
..--- - ----- ----~ --------·---------~-----

u:::TC:R r=OR rURE AND APPLIED

~JNfVEf~':3ITY OF CALIFORNIA)

\THE~~AT ICS­

.R KEL::Y

[HE UsE OF REFINED ERRoR fuuNo WHEN

U?r',\TING EIGENVALUES OF TRIDT AGONALS

B. ;·~. PARLETI

B, NouR-(}1 r D

': ;.t
,., '' ; -~

(I 1
\

PM~-175

'I I' '·t··'

...

_.

,.
I

Leg a 1 Notice

\~as preoared as an account of work sponsored by
for Pure and Applied Mathematics, Neither the
t h "' CJ e p a r t m e n t o f 11 a t h em a t i c s , m a k e s a n y N a r r a n t y

cj r i ~~. ;::- 1 i e d • 0 r a s s u m e s a n y 1 e g a 1 1 i a b i 1 i t y 0 r
:1 :: i .: ~ i i t y f o r t h e a c c u r a c y , c om p 1 e t e n e s s o r u s e f u 1 n e s s

. n '! 1 r "· : m .:: t i o n o r p r o c e s s d i s c 1 o s e d •

BEST AVAILABLE COPY

4. 4u ~.W - ,.-. . .

The Use of Refined Error Bound when

Updating Eigenvalues of Tridiagonals

B. N. Parlettt

B. Nour-Omid.

OCT 3 1 1983

A.

t Department of Mathematics, and the Computer Science Division of the
Department of Electrical Engineering and Computer Science, University
of California at Berkeley

* Center for Pure and Applied Mathematics, University of California at
Berkeley
The work of these authors was supported in part by the Off1e of Naval
Research under contract N00014-76-C-0013.

- .~- c pnoved
its

i m- -

The Lanczos algorithm is used to compute some eigenvalues of a given sym-
metric matrix of large order. At each step of the Lanczos algorithm it is valu-
able to know which eigenvalues of the asrsociated tridiagonal matrix have sta-
blized at eigenvalues of the given syrn,aetric matrix. We present a robust algo-
rithm which is fast (20j to 40j operation at j-th Lanczos step), uses about 30
words of extra storage, and has a fairly short program (approximately 200 exe-
cutable statements).

TABLE OF CONTENTS

1. Introduction

2. Notation and Terminology

3. The Lanczos Algorithm and Its Implementation

4. Relevant Theorems and Facts

-4 5. How Ritz values change

6. Analyze T

7. The Subprogram FINDTHETA

8. Evaluation of s(j)O

9. Explicit Deflation .

- -10. Profle of Lanczos Runs

.

1. Introduction

Let TR be a symmetric tridiagonal matrix of order n and let Tj denote its

leading principal submatrix of order j. It is a curious and useful fact that if the

eigenvalues of Tj are regarded as functions of j then, as j increases, some of

these eigenvalues tend to stagnate at comparatively low values of j. Typically if

n = 400 the largest eigenvalue of T will remain unchanged, to 15 decimal digits,

for all j from say 21 to 400. The next largest might settle down at j = 25, and

so on. We call j the step number.

This article presents a new, efficient algorithm for updating a certain data

structure associated with T3 as j increases. It includes a few eigenvalues of Tj at

each end of the spectrum and with each eigenvalue 0) is associated an error

bound Pt. The number of eigenvalues at each end is variable and depends on

the P in a complicated way. Roughly speaking the goal is to include all the

outermost 13P) whose bounds Pjt indicate that they are likely to stagnate in the

next two or three steps. The algorithm is designed to monitor as few eigenvalues

as possible consistent with the mandate to detect the precise value of j at which

,U) stagnates to working precision.

Our algorithm is called ANALYZE T and was developed to be part of the inner

loop of the Lanczos algorithm. Its job is to provide information so that the algo-

rithm can be terminated at the first possible step at which all wanted eigen-

values and elgenvectors (of the operator given to Lanczos) are determined to

the required accuracy. It is desirable that ANALYZE T increases the cost of a

Lanczos step by a modest amount. It requires between 10j and 100j arithmetic

operations at each step depending on whether no eigenvalues are stagnating or

several. The important property is that the cost is linear in j. The profiles of

Lanczos runs in Section 10 give the flavor of how the algorithm behaves.

We have spent considerable time in trying to make ANALYZE T short and

C.* * *o* *~. . . C * .C... .C *

.- 2-

intelligible as well as robust and efficient.

Although it is not intended as a tool for computing all the eigenvalues of T,

ANALYZE T can do that job. On several examples (see Section 10) with n = 20 to

40 it took about 2.3 times as long as the EISPACK QR program TQL1. However

half of that time is spent at step n in determining those eigenvalues in the mid-

die of the spectrum which had not settled down at all. Our program uses no

more storage than TQL1.

We say little about the Lanczos algorithm itself and confine it to Section 3.

For those readers who want to skip the Lanczos material, we have put the impor-

tant notations and definitions in the very next section. Section 4 presents the

theorems on which the program is based. This is followed in Section 5 by some

very helpful pictures of what usually happens and what can happen to the spec-

trum as j increases. Then comes ANALYZE T (§ 6), FIND THETA (§ 7), evaluation

of s(j)2 (1 8), deflation (§ 9). and numerical results (§ 10).

i

4

4.

"4

-3-

. Notation and Terminology

Upper case Roman letters stand for matrices. Symmetric letters stand for

symmetric matrices (A. K IC T. U. V. W, X Y). Lower case Roman letters stand

for column vectors; lower case Greek letters stand for real numbers. The j Xj

identity matrix, Ij. is frequently omitted if the context precludes ambiguity.

The symbol:= indicates either a deftnition or an assignment in a program.

The Lanczos vectors qj, q , " - " are the columns of a matrix

Q4:-(hi . .0 " ,o4) which would be orthonormal if exact arithmetic were used.

The tridiagonal matrices produced by the Lanczos algorithm are written

a1 1 6

and p4 >O; i =2,3, ... ,j. We use P, for other purposes.

Let Xj() :=det [T -f]. For reasons given in Section 3 the eigenvalues of T

are called Ritz values. We use tuo different indexing schemes for the Ritz

values and choose which ever is most appropriate. The hypothesis Pj9 >0 com-

' pels the Ritz values to be distinct, but some may be equal to working accuracy

even though no Pj is small. The Ritz values at step j are ordered by

and/or by

Whenever possible we drop the superscript j. The normalized eigenvector of Tj

associated with UJ) is 8,, thus

a1 u(T 1 =)IJ) 0

and [sg= 1. We use the Euclidean vector norm exclusively. The k th element of

[.4

-.- ';.'..--. .-.. *.. * .;.2. -;. '-'-''".----..' ,.'...'' .. '- ". . ":. ".-"-

s is sj(k). The Ritz vector associated with 13) is yy() :0sj. The error bound

associated with i6j) is

These important quantities are introduced in Section 3. In some places our

symbols Qj, T denote quantities stored in the computer. The relative precision,

or roundoff unit, of the arithmetic processor is t. It is the largest machine

number such that the instruction I + c yields 1.

There is an important threshold connected with the technique of selective

orthogonalization. A Ritz value OP) is good (respectively bad) according as

Vi- lAll (respectively >). A good Ritz value is one that has usually stabilized to

almost full working precision at an eigenvalue X of A. Among the good Ritz

values there may be some threshold values, namely those which have changed

from bad to good at this particular step. Selective orthogonalization (described

in (Parlett, 1980]. p 275-284) needs to know the indices of the threshold values.

Our algorithm watches those bad itz values which are expected to become

good within the next few steps.

,I

=1%7

-5-

S. The Lanczou Algorithm and Its Implementation

What follows is a brief outline of material in Chapters 13 and 15 in [Parlett,

1980]. It is directed to the reader who is not familiar with the algorithm and its

use with the spectral transformation.

Suppose that we possess a program which, when given any n-vector x.

,.. returns the n-vector Ax. Thus A need not be an explicit n x n matrix. One

important instance of such an A comes from the spectral transformation of the

generalized eigenvalue problem, [Ericsson and Ruhe, 1980]. The Problem

(W-XM)z = 0

is changed into

((W -alM)-1 MN- v)x = 0.

where v=I/(X- a) and x= Mkz. Here A:' M(W -M)- IMN and Ax is found in

three steps: form w:=My% solve (W-oM)v=w for v, and form u:= M4. The cost

of factoring W-oM is a critical factor in the computation. (A variation on this

4' reduction of W-XM that uses (W-oM)-'M is discussed in [Nour-Omid and Par-

lett, 1983]).

