
AD-Ri34 151 SYMPOSIUM ON NUMERICAL AND PHYSICAL ASPECTS OF
AERODYNAMIC FLOWS (2ND) 17-20 JANUARY 1983(U)
CALIFORNIA STATE UNIV LONG BEACH T CEBECI 1983

UNCLSIFIEDG 28/4 N



. .. 
. •-.- 

- - - ;. r 
-r' r.-- •

U., .". .

-: - " •

-2

..... .. .-. ...

U~U

L..

Li I, 
_ , . o1

WIII._.25--.0-1.6

"" "+'-""" "" '" " . . ... .. . "illsi



Second Symposium on

NUMERICAL AND PHYSICAL ASPECTS

OF AERODYNAMIC FLOWS

17-20 January 1983

CALIFORNIA STATE UNIVERSITY, LONG BEACH
CALIFORNIA

I..
t i

I -

This document has been approved
ai pubic releae md sae; Its

adflatbuton Is unult-d.

83 10 04 002



Second Symposium on

NUMERICAL AND PHYSICAL ASPECTS
OF AERODYNAMIC FLOWS

17-20 January 1983

CALIFORNIA STATE UNIVERSITY, LONG BEACH
CALIFORNIA

19 1



Second Symposium en

NUMERICAL AND PHYSICAL ASPECTS

OF AERODYNAMIC FLOWS

17-20 January 1983

PREFACE

- \SThis volume contains the papers presented at aerodynamic and hydrodynamic shapes. It is hoped
the second symposium on Numerical and Physical that this volume will be of value to r chers,
Aspects of Aerodynamic Flows, held at the Calif- engineers and designers, and, in pars icular, will
ornia State University, Long Beach, from 17 to 20 provide a better understanding of aero ynapic flows
January 1983. The symposium was organized with an and the development of related calcul ion' ethods.
emphasis on the calculation of flows of relevance
to aircraft, missiles and ships. The subject of
viscous/inviscid interactive calculation proced- The symposium was made possible by the finan-
ures is especially contentious at the present time, cial support provided to the California State Uni-
with many groups and individuals working in th" versity in part by the National Science Foundation,
area. As a consequence, the-reatest propoftion Naval Air Sea Systems Command, U.S. Army Research
of time was e available for th s subject with Office, NASA Ames and NASA Langley, and by the co-
jix sessions. Voted to the numerical procedures operation of the authors, session chairmen, partic-
nd to the " elated experimental investigations. ipants and colleagues at the University. Particu-
Three-dimensional boundary layer and inviscid flows lar thanks are due to Professors James H. Whitelaw
constitute the remaining four sessions and are each of Imperial College, Keith Stewartson of University
ssential components for the understanding and a College, Mr. Dennis Bushnell of NASA Langley and
Priori calculation of wings, ship hulls and other Professor Hillar Unt of the University.

Accession For Tuncer Cebeci
C7 Long Beach, California
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TIME-DEPENDENT FINITE-DIFFERENCE SIMULATION OF UNSTEADY INTERACTIVE FLOWS

George S. Deiwert* and Harry E. Bailey*

NASA Ames Research Center, Moffett Field, California 94035

Abstract rapid thickening of the shear layer with strong
streamline curvature. This is ofteon acompanied

The solution of the time-dependent, Reynolds- by separation or flow reversal. Streamwise
~ averaged, Navier-Stokes equations for unsteady, pressure gradients can be quite lar:, and s1-L k

Interacting flows by flnite-differenct. algorithms waves may exist that. penetrate thL' shear layer.
is discussed. Specific examples include In addition, interaction between two viscous-
1) unsteady transonic flow over a thick biconvex dominated flows occurs at the trailln " !dge of
airfoil, 2) determination of buffet boundaries bodies or between elements of multielement config-
for a transonic lifting airfoil, 3) the simulation urations. Here two (or more) shear layers,
of aileron buzz and 4) dynamic stall. Algorithms with different upstream histories, interact and
considered include explicit methods, mixed (or form a complex shear layer. Further complexityO hybrid) methods, and fully implicit methods. exists at flight Reynolds numbers in the form
Consideration of time scales for computational of turbulence, which extends the range of length
stability, computational accuracy, and physical and time scales that require consideration.
accuracy and the use of time-dependent adaptive
meshing to realize computational efficiency are For unsteady interactive flows of aerodynamic
also discussed, interest, some simplification of the full Navier-

Stokes equations for compressible flow can be
made. One is to time-average the equations over a

Introduction time-scale that is small compared with the aerodv-
namic time-scale for unsteady flow, yet large com-

During the past decade, advances to computer pared with the time-scale of the turbulent eddies.
hardware and numerical methods have permitted the This results in the Reynolds-averaged form of the
development of computer programs capable of simu- Navier-Stokes equations which contain Reynolds-
lating unsteady interactive flows. The physical stress terms that must be modeled empirically.
realism of the simulated unsteady flows has been Another simplification that is sometimes used is
validated by comparison with experimental mea- the thin-shear-Layer approximation. Here, all
surements. The promising results obtained so far, streamwise- and cross-derivatives of the viscous,
coupled with continued improvements in both com- as well as turbulent stress terms, are neglected.
puter performance and algorithm efficiency, The momentum equation across the shear layer is"
encourage further development of these methods still retained, however, so that the critical ""-
and their implementation to study unsteady, coupling between the wall-bounded shear flow and
interactive aerodynamic flows, the inviscid external flow is not lost.

This paper reviews the development of time- It is generally convenient to cast the equa-
dependent numerical simulations of unsteady tions in conservation-law form to facilitate the
interactive flows of an aerodynamic nature. It capture of discontinuities and so that global
focuses primarily on compressible flows at flight conservation of the dependent variables can be
Reynolds numbers and noniterative schemes based easily maintained. The conservative form of the
on the Navier-Stokes equations. In the following differential equations avoids fictitious sources
sections the governing equations are outlined, along discontinuities and permits the numerical
time and length scales are discussed, and numer- attainment of the weak solution to the equations.
ical methods currently in use are reviewed. A It is highly desirable to write the equations
selection of computed results and their compar- for a body-oriented coordinate system so that
ison with experiment are presented, followed by the description and modeling of Reynolds stress
some concluding remarks, terms in the wall-bounded shear layers are not

unnecessarily complex and so that empirical
models developed for thin shear layers can be

Governing Equations easily used and modified. There are two possible
ways to write equations for generalized geom-

The equations of motion for continuous fluid etries while maintaining strong conservation-law
mechanics are the Navier-Stokes equations. For form. One is to write the equations in integral
many flows of aerodynamic interest, these equa- form, using Cartesian momentum components, Car-
fions can be greatly simplified, for example, for tesian space coordinates, and contravariant veloc-
inviscid flows (Euler equations), irrotational ity components. These equations are applied to
flows (potential equations), or simple thin volume elements of arbitrary shape and are commonly -"
shear layers (boundary-layer equations). For referred to as the finite-volume formulation.'

0-

unsteady interactive flows, however, such simple The other way to write the equations is to use
uncouplings are not possible and the full form Cartesian momentum components and contravariant
of the equations Is generally considered. Inter- velocity components and transform the space coor- P
VL I1ons between the Inviscid external flow and dinates to a -eneraized systvm. Wht'cl the Nviter-

the vimcous wail-bounded flow are typified by Stokes equations In conservation-law form are
transformed from the Cartesian coordinates to

-"s'ar-h-Sci'nt--ti .
-  

arbitrary curvilinear coordinates, they do not
This paper is declared a work of the U.S. Government and generally retain the conservation-law form; how-"

therefore is in the public domain. ever, following the method proposed bv Viviand,'
they can anain be put in conservation-law form.

.....-...- . .. .-------



The two-dimensional, Reynolds-averaged, The coordinates and P are generalized
Navier-Stokes equations for compressible flow are curvilinear, whereas the dependent variables,
written below in strong conservative form in u and v, are Cartesian velocity components cur-
generalized coordinates as responding to the x and y directions, respec-

tively. The metric terms relating Cartesian
space to the generalized curvilinear space are

3 (E-E) a (F - Fv) given by

at a&c an 0
J , rY 7x -JyF

where x n x -

, y -- Jx , ny . Jx .

&ti CtXtx-xY%, r . -Xt'~x y trly
lou' OuU + I

q E J Cn NYE
qV~ + y xy -x

The Reynolds stresses and turbulent heat-
e+p)U - p1 flux terms have been included in the stress tensor

t./ and heat-flux vector by using the eddy-viscosity

and eddy-conductivity concept, whereby the coef-
ficients of viscosity and thermal conductivity are

PV 0 the sum of the molecular (laminar) part and an
,4 + W ,C W3 eddy (turbulent) part: :1

"'"1 o~~uV + ':
P  

xx
+  

YX

"l ,VV + ,Pyp + t

- ep~ Evp 1= + t

0
It is also possible to model the Reynolds

stresses directly rather than relating them to

9 T + l the mean field gradients via an eddy-viscosity
K xx y XY concept, but this has received little attention

. to date for unsteady interactive flows.

n T +fnlT
x yx y yy The accuracy of numerical simulations with

the Reynolds-averaged, Navier-Stokes equations

Tjxx + fy
8
y depends principally on the accuracy of the tur-

X Xbulence modeling. The eddy coefficients are
given by empirical expressions which can range

and from fairly simple algebraic expressions, based
on mixing-length concepts, to fairly complex

ii - + tu + cY vexpressions, based on empirical transport equa-
-t 

+
x y tions, to determine length and velocity scales.

Most unsteady interactive computations to date
V - nt + nxu + n v (except some used only to approach a steady state

t x in a timewise manner) have relied on the simpler
T - . + v ) + Ztu algebraic expressions for eddy viscosity and a
xx x y constant turbulent Prandtl number to determine

eddy conductivity. These algebraic models are
developed from boundary-layer concepts and in

ps e +u +vtgeneral have not been validated for other thane U VTX1
x p t xx xy thin shear layers. In recent work by Shamroth, """x a differential expression for turbulent kinetic

= - (U + v) energy combined with an algebraic length scale

xy yx y to describe the eddy viscosity was used to study

subsonic flow over an oscillating airfoil where

fiy + UTYx + vr the influence of viscous/inviscid interactions is

r Iyy small.

t A(ux +v )+ 211v
yy x y y Time and Length Scales

e- e/p - !(u + v') To simulate unsteady flows, It is necessary
to know what time and length scales are Important
and thus require resolution. Time scales exist

2
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that range from the very short periods associated smaller than fT" The two open circlL pints in
with the high-frequency dissipative turbulence Fig. I represent airfoil buffeting and aileron buzz
structure (the Kolomogorov microscale) to the very for which frequencies the Reynolds-av,raged cqua-
long times associated with slow-moving signals tions have provided good simulations when using
propagating along upstream characteristic paths in turbulence models developed for stt-,dv flows. TlL.
a transonic flow field. (For example, pressure unsteady frequencies in these cases arL two orders
waves propagate upstream at a speed equal to of magnitude less than fi" At the highest fr.-
( & - )a, which for Mach numbers close to unity quencies tested, the usual steady-flow turnulenc- ,
can be quite slow.) Length scales exist that models supported accurate descriptions of the
range from the very small microscale structure of time-varying changes in ampliLtude and phase of the
the dissipative turbulent eddies to the very long velocity profiles and turbulence intensity. 11us,
scales that extend from the aerodynamic body to for these frequencies, just one order of magnitude
the outer boundaries of the computational control less than iT, the Reynolds-averaged equations are
volume, Many unsteady flows of aerodynamic adequate for unsteady simulation; hence, for many
interest have important time and length scales unsteady flows of practical aerodynamic interest-
that are somewhere In the middle of this vast their validity can be expected. A partial explan-
range, and numerical schemes can be selected such ation for this fortunate situation can be seen as
that they neglect the very short scales yet remain follows: Although the average frequency of the
sufficient to resolve the scales of concern, large-scale eddies passing a given point on a stur-

face is iT' the average frequency of eddies
Strong interactive effects occur when the passing a given spanwise station on an airfoil, say

range of flow conditions and airfoil motion param- with a span of one chord length, would he of the
eters produces unsteady, shock-induced, boundary- order of 100 fT" For such conditions, the Reynolds
laver separation, trailing-edge separation, or concept for time-averaging may be realistic for
various combinations of interactions that result frequencies f of the order fT* However, for
in separation-induced transonic flutter, buffet, highly three-dimensional flows with large spanwise
aileron buzz, and dynamic stall. In the absence variations, f may need to be much smaller than
of forced motions, the characteristic speed that fT for realistic simulations with the Reynolds-
drives the unsteady behavior is the free-stream averaged equations.
velocity (l..), and the characteristic length is
the body-length scale (L) or separation scale Another important consideration concerns the
MS). A nondimensional frequency parameter (P) ability of the Reynolds-averaged Navier-Stokes
can be defined that describes the characteristic equations to simulate unsteady flows with a wide
time scale as n - fL/U,, where f is the dimen- range of frequency spectra, such as can occur InS
atonal frequency of unsteady motion. For forced rotating machinery or helicopter rotors in which
frequencies, such as occur with propellers and the multiple elements, each of which generates and
helicopter rotors, the dominant driven frequency interacts with vortices, induce higher harmonics.
is stnusoidal, with higher harmonics becoming Applications to date have been conducted for two-
important as the blades pass through the trailing dimensional flows without the complications of
vortices of the preceding blades. These flows three-dimensional effects, free-stream turbulence,
are characterized by a nondimensional frequency airfoil vibrations, or structural oscillations.
parameter defined as k - wc/2U., where w is the These have resulted in essentially cyclic unstead-
circular frequency and c is the chord of the air- ineas with a single narrow-band frequency. It Is
foil section. well known from experimental observations that many

flows have complexities resulting in broader-band
An important consideration concerns how

high the frequencies f or w/27r can be, relative
to the mean frequency fT of the turbulent Re

eddies, for realistic simulations with the MAFRUEYOF
Reynolds-averaged equations. For the concept to -E 10

7

be valid, the averaging time interval must be 10 - LARGE EDDIES ...... %
long compared with the characteristic time fT1 8 VORTEX SHEDDING
of the principal turbulent eddies and short com- BLUFF BODIES
pared with the characteristic time fC of the - LEADING EDGE
unsteady mean flow. Hence, f should be much SPRTO ARFLUFTLUSEPARATION ' AIRFOIL BUFFET } :

smaller than iT In order to obtain a perspec- " 1
tive on this question, Chapman" assembled some W CIRCULAR ARC BUFFET
relevant data for unsteady aerodynamic flows. I / "LRN"
These are reproduced In Fig. 1, which maps typ- BUZZ

ical unsteady aerodynamic flow and turbulent
eddy domains as functions of nondimensional fre-
quency pnranter fi and flight Mach number M, . ,-, SUPERCRITICAL

a DIFFUSORThe liues r,presenting the mean frequency of the D DYNAMIC STALL
turbulent eddies are based on flat-plate experi- LU EXPERIMENTS --- WING BUFFET
ments and correspond to f5/U, - 0.2, the exper- X DIFFUSOR F11A TACT
imentally observed mean turbulent-burst period. -TRANSITORY
Also shown are domains representative of airfoil .01 STALL WING ROCK
buffet, wing buffet, leading-edge separation, UNSTEADY TBLEXP. 0 FSA
vortex shedding behind bluff bodies, supercriti- U T 0 F5
cal diffusor stall, low-speed diffusor transitory 0 .2 .4 .6 .8 1.0 1.2 1.4
stall, dynamic stall, transonic wing rock, and M_
unsteady boundary-layer experiments. " Almost Fig. I Comparison of frequency range of unsteahl
all of the frecuenctes of these unsteady sero- flows with mean frequency of large-scale turhulnt
dynamic flows are one to two orders of magnitude eddies.13

3
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distributions of frequencies. A capability to are interacting shocks that result in structures
simulate these types of flow would permit the not aligned with a principal coordinate, the
study, for example, of unsteady inlet flows feed- problem of adaptive meshing becomes much more
ing into compressors, compressor stall, certain cumbersome and complex. Unsteady interactive
flutter problems, gust loading, and wing buffet, computations with completely general adaptive
Such unsteady flow simulations would probably meshing of this kind have not yet been attempted.
necessitate removal of the Reynolds-averaging Examples of one coordinate adaptive meshing for
restriction and use instead a large-eddy simula- shocks are given by MacCormack and Baldwin,

2

tion scheme in which only the fine-scale turbu- SchIff,
15 

and Deiwert,
5 

and exampl?s tor near-wake
lance associated with dissipation would be empir- flows (moving shear layers) by Deiwert. Note
ically modeled. Such computations which are not that in the equations presented in the previous
yet feasible with today's algorithms and compu- section the time-varying metrics have been
ters, must await a later generation of computa- included to facilitate adaptive meshing.
tional power and sophistication.

To determine finite-difference solutions Numerical Methods
to the Reynolds-averaged equations, a compute-
tional grid must be constructed about the aero- Finite-difference methods for solving tie
dynamic shape of interest. The grid must be Reynolds-averaged, Navier-Stokes equations can
capable of resolving all the essential length be classified by type: explicit, implicit,
scales and at the same time be efficient so as or some hybrid combination of the two. Explicit
not to over resolve the flow field and saturate methods offer the advantage of low cost per
computer storage systems and processing times. step and ease of formulation and computer pro-
Stretching and clustering of grid points are gramming. Associated with them are time-step
used extensively and dynamic remeshing during stability constraints based on convection of
transient phases of the solution is desirable to signals (the Courant condition) and on diffusion
ensure adequate resolution of high gradient of signals (the viscous-stability condition).
regions. The Courant condition restricts the time-step

At to values less than Ax/(U + a), where Ax is
The primary variable determining the the mesh spacing and (U + a) is the local convec-

required minimum number of grid points is the tion speed in the x-direction plus the local
boundary-layer thickness, 6. This thickness can speed of sound. A similar restriction exists
be estimated from flat-plate, turbulent boundary- for the y-direction (or C and r) directions).
layer behavior as 6 - 0.37 L/Ret

" 2  
For steady The viscous-stability condition restricts the

attached turbulent boundary layers, the well- time-step to values less than Ax&/2v (or Ay'/2v,
known "law of the wall" describes the boundary- etc.). If these time-step constraints are compat-
layer behavior near the body surface. In inter- ible with the unsteady frequency of the flow being

- active regions, however, the log-law region of the computed (i.e., if At from stability considera-
turbulent boundary layer can be annihilated, and tions is not orders of magnitude less them f-),
it is necessary to resolve the boundary layer to then explicit methods are a good choice. Examples
the scale of the viscous sublayer, if accurate of an explicit method used to compute unsteady
simulations of separation and surface shear are transonic flow past an airfoil section are given

* to be expected. To ensure this resolution, the in Refa. 1-3; the method is of the Lax-Wendroff''
first grid line off the surface should lie within type and solves the equations in the finite-
the sublayer where the velocity varies linearly volume formulation.
with distance-from the surface (i.e., u y /2
where u+ - u/ut, y+ - nuI /v ,+and uT - (Tw/Pw) 

/  
Generally, however, at the high Reynolds

This occurs for values a y . 8 and can be numbers associated with actual flight conditions,
estimated from the free-stream Reynolds number the shear layers are so thin and require such
and body length scale by Ariin ft 0.08L/(Re)" 2

, finely spaced meshes that the tire constraints
where Arimin is the distance away from the body imposed by both the Courant condition and the

. surface to y+ f 8. From this first point, addi- viscous-stabillty condition are prohibitively
- tional grid lines can be distributed away from the small. To circumvent this problem, either semi-

body, with exponentially increased spacings to a implicit schemes are used (e.g., MacCormack"''),

" distance somewhere just outside the boundary whereby the diffusion-dominated regions are
layer. An external grid can be further con- treated implicitly and the convective dominated
structed to extend the computational field to the regions explicitly, or fully implicit schemes
outer edge of the computational control volume, are used for the entire flow field (Ce.. Beam
again using either geometric or algebraic pro- and Warming

17 
and Briley and McDonald

1 
). The

gressions to increase grid spacings away from MacCormack hybrid scheme requires tile solu8h)
the body. of simple tridiagonal matrices for the viscous

terms and characteristic equal [or for som, ol
UnsLeady flows typically contain regions of the convective terms in the diffuslon-domin.,ted

high gradients that move about in space; shock regions, and retains an explicit formulition
waves and shear layers, ror example. Resolution for convective-dominated regions. Hvca'rus of
of these high-gradient regions requires a tight the programming logic required to Ihvridize Lhr
clustering of grid lines, and efficient use of method, it is difficult to vectorize this pro-
grid lines is best achieved by moving or adapt- cedure for modern array processors. The fully
ing the clustered grid with the moving region. implicit method of Scam and Warmi:rg requir,;-
Fortunately, in many instances, this can be rea- the solution of hlock-tridiagonal -marrices, and
Lzed hy adapting just one family of grid lines, hence requires more computation per grid print
for example lines of constant T) for shear per time-step than the hybrid method on tie

• layers and lines of constant 4 for shocks average, but is readily vectorizt whys ajprN-
normal to the streamwise direction. When there imate factorization of the differetitng opcrators

4-
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is used. The MacCormack hybrid method still over a few mesh points. For most applications, the
requires satisfaction of a Courant condition for shock strength and location are adequoatelv repre-
stability. Since this is based on the convective- sented and 'n fact, for shock/boundary-laver inter-
dominated flow regime, where mesh spacings are actions the smeared shock structure in the inter-
large relative to the diffusion-dominated regime, action region is preferred to a discontinuous repre-
the time-steps are not restrictive for unsteady sentation. Alternatively, shock-ffttLing may be
flow computations. The fully implicit method of esthetically more attractive in the inviscid rgions.
Beam and Warming is neutrally stable and has no However, shock-capturing is practically more advan-
formal time-step constraint. However, when arti- tageous, with no real loss of accuracy near th,-
ficial dissipation is included to make the scheme body, although it must be recognized, of course,
robust, stability time-constraints dependent on that shocks really are essentially discontinuities"
both the coordinate transformation and the mean- in the exterior flow field.
flow variation occur. Because there is yet no
straightforward way to estimate these constraints, A third consideration concerns the compu-
the solutions must he monitored for violation of tation of turbulence or, rather, the effect
the stability condition. This is generally done by of turbulence. No real attempt is made to
tracking the development of the residuals at each resolve the full range of scales inherent in a
step of the solution, turbulent shear flow, nor is there any attempt

to account for the inherent three-dimensional
An important consideration concerns the structure of turbulent fields. There is, however,

frequency range supported by a finite-difference an interaction between the numerical procedures
solution method. Finite grids can support only and the computation of turbulence effects. Two,
a finite number of frequencies in a discrete different issues are involved. One is the manner
Fourier series. Higher frequencies than the grid in which the subgrid scales are accommodated and
will support are aliased to lower frequencies, the other is the manner in which the turbulence
For example, on an equispaced grid of n points, model is implemented. Subgrid scales are con-
k = n/2 harmonics of the form eikx can be accur- tinually generated by the larger scale structure
azely supported. Frequencies higher than k reap- by means of nonlinear wave interactions in the . -

pear as lower frequencies. In unsteady flows with convective terms. Numerical control of the sub-
moving shocks, high frequencies are continually grid energy production is achieved by the addi-
generated by nonlinear convective interactions. tion of dissipation, either through approximations
For example, the product of waves e

imx  
einx to spatial derivatives ir by artificial terms.

arises due to terms such as uU and vU, and these In either instance, the dissipation is arbitrary
produce two harmonics, a lower one proportional to the extent that it must lie within the error
to m - n and a higher one proportional to m + n. band of the large-scale resolution and it must %
The numerical problem that occurs in this situa- prevent the accumulation of energy in the highest
tion has been described by Mehta and Lomax's and frequencies supported by the mesh. This artiff-
is illustrated in Fig. 2 (taken from their cial dissipation is not related to the eddy vis-
paper). Schematically, amplitude is shown as a cosity that is empirically modeled and must not
function of wave number. The frequencies to the be of comparable order. Nonetheless, even though
right of the mesh cutoff line are subgrid fre- its detailed form is somewhat arbitrary, its
quencies that alias back to the low-frequency presence is essential to prevent the flow of
range and introduce numerical error. This subgrid scale energy to the large-scale terms
error can be sufficient to cause numerical where it would not have physical meaning.
instability. Artificial numerical dissipation
is generally introduced to remove the high- The second interaction is more subtle and
frequency terms before significant aliasing is related to the manner in which the turbulence
occurs. Additionally, mesh clustering is gen- model is incorporated into tie tomputer cude.

erally used in the vicinity of shocks where Although the analytical for- of a given eddy-
high-frequency terms are generated, and this viscosity model is well desc ibed, its imple- 6
reduces the magnitude of aliasing that would mentation and the means by wh.ch ertain key
otherwise occur on a coarse grid. parameters (particularly length scales) are -'

evaluated are not clear. Every code developer

A second consideration concerns the use of practices the art of model implementation. t'he
shock-capturing methods to describe a discontin- numerical effect of the complete model is the
uity as it moves about in the mesh. When such a sum of all Its parts, including grtd-distribution
technique is used, the shock profile is "smeared" effects, metric evaluation techniques, dif-

ference approximations, and the adaptation of -

MESH "thin-shear-layer" models to describe complex

CUT-OFF shear layers. Because the models are empirical,
a wide degree of freedom is often exercised in
their implementation. The accuracy ul the
models with all these ingredients is difficult
to evaluate and the final assessment of the " -

'@kl ALIAS I method must be based on comparisons with exper- . -

iments and benchmark computations. .

VISCOSITY
NUMERICAL I Result"DISSIPATION

I ISSIPATIOWe mention here five examples ol ullsteai\

k interactive flow which have been computed:
Fig. 2 Numerical dissipation of subgrid 1) flow past a biconvex airfoil; 2) buffet boun-
amplitudes. 9 daries; 3) aileron buzz; 4) stall boundaries;
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* and 5) dynamic stall. In each case the flow is STEADY FLOW, UNSTEADY FLOW. STEADY FLOW,

transonic and there are in each instance some TRAILING-EDGE OSCILLATORY SHOCK-INDUCED
" experimental results with which comparisons are SEPARATION SEPARATION SEPARATION

* made. In each of the five cases the time scale
of interest is narrow-banded and is long com-
pared with the mean frequency of the turbulent
eddies.

16- HYSTERESIS
Biconvex Airfoil

First, the experiments of McDevitt et al..
20  

12

- in which the transonic flow past an 18%-thick, Re_ 0 0 ri
biconvex, circular-arc airfoil at zero angle of -
incidence was investigated, are considered. The 106 8- dM/dt < 0 dM/dt 0
circular arc was placed in a high-Reynolds-number
channel with walls contoured to match streamlines
predicted from a transonic Navier-Stokes code. 6

Both Mach number and Reynolds number were varied. 0 EXPERIMENT
At a Mach number of 0.72, the flow was steady, D COMPUTER CASES

the viscous/inviscid interaction was somewhat
weak, and flow separation occurred just ahead 

of 01

the trailing edge. At a Mach number of 0.783, .68 .70 .72 .74 .76 .78 .80 .82

the flow was quasi-steady, and the viscous/ M

inviscid interaction was strong and resulted in Fig. 3 Experimental flow domains for 18% circular-
shock-induced separation well ahead of the trailing arc airfoil.

20

edge, with reattachment in the wake of the air-
" foil. At Mach numbers in between these values,

the flow was observed to be highly unsteady, with it terminates at values near 0.78. As Mach
shock waves and separation points oscillating number is decreased, the unsteady regime per-
fore and aft with a dimensionless frequency of sists down to values near 0.73. The hysteresis
Ql - 0.49 (Ref. 21'. region showing this difference in the unsteady

flow domain with increasing and decreasing Mach

Levy,
22 

using a code written by Deiwert
e  

numbers is shaded in Fig. 3. The computations
based initially on the explicit MacCormack of Levy are for fixed Mach numbers of 0.72,
method and subsequently the hybrid MacCormack 0.754, and 0.783, all for a Reynolds number of

method, simulated the same flow conditions and 11 x 106. These Mach numbers are denoted by
observed the same cyclic behavior for the same the square symbols in the figure. For the

' Mach number range as was observed experimentally. Mach number 0.72, the computed flow is steady
The computed frequency of the oscillations and as observed in the experiment; for 0.754, it is
the magnitude of the shock excursions agreed unsteadyt and for 0.783, it is quasi-steady; again
remarkably well with experimentally measured as observed experimentally.
values. Shown in Fig. 3 are the Reynolds-number
and Mach-number domains for which the flow was Figure 4 shows a comparison of computed and
observed to be weakly interacting, steady; measured surface-pressure distributions for rhe
strongly interacting, quasi-steady; or strongly three computed cases. Mean experimental results

* interacting, unsteady. Experimentally, as are denoted by the circular symbols and mean com-
Mach number is increased, the onset of unsteady- puted results by the solid line. The amplitude
flow regime occurs for Mach numbers near 0.76; and range of the unsteady pressure variation is

18% CIRCULAR-ARC AIRFOIL. Re - 11 x 10. a 0-0

' EXPERIMENT *4 COMPUTATION (LEVY, ref. 22)

-1.4 •

M. -0.720 c Mo =0.754. M- - 0.783

-1 .2 
4 ' .

CP - 00 :. 0 - .0
S p -

-.4 . . -

C. 0

00

0 I I I -11d. * I. I I I J
"40 .2 .4 .6 .8 1.0 0 .2 .4 .6 .6 1.0 .2 A .6 .8 1.0

x/c x/c x/c

Fig. 4 Pressure distributions over 18% circular-arc airfoil.
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indicated by vertical bars for experiment and rise is less rapid and there is almost a prt:zre
by shaded regions for the computation. For the plateau, with fine-scale structure, before a dcay
Mach-number-0.72 case, the agreement between com- to a pressure minimum again. Some of this fine-
putation and experiment is excellent except for scale structure is indicated in the computed
disparities near the trailing edge where the results, as well as in the experiments.
flow has separated. For 0.754, the pressure
distributlons are highly unsteady. The amplitude Finally, in Fig. 6 is shown a conparis-i of
of both the experimental and computed oscilla- experimental shadowgraph pictures ind Lmputtd " ,
tions are quite similar, with the computed oscil- Mach contours over the upper aft p.rtin of th,
lations showing somewhat greater excursions on airfoil at four different ttimis d triig ot. [,rid-
the high-pressure side. For Mach number 0.783, of oscillation. Except for the dlfftrent
the agreement ahead of the shock is excellent, between a weak experimental shock w.iv& and .1
but the computation predicts a strong, nearly strong computed shock wave, as noted earlier, the
normal shock as opposed to the weak, oblique shock agreement between measured and computed flow-! iold
observed experimentally. Subsequent studies

2 3  
features is excellent.

suggest that the strong-shock solution is S
the result of improper downstream boundary con- Buffet Boundaries
ditions on pressure and that if experimentally
observed pressures are Imposed at the downstream Another unsteady flow applict iin ot t~l'. -11"l_
boundary, the weak-shock solution will be rea- code used above was the determination of b,, it.

lized. the amplitude of the pressure oscillation boundaries for the :Korn 1 airfoiL.-4 igue .
in thils quasi-steady flow is the same for both shows a lift-drag polar and a lift curve for tht!
computation and experiment. Korn 1 supercritlcal airfoil for a nimina! Mach

number of 0.75. The computations, perfo"_.d ior
Figure 5 shows d comparison of the surface- angles of incidence ranging from -L.S4* to 4.34, -

pressure variation with time at four different are compared with the experimentatl data of
locations on the airfoil: at the midchord on Kacprzynski and Ohman. 25 The computed drag polar
both the upper and lower surface and at 77.5% indicates the onset of buffet somewhat after
chord on both upper and lower surface. The maximum lift has been realized; it is illustrated - -
oscillations on the upper and lower surfaces are by two different Cl.-vs-C 1 branches for aini!lt5 -4
a half period out of phase with each other. The 3.250 and 4.34*. The lift and drag vary period-
frequency of the computed and measured oscilla- ically along the branch corresponding to the par- --
tions agrees to within 20%. It is of special ticular angle of incidence. Other angles of S..
interest to note the agreement between some of incidence greater than 30 (not shown) would
the details of the pressure oscillations. For exhibit different paths of periodic variation.
example, at the midchord position, both experi- The lift curve indicates that the onset of bul fet
mental and computed pressures show a very rapid occurs at an angle of incidence ol nearly 3* to
rise and then a slower, almost exponential-like the free stream. Here, for a given incldence, the
decay. At the 77.5% position, the pressure minimum and maximum lift values define a buffet

envelope. The computations were performed assuming
free boundaries at the nominal wind-tunnel test
conditions and no adjustments were made to account
for Mach-number or flow-angularity correcti.ns

18%CIRCULAR-ARC AIRFOIL, Re= 11x 106 , Mo076, -a0 °  
caused by wall Interference. Neglectiug Mach-
number corrections, comparisons with the lift-trve

UPPER SURFACE data suggest equivalent angle-of-attack corrections
.2- x/c.-0.50 2r. x/c-0.775 of about -0.3" and -1.3

' 
for the ol and 20.5'. wall-

porosity experiments, respectively. This compares
0 EXPERIMENT 0 1 with corrections of -0.89* suggested by the exper-. IF IFIV iW i ' mental investigators in a subsequent study.21

AP -.2 L -.

P.2 r. Aileron Buzz

0 4 COMPUTATION Another unsteady phenomenon, this time asso-
iated with a moving boundary, is represented by

-. 2 L the performance characteristics of the aih,ri of

LOWER SURFACE a P-80 aircraft. This configuration was exhttst-
ively investigated experimentally In tie mid-

1940's by Eriksot and Stephenson." lie flow Is0 / 1 EXPERIMENT ()"'ALA f tL-f - 1e,001 sLMUIItvd Iy St eger and ,Sail ,v, .
'  
9Ust...h. ..;-.'.':

02fully implicit algorithm of Beam utid Warmiii.'; ,; d4

AP -.2 L - a method that couples the solution of an ordinaryv

Pt 2 2differential equation describing rthe motion ofthe

aileron with the flow-field solution. lhe jit, r-

0 COMPUTATION ' upted shock-wave moction over rite it portion .f
le airfoil causes a shift in phase of tht twr.-

.2 -.2 dynamic hinge moment with respect to the ,,v',ientof the aileron, thereby exciting in oscillatlon of

0 9 18 27 0 9 18 27 the aileron (buzz) In one degree f, :reedr... In

C/U_ C/U_ the experiment, for a Mach number o f 0!.82 an.d in
angle of incidenet to the free str-im ,lf -1.0'.

the initially tndefc,,ted ail ron we,' rele,ised
Fig. i "Buffeting" flow, surface,-pressure time (i.e., tile 'ne degrt, of freedom is 6,t de ilat - " . ..

histories for 18/ circular-arc airfoil .
2 1  

able) and it would oscillat 2 . 1 touit a 'it.li. -

7
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18% CI RCU LAR-ARC AIR FOIL, Re =11 x 106, Mw, 0.76I

(SEEGIILLER et al ., ref 21)
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EXPERIMENT

0 22.5% TUNNEL WALL POROSITY

A 6% TUNNEL WALL POROSITY

1.4 - 1.4-

1.2-
.3.25 NAVIER-STOKES

1.0 1REYNOLDS AVE.

.. 8

4.340 CL

CL  NAVIERSTOKES .6

REYNOLDS AVE. BeUFFET DOMAIN

.2 BUFFET DOMAIN 
" (COMPUTED)

(COMPUTED)0 .2-/.,'l

0 .02 .0 06 .6 -2 -1 0 1 2 3 4 5
CD ANGLE OF ATTACK, do-

Fig. 7 Computed and measured transonic drag polar and lift curve for a supercritical airfoil.24

incidence of -1.1 at a frequency of 22.2 Hz. results of these computations compared with exper-
Computationally, this unsteady behavior was not iment in Fig. 8, which shows both the buzz boundary
obtained for an initially undeflected aileron, as a function of free-stream Mach number and air-
but when the aileron was released from an initial foil angle of incidence, and aileron deflection
position of 4, it experienced oscillations of angles as a function of time for free-stream Mach
18.4' about a mean incidence of -3.0* at a fre- numbers of 0.79 and 0.82 for the airfoil at an inci-
quency of 21.2 Hz. Similar computations for an dence of -1.0". Shown in Fig. 9 are computed Mach
airfoil angle of incidence of -i.0* were made for contours for both the upper and lower deflection
a free-stream Mach number of 0.79; they showed limits of the buzz cycle. Note particularly the
that even with an initial deflection of 40, the relative positions of the upper and lower surface
oscillations would damp out in a few cycles. The shocks in each of these limiting configurations.

8 M - 0.79 NO BUZZ

0

A A.

SUPPORT.
f-6

A74

iz
.80 CALCULATED 12

.NL O AA Z COMPUTED MEASURED
.62~ NOS BUZZ

w 4

X .78 -

MEASURED
.76 - o BOUNDARY -

.74 -12

ANGLE OF ATTACK, dog TIME, inc

Fig. 8 Computed and munsurtcd characteristics of tran.,oni aileron buzz.

9
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(b) AILERON 6 NEAR LOWER
, LIMIT OF BUZZ CYCLE

ia) AILERON 6 NEAR UPPER
LIMIT OF BUZZ CYCLE

Fig. 9 Mach number contours of flow fields for transonic aileron buzz: M 0.82, = -1-

Stall Boundaries incidence for both a NACA 65-213 airfoil (the P-80
airfoil section) and the Korn I suJercriti-al air-

A fourth example is the computation of the foil. Shown in Fig. 10 is the boundary for th,
stall boundary of a given airfoil. Levy and onset of unsteady flow as a function of lift coef-
Bailey,

29 
using both the hybrid MacCormack algo- ficient and free-stream Mach number for the Korn 1

rithm and the fully implicit Beam and Warming section. Comparison with experimental data of
algorithm, performed a series of computations for Ohman et al.3G for the same configuration show gen-
a wide range of Mach numbers and angles of erally good agreement, especially for the higher

values of Mach number and lower lift coefficients,

MACH CONTOURS

UNSTEADY FLOW BOUNDARIES

1.4- &,deg

7.50 7.88 7.0

1.2- 5.25
M . 0.55. a = 7.75, T 31.69

1.0- 2.63

u. 1.0

0

. ' EXPERIMENT
" COMPUTATION.4 - .

.2"

.5 .6 .7 .8 .9 1.0
MACH NUMBER

M 0.78, c = 1.50, T " 68.35

'i. J0 A performance characLeristic In maneuver of Korn-i airfoil It Rc 21 10'

10



values oi Maich number and lower lift coefficients, lack of r-zhe;. :'ai. i> ortrc

where the shock-wave svstem determines a buffet- re I t ive to tho in- layer t m. re.'
onset boundary. For the lower Mach numbers and zho signifihant dii fen,-e ,'s , r tti. tw,.
hi1gh 11ift coefficients (correspond ing to high computat ions is not compl et. lIV !' ~. [1,,ntl I... .

angles of incidence),* the .,tall houndary is sim- the additional ternis were inc luded in rtv -
ilar to that of :Las.sical low-speed trailing-edge tions, anv finlto-li r erencl, vallt i-i ,, ti: *
.separat ion, as opposed to shock-wave/boundary- with the coarse -,rid onsidt-red sh~kld re,,u t 1i1
layer Interactions. This is illustrated by the negligibly small values. Studies by other
computed Machi contoJurs for both a high-incidence investigators ke.g. Degani and Siogc! ind

adlow-incidence configuration in the figure. hung and Kurasaki indicate that th-se terms irv
negligible and do not inX luejice the t low-fildI

lh~nmic tallsolut ion.

Several studiles of dvnaimic still have been
purformeld using the compress ible Navier-Stokes iKn Ia l "5M..c
equationlS. In most instances the implicit method0
of Brilev and McDonald" was used to study flows In Lt- preceding sections s.- h
with free-stream Mach numbers low enough so that siderat ions and problems ass-, iat-: it nur, ri-
there were no regions of supersonic flow and hence callv SIMulating unsteady inivri, ., ! ow,
no shock/houndarv-la ver interactions. Inc luded in aerodynamic: tntcresi have hevn dI- s isd. At tell-
those works are the laminar dynamic stall studies t ion was focused onl solut Ion, to t lii t Im-doent-
of ;ibc Iing et iL1.1 and of Sankar and Tassa , and dent, compressible, Non],sai-~~d.ivia
the turbulent dynamic stall studies of Shamrotli stokvs equations, using empirical cddv-visc'-.itv
and (abevL ing3 and of rassa and Sankar. ' models to account fr Llici effect, 0 turbo l,:li- .9
Shamrotli2 also used a one-equation, di fferentilal The impiortance ,f wr iting the- cvuatii In t r-n;.-
eddy-vtscosity Model to study an oscillating air- citiservat inr-law form for a gvneril i,,d !Id.'-
foil without stall. oriented coordIniate vystem was po i tcd ouit .'n

considerable d ls'i,s Ion of time ind Iengtii scm los
More recently. Chyu and Kuwahara 's used the inherent in the class of flows co i lidred was,

Beam and Warming implicit method to study the tran- given. To date, simulations lace becn pen iorilmem
sonic flow over in oscillat ing airfoil with shock- for unsteadv f lows with narrow frcquonc'v haind-
inducedl separation. Bothl time full Navier-Stokes Thle treatment of manyv flows withi broad-hand
equations and the tliin-layer approximation were unsteadiness has not been attempted 't and p-s
cons ldc'red. Shown In Fig. 11 is a comparison of a serious clmallcrnge t. stait-I -[ iw-irt e
computed and exlperimental mean-value pressure dis- The numerical scbhem-' used to so Iv,' Ltm gove ri j nic
trhmutimns over in NACA 64A010 airfoil section equations were classified as explicit. impLicit
thatL Is oscillating between 30 and 5 ". These or hybrid, and all were seen to hi;'' associated
reusmlts indicate a signi ficant influence of time-step constraints for nmeer Icii tablitv.
cross- and transversi'-shear terms in the full There is some degree of choice' ill thia iMpli'monti
Navier-Stokes equations and suggest the importance L ion of turbulence models in the c-11mputat ioil
of the it iiiclusion to realize good agreement with algori lms, and the final ovaluat i in '.f in al'-1
the exper imental oscillating airfoil data. In r Ithin including the, modelI must be ci-d onilmipir-
vl,,w of the relatively cuarse Streamwise grid isoas with exiperimont and hecirihar i - 1 mu~L~tt In.

spiacing used in the computations and corresponding Several examples of sImulated unistoadv intcricT inlc
* UPPER Iflows were given covering such aerodvnamic phue-

o LOWER EXPERIMENT omena as buffert, stall, and aileron1 !1117. Ill'Ic
- UPER Icase good agreement with 0Xsperimoitta! dat i w is

LWR FULL VISCOUS found, thus increasing our conifid,'nc, in ,-,r thi I
LWRCOMPUTATION ity to simulate numerically tliesi'cmpl'; i 1-

