CanTer

FOR TURE AND APPLIED
UNIVERSITY OF CALIFORNIA,

AD-AlI3Yy /63

THe Use oF REFINED ERROR BOUND WHEN

I

B, N, PARLETT
B, Hour-OmiD

kL

A

Ry ¢

S ke

ea
DRy s Sy

A\ \.:',‘1

v e ue
. ,.«-”"'\.:K W
@"1‘*‘%—.-4‘2;‘.”

VTHEMATICS-
TRKELEY

PA-175

UppaTing E1GENVALUES OF TRIDIAGONALS

4y 4 eale;
g i,‘:nlih_zitwi.\

L O P

Legal MNotice

was prepared as an account of work sponsored by

foe Yure and Applied Mathematics,

implied, or assumes any legal 1i

ciitity Yor the accuracy, completeness
inTormation or procass disclosed.

€

BEST AVAILABLE COPY

Neither the

ability or
or usefulness

- IFCRR VA i | DYy

S

oY
IV EF VY)

¥y

0 el » s
hr i) el P H

LY
A

e
s . sk

. 5 . ’
e tatata

Pai b ¢

L ey

v
X

L}
B
Rl

The Use of Refined Error Bound when
Updating Eigenvalues of Tridiagonals

B. N. Parlett}
B. Nour-Omidt

-
N

NI Iy =l

N, OCT311983 X%

t Department of Mathematics, and the Computer Science Division of the
Department of Electrical Engineering and Computer Science, University
of California at Berkeley

$ Center for Pure and Applied Mathematics, University of California at
Berkeley

The work of these authors was su_;: orted in part by the Office of Naval
Research under contract N00014-76-C-0013.

T s T TR s aprroved
! a0 oote its
doanihot Lie unlimated.

A
c v
O e
Py

m’zﬂ"? CadiC Attt el ot et gy Sl Sull Al Aalh R BAASRAT R Al
e
v ‘!
.
ALY

)
5
.I

.

3

”
¢l
PR Ry e W

ABSTRACT

e AL
LRy

The Lanczos algorithm is used to compute some eigenvalues of a given sym-
metric matrix of large order. At each step of the Lanczos algorithm it is valu-

P
4%

'*-Z; able to know which eigenvalues of the associated tridiagonal matrix have sta-
B blized at eigenvalues of the given syranetric matrix. We present a robust algo-

rithm which is fast (20 to 40j operation at j-th Lanczos step), uses about 30
- words of extra storage, and has a fairly short program (approximately 200 exe-
= cutable statements).

[ey

TABLE OF CONTENTS

.—'l
. yii
Q
PR -

1. Introduction

2. Notation and Terminology
3. The Lanczos Algorithm and Its Implementation
4. Relevant Theorems and Facts
5. How Ritz values change

6. AnalyzeT

7. The Subprogram FINDTHETA
8. Evaluation of s(j)?

9. Explicit Deflation

10. Profile of Lanczos Runs

e

00§ 0 Bt BT S A I RN SR A B DA A

N, L2 - < . - . = il i Sl N .
R SR T e AN

1. Introduction

Let T, be a symmetric tridiagonal matrix of order n and let T; denote its
leading principal submatrix of order j. It is a curious and useful fact that if the
eigenvalues of T; are regarded as functions of j then, as j increases, some of
these eigenvalues tend to stagnate at comparatively low values of j. Typically if
n = 400 the largest eigenvalue of T; will remain unchanged, to 15 decimal digits,
for all j from say 21 to 400. The next largest might settle down at j = 26, and

soon. We call j the step number.

This article presents a new, efficient algorithm for updating a certain data
structure associated with T; as j increases. It includes a few eigenvalues of T; at
each end of the spectrum and with each eigenvalue ¥{) is associated an error
bound 8;. The number of eigenvalues at each end is variable and depends on
the 84 in a complicated way. Roughly speaking the goal is to include all the
outermost 3! whose bounds g indicate that they are likely to stagnate in the
next two or three steps. The algorithm is designed to monitor as few eigenvalues
as possible consistent with the mandate to detect the precise value of j at which

8§ stagnates to working precision.

Our algorithm is called ANALYZE T and was developed to be part of the inner
loop of the Lanczos algorithm. Its job is to provide information so that the algo-
rithm can be terminated at the first possible step at which all wanted eigen-
values and eigenvectors {of the operator given to Lanczos) are determined to
the required accuracy. It is desirable that ANALYZE T increases the cost of a
Lanczos step by a modest amount. It requires between 105 and 100j arithmetic
operations at each step depending on whether no eigenvalues are stagnating or
several. The important property is that the cost is linear in j. The profiles of

Lanczos runs in Section 10 give the flavor of how the algorithm behaves.

We have spent considerable time in trying to make ANALYZE T short and

.......

P el

~ " -

PPLYLY % LG YV VR VS S OO ¥

&

it T T e AR B Y
v PP -'t—rv\.-u-.‘wx-—w{v‘v‘::m Pyt e B G Sad Sin et g Pl T SR AR
s " - e - . LIRS) - ~ - B . -

i intdand Y TP . - LR Nl el A R e S R O

-2-
intelligible as well as robust and eflicient.

Although it is not intended as a tool for computing all the eigenvalues of Ty,
ANALYZE T can do that job. On several examples (see Section 10) withn =20 to
40 it took about 2.3 times as long as the EISPACK QR program TQL1. However
half of that time is spent at step n in determining those eigenvalues in the mid-
dle of the spectrum which had not settled down at all. Qur program uses no

more storage than TQL1.

We say little about the Lanczos algorithm itself and confine it to Section 3.
For those readers who want to skip the Lanczos material, we have put the impor-
tant notations and definitions in the very next section. Section 4 presents the
theorems on which the program is based. This is followed in Section 5 by some
very helpful pictures of what usually happens and what can happen to th? spec-
trum as j increases. Then comes ANALYZE T (§ 8), FIND THETA (§ 7), evaluation

of s(j)? (§ 8), deflation (§ 9), and numerical results (§ 10).

VW, W R W N W N

2. Notation and Terminology

Upper case Roman letters stand for matrices. Symmetric letters stand for

i)

-f::: symmetric matrices (A H, M, T. U, V. W, X Y). Lower case Roman letters stand
EN
N for column vectors; lower case Greek letters stand for real numbers. The j xj
) identity matrix, I;, is frequently omitted if the context precludes ambiguity.
’ ‘i . The symbol := indicates either a definition or an assignment in a program:.

.‘(4

N The Lanczos vectors q,q, ‘- are the columns of a matrix
wi Q =(q.q, - - .q,-) which would be orthonormal if exact arithmetic were used.
-

::: The tridiagonal matrices produced by the Lanczos algorithm are written

Y

> [al B2

b, Bz oz B3

v Ty:= Bs a3

N b

B; oy

e

o and 8;>0; i=2,3,...,7. We use 8, for other purposes.

_::: Let x;(¢) := det[T; —¢]. For reasons given in Section 3 the eigenvalues of T;
- are called Ritz values. We use two different indexing schemes for the Ritz
, values and choose which ever is most appropriate. The hypothesis 8; >0 com-
‘J'. pels the Ritz values to be distinct, but some may be equal to working accuracy

even though no g is small. The Ritz values at step j are ordered by

v.

= << - - <) <),

v.h,

R and/or by

. 3P <8y, < - <8<,

. Whenever possible we drop the superscript j. The normalized eigenvector of T;
% associated with 9{) is s, thus

i (Ty —3F)s =0

: and ||| = 1. We use the Fuclidean vector norm exclusively. The kR element of
I

%

e

~

~

.........
. Lo

LAs

-

S Ve e

.....

........
o -

-4-

8 is si(k). The Ritz vector associated with 9{) is y{f) := Q;si. The error bound
associated with 9{J) is

Bsi := Biwl siG) 1.
These important quantities are introduced in Section 3. In some places our
symbols Q;, T; denote quantities stored in the computer. The relative precision,
or roundoff unit, of the arithmetic processor is &. It is the largest machine

number such that the instruction 1 + ¢ yields 1.

There is an important threshold connected with the technique of selective
orthogonalization. A Ritz value 98! is good (respectively bad) according as Bi =
Ve ||A] (respectively >). A good Ritz value is one that has usually stabilized to
almost full working precision at an eigenvalue A of A Among the good Ritz
values there may be some threshold values, namely those which have changed
from bad to good at this particular step. Selective orthogonalization (described
in [Parlett, 1980], p 275-284) needs to know the indices of the threshold values.
Our algorithm watches those bad Ritz values which are expected to become
good within the next few steps.

................................

-5-

3. The Lanczos Algorithm and Its Implementation

What follows is a brief outline of material in Chapters 13 and 15 in [Parlett,
1980). It is directed to the reader who is not familiar with the algorithm and its

use with the spectral transformation.

Suppose that we possess a program which, when given any m-vector x,
returns the n-vector Ax Thus A need not be an explicit n Xxn matrix. One

important instance of such an A comes from the spectral transformation of the

generalized eigenvalue problem, [Ericsson and Ruhe, 1980] . The Problem

(W-aM)z=0
is changed into

(MA(W — oM) ' M¥-vI)x = 0,
where v=1/(A—0) and x=MWfz Here A:= M¥W-0oM) 'M* and Ax is found in
three steps: form w:=M¥*x, solve (W—oM)v=w for v, and form u:=M¥v. The cost
of factoring W—oM is a critical factor in the computation. (A variation on this
reduction of W—AM that uses (W—oM)~'M is discussed in [Nour-Omid and Par-

lett, 1983]).

In the dynamic analysis of structures W is the positive definite stiffness
matrix, M is the positive semidefinite mass matrix and ¢ is a suitable shift
parameter. Sometimes all the A's in a given interval are required. In that case
o is chosen inside the interval and, in terms of v, the task is to compute all
eigenvalues of A outside an interval containing the origin. This is the situation in
which the Lanczos algorithm works best because Lanczos cannot help generating
approximations to eigenvectors belonging to both ends of A’s spectrum whether

they are wanted or not.
During the jd‘ step the exact Lanczos process computes in order, a;, 8;41.

Gs+1 to satisty

q*lqi":o- %‘ﬂ‘]j—l:ov "q,fu" =1

..........