In the dynamic analysis of structures W is the positive definite stiffness

matrix. V is the positive semideftnite mass matrix and a is a suitable shift

parameter. Sometimes all the A's in a given interval are required. In that case

c is chosen inside the interval and, in terms of v, the task is to compute all

eigenvalues of A outside an interval containing the origin. This is the situation in

which the Lanczos algorithm works best because Lanczos cannot help generating

approximations to eigenvectors belonging to both ends of A's spectrum whether

they are wanted or not.

During the jtb step the exact Lanczos process computes in order, ac,. .8p,.

4+1 to satisfy

. +Iq1 , q+,_,=, II @+, IJ = 1

o-C -, -. .

and

qi+pj+i Aqj - qjc -qj_- -j
It turns out that q Iqk 0 for i <j -1.

The relationship governing the practical algorithm is

[A J[9,[J[1 = 0 +F +1j1' r

where j accounts for roundoff errors and II ft I t - ell All, independent of j.

Seldom is Pj, small and the algorithm should be halted if #,+I < -rljAll. How-

ever a Lanczos run is normally halted for other reasons. Let (,s) be a typical
'.4t

eigenpair of T1 .; (T -)k =0, 1 ik 1. The Ritz vector for Ot is yj:= Qj,. and

5on multiplying the governing equation given above by , we find

Ay -yd, = 04+ A +,s,(U) + S.

Take norms and use the triangle inequality to find

where
,e,,t := Pj+. I,(j)I.

A well known error bound (see section 4) states that there is an eigenvalue v of A

satisfying

Thus

SI - ,1 (P,+lIJ)/11,.
Better bounds on I v -St I are described in Section 4.

Roundoff errors have a strong effect on the simple algorithm. They cause

the Lanczos vectors to become almost linearly dependent. In fact,

• ,i: i 7104+11 = 7t/,eP,.

where yt is a coTr- .ca. I roundoff term satisfying

*. v '- 4. . . *;... * ~ * -. ' .a . .i .ma~mm . m . ira. .a

-7-

This illuminating result is due to C. C. Paige, see [Paige, 1978] or [Parlett, 1980,

p.264-268]. Extensive observation suggests that the constant is close to 1.

Paige's theorem says that loss of orthogonality implies convergence; i.e. if y1%+I

rises to 10- 2 (rather than 10-14) then

pit --< 100c I1 Al, so d has stabilized.

Various modifications have been proposed to force the Lanczos vectors to

be strongly linearly independent. We advocate a combination of selective ortho-

gonalizaton and partial reorthogonalization. [Parlett and Scott. 1979] and

[Simon, 1982]. This requires that the algorithm know those 6P) for which

,-it O V- 1 All.

Certain actions must then be taken to maintain semi-orthogonbality (qtqt < -4e)

among the Lanczos vectors. Semiorthogonality ensures that T is (to working

precision) the same as would occur in exact arithmetic.

With or without selective orthogonalization the bounds p indicate which

Ritz values are close to eigenvalues. Paige showed that for given i and each

k >j. there is a Ritz value 4[1, where L depends on i and k, such that f -Ij .

In other words, there is an eigenvalue of T within fii of dp) for all k >j.

The gist of these remarks is that we would like to know those 2 j) whose Pi

are near to the threshold / JI A4l. Before designing a program to compute some

Ritz values and their bounds we need insight into how the Ritz values change as j

increases. This is the subject of § 5.

..11 - -

,*- - ~ r ~.- .

,-8-

4. Relevant Theorems and Facts

Soon after Napoleon was defeated at the battle of Waterloo (1815), Cauchy

proved the remarkable interlace theorem for eigenvalues of symmetric

matrices. In our case, it says

The inequalities are strict (in exact arithmetic) because fi ; 0, i > 1. However,

it often happens that I+l) equals 4) to within working accuracy.

For any symmetric matrix Awe have the following residual error bounds:

Theorem 1: for any x with 1I xjj = 1, and any real a there is an eigenvalue X of A

satisfying

JX-i : JjAx-xajj

Proof : If a = X there is nothing to prove. If a is not an eigenvalue then

1 = 1i xll = i (A-a)-1 (A- a)xII " Ii (A- a)-'1 Ii (Ax- ax) 1; 11 (A-a)- 11I = 1/ IX -a l.

Corolary 1. For each .there is a k such that

where #fi = #j,+1, Asj)i.

Proof: Take A=Tp, x= loI Ts =si s3., 11]I = 1, in the error bound given

above. *

Our choice of indices, together with Cauchy's interlace theorem, dictates

that k = i or i + 1 in Corollary 1. In any case, at the end of analyzing Tjj there

are a number of known intervals

• , z()~~I := [139-1) - fl_.,i ,-' + ._.]

each of which is guaranteed to contain an eigenvalue of Tj. This fact is of most

use when the intervals are disjoint. We remark in passing that when the Tj arise

from the Lanczos algorithm used with some form of orthogonalization then, to

. .

7. .0 Ir 17

°-9-

within roundoff terms, each 1(i) contains an eigenvalue of the big matrix A. This

follows from 1 Ayj - yi5j 11 = (#jj + II FjI)/11 yj I1, and yj = Qjsfj).

In most cases we can determine much smaller intervals that contain 7,(p

than the 1(i). The fact that i) is a Rayleigh quotient is crucial here. The result

is due to [Teniple, 1929] and [Kato, 1949]. Our proof is a modification of [Par-

lett, 1980], p. 222-224.

Theorem 2: Suppose that i3:= p(yA) is the Rayleigh quotient of a ur1 t vector y.

If [(.,1+Uap] contains no eigenvalues of A then there is an eigenvalue X of A

satisfying

0 <'a- X< Jj Ay - yO/gap.

Proof: Let Az = zX, zl = I and decompose y,

y = zcos- wsin-0, wLj z, 1w1 = 1.

Then
;'Thnr(Y) :=Ay - yrO = z(X - 13)c osiP + (A -6)wsin-0

and, since (A - 3)wj z,

I r(y) l11 = (X - j)2 cos2 , + ij (A-)wj 2 sin2 p.

The key fact is that r(y)1, y. so

0 = 9t r(y) =(X -.) Co 2 y/ + w (A - 1) wsin2 1P
NEliminating * from the last two equations yields

.t !r(y)ll11= [(X - i3)2w (A - 0)w + ml.(A -)2W(X - 19)l

wt (A - X)w

.. * I (A -) w ()

Next expand w = i, in terms of As eigenvectors z,, Azi = Za a. Thus

4" -X)(A- =)w (t - X)(t -i)),

and wjL z implies a4 s X. Now take X as the largest eigenvalue of A less than 0,

then by the gap hypothesis (Cai - A) and (a - 1) have the same sign for each i.

- 10-

So

S(A - X)(A - O)w , (aj -X)(aj -)42, neglecting nonnegative terms

> gap a,

a gap (at - A), since the new terms are nonpositive,

- gap w (A - A)w. The result follows from (*). •

Corollary 1. If, for some i.

13Y +l1) <O) <~~i + gap < 1&+1) < AR4),

then

~I) - P#1/ gap !9 AP(J+-)

Proof :Take A=T,., y [Y=. where T,= s=), IIII = 1. in the previous

theorem. Note that Ay-y75 = e j + I st).

Corollary 2. If, for some i,

13AL, <it1 < OW - gap < 13(f) < A I

then

+ # /

* The proof is analagous to the one above.

In practice we shall take gap = O, - Pit+1- -6P) and test that the number

of ad!+1) less than 0,P) + gap is the same as the number less than) To

accomplish this test an eigenvalue counter is needed.

*. To find the precise index of a Ritz value one uses spectrum slicing; a much

better technique than Sturm sequences. Let

Tj- = LDLF

* be the triangular factorization of Tj - , where D = diag (6, .. 6j. 6,). The quan-

, 4 . , • , . . , ° • • .

- 11-

tity 6j(t) is called the "last pivot" function. Note that 6j(hp)) = 0 and

Xj(d ')) = 0, but 6j is a rational function, whereas Xj is a polynomial (defined in

Section 2).

The Sturm sequence technique computes 1. the number of sign changes in

the sequence JXo(), Xi(),''", ()j where

xA; ()= , - e)x,-I() -/ Xk-2().
In contrast, the spectrum slice computes I as the number of negative values in

the set 6((), Here 60(t) = 1 and

6k(0k= - - XL/-1(0)

In either case I is the number of Ritz values less than . As users know, the d's

vary less wildly than the X's.

Several properties of st , the eigenvector of 73fi) are given in [SEP, Chap. 7].

We select the following

Stu)" = -x 4(t51M))1x' 16Y))

s,(1)st(j) = 2S

Here XZJ(() = det[Tgj - f] and T2.j is the submatrix obtained by deleting

row and column 1 from Tj. The - sign occurs because)U is not monic.