UPPER THIN VISCOUS ~.
I5 - UPPER INVISCID Rfrne

~~~~ ~~~Maclormack, R. W. , "TrIe foto 's' t

-in ilypervelocity Imlma t Cracering_ ,' A.

1.0 . Paper 69-354, Jaii. 1q69.
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NAVIER-STOKES SOLUTION OF SHOCK BOUMDARY-LAYER INTERACTIONS AT TRAMSOMIC SPEED

Y. Tassa and D. Shuster
Lockheed-Georgia Company

Marietta, Georgia

Abstract

In this paper we will compare numerical solu- Convergence to steady state is accelerated by the
tions of the Reynolds averaged Navier-Stokes equa- use of a variable time step determined by the local
tions to experimental data for flows over airfoils Courant number. The far-field boundary conditions
at transonic speed in which a shock wave interacts are based on the appropriate characteristics com-
with, and causes separation of, a turbulent bound- bination of the dependent variables.
ary layer. The numerical solutions will be gener-
ated using Lockheed-Georgia Navier-Stokes code
which we have been developing over the past several Two basic geometries will be analyzed, the
years. !e'll describe some of the features of the NACA64AO1O airfoil and LG4-612 supercritical air-
code. An algebraic turbulence model is used to foil. Detailed numerical results will be obtained
describe the Reynolds shear stress. The 2-D for both geometries at various freestream Mach
Navier-Stokes equations are written in a strong numbers, angles of attack and Reynolds number.
conservation form in a curvilinear coordinate Cases will include both mild and strong separated
system. The computational plane is obtained using regions. Numerical results will be compared to an
grid generation based on the Thompson et al. extensive set of experimental data which includes
approach. The numerical scheme is based on an wall pressure distributions, velocity profiles and
Alternating Direction Implicit (ADI) procedure. Mlach number contours.
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A DIRECT METHOD FOR THE SOLUTION OF UNSTEADY
TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

K.N. Ghia, G.A. Osswald and U. Ghia .
Department of Aerospace Engineering and Applied Mechanics

University of Cincinnati
Cincinnati, Ohio

Abstract significant displacement effect prevails, two viable

approaches are available for predicting the viscous
The unsteady incompressible Navier-Stokes flow fields. (i) The first method is based on anO equations are formulated in terms of vorticity and inviscid-viscous strong interaction analysis based

stream function in generalized curvilinear ortho- on localized-flow regions, whereas (ii) the second
gonal coordinates to facilitate analysis of flow method consists of using, in the entire region of
configurations with general geometries. The numeri- interest, a single set of equations which have the
cal mfthod developed solves the conservative form necessary mutual dependence between the inviscid
of th transport equation using the alternating- and the viscous flow built into them. Recently,
direction implicit method, whereas the stream- Davis and Werle [1] have reviewed the progress of

I function equation is solved by direct block Gaussian the strong-interaction analysis, which is useful
elimination. The method is applied to a model in describing a large class of boundary-layer
problem of flow over a back-step in a doubly departure flows. The theoretical basis for the
infinite channel, using clustered conformal coor- various strong-interaction models lies in the
dinates. One-dimensional stretching functions, multi-structured asymptotic analyses [see 2-6]. In
dependent on the Reynolds number and the asymptotic these analyses, the subscale flow structure embedded
behavior of the flow, are used to provide suitable under the boundary layer-like region is considered
grid distribution in the separation and reattachment rigorously and the strong-interaction approach is
regions, as well as in the inflow and outflow formally shown to provide an exact representation
regions. The optimum grid distribution selected of the flow for asymptotically large Reynolds
attemptsl't honor the multiple length scales of the numbers. In the flow field of interest, as the
separateo-"ow model problem. The asymptotic displacement-interaction effects become significant,
behavior of the finite-differenced transport equa- the 'triple-deck' theory aids in establishing the ,
tion near in nity is examined and the numerical relative orders of the length scales required for
method is carefully developed so as to lead to the adjustment of a classical boundary layer as
spatially second-order accurate wiggle-free solu- it enters a region of strong interaction and
tions, i.e., with minimum dispersive error. Results separation. However, for complex internal flows
have been obtained in the entire laminar range for at finite Reynolds number, the prevailing flow may
the backstep channel and are in good agreement differ significantly from the predictions of the
with the available experimental data for this flow strong-interaction model.
problem.

The second class of methods used in obtaining
solutions for internal flows, in which viscous

1. Introduction phenomena considerably alter the inviscid pressure
field, is the fully viscous analysis. In these

The accurate simulation of moderately high- analyses, a single set of equations, valid in the
Reynolds number viscous flows in and around complex entire flow field, is used, thus avoiding the need
internal configurations of importance in turbo- for dividing the flow field into inviscid and vis-
machinery applications, poses a formidable task. cous regions. Of the three prominent approaches
The flow fields for these complex configurations may available in this category, two are based on
involve any or all of the following features, name- reduced forms of the Navier-Stokes equations,
lv, unsteadiness, three-dimensionality, geometrical whereas the third uses the complete Navier-Stokes
complexities, streamwise separation, recirculation, equations. (i) In the first approach, the time-
compressibility, turbulence, etc. For accurate dependent thin-shear-layer equations are used
Drediction of aerodynamic losses and heat-transfer (Steger [7]) to successfully compute separated
rates in such configurations, it is important that flows; this approach has been widely used. Rubin
the viscous flow field be predicted correctly, and co-workers have also calculated separated flows
The present study is directed towards accurate using the steady thin-layer form of the Navier-Stokes
simulation of viscous flows involving streamwise equations with the streamwise pressure-gradient
separation and unsteadiness, in addition to other term represented by a forward-difference approxi-
features that may be present in the flow. mation. The results obtained using this approach

have been summarized by Rubin [10]. (ii) In the
For viscous flows in configurations of practi- second approach, the complete pressure interaction

cal interest, the Reynolds number is generally is included by using a Poisson equation for pressure,
quite high. Nevertheless, the classical boundary- in lieu of the continuity equation. This has been
laver theory is inadequate for prediction of such termed a semi-elliptic formulation by U. Ghia
flows as they contain regions of separated flow, et al. [8] who employed it to successfully compute
massive blowing, etc., where the boundary layer is separated flow inside a doubly infinite channel
sofficiently displaced from the body surface so as with an asymmetric constriction using primitive
to alter the inviscid pressure distribution signi- variables. Recently, K. Ghia and U. Ghia [9] have
ficantly. For this class of problems, where a proposed yet another semi-elliptic formulation for

* This research was suoported, in part, bv AFOSR Grant No. 80-0160 and, in nart, by NASA Lewis Grant
No. NSG-3267.
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compressible viscous flow, which efficiently com- ii. With the aid of an estimate of the asymptotic
putes separated flow. kiii) Finally, separated, metric coefficients, a reduced form of the
internal flows are calculated using the complete governing equations are obtained near infinity
Navier-Stokes equations by many researchers (see, and the numerical solutions of these equations
e.g. [11-14]). With this last approach, it is are used to provide consistent inflow and out-
possible to compute flows with large separated flow boundary conditions.
regions, where shear layers are not necessarily
aligned with any one of the coordinates. Moreover, iii. The separated-flow model problem selected is
since the solution of the complete Navier-Stokes one for which reliable experimental data are
equations are generally based on the time-dependent available, so that the results obtained using
equations, both unsteady as well as steady solu- the present analysis can be meaningfully
tions can be determined numerically by explicit or assessed by comparison with these data.
implicit methods.

In general, implicit numerical methods display 2. Governing Equations in Generalized
improved stability characteristics as compared to Orthogonal Coordinates
explicit methods, at the expense of increased
arithmetic-operations count. rherefore, an A considerable number of numerical simulations
implicit method for the solution of algebraic equa- of 2-D, laminar incompressible viscous flows have
tions is recommended whenever the step-size limi- been obtained using the vorticity-stream function
tation imposed by the stability requirement for an (.,, system. There are definite advantages as well
explicit-method is significantly less than the as disadvantages in using this system as compared
step-size limitation imposed by the time-scale to the primitive-variable (u,v,p) system. In this
resolution of the physical problem. Furthermore, study, it has been preferred to employ the (,i)

the presence of multiple scales in a separated flow system. The form of the governing differential
contributes to increased stiffness of the nonlinear equations and the notations used parallel the
system of discretized algebraic equations, and may study of Osswald and K. Ghia [14]. The conservation
also suggest the use of implicit solution tech- form of the two-dimensional, unsteady, incompressible
niques. Recently, Osswald and Ghia [141 have Navier-Stokes equations, in terms of the vorticity
developed a direct method for the solution of two- j and the stream function W, consist of a temporally
dimensional, unsteady, incompressible Navier-Stokes parabolic-spatially elliptic vorticity-transport
equations in generalized orthogonal coordinates, equation
This unsteady analysis was formulated using the

derived variables, namely, vorticity ) and stream V-- - (2.1)
function . In this method, the stream function t 2
equation was solved using a block Gaussian elimi-
nation (BCE) technique. This direct Dirichlet together with an elliptic Poisson equation for the

natin (GE)tecniqe. Tis iret Driclet stream functionPoisson solver in generalized orthogonal coor-
dinates is very accurate and efficient, with com- 72 (2.2)
putational gains of an order of magnitude over the (
corresponding iterative schemes. In a recent
review of fast solvers for elliptic equations, Here, Re is the Reynolds number of the flow and
StUben [151 has shown that the Dirichlet Poisson the stream function is defined through the relation
problem with a (256, 256) grid in Cartesian coor-
dinates required one to two orders of magnitude - .

* higher computing time when solved by iterative = k (2.3)

schemes such as the alternating-direction implicit
(ADI) method and the successive over relaxation where k is the unit vector normal to the plane of
(SOR) method, respectively, as compared to the time the flow and 7 is the total velocity vector. A
required by a direct solver such as that of general orthogonal curvilinear coordinate system
Buneman. The efficiency and accuracy of the fast 1 2
solvers make them very well suited for the solu- ('i ) is used in this study to provide non-uniform

ot P s e t it e surface-oriented coordinates for arbitrary geome-'. tion of the Poisson equation in the unsteady .

analysis of flows using the complete Navier-Stokes tries. The new ('4 I ) coordinates can be related

% equations. to the inertial Cartesian coordinate system (x ,x
2

The primary objective of the present study is by an admissible coordirate transformation

to provide an accurate and efficient direct method 1(x2,x) xJ('4,'4), i,jl,2, In this coor-

for the solution of two-dimensional unsteady dinate system, Eqs. (2.1) and (2.2) take the fol-
incompressible Navier-Stokes equations using lowing form:
orthogonal curvilinear coordinates. To achieve

this goal, it was decided to refine the method - , ( _) - ( )
developed by Osswald and Ghia [141 by incorporating gt . 2_I 2 .
in it the following improvements which could lead ** .

to a more realistic simulation of physical pro- g22  (
blems and increase the accuracy and efficiency of = R-[el [.ji (_22 (..i + --- T .)

the overall solutions: , % g ;% "

i. For a class of internal-flow configurations,
with the length in the streamwise dimension and
very large compared to the length in the ,22ll 4
normal dimension, an estimate is made of all - ( ..l * - ( -- = - *c "

the local scales of the flow problems in "rder ,.g . , g ,
to provide a clustered grid distribution which
honors these individual scales.
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Here, g., are the elements of the covariant metric

2. tensor and are defined as - N+ and M+-

2 .k , k
= (- (-Lx'-. ) (2.ba) Thus, the region R is comprised of (N+I) and (M+l)

k=l ) computational intervals along the -I and I
coordinate directions, respectively. The cell

and g is the determinant of the metric tensor, aspect ratio I in the computational plane is given

I ? 1 ?
* Since the ( i,r7) coordinate system is assumed as S = (A i/2), and is maintained constant. For

orthogonal in the present study, convenience, the following nomenclature is intro-
duced for the metric coefficients:

912 = g2 1 = 0 , (Orthogonality Condition)

so that g 1 gG = Vg, Gi1 = g11~ =g~lv =l go/glanlgl g2

= 11  I . (2.6b,c)
g G228 = g2 2 /(",g 2) G22 = ,g 22/ 'gll (3.2)

For a general orthogonal coordinate transformation,
The spatial derivatives are approximated by

the metric coefficients V, g11 /g and g2 2/ g appropriate finite-difference quotients, using1 2

will be functions of both r and , so that Eqs. at most three grid points in a given direction.

(2.4) and (2.5) are, in general, not separable. Keeping the spatial differences compact facilitates

For orthogonal cuordinates, the metric elements the implementation of the boundary conditions to
second-order accuracy and aids in the overall sta-

* are related to the scale factors as = h and bility of the algorithm. Consequently, central

.. -; hence, the metric coefficient gll/jg differences are used for both convective and diffu-S'i22 2 sive derivatives in the governing equations. It

and g22 / jg can be written as is significant to note that, in this study, even -

with central-difference approximations for all

-l = /gll hl g2 2 _/g-2 -2 h2  spatial derivatives, no artificial dissipation is
- -g2 = h1 and -2 V9 =2 . added to dampen the high-frequency errors, but the

g22  h 2 g 11  h Ilatter are carefully annihilated through appropriate
2(2.6d,e) resolution of the various length scales of the

problem.

* These ratios in Eq. (2.6d,e) represent the aspect 3.2 Alternating-Direction Implicit (ADI) Method
ratio of'a general curvilinear element in the for Transport Equation
physical plane corresponding to an infinitesimal
square element in the transformed plane. Also, The conservative form of the two-dimensional
the elemental area dA in the physical plane is vorticity-transport Eq. (2.4) is differenced using
related to the corresponding area in the trans- a uniform (N+l, M+1) grid 2 defined by Eq. (3.1)

formed plane as dA - g d
I 
d 

2 .  
and the resulting nonlinear algebraic equations are
solved using the ADI technique as described by

Use of Eqs. (2.4) and (2.5), together with Osswald and K. Ghia [14]. In this method, the

appropriate boundary conditions for and P can transport equation at time level tn+ 1 is discretized

lead to the formulation of an appropriate boundary- with the stream function being frozen at the tin "
value problem for the flows. However, the dis- level tn. Due to this linearization, the formal

cussion on the boundary conditions will be deferred temporal accuracy of the scheme is O(Atn). For
until the model flow problem to be analyzed has spatial discretization, a typical computational
been selected. The governing Eqs. (2.4) and cell is shown sketched in Figure 1. For con-
(2.5) form a coupled set of nonlinear equations sistent differencing of the conservation form of the
and the numerical method used to obtain their differential equations, the metric coefficients
solutions is discussed next. (Gll)i~ and (G228) are evaluated at the staggered

half-grid point locations, whereas the metric

..* 3. Numerical Analysis of the Discrete Equations coefficient i, the solution field functionsi.j
" j and the source term S. . are evaluated at the

3.1 Preliminaries 1,J 1,j
cell corners. The ADI form of the discrete equations

The coordinate transformation referred to in is arrived at by approximate factorization, which
Section 2 is so chosen as to transform the physical simplifies the computational algorithm to a sequence
region R to a unit square in the computational of the one-dimensional solution processes. First,
r R the intermediate vorticitv field ,, with its

*' " plane (rI, ). A uniform (N+I, 4+l) finite-
difference grid is used and is defined as appropriate boundary conditions, is described bv a
d c gd itridiagonal-matrix problem. Similarly, the final

". r= ( j 12) 2 .,.(A2. vorticity n+1 with its own boundary conditions,
*i 'j 1 i( ), - J(~,)*

- forms a second tridiagonal-matrix problem. These

0 < i (N+l), 0 j_ (M+l) (3.1) matrix problems are solved sequentially using the
-_ Thomas algorithm, which is a special form of the

with direct Gaussian elimination procedure. This cal-
culation requires 28(N.M) + 24(N) floating-point

I3



multiplications. The solution of the discrete A B u ... 0 0
transport equation provides a transient flow
simulation with a formal truncation accuracy of B A, B, 0 0 U

t (= - (3.7a)

3.3 Block Gaussian Elimination (BGE) Method

For the solution of the discrete Poisson pro-
blem on a rectangular domain, considerable effort BN I  A
has been focused on the efficient direct methods
of Buneman and Hockney as presented in References
[16-19] using Cartesian coordinates. Schumann where the individual blocks A. and B. are square
and Sweet [201 extended Buneman's cyclic-reduction (Mxm) submatrices dependent only upon the metric
technique to include a very special class of cofi)s ofate transoton givn in eq.sepaabl nonCaresia cordintes wheeascoefficients of the transformation given in Eq.
separable non-Cartesian coordinates, whereas(3) npatclr thdigalbokof.ae
Schwarztrauber [21] has provided the extension of (3.2). In particular, the diagonal blocks of ' are

the symmetric (MxM) tridiagonal matrices given as"'%
Buneman's method to treat the general separable
elliptic equation. For the discrete Poisson pro- a Glil 0 0 0 0
blem in completely general orthogonal coordinates, i,l i'l
Osswald and K. Ghia [14] have provided the highly Gil a G 0 0 0
competitive direct block Gaussian elimination (BGE) i,l i,2 Gli,2
method, which is accurate and efficient and is A 0 Gll a Gl 0 0
briefly summarized next. i,2 ai3 i,3

3.3.1 The Matrix Dirichlet Poisson Problem in
Generalized Orthogonal Coordinates

The Dirichlet Poisson problem is formulated Gl.
using a general scalar field function s in some Glli,M-l ai,N
arbitrary orthogonal curvilinear coordinate system

I -2 (3.7b)
, ) such that

i(g 22  1 ll - = 1 2 where the diagonal elements of A. are given as

in R (3.3a) aij = + ij- +Gll +G22 ,j
)
"

(3.7c)
1 d( l,2 o.( b

with d(& on 3R (3.3b) Further, the off-diagonal blocks of A are the (MxM) -

In this equation, s(E ,E
2
) is the known source diagonal matrices given as

1 2
term and d(1 ,E ) represents the given Dirichlet G22iI
boundary conditions. Use of the grid A and central-
difference approximations for the spatial deriva- G22B,
tives appearing in Eq. (3.3a) results in the i
discretized equation B =  G228

1,3

- (G22B_ j +Gllij-l + Gll i 'j +G
2 2

8 i 2j "iM

+ GIiJ i' i,J+l+ G22 8 i~j ti+l,j (3.7d) _

22 To arrive at the form of the matrix-vector equation
(AE ) Gi j s j  (3.4) represented by Eq. (3.6), the unknown solutionfield ti'i has been arranged as a bLock-vector P

The Dirichlet boundary conditions are given as such that the individual block entries of P are the

column vectors of the matrix t. .. This is

1 2 expressed as 1.J

i d(d " on ;A (

P = (Pi P2' "' PN
)T  

(3.8a)

The formal truncation accuracy of Eq. (3.4) is

0[(A I)
2
, (A2)

2
I. Equation (3.4) can be written

symbolically in matrix-vector form as P T  (3.8b)

A P - S (3.6)

Thus, the column vector P contains a total of (N'M)
The coefficient matrix A in Eq. (3.6) is a symmetric unknowns. Similarly, the source vector S is given

(NxN) block-tridiagonal matrix of the form as



S (S1 S....... )T (3.a) Indeed, it is precisely because only the second
-." phase of the BGE procedure need be repeated to

where solve Eq. (3.6) for various source terms that rea-
sonable computational efficiency may be expected.

S = (qi q,., q,)T (3.9b) This is particularly true in the context of an
i,M unsteady Navier-Stokes calculation during which the

Dirichiet stream-function Poissjn problem must be
with solved many times in a given coordinate system for

a progression of updated source terms.

qi. = (A&2) G... . 5. G2280, j do, j  It is important to note that the difference
j u d0  ~ between the technique of Osswald and K. Chia [14]

iN ldescribed above and the block-Gaussian eliminationi G226N,j dN+l,1j-1 Gli,O di,O algorithm given by Dorr (17] is the recognition of

the natural splitting of the BGE method into two
- 5mj GlilM d i,M+l (3.9c) separate phases. Indeed, it is precisely thissplitting which allows the block-Gaussian elimina-

tion procedure to remain competitive with other,ki techniques available for the solution of the

Equation (3.7) shows that each diagonal block Dirichlet Poisson problem for the stream function

element Ai of the matrix Dirichlet Poisson operator In view of this discussion, it should be
A is itself diagonally dominant. Also, since the stated that the combined ADI-BGE method developed
metric coefficients of Eq. (3.2) are always posi-
tive for any admissible coordinate transformation, here is very well suited for studying unsteady

flows governed by the unsteady Navier-Stokes
each block element Ai will be negative definite
and, consequently, nonsingular. Such a symmetric equations; it is also useful in obtaining time-

block-tridiagonal matrix, whose diagonal blocks are asymptotic solutions of the steady Navier-Stokes

tridiagonal submatrices and whose off-diagonal equations.

blocks are diagonal submatrices is very well suited
for efficient direct inversion by the BGE technique 4. Model Problem for Incompressible
of Osswald and K. Ghia [14] as described next. Separated Flow

3.3.2 The BGE Technique for the Dirichlet Poisson The separation phenomena caused by abrupt
Problem changes in flow geometries in internal'flows are

The block Gaussian elimination technique is well known. Any insight gained for this class of
a direct extension of the Gaussian elimination separated flows will lead to improved analyses,
procedure to matrices whose individual elements are and will aid in developing effective design tools.
themselves matrices or blocks. The efficiency of In general, separated flows become unstable at
the block elimination approach is enhanced when the relatively moderate Reynolds number and an unsteady
block matrix is sparse. The BGE technique provides analysis which can accurately predict these types
the effective inversion of an (N-M N.M) matrix of flows would be most desirable. The flow over
through the actual inversion of a predetermined abcwr aigse nieacanlhsbe

sequence of N (MxM) submatrices; the choice M < N a backward facing step inside a channel has been
lead to he est omptatinaleffiieny. Tus, used by many investigators as a model problem for '

leads to the best computational efficiency. Thus, viscous separated flow, due to the simplicity of
' BGE may be viewed as a "multi-level" technique the geometry. Careful experimental data [22, 23]

since it reduces the level of the matrix problem as well as theoretical analyses [24, 25] are
to a series of N (MxM) subproblems. available for this flow. Hence, this configuration

The BGE approach naturally divides itself into has also been used in the present study of incom-
pressible separated flow.

two separate calculation phases. In the first
phase, a sequence of N (MxM) matrices is formed

. and individually inverted by simple scalar-Gaussian 4.1 Details of Geometry and Transformations

elimination. This phase is the most time-consuming Figure 2 shows the configuration of a backward
part of the calculation and the multiplication facing step inside a doubly infinite channel. For
count performed shows that approximately brevity, the configuration will be referred to as

(N)(M)+ 2(N)(M) -T(M) 
3 

floating-point multi- a backstep channel. The origin of the physical-
plane coordinates is placed at the location of the

plications are required to complete this phase for step transition. The channel height at the outlet
the Dirichlet Poisson operator of Eq. (3.7a). is chosen as the reference length L
Fortunately, this preliminary phase need be executed mean outflow velocity is taken as the referencelh a

only once for a given coordinate choice, its result velocity, U . Therefore, the Reynolds number is
being permanently stored as a series of coefficient defined as Ke = PU L i. Clearly, this flow
matrices for later use in the second phase of the r r
block-elimination procedure. configuration has a geometric similarity parameter

H as shown in Fig. 2. Here, H is the ratio of
The second phase consists of the actual solu- the throat opening or pre-transition channel height

tion of the block matrix problem given by Eq. (3.6) to the post-transition channel height and may be
for a prescribed source term S through a set of viewed as a throttling mechanism for reference out-
recursion relationships. These recursion relation- flow conditions. The mean velocity Uin at inlet
ships use the coefficient matrices precalculated is related to the outflow velocity by the relation
in phase one and require approximately Uin = U /H. Thus, for fixed outflow conditions,

2 2 in r
(2(N)(M)

2
+ 2(N)(M) - (M) I floating-point multipli- diminishing the throat opening, i.e. decreasing H,

cations. This count shows that the second phase will increase the mean inflow velocity, and sub-
of the procedure is, by far, less time-consuming. sequently, produce a larger separated flow field

5
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at rtxed Re. Hence, similarity for the backstep 4.1.3 Combined Transformation - T = B'T
ctannel requires not onlv Reynolds number equality, The metric coefficients given in Eq. (3.2) can
but also equality f the throat opening ratio H,
which is hounded between 0 and i. now be determined for the overall coordinate trans-formation, which is obtained bv combining the

4.1.1 Conformal Transformation - TB transformations TB and T given in Eqs. t4.1) and

The "natural" coordinate system for the back- (4.2). The metric coefficients become

* o step channel is obtained using an analytical con- 1 2
formal transformation. This coordinate transfor- G = h. (' ) ",(i ) , (4.3a)
mation is not only convenient to align the boun- ".*
daries of the channel with the new curvilinear
coordinates, but also allows accurate implementa- GIL ( )/ 2(

"
) 2 (4.3b)

tion of the boundary conditions while maintaining 1 2
formal second-crder spatial accuracy. The desired and
conformal transformation TB is given by the ? 1 (4.3c)
relation 2 ' 1

Z (n[L+-(U1-1) - H ;n[V+ (V2-I)1/2p The quantities (r, 1 and '2(') are defined as

(4.1a) D D

The various quantities appearing in this equation, ) 27/[ 2 1 2 + ]

as weil as those used in subsequent definitions, D1 + 1 - ( ( - )
are given as

= 2W- (k~l) (k+l)W- 2k ( 2  
2c tan( + 2 tan(

(k- ( k- I ) W2'' c ta(- -)/ l -i W e Y2 2c

S * = + 2 and h is the scale factor of the conformal trans-
k =  x+ iv and i- -=1. formation given as

(4.1ib)

h = Adz (4.4c)
This transformation maps the doubly infinite d;1

* backstep :hannel (emetrv )f Fig. 2 onto a doubly
2 "For the overall transformation given in Eq. (4.3),

infinite strip , '0' 11 in depends-on1y inin .n a " .... _ 1 is a function of il only and Y2depends only on
°the :onfr-na' plane. An additional trans- 2

forriation i needed to make the domain in the i . .In this sense, the coordinate transformation is
rnconsidered separable. Indeed, this was expecteddirec tion ounded purposes. because of the choice of the individual transforma-

tions T. and T However, it should be noted that
* .. ~rid-I'lustering Transformation - TC B *

seco-nd transformation is used to map this the analysis developed here is valid even when the
A dou ;yconinite trnsiforma in hei ud t pl ths a coordinate transformation is merely orthogonal,

iti.e., neither conformal nor separable in the sense
unit square in the computational domain R. Here, just stated.
two independent one-dimensional stretching trans- j t
formations are used to provide the desired grid 4.2 Selection of Transformation Parameters to
clustering in the boundary layers and separated Resolve Multiple Scales
regions of the flow field. The use of two separate
I-D stretching transformations provide the flexi- For the backstep channel geometry as shown in
bilitv needed to resolve the muitiple scales of Fig. 2, the region extending from slightly upstream
this flow problem. These grid-clustering trans- of the backward facing step to the furthest reattach-

formations are given as o,
ment point is referred to as the"transition"region.

I I In this region, convection dominates over diffusion.
.i - 1 -l 1 - 2 i1 On the other hand, the regions upstream and down- ,

(tan- 1 -+ tan 2 (4.2a) stream of this"transitio'region become increasingly
DD 2 diffusion-dominated as the inlet and outlet sections

2 1 at of the channel are approached. In an exper-
2 nimental study of the"transition"region of the back-

(2 tan(-) ]  tan( - + (i . 4.2b) step channel geometry, Armally and Durst [23] have
c shown the existence of one or more separation

bubbles in the channel, for a fixed value of H, as
reprEsent the two I the value of Re is increased gradually. If such a

The parameters il and D2  separated flow has to be computed accurately, the

locations where grid points are to be clustered in scaling in the normal direction is no longer of
- the streamwise direction, while the parameters -1/2

Dand D2 control the degree of this clustering. O(Re ). As given in References [3, 4], at high
1 a 2  Re, the correct scaling for the separated flow

Similarly, the parameter c controls the degree of -3/8
grid-point clustering in the normal direction, around the separation points is of O(Re3 in the

The degree of clustering can also be interpreted streamwise direction and O(Re
-  

) in the normal
in terms of a stretching ratio SR, e.l., for the direction.

"" ~normal-coordinate clustering, SR .
n -d(in) _ =0, In the grid clustering transformation TC, five

.|. . .•.



parameters i 1,, D, and SR are embedded in in the computational coordinates. Consequently,
" I1 bec omes a small parameter in the proximity

Eq. (4.4). These parameters facilitate, to a oi bheimelow small pareer in the
reasonable extent, the desired grid clustering in of the inflow section, where 1 0O and near the
the physical plane to resolve the multiple scales outflow section, where I. With the use of a

of this separated-flow model problem. To resolve small parameter defined as
the scales in the streamwise direction near the I
separation points, the parameters D and D. are i - (4.6)

chosen to provide the desired grid clustering
. around the proper locations and a,, such that Osswald [26] has determined the scale factor h near

3the separation scales of 8(Re ) in the stream- the inflow and outflow sections and has shown that

*- wise direction are appropriately resolved. The
mathematical expressions which determine these 1 2 k-i /
four parameters are given as h H-H cos(Trn ) '-)

2k

(4.5a) + O(e , (4.7a)
(. and

.n(Wx As 1 1 + h = I-cos( n 2)- 
) 
-) /c

- = + C [ - l (4.5b)
2 1 2

+ O(e
- /  

(4.7b)
= -l~~a2- l a l

D1 =l/tan[2-m L1 tan ( D )-tan-- (D-)] Thus, the backstep channel approaches a straight
- - channel near the inflow and outflow sections in an

(4.5c) exponential manner. Near these sections, the

and function "i of Eq. (4.4a) takes the form

D , C a2 -'l)/tan[2 7(m2 -m 3 3 i)] (4.5d) Y 2 r 11 2 2 ++O2D) (I DI+D2 () 4(IImD(ID22 ( + O(1) , (4.8)

Here, ml is an integer denoting 
the number of A 

I-

intervals placed on the step height BO and m3 is whereas the function Y2 of Eq. (4.4b) remains un-
the total number of L&I intervals between the affected. Considering only the leading term in
inflow boundary and point 0. The quantity m2 is 12
taken to be 1/2 in order to map the points B and 0 Eq. (4.8) yields yi = (-"  

, where F = const.

onto mid-points of °a l intervals; this allows for This asymptotic beh4vior of YI is representative of
circumventing the singularity in the metric coef- the wide class of internal flow problems referred
ficients at these corner points. The values in the beginning of this subsection.

selected for m1 and m3 are such that the resulting

overall grid satisfies two requirements. First, The grid-clustering transformation TC maps the
between the corner point B and the reattachment region -- < n1< - onto the i- e-val [0,11 'n the

point xo, the streamwise grid spacing is required 1i 1
to be nearly uniform as the distance B-xo is a direction in such a manne c. appro -cnt
measure of the convection scale. Second, the infinity like i/t. Hence, !t- tetric coefficients

near-infinity diffusion scale must also be resolved, given in Eq. (4.3) take the form

Hence, the grid is stretched in the streamwise 2
direction only after the flow has become diffusion G = h 2 ( 0( 1 (4.9a)
dominated. h E -

In the normal direction, the parameter SR aids GII -)= 12 1 ((9

in resolving the scales of 0(Re
- 5 7 8 ) around the Y" e C

lower and upper separation points as well as the and
wall shear layers. The actual choice of a parti- Y2 3
cular grid for a given configuration is arrived at G22 = -- (E) + O(3) , (4.9c)

by numerical experiments with the grid generator
in which the various parameters are so selected
as to yield the desired grid. The grid distri- 'I 2-

* .* butions used in this study will be presented in the where h - Lim [h) and 7 = Lim

next section. 1ol 1 )

4.3 Asymptotic Flow Near Channel Infinities (4.10a,b)

The analysis to be presented here is valid for In light of this analysis, near upstream and

a class of internal flow problems in which the downstream infinity, the governing differential

normal coordinate n2 is bounded and, as-ymptotically equations (2.4-2.5) take the following form

at n - , the configurations have straight inflow 3 3)
and outflow sections, with any desired shape of the - O() I - "-- + 0( 

3
)

connecting transition section. The grid-clustering h. ; I

transformation TC was selected so as to map the 2 + 1 r

inflow and outflow boundary conditions at to + I- + O( ) I - 0) , = -

the finite values l = 0 and 
1

, I respectively, h ,, " - F - 4.ila)

L2 7

| '°" "n.°



K -

and its derivatives at the boundary itself. The
2 consistent treatment of the higher derivatives ot

+ ( )---- 
(' -y)l Ip

2 
at the boundary, including the use or the

Yh7 ' , ,3, J. reduced form of the governing equation (2.5),
leads to the desired expression for the wall vorti-

2 city. jThus, the boundary conditions on the lower
____ 0(

3
)] 'C ~ wall 0O are

Re h p3 1-2
2

(G ) [3G + GL+I L ]

1 ____ 3 a 4 P 1 )W+ e h +( )] -- [ 2 32' 2 -3c T -21, + 23PR 8 iCl L+3 L+2 L+l L

(4.11b)

Since n is a function of only, - (-) [G22 LI.+1(4.14a)

L+l
_2) 2(dnI ) - _~

-2c 1 4 2: 1 1 +7 and L =0 (4.14b)

and A similar expression can be obtained for the vorti-
1city at the upper wall 12 = I, where the stream
() 0 (4.12a,b) function 'pU = 1.

The boundary conditions for , and i at inflow

Thus, Eqs. (4.11) simplify to the following form and outflow sections are determined from the

near the channel inflow and outflow sections: asymptotic form of the governing differential
equations. These are obtained from Eqs. (4.13) as

19 [L_ 2 - + O(E) (4.13a)
Re h 4E 2 3E - [L- 1[__ , (4.15a)

2t Re h 2 2a2 y 2 3E21

and

1 3 1 3_ = -W + G(E) (4.13b) 1 t [l ] = - (4.15b)
h 2  31 2 Y2 3c h 

2  
Y2 c2h. ( 2 Y2 2 2"

2_
It is observed that Eqs. (4.11) are I2-diffusion F.
dominated near channel inflow and outflow sections. For consistency with the numerical solutions in the
The most significant terms, namely, those of 0(1) interior, numerical rather than analytical solutions

as well as O(e) are associated with the E
2
-diffu- of the steady form of Eqs. (4.15) are used to provide

. sion operator, whereas the convection terms are the boundarv conditions for )and at inflow and outflow

2 3 sections. The appropriate wall boundary conditions
of O(E ) and the I -diffusion terms are of O(c3. for these asymptotic equations are obtained from
If terms of O(U) are to be considered negligible Eqs. (4.14) by dropping out the l-derivative term.
in the asymptotic equations (4.12), ni must be 1 Equations (4.15a,b) were solved simultaneously
large enough such that n - OW(i). For large n , using a block Gaussian elimination method, which
the present class of eometrical configurations in effect is identical to solution by a modified
are such that xi - J . Hence, there exist regions Thomas algorithm for this coupled set of equations.
of O(1/c) in the physical plane near the inflow
and outflow boundaries in which the flow simply For the initial conditions, the flow inside
diffuses in the 1

2
-direction normal to the channel the backstep channel was assumed, everywhere, to

walls. These regions isolate the infinity boun- consist of the numerical solution of the steady
daries from the convection-dominated transition form of Eqs. (4.15) obtained at 1i - .- . In
region since any disturbance entering these regions the physical plane, this corresponds to parabolic
is totally damped within the regions. Equations velocity distributions at x

1 
- - , while in the

(4.13) enable plane Poiseuille flow to be esta- region of the backstep, these are scaled by the
" blished near the inlet and outlet sections, with- conformal-transformation scale factor. This pro-
" out any special treatment of the interior differ- cedure avoids discontinuities in the initial

ence operators at these boundaries, conditions at the backstep.

4.4 Boundary and Initial Conditions 5. Results for Backstep Channel

To maintain consistent second-order spatial
The unsteady Navier-Stokes analysis and solu-accuracy of the overall solution, the wall vorti- tion procedure discussed in sections 2 and 3 are

city boundary conditions must also be implemented applied to the flow in a doubly infinite backstep
with second-order spatial accuracy. The earlier channel. This separated flow problem has been
analysis of K. Ghia et al. [271 was generalized classified by Kumar and Yajnik [281 to have a
by Ossvald [26] to provide the second-order streamwise length scale Lx of O(Re) and, in the
accurate form of the wall-vorticitv boundary con-
dition. This analysis expands the function* h/P

2  
limit of high Reynolds number, is governed by para-
bolic equations. This implies that the upstreamat the mid-point of a boundary cell using a influence is confined to a relatively short distance,

Taylor's series expansion in terms of the function

r ."...-. . *
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whereas the extent of the region of downstream region. In each :ase, til ncrmerica procedure
influence increases with Re. rhe singularity at continued to yield consistent and stable solutions.
the sharp convex corner, as well as the difficulties
associated with the simulation of high-Re flows, Central differences are used throughout the
have been circumvented in the present analysis by flow field, so that the overall accuracy of the
exercising care in the formulation of the discre- present method is O(It, (L 1)

2 , 
(-2)2]. 5v

tized problem. Hence, the results obtained are satisfactorily resolving the multiple scales pre-
anticipated to be accurate. For all of the flow sent in the problem, the resulting solutions are
configurations listed in Table 1, the predicted totally wiggle-free.
results have asvmptoted to steady state.

The relative computational efficiency of the
5.1 Quality of Grid present algorithm was measured in terms of the CPU

time 7 required to advance the solution by one
Application to flow configurations for which time step per spatial grid point, i.e.,

experimental data are available, together with
the fact that the Navier-Stokes equations (2.4)- CPU seconds

• (2.5) asymptote to the diffusion-dominated equations number of mesh points x number of time steps
(4.15) near the inflow and outflow boundaries,

* aided in the choice of appropriate values for the where r represents the "computational effort.' For*parameters m I and m . Numerica xeiet ih weerrpeet h cmuainlefr. o
cal experiments with the present algorithm, r = 2.67 x 10-

4 
seconds for

various grids for these configurations enabled the AMDAHL 470V/7 computer. The corresponding
careful examination of the length scales near the value for the implicit method of Beam and Warming
separation points, as well as the near-infinity [29] is 4.4 x 10

-4 
seconds for the compressible

scale. This latter scale is assumed to be cor- Navier-Stokes equations using the CDC 7600 computer.
rectly represented if the flow solution in the
interior smoothly approached the inflow and outflow 5.3 Comparison of Steady State Flow Results with
boundary values. This requires that grid points Experimental Data
be appropriately distributed in the diffusion-

* dominated regions near these boundaries. The degree Table 1 shows the eight flow configurations
Sto which the i-diffusion coefficient GI/(GRe) which have been analyzed in the present study.11 These include the configurations for which experi-

dominates over the convection coefficient G in the mental data are available from Denham and Patrick
grid cells adjacent to these boundaries provides [22] or Armaly and Durst [23]. The published
a quantitative measure of the appropriateness of e
the grid-point distribution. Hence, experimental data provide one or more of the

nearinfnt following resultsa quantity Q is defined as

i. streamline contours;c onvec tion Re"-

Q convcion= max[ Re ii. velocity profiles at various streamwise
near infinity G N,j locations using Cartesian coordinates;

(5.1) iii. locations of separation and reattachment

"-' and is required to be as small as possible near points.
-1 = 0 and i. In the present study, Q was monitored Although not presented here, the present streamline

-" for each grid distribution used and maintained to
be of 0(10-3) or less. Two typical distributions 458 were compared with those of Denham and Patrick
with (85,33) and (195,33) grid points used in some [22] and the agreement was very good for Re 146o f the pre sen t com puta tions are show n in Figs . 3a[ 2 ] a d h e g r m nt w s e y go d or R = 14and 3b. but, for Re = 458, the predicted results showed a

higher value of the reattachment length L1 than

5.2 Criterion for Steady State, Accuracy and the corresponding measured value. This discrepancy5f S d Sis attributed to differences in the flow conditions
- Computational Efficiency just upstream of the backstep. In the present

calculations, the flow exhibits a nearly-parabolic
The steady state results were generated, velocity distribution almost up to the backstep.

wherever possible, as the time-asymptotic limit of This is not the case in the experiments where the
the unsteady analysis. The criterion used to backstep channel was devised by placing an

definee thaee wasd~sat devse give asngadefine the steady state is given as appropriately shaped ramp on the lower wall of

f n+l fn the channel. This destroys the symmetric parabolic

f with E 10 (5.2) velocity distribution and the flat portion of the
n+l f f ramp is not long enough for the symmetry to bef. . It-
1,3 max restored by the time the flow reaches the backstep.

where f represents either , or , and the subscript Comparison of the velocity profiles at various
max denotes the maximum value encountered in the streamwise locations in the physical plane involves
grid '. It was observed that, in general, . con- interpolation of the predicted results at points
verged much more rapidly than -. Much before this other than the computational points. The process
criterion was satisfied everywhere, the flow in the has a tendency to degrade the accuracy of the
"transition" region settled at its steady state results. Hence, the comparison of velocity pro-
values, while the flow in the regions near the files has been avoided in the study.
.outflow noundarv continued to adiust at rather slow
rates until it finally satisfied Eq. (5.2). Hence, The separation bubble off the Lacksto' is
the calculations were continued for almost twice as characterized by the length of this eddy, i.e.,
many :haracteristic time units as those required by the corresponding reattachment Ienvth. This
for steady state to be achieved in the transition reattachment length is plotted versus Re in.-ic. a,

itat legth s potte vesus e i Fi4 9



with the thriat-penini ratio As .a parameter. tihe n:rginal stable. The present results show that
present results show higher values of this reat- the appearance of the upper-wall separation bubble
tachment length as compared to the experimental is marked by an abrupt decrease in the slope of the
data of Denham and Patrick [22?. rhe discrepancy curve oi .1 , h vs. Re_ nevertheiess, this slope
is maximum for Re = -58. Again, this is attributed remains positive.

to the differences in the flow conditions just
upstream of the backstep where the experimental 5.4 Steady-State Resalts for Various Backsten
data of Denham and Patrick [22] show significant Flow Configurations

departure from a symmetric parabolic distribution.

The device used to produce the backstep geometry The steady-state results are presented here

distorts the flow in such a manner that the velo- for flow configurations I, II, IV and VII with ReD_
city near the lower wall upstream of the backstep of 1800, 292, 916 and 1014, respectively. Figure
is higher than that for a parabolic distribution. (a through d) shows the streamline contours for
Due to this higher energy of the fluid in this these configurations. As seen in Fig. 5a, configu-

region, the flow reattaches in a shorter distance ration I with Re D = 1800 is the one with the
than that predicted bv the present calculations smallest separation bubble and, hence, relatively
where the flow remains nearly parabolic just upstream simple to compute. This configuration was used by

of the backstep. The experimental data of Armalv Rubin and Khosla [30] in the development of their
'.•and Durst [231 for H = 0.5!48 are also plotted in coupled strongly implicit method. Figures 5b and 5c

Fig. 
4
a; the results of the present analysis are show the streamline contours for configuration II

somewhat different in character as compared to this with Re D = 292 and configuration IV with Re D = 916,
data. Armaly and Durst have predicted the laminar- r
flow regime to end at Re = 600, i.e., at Re = 1200 respectively. These configurations were used by
so that a slight further increase in Re is observed Denham and Patrick [22] in their experimental study.

to lead to the onset of the transition regime As expected, the length of the separation bubble
characterized b a sharp decrease in the reattach- grows with increase in Re. Finally, the streamline

characerire bye arsne shar decreasetio inI theretthh
ment length as shown in Fig. 4a. Their experi- contours are presented for configuration VII with

mental results for the location and the extent of ReD = 1014 in Fig. 5d. This configuration was used

the recirculation regions on the two walls are by Armaly and Durst [23] in their study. To the

shown in Fig. 4b. It is seen from this figure that authors knowledge, the present results constitute
separation on the upper wall first occurs at the first detailed results computed for this flow

ReD = 1014 and further increase of Re causes the problem showing a separation bubble on the upper

upper-wall separation point to shift upstream wall. The shear layer separating off the backstep

. towards the backstep. On the other hand, the dips down and attaches to the lower wall, causing

- results of the present analysis show that the sharp changes in the flow and, consequently, the

" upper-wall separation point continues to shift separation bubble at the upper wall.

downstream and away from the backstep even for

Re = 507 and 600, which correspond, respectively, The corresponding vorticity contours for these
to ReD = 1014 and 1200. Thus, it appears that four configurations are shown in Figs. 6a through

according to the present predictions,this flow 6d. As anticipated, a heavy concentration of

configuration with Re D = 1200 is still in the contour lines occurs near the sharp-convex corner,

laminar regime. It ;hould be noted that, in the an indication of the presence of high velocity

present analysis, the boundary conditions were gradients in this region of maximum generation of

placed at true infinities and the diffusion- vorticity. In the "transition" region, the

dominated regions of 0(l/c) near infinities serve vorticity contours are swept downstream by the

to totally diffuse any disturbances that enter stronger convection effects.

these regions. It is possible that factors normally
affecting transition may have triggered it early Figures 7a through 7d provide the transverse

in the experiments. Further numerical experiments profiles of the total velocity vector, along 2

are planned to investigate this issue, lines, at selected streamwise locations. A region

of reversed flow is observed downstream of the

Sr n t d nstep near the lower wall for all of these configu-I'-_"Armaly and Durst [231 had shown the existence
f similarit between their experiments and those rations. Configuration VII with Re D = 1014, shown

of Denham and Patrick 122]_ by plotting the reatach- in Fig. 7d, exhibits a large region of reversed

ment length versus the Reynolds number, using the flow near the upper wall also.
step height as the characteristic length. The 5.5 Transient Results for Backstep Flow
results are shown in Fig. 4c, along with the
results obtained from the present analysis. Be- Configuration VIII

• iuse the u pper-wall -eparat ion bubble continues

, :-: i st in the present c omputations even at The transient results for flow configuration

Re D = 600, the structure of the separated flow with Re0 = 1200 are presented in Figs. 8.

according to the present predictions is considerably Starting from time t = 0, four values of thedifferent from that of Armal and Durst [23]. characteristic time, namely, 4, 40, 112 and 421,

Hence, the present results for configurations with are chosen to depict the time history of the flow

H = 0.51485 should nt show similarity witt those as it approaches steady state. The flow in the
f Denham .and Patric-k [22? who observed .nlv a transition region reaches close to its steady-state

single separation bubble ,n the lower wall. The value at about t = 76, but the adjustments taking

mechanism ontrolling the dvnamics of the separa- place near the outflow boundary require t = 421

tion bubbles in the case with two separation in order to satisfy the steady-state criterion of Eq.

bubbles is indeed different from that with onlv (5.2). Figures 8a through Sd show the streamline
rL iseparation 'nubble "aused bv the separatinZ contours of this transient flow as it reaches

sne separat be iteD bcth Deparand stead' state, whereas Figs. 
9
a through 9d show the

-snear lover at the step. in fact, Dlenham and

Patrick felt that, in their experiments for the vorticitv contours. The hedding of vortices at

.configuration with Re = 916, the flow was ,nlv the sharp <onvex ,orner leads to idditional
separation bubbles it the lower wall. The stronc
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d erse oressure gradient result ine from the sudden . ',,ev mhr *,i,tit
XpaliS nO tar the backs to i Iso . ause, -'aratoo '(tao h . ,p. -'7-3t.

the upper wal I. Armalv and Durst - ad
_r'. !Jditional separation hubbies, in the 4. 'es.itr,\.?., 4 " nar Sep;rti , : 4

t ti,Lti ion r,4ime or Re, downstream of the main L, a, Asvmpt,,ti, 'w D--ription :or t tst.t
-i h-'>e -n the lower wall. Figures 8a and db also Pressare Downstream," in Flow Separati,._

, ubbles in the transient steps: hut, ,ARD C],t f. Pr 'c fio s n FI ,tw Se;.urat iL,-

according to the present prediction, these bubble, (P 1fS.
do not persist in the stead' state. The vorticitv

contours shown in Fig. 9b exhibit the occurrence 5. Smith, F.'.., 74 "The Laminar Separation A
of the bursting phenomenon which may be partially n Inompressible Fluid Streaming Past a Smootoi
responsible for the decay of the additional bubbles Surrace." Proc. Rov. Soc. A 35t, p. .43.

at the lower wall. Finally, the transverse pro-

files of the total velocity vector, along r- lines, h. Smith. F.T., 147q. "Laminar Flow of an In1Carn-
at selected streamwise locations, are shown in pressible Fluid Streaming Past a Bluff Body,

Fig. 10. Two regions of strong reversed flow are The m paration. Reattachment, Eddy Properties
bserved both on the lower and the upper walls and Drag," I. Fluid Mech. , Vol. 92, Part I,

pp. 171-205.

6.Conclusion
7. Steger, I., ilY78), "implicit Finite-Difference

.n anal-sis has been developed, using the Simulation of Flow About Arbitrarv Two-Dimen-

unsteady Navier-Stokes equations in generalized on tr pp. 67ra6Vl).

curvilinear coordinates, to study 2-D incompressible No. 7, . 679-686.

separated flows. The discretized problem is for- 8. Chia, U., Ghia, RN., Rubin, S.G. and Khosla,

mulated using central differences for the spatial .h . , ".tud o , Seprat d o ia
deriatiesthu avidig atifcia vicosty.P.K., (1981), "Study of Separated Flow in a

. derivatives, thus avoiding artificial viscosity. Channel Using Primitive Variables," International

* The AD! method has been used to solve the transport Counal of Pompt e andaFl s, Vol. t9a

equation, whereas the BGE method is used to solve 123-1Fs.

the Dirichlet Poisson problem. The overall accuracy pp
- f th~e numericail solution is O[. t, (.1 I)

2 ,
(L)2.

9. Chia, K.N. and Chia, U., (1982), "Semi-Elliptic.

TGloballv-Iterative Analysis for Two-Dimensional
The numerical method developed is applied to Sboi nenlVsosFos"peetda

- the separated flow inside a backstep channel. The Subsonic Internal Viscous Flows," presented at

results of the present analysis are verified NASA-Lewis Workshop on Computational Fluid

extensively bv comparison with the available exper- Mechanics, Cleveland, Ohio, October 2-21.

mental data for Re' ranging from 72 to 565. For

the configurations with only one separation bubble Stokesbnd Paabo ,In Navier-

at the lower wall, there exists a similarity with Stokes and Parabolized Navier-Stokes Solution

reattachment length Ll hs of the primary separation Lecture Notes for Series on Computational
Fluid Dynamics.

:ubble on the lower wall, for various geometries,
olapses into a single curve when plotted versus 11. Briley, W.R., (1971), "A Numerical Study of

Re.. On the other hand, the configurations with Laminar Separation Bubbles Using the Navier-

an additional separation bubble at the upper wall Stokes Equations," Journal of Fluid Mechanics,

show a marked change in the reattachment length L I  Vol. 47, Pt. 4, pp. 713-736.

of the lower-wall separation bubble. To the

authors' knowledge,similar results have not been 12. Ghia, U., and Davis, R.T., (1974), "Navier-
previously reported in the literature. Stokes Solutions for Flow Past a Class of Two-

Dimensional Semi-Infinite Bodies," AIAA Journal,

The unsteady analysis provides an accurate Vol. 12, No. 12, pp. 1659-1665.

and efficient determination of the transient flow
in the backstep channel. The shedding of vortices 13. McDonald, H., Shamroth, S.J. and Brilev, W.R.,
at the corner of the step, the formation of addi- (1982), "Transonic Flows with Viscous Effects,"

, tional separation bubbles at the lower wall, the in Transonic, Shock and Multi-Dimensional Flows:
occurrence of the tipper-wall separation bubble Advances in Scientific Computing, Editor:

and the bursting phenomenon are observed in the R.E. Meyer, Academic Press.

present results which provide the detailed

- time-dependent structure for this flow. The 14. Osswald, G.A. and Chia, K., (1981), "Study of

,*_' analysis of this separated flow in the transitional Unsteady Incompressible Flow Using Nonuniform
regime of Re appears feasible with this unsteady Curvilinear Grids, Time Marching and a Dire:t

analysis. Method," Multigrid Methods, NASA CP-2202, Oct.
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TABLE 1. PARAMETERS FOR VARIOUS FLOW CONFIGURATIONS

CONFIGU- H h Re ReD  ReS  L1  L4  L5  (L5-L 4  Reference
RATION

I 0.90000 0.10000 900 1800 100 0.69 - Rubin
Khosla [301

II 146 292 72 1.69 - Den h
III 0.66667 0.33333 250 500 125 2.50 - Patrick.ha.

IV 458 916 229 3.91 .. .rc [

V 150 300 141 3.23 -- .

VI 0.51485 0.48515 300 600 283 4.96 4.05 7.32 3.27 Armaly &
VIl 507 1014 478 6.08 4.70 11.45 6.75 Durst [23]
VIII 600 1200 565 6.39 4.97 12.96 7.99

'Tv

......... ...... . T -"

SFg. pcFig. 2. Backstep Channel Geometry

Fig. 1. Typical Computational Cell and

Location of Variables
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M.LOBAL SOLUTION PROCEDURES FOR INCOMPRESSIBLE LAMINAR FLOW

WITH STRONG PRESSURE IN4TERACTION AND SEPARATION

S.G. Rubin and D.R. Reddy
Department of Aerospace Engineering and Applied Mechanics

University of Cincinnati
Cincinnati, Ohio

Abstract The objective of the present development is
the solution of the PNS system by direct applzcation

Global or relaxation formulations for the re- of the momentum and (first-order) continuity equa-
duced form of the Navier-Stokes equations, frequent- tions. The formulation does not require the
ly referred to as parabolized Navier-Stokes (PNS), second-order differential form of the poisson
are presented. Difference procedures and relaxation pressure solver. A global line relaxation procedure
solutions for the (u,v,p) system are presented. is developed for (u,v,p) or a composite 16, 7)
The continuity equation is satisfied exactly at (U,i,G) system. For non-separatec flows only p
each grid point and a poisson pressure equation is or b are stored during the relaxation process. For
not required explicitly. The development of a se- separated flows, (u,v) or (U) is required only in
cond composite (U,),G) velocity relaxation procedure regions of reversed flows. This significantly
for the primitive variable equations is also dis- reduces computer storage requirements.
cussed. For the (u,v,p) system, several model
problems, e.g., finite flat plate, trough, boattail
and airfoil, are considered. Strong pressure inter- 2. Governing Equations
action is evident in each case and axial flow se-
paration occurs for several of the problems. The We consider here the reduced set of PNS equa-

- questions of accuracy, stability,convergence rate, tions (1, 2) written in two-dimensional or axi-
and implied difference forms of the pressure and symmetric body fitted conformal coordinates. The
vorticity equations are addressed, equations in general orthogonal coordinates are

1 Inrdcingiven in [3]. As discussed for cartesian coordinates .
i. Introduction in (2, 31, for incompressible flow a consistent PNS

approximation allows for the neglect of all axial
Conventional methods for the numerical solu- ( ) diffusion terms as well as all diffusion effects

tion of the primitive variable form of the incom- in the normal (n) momentum equation. Normal
pressible (elliptic) Navier-Stokes or ("semi- diffusion can be included in the n-momentum equation;
elliptic") parabolized Navier-Stokes (PNS) equa- however, for consistency these terms have generally
tions are such that the velocity components, u,v, been neglected. Numerical tests with and without
are determined from the momentum equations, and the these terms have confirmed the validity of this

* pressure p is obtained from the differential approximation for several of the problems consi-
poisson equation derived from the momentum equa- dered herein.
tions. The equation of continuity is not evaluated
explicitly but is satisfied indirectly through the (i) (u,v,p):
poisson equation and pressure boundary conditions.
Since this procedure differs markedly from most continuity
inviscid, boundary layer and triple deck formula-

* tions, an alternate development that more closely (hh 3u) + (hh 3v) = 0 (la)
follows these asymptotic theories is considered
here for the evaluation of viscous interacting
flows at large Reynolds numbers. -momentum

In the present paper, the authors continue the 2 v2
line of thought first presented for the PNS system 3u + (h uv)+ uvh3 h-
in references (1-31. The analysis is developed in
greater detail here and in [4, 51. The questions = - hh3p + V.T/R (lb)
of global stability of the relaxation procedure, e
the resulting difference forms of the pressure and

2vorticity equations, accuracy and rate of con- where V.T = (h(hu)/h
- " vergence, are examined more critically. Compari- 3

sons are given with triple deck and interacting
boundary layer solutions for trailing edge and '-momentum
trough configurations; solutions are also obtained
for boattail and airfoil geometries. The effects 2

*'-- of strong pressure interaction and/or flow hh3P - (hh3uv -(hh 3v2) -'jvh.
separation are evident in each of these problems.
The majority of the solutions are for laminar flow
.onditions: however, several results have been The cartesian coordinates = (x,y,
obtained with the Cebeci-Smith two layer eddy n= (x,y) are related to the (x,y) physical cocr-
viscosity closure model. dinates through the transformation 7= fz) :r

z= F(7) where = 'i- and z = x+i. The metric n
is defined by

- This research was supported by the Air Force Office of Scientific Research under Grant 'o. 4-<4.
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the full Navi~r-Stokes equations n a .. Anal'sis
12 cf the PNS cuastins witn :- :omvosit- istem is

S2 = -' z = (x *'.9 = ,x.,-vy) in rrogress and results witm tmis fc;rmulat;r aall
be presented in a future caner.

The metric n , where - = 0 for two-dimensions

and -= 1 for-axisymmetry. The metric h and all 3. Difference Ecuatnons
derivatives are evaluated with second-order differ-
ence formulas. In the axial and normal momentum In the previous analyses [1-3], it was Shown
euations (lb, 1c), the metric h and derivatives that if the system Cl) was forward marcned in te-

of h are assumed to be at most of order one. For boundary layer sense, i.e., backward differences
geometries with larger curvature the complete are applied for all d derivatives in non-separated
expression for V-T may be required in (lb) and the regions, the elliptic pressure interacticn would
viscous effects in (1d) may become important. The not be properly represented and therefore the
full Xavier-Stokes equations or a more appropriate exponentially growing Lighthill departure sloutions
non-conformal coordinate mapping may then be would appear for step sizes l mmn  For
required, see [6, f].e scartesian coordinates, from [2, 3!. we find that

2

m - M here yM is the location of the

In the composite velocity development described outer boundary y = yM" Only for yM I are

in [6, 7], an "inviscid" pseudo-potential accurate solutions possible with forward marching.

"viscous" velocity U and "inviscid" Bernoulli
pressure S, replace (u,v,p), i.e., If global relaxation or multiple sweep marching

is used, i.e., all I derivatives of velocities are
u =U(I .)/h 

=  
e backward differenced in non-separated regions, but

U ue some form of forward differencing is applied for
pt in (la), the elliptic pressure interaction is

v= :/h recovered and the departure free limit Cl
min

2 2 is removed. Solutions can then be obtained for
= p/ + u + v )/2 - -j -0, see [2, 3]; ce numerical procedure is

consistent and any desired degree of accuracy can
be specified. Finally, in order to circumvent the

• The equations become pressure singularity at separation, the pr term
must also allow for a local as well as a spatial

continuity interaction. For example, central differencing
fails in this regard and, as discussed in [2, 3],

(h3 U:.) + (h3 ;C) + (h3U): 0 (2a) is unstable globally. Forward differencing of pr
satisfies all constraints and moreover is consis-
tent with the eigenvalue analysis of Vigneron

%-momentum et al. [9] which shows that for incompressible flow

u 2 [ (M - 0), there should not be any forward marched

t 3 ue 3UeV 3 component of the p term; i.e.,. = in his
analysis. Forward differencing and global relaxa-

tion was first applied successfully in [1-3] for
u vh (U-1)/h + u u (U-l)/h several model incompressible flow problems. The

extension to compressible flows is discussed for a
conical geometry in (21 and for flows with axial

- ./h + V' T/R (2b) flow separation and strong pressure interaction
e

in [10). More detailed discussion and results
are given in [3, 41.

--momentum

The difference scheme used in [l-3C was derel-

3- (u-1) (u2/2)- u 2Uh /h} (2c) oped from the following discrete grid:
e " e

I.4- lx -..
j+ u,v,p '

This multiplicative composite velocity development
is patterned after matched asymptotic viscous-
inviscid flow theory. For inviscid irrotational j u,v,p [u'Vp I .'r,p
flows, U - i; (2a) then reduces to the potential ®R
suation and (2b,c) lead to the Bernoulli equation,

3. For boundary layer problems, u , u .e e. j-l .u,v,p

r :_, and 3 are specified with boundary layer

edge conditions and (2a,b) combine to determine u: i-
,v• Interacting boundary layer theory combines

elements of both limits, so that (2a,b) form a
coupled system for (U,:), with 5 prescribed. The v: i-I i

equations (1) or (2) contain all the terms appearing
;.I each layer of the triple deck structure [3].

The present investigation concentrates on the
'u,v,p; formulation described by equations (1)
seomosite solutions have already been discussed for Figure i: Difference Irid

•~~~~~ a- -.: _,._ - -": •



The continuity, x and y momentum equations aie I.*- _x

centered at C, ® and ), respectively and the ,

difference equations *given for a uniform mesh in
cartesian coordinates are as follows. -

Continuity, centered at (i,j- ): ,>

i-j u i-ij i,j-1 - i-l,j-l vi,j- vi,j-i
2Ax _y_"_,

(3a) u: i-I i

x-momentum, centered at (i,j):
v: i

'1. -u v i,+liJl Pi+l - i
ui, ]uv)

I x ij 21y !x P:

" , 2u u,j-1  (3b) Figure 2: Difference 5rid II
Re 2

The appropriate difference equations, also ihown in

y v-momentum, centered at (i,j- ): non-conservative form, are now center-ed at somewnat

different , , locations.

- i,_ Pi,j-l continuity, centered at is the same -s 3aj:

u -ui +uil- + v i'-v 1,-1
i+ _ ' i-113 i~-1 -~- , ,-

- 1,3 i,-l) 1,3 i-1,3i,]j1 -l'j1 21x 'y
2 2Lx

-v v-- -- 4a

2 2y

x-momentum, centered at

The equations are shown here in non-conservative
form as this simplifies the subsequent discussion i,j i-l,j i
of the linear system. In Cact, for most calcula- 2 Ax
tions conservative equations were considered.
All quantities are evaluated at the nth iteration ui , + l-u i ,j l+ u i l ,1 l-ui -l

level except ip , which is evaluated at the + 4iy-

previous iteration. For separated flows the con- n-i Pn- i n- i . ].+ ,j i,j
* vective terms are upwinded and ui+l , vi+1  terms + .x I

are also required at level n-l. The difference
equations (3) are first-order accurate, i.e., u -2u +u +u -2u +u
O(lx, 2y 2

). = 1 i,j+l-2i ,J U -i,j1 i-,j i-l-i)
Re 2Ay

2

An alternate and more accurate derivation of 4b)
the equations and interpretation of "forward"
differencing for p is given below for cartesian ,-momentum, centered at
coordinates. This system was considered initially
for inviscid flows [4] and resembles a slightly F p ,3-1
different development proposed by Israeli [8].
Consider the staggered difference grid as
shown: vI 1-,.-l)

2 &

3
Si,- v , - - 4cL
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in this formulation full second-order accuracy is vv term in v, however, with the definition (Sb)
achieved. The primary modification of the system 2 2

3) is the iveraging of the y-derivative terms th e ontiression is OtLn

in te mmenum quatons Th unnownpresur p. so that second-order accuracy is retained in thein the momentum equations. The unknown pressure Pi difference approximation of the vorticity transport-'{
s also shifted one point to the left of that euation of the i a r tscan te s o