P I «".."A . .‘ ‘L. P I A AL e . e e L '..“ L. .‘-"w»-"--‘v-.‘~ k“-' s Ty .‘j
MR RN PG SR G SRS W I G R B NP T ISP WP S A SN P W v PR S W S FUT T vV AL VT PR DTS

PO Pe e T

i,

Pyl R N e

A ‘,,,
K et e

.

1 CL PSR4

4

L

4

4

X
»

.......................
.............................

and

Y +18j+1 = Agj — gy —q;—1f; .
It turns out that qf,,q =0 fori <j-1.

The relationship governing the practical algorithm is

1]
A %]-[Q][Tjh 0:

+Fj = qjr1Bjrief + F;

where F; accounts for roundoff errors and || f; | ¥ Vn'¢] A|, independent of j.
Seldom is B;,, small and the algorithm should be halted if 8;,; < Ve||Al. How-
ever a Lanczos run is normally halted for other reasons. Let (¥,8;) be a typical
eigenpair of T;; (T; —9¢)% =0, (%] =1. The Ritz vector for ¥, is y;:=Q;s;. and

on multiplying the governing equation given above by 8; we find

Ay, ~¥i% = G5By nsi(f) + Fysy,

Take norms and use the triangle inequality to find

| Ay =y 1l = By + 1| Fy |l
where

By := pjﬂlsi(j)'-

A well known error bound (see section 4) states that there is an eigenvalue v of A

satisfying

lv=%| < Ay, =yl 7 | 3.

lv=2| < (Bx+1F) Iyl.
Better bounds on |v —¥;| are described in Section 4.

Roundof? errors have a strong effect on the simple algorithm. They cause

the Lanczos vectors to become almost linearly dependent. In fact,

ivlyal =7/ Bx,

where 7y, is a com~ .cawcd roundof! term satisfying

'''''''''

- .

woC d S I ER Y R T T hiis
Lpai gt il etk et 40— =i IR A RSN R T e e

-7

|7¢] < const -] All.
This illuminating result is due to C. C. Paige, see [Paige, 1978] or [Parlett, 1980,

p.264-268]. Extensive observation suggests that the constant is close to 1.
Paige's theorem says that loss of orthogonality implies convergence; i.e. if y,-‘qjﬂ

rises to 1072 (rather than 107'*) then

By <100z All, so ¥; has stabilized.

Various modifications have been proposed to force the Lanczos vectors to
be strongly linearly independent. We advocate a combination of selective ortho-
gonalizaton and partial reorthogonalization, [Parlett and Scott, 1979] and
[Simon, 1982). This requires that the algorithm know those ¥{) for which

B = Ve Al.
Certain actions must then be taken to maintain semi-orthogonality (gfq. < V&)
among the Lanczos vectors. Semiorthogonality ensures that T; is (to working

precision) the same as would occur in exact arithmetic.

With or without selective orthogonalization the bounds Bj indicate which
Ritz values are close to eigenvalues. Paige showed that for given ¢ and each
k >3j, there is a Ritz value 9f*), where { depends on i and k, such that 8, ; < Bj.

In other words, there is an eigenvalue of T, within 8j; of 8 for all k > 5.

The gist of these remarks is that we would like to know those 13,_‘” whose B85
are near to the threshold Vel Al|. Before designing a program to compute some
Ritz values and their bounds we need insight into how the Ritz values change as j

increases. This is the subject of § 5.

"‘F ,,,,, BAATRA Rd S S SR A T TR S Al A AN

............

4. Relevant Theorems and Facts

Soon after Napoleon was defeated at the battle of Waterioo (1815), Cauchy
proved the remarkable interlace theorem for eigenvalues of symmetric
matrices. In our case, it says

B <3P <9t <) < - <9l <80 < 8h) < 9GrY).
The inequalities are strict (in exact arithmetic) because 8; # 0, i > 1. However,

it often happens that 3 *? equals ¥9) to within working accuracy,
For any symmetric matrix A we have the following residual error bounds:
Theorem 1: for any x with || x|| =1, and any real o there is an eigenvalue A of A

satisfying

IA-0| = |Ax—x0|
Proof : If @ = A there is nothing to prove. If o is not an eigenvalue then

1= x| =[[(A-0)"}(A-o)x| < | (A~0)7!| | (Ax-ox)|; [|(A=0)'|| =1/ |A—q]. »
Corollary 1. For each i there is a £ such that

|9 +0 —of)| < g
where B = Bj+118:(3)].

Proof : Take A=T;,;, x= [B‘] T; 8 = 8,88, ;] = 1, in the error bound given
above. s

Our choice of indices, together with Cauchy's interlace theorem, dictates
that k =1 or ¢ +1in Corollary 1. In any case, at the end of analyzing T;_, there
are a number of known intervals

1G@) :=[8fD —-g; ;86D + Bj-14]
each of which is guaranteed to contain an eigenvalue of T;. This fact is of most
use when the intervals are disjoint. We remark in passing that when the T; arise

from the Lanczos algorithm used with some form of orthogonalization then, to

............
.........

. e - T .t e,
P WA VS P W L INE PAT WL VR W L)

T L

DR

within roundoff terms, each /(i) contains an eigenvalue of the big matrix A This

follows from ||Ay; — yi9:]l = (8 + IF;1)/ | w|l. and y; = Q;s).

In most cases we can determine much smaller intervals that contain 8§/

DR TUERRRER

than the /(i). The fact that 3 is a Rayleigh quotient is crucial here. The result
is due to [Temple, 1929] and [Kato, 1948]. Our proof is a modification of [Par-

lett, 1980], p. 222-224.

Theorem 2: Suppose that ¥ := p(y:A) is the Rayleigh quotient of a urit vector y.
If (¥.9+gap] contains no eigenvalues of A then there is an eigenvalue \ of A
satisfying

0<¥-A< [[Ay—y8|?%/gap.
Proof : Let Az = zA, ||zl = 1 and decompose y,

y = zcosy + wsiny, wl z !lwl = 1.
Then

Ky) := Ay — y0 = z(A — B)cosy + (A — ¥)wsiny
and, since (A - ¥)w] z,

e I2 = (A —8)2cos?y + | (A —8)w|?sin?y.
The key fact is that r(y) | y. so

0=y r(y) = (A — 9)cos®y + w* (A - O)wsin?y.
Eliminating ¥ from the last two equations yields

Ir(y) 2 = [A=8 w (A - S)w+ w(A-5) w(A - 3)]
w(A-\w
= (9 -2 w %—(AA)—LA}\)-"G)')

Next expand w = 2 z ¢, in terms of A's eigenvectors z;, Az = z; oy . Thus
%

¥ (A= N(A=B)w=Y(a - N)(as - 9,
1
and w| z implies &; # A\. Now take A as the largest eigenvalue of A less than 4,

then by the gap hypothesis {(a; = A) and (a; ~ ¥) have the same sign for each 1.

.....................................
P T O T T AT I TP
I A L S A P S P F N VR AL W A A W

P SN UL WP 1 PRI WP S YN ISR

- - m PO
.....

-10 -
So
wWA-NA-%)w= ¥ (a; = A(a; - 9)£2, neglecting nonnegative terms
ag>9+gap
>gap Y (o - NEF,
ag>¥+gap

=gap), (a; — A)¢2, since the new terms are nonpositive,
all ¢

= gap w' (A — \)w. The result follows from (*). =

Corollary 1. If, for some i,
VD < 80) <80 + gap < BHLN < v,
then
3¢ - 8fi/ gap < 5{*Y
Proof : Take A=Tj,,, y= [%]. where T;s; = 5,99, |Is;]l =1, in the previous
theorem. Note that Ay — y¥ = ej41B;415:(j)-

Corollary 2. If, for some 1,

B4, <84t <9d) —gap <vY) <9Y*Y
then

9Y* <9 + g3,/ gap

The proof is analagous to the one above.

In practice we shall take gap = 94, - Biiv1 — ¥ and test that the number
of 3*) less than s + gap is the same as the number less than 9¥). To

accomplish this test an eigenvalue counter is needed.

To find the precise index of a Ritz value one uses spectrum slicing; a much

better technique than Sturm sequences. Let

T; —¢ = LDL!
be the triangular factorization of T; - ¢, where D = diag(é,, . . ., 6;). The quan-

......................
..................................

P adrat sty (Tl

12 Ar ameategr ar deugite L gt ann

Cagauy

N W ™ . TTwS Rl
ALt At Sl ot o B M e o Sl e ahi AW A S S At A A T ETRTE STaTC
RATSLATL AN AR TRt R CT O A AR - .

-11-

tity 6;(¢) is called the *last pivot” function. Note that 6;(¥F)) =0 and
x;(8§)) = 0, but §; is a rational function, whereas x; is a polynomial (defined in

Section 2).

The Sturm sequence technique computes {, the number of sign changes in

the sequence {xo(£). xa(¢). - - - . x;(§)] where
xe(€) = (@ = €)x-1(€) = BE xa-2(¢)-
In contrast, the spectrum slice computes ! as the number of negative values in
the set §6,(¢), - - - .6;(¢)}. Here 6¢(¢)=1 and
O (§) = o =€ =B/ b 1(8).
In either case ! is the number of Ritz values less than {. As users know, the §'s

vary less wildly than the x's.

Several properties of §;, the eigenvector of 88) are given in [SEP, Chap. 7).
We select the following
51(F)2 = =x;-1 (897 x'; (30),
8(1)2 = =xg;(89)/ x5 (3{),
si(1)si(5) = BaBs -+ -+ B/ x'5(¥E)).
Here xz;(¢) := det[T;; —¢] and T; is the submatrix obtained by deleting

row and column 1 from T;. The — sign occurs because x; is not monic.

These formulas show that it is possible to compute an element of a normal-
ized eigenvector without computing the other elements. Please note that there
are two distinguished Sturm sequences of polynomials associated with y;,
namely §X;, Xj-1.Xj-2 X} and §x;. Xj. X'j. -+ XP). At a zero ¢ = 80, of ;.
we must have x;-;(£) # 0 and x';(¢) # 0, and it is remarkable that the quotient of

these quantities yields the bottom element of s;.