These formulas show that it is possible to compute an element of a normal-

ized eigenvector without computing the other elements. Please note that there

are two distinguished Sturm sequences of polynomials associated with Xj,

namely ixj.Xj-I.XJ-2, " Xa and JXj, .)(j", " XjY)j. At a zero -6y), ofj,

we must have U-(0 and X'j(f) s 0, and it is remarkable that the quotient of

these quantities yields the bottom element of s1 .

- -Mw"0777 70727 7 -7 1O -. 7-477-7. 7..

-12-

5. How Ritz Values Change

We present two figures which show all the Ritz values at each step of a run of

the Lanczos algorithm. The first case is typical, the second is not. The figures

need little comment but we emphasize some features by giving a table of the

steps at which certain Ritz values stabilized to a certain accuracy.

Figure 1 Progress of the Ritz values. V indicates aj.

3 I-IV I
I I V I

I I I ' V

6-i

I j f I I
UI I I V' I i

I I I V I I I
I - I I Vi I I I

I I I
I 1. I I I VI I c I
12 - I I I I V I I I
~~I I I I I I I 71 I

I I I I I I I I V I I I

-12.~6 -10 52 <4 -. -2 a .4 1 . 6. 7. -1U

eigen step

-1 7
.2 14
2 15
3 1

.3 1?
4 18

-4 18
5 20

-5 20

- -1..
. . .--.

2. 0. 2. 6 I 2

* . .

-'3-

MNaconvergence

The first example suggests that we could avoid computing the gj, and sim-

ply monitor the 0). When a Ritz value stops changing, to working accuracy, we

can be confident that it is good; i.e. that its bound Pjj < vi II A I. Life is not that

simple however. A Ritz value can stabilize for several steps and then suddenly

change! This phenomenon is called mrsconvergence and it is not a bizarre

pathology which is never seen by normal human beings. It is not difficult to con-

trive examples where misconvergence endures for many steps. See [Parlett.

Simon and Stringer. 1982] for more details.

Figure 2. Misconvergence of '6. From Steps 4 to 5.

i..

IV

is a II

.0. 1000. 1010. 1020. 1030.

At step 4 1) stagnated at 1020 near the mean of a pair of close, but distinct

eigenvalues and suddenly split into two Ritz values at step 6. The ij values

reveal the misconvergence at all times; they are not small during the premature

stagnation.

,, ., , .,,,....-.. ,,,,. - .-.. ,..' .'2':-.. , ' ._ . -

- 14 -

INDEXING

We now turn to the indexing problem. At the end of step j we have 7i and

Pli for a few values of i. Moreover, for some index k the new Ritz value 1 P,

lies in

Suppose that I(i) is disjoint from I(I), I si. Then, by the interlace theorem (in

section 5), k is either i or i+1. We give three instances.

The stem of T marks the old Ritz value. The bar of T represents the subin-

terval .

"-"" 1(2) IM3
, ji - I

1. Normal Situation.

_.:::J-1 TO '-- - -
.'%..j- 1 i I

II

2. Apearance of a New Ritz Value.

-1) 112) 10)

3. Disappearance of a Ritz Value.

SL - .. -.. ,; - - - - . -. .- - -- , . .-. ,, ."

- 15-

In the second example t seems to have appeared out of the blue. It is essential

to recognize this event and to find such 1. That task is addressed in sections 6

and 7. Here we ask how such an event can occur.

bsnva tn 1.

The index of the new Ritz value in I(i) is usually, but not always i, for the

outer values i = i1, 42, t 3 .

Obseration 2.

The place (i.e. the value of i) where the index of the new Ritz value in I(i)

changes from i to i+l (or from -i to -i-I) usually, but not always,

satisfies

There is always one more Ritz value at each step of the Lanczos algorithm

and we like to say that is is seeded by the new value of a.

Observation I is equivalent to the remark that the new a is usually neaf the

middle of the spectrum well away from the Ritz values being monitored. Obser-

vation 2 is best understood by noting that each 6{4+1) is a zero of the rational

(last pivot) function

61 =(aj., -~ it..

In the figures below Case I occurs more frequently than Case 2. That is the gist

of Observation 2.

AV''''''''''''''': ., ,, ,, v " '-. ", ,

I "' " ' * ' : ' :.. ' " " . ."', l - , - ' - , - ' - ' ' ' -

- 16 -

Case I..

The extra Ritz value at step 3 is indicated by the vertical arrow.

I I
I IrG~)

I I I I
I I I I

* 1 I I I
I I I I
I I I I
I I I

I

I I

.....................................
.--- - h

- .-

- 1? -

Case 2.

The extra Ritz value at step; is indicated by the vertical arrow.

I I I

r(C)
I II I

I I
I I

I II I I II I I I

4 I I I

I I
I II I I

* I
I __

4 I

* I

I I
I I
1 I I I

. . .~..-
.

pa

--

M.AALYZE T

At step j the program has knowledge of the intervals I(I), 1(2),.., 1(1) at

the left end of the spectrum of Tj-1 and intervals 1(-i), 1(-2),..., 1(-r) at the

right end. I(c)'s midpoint is j(J-i). The intervals are not necessarily disjoint,

but each contains an eigenvalue of Tj. The goal is to obtain corresponding inter-

vals for Ti. The adjustment of the values of I and r is a technical point dis-

cussed at the end of this section under the heading Phase II.

There are many ways to achieve this goal. What took a long time was the

design of a program which would cope with all situations, would keep arithmetic

operations and storage needs low, and yet be fairly short and simple. The previ-

ous sections showed that there are three distinct possibilities when an interval

I(i) is to be updated: normal intrusion, and disappearance. The intelligibility of

the algorithm depends on the way these cases are distinguished. We found that

a particular Boolean variable clarified earlier versions of ANALYZE T. To justify

its introduction we describe some simple algorithms that are not quite satisfac-

tory. We will confine ourselves to the left end of the spectrum but the actual

program can process either of them.

, The updating of each I(i) consists of two distinct phases. First comes the

- determination of a smaU search interval S := [start . fin] which is guaranteed

to contain the next Ritz value I. Sometimes S = I(i). Note that the index of 'J

need not be i. The interval S is given to a subprogram FINDTHETA that com-

*C._ putes the new Ritz value and bound writing them over 4(i) and bj(i). The

details are in the next section. The second phase records stabilized Ritz values

*"- and moves them out of d(i) and decides whether to append new Ritz values or to

delete the last one. The heart of the algorithm is Phase I.

,-

.b*_- ..,

~- 19 -

Phase I

A good lower bound on the spectrum of Tj is essential. Our preference is

for an instance of the optimal Lehmann/ Kahan bounds which requires no 'extra'

information such as a norm of Ti.

left bound left eigenvalue of / , I

[(0(1) + aj) - V(4#3, + (iJ(1) - a)2)]/2

The algorithms are presented in an informal pseudocode. Pascal conven-

tions are violated when convenient.

Algorithm 1.

start left bound

for :=1. , do

call FINDTHETA(strt .fin)
start := fin

This algorithm is completely reliable and wins on simplicity. It exploits the

Cauchy interlace theorem but ignores all the bounds of section 4 and conse-

quently delivers unnecessarily large search intervals S to FINDTHETA. We reject

it simply on the grounds of arithmetic effort.

Let bj(i) :jj and recall that 1(i) = [6(i) - bj(i). 45(i) + bj (i)] contains a

Ritz value. Hence a more efficient yet even shorter program than Algorithm 1 is

for i := 1. L do

L call FINDTHETA(I(i))

Alas, this program will sometimes fail even when the 1(i) are disjoint. It will

miss an extra Ritz value that may be seeded by an aj near the left end of the

spectrum. For example it will miss 12 in Case 2 of section 5.

To cope with these situations we employ two subprograms:

- 20 -

NUMLESS(t) is the number of a less than .

MOVE makes room for an extra 13 and bj or closes a gap.

The next algorithm removes the bug in the one above.

Algorithm 2.

oLdI:= left bound

for i := 1, 1 do

if NUMLESS(a(i) - bj(i)) ; i then

MOVE elements i, i +1., , I down

/:=/+1

S:= [oLd,5, 0(i) - bj(i)]

else

s:= I(i)

oldia:= I(i)

call FINDTHETA(S)

Unfortunately Algorithm 2 malfunctions on those rare occasions when i-i)

disappears at step j as explained in section 5. The precise nature of the failure

depends on FINDTHETA but the trouble arises because I(i+1) is contained in

-' 1(i) and the subroutine will be asked to find the same Ritz value twice. The

remedy is to check for this possibility before processing I(i + 1).