given by the formulation (3). This interpretation equation, see [4] . Similar results can be
aoe acate andmu istons).hisnt witeprobtained with the scheme proposed by Israeli inImore accurate and is consistent with the Fiue3

character of the interactive solutions as will be Figure 3.
seen for the trailing edge problem to be discussed If (5b) and the continuity equation (3a) are

in a following section. combined to eliminate either u or v terms, for

= 0 we recover a nine-point second-order accurate
A third system of equations, which also pro- 2

vides second-order accuracy has been proposed by difference formula for either 7 u= J or v= 0.
Israeli [8]. The staggered u,v grid is then of In fact, inviscid irrotational flows can be solved
the form: numerically with (5b) and (3a), in lieu of the

potential equation 72.= 0. This is a result of
backward differencing of ux in the continuity

j.1 u,p equation and, as seen in (5b), forward differencing
of vx in the definition of vorticity. One boundary

v V condition is satisfied for u (left boundary) and

one for v (right boundary). This is a direct
-ulp QO up result of the differencing procedure applied for

the u,v,p primitive variable system; i.e., backward
Q0 v differences for velocities (in non-separated

j-1 u,p regions) and "forward" pressure differences as
interpreted in Figure 1 first-order accuracy) or

Figure 2 or 3 (second-order accuracy). Further

u: i-i details of this analysis are given in (4).

(ii) Difference equation for pressure:

v: i i+l1
In a similar manner, the effective poisson

difference equation for the pressure can be obtained

p: i i+l by (x-mom) - (x-mom) + (y-mom) i,j+- (y-mom)i

= 0. This equation is of the form (see [4] for

Figure 3: Difference Grid III. derivation)

n-1 --Pi j - [(pnlj + p .)+ 2o(Pi )]+p Pi--

The equations are only slightly modified from those ij+l ij ij ij

of (4); however, the y boundary condition for[" n-1
v must be treated somewhat differently. +p + Pi-i f i,j(u,v) (6a)

(i) Definition of vorticity and vorticity
* transport equation: 2where a = (&x/&y)

2

If the nonlinear coefficients u and v are
assumed constant and the pressure is eliminated "re n
from (4a,4b), the followinc lifference equation In order to recover the more conventional line
is obtained, in the inviscid limit, for the vorti- relaxation form of the difference equation,
city transport [4): Israeli [5] has shown that if a source term I

is introduced in the x-momentum equation (3b or 4b),

1 , -l, ) I j+l-W ij-l i-lj+l- . we obtainu , -,) v( 4, 11,- i-,3 nl -l-l-l
-Ix 4Ayn-

2 2 gPi,j+l- 2(l+o)pi,j 
+ 
cPi,j-i 

+
P
i+ l ,j  

i-l,j
= Oitx , ly ) (5a)

where = f
"  
.(u,v) (6b)

1,3

v i -l,j i,,+v -ij-i ui,j- i --ii~ji: 2Ax -1- where Si,j i-,3 i,j 
+  

i,

(5b) This is equivalent to introducing an iterative

This corresponds to defining w at the location w 'time" derivative into the relaxation process.
Israeli [5] has also introduced an overrelaxation

shown in Figure 2 and centering (5a) at location 0. parameter - as a mechanism to improve convergence
Both expressions (Sa) and (5b) are second-order rate. Our experience has not led to a marked
accurate. The difference equation obtained by improvement in convergence for the nonlinear
replacing i,j terms in (5a) with the formula (5b) system (4) with overrelaxation. Therefore, all

is exactly that resulting from the elimination solutions depicted herein are for the first-order

of the pressure in (4a) and (4b) except for the system (5a) or the second-order system (Sb) with
1 1. Multi-grid procedures have been applied

4



for convergence acceleration when fine meshes are -oarser :rds, .... onrn
required, see (41.

quite rapl . For finer -r::, -3R Dr multigrli
It should be reiterated here that although a acceleration has been :onsi-ered 14, 5.

poisson-like relaxation scheme can be inferred,
boundary conditions are prescribed for p only at The outer pressure boundary :ondition must be
the outer (y) boundary and downstream (x) boundary; prescribed at- a location oe.'ond the extent of the
also, the pointwise continuity equation is satisfied interaction zone of influence, e.g., triple deck.
exactly. As noted in the introduction, this is in The pressure boundary condition can be fixed during
sharp contrast with conventional solution procedures each sweep of the global procedure. This value will
that use the poisson form of the pressure equation remain unchanged if the outer boundary is suffi-
with full Neumann boundary conditions and only ciently far from, and unaffected by, the viscous
indirectly satisfy the pointwise continuity interaction; alternatively, the pressure boundary
equation. condition can be updated prior to each sweep in

order to account for viscous displacement effects.
In conformal body fitted or streamline coordinates,

4. Consistency and Convergence this should be unnecessary. Unlike interactive
boundary iayer theory, where the outer pressure

In order to complete the analysis of the boundary value requires a local interactive treat-
relaxation technique discussed herein, two questions ment in order to circumvent the separation point
are posed. Does the prescribed differencing singularity, a fixed outer pressure condition is
procedure capture the elliptic pressure interaction acceptable with the PNS formulation. The normal
in each sweep of the iteration cycle, and what are momentum equation reflects the outer inviscid or
the convergence properties of the global relaxation interactive behavior and the separation singularity
process. The first question has been addressed is automatically suppressed.
in [1-31 and as discussed in section 3, the depar-
ture effect is circumvented and the elliptic inter- To summarize, if Px is treated explicitly or
action is captured with the forward pressure central differenced, the global procedure is
differencing of (3b) or (4b). As shown in [4], the unstable; if px is backward differenced, departure
introduction of the source terms S. provides solutions appear for x - 0. With
increased numerical damping and enhances the "forward" differencing all iterative procedures are
stability properties in each marching step. stable and the global marching problem is well-

posed.

The second question is considered in detail it
..* reference [4]. The primary conclusions are pre-

sented here. Although the forward pressure dif
ferencing eliminates the inconsistency found with
single sweep procedures, so that Al can b4 rade For the finite-difference grids of Figures 1

arbitrarily small, the departure limit 4%x > 
2
y /,, or 2 the appropriate boundary conditions are
MN specified as follows in the transformed body fitted

appears indirectly as a factor affecting convergence coordinate system:
of the global relaxation procedure.

At a surface y = 0 (j = 0), the velocities
It can be shown from a linear global stability u = v = 0; at a symmetry line y = 0 (j = 0), the

analysis that central differencing of Px is unstable velocities satisfy u = v 3.
[2-4], but with forward differencing of x' as in y
(3b), the iteration technique is unconditionally At the outer boundary y = yM 

(j 
= M), where M

stable. The maximum eigenvalue is given [3, 4] as lies outside of the extent of the interaction

zone, e.g., triple deck, p = p_, u = u and a

-c ,2 x)4 2 boundary condition on v is not required.
17 y xM At the inflow boundary x 

= 
0 (i = 1).

o u = u(0,y), and vx(O,y) = 0. For inviscid

regions, where u = u , vx = is a zero vorticitv

xM 2Xx-
- c 2 - M] condition and for viscous regions v - is

"- YM equivalent to a boundary laver approximation.
The velocity v should not be specified at the

where c is a constant of order one, YM is the outer inflow. This leads to inviscid vortrcity produc-
. boundary, x is tne outer x boundary, and N is tion and has a destabilizing effect on the global

M x iteration procedure. The flow pressure is not

" the number of x grid points; i.e., N = x / X. prescribed and with toe formulation of Figure
7"-x o x x N is unknown and a result of the :alculation

Therefore for - 1 or -'x -, I andYM procedure.
the convergence rate will deteriorate. For

_ and N fixed ,e is arFinally, the 3ni. boundar " 7ond tion required
YM x at the outflow :s the pressure Dr uivalent
as"-I x) . Although the departure limit pressure gradient. This )f 7ourse refle:ts tn e.' a -'x ~ M lliptic pressure interaction.

1 is no longer a stability limitation, the2y M .x

condition - 1 is a convergence limit. For

YM



*.Solut Ions

Five model problems nave served as tvest :is,.
:or the global PNS formulation described herein.
For each geometry there is a region of srrDnq res-
sure interaction and in several cases axial flow
separation occurs. The test problems include -"- P S 4)
(1) the trailing edge of a flat plate, 2 the

" arter-Wornom [12) trough, (3) a boattail -onfigu- 0 0 RIrDCB i. (I
ration, (4) a NACA J012 airfoil at zero incidence

- (laminar), and (5) the NACA 2(12 airfoil it zero
incidence (turbulent).

(i) Trailing Edge

Solutions for the trailing edge geometry are o/
given in figures (4a,4b). The agreement with the 7

interacting boundary layer results of [11] are
quite good. The finest grid includes (161 x 121) P. Lo
mesh points for (x,y), respectively. The coarsest
grid was (41x 121) and full convergence required

* only several global iterations. If the calculation *

was run on the finest grid alone, convergence was
still not achieved after several hundred iterations.
With a multigrid technique [4], full convergence 2!
to 0(10

- 4
) for the maximum error in successive

iterations was achieved in approximately ten to
fifteen global iterations. The outer boundary yM 01
was chosen to lie outside the triple deck extent. "
If YM violated this condition, the calculation _so- 3..70 0.0 . o . 30 IS 1.7~~diverged. The calculation was relatively insensi- X.0 09 .0 13 .O 11
tive to y. when this condition was satisfied.

The solutions for pressure and skin friction, Figure 4a. Trailing Edge Pressure Distributions
. both defined with triple deck normalization (11] PNS Solver.

are shown for Re = 10
5
. It is significant that

i the skin friction (velocity profile) is relatively
insensitive to the grid and appears to be quite
acceptable even on some of the coarser meshes.
On the other hand, the pressure is extremely grid
sensitive and requires the finest mesh in order
to accurately represent the triple deck interaction.
With the difference grid of Figure 1, the minimum

-* pressure occurs one grid point downstream of the
trailing edge. With the grid of Figure 2 this _
pressure value is correctly obtained at the trail-

ing edge. N i -- TE

(ii) Trough .0

The solutions for the trough geometry

- [Yb(x) = sech 4(x- 2.5)], (0 < x _ ) are shown in -
Figures (5a, 5b). Values of = -0.015 (3, 4J and
-

= 
-0.03 were considered. Only the latter results

are presented here. Solutions were obtained for

5Reynolds numbers up to Re = 3.6 x 10 . Again, the
agreement with the interacting boundary layer
solutions is quite good. The insensitivity of Cf
and the sensitivity of p to the grid is also

*" evident for this example. As the Reyno]ds number -

*was increased, more smoothing was required on the4 coarser grids in order to achieve convergence to
the prescribed tolerance. The outer undisturbed
pressure boundary condition was held fixed at '50 0.70 . .0 . .

'b~~s U. 7 0 0.90 1.0 i30 . U0Y * 7M throughout the computation. There were no X
difficulties an separation or reattachment points.
As with the trailing edge problem, full convergence
with the multi-grid iteration procedure was Figure 4b. Trailing Edge Skin Friction Solutions
achieved in ten to fifteen global iterations. For PNS Solver.
the finest grid 241 x 121) mesh points were

evaluated.



(iii) Boattail

Laminar flow solutions for the boattail geo-
metry of Figure 6 are shown in Figures (7a, 7b, 7c).

The grid is generated with the Schwarz-Christoffel
mapping routine of Davis [13]. These results are
in good agreement with full Navier-Stokes solutions

obtained with the composite (u,3,G) equations as
reported in [3, 7]. For Re = 6000, based on
maximum radius, with a juncture angle of 12 degrees
a sizable separation bubble is obtained. All
velocities are stored in the recirculation region.
The relaxation process is slower than for the
trailing edge or trough geometries; however, con-

N vergence to 10
- 4 

for the maximum error in pressure

is obtained in approximately 35 iterations. As
the Reynolds number or corner angle is increased,
the rate of convergence decreases and the multi-

0 - 0 grid procedure also deteriorates. Further analysis
.. of this behavior is required. Some improvement has

been observed with the source correction of (5b).

0 Solutions have also been obtained for turbu-
0 lent flow conditions. The Cebeci-Smith two layer

viscosity model has been applied to close the
,.'.p system. Although this may not be an accurate

0 approximation in the recirculation region, it

INTERACTING SL. does serve to give a qualitative picture of the-'[121flow. A Reynolds number of Re = 5 x 105 based on

maximum body radius has been specified. The
effective turbulent Reynolds number is of course
much lower and the separation region is considerably

. 1 . X smaller than that obtained for the laminar flow

at Re = 6000. These results are discussed in
greater detail and figures are presented in [4].

Figure 5a. Trough Skin-Friction Solutions (iv) Airfoils: laminar and turbulent
PNS Solver: E= -0.03. ( A

The flow over NACA 0012 and 12% thick Joukowski
airfoils has been evaluated with global PNS
relaxation. Analytic or conformal mapping [13]
is used to generate the requisite metric functions
for the system (1), Figure 8. Solutions have
been obtained for fully laminar conditions for
Re = 2000 to 7500. Recirculation is evident for
the Joukowski airfoils for Re > 2000. For the
NACA 0012 configuration, separation is not evident
for Re < 5000. Typical laminar solutions are
shown in Figures (9a, 9h). The laminar stagnation
point results are also in close agreement with the

'0," familiar Navier-Stokes (boundary layer) values (4].

Triple deck analyses have recently been pre-
sented for separation on cusped and sharp trailing
edge airfoils (14, 151. Estimates of incipient
separation as a function of Re are in qualitative
agreement with the present numerical solutions,

" and the flow behavior near the wedge-like trailing
edge is also reasonable, see Figure 10. Further

... ------- PS OLVER (4] comparisons are given in [4].

lS

".,.....L? AT Finally, for Re = 5 x 10 , transition to
0 O o fnmnuT1rM.L.(iZ! turbulent flow conditions is assumed at x/c= 0.32.

The two layer eddy viscosity model should be
representative of the turbulent flow behavior as
separation does not occur even for this very large

_______," , " ____ value of Re [161. Comparisons with experimental

: 1 .00 :50 2'.00 20 3.00 3'.50 4'.00 results and earlier calculations 16] are zuite
X reasonable, see reference (4].

Fig. 5b. Trough Pressure Solutions PNS Solver:
=-0. 03.
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Solutlon, or riononi2 Stron; lntration

A global or relaxation :_ro1-!1r, :or ':I, PNS "Lows," submitted for ,tn AIAA _F 7oe'-u
system of equations has been levelorei. First an2 Danvurs, Mass.

second-order accurate formulations have been

presented. In the latter ase, a staggered grid 11. 9avis, R.T. and Werle, V. (1951), "Progres n
is considered and the unknown pressure is evaluated Interacting Boundary Layer Calculations at
one grid point upstream of the velocity. In the High Reynolds Numbers," 1st Symposium on
former case, a forward pressure difference is Numerical and Physical Aspects of Aerodynamic

* implied. The effective difference forms of the Flows, Long Beach, CA, Springer-Verlag.
* vorticity transport and poisson pressure equations

have been derived and results of global stability 12. Carter, J. and Wornom, S. (1975), "Solutions
and convergence analyses have been reported. for Incompressible Separated Boundary Layers

Including Viscous-Inviscid Interaction,'
Solutions have been obtained for laminar and NASA SP-347.

turbulent flows where strong pressure interaction
- and/or axial flow separation occurs. The full 13. Davis, R.T. (1980), "Numerical Methods for
* elliptic pressure interaction is accurately Coordinate Generation Based on a Schwarz-

evaluated and with the local pressure interaction Christoffel Mapping Technique," VKI Lecture
there is no separation singularity. Procedures Notes, Brussels, Belgium, Hemisphere Press.
for increasing convergence rates have been
examined, e.g., multi-grid; however, further 14. 5mith, F.T. and Merkin, J.'. (1982), "Trinle-
analysis is still necessary, see [4]. 'eck Solutions for Subsonic Flow Past Humps,

Steps, ?oncave or Convex Corners and Wedged
Significantly, the differential form of the Trailing Edges," Computers and Fluids, 10,

poisson pressure equation is not required expli- pp. 7-25.

citly and the local continuity equation is
satisfied exactly at all points. 15. Cheng, H.K. and Smith, F.T. (1982), "The

Influence of Airfoil Thickness and Reynolds
RNumber on Seoaration," ZAMP, 33, pp. 151-180.
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Air Force Wright X ronauLA r1
rizht-iatterson Ar Force baS 1t i,

Abstract research. oh unicuenesn -L .LIon was ensured

Numerical simulations of a ihversonic cruiser by mrosing certain constrainL ;ucn as: tia 'ua

were accomplished by means of the mass-averaged condition-. ,he achievement was very significar.t,

- o Navier-Stokes equations at a nominal Mach number however directly usable results contained ambig )i-

of six and a Reynolds number of fifteen million. ties. .As computational aerodnamics made substantial

The computations of flow at the zero and ten degree progress, solutions of the quasi-linear potential

angles of attack were Derformed on a CPY-l com- equation- and Euler equations became achievable'''.

puter utilizing a grid consisting of over 56,000 The most recent efforts using the Euler equationsZ N points. The present results adopting a branch-cut which admit vorticitv probably reflect the cur-

Mesh system yielded superior numerical resolution rent state-of-the-art in solution development.

over the previous solution usins a wrap-around However, the inviscid-viscous interaction around the

"rid distribution. Numerical results are presented wing-fuselage configuration remain unresolved.

showing the detailed flow field structure, density
and vorticitv distribution, and velocity field. In the past few years, numerical simulations of

These results indicate that the wing-fuselage con- the wing-body combination by means of the parabolized

__ figuration investigated generates an unfavorable Navier-Stokes and the mass-averaged Navier-Stokes

' interference factor. equations were attempted. In particular, Venkatapathv,

Rakich and Tannehill
5 

used a parabolized Navier-Stokes

Nomenclature code to calculate the supersonic, viscous laminar

flow around the space shuttle orbiter forebody. Their
c speed of sound solution contained-the complex flow structure that
Def deformation operator developed near the wing-body region, and a multi-
D Van Driest's damping factor vortex pattern was observed. On the other hand, the
e specific internal energy present author also attempted to simulate numerically
Fc, vector fluxes the flow field around a hypersonic cruiser by means
J Jacobian of coordinate transformation of the mass-averaged Navier-Stokes equations. Both
L length scale of eddy viscosity model investigations indicated that the local grid system

* M Mach number played a very important role in resolving the flow

n outward normal field around the wing-body juncture in that the

p static pressure geometric singularities were presented. The appro-
Pr Prandtl number, 0.72 priate selection of the coordinate system became
Pr turbulent Prandtl number, 0.9 critical. The main thrust of the current effort is
r radius of ogive forebodv, 0.598 cm to explore an alternative grid system.

Rey Reynolds number based on running length
T temperature The investigated wing-fuselage configuration is
t time comprised of a tangent-ogive forebody and a sharp

dependent variables [(_,zu,cv,ow,ze) leading edge delta wing with a sweepback angle of
u,v,w velocity components in Cartesian frame 70' (Figure 1). The geometric singularities at the

coordinates in Cartesian frame wing-fuselage junctions and the wing tip are all
angle of attack curvature induced, being consequence of joining

kronecker delta piecewise continuous body surfaces. In principle,
. eddy viscosity coefficient the homeomorphism can not be maintained in the

transformed coordinate coordinate transformation to facilitate the com-
molecular viscosity coefficient pitation. In the early effort, a wrap-around coor-

density dinate system was adopted with some numerical round-
stress tensor ing of the sharp edges. Basically, it was an 0-0

- vorticitv vector type grid which thus offered the most efficiency

Subscri s in terms of computational effort for a given resolu-

tion
1
l. However, the 0-0 type grid around the wing

free stream condition tip caused serious numerical difficulties
9
. In the

S stagnation condition present analysis, a branch cut was incorporated for
the body-oriented coordinate system. The mesh

system can be identified as the H-H type kFigure 2)
I. Introduction The branch cut is performed along the upper and the

Aerodynamic interference around the Juncture lower wing surface. This particularly chosen coot-
of the wing and fuselage is a direct consequence dinate system essentially eliminates all of the
of three-dimensional inviscid and viscous inter- geometric singularities of wing-body confizuration

action:.
2 '

. Until the earl-. seventies, numerical for the present numerical simulation.
analyses for wing-body interference were exclusively
restricted to small disturbance schemes or panel Computations were performed for flow fields

methods:
'2

. In this mode of investigation, numer- around a hypersonic cruise :ehicle at a Mach number
ical analysis was used as an extension of analytic of 6.2 and a Reynolds number of I.. mission. The

of the computations was conducted for t;1e flow
• Aerospace Engineer
**Tech Manager

~~......... .. ...-.-........- - . . .. :"



without incidence. The other was performed for the

oncoming stream with a ten degree angle of attack. -7*The present numerical effort investigates the in- H 
=

zx(2-3)

tricate viscous-inviscid interaction around the

wing-body configuration. More importantly, the --

present analysis attempts to assess the feasibility zz

of obtaining the numerical predictions of flows 
:ew-y( - + -ku:zx+v +w~zz)

around a three-dimensional aircraft 
configuration by 

t

means of the mass-averaged Navier-Stokes equations. where, the component of shear stress is defined by

Special attention is focused on the treatment of f
the geometrical singularities frequently encountered ij

( ) D e  
uij-[3(- i3 +~i

in aircraft configurations. Thus, a criterion is

established for the choice of coordinates for The closure of the system of equations is achieved
future full-scale aircraft numerical simulations. by introducing the Baldwin-Lomax turbulence model

Numerical results are first verified by comparing with a minor modification and by assigning a tur-

with both the static and the impact pressure measure- bulent Prandtl number of 0.9. Specifically the

ments under identical freestream conditions
6
. Then Baldwin-Lomax turbulence model is found to be Mach

the flow field structure is delineated by presenting number sensitive
1

. A constant in the outer layer

the density contours, the cross flow velocity dis- is altered from a value of 1.5 to 2.0. The new

tribution, and the streamwise vorticity formation. constant (0.0336), twice the magnitude of Clauser's

constant (0.0168), has been selected based on sev-

II. Analysis everal bench mark calculations of turbulent flows

over a flat plate at supersonic Mach numbers. For

Governing Equations the skin friction coefficient prediction, the new

The time dependent, three-dimensional Navier- constant used in the eddy viscosity model results

Stokes equations in mass-averaged variables and in in a better agreement with experimental data. The

the transformed space (cn,) can be given as
3  two-layer eddy viscosity model is given by

Inner region:
Ic+ x YF G _H. 2_3G 3

_0 I ( -3) = O4LD)2jwj (4-1)

Tt IT ny 3 n 3T an
where w is the votricity of the flow field

zz
1 x u (4-2)

3F 3G 3H
a C 3 ' 0 (i) In the present formulation, the Van Driest damping

z factor, D is given as

(b[b) 1/2
where the dependent variables are U(o,ou,pv,pw,pe). D= -exp - ) L/26] (4-3)

The system is in the so-called chain rule conserva- %

tion law formll'
12
. The Navier-Stokes equations in

this particular form is more computationally effi- For the present analysis, an asymptotic length

cient in comparison to both the strong and the weak scale formula developed for an earlier investigation

conservative forms
12
. The flux vectors F, G, and H of a three-dimensional corner configuration is adopt-

are simply the Cartesian components of the contin- ed for the wing-fuselage juncture region
11

:
uity, momentum, and energy equations. 2 2,/

L - 2yz/[y+z+(x 2+y2 ) 
/2  (4-4)

Du2  Outer region:

F- (2- The outer layer is basically the law of the
o uV-r 21 Teoteyae

Xy wake including the intermittency correction by
ouw. Xxz Klebanoff13"

Deu-y(z--- + -)--(UT +VT +WT
?r Prt )x xx xy xz 0.0336p Fwake /[l+5.5(0.3L/Lma) (4-5)

The associated boundary condition for the pre-

Cv sent investigation are straight forward. The initial

uv condition is assigned the freestream value for the(Vyrx entire computational domain excluding only the

G -  surface nodes. On the solid body contour, the no-

+ slip condition for velocity components, and the

Oev-Y(- + 'e- -(UTv +VTv +W7) isothermal and ortho-isobaric conditions are imposed
-3y x yy for temperature and pressure respectively. Since

the attached bow shock wave isolates the interactine

flow domain, the upstream and far field conditions

require that the flow remains unperturbed. For t'he

on-coming stream with an angle of attack, the 3nd

y component of velocity assign the values of

I



u cos a and u sin :t, respectively, while the z obvious that the demanding numerical resolution I
component of velocity vanishes. The present for a complex three dimensional configuration will

analysis takes advantage of the property of symmetry require the grid generation and thi solving scneme

with respect to the v axis (Figure 2). Only a half to be tightly integrated in the future.
cross-flow plane is evaluated at the plane of sym-
metry. A reflection condition is applied which The necessary but tedious preparation of tile
insists that the z component of velocity be equal mesh point distribution for the rather complex wing-
to zero. The usual no-change condition is imposed fuselage configuration is provided by a body-oriented
at the far downstream boundary. For the supersonic homotopv scheme'-'. The coordinate system is con-
problem this boundary condition is known to be structed by a series of consecutive axial cross

* well-posed and stable. In essence, we have sections unevenly spaced to achieve optimal numeri-

Intia1 condition cal. resolution. In each -ross-sectional plane,a
nitia two-dimensional gri system is established between
U(O, ,n,;) = U (5-1) two control surfaces. The inner surface (Yi,zi)

upstream (,=O) and far field condition (n-) depicts the body contour. The outer surface .Y ,7o
- Ois chosen to represent the enveloping shock wave.(-2) t The field points are generated b. the interpolation

on solid contour functions:
u,v,w = 0 (5-3). K 1  -

" T 278*K (5-4) y=y ) - b-)°b0e - " e k

n 7p = 0ee -,
s~I krwhere n(\xb,b, Zb)/ ?(xYbzb) (5-5) e -1 e - .bI)

0ksymmetry condition (p-0, =I) e -1 e -1

S0 , w = 0 (5-6) Since the rather complex three-dimensional body con-
" 3C

sists of two distinct geometric formations, the in-
downstream condition (r-1) verted wedge wing and tne ogive forehody, the

orthogonality of coordinates is not enforced. How-
=0 (5-7) ever, along the branch cut the coordinate is merely

a mild deviation from the Cartesian frame. The
single homotopv scheme is extremely efficient.

Crid systems of 3lx3Oxbl -oints have been generated'-." Coordinate System and Grid Generation ''
and evaluated on a SRA'i-l computer in less than two

For the present investigation, in spite of the seconds. )nce i- coordinates AY,Z are generated,
highly swept wing the leading edge is still super- the derivatives of coordinate transformation can be
sonic. Thus numerically rounding the wing tip will evaluated through the acobian and it's inverse.
alter the shock structure from an attached shock
wave to a bow shock wave

9
. Meanwhile, the rapid I1. Solving Scheme and Numerical Procedure

metric variations around the wing tip cannot be
eliminated completely. A better choice of coordinate Maclormack's explicit and unsplit algorithm
systems becomes necessary. A new coordinate system is utilized in the present study to reduce the

with a branch cut along the wing surface may number of accessions 'f main memory, thereby de-

alleviate the difficulty. Particularly, in view of veloping an efficient data flow of the coding for

the fact that the leading edge of the wing in the a vector processor (CRAY-IL. For a 3-D factored
* limit sharpens to a cusp, the coordinate system with scheme, a field point requires fi ve accessions of

a branch cut can describe this unique characteristic main memory in order to advance one time step in
easily. In essence, branch cuts are performed along either the predictor or corrector sweep:

the upper and lower wing surfaces and the cuts are n+l n
extended to the outer boundary of the mesh system n (.t/2)L
(Figure 3). The branch cuts are defined by constant
values of the transformed coordinate :. The spacing However, the unsplit algorithm requires only one

between the cuts also represents the finest in the accession of main memory to acquire tne same end

present calculations (DYmin - 0.00012 cm). The wing result:

tip then is defined by the surface nodes and the im- un+l ) + L1) I L.&Tt)]' (7-2)
mediately adjacent nodes upstream of the leading = [L.(t
edge. Basically, the branch cuts remove all the
geometric singularities at the wing tip and wing- In the CRAY-l computer, which operates on a single

fuselage junctures. This observation is made ob- memory path, saving on memory loading is substantial.
vious in Figure 4 The normalized metric value of The present effort indicates that the achievable

is given along a distance, a originating from data processing rate is 4.9xi0 -sec/grid points/-V s g atime step) at a maximum vector length of o. in
tie upper wing root to the wing tip and terminating comparison with an earlier effort, , the current
at the lower wing root. The maximum value of n.. development achieves a twenty percent improvetent in

for the wrap-around grid is already restrained by the data processing rate. Vector processor sac>
. . the numerically rounding of the wing tip. One notes as the CRAY-I and CYBER 203 make the relacle

a jump in the metric variation at the wing tip, conditionally stable MacCormack's expllcit mthU
- where the numerical errors were overwhelming, On attractive. The detailed computer code itr2:t.ir-

the other hand, the same transformation derivation the numerical efficiency, and the nimer:cal _a::.
of the branch-cut system is well behavior. It is procedure have been Jescribed in Reference 1-,

therefore, will not De reneateu ier .

,. . .



The solution is considered to be converged degree angle of attack are presented in Figure 7.
when the wing surface pressure variation is less Numerical predictions at the wing tip and the meri-
than two percent over one half of an elapsed char- dian plane of fuselage agree very well with the
acteristic time (% /L). A total of 1.4 hours of inviscid asymptotes. For the flow without incidence,
CRAY-l computer time was required to meet the the upper surface pressure maintains the freestream
aforementioned criterion for 1-0. At the 10' angle value until about 0.8 of the wing span then increases
of attack, the viscous effects become dominant as its value toward the wing-tip. This pressure rise

. the inviscid-viscous interaction intensified. A is influenced by the higher pressure level beneath
significant reduction in allowable time step forces the wing through the thin shear layer over the sharp

- additional iterations to be performed to meet the leading edge. For the lower wing surface a contin-
'. convergence criterion. However, for the 10' angle uous compression toward the wing tip originates at

of attack case, the initial condition is the con- about 0.7 of the wing span. In the lower wing tip
verged case for i=0. In this manner the 10' case region, the surface pressure attains the value equal
required only 40% more total computing time to to the oblique shock of three degree flow deflection.
reach the steady asympotic state. At 100 angle of attack, the pressure distributions

over the wing exhibit a similar behavior. The only
IV. Discussion of Results difference is that at the higher angle of attack, the

The present results are given in two groups. windward surface pressure distribution reveals three
In the first group of results, the numerical solu- plateaus. The lowest pressure plateau is in the

tions are presented and compared with experimental wing-body juncture, then compresses rapidly until the

data under identical flow conditions. The rest mid-span to reach the second pressure plateau and a

of the discussion concentrates on the delineation final compression toward the wing tip. In the wind-

" of the detailed flow structure around the wing- ward leading edge domain, the surface pressure

-" fuselage configuration at 10 degree angle of attack. corresponds to the oblique shock value of 130 flow --

deflection. It is clear that the windward surface

- The comparison of static pressure distributions pressure of the wing body is always lower than the
around the wing-body combination either for the value if the wing-were exhibited alone. The cross

zero degree angle of attack or the 10 degree angle feeding over the wing leading edge through the thin
of attack with the experimental data of reference shear layer between leeward and windward surface and
6 agrees very well. Except phase for the known the expansion from wing tip to wing root over the

cause of misaligned of the pressure probe, the windward wing reduces substantially the lift generat-
" maximum discrepancy between data

6 
and calculations ed by the wing.

. is confined within a few percent
19

. All essential
features including the pressure jump across the bow In Figure 8, the circumferential surface pres-
shock are faithfully duplicated. sures of the wing-body combination are presented.

In addition the circumferential surface pressure
In Figure 5, comparisons of pitot pressure over cylindrical forebody is also depicted here for

distributions with data are presented. The pitot reference purposes. This particular cross flow
pressure is normalized with the freestream stagna- plane is in the intermediate streamwise location be-
tion pressure pt (4.1368xI02KPA), Thus the norm- tween the ogive forebody and the plane which the
alized pitot pressure attains a value of 0.027 in wing is first merged with the fuselage. The cir-
the freestream. The overall comparison of the cumferential pressure is similar to the pressure
data

6 
with the present result is reasonable. The distribution over a circular cone at angle of

maximum discrepancy between data and present results attack
20

. For all the cases considered, the aero-
is around fourteen percent (mostly in the region dynamic interference in terms of pressure is un-
bounded by the upper wing surface and fuselage). favorable; the leeward pressure is higher and
The experimental measurements revealed a much strong- the windward pressure is lower than the forebody
er expansion inboard of the wing tip than computa- alone. Favorable interference is noted in both the
tions including the inviscid results

6 
for the same leeward and windward wing-body junctures. However,

* configuration. Misalignment of the probe or model the total contribution to the lift is small. There-
" could account for some of this discrepancy. How- fore, the present result at a Mach number of six

ever, both the data and numerical results indicate shows an unfavorable aerodynamic interference for - .
a larger stagnated region in the upper wing-fuselage the delta-wedge wing and ogive cylindrical fuselage.
juncture (y/r>0, z/r=l) than the lower juncture The conclusion is consistent to the experimental
(y/rrO, z/r-l). A rapid expansion jet-like zone at observations that the compressibility effect and
the lower wing tip is also indicated, angle of attack reduce the wing-body interference

factor from favorable to adverse592 . For the
In Figure 6, the comparison of total pressure cases investigated, the wing-body interference factor

profiles at the 10' angle of attack is presented. decreases from the value of 0.64 at zero angle of
The pitot pressure probe is known to be relatively attack to the value of 0.60 for angle of attack
insensitive to the probe alignment with the flow. equal to ten degrees.
Excellent agreement between data and present re-
sults is clearly evident. Except perhaps in the In order to cescribe the kinematic structure
shock envelope region, the deviation between data of the flow ove, the wing-fuselage at 10' angle of
and present results is about the range of the data attack, two cross flow patterns depicted W and V
scattering. In short, the specific comparisons of velocity components are given in Figures 9 and 10.

* static pressure distributions and pitot pressure In Figure 9. the vortical singularity lift off and
profiles indicate that the nresent results duplicate the flow separation over the leeward side of the
nearly all the experimental measurements. forebody are clearly demonstrated. The line of

flow separation is at a pheripheral location of
.he static pressure distributions over the d-130', which is in perfect agreement with experi-

entire span of tne wing surface at the zero and ten mental observation
'
* in Figure 10, the cross flow
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velocity distribution over :he wing-body zombination demonstrated to be critical. The use of a "branch
is given. The flow separation in the windward cut" was found to greatly decrease numerical diffi-
junction of the wing and fuselage is clearly indicat- culties. Therefore, the grid generation and the
ed. Along the windward wing and outboard of the solving procedure can not be treated as separate
reattachment, a jet-like stream is observed. The issues. In our pursuit to simulate the full-scale
presence of a leading edge shock wave is also made aircraft by means of segmented or patched computa-
evident by the abrupt change in orientation of the tional domains this finding is of vital importance.
cross flow velocity. Since the leading edge is
supersonic, the shock wave is attached to the lead- References
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"UMERICAL SOLUTIOMS OF SPATIALLY-PERIODIC BOUNlDARY LAYERS

0. R. Burggraf
The Ohio State University

Columbus, Ohio

Abstract

Spatially periodic viscous flows have a number number of sweeps. The correct value of core vor-
of diverse applications, among which may be men- ticitv for a periodic flow divides the cases for
tioned use as a model for the recirculating eddy which A increases from those for which it
in a separated flow, periodic surface roughness in decreases (algebraically). The asymptotic state
transition studies, and as a device to oxygenate is achieved for ! of the order of nine to sixteen
blood in open-heart surgery. Ratchelor (1956) sweeps. For noncircular configurations, the march-
considered a circular eddy in his work on the ing method breaks down, either due to the separa-
structure of steady recirculating flows. More tion-point singularity, or through instability at
recently Van Dyke (1981) attacked this problem by corner points if the pressure gradient is too weak
the method of series truncation. The present to produce separation. In either case, viscous
author (1966) studied the same problem by an Oseen- interaction with the inviscid core is required to

* like linearization, and also considered the flow smooth out the singularity.
in a square cavity with a sliding lid. An intrig-
uing aspect of the problem is that the vorticity The same problem has been formulated spec-

* of the inviscid core is an eigenvalue that is trally, in terms of Fourier series in the main-
determined by the periodicity condition, flow direction. This approach guarantees periodic-

. ity, and it has been shown previously that the
spectral method handles separation without diffi-

In the present study the nonlinear boundary- culty. The core-vorticity eigenvalue is a novel
layer equations are solved by marching forward feature here; it is treated by an iterative pro-

* from an arbitrarily chosen initial state with an cedure. Results of the spectral and marching
assumed value of the core vorticity. For each methods with be compared for the circular eddy and
sweep around the fluid circuit the change of for the unseparated noncircular cases. In addi-
momentum thickness 8 (or o ljr thickness scale) tion, spectral results will be presented for a
varies asymptotically as I , where N is the polygonal eddy with flow separation in the corners.



. ~rw-- .~ . . ------- ---.-. .

ASYMPTOTIC THEORY OF TURBULENT 14ALL JETS

R. E. Melnik and A. Rubel
Research & Development Center
Grumman Aerospace Corporation

Bethpage, New York

Abstract

This paper presents a systematic analysis of ing in the turbulent viscosity law. The asymptotic
two-dimensional turbulent wall jets using the
method of matched asypoi exasn. The theory for the k-c model leads to a four-layerepaons ae ared aymptotic expansions. b description of wall jets. A number of ad-hoc the-expansions are carried out in terms of two basic oretical models prevously developed have employedparameters - one the usual Reynolds number, Re, a two-layer description of the turbulent wall jet

. that is taken to be large and the other a small ting descr f t tchent an ier
-." parameter, a, that is related to the statistical consisting of an outer free jet patched to an inner

aspects of turbulent flows. The latter parameter wall layer. Although the outer region of the
scales the turbulence levels in free turbulent present theory bears some relation to a free jet,
flows such as jets and mixing layers which are there are very important differences. The influ-
essentially independent of Re. The a parameter ence of the wall boundary conditions on the turbu-

is a basic turbulence parameter that governs the lent energy and dissipation extends across the -spreading rate of such flows, The present work is entire outer region and acts to significantly"
bsrediong rae to-equatifo s. ( ) trence od, i reduce the spreading rate below that of free jets.based on a two-equation Nk0 turbulence model, Our work indicates that this effect accounts for

Sa much of the reduced spreading rates observed for* identified with the model constant C appear- wall jets compared to free flows.

5.,wl escmardt refos



ONf T-E COUPLIC OF ROUNDARY LAYFR AND EULER EOI'ATTON SOLUTIONIS

Earll M1. Murman and Thomas R.A. Pussing
_prt~ment of Aeronautics and Astronautics

assachusetts Tnstitute of Technology
rambridge, tiassachusetts

Abstract

The coupling of boundary-layer solutions to where the inviscid flow is being treated as one-
potential-flow calculations is relatively well dimensional. The attached figure shows a calcula-

developed and has been called Interacting Boundary- tion for a diverging duct with a turbulent bound-
Layer Theory (IBLT) by Mlelnik (ref. 1). The ary layer. The figure shows that if only the dis-
boundary layer and inviscid potential flow are placement thickness effects are added, the results
coupled using displacement thickness concepts. are substantially different from the complete
Rather than use the classical approach of modify- matching of the viscous flow. Independent of the
ing the body shape by adding the displacement present investigation, Johnston and Sockel (ref.
thickness, Lighthill's Iref. 2) transpiration 9) developed an equivalent analysis of the match-
boundary condition OXVn = d(oIIs *)/dS is ing conditions. This paper will present the coup-
applied on the body surface. The potential flow ling theory and example calculation to illustrate
is solved iteratively with boundary-layer calcula- the effects of the various terms.
tions beina done at intermediate stages of the
calculation. Thus the converged result is a This work is being supported by NASA rrant
solution of both sets of equations. For unsepa- IAr-1-229.
-ated flows, direct solutions of the boundary layer
ire done (ref. 1) while for separated flows,
inverse solutions (e.g. refs. 3-5) are required. References

The coupling of boundary-layer solutions to 1. Melnik, R.E.: Paper 10, AGARD CP 291, 1980.
solutions of the Euler equations is of increasing
interest due to the rapid development of efficient 2. Lighthill, M.J.: JFM 4, 1958.
and practical algorithms for the Euler equations -

(e.g. refs. 6-8). However, the correct coupling 3. Carter, J.E.: AIAA Paper 79-1450, 1979.
conditions for the inviscid and viscous flow are
not as well understood as the classical Lighthill 4. Wigton, L.B. and Holt, N.: AIAA Paper 81-1003,
(ref. 2) conditions which are restricted to poten- 1981.
tial flow. The key difference is that potential
flow just solves the continuity equation so that 5. LeBalleur, J.C.: La Recherche Aerospatiale
coupling only involves the displacement thickness. (English ed.) No. 1981-3, pp. 21-45.
The Euler equations, however, require the solution
of the continuity, momentum, and (usually) energy 6. McCormack, R.: AIM Paper 69-345, 1969.
equations, and coupling must involve displacement,
momentum, energy, and other thickness parameters. 7. Jameson, A., Schmidt, N. and Turkel, E.: AIM-
Thus the transpiration boundary condition must be Paper 81-1259, 1981.
expanded to include momentum and energy sources on
the body together with mass sources. 8. Ni, R.H.: AIAA Paper 81-1025, 1981.

The present authors derived these matching 9. Johnston, W. and Sockel, P.: AIAA J. 17:6,
relationships for an internal flow configuration pp. 661-661, 1979.
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INTERACTIVE SEPARATION FROM A FIXED WALL*

L. L. van Dommelen and S. F. Shen

0", Sibley School of Mechanical and Aerospace Engineering
Cornell University, Ithaca, NY 14853

Abstract particles near the wall simply do not have the
- ukinetic energy to penetrate such an adverse pres
Numerically a solution is sought to describe sure gradient. They would come to a stop and the

the separation process from a fixed wall in the existence of the boundary layer flow should be ex-
interaction region. Introduction of an analytical pected to terminate in a Goldstein2 singularity
flow velocity in the external flow insures contin- well upstream of the separation point.
uity, irrotationality and the correct asymptotic
behaviour. In the boundary layer flow region, a And if separation would indeed occur at a lo-
finite difference procedure is emloyed. Thispro- cation k - 0 where the square root external flow
cedure solves diffusion of vorticity rather than singularity just happens to vanish, the pressure
of momentum. It retais the full boundary layer gradient would be favourable in the boundary layer
equation in the region of reversed flow. The upstream of separation. Then the boundary layer

* entire boundary layer flow region is mapped onto a particles would reach the separation point with
I finite computational domain in order to eliminate too much velocity to allow their path to deflect

artificial cut-offs. Interactivelythe external significantly away from the wall. At least some
and boundary layer flows must agree on both bound- retardation of the boundary layer particles near
ary layer pressure distribution and displacement the wall is necessary for them to cause a signifi-
effects. This agreement is here achieved by least cant deflection of the boundary layer away from
square minimization of the differences. Prelimin- the wall.
ary results seem a significant step forward for
both accuracy and computational efficiency and To resolve this difficulty, Sychev 3 adopted
flexibility. But though the boundary layer flow the hypothesis that the actual location of the
results do e nd further downstream than previous separation point would depend on the Reynolds num-
work by a f *tc of two, the objective of a solu- ber. It would be close to the location of vanish-
tion extending a 1 the way downstream to infinity ing k on account of the small kinetic energy of
has not yet been t. In contrast, far upstream the boundary layer particles near the wall, but
the scheme perfor.\excellently, still at positive k in order for an adverse pres-

sure gradient to be present to retard these parti-
Setting the Stage cles. His estimates led to the postulate that

To explain why the fluid dynamic drag does Re-/16K
not appear to vanish when the coefficient of vis- k -
cosity does, the inviscid theory requires
Kirchhoff free vortex sheets. Physically, these where K would be a constant for which the value
free vortex sheets ought to correspond to the remained unknown.
boundary layer which has lifted off from th wall.

The pressure gradient in the boundary layer
But up to a decade ago there was no known upstream of separation would then be favorable for

mechanics for the boundary layer to lift off from the major part; approximately the one which occurs
the wall. A difficulty was the square root singu- when separation is exactly located at the position
larity in the outer flow at a position of lift of vanishing k. Only relatively close to the sep-
off1 : aration point would the non-zero value of k become

u - i v - uS - i k rz - xs11/2 evident. For, the singular behaviour of the
z Ssquare root singularity Eq. (2) mist eventually

z s x + i y (1) always dominate the pressure gradient and turn it
adverse.

with x the coordinate along the wall and y the
distance from the wall; "k" is a constant depend- Thus there would be only a relatively short
ing on the location of the separation point. For part of the boundary layer in which the pressure
a circular cylinder, k vanishes when separation is - gradient is adverse. As a consequence of this
located 55 degrees from the forward stagnation short length scale, diffusion effects in the re-
point and k is positive if it is located further tardation of the boundary layer particles would

downstream, remain restricted to a thin sublayer of boundary
layer particles close to the wall. Except in this

If k does not vanish, it implies on account "lower deck" close to the wall, all boundary layer

of the Bernoulli law a severe adverse pressure particles retain their vorticity throughout the
gradient in the boundary layer immediately up- separation process.
itrearm of separation: tolostacongotothloedek

stret. o searaton:It follows that coming out of the lower deck,
- It ' ,1/2 (x + the boundary layer particles still have the same

PS u5  *x5 - a ( S) (2) vorticity they had near the wall before the

pressure gradient turned adverse:
By integrating the momentum equation in Von ises
variables, it may be shown that the boundary layer a 7O  (3)

*This paper is dedicated to Professor W.R. Sears if T denotes the value of the wall vorticity at
for his 70th birthday.



the location of vanishing pressure gradietit. Here capitals refer to the oxternal flow and
Equivalently, it is the wall shear at this italics to the boundary laver flow.

location, for in boundary layer approximation
shear and vorticity are proportional. In these normalizations, the lower botndary

Within the lower deck, pressure retardation layer deck satisfies

and diffusion effects work together to give a
rapid fall off of the vorticity from its starting ±.X + v _ a (5a), - -y -,yy (5

- value To . It is the expression

vu=- y y U + v 0 W u T- (5b)
x dy ,X -,y d2-,y

as found from continuity and the definition of the y = -at 0 (5c)

boundary layer vorticity, which relates this rapid
vorticity fall off to significant deflection of Since by Eq. (4), T0  is normalized to unity,

the boundary layer streamlines away from the wall. the asymptotic behaviour Eq. (3) leaving the lower
'. deck becomes

* The square root singularity above 
the separa-

t tion point occurring in the Kirchhoff description a - I y -- or X * - (5d)
* of the external flow, Eqs. (1) and (2), would of
* course not exist in the actual flow. Sychev The external flow field is described by an

argues that when the separating flow is examined complex flow velocity
sufficiently closely, it is seen that the small

* but non-zero boundary layer thickness acts to W - V - i U (5e)
smooth out this singular behaviour. 3/8
To do so, phenomena on a tiny O(Re- /)length which should be analytic in the flow region

*" scale must be resolved.
Imag{Z} > 0 Z =_ X + i Y

Thus Sychev postulate3 .that in a region with
a typical dimension O(Re ) around separation, In order that this irrotational flow field does
external and boundary layer flows could exist for indeed seem to have the square root Kirchhoff
which the Kirchhoff singularity Eqs. (1) and (2) singularity (I) when Z is large,
in the external flow would be smoothed out by the

. boundary layer displacement effects. The main W K Z1/2 Z- (Sf)
source of this displacement effect would be the

* lower deck of boundary layer particles near the The Bernoulli law relates the boundsry layer* wall. TeBrolilwrltstebudr ae
wal pressure to the external flow velocity at the wall

Essentially, Sychev's separation structure as u (5g)
was a generalization of the "triple deck" flow

*. structure discovered earlier by Stewartson
5 

and by Finally, in order that both lower deck and
Messiter and nslow 

5 
for the flow at the trailing Fnly nodrta ohlwrdc n

En w external flow agree on the same deflection of the
edge of a flat plate. boundary layer streamlines,

Sychev's assumption that outer and boundary
layer flows would be possible in the interaction V - .v/U} = - 0 a dy (Sh)
region 4as not trivial: if solutions could exist, YO _ -y 0 X
they would have to agree on both the boundary
layer pressure distribution and the displacement the latter equality from Eq. (Sb), using the asym-
effects. The first attempt to verify the postu- ptotic behaviour Eq. (5d). The X-integral of the
late was made when Smith

6 
tried to find numerical displacement velocity (5h) describes the displace-

solutions for the local irrotational and boundary ment thickness, but this thickness is poorly de-
layer flows in this "interaction region". First, fined in the present case where vorticity rather
all variables were suitably normalized; than velocity remains finite at large y.

x- + 
3
/
8
u 3/2 5/4X  The procedure followed by Smith was to try

S  S LO various values for the constant K in the asympto-

tic behaviour (5f) and see whether for that value
3/8 3/2 -5/4 5/8 1/2 -3/4 a solution could be found iteratively. In they - v uS  S y iterative procedure, the boundary layer displace-

ment thickness was found from his guess for the

u us + 2/8 :1/2 1/8u 1/2 1/4 external flow. He then found the corresponding
S S u0 boundary layer pressure distribution by integrat-

ing the boundary layer equation. With this new
2/8 1,12V  3/8 -1/2 3/4 pressure distribution, he updated his external

-- S 10 - flow, hopefully obtaining a better guess. Using

severe underrelaxation, he iterated typically 80
1/8 1Us.,/2 times and tried to find evidence of convergence of

S +- Pthe results. For a value K - 0.44 his results did
indeed suggest the existence of a meaningful solu-

k 1 !16U -3/4 9/8K  tion. Apparently, the divergence of the iterative
uS O procedure for other values of K would mean that

for these values no solution exists. But Smith

1,2. does not give a discussion why this should he-20 (4) true.

• . . -2
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In order to be able t) solv the -ilidarv simplest possible approximation to describe the
layer flow by a a e c,)rr-.'t aqatdre root singularity (Sf) tor large

Fl~gge-Lotz "approximation ' was made neglect

all backward transport at nome'itum . nis ii - The summation occurs in inverse powers of A 1

vol.:es a finite error, although i£: many '10s t iice thi, would reroduce the known next few
was found that numerically this err)r ts asymptotic terms ', : also correctly. 'lore pt

relatively small. cisely, correct up to n-8 in Eq. (o). For the

downstream moving waj caseA the sum was in
The region of integration of the boundary inverse powers of AZ -, reflecting the different

layer flow was rendered finite in upstream direc- asymptotic analysis. The summation was in the
" tion by an artificial cut-off at X-64; in down- results presented here truncated at N=9. Probably

stream direction by one at =<) and in vertical there would be much better representations of the

direction by one at y-500. external flow but a search has not yet been made.

However, with these cut-offs unacceptably When the coefficients An in the external

high oscillations in the solution occurred. This flow approximation (6) are arbitrary, the wall

problem was resolved by the introduction of an pressure distribution and boundary layer displace-
artificial "development region' -4i9nKX<-64 in ment effect would not correspond to a possible

which the boundary layer displacement thickness boundary layer solution. For, when the displace-
was prescribed from a known two term asymptotic ment effect would be used to integrate the bound-

expansion v-lid far upstream. The effect of each ary layer flow, the resulting boundary layer pres-
of these artifices on the solution had of course sure distribution would in general not be the same

to be examined separately. as the one of the external flow. Van Dommelen and

Shen3 now determined values for the coefficients
Basically, Smith's program reconciles the An by least square minimization of this differ-

solutions of a simple potential outer flow and a ence in the two results for the pressure distribu-

simple parabolic boundary layer equation. For the tion. The problem was there simplified by the

downstream moving wall case, a similar problem was fact that the boundary layer flow was inviscid and

solved by Van Dommelen and Sheni. With a dif- could be solved analytically.

ferent numerical procedure, determination of the
solution to five digits accuracy took there mere Here however, the boundary layer equation

seconds on the IBM 370. The scheme had none of must be integrated numerically. And rather than
these cut-offs to introduce numerical errors and to prescribe the displacement thickness every-

possible mutual interactions. It could easily be where, the physics of the problem suggests that

implemented in global programs or generalized to the pressure gradient should be described in the

cover the finite Reynolds number case. And the attached boundary layer at the upstream end of the
Reyhner & Fl[gge-Lotz step was not needed, interaction region and the displacement velocity

in the separating boundary layer at the downstream

It is the purpose of the present investiga- end. In between, a linear combination of both was

* ion to exterd the procedure of Van Dommelen and prescribed,
Shen toward the fixed wall case. Such a program

could be a stepping stone to the upstream moving I - tanh X/2L
1 

P + 'l + tanh X/2L V (7)

wall case: there one could not possibly hope to X

get away with the Reyhner & Fligge-Lotz error!
where on behalf of typical results the character-

Outline of the Numerical Procedure istic length L was chosen to be 10. There exists

some similarity with the procedure of Veldman
3
,

In the previous section, it was seen that the Occurrence of a Goldstein singularity
2 
would imply

problem for the flow in the interaction region at infinite displacement velocity, hence is not
separation is described by the system of equations possible.

(5a) through (Sh). Basically, one has to

reconcile the local outer and boundary layer flows Following the procedure for the downstream
)n both the boundary layer pressure P and moving wall , values for the constants K and An

displacement effect (Sh). in the external flow representation (6) were found
from least square minimization of the differences

Following the line of the procedure of Van between boundary layer and external flows. Since

Domnielen and Shen
3
, it shall be attempted to ap- now both flows agree only exactly on the linear

proximate the external flow velocity as a finite combination Eq. (7), both the differences in pres-

sum of analytical functions. For the preliminary sure gradient and displacement velocity were

results presented here, this sum was chosen to be numerically minimized.

* or the general form
More precisely, using 

5
k to denote a diE-

112 1 - 2 ference at -n arbitrary collocation point Xk and
V - i U - K AZ _ K ZpZ M and MV for the characteristic magnitudes of

pressure gradient and displacement velocity, the
S. A Z

- n / 6  
6 minimized quantitv was chosen to be

n-5 n

AZ = Z - Z - +
K Pk AK

and Z is a constant with a negative imaginary P M K V M
k ,X P NK-k V

part which was introduced to keep singularities

out of the flow region. Cleirly thiis is about the Ae sollocition points Xk , the K-stations )f the



finite difference mesh if the boundary layer inte- for the velocity components could be used in (10b)
gration were used. And on behalf of typical and the tridiagonal algorithem would result, but
results, the values Mp=O.l and 

M
V=0.

3 
were Newton's method converges much better.

chosen.
Beyond flow reversal, the forward

Iterative Newton minimization of the quantity a-derivative in the reversed flow region requires
(8) was performed according to more than a single march downstream. Here the

present procedure marches alternatively downstream
kn".Pk,A + ',A tW.An + and upstream, performing at each a-station a
Mn ,An n single Newton iteration for the values of the

vorticity at that station.
+k,A , Vk 0 (9)m m In the very first march downstream, initial

estimates for the vorticity are obtained. But
if dAn is the change in the coefficient An here the forward a-derivative in the region of
required to minize quantity (8). The unknown co- reversed flow cannot be evaluated, since as yet no
efficient K in (6) was here considered equivalent guesses are available for the vorticity at the
to an unknown A_ 3. next station. So, only in this first march, all

convection of vorticity in the reversed flowSummarizing these results, the residuals region is neglected. Since the vorticity equation
Epk and EVk can be evaluated provided that a now reduces to
way is found to integrate the boundary layer
equation subject to prescribing (7). Replacing W - 0 (1)
the An- derivatives by simple one-sided differ-
ences, the minimization Eq. (9) can then be per-
formed and the external flow (6) and corresponding another way to look at it is that the vorticity
boundary layer flow found, profile is linearly extrapolated toward the wall.

As an alternative for when a previous solution was
Thus the one missing piece is to integrate available, we used

the boundary layer flow. Briefly, the entire
boundary layer flow region was mapped onto a unit _ {--,yyold
square computational domain,

- <The real analogue of the Reyhner & Fligge-lotz
o0 < a < 1 0 < S < approximation would be to neglect only the

a-transport of vorticity, but numerically that
a - a X) a - S(X,y) (lOa) proves unstable.

* Thus the boundary layer equations (Sa,b,c) and (7) This completes the description of the numer-
become ical method except for the mapping of the boundary

layer to the computational a,O unit square. But
u ,8+,v _ - 2 + discussion of this mapping can only be meaningful-- ,X -- _ _y-W8 y - Z,yy (lOb) when the known asymptotic properties of the

solution are taken into account.
Solution Far Upstream

- , -,K ,SKK (Od) Far upstream, the boundary layer flow in the
interaction region is approximately a uniform

I- tanh X/2L] {w, y - shear flow4,1
0
, with unit vorticity, Eq. (5d).

Y'O Under those conditions, balance of diffusion and
convection effects is consistent with a vertical

ILl + tanh X/2L] f a dy - prescribed(10e) coordinate
0 ,X

1/3 (2In the vorticity diffusion equation (lOb), 1 (12)
(lOd) standard central differences are used in The wall boundary condition Eq. (5c) is seen to be
S-direction. For w backward differences were".- a consistent with a perturbation expansion

used with respect to the direction of flow in
order to reflect the correct domain of depend- w - I + K -1/6 (Y) + K2 -2/6
ence. These one-sided a-derivatives are only . . +.XI 2/%2C!) +
first order accurate, but the calculation was re-
peated at doubled resolution in a-direction and a K

3 lXI-3/6 + (13)
Richardson extrapolation toward second order -I --3 l
accuracy made.

These expansions do qualitatively resemble
Up to flow reversal, the backward a-deriva- the classical Goldstein singularity2; but here the

tive allows a single sweep marching downstream, acceptable homogenuous solutions u do always
At each computaLional station cironstant, Newton's blow up exponentially. As a consequence, here the
method was used to solve the finite difference wall shear can be fully determined from the acting
equations. It works out that this requires the boundary layer pressure gradient.
solution of a linear system of equations for the
mesh values of the vorticity at that station, but Substitution of the expansion in the boundary
this system proves nearly lower diagonal and may layer equations (5a,b,c) yields
be solved fairly efficiently. Instead, old values
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2 2 , The differential equation (14a) for the first

1' -- i . ± vorticity perturbation I may be solved ana-
lytically1

0 
. For, when the solution is expanded

, 2 '2 + 2XY 2 around the wall, the Taylor series coefficients of
2' ---- -Y-2 + the confluent hypergeometric functions may be

recognized
I 

. The solution which does not blow up

3 fiw1 ' + 4 exponentially is

2 .- - [r(c)/24 1 3rc3)] u ( ; -; y/9) (iSa)
w *3 "- --. + o.3 +

Its value at the wall is seen to be
3 2

i f 2-! +(O) - 1 )/61/6 r( )2 (15b)

2 1" "Uo - + u2 w- (14a)
u 1-2 + u2 -) Particularly interesting is the behaviours of

the solutions w for large 1. The self-consistent
* where w - un' and un fn'. The wall -tfor le f . heslfons

boundary conditions are asymptotic form of the fn is easily found as

i" 4 1/ 2 + A, 3/2 B, + 0(y-3/2)
'1' (0) - "Y + S 1 Y3 - -

±2' (0) - W3' (0) - 0 ) (14b) f" -2 - ln Y + (A2-i2)
Y + 2 

A- /2+ B2

2 BCY 1 /2  0( -2

The boundary layer displacement effect (5h)
is seen to become

f -A Y2CC 1 /2 n'-c 1 /'2

V X-2/3 (jj/'lIK21X-2/6+f 3 -3-. -21- - -C31v - -lxi KX1 6  + + +_ +
ni 2 +AC2n Y + B +S3 -3/6 +- - -3

KIX< 1 6 13  5 A2 4 -) 1/ 2+ 2 2 1 -1

I - f 2 Y w, + n w } dY (14c) 1 -3/2 -5/2
n 0 n nlI + +0(Y In Y) (16a)

Characteristic of the integrand of these
"displacement integrals" In is that the two The vorticity perturbations b follow as the

terms separately cannot be integrated, Eq. (16); second derivative.

it is their sum that vanishes sufficiently rapidly In this asymptotic representation, the con-

at large Y for the integral to converge. This stants _n may be identified as the coefficients

integrand may be recognized in the differential of the homogeneous solutions u to the

equations (14a) for the a n; it is there differential equations (14a) while the S and

proportional to the convective derivative. Thus Bn are the additional integration constants

the rapid vanishing of the integrand in the which appear in the double integration to find the

displacement integrals becomes equivalent to a fn" Numerical values for the constants B. may

statement that the viscous effects w n'' are be found from integrating the differential

neglegible far from the wall. equations once in Y direction and collection of
the 0(1) tern after substitution of the

Numerically, as long as the viscous forces asymptotic behaviour Eqs. (16). This results in

are not callously over-estimated at large y, the
finite difference discretization of the convective B - -I 1 B -- A A (16b)
terms will display the correct rapid decay. 1 -2 7 -i -3 -1 -2

Therefore, using exactly this same discretization,

the displacement integrals can meaningfully be Id of course A1 and L. may be found from the
evaluated. But for a different discretization, known exact solution Eq. (15), most easily from

the small numerical error integrated over infinite the inte ral representation of the hypergeometric
Y would make the results meaningless. The rule is functionl

i 
U. The result is

to keep the discretizations of convective
derivative and displacement integrals exactly the C - r(-)/2r(-)
same. -I 6 3

This rule generalizes toward the full problem A - 61/3 (2) (16c)
Eqs. (10) that the discretizations of w in the -I 3
integrals for displacement velocity V A vertical
boundary layer velocity component v should be kept The values of the displacement integrals 

t
n may