— T, W W ™
M BRI Sl BT e et dirt AR M R E R LB SR

RIS S S T T 1

R 3 ISPy

- 12 -

it

5. How Ritz Values Change

r

We present two figures which show all the Ritz values at each step of a run of
the Lanczos algorithm. The first case is typical, the second is not. The figures
need little comment but we emphasize some features by giving a table of the

steps at which certain Ritz values stabilized to a certain accuracy.

Figure 1 Progress of the Ritz values. Vindicates a;.

i S T
J
! v [
I f 9 1 .
I i v)]
[] v i i
61] i t v ' ' 1
{ ' i 9 i) !
I i } I I | i i
I] I ! vl f | ! 1
f] I i T I ! [I I
j ! I | i]] [i [1 i
12 |] (! A ! | oo -
] o l I] Ul | | [[i
! N I ! I A f 1 b |
15k I T t | 9 | | A T T 1S
] ey]] v 1 f I i
! R N R i v I | N I
b 1 | I i ! I | 1 { [} ! i % 1 i ! i | -
t L L L I 2 T T R T T TR |
] L L R L I I 2 T T T T T B T T i
| SO LA O L e T 2 T e T e O T T T | -
i i 1 1 i . y 1 1 .| L
-12 -10. -8 -6 -4. -2 1§ 2 [6 [L+ § 7
‘U)

Table 1. Eigenvalue with index i, converged at step j to 3 decimals.
Yy <¥2< - <V<P

eigen | step
1 bi
-1 ?
1 9
-2 14
2 15 |
3 17
-3 17
4 18
-4 18
5 20
-5 20

wtet et R R . . P . .
. S T O TE I e e, N R |

- = L _anadic aunii nndl et 4
EAMEIAMC R i A S P

-13-

Misconvergence

P L A A e

The first example suggests that we could avoid computing the 8;; and sim-

ply monitor the 3§). When a Ritz value stops changing, to working accuracy, we

can be confldent that it is good; i.e. that its bound 85 < Ve| A|. Life is not that

simple however. A Ritz value can stabilize for several steps and then suddenly

change! This phenomenon is called misconvergence and it is not a bizarre

pathology which is never seen by normal human beings. It is not difficult to con-

trive examples where misconvergence endures for many steps. See [Parlett,

Simon and Stringer, 1982] for more details.

Figure 2. Misconvergence of 3. From Steps 4 to 5.

T 1 1
2} .
L | v) -
I t
6 | 1t -
1 1 v
8 L— v ot —~
i 1 1
950. 1000. 1010. 1020. 1030.
s{)

At step 4 U stagnated at 1020 near the mean of a pair of close, but distinct

eigenvalues and suddenly split into two Ritz values at step 6. The gj; values

reveal the misconvergence at all times; they are not small during the premature

stagnation.

*aala"a‘s" a

, Y TN L et i hd k1 - L] k3 A . .“‘ et - . » s T . - M) o
IR S P T S A A Nad Rt ar Ne el M o At Bt T A G e o .
R :

-14 -

INDEXING

We now turn to the indexing problem. At the end of step j we have ¥; and
85 for a few values of i. Moreover, for some index k the new Ritz value V1AL
lies in
16):=o0) - . 50 + 4,
Suppose that /(i) is disjoint from /(l), { #i. Then, by the interlace theorem (in

section 5), k is either i or i +1. We give three instances.

The stem of | marks the old Ritz value. The bar of | represents the subin-

terval /.

T _Tw [12 &)

j ' r T

1. Normal Situation.

) ' Its)
) 1) [1=2 13
I

j r L

2. Apearance of a New Ritz Value.

I N) ir) T 15l
j | | T

3. Disappearance of a Ritz Value.

L. - - PR . S
. . L. O T
RN P L LT T
LR LRI W Wikl Oy Wl 3 RPN D S T Sl SO 4

.....
.................
P A e e A e e

-15-
In the second example ¥, seems to have appeared out of the blue. It is essential
A to recognize this event and to find such ¥;. That task is addressed in sections 6
. and 7. Here we ask how such an event can occur.
Observation 1.
jif:: The index of the new Ritz value in /{i) is usually, but not always i, for the
‘ outer values 1 = i1, 2, £3.
Observation 2.
\'.
:" The place (i.e. the value of i) where the index of the new Ritz value in /(i)
::_T: changes from i to i+1 (or from =i to —i-1) usually, but not always,
satisfles
8} < ajyy <8P or Y < qj,, < 8Y),.
3::' There is always one more Ritz value at each step of the Lanczos algorithm
> and we like to say that is is seeded by the new value of a.
: Observation 1 is equivalent to the remark that the new a is usually near the
; \ middle of the spectrum well away from the Ritz values being monitored. Obser-
% vation 2 is best understood by noting that each 13({”) is a zero of the rational
(last pivot) function
-, . 2
: 6541(¢) = @, —¢ —2:1 1,;) "y = @iy =€ -7 (¢)
‘.. In the figures below Case 1 occurs more frequently than Case 2. That is the gist
:.j of Observation 2.
N
A
-.'
7

i ate S dibatntd

T Y Y Y

The extra Ritz value at step j is indicated by the vertical arrow.

.....

]

- . e I Sl . " .t
LRI UGN Ui GV G LI T WOl (U St W S

e e e e R I
ST e, - .

T v T

-17-
Case 2.

LA IO I 2l S A Arae i St

LN sk el s e dC i)
Pl A A

The extra Ritz value at step j is indicated by the vertical arrow.

=

-

R A YR K Pk)

T s
P PRE W P PR Y

- e LGSt Al At il add Al Raalh Bind. Mg At i e R YT e
------- " SRai A Rt A N A A A i M i P g < e e SN I A,

o

rr AN

"I

-18-

LR 9
PP R

2 8. ANALYZE T
At step j the program has knowledge of the intervals 7(1), /(2),.... /() at

the left end of the spectrum of T;-, and intervals /(-1), /(—2)...., /(—r) at the

AR ORI AT
ATy BTy

right end. /(k)’s midpoint is 3¢ ~". The intervals are not necessarily disjoint,
but each contains an eigenvalue of T;. The goal is to obtain corresponding inter-
N vals for T;. The adjustment of the values of ! and 7 is a technical point dis-

cussed at the end of this section under the heading Phase Il

There are many ways to achieve this goal. What took a long time was the
design of a program which would cope with all situations, would keep arithmetic
operations and storage needs low, and yet be fairly short and simple. The previ-
ous sections showed that there are three distinct possibilities when an interval
I(i) is to be updated: normal, intrusion, and disappearance. The intelligibility of
the algorithm depends on the way these cases are distinguished. We found that
a particular Boolean variable clarified earlier versions of ANALYZE T. To justify
1 its introduction we describe some simple algorithms that are not quite satisfac-
7 tory. We will confine ourselves to the left end of the spectrum but the actual

program can process either of them.

The updating of each I(i) consists of two distinct phases. First comes the
determination of a small search interval S := [start , fin] which is guaranteed
to contain the nezt Ritz value ¥. Sometimes S = /{i). Note that the index of ¢
need not be i. The interval S is given to a subprogram FINDTHETA that com-
putes the new Ritz value and bound writing them over ¥(i) and bj(i). The
details are in the next section. The second phase records stabilized Ritz values

i ’ and moves them out of ¥(i) and decides whetber to append new Ritz values or to

X delete the last one. The heart of the algorithm is Phase 1.

K
-19-
Phase]
A good lower bound on the spectrum of T; is essential. Our preference is
R for an instance of the optimal Lehmann/ Kahan bounds which requires no 'extra’
information such as a norm of T;.
= [3(1) |
- left bound := left eigenvalue of 8; a J
N i 9
)
‘ = [(8(1) + ay) - V(467 + (3(1) - ay)9)]/ 2
_. The algorithms are presented in an informal pseudocode. Pascal conven-
-~ tions are violated when convenient.
Algorithm 1.
start := left bound
. fori:= 1,1 do
Jin := ¥(i)
call FINDTHETA(start, fin)
start := fin
- This algorithm is completely reliable and wins on simplicity. It exploits the
Cauchy interlace theorem but ignores all the bounds of section 4 and conse-
i quently delivers unnecessarily large search intervals S to FINDTHETA. We reject
,. it simply on the grounds of arithmetic effort.

Let bj (i) := Bx and recall that /(i) = [9(i) — bj (), ¥(i) + bj(1)] contains a
Ritz value. Hence a more efficient yet even shorter program than Algorithm 1 is
fori:=1,1do
call FINDTHETA(/(2))
Alas, this program will sometimes fail even when the I(i) are disjoint. It will
miss an extra Ritz value that may be seeded by an a; near the left end of the

spectrum. For example it will miss ¥; in Case 2 of section 5.

To cope with these situations we employ two subprograms:

- P
.......

..........................

-20-

NUMLESS(¢) is the number of ¥ less than §.

MOVE makes room for an extra ¥ and bj or closes a gap.

The next algorithm removes the bug in the one above.
Algorithm 2.

old$:= left bound

fori:= 1,1 do

if NUMLESS(9¥(i) — bj(i)) =1 then
MOVE elements i, i+1, - - -, l down
l:=l+1
S :=[old¥, 8(i) - bj(i)]

else

| S:=1(i)

old ¥ := ¥(1)

| call FINDTHETA(S)

Unfortunately Algorithm 2 malfunctions on those rare occasions when sg-n
disappears at step j as explained in section 5. The precise nature of the failure
depends on FINDTHETA but the trouble arises because /{i+1) is contained in
I(1) and the subroutine will be asked to find the same Ritz value twice. The

remedy is to check for this possibility before processing /(i +1).

...........
[
~

-21-

Algorithm 3.

old? := left bound
fori:= 1,1 do
if NUMLESS(9(i) — bj(i)) =i then
MOVE elements i, i+1, - - -, Il down
l:=1l+1
S := [old®¥ , (i) - bj(i)]
else
| S:=7(1)
oldd := ¥(i)
call FINDTHETA(S')
if (i) > ¥9(i+1) = bj(i+1) then
MOVE elements i +2,...,l up
l:i=l -1

L

The efficiency of this program can be improved significantly for a modest
increase in complexity. First the rare occasions when ¥~ disappears are
treated wastefully because FINDTHETA is given a big interval /{i) rather than a
small one [(i+1). Much more serious is the failure to use the refined error
bounds of section 4 whenever the intervals are disjoint. In fact Algorithm 3
already makes a relevant test but does so one iteration too late. A nice way to
preserve the fact that /(i +1) is disjoint from /(i) for use in the next loop is by
introducing the Boolean variable indezok which is true when /{i) contains ¥4}

and false when it contains ¥{{}. More precisely, introduce new variables

probe := 3(i+1) - bj(i+1)
indezok := probe > 9(i) and NUMLESS(probe) =1

It turns out that if indexok is true at step i + 1 then the refined error bounds

can be used at step i, and conversely. Thus one test serves two purposes.