-l7 --

- 21 -

Algorithm 3.

oldi := left bound

for i:= 1, 1 do

if NUMLESS(4(i) - bj(i)) : i then

MOVE elements i, i+l, , 1 down

I : = - 1

S [old, 1(i) - bj (i)]

else

S 1(i)

oldi :=(i)

call FINDTHETA(S)

if 6(i) > 3(i +1) - bj(i +1) thenL MOVE elements i+2,...,l upL I := I -1L :-

The efficiency of this program can be improved significantly for a modest

increase in complexity. First the rare occasions when 13'-l) disappears are

treated wastefully because FINDTHETA is given a big interval !(i) rather than a

small one I(+I1). Much more serious is the failure to use the refined error

bounds of section 4 whenever the intervals are disjoint. In fact Algorithm 3

already makes a relevant test but does so one iteration too late. A nice way to

preserve the fact that 1(i+1) is disjoint from 1(i) for use in the next loop is by

introducing the Boolean variable indezak which is true when I(i) contains 1dij)

and false when it contains A1. More precisely, introduce new variables

probe :=,6(i+1) - bj(i+1)

indezok :=probe > 13(i) and NUMLESS(probe) i

It turns out that if indezok is true at step i + 1 then the refined error bounds

can be used at step i, and conversely. Thus one test serves two purposes.

.1

• ..°

- 22 -

Algorithm 4

old,3:= left bound

probe := t(1) - bj(1)

indexok := NUMLESS(probe) = 0

fori:= 1.1 do

if indexok then

start max(old6 probe)

fin 0(i) + min bj (i) , bj(i)2/((0(i) -6(i-1)

probe 73(i+1) - bj(i+l)

if probe >,O(i) then

indexok := NUMLESS(probe) ": i

L if indezok then start:= maxistart .i(i) -bj (i)2/ (probe -i(i))

else

MOVE elements i,i +1.....l down

:I + 1 ; indezok :=true

start oldO " fin probe

old, 0 :)

call FINDTHETA(stazrt . fin)

if d(i) >probe then

MOV elements i +2,...,l up
.... [:- IL 1 ;iydexo/k := true

Remark: It is only necessary to compute indezok explicitly when probe > ,(i).

Otherwise it simply remains tr. In principle indexok can be false at most once

for each value of j because there is only one new Ritz value.

*" Algorithm 4 does not make optimal use of available knowledge. By Cauchy's

theorem we have:

if indezok has remained true for all i so far then

new -3 is in [O(i) - bj(i),,3(i)]

else

L new 1 is in (.).(i)+ bj(i)]

In order to combine these bounds with the refined ones it is necessary to keep a

.:" ,,, , , _ ... ,,, ,, _ . _ . , . . -., . . .-

- 23-

Boolean variable newritz which remembers whether indezok has been false. Is

the improvement in performance worth an extra Boolean variable? We are not

sure, but from a mathematical viewpoint it seemed valid to implement fully the

best bounds available to us.

The treatment of disappearing Vs is also wasteful. There is no need to give

FINDTHETA any subset of [a(i-1) + bj(i-1) , 6(i+1) - bj(i+l)] when it contains

no Ritz values because that condition is easily checked in advance. The most

economical treatment of disappearing 60 - 1) is to skip the call to FINDTHETA

and then close up the gap in the data structure. This requires a flag for this

case and we choose to set bj(i) to -I thus dispensing with an extra variable.

The final version is Algorithm 5 given in Table 2. Of course, it is not a valid

program as it stands because end conditions (when i -1 is not defined, for

example) have not been treated. In addition the code must be written so that it

works on the right end of the spectrum as well. These details obscure the issues

of concern here. The full program is given in the appendix in Fortran ".

,.'

- 24 -

Table 2

Algorithm 5. Phase 1: update Ritz values and error bounds

old 0 left bound ;probe 6(i) - bj(1)

indezok := NUMLESS(probe) = 0; newritz false;

for , = 1, L do

if indexzok then

if neuritz then

start 6=(i)

fin start + minibj(i),bj(i)2/(start -6(i-))

else

start := maxiold J.,probe

fin := 13(i)

probe := I(i+ 1) - bj(i-)
if probe >6O(i) then

k := NUMLESS(probe)

if k < i then

61(t) := -1.0

else

if not ne'wrItz then["indezok = k ! i

uidth = minrbj (i).bj (i) 2 /(start - I(i))l

if I'd(i)-,O(i-1)1 > bj(i) then

L L start := maxistartI(i) - uidth

else

MOVE elements i,..... down

I I + I ; indezoi :k= true ; nevurtz true;

start old I ;fin& := probe

if bj(i) > 0.0 then

old 13 0(i)

call FINDTHETA(start .f in)

else

L MOVE elements i+2 l up ; i i-1

L I I - I ;nAok :=true newtz fal aise

-25-

Phase 11

At times it is necessary to append more Ritz values to the list or, less fre-

quently, to delete them. The overall goal of ANALYZE T is to monitor as few

values as possible consistent with the requirement of catching all extreme Ritz

values at the step when their error bounds cross below the threshold tot. Recall

from section 2 that

tot V= '1- e,, = 1(i(-i) -sr(i))

The program tries to achieve the goal by monitoring those Ritz values whose

bounds lie in the window [tot , w totl] where w is at our disposal. We lack a

theory to dictate a proper value. If w is too small (,w = 4) then it is easy for a

Ritz value to skip the window in a single step and so be missed. On the other

hand if w is too big (w = 1024) then Phase I wastes energy monitoring values

long before they stabilize. Fortunately the behavior of the algorithm is not very

sensitive to small changes in log2w. Currently we take wo = 128.

Should Pj+ be unusually small (but greater than tot) then a good number of

Ritz values may enter the window. This poses no difficulty to Phase II because all

the current d will stabilize and the program will automatically append more

values. The reason for taking w > 4 is the fear that say 6(2) might overtake 0(1)

in their race to stability. If Phase I only monitors 6(1) then it might discover

'. d0(2) several steps after it stabilizes.

Phase II sweeps through the known i)(i) and removes any which have stabil-

ized. Any gap in 6(-) is closed up and I is decreased. It would be simpler to

leave these values in place and adjust pointers so that they were not inspected

any more. However in our Lanczos program we associate 3 other variables with

each computed eigenvalue and we wished to keep ANALYZE T free of this infor-

mation. Moreover our mechanism isolates 0(.) and bj(.) from the rest of the

iV.

2: , . . .- -- , . . - .- . . • ..-. , :

-26-

Lanczos algorithm. These arrays are of length 8.

Another device which enhances the performance is to deflate stabilized Ritz

values from T. Analyze T is independent of this feature. The deflation process is

discussed in a later section.

Recall that Phase I sometimes inserts Ritz values into 6(-) and frequently

these intruding 5 have large bj values. The strategy for appending more Ritz

values is clear. Phase II will go on appending Ritz values until it finds one out-

suide the window or there is no more room. In particular 1(') holds at least one

Ritz value at each end of the spectrum. No interval I is on hand that contains

these new values to be appended. However the average gap (avgap) between

the unknown Ritz values is easily computed and NUMLESS is used to check

whether (1)(1) .0(L) + augap] contains the next value. If not the next subinter-

val of this length is checked and so on. Then FINDTHETA is called and 1 is

increased.

The most complicated expression in Phase II concerns the decision to drop

,6(L). The drop is necessary to avoid the waste of carrying two slowly converging

values at one end of the spectrum when all the action is happening at the other

end. This happens when Lanczos is not used with inverted, shifted operators. All

*.' of the following must be satisfied

j > 8; 1 > 1; bj(1) > bj(l - 1) > tol.w

Three considerations suggested the separation of Phase I] from Phase I. It

in desirable to update both ends of the spectrum before appending new Ritz

values to either end in order to prevent one end being driven out of 6(.).

Secondly it simplifies Phase I. The actual code is careful riot to insert items

prior to checking that there is room for them. Thirdly, Phase I does not need to

• -'. know P1 4 i. Consequently, if the computer permits it, Phase I can be run in

- 2 -

- 27 -

parallel with the computation of some vector operations in the main loop of the

Lanczos algorithm. Phase II must wait until Pf~l has been computed.

Phase U. Remove and append Ritz values.

bj(i) containes sj(i)2 , computed in FINDTHETA in Phase I.

fori:= 1,1 do

bj(i) := N/lj bj(i)

azppend : i =I and another Ritz value needed

if append then

:=gap (O(r) -? (j))/u -L -abs(r))

fin I(L) + avgap

if bj(i) < tol then

I insert a(i) in EIG

if append and enough room then

while NUMLESS(fn)=l do fin :=f fin + avgap;

start := fin - avgap ; I := I + 1

call FINDTHETA(start,fin)

if 6(1) not needed then I I - 1

d!

