now m= 3 is an entirely

possible value but X is an order of magnitude larger than normally

observed. If a distribution in c. is chosen such that r( I+ -2-r )
1 i

becomes considerably larger than one, then it is possible to obtain

good agreement with observed failure stress while assuming a reasonable

value for X. It will be seen later that choice of m probably should not be

influenced by the observed Weibull modulus for a tow.

Dorey has obtained sets of data on the statistical strength properties

of several different carbon fibers as well as tows and minitows constructed of

fibers (15]. These data are summarized in Table 3. Because of the similarity

of the different fiber types, only type A results are shown here. The data

as supplied to us did not include the Weibull modulus. In the table m was

estimated using the approximate relation

9
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m = 1.2 / c.v. (19)

where c.v. is the coefficient of variation. As in the case of Bullock's

data, stress concentration factors were assumed to be those calculated

by Hegepeth and Van Dyke. The fibers were assumed to form a square

array, and m was taken to be the measured value, 7. Thus the only

unknown parameter was the effective length X.

The failure lines calculated for composites constructed of type A

fibers with various assumed values of X are shown in Fig. 5. The best

fit was obtained with = 0.1 mm. This is within the general range of
-Si

observations reported by Manders and Bader (16].

These numbers were obtained assuming the fibers in the composite

formed a regular square array. If irregularities are assumed such that

m'= 4 (the value obtained for Bullock's data), A= 1.17 and the value of

X leading to best agreement with Dorey's data turns out to be 0.033 im.,

which seems a bit low.

Up to this point our concern has been to reconcile theory and

experiment with respect to composite strength. They can also be compared

on the basis of strength variability of fibers and tows (which are

small composites). Here there is a marked discrepancy. The theory

implies that m approaches infinityascomposite size increases without

limit, whereas experiments indicate that m levels off. There are a number

of possible reasons for this discrepancy. Among them: the theory is

defective in this area; the experiments are faulty; there are sources of

variability that are not considered in the theoretical analysis.

10
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The theory outlined here admittedly contains many approximations.

However, it shares the feature under consideration (unlimited increase

of the effective modulus with increasing composite size) with a virtually

exact theory for a single ply tape under local load sharing and approximate

theories related thereto [6-9]. It therefore seems unlikely that this is

the cause of the-discrepancy.

The experiments may be at fault. Whitney and Knight attributed

anomalies in experimentally determined composite moduli to the

difficulty of avoiding a small amount of bending during tensile testing,

[17) and random amounts of such inadvertent bending would result in the

observed effect.

A third possible explanation is the presence of other sources of

variability. It is well known that there is some variation in fiber

diameter within a tow, and some investigators have reported a decrease

*in strength with increasing diameter. Somewhat better established is a

dependence of Young's modulus with diameter [18]. Since in the absence

of residual stress all fibers within a bundle under load are subjected

to the same strain, there will be a variation in fiber stress. While

effects such as these will increase the variability in composite

strength, they will not prevent the variability from approaching zero

as composite size increases. This is because they affect the individual

fibers in a random manner. Their influence is essentially to decrease

the Welbull modulus of fibers in situ compared to the modulus of the

same fibers in isolation.

Systematic variability is another matter. Consider, for instance,

the case of residual fiber stress caused by matrix shrinkage that varies

11
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somewhat from one sample of the composite to another because of inad-

• :vertent small differences in composition or the processing variables. No

.* matter how large the composite is, the variability in apparent strength

will never be less than the variability in residual stress. Thus one

must expect an upper limit to effective Weibull modulus of composites,

in accord with experimental findings.

Sumary

Attempts to correlate statistical theories of composite strength

with experiment are handicapped by insufficient information regarding

* some of the important parameters. Often the mechanical properties of

the constituent fibers and matrix materials are unknown. Fragmentary

theoretical information is available on the stress concentration factor

": affecting a fiber adjacent to a crack (multiple fiber break), but the

length of the overloaded region is generally unknown. Treating the

*unknowns parametrically, good agreement between theory and Bullock's data

was only obtained when improbably large overload regions were assumed

[ll]. A possible explanation for this is that theories generally assume

that the fibers in the matrix form a geometrically perfect array, which

is far from the case in real composites.

If the distances between a fiber and its nearest neighbors vary,

the stress concentration factors will also vary. It can be inferred from

this that by proper choice of the variance in stress concentration factor,

*the theory will give the observed value of composite strength with

reasonable values of the size of overloaded region.