................
.........................

CUPREIPSE YRR P Py W ey

.......................

-22 -

Algorithm 4

old'd := left bound
probe := 9(1) - bj(1)
indezok := NUMLESS(probe) = 0
fori:=1,1do
if indezok then
start := max(old®$, probe)
fin := (i) + min{bj (i), bj(i)%/ (¥(i) - ¥(i-1)}
probe := ¥(i+1) = bj(i+1)
if probe > B(i) then
indezok := NUMLESS(probe) < i
ifindezok then start :=max{start,9(i)-bj(i)?/ (probe —8(i))}

else
MOVE elements i,i+1,...,l down
l:=1 +1;indezok := true

start :~ old¥ ; fin := probe
old ¥ := (i)
call FINDTHETA(start , fin)
if 9(i) > probe then

MQOVE elements i +2,...,1 up
L l:=1 -1, indexok := true

Remark: It is only necessary to compute indezok explicitly when probe > 9(i).
Otherwise it simply remains {rue. In principle indezok can be false at most once

for each value of j because there is only one new Ritz value.

Algorithm 4 does not make optimal use of available knowledge. By Cauchy’s
theorem we have:
if indezok has remained true for all i so far then
new ¥ is in [9(i) - bj(i),3(1)]
else
new 3 is in [8(1),9(i) + bj(i)]

In order to combine these bounds with the refined ones it is necessary to keep a

- Mo It Ba B A it S Sad i Srdh e Ant it
SRt e A A € AT R A Y e e alart Bl SOETE T AT v

-23.

Boolean variable newritz which remembers whether indexok has been false. Is
the improvement in performance worth an extra Boolean variable? We are not
sure, but from a mathematical viewpoint it seemed valid to implement fully the

best bounds available to us.

The treatment of disappearing ¥'s is also wasteful. There is no need to give
FINDTHETA any subset of [#(i—1) + bj(i—1), ¥(i +1) - bj(i+1)] when it contains
no Ritz values because that condition is easily checked in advance. The most
economical treatment of disappearing 977" is to skip the call to FINDTHETA
and then close up the gap in the data structure. This requires a flag for this

case and we choose to set bj(i) to -1 thus dispensing with an extra variable.

The final version is Algorithm 5 given in Table 2. Of course, it is not a valid
program as it stands because end conditions (whep i =1 is not defined, for
example) have not been treated. In addition the code must be written so that it
works on the right end of the spectrum as well. These details obscure the issues

of concern here. The full program is given in the appendix in Fortran 7,

Amtnd ot -_.r.-J

...................

11
3
4
]
l1
|
1
1
|

-24 -

Table 2

Algorithm 5. Phase [: update Ritz values and error bounds

old ¥ := left bound ; probe := ¥(1) — bj(1);
indezok := NUMLESS(probe) = 0 ; newritz := false ;
fori:= 1,1l do
if indezok then
if newritz then
start := B8(i)
Jin := start + min{bj(i).bj(i)?/ (start —8(i-1))}
else
start := max{old 9,probe]
| fin:=(i)
probe := 9(i+1) = bj(i+1)
if probe > ¥(i) then
k := NUMLESS(probe)
if <1ithen
bj(i):=-1.0
else
if not newritz then
indexok =k < i
width := min{bj (i),bj (i)%/ (start —9(i))}
if |8(i) ~8(i~1)| > bj(i) then
L L L start := maxistart (1) — width]

else

MOVE elements i,...,.! down

t:=1 4+ 1;indexok := true ; newritz := true;
L start :=old 9 ; fin := probe

if b5(1) > 0.0 then

old 9 := ¥(i)

call FINDTHETA(start, fin)
else
MOVE elements i+2,....L up;i:=i ~1;
L. :=1 - 1 ;indezok ;= true ; newritz := false

4

...........

- L I PO L B -) :) et A s-"» T . N "4"\ -
i ettt et et ptitongintinsnshutiosshasbenshativiedsgtolninmttiintniatbnieech PURNIEIEESI. SO SV S

- ":l
1
-
r

-25.-

DERR § RN

Phase 1

At times it is necessary to append more Ritz values to the list or, less fre-
quently, to delete them. The overall goal of ANALYZE T is to monitor as few
values as possible consistent with the requirement of catching all extreme Ritz
values at the step when their error bounds cross below the threshold fol. Recall

from section 2 that

tol := Ve spread = Ve(¥(-1) — 39(1))

The program tries to achieve the goal by monitoring those Ritz values whose
bounds lie in the window [tol , w-tol] where w is at our disposal. We lack a
theory to dictate a proper value. If w is too small (w =4) then it is easy for a
Ritz value to skip the window in a single step and so be missed. On the other
hand if w is too big (w= 1624) then Phase | wastes energy monitoring values
long before they stabilize. Fortunately the behavior of the algorithm is not very

sensitive to small changes in logaw. Currently we take w =128.

Should ;4 be unusually small (but greater than fol) then a good number of
Ritz values may enter the window. This poses no difficulty to Phase II because all
the current ¥ will stabilize and the program will automatically append more
values. The reason for taking w > 4 is the fear that say ¥(2) might overtake ¥(1)
in their race to stability. If Phase | only monitors ¥(1) then it might discover

¥(2) several steps after it stabilizes.

Phase II sweeps through the known ¥(i) and removes any which have stabil-

N ized. Any gap in 9(-) is closed up and ! is decreased. It would be simpler to
leave these values in place and adjust pointers so that they were not inspected
any more. However in our Lanczos program we associate 3 other variables with
each computed eigenvalue and we wished to keep ANALYZE T free of this infor-

mation. Moreover our mechanism isolates ¥(') and bj(-) from the rest of the

R A T e ST e s N
. Rl DT U T B R
Sa k\w.)_l_..; TSP P DR T L TR LI L S S Y S T SOn. D |

T e T N T .)
R R o Bt e e e . - L.

--' .. N -_.q' ‘e L “- - -‘_
e e e s e el Sl S,

T o Surt et I Bt I T I A R AT R - e T T ! R |

......

-28-

v Lanczos algorithm. These arrays are of length 8.

Another device which enhances the performance is to deflate stabilized Ritz
values from T. Analyze T is independent of this feature. The deflation process is

discussed in a later section.

Recall that Phase | sometimes inserts Ritz values into ¥(') and frequently
these intruding ¥ have large bj values. The strategy for appending more Ritz
values is clear. Phase Il will go on appending Ritz values until it finds one out-
side the window or there is no more room. In particular ¥(-) holds at least one
Ritz value at each end of the spectrum. No interval I is on hand that contains
these new values to be appended. However the average gap (:= avugap) between
the unknown Ritz values is easily computed and NUMLESS is used to check
whether [9(l) , ¥(l) + avgap] contains the next value. If not the next subinter-
val of this length is checked and so on. Then FINDTHETA is called and ! is

increased.

The most complicated expression in Phase Il concerns the decision to drop
¥(l). The drop is necessary to avoid the waste of carrying two slowly converging
values at one end of the spectrum when all the action is happening at the other
end. This happens when Lanczos is not used with inverted, shifted operators. All

of the following must be satisfled

§>8; 1>1; bj(1)>bi(l-1)> tol-w

Three considerations suggested the separation of Phase Il from Phase 1. It
is desirable to update both ends of the spectrum before appending new Ritz
values to either end in order to prevent one end being driven out of ¥().
Secondly it simplifies Phase 1. The actual code is careful not to insert items
prior to checking that there is room for them. Thirdly, Phase I does not need to

know f;+;. Consequently, if the computer permits it, Phase I can be run in

...........
P

ROV G |

.....
.

Lt selh st senth et Sl Sl S S e SO Aol e S S

C 4 A . - - - -
Tt T W Wbt i AT PR AR T AR R . . . :

-27-

parallel with the computation of some vector operations in the main loop of the
Lanczos algorithm. Phase Il must wait until 83,, has been computed.

- Phase II. Remove and append Ritz values.

bj (i) containes s; (%)%, computed in FINDTEETA in Phase 1.

fori:=1,1 do

bj (i) := VBE 05 (3)

append := i =! and another Ritz value needed

if append then

| avgap := (3(r) -¥(1))/ (j -1 —abs(r))
Jin := ¥(L) + avgap

if bj(i) < tol then

insert ¥(i) in EIG

if- append and enough room then

while NUMLESS(fin)=l do fin := fin + avgap ;

start 1= fin —augap ; l:=1 + 1

call FINDTHETA(start,fin)

bj (1) := VBFus; (1)

if (1) not needed then! :=1 -1

Dt Ml snane Jhbemme it Jhbiuten iene L et 2 et e " T A T R
X T P A o . S T ""T.

-28-

7. The Subprogram FINDTHETA

There are several good ways to compute the Ritz value in the given search

interval S. The simnplest is the bisection technique which has the advantage of

LA o Sa A e
. it
DS)

using the already needed subprogram NUMLESS to evaluate the last pivot func-
tion 6;. Recall that the ¥{) are zeros of the rational function 4;. The error
bound is halved at each step although the actual error may be reduced by much

more.

The bisection process is much less efficient than rival methods when the

approximation is already good to three or four decimal places and that is pre-

cisely the situation facing FINDTHETA most, but not all of the time. Recall that
for most intervals /(i) the width is less than our window, namely 128-tol. When
the refined bounds are used we can expect the width of S to be 10 or 100 times
smaller than that. Consequently the starting approximation may be accurate to
almost half of its digits in the majority of cases. Thus one or two steps of
Newton's iteration should suffice independent of the precision ¢ of the arith-

metic operations.