identical to the discretization in the convective be related to the asymptotic expansion (16a) by
derivative in (lOb). But since the rule is only
important.at large y, for simplicity in the
integrals no reversal of the a-derivative was made
in the region of reversed flow.

6.



means of a partialI integr titon of Eq. (Iac): Attain. in order to ai /,id sianificant sinttlar

beht an ,r r rh,s vrci.-itv far from te wall

- 2 -2 13 -A3 I d
S- x v y- (21a)

turning now to numerical solution of the
differential equations (14a) for the u, as a and in ,rder to ,onform with the successful

first step the semi-infinite Y axis is mpped onti asymptot: calculat iin f i r upstream,

I unit computational interval <3<<. Of particu-
lar interest is here Gf course the behaviour for 3 I yilxi 1 /3 X- (21b)
large Y. Since from (16a)

In order that the mapping a(X) does not introduce

l - y-1/2 + ... significant singular behaviour far upstream, the
" -1- form of the expansions Eq. (13) for the vorticity

requires
mappings that suggest themselves are of the
* eneral form a -1/ 6  x- (21c)

1 - y- /2 y (17) The asymptotic behaviour (20) of the vorti-
city far from the wall may also be used to find

Indeed, meaningful finite difference quotients are suitable representations for the integrals which
only possible if w01) is smooth enough, and Eq. relate the flow velocity to the vorticity. It may
(17) achieves this for large Y. be verified by substitution that possible repre-

If first a smoothed power raising operation sentations which allow an accurate evaluation by
is defined as the trapezium rule are given by

y - 'y2 + 1 1P/
2  

yp (18) , dI/l-3 (22a)

then the chosen mapping was 3 = 1(Y) with the
function 1(.) defined as --. = , )dB'- dI/-(22b)

2X S1/2
I(Y) - 2arctg (YS /2tanh Y) (19) V= 'c( /8 )d (22c)

'0 -X ,y~d

It may be verified that this mapping is of the The reason for the tilde above the vorticity
required behaviour (17). in the integral for u shall be given in the next

In agreement with the procedure for the full section.

boundary layer equations (10), in the asymptotic Solution Far Downstream
differential equations (14a) all 3-derivatives

were replaced by centered finite differences. The Downstream
3
, the displacement effect of the

i* resulting finite difference equations for w , _ boundary layer flow grows rapidly: it is seen that
and w3 were solved by the tridiagonal algorithme. 

thendisplae vloc intgra ts o a
[
v
. the displacement velocity integrates to a

Table 1 compares results for a1 with the displacement thickness

exact solution, for various number of mesh 3/2
points. The mapping proves very effective: for v - K (23)
only 33 mesh points excellent agreement exists.

Similarly the second order and third order wall
shear coefficients and displacement integrals show But like far upstream, diffusion can only balance
good agreement with results from literature, convection in a mch thinner layer of typical

dimension

This numerical procedure for the flow far up- 1/3
stream generalizes toward the full problem Eqs. Ay - O(X
(10). First the asymptotic behaviour of w is de-
termined for large y. If the large Y expansion As a result, diffusion remains restricted to
(16a) is generalized to finite X, there results a comparatively thin mixing layer centered around

[ 1/2 4.2 -1., which separates unit vorticity in the main

1 1 + K C - + K LzAX_- boundary layer above from neglegible vorticity in

the starting wake below. The general description
K 3 -3/2 -- K3 -3/2 of this mixing layer is

L 3 2 y nAy + C3  lY-

+ Oy 2 In 2yt 
W g' (Ay/X 1/3)

y - y - v o(X) (24a)
,I y y -.( X ) - I

The Falkner Skan equation far tile similar

1/6 I K 2 profile becomes

oW X(20) - (2b)

6

. x.

- - - - - - - - ... . .-i



the ontraiarmnt of this mixing layer is de- 3, 1 2
scrihed as the value of the streamfunction at the - a , 3 (

lower edge. Runge-Kutta integration of the
similar profile (24b) gives S E (X/L)

w

2/3 1/3- C X Ay/X - (24c) = 3 +I tanhX/2L) ,(X/L) 31/3
-6 L+ m7 7

with C = 1.2514b (cf.1.2521 according to Smith ).

To provide this entrained fluid, an influx where the smoothed power raising operation and the

exists in the starting wake below the mixing function I. were defined before, Eqs. (18) and

- layer: (19), the characteristic length L was again chosen

to be 10 and the expression for the function )(X)

- 3 -I -5/6 may be found from imposing the requirement 3 - 1
u - C K X

-  
) < v <Y (25) at infinite y.

From the Bernoulli law, this implies a pressure In the mixing layer, the characteristic

distribution length Ay is much smaller than the penetration

yO away from the wall. Yet this penetration

9 2 2 - 10/o does not dominate the mechanics of the flow on
P 7 C- X (26) account of Prandtl's transposition theorem. But

due to numerical inaccuracy, there is a real

And of course this influx generates a revers- chance that relatively small errors arising from

ed wake flow boundary layer near the wall. Its this large penetration would seriously disturb the

general form is numerical results. Thus a numerical discretiza-
tion is desired which retains a discrete form of

-7/n 11/12 Prandtl's theorem, in which scheme the finite dif-
'(y/X ) (27a) ference equations are exactly independent of the

penetration YO* of the mesh points in the mixing
Runge-Kutta solution of the Falkner-Skan equation layer. it may be verified by substitution that

such independence of YO* is achieved if in the

24 h''' - 45 C
2 

K
- 2 

- 2 h h'' - 20 h
' 2 

(27b) integral (22a) for the boundary layer velocity
component u a smoothed representation for the

gives for the final value of the wall shear vorticity is used:

/2.71529 K
- 3 2 K- 7 / 4  

(28) a (W.-1 + 2 w. + 
-  

) (31)

From this asymptotic character of the flow if j is the mesh point index in 3-direction.
far downstream, more guidelines follow for the
numerical mapping of the boundary layer. For, it Results

must be clear that adequate resolution should be

maintained in the relatively thin mixing layer The Kirchhoff free-vortex sheet description
around yo; it is in this layer that the impor- of separated flows was long believed to be physi-
tant diffusion effects take place. And though the cally relevant 

I . 
But it would imply a singularity

wake flow boundary layer (27) is of secondary im- in the boundary layer pressure distribution at
portance, meaningful values for the wall shear can separation which would seem to prohibit the exist-

only be obtained when enough mesh points are ence of a bounary layer solution.
available to describe the v)rticity profile.

Only comparatively recently did Sychev
3

Pending a better understanding, the present manage to find a plausible mechanics for the boun-

results distribute half of the meshpoints far dary layer flow near separation. In a small
downstream in the mixing layer and half in the "interaction region" around the separation point,
wall layer: boundary layer thickness effects would be suffi-

cient to smooth out the Kirchhoff singularity in
3 IX1/12 x, 3 <1 the outer flow.

But no analytical proof could be given that

l3 Ay/X K-, > (29) indeed a boundary layer flow and outer flow could
exist in this interaction region. The non-linear-

ity of the governing flow equations made it appear
A mapping which meets these requirements, and that a numerical investigation was needed. After

the previous ones (21) was chosen as artificially restricting the region of boundary

'-1 layer flow to a finite one and neglecting the

Sarctg(/L) tanh(X/2L) 7 backward momentum transport in the region of re-
+7 versed flow, Smith

0 
could find a definite interac-

3 , '-1 l + tanh(Ki2L) arctg(y/ ) tion flow. Plausibly his modifications of the
" original problem would be of little importance for

+ )(X) I (y the existence and character )f the solution. And
-- m"if more than one f low solution could exist, at

least his scheme converged to only one.

Here, the existence if an interaction flow is

verified with a numerical scheme that conforms

more closely to the hysical flow. In the method,

r[-.-- - t . r A ~ a ~ ~
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the boundary layer equation becomes once more the The boundary layer pressure gradient is shown

simple, reliable tool it once was. totivation was in Fig. lb. The external and boundary . 'er flows

also, to develop a numerical procedure that could predict within line thickness the same curves,

handle unsteady flows. There, the wall will in verifying the effectiveness of the least square

general be in relative motion compared to the minimization. In the present numerical procedure

position of the separation point. And in particu- the pressure gradient is always correct far

lar if the wall moves upstream, the region of re- upstream. For, the external flow representation

versed flow must be much more important; thus the Eq. (6) was deliberately chosen to have the

forward momentum transport should no longer be
neglected as it is in Smith's scheme, correct square root behaviour in the wall pressure

far upstream. And it is this same wall pressure

To take account of this forward momentum which is prescribed in the boundary layer solution
j transport in the boundary layer calculation, here far upstream, Eq. (7). Far downstream, the

a forward convective finite difference is used in asymptotic pressure gradient Eq. (26) is shown as
the region of reversed flow. the curve labelled t in Fig. lb.

By mapping the boundary layer flow onto a The boundary layer displacement velocity is
* finite computatonal domain, the computation could shown in Fig. 1c. This velocity represents the

be extended infinitely far upstream and away from X-derivative of the displacement thickness; it is
the wall. here better defined than the thickness itself.

The reason is basically that in the lower deck
But attempts to continue the boundary layer boundary layer flow the velocity does not remain

calculation all the way downstream to infinity bounded far from the wall, but only the vorticity,
were so far unsuccessful. When resolution becomes compare Eqs. (5). In a similar way as for the
low, formation of numerical wiggles and lack of pressure gradient far upstream, the numerical
convergence resulted. A possible explanation of scheme is always correct for the displacement
the breakdown could be a mutual interaction be- velocity far downstream, Eqs. (6) and (7). Far

" tween the various layers in which the lower bound- upstream, the velocity was normalized as
ary layer deck divides at the downstream end of
the interaction region. If numerical inaccuracy V* - 5 ixl5/6 V (33)
would allow some of the vorticity in the down-
stream mixing layer to seep through to the start- In Fig. lc it is compared with the asymptotic
ing wake and wake boundary layer, this small vor- solution Eqs. (14), curves shown as 1, 2 and 3 for
ticicy could, integrated over a relatively large increasing order of approximation.
boundary layer thickness, seriously disturb the
numerical estimates for the flow velocity. Up to the station indicated by a circle sym-

6bol in Fig. Ic, Smith prescribes his displacement
To eliminate the breakdown, here an artifi- thickness from the two term expansion, curve 2.

cial cut-off was intr6duced at a downstream loca- it is seen that this implies a significant err-or
tion X - 40. In any case, this compares favour- in the derivative V of the displacement thick-
ably with the location at X - 20 used by Smith 6. ness. The test for numerical accuracy reported by
The present finite difference procedure needs a Smith varies the displacement thickness by a con-
boundary condition at the reversed flow part of stant, hence would not alter the derivative.
the cut-off in order to replace the missing infor- Smith's error in displacement thickness may
mation about the vorticity further downstream, provide a possible explanation for the differences
The choice for this boundary condition was that in wall shear shown in Fig. Id. Again Smith's
the vorticity at the next mesh station downstream results are indicated by the 7ircle symbols.
of the cut-off would exactly conform with the
asymptotic behaviour (27a) valid far downstream in The Reyhner & FlUgge-lotz "approximation' in
the starting wake boundary layer; Smith's calculation neglects the backward trans-

a S 1xxc- 7/ 4  (32) port of momentum in the reversed flow region. The
+& c+A/c (32prsent results for the wall shear in this region

do verify that indeed the resulting error is
if "c" denotes the cut-off, numerically small, Fig. Id.

A comparison calculation with the cut-off Returning to Table 3, the calculation II
located at X - 25 did not show a significant in- estimates the effect of the precise representation
fluence of the cut-off on the boundary layer Eq. (6) of the external flow on the results. As
flow. From a physical point of view, the same in calculation 1, the three coefficients A5 , A6
separation process should occur independent of and A7 were determined from the known asymptotic
small disturbances downstream. The small devia- behaviour Eqs. (14) far upstream. The value for
tions in wall shear in the reversed flow region the constant ZO was chosen on a basis of a crude
are listed in Table 2. preliminary optimization which is of no further

consequence. But while calculation I uses the
Some example calculations, listed as t, It values of the constants K, AS and A6 to minimize

and III in Table 3 give an impression of the ef- the differences between the external and boundary
fact of changing the important parameters in the layer flows in least square sence, instead
numerical procedure. The results of calculation I calculation II uses only K and A6 .
are shown graphically in Fig. 1. To avoid losing--

the upstream part of the curves, they have been The difference in outer flow representation
plotted against the computational coordinate a does lead to significant deviations in boundary
rather than the physical coordinate X. layer pressure gradient, wall shear and displace-

ment velocity. The differences are listed as E(.)



* in Table 3 and shown in detail in Fig. 2. But the 2. Goldstein, S., "On iminar boundary layer flow

main effect appears to be an uniform shift of the near a position of separation", Quart. J.
solution in X-direction. Since the problem Eqs. Mech. Appl. Math., Vol. 1, 1948, pp. 43-69.

(5) does indeed not fix an origin to X, the shift
is of little importance. Thus both computations 3. Sychev, V.V., "Laminar separation", Izv.

do agree excellently on the important variables: Akad. Nauk SSSR, Mekh. Zhidk. Gaza, Vol. 3,

the constant K, the maximum boundary layer pres- T9-72, pp. 47-59.
" sure gradient and the minimum wall shear, compare

Table 3. And for each computation individually, 4. Brown, S.N., and Stewartson, K.,
the external and boundary layer flows do show "Trailing-edge stall", J. Fluid Mech., Vol.
excellent agreement; these differences are listed 42, 1970, pp. 561-584.

as 
6
max in Table 3. Various ways in which the

shift may be eliminated suggest themselves, but 5. Messiter, A.F., and Enslow, R.L., "A model for
have not yet been incorporated, laminar boundary layer flow near a separation

point", SIAM J. Appl. Math., Vol. 25, 1973,
Calculation III examines the influence of pp. 655-670.

halving the resolution in the boundary layer and
* reducing the location of the downstream cut-off 6. Smith, F.T., "The laminar separation of an

from X - 40 to 25. Again no important change in incompress.ble fluid streaming past a smooth
the results occurs. surface", Proc. Roy. Soc. London A, Vol. 356,

1977, pp. 443-463.
It is recalled from the introduction that the

coefficient K describes the downstream shift of 7. Reyhner, T.A., and Fligge-Lotz, I., "The
the separation point with decreasing Reynolds interaction of a shock wave with a laminar
number, Eq. (4). All three computations I, II and boundary layer", Int. J. Nonlinear Mech.,
III yield a value of about 0.41 for this important Vol. 3, p. 173.

constant, Table 3. The value given by Smith
6 
was

instead "approximately 0.44", but he notes that 8. Van Dommelen, L.L. , and Shen, S.F., "A
the second decimal place could easily be altered, bifurcation-free interaction solution for
Clearly, the present value results from limited steady separation from a downstream moving
data of a still imperfectly understood nume-ical wall", AIAA paper 82-0347, AIAA Aerosp. Sci.
procedure. On the other hand, the two term Meet., Orlando, Florida, Jan. 11-14, 1982. To
asymptotic expansion far upstream, Fig. Ic, does appear in AIAA J.
not seem a very good approximation for Smith's
development range. 9. Veldman, A.E.P., "New, quasi-simultaneous

method to calculate interacting boundary
A typical calculation took about 3 minutes on layers", AIAA J., Vol. 19, 1981, pp. 79-85.

the IBM 370.
10. Melnik, R.E., and Chow, R., "Asymptotic theury

Acknowledgement of two dimensional trailing edge flows",
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Table 1. Effect of mapping the distance away from the wall onto a finite
computatonal interval examined for the asymptotic expansion Eqs. (14) through

4(16) valid far upstream. The asyptotic wall shear coefficients _(0) and w3(0)

are compared to those of N. Riley ; the displacement integrals 1 2 and 13 with
results of Melnik and Chow36 ; the other values in the last column are exact.

mesh exact/
points: 17 33 65 129 257 reference

wj(0) -2.1678 -2.1571 -2.1547 -2.1541 -2.1540 -2.1539

11-11 -2.4731 -2.4636 -2.4613 -2.4608 -2.4606 -2.460'

31 -1.0499 -1.0123 -1.0029 -1.0007 -1.0002 -1.0000

Ci -2.0677 -2.0593 -2.0566 -2.0557 -2.0555 -2.0553

(I 20) -0.9143 -0.8987 -0.8951 -0.8943 -0.8941 -0.8940

92-2 -3.13 -3.20 -3.24 -3.26 -3.26 -3.255

1 3 (0) -1.2733 -1.2367 -1.2284 -1.2263 -1.2258 -1.2256

13 3  -17.911 -17.613 -17.551 -17.537 -17.534 -17.408
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Table 2: The effect of the cut-off at the b

downstream end of the boundary layer calculation.

the wall shear is shown for cut-off locations at

Xs25.0 and 39.8.

x

1.97 -0. 0269 id.

3.98 -0.0593 -.

6.09 -0.,07 3 Ch

8.38 -0.7 , I.

11.0 -0.0703 id.

14.2 -0.0562 id.

18.4 -0.01406 id. V

25.0 -0. 0293 -0.0260

39.8 -0.0127

100

0

I J
" 1

0 t

,..
-10

?ig. 1: The boundary layer pressure gradient b.

displacement velocity c and wall ;hear _

according to the numerical solution I it

Table 3. In order to avoid losing the

upstream part of the solution, it has

/ been plotted againat the computational
coordinate a, as defined by Eq. (30); th

correspondence with the physical

coordinate X is depicted graphically in

a. The circle symbols in c and d relate

to Smith's calculation . The curves

labelled 1, 2 and 3 represent ioccesive

approximation levels in the expansion

Eqs. (14) through (16) valid far

upstream. The curves labelled I

represent the expansions Eqs. ( b) and

(28) valid far downstream.
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Table 3: Three example calculations I, IT and
*. III. Tabulated are: the number of mesh points in

the finite difference boundary layer calculation
and the X-location of the downstream cut-off in II
this calculation; the constants in the numerical

S"representation Eq. (6) of the external flow; the
maximum deviations 5max in boundary layer pres-
sure gradient and boundary layer displacement vel-
ocity between the numerical solutions for the ex- -10 10 X
ternal and boundary layer flows; the maximum devi-
aticns E(.) in pressure gradient, displacement
velocity and wall shear respectively from the
solution I (for case It, the detailtd deviations
are shown in Fig. 2); the maximum boundary layer
pressure gradient and the minimum wall shear.

calculations I It III "5

mesh 65x33 65x33 33x17

X 39.8 39.8 25.0
max

K %.40888 0.41089 0.40942

" 0 -11.24737 II i

A5  -0.47354 K

A6 -1.09 K
2  -10 ,0

k 7 -3.3737 K_

: 3.9961- 0.4099- 3.5297-
2.8554i 0.5682i 3.0496i

A, -5.6260+ 0 -5.2698+
0.0523i 1.1634i

ma' , 0. 0085 0.0014 0.0010V

- axV 0.00099 0.00094 0.00 1

E(P ) 0 0.0055 0.0021

E(V) 0 0.058 0.018

E(7) 0 0.021 0.018

maxP . 075 0.o75 0.074

-0.079 -0.F078 -0.1'80 Fig. 2: The relatively large differences E(.)

between the solutions labelled I and II
in Table 3 arise mainly from an unifo
shift in K-direction. The original
problem Eqs. (5) is invariant under such
a shift.
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THE INTERACTION BETWEEN A STEADY LAMINAR

BOUNDARY LAYER AND AN OSCILLATING FLAP:

*THE CONDENSED PROBLEM

P.W. Duck

Department of Mathematics

GUniversity of Manchester, England

Abstract subsonic flows, and by Daniels
5 

for supersonic

. flows, using finite difference techniques.

"Numerical results are presented for the visc-

ous interaction between a flap performing small A number of related problems have also been

amplitude time oscillations, and an otherwise studied using triple deck theory, for instance:

steady, laminar, boundary layer. The method flat plates at incidence to the freestream flow
6
,

used involves Fourier decomposing the solution the numerical problem of wh'h was studied by Chow

in time, a technique which appears to have a and Melnik
7 

for subsonic flows, and by Daniels
9

number of advantages over more conventional time for supersonic flows; oscillating flat plates in

marching schemes, subsonic flows9 ; wedged type trailing edges.
1
;

N the edge effects of a torsionally oscillating

I. Introduction finite disk
12

. Recently, Smith
1 3 

has considered

the question of catastrophic stall involved with
The manner in which a planar boundary layer

flapped trailing edges (and also asymmetric wedged
on a flat plate adjusts to a trailing edge, and

type trailing edges). Triple deck theory has been
the subsequent change in inner boundary conditions

. utilised in a wide variety of other problems, a

from one of no-slip, to one of zero shear, was
comprehensive summary of which is given by Smith

i
4

first considered in the now classical paper of

Goldstein
i
. It was found that the boundary layer The effect of unsteadiness has been incorpor-

. adopted a double structure, close to the trailing ated into a number of multi-layer problems in-

edge , with the vertical velocity component devel- volving distorted boundariesl
5
,
16 ,

', but except

oping a singularity of O(x*
- 2/

3 ) downstream of for the work of Brown and Daniels
9 

(in which,

the trailing edge (where x* is the distance incidentally, the resulting numerical problem was

measured from the trailing edge). Stewartson
2  

solved only approximately) and that of Brown and

-" and Messiter
3 

found that the order of this singu- Cheng
t 0 

(which was primarily concerned with a

larity could be reduced by studying the immediate quasi-steady solution), little progress appears to

neighbourhood of the trailing edge, using the now have been made on the effect of unsteadiness on

well-known "triple deck theory". The outcome of trailing edge classes of flows at high Reynolds

this work was a non-linear boundary layer problem number.

(with novel outer boundary conditions) , which was
In this paper, we shall consider the effect

subsequently solved by Jobe and Burggraf
4 

for

of a small, unsteady trailing edge flap, on an



otherwise steady laminar boundary layer. Fig. 1 shows a schematic layout of the

structure to the problem. The solution in the
II. Mathematical formulation of the problemI upper deck (wherein y - O(c

3)) and the lower deck

We take L to be the chord length of (wherein y - O(E4)) follows previous triple deck

" the plate, p and v the density and kinematic work, for example Stewartson
2
, and will not be

viscosity, respectively, of the fluid which has repeated. In the lower deck, we expect the

a steady velocity U. far from the following scalings:

plate. Then the dimensional coordinates 1. i ^ 2 ^ -l

(origin at the trailing edge) are taken to be u B B B B

Lx and Ly in the streamwise and vertical where X is a measure of the wall shear of the
B

directions respectively. U u and Uv are the on-coming boundary layer. Note X - 0.3321 in

velocity components in the x and y directions, the case of a Blasius boundary layer. The boundary

and the pressure is written as 0U2 p • layer pressure P is independent of Y.

We introduce a Reynolds number Continuity allows us to introduce a stream-

function ' such that
Re - U L/v , (.)

* which is assumed to be large. Following previous

studies involving triple decks, we find it con- and the non-linear equation we have to solve is

venient to introduce a small parameter E as I ^ - 'P. -

follows : 2 Y X X Y X

1 8  (If we assume that the plate lies along

E Res . (2)

Y - F(X,t), K < 0,(8
Following Smith 13 , we assume that there is a

small flap on the trailing edge, whose streamwise then we must solve (7) subject to the following

dimension is O(s
3
L), and with a dimension in the boundary conditions

y direction of o(cS
5
L). Supposing this flap to On Y - F(X,t), X < 0

be oscillating with frequency w , we may then K F (X t 
dX, (9)

introduce a further dimensionless parameter 60 by g2

j- U.A(3) Ti 0(10)

"3

As Y * ±e (for ail X)

(a parameter related to the Strouhal number). We
±^+ A(Xt). (11)

shall choose the magnitude of S1 to be such that For >C 0:

*S , -0(1). (4) P(~)-PXt

U regular for all Y (12)
The reason for this particular choice of S will

where subscripts - and - refer to conditions

be explained later.
above and below the plate respectively.



We see that our choice of 80 leads to.a, - 1/ - ,

problem in which unsteadiness is important in the
lower deck, and hence we may expect the maximum Z /..2/3 T 0

-  
- .).2Ip T0 -

/

interaction between unsteadiness, inertia terms, 8- . (16)

and viscous terms. Notice that our choice of

order of dimensions of the flap has also been We shall also assume that the flap shape is

taken in order to coincide with those of the low- defined by

er deck.
' F(X,t) , X < 0 . (17)

The upper deck then yields a relationship

between P and A. In the particular case of a In the upper deck, there is no longer a

supersonic freestream flow balance of terms in the momentum equations, which

implies that the simple relationshipP4(C,t)_ - - A+ (Xt) , (13)

A4 (X,t) 0 0 (18)
whilst for an incompressible flow we obtain

+(Ct) applies, in place of either (13) or (14), whilst

P -(X,t) - d& (14) the rescaled problem still satisfies (7)-(12) with

the obvious change in notation. As well as being

However, we shall now assume that the flap considerably easier to treat numerically, the "con-

has streamwise scale 0(t), and vertical scale densed problem", as noted by Smith13 (who carried

0(1 /3) relative to the lower deck scales, out a similar procedure to that described above),

where Z < < I . We then expect the solution in is still likely to be a good model of the flow

most of the flowfield to be effectively that of characteristits in the neighbourhood of the trail-

the symmetric flat plate, the numerical solutions
ing edge, even for other, more complicated,

of which are given by Jobe and Eurggraf4 in case pressure/displacement relationships.

of the subsonic flows, and by Daniels5 for The great simplification resulting from (18),

supersonic flows. is the lack of upstream influence (in the case of

To be rather more precise, suppose these non-reversing flows). Notice that, just as in

aforementioned studies yield the following: the analogous steady problem 13 , the pressure may

( , i -0O-) 0O, not be determined absolutely, but only down to an

arbitrary P4 (-,t). Further, as X*e, P(X,:)

P (JX 0±) < PM I- 0/
P) 

/
,with the solution taking on the

P- fiie -M~ / PXX as a (5-P (O_-) finite, P () - / as X * 0. (15) similarity solution of Hakkinen and Rott'8.

We write

Close to the trailing edge, on a scale com-

parable to the flap, we expect a departure X 3 G(n)

from the results (15). Specifically, we intro- P 2/3 p

duce variables as follows



time marching procedure. Nowever, such techniques
with n - YX / 3  

and
have a tendency for requiring lengthy :ompucing

,, 2 2G' i ,
G'' + GG jG I , times, whilst transient terms are decaying.

Further, it is difficult with such solutions to
with G~ : n2 PI as Ii -

.  (19)

reduce the solution into (for example) steady and

r We now make the following transformations unsteady components, in order to gain a deeper

insight into the solution.
Y = ' - F(X,t) . (20)

IC FInstead, we shall pursue a method, similar to
2 + F t dX (21) that used by Duck!

2
(but in a "prescribed pressure"

context), in which the solution is expressed in
(which is the unsteady version of the Prandtl

the form of a Fourier series in time. In addi-
transformation). Substitution of (20) and (21)

tion to partly overcoming the difficulties en-
into (7), again leaves the governing non-linear

countered with time marching schemes mentioned
equation unchanged, with T, X and Y replacing

above, we shall see that this type of approach
', I and Y respectively. The boundary

allows the exploitation of a number of useful

conditions (9)-(11) are simplified somewhat
symmetries in this particular problem.

however:

Specifically, we write
On Y =0, X < 0

Y = 0 . (22) T(X,Y,t) = Y n(X,
Y ) 

emt
n--o

As Y t-

y tY ± F(X,t) . (23) P(x,t) - Z Pn(X) eint (25)
n

m
't - P(X

The remaining boundary conditions are unaltered.
where we must insist that 3_n(X,Y) is the corn-

We now go on to consider a numerical 
solution to

plex conjugate of Tn (X,Y), and similarly we
equation (7).n

have that P n(X) is the complex conjugate of

III. Numerical method P (). Substitution of (25) into (7) yields the
n

following infinite system of equations
We shall from here on assume that F(X,t) is

a periodic function of time. To be rather more in f + . _

precise, we set 
l2 nY + 6 ,n '0 Y IC nY SYX X YY

- PnIY I
] 

- n + P

F(X,t) f(X) sin t (24) oX .YY nYYY nI

i.e. the flap is oscillating about the zero mean 2. jXn y - j ] (1- j,0)(l-6 n,j)

position. (26)

for n - 0, !I, ±2, ±3

One method to solve equation (7), and Here ik - 0, i # k

associated boundary conditions would be to use a - 1, - k. (Z7)

. .. . . . . . . . . . . . . . ... _......



Notice that only n = 0 is a non-linear equation,
y(X,Y,t) Y y(X,-Y,t+ T ) . 30)

all other values of n correspond to effectively

linear equations. The implication of this statement is that ',n (X,Y)

Before proceeding further, we must first con- is odd about Y = 0, whilst P X,Y) is even

sider the transformations (20) and (21) in rather about Y = 0. Consequently we may halve the

more detail. We have already stated that F(X,t) domain of Y we need to consider, solving in just

is the "shape" of the flap. However, since the Y 0. The system (24) must then be solved,

flap and plate extend only up to X = 0, then for subject to the following boundary conditions

X > 0, strictly, F(X,t) is undefined. In
'n (XO) = Mny(XO) = 0, X < 0, (31)

order to proceed further with our Fourier time

decomposition type of approach, and to exploit the (X,O) = O21,0) - 0. X > 0, (32)
2n 2nYY

method to the full, we must now be specific about
Sn -'Y(X

O
) = 0, X > 0 , (33)

F(X,t) in the wake. In fact, for X > 0,

F(X,t) is arbitrary, and consequently assuming P (K) = 0, X < 0 , (34)
2n-1

that F(X,t) , X < 0, is given analytically, we 1
'9Y Y~, 

5n2 1n± f(K)

shall use the analytic continuation of F(X,t) nY nO - 2i

into the wake. We may then expect our solution as Y (35)

to be as smooth as possible, with a continuous whilst upstream/downstream we have

vertical coordinate transformation.

9 1y2 6n,0
We now consider the boundary conditions to be n Xl(3(Sas X -- , (36)

applied in the wake, assuming F(X,t) to take on Pnx(X) M 0

the form of (24).

p 6 X
2/3  

as X.++ (37)
n n,O

Firstly, since the flap is oscillating about

a zero mean position, the conditions above the The next step in the technique is to truncate

plate at time t, must correspond to conditions (23) as follows

below the plate at time t + i and because of N

condition (12), we must insist that n-(X,Y,t) "n(XY eint
c ii N

P (Xt) =P_(X,t) -P(XOt - P(X,t * )N int

P(X,t) = L P (K) e , (38)

for X > 0, (28) n--N

i.e. we must have which then reduces (26) to a finite system.

Notice that because of the relationships between

P 2n-1(X M 0, X > O (29) n (XY) and 9_n(XY) (and similarly for the

pressure and displacement function) we need also
for all n.

only consider n 1 0 in (26).

Similarly, we must also require

Next, we apply Crank-Nicholson differencing

JP



to the boundary layer momentum equation (26), (26) was solved for n - 0,1,2 ,...,N, and this was

" with L X L in steps of AX, and repeated until the maximum change in any of the

0 * Y * Y. in steps of AY. I 0(X,Y), 0 < Y < Y. fell below some prescribed

For n - 0 we choose to evaluate the tolerance limit (generally 10- 7). Once such

correction terms to the solution at each itera- convergence at a given X station was obtained,

tion, whilst for n t 0, we choose to evaluate the X + X station would then be considered.

the streamfunction and pressure terms themselves This process was repeated up to and including

(the reason for this difference being because of X a 0. However, we require that the

the non-linearity of (26) if n -0). P 2n1(0) - 0, and in general this will not be

achieved. We resolved this discrepancy by

The resulting equation is generally of a
simply subtracting P n~(0) off the previous

banded matrix form, for each n and X, with n-i

K~_() < 0, yielding a finite value of

a right-hand column (due to 
the pressure term),

P2  L0) % Pn(-"). (Consequently the

and may be written schematically as follows
P2n (-1() are determined absolutely, it is the

An Xj+ 2 + Bj Xj.+ + Xj + Cj Xj_ + DjX Rj , P 2n(--) that may not be determined). All the

j - 1. J-2 (39) latest a even solutions were left unaltered.

Restarting the computation at X - AX, the

where X, relates to the streamfunction at the marching process was continued, with the appro-

h station, and X relates to the pressure priate wake boundary conditions on Y 0 0. Then

term. Our iteration procedure for solving (26) the solution was marched forward to X -

was a combination of Newton iteration (for n - 0), where LI > 1, by which stage the solution was

coupled with back substitution (for n 0 0), the generally seen to take on the similarity form of

system (39) being solved in all cases by Hakkinen and Rott
18
.

Gaussian elimination.

Several advantages of the Fourier series

% Notice that in the wake, the situation is4%approach now emerge. Supposing reversed flow

slightly different for n odd, since does not occur, at any given X station we need

P n W~
x  

- 0, X > 0. However the system is not- (1 only store values of the streamfunction at X, and

over-determined, since we have only one boundary the preceding X station X - AX. In the case of

condition on Y - 0 (instead of the two for n time marching schemes, all the values of the

even). The result of this is that we may set streamfunction for all X at t, and the previous

0.. 0, for all j in (39) for n odd, S > 0, timestep t-At must be stored, although this

yielding a truly banded system. advantage of the Fourier time series approach is

The numerical scheme was then as follows, partly offset because there are N+1 modes to be

*. Using the asymptotic behaviour as X - -, at stored, all of which (except n - 0) involve

X K - L0 , the solution was then marched forward in complex values. Perhaps, however, the major

X. At each X station, the differenced form of advantage of the present method over time marching

,

*i :2.: .. . . . ..."-.": :.i :: : i 2":. . . . . . . ......-. .- , ,: , , . . . .. . ,.- ,. - .i



-' methods is that we need sweep through the entire tions with large values of E were performed, and

flowfield just once. the solutions obtained did indeed appear to

approach such a limit.
IV. Results

Figs. 2 and 3 show the upper wall shear
All calculations were on the following class

(r - Ty) and pressure distributions respectively,
of flap shape

in intervals of i/2 , commencing at t - 0 , for

asin t
F(X,t) a 1 2 X < 0 (40) the particular example of a - B - 1. In all

1 + (X-- )
2

3 cases, the local maximum/minimum of the wall shear

iis seen to occur at the trailing edge itself,i.e. fmX - X < 0 . (41)
[1 + (X_-1)2]

/3 - 0. In fig. 3 , the arbitrary additive pressure

term (described previously) is taken to be the

Computations were accomplished using 
161 points

average of the upper and lower pressure, at
in the lateral (Y) direction, with 0 < Y < 10,

X = - , at each particular time. Notice that the
and 81 points in the streamwise (X) direction,

periodicity of the flow implies P_(-,t) -

with -10 X * 10. A uniform grid was employed
P+(-, t+ff) and T_(X,Y=O,t) - T+(X,Y-O,t+iT).

in both directions. The smaller grid in the Y
Further, as a result of our comments previously,

direction was deliberately chosen because of
the pressure distribution for X > 0 at time t,

the sensitivity of the solution, particularly the
is identical to that at time t + Tr

wall shear, to AY (the solution being relatively

insensitive to AX). Further, generally we took Fig. 4 shows the variation of wall shear at

N - 4 (i.e. five Fourier modes). A number of the point X - 0 with time • For B = 1,

control calculations were performed for the the maximum shear is seen to occur slightly before

larger a computations, using N - 6, which t - w/2, whilst the minimum shear occurs just after

resulted in a change in generally no more than t - 5n/4. We see that there is a fair degree of

N the third decimal place of the solution, departure from the quasi-steady solution, which

would possess a maximum at t - 1/2, and a minimum
, Two checks of the numerical scheme are

,'-' at t - 3'/2 , with r(X=O, Y-0O, t-= r/2)

a available. Firstly, if a 0 , then the simi-

r(X-0, Y-0, t - 3w/2) - 0.
larity solution of Hakkinen and Rott 18 applies

% uniformly downstream from the trailing edge, with Figs. 5, 6, 7 are the corresponding figures

no upstream perturbation of the uniform shear for the example a - 2, S - I. In particular

(due to the lack of upstream response). The fig. 7 indicates that for a period, the flow is -

scheme was found to reproduce these results undergoing flow reversal in the region of the

% satisfactorily. Secondly, as 3 - , the trailing edge. Strictly, our numerical scheme is

solution is expected to become quasi-steady in invalid in regions of reversed flow - we have

form, with the solutions obtained by Smith1 3  employed a marching scheme in the streamwise

applying instantaneously. A number of computa- direction, which prohibits the propagation of any



flow information upstream. We shall return to a accounts for the reversal flow regions, and it was

discussion of this point later. found that the flow reattaches very close to the

trailing edge, permitting the solution to be

Figs. 8, 9, 1O relate to the case a = 3,
continued into the wake. Thus it would appear

3 1. In fig. 10 we see again that for a period

that for these separated flows, the numerical
in the cycle, flow reversal occurs. Figs. 11,

scheme must correctly account for reversed flow

12, together with one of the plots in fig. 4 , are
regions. In the case of the Fourier time series

for the case a = i, 3 = 1 , corresponding to a
method, it is rather unclear how reversed flow

somewhat higher frequency of oscillation than the
regions should be treated, since although the flow

previous examples. Again, a period of flow
may be reversed at certain points in the flow-

reversal at the trailing edge is observed.
field at certain times, at other times, the flow

Let us now consider this apparent separation will be in the forward direction. This is un-

in the vicinity of the trailing edge. Similar doubtedly a restriction on the time series

one-sided separation has been found in other decomposition technique, and work is on hand to

(steady) studies
7
' , and it has been argued that resolve this problem.

this is a condition for the breakdown of the multi-
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APPLICATION OF UNSTEADY LAMINAR TRIPLE-DECK THEORY TO VISCOUS-INVISCID

INTERCTION FROM AN OSCILLATING FLAP IN SUPERSONIC FLOW

'ing-Ke Huang* and G. R. Tnger**

University of Colorado

0Boulder, Colorado

Abstract triple-deck scaling. We then treat its application

to supersonic flow in Section 3, including a lin-

a Unsteadv triple-deck theory is applied to ana- earized solution for small flap amplitudes. A sup-

lyze the local viscous-inviscid interaction of an porting comparison with experimental results is

idealized oscillating flap with a laminar boundary also given. Section 4 concludes with a discussion

layer in supersonic flow. For small flap arpli- on the implications of the present work for future

tudes and small-to-moderate nondimensional frequen- studies.

ties, linearized analytical solutions by means of

Fourier transformation are given for the pressure II. General Triple-Deck Formulation

and shear distributions ahead of and behind the

flap hinge. In the supersonic case, the predicted 2.1. General Set-Up

unsteady viscous effects reduce the pressure ampli-

tude and spread it out upstream while causing it to Consider a flow past a plate airfoil with a

lag the quasi-steady inviscid prediction (flap mo- flap oscillating with frequency a* and amplitude a*,
tion); this also results in an unsteady delay of as shown in Fig. 1. The flap is idealized as hav-

incipient separation at the hinge to a higher flap ing a large length compared with the streamwise in-

amplitude. The unsteady upstream influence of the teraction scale. Suppose that the fluid is Newton-

interaction is found to decrease as the frequency ian with constant Prandtl number obeying the Chap-

increases. These trends are shown to be in quali- man-Rubesin viscosity law (,Li = constant) with the

tative agreement with available experimental data. wall surface maintained at a constant absolute tem-
7- perature. For simplicity zero angle of attack is

I. Introduction considered, so that a Blasius boundary layer can be

K assumed on the plate upstream of the leading edge C.

The formal asymptotic triple-deck theory of un- of the control surface. We set up x,y coordinates

steady free laminar viscous-inviscid interactions with the origin at the corner (Fig. I). In what

for purely supersonic or subsonic inviscid flow has follows, we denote time, pressure, density, viscos-

been developed in general by Ryzhov and Zhuk as an ity and temperature by t, p, 0, u and T, respec-
extension of the steady flow theory due to Stewart- tively; u and v are the velocity components in x

son and Williams.
2 

Their results for the leading and y directions, respectively, while the super-
approximation as ReL - - indicate that when the re- script * denotes the original physical variables,

duced frequency w based on reference length L and the rescaled dimensionless variables being denoted

freestream velocity u*L/U* O(Re L 11) the explic- without a star. The subscripts - and w refer to

it unsteady effect remains only in the viscous low- the free stream and the wall conditions, respec-

ar-deck equations, the inviscid disturbance flow in tively; U* and M are the free stream velocity and

the overlying middle (main) and outer decks being Mach number, and L* is the characteristic length

quasi-steady. Schneider
3 

has also given a funda- shown in Fig. 1.

mental analysis of unsteady disturbances in purely y.

supersonic outer flow for arbitrary amplitudes in

which, unlike the aforementioned free-interaction T
case, the amplitude governs the streamwise interac-

tive scale; he also found that the quasi-steady

approximation fails near the wall. BLASIUS UPPER DECK 0(0)

Notwithstanding these general theoretical de-

velopments, there has been little application ofM .."

them to specific problems wherein we can gain a MAIN DECK 0(E
4 )

more concrete appreciation for the physics of the

unsteady viscous-inviscid interaction process. Ac- LOWER DECK O(f5
)

cotdingly, the present pape: describes such an ap- I 0__ O EXP(;wt)

plication to a model problem of both practical yet Fo6
fundamental interest in aerodynamics, namely the V
unsteady 2-D interaction field produced by an os-

cillating flap in supersonic flow. The problem is

also instructive because it possesses a well-known Figure 1. Schematic Triple-Deck Structure

steady state solution,
5 

for flow past a corner near the Leading Edge of the Oscillating Flap

that permits the new unsteady viscous effects of

interest here to be readily displayed. In the region very close to the corner, a lo-

cal interaction takes piace between the viscous

In Section 2 we outline the general formula- layer and the pressure induced in the external flow.
tion of the problem with its appropriate unsteady The interaction region extends over a streamw~se

length of order , where = Re-!- is a small
*Visiting Associate Professor, Department of Aero- parameter and ReL

= 
U*L*:

*
. is the free stream

space Engineering Sciences; on leave from Nanjing Reynolds number which is supposed to be very large.
Aeronautical Institute, People's Republic o'4 China. For oscillation frequencies such that YL* U/ *

•*Professor and Chairman, Departnent of Aerospace O-) it can be shown that there are three dis-
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" % "o - .- . " .' .. . . . ". •" " ", ,- . ' ° , .' • .' . '. - . -" "-. - - •. . " " '" d

.. .. .. . . . . .. . . . . . .. . . . -. -- , - . -.-- - i



processes dominatel
- 3 

(Fig. 1), as follows. The obtained as follows. Assuming that z is sufficient-
* main deck with thickness of order t'" acts as the lv small, we can expand u, v and p as power series

disturbed rotational inviscid continuation of the in i; to the first order (linearized) approximation,
upstream boundary layer, the first order solution this gives

* therein being a simple quasi-steady displacement of
the streamlines. The upper deck has a thickness of u = y + U(x,y) • exp (iwt)

order E3 in which the dominant process is quasi-
steady irrotational inviscid flow so that the first v - y e
order equations are potential disturbance flow equa-
tions. The lower deck has a height of order &5 and p = P~x) a exp (it)
contains an unsteady viscous incompressible distur- Substituting these into Eqs. (1) and (2) and equat-
bance flow. The pressure induced at the base of ing like powers of a yields
the upper deck is impressed upon the top of the low-
er deck, so that the problem reduces to the solu- + 0 (8)
tion of the unsteady incompressible boundary-layer 

)x ;y

equations governing the lower deck subject to unusu- UdP )2U
al boundary conditions. iWU + y -

+ 
V -

+  
(9)

According to Stewartson
5  

and Ryzhov and Zhuk,
1  Te a x tY w

the suitable scaled variables for the lower deck To the same order of approximation the wall bound-
are x* = OIby, y* . E5b-, (p* _ p)/O*U

.
2 = E2cp, ary conditions (5) and (6) can be shifted to y = 0,

u* = (Ed/b) u, v* = (3d/a) v, * _ C2(b/a) a, so that

t* = e
2
(ab/d) t and w* = W/E

2
(ab/d) with w < 0(1), U(x,O) = xH(x) , V(x,O) = -iwxH(x) (10)

where the constants a, b, c and d are given in Ap- The remaining boundary conditions are unaltered.

pendix A, anfd where C 
=  

w X 
= 
0.3321 and

p i a w e Analytical solutions of this small perturba-

5 = M
2 

- 1!. The resulting first order lower-deck tion problem will be obtained by taking the Fourier

flow equations are of the nonlinear boundary-layer transform with respect to x. Thus, for example, if

type

-IAu + -L = 0 (1) U(yk) -) e - U(xy) dx , (11)
*x * 3y

;+ u 3u + u = - 22) then lettingv ikf, U- - d = (w+ky)+t . -L 
+  

I - = - + - (2) - y an I(+ky

t ix 3y dx )y
2  

where kC 1 = (ik)
1/ 3

, we find from Eqs. (8) and (9)

that the function f satisfies Airy's differential

with the upstream initial condition equation

Au d~f d
2
fTy 1 as x () (12)

y dC
4  

dC
2

Matching with the small disturbance external flow The boundary conditions (10) require that f satis-

yields the outer boundary condition fy

u -y + A(x,t) as y- (4a)

where f(O) = iW (13)
AA (0 + uk)

3

)A= -p [supersonic wave-like behavior] (4b)

df (0) 1
A 1 p/,d () (14)

= - - J ) d& [subsonic] (4c) dy (0 + ik)
2

A third condition can be obtained by satisfying the
The inner boundary conditions for zerc slip on an x-momentum equation (9) right at the wall; after

impermeable wall are Fourier transformation, in terms of f this leads to

u 0 (5)

on y = -ie i t _ (0) - -ikP (15)

v - -iawe itxH(x) 
(6) dy3

where H(x) is Heaviside's unit function. It should where P(k) is the wall pressure spectrum. The re-

be noted that these equations differ in two re- maining outer matching conditions of Eq. (4) intro-
spects from the steady case studied by Stewart- duce the specific type of outer flow solution and

son
4
,
5
: there is a term lu/At in the x-momentum will be taken up below; regardless of this type,

equation, and v # 0 at the wall when x > 0 because however, we note that either of these conditions
of the oscillating flap. implies that the disturbance flow vorticity

3(u - y)/Ay 'and hence d-f/dy
2
' vanishes as y -

2.2. Linearized Version

Now the general solution of Eq. 512), which
The foregoing problem is nonlinear and hence vanishes as - -, is

difficult to solve analytically, especially for the d-f
unsteady case. However, the essential physics may - - BAi(;) (16)

be brought out by considering small amplitude flap dy-
oscillations, for which linearized solutions can be

#4-, *.- .. .. - .. -2



where Ai denotes the Airy function of the first ly required logarithmic decrement if its ordinate
kind and B is a constant. Following two successive is interpreted as -Im(k ) and its abscissa as 1/>.
y-integrations of Eq. (16) to obtain f, the two re- This result is plotted In Fig. 2, from which we can
suiting integration constants plus B can be deter- see that the pressure disturbance extends a shorter
mined in terms of P by conditions (3) - (15); the distance upstream as the frequency is increased.
particular value of P is then determined for either

supersonic or subsonic flow by the transformed out- 3

er matching condition (4a) or (4b), respectively.

Fourier inversion to the physical plane then coff- -1m(k i)
pletes the solution.

111. Supersonic Solution

The transformed version of the supersonic out-
er matching condition (4b) is

Sdf

dy (0 + ik) 
(17)

The integration of Eq. (16) plus the four condi- 10-2 10-1 100 101 102
tions (13), (14), (15) and (17) then yields the 2
pressure spectrum "/W

(8a) Figure 2. Logarithmic Decrement

(0 + ik) N(k) 3.2. Low-Frequency Behavior

where

____ _ C Another interesting aspect of the unsteady
N(k) = 1 - j Ai(;) dc .(18b) interaction is its low-frequency behavior pertain-

( .w)2 Ai'(iw) Ti ing to small values of w such that w2 <, 1; this

can be-obtained systematically by expanding F(k)

The physical solution now follows by inversion; and (OU/ay) 0 as power series in w. To the second

for example, the complex amplitude of the pressure order, we X then get the inversions of the trans-
distribution per unit a is forms in closed form (see Appendix B) and so obtain
dthe wall pressure and shear stress as

ikx P(x) 
= Po(X) + isP (x) + w2P2 (x) +"' (22)P. (x) = F(k) dk (19)0 2

= (x) + iwr1 (x) + a
2
t2 (x) + w 2 • (23)

* The corresponding shear stress along the wall can

then be determined by where P (x) and , (x) are the same functions as
those given by Stewartson

2 
for steady flow while

'u + a exp (it) U) the remaining functions are defined in the Appendix.
y y0 y y=0 Fig. 3 presents the numerical resuls for P, P1

.so that if we let and P2 as functions of x, while Fig. 4 shows T., r1
u -and r 2. We see from Fig. 3 that P , P1, P2 - 0 as("-3) -nz

- yv0 30x - -- , and - -x, P1 - 0, P, - 7.38 as x -
S- a exp (it) 3yy=O (20) These functions are continuous at x = 0 due to the

presence of viscous effects, whereas they would
be the complex amplitude of the disturbed shear have a jump across x = 0 according to purely in-
stress per unit a, then viscid potential theory. Fig. 4 shows that To, t 1

(x) = e y=0 dk (21)

Because of the complexity of the function ?(k)
given by Eq. (13), a numerical procedure in general
is required to invert the Fourier transform. How-
ever, several important physical features of the
interaction can be obtained analytically, as
follows.

3.1. Upstream Influence

The effective distance of upstream influence 2--3I X
in the leading approximation can be obtained by
examining the asymptotic behavior of P(x) as x - -

and calculating the resulting logarithmic decrement. A
*. As shown by Lighthill,

6 
this corresponds to that

zero k of the function N(k) -Eq. (18b): in the
lower-alf complex k-plane having the least value
of its imaginary part -lm(k,), which means that
P(x) decreases by a factor texp lm(k 1 )i per unit
distance. Now it can be shown that the equation

1(k) - 0 is exactly that studied by Schneider
3
: Figure 3. Complex Amplitude of the

the curve for M. - v2 in his Fig. 7(a) can be di- Pressure Oscillation, P Pt u ioP t
rectly taken over for determination of the present- P , .

3
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* and 0 as x . while 1o 0, - I as effects of the frequency upon the phases can be
x . We note that the divergence ot :, far found from Eqs. (22) and (23); letting denote the

* downstream indicated here is not a phvsic~llv real- phase, we obtain
istic result but simply implies an ultimate break- p

down of the small disturbance approximation due to t )- (26)
the unlimited growth in x of the perturbation wall '0pressure p
boundary conditions (10) when x = 0; however, this and
breakdown is well downstream of the main interac- tan
tion zone -3 - x - 2 around the flap hinge. )shear stress -0 (27)

where Fig. 6 presents the results as functions of
1,0 x. These curves indicate that both the upstream

pressure and shear stress responses lag behind the
flap movement about the same, the lag growing to-

7_ward - -1/2 as x - -=. Downstream, the pressure

-2 -1 1 2 3 x lag is small while the shear stress lag remains

significant.
TAN€

-2,C

ZA-3.C-

Figure 4. Complex Amplitude of the SHEAR STRESS
Disturbed Shear Stress, T= To+ iTI + 2

1 *2

From Eqs. (22) and (23), we may draw some in-

ferences about the effects of frequency upon the PRESSURE
*J amplitudes of the unsteadiness. To the second or-

der in.., we have I I

P P; P P2
jP o

'
_ 9 + I (I -1 (24)

P 0 0 Figure 6. Effects of upon the Phases

and
The aforementioned results are consistent with

° il - i i 2 1 1 unsteady linearized supersonic flow theory
7 

as one
S( ) , (25) would intuitively expect it to be modified by vis-

% °  0 0 cous effects: the unsteady flow lags the flap mo-
tion and reduces the pressure amplitude increasing-

where Fig. 5 presents the numerical results as ly with larger frequency, while viscous-inviscid
functions of x. It is seen that the amplitude of interaction (Fig. 5) spreads out the pressure field

both the pressure and wall shear oscillations de- upstream of the hinge line and introduces a phase
creases when the frequency increases. Likewise the lag that grows with upstream distance. Although

experimental data on oscillating flaps in super-
sonic flow is very sparse, some Swedish test re-
sults for a flap on a wing at M = 1.31 quoted by

. -- Tijdeman
8 
and illustrated in Fi . 7 also qualita-

!TIISI tively support the present ,:eory: this data
(clearly indicates a flap pressure amplitude level

well below inviscid theory with a correspondingly
greater phase lag that extends ahead of the flap
hinge.

-L QPHPI Possible flow separation in the interaction

zone near the leading edge of the flap is also of
interest. Although actual separation must be ex-
cluded from this linearized treatment because of

the local breakdown of the small disturbance ap-
proximation for shear stress, we may still obtain

-1.5 a rough indication of the conditions leading to
the onset of separation. Since the interactive
viscous shear field is free from any singularities
at its streamwise minimum, we may reasonably adopt
the Moore-Rott-Sears ("MRS") criterion

9 
for un-

steady flow separation which in the present prob-
L , lem requires that the total wall shear vanish on

. -3 -2 -i 0 I 2 3 X the instantaneous no-slip wall location. In the
linearized approximation, this becomes from (7)

* Figure 5. Effects of upon the Amplitudes
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Figure 7. Qualitative Comparison of Theory and Experiment for an
Oscillating Flap in Supersonic Flow (schematic)

(/__iu) =I + r e tg 0 (28) of the hinge give a good qualitative account of and
insight into the dominant unsteady viscous-inviscid

where because of the lagging phase the minimum interaction effects. The restriction on the per-
shear stress does not appear when the flap is de- missible reduced frequency to values k - w*L*/U*
flectel at the upper extreme position. The separa- 4 --2 < ReL /4 in fact embraces much of the ?ow2 to-
tion cndition can also be written as aIr! > I. moderate frequency range encountered in aeroelastic
Now excluding the unrealistic far downstream behav- problems,

10 
so that the quasi-steady approximation

ior of 71, Fig. 5 shows that minimum [r! occurs at for the outer part of any strong local viscous-
the hing line x - 0 with the value inviscid interaction regions occurring in this

T(O) Z 70(0): - 1.4w 2  (29) range is indeed often applicable in practice, as
are the small w = E 2k << 1 expansion analyses used

so that the flap angle i at which the separation herein.
occurs is roughly

4e2/3 Owing to the linearized purely supersonic na-

5 9AiNO) ( + 1.5,2) ture of the inviscid flow assumed here, a separate
:(0) - 1.42 treatment is required of the far more difficult

mixed nonlinear problem associated with transonic
= 1.1(l + 1.5+ ) (30) flow. Indeed, the unsteady transonic triple-deck

where the value for - 0 is just that given by problem might exhibit a basically different quasi-

Stewartson4
,5 

for a concave corner in the steady steady behavior than that treated in the present
work.

case (note that the z defined by Stewartson is one-

half that used here; moreover, we have corrected
some numerical inaccuracy in his paper). The above Appendix A
expression predicts that i increases with increas-
ing frequency, a result of the fact that in super- The Interactive Scaling Constants

sonic flow the (negative) unsteady skin-friction
disturbance around the hinge line lags the flap mo- a = L*C3/ -5/4-3/(T*/T*)3/:
tion (Fig. 6). Thus the instantaneous T does W

not occur at the largest flap deflection merturba- b = L*C3/5 -3I4-1/ (T*IT)
/
:

tion) and so a slightly higher flap angle can be

tolerated than in the quasi-steady (w z 0) case. c = Cl/-'//
-

IV. Concludi.; Remarks d = I.*U*C3/l-i-1 C/"(T*'T*)-0 W

Although the present linearized treatment of
the disturbance field due to small oscillations of Appendix B
an idealized unbounded flap model introduces unre-
alistic large x-scale growth of some perturbation Details of the Low-Frequenc'., Approximation
properties and is restricted to amplitudes

a* ReL'1/ , the local results in the neighborhood L.1. Complex Amplitude of Pressure Oscillation
*1L



p = p + ip + p 2 +
,o 2

I - LC ikx I + (0 + ik):/ 3  dk
(0 + ik) e4/3 - (0 + ik)4

/
' k

- {1- l/3eOX das x >00. r8/3 + 4/.3 +

",7.3 i x
.e as x 0

30 3Ai(o) 10 e dk
"-". (0 + ik)I/3 6-/3 - (0 + ik):/j2

.., , 6 -°x 1 + 2 44 /3

3, 9-2/3Ai(0) e d as x 0

-fo J '(I + + ;813)2

(6 - 9x6) Ai(O) e-2/3e 9x  
as x

!' * 3~A(0) + /

" ") +2 a3/ II + 9e4/3Ai2(0) 12

where

eik dk
• ," (0 + ik) e"/3 - (0 + ik)4/3y

3 3 a x &1/3(2 + /3) asX>0

2,-T3 1 - (+ /3 + E8/3)21

9T 12eex - 9exeex as x < 0

f0 ikxo 1/

= ji 0+ik)I3 dk

2 'T . [e4/3 (0 + ik )4/3

e-8
1 3 f e-x 1/3 + 3 8 /3 - 1 d& as x > 0

f(1 + &./3 + 8/3)3

90-8/3 a3 e)2e x'
128 3(x)2e

x
- xe as x < 0

0 0 [-3Ai'(0)]3/. =0 0.8272

B.2. Complex Amplitude of Disturbed Shear Stress

7 - T + iT 2 + 2 W +

where the Fourier transformations of to, rt, and T2 are

t. Ai(o) ( 2k)/ 3

0 Ai'(0) (ik) 0
3

0o Ai' (0) I
7- . + i(o) (ik)2P'3P

Ai(0)

T -F + A (ik)
2
/
3
P + AiU0) /

1 2Ai,2(0) 0 Ai'(0) k

By inversion, we have

V *6



3,3i(O d as x 0
2,62/3 o 1i/3(l + g4/3 + 3/3)

9Ai(0) eax as x 0
4a2/3

( P + 9A ( f as x 0
2,6

/3  
0 (1 + + ra/3)2

p +,~ (~ Ai 2 (O) a3x

p + 6xe as x 0

9Ai2 (0) 3Ai(O) 9 /3[3Ai(O) + e8/1J-Pi + J- 7A30
2 1 2 3 4

where

ikx --.--x2 /3F(L) as x 0
J, f + ik) ' (0 T

O + ik) 5- 3  
0 as x < 0

(0 + elkXdk(0 + ik)
1 3[e/3 - (0 + ik)/31

v_ a-2/3 e-x( + /3) d x > 0
Tr fo 1I3(1 + u'/

3 
+ r8/3)

3 I -2/3e X as x < 0

e' ikx ]
1 3.2.E, (0 + ik) 1/ 3 

e/3 - (0 + ik) /3
2

Je" -2 f e- 3x (I + 2 4/3) d(",--2 o 1'3(i + r4/3 + 8/3)2 as x > 0

266-02(2eax - 3exee x)  as x < 0
"16

-o ikx
e (0+ ik) dk =

_[4/3- (0 + ik)'1313

( - 2f - e- 6& - 17/3( + ¢/3) dc as x > 0
- 2+ J/3 + 8/3)

9-2 9(x)2e + 9Oxe - e9x asx
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A STUDY OF NON-UNIQUE SOLUTIONS OF THE TWO-DIMENSIONAL
BOUNDARY LAYER EQUATIONS AT LAMINAR SEPARATION AND

REATTACHMENT POINTS

M. DRELA

W. T. THOMPKINS JR.

I Massachusetts Institute of Technology
Cambridge, Massachusetts

0 Abstract

I The possibility of non-unique solutions to the priately. A Keller type box scheme was used to
laminar boundary equations in direct problem calcu- solve the system of equations. We solved the

" lations has been identified for decelerating flow, continuity-momentum, energy, and turbulence model
For flows far from separation or reattachment one equations simultaneously rather than by iterating
solution is physically reasonable and the others between them. The simultaneous solution of the
unrealistic. As a separation or reattachment point entire equation system at each marching location

____ is approached, the multiple solutions approach each leads to an efficient solution scheme in terms
other and become identical. Understanding of this of computer time as it appears to have quadratic
behavior allows direct problem calculations through convergence rate at every point.
separation, although such calculations are not
practical. The computer code used to generate With these procedures the distinction between
these results was developed to solve compressible, inverse mode and direct mode solutions was limited
laminar or turbulent boundary layer and free wake to a single boundary condition switch, and the
problems in direct or inverse mode. The equation ability to easily switch between direct and inverse
formulation uses a variable (Scaling based on the mode calculations allowed us to study separation
local displacement thickness rather than the more and reattachment point behavior in a systematic
common Levy-Lees scaling. Similarity solutions in fashion. During this separation behavior study we
either primitive variable.)r stream function form were able to uncover what appear to be multiple,
are possible. a resulting equations are solved non-unique solutions to the boundary layer equa-
using a modif d Keller's Box scheme in which the tions when solving the direct problem for decelera-

* energy equat n and turbulence modeling equations ting flow.
are solved simulaneously with the continuity and
momentum equation . The approach is efficient and In the pvesent paper we present the analysis
robust for all of he variety of test cases exam- for the 6* transformation, and show sample
ined. The transformations and computational parti- calculations in direct and inveize modes to
culars for the direct and inverse modes will be demonstrate the computational efficiency of the
presented. The efficiency and accuracy will be present scheme. We then present a computational
illustrated by few computational examples. A experiment to demonstrate that multiple solutions
number of examples illustrating the nature of the to the boundary layer equations always exist for
solutions at separation and reattachment points decelerating flow. Since the multiple solutions
will be presented. always appear to involve reverse flow, we must make

some approximation for the upstream momentum
convection terms. To do this we introduced a

P Introduction modified Reyhner-Flllgge-Lotz approximation. We
believe that our basic results are independe. -f

As part of a research program designed to these approximations but are unable to prove tt...
study viscous-inviscid interactions in turbo- conclusively.

machinery flow fields, a compressible, two-
dimensional boundary layer calculation scheme was
developed. The scheme was designed for internal Analysis
flow applications where separation often occurs at
unexpected locations and causes a strong inter- Eqs. (1-5) are the two-dimensional, compress-
action between the boundary layer and the core ible, boundary layer equations written as a first-
flow. Since over a large portion of the flow field order system. An eddy viscosity and turbulent
the boundary layer is usually known to be attached, Prandtl number have been included to allow for
an efficient scheme should allow easy transition turbulence modeling. Bars denote dimensioned
between operation as an inverse or direct solver quantities.
and accept a wide variation in boundary layer
growth rates. continuity:

t"." .~In order to generate a scheme suited to our )(__l ) 0 (1)

particular needs, we adopted a number of uncommon
but not unique procedures. We based the transfor-
mation from physical to computational coordinates x-momentum:

' directly on the displacment thickness 6' rather"''" O a d~e(2)

than the more common Levy-Lees type transform. !- + -+

This type transform was used previously by Carter ad

[I) for incompressible flow. Similarity solutions
can be obtained in either primitive or stream-
function form when the equations are written appro-

% %.



a(sub) + (pv) - 0
energy: + 0 (8)ax ay

aLh h h(3)
a2,3 ay au an 8 at du

+ ay + 0eUeA :
u ed  (9)

shear definition:

Sah h = (O
r- ( + at) n (4) Pua Lh + ov - (0

T definition: au

aT A C + Ut)

Pr Pr; T Pr) 9 h + I L_ an
q- r L_ (12)

(P Pt yPr a7With the reference quantities L, 0o, uo, To,
and aO  lyRTo , non-dimensional variables are
defined as follows: Eqs. (8-12) are singular at the leading edge,

and therefore cannot be used to generate a simi-
larity solution to start streamwise marching. To

= - O (6a) overcome this problem, the equations are rewritten
F = /-- using the following similarity variables.

U . (6b) u
u a. U = - (13a)

% Ue

av - a-' f -u (Gc) = V (13b)a0  Au e A

h - (6d) H - h (13c)

a0  
-

Sre (Ge) - T (13d),o-o Peue Ue

q - V-reo  (6f) 1

0 10  Q h q (13e)

u . o (6g) R - L- (13f)

ua

Ut " at (6h) M. _e (13g)10 eo To
%C

T - T (6i) u . L_ - _ue  (14a)To us dx

This unusual definition of the transformed normal Ba x d A (14b)
* velocity is used because it simplifies the inter- Adx

mediate and final equations. No computational
problems are encountered when extracting the physi- The resulting equation set with relevant boundary
cal v velocity from this transformation. Using the conditions is:
displacement thickness, the computational coordi-
nates x and y used in this analysis are defined as: - M) R (RV) + )(RI 0 (15)

Is+ au M + y ax

x a - (7a)
L

as - V !y + Ou(1 RU') - x RU U
a-y -y ax

y (7b)

N2 - a- RU aH (17)

This coordinate transformation has some defi- ay ay ax

nite advantages over the commonly used Levy-Lees
transformation. Because the normal coordinate - x + ) (18)
grows as the displacement thickness, grid extension - euea' ay
is never necessary, even in separation bubbles and
rapidly growing turbulent boundary layers. This
transformation is also trivial to invert. With the- u x Pr +  -t i
above definittons, Eqs. (1-5) become: -e-e- _ -rL.J

r I g _.I Ua- (19)

2
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With these definitions, and the assumption that the

Boundary conditions: similarity flow is laminar, equations (24) and (25)
can be written as

y-0: 1) U = 0 (for boundary layer)
or S = 0 (for free wake) (20a) i aUs = e u - (29)
2) V - 0 (20b) PeCuCA Sy

3) H - Hw or Q Qw (20c)
Y=ye: 4) U = 1 (20d) Q 1 ir AM + -_L ( 

U 
elt,± (30)

5) H - 1 (20e)

• i" For normal marching calculations,u e i

Equations (15-20) can also be expressed in ue is
terms of a stream function F: known and A unknown (direct problem), or vice versa

(inverse problem). When a similarity solution is

= F being calculated, the global unknown is either CA
U

ay (21) (direct similarity), or Cu (inverse similarity),
with Bu and BA held fixed at their prescribed
values. The x-dependent terms are eliminated by

as + 0A + ,u(- MI) F ( + u I FU F setting x equal to zero.

F[ 30 _ 3F au) Strictly speaking, similarity solutions existx Lax ax (22) only for the zero pressure gradient case, since R,

Pe, U, Me, and 4/he which appear in the equations
are all functions of ue and therefore depend on x

8v'
5
A + 

8
u(- F

3  
if ue is not constant. In practice, however, all

.+ - M ) F3--ay wedge flows with nonzero pressure gradient found in

ra F H _ a 2. ~applications have a stagnation point at the leadingax axyj (23) edge, where the local flow is essentially incom-

pressible. In this region, the troublesome quanti-
ties mentioned above are either negligibly small or

" ..e2L... f + y' (24) can be treated as constants. Thus, similarity can
ye be obtained at the leading edge (x - 0), or for a

point sufficiently close to the leading edge so

x +that stagnation conditions exist within some

----- Prtj ay tolerable error.

+ U auiie (25) Solution Scheme
Pr) 1h) 3y(5

The finite difference scheme used in this