* !-- .
,

*

- - 25 -

7. The Subprogram FINIYFHETA

There are several good ways to compute the Ritz value in the given search

interval S. The simplest is the bisection technique which has the advantage of

using the already needed subprogram NUMLESS to evaluate the last pivot func-

lion 6j. Recall that the OP) are zeros of the rational function 6,. The error

bound is halved at each step although the actual error may be reduced by much

more.

The bisection process is much less efficient than rival methods when the

approximation is already good to three or four decimal places and that is pre-

cisely the situation facing FINDTHETA most, but not all of the time. Recall that

for most intervals I(i) the width is less than our window, namely 128-tol. When

the refined bounds are used we can expect the width of S to be 10 or 100 times

smaller than that. Consequently the starting approximation may be accurate to

almost half of its digits in the majority of cases. Thus one or two steps of

Newton's iteration should suffice independent of the precision t of the arith-

metic operations.

There will be occasions (intruding and new Ritz values) when S will be large

(like the average gap between zeros) and so the Newton iteration must be pro-

tected by a bisection facility which chops down large S's. This raises an

interesting technical problem that receives little attention in text books. When

should the switch from bisection to Newton be made? Our criterion is discussed

later in this section.

There is a further attraction in using Newton's method to update the Ritz

-'. values. The preferred implementation of the Newton correction yields s(j), the

bottom component of the eigenvector, as a byproduct. This pleasant feature is

the subject of the next subsection.

.

[.4.

. . ,

- 29 -

The Newton Correction

Newton's iteration function for the polynomial Xj is

N(: Yj((' W (x'j xi)

and Newton's iteration computes from tj the sequence tj according to

An obvious way to evaluate the correction term -X'j/Xj is to use the well-

known three term recurrence: Xo = 1.X'0 = 0. /l = 0.

fork =12. , jrepeat

Yk :=t (=- O)X'k - I OX'k -2-Xk - I-
Xt : (at - 0)Xk- I-flk'Xk-2.

Unfortunately, this recurrence suffers from severe underflow/overftow prob-

lems. Fortunately, there is a more sedate alternative which we now derive.

Recall from Section 4 that

xJ() = f ().

So

_=, - "- ln (Xj) = -A-ln(t) =
X, d(d

Recall from Section 4 that

Thus

' t = - I, + a _ J ,-

or, more conveniently

1 -J + -

To implement the calculation let

- 30 -

P+ 6/ and pt -d' /6,

The ht play an important role in the QD algorithm, but we will not pursue that

connection here. Using the new notation we can update the ratios p by

p= (1+h-Ip-l)/6.

It may be verified that hpt > 0 for all i. Finally

i=1

Here is the alternative recurrence (NEWCOR, for Newton Correction).

Seth 4- p- s.rTfl 4- 0.

Fori =, 2, . do

4 ai-t-h

if (6 = 0) then 6 - z'P+j

p- (1+h-p)/6

sum - SUL, ,+p

The only operation in which roundoff error is significant is the calculation of

61. Digits are lost in successive 6j either suddenly at the last step or gradually

in the last few. Although the relative error in 6. p. and sum increases sharply as

i J nevertheless the error in i/sum is tiny compared with C. This is a stable

computation of the Newton correction. Table 3 shows what happens to 63 at,

near, and beyond convergence. The product 6i-sur should be positive (see

Section 8). The computed value of 613 has no correct digits. The example came

from the tridiagonal obtained from the same tridiagonal which produced Figure

1.

- 31 -

Table 3. Last 5 steps of NEWCOR.

j9 311 j13

- 10.7461941828997 4 = 10.7461941829034 4 = 10.7461941829034

, sum. 6 sUm., 6i sum,

5 -. 1787e+00 -.2730e+05

6 . 1512e+00 -. 9970e+06

7 .1310e+00 -.4995e+08 -. 1311e-+00 -.4994e+08

8 -.1143e+00 -.3316e+10 -.1157e+00 -.3278e+10

9 .2590e-05 .1103e-t-17 -.1036e+00 -.2726e+ 12 -. 1036e+00 -.2726e-12

10 -.9271e-01 -.2831e+14 -.9368e-01 -.2796e+14

11 .3963e-01 .7603e+16 -.9422e-01 -.3158e+16

12 .8669e+00 .3516e+17

13 -.9900e+01 .3070e+17

When to Switch from Bisection to Newton?

It is easy to deflate the effect of known zeros from the Newton correction.

Consequently there is no loss of generality in considering the calculation of

one of the outermost Ritz values. Take Ij to be specific.

ANALYZE T delivers an interval S guaranteed to contain 1j. Its width pro-

vides an initial error bound. The bisection process halves the error bound at

each step. In our application one Newton step costs between 2 and 3 times as

much as a bisection step for large enough j (j > 20). Because of the deflation

*- feature we take 3 as the ratio. It follows that bisection is preferable until New-

ton reduces the error by a factor of 8 (= 23) at each step.

Convergence is assured in our context. Let the iterates be 4 ,.... As

f I1
+

A calculation reveals that

*o

-32-

X"(X 2(t) .E.3)- - .. ,d,)-2

EUa -i300-1
where each sum is from 1 to-j. Let i - to find that

X'(6j) i.-1

Now drop higher order terms to obtain

,'i.""- (+'- % QM(- 4j); E (13i - 1-•

In some instances the dominant terms in the sum of reciprocals will be

available. Let us consider the opposite extreme, when only spread 1- 1 1 is

known. If the zeros are uniformly spaced then

+ 2 3 1 Vgap

kij 1')[-ylnj -1)]/ spread , as
Here 7y is Euler's constant (=.577...).

If 132.... ,O -1 are aLl bunched at the midpoint then

d i-i (-(2j -3)/spread.

a' In practice, when Lanczos is used with a shifted inverted operator, there is a

tendency for many interior 1's to cluster round 0 E (61. -0j). This situation may

be modeled by

J ,1 +,..L z - 3.. +. I
- P 0 -s 1 Oj - 0 spread) *

To use these results tm-j must be replaced by the width of the smallest

interval currently known to contain 01. We use the uniform spacing assumption

and test the assertion

dh spread/[8(d -)ln(d -I1

where d = j - Ino. of known 73'si.

. - " -- -" . ..

- 33 -

8 Evalualon of sWO)

Let us drop the subscript i and consider a typical Ritz value '0 with Tj s =sO
.-

-Ill = 1. Section 4 reported that s ()z', (73) = x3 -(), so

s 0i- =J x(13)

xj - (5)

= (';' + (x (x-M,

= 3'(3), since Xj(6) = 0.

Note also that if 4 (j) 0 0 then

--)= = [x-(=
xi-i j (M Xj-i(W

where sum is evaluated in the recurrence for the Newton correction given in the

previous section.

Given below is a list of ways to approximate s (j) at little cost.

1. If 7 = 0 + O(r 11 All) then

s(j)= = 1 + h_(tf)p_() > 1

is available free from the Newton correction. However it is somewhat waste-

ful to evaluate the recurrence at a point so close to i3.

2. If V + O(s l All) then
%I.

s)-2 = sun () (¢)

is available from the Newton correction. Both sum and 6j will have high

relative error when 5,_(") is tiny, as must happen when 13 stagnates. See

Table 3.

3. From the three formulae involving s(1) and s(j) given in Section 4 one can

derive a fourth one

= .

:: S W) -' = X' -x (1) X2 ,i (0 1/(92 • #• j)2 .

The Newton correction recurrence may be run backwards to yield x'j and

Xe. A little manipulation reveals that

. . . .' ',, . ,- .. ,,. "--, .. . _ ... _ ... _. :-- . - -, - - - -, ,. ,". - , , : Z

7. 71 7-1- . , ,, . .. % .- 7, . . :, , ,.. , ° .. . -- . . - .. - . . - .-.

-34-

2

S. If (is the final point at which the backward recurrence was evaluated then

(0 1 + W W)> i
is available at no cost. The other factor must be formed. A stable way to do

this is

7r:= 1;h := 0
for i :j down to 2 do

U -j - h

?r 7tt 2 /g

ifu = 0=then u e(f + a)
v L h := u

The cost is 2j divisions and 2j multiplications. If t = 6 + 0(- 11 All) then this is a

more accurate though more expensive procedure than No. 2

Consequences of using Newton's method

We deflate stabilized Ritz values from T and this device forestalls the pro-

duction of clusters of close Ritz values. Thus X"/x' varies gently in the neighbor-

hood of each Ritz value and we stop Newton's iteration as soon as the correction

c is less than tol, confident that one more step would produce a c = O(E TII1).

We remark in passing that stabilized Ritz values will be refined later in a Lanczos

run and so an error in the last few places is of no consequence. This policy

presents the challenge of approximating s(j)2 correct to at least one decimal

place despite the fact that the Newton recurrence will not have been evaluated

at our latest approximation , but. at the previous .