There will be occasions (intruding and new Ritz values) when S will be large

(like the average gap between zeros) and so the Newton iteration must be pro-

S“'I‘I‘l

tected by a bisection facility which chops down large S's. This raises an
interesting technical problem that receives little attention in text books. When
should the switch from bisection to Newton be made? Our criterion is discussed
later in this section.
o There is a further attraction in using Newton's method to update the Ritz
‘ ’ values. The preferred implementation of the Newton correction yields s(j), the

bottom component of the eigenvector, as a byproduct. This pleasant feature is

the subject of the next subsection.

..............

-29-

The Newton Correction

R

bia1:= N(8&).

fork =1,2, - - - ,j repeat

Xk = (@ = €)X -1 —BE Xi -2

Recall from Section 4 that

x; (&) = tljlcsi(e).
So

or, more conveniently

To implement the calculation let

PP I AR APPSOV JP R A P ST

known three term recurrence: xg=1,x0=0, 8 =0,

i=1
Recall from Section 4 that
6 = oy — & - B/ 6.
; Thus
. pé ['5'i-l
§¢=~-1+)
t ! 64—t l 6i-1 l

N

1

X% := (e =X -1 ~ BEX k-2 =Xk -1

!L:-i— =d— : - ———
x - ag P = g Lin(4) 2506

B¢ |[=6'q
1<-6;=1+ .
: [ai-.][Biar

.
.

Newton's iteration function for the polynomial x; is

- (57 x3)

and Newton's iteration computes from §; the sequence {¢{;{ according to

An obvious way to evaluate the correction term —x';/ x; is to use the well-

Unfortunately, this recurrence suffers from severe underflow/overflow prob-

lems. Fortunately, there is a more sedate alternative which we now derive.

6'i(¢)

At ada il o o

-30-
hy := 1/ 6; and py := =8/ §;,
The R; play an important role in the QD algorithm, but we will not pursue that
connection here. Using the new notation we can update the ratios p by

pi = (1+h_10i1)/ ;.
It may be verified that h;p; > 0 for all i. Finally

_x'.
—+= Sll.m,‘ = gllpt
i=

Here is the alternative recurrence (NEWCOR, for Newton Correction).

Set h « p « sum « 0,
Fori=1,2, - -- ,jdo
6o, —¢—-h

if (6 =0) then § « & 8;,,
pe(1+hp)/é

h «p&1/8

sum ¢« sum+p

The only operation in which roundof! error is significant is the calculation of
é;. Digits are lost in successive §; either suddenly at the last step or gradually
in the last few. Although the relative error in 6, p, and sum increases sharply as
i -+ j nevertheless the error in 1/sum; is tiny compared with £. This is a stable
computation of the Newton correction. Table 3 shows what happens to §; at,
near, and beyond convergence. The product §;-sum; should be positive (see
Section 8). The computed value of 8,3 has no correct digits. The example came
from the tridiagonal obtained from the same tridiagonal which produced Figure

1

-91 -
Table 3. Last 5 steps of NEWCOR.
j=9 j=1 j =13
£ = 10.7461941828997 £ = 10.7461941829034 € = 10.7461941829034

i O sumy; O sum; o sum;

5 -.1787e+00 | -.2730e+05

6 | -.1512e+00 | -.9970e+06

7 -.1310e+00 | -.4995e+08 -.1311e+00 -.4994e+(08

8 -.1143e+00 | -.3318e+10 | -.1157e+00 | -.3278e+10

9 .2690e-05 .1103e+17 | -.1036e+00 | -2726e+12 | -.1036e+00 | -2726e+12
10 -.9271e-01 -.2831e+14 | -.9388e-01 -.2796e+14
11 .3963e-01 .7603e+18 -.9422e-01 -.3158e+16
12 .866%e+00 .3516e+17
13 -.990Ce+01 .3C70e+17

When to Switch from Bisection to Newton?

It is easy to deflate the effect of known zeros from the Newton correction.
Consequently there is no loss of generality in considering the calculation of

one of the outermost Ritz values. Take ¥; to be specific.

ANALYZE T delivers an interval S guaranteed to contain ¥;. Its width pro-
vides an initial error bound. The bisectior process halves the error bound at
each step. In our application one Newton step costs between 2 and 3 times as
much as a bisection step for large enough j (j > 20). Because of the deflation
feature we take 3 as the ratio. It follows that bisection is preferable until New-

ton reduces the error by a factor of 8 (= 2%) at each step.

Convergence is assured in our context. Let the iterates be ¢,,£5,£3,... As

Em - V5,

(8
tmﬂ ”1’1 = %%((Tf))—(sm "131‘)2 + 0((£m -1’5)3]

A calculation reveals that

7

1"1/

,4
" -

<RI

e
‘s

-32-

o E=9)7

e] -— — . 1 — ————————
X (f)/X (f) = Z(f 1’1) 2(‘ _1’{)_1

where each sum is from 1 to j. Let { » ¥; to find that

By = B0

Now drop higher order terms to obtain
-, j o1
=D (fm — 85 £ (85 — 30
ém —Y; e
In some instances the dominant terms in the sum of reciprocals will be
available. Let us consider the opposite extreme, when only spread := 9; — 1, is

known. If the zeros are uniformly spaced then

It 1.1 1
. — . ‘1= e — v oe
igl(ﬂ, CORENCRI- L *)/ gap

A ~1)[y+In(j —1))/spread , as j » =
Here 7 is Euler’s constant (=.577...).

If 93, . . . , ¥4, are alLbunched at the midpoint then

iat
(3 —8)7 = (2 ~3)/ spread.
=1
In practice, when Lanczos is used with a shifted inverted operator, there is a
tendency for many interior ¥'s to cluster round 0 € (9, , 13,). This situation may

be modeled by

ig! - 1 =3 1)
9 =9,) 1~ + + .
‘&(5 = %) ¥y =¥,y V¥;-0 spread]

To use these results {,, ~9; must be replaced by the width of the smallest
interval currently known to contain ¥;. We use the uniform spacing assumption

and test the assertion

width < spread/[8(d - 1)In(d -1)]

where d = j - {no. of known ¥'s|.

il el LUPRI WL PP S0 SR LU T SO R SV SR S S B j

-33-

8. Evaluation of s(j)?

Let us drop the subscript i and consider a typical Ritz value ¥ with T;s = 89,

Isll = 1. Section 4 reported that s (5)3¢;(8) = xj-1(98). so

~s()e = X0

x;-n(ﬂ')
- (2« [

= 6';(¥), since x;(¥) = 0.

Note also that if x;(¢) # O then

—sum,;(¢)-6;(¢)

g(t)]=[x,-<¢)] FaGRIE
Xi-1(8)]~ [x:(0) J|xi-1(¢))

where sum is evaluated in the recurrence for the Newton correction given in the

previous section.
Given below is a list of ways to approximate s(j)? at little cost.

1. If¢ =3+ O(g||Al]) then
s(F) 2= =05(8) = 1+ by ($)ps-1(¢) > 1
is available free from the Newton correction. However it is somewhat waste-

ful to evaluate the recurrence at a point so close to 4.

2 It¢=0+ 0(c|A]) then
$(5)72 = sumy(£)-6,(¢)
is available from the Newton correction. Both sum; and §; will have high
relative error when 6;_,(¢) is tiny, as must happen when ¥ stagnates. See

Table 3.
3. From the three formulae involving s(1) and s(j) given in Section 4 one can
derive a fourth one

s(F) 2= ~x; () xe; (B)/ (B2 - Bi)?.
The Newton correction recurrence may be run backwards to yield X'j and

Xz2- A little manipulation reveals that

« e Lt R .) e . to . MR - S oA
R i R A T S L .. e e e . P e - L NN N e R . ‘_.;
PRSPPI N T NP S T SOOI I T SAIF TMT WY WA YASY L YA WV EIDY Ul WP S S b b nndh Bl sn, oo onsll N PRI, PRSI VI S WS R

-34 -

- —o(iv-2 = (5 T8
x s(:)*-(al)l:l[‘;?]

If ¢ is the final point at which the backward recurrence was evaluated then

- T8 =1+ R (P > 1

is available at no cost. The other factor must be formed. A stable way to do

o this is
N
N m:=1;h:=0
20 fori := j down to 2 do
i u:i=a;—¢-h
. = mu?/ g2
. ifu =0thenw := ¢(8% + af)
", .= f2
::: I hi=8u
The cost is 2j divisions and 2 multiplications. If ¢ =8 + O(e||All) then this is a
: more accurate though more expensive procedure than No. 2
¥
,.,f:
e Consequences of using Newton's method
J We deflate stabilized Ritz values from T and this device forestalls the pro-
duction of clusters of close Ritz values. Thus x''/ x’' varies gently in the neighbor-
. hood of each Ritz value and we stop Newton's iteration as soon as the correction
¢ is less than tol, confldent that one more step would produce a ¢ = O(¢|T]).
23 We remark in passing that stabilized Ritz values will be refined later in a Lanczos
run and so an error in the last few places is of no consequence. This policy
. presents the challenge of approximating s(j)? correct to at least one decimal
"_: place despite the fact that the Newton recurrence will not have been evaluated
=) at our latest approximation ¢, but at the previous ¢.
:: 4 Let¢=¢+c. Notethat
5! i=l 2
3 5 (z) =14

S (Y ~z)?

The only unbounded term as z - 8 is 87s(j)%/ (9 - z)? , the rest varies

[
v e
a

'
«PaTe

slowly. Consequently the correction to be applied to =6'(¢) is

—r o i S fhadet I T S A B A Seu e e i St
TSTOTY T T Y W T e W T W o m T TSN T e A e e T T T e L e

-t

.

.

¥
)
l_‘
-
LIRS
L3

-35-

approximately

egpiyel 1 1]
UG- F -]

- g2cfiy2 2c(¥ —¢) - c?
Brs 0 s — R —ep

A more orthodox way to correct —4';(£) is to use Taylor series. However it is

preferable to apply this technique to functions which resemble polynomials.
So we consider g(z):= (8 — z)4;(z).on the tiny interval (8,£) of interest to
us. Let 8 :=8{-Y. Then, with ¢ = £ + ¢ we have

'($) = ¢'(£) + ¢"(&)c + 0(c?)