Boundary conditions: study is a Modified Keller's Box Scheme (Figures 1
and 2). The Standard Keller's Box Scheme was

y-0: 1) U = 0 (for boundary layer) (26a) obtained from Cebeci and Smith (2].
or S = 0 (for free wake)

2) F-0 (26b) dW.F ;-,

3) H = Hw or Q - Qw (26c) u2 U. 9 YEbo!4;., ? ,6 z .unknown

Y 0Ye: 4) U -I (26d)

5) H - I (26e) k

*1profiles-
1  9 i pnkoineEither formulation can be used. In this kowrles

study, Eqa.(21-26) were solved, as a matter of f ?
personal preference.

Using these equations, the calculation of . .. ..
Falkner-Skan type similarity solutions is straight- Xr., X;
forward. For similarity, Bu is a constant, and
Ue (x) is of the form Fig. 1. Standard Keller's Box Scheme.

ue(x) - Cu x (27) d;r. ;AV

u., U, U,, ?

Likewise, A(x) is of the form - ? t

S known j I unknown
A(x) - CA x -p(28a) roe$ t -rofiles

28 ) if

and 0A is related to Bu by ;

a - ±zj u (28b) ..... , ,
2 x.x

Fig. 2. Modified Box Scheme

4"3



The literature is unclear as to how is tc-
be evaluated from u If we specify the r'raiier-t

parameters (B's) midway between the two pr,)fies =
rather than at the profile positions, t eu strEam-

wise profile oscillations with little tendency no --- ::
* damp out will occur (see Figure 3). This behavicr "

is readily explained by noting that eq ato.-ns i2) -

and (24) at the wall reduce to , .

u dk(x)

where k(x) is a weak function of x. Since 
3
u il -.

specified at the box midpoints, equat:.on (31)

constrains the average of d~u/dy
2 
between any two

successive streamwise stations:

= k dU +d'U 132)

V /

Hence, at the wall, dtU/dy
a 
can have large am':.i-

% tude excursions with alternating signs and still
satisfy the finite difference equations. Fiqure 3 Fig. 4. Response of Modified Box Scheme to

L shows that the velocity profiles do indeed exhibit 3% edge velocity jump.
these fluctuations following a disturbance. The

Modified Box Scheme eliminates this problem by
calculating the profiles midway between the x
stations. Here, Bu is specified at the same Solution procedure

position as the 
profiles:

At each streamwise marching step, there are
BduU =(33) five unknowns at each yj station at streamwise
i dyi+* station xi 1/2 : Fj, Uj, 4j, Sj, and Qj. In

addition, there is one global (independent of y)

unknown at xi+j: uei+1, or Ai+1" It is convenient,

Thus, the velocity profiles cannot oscillate at the however, to treat both of these quantities as

wall because each one is individually constrained unknown when the governing equations are discre-

(see Figure 4). tized.
Since the discretized equations do not call

for uei+1 or Ai+I, but instead require the
midpoint values uei+1/2 and Ai+I/2, the latter
are temporarily taken as the global unknowns while

I the profiles are calculated. For convenience, the
I 0 UjC0 x 2,000 lack of a subscript on a gradient parameter or x

.4 = will from now on imply i+1/2. The gradient para-

meters are defined as:

ln (ue/uei)

,~~~~O . -/I l B (34a)6j 
ln (x/xi)

flws . ln(/i (34b)

". -. - These definitions were chosen because they allow

arbitrarily large streamwise steps in similar

SAfter ue, , and the unknown profiles are
/ I calculated, Uei+1 or Ai+j are determined from the

// / f lowing relationships and stored for the next

marching step.

//uei+i' uej i+] (35a)

Fig. 3. Response of Standard Box Scheme to

-% edge velocity jump. A j = 4i (i (35b)

4
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Another equation is obtained from the identity

q ~n practice, the iterates 6F,

areoin C introduced in the linear- Sw = Si(42a)
iad6 r process. The wall shear _________

Snd discretiz (42b)
Oan-introduced at this point since it or S.= S(4b
teSW slnearized~ expression of the inner

i oeli The third equation is determined by whether the
visO thr wih5~tegoa trtsdirect, inverse, or hybrid problem is being solved.

-d S re I ed on the righthand side to
dv dh rduce four blocktri diagonal systems direct: Sue = 0(4a

co ncoefficient matrix of 5x5 blocks. ines: 6 =0(4b

[- [- 6 u . f]- 6 a dSw[h] (36) hybrid: due(A) + 6A (B) = C (43c) p

Note that the only difference between the
iterates which are not explicitly included direct and inverse calculation modes occurs in this
system are expressed as linear combinations fnlse.Tehbi oei xrml sfli

finalde step.es Theton hybrid) moeiaxteeyusfli
cudled ifhter es coqu ations3- are viscous-inviscid interaction calculations. By

ampls ofhowthes cominaionsaresubstituting (40a) into (41b) and (40d) into (42b),

a simsple 3x3 system for the global unknown iterates
is obtained. 0

0 T5  1 - u'/2he

T '~2e(7) (all- a 1J) (b 1 b 1j) (c 11- c i) 6 ue

[(a) (b ) (c +-1) x 6,
R RaR 41 41 41]

6U 'L + SH-T + Sue (37b) iL6S~au 3Hue L(1 or 0) (0 or 1) 0 S-.

[r,,- r1j+ Ye- 1 -Fe+ FwS

At 0.0168 p "'5e, A ue Ytr (38a) =r 4  (441

P-t + 6~ au (38b) 0

Because the variations of all quantities are
taken into account, the entire system converges . ~ hq

ln (ue/uei) (3) quadratically. This property drastically reduces
= n(x/xi) calculation time for flows in which the energy

equation and/or turbulence model significantly

dB affect the momentum equation. Figure 5 shows the
Su u -~ Sue 1 (39b) advantages of taking account of the variation of

Cdue ue ln (x/xi) eddy viscosity for laminar flat plate flow tran-

sitioning to fully turbulent flow. The transition
was achieved by artificially varying the turbulence

ter the systems are solved with a block intermittency factor in a continuous manner. Note S '
mation algorithm, each unknown is expressed that the higher the Reynolds Number, the stronger
idue rj minus the global iterates times the effect of the turbulence on the momentum equa-
apective influence coefficients aj, bj, tion, and the higher the payoff of linearizing the
(j-1, 2, ... J). eddy viscosity. .-
0 rj - due a11 - Sh blj - 4SW clj (40a) %

Re,.1O -----.

r2 j - due &2j - dt4 b2 j - dSw c2 j (40b)

w d ue a3j - dA b3 j - Sw c3 j (40c)

rj- due a4j - dA b4  - S c 1  (40d) 25R*e=10

.r 51 - due a5j - 6a b51  6 S, c5 j (40e) ~ SU * .d~f4 _~

nce there are three unknowns left, namely ' -. ed .

and S~w, three more equations are -------
neiobained from the definition o f

sment thickness (by integrating (21)). tSO.SdOZS.

re w -ye-I (41a) ...

61j - d 1  Ye I F, + Fw (41b)
Fig. 5. Effect of linearizing eddy viscosity on

the number of iterations per streamwise
station. Convergence criterion. SU., !6-1
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7
The Reyhner-FlUgge-Lotz approximation, which WII Shear

is applied to regions of reverse flow, consists of

setting the streamwise convective terms U(aU/ax)and - tresrt e o ox :0.09
U (H/ax)to zero. This is necessary to avoid growth taulatec :n , x: 0.005

of numerical errors and to prevent a zone of CA A
dependence violation.

All the test cases run indicated that it is A

possible to retain the momentum convection term
U (U/ax)in reverse flow simply by eliminating only 8
its contribution to the variable iterates, thus
avoiding artificial growth of numerical errors.
This convection term is still retained in the 9
residues (i.e. the righthand side of (36)). 9100 1.10 '.2 0 

3
0 :. -

All results presented in this investigation which
involved reverse flow were calculated using this "/
Modified Reyhner-FlUgge-Lotz approximation. Of /

• . course, setting the variation of an term to zero

destroys the quadratic convergence of the overall
system. However, the contribution of convection

* terms is small in separated flow, and as a result Fig. 6b. Carter's inverse test case.
the number of iterations per streamwise step Coarse grid calculation.
rarely exceeded five.

Using the solution scheme presented here it is
possible to investigate in detail the relationships
between ue, A and wall shear with relative ease,

Results and Discussion since the calculation mode can be changed from
direct to inverse and vice-versa at any marching

To gain confidence in the solution scheme step.
presented here, an inverse calculation using the We first assume that all global quantities at
displacement thickness distribution given by Carter the i-lth and ith stations, and the profiles midway

• (11 was performed. Figure 6a compares the wall between those two stations are known (see Figure
* shear calculated with the present method to the 2). Now consider the usual inverse problem of

values calculated and tabulated by Cebeci (3]. calculating the ue and profiles at xi i/2 which
* Since Cebeciis calculations were for incompressible correspond to a specified A. If this specified A

flow, a freestream Mach Number of 0.015625 was used is deliberately varied in some systematic manner, a
to make compressibilty effects negligible, relationship between ue and A (or, equivalently,

between Bu and 0i) can be determined. Figure
7a shows such a relationship together with the
corresponding wall shear at xi+1/2. In this case

S \Noll Shear the known upstream profile corresponds closely to
I. - present re.ocax:00C the Blasius profile for zero pressure gradient.

m abulated .n [3], a:x0.005 Several surprising features are apparent:

1) When *u turns out to be negative, (i.e. ue
A is less than uei and an adverse pressure gradient

is present) there are two values of A and corres-
ponding 0A's which will produce this *u"

2) The smaller A always gives a positive wall
shear, the larger a always gives a negative wall

,0 , .0 ' . 40 100 . 50/.8: shear.

3) There is a minimum permissible 
6
u and hence

a minimum permissible ue. If a direct problem was
being solved and the specified ue was less than
this minimum, no solution to the finite difference
equations would exist.

Fig. 6a. Carter's inverse test case. 4) The minimum ue occurs when the wall shear

Fine grid calculation. equals zero.

Assume now that a direct problem is being
solved and that a moderate adverse pressure gra-*- Cebeci observed streamwise oscillations inside dinof-.6sspcieat Fgr

the bubble for a 4x of 0.005 or larger. The test dinof-.6sspcieatx+/ Fgrshown in Figure 6a was performed with a x of 0.01 clearly shows that two distinct solutions are
with no indication of oscillations. in an attempt possible. However, the A corresponding to attached
wto indctio oscillations . I a atte flow produces a smooth continuation from the prece-
to induce these oscillations, a case with the large ding stations, while the A corresponding to separa-
xted flow is ridiculously large and has a radically

* solution. Again, no oscillations were found, dfern prfilomsthe revios sas (see
despite the extremely coarse grid. different profile from the previous stations (see

Sd t mFigure 7b). Because the initial guesses for & and

the profiles are obtained by extrapolating from the

6

...............%



two previous stations, the iterative solution
scheme in this case always converges on the "rea-
sonable" solution, since it is the one closest to
the initial guess.

1 .6t
5 10 15 20
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Fig. 8. Gradient parameter and wall shear

relations far from separation.

Fig. 8b. Two profiles (dashed) corresponding
to the same edge velocity. Upstream
Profiles are close to separation.

__________________________Although the direct problem is ill-conditioned
at separation and reattachment, it is not neces-

Fig. 7b. Two profiles (dashed) corresponding sarily incomputable. A direct mode solution is
to the same edge velocity. Upstream performed in the usual manner until the sensitivity
Profiles are far from Separation. Of A to ue increases above some value, making

direct convergence impossible. The sensitivity can

Thi stutio canes igifcanlyifthe be quantitatively determined from (44). The

known upstream profile is close to separation. if sniiiytpclyrssdatclya h

the same pressure gradient as in the previous case stations Just before separation and reattachment.

is specified (Figure Ba), the two possible values At these points, the inverse mode is used to

of A are now quite close together. Furthermore, it determine the relationship between tie and a for

is not clear which solution is reasonable and which the next station. Four values of A which bound the
is nt snce he wo ossile rofles re ery two solutions are thus defined. At this point, one

nearly the same (see Figure Sb). If a direct solu- itratchieyt chonveg ond the specifieds ue

tion to the specifed BO, and corresponding us is ieaieyt ovreo h pcfe s
blindly attempted, the iterative algorithm will This is done by repeatedly subdividing the interval

wander aimlessly between the two possible values of which contains the correct us (see Figure 9).

a. Also note that Bu is locally quite insensi-
tive to $A in contrast to the case in Figure 7a. -suyccessve 3 guesses
This implies that the direct problem (convergence ___________________

to a specified edge velocity) is ill-conditioned
near the point of zero wall shear. Of course, it

-e is also possible to specify apcfe valu (U.wic)i
p. below the minimum and therefore has no solution.

On the other hand, it is easy to see that the

* inverse polmis well-conditioned no matter what/45
state the boundary layer is in.453 2

* relation

Fig. 9. Direct problem calculation procedureK. near separation and reattachment.
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Once inside the bubble, the direct mode can be Finally, it must be mentioned we believe that
marched in the usual way. The iterative procedure the nonuniqueness of the direct problem is not due
must again be used to get past reattachment. to the modified Reyhner-Flgge-Lotz approximation,

Figure 10 shows a supersonic diffuser with a which is applied in reverse flow regions to avoid
weak oblique shock impinging on a flat plate zone of dependence violation and to avoid numerical
boundary layer. Pressure and wall shear instability. The original Reyher-Flgge-Lotz
measurements were performed by Hakkinen (7] along approximation allowed multiple solutions for all
the bottom wall in the vicinity of the impinging pressure gradients, whereas the modified
shock. The direct marching procedure described approximation allows multiple solutions only for
above was carried out using the ue distribution adverse pressure gradients. At the separation
corresponding to the measured pressure. Because point where the occurrence of multiple solutions is
the shock is very weak, stagnation pressure loss most important, both solutions approach each other
was neglected. Liberty was taken in smoothing out and no upstream momentum convection exists.
the slight noise present in the measurements inside Further work must be done to assess the role
the bubble. Figure 11 shows the calculated A and upstream momentum convection plays at separation
wall shear. The agreement with the measured wall and reattachment points.
shear is reasonably good.
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case presented is merely a curiosity and serves
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The relationships between 8u and BA shown
in Figures 7 and 8 correspond to a freestream Mach
Number of 0.0625, making the flow essentially
incompressible. To determine what role compressi-
bility plays in the non-unique character of the
direct solutions, tests were also performed for

*[ Mach Numbers of 0.8 and 1.5. There was no qualita-
tive change in the Bu-BA relationships shown in
Figures 7 and 8.
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Abstract equation was solved with the wind tunnel and flap

Csurfaces as boundary conditions and provided lines
"A combination of total-head pressure, static- of constant stream function and velocity potential

pressure, hot-wire and flying hot-wire probes have which represented the grid used in the solution
been used to quantify the pressure and velocity cha- of the Navier-Stokes equations. This coordinate
racteristics of the flow in the vicinity of a trail- system is orthogonal, requires an assumption for
ing flap whose angle of incidence results in bounda- the dividing streamline downstream of the trailing
ry layer separation, a large region of recirculating edge and takes no account of the separated flow.
flow and a curved downstream wake. A two-dimen- Thus, in any region of separated flow, the stream-
sional form of the time-averaged Navier-Stokes equa- lines are likely to intersect the finite-differen-
tions has been solved numerically with a finite dif- ce grid at an angle with consequent numerical er-
ference grid obtained by a solution of Laplace equa- ror for the present hybrid-differencing algorithm.

. tion and the results compared with the measurements. Errors of this type may be avoided by higher order
The general flow patterns are well calculated and differencing schemes but it is desirable to assess
the results are in close accord in some regions of the magnitude of the problem before exploring more
the flow. In others, including the near-wall region complex schemes with their likely convergence pe-
and near wake, significant discrepancies exist and nalties.
numerical tests suggest that these are due to nume-

. rical assumptions although the two-equation turbul- The solution of time-dependent equations implies
- ence model and related wall functions are also likely the need for a closure assumption to represent the

to be deficient. unknown Reynolds stress terms and, in common with
many previous investigations of flows which separa-

I. Introduction te from surface discontinuities, a two-equation mo-
del has beeo used. The experimental investigation

The paper describes the progress made in a pro- required approximately half of the present effort
ject intended to develop a calculation method, based and is accordingly described in detail. It made
on the Navier-Stokes equations, to represent the ye- use of a flying hot-wire arrangement to measure
locity and pressure characteristics of the flow the characteristics in the regions of separated
around the trailing edge of airfoils at high angle and high turbulence intensity flow and the precision
of incidence. The calculation method is based on and application of the technique are discussed.

the numerical procedure introduced by Gosman and
Pun

I 
and applied to a range of flow configurations The problem of measurements in the separated

by many authors. Since the calculated results are flows in the vicinity of airfoils at angle of at-
approximate, measurements of the flow around and tack has been considered in a number of previous
downstream of a trailing flap arranged at incidence papers among which those of Young et a1

3
, Bachalo

in order to introduce a large region of recircula- and Johnson
4
, Coles and Wadcock

5
, Solignac

6
,

tion, have been obtained and are compared with cal- Johnson and Spaid
7 
and Nakayama

2 
are worthy of spe-

culation in orthogonal curvilinear coordinates on cial note in that they made use of either laser-
a staggered grid using the corresponding measured Doppler velocimetry or, as in the third paper, fly-
boundary conditions, ing-wire anemometry. The laser-anemometry measu-

4rements of Simpson et a1
8 

and Hastings and Moreton
9

Most existing methods for the calculation of the were also made in turbulent separating boundary
flow around airfoils make use of a combination of layers and are relevant to the present work. Cal-
potential-flow and boundary-layer equations. In- culations of boundary layers up to separation were
verse procedures become necessary where the angle considered in the 1968 Stanford Conferences [Coles

of incidence is sufficiently great to cause upper- and Hirst
10
] and some further work is referred to by

surface separation, and where the region of recir- Le Balleur et al 11, Bradshaw et al 12, Melnik
1 3

culating flow exceeds a value which remains to be and Marvinl4. In general, the calculation efforts
established, the boundary-layer approximations cea- which account for regions of separated flow have
se to apply and the Navier-Stokes equations are made use of interactions between solutions of the
required. The measurements of Nakayama

2
, for exam- potential and boundary-layer equations.

ple, suggest that the boundary-layer approximations
are likely to be adequate for his upper surface Exceptions include Murphy

1 5 , 
Thomoson et a116,

-t flow which separated at around 98% chord. The Sugavanam and Wu
1 7 

and Rhie and Chow
1 8 

who solve
flow chosen for the present investigation separat- a form of the Navier-Stokes equations to predict

-e ei some 20cm upstream of the trailing edge of the separation. Among the relevant wake studies are
flap and seemed likely to require consideration those of Andreopoulos and Bradshaw

1 9
, Viswanath et

of the normal momentum equation and longitudinal a1
20

, Yu
21

, Hah and Lakshminarayana
22 

and Baker et
diffusion. This supposition is considered here. a1

23
: the second includes calculations which compa-

re solutions obtained with the boundary layer equa-
The flow over the flap is shown to be two-di- tions and the Navier-Stokes equations for a symne-

mensional, steady and incompressible. As a con- tric wake and the second last solves the elliptic
sequence of the two-dimensionality, the Laplace avier-Stokes equations in boundary layer co-ordi-
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nates for an asymmetric wake. The final paper sol- functions used to obtain velocity characteristics

ves a parabolised form of the Navier-Stokes equa- from the signal voltage are the same as those des-

tion with a viscous-corrected potential flow solu- cribed by Ribeiro and Whitelaw
26

.

tion. In general, present experimental and compu-
tational investigations have been concerned with Measurements are more difficult in a region of

-. ' small regions of separated flow and their conse- separated flow with laser velocimetry, pulse-wire
quences for the downstream wake. anemometry and flying-wire anemometry offering dif-

ferent possible advantages. A flying-wire arran-
Our objective is to develop a calculation method gement was selected for the present measurements

but, since this required consideration of a parti- of velocity characteristics which were supplement-
cular flow, the experimental investigation is des- ed by static-pressure measurements obtained with
cribed next and is followed by a section dealing the five-hole probe. The essential details of
with the equations, turbulence model, finite-diffe:- the flying-wire mechanism are provided in Table 1.
ence assumptions and solution algorithm. The re- The signals from an encoder, which identified the
sults of the calculation method are presented and position of measurement and the probe velocity,

% compared with the measured values in the fourth and from the anemometer or anemometers were ob-
section which discusses the precision and implica- tained simultaneously and ensemble averaged to

-. ., tions for future work. within 1.5% with a 95% confidence level. The ef-
fective velocity transform equations were similar

I". Experimental Investigation to those for the stationary wire but modified to
take account of the known wire velocity. Further

The flow configuration is shown on figure I and details have been reported by Thompson
27

.

comprised a lm flat plate with a trailing flap lo- The two-dimensionality of the flow was examined
cated in the working section of a low speed wind in several ways. In the upstream boundary layer
tunnel. The cross-section of the tunnel was 450x measurements of wall static pressure, mean veloci-
300mm and the uniform velocity at exit from the 8
to I area contraction was 26.3m/s with an rms of ty profiles and normal stress profiles were iden-
the corresponding fluctuations of 0.24m/s. The tical at any S-location, within experimental error,

ojer more than 90% of the tunnel width. Surface
flat plate was located at 1 degree incidence and flow visualisation showed that the mean separa-
the flap at 17.5 degrees, both with respect to tion line was straight and normal to the flow over
the tunnel coordinates. The boundary layers on the the central 140mm of the flap although passive
upper surface of the plate and the tunnel roof were side-wall control vanes were required to achieve
subjected to trips, comprising of 1.5mm wire, and this. The flying wire was used to measure mean ve-
located 0.57m from the leading edge. The trailing -itys profilen te geomet cetrline and
flap was 250mm long and was connected to the plate 50mm to either side and the results, which were

. by a radius of 812.5mm. This arrangement caused 0mt'ihrsdantersuswcheebye appradiufa boun5ary Thiaerrangete ca - obtained at values of s/c of 0.96, x/c of 1.06 and
the upper surface boundary layer to separate appro- 1.20, agreed within 1.5% of the local values.

ximately 200mm upstream of the trailing edge and

gave rise to the characteristic boundaries indicat-
ed on figure 1. The skin friction coefficient, wall static

pressure coefficient, free-stream velocity and sta-

In the upstream region of the upper surface, for tic pressure coefficient normalised with the free

most of the lower surface and for much of the wake, stream velocity and static pressure at the bounds-
the flow had a preferred direction and - ry layer trip are shown in Figure 2. The values

cp t of skin friction coefficient were obtained from
vely low turbulence intensities. In these regions, Cfaserctin c=04ic nd B-S which frm
it was possible to measure the velocity characte- Clauser charts using K-0.41 and B-5 which confirm-
ristics with impact probes and, as outlined by ed that a logarithmic region exists in the attach-

ristcs ithimpat pobe an, asoutine byed boundary layer prior to separation albeit re-
Thompson and Whitelaw

24
, a combination of Pitot du nd th withrdownstreamsditan hei -

tubes, static pressure probes, static wall-pres- ducing in width with downstream distance. The in-
tubeststaticdpressureeprobesestaticuweme-pres- fluence of the change in wall curvature, at s/c

of 0.68, can be seen to have affected the pressu-
and around the wall boundary layers. For the re-
sults presented here, and away from the separated rea v eloci ti se %ofcd fure
flow region, a Pitot-static probe of external dia- upstream. The static pressure coefficient varies
meter 2.2mm provided information of the mean velo- between the wall and the free stream from just up-
city and static pressure distributions. Close to stream of the curvature and throughout the separat-

cityandstatc pessue dstriutins. los to ed region to the trailing edge.
' the separation region and where the flow angle
-_" deviated significantly from that of the surface,

-.'[a five-hole probe of 2.5mm external diameter guid- Figure 2 also shows the momentum thickness and
a h o 2 t d rshape factor, calculated with the velocity measur-
ed the use of the Pitot static tube and quantified
the flow-angle distribution. Close to the wall, ed locally at the edge of the boundary layer. Va-

a fltteed Ptottub of .45m eternl wdth lues are presented for the separated region al-
a flattened Pitot tube of 0.45m external width though their applicability is limited since terms
allowed the measurement of mean velocity with remomentum e-tion are impor-~~~~duced blockage and gradient effects. ntecossra oetmc" inaeipr
Sbl g atant in this region. It can b( seen from the mo-

mentum thickness and shape factor that the boun-
In the boundary layers and in the downstreamSwake, velocity characteristics were determined dary layer grows rapidly as separation is approach-

wakh e, nve caracteristicswre ried ed with values of 8mm and 2.7 respectively at the
with single (DISA S5Fea) and cross-wire probes
(DISA 55P61) linked to anemometers (DISA 55MI0) location of mean streamline detachment.
and, through a mini computer (POPSE) and analo-
ue-to-digital voltage convertor (AD01) to a digi- The distribution of static pressure coefficient

tal magnetic tape. The wires were calibrated in in the attached boundary layer and wake are shown

the free stream of the wind tunnel and digitally on figure 3. The magnitude of the cross-stream

linearised on the mini computer with the procedu- pressure gradient increases as detachment is ap-

rs recommended by Thompson 
25
. The transform proached and at s/c of 0.826, achieves a valusre eomnedb hmsn h rnfr
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* which is approximately 2.6 times that of the lon- from the trailing edge to x/c of 0.021 and includes
gitudinal pressure gradient. The implications of about 12 per cent of the length of the recircula-

• these pressure variations are discussed further tion bubble. The mean velocity remains small insi-
in section 4. de the bubble after the trailing edge and its di-

rection indicates there is entrainment from the ou-
The general organisation of the mean veloci- ter forward flowing boundary layer as the rear stag-

ties in the separated region is represented by nation point is approached. Downstream of the lo-
the vector and streamline plates of Figure 4. cation where the two shear layers interact, the
The streamlines were determined by integrating shape factor asymtotically approaches 1.4 as the

* the mean velocity profiles and show the negative momentum thickness decreases at a faster rate than
velocity region close to the surface and through- the displacement thickness. Here, the static pres-
out the length of the bubble. The cross-stream sure variation across the boundary layer decreases
velocity in the separated region is larger than with downstream distance. At x/c of 0.066 a pres-
the corresponding streamwise velocity particular- sure difference exists between the suction and pres-
ly in the regions of flow approaching attachment sure sides which gradually reduces until they are
and after separation of the reverse flow boundary equal at the end of the near wake at about 20% of
layer: they are small, however, compared with the chord downstream of the trailing edge. In the far
free stream velocity. The negative flow region wake, beyond x/c of 0.25, the mean velocity reco-
extends about 25mm beyond the trailing edge after vers to form a plane mixing layer profile.
which the shear layers which circumvent the recir-
culation interact and develop into the asymmetric
wake. III. Computational Investigation

Profiles of mean velocity and flow angle are The results discuissed here relate to the re-
shown on figures 5 and 6 respectively for the re- gion of the flow identified by the solution domain

* gion up to separation, in the separated region, of figure 7. Thus, boundary conditions were as-
and in the wake: it should be noted that the co- signed on all sides of the solution domain and
ordinate system has changed at the trailing edge the differential equations solved, in finite-
to correspond to the tunnel rather than the body difference form and with a mesh of grid points
although the flow angle is measured relative to determined with the aid of a solution of the cor-
the tunnel throughout. The measurements for the responding potential-flow equatic- The equa-
attached boundary layer extend to s/c of 0.87 and tions solved represent mean consei tion of mass,
measurements with a predominant direction in momentum, kinetic energy and rate of turbulent
the wake begin at x/c=0.016 although instantaneous dissipation and may be written in the form shown
flow reversals were still experienced. The in- below with .the coefficients given in Table 2.
tervening region features the recirculation bubb-
le with its maximum 40mm width and 250mm length au av -
and negative mean velocities less than 20% of the ax ay

* free stream value. The free shear layer which
circumvents the upper boundary of the recircula- U "x v LZ- -1 +1 LU 1 +i )2L- )2

* tion region appears to start forming at approxi- ax 3
Y P ax 0 ax t ax ay t ay

mately 7% of chord upstream of the location where
the mean streamlines detach from the surface. In v--+V- - +±-[(p+ut)2-I+ " ![(U+ut)L--] } 3

the velocity profiles downstream of this and be- ax at 0 ay o x u&ax 3Y t ay
fore detachment, the mean velocity gradient across 3k 3k I t

)t j ar+i_ t k
the flow, al/ay, decreases and then increases at U -+ V _ -- G -+_ -k-] +_I[ ( I ]

a distance less than 10 per cent of the boundary x y t P ax ak x ay k y

layer thickness away from the wall. The corres-
ponding kink in the velocity distribution may oc- at at C 2+1 u+Ut) L- +
cur because the mean flow near the wall is de- U3x+Va7yCtl WOtk 2 a k (x ) ax
flected outwards around the region of recircula- t

tion. The corresponding flow angles in this re- a- t 5
gion indicate the tendency towards separation with a T a
the rapid increase in flow angle spreading away with jit-c k

2
/C 6

from the surface as separation is approached. t
The velocity profiles in the separated region are U au 2 ai 2 2
characterised by the shear layer at the edge of and Gt=-[2(-) +2(- ,) + (- v V 2

the recirculation bubble which spreads as the t0 x ay ay ax

strain rate increases with downstream distance and
by the reverse flow boundary layer which begins The use of the k-c turbulence model represents a
around the trailing edge and continues towards the compromise between extreme possibilities each with
location of mean streamline detachment. The flow known problems rather than a directly justifiable
angle is consistent with the larger transverse choice. Algebraically specified length scales are
velocity directed towards the surface in the low- generally unsatisfactory in recirculating flows
er half of the bubble and particularly in the vi- and Reynolds stress models are more expensive in
cinity of the trailing edge and of the separation computer time.
of the reverse-flow boundary layer.

The application of the conservation equations
The wake can be divided into three regions: in this form is clearly uneconomic in regions whe-

the very near wake where negative mean velocities re the boundary-layer assumptions are valid and
exist, the near wake where the shear layers from the solution domain was chosen as a compromise
the suction and pressure side interact and the which minimised these regions while allowing spe-
far wake where recovery to a fully developed plane cification of boundary conditions. based on experi-
mixing layer occurs. The very near wake extends

.:. . '_ ' '.",' ' '. 'L :.:[' '_ .<' .i"_
.
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mental knowledge. Thus the upstream boundary cor- knowledge, and a short distance downstream of the
responds to a location immediately upstream of trailing edge with it extended, for this calcula-
the influence of boundary-layer curvature where tion, parallel to the tunnel roof. An orthogonal
measurements of all properties were available in curvilinear mesh of 48x48 nodes was generated
the boundary layer, except the rate of dissip3- within this domain. The near-wall nodes were link-
tion which was obtained from the equation ed to the surfaces by normals to the cubic polyno-

3u mials used to describe the surface shape.
E=C Ljk' 77*/ v The 48x48 grid, generated as described above,

Detaledknowedg of he owersurace ounary was linked to similar bit geometrically expanding
Detaledknowedg of he owersurace ounary rectangular Cartesian grids which ware specified

layer was used for the upstream boundary condi- to represent the flow stemming from lower surface
tions of the flow entering the calculation domain and in the downstream wake. The resulting grid

afrom beneath the trailing edge. However, the of 60x6 nodes implied that solutions of the Na-
boundary-layers on the upper and lower surfaces vier-Stokes equations would be expensive and time
of the wind tunnel were quantified only in terms conmai . The eribedlbeow were as
of a no slip boundary condition and zero normal a consequence, obtained with fewer nodes and these
gradient assumptions were made for k and E. In were selected with empirical knowledge of the re-
all cases, interpolation of measurements necessa- gions of steep gradients and angled streamlines.
rv to determine values at the selected node points
and, at some future date, the influence of this The grid generated in the above manner corres-
interpolation needs to be quantified. In compari- ponds to an orthogonal curvilinear system of equa-
son with the other sources of uncertainty discus- tions and the conservation equations were, there-
sed in the following paragraphs, it is believed fore, written in the common form:
to be unimportant. The downstream boundary was
chosen at a location where the flow was presumed
to be well approximated by fully developed flow cnmg 3

and zero normal gradients were presumed. This ac 2PUec) 3  1o U 2 w) ne d s

assumption needed to be tested and relevant re-
sults are reported below + Z r~ A-) Z 1Z1

32 3&2 2
The nature of the streamlines shown on figure 4

suggests that, although a rectangular Cartesian
grid could be used to represent the flow, it and were solved by the central-difference/upwind
would lead to a very uneven distribution of calcu- arrangement, with staggered locations of velocity

lation accuracy since some gradients would be much and scalar-quantities, of the TEACH computer pro-

better represented than others. To help to over- gram. In this equation $ can represent any of the
come this problem, a calculation scheme based on dependent variables of equations 2 to 5,'r the

the solution of the potential flow equations was corresponding diffusivity, I and Z2 are the cor-

applied to the generation of lines of constant responding metric coefficients and E, and &2
stream function and velocity potential and the are the coordinates corresponding to the stream

intersections were taken as the nodes for the fi- function and velocity potential obtained from
nitediferece oluton f te cnseratin eua- the solution of equations 8 to 10. The metric

tions. The potential flow equations do not take Ths w

any account of separation and the resulting node cubic polynomials to connect the constant vortici-

distribution was concentrated in this region to ty or stream function locations, and were incor-

ensure that the cell Reynolds numbers were as porated into the finite-difference form using sur-

small as possible. This was essential, since the face integrals to obtain the cell face areas, vo-
Sstreamlines could be expected to intersect the lumes, arc lengths and radii of curvature in the

cells at angles which could lead to numerical dif- a and 2 directions. The Coriolis and centripi-

fusion for those cases where the cell Reynolds tal accelerations, with higher order curvature

ILnumber exceeded 121. terms were incorporated in the source term,S,
as were terms representing dissipation and pro-

The Laplace equations for the velocity potent- duction of turbulent kinetic energy in the k and
ial, t , and stream functiona, of an irrotational equations.

Spflow were solved in the inverse form:
A typical grid, generated by the above method

3td r s x te 8 and used in the solution of equation' , is shown
.Th oon figure 7. it comprises 30x3 nodes, selected

from the 60x6a mesh initially generated, and led

d u a n e h ecalculation times of around 850s for about 250L- t a 0 iterations required to achieve a convergence cri-
terion sf 0.1% of the maximum residual of any de-

n b pendent variable including the mass flow of the
wit. a age) +whh coul +edZ 10 pressure correction equation. Under-relaxation

was employed with all equations with maximum un-
der-relaxation factors of 0.5.

aand located the intersections of iso-vorticity and
iso-stream function lines. The equations were It should be noted that in the present ortho

solved in finite-difference form with the TEACH gonal curvilinear coordinates, the generation

program operated in a manner similar to that des- term given by equation 7 has the form

cribed by Gosman and Johns
28

. The boundary of the
calculation domain was arranged to be coincident
with the surface, the tunnel roof, a location
upstream of separation aelected with experimental

-J J boundar th

• .. alcuatio doman wa arrnged*o becoiniden
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+cl30a 0 U+ 13VV These wall1 functions linked the wall to the finite-
123E2 ri ZI 3cl r2 difference node closest to it and always located

at a value of y+ less than 50 and greater than 10

with the minimumc occurring in the separated region.
with r1  and r2 radii of curvature of the stream

*funct ion and velocity potential lines respectively. The results presented on figures 7 to 10 and
*It can be expected that this and the second order discussed above are encouraging and it is essential
*terms which have been retained in the turbulence to determine the extent to which they depend on the

conservation equations, will not fully represent numerical detail of the calculations. A partial
the effects of stabilising curvature in the turbu- answer to this question can be provided on the basis
lence model but the proposals of previous work, of the limited number of tests referred to in the
for e~iample those of Launder et a129 Gbo

3 0 
and following paragraph. It is clear from the velocity

Leachinzer and Rodi
3
l have not conclusively been profiles of figure 11 that the calculated wake is

shown to be satisfactory and have not bean intor- wider than it should be and, since experience with
*pirated. the present turbulence model would suggest that it

should be slightly narrower, the difference must be
IV. Calculated Results and Discussion associated with numerical inaccuracy. Accordingly

the influence of the location of the downstream
The calculated mean velocity vectors of figure 8 boundary condition was investigated and shown to

may be compared with the measurements of figure 3 be? negligibly small and subsequent calculations
and are clearly in good qualitative agreement. As were performed with the same number of nodes dif-
quantified in figure 9, mean streamline detachment ferently located in the solution domain of figure 7
was calculated to occur at 0.866 rather than the and with smaller numbers of nodes.
0.870 of the measurements. The overall size of the
reverse flow region is wider by some 10% and ex- With 30x30 nodes and a greater number located
tends to a value of x/c of 0.021 rather than the away from the near-flap region, the velocity and
0.016 of the measurements. The calculations also pressure fields were very similar and this sug-
show that the normal momentum is greater than the gested that, although the cell Reynolds numbers in
longitudinal momentum in the vicinity of separa- the free stream had magnitudes up to 10', the ra-
tion and in the shear layer surrounding the bubble silting truncation errors were unimportant. This
where the normal pressure gradient has its largest conclusion was supported by calculations with
values. Within the bubble, the mean velocity has 20x20 nodes which gave very similar velocity and
a maximum value of approximately 20% of the free pressure values away from the surface of the flap:
stream velocity and the normal and longitudinal ye- even the velocities in the outer region of the re-
locities have similar magnitudes with the former circulation were little changed although the wake
besing larger at the beginning and end of the rever- was even wider with this number of nodes. The
se flow boundary. distribution of nodes, with concentration way from

the flap region, gave rise to different near wall
The free stream velocity and wall pressure dis- values. In particular, the skin-friction was al-

*tributions are shown on figure 10. The difference tered by up to 5 and 15% in the boundary layer and
between the measured and calculated velocity dis- separated region respectively by locating the near
tribution is consistent with the discrepancy in wall node in the y

4 
region between 20 and 90, in

the size of the recirculation region which may, in contrast to the 10 to 50 range used earlier. Lo-
part, be due to the inadequate representation of cal velocities and pressure coefficients were dif-
streamline curvature as discussed previously The ferent by up to 14% and 0.003 with the wall-pres-
pressure distribution is, of course, very different sure coefficient showing a maximum difference of
from that obtained from the Laplace equations in 0.0012. These maximum discrepancies occurring in
the vicinity of the separation region and is in the vicinity of separation.
close accord with the measured results except where
there are insufficient nodes to represent the stream- The influence of the location of the roof and
wise gradients at the start of curvature, floor of the wind tunnel did not appear to be very

great since their representation by the actual and
The distribution of skin friction coefficient expanded tunnel co-ordinates led to the same wall-

of figure 10 is also in good agreement with expe- pressure coefficient on the flap and to the same
rimnent and was obtained with the aid of the wall size of separation region. Similarly, the loca-
functions: tion of separation of the mean streamline was al-

ways calculated to an accuracy of not less than

T -c +Ci the distance between grid nodes in the S-direction.
W U/0~tn(Ey+ The sensitivity of the skin-friction coefficient

3/2 is, at least in part, due to the use of the law
ew =0C

1
k/K Y of the wall in regions where it does not strictly

u apply but it is clear that either more nodes, or
a higher order finite-difference scheme is required

1 u 30 /yZ(E to represent the gradients in the near-wall and
2, E23 w nsar-wake regions.

with the production of turbulent kinetic energy mo- Further work is necessary to quanitify fully the

dified to take some account of the normal stress influence of numerical detail and to separate er-
in the form rors due to numerical, turbulence-model and wall-

function assumptions. measurements, including

.
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more detailed near-wall information, are essential boundary layer. Int. Symposium on Applications
as are numerical procedures such as that of McGuirk of Laser-Doppler Anemometry to Fluid Mechanics,
et a1

32
. It is useful to note that ratio of aP/y Lisbon, Portugal, 11.1.

to ZP/3x immediately upstream of separation and in
the near wake, defines the need for equations which 10. D. Coles and E.A. Hirst (ed.) (1968): Proceedings
represent both. In addition, the evaluation of the computation of turbulent boundary layers. ASOFR-
measured convection terms showed that the y-momen- IFP-Stanford Conference, Volume 2, Thermosciences
tum terms were generally greater than the x-momen- Division, Stanford University.

trm terms in the downstream region of the separa-
tion region, of similar magnitude in the central 11. J.C. Le Balleur, R. Peyret and H. Viviand (1980):
region and smaller in the upstream region, except Numerical studies in high Reynolds aerodynamics.
very close to the wall. Direct evidence of the ma- Computer and Fluids, 8.
gnitudes of the diffusion terms cannot be deducted
from the present measured results but the calculat- 12. P. Bradshaw, T. Cebeci and J.H. Whitelaw (1981):
ed results show that they are most important in the Engineering calculation methods for turbulent
vicinity of the edge of the recirculation region flows. Academic Press.
and diminish in value towards the free stream and

the near wall, although their influence may be 13. R.E. Melnik (1980): Turbulent interactions on
outweighed by numerical diffusion in some regions airfoils at transonic speeds-recent developments.
of the flow and particularly in the near wake. AGARD CP 291 10-15.
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Velocity: shaft (maximum) 100rad/s
probe (maximum) 13.5m/s

Calibration range: 0-30m/s
Time in sampling part of cycle TsO.Ols

Time in dormant part of cycle TD=S
Maximum uncertainties: probe speed 0.04m/s

flow velocity 0 .0 12Uref
flow angle 0.6degrees

TABLE 2

Turbulence model constants

C CEl C 2 ak K E

0.09 1.44 1.92 1.0 1.22 0.41897 9.793



25 m/s POTENTIAL FLOW 9M.

0.95 G

16500 Orp 0 009
e

dom 2.8 t~ 0oz

4nd ;
r 0 e n 0TA FLO 1-5M-

sc~o e0enP T N IL L W 1-
1,. 

-7.7
7 7 70

n0

ATo Cf -0W K

*~~~~~~ - - -.0. 0. --CCti -LO - - -

0.4 00 8 0 00

0 .6 SID 0

0.5 0

. 4 0 . I 0. a. XIC 1.2 '.4

Figure4 2. aitiuin oammnu hcnssi rcincefiinsraeadfe temsa

prssrecoffcintan re srem elciy.ato



BOUNDARtY .AY~q AI

(a)

00

0 d 0
a A

0 A

:3 0 A
V* 0 A

3.2.C 0

STAT'!C ORESSUQE ZEFCET Cp

Figure 3. Profiles of static pressure coefficient; 'a) s/c of 0.777 0, 0.826 v, 0.852 *

(b) x/c of 0.132 03, 0.181 0, 0.231, 0.329 A.

....... ... .... .. .................



(a) ° . (b)

0 9

• .. + * S 4

3 " a * . . 3

, • a . - , d

+'' (C .
0  

:' 0 -"0i

.. . ,- o o;* : ..
* . 3• 0 29' & p; °

(c.x c 3 .0 0 , .0 6 , .0 0

* 0

2 0

Fir 0 P.

(b) • of 0.. 0 R

9 3

(c) x/c of 0.000 .0 , .5

0. , ... -. ::,

S. 9 , . 3 .1 2 e
+- '0 - -- 0-, *

0-L 3E N '3 XGS

(d) ° ;

0." , 211 o

,.0. '-. ° 3<' +o C2 342 ° o

2."3.. . >3 2. 3.3 3 " . 03

Figure 6. Profiles of flow angle. (Symbols cis on f ure 5)

(a / f032',069,066 ,065[ .76X .5+ 077,078. .2? .5
- . "(b.)'" . S/c. of 0.86 0, 0 " ".886 • " 0 90 ", 0.96 ", LOG . *. L+ a. . -,, ..... . . .. ..



Figure 7. Calculation domain and scalar cell faces

-- - - - - - - -

0.~ 4 -. - - -- -

0.~ 2- 0.

Figure 9. Calcilated mean streamlines



-. 1r- ?w TV 77 7 7 7 7.

I3

0 0  o Q a .L
0)°

13 o . (a C9

0 "
0m ~ 0

0. 0300

- 0, ( 0

* 0* S

0 r

0 00 0 hER' O(Ar::
.5., 'UI o ;.fl

1 - 0
C a "SD P 0i a

0

0.0 0 0

0 00 0
00 0 0 0

0 0O° I o 0

0 0 0 "

0 0

0 0
0 0 .

0C 
000.

a O0.; p.0 .; .C 0 0 0

rio STJO.°! I? t?

0, 00 5 00o I . o  0°

C o.°" , u rI,

0'"

oO '. c) Oo
...... 0 *PtROII0 *0 0

(d)

Figure 10. Distributions of experimental and cal- o

culated values of free stream velocity, C10
surface static pressure and skin

friction coefficient. 4l
.  

cc

0 C

00

Figure 11. Profiles of calculated and experimental

mean velocity: (a) s/c of 0.798;

(b) SIC Of 0.905; (c) xic of 0.006;
(d I x/c of 0.066

v : ., -, : -: - : : . : . - .. , . . . . : - -: , . . . : . -. , . . ... .0.,./.S' ' + , _,':
"

,+ " - t + " ," < . , 't " .. . " "i'-,- I- . ;+ -' - , 0+



(WHY ?) A FINITE ELEMENT ALGORITHM
FOR THE PARABOLIC NAVIER-STOKES EQUATIONS

* A. J. Baker
University of Tennessee

Knoxvile, TN USA
AsaI. ?roblem Statement

wAbstract

The three-dimensional PNS equation system for the
The three-dimensional Navier-Stokes equations steady, subsonic turbulent flow of an isoenergetc (ld.

governing steady, turbulent subsonic flows have been the principal scale of ordering1 , Is
simplified into the "parabolic" form using a formal order
of magnitude analysis procedure. The results of this "
analysis confirm that the transverse moment im L : = -r. 0
ecuations, to first order, govern approprate pressure

* distr.butions, and that the continuity equation gove-ns
first order effects of transverse plane vel cities. This a a -

Spaper summarizes the identification of a well-posed, LIui) = TT Z + T+ (2)
initial-boundary value differential equation descript on,
and construction and evaluation of a numerical solu::on 1 3u
algarithm for the parabolic Navier-Stokes equation-i in r eW 3x
physical variables. 4

I. Introduction L(Uk a Z +  ,UkU l (3)

A wide variety of important aerodynamics problema r ' k
configurations are characterized by the velocity vector Lk) : u. + a [ ,ak + Ck !-U
-eing principally aligned with a single coordinate ox2.
direction. Provided there is no reversal of this dominant
component of velocity, the three-dimensional parabolic -' 3k _ (4)
Navier-Stokes (PNS) equation system is a candidate for ax + +
solution of the problem class. A formal order of
magnitude PNS analysis confirms l , in this scenerio, that

* axial diffusion processes are negligible, and that the
transverse momentum equations principally govern L(C ) = [P IC. + C + C k' w -r3

equation governs first order effects on momentum. The [
transverse momentum equation can be combntinuitig
the divergence operator, into a quasi-linear pressure +C 1 5- a la i
Poisson equation possessing complementary and Z V 3xZ C k
particular solutions. The boundary conditions for the

* complementary solution enforce overall ellipticity, while
* the particular solution yields modifications due to

convection, viscosity and Reynolds stress distributions. The variables appearing in equations 1-5 have their
A turbulence closure model is also required, and the usual interpretation in fluid mechanics, where superscript
parabolic form of the two-equation turbulence kinetic bar denotes conventional time averaging6 , and the cross
energy-isotropic dissipation system is assumed the coupling of fluctuations in density and velocity have been
minimum acceptable level of simplicity, assumed negligible. The tensor index summation

convention is implied, with x1 aligned with the principal
With the basic governing equation system thus flow direction, and I < j < 3 and 2< (k,Z)< 3. The

defined, construction of a suitable algorithm requires turbulence kinetic energy k is the trace of the Reynolds
addressing the ordering analysis and the boundary stress tensor, C is the isotropic dissipation function, and Re
conditions. A primitive variables formulation must is the characteristic Reynolds number.
rearrange the continuity equation to yield a
deterministic system for transverse velocities, cf. Baker For the variety of reported results, the Reynolds
et.al.1 , Dodge , Patankar 3. Alternatively, a vector stress tensor field constitutive model of Baker et.aJl.1 has
potential function can be defined to identically satisfy been employed. The PNS ordering anal sindicates the
the continuity equation, and a vorticity equation derived extremum significance of components of uiuj is one order
to replace the transverse momentum equations, cf. smaller than unity. Simplifying the constitutive equation
Briley et.al.4 , Mikhail et.al. 5. One dominant factor to this order yields
controlling this basic decision is the boundary condition
specifications associated with various solution domains,
including flows which are fully bounded, semi-bounded rv z -

l, and/or totally nonbounded. This variability suggests * Ckk - I2 C4 1- 3x1  + xU1
, retaining the physical variables problem description. For 57 LJ X2j
- flexibility, and the inherent mathematical robustness of

the construction, a finite element penalty function * - C rC4  2

algorithm is appropriate. This paper presents a c2 3
statement of the algorithm, boundary condition
specifications, and the results of computational k 30 a
experiments for a class of problem definitions. s 3C2 - j

5.
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and xi  [xl,x1)}. There is the additional12 - -fundamental requirement that equation I be rigorously

satisfied, since it governs first order phenomena. The
=53- - C4 U ~ problem statement is completed with a polytropic

S o C equation of state for determination of 5 for the
k3 Fl au isoenergetic flow.

53 C ~ D2 )-'-: 6) As the consequence of the PNS reformulation, each
of the first six members of the set q are eligible for

The coefficients CO,, I < I. < 4, in equation 6 are constraint, on the boundary iR of R2, )y a linear
correlation constants; the standard values are C = combination of Dirichlet and Neumann boundary

0.94, 0.067, 0.56, 0.06} * conditions. The first five of these members are also
required specified as an initial-condition on the plane

In the primitive form, equations l- do not R2 x xJ. No boundary conditions are appropriate for the
represent a well-posed imitial-boundary value problem algebraic equations governing uiuj.
discription for the subsonic flow problem class. As a
consequence of the ordering, the scalar continuity The finite element penalty algorithm, for
equation governs both components of velocity in the determination of the semi-discrete approximation n(xj)
transverse plane perpendicular to xI. As cited in the to q1xi), is based on classical concepts "or differential
Introduction, various algorithm constructions have been :onstraints in the statement of variational boundary value
formulated to address this issue. The approach taken in problems 7 . These concepts are extended to the very non-

S•the present analysis is to employ a finite element linear PNS problem class using a Galerkin weighted-
penalty function formulation, and to append the order residuals formulation. Deferring details 8, the transverse
( ) transverse plane momentum equations, plane domain R2 is discretized into the union of non-

overlapping subdomains R2 , wherein the functional form
" for the xZ dependence of the semi-discrete approximaiton

' +q' "h is assumed a priori specifiable. A convenient form is
L = 2 T +Uk " - = 0(7) the cardinal basis ( Nk (x )I, the members of wiich are

k k X. polynomials on xZ comp ete to degree k. Hence, the
semi-discrete approximation becomes the union of
elemental approximations,

to equation 3. Further, equation 3 is rearranged to the)-
pressure Poisson equation. q(X. q (X. U q(

-" e ( (0)

-." •x J](x) d{Nk(X )}T{QI(xle (11)

Equation 8 represents a quasi-linear elliptic
boundary value problem, possessing complementary and
particular solutions'. The complementary solution Pc to where subscript and/or subscript e denotes pertaining to
the homogeneous form of equation 8 is obtained using the (finite element) domain Re. Further, ( Ql}e
farfield boundary conditions defined by the exterior represents the values taken by 4e at the nodes of the

* flow, or in the fully bounded domain case, by the duct domain R2, and I < I < 13 is a tensor index denoting the
geometry. The particular solution p8 to equation 8 is appropriate (nodal)vector dependent variable set of qn.

thus generated using homogeneous Dirichlet boundary
conditions where Pc is known. The total three- With definition of h equations 10-11 permit direct
"dimensional pressure field is the sum Pc + Pp, which in evaluation of the semi-discrete approximation error Lrqh)

general requires execution of multiple PNS solutions, in in each of the PNS governing differential equations. The
an interaction algorithm construction, to impose pp axial basic concept in the calculus of a discretized variational
pressure gradients into the Zi momentum equation boundary value problem is to render this error extremum
solution. in some norm. In the Galerkin -weighed-residuals

extension of this concept, this is accomplished by
UpOn addition of equations 3 and 7, L(uk) L6 ( k) requiring this error to be orthogonal to the space of

represents a well-posed initial-boundary value problem functions { Nk } selected to define the semi-discrete
for Gk, upon addition of the order (62) terms to the approximation, i.e.
appropriate scalar components of the Reynolds stress
tensor, which are ( -h

rR d S JR{NkIL(-q)dT E{} (2
k2  Z_ +U 2k L~~r e 1 (2

The middle expression in equation 12 emphasizes that the
actual calculus operations are performed on the elemental

I. Finite Element Penalty Algorithm domains R2. The resultant element (column) matrices are
projected to the matrix structure of the global domain

For the dependent variable set (xi)= - {, k, €., p, using the assembly operator Se, which is simply matrix
Pc, ui7j}, equations 2, 3 + 7, 4, 5, 8, 4 + 9 represent a addition by rows 8 .

* -well-posed, initial-boundary value problem description on
the three dimensional domain 12 R2 x xI  x, , xI A

1.

,.2



Equation 12 defines the numerical solution
algorithm for the complete set Ph with the exception of I - ---
the combined equations 3 and 7 for GZ. Here, the
definition of the extremum must be augmented Equation 17 defines the fully-discrete approximation to
(penalized) such that the continuity equation is also

satisfied. The functional form for this statement, which he dependent variable set at the nodes of Ue, hence
is an extension of the classical conceptS

.
salso h(x i) throughout R2, see equation 10. Eqoation 18

defines the (Newton) 3acooian of the non-linear aleo'sraic

r~h + Lf~hldrequation system, eq1Ation 1 5.
JRZ k L tUk) kLj a{N k) ~l '3 IV. Some Basic Decisions

- f L IPhdT (0}
R

2 Tx Z Equation 15 delineates the basic decisions to be
The actual calculus operations defined in equation 13 are made regarding implementaton of the finite elementhe again performed on an elemfental basis and assembled, penalty algorithm into a computer code. In acdition, forgaiand P is an (arbitrary) parameter penaizing the > 0, a decision is recuired regarding approximate

and isin (rbirary paametr pnaliingthe construction of the Newton algor.thm Jacobian [JI,. ~~~statement 31 semi-discrete error arthogonalization for cntuto fteNwo lo~h aoin[]
sta equation 18, since it's size for the tnirteen dependent-

- . variable PNS statement is unwieldy on present computers.

Equations 12-13 define the finite element penalty The decision on k, equation fl, of course mpacts

al ,)rithm for the PNS equation system. The theoretical considerably on the "size" of [ ].

arbitrariness remaining is solely the degree k of the
cardinal basis {Nk}, spanning either three-sided or four- The aerodynamics analyses, docj-.91: " ".e theory
sided element domains R

2 the penalty parameter k and as summarized herein, have been cont.,:ea ising the
the functional form for L 5h). However, equations 12-13 CMC:3DPNS computer program.

9 - 1 racn of t-e cited
basic decisions has therefore been mae, as imclemented

are definitions of non-linear matrices, and resolution of for this code. In light of the resultant inderstancing of
the resultant problem definitions in linear algbra hothalrimfuconswelsadnesnc n
remains. For the semi-discrete approximations f ,kh, how the algorithm unctions, as well as idvar.,es -nace i
Lho, equations 12-13 are matrix statements expresing vector computer architectures, some aL tiese Je-:±sLons

the x1 -ordinary derivative of the appropriate elements should and will eventually become modit edl. This In no
ofe {I} -orna deqvat o A e Tayoroerie denems way detracts from the proof of theory and practice thatOf o Qlle, equation lI. A Taylor series defines the has resulted using this code.
matrix algebra statement for the assembly of these

"'kelements of {QI} I< I < 5, as.
e o%5 Bearing this in mind, the discretization of R 2 is

, defined as the union of triangular cross-section finite
- { + - - {I - . (.. (01(14) elements spanned by the linear (k=l) natural coordinate

(F11 F {Q1} Ax 4  ... cardinal basis. The trapezoidal rule is employed for the
integration algorithm, 0 = Y in equation 14. The penalty

parameter X , following extensive numerical
In equation 14, {(QI ij~l represents this ordinary experimentation, has been defined as the diagonal matrix,

derivative evaluated at some location on the interval
x I - x1 = x as defined by the parameter 0 < - < I. p -

Equation 12, evaluated for P, r4 andij, yields -F C Ax FUIJ+ 1  (19)
directly the appropriate column matrix statement , F} =
{0}, 6 < I < 13. Combined with equation 14, the resultant
linear algebra statement of the finite element penalty where C is a constant of order unity, and he elements (on
algorithm for the PNS equation system, becomesthe diagonal) of " lJl are { UI jl' the nodal

distribution of{QI} computed at each iteration p at xi+1 .

I k, A. 0, Ax, {Q} (15) The functional 'orm of the penalty term, equation
I- V 13, involves definition of an auxiliary dependent variable

Dh, as

Equation 15 is a highly non-linear algebraic
equation system, the character of which is largely h I % 2h
determined by the choice of the arbitrary solution L( h) * tht (20)
parameters k, X,C, and Ax. Equation 15 does not readily

admit a useful linearization, even for 0 = 0 which
corresponds to explicit integration. Hence, the
appropriate solution statement is the (Newton) matrix The boundary conditions for P are a linear combination
solution form, of homogeneous Dirichlet and Neumann constraints,

defined according to required flow porosity on various

-t p segments of 3R. Hence, .3h is augmented for one
.". {(F

p +1 - (F1 }P (16) additional entry, the solution of{.-. L
t  

1)+l "j+1 " + (16)

5+1 J+1

where p is the iteration index at step xj I , and Lh - -hh 0 (21)

(Q(J}P E (Q1}P + (6Q1}P+i (17)
J+ +1 5+1

3



rhe Galerkin weighted-residuals algorithm region defined by the right intersection of two, 10%-thick
statement for equation 21 is the algebraic equation parabolic arc airfoils at zero angle of attack. Figure 2
system Fi '0 ., which is added to equation 15, compares the algorithm predictions of transverse plane
hence equations 16-18. Therefore, the explicit form of velocity distributions uj(xi/C = 0.5, xZ), on the lower
:- complete penalty term in equation 13 is. surface of the juncture region, for turbulent and laminar

( f) flow, The lateral flowfield reversal computed in the
I, L(h)dt lower reaches of the laminar flow calculation are in

R R2 ax qualitative agreement with the two-dimensional
(22) prediction ot Rubin, et.al. 1 2. regarding this feature. The
- PNS algorithm solution converged to a stationary total

S F u l N pressure distribution, +(x-) - P , in three interaction
e Tx e sweeps. The Newton a gorithm convergence limit wasR• defined at c 3 x l0-, and the error in satisfaction of

Regarding the Newton algorithm Jacobian, the continuity equation l,measured in the energy norm of
equation [3 has been replaced in CMC:3DPNS with two n- , was maintained of the order of 06 at the final

*' . sparse matrices, yielding a corresponding compromise on iteration of each solution step.
overall convergence rate while significantly reducing the

, Jacobian matrix rank. The initial-valued dependent As a second example, Figure 3a) shows the two-
, variables LP b k, £3: are sequentially solved as multiple dimensional problem definition of a non-separated trailing2°3' - ' "" [6 sn t h a

right side substitutions to equation 16, using the u1 edge wake flow, and Figure 3b) defines the associated
lacobian, [I111 u.whe-- algorithm boundary conditions. Figure 4 compares the

results of tie third interaction PNS solution with
experimental data on the region, 1.0 < xL/C < 1.10, for

.(Fl} turbulent flow1 3 . The agreement on mean flow
-J1i] (23) distributions ;UI(xj) is excellent, Figure 4a). Furthermore,

similar agreement on components of the Reynolds stress
tensor was achieved, including the various peaks and

. b'growth rates, see Figures s1b)-c). Similar levels of
The Poisson field variables P, Pp, - a agreement have been documented for conventional
sequentially as multiple rignt side substitutions using the laminar and turbulent boundary layer flows1 4 .

JPC 3acobian [366 1. The scalar components ofT7&7are
determined using an elemental averaging and assembly Fully Bounded Solution Domain
procedure, equivalent to solving equation 16 using [3881
for multiple right side substitutions. The algorithm The general aerodynamic problem class of flows in
timing utilizes the sequence [ J I11], [ 366 1, [3881 , with engine inlet and exhaust ducts exemplifies this problem
update of the Jacobians occurring at every iteration, class. The complementary pressure boundary conditions
Details of the formation of these Jacobians is given in are derived from the duct curvature and inlet pressure,
reference 8. and the resultant complementary pressure axial gradient

is augmented to conserve axial mass flux, cf. Patankar 3 .
Figure 5a) illustrates a symmetric quarter plane PNS

V. Documentary Results solution domain R 2 for flow in a straight duct of
rectangular cross-section. Figure 5b) defines the

A fairly voluminous library of documentary results corresponding distribution of boundary conditions. Baker
J has been generated and published on performance et.al.

1  
document comparisons between the PNS

.2 aspects of the PNS finite element penalty algorithm, predictions and the experimental data of Melling and
The following synopsis emphasizes the essential points as Whitelaw1 5 

for the case of Re = 104. In Figure 6, the
a function of domain boundedness. All cited solutions computed uj isovel distributions indicate good agreement
were generated by the same code, the problem definition on level and inflection points, in the lower reaches of the
being completely contained within the general boundary wall layers, although the experimental data indicate a
condition statement. significantly more turbulent core region. Figure 7

compares the fully developed counter-rotating vortex
patterns in Z which indicate quite good qualitative andh 

.s )f
h 

+ a_-(' 0 (24) quantitative agreement. The PNS solutions confirm the
) a((q)q + q)(2 a() causal mechanism to be non-isotropy of the Reynolds

Jx stress tensor, uu t , and Figure 8 summarizes the
comparison.

Semi-Bounded Solution Domain
Aerodynamic ducts of general interest are typically

This is the most typical aerodynamic specification, of non-uniform cross-section, thus inducing axial pressure
. wherein the PNS equation system solution is sandwiched gradients. These gradients will reflect dominantly into

in between an exterior, three-dimensional potential flow the structure of the turbulent flow, especially near the
. solution and an aerodynamic configuration. Examples walls. Figure 9 illustrates the essential aspect in a two-

include three-dimensional boundary layers, juncture dimensional setting. Figure 10 compares the distributions
region flows and trailing edge wake flows among others, of PNS predicted transverse velocities u 2 for a simple
In each case, the exterior flow potential solution diverging and converging cross-section with 20% area
provides the PNS farfield boundary conditions for the change. The correct mirror symmetries result, and thecomplementary pressure solution pc. levels are quite small except in the transition region.