4. Let =+c. Note that

(1 3 (i-1) X-

The only unbounded term as z -0 0 is fs(j) 2/ (_ - X)2 , the rest varies

slowly. Consequently the correction to be applied to -6'(t) is

| $bum

-35-

approximately

1: 1

1a (,6 -)2 t)_2)j

U2 2C (1 - t) - C2

5. A more orthodox way to correct -6'- (4) is to use Taylor series. However it is

preferable to apply this technique to functions which resemble polynomials.

So we consider p(x) := (4 - z)6j(z).on the tiny interval (3,) of interest to

us. Let 0 :i -). Then, with = C + c we have

M= W'() + O" WC + 0(c)
A little calculation reveals that

°.2

t)6"j-(t) - 26 'j-(t) = 2 + i2i(% t 9 (*)N
k=1 -

because the dominant parts 2 -)2 cancel each other. Rearranging

terms in the expression for 9' yields

611 (1)) = 6',(W + (6'i(4) + 6j-.~L W

where 4, is the best available approximation to (*). Although it appears com-

,. plicated this process does not require j arithmetic operations.

6. Methods based on QR and QL.

Let Tis = uW. In exact arithmetic the QR transformation with shift 6 will

deflate Ty. Then s(j) is the cosine of the last rotation angle used in the

transformation. The transform may be invoked without bothering to store

the elements of the new matrix. The most compact version of the algorithm,

given in [SEP.p. 169], allows the computation of s(,) after 3j divisions and

3j multiplications.

This technique is not reliable in practice because sometimes (for example,

when a Ritz value stabilizes) the final rotation is poorly determined by the

., -. . .-

- 38 -

initial data. This phenomenon corresponds to the fact that deflation does

not always occur in one QR transformation even with an eigenvalue correct

to working precision.

Less well known is the fact that s(j) is the product of all the sines used in

the QL transform of Tj with shift '0. See [Chen, 1983] for instance. This ver-

sion is very stable and yields s(j)2 after 3j divisins and 4j multiplications.

7. Givens recurrence.

In our application this much maligned recurrence for computing an eigen-

vector is very accurate because the s (I) are substantial if not actually max-

imal components of the a The recurrence solves the equation

(Tj -(I)v = eAi iv!i = .

If t = O to working accuracy then 11 s - vii = O(e). There is no need to store

the elements of v. The cost is j divisions and 3j multiplications. The least

attractive feature of Givens for us is that it requires knowledge of the fi.

All the other techniques utilize flf, the quantities we actually provide for

Analyze T.

In Table 4 a comparison is made of the methods described above on some

typical examples.

- 37 -

Bottom Element of Eigen Vector, S U

J ") method I or2 method 3 QR QL Givens

2 218.2753378667163 0.675e+00 0.675e+00 0.675e 00 0.675e+00 0.675e +00

3 233.9326136824040 0.435e+00 0.435e+00 0.435e+00 0.435e 00 0.436e+00

4 238.2264773067190 0.212e+00 0.212e+00 0.212e+00 0.212e+00 0.212e+00

5 240.9310281046789 0. 167e+00 0. 167e+00 0. 167e+00 0. 167e+00 0. 167e+00

6 242.5758180873734 0.165e+00 0. 165e+00 0. 165e+00 0. 165e+00 0. 165e+00

7 243.3205720927529 0.969e-01 0.969e-01 0.969e-01 0.969e-01 0.969e-01

8 243.9045963222352 0.821e-01 0.821e-01 0.821e-01 0.821e-01 0.821e-01

9 244.3596882340472 0.910e-01 0.910e-01 0.910e-01 0.910e-01 0.910e-01

10 244.5415860111110 0.448e-01 0.448e-01 0.448e-01 0.448e-01 0.448e-01

11 244.5848222804917 0.167e-01 0.167e-01 0.167e-01 0.167e-01 0. 167e-01

12 244.5850377523666 0.103e-02 0. 103e-02 0. 103e-02 0. 103e-02 0. 103e-02

13 244.5850426917980 0. 160e-03 0.160e-03 0. 160e-03 0. 160e-03 0. 160e-03

14 244.5850427056620 0.784e-05 0.784e-05 0.784e-05 0.784e-0 0.784e-05

15 244.5850427056857 0.317e-06 0.317e-06 0.318e-06 0.317e-06 0.317e-06

16 244.5850427056857 0.345e-08 0.852e-09 0. 108e-07 0.852e-09 0.852e-09

17 244.5850427056857 0.334e-08 0.238e-I I 0.355e-05 0.238e-I 1 0.238e-II

18 244.5850427056857 0.334e-08 0.792e-14 0.107e-02 0.792e-14 0.792e-14

19 244.5850427056857 0.334e-.0 0.227e-16 0.350e+00 0.227e-16 0.227e- 16

20 244.5850427056857 0.10le-07 0.308e-17 0.999e+00 0.308e-17 0.308e-17

21 244.5850427058857 0.421e-08 0.882e-18 0.526e+00 0.862e-18 0.862e-18

22 24.5850427056857 0.116e-07 0.204e-17 0.860e+00 0.204e-17 0.204e-17

Table 4. Comparison of Different Methods for Computing s(j). Note the change

after step 16.

o,

S.

4.

S.

% ~

- 38-

9. Explicit Deflation

There is a useful technique which permits some important simplifications in

Analyze T at the extra cost of 2 arrays of length lanmax (=the maximum

number of Lanczos steps permitted). The simplification is that Analyze T may

assume that T has no clusters of very close Ritz values. The technique is to

remove fully stabilized Ritz values by using the QR algorithm to deflate Ti. The

extra arrays are to preserve the T of the Lanczos algorithm for computation of

the Ritz vectors.

Let 0 be a Ritz value which has fully stabilized before step j. In other

words, the jth element of 's normalized eigenvector s, satisfies s (j)l < V'. At

the end of step j, apply the QR algorithm with fixed shift 13 and consider the

situation at step j + 1. Assume for the moment that only one step of the QR

algorithm is needed to cause 1q to appear in position (j ,*) and to have the (j ,

1) element well below the threshold v'J#l. A little notation is needed. Let

T-61,= PJ Tj :=QTjQ.

Partition T as

10

0 1 7 1<7r l

0 T7* 1T

to

-. ~The success of deflation implies that : Qej satisfies Tj~ = a3 + jr. Thus

sin/..(s) < /ap(- 7), where gap(i5) = mrinI X-7! over eigenvalues X of T,_1 •

-I

, o . . - . . °- . . , .S o . - . .o- - - . % o ' . " O .. " - , ° • ..'° . ".

- 39-

Now consider the effect of the similarity transformation on Tj+j;

I 1 j+ a~ I 1T3-_

flj+ I Ctj+l

77

PIa ap.i

Let V denote the last rotation angle in the QR sweep, then

, = j+ejO = fj+Icos P IPj+IIs I)l,
P = flj4.j = j+si P Pj+.

The last approximation follows from the fact that Q is in upper Hessenberg form.

Therefore P2 + a72 = j~2+ and

" = i(-s(j) 2)P =j+ (to working accuracy).

If the QR transformation were executed in exact arithmetic and if 75 were an

exact eigenvalue of Tj then 17 = 0 and the magnitude of a* could be controlled by

choosing the right value of j at which to deflate, namely after I first stabilizes,

but before any second copies of 0 appear. When 77 and a are negligible we may

simply delete row and column j from the transform of T +I and work thereafter

with a smaller tridiagonal matrix,

4, ,., . , , . ., , -.,. , . . . _ _,..- . .: °

- 40-

T
j4.

Lj+ Ctj+i

The fact that aj +I is unknown at the end of step j is immaterial.

Some information is discarded when 7 and a are neglected, but it is only

necessary to preserve the integrity of the Ritz values, not the eigenvectors of Ti.

When eigenvectors of the operator A are wanted then it is necessary to keep a

copy of Tj+j for their computation.

As students of the QR algorithm know, in finite arithmetic it is likely that 2

steps of the QR algorithm will be needed to make 7 negligible. In such cases Q is

no longer in upper Hessenberg form. Consequently

T ._
17

. 6 v a34.1

where + 6=

Rather than performing 2 QR transformations one can simply deduce the

correct rotations in QR from the eigenvector s and force the QR transform to

use them.