A little calculation reveals that

0"(8) = (8 - £)6",(6) —265(8) =2 + 2% B (B - ;s)
ka1 (B =€)

kwi

(*

because the dominant parts 2 e cancel each other. Rearranging

_& __
(8 -¢

terms in the expression for ¢' yields

05(9) = 63 + ﬁ_g{ws(a P,y

where ¥ is the best available approximation to (*). Although it appears com-

plicated this process does not require 7 arithmetic operations.

Methods based on QR and QL.

Let Tys = 8¥. In exact arithmetic the QR transformation with shift ¥ will
deflate T;. Then s(j) is the cosine of the last rotation angle used in the
transformation. The transform may be invoked without bothering to store
the elements of the new matrix. The most compact version of the algorithm,
given in [SEP,p. 169), allows the computation of s(j) after 3j divisions and
37 multiplications.

This technique is not reliable in practice because sometimes (for example,

when a Ritz value stabilizes) the final rotation is poorly determined by the

- 36 -

initial data. This phenomenon corresponds to the fact that deflation does
not always occur in one QR transformation even with an eigenvalue correct
to working precision.

Less well known is the fact that s(j) is the product of all the sines used in

the QL transform of T; with shift ©%. See [Chen,1983] for instance. This ver-

sion is very stable and yields s(j)? after 3j divisins and 4j multiplications.
7. Givens recurrence.

In our application this much maligned recurrence for computing an eigen-

vector is very accurate because the s(1) are substantial if not actually max-

imal components of the s. The recurrence solves the equation

Ty —€hv=ew, vl =1.
If ¢ = ¥ to working accuracy then ||s — v|| = O(¢). There is no need to store

e s amie s

the elements of v. The cost is j divisions and 37 multiplications. The least
attractive feature of Givens for us is that it requires knowledge of the §;.
All the other techniques utilize 8%, the quantities we actually provide for
Analyze T.

In Table 4 a comparison is made of the methods described above on some

. typical examples.

-37-
Bottom Element s Eigen Vector, S (j) i
j 30 method 1 0or2 | method 3 QR QL Givens ;
2 | 218.2753378667163 | 0.675e+00 0.675e+00 | 0.675e+00 | 0.675e+00 | 0.675¢+00 jf
3 | 233.9326136824040 | 0.435€+00 0.435¢+00 | 0.435e+00 | 0.435e+00 | 0.435e+00
4 | 238.2264773067190 | 0.212e+00 0.212e+00 | 0.212e+00 | 0.212e+00 | 0.212e+00
5 | 240.9310281048789 0.187e+00 0.167e+00 0.167e+00 0.167e+00 0.167e+00
8 | 242.5758180873734 | 0.185¢+00 0.185e+00 | 0.165¢+00 | 0.185e+00 | 0.185¢+00
7 | 243.3205720027529 | 0.968¢-01 0.969¢-01 0.969e-01 0.969e-01 0.969e-01
B | 243.9045963222352 | 0.821e-01 0.821e-01 0.821e-01 0.821e-01 0.821e-01
9 | 244.3506862340472 | 0.910e-01 0.910e-01 0.910e-01 0.910e-01 0.910e-01
- 10 | 244.5415880111110 0.448e-01 0.448e-01 0.448e-01 0.44Be-01 0.448e-01
- 11 | 244.5848222804917 | 0.167e-01 0.167e-01 0.167e-01 0.167e-01 0.167¢-01
'.; 12 | 244.5850377523666 | 0.103e-02 0.103e-02 | 0.103e-02 | 0.103e-02 | 0.103e-02
13 | 244.5850426917980 | 0.160e-03 0.180e-03 | 0.160e-03 | 0.160e-03 0.160e-03
: 14 | 244.5850427056620 | 0.784e-05 0.784e-05 | 0.784e-05 | 0.784e-05 0.784e-05
:;' 15 | 244.5850427056857 | 0.317¢-08 0.317¢-06 | 0.318e-06 | 0.317¢-08 0.317¢-08
;f: 16 | 244.5850427056857 | 0.345e-08 0.852¢-09 | 0.108e-07 | 0.852e-09 | 0.852e-09
- 17 | 244.5850427056857 | 0.334e-08 0.238e-11 0.355¢-05 | 0.238e-11 0.238e-11
18 | 244.5850427058857 | 0.334e-08 0.792¢-14 | 0.107e-02 | 0.792e-14 0.792e-14
A 18 | 244.5850427056857 | 0.334e-08 0.227¢-18 | 0.350e+00 | 0.227e-16 | 0.227e-18
2 20 | 244.5850427056857 | 0.101e-07 0.30Be-17 | 0.999e+00 | 0.308e-17 0.308e-17
2 21 | 244.5850427056857 | 0.421e-08 0.862¢-18 | 0.528e+00 | 0.862¢-18 0.862¢-18
. 22 | 244.5850427056857 | 0.116e-07 0.204e-17 0.860e+00 | 0.204e-17 0.204e-17

- Table 4. Comparison of Different Methods for Computing s(j). Note the change
- after step 18.

-— oy e ———— e ——r———— T T YT ST W W T T W v e NI % @ e T r T et Wt T e D
E-\vf‘--(-;-w_‘v.-vv. TEATWE T AT YR LYY N T T T T B . . . AU N - R) . 1
(LA AR RS S A IR R P B . .
Cat

-38 -
9. Explicit Deflation

There is a useful technique which permits some important simplifications in
Analyze T at the extra cost of 2 arrays of length lanmax (=the maximum
number of Lanczos steps permitted). The simplification is that Analyze T may
assume that T has no clusters of very close Ritz values. The technique is to

remove fully stabilized Ritz values by using the QR algorithm to deflate T;. The

extra arrays are to preserve the T of the Lanczos algorithm for computation of

the Ritz vectors.

Let 8 be a Ritz value which has fully stabilized before step j. In other
words, the j element of ¥'s normalized eigenvector s, satisfles |s(j)| < Ve. At
the end of step 5, apply the QR algorithm with fixed shift ¥ and consider the
situation at step j +1. Assume for the moment that only one step of the QR
algorithm is needed to cause ¥ to appear in position (j,j) and to have the (j,j-

1) element well below the threshold V& B;. Alittle notation is needed. Let

T; -9 = QR T :=QTQ .
Partition T as
| 0
T; |
71 I
T; = o Inl < V& B;
;= | 7 moS Ve
—_——— e e — | -
| 0 n| @

The success of deflation implies that §; := ﬁe, satisfles T;§; = ;¥ + §-;n. Thus

sin £ (q;.s) <1/ gap(8), where gap() = min |\ -3/ over eigenvalues X of T;_,.

o . P .
------- et e’ e et e 0T e e - -
................... -y
.....

ot Lt e, et st S T .. N : R U R P
PR RPN S PP WPURP, LI E N A Sl T Tl 8. LS VAL T VR R . VPN N I L U A IR, W I, WAL O R D TS

o I"l ’
e
LI % e

-

EAAA ~ ~ A

A-‘?

el ittt Aeuih Santih Al Satil fanth -
............
....................

-39-

Now consider the effect of the similarity transformation on Tj,,;

ol
<7
ol

Bj +1
_____ | —_———— - —fl-====1 4
I;!_ Bi+1 | ajef| | 1
(l
I
T |
T]-—l I
= {n B
n| % ¢
ﬁ‘oaji-lJ

Let ¢ denote the last rotation angle in the QR sweep, then

0 = fi18/Q = Byeicosp N B,]s(5)],
B = Bj+18/Q5-y = Bj+15ing X B4
The last approximation follows from the fact that Q is in upper Hessenberg form.

Therefore 82 + o2 = 8%, and
B=B(1—-s(G)?)M¥ =g (to working accuracy).

If the QR transformation were executed in exact arithmetic and if ¥ were an
exact eigenvalue of T; then 7 = 0 and the magnitude of ¢ could be controlled by
choosing the right value of j at which to deflate, namely after 9 first stabilizes,
but before any second copies of ¥ appear. When 7 and o are negligible we may

simply delete row and coiumn j from the transform of Tj,; and work thereafter

with a smaller tridiagonal matrix,

N T m M T BT RIELT T T e Ty e e e e e

PRI D0V, T U T T P IR P P |

it Aia e At i S I A et A Al e S S B I L T P i i

-40 -

T. =
V)
Bs+1

|
|
T,y i
|
|
!

Bj +1 '

The fact that a;,; is unknown at the end of step j is immaterial.

aj+l

Some information is discarded when 7 and ¢ are neglected, but it is only
necessary to preserve the integrity of the Ritz values, not the eigenvectors of T;.
When eigenvectors of the operator A are wanted then it is necessary to keep a

copy of T;,, for their computation.

As students of the QR algorithm know, in finite arithmetic it is likely that 2
steps of the QR algorithm will be needed to make 7 negligible. In such cases Qis

no longer in upper Hessenberg form. Consequently

j—1
T] = 6
| Y
6 7 I a)f-l

where ¥2 + 6% = 87, ,.
Rather than performing 2 QR transformations one can simply deduce the

correct rotations in QR from the eigenvector s and force the QR transform to

use them.

Our subprogram Analyze T can work on T,- happy in the knowledge that ¥ is
not one of its eigenvalues. If at some later step of the Lanczos process a second

copy of ¥ appears then it will be as a simple eigenvalue of T

There is an alternative to deflation for protecting NEWCOR from difficult

CREC . . RN .
- . R S P LI Y
PR TN - N AR

tadAb et alatata .t e .

L Grat s dnas Irda nogh v g Band e Al SN IO S

T T T R T T e W TR T W W T T T e e s,
o

ol .
P

-41 -

situations. If a second copy of ¥ stabilizes at step &, then it suffices to compute
it as a simple eigenvalue of a submatrix Ty, x of T,. However, the choice of m is
not a trivial matter. It must satisfy 1 < m < j, but the best choice of m depends
on the eigenvector of Tj belonging to ¥. It is feasible to try m = 2 (i.e. m = mul-
tiplicity of 4 in Ti) and then increase m if any difficulties arise. More work is
needed on this topic. There may be a simple, safe formula for m. Until that is

discovered, we recommmend explicit deflation. The extra storage requirement is

for the Lanczos process, not for Analyze T.