Figures 11-12 compare the corresponding PNS prediciton
Figure Ia) illustrates an idealized wing-body of k and E, the principal distinctions being the larger

junction region, and Figure lb) defines the PNS solution peaks produced by the favorable pressure gradient
domain R t  

and appropriate boundary condition associated with the converging duct. No experimental
specifications for qh, equation 24. Baker et.al.l data are available for comparison, but these results do
document algorithm performance for the case of the

.". ' ". " . .. '
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emphasize the importance of sufficient discretization to fruitful association, that wi!! focus computational fluid
resolve the wall layers along with a suitable low mechanics algorithm constructions within the robust
turbulence Reynolds number modification to the framework of theoretical and applied mechanics, the very
Reynolds stress equation. backbone of engineering analysis.

Non-bounded Solution Domain VII. References

The aerodynamics problems of multiple free-jet i. Baker, A. J., and Orzechowski, J. A., "An
interaction and wake vortex flows exemplify the non- Interaction A!gor.thm For Three-Dinensional
bounded solution domain definition. For example, Figure Turbulent Subsonic Aerodynamic Juncture Region
13a) illustrates a multiple jet configuration, and Figure Flow," AlAA J.. V. 21, 1983, to appear.
13b) defines the corresponding PNS domain boundary
condition distribution. A key factor here is that the 2. Dodge, P. R. and Lieber, L. S., "Ak Numerical
farfield boundary must be porous to cross-flow, such that Method For the Solution of Navier-Stokes
influx/efflux can be admitted in response to the Equation For a Separated Flow," Technical Paper
entrainment action of the jets. The farfield boundary AIAA-77-170, 1977.
condition on complementary pressure Pc is typically a
homogeneous constant in this instance. 3. Patankar, S. V., Numerical Heat Transfer and Fluid

Flow, McGraw-dililHemisphere, NY, 1980.
As an example, Figure 14 summarizes the

symmetric half-plane PNS prediction1 6 of mixing and 4. Briley, W. R., and McDonald, H., "Analysis and
entrainment produced by a turbulent slot jet of half- Computation of Viscous Subsonic Priinary and
width cif on the region 0 < xl/Hf < 1.0. The gradual Seconoary Flows," Technical Paper AIAA-79-
erosion of the potential core in atis evident, Figure 1453, 1979.
14a), as well as the distribution of entrainment (negative
Ua2 ) from the fartield, Figure l4b). The sharp growth and 5. Mikhail, A. G. and Ghia, K. N., "Amalysis and
resultant monotonic decay of both k and - are also Asymptotic Solutions of Compressible Turbulent
illustrated, Figures 14c)-d). Corner Flow." Trans. ASME, J. Engr. Power. V.

104, 1982, pp. 571-579.
Figure 15 compares the PNS prediction 16 of

symmetric-half, transverse plane velocity distributions 6. Cebeci, T., and Smith, A.M.O., Analysis of
l , one diameter downstream of a single, circular cross- Turbulent Boundary Layers, Academic Press, New

., setion jet for laminar and turbulent flow. Both York, 1974.
"" solutions document essentially radial entrainment, with

diametric opposition along the circumference of the let 7. Oden, J. T., "A Theory of Penalty Methods for
(recall Figure 14b)). The salient defining feature of this Finite Element Approximations of Highly
comparison is that the extremum normalized magnitude Nonlinear Problems in Continuum Mechanics,"
of C7j for the laminar case is 7m 0.0017, while Comp. & Structures, V. 8, 1978, pp. 445-449.
C0m = 0.044 for the turbulent case. Therefore, in

Scomparison, the measure of entrainment is enhanced by S. Baker, A. J., Finite Element Computational Fluid
a factor of 20 for the turbulent case. Finally, Figure 16 Mechanics, McGraw-Hill /Hemispnere, NY, 1983.
shows the PNS predicted distribution of transvere plane
velocity a, produced by a symmetric multiple-free-let 9. Baker, A. J., "The C.MC:3DPNS Computer Program
configuration, consisting of four jets each centered on For Prediction of Three-Dimensional, Subsonic,
the bisector intersection of each quadrant with the Turbulent Aerodynamic Juncture Region Flow-
circle. A pattern of eight counter-rotating vortex pairs Volume I - Theoretical." NAS A Technicai Report
has been induced, by the rapid decay of this closely- CR-645, 1982.
coupled multi-jet geometry, with a complex pattern of
influx/efflux on the farfield boundary. This prediction is 10. Manhardt, P. D., "The CMC:3DPNS Computer

• in good qualitative agreement with smoke flow Program For Prediction of Three-Dimensional,
visualization experimental data, including a variety of Subsonic, Turbulent Aerodynamic Juncture Region
parameter modifications and comparisons1 6 . Flow - Volume 1I - User's Manuai," NASA

Technical Report CR-165997, 1982.

VI. Conclusions 11. Orzechowski, . A., "The CMC:3DPNS Computer
Program For Prediction of Three-Dimensional.

The spectrum of computational results generated Subsonic, Turbulent Aerodynamic Juncture Region
using a finite element penalty numerical algorithm for Flow - Volume Ill - Programmer's %lanuai," NASA
approximate solution of the three-dimensional parabolic Report CR-165998, 1982.
Navier-Stokes equations for steady, subsonic turbulent
and laminar flows, serves to document the mathematical 12. Rubin, S. G., "Incompressible Flow Along a Corner,"
appropriateness and robustness of the construction. With 0. Flu. Mech., V. 26, Pt.1, 1966. pp. 97-1, 10.
addition of the energy equation, and identification of the
linear momentum Fni  Gi, the formal construction 13. Baker, A.J., Yu, 0.0., Orzechowski J.A.,and Gatski
should be e Jally appropriate for supersonic flows. The T.B., "Prediction and Measurement of Incompres-
theoretical concepts underlying the algorithm sible Turbulent Aerodynamic Trailing Edge
formulation are direct extensions of fundamental Flows," AIAA J., V. 20, No. 1, 1982, pp. 51-59.
principals in constrained extremization of a variational
boundary value problem. As such, the PNS application 14. Baker, A. 3.. "A Penalty Finite Element \lgorithm
has verified the use and utilization of classical concepts For Parabolic Flow Predic!ion," ASME, App.
in mechanics applied to the computational problem class. Mech. Div., AMD-Vol. 51, 1982, pp. 37-142.
It is hoped that this may be the progenitor of a long and
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' 15. Mielling, A., and Whitelaw, 3. H., "Turbulent Flow 16. Baker, . ., Orzechowski, 3. A., and Stungis, Z,. E.,
in a Rectangular Duct," 3. Fluid Mech., V. 78, "Prediction of Secondary Vortex Flowfields
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Proximity," Technical Paper AIAA 83-0289, 1983.,Y
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Figure 3. Characterization of a Semi-Bounded
ZO 3 -- I Aerodynamic Trailing Edge Wake Flow, a) Geometry, b)

v Penalty -Nlgorithin Boundary Conditions.

Figure 1. Characterization of a Semi-Bounded
* ,Aerodynamic Juncture Region Flow, a) Geometry, b)

Penalty Algorithm Boundary Conditions.
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Figure 4. Comparison Between Penalty Algorithm
Fig, -e 2. Penalty Algorithm Prediction of Parabolic Prediction and Experiment For Wake Region Flow,
Arc Juncture Region Transverse Plane Velocity ul NACA 63-012 Airfoil, a = 0% a) Mean Axial Velocity 61,
Distribution, xl/C = 0.5, a) Laminar Flow, um = 0.06 b) Reynolds Shear Stress u-'J2, c) Reynolds Normal Stress
1 Turbulent Flow, um = 0.10., from Ref. I. ulu , from Ref. 13.
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Conditions.
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Equation 12 definfe thp nvimerical solution

1.0 1.0

- --- - Initial Condition
0.5 - a) - -" -. ... End of Area Change0!: .o5- a) %

4 0.5- -- Final Steady-State
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I I I , I I I I I II

- -0. 0.05 0.6
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Figure 10. Penalty Algorithm Duct Flow Prediction of
Transverse Velocity u2 Distributions, a) Diverging Cross-
Section, b) Converging Cross-Section, from Ref. 14.
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Figure 11. Penalty Algorithm Duc+ Flow Prediction of
Turbulent Kinetic Energy k Distributions, a) Diverging
Cross-Section, b) Converging Cross-Se'tion, from Ref.14
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Figure 12. Penalty Algorithm Duct Flow Prediction of
Isotropic Dissipation Function C Distributions, a)
Diverging Cross-Section, b) Converging Cross-Section,
from Ref. 14.
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WING DESIGN AND ANALYSIS - YOUR JOB

by
* ~ T)A.M.O. SMITH

Douglas Aircraft Company, Retired

1.0 Introduction

SMany years ago, about World War II, I believe, I But until recently aerodynamics has had little of
learned the definition of an airplane. It is a de- this true calculation. The art consisted of "bea-
vice that almost won't work. A missile was defined con" type of answers - the flow about a sphere, or
slightly later. It is a device that almost will ellipsoid, a two-dimensional wing at low angle of
work. But perhaps now with all the advances in attack, the boundary layer on a flat plate, etc.
rockets and spacecraft, the airplane definition These known solutions would then be used as guide-
would be more appropriate, points or beacons to go from them to the actual case

by a process of estimation and correction.
These definitions cha rcterize our problem because
first-line airplanes a e truly exceedingly compli- For many years I considered one of my underlying
cated, very expensive dev(es; in fact, worth their goals in research was to develop methods of calcu-
weight in sterling silver.-,The 'rbaCkbone" of an lating the aerodynamic properties of bodies. An
airplane is its wing, and this with its many nu- ordinary brick is really quite a simple shape, but
ances and complications is the subject of my lec- can we calculate the lift, drag, moments, and pres-
ture, in which I shall outline the aerodynamic prob- sure distribution for it, at all orientations? The
lems and roughly indicate the status of solutions. weight man certainly can do his equivalent job.

Looking at the broad problem like this makes me feel
Compared with many other fields, the analysis of the very humble, because from this viewpoint obviously
fluid flow about a body such as a wing Is in its In- aerodynamic analysis is in its infancy. Some people
fancy. In aerodynamics, many of the properties of a may reply that I am being too severe, but the brick
body are found by estimation, by interpolation be- is not that far from some aircraft problems. Con-
tween known answers, by calculation for a highly sider a wing with a spoiler extended from the upper
simplified approximation, and the like. But in some side.
fields that is not so, at all. If we had to apply
aerodynamic methods to finding some arithmetic pro- In reality, due mainly to the electronic calculator
duct, say (211 + 3071) x (62.6 + 9.51), we would we have progressed a long ways in the last forty
likely work from a graph determined by some "beacon" years. Around 1940 calculation of flow around an
values that could be calculated and then interpo- arbitrary airfoil could indeed be done provided the
late, because we did not really know how to evalu- shape was "easy" and quite fair. I am speaking of

* ate this particular product. methods like Theodorsenl's method. But calculation
was almost a "stunt". I did it once and it took me

To get a bit more complicated, weight estimation and most of two weeks as I remember. Of course there
calculation is a very important function in the de- was thin airfoil theory, but this is more or less
sign of aircraft. The word "estimation" comes from one of my "beacons". Nothing could be done on
not knowing initially the exact size of some part multi-element airfoils except for the special case
such as a structural member, but if a shape is given of an infinite set of airfoils in cascade. Also, of
and the material identified so that density is course the analyses were essentially for M.O, the
known, weight estimation becomes simply a process of only effect of Mach number being accounted for by
calculating the volume, and I emphasize "calculat- Prandtl-Glauert or Kirmin-Tsien types of correc-
ing," not estimating. If one wishes to take the tions.
necessary pains, the volume can be calculated to any
degree of accuracy. Unlike the aerodynamicist, who The calculation of flow about bodies of revolution,
is said to assume everything but the responsibility, even at zero angle of attack, was even less devel-
the weight man can precisely calculate the weight of oped than the two-dimensional problem such as for
any shape that he is given, airfoils. There was von Karmin's method originally

developed for airships, Fuhrmann type bodies ano of
The same can be said for many parts of the structur- course the prolate spheroid family. But even so
al problem. If a structures man is given any cross simple a body as a hemisphere-cylinoer combination
section, n', matter how complicated, he can calculate was quite beyond the existing analytic capability.
the section modulus in a straightforward manner.
Electrical circuit analysis is the same way. Given When dealing with the boundary layer problem, there
resistances, capacitances, impedances, etc. the were Pohlhausen and Thwaite's type of methods for
analyst writes a differential equation that exactly low-speed adiabatic type of laminar flow. Some work
indicates currents, transients, etc. at least to the on the integral method existed for heat transfer,
accuracy known for the elements, but the methods were never developed very far. In



turbulent flows, with pressure gradient, everything at zero angle of attack, We succeeded (I mean we
*depended on von Kirminns integral equation. The got a sensible answer) after about two weeks of

main accounting for the effect of pressure gradient steady work. Later, I wished to study the boundary-
for changes in skin friction was to use the local layer flow into a suction slot. I wrote out equa-
velocity instead of the freestream, together with tions that I thought covered the situation and put

*the momentum thickness, a. Also of course, the them into a finite difference form and asked for a
methods applied only at M=0, without heat transfer, time estimate from computing, which then had its
and were only two dimensional, first electronic calculator, the IBM 701. The esti-

mate was 2000 machine-hours, so that put an end to
*But at the present time. thanks in great part to that effort. My panel method for potential flow was
*CFD, so long as the flow remains attached, we can more successful, but it is not really CFO.

calculate the inviscid flow for any reasonable shape
when M.0, or is small, both two dimensional and Then, as better computers arrived, I tackled the or-

*three dimensional, whether internal or external. dinary laminar boundary-layer equations with suc-
For instance, the flow has been calculated for the cess. This led me to see what could be done for
very complicated shape of the space shuttle mounted turbulent boundary layers, and here we had luck be-
on the Boeing 747 airplane. The latest and very cause a very simple algebraic formulation for tur-

*active development is calculation of transonic flow, bulent transport properties yielded considerable
complete with shocks, for three-dimensional wings of success.
arbitrary shape. So you see we have progressed from
barely being able to analyze a two-dimensional air- so you see I have been periodically in and out of
foil atM=O to rather routine analysis of a three- the field of CFD, but since 1975 when I retired, I
dimensio .nal wing at any Mach number, have done no more work in the area. In preparation

*In the field of turbulent boundary layers, I do not for this paper, I have reviewed many of the sympos-
think the progress has been so great. Of course, iuams ppersl andr bookhste the urt, fnd l 1
now there are quite rational methods that can calcu- a eeal wr ftesaeo h rIfn

lat te ounar lyerflw ortwo-dimensional have been left far behind technically. One can say
problems and arbitrary pressure gradients so long as case it isrelantivl new, resut leading toan e
separation does not set in. Also, heat transfer ef- cuei srltvl erslslaigt

papers are rather easily obtained. Hence, manyfects and Mach number are handled well, ana in gen- scientists have gravitated to the area. This is
eral, the accuracy as determined by experiment is godbcueiisantrlndtrcivwyfr

good Futhemor, agret may treedimnsinal a new field to get explored rapidly. Right afterproblems, including heat transfer and Mach numbers WrdWrIIosre h aepeoeo n
other than zero, can be handled, but this work has rapid exploration, but then it was in linearized
not settled to a routine. However, the progress has sproi eoyais
not been so great as for inviscid flow because uesncaeoyais
basically we know little more of the real fundamen- But although many are gravitating to this field, I
tals of turbulent flow than we did many years ago. do not mean it is simple. Far from it. There are
So our development of methods of analysis is based exceedingly many subtleties - the numerical stabil-
upon a weak foundation because the governing equa- itprb
tions are really not known. Of course, many tes ts it rbem, questions such as whether a finite dif-

*leading to better founded empiricism have been made ference representation truly represents the differ-
sneWorld WrIbttedtissilmpi- ential equation in the limit, the boundary problem,

csnc War the bueht thde dta s thtl aemprodna- grid systems, etc. For instance, a derivative some-
icis, of teatptht led men toys isa at avI erdn- where in a net can be written in many ways, some of
tercslatlaso n manyss waysn frs bustacn Inoda n- which are stable, others not, and each may have

terplaton roces, orkng rom eacn dta.different truncation errors. With this wealth of
detailed knowledge that has developed, including all

But for laminar flow, the situation is considerably the special nuances, I find I am quite unable to
different. Here the governing equations are known, provide any authoritative discussion or review of
and because of the computer, great strides have been the actual technical subject.
maoe in their solution. For two-dimensional prob-
lems, providing the input conditions are sufficient- Instead, I shall try to point out the total job as
ly well known, and again, providing the flow is applied to airplanes and show where we are, at the
attached, four-place accuracy can be obtained, if present moment.

*needed, for highly arbitrary conditions, including
boundary-layer suction. Hence, questions of laminar But before proceeding, I wish to point out one very
boundary-layer flow can be answered by pure calcula- important fact. If computing can be done instead of
tion, just as one finds the product of (211 , 3071) testing, the lead time for obtaining useful answers
x (62.6 + 9.51). Much can be done for three-dimen- is reduced tremendously. Depending on the problem
sional flows as well, but calculations are not as and how well one is tooled up for it, a new answer

*routine as for two-dimensional because of crossflow can be found by CFD in from one day to a week; for

a nd reverse-flow problems, three-dimensional separa- example, a change in a wing design. Furthermore,
*tion, and the like. However, it should be noted there is little difficulty in getting access to a

that, at the Reynolds numbers of airplanes, the ex- computer, at least for important problems. But if a
tent of laminar flow will be small unless some form model must be tested in a wind tunnel, even with nu-
of laminar flow control (LFC) is being used, and merical milling to make the model, the numerical de-
then, because it is sought only at low angles of at- scription of the model must be put into the machine,
tack, separation should not be a problem. then the model must be hand finished and checked,

then mounted in the tunnel, and then tested. A
I have long been interested in flow-field calcula- month is substantially the minimum time to get test

*tions. My first attempt by other than classical results on a new model. Furthermore, a good wind
methods was 'to use Southwell's relaxation method to tunnel is usually involved with some other test, and

*calculate flow around a symmetrical "bumpy" airfoil immnediate access is a rarity. Finally, with CFO, a



small change in shape, as of a wing, can often be will tend to have a lower aspect ratio and its aero-
made by modifying a few numbers. But a small change dynamic cleanliness should be at a premimum.
in shape of a wind tunnel model means either fasten-
ing on some added material, or machining some off, On many airplanes, range is one of the most impor-
either process taking considerable time. So turna- tant measures of performance. On commercial air-
round time is a tremendous advantage to CFD, and planes, it certainly is, and on many military
cost may compound that advantage, airplanes the maximum combat radius is of major

2.0 A Few Comments About the Operation importance. For a piston engine, the fuel comsump-
tion is proportional to brake horsepower which is

of Airplanes proportional to thrust times velocity. But for a
jet engine, the fuel consumption is more nearly pro-

* A basic reason for continually trying to improve the portional to thrust. Then it is easy to show that
, design and accuracy of analysis of airplane compon- the fundamental equation for range, R, of a jet air-

ents is to improve the airplane performance. There- plane is
fore, it seems proper to show basically and very
briefly how drag, weight, aspect ratio, and other VVd -V L dW (4)
major parameters influence airplane performance. c' W
From the equations, one can then sense more direct-
l ly the incentives for improvement. Here c' is the thrust specific fuel consumption of

the engine, usually given as pounds per hour per
Unless the ultimate in accuracy is sought, it is pound of thrust, W is the instantaneous weight of
very satisfactory and useful to note that typically the airplane, and dW is what is being used as fuel.
the drag of an airplane varies parabolically with Equation (4) also can be written in another form,
CL, or more specifically, the drag coefficient can bringing in Mach number and velocity of sound as

be written as
aM CL dW

"' dR = c _ (5)""O=~f CL-c' C0)

C D a C 
f + ,e A

In this form, since CL/Co is a function of Mach num-
Here CD is the total drag coefficient, Cof is the ber, it is clear that for best instantaneous miles

. drag coefficient at zero lift - the friction drag, per gallon, the quantity MCL/CO should be maximized.
or so-called parasite drag, A is the aspect ratio,
and e the span-efficiency factor. That is, eA is However, to keep it at its maximum value requires
the effective aspect ratio. Because of its simpli- flight at variable altitude. In commercial opera-
city, this formula is very easily manipulated to tion, airplanes do climb as their fuel is used up,
yield such results as but only a mile or so in 2500 miles. Hence, for

purposes of this paper, which is to bring out how
parameters affect the performance of an airplane, we

(CL) z - = _e- (2) will present the range formula for a jet airplane
0 max Co max 2 O.Cf that is flying at constant altitude. In Equation

/2 (4), the velocity enters directly. When it is elim-
Shortly, the term (CLI /CD)max will be used. Its inated in terms of CL , etc. we get for the range in

formula is miles

"C1
112  3(1 eA 21/4 mamls=) 391- (1 - (-) o (6)

C ) 1 (3) c C Ma s
- max 43 Cf 3  

In this formula, W0 is the initial weight or weight

Equation (2) is more applicable for a conventional at the beginning of the range flight, and W1 is the
" airplane, and Equation (3) is more applicable for a final weight. The term a is the ratio of the air

jet airplane. They are given here because they density at altitude to its value at sea level, and S
clearly and simply reveal the way the several meas- is the wing area. This formula brings the main fac-
ures of airplane characteristics affect airplane tors all together. First of all, notice that the

performance. (L/D)max varies with A / , hence gains range varies as (c') , so any improvements in fuel
from increased aspect ratio are fairly substantial. comnsumption lead to large range gains or perhaps
Also note that (L/D)max improves as CDf -1/ 2 , so re- fuel savings. The range is also directly propor-

tional to the maximum value of CL1/2 /CD . Equation

ductions in drag help greatly. The span efficiency (3) describes the maximum value and, in fact, could
factor e is a lumped parameter that takes into ac- have been substituted in Equation (6), but as Equa-
count the deviations in induced drag. from the ideal tion (6) stands, the CL-CO polar does not have to be

elliptical wing as well as the variations of skin

friction and other drag with CL. On typical air- parabolic. Wo/aS is an effective wing loading, and

planes, it lies in the 0.8 to 0.9 range. obviously the higher the altitude, the better for
range so long as drag rise due to Mach number does

For the jet airplane, the effects of these parame- not reduce (CL 12 /CD)max. At 35,000 ft, a is about
ters are somewhat different. Now the gains from as- 0.3, so an airplane whose wing loading is 100 Ib/fl

1/4 0.,s2narln hs iglaigi 0 bf
pect ratio vary only as A while gains from drag has an effective wing loading of 330 lb/ft2; by it-
reduction va.ry as CDf 3/4 . These tell us that, as self, a indicates that flight should be at high

compared with piston-propeller airplanes, the jet altitude. The last term in (6) shows the effect of



the fuel carried. The weight ratio is to the 1/2 For maximum lift, the flaws are very likely to be
power. If Equation (5) had been integrated, a log- flows with partial separation. Furthermore, very
arithuic variation would have been obtained, but near the ground, the ground acts as another bounda-
differences are not great so long as one does not go ry to the flow which must be taken into account.

- -to extremes. In short, Equation (6) shows that Fortunately, in landing and takeoff, speeds are low
range is proportional to (CL 1"2/CO)max, the effec- so that incompressible methods of analysis appear

tvwigloading, and (W/O1/2.Ithsfri adequate. But the military are greatly concerned
tivewin (W1 Wo) In hisform it with transonic maneuverability. Here, lift enhant-

is interesting that the range is finite even if the ing devices may be extended and then the problem be-
airplane were 1001 fuel so that W1 . 0. The W1/W0  comes one of transonic flow past slotted airfoils at
term shows the importance in design of keeping the high Mach number. So you see that, while the design
airplane weight low. Therefore, greater wing thick- condition is exceedingly important, it is only a
ness or stronger materials can directly affect the small portion of the entire airplane design problem.
weight, or they may alter the optimum aspect ratio
which is a direct factor in determining CL1I/ 2/CO, 3.0 The Wind Tunnel

* according to Equation (3). Before proceeding to mty basic subject, some mention

*Before closing this part, a few comments about e and of the wind tunnel is in order, if for no other rea-

its estimation are in order. We mention again that son than that the general aim of groups like the
the product eA is the effective aspect ratio, and it present one is to reduce the need for wind tunnel
arises in both Equations (2) and (3). Therefore, tests and perhaps someday to eliminate them. So it
when engineers are estimating the performance of an is useful to study the competition.

*airplane, attempts both to improve e and to make ac- while there are a few limits, the wind tunnel basic-

elliptic lift distribution, it is theoretically polmo usinta sptt t nasneequal to unity. But in actuality, there are devia- proble oustioe n thalosgutofIensluato.Te,
tions from this ida.Wing-fuselage junctures, main requirement is first to make a properly shaped
small gaps, nacelles, flap brackets, unusual plan- saemdl eodt u ta h tiueo n

form, ec. esenialy reucee i an nvicidterest, and third to turn on the wind and measurefashion. But e is affected by the boundary layer as forces, pressures, and other features of the flow
well because the profile drag increases as CL is in- that may be of interest. For example, a strake
creased. The main fact is that e helps describe the leaves a vortex trail. To analyze the flow theore-
total variation of drag with CL. Obviously, it is a tically is a formidible undertaking, but, to find

*function of Mach number. its effect in the wind tunnel, nothing more need be
done than to make the proper shape of strake, mount

In my years at McDonnell Douglas, I have witnessed it on the model, measure its effect on balances, and
*several lengthy attempts to improve the accuracy of perhaps do some flow visualization. The use of

estimating e, which is poor. The work was a mixture scale models is on an extremely fundamental founda-
of theory and correlation with test data. As you tion, as is easily shown by manipulating the Wavier-
might expect, each new study yielded slightly dif- Stokes equations.

* ferent methods and results, out the studies really
were down in the noise level of our knowledge, so no As already noted, models are difficult, costly, and
significant improvement ever was made. So as I see slow to build and test. Often, as the author has
it, one part of your overall job is to produce a seen many times, many parts of a design are frozen
sound and accurate method of estimating e - or bet- well before the wind tunnel results are ever ob-
ter still, the entire polar. Anyone who does indeed tained. Then the tests are mainly a check on the
make a real advance in estimation of e or the po lar decisions. When computed results are meaningful and
will receive the undying gratitude of the aerodynam- believed, there is a tremendous gain in time. With
ic performance engineers, all out company support, a wind tunnel result might

The esin ofan irplne nvoles wo apecs - arrive in a month, but a computer answer might ar-
* Th deignof n aiplae Ivoles to apecs - rive in a day, if changes from some previous config-

*design and off-design features. Except for some1 uration are not too great. But the wind tunnel has
military requirements, design properties are gener- some operational advantages. If characteristics are
ally for relatively low lift coefficients, meaning to be measured over a range of Mach numbers and lift
attached flow. Here, thanks to various methods in- coefficients for a particular configuration, all

*cluding CFD, aerodynamics is becoming reasonably that is necessary is to set the speed of the tunnel
capable of truly analyzing such flows. But to be a and the angle of attack and then measure the forces,
" well tempered airplane,' the airplane must behave Each data point takes only a few seconds, depending
satisfactorily in a wide range of off-design condi- on the kind of wind tunnel being used. But if cal-

*tions, including the stall and recovery from it. culations are to supply the answers ana if Mach num-
ber is involved, the governing flow equations areAlso of course, there is the possibility of engine non-linear, and then each new data point requires a

failure. For multi-engln! airplanes, failure should complete new calculation. So if results are sought
not lead to catastrophe - the airplane should have for 5 Mach numbers and 10 CL values the flow field
reasonable takeoff and flight qualities, including problem must be solved anew 50 times. But in the

*of course the ability to counter the adverse yaw due wind tunnel, all 50 results can be obtaineo from one
to asymmetric thrust. setup.

*Another condition that is called off-design here is
*the takeoff and landing condition. Here, wheels are tt was noted above that the use of scale models has

extended. Sometimes, there might even be high-lift an extremely sound foundation. But there are many
bounoary-layer control. In these landing and take- side problems, and that is another reason why aero-
off co0nfigurations, the airplane geometry, i.e., the dynamicists are not entirely happy with wind tun-

*boundary conditions, is vastly more complicated. nels. First of all, the flow is not truly matched

L



*unless the Reynolds number is matched, and that is ing has not decreased one bit with time. This fact
*very hard to do. Furthermore, for a true scale mo- is true in spite of our considerable advance in an-

del, a'll the boundary conditions on the model should alytical capability. What is happening, at least
be scaled as well. But that is often impossible or partially, is that our standards and demands are in-
impractical to do. There may be visible butt joints creasing fast enough to compensate for our gains in
in the ;olid model that do not exist in the full- analytic capability. We wish for a better wing or a
scale airplane. Flap brackets and the like are pro- better moment curve or more detailed data, so more
bably only approximate respresentation of the flight configuration changes and tests must be run. So the

* .article. Also, on an airplane, there is a certain use of the wind tunnel is not fading out. I have
amount of general airflow from one place to another been thinking of the wind tunnel as a development
because parts are not perfectly sealed. That kind tool. Of course, it also has a major function as a

*of flow is certainly not matched on the model, research tool. For this function, I see no real in-
roads either.

A new development is the cryogenic wind tunnel that
will easily match full-scale Reynolds nunber." with a For what it is worth, practically my first job after
small model. If the effective smoothness of the finishing college was to make the performance esti-
full-scale model were to be matched, tihe model would mates for the Douglas DC-S transport. This airplane
need the smoothness of plate glass. I look forward was unusual in that it was built without any wind-
to seeing just how well flight results will be tunnel tests at all. In my performance report, I
reproduced when flight Reynolds numbers are truly remember that I predicted the high speed to be 220
matched. mph. The final official flight tests showed that

the high speed, indeed, to be exactly 220 mph! The
There are other differences. The model is in a wind best performance estimates are based strongly on
tunnel and has wall effects. It has supports such flight test data of previous airplanes, because wind
as stings that affect results. The tunnel, being a tunnel tests do not exactly duplicate many features
moving stream, has a different level of turbulence of the airplane, such as Reynolds number, power
compared with flight in the free air. The tunnel is plant installation effects, flow leakages, etc.

* very noisy and noise has a large effect on transi-
* tion. All these factors can make the measured an-
*swers different from flight, even when the Reynolds 4.0 Wings - Clean as in Cruise

number is matched exactly. An interesting possibil- Oiial.i a lne odsuswnsi wity is foreseen, however. With the advance of CFD OiialI a lne odsuswnsi w
and other methods of analysis, calculations can be sections - one inviscid and the other viscid. But
easily made with and without wall effects, with and complications develop because the two kinds of flows

:%without the sting support, with and without power are intimately connected. A more logical breakdown
effects, and with and without other factors. Such is wings with fully attached flow and wings with
types of calculations may provide much more sophis- varying degrees of separated flow. In this section,
ticated wind tunnel corrections than those used at we discuss the case of unseparated flow although
present. Then even though the wind tunnel remains that is not explicitly stated in the heading; of
the primary test instrument, a combination of CFD course, cruise should not involve separated flow.
corrections plus the wind tunnel may lead to a hy-
brid method that provides data that is more accur On many aircraft wings, the clean condition is the
ate than that now yielded by conventional wind design problem, for a most basic purpose of an air-
tunnel tet.plane is to obtain good cruise performance which oc-

tess.curs a t low lift coefficients and with attached
Work exists on reducing these drawbacks. Slotted flow. While lift coefficients may be low, any anal-
walls now exist, and work is underway on adaptive ysis must treat both variable Mach number and vani-
walls. With the cryogenic tunnel, the magnetic sup- able lift coefficient. But if there is some kind of
port system begins to look feasible. With it, the inverse approach, a design point might be selected
model just floats in the middle of the tunnel and for a single lift coefficient - Mach number combina-
strut interference is entirely eliminated. tion.

But in spite of these troubles, which may degrade Before getting into specifics, the author would like
the accuracy of the results or sometimes give en- to mention the problem of calculating drag. Proflle
tirely wrong ones, the wind tunnel must remain as drag is really a second-order effect. A typical
the standard by which CFD is judged, not particular- lift coefficient is 1.0. A typical drag coefficient
ly for accuracy but for versatility. I have heard is 0.01 or two orders of magnitude less. There are
it stated that fluid dynamics calculation has pro- mainly two ways of calculating the drag - directly

*gressed to the point where it can supply first- by integrating the pressures and shears over the
order answers, and the wind tunnel is used to sup- surface or by looking at the momentum defect far
ply answers to second-order effects. While not downstream. The author finds the situation exasper-
really an accurate statement it conveys the general a ting. Except for very thin airfoils at low angles
idea. As one example of a first-order answer, we of attack, a pressure drag caused by the bounoaryA mention the drag, lift, and pressure- distribution of layer displacement thickness develops, and the drag
airfoils that are less than about 15% thick at the calculated by integrating pressures and shears is
lower lift coefficients and at low Mach numbers, unsatisfactorily inaccurate.
With these qualifications, I believe the-forces can
be calculated as accurately as the wind tunnel will The other way is to look at the momentum defect far
measure, provided the wind tunnel has low turbu- downstream. For low angles of attack and attached
lence. But near and above the stall, the wind tun- flow, the boundary layer on a single surface can be
nel is the only sure way to obtain answers that have calculated rather accurately almost to the trailing
reasonable accuracy. edge, but at this point the local pressures are not

ambient and the wall boundary condition suddenly
While I have-not made any careful study, I am under changes, so the boundary layer must be properly
the impression that the amount of wind tunnel test- traced past the trailing edge into the wake and on



to infinity. While special studies have indeed been known very well. Perhaps a better theory of the
made, no reliable and production method of finding lift of a body of revolution at angle of attack
the momentum defect caused by the drag has yet been would help this problem. Nor is the flow physics
developed, fully known at a wing tip. On a gradually rounded

wing tip. just when does the classical Kutta condi-
Up to this point, the writer has mainly been think- tion cease to exist?, and for the blunter portions
ing of the simplest case - two-dimensional flow. of the trailing edge, how is the circulation deter-

. But the real flow is three dimensional, as on a mined? Much work has been done on the details of
swept wing. Further, if one is to be concerned with the final vortex rollup and buildup at the wing tip,
the true problems, there are even worse kinds of but most is a kind of global analysis. A really de-
three dimenionalities - corners, wing tips, under- tailed understanding is needed. Winglets and tip
slung nacelles and their pylons, not to mention mis- tanks complicate the problem. Also of course,

. cellaneous effects such as fences, gaps at joints, Mangler and Smith have added to the confusion by
etc. showing that the flow for a swept wing must leave

parallel to one side or the other, not the bisector
While on this subject, it seems best to consider the of the airfoil. Here is another question to re-
worst problems although they properly belong in the solve. Another complication that must be handled,
next section. These are the problems of calculating if we are ever to arrive at true design methods, is

* the drag when there is partial separation as at high the problem of nacelles and underwing stores on mil-
lift and when flaps and slats are extended to vary- itary airplanes. These also affect the lift and
ing degrees. Consider an extended slat. Now the lift distribution. At present, the only good way of
shears must be calculated on both airfoil elements, determining the effects is to resort to the wind
Pressure drag effects will be much greater because tunnel. Will we ever be able to make flat-out cal-

- the boundary layers are much thicker and more com- culatlons? A feature common to some of these prob-
plicatea. Or if one tries to trace the wake defect lems is longitudinal concave and convex corner
to infinity, one must follow the slat wake along the problems. Work is being done on these, but there
side of the main airfoil through a strongly rising is much further to go.
pressure region, then pick up the main airfoil wake
at the trailing edge, and follow the development of Another problem that can be important, even at low-
both to infinity. The two boundary layers and wakes lift coefficients, is the effect of wing , qidity.
may or may not merge. If they do merge, the problem The problem is largely structural, but deflections
becomes even more complicated, are brought on by aerodynamic loads, and accurate

design of the flying machine must yield a good de-
Again, this is two-dmensional thinking. The prob- sign under operating deflection and load conditions.
lem of really basic analysis on a real three-dimen- One classic example of problems of this kind that
sional swept wing becomes far worse. There may be must be kept in mind is aileron reversal. When an
added complications such as slats. Often a slat is aileron is deflected down to lift a wing, moments
only part span, so it has a variable load distribu- are applied that may twist the entire wing to nega-
tion along its length, and at its ends, vortices are tive angles at high speed, thus negating the effect
shed which trail back over the wing, further adding of the aileron. Currently many wind tunnel models
to the three dimensionality. are built to model the airplane in some loaded (and

deflected) condition, rather than the unloaded con-
One noteworthy step in this area has been made. We dition, in order to obtain data that more accurate-
now seem to be able to calculate the initial wave ly represents the loaded aircraft in flight.
drag rise for an arbitrary clean wing, that is, the
inviscid portion. But, shades of d'Alembert's para- CFD requires many coordinate points of the shape to
dox, the full problem of the viscous portion is with be analyzed. These must be specified to a high de-
us nearly as much as it was forty years ago. So gree of accuracy, because frequently differences be-
here is a very important problem, because the drag tween adjacent points are taken to get slopes. The
is such a key to airplane performance. Obviously, problem of supplying them for a complicated shape
all this problem is directly connected to the esti- such as a swept wing or wing-pylon combination has
mation of the airplane efficiency factor, e. It is unexpectedly developed into a real nuisance. When
noted here that the general accuracy sought In all several thousand coordinate points must be loaded
these problems is not really very high. It is about into a computer, determination of them by conven-
what can be read from an 8-1/2 x 11 in. graph whose tional hand methods is a far longer job than the
zeros are not suppressed. final flow calculation. So you see that a require-

ment for automated input is apparent. The entireOn the simple wing at low angle of attack, remark- airplane exterior must be defined by equations.
able progress has been made in the last few years. Where parts were originally defined by flexible
Reasonably accurate direct and inverse methods for splines or by eye they must be converted into equa-
compressible flow have been developed. The basic tions in order to be usable.
full inviscid equations (the Euler) are known but
have not been solved very much, so even though many A viscous problem that should be answered is the
good inviscid solutions of varying degrees of accur- question of transition. Here neither the wind tun-
acy do now exist, further development of methods is nel or calculation does particularly well. Only
clearly part of any long-range attack. Your job is flight test gives an authoritative answer. The best
to gradually develop efficient application of the calculations of transition are really just esti-
more comprehensive equations, mates. The position of transition depends on the

pressure distribution, amount of sweep, contamina-

But there are still uncertainties about some of the tion from the fuselage, amount of surface roughnessButthee ae silluncrtantis aoutsom ofthe and irregularities, ambient noise, concave curwd-
basic calculations, physical uncertainties that are t reg anisoe supe t aoil secosanture as on some supercritical airfoil sections, and
not likely to be eliminated by one grand application turbulence. However, in the atmosphere, turoulence
of some very'comprehensive equation. The exact pro- is so low it does not seem to affect transition.
cess of circulation change across a fuselage is not Accnunting for the effects of turbulence in a wind



tunnel is very important, but it is an artificial has been done on the problem and there are rules for
problem, because it arises only in connection with predicting behavior, the problem can hardly be con-
wind tunnel tests. Of course wing surface tempera- sidered solved in any basic sense. The bubble of
ture conditions also affect transition, and then course affects the pressure distribution, the lift,
there is the entire subject of Laminar Flow Control and the drag. Predictions are not entirely satis..
which is receiving renewed emphasis with the present factory even for two-dimensional flow. The predic-
fuel situation. When laminar flow is sought, pre- tion of bubble bursting is in an even more primitive
diction of the transition point or the amount of state if the bubble is three dimensional as on a
suction needed to move it to a specified location swept wing.
become especially important because the extent of
laminar flow now becomes large. On present day jet Even though the flow is all essentially attached,
transports, that is not a problem because, due to your job has many problems. most seem to involve
the destabilizing effect of sweep, there will proba- viscous effects. For the inviscid portion, you know
bly be only 1% laminar flow or less, so even if we the proper equations and are making remarkable pro-
miss the true transition point by 100%, the overall gress in solving them subject to the correct bound-
error in position is only 1% chord. In this connec- ary conditions. Similar progress is being made on
tion a rough rule of thumb for drag calculations can the exceedingly useful inverse problem. But there
be given. To determine drag, just ignore the part are nagging problems involving viscosity except per-

*that is laminar and consider only the turbulent por- haps where the flow is purely laminar, where here
tion. That is, if the first 402 of an airfoil is too we know the equations. But most flows are tur-
laminar, the profile drag of the airfoil is about bulent, so to beat the wind tunnel you must gain
the same as if it were only 602 as large, but all better knowledge of the basic turbulent processes,
turbulent. So you clearly see that the amount of i.e., corner flows, bubbles, transition, and leading
laminar flow strongly affects the performance of an edge vortices. Except possibly for transition, the
airplane. wind tunnel can provide answers very well. It is a

wonderful analogue device, but one whose role in
Thus, another part of your job is-to improve the aerodynamics will slowly be reduced, we hope. Con-

*methods of predicting transition for given condi- tinuous improvements are being made in the inviscid
tions, or conversely, the conditions that are re- calculations, but ominously in the background is the
qui red to get a given amount of laminar flow must loss of accuracy due to viscous effects. The prob-
be specified more accurately. Theory for the prob- lem is aptly identified by the title of a recent pa-
lem, at present, is in the same sad state as that per by Lars Ericsson entitled "Viscous Flow-Nemisis
of turbulence, so a very long haul is seen, and for of the Theoretician in Pursuit of Higher Order
many years, prediction methods will be basically em- Accuracy.
pirical but will be improved gradually by refine-
ments here and there. But I repeat, if ever we are 5.0 Wings - Dirty as for High Lift
to do a good job of drag calculation, accurate pre-
diction of transition is a necessary part of the While design conditions as considered in the previ-
job. ous section are very important, the entire flight

envelope covers a far greater range of conditions,
Another problem that can arise is that of the lead- and for them the airplane must still be a satisfac-
ing edge vortex flow that may occur on highly swept tory flying machine. Hence, most of the problems of
wings Such as supersonic designs. Development of the previous section apply here too but under more
this vortex drastically affects the slope of the complicated and more, extreme conditions.
lift curve, so analysis is important. Good progress

*is being made on its analysis, but its prediction An obvious problem is that of stability. In the
and the prediction of pressure distributions of previous section, we hinted that the full three-
wings having leading edge vortices is far from dimensional boundary layer must be found, but there
solved. The problem and conditions for its strength it was mainly for design and analysis purposes.

* are far more complicated than the simple Kutta con- Here it is needed especilally for flying qualities
ditlon at the trailing edge, but the solution must determination, as for pitchup - and the analysis is
be known accurately because it directly affects the manytthmoexrmecnios. Sllp-
lift and pressure distributions. Development of a terns must be calculated. That means inviscid flow
leading edge vortex makes a first-order difference fields must be calculated at several high-lift coef-
in wing characteristics, so the problem is definite- ficients, and then three-dimensional boundary layers
ly important. To complicate your job, s'rmetimes the must be calculated at these same lift coefficients
vortex bursts, and this bursting point too should be in order to finally determine such relations as
predicted, but the prediction of vortex bursting is CM-CL curves, in symimetrical flight, if the tip of
in a far more primitive state than the prediction of a swept-back wing l6ses its lift first, the tips

*transition. will tend to drop, leading to the phenomena called
pitchup, which is a highly undesirable stability

While this section is mainly concerned with attached characteri stic. That is, the airplane tends to in-
flow, it is well to mention another problem here - crease its angle of attack instead of reducing it by

*laminar bubbles ana reattachment. If a laminar flow diving out of a stall. To really analyze this char-
encounters an adverse gradient, it separates very acteristic for a complete range of lift coeffic-

*easily. But the separation may not be extensive. ients, it will be necessary to compute the complete
*It may just form a laminar bubble which is quite an distribution of lift, and at higher lifts, many

unstable flow that can easily turn turbulent and wings will have partially separated flow. So the
*then reattach before there is any catastrophic basic problem is three-dimensional lift with partial

change in the flow pattern. Will the bubble cause separation - certainly a formidable problem. Flow
major separation or not? Will it turn turbulent or shear patterns right on the surface will be in-
first and just remain as a bubble? Here is another teresting, but only as a guide as to wnat the force
problem of transition prediction. The bubble also distribution will be.
May be caused by a shock. While considerable work



Several configurations must be checked. First the In the landing and takeoff condition, flaps and
*clean condition, because the airplane normally flies slats are extended varying amounts. The flap is

that way, and both high and low Mach numbers must be likely to be at least a double-slotted type, ana if
checked. Furthermore, on combat airplanes, maneu- so, together with the slat we have at least a four-
verability at high Mach number is very important, so element airfoil. If true analysis is ever to exist,
here especially the properties must be checked. the boundary layer and inviscid flow past the system
Also of course, tue airplane must take off and land, must be calculated, and because we are now inter-

friHere flaps and slats are used, and they are usually ested in the extremes, the flow must be analyzed for
at different settings for the two conditions. Hence cases of partial separation. Partial separation may
several more configurations are involved here, but occur first on any one of the elements, and then un-
mainly these conditions are only at low Mach number, less the analysis is stopped right there, it must
so compressibility is only weakly involved, proceed in spite of the partial separation on to

the maximum angle of attack. In fact, very inter-
More than synmmetrical flight is involved, rolling esting problems arise such as predicting the effect
and yawing stability for instance. For these, be- of Reynolds number or there may be partial separa-
cause the flows are highly nonlinear, flow fields tion in one of the flap gaps, and now we find
and boundary layers must be calculated as a func- a complicated problem of merging boundary layers or
tion of yaw, meaning several more calculations. wakes and interactions. The problem of drag estima-
Airplanes have roll rate requirements. When the tion was mentioned earlier. Here it is much worse,
wing is rolling, the relative onset flow is along a but very important because engineers not only want
helix, so that the different portions of the wing low-drag flap systems to go with the high lift but
are at different angles of attack. This causes a want to know their drag. Now in estimating the
damping in roll which must be overcome by the ailer- drag, we must trace the wake development of all the
ons if the roll rate is to be met. So in addition elements all the way to infinity, or must sum shear
to symmetrical configurations involving flaps and and pressure forces directly on the elements, if
slats at various settings, a complete calculatlonal anything more than empirical relations are to be
design procedure will involve span load analysis for used.
an unsymmnetrical wing with ailerons deflected - and
this too must be over the Mach number range. The thinking to this point has been two dimensional.

But flaps on a real airplane are quite three dimen-
Finally in the range of conditions to be considered slonal, So now modified span load analyses are in-
must be mentioned the ground, because the airplane dicated. A flap usually stops at the ailerons, but

*must land. The grouna affects the downwash and on many airplanes it can have changes in sweep angle
*hence the lift pattern, and longitudinal and lateral and even breaks along its length. On many trans-

stability here too must be satisfactory, so some ports there is a portion directly behind the engines
further calculations are indicated, probably by ap- that is not deflected at all in order to keep it out
proximating the ground with a reflection plane mo- of the jet blast. Furthermore, slats are not full
del. Also of course, if one is attempting to find span, so the three dimensionality must be consid-
the stability behavior at extreme lift coefficients, ered for them too. Then from a design point, the
the configuration being analyzed must be complete. question of their extent arises, because their stop-
The fuselage must be incluued and nacelles certainly ping point helps determine the general stall behav-

*should be included because they can have strong ef- ior of the entire wing. So you see again the need
fects on the lift distribution and local separation. for both the three-dimensional inviscid analysis and
There is no question about the necessity for check- three-dimensional boundary layer and separation
ing this ground condition. It is so important that analysis, or else one grand analysis.
aerodynamicists are willing to spend considerable
extra money in wind tunnel tests of this condition, At this time, it is not known whether effects for
including the construction of ground boards. Ground the inviscid flow are linear, enabling superposition
effect analysis can require numerous calculations, to be used, since Mach numbers are low, or whether
At each new height and attitude, the basic geometry the problem is nonlinear. The reason it may have to
is changed, thus requiring a new calculation. In be handled as a nonlinear problem is that the down-
the infinite atmosphere, a few primary calculations wash field is a function of lift coefficient, and
are enough for all cases because their results can because lift coefficients may be high, the downwash
be linearly combined if the Mach number is low. may be large. Then it may be insufficient to make

some general assumption about the location of the
Another challenging problem is the analysis of spoi- trailing vortex system. Of course the viscous flow
lers. If one tries to lift a wing by downward de- analysis is nonlinar anyway because of the nature of
flection of an aileron, a nose-down twisting moment the equations.
is developed in the whole wing section. Depending
on the elasticity of the wing, this can nullify the One final point should be mentioned. Flaps and
effect of the aileron as already noted. Therefore, slats must be mechanically supported. Wind tunnel
spoilers often are now used as auxiliary controls tests show that the support brackets substantially
because they do not introduce such adverse moments, reduce the lift increments supplied by the flaps and
A spoiler has separated flow behind it. So now you slats. So in any ultimate system of calculation,
see there exists the problem of analyzing the three- the brackets too must enter as part of the configur-
dimensional flow and force distribution for a range ation. Exactly how to do anything basic is quite a

*of spoiler deflections, wing CL values and Mach num- problem. In their cleanest form, the brackets in-
*bers. Unless shortcuts can be found, the number of troduce viscous corner flows in a strongly varying

calculations becomes very large. But wind tunnel pressure field. Perhaps if the flow is all at-
*tests easily solve this problem. For each spoiler tached, the potential flow portion of the analysis

setting, the CLrange is covered, and it in turn is can indeed be made, but because the brackets are a
CL moving device, they are poorly streamlined, and so

checked at several Mach numbers. This problem is the flow past them will be one with partial separa-
not too much-different from my previously mentioned eion for which a potential flow approximation is

*flow about a brick. poor.



One good feature of the entire problem is mentioned and it is not clear whether inviscid pressure calcu-
here. Because the flow is for high angle of attack lations will suffice. Wind tunnel tests may be
Conditions, a slat probably exists, and it is ex- needed to show what modifications in theory are nec-
tended so that we know that there will be no lami- eSssary before analysis can replace the wind tunnel.
nar flow. Hence, here prediction of transition is
easy. But there still can be problems. If the wing Fences are another commnon "fix" device. They reduce
has no slat and its accompanying joint, it may be the spanwise flow of the boundary layer. g'ore basic
sufficiently smooth to support laminar flow. In knowledge of their operation is needed, and then,
that case, the underside is at quite a favorable just as a wind tunnel can show the effect of the
gradient, and long runs of laminar flow could exist fence, the effect must be predicted if ever CFO be-
if the wing is not beset with constructional rough- comes mature.
ness such as joints, flush rivets, inspection pan-
els. and the like. Ignoring the extent of laminar Of course there are many other problems; they are
flow in these cases will lead to poor accuracy in rarer but should be kept in mind. At times, blow-
the drag calculations, ing boundary layer control is used on flaps to get

higher lift. It is used on the F-4 fighter. So the
So far we have only considered questions and prob- wall jet problem now becomes involved. STOL and
lems of the primary design. But there are add-on VTOL aircraft are more complicated applications of
devices that can greatly improve some of the behav- powered lift. Sometimes the flap may be a blown
ior at high-lift coefficients. A notable one is the flap, i.e., in the slipstream of the jet. Or the

* strake, i.e., a small portion of the wing near the Coanda effect may be used as on the YC-14. Alny
root that has much more sweep than the rest of the sound analysis of these types must involve the
leading edge. A strake develops a leading edge type three-dimensional effects. Another consideration is

*of vortex flow that travels down over the rest of buffeting. Prediction of the buffet boundary is
the wing and thereby delays separation. The idea certainly important beca use it helps define the
oces at least as far back as the DC-3 which used one flight envelope of the airplane. While some really

* n front of the vertical surface to delay its stall basic predictions exist, it is believed that the
*to high yaw angles. Because the strake is a very buffet boundary can be satisfactorily inferred from

powerful device, combat aircraft have incorporated static calculations. That is what is now done, us-
it from the very beginning, otherwise the wing would ing steady state wind tunnel test results. Buffet-
be significantly inferior competitively. So here is ing occurs at extreme conditions and can exist in
an added complication to your job. The inviscid some kind of transonic maneuvering condition, but

*analysis is not one of just treating the proper usually the important configuration condition is the
shape at high angle of attack, because a vortex of a airplane clean. So in some senses, buffeting be-
strength to be determined must be added, and then longs in the previous section, but it is included
afterward, the highly three-dimensional boundary here because it is for extremes and involves some
layer must be calculated. Now to handle the invis- separation.
cid portion is being worked on, but it Is not yet
down to a science. But certainly, if calculations If one searches, there are many more problems to be
are to substitute for the wind tunnel, problems like found, but they seem to be of lesser importance. To
this must be handled well. On a new model, probably name one, I mention the landing and takeoff condi-
several strake designs are tested in the wind tunnel tion. In addition to the extended flaps and slats,
to find the best. If CFO is ever to replace the the landing gear is down, and usually it comes out
wind tunnel, calculations predicting the effect of of the wing. Sometimes when the gear is extended,
the different shapes become the necessary equiva- the landing gear door is returned to its original'
lent. position to cover the cavity. Then the problem is

simpler, just the bluff landing gear to account for.
*Vortex generators, that is, small wings placed at But often the door is left open. Then we are faced

agle of attack on the main wing and perpendicular with analyzing the flow past a large three-dimen-
tit, may be used. In one sense, a vortex genera- sional cavity in a wing; drag and force coeffici-

tor is a kind of crutch or a pair of eyeglasses to ents being the items of interest. So you see, the
fix up a bad wing. But it is a very powerful de- problems seem endless, but all that I have mentioned
vice, and at times a better wing can be made by us- are checked routinely in the wind tunnel, even spin
ing it as a "tool" from the beginning. For in- characteristics, if the airplane is a fighter or
stance, on the new 767 transport, Boeing has found some other kind that requires high maneuverability.

*that seven vortex generators on each wing can re- Accurate analysis of a spinning airplane is close to
place a complicated black-box stability augmentation the ultimate in complication, because the entire
device. Vortex generators shed vortices that trail airplane must be considered and the flow is largely

*over the surface and modify the boundary layer - separated.
thus, changing separation patterns and the accom-
panying force coefficients. The analysis problem is Occasionally unsteady flow problems arise, but us-
much like that for the larger strakes. But here, ually they are not main line. The ordinary wind

*because of the small size of the generators, we are tunnel is principally a steady-state testing means,
not much interested in details of the flow on the and analoguously CFO methods aim mainly at steady
generator. The basic problem is to calculate the state answers. But there are unsteady problems or
effect of the vortices on the flow field and then even some flows that are unsteady but have long time
calculate what they do to the boundary layer. While average values. Of course, buffeting, dynamic sta-
they are quite small, their smallness is probably bility, and flutter all involve unsteady flows. In

the eas of he roblmsbecase o obainthe many cases, it is probably not difficult to extend
necessary locally very fine grid system, one of the mehd toanlteusedypbe. FrI-
embedded mesh techniques can be used. In inviscid stance , one major method of analysis uses the full

flow Itis asy o Itrouce logitdina votex time-wise equations of motion to march forward inflow itis asy o itrouce logitdina votex time through the transient until the steady state 1sand find itseffect on the flow field, but here the well approximated.vortex is just at the edge of the boundary layer,



6.0 oncldin RemrksIf CFD methods are ever to be used in a relatively6.0 oncldin Remrksroutine method by engineers, there must be much

As you see, the complete analysis and design job is automatic searching and testing for special flow
really formidible. It is really formidible even in features. Does a leading edge vortex exist or not?
the inviscid portions where we know the equations 0 aia ube xsWeei rniin
that apply - the Euler equations for the most ge- This kind of information cannot be loaded in ahead
eral case. The viscous portions, especially fows of time, so the computer must find whether some
involving some turbulent separation, are even worse, special flow exists or not, or its extent. Then to

becase he asicequtios ar no evn knwn. The progress further, it must use a forra of program that
laminar viscous equations are known, but on air- handles the special kind of flow that has been

*planes, laminar flow is so rare that it is not very found. If it does not do this relatively automatic-
important. However, tests and thought should devel- ally, the calculations must be in the hands of ex-
op better relations such as turbulent transport pro- perts, but wind tunnel testing does not require

pertesandso he vscos aalyis soul slwly fluid mechanics experts. So that state seems far in
follow the inviscid. But at the pace that methods teftradteato srmne fafvrt
and computers are being developed, it is likely that saying of his - Thank God for the Wind Tunnel.
the viscous portions of analyses will be a major hv er tsae htardnmc samtr

* drg torealadvacesscience, and support for its continued development
But the state of the art has undergone really re- should be at a low level. Before automatic compu-
markable progress. Even such problems as wings with ters arrived, it indeed was on a sort of plateau,
nacelles beneath the are now being analyzed tran- but that plateau has been crossed, and we now are on

*sonically, and methods are in sight for analyzing an uphill climb again. So the statement is either
*wings with stores or other small objects. The pre- true or not true, according to your viewpoint. If

sent state of analysis is especially applicable to you never expect to make significant inroads into
the design condition which is the-one that primari- both the design and so called second-order analysis
ly determines the shape and size of the airplane. of shapes, then the statement is true. But if we do
So the methods are becoming quite useful right now, think we can finally analyze all or many of these
We have gone a long ways from when all we could do fringe problems, then the discipline is really in