Our subprogram Analyze T can work on tj happy in the knowledge that d is

not one of its eigenvalues. If at some later step of the Lanczos process a second

* copy of 0 appears then it will be as a simple eigenvalue of T

• -There is an alternative to deflation for protecting NEWCOR from difficult

V '. '. ' '-, ' ."-'. '. \ .'-.; -'.. -.,. '- x--_..-..., , -. . ."..'.'-." . -. ,. .. -.- , . ,

-41 -

situations. If a second copy of 13 stabilizes at step k, then it suffices to compute

it as a simple eigenvalue of a submatrix Tmk. of Tt. However, the choice of m is

not a trivial matter. It must satisfy 1 < m < j, but the best choice of in depends

on the eigenvector of Tj belonging to 13. It is feasible to try n = 2 (i.e. mn = mul-

tiplicity of 1 in T) and then increase m if any difficulties arise. More work is

needed on this topic. There may be a simple, safe formula for m. Until that is

discovered, we recommend explicit deflation. The extra storage requirement is

for the Lanczos process, not for Analyze T.

.

-w*
N .°% . .

•7 7

-42-

10. Profile of Lanczou Runs

The tables given below attempt to record the important incidents as the

Lanczos algorithm builds up a basis for a Krylov subspace and updates the pro-

jection of the given linear operator on that subspace. What is wanted is informa-

tion on the quality of the Ritz approximations (1i , Qj s.) and the cost of obtain-

ing them. The quality is given by the bj(i) and the cost of this information is

given below.

At each step the table shows.

1) The number of Ritz values updated (col. 2). and the average cost (col. 3),

the maximum cost (col. 4) and the minimum cost (col.5) of updating the

Ritz values. A unit of cost is taken to be 1 operation, where j is the size of

-, the deflated tridiagonal matrix.

2) The number of Ritz values appended (col. 6) and the average cost of

appending these Ritz values (col. 7).

*3) The cost of this monitoring as a fraction of the cost of a Lanczos step (col.7 ' 8).

4) Column 9 contains a curmulaive tally of the number of stabilized Ritz values

S.(eigenvalues).

"'. The first profile is obtained from a matrix of size 100 with an average half

bandwidth of 23. This matrix arises from a flnite element model of a multistory

building discretized using truss elements. For this run the cost of Analyze T

ranged from 3% to 23% of the cost of a Lanczos step. The second profile is

obtained form a larger building frame example (n = 488 and average half

bandwidth = 120) that is described in (Nour-Omid, 1983] . The cost of Analyze T

as a fraction of cost of a Lanczos step was much less (ranging form 0.2% to 5%),

indicating that for very large examples this cost will be neglegible. This run is

ii

-a... - , .. , -. *t ... • , ., , . ,,. ,-....,. ... U U,,..:-;., * , , . , ,

p -43-

memorable because ten Ritz values stabilized from step 69 to step 70: an

unusual occurrence. Nevertheless, the effort to compute all ten values was tess

than 5. of a Lanczos step. In other words, this was a very cost-effective step in

the process. The costs mentioned above include arithemetic operations but

exclude fetch and store operations.

Our experience with these profiles is limited but we plan to use them rou-

tinely and hope that they will appeal to all who are interested in a detailed

comprehension of the Lanczos algorithm.

updates appends

I Icost no. of

step no. of average max. min. no. of average ratio cony.

items cost cost cost items cost AnalyzeT eigs.

3 2 15 16 14 0 0 0.0308 0
4 2 10 12 9 2 19 0.0795 0
5 4 11 15 8 0 0 0.0753 0
a 4 10 15 3 0 0 0.0685 1
7 3 10 13 6 1 17 0.0966 1
6 4 9 14 3 1 17 0.1089 2
9 4 10 15 3 0 0 0.0959 2

10 4 10 16 3 0 0 0.0959 3
11 3 11 16 9 0 0 0.0904 3
12 3 10 13 6 0 0 0.0925 3
13 2 8 11 6 1 15 0.1062 3
14 3 8 12 3 0 0 0.0904 3
15 3 8 13 3 0 0 0.0986 3
18 3 9 16 3 0 0 0.1110 4
17 2 11 16 8 0 0 0.0979 4
18 2 11 16 8 1 18 0.1918 4
19 3 a 13 3 1 15 0.1870 5
20 3 7 13 3 1 16 0.1901 5
21 4 7 16 3 0 0 0.1438 6

22 3 8 16 3 1 15 0.2003 7
23 3 7 13 3 0 0 0.1151 7
24 3 8 16 3 1 15 0.2271 7
25 4 7 13 3 0 0 0.1630 8

Table 5. profile 1 (n = 100, average half bandwidth = 23)

-44-

updates appends o
cost no. of

step no. of average max. min. no. of average ratio cony.
j items cost cost cost items cost AnalzeT eigs.lanstep

3 2 18 19 18 0 0 0.0018 0
4 2 16 17 16 2 19 0.0047
5 4 15 18 13 0 0 0.0051 0
6 4 15 17 12 0 0 0.0061 0
7 4 13 16 9 0 0 0.0062 0
8 4 13 17 9 0 0 0.0070 0
9 4 13 18 6 0 0 0.0079 0

10 2 9 12 6 0 0 0.0030 0
11 2 7 9 6 0 0 0.0026 0
12 2 6 6 6 0 0 0.0024 0
13 2 6 6 6 0 0 0.0026 0
14 2 4 6 3 1 19 0.0064 0
15 3 6 13 3 1 18 0.0091 0
16 4 5 12 3 2 17 0.0128 2
17 4 6 9 3 0 0 0.0061 2
18 4 6 9 3 0 0 0.0057 4
19 2 6 6 6 0 0 0.0030 4

"-' 20 2 6 6 6 0 0 0.0032 4
21 2 6 6 6 0 0 0.0035 4
22 2 4 6 3 1 15 0.0070 4
23 3 3 3 3 1 18 0.0067 4
24 4 3 6 3 2 18 0.0154 5
25 5 4 9 3 0 0 0.0068 5
26 5 3 6 3 0 0 0.0048 7
27 3 4 6 3 1 18 0.0096 8
28 3 6 9 3 0 0 0.0061 8
29 3 5 9 3 1 18 0.0117 8
30 4 5 9 3 0 0 0.0074 8
31 4 4 9 3 1 19 0.0130 9
32 4 5 9 3 0 0 0.0074 10
33 3 a 9 3 0 0 0.0070 10
34 3 4 6 3 1 15 0.0105 11
35 3 6 9 3 0 0 0.0073 11
36 3 5 6 3 0 0 0.0061 12
37 2 6 6 6 0 0 0.0051 12
38 2 a 6 6 3 18 0.0290 12
39 5 4 9 3 2 16 0.0238 12
40 7 3 6 3 1 16 0.0163 14
41 6 4 a j 0 0 0.0102 16

Table 6. proffile 2 (n = 468, average half bandwidth = 120)

S"

-45 -

updates appends 1
I cost no. of

step no. of average max. min. no. of average ratio cony.
items cost cost cost items cost AnalyzeT eigs.

4I 00lanstep

42 4 4 6 3 2 17 0.0211 1743 5 4 9 31 C 0 0.0085 18
44 4 4 9 3 1 15 0.0136 18
45 5 4 9 3 0 0 0.0091 18
48 5 4 6 3 0 I 0 0.0095 18
47 5 4 6 3 0 0 0.0095 19
48 4 4 6 3 0 0 0.0076 20
49 3 4 6 3 1 16 0.0137 20
50 3 5 6 3 1 18 0.0162 21
51 4 4 6 3 0 0 0.0081 21
52 4 3 6 3 0 0 0.0061 22
53 3 4 6 3 2 1 15 0.0220 22
54 5 4 6 3 0 0 0.0105 23
55 4 4 6 3 0 0 0.0087 23
56 4 4 6 3 2 17 0.0271 24
57 5 4 6 3 0 0 0.0112 24
58 5 3 6 3 4 16 0.0428 26
59 7 3 6 3 0 0 0.0114 27
60 6 4 6 3 1 16 0.0217 28
61 .6 4 6 3 1 19 0.0233 29
62 6 5 13 3 0 0 0.0167 29
63 6 5 15 3 1 18 0.0252 32
64 4 6 12 3 0 0 0.0126 33
65 3 6 9 3 1 18 0.0195 33
66 4 6 12 3 0 0 0.0134 33
67 4 6 12 3 4 17 0.0529 33
68 6 4 12 3 2 17 0.0357 36
69 7 3 9 3 2 16 0.0233 43
70 2 9 9 9 5 16 0.0398 46
71 4 6 9 3 0 0 0.0097 47
72 3 5 6 3 0 0 0.0063 47
73 3 5 6 3 0 0 0.0066 47
74 3 5 6 3 1 12 0.0123 47
75 4 6 13 3 3 15 0.0315 48
76 6 6 15 3 0 0 0.0171 48
77 6 7 15 3 0 0 0.0199 49
78 5 7 15 3 0 0 0.0166 50
79 4 8 14 3 0 0 0.0152 51
80 3 10 16 3 0 0 0.0147 51

Tabie 6. profile 2 (n = 468, average half bandwidLh = 120)

-.. .