To see whether variability of stress concentration factor is a major

effect, in the present paper additional data are analyzed. These data

12



compare the strengths of isolated fibers, minitows(20 fibers) and tows

( 2000 fibers ). It is found that the theory leads to the observed

failure stress assuming an overload region ,that is close to the length

of the debonded region. Assuming an imperfect array with the same

variance in stress concentration factor used earlier to analyze Bullock's

data leads to a smaller and less plausible overload region. Thus we

do not have a definitive answer to the question whether it is important

:. to take account of variability in stress concentration factor. The

*i data are too few- more work is needed to resolve the issue.

The theory implies that the larger the composite the smaller will

:. be the variance in failure stress, and that in the limit of large

:. composites the variance approaches zero. Here there is a significant

discrepancy between theory and experiment. In laboratory tests the variance

reaches a non-zero lower limit. One possible explanation is experimental

difficulties in producing a state of simple tension; usually some

bending is also present. The presence of bending would account for the

observed discrepancy, but the discrepancy might be limited to laboratory

specimens and not apply to field situations. Another possible explanation

is the presence of residual stress, which can vary from specimen to

" specimen due to small variations in composition and processing variables.

Such variations can hardly be avoided in manufacturing. If this is the

explanation, it would imply that, in practical applications the theory

for strength variability can apply only up to a certain size; above

that size, other sources of variability not included in the theory

13



become dominant. And this in turn means that as composite size increases,

the effective Weibull modulus also increases until it reaches a limiting

value.

Before closing, we note that most experimental arrangements for tensile

testing tows will introduce non-uniform stresses over cross sections near the

ends of the tow. These die out in accord with St. Venant's principle, but

will have the effect of reducing the failure load. The effect will be much

more pronounced for a 25mm tow (Bullock case) than a 150mm tow (Dorey case).

This may be one reason that the experimental failure stress was appreciably

lower than the theoretical (which neglects non-uniformity) in the 25mm case,

but was not In the 150m case.

14



Conclusions

1. In practical composites the fibers do not form a perfect geometric

array; instead nearest-neighbor distances vary considerably. This

must lead to variations in the stress concentration factor in the

various fibers ahead of a crack tip.

2. An analysis of the effect of variation in stress concentration factor

shown that such variability leads to an increase in the effective

stress concentration factor.

3. Taking variability into account 'Improves the agreement of theory

with observations on the strength-size relation of composites in

one experiment and makes agreement poorer in the case of another

experiment. Thus the need for including this complication in composite

strength analyses is at this time an open question.

4. Theory indicates that as composite size increases, the coefficient

of variation of the fracture stress decreases without limit. This

is contradicted by experiment. The explanation for the discrepancy

may be presence of undesired bending stresses during the experiments

or to the presence of unaccounted-for sources of variability

in the composite itself. One such source is presence of residual

- stresses.
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Table I

( f (Gpa) m Remarks

5Ihun single fiber 2.48 ?

25m tow 2.48 29.1 2000 fibers

Coupon in tension 2.04 23.3 Contains 11.15 m of tow

Coupon in 3-point bending 2.76 24.6 Contains 11.75 mn of tow

Table II

*i 1 2 3 4 5 6 7 8 9 10 11 12

c 1.145 1.18 1.225 1.27 1.31 1.34 1.375 1.405 1.43 1.46 1.48 1.5

n1 4 6 7 8 9 10 11 11 12 13 14 15

Table III

Fiber type Single fiber Mini-tow Tows
(25 -i) (20 fibers 25..) (10,000 fibers 1S0mm)

*Gpa (c.v.) Gpa (c.v.) Gpa (c.v.)

A 2.79 (17%) 3.52 (7.6%) 2.98 (9.0%)

A etched 3.43 (17%) 3.66 (7.7%)

XA 3.20 (18.1%) 4.01 (4.1%) 3.46 (5.7%)

XAS 3.09 (14.5%) 4.02 3.22 (8.7%)
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Fig. 1 -plot of failure stress vs. size for
unidirectional composite (schematic).
Space between top and bottom lines is
damage accumulation region.



GRAPHITE EPOXY( SECTION

(CROSSMAN et, al.)

Fig. 2. 14,icrographs showing irregular fiber spacing

in typical composite
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