was analyze a two-dimensional airfoil in incompres- its infancy, because at present, we can do hardly

*sible flow or a symmetrical transonic shape at zero anything. Remember my reference to flow about a
lift. But who flies two-dimensional airfoils? Fly- very simple shape - a brick?

* ~ing one transonically at zero lift might be excit- Wieayral udmna aclto ftru
*ing, but the flight will not last long. Wieayral udmna aclto ftru

lence and its transport properties still seems out
of the question, much of the rest of the problemHowever, an airplane must have satisfactory behav- seems much nearer attainment. Many problems, such

ior over a large range of conditions, and calcula- as the wing design problem, now can be handled with
tion of this behavior at these extremes is in its the existing better state of the art computers. To

*infancy, and I see a long haul of many years. It is be definite, the author would hazard a guess that,
now impossible to predict whether we will reach if our capability were increased by 1000 times, we
these extended objectives, or just end up on some could analyze most of these extremes, at least suf-
plateau short of them. The computer has vastly ex- fcetywl ob eyueu.B 00tms

tendd or cpablit, bt I wil nt eten Itin- mean some kind of combination of computer speedup
finitely, and turbulence and separation problems are and capacity plus improved algorithms. I hope these
so complicated, that it is difficult to tell whether viewpoints are interesting and of some help. It is
advanced computers and methods will have the needed significant that your calculatlonal capability has
capability. But the writer is fairly optimistic progressed so far that there is some justificationthat methods for analyzing viscous problems for one foappesuh sti.Fryyasaghs
kind of flow will be found, then slowly another, kind of paper would have been absurd.
then another, etc.

Then we can expect the wind tunnel to suffer in- Pssrp
roads. At this time, at low speed and low lifts, Since this paper is a general distillation of know-
there often is no sense in running wind tunnel tests ledge, obtained from inumerable sources, no referen-
on two-dimensional airfoils, because we can calcu- ces have been cited. But for anyone who wishes to
late coefficients as accurately as we can measure know more about the workings, problems, design, and
them. Likewise, we are approaching that same state performance of airplanes, two books are cited. The*for practical three-dimensional wings. Therefore, first is Airplane Performance Stability and Control
the wind tunnel will be used less and less to search
for optimums. The optimum will be found theoretic- by C. D. Perkins and R. E. Hage, John Wiley & Sons
ally. Then it will be tested to make a cursory 194g. This is an older book but contains very good
check that it is performing as predicted. But the presentations of all the basic problems of an air-
main tests will be for the extremes-of operation, craft, which have not changed much with time. The
moment breaks, stall pattterns, drag at high lift, second is The Aerodynamic Design of Aircraft by
and the like. Or as already said, somewhat inaccur- D. Kuchemann, Pergamon Press 1978. It is a very up
ately, the wind tunnel mainly will be used to to date and excellent treatise on configuration de-

*examine second-order effects. So gradually over the sign of aircraft for the several speed ranges. It
years, the use and purpose of the wind tunnel will emphasizes the aerodynamic problems and is especi-
change. Now it seems to be in a period of transit- ally concerned with gaining an understanding of the
ion away from finding design point shapes. Later aerodynamics of the various parts. Kuchemann was
as the CFD and other calculational art progresses, one of the worlds leading experts in aerodynamic de-
inroads will, be made on the prediction of extremes sign and analysis.
and perhaps some day, only a few special checks will

* be needed. But the entire problem is really awful,



SESSION 4{



NUMERICAL VISCID-INVISCID INTERACTION

IN STEADY AND UNSTEADY FLOWS

by

Jean-Claude LE BALLEUR

Office National d'Etudes et de Recherches Adrospatiales (ONERA)

8P 72, 92322 ChitilIon Cdex (France)

Abstract gral equations, which interact the equivalent in-
viscid flow via differential and strongly coupled

This paper surveys some recent progress which viscous-inviscid boundary conditions. A noteworthy
have been achieved to generate numerical methods point is that a first order approximation to the
based on Viscous-Inviscid Interaction, for lifting Defect Integral form of the Thin-layer Navier-

. flows, with strong interaction phenomena and sepa- Stokes equations may reduce to the usual integral
rations. The composite solution is deduced from a form ci the Prandtl equations without requiring

. Defect Formulation of the viscous equations, appro- that the normal pressure gradient vanishes. Ccnse-
ximately solved with a boundary-layer-like integral quently, if we assume that a few closure relotions
method, coupled with an overlapping inviscid pro- between the Defect Integral thicknesses can be ex-
blem,where the viscosity controls the boundary con- trapolated from a boundary-layer-like closure, ba-
ditions. sad on velocity profiles modelling associated to a

simplified model of turbulence, then a set of inte-
Are summarized the concepts for the Viscous- racting integral equations, boundary-layer-like,

Inviscid splitting, the detailed first order Thin- may be deduced to close very simply the pseudo-
layer Defect equations, the allowance on the nor- inviscid problem, without involving the Prandtl
mal pressure gradient, the singularities in non- assumptions.
interactive viscous steady or unsteady solutions,
the full upstream influence recovery in interacted Due to the viscid-inviscid interaction, the
solutions, the turbulent integral closure, based on first order set of integral equations is free of
new three-dimensionnal velocity profiles and on separation singularities [6, 7], as well of the sin-

Sturbulent transport equations , the numerical re- gularities observed in pressure-precribed Prandtl
laxation techniques developped for the viscous- solutions [8, 9, 7], in steady or unsteady flows.

S-" inviscid coupling. In separated or reverse flow regions, non-interac-
tive and regular viscous solutions may be marched

Methods and applications are shown for 2D- in the free stream direction, using inverse methods
flows on airfoils, in low speed, or transonic, or where the pressure is an unknown [10, 11, 6, 12,
unsteady conditions, with multi-elements or spoi- 13) both in steady or unsteady flows [8]. The up-
ler devices, and for 3D-flows on wings. Separation stream influence recovery is always present, at
is solved in steady 2D-flows and quasi-3D flows least because of the viscous-inviscid coupling,
(infinite swept wing), even in supersonic regions. This is due to the be-

haviour of the branching solutions, which are always
subcritical [6, 141. The removal of the supercriti-

Introduction cal interactions of Crocco-Lees illustrates that a
normal pressure gradient is approximately taken into

Joint progress, both in Direct Navier-Stokes account with the Defect Formuldtion, or simply with
solvers as well as in Composite methods of solution, the Defect integral continuity equation (wall-trans-
are now believed [1 to 5] to be determinant on fur- piration coupling).
ther computing capability and numerical techniques.

Finally, the first order Defect integral form
This paper summarizes some developments and of the thin-layer Navier-Stokes equations, interac-

results for the Composite approach, with Viscous- ted with an outer equivalent inviscid flow, removes
Inviscid splitting and with overlapping computa- all major shortcomings of boundary layer theory,
tional domains. The Composite solution is based on and provides a basis to compute the strong interac-
a vi' )us Defect Formulation [5, 7, 151, coupled tion phenomena in flows involving thin viscous-
with a pseudo-inviscid problem where the viscosity layers, including separations, trailing-edges, wa-
controls the boundary conditions. The Defect for- kes and shock-boundary layers interactions. Further
mulation insures that the viscous solution is mat- investigation of higher order Defect integral equa-
chad continuously with the outer pseudo-inviscid tions is of course possible, either to improve the
solution, and not simply patched. overall accuracy, as suggested by East E16), or to

insure an asymptotically consistent approximation
From an integration normal to the surface, of the momentum equations at infinite Reynolds num-

the Defect Formulation ration ally provides inte- ber, in turbulent flow, as pointed out by Melnik

.°"e,



[17]. Presently, only a second order modelling of ponents, the density, the pressure, denoting u,

the normal momentum equation, uncoupled from the w, , p, the correspond-ng unknowns of the pseudo-
tangential momentum equation, has been used to take inviscid problem, V the viscous stress terms, the

into account the interaction effect of the wake cur- Navier-Stokes equations may be writ:en, with h-i-,z:

* vature.

The first order approximation of the Defect / - K.P
form of the thin-layer Navier-Stokes equations may 

71

also be solved easily using finite difference tech- - - 1 -ro

niques, in the same way as the Prandtl equations, = o - 1

as pointed by Carter [18]. Although the relative Lie1i ; L e 1 .P I -p
merits compared to the integral methods of solution
are probably balanced, the interest of che integral
method approach is based on two non-negative points. 3=Im . ={,1,,j (3)
If the discretization tangent to the surface has J-03

still to resolve the viscous-inviscid interaction Equations (3) correspond to the smooth mat-
exactly as in Navier-Stokes solvers, the integral ching conditions with the inviscid far field. Ad-
methods avoid a fine discretization normal to the ditional equations are necessary, to determine the
surface, which may be determinant on computer res- Pseudo-Inviscid problem. The choice is not unique
sources for complex flows. On the other hand, if the and defines the Composite solver. For example, an
integral methods are closed with a rather global tur- irrotational pseudo-inviscid problem may be selected
bulert modelling, where details are lost, the over- either with "p as suggested by Dodge [191 , or with
all efficiency and robustness look rather good, for -w as suggested by Rubin, Khosla [20]
a wide range of shear layers, at the present state
of the art. 1.3. Defect Formulation

We summarize in the following the detailed Here, the Pseudo-Inviscid problem is selected
equations, the turbulent closures, the numerical re- to satisfy the exact inviscid flow equations. The
laxation techniques which have been developped for equation (1) is then split
the viscous-inviscid coupling. Methods and a few re- -u a a
sults are shown for two-dimensional flows, low spe- 4 - . - - k = 0 (4)
ed, or transonic, or unsteady, and in three-dimen- -

sional flows. Separation may be solved, via interac-
ted inverse viscous solutions, in steady two-dimen- 4 -- ' (H-4) = -( 5)
sional or quasi three-dimensional flows (infinite t

swept wings). The definitions of the inviscid fluxes in (4) are
similar to relations (2). The equations (5) repre-

I. VISCOUS-INVISCID SPLITTING - DEFECT FORMULATION sent a Defect form of the Navier-Stokes equations.

In addition to the matching conditions (3), deno-
1.1. Zonal solver approaches ring <f (x,o.t) > f (x,o,,t) - f (x,o,t) the dis-

continuities (when the line z-o is the center of a
The composite methods of solution involve ba- wake), the viscous boundary conditions are

sically the splitting of a global problem into se-
veral interacting ones, which requires a coupling WALL (z'o,) "iT(a,3,t) - 0 (6)
algorithm. A first approach is a zonal splitting WAKE a,
where coupled subdomains are patched [5, 7]. W.0'ej< oQ)> <P(Z,0,t)>. 0 (7)

The pseudo-inviscid boundary conditions are dedu-
The subdomains may either be relevant of the ced from an integration normal to the surface. The

same equations and numerical techniques, as fre- continuity equation provides the exact displacement
quently in patched inviscid computations, or dis- effect

sociate viscous and inviscid domains, as for exam-ple the patching model of the interacting boundary WALL FV (X0,e) P -?),: (8)--

layer theory [5, 14]. The coupling may be achieved
either with a strict patching technique along the b * b
junction boundaries of the different subdomains, or WAKE <p(,o )' jj {

-O /(i-U).d) 9)
with a small overlap of the subdomains

The exact curvature effect of the wake is
The determinant concept is that a single set "-1

mf equations is directly representative of the so- . - -)

lution inside each zone or subdomain.

1.2. Composite solver approaches U1. APPROXIMATION TO THE THIN-LAYER NAVIER-STOKES
EQUATIONS

On the contrary, the Defect Formulation assu-
mes that the pseudo-inviscid domain fully overlaps From this point, the so-called Thin-Layer
the viscous regions, inside which both the pseudo- Navier-Stokes equations (or Parabolized equations)
inviscid problem and the viscous problem contribute will be assumed. All the viscous terms are then re-
equally to determine the overall composite solution, moved, excepted the usual shear stress term of
The same concept is used to split a turbulent solu- ?randtl in the x - momentum equation. The set of
tion into an averadged problem plus a fluctuation equations is a non-parabolic one.
problem. The splitting involves both the equations
and the boundary conditions of the problem. l.I. -irst order approxLmation of ">e 7res-

sure.
Considering a contour z-O, whose curvature 4s

(x), denoting U, the curvilinear velocity :om- Because of the orevious non-asymptotic choice,

2



a first order expansion, based on the gauge zi5z. :1.3. Second order pressure modellin - ke
may be applied simply to the z-momentum equation of Curvatur3 Effect
(5). We get then

4e assume that a z-averadged curvature -t
_-____-C(x,tl of the interacting inviscid streamlines mn.v

at k be used according to

{iP~-( P .- ttb(Pa- a=ae9 1J; (1 LP

0 r(PAt) t191

* The defect formulation (11)(3) provides then a K" (x,:) is a strongly coupled viscous-induced :ur-
first order pressure field with a non-zero and in- vature, for example the displacement surface cur-
viscid normal gradient 5 (x,z,t) = p (x,z,t). vature, see Zast [16,3]

Fora wake, the upper-lower dissymmetry must :e ta-

11.2. First order Defect Integral equations ken in account, both for the urvature K* and :e
thicknesses ,

A z-integration of (11) provides exactly, if
(x,o,t) - 0 and q2- u2 

* w
5  

1,) 4 P9q..O- 20
- -s. 4 -" __O , = r ! ].o). +12)

igS __ - 02
i 1 L 9z j q (-t) 1>.4. Vscous 2'pstrear ln:uc ne-Singular:tles

t :he viscous (or non-:nteract:ng) upstream in-

The Defect Integral thicknesses o, , fluence corresponds to a pressure precribed solu-The efet Itegal hicnesss 5, 4, 4, ivol icon ;f the first orler equations, :n the fncom-
ve the z-variation of the overlapping inviscid fi- trenufote cast e ( tn : n th i-

pressiale case, denoting U ~eld. Only the momentum equation (13) is an approxi- and A toe derivation wit-. respect to the integral
mate one set cf equations based on mass (12, x-momenta- "'"

PEx,o,n jlPac=,jlt, - ,. 1 5 'd) and entrainment (17) is

In addition to a few algebraic closure relations, L09 J t )0.Z'

at least one additional integral equation must be ( o o o
1  r, , -

solved, for the integral method to fit the physics C. - 1 H 0 4.
and mathematics of the local equations (11), for I Aa Z
example the recovery of upstream influence in re- L. - , -

verse flow reg-ons, or the separation singularity For pressure-precribed or q-precribed solutions,
in pressure-prescribed steady solutions. The kine- i4 , H, and w are computed from (21). A rank-2 sys-
tic energy equation : tem for 3ll , H is obtained from momentum and en-

JOE. A(" - -1 trainment. The system is hyperbolic and the cha-
.. ..cN,.6. _ _ _ _ 2. .' racteristic slopes in the (x,t) plane demonstrate

Lp
1 

(q) that the upstream influence is only present in re-
• : pq

3
S +± " l -(15) verse flow regions, which may be identified with

.. pq bi q " (1,±,) the condition 11 0, see :6J . A singularity is pre-
sent at separation ( - 0) for the steady system,
excepted when the pressure gradient satisfy a com-
patibility condition £6, 71 . Weak solutions of the

unsteady hyperbolic system (21) may also provide'-" unsteady singularities (discontinuities), see 8,- <-
Sct) Cuc. , )_ - m. ,) d 9] . Such discontinuities are not coincident with

0 (16) the beginning of upstream influence ('O). They are

also present in three-dimensional steady flows with
(7) .e) Acz.o,t)J -3 - pressure-precribed solutions L9]

"9 oe)L) . z~ r . idj Both steady and unsteady singularities may be
ke)((,) removed in w-prescribed solutions, where 11, H, q

is presently used as a closure equation for laminar are computed from (21). The compatibility condition

and transitionnal flows, with rho assumption that at steady separation is automatically satisfied :6;.

= 0. The entrainment equation, a collocation The weak solutions of the unsteady hyperbolic sys-

with the local x-momentum equation at a conventio- tem are canceled [8]. In Idition the characteris-

nal edge z- (x,t) of the layer, is used for turbu- tic slopes of the rank -j hyperbolic system, in the
lent flows (x, t) plane, indicate that the uostream influence

I b b - t- -, E is lost, even with reverse flow (4 '0), and that
. ] ' - " -~ 7-j (,,t) (i= U) the solution may be marched in the outer flow di-

(17) rection (analogy with the FLARE approximation), see

P L . (Z1 0_ ) (-S) E [8 . Of course the upstream influence is included

inside w (x,o,t) and is recovered from the viscous-

b& " inviscld coupling.

L P" %-b '
I J (xis)



11.5. Interacting Upstream Influence - Sub- IIl.1. Three dimensions velocity profiles Mo-
critical branching delling

The recovery of the viscous upstream influen- A one-sided cross flow modelling is used, Fig.
ce before separation (from the inviscid coupling) 1, based on a vectorial description of the viscous
is howewer not automatic in supersonic regions. The velocity profile q (6, Cz, Cs). 5 is the thicknes-
elimination of the viscous variables in the steady ses of the layer, Cz and C3 are two free shape pa-
system (21) provides the influence operator asso- rameters. We denote x and y the unit vectors, res-
ciated to the viscous layer for the coupling pectively tangent and normal to the inviscid velo-

[city q.Hd c (.22)

Vd- (Z.01 ,he suggested description combines a Wake vec-

The perturbation of a given solution (w qo) then tor W and a logarithmic shear stress vector z along
satisfy o two different planes. An important point is that

the Wake Component describes a plane Defect profile.
If z- t)

'1J- aJ H 3% tS Jx .D (231

and corresponds to a subcritical branching solution, -2 Q7which is unstable when marching in free stream di- I - (c * C T)
rection and which is also equivalent to an upstre- -- CL-1CJ]
am influence recovery, so long as B*<O. The analy-

sis demonstrates that the Defect Form of the con-
tinuity equation (the wall-transpiration coupling) The universal law of the Wall is assumed to provide
insures this property to be always satisfied, see the skin-friction and C3

"*'" £6, 7, 14, 5]. C i 2 1

* 11.6. Wall-transpiration velocity in Three- -(28)Dimensions. oc.- (Z1

The same Defect Formulation as (3)(4)(5) may The Wake function F (n) is the same as previously
be written in three dimensions. With an appropriate used in two-dimensions, see [15], and involves a
selection of the Defect Integral thicknesses, the rather empiric relation n* (351',), in order to dis-
Defect Integral form of the first order Thin-Layer sociate the shear layer from t he Wall in extensive

S ~ Navier-Stokes equations, with (x,y,z,t) - p (x, separations, and to control the maximum reverse
y,z,t), reduces to the usual momentum integral equa- flow velocities (nis zero for attached flows or
tions. The Defect continuity equation is free of ap- incipient separations)
proximations. Considering non-orthogonal (x,y) coor- - (A L
dinate-lines on the surface, z along the normal, we Ri(r F F( 1 j( 1

T
u- )(

get in the steady case : 
) (291

As a first approximation, the wall shear
i -'. -pa * T-PI Lrtbr-w] ,-C stress may be assumed colinear to the vector T. At

large Reynolds numbers, Ci decreases, and the po-
ds. de ,. d3'- d.1 cm A dsdy (24) lar velocity profile is roughly a triangular one.

41 In two-dimensions (C3 s o), the profile becomes si-

t JIt, milar to the description of Coles [23], excepted
for the wake function selection.

The Defect Integral Continuity equation is exactly :
ETA REYNOLDS O.E 07

* _b (.TpqS.4( qsf H~ 13.9

J(14 9.jo (26)

&4 P9Cq 0 fZ I Pa±dt 4 .U(( 1  26)

111. TURBULENT INTEGRAL CLOSURE

It is noteworthy that the closure of the en- I /U

I--t

trainment integral method, which solves equations 4
(12)(13)(17), requires only three auxiliary rela-
tions, determining the variable 5,C;, E, from the
computed C fct thicknesses 5i, '4i, and the local - V/UE
Mach and Reynolds numbers. The three unknowns 5,
Cf, E are stronly connected to the turbulence. We
assume here simply that the relations between , Cf, UUE

E and 44, -44, M, Re,4 are exactly the same as in a 0

boundary layer analysis, which would be based on a
modelling of the velocity profiles, and of the tur-
bulence. Fig. -hree-dLmensiona: telocit

profiles 4olellini.
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The same profiles ar- I.i. - rororessih " ". >'f17AICAL COUPLING ALGORITHMS
unsteady flows. The dens , i3 OEduct from .te I:-
cal inviscid total enthaL;. "'a. )trat..we ,1) witl. Tlie rolloring results were computed with dif-
C1 - o provide also at li:;: a .o:llirs :the t j:per tzr.:%t numerical methods, where the viscous-invis-
or lower half-wake velocr:; urcf1:.!. rid :c.upLina 1 howewer always based on explic-:

?laxati:r. tecniques. This relaxation procedure
111.2. Equilibrium r.z.tl %ccEllin& copes the vi!scous and inviscid calculations, each

:F t--em being solved separately at a given itera-
For an equilibrium boundary ldyer , -he rtcdel- tfOn. The zoupling iteration may be a fixed point

ling of the entrain me-it £ ii[ lta ssipaioi rno, or a utore :vuplex one, but the czrractzon pro-
0 may be deduced from C al q,,!_.:it",r cis usin 2?ss ac tach coupling node is only de.)andent on the
eq

an algebraic closure, 2cr ean-l- the :.ix-n4 iergtlh :oup.ing error at this node, or in a restricted
model of Michel [21) , or tN dO-eLfl-ti model environment. This explicit-like approach is very
[22) , with a length scale :cinect.d tO the outer flexib~e wito respect to the interchangeabilit:i of
shear layer, defined as f  

. - , in rase of the n-ii:scia solver, but generates a prolem of sta-
extensive separation. An adecors:. vnaiyti:a1 appro- 5licry Crntrol.
ximaoion is in two-divensicc [15)

For steady two-dimensional or quasi three-
, - i- £ 2i -direnstonal flows :infinite swept wing;, a linear

! .1fZ£ S stability analysis is Jeveloppec to ontrr:l the re-
Je(,-[O. 053 (1 - 0.18r. A A. .3 0 laxation techniques at eacn node. both with cr wi-

* EC",30) thou: separation, fCr a Ecuncary layer Dr a wake.

• @ . }1c IZi- oe(k- . A' ks For two-dimensional unsteady ,r ruiree-dinen-
sicnal flows, only preliminary stadies -Jitrut se-

The constants c -t)) are aedJee from. a best pararion have been achieved, using an arbitar, and
fit with the results cf 711zhei [I) in attaconed uniform underrelaxation, deduced frr trial and er-
lows at large Reynolds number. The ,::rrecticn terms nar-"hta A c'j ;lbudr rot. Converged coupled solutions are then however

are such that A1i - *,B - 1 for -csal boundary obtained,numerically fully consistent (or tine -
layers. For wakes, we assume ' 2 and Cf = o. The consistent) with a strong viscous-inviscid intarac-
terms 'z, AB are used In case of curvature, or in tion, without inconsistent smoothing, with 2 cou-
:case of free stream turbulence, see .l5] . A smooth pling discretization allowing always for a possi-
intermittency function is used at last to weight the ble interacting upstream influence.
turbulent closure relations, and the laminar closure
of similar solutions, in transitional regions. IV.l. Steady attached flow-Direct Relaxation

1.:i.3. Out-of-Eeuilibriun modelling The viscous layer is solved pressure-prescribed.

The velocity profiles are assumed to be unchan- Denoting n the iteration index, the viscous coupling
jed. In two-dimensions for example, the departu- operator of equation (22) is written :

re of the shear stress ixz) from the equilibrium fI. fl''4  =, -. (model (x,z) is assumed to be only x-dependent. Ldx n Z)
.. We dedue then from (16)(18) : The inviscid distribution qn at z-o is deduced from

) (a w -prescribed inviscid solution. A fixed point
iteration with under or over-relaxation is genera-

".:,) : A (). e (t) (31) ted :

A() " -C (X) -- ((,o (36)

In order to compute A(x), denoting k(x,z) the Consistent centered or downwind discretizations of
turbulent kinetic energy, c(x,z) the unit dissipa- dqt insure the viscous upstream influence reco-
tion of enerjy, we assume at last an approximate very.
model '(x), k(x), %(x) for the turbulent transport

- of averadged quantities across the shear layer : IV.2 Linear stability - Local relaxation con-
trol

- AC) -n(Z)(32)ADenoting 
with prime the small perturbations of

The transport equations of Launder, Hanjalic are the solution, in two-dimensions, we get from (35)
simplified in the following way, see £15) the viscous operator at wave number at

Ot From an approximate linearized analysis of the in-

=. F viscid stability with respect to the boundary con-
lt = L -9 j ditions at z-o, we get at wave number a, see [24,

*sing averadged equilibrium levels k (x), e (x), Within this assumptions, we may deduce the ampli-
(x) deduced from the velocity proiles modlling: fication piD (a) of the iteration (36) before rela-
*- - . £. xation, real at subsonic nodes, Imaginary at super-

sonic nodes, and the optimum relaxation at wave num-
.,[OO A,:A q (341 ber i. Finally, stability is achieved with the over-

"' relaxation-like technique [24)

A,- AAA 00 (i-.)]" 9 L
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cc& s(turbulent modelling, wake curvature effect). The
* LD(m)= - mutual interference of the upper-lower viscous-

inviscid interactions changes mainly the viscous
* " (c§n) (4R) I(39) coupling operator of (37) in the following way,

a Asee [15S]:I

L L (431

We notice that wopt (a max) decreases with the mesh ( Eq: - 0
refinement, the viscous layer thickness, the proxi- The second relation of (3) corresponds to solve

mity of separation or sonic points, the displacement coupling with a frozen curvature

IV.3. Steady Semi-Inverse Relaxation effect, and provides

In separating or separated flow regions, the 
B 9

viscous solution is still marched in free stream The coefficients 3± may be used to computeu)+T(x)
direction, usuallX with an implicit integration and 4(x) in the Semi-Inverse Relaxation (41). The
scheme, using a w - prescribed inverse method, Direct Relaxation becomes
whichprovides a first guess of the inviscid velo-
city q. The usual w - prescribed inviscid solution PD, 

- 
L=0) (5

provides a second guess q , which is compared to q The residual R in relation (45) is the local angu-
in order to iteratively correct w . The technique lar error of the wake geometry positioning.
is Semi-Inverse [24] because only the viscous sol-
ver is an inverse one. The exact positioning of the wake geometry may

be achieved iteratively. After converging the dis-
In Fourier space, at wave number a, we get placement coupling along an approximate geometry,

from (38) that the usual inverse coupling iteration the residual R provides an improved update of the
(inverse-viscous and inverse-inviscid successive wake geometry, which may be converged within a few
calculations) may be simulated, at least for small cycles, without noticeable stability problem, see
perturbations, with the following semi-inverse cor- [15]
rection

A2.trd " -, The interacting curvature effect of the wake
L-L -- [ - JJ (40 (0) even with the modelling (19)(20), is more0( dx. d. dint dx XrO) complex than in the boundary layer theory, because

With some additional analysis, a stable and over- the local averadged curvature K*(x) is no more is-
relaxation-like correction may be written, see [24, sued from a preliminary and purely inviscid cal-
7, 15]: culation, and requires the "induced" curvature of

r- 1
the coupled inviscid flow (strong-interaction). Inpr mj- L - S LA~t(dq~-A- % (41) the same way as for the displacement coupling, an

dZ d. I2 L6 jt ,iterative update of the pressure jump across the
wake-cut generates a fixed point iteration for the

0 44 FI4-M-1 induced curvatures K* and raises a stability pro-

_ _"S pt U (mcr)U D(4C)$z (Ce) 1 (42) blem. The stability Eontrol depends on the mesh si-
ze, see [153, and may become impossible on a fine

As originally suggested [24], we use presently L4 mesh, even when using an underrelaxation technique.
W3 and wt-o at subsonic nodes, b=o and WZ-W3 at su- We use in this case an inconsistent smoothing to
personic nodes. At supersonic nodes, a theoretical estimate numerically the local curvature K:,
improvement of the selection may be &14.max *8sO,
Wz - W3, as more recently suggested by Wigton, Holt IV.5. Progress in Unsteady and 3D-flows

-' [25). The optimal convergence rate is howewer only
btained at a single wave number, a max, which pre- The Direct and Semi-Inverse relaxation techni-

, sumally is not determinant in the global convergence ques have been extended to the quasi-three dimen-
rate. sional calculation of infinite swept wings, with or

without separation, see section V. On the contrary,
A switch between the Direct Relaxation (36) the fully three-dimensional calculations are perfor-

and the Semi-Inverse Relaxation (41) along the con- med with a uniform underrelaxation, with the Direct
tour z-o is used. The switching is based on the technique, without separation.

*. viscous calculation, and is controlled with the in-
- compressible shape parameter of the viscous layer. In unsteady flows, the time marching integra-

tion probably increases the efficiency of weak cou-
1V.4. Steady wakes coupling pling techniques where the viscous set of equations

The displacement effect of symmetrical wakes (12)(13)(17), which controls w(x,o,t) is not cou-

calculations may be coupled using Direct and Semi- pled to the derivatives of e(xot), q(xot) with
T verse Relaxation techniques which are very simi- a fully consistent discretization. An inconsistent

tar to (36)(41), excepted we consider now the nor- coupling may be consequent, for example, to a solu-

mal-velocity jump of the inviscid flow along the tion procedure where viscous and invscd problemscut *are computed successively, at a given time-step,
cut. without fully converging the mutual compatibility

before marching in time. Of course, a weak couplingThe wake calculation may also be asymmetri- i lascnitn ihtebudr ae ho

cal, either to reach the correct positioning of the is always consistent with the boundary layer theo-
cut (minimal velocity locus), either because of ry, and may become irrelevant only with respect to

inim ci ty + be as the strong viscous-inviscid interaction, at trai-
an inviscid dissymmetry (q+# q-),ar to get an asy- ling-edge for example. The stability control, when
metrical estimate of the half-wakes thichnesses marching in time with an implicit inviscid solver

6
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and a large time step, without a time-consistent The solver may be used at low speed and high
coupling, has also to be considered, lift, without extensive stall. An example of this

limit is given on fig. 2 and Fig. 3. The flow is
Time consistent solutions without separation the so-called "Stalled airfoil case" of the 1980-

are here simply achieved in converging a Direct Re- 81 AFSOR-Stanford Conference, and corresponds ap-
laxation technique at each time step. The viscous proximately to the maximum lift of the NACA 4412
equations are solved marching and pressure-pres- section. The composite solution of fig. 1 is de-
cribed, with an implicit technique. The coupling duced from the velocity field q(x,z) of the inte-
underrelaxation is uniform and empirical. racted inviscid flow, and from the velocity pro-

files of the Defect Integral method. The viscous
V . RESULTS AND APPLICATIONS velocity field I (x,z) is written

We consider here a few typical results taken ( (%, '41-
from different methods developped for airfoils and
wings. They are based on potential solutions of the The computed trailing edge bubble shows approxima-

pseudo-inviscid problem. They strongly couple Defect tely a separation at 75 2 chord, with a rear sta-

Integral methods, which are issued from a unique gnation point in the wake. A fully dissymetrical
closure (excepted for 3D-wings). calculation of the wake with converged positioning

is used. The non-equilibrium turbulent modelling

V.I. Two-Dimensions Transonic Solver - Low and the wake curvature correction are howewer swit-

speed ched off.

The full viscous-inviscid solver depicted in V.2. Two-Dimensions Panel Solver - Multi
sections II-Itt-IV is used for steady compressi- Elements airfoils
ble flows around airfoils. Laminar or turbulent
boundary layers and dissymmetrical wake calcula- This study has been developped jointly with
tions are strongly interacted, with possibly dis- M. N~ron [27] . The direct -inverse viscous sol-

placement, curvature and wake positioning effects. ver of the transonic airfoils codes, still connec-
Separation bubles or important trailing-edge sepa- ted with the same Direct and Semi-Inverse coupling

rations may be resolved, approximately until maxi- algorithms, has been interacted with the accurate

mum lift. The full potential equation is assumed panel solver developped by Nfron, for incompressi-
for the inviscid flow, which is solved with the fi- ble flows around single or multi-elements airfoils.
nite difference relaxation technique of Chattot, The method is valid so long as the boundary layers

Coulombeix [26] , in conservative or non- conser- and wakes are not confluent.
vative furm, with simultaneous relaxation of the
viscous coupling. The influence matrix of the panel set is used

to converge the viscous coupling iteration. Sepa-
rations bubbles at trailing-edges, cove, slat, or
flap may be resolved automatically so long as the
mesh resolution on the panels is fine enoughq with

2 respect to local viscous effects.

The fig. 4 shows an Aerospatiale RAI6SCI sec-
tion with flap and slat, numerically investigated
by Nfron for a High-lift Garteur group. In such a
difficult case, the high concavity of the slat on

Fig. 2 Transonic solver at Low speed and High the lower side, jointed to a discontinous geometry
lift : Composite viscous solution with which separates a very thin boundary layer at a
trailing-edge separation (NACA 4412, a sharp corner, has required to modify empirically
- 13.6, R = 1.5 x 106, V - 20 m/s). the slat geometry inside the well-separated region

as shown on fig. 4, in order to remove a cavity-

-6 Cp like configuration. The reattachment process is ho-
wever computed with the exact geometry. At the pre-
sent time, a symmetrical wake calculation is still
used, without curvature correction, and without a

-4 "- full turbulent modelling. Computed pressure coeffi-
cients are compared on fig. 5 with the ONERA experi-
ments of J.J. Thibert.

-2 Separation
0

0" 0 Y/14I000m /

2
't-_* Modified compute gometr

X/C
S0.50 1.00 ' Fig. 4 - RAI6SCI airfoil with slat and flap (A0°

Fig. 3 - Pressure distribution from the transo-
nic viscous jolver (NACA 4412, :- 13.6',
R - 1.5 x 10, V -20 m/s).

..
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C ' A recent improvement was tecent4l athieved -or

CDFLAP )mputation of the airfoils for .hich & small iase

*". Separationr is present at the trailing-edge. The slight modif;-
WING -1. -6 cation in the geometry of the section, usually in-

-" SLT ,volved to close the airfoil, has been here associa-1. 11.2

-7r' SLA ted to an equivalent wall-transpiration technique,
. firstly designed for modelling the flows with spoi-

-5 lers [28] . The technique cancels approximately the
Exery l-2 error of the computed geometry near the trailing-

Theory edge, and is connected to the control volume balan-
c3 / ce at trailing-edge, via a-i increase of the wake

-.1 * ., displacement thickness, equal to the base height.
The fig. 7 compares with experiments the pressure

0 .2 0. 0 0.8 distribution over the CAST7 section at supercriti-0 0.2 0.4 0.6a0.8n1cal conditions, and illustrates the results obtai-I~iiII Th fulltwo-quatons trbulnt mdelliraatiwon
ned with the non-conservative inviscid solution.
The full two-equations turbulent modelling and wake

Fig. 5 - Pressure distributions on the multi- curvature corrections are used. The computation wi-
elements airfoil of fig. 4 from the in- thout base modelling assumes simply a geometrical
teracted panel solver (a - 12% :FLAP - closure of the section near the trailing-edge. The
40*). full model provides a noticeably improved agreement

V.3. Two-Dimensions Transonic Solver - Super with experiments. The base thickness is 0.5 percent
critical airfoils chord.

I- -- Without base modelling

The transonic solver of sect ion V.1 . may be - - With base modellingused at supercritical conditions, with possibly - Ex-eriment ARA
bubbles or trailing-edge separations. The fig. 6

shows a typical result in attached flow, with the 1I
full viscous model and the conservative inviscid
solver, for a RAE 2822 test case of the 1980-81
Stanford Conference. At the present time, the ma- M=0.76

jor limitation is the shock-induced separation, R=6006

which would require a spatial resolution of very
fine scale at the begining of turbulent interac-
tions, beyond the scope of the present potential c;
solver robustness, see (15) . In attached flow, a
small overprediction of the pressure recovery at the
shock, sensible on fig. 6, illustrates probably the ,
same effect when using the conservative inviscid
technique.

i-Cp
'" -- Theory

o Expriment X/C
0

* o1

'R2822 M I=0.730 =3.19-OAO
=R6.5 x106 XT=0.03

.%(a. Fig. 7 - Influence of the trailing-edge base mo-
0 0.5 1 delling - Transonic viscous solver (non-It C conservative option).

"isplacenent thickness plot- Upper surface V.4. Two-Dimensions Transonic Solver - Spoiler
flap modelling

0.01- The deflection of a spoiler flap, hinged on
the w-tl on the upper surface, see fig. 8, is sim-

0 ply issumed to provide a new solid airfoil section

where a discontinuity, similar to a backward-facing
step, is present at the trailing-edge of the spoiler.
This geometry (G), however, cannot be used directly
for the computation, and an approximate geometry(G'),

X/C which may be for example the original airfoil, is

0 0.5 i substituted to (G). At each station along the con-

Fig. 6 - Transonic viscous solver at supercriti- tour, the angular error between (G) ano (G') is ap

cal conditions (RAE 2822, M 0.730, ) proximately canceled with an equivalent wall-trans-

- 2.79', R - 6.5 x io6, xt - 0.03). piration velocity, see [28i, superimposed to the
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viscous effect. The viscous contribution to the wall
transpiration velocity, is still deduced from the
defect Integral method interacted with the inviscid
field. The strong coupling allows to deal with the
separation of the viscous layer, at the spoiler hin-
ge or downstream the spoiler. A control volume ba- -.

lance increases suddenly the displacement thickness - -
at the station of the spoiler trailing-edge. RAlSC. Spoiler

- - -. Exact geometry (G) Control volumes
-- Approximate geometry (G '

4"• Spoiler

.7 Bas..e

Li Fig. i1 - Composite viscous solution on RA16SC1
airfoil with spoiler - Mach-lines con-

Fig. 8 - Spoiler or base modelling, tours.

The Aerospatiale RA16SCI airfoil has been corn- V.5. Quasi-three dimensional Transonic Solver-

puted with a 10' spoiler flap on the upper surface Infinite Swept wing.

fig. 9, 10, 11. The agreement with the ONERA expe- This work was developped jointly with D.Blaise
riments of Consigny, Philippe is promising, although This dratiop29 o The D-v locit
the wall-interference corrections are not opti- for a thesis dissertation [29] . The 3D-velocity

mal. The separation is induced just downstream the profiles modelling of section 111.1 is involved in a

.', spoiler, and the calculated separated boundary la- 2D-numerical technique, along the direction normal
yer does not reattach before the trailing-edge. An to the leading edge. Both the stability control in

acceptable plateau-pressure is predicted. The two- the Direct Relaxation Technique for coupling, and

equations turbulent modelling, the dissymetrical the Semi-Inverse Relaxation Technique have been ex-
wake calculation and positioning are used, with the tended to infinite swept flows. Quasi-three dimen-

conservative technique, without wake curvature cor- sional separations, with wall streamlines accumula-

rections. A trailing-edge base is present. The ne- tion can be computed with inverse solutions proce-
gative lift due only to the spoiler, with a super- dures, and may be interacted, exactly as in two-

critical lower-surface, is predicted. Streamlines dimensions.
and Mach-lines contours of the composite solutionare displayed on fig. t0-li. Che present calculations of fig. 12-13 are as-
are dsumed fully turbulent and are performed with the

equilibrium closure. A symmetrical wake calculation
-CP is used. The inviscid potential solver is conserva-

tive. The invtscid solution is compared on fig. 12
' xto the viscous calculation for an ONERA-D section,

Separation Theory with a 30' swept angle, at supercritical conditions.
S a - ... _. \The flow is attached. The comparison with the 3D

ONERA experiments of Schmitt, Manie [32] on a fi-
nite wing is only indicative, because of the tip

o effect. A comparison between the quasi-three dimen-
sional viscous calculation and the purely two-di-

Spoiler ZReattachment mensional approximation of the viscous flow is sho-
- 101 wn on fig. 13.

RAlOSCI M=0.727 6rvO.12

;- 0.- 0.15- - Quasi-3D inviscid (infinite wing)

Fig. 9 - Pressure on the supercritical RA16SCL -1 Quasi-3D viscous (infinite wing)
airfoil with a spoiler flap (M- 0.727, / 3D-Experiment (finite wing)

- 0", R - 4.2 x 10
6
, 

2SPOILER - 10*).

RA16SC1 Spoiler

Fig. 10 Composite viscous solution on RA16SC1
airfoil with spoiler - Streamlines con- Fig. 12 - Quasi-3D transonic viscous solver - Infi-
tours. nite swept wing (ONERA-D, M 0.54, 2%

R 2.5 x 106 , , 30').

9
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C0  - Quasi-3D viscous (infinite wing) * Experiment NASA AMES

-1 I- 20-viscous approximation Inviscid theory

200 Viscid-lInviscid theory

c 1 1000I0

ooS

-100

Fig. 13 - Comparison of 2D and Quasi-3D viscous so-
lutions over an infinite swept wing (ONERA-D

M - 0.84, a - 2*, R - 2.5 x 10 ,(9- 30*). -200

V.6. Two-Dimensions Unsteady Transonic Solu-
tions -300 . X/C

0 0.2 0.4 0.6 0.8
Time-consistent unsteady viscous solutions ha-

ve been developped jointly with P. Girodroux-Lavigne 20 C01  A
for unsteady airfoils (301 . The inviscid part of 1
the calculation was designed by Couston, Angelini
for aeroelasticity problems, and assumes a transonic
small perturbations approximation of the unsteady 15
potential equation. The inviscid equations are sol-
ved at each time level with a two-step implicit
ADI technique, where high frequency unsteady terms
are included. The second Step (z - implicit) is in-
teracted with the viscous wall-transpiration bounda- 10
ry condition, and is solved iteratively with the
viscous calculation, until converging the coupling
at a given time level. 1 I

The unsteady Defect Integral equations are sol- 5 x
ved with the turbulent integral closure used for
steady flows. At each time level, the viscous equa-
tions are solved pressure-prescribed, with a non- 0e,

linear implicit integration in the (x,t) plane. IC
A box scheme discretization [301 allows however to 0 02 0.4 0.6 0.8 1
march the solution in the free stream direction. At
the present time, only the equilibrium turbulent Fig. 14 - Time-consistent unsteady solution - First
closure has been used, and the laminar calculation harmonic - Pitch oscillation (NACA 64A010,
has been switched off. A symmetrical wake calcula- M - 0.8, a = 0, R 12 x 106).
tion has also been assumed for simplicity, although
the theoretical upper-lower asymmetry of the invis- C
cid velocities along the wake makes this approxima- 4 - Viscid-nviscid theory
tion only valid at low reduced frequencies. The wake ......... Inviscid theory
curvature corrections, which are not believed si- Lower Experiment
gnificant within the present approximations, have
been neglected. 0.5 .

The fig . 14 compares to the NASA A ess experi-
ments of Davis, Malcolm [311 the calculation resultsUpe
on unsteady pressure distributions, for the NACA64A
010 airfoil at supercritical conditions, oscilla- 0 0 /
ting in pitch at 25 percent chord, with a reduced 0 0XC
frequency k - 0.40 based on the chord lenght. The
orders of magnitude used in the calculation are a-
bout 10 for the local Courant number, and about 10
cycles per time-step for the viscous-inviscid ite- -0.5"
rations. The fig. 15-16 shows a similar comparison M=0.74 R=12.106 Incidencea

= 
I Flapdeflexion ag=1 75*

to experiment for a supercritical ACTTA airfoil
with an oscillating flap. The rear-loading, which Fig. 15 - Time-consistent unsteady calcultion -
may be seen on the steady pressure distribution, Steady asymptotic solution over ACTTA air-
fig. 15, generates viscous effects close to separa- foil with flap.
tion. The separation calculation is not possible
however, due to the present numerical technique.

10

,-. . • . . . . . - . - . . . " .. "......"'. '."". . ". - '. "' " " " " " " % " f'" L" " " " " " -" lk....'" "" ' , 
^

" " : "J' " - '-- " ...



L'-

M=0.74 a=.' aG 1.79' 6G=I' sincwt method of Cousteix, Aupoix [33] , with an equili-
k=0.475 R. =12.10' brium turbulent closure, without separation capa-

-- Viscid-Inviscid theory bility. Some improvements, restricted to the nu-
merical technique, have been developped by Laza-

------- Inviscid theory reff to interact the method with the full potential

10 *CP a . * Experiment equation solver (SLOR, non-conservative) of Chattot,10 La, Coulombeix [26]

The viscid-inviscid interaction is performed
A, with the inviscid grid. When necessary, especially

5 at the laminar leading-edge region, and adaptive
-•- .. subgrid is used only for the viscous momentum equa-

tions (and entrainment). The integral method is
U ........ solved with the inviscid velocity field prescribed,

marching along the chord on the upper and lower sur-
0 Upper face. The wall-transpiration velocity is then com-

200 Phas Cp () puted with the continuity equation. Extrapolation
techniques may be used in case of very small sepa-

rated areas. The viscous wake is presently ignored.
" 100 The coupling is achieved via a uniform underrela-

-." xation, without any smoothing, in case of attached
i , flow. The coupling relaxation is simultaneous with

the inviscid relaxation.
0

0 The fig. 17 shows an example of pressure dis-

tribution over the F4-wing investigated by ONERA
A la-100 and the AEROSPATIALE* company for a Garteur Group.

-20 - Viscous flow calculation (wing) 0. ---/ . = 0.825

10 I Inviscid flow calculation (wing) /
o Experiment ( inq..od) 0y

'-" ', -0.50

5 Ti

0 Lower 1Y0.7
300 Phase CP 1100

0.501

'Y 0.425
200

-C,,~ 0.0//0.225

X//

-100 0 Y =0.075

ACTTA airfoil - Flap oscillation.

Fig. 17 - Three-dimensional viscous transonic solu-
V.7. Three-dimensions transonic Wings Solutions tion. Pressure on the supercritical F4 -

Wing (M- 0.75, 1- 0.1, R - 3 x 106).
A preliminary study of three-dimensional vis- The flow is supercritical and attached. Although an

cid inviscid interaction has been performed join- improvement with respect to the inviscid solution is
tly with M. Lazareff. The transonic wing configu- obvious on fig. 17, the comparison to the ONERA x-
ration, without tip effects, has been selected as
a first tractable step in three-dimensions, before periments of Schmitt [34) is only indicative, due
investigation of interactive boundary layer calcu- to the body interference. The computed wall shear
lations over slender bodies (fuselage, missiles, directions on the lower surface are shown on fig.18.with free vortex sheets). ] The author is grateful to the AEROSPASTIALE company,

for providing its financial support to the present
On the contrary of the previous sections, the preliminary study on three-dimensional viscous-in-

three-dimensional viscous integral method has here viscid interaction over wings, and for giving per-
been reduced to the usual integral boundary layer mission to reproduce the present results.
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tical analysis of the coupling techniques defines
the stability of an inviscid potential solution with

Skin-friction directions respect to perturbed boundary conditions. The re-
sults may be used also for coupling subdomains cal-
culations, in inviscid patching techniques.

In case of viscous-inviscid interaction, the
inviscid perturbation operator is coupled to the
viscous layer influence operator. This may provi-
de the local stability control at each coupling no-
de in the fixed-point relaxation techniques. This
may also provide Semi-Inverse relaxation techni-
ques, which couple the usual Direct inviscid pro-
blem (Neuman Conditions) with inverse viscous solu-
tions, which are required to march inside reverse
flow regions. These coupling techniques are not
restricted to the integral solutions of the vis-

Fig. 18 - 3D - transonic viscous solution. (F4 - cous layer.
Wing, 4 = 0.75, a = 0.1', R = 3 x 106).

Results have been shown for two-dimensional
flows, low speed, or transonic, or unsteady, and

VI. CONCLUSIONS for three-dimensional flows. Presently, separated
flows are solved only in steady two-dimensional

The Defect Formulation of the Navier-Stokes and quasi-three dimensional lifting flows, inclu-
problem, with respect to an overlapping Pseudo- ding spoiler-induced separations.
Inviscid one, has been considered to generate a com-
posite viscous solver. The viscous boundary condi- Further investigations are especially requi-
tions which control the pseudo-inviscid field may red on coupling algorithms, relaxation-like or ti-
be written exactly, and the wall-transpiration con- me-dependent, in unsteady or three-dimensional se-
cept is made free of any boundary-layer-like or parated flows, in order to compute wings and fuse-
thin-layer assumption, lages at high incidence.

The selection of an integral method of solution Further developments of the numerical viscous-
may be used either to decrease the required computer inviscid techniques will at last provide new CoTO-
ressources, or to increase the computable flow- posite solversfor viscous flows equations, as soon
complexity, when thin viscous layers are present. as the Defect Integral equations will be replaced
This is found to be consistent not only with the by a finite difference solution of the full Defect
Prandtl equations, but also with an approximation equations.
of the Thin-layer Navier-Stokes equations, in Defect '
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Abstract the Euler equations withviscous flow solvers. The
work that has been done includes Refs. 7-9, where

* Transonic viscous-inviscid interaction is the Euler equations were coupled with a compress-
* considered using the Euler and inverse compress- ible turbulent inverse integral boundary-layer

ible turbulent boundary-layer equations. Certain method
(1 0) 

in order to handle rotational flow that
improvements in the inverse boundary-layer method may contain regions of separated flow. The put-
are mentioned, along with experiences in using pose of this gaper is to present further results
various Runge-Kutta schemes to solve the Euler of work involving the Euler and inverse boundary-
equations. Numerical ,onditions imposed on the layer equations. These results include: (1)im-
Euler equations at a surface for viscous-inviscid provements in the inverse boundary-layer method,
interaction using the method of equivalent sources (2)numerical experiments with regard to Euler
are developed, and numerical solutions are pre- equation boundary conditions, (3)experience using
sented and compared with experimental data to second-order Runge-Kutta schemes with various num-
illustrate essential points. ber of stages to solve the Euler equations, (4)

numerical conditions imposed on the Euler equa-
I. Introduction tions at a surface and in a wake for viscous-

inviscid interaction using the equivalent source
Viscous-inviscid interaction is an important method, (5)displacement surface versus the equiv-

and difficult problem in transonic aerodynamics. alent source method of interaction, and (6)numer-
Unfortunately, numerical solutions of the M1avier- ical and experimental comparisons.
Stokes equations are not presently a practical
method for routinely solving such problems due to II. Viscous Method
computer resource requirements. Consequently,
much research has been done and must is still The viscous flow solution method is an inverse
going on with regard to coupling inviscid and (meaning the pressure distribution is obtained as
viscous flow solvers for treating viscous-inviscid part of the solution rather than being specified as
interaction. Lock

(1 ) 
and Melnik(2) have reviewed in a direct method) integral compressible turbu-

interaction methods. For the most part, these lent boundary-layer method. This inverse method
methods consist of using potential flow inviscid is an extension of the direct method described in

, solution methods and attached flow viscous solu- Ref. 11. Both methods solve the momentum anc
, tion methods. Inverse boundary-layer methods are mean-flow kinetic energy integral equations. A

* being used in 3ome instances (see Le Balleur(
3

) fourth-order four-stage explicit Runge-Kutta
for a review) in order to include separated flow. scheme is used to solve the inverse equations.

Computational fluid dynamics has recently A distinguishing feature of the direct and in-

i matured to the point that numerical solution of verse integral methods in Refs. 11 and 7 was that
* the Euler equations can be considered for solving the dissispation integral

two- and three-dimensional flow problems. (4-6) Be-

r=- cause the Euler equations can handle rotational D _ ( y (1)
flow, these equations offer more information and 'o w

an extended Mach number range compared to the
potential flow equations. There has, as yet, not was numerically evaluated at each streamwise loca-

tbeen a reat deal of effort devoted to soupling tion as opposed to using an empirical dissipatin

been relation. This was accomplished by using a con-

This research was sponsored by the NASA Langley stant laminar plus turbulent shear stress in t'e

. Research Center, Hampton, VA 23665 gion just at the wall, . Cebeci-Smith type nodel

Professor, Member AIMin the inner and outer regions, and thelr:'t:
Ph.D.sstuden onM e ave fromNAS of the velocity profile expression val.t:

PhD tdnto ev fo AALangley, 0 <z vr7' j Althougzh this rhiactd a 3trinzc7,t
Member AIMA requirement on the accurac,' ni the 7rKit or-
Professor file expression, th-method gave .z-nd results.

even better than finite difference nerhods -K'r
Supervisor, Computational Fluid Dynamics transonic flow over adiahatto: surfaces.
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However, the numerical evaluation of the dissipa- STABILITY RE5ION FOR MODEL PROBLEM
tion integral at each streamwise location made 5
this integral method relatively slow (with regard
to computational time) as compared to other inte-
gral methods. The computational time was not a
severe limitation for steady two-dimensional flow. DU uu 4

However, with the extension of this method to un- OT
steady two- and three-dimensional flow, it was de-
sirable to eliminate the need for numerically N hT

evaluating Eq. (1) at each grid point. In this 3

connection, Donogan (10) succeeded in correlating
D, as given by Eq. (1), in terms of the local edge STAGE 5I(H)

4Mach number, shape factor, and skin friction co- 6 50 2
efficient (or shape factor and Reynolds number 3
based on momentum thickness). Recently, Thomas

(1
"
)

has made improvements in the turbulence model used
in Eq. (1), particularly near the separation point, 1
and Donegan and Thomas have improved the correla-
tion for D given in Ref. 10. The result of using
an analytical correlation as opposed to numerical-
ly evaluating Eq. (1) is an increase in speed of 0
0(10). -5 -4 -3 -2 -1 0

III. Inviscid Method R(H 1)
Fig. 1 Stability Region for Various Stage

Finite volume spatial discretization is ap- Second-Order Runge-Kutta Schemes
plied to the integral form of the time-dependent Table 1. Second-Order R-Stage Runge-Kutta
Euler equations and the resulting equations were (minimal storage)
solved using second-order Runge-Kutta time-step-
ping schemes with various number of stages. Dis- yn+l -y = hkR
sipative terms composed of a blend of second and k = f(yn)
fourth differences are used in this central diff-
erence scheme and these terms are held constant k2 = f(yn + hclk1 )
during each stage of the Runge-Kutta solution. k3 = f(Yn 

+ 
hc2k2)

Convergence to a steady state is accelerated by
the addition of a forcing term that depends on the
difference between the local total enthalpy and
the freestream value of enthalpy. Convergence is k 

= 
f(y n  

cR-kR-1
also accelerated by using a local time step deter-
mined by the maximum Courant number. Far field R (CFL)max 1i q2 ci, i = 1, R - 1
boundary conditions are based on a characteristic T unstable .. ....

, combination of variables, and pressure At the wall 1) unstable . ..

is determined using the normal momentum relation. 3 2 .67 .50 1/2, 1/2
With the exception of the use of second-order 4 2.8 .70 .56 1/4, 1/3, 1/2
Runge-Kutta schemes with various number of stages 5 3.8 .76 .63 1/5, 1/5, 1/3, 1/2
and frozen dissipation, the numerical method is 6 4.5 .75 .64 1/7, 1/7, 1/4, 1/3, 1/2
that of Jameson, Schmidt, and Turkel.(

6
) " GEL

9 -l = efficiencv for zero dissipation
An advantage of this type of explicit scheme R 

is that stability can be achieved for Courant num- = efficiency for frozen dissipation
bers greater than one. By using different stage 2 R+l

*Runge-Kutta schemes, the stability region can be
expanded (see Fig. 1) and the maximum attainable IV. Viscous-Inviscid Coupling
Courant number can be increased as shown in Table
i. Although a larger Courant number can be The displacement surface concept where the
achieved by an increase in the number of stages, inviscid solution is carried out on a grid that
the increase inwork associated with the increase is displaced from the actual body by the amount
in stages eventually reaches a point of diminish- of the boundary-layer displacement thickness,
ing returns.For example, a scheme with a small i*, is the most commonly used method of viscous-
value 3f R see Table 1) should probably be used inviscid interacton. This approach, however,
ir the early cycles and a scheme with a large val- requires that a new grid be generated fter each
ue )f R thereafter. Numerical experiments indi- boundary-layer solut.in. A viscous-inviscid
cate that the four-stage scheme is a r^ -onable interaction approach that does not require a new
compromise. The ise )f a second-order a .c irate grid to be generated after each boundary-layer
scheme in time as -ompared to a fourth-order solution is the method of equivalent sources t
scheme as used tn Ref. b has the advantage of re- Lighthill.

(1 5
) In this method, information from

quiring slightly less storage. Also, because the viscous solution is used to specify a distri-
steady state solitl)ns are of interesr here, and bution of sources (either positive or negative)
because no noticeable improvement was found in the on the surface and in the wake, and this source
resuit, using a fourt-order scheme as compared to distribution is ,sed is a boundary condition in
a second-order scheme, the method used was the the inviscid solution. Assuming no attempt is
second-order four-staje scheme with a maximum made to alfgn some portion of the grid with the
Courant nur, =r )f 2,:.wake, onlv one lrid must ie ten~rated. Unlike ,a

potential flow and houndarv-h1ver interaction



method, an Euler equation and boundary-layer nc is the sht-ar stress and I is the neat flux.

• interaction method that uses the equivalent source Using the :omposil runction for 7, and a similar

concept requires that information )e specified me fr K; (a point not mentioned in Ref. l);

for the additional equations of momentum and Eq. 4) necomes

energy. Deveiopment of the information necessary h

to use the equivalent source concept with an Euler ) i f - f)dy (5)

equation vnc 'oundary-layer interaction method

Sfollows. This development is based on the work of
*." Johnston and Sockol.

(1
6) Their work is reviewed 'sing 'Eq. 'o) and the definitions of f g, f, and

* and then specific relations for the elements of g, the following conditions on the elements of go

the g vector of :he Euler equations at a surface are obtained.""are obtained.-v D
are obained.The term (cv) is given by

To illustrate the approach consider the

steady two-dimensional Navier-Stokes equations in h

- cartesian coordinates x, y (Lv) = (,)v) + - L(u) - :u'dv (7)

0*'+--= 0 For no porosity in the boundary-layer solution
.- ,x y [ t7v) = 0]

and the steady two-dimensional Euler equations d ( (8)

A + = 0(3)*
wx ey where i is defined as

• h

u [(u) - suldy (9)whr o )o o

u v The term (uv) is given by

.U oisgvnb

'uu + p uv .(.uv) = (uv - ) +
f I = ga 0 0

cuv vv+p h 2
2 + 2 + -

(e-+(p)u (epu + p - (u + p)]dy (10)

1 =
2  

2 For no-slip boundary conditions for the boundary-
I layer solution Cu = 0), and taking the boundary-

and u, v are velocity components in the x, y layer pressure equal to the pressure from the

directions, and p, c, and e are the pressure,

density and total energy per unit volume. An d ' *

explicit description of the elements of ? and (:UV) a - + x [( ut)o( + 'll
is not needed. Integrating Eqs. (2) and (3)

with respect to y over 0 < y < h, and considering where d is defined as

the solution vectors j and d to coincide for
h (where h is taken outside the viscous h a +uh

region) the two integrals can be combined to ( 5 + i) [(cu - 'dy (

obtain(16) 
0 0

I( - T)dy (4) As pointed out in Ref. 16 this approach will

" x not provide the information necessary to obtain
0 the pressure, and a saecific approach to obtain

' the third element of g is not given in Ref. 16.

where the subscript o indicates v = 0. To avoid The pressure is obtained here through an extension

solving the Navier-Stokes eguations, the exact of the work of Rizzi
( 1
'

) 
by including a surface

solution F is represented by-a composite - porosity term in Rizzi's normal momentum relation.
function F , where F = F = f + f - f , and f is This relation is derived by Thomas IN) and the

solutiontf the boundary-layer equaiions influence of including or neglecting the porositv

term is 4emonstrated in the next section. The

,aterm (cv- + p)", therefore, is obtained hv 4eter-;-"--- =(5) mining p a s mentioned, and determining ,v' .

where Eq. (8)were the density is obtained from the

- - -- previous time step.
U vThe term [e p) vi is given by

m( - c p)vj. =1e p - -

a"sing no-slip and no porolt%- oundarv :snc.t4)ns

-or the toundarv-laver sol'atfn " -. = v

it3



an adiabatic surface (q)o = ' and the defini- =3. 1'. The freustream .ach number cor-
tion of total enthalpv I.,Ii e + p), Eq. (13) be- rectL n of )..U4 used in Fig. 3 for the numerical

comes solutions was that used by Lock.
(
'
)  

It appears,

d h therefore, that in view of the good agreement be-

( p)v] ° = vH) d - [(ouH) - cud rwen numerical and experimental results obtained
o o 0 in Fi-. 3 bv accounting for the sensitivity of the

(14) far fielf boundary and using the corrected angle

(ii) of attack, the good agreement obtained previous-

The boundary-layer method was developed for ly(8, 19) using 
0
g = 3.19' was fortuitous.

an adiabatic surface with variable total enthalpy Further experimental results without wall inter-

across the boundary layer that takes into account ference, or with minimal wall interference and

total enthalpy overshoot and nonunity Prandtl accurate far field measurements are needed.

number.(
1 8

) A correlation for the integral in 1.12

Eq. (14) has not been developed as yet, hence the

approximation H. H is taken to prevent having to

numerically evaiuate Eq. (14) at each point. This
approximation yields 1.08

!(e + p)v l , ( vH )°  = x a° [ U o

(15) 1.04

which, by Eq. (8), is now simply an identity.

It is interesting to note that the combina-
tion of Eqs. (8) anu (11) produces the von Kirmin 1.00

momentum integral equation. Hence, the results

of this section can be summarized as

.96
S *

( v ) - - [ ( u ) o 5 ! ( 8 ) 2 0 4 0 6 0 a0 0 3

(Luv = d * EXTENT OF GRID(cv u - [(cU)o 5 (16) CHORD
1 o dx o HR

1 d * Fig. 2 Influence of the Far Field Boundary
o 

=  
-- [(pU)o5 ]; (17) Location on the Lift Coefficient for
o the RAE 2822 Airfoil at M = 0.734

and 1 3.19* (Inviscid)
[(e + p)v] = (ovH) = [(ou) (15)

o odx o

and the pressure, po is determined by the above *" "
3.734 S.19 VISCOMPRSIYITEATOmentioned extenison of Rizzi's method. (17) - -. 2.735 2.78 VISCOI , PORSIT ItflWtTI

--f 3.74 2.78 v Is SOLS, PORSIT INTERACTIOINm e R.730 3.19 E,fRIfIET (CASE 9)

V. Results

Numerical results are compared in Refs. 8
and 19 with experimental data taken on the RAE
2822 airfoil(

2 0
) that show good agreement. The

computations of Refs. 8 and 19 were carried out -.-
at the geometric angle of attack, A , of the ex- --.- "

"* periment as opposed to the corrected angle of
" attack, , , suggested in Ref. 20 to account for

wall interference. Recent numerical experiments
conducted to investigate the sensitivity of the
solution to the grid, indicate a rather surprising
sensitivity if lift to the location of the far

field boundary 3s indicated in Fig. 2. The
results in Fig. 2 were obtained by changing the
location of the far field boundary, while main-
taining the same far field boundary conditions(

6 )
'ntl there was no further change in the solution.
Using the grid with the far field boundary located
such that no zhange in the solution due to the
grid would be expected, the computations for the
RAE 2822 airfoil for M, = ).730, - 3.19', and

Re (freestream Reynolds number basd in chord) = I
6.13 x 1O

6 
were repeated. These results are pre-

sented in Fig. 3 for both the geometric angle of iz. 3 'iscous-Inviscid Interaction Results
attach = 3.11-

, 
nd the :orrected angle for the RAE 2822 Airfoil 'sing 'eo-

of attack 7 = -.73', suggested by the metric 3.13') and Exnerimentor's;
2 0

)
I experimentors.(=0 ) As :an be seen in Fig. 3, the 7uggesced Corrected 2.780) Angle of

agreement between the computations and the experi- Attack
mental data for .'= 2. is better than for

.- _ -7.



The normal momentum relation derived bv
Rizzi

( 1 7 ) 
to obtain surface pressure was based - . , :t ':s

on an impermeable surface. Thomas(
1 4 ) 

has extend- J 3.730 3.. J PORINT CrA

ed this work to include a permeable surface for
viscous-inviscid interaction. The numerical re-
sults in Fig. 3 included this new normal momentum
relation with a permeable surface. A comparison
of numerical results obtained with and without -t.I-

*" the permeable surface term is given in Fig. 4 for
the same flow conditions as Fig. 3. The results I

,'.' in Fig. 4 indicate that the influence of this -.8

*-" term is small, although the influence the term ... . CPI

does have is to improve the agreement with experi-
ment slightly on the upper surface at the begin-
ning of the shock and in the aft region of the

lower surface.
-s-

.... .734 2.78 VISCOUS, POROSITY INTERACTION
9.734 2.78 VISCO, POROSITY INTERACTION 4ITH WALL

PRESSURE BC IiCLUOING POROSITY TERM
* 73 3.19 EXPERIKNT (CASE 9)

Fig. 5 Viscous-Inviscid Interaction Resultsfor the RAE 2822 Airfoil Using Dis-

placement Surface and Equivalent Source
i"0- Methods of Interaction

•. VI. Concluding Remarks

The results presented involved improvements
and experiences with previous work in using Euler
and inverse boundary-layer equations for treating
transonic viscous-inviscid interaction. Improve-
ments in the inverse boundary-layer method includ-
ed the handling of the turbulence modeling, par-
ticularly near separation, and a correlation for
the dissipation integral which eliminated the

Fig. 4 Viscoiis-Inviscid Interaction Results need for numerical integration, and thereby rc-
for zhe RAE 2822 Airfoil With and duced the computational time of the viscous sol-
i.hout the Porosity Term in the Sur- utions. Solutions of the Euler equations indi-

face Pressure Boundary Condition cated a significant influence of the far field
boundary on the lift of a supercritical airfoil