AP A R W W YU WO PR WU L. PPV AP, V-

...

oY
E
4
'
4
4
L
P
A
[
L
I
o
4
K
K
K
A
r
4
A
i
«
B
1
—

-42 -
X
'; 10. Profile of Lanczos Runs
-+
. The tables given below attempt to record the important incidents as the
Lanczos algorithm builds up a basis for a Krylov subspace and updates the pro-
jection of the given linear operator on that subspace. What is wanted is informa-
s tion on the quality of the Ritz approximations (3; , Q;s.) and the cost of obtain-
: ing them. The quality is given by the bj(i) and the cost of this information is
- given below.
) At each step the table shows.
1) The number of Ritz values updated (col. 2), and the average cost {(col. 3),
the maximum cost {(col. 4) and the minimum cost (col.5) of updating the
_ Ritz values. A unit of cost is taken to be j operation, where j is the size of
the deflated tridiagonal matrix.
2) The number of Ritz values appended (col. 8) and the average cost of
o appending these Ritz values (col. 7).
4 3) The cost of this monitoring as a fraction of the cost of a Lanczos step (col.
¥ 8).
& 4) Column 9 contains a cumulative tally of the number of stabilized Ritz values
(eigenvalues).
: The first profile is obtained from a matrix of size 100 with an average half
bandwidth of 23. This matrix arises from a finite element model of a multistory
building discretized using truss elements. For this run the cost of Analyze T
7':: ranged from 3% to 23% of the cost of a Lanczos step. The second profile is
~: obtained form a larger building frame example (n = 488 and average haif
i bandwidth = 120) that is described in [Nour-Omid, 1983] . The cost of Analyze T
as a fraction of cost of a Lanczos step was much less (ranging form 0.2% to 5%),
:. indicating that for very large examples this cost will be neglegible. This run is
-

""

e bt

....................

- - [
P I W P D TP W G WP TR PR P G/ Y v, ¥

..........

-43 -

memorable because ten Ritz values stabilized from step 69 to step 70; an
unusual occurrence. Nevertheless, the effort to compute all ten values was less
than 5% of a Lanczos step. In other words, this was a very cost-effective step in
the process. The costs mentioned above include arithemetic operations but

exclude fetch and store operations.

Our experience with these profiles is limited but we plan to use them rou-
tinely and hope that they will appeal to all who are interested in a detailed

comprehension of the Lanczos algorithm.

updates appends
T cost no. of
step no. of average max. min. no. of average Anr:lxtio T conv.
. . . ze .

] items cost cost cost items cost _La.—n-s%e_p_ eigs.
3 2 15 16 14 0 0 0.0308 0
4 2 10 12 9 2 19 0.0795 4]
5 4 11 1§ 6 0 0 0.0753 0
8 4 10 15 3 0 0 0.0685 1
7 3 10 13 8 1 17 0.0968 1
8 4) 14 3 1 17 0.1089 2
9 4 10 15 3 0 0 0.0959 2

10 4 10 16 3 o] 0 0.0959 3

11 3 11 16 9 0 0 0.0904 3

12 3 10 13 6 0 0 0.0925 3

13 2 8 11] 1 15 0.1062 3

14 3 8 12 3 0 0 0.0904 3

15 3 8 13 3 0 0 0.0986 3

16 3 9 16 3 0 0 0.1110 4

17 2 11 16 8 0 0 0.0979 4

18 2 11 16 8 1 18 0.1918 4

19 3 8 13 3 1 15 0.1870 S

20 3 4 13 3 1 16 0.1901 S

21 4 ? 18 3 0 0 0.1438 6

22 3 8 16 3 1 15 0.2003 7

23 3 ? 13 3 0 c 0.1151 7

24 3 8 16 3 1 1§ 0.227 ?

25 4 7 13 3 4] 0 0.1630 8

Table 5. profile 1 (n = 100, average half bandwidth = 23)

................

e Lt ot L L R - <. R . Stet, R .
R S IR R K coe . e B . . . <L D R
. . Se Tt . . " - PR . L T PP . V. L .,) .- Y e e e

Lo te et e e 0 aabentabaluindi ' Vet . P PR YR WY TSN WP S P TR SR AT WP Y B

T e die Jess e ainae Minde Bt daur-Shetl Whet-Megt A AU Ar-Sh At 40 Tl TR S AP AR - e e T - B e Pl Y A
- T e T ARG EE TR N R R Lot S - . . e T .

, ol
updates appends
cost no. of
no. of average max. min. no. of average An:;}tio T conv.
. . yze .
items cost cost cost items cost lanstep eigs.
2 18 19 18 0 0 0.0018 0
2 16 17 16 2 18 0.0047 0
4 15 18 13 0 0 0.0051 o
4 15 1?7 12 0 0 0.0061 0
4 13 18 9 0 0 0.0062 0
4 13 17 9 0 0 0.0070 0
4 13 18 6 0 o 0.0079 4]
2 9 12 8 0 0 0.0030 0
2 7 9 6 0 0 0.0026 0
2 (] 8 6 (o} 0 0.0024 0
2 6 6 6 0 0 0.0026 0
2 4 6 3 1 19 0.0064 c
3 6 13 3 1 18 0.0091 0
4 5 12 3 2 17 0.0128 2
4 6 9 3 0 0 0.0061 2
4 6 g 3 0] 0.0057 4
2 6 6 8 0 0 0.0030 4
2 8 8 8 0 0 0.0032 4
2 8 8 6 0 0 0.0035 4
2 4] 3 1 15 0.0070 4
3 3 3 3 1 18 0.0987 4
4 3 6 3 2 18 0.0154 5
5 4 9 3 0 0 0.0068 5
5 3 8 3 0 0 0.0048 7
3 4 8 3 1 18 0.0096 8
3 8 9 3 0 (4] 0.0061 8
3 5 9 3 1 18 0.0117 8
4 S 9 3 0 0 0.C074 8
4 4 9 3 1 19 0.0130 9
4 S 9 3 4] 0 0.0074 10
3 6 9 3 (o] 0 0.0070 10
3 4 8 3 1 15 Q0105 11
3 8 9 3 (4} 4] 0.0073 11
3 S 8 3 0 4} 0.0081 12
2 8 8 8 (o] 0 0.0051 12
2 6 8 6 3 18 0.0290 12
S 4 9 3 2 16 0.0238 12
7 3 8 3 1 16 0.0163 14
6 4 8 3 0 1] 0.0102 18

Table 6. profile 2 (n = 468, average half bandwidth = 120)

PRLIPEE P . VL VADY VAT ST W W I Whdy VOO Woas Wi Wl

- 45 -
updates appends
cost no. of
step no. of average max. min. no. of average ratio conv. !
J items cost cost | cost | items cost AnalyzeT eigs. |
' lanstep
42 4 4 8 3 2 ! 17 0.0211 17
43 5 4 9 3 c 0 0.0085 18
44 4 4 9 3 1 15 0.0138 18
45 5 4 9 3 o 0 0.0091 18
48 5 4 8 3 0 0 0.0095 18
47 G 4 6 3 ¢ 4] 0.0095 19
48 4 4 6 3 0 0 0.0076 20
49 3 4 6 3 1 16 0.0137 20
50 3 5 6 3 1 18 0.0162 21
51 4 4 6 3 0 0 0.0081 21
52 4 3 6 3 c 0 0.0061 22
583 3 4 6 3 2 15 0.0220 22
54 5 4 6 3 4] 0 0.0105 23
55 4 4 6 3 0 0 0.0087 23 i
56 4 4 8 3 2 17 0.0271 24
57 S 4 6 3 o 0 0.0112 24
58] 3 6 3 4 16 0.0428 26 [
59 ? 3 8 3 0 0 0.0114 27
80 6 4 6 3 1 16 0.0217 28
61 .8 4 8 3 1 19 0.0233 29
62 8 5 13 3 0 0 0.0167 29
83 6 5 15 3 1 18 0.0252 32
64 .4 8 12 3 e o 0.0126 33
85 3 6 9 3 1 18 0.0195 33
86 4 6 12 3 4 0 0.0134 33
67 4 6 12 3 4 17 6.0529 33
68 8 4 12 3 2 17 0.0357 36
89 7 3] 3 2 16 0.0233 43
70 2 9 9 9 5 16 0.0398 46
71 4 8] 3 0 0 0.0097 47
72 3] 8 3 c 0 0.0063 47
73 3 5 6 3 0 0 0.0068 47
74 3 5 8 3 1 12 0.0123 47
75 4 6 13 3 3 15 0.0315 48
78 8 6 5 | 3 0 0 0.0171 a8 |
4 :] 7 15 3 0 0 0.0199 49 |
78 5 7 15 3 0 0 0.0186 50
79 4 8 14 3 4] o 0.0152 51
80 3 10 16 | 3 o | o 0.0147 51 |

Table 8. profile 2 (n = 468, average half bandwidth = 120)

. N

P R
PN RN WoT YOy N W ¥

I it

ey v Paiiiven i it
P A ity NC NI

subroutine analxt(},elf,bet2, thet binbd spread.sps)
tmpliett doubls precistion(s-h.o«)

dimension alf(1),bet(1), thet(8),bj(8) ,nbd(2)
lagical newrts, indyok

data ane / 1.040 /,garo / 0.040/

h)
X
LY
-
i
.
.I
.
5
.
.

] order of the tridiagonal 7.

alf(.) dlagonal of T.

bet2(.) squares of the offdiagonal terms, bet2{1) = 0.

st axtericr eigenvaluss of T, nearly converged
Ritzvaluas. thet(1)=1eftmost, thet(8)=rightmast.

oK) ervor bound on thet(.)

B)D) 1 set to -1 1If thet() disappears.

cantaines | and r in the text.

thet(6) - that(1)

prescision of arithmatic operations

ip=1 for updating left and, ip=1 for the rightend.

tne®1 for updating left end, inc=-1 {or the rightend.

ftarting index (sither 1 or 8)

false unless an extra Ritz valus has besn Inserted

1aft Bound on elgenveluss (ine=1),

right bound (tne=-1)

the outer snd of the next subinterval to be updated.

true, If there ars -inc Ritz values exterior to

new thet{t).