-46-

APPENIIMXI. Listing of the Analyze T Routine.

mkP~ ez~..refltewb~h~wr.ep)I0-cdl + tobd(e) -8a)
ho3~tdouble preaLstm(O-h.o-) Olga
dinsimaln I).beta~).tht().bj(6)bd(2) probe =thet(I+Lnc) - Ina bJ(I+lnc)
laeel Kawrtsindak and if
data an/ tOdD /Iwor / O.OdO/ if (1 t(dsign(ozs.prabe - shti) q. Ine) then

ore I ~ Aof the trldleaw . a check for en extra Fdtgvalun
*ida ofE. ie aT?.

a beW..) equaret atthe affifiagaal terms, beta(I) =0. k - aumle.(alftbWt.probeJ.Incape)
a thag.) eztaztar sigewalues at T. nearly converged if (k .It. labs(I - 13+ !no)) thanz

41b(. erra bound on thet4.) thet(l) dIsappee

nW(.e~) otdeIanrinthe tx.aI
a spead) t(S- U(1) l elso

a ht() .iP i 4- IX(S upaiglf n,-= o the rhl)d a precrdna for nex totr olL w.uereidbons
0 too twa form ubetl lf(ad) Ic/-(*rthet1 - aghtl))9c

*Ame/(.e betl(3(either(SI or 0l) if(AO ((awn~dtp) the bnb()-n)lw a.F o'nesa zt t au asbe netd b a bfb()(1~r)
a *d lf am n(1)au (nn) I*VA = n(3-d(k .I lab(Ip nblp + Inc

aIdiead Ul Ift() theeI andaRuvle xeo o tf htl n~a

miff tw end If
o en d If

itis Ioo hreturn end. IfnR

b)(1) - 1m + lS)(hatu lfs.12

VM snaPtme + b@WZ/(tht fi) a f th(l isnApear. jnd1Ic.tw-a.
awl u~dea~eeb~~a ee eI I a b()zb()&.I Adl)=nd)+
bdSar~. a02MAWSe(thGtbd(lp).Ita.er)
V(I- w tw) eq theo) cat *ell move I(bj~abd*ip).UnuwaerA)

a tad iok w.true.

a spfor azetg then f j gL1 ero)ta

ff41P a e e eind no If l)adb(

OA tsl4& -eeea thedst(-Inc)) + If (W ~A I.0)ta

else wpee auas*lbtpooiass sq,(S) a

f (I nb(dp.e.me)p~-trf eqo to o itn~pb reaul

a ehoek aa true.ltevd

t (b.o* tanclp)) the

it (nves tha end- it.: . * *.~. ..

-47-

subroutine pbaeetz(l~albet.eWthJ bjnbcoa
I taLepe)

Umplict double prealsion(a-."-)

I.s..1 append

0data ce/ I.QdO /.zero I 0.060/

a to[cytteylai for stabliatIon of tUwt()
a a8supred'sqrt(aps)
a wotzS WIndow factor

if(Jle. I retur

do tp =1. a

do6 tae .

bjQadsqrt(r-2abj(l))
WnM Cj - bd(i) + tbd(a)-G

append wi q. nd(Ip) -and- (bj(1) It1. w -or. (J.eq. 4
1 an&. mbd(ip) seq. 19)) an&. nrea. .t. 0

if (append) thben
sitt - two
probe 0 Ince(that(abd(2)) - twnd1)/ne~i

if (bJ(Q .It. tel) than

nos neig +I

call moueI(tbatnbd(lp).1ja.uaro)
call more1(bjnbd(1p).1.b,mr*)
WbdA1) =z nbd(tp) - inn
I a I - i

end If
f (append .and- mbd(8)-bd(I) -St. 1) than

a fnd a nomempty suiibnterval

tm sMart + probe
abdt) = nbd(Ip) + ine

lk iahe(im - abd(lp))

tf (mo e(elf.betzatgunap) mna. 1k) so to 4
t a t +probe

4 that(nbd(Ip)) = t
start = t. -probe
ceR ftdbt*~l.btartt.tbbdAmnbd(p),J)

bi(t) adwqrt(-2*nb1)
and t

a de~mtA end Mix vlubes it appropriate.

If (j~t..nd. Leqmnbd(Ip).and. Lua.1a and. bj(1).at.
I bJ(L-Imc) nd. bjQl-Inc).at.w) obd(Ip) U rbd(Ip) - trw

I a lI +n

dobu
MUM

.L .% -'
' .

. ' - -. - - . ,- -"- - " "." - .' : ' ' '' ' " " " °

-48-

References

Bunch, James R., Christopher P. Nielsen and Danny C. Sorensen. 1978. Rank-One
Modification of the Symmetric Eigenproblem, Numer. Math., 31:31-48.

Cuppen, J. J. M., 1980. A Divide and Conquer Method for the Symmetric Tridiago-
nal Eigenproblem, NuAmer. Math., 36:177-195.

Ericsson T. and A. Ruhe, 1980. The Spectral Transformation Lanczos Method in
the Numerical Solution of Large, Sparse, Generalized, Symmetric Eigenvalue
Problems, Math. Comp., 34:1251-1268.

Kato, T., 1949. On the Upper and Lower Bounds of Eigenvalues, J. Phys. Soc.
Japan, 334-339.

Paige, C. C., 1976. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a
Symmetric Matrix, J. Inst. Math. Appl., 18:341-349.

Parlett, B. N., 1980. The Syimmetric Eige'nvalue Problem, Prentice Hall, Engle-
wood Cliffs, NJ.

Parlett, B. N. and D. S. Scott, 1979. The Lanczos Algorithm with Selective Orthog-
onalization, Math. Comp.. 33:217-238.

Parlett, B. N., H. Simon and L. M. Stringer, 19B2. On Estimating the Largest
Eigenvalue With the Lanczos Algorithm, Math. Comp., 38:153-165.

Nour-Omid, B. and B. N. Parlett. Reduction of (K- XM)z =0 to (A- vl)x= 0, Tech.
Report, (in preparation).

Nour-Omid, B.. B. N. Parlett and R. L Taylor, 1983. Lanczos Versus Subspace
Iteration for Solution of Eigenvalue Problems, In J. num. Meth. Engng.,
19:859-871.

-.=- :"-= , . ..- .:-' p S = -,.... - ,. -. :

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CPAM-175

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Unclassified
The Use of Refined Error Bound when Updating I' PERFoRMING ORG. REPORT NUMBER

Eigenvalues of Tridiagonals
7. AUTHOR(e) a. CONTRACT OR GRANT NUMBER(s)

B.N. Parlett & B. Nour-Omid N00014-76-C-0013

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

University of California
Berkeley, CA 94720

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Sptmmhpr 1983
13. NUMER OF PAGES

48
14. MONITORING AGENCY NAME & AOORESS(I different from Controlling Office) IS. SECURITy CLASS. (@1 Ie repot)

ISa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

.- c: been approved

- i .ica-e and sale; its
. t-n is unl, mlted.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20. It different irm Report)

Is. SUPPLEMENTARY NOTES

FIs . KEY WORDS (COinwe a e se aide It noe.eem, amd Identify br ble k PW.bor)

20. !RACT (Cntinue en revers* side It neeee&AeY and Identity by block num ber)

The Lanczos algorithm is ,ied to compute some eigenvalues of a given sym-
metric matrix of large order. At each step of the Lanczos algorithm it is valu-
able to know which eigenvalues of the associated tridiagonal matrix have sta-
bilized at eigenvalues of the given symmetric matrix. We present a robust algo-

0. rithm which is fast (20j to 40j operation at j-th Lanczos step), uses about 30
41 words of extra storage, and has a fairly short program (approxima *e4 200 exe-
-. cutable statements) ..

D D , 1473 EsDITIONF NOV $ IS OSSOIETE

S/N 001 SECURITY CLASSIFICATION OF THIS PAGE ("On Date SNered)
S/ 0102. LF 1 14 60 . ne

0"-C .. c,c=···· ~====~=====================

: , . :, ~ :· t: ·.-; .:1 s don:~ '.'Ji t h s u p p o r· :. from the C c: n t e r
'
1

'i ; · :• .~ , 1 d A p p 1 i t: d ~1 J t h em a t i c s . r'\ n y co n c \ u s i o n s
:yi:;~ur:; ~xpr-essed in this report represeat s0iel;

· ·- t n e J ~ t h o r: { s) a n d n o t n ~ c e s s a .l!-i 1 y t h o s e o f
, , ' ~- :. ., -:· t h e U n i v e r s i t y o f C ~' 1 i f o r n i J , t h e

, • c· f ·; ,, ? 'J r e a n d A p p 1 i e d :·~ a t h t: m <1 t f c s o r t h e
.: .· ~ ~' n '. .:; ~ :·1 a t: hem a t i c s .