#£(§la. 1) retum
1£().0q 2) then
thet(1) = (alf(2) + alf(2) - daqrt(4.*het2(2) +
1 (alf(1) - aif(2))*«2)) 2.
thet(8) = alf(1) + alf(2) - that(1)
bj(1) = ane/(ane + ber2(2)/(thet(1) - aif(1))**2)
BY(E) = ane/(ane + bet2(2)/(thet(8) - alf(1)}**2)
abd(f) =t
2bd(%) = 8
spread = thet(8) - thay(1)
return

od if

Degin phase 1.
loop for lsft end, then right

..é%.;é:;;;%é....,...

dodip=y2

ne=3-3p

is=7p-6

imls

nawrtg = false.

stert = (that(1) + alf(}) - Inc*daqri(ber2(j)*e +
] (atf)) - thet(1))**2)) /2.

probe = thet()) - tna*b)1)

indnek » sumles(alf,bet2 prode,j.inc,eps) .6q 0

¢ do 8 }dummy =18
¥ (1- nbd(1p) .eq. inc) goto 2

axamine | th subintervel

f (tndwel) then

it (newrts) then
et = thet(t)
thet(l) = start 4 Inc*dmin1(b**2/

1 debe(sart - (het(i1ne)) , b)

alse
i (int{dsign{one, probe-start)) .eq. 1nc) start=probe

-d o

ehoek for digjoint subintervais

#£(1.0q. 2bd(ip)) then
probemthan(l)+0.85%ne (that(nbd(2))-that(nbd(1)})/

-48 -

[

> a

APPENDIX1. Listing of the Analyze T Routine.

1 (J - nbd(1) + nbd(2)-8)
else
probe = thet(l+inc) - ine*bj(1+ins)
ond i

{f (tm(dsign(one.probe - thet(1))) .eq. inc) then
chack for an extrs Ritzvalue

k = numles(alf,bet2 probe.jinc,eps)
1 (k .1t taoa(t - is + inc)) then

that({) diseppears
bKL) = -one
else

record Indexok for next loop. use refined bounds.

1t (.not. newrty) then
b = by
indxaok = (k .la. labs(l - is + inc))
bnd = dmin1(b**2/dabs(probe-thet(s)) . b)
1f (indxok and.bnd 1t dabs({thet(l)-start)) then

start = thet(l) - inc*dnd

ond it

end if

ond It
end it
olise

prepare for an intruding Ritzvalus

i ((1s.eq.nbd(1p) .or. bi(nbd(ip)-ine) It.w) .and.

1 nbd(2)-nbd(1).gt.1) nbd(ip) = nbd(1p) +inc

call move1{that.t,nbd(lp),-ine.probe)
call move1(b), Tald(ip),inc.one)
newrtz = .trus.
indxok = .trus.

end If

11 (bJ(1) .gt. 2ero) then
find new thet(t) and bj(1)

call indth(aif bet2,start,that by nbd inc,1f)
end if

12 (5() .. 9) then
thet(}) disappears

call move1{thet.nbd(ip).1 o6, 2ar0)
call move1(bj,abd(ip).l.lnc.2ere)
nhd(ip) = nbd(ip) - in=
neerte = falpe.
indxok = .trus.
i=]-Ins
ond if
1=1+Ine
contimue
continue
spread = Lhet(8) - thet(1)
return
end

Laetven meet s St aseabalil ARSI N

SR LTy e
~..

N

e

%

- e
2%

£ oS A A LA S il g PO

CERACE IR R A Sttt

- 47 -

subroutine phase2(j, neig, alf,bet2, eig, Info,that binbd. rama,

1

taleps)

implicit double precision(a-h,o-z)

dimensisn uif(1),bet2(1), elg(1).1n0{1),.thet(6),b)(8),nbd(2)
logical append

data onns / 1.040 /,zare / 0.040/

append more Ritzvalues and chack for converged Ritzvalues.

oig() holds stabllized Ritz values.

mte(.) holds Information concerning eig(.) for use eise whers.
ram2 Beta(j+1)v2

nsig no. of stabilized Ritzvalues.

tal

eriterion for stabilization of thet(l)
=2%spresd*aqri(eps)

=128 window factor

t#(§Je. 1) return
w = 128."0l
do@tp=12

e =3-2p

19 =79p-6

iely

do 8 ldummy = 1§

i ((--nbd(1p)}*inc .qt 0) goto8
Bj(D) = daqrt(ram2°b)(1))
arem =) -nbd(1) + nbd(2) -9
sppend = 1.eq nb4(ip) .and. (bH1) .1t. w.or. (j.eq. 4
.and nbd(ip) .eq. i9)) .and. nrem .g1. 0

1t (eppend) then

start = thet(l)
Mwoh = Ine*(thet(nbd(2)} - that(nhd(1}))/(arem+1)

4

1t (o)1) .1t tol) then
remove stablized Ritz values from thet into eig

nelg=nelg +1
dglnalg) = thatll)
tnfo(neig) =0
call movei(thet,nbd(ip),Lins,zar0)
call move1(b),nbd(1p),Linc,2ero)
abd(tp) = nbd(tp) - tne
t1=1-ine
od
if (appand .and. abd(2)-nbd(1) .gt. 1) then

find & nonempty subinterval

t = start + probe

nbd(tp) = nbd(lp) + ine

1k = 1abs{is - nbd(ip))

doRidum=1})
#f (oumles(alf,bet2 t.jine,0ps) .0e. 1K) go to 4
t=t+ probe

continus

thet(nbd(lp)) =t

sart =t -~ probe

call Andth(alf,bet2,start.thet, b} nbd,ine.abd(1p).j}

- ;l(l) = deqri(ram2*b(1))

delete end Rits valuey if appropriate.
H (348 .and L.eq.nbd(ip) .and. Lne.is .end. b)1).5t

bj(i-ine) .and. bj(i-ine).gt.w) nbd(lp) = abd(lp) - ine
1si{+ins

continue

PEA Lt stk Al T
w e T

ISR

R

Ty 7o«

-48 -
References

Bunch, James R., Christopher P. Nielsen and Danny C. Sorensen, 1978. Rank-One
Modification of the Symmetric Eigenproblem, Numer. Math., 31:31-48,

Cuppen, J. J. M., 1980. A Divide and Conquer Method for the Symmetric Tridiago-
nal Eigenproblem, Numer. Math., 38:177-195.

Ericsson T. and A. Ruhe, 1980. The Spectral Transformation Lanczos Method in
the Numerical Solution of Large, Sparse, Generalized, Symmetric Eigenvalue
Problems, Math. Comp., 34:1251-1268.

Kato, T., 1949. On the Upper and Lower Bounds of Eigenvalues, J. Phys. Soc.
Japan, 334-339.

Paige, C. C., 1976. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a
Symmetric Matrix, J. Inst. Math. Appt., 18:341-349.

Parlett, B. N., 1980. The Symmetria Eigenvalue Problem, Prentice Hall, Engle-
wood. Cliffs, NJ.

Parlett, B. N. and D. S. Scott, 1979. The Lanczos Algorithm with Selective Orthog-
onalization, Math. Comp., 33:217-238.

Parlett, B. N., H. Simon and L. M. Stringer, 1982. On Estimating the Largest
Eigenvalue With the Lanczos Algorithm, Math. Comp., 38:153-165.

Nour-Omid, B. and B. N. Parlett. Reduction of (K—AM)z=0 to (A-v1)x=0, Tech.
Report, (in preparation).

Nour-Omid, B., B. N. Parlett and R. L. Taylor, 1983. Lanczos Versus Subspace
Iteration for Solution of Eigenvalue Problems, /nt J. num. Meth. Engng.,
19:859-871.

LN
. PO
PRYRE R

L.

Ra-a it TN e od B2

AR A S

1 et
.

T T
DR S
Lt et et a s

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e ————
t. REPORT NUMBER

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

CPAM-175 AD.AIBY /63

TITLE (end Subtitle)

The Use of Refined Error Bound when Updating

Eigenvalues of Tridiagonals

S. YYPE OF REPORT & PERIOD COVERED

Unclassified

6. PCAFORMING ORG. REPORT NUMBER

AUTHOR(se)

B.N. Parlett & B. Nour-Omid

8. CONTRACT OR GRANT NUMBEF(a)

NO0014-76-C-0013

PERFORMING ORGANIZATION NAME AND ADDRESS

University of California
Berkeley, CA 94720

10. PROGRANM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

1.

CONTROLLING OF FICE NAME AND ADDRESS

12. REPORT DATE

Septembey 1983
3. NUMBER OF PAGES

48

14.

MONITORING AGENCY NAME & ADORESS(:! ditterent from Controlling Otlice) 15. SECURITY CLASS. (of thie report)

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

. OISTRIBUTION STATEMENT (of this Report)

, <~ r2201 hes been approved
“r =iz 1elease and sale; its
Juaritation 15 unlimited.

17.

DISTRIBUTION STATEMENT (of the adstract sntered in Block 20, il dlifecent from Report)

. SUPPLEMENTARY NOTES

KEY WORDS (Continve on reverse olde If necessary and Identity by block number)

[

20.

metric matrix of large order.

J"RACT (Continue on teverse side It necesssry and ldentily by block ber)

The Lanczos algorithm is nused to compute some eigenvalues of a given sym-
At each step of the Lanczos algorithm it is valu-
able to know which eigenvalues of the associated tridiagonal matrix have sta-
bilized at eigenvalues of the given symmetric matrix. We present a robust algo-
rithm which is fast (20j to 40j operation at j-th Lanczos step), uses about 30
words of extra storage, and has a fairly short program (approximateby 200 exe-
cutable statements). -

DD "‘;2:‘!’: 1473 mmm:}w NOV 63 13 OBSOLETE
2+ LF- N1 4- 6501

$/N 01

SECURITY CLASSIFICATION OF THIS PAGE (When Date Kntered)

R
LAY IR - - .
b VAT ST WA . W IPNI O OO G U/

:;;;g;j

sad Applied ‘sat‘hcmau‘w . Any conclus

s 2xprassed in this renort represen:?

The aut hcr&s\ and not nacessarily thy

ST *ni o7 the University of California

BT ire and Appl]ed Methematics or
T Mathematics.

o .
e

BESYALABKEGOPY

A

S ovrnoart owas done with suppart Trom the Ceag

T cr (.‘.5 oy A

ter
inns
solely
se of
he