with a reasonably strong shock on the upper sur-
face. The computed lift did not change once the
far field boundary was moved far from the airfoil.

Because the displacement surface method of This observation is receiving further investiga-
, viscous-inviscid interaction is the most commonly tion. The use of second-order Runge-Kutta schemes

used method of calculation, a comparison is pre- with various number of stages indicated that a
sented in Fig. 5 of the displacement surface second-order four-stae scheme with a maximum

, method and the method of equivalent sources. The Courant number of 2- 2 was a reasonable compromise
flow conditions used to obtain the results in Fig. for solving the Euler equations. Additional num-
3 are the same as used to obtain the results in erical surface conditions for the momentum and
Figs. 3 and -. Also, the normal momentum rela- energy equations were developed and used in the
tion allowing for a permeable surface was used. Euler equations for the equivalent source method
There is some difference between the two methods of viscous-inviscid interaction. Accounting for
of performing interaction computations as in- a permeable surface in the normal momentum rela-
dicated in Fig. 5. The difference in shock tion used to obtain pressure produced a slight
location, for example, is of the order of the improvement in the results. Finally, numerical
distance between grid points in this region. solutions indicated some difference between the
As mentioned, the method of equivalent sources displacement surface method and the equivalent
requires that only one grid be generated, where- source method of viscous-inviscid interaction,
as, the displacement surface requires a new grid although the difference in shock location was
for each new boundary-layer displacement surface. approximately the same as the distance between
The method of equivalent iources has been found grid points. The eqivalent source method is the
the easiest to use once all the source relatious easiest to use and requires that only one grid
are derived and coded. be generated.
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AIRFOIL FLOW FIELD CALCULATIONS WITH COUPLED BOUNDARY LAYER/POTENTIAL CODES

J. D. Murphy and L. S. King
NASA, Ames Research Center
Moffett Field, California

Abstract

In the proposed paper, the authors will con- accuracy due to the approximation inherent in these
sider the solution of airfoil flow fields by means methods.
of coupled boundary layer/full potential solutions,
including the effects of separation. A significant portion of the paper will be

devoted to the assessment of the effects of the
choices between:

The inviscid flow will be calculated using a
conservatively differenced full potential code, I. Specification of &* (or equivalently
which for the flows considered, should provide stream-function at the edge), or of Ct, as a
essentially the same flow field as a solution to boundary condition for the inverse boundary-layer
the Euler equiations. calculations.

The viscous flow will be obtained by solving 2. The flare approximation or iterative
the boundary-layer equations in either the direct sweeping in the separation bubble.
or inverse mode as required.

3. The choice of and definition of boundary
conditions on the inviscid calculation to represent

The coupling will be carried out by means of a the viscous flow.
surface blowing and bleed distribution in the
inviscid calculation modeling the viscous flow 4. The selection of parameters of the viscous
effects on the inviscid flow. Convergence is and inviscid calculations which are to be matched
indicated when the pressure distributions in the and the significance of the convergence criteria.
viscous and inviscid solutions agree.

In each case above, the effects of the various
It is well established that substantial eco- choices available will be determined by comparing

nomies can be obtained in the computation of solutions under the various options and where sig-
interacting flows by the use of zonal methods. It nificant differences are noted by comparing the
is less clear, however, what one pays for these solutions to the thin-layer equations and to
solutions in terms of lost information or loss of experimental data.

*. . . . . . .
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0' t'2COUS-INVISCID MATCHING USING HMHER-ORDER SHEAR-LAYER EQUATIONS

3. Bradshaw, M.J. Kavanagh and D. Mobbs

Department of Aeronautics
Imperial College, London.

the pressure field, and not for the velocity field
Abstract or viscous stresses, because upstream influence was

assumed to propagate only via the pressure and not
progress report is given on three related via longitudinal gradients of viscous or turbulent

projects, in all of which elliptic equations are stress or via flow reversal (Fig. 1).
used to describe shear layers with significant

0 upstream influence, such as occurs near trailing In the numerical scheme for the shear layer, based
ec edges or rapid changes in surface curvature. The on the BFA method, the x-component momentum

large computing times usually required for equation, the continuity equation and the Reynolds
iterative elliptic solutions are avoided, or stress transport equations are solved, at a given
disguised, by imbedding the shear layer iteration streamwise position, using the pressure field

in the iteration loop required to match any shear calculated on the last "sweep" of the shear layer
layer solution to a solution for the outer calculation to evaluate dp/dx (which is allowed to
"inviscid" flow. Programs for calculation of flow vary with y): then, the y-component momentum
over single airfoils are running in incompressible equation is solved, trivially, for p-pa, given U, V
and compressible flow (in the latter case with and the Reynolds stresses. Actually, the
moderate shock induced separation) and extension to y-component equation is solved at the previous
multi element airfoils is in hand. x-position, so that the newly calculated values of

V can be used in a central difference
1. Introduction representation of the major term UdV/dx. The final

station in the shear layer calculation is always
The conventional process of viscous inviscid chosen such that dp/dy is negligible - far
matching involves the solution of an "inviscid" downstream of an airfoil, for instance. At the end
equation for the outer flow to provide the boundary of the shear layer "sweep", the values of V
condition for a solution of the parabolic thin calculated at the edge of the shear layer are used
shear layer equations ("boundary layer equations") as the boundary condition for a calculation of the
in the viscous or turbulent part of the flow; the inviscid flow (using a surface source method in the
presence of the retarded viscous region in turn case of incompressible flow) in the region outside
affects the inner boundary condition for the the shear layer, which yields new values for pe.

inviscid equation, and the two sets of boundary Note that a nominal, preferably generous, estimate
conditions must be matched iteratively (this of the shear layer thickness can be used at the

*-. description covers both "direct" and "inverse" first major iteration and improved as the
" calculations). It is well known that the thin calculation proceeds. The displacement surface

shear layer equations are inaccurate, or even concept is not used at all (it presents conceptual
singular, in flows where the normal pressure and practical difficulties if the external flow
gradient cannot be neglected: sometimes the normal velocity varies significantly with y, as it is
pressure gradient can be related to the curvature bound to do if dp/dy is significant). An improved
of a solid surface or a known streamline (in which estimate of the pressure field within the shear

*- : case the equations remain parabolic) but this is layer is now obtained from the new pa and the old% not a reliable procedure if the curvature is lae isnwotndfrmheewpadteod
Snbrp-pe (i.e. that calculated in the last shear layer

changing rapidly, as it does near a trailing edge. sweep), and the process repeated (Fig.2). The only

K'* major difficulty in this extension of boundary
Mahgoub and Bradshaw (1) described a method of layer concepts is the need to use semi curvilinear
combining the Iterative scheme required to match a (s,n) coordinates in the shear layer (axis

shear layer calculation to an inviscid flow curvature being negligible in the thin shear layer
calculation with the iterative scheme required to
solve elliptic equations in the shear layer. Thus, approximation): see Fig.3.
the full Navier Stokes equations or any desired The present paper gives details of progress since
simplification of them could be solved for any the publication of Mahgoub and Bradshaw's paper.
shear layer, without incurring the large increase Complete airfoil calculations, including a laminar
in computing time that would be required if theL:,shear layer solution were iterated to convergence boundary calculation (assuming negligible dpdy)
sh ea le olut e iterate d otcnve g and a full treatment of the wake have now been done

at each cycle of the viscous inviscid matching in incompressible flow, using the Smith and Hess
iteration. The object was to improve the accuracy surface source method for the inviscid flow and
of calculations in highly curved flows or near Thwaites' method for the laminar boundary layer.

airfoil trailing edges, where large errors can In compressible flow, Jameson's FLO-11 program has
result from trusting the thin shear layer been used, as an interim measure, for the inviscid
approximation that the normal pressure gradient is
negligible. Mahgoub and Bradshaw restricted their flow, with the Cohen-Reshotko upgrade of Thwaites'
work to shear layers without reversed flow, and method for the laminar boundary layer, and a

with a sufficiently high Reynolds number that simplified version of the wake routine in which the

normal stress gradients could be approximated; density is assumed to be constant across the wake,
although streamwise variations are allowed for.

thus, two dimensional storage was required only for aTho i tremwise vato re allow for.
(The incompressible wake program has now been



cleaned ip and will be extended to compressible reported by Bradshaw, Dean and McEligot (3). It
flzw 4ith a proper treatment of the 'ensity.) The was postulated that any changes .n the turbulent

*incompressible) program Is being extended to multi structure are likely to be small. It was pointed
element airfoils, where, at high lift, the rate of out that this approximation is not likely to be
growth of the "boundary layer" over the rear flap juitable for snear layers containing stress
can be of order unity (Fig. 8) and the traditional profiles of the same sign, e.g. an internal
tnin shear layer approximation breaks down boundary layer. The physical justification of the
completely. Extension to three dimensional flow is superposition approach is that the flow structure
about to begin: the use of the V component velocity in the interaction zone is of an intermittent
as the boundary condition for the inviscid flow nature with negatively and positively stressed
avoids difficulties with the definition of fluid existing at the same point at different
displacement thickness in three dimensions. For times. The basis of the method is that both shear
development purposes, the inviscid flow calculation stress profiles, r+ and T_, 2: uld be calculated
will be restricted to infinite yawed wings (when it independently; with the exception that the mean
becomes effectively two dimensional) in order to is
save computing time, but the shear layer
calculation will treat fully three dimensional The equations to be solved are slightly different
flows. The existing three dimensional boundary from the original ones quoted in Ref. (4). In
layer program can be extended to include the (x,y) coordinates - for simplicity both shear
y-component momentum equation in much the same way streqs equations are of the form:
as the two dimensional program. In a fully three
dimensional flow, logic would be needed to control 3 3 = U -7
the direction of spanwise progress of the-, J2 a 3y 3yGT' max) L
calculation according to the crossflow direction,
as in the "characteristic box" method of Cebeci and

Stewartson (2): an advantage of the BFA method is where:
* that the characteristics appear naturally.

2. Isolated airfoil calculation T =

2.1 Incompressible flow The mean velocity is obtained from:

The boundary layers on the upper and lower surfaces3 2. )
• are solved independently (Fig.3). The laminar 7- Vxx ( a +

section of the boundary layer is solved by the
Thwaites integral method; the point of transition
is chosen arbitrarily but any standard criterion

* could be inserted. The turbulent solution using aU aV
tne BFA method continues up to points about two 3- + 3y 0
ipper surface boundary layer thicknesses upstream
of the trailing edge on each side. The dp/dy
calculation is switched on if the surface curvature4s lrge bu oterwie d/dyIs otioall se to The dimensionless parameters, a,,G and L, which are
is large, but otherwise dp/dy is notionally set to defined above are evaluated in terms of T, and T_
zero and not stored, separately. At the edges of the shear layer the

flow velocity is prescribed to be equal to the
Starting at this position just upstream of the external values, Ue.
trailing edge the coordinate system is transformed
from the original (s,n) systems for each boundary The length scale of the wake region may be obtained
layer to a curvilinear orthogonal coordinate either from an algebraic formula or by solving an
system, (0,W), which represents the streamlines and additional transport equation. Fig. (4)
equipotentials of inviscid flow over a wedge with illustrates how the two shear layers interact in
the same angle as the trailing edge (the surface is the wake region. It is important to mention that
assumed flat in this region). This region extends the introduction of the extra shear stress into the
the same distance downstream of the trailing edge; equations does not affect their hyperbolicity since
the dp/dy calculation remains switched onthe p/d cacultio remins swiche on it may be considered simply as a body force term.
throughout the trailing edge region. Finally the
original kind of Csn) systemnow referred to a This approach was applied to flow in a duct (3) and
nominal center line of the wake, is used in the later to a jet flow (5). The approximation was
rest of the wake region. found to be successful for both cases. It is

significant that although the turbulence levels inIn this paper we concentrate on the improvements tejtaelre tesproiinasmto
made in the last few years to the method of Mahgoub the jet are large the superposition assumption

and Bradshaw, and readers are referred to their models the turbulence structure fairly
paper for a detailed description of the method. successfully; for later results see Weir et al.(6).

Introduction of a wake calculation requires two
additions, (a) a wake turbulence model (b) special (b) Trailing edge coordinate system
treatment of the coordinates in the trailing edge
region. It is necessary to provide a smooth transition from

the (s,n) coordinate system along the airfoil to
(a) The wake turbulence model the (s,n) coordinate system in the wake. A problem

is caused by the singularity in geometry at the
The calculation of the two interacting shear layers trailing edge (note that the Navier Stokes
, i.e. the upper and lower wake regions of the equations - as distinct from the thin shear layer
airfoil, by straightforward superposition was first equations - do not themselves generate

singularities leading to unphysical behavior). The



original airfoil program changed from the two (s,n) anu
coordinate systems used in the upper and lower n
boundary layers, to the single (s,n) system used in r Sin n
the wake, by simple interpolation of the former on
to the s=0 line of the latter. However this proved The trailing edge region extenas about .2!. of tne
to be unwieldy and inaccurate because of the wide chord length both upstream and downstream of the
variety of trailing edge geometries for which trailing edge.
streamwise derivatives had to be evaluated, to
choose a set of streamwise curves in the trailing The transformed "streamlines" all asymptote to the
edge region whose slope and curvature match the wedge surface at an infinite distance upstream of
constant-n lines in the turbulent boundary the trailing edge. Here it is necessary for the
layer region upstream and the wake region further "streamlines" to become straight - or at least to
downstream, and to produce an orthogonal set of match the constant-n lines - at a finite distance
curves to this streamwise set (the alternative upstream. This is arranged by patching the (s,n)
being to use a non-orthogonal interpolation mesh system of the turbulent boundary layer and the
which would have caused extra complication and orthogonal curvilinear (pp) system of the trailing
suffered from many of the disadvantages of the edge region together by using polynomial streamwise

-. first scheme). The main need is for a coordinate curves. For conformity with the constant-n lines
system which removes the trailing edge singularity, of the turbulent boundary layer, they have to match
From potential theory a suitable system may be slope and curvature at the upstream end. Similarly
found based on a "wedge flow transformation", downstream they must have the same slope and

curvature as the wake coordinate lines. A quartic
Referring to Fig. (5) the entire plane with a is employed since it satisfies these minimum
cut at 9= T is mapped onto a region -lr/n<8<r/n in requirements. Care must be taken when deriving
the Z-plane, the transformation between the two these curves to ensure that no turning points exist
planes being in the patching region, but the required quartic

I/n turns out to be highly degenerate and the whole
z trailing edge coordinate change is simple to

program. At present the same size of wedge region
is used on both sides of the airfoil (Fig. 3)

This transformation is singular at =O which maps which is slightly inefficient since the lower
on to Z=O. boundary layer is usually thinner: note that the

viscous inviscid matching surface is not critical,
The potential flow solution lines produced by the but merely has to be outside the actual viscous
above transformation may be used here as an region.
orthogonal curvilinear coordinate system in the
Z-plane, where the streamlines of constant are (c) Summary of calculation procedure.

* . the lines of constant normal coordinate, and the
equi-potential lines of constant $ are the lines of (1) Estimate pressure field within boundary
constant streamwise coordinate. The angle between layers and wake (using a potential flow solution
these coordinate lines and the real-flow with the rear stagnation point smoothed out by eye
streamlines should at least be small enough to and neglecting dp/dn within the shear layer, or
minimise false diffusion errors. otherwise).

(2) Calculate the laminar and turbulent
The Z-plane is described in terms of polar complex boundary layers up to the start of the trailing
coordinates: edge region in (s,n) coordinates, and change via

io quartic patches to "wedge flow" coordinates for the
Z = re flow up to the trailing edge. Retain wedge flow

coordinates for the calculation of the shear layer
interaction in the wake in the trailing edge regionThe potential field W is defined as: itself, and then change to a single (s,n) system

for the downstream part of the wake.
(3) Use the V component velocity at the edges

_w - _w._ of the shear layers as the inner boundary condition
3Z a 3Z for a new inviscid calculation for the flow outside

the shear layer (i.e. outside the matching
surface).

The potential flow in the C plane has unit velocity (4) Repeat step (2), deducing the pressure
. everywhere. Therefore: within the shear layer from the matching surface

)w : w nZn - . Therefore w(Z)-Zn pressure derived from the inviscid calculation and
_ . 1: L . the dp/dn in the shear layer obtained in the

previous shear layer calculation. Repeat steps (2)%' and (3) until convergence occurs.
This potential flow is now described in terms of

the streamwise variabled$ - and the orthogonal Convergence for an airfoil well below the stall
variable P. takes no more than 10 iterations: although upstream
Thus: influence of conditions near the trailing eage
w(Z) _ Zn  + rne ine (say) can propagate far upstream, most of the

propagation occurs via the external flow whica - in
incompressible flow - is solved "exactly" at each

Consequently the coordinate system may define as: cycle, so that the number of iterations required is
nt far smaller than the number of streamwise steps in

" rn Cos n6 the shear layer, in contrast to the usual situation
with line relaxation solutions of elliptic

.. -. o2 . .. .. .. .... .
,.'..;'.-....,-,', .. ,... . .- ,..,..'..'-.......... ... ,,, .....



equations. This ts one of a number of occasions on compressible flow calculation methoc for tne

wnicn the calculation scheme takes advantage of the "inverse" case are given by Chen ) and sample

" fact that most shear layers, although not "thin" results are given in Fig. (7).

according to the traditional requirements of the
thin shear layer approximation, are at least 3. Multi-element airfoils
"fairly thin".

3.1 General approach
" 2.2 Compressible flow

The general approach to the multi element airfoil
The compressible flow program is described, and problem in incompressible flow is similar to that

. results including shock waves without separation for the single airfoil, i.e. the flow field is
" are presented, by Chen (7). The basic scheme for split into viscous and inviscia regions with the

attached flow is the same as in incompressible flow viscous flow calculated by a finite difference
, except that the surface singularity method for "field" method and the inviscid flow by a boundary
the external flow is replaced by the field method integral method: however in agreement with the
necessary to solve the non linear equations of general strategy of matching the viscous and
inviscid compressible flow. All the programs are inviscid regions at the edge of the shear layer,
written with separate overlays for the different the inviscid calculation can be performed outside
parts of the calculation, communicating only via the simply connected shear layer edge, thus
Jisc files, so that it is very easy to replace avoiding entirely the multi-body inviscic flow
say - the inviscid flow routine. We have therefore problem which has occupied the minds of previous
used a rather old code which happened to be workers(Fig. 8). However, the wake/boundary layer
conveniently available to us (8), and we have not and wake/wake interactions which can occur,
yet tried to optimise the number of inviscid together with the more complicated geometry of the
routine iterations executed per cycle of the whole problem, demand a more generalized numerical
matching program. implementation of the basic scheme.

The alterations to the shear layer routines amount Matching surface and mesh generation
to a merging of the elliptic incompressible flow
program and the incompressible thin shear layer The initial construction of the "matching surface"
program described in (4) but now extensively (MS) is more difficult in the multi airfoil case
modernized ; thus the development of a compressible since the position of the shear layers is now
flow program including the dp/dy calculation was harder to predict, and it is only when the MS has
relatively straightforward. (As mentioned above, been defined that a suitable mesh can be
the wake program available at the start of work on constructed for the viscous flow calculation.In
the compressible problem was inefficiently coded order to define a MS that is close to the edge of
so, as an interim measure, compressibility effects the shear layers, the MS, and therefore the mesh,
were allowed for only approximately.) In transonic is now constructed as part of the shear layer
flow, pressure gradients in the x and y directions marching procedure.The mesh has to cope with
tend to be larger than in low speed flow, and in trailing edges and shear layer mergers as well as
the early stages of convergence of the calculation simple boundary layers so a generalised (s-n)
scheme the streamwise position of regions of large curvilinear system has been adopted.
dp/dy - e.g. below shock waves - may change
considerably from one iteration to the next, To minimise the number of terms in the governing
leading to instability. (This has nothing to do equations an orthogonal mesh is desirable, but its
with a change of type of the equations at a sonic generation would strictly require the solution of
line.) iteration of the V and p solution has been an elliptic system with boundary conditions
inserted at each streamwise step, and the newly specified around the whole domain. In terms of the
calculated pressure values are used as soon as present problem this involves prior knowledge of
available in the evaluation of dp/dx within the the complete MS before the mesh can be set up.
shear layer. Thus dp/dx is first obtained as the However, a general orthogonal mesh can be set up by
difference between a newly calculated value at x a marching procedure providing the boundaries do
ano the value from the previous sweep at x+dx: the not vary too quickly, i.e. providing the
value of p at x+dx is then updated and dp/dx ellipticity of the problem is weak. At trailing
recalculated. We originally avoided this "Gauss edges the ellipticity is not weak and
Seidel" strategy because we thought it likely to parabolization of the problem can lead to mesn
lead to instability, but it appears to have no ill crossover . A cure for this is the adoption of a
effects, whatever the sign of the pressure change non-orthogonal mesh which can legitimately be
from one sweep to the next. Typical results for constructed by a marching procedure, albeit with
attached flow are given in Fig. 6. the introduction of extra terms into the governing

equations.
In and near separation regions, an inverse boundary
layer method is used, with the "Box" algorithm. At At trailing edges there is a singularity in the
present Carter's correction formula is used, with boundary conditions and hence a singularity in the
the true displacement thickness (undefinable from mesh, as discussed above. Another singularity
the velocity profile if dp/dy is appreciable) could occur where two shear layers merge; this
replaced by an arbitrary but self consistent would not be satisfactory because it would lead to
integral of the velocity defect up to the matching a singularity in the velocity components. Using
surface; since the scheme is required merely to the mesh shown in Fig. 9(a), or a special case of
indicate the change in external flow velocity the same (Fig.9(b)), avoids tns problem oy merging
needed to reduce the error in shear layer the two coordinate systems together smoothly. The
displacement, any reasonable representation of the cuspea mesh may be preferable for potential flow
displacement effect will do although convergence consicerations because it eliminates a sudden
may not be optimal. Further details of the change 4n the velocity component normal to the MS.

.
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In addition to the above, the mesh generation of s-mncmentum, conctnuty and two TKE equations,
scheme features the following: le-:i& to 4x4 clocks in the block tr-diagonal

(1) Calculation stations are input, formulation. Subsidiary equations (e.g.
rather than being chosen by an turbu.enoe Snt scale) can be solved within the
internal step limit like CFL Newton iteration loop witnout resorting to larger
(2) The MS is a coordinate line blocks providing convergence is not adversely
(3) Metric evaluation is simple fffecns. The extra terms introduced into the
(4) The centre of a calculation cell coefficients by non-orthogonality are by-passed if
is coincident in s- and x-y space. the mesh is orthogonal and similarly the extra
Since the s- mesh is arbitrary this algebra involved in the 4x4 formulation is
simply means that a mesh node is by-passed if there is no interaction. In this way,
defined to be at the x-y centre of the although the code is written for any number of
surrounding calculation nodes and not interacting shear layers, a simple boundary layer
vice versa. Note that the x-y can still be computed with very few redundant
computational mesh is rectangular by operations.
definition.

The static pressure variation through the shear
Fig.10 summarises the basic scheme and Fig.11 shows layer is obtained by integrating the -momentum
it, application to a trailing edge. equation using the converged values of velocity and

shear stress. Because of the position of the
Non-orthogonality is confined to a small percentage v-nodes, the integration is centered half a step
of the domain and does not lead to a large increase behind the main calculation: this also produces
Sn computing time: evaluations of metric values of pressure in the required positions for
coefficients can be bypassed when not required. the next sweep, so no interpolation is necessary.
After the first sweep of the viscous calculation it
would be possible to construct an orthogonal mesh 3.3 Inviscid flow solution and matching
throughout, but this would be time-consuming and
the lack of control over mesh spacing would The static pressure array is initialised by a Smith
probably lead to an unsatisfactory node and Hess inviscid calculation applied to the
distrit ition around trailing edges. multi-airfoil configuration using solid body

boundary conditions.Then, after one sweep of the
For every calculation cell, the nodes available are viscous calculation, the complete MS and the
as shown in Fig.12. Centering on 0, the metrics velocities normal to it are available. These

* and their first derivatives with respect to s and 7 boundary conditions are fed into the inviscid
Sand therefore the Christoffel symbols) can be calculation and a "direct" iterative procedure as
• determined easily from this arrangement, used in the single body case continues to

particularly since the increments in s and i7 are convergence. The MS is not altered after the first
defined to be unity. sweep unless the position of the shear layers

. changes significantly , so neither the influence
3.2 Viscous flow solution matrix nor the metrics of the mesh need to be

The governing equations to be solved are: 
r -c;mputed.

The calculation nodes which define the discretised
Continuity: MS are also taken to define the linear "panels" of

*y the inviscid calculation (Fig.13). Because the box

scheme enables arbitrary step lengths to be taken,
k . P u + a satisfactory distribution of the viscous

uk(cv)k IO, 'k calculation stations gives a satisfactory
distribution of panels with very simple matching of

M u - J iJ the two regimes. The matching is also accurate
Mometum because the centres of the panels coincide with the

viscous terms positions of second order accurate viscous
quantities.

Subject to the following boundary conditions: 3.4 Current status

Urj V z 0 at a solid wall
U UV=0 at a free d stral eAt tne present time a single airfoil is being usedU / =n y at thfreestrea e fs h for preliminary tests on the code. The meshpoint from tne surface. generation scneme appears to have no cifficulty

tracking the development of the shear layers, and

These are expanded, using physical variables and the sounoary layer results agree with those

turbulence modeling similar to the single airfoil obtatneG from the single aerofoil program. Runs

program.Since the coordinate system is always will begin shortly with flapped aerofoil geometry;

aligned roughly in the direction of the mean flow, tnese will reveal any difficulties In predicting

s-wIse turbulent diffusion can still be neglected. waKe/boundary layer interaction ano may prove to be

The resulting equations are solved, in primitive a severe test for the inviscid code.

variable form, using the "Box" method. In order to
eliminate numerical "wiggles" the V-nodes are Conclusions

staggered nalf a mesh width in the s airectlon with
respect to the U- and --nodes. r.rtner developments of tne itscous :nvtscid

matcnrng cneme lntrocucec !y Mahgouc and Braasnaw
The superposition approach to modeling interaction $1) nave been presentec. :t :s snown that

regions is implemented by the simultaneous solution zomtLnaton, in the same teration cycle, of an
_nv; flow :alculation anc one sweep of a "line



relax in" :slutiorn of elliptic equations for the
snear layer, yields an efficzent way of overccrning
tne cefictencles of the thin shear layer
approximation without going to a full Navier Stokes Guess or adjust
solution with storage of all variables in part or
all of the flow field. Complete airfoil matching surface
calculations have been performed in incompressible a nd V,,,
flow and in compressible flow with shock waves
strong enough to cause limited regions of
separation (although turbulence modeling for the
separated region is not yet satisfactory).
Extension to three dimensional flow and to multi InViSCid
element airfoils is in hand, and it is hoped that caic of pms
the ability lo perform inexpensive calculations for
some of the complex shear layers measured by the new
autors' past and present associates will lead, by M
trial, error and inspiration, to improvements in
turbulence modeling. Guess or adjust
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A COMPARISON BETWEEN THE PREDICTED AND EXPERIMENTAL
CHARACTERISTICS OF A NACA 64_-418 AEROFOIL AT LOW
REYNOLDS NUMBERS.

P.M.RENDER and J.L.STOLLERY
CRANFIELD INSTITUTE OF TECHNOLOGY

CPLANFIELD, BEDFORD, ENGLAND.

Notation This Abstract

A aspect ratio This paper uses the computer program

c chord of Eppler & Somers (5) for low speed

CD drag coefficient aerofoil design to obtain theoretical
results for a NACA 643-418 aerofoil in the I:

CD zero-lift drag-coefficient Reynolds number range 3 x 105 to I x 106.

SCL0  These predictions are compared with our
L lift coefficient recent experimental results. So far the

C Lmax maximum lift coefficient agreement is poor for the lift and drag
C pressure coefficient coefficients. The predicted positions

dCL/ of laminar separation are shown to agree
da lift curve slope reasonably well with experiment, although

H1 2  bthe predicted positions of turbulent re-H 12 boundary layer shape factor,/and turbulent separation are

in error. The program does have the
H2sep boundary layer shape factor at facility to take account of aerofoil

separation roughness and freestream turbulence.
H12te boundary layer shape factor at The predicted values appear to under-

trailing edge estimate the measured effects of roughness.
H*2 modified boundary layer shape fac-12 tor for the calculation of section The opportunity is also taken to com-

profile drag coefficient. .pare the Eppler and Somers predictions
H boundary layer shape factor,'3/ with those obtained from the Delft
32 32 University aerofoil design computer program

K constant in induced drag equation (6) developed by Van Ingen. There is good
R roughness factor agreement between the two programs.
Re 62 Reynolds number based on local

conditions and boundary layer
momentum thickness

S arc length along which boundary 1. Introduction
sep layer is separated

U. freestream velocity
U velocity at separation During recent years there has been
Usep velocity at trailing edge considerable interest in the possibility of
.te chordwise aerofoil co-ordinate using Remotely Piloted Vehicles (RPV's)
X chordwise position of separation for surveillance and reconnaisance. These

Y aerofoil co-ordinate normal to RPV's are usually considerably smaller
chord than conventional manned aircraft, and are

often required to operate at low speeds.
ze f iTherefore, the operational Reynolds

a0  zerolift incidence ntunbers of RPV's are lower than those
C c incidence relative to chord line associated with conventional manned aircraft.
Y slope of trailing edge relative to For example, a small general aviation

chord line aeroplane will usually cruise at a Reynolds
trailing edge angle number of about 3 x 106, whilst many RPV's

" u slope of aerofoil surface near are required to operate at Reygolds
trailing edge numbers in the range of 1 x 10 to 1 x 106.
boundary layer displacement

1 thickness The effects of reducing Reynolds number

boundary layer momentum thickness to such low values have been appreciatedep boundary layer momentum thickness for many years. One significant effectI e at separation is the increase in drag coefficient, CD'

. 2te boundary layer momentum thickness as the Reynolds number is reduced. Aat trailing edge typical variation is shown in Fig.l for a
-3 boundary layer energy thickness NACA 643 - 418 aerofoil. The effects of

a incidence correction due to Reynolds number on the lift curve slope,
separation dCL/d a, and the maximum lift coefficient,
section lift coefficient correction Lf<, are not necessarily so pronounced,

L due to separation but iA general terms a decrease in both
st correction of location of stag- parameters as the Reynolds number is

nation point near trailing edge reduced would be expected. However,
combining the effects of Reynolds number
on the lift and drag coefficients can

4-
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" I Potntia-flow aerofoll design method

produce significant changes in the lift/ I Potential-fiow aerofoil desidrag ratio(Fig. 2.) 2) Potential-fow aerofoil analysis method
3) Viscous cerrections.

The influence of Reynolds number on
aerofoil performance necessitates the RPV To date, the work has concentrated on

• designer making a careful choice of aerofoil the last two parts of the program.

" section. Unfortunately, data on aerofoils
" at low Reynolds numbers is not readily The potential flow analysis procedure

t. available. Aerofoil catalogues such as is a panel method, with the geometry of
* Abbott and Von Doenhoff (2) and Althaus(3) the panels being determined by a spline

don't consider Reynolds numbers below fit or the aercfoil&;- ro.natea. Tne nd

about 3 x 106, so the designer is forced points of the panels are those co-ordinates

to seek out reDorts on the low Reynolds input by the operator into the program.
number characteristics for individual The condition that the inner tangential

aerofoils. However, there is now good velocity is zero is satisfied at the end

reason to doubt the accuracy of much of each panel. Two incidences are
" pe-war data (Swan'4)) and most of the analysed and the flow for any other

limited recent low Reynolds number aerofoil incidence is derived by superposition
work concerns sailplane-type aerofoils. from these two solutions.
Generally these advanced sections are more
complicated and perhaps more expensive The potential flow analysis is then

than is desired for RPV manufacture, Used to determine the necessary viscous

where the designer is looking for a simple corrections. The method used is an

and robust section. integral method involving the solution of
the integral momentum and energy equations.

With due regard to the requirements of For the laminar boundary layer some
* the RPV designer, a programme is now under Hartree profiles have been selected as

way to develop a low-Reynolds-number aero- velocity distributions. The numerical
foil design and analysis method. To date integration of the momentum and energy

. the first of three aerofoil sections equation yields the momentum and energy

suitable for RPV applications has been thicknesses at each point along the chord,

*- tested in Cranfield's 8' x 6' low speed and hence gives a value for the boundary
wind tunnel. The results are being used layer shape factor H32. The shape factor

* to evaluate two existing low speed aero- is used in determining laminar separation

foil computer programs. One of these, which is assumed to occur when H3 2 = 1.52

written by Eppler and Somers (5), is

available on the Cranfield computing Transition is taken to occur when the
facility. The other program written by inequality
Van Ingen(6) , is based at Delft University
in the Netherlands, but free access to the
program has been granted to the authors. In --

is satisfied. The constants were empiric-
, ally derived by Eppler (7). A roughness

2, The Computer Programs factor R = 0 corresponds to natural

transition on a smooth surface with no
2.1 computing Facilities freestream turbulence. A value of R=4

The computing facilities at Cranfield represents a rough surface or a turbulent
arepresentlyputing extnded batrane freestream. The value of R only affects

are presently being extended by installing the position of transition, it does not
DEC ~ ~ ~ ~ 1 the po72cmptr lan additional DEC VAX 11/782 computer. A affect the boundary laver development.

the work included in this paper has been
carried out on the existing DEC VAX 11/780 For the turbulent boundary layer, the
computer. The VAX runs under the Virtual empirical expressions of Wieghardt, Ludwiea-
Memory operating system and can be Tillman and Rotta as modified by Eppler(8)
accessed via terminals sited in individual are used. Unlike the laminar boundary layer

departments. The present work has been a single value Of H32 cannot be used to
carried out using Fortran 77 and the Gino- predict separAtion. It can only be stated
F graphics software. that for H3 2 > 1.58 there will be no

separation, and for H3 2 < 1.46 there will be
2.2 The Eppler and Somers Program separation (5). Eppler and Somers argue

that their method produces lower values of

The low-speed-aerofoil-design computer H3 2 for adverse pressure gradients thanmnst other turbulent boundary layer methods.

program written by Eppler and Somers is 'Lierefore their program assumes turbulent

fully described in Reference 5, and to seore t po2 a t.ue

date no alterations have been made to the 1.46.

program other than those necessary to The Eppler and Somers program makes noallowppthe programertoprunron theesAX
allow the program to run on the VAX attempt to simulate the behaviour of laminarcomputer. The program has three constit- seatinubes wenamareprio

uent artsseparation bubbles. When laminar separationuent parts :is predicted before the transition criteria
is satisfied, the computation continues by
assuming turbulent flow.

*. . ..|-*.. . . . . . . . . . . . .



Having computed the boundary layer separation bubbles. This simulation is

development, the program then modifies described in references 14 and 15, where
the potential flow section characteristics, the shape of the separation streamline is
The drag coefficient is calculated from a prescribed. The angle at which the flow
modified Squire-Young formula (9) to take leaves the aerofoil surface is determined
account of the high values of the shape from an empirical relationship, and a
factor H1 2 that occur when the flow at the linearly varying shape factor is then used
trailing edge is near separation. This in the separated region. The flow is
empirical modification is required to satisfy the momentum integral

equation, a wall condition and certainq H*
. !relations which follow from Stewartson's

S/ te 2 second branch solutions of the Falkner-
CD = 2, te - (2) Skan equations.

where Hi = H for H = 2.5 tn the Van Ingen program the drag
12 l2te - 2te coefficient is calculated from the Squire-

= 2.5 for Hl2te > 2.5 Young formula without any modification.
"-t "•The lift coefficient is corrected by an

empirical zelation which attempts to adjust
If boundary layer separation is predicted, the circulation round the aerofoil by
no more boundary layer calculations are adjusting the position of the rear
made, but the momentum thickness, 2' is stagnation point, st in the conformal
corrected by : transformation. The present modific-

5+H e ation for a cambered aerofoil is
12seo

Sep~ 2(3, "2 t o 2 s p ' U e ( 3 )
2t 2ep test = 5tan(2K +#- )j ! CD (7)

The lift and pitching moment coeffic-
ients are determined from the potential 2.4 Comparison between the Eppler and
flow by means of some simple viscous Somers, and Van Ingen programs.
corrections. Without separation the
lift-curve slope is assumed to be 2- such The opportunity has been taken to com-
that pare the theoretical predictions of the

Van Ingen program with those of Eppler
CL = 2 + (4) and Somers. For this purpose the

theoretical co-ordinates of NACA 643-418
.i iwere taken from Abbott and Von Doenhoff,
Separation is accounted for by an incidence along with some extra points in the nose
c e n g ot oregion. These extra points were calculated

- by transforming the NACA 64-018 thickness
,-sep j (5) envelope into a Karman-Trefftz type

C us a aerofoil using the Van Ingen program.
The program gives the x and y co-ordinates

which is used to correct the lift coeffic- of the transformed aerofoil at 101 points.
ient by: These co-ordinates were taken for the first

ten per cent of the chord, and using the
sep(~ )appropriate camber line further NACA 643-

CepC ,usc• (6) 418 co-ordinates were calculated. The

resulting total of seventy x,y co-ordinate
pairs were used as the input for both the
Van Ingen and the Eppler and Somers

2.3 The Van Ingen Program programs.

Like the Eppler and Somers program the
Van Ingen program uses an integral method The results obtained from the two

to calculate the viscous corrections. The programs are showm in Figs. 4 - 7. The

program is under continuous development but two Reynolds numbers correspond to the
recent descriptions are available (6) (10) highest and lowest Reynolds numbers obtained
The program takes the aerofoil co-ordinate in the wind tunnel program. It should also
input and obtains a Karman-Trefftz type be noted that the results plotted in Figs.6

and 7 have been corrected for the effective*aerofoil (18) . The potential flow analysis apc ai smaue nteeprmna

is then completed using Timman's conformal aspect ratio as measured in the experimental
transformation method (19) . For the laminar work. This is further described in the

following section.
boundary layer a Thwaites(ll) type method
is used. This method has been modified by
Van Ingen to improve the prediction of 'he Van ingen program allows a variable

separation. Transition is predicted using turbulence level input, and the results

the en method (12), and turbulent boundary shown have been computed using a turbulence
layer calculations are carried out using level of 0.1% which is similar to the level
Head's entrainment method (13) .measured in the wind tunnel. The maximum

lift coefficient is not calculated
Unlike the Eppler and Somers program, directly by the Van Ingen program, but

Van Ingen does attempt to simulate laminar following the suggestion of Riegels (16)
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CLmax is taken to occur when the point of at the lowest Reynolds number i.e.
*aturbulent separation reachec 90% 3 x 10'. This change is illustrated in
of the chord (from the leading edge). Fig.l0. In addition, all the computations

have been carried out using a value of
With the exception of Cy ax and the R = 2 (equation 1) unless otherwise stated.

incidence at which it occurr. it is
interesting that, in spite of the differ- As the change in the predicted results
ences in approach and the more complete brought about by using the model co-ordin-
boundary layer analysis of the Van Ingen ates is slight it is acceptable and con-
method, the two programs agree so closely. venient to plot some of the experimental

results on the figures already used to
compare the Eppler and Somers program with

3. Wind Tunnel Tests Van Ingen's. A comparison of the C L-
curves for the highest and lowest

The experimental data used to evaluate Reynolds numbers are shown in Figs.4 & 5.
the computer programs were obtained using
Cranfield's 8' x 6' low speed wind tunnel. For the Eppler and Somers program the
The experimental arrangement is shown predicted CLmax for both Reynolds numbers
in Fig.8. An almost full span NACA 643 - is greater than those achieved
418 section wing of 0.343m (13.Sins) experimentally. This program also predicts
chord is mounted vertically from the six- a noticeable change in CLmax as the
component balance above the tunnel. The Reynolds number is decreaseo.Such a
span of the model is 1.816m(71.5") . The significant variation was not apparent
difference between the span of the wing in the experiments. It can also be seen
and the 1.828m(6') height of the tunnel that the precicted lift-curve slopes
is accounted for by the reflection plate are lower than those derived experiment-
at the tunnel roof, and a small gap ally, and there are obvious differences
(approx.3mm) at the tunnel floor. This in the predicted zero lift angles. The
gap is necessary to permit balance "kink" in the predicted curves is connect-
measurements. ed with the rapid forward movement of

transition for a small increase in
It is recognised that this small gap incidence. No such kink was noticed

will mean that the test arrangement will during the experiments. For both Reynolds
not permit two-dimensional conditions to be numbers the CLma predicted by the Van
attained. However, an estimate of the Ingen program agees closely with the
effective aspect ratio can be made. The experimental results but occurs at a lower
bottom 0.293m (11.5") of the wing is incidence. There is also good agreement
removable to give a known finite aspect between the lift curve slope predicted
ratio. Knowing the induced drag equation by the program and those derived experi-

mentally. However there is an obvious
+= Co C 2 (8) difference on the zero lift angle.

D  D 'A L The lift-drag polars for the same Reynolds
and the aspect ratio, it is possible to numbers are shown in Figs.6 & 7.
calculate the value of K. Assuming this The theoretical curves shown in these
value also applies for the higher aspect figures have been corrected from the two-
ratio case it is possible to determine the dimensional case to the experimental
effective aspect ratio. The effective aspect ratios by adding the induced drag
aspect ratio was found to be approximately term :
38 over the Reynolds number range tested. K 2

7- L
All force and moment measurements were For the results shown the aspect ratios

made using the oalance. Pressure tappings were 38.4 for the lowest Reynolds number
were located at the mid-span of the wing, and 37.5 for the highest. The programsand the pressure measurements were made by predict the right trend in CD; i.e.
two scanivalves controlled by a Commodore iincreasing CD with decreasing ReynoldsPET microcomputer. The profile of the number, but the predicted increases are
model and the positions of the pressure significantly less than was achieved
tappings are shown in Fig.9. experimentally. At the lowest Reynolds

number the predicted CD's are substantially
4. Comparison between theory and experiment lower at low CL's than the experimental

results. At higher C 's the CD's predicted
Before testing commenced,the co-ordinates by the Eppler and Somers program increase

of the model were accurately determined, more rapidly than was found in the wind
as were the positions of all the pressure tunnel experiments. At a Reynolds number
tappings. Except where stated, the of I x 106 the errors in the low CD region
measured model co-ordinates were used as are not as pronounced as for the lower
input to the Eppler and Somers program. Reynolds number. However, in percentage
Using the model co-ordinates rather than terms the errors can be significant.
theoretical co-ordinates for the computer
program input, resulted in a slight change The version of Eppler and Somers'
in the predicted characteristics of the program being used for the present work
aerofoil. The largest change occurred does not modify pressure distributions

.... • -. . .. . ..-i. -. " . . / . i.- .. . -. % - } , ".
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for viscous effects. However, it can be 5. Discussion of results.
instructive to compare measured pressure
distributions with those derived from The comparison between the predicted
potential theory. Figs.lla and lib results of the Eppler and Somers program
compare the measured pressure distributions and experiment for the force coefficients
at a Reynolds number of 3.1 x 105 with has proved to be poor. This was not alto-
potential theory, for incidences of 40 and gether unexpected because prior to the
80 respectively. Even at this low Reynolds wind tunnel tests the program was evalu-
number the shape of the measured pressure ated for a number of different aerofoils
distribution follows closely the shape of using experimental data from a number of
the potential distribution. If an sources. In all but a few cases the
allowance is made for the difference in results proved to be disappointing. The
the predicted zero lift angle shown in Eppler and Somers program corrects the
Fig.5 by reducing the theoretical incidence, lift coefficient for viscous effects by
an even closer agreement between the two means of an incidence correction which is
sets of distributions can be achieved determined by the extent of separated
(Figs.12a & b). flow on the aerofoil (Fig. 3). However

Pressure distributions were measured Fig.16 shows that the program is
throughout the entire Reynolds number inaccurate in predicting the position
range. Two typical sets of pressure of turbulent separation. This inaccuracy
distributions for Reynolds numbers of may be completely responsible for the
3.1 x 105 and 8.9 x 105 are shown in failure of the program to predict
Figs.13 and 14. Any program that takes the viscous effects on the lift co-
account of viscous effects on pressure efficient. When the program can be modified
distributions would be expected to to accurately predict the position of
simulate the separated regions which are turbulent separation, it will be possible
apparent from the experimental results. to evaluate the viscous correction to the

lift coefficient. From the experimental
Flow visualisation tests using results for the lift curve slope it is

titanium oxide paste, were used to clear that the assumption made by the
determine separation and re-attachment Eppler and Somers program, concerning the
positions. These tests served to verify potential flow thickness effects being
that the flow over a large part of the offset by the boundary layer displacement
span was two-dimensional. At the lowest effects,is unfounded. This assumption
Reynolds number laminar separation bubbles results in the lift curve slope being
were present on both surfaces over a reduced to 27T but, as can be seen from
large part of the incidence range. A Figs. 4 and 5 this is less than the
comparison of the predicted and experi- experimentally derived values.
mental positions of laminar separation on
the upper surface is shown in Fig.15. Adding the displacement thickness to
There is reasonable agreement between the aerofoil surface, calculating a new
the two sets of results. This is not the pressure distribution and hence boundary
case for the predicted and measured layer development, and repeating the
positions of turbulent re-attachment which process until a solution is reached, is
are shown on Fig.15. The program does often suggested as a likely method to take
not give the position of turhulent re- account of viscous effects. However,
attachment, but Eppler and Somers suggest these effects as described by Van Dyke(17)
that a laminar separation bubble would be are of second order, and it is necessary
expected to exist to at least H3 2 = 1.58. to include other second order effects; e.g.
For Fig.15 re-attachment has been assumed pressure gradient normal to the surface
at H32 = 1.58. within the boundary layer.

The predicted and measured pos-.tions It would probably be more profitable
of turbulent separation are shown in Fig. to consider and improve the existing
16. Beyond 60 and up until the aerofoil boundary layer development routines. To
stalls the agreement between theory and date, the investigation has shown that
experiment is disappointing, laminar separation can be predicted

with a reasonable degree of accu icy
The Eppler and Somers program does (Fig.15). However, this is not -he case

attempt to take some account of roughness for turbulent re-attachment and separation.
and freestream turbulence in the transition Until the re-attachment criteria can be
criteria (equation 1) . The effect of accurately determined, the starting
varying R betwee? 0 and 4 at a Reynolds conditions for the turbulent boundary
number of 3 x 10 is shown in Fig.17. layer will always be in error. Consequent-
Again these results have been corrected to ly all subsequent calculations for the
an aspect ratio of 38.4 to permit comparison turbulent boundary layer will be open to
with the experimental results shown in question, and it is not surprising that
Fig.17. The experiments were made with a the position of turbulent separation is
0.015"(O.381mm) transition wire placed at poorly predicted.
2.5% chord on both the upper and lower
surfaces. As with the smooth aerofoil the
agreement is disappointing.

[. . . . . . . . . . . .
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7 A SURVEY OF RECENT WORK ON INTERACTED BOUNDARY

LAYER THEORY FOR FLOW WITH SEPARATION

H. McDonald and W. R. Briley
Scientific Research Associates, Inc.

Glastonbury, CT

Abstract flow gives valid high Reynolds number force and
moment distributions over bodies operating in unsep-K oIt is now widely recognized that the steady arated flow conditions. Viscous effects dominate

boundary layer equations can be used to predict loss levels and set the operational limits of theO small regions of flow separations when the inter- device by determining separation and stall. Con-
action with the outer inviscid flow is allowed for. ventional boundary layer theory provides the first
A very close relationship between the formalism of level at which viscous effects can be allowed for,

*the finite Reynolds number approach of treating the given the pressure distribution, and has in the past
* -interacting boundary layer equations and the so- been limited to unseparated flow. The question ad-

called triple deck approach to unravel the structure dressed by a number of investigators was, given the
of asymptotic high Reynolds number interacting possible utility of such an analysis, would it be
shear layers is also now widely accepted. The possible to extend boundary layer theory into lim-
alternative procedure (of approaching the problem ited regions of separated flow? Considerable
numerically via the ensemble-averaged Navier-Stokes encouragement for these efforts came on the one hand
equationsiposbeanthstayitrcd from the importance of the practical applications
boundary layer approach is attractive when numerical which would be within reach of an extended boundary
solutions of the interacted boundary layer equa- layer theory and on the other from experimental
tions are of sufficient generality and can be studies. These experimented studies have indicated
routinely obtained accurately and more efficiently that in many small but important regions of separ-
than solutions of the Navier-Stokes equations. -. ated flow, the boundary layer invoked approximations
Thus, the numerical treatment of the interact4 \ were valid, notably that v, a normal velocity,
boundary layer approach is critical to ensr rt remained small compared to a streamwise velocity u,
benefit is realized relative to the alternatives. and that across these separation regions the normal
Further, since there is now widespread agreement on static pressure gradient was negligible. Since
the interacted boundary layer formulation, atten- away from the small separation region the outer flow
tion here is devoted to elucidating, comparing and remained inviscid, it was natural to retain these
contrasting some elements of the numerical approaches approximations and attempt to construct a flow model
to solving the interacted system. to adequately predict these small separation regions

thereby enlarging the region wherein inviscid and
Introduction boundary layer calculations can provide accurate

predictions of the flow. Having constructed such a
High Reynolds number shear flows often lead to flow model, the next question would be its valida-

*the development of multiple length scales in prob- tion and finally to ascertain that the resulting
lems of practical interest. one solution approach system of approximate governing equations could be
would be to resolve all these important length solved more efficiently for the entire domain than,
scales in one analysis which would contain the say, the Navier-Stokes equations.
necessary generality, and then apply it throughout
the flow - even to those regions of the flow where In order to understand the numerical aspects,
the generality was not required and some simplifi- the construction of such a model is first examined,
cation was possible. then its validation to ensure that the essential

physical elements are retained and finally the
In an effort to be more efficient and perhaps nutmerical solution procedures are examined, to en-

even improve and make use of the basic understand- sure that the use of flow approximations, however
ing of such flows, alternative approaches have been valid, have resulted in a net savings in computa-
explored. Here the multi-scale problem of interest tional effort.
involves small regions of separated flow. For this
problem, physical models of the various flow regions The Interacted Boundary Liyer Formulation
have been established and linked together by means and Its Validation
of boundarv conditions. The simplified governing

*equation systems appropriate to each flow region Construction of a suitable model for small
are then solved efficiently making use of the regions of separated flows has its roots in the work
(valid) approximations and linked together (inter- of Crocco and Lees (1952) who investigated the
acted) through the appropriate boundary conditions, interaction of a laminar wake with an inviscid
This approach encompasses three distinct areas: supersonic outer flow. In this case a boundary
r lel formulation including interface boundary layer momentum integral technique was used to de-
conditions, validation of the model, and computa- scribe the shear layer and a simple local Prandtl-
tion of the solutions. Although here we will be Meyer wave relationship used to relate the free
primarily concerned with computational aspects i.e. stream pressure at the edge of the shear layer to
the third area mentioned, the numerical problems the local displacement effect of the shear layer.
cannot be addressed without an understanding of the This approach was relatively successful although a
formulation and validation, singularity caused a great deal of difficulty with

the solution implementation. In this approach, the
Considering the model formulation, it is known boundary layer or the shear layer development and

that a potential i.e. inviscid irrotational, outer the free stream are independently governed by



spatially parabolic and hyperbolic systems of equa- foil theory in this manner to provide the change to
tions respectively. Rather remarkably Garvine (1968) the external flow resulting from the boundary layer
later showed that a model of this problem was im- interaction. With this formulation, Briley and

" properly posed as an initial value problem in space McDonald were able to predict the development of
and should be approached as a boundary value problem, transitional separation bubbles on airfoils and
The boundary value nature was present although each obtained a favorable comparison with experimental

* individual flow regime was governed by a system data. Subsequently, Kwon and Pletcher (1979) and
. which could be solved by itself as an initial value Cebeci and Schimke (1982) used this same formulation,

problem in space; however, the boundary condition but with quite different numerical solution algo-
* .representing interaction of the two regions pro- rithms and turbulent transition models and obtained
* duced a boundary value problem. Garvine's observa- good agreement with the data and with the earlier

tions explained much of the difficulty experienced predictions of Briley and McDonald. A related
in solving the problem as formulated by Crocco and study has recently been performed by Carter and
Lees. Vatsa (1982) for leading edge bubbles.

The next series of developments occurred almost While the interaction with both the subsonic and
simultaneously with Stewartson and Williams (1969), the supersonic external flow can be well represented
Neiland (1969) and Messiter (1970) developing very very simply for many problems using linearized flow
similar asymptotic theories of shear layers inter- theory, the mixed elliptic-hyperbolic nature of the
acting with external inviscid flows. In these transonic problem raises obvious problems. LeBalleur
analyses, valid for R - -, Stratford's (1959) con- (1978) and Carter(1979,1981) eliminated these prob-
cept of a two-layer boundary layer was used in lems in a straightforward manner by iteratively
conjunction with an analysis by Lighthill (1953) computing the external flow using an efficient tran-
to produce a rational, self-consistent structure sonic potential flow solver. Thus, the interacting
for these interacting shear flows. Solved now as a boundary layer analysis has been formalized and ap-
boundary value problem, much of the previously elu- plied for localized separations in incompressible,

* sive structure of this class of interacting flows transonic, supersonic and hypersonic flow. Attention
emerged. These important results led to further will now be given to results which validate the
developments and widespread application of what has general approximations introduced in this analysis.
become known as triple deck theory [e.g., Stewartson
(1974)]. As mentioned earlier, order of magnitude

estimates, experimental measurements and comparisons
On a parallel development, work continued on between predictions and measurements all gave

the finite Reynolds number behavior of interacting encouragement to the view that for small separation

shear layers. In the case of supersonic external regions boundary layer approximations would remain
stream, Werle and Vatsa (1974) successfully and valid. Early work on the supersonic interaction
routinely obtained solutions to the laminar shock problem, in spite of being troubled by singularities
wave boundary layer interaction problem, essentially such as the Crocco-Lees point, did give much en-
as formulated by Crocco and Lees, by using an iter- couragement and more than a hint of the potential
ation procedure and solving the boundary layer equa- of this approach to the problem. Werle and Vatsa
tions by an implicit finite difference scheme. (1974) compared favorably with both data and the
Subsequently, very favorable comparison between Navier-Stokes solution obtained by Carter (1972) for

" triple deck results and those of Werle and Vatsa a compression ramp. Rizzetta, Burggraf and Jenson
were obtained in the limit as Re - ® by Burggraf, (1978) using triple deck theory compared favorably
Werle, Rizzetta and Vatsa (1979). However, Davis with data and with Werle-Vatsa solutions for corner
(1976), Burggraf, et al (1979) and Davis and Rubin flow. Very direct tests of the validity of the
(1980) pointed out the rather slow approach of these boundary layer approximations for subsonic flow were
composite solutions at finite Reynolds numbers to the made by Briley and McDonald (1975) and Ghia, Ghia
asymptotic limits of triple deck, at least for this and Tesch (1975). These comparisons are of special

* particular problem of a supersonic corner flow. significance since the same algorithms, codes and
This slow approach to the asymptotic limit has pro- grids were used. In these instances, flcw solutions
vided one justification for continued development were obtained using the Navier-Stokes equations and
of the 'composite' interacted boundary layer then the terms in the Navi~r-Stokes equations but
theories. Additional justification for the numeri- not in the conventional boundary layer equations
cal treatment of the boundary layer as one region were deleted and the results compared. Briley and
interacting with some external inviscid flow, is to McDonald (1975) examined the previously mentioned
be found in the desire not to be bound by the various transitional separation bubbles and found only a

assumptions of the asymptotic approach when applying small effect of the terms neglected in the incom-
the internction concepts to less simple configura- pressible interacted boundary laver formulation.
tions. K. Ghia, U. Ghia and W. Tesch (1975) examined the

effect of a wide range of approximations upon the
In view of the elliptic nature of the external incompressible flow over a slab with varying degrees

flow, in the case of a subsonic flow the boundary of nose bluntness and upon the flow over a circular
value nature of the interaction problem is not as cylinder with a rear splitter plate. They conclude
surprising as it wa. in supersonic flow. However, that interacted boundary layer type approximations
important to the development of a computationally are valid in many instances of separated flow.
efficient composite approach was the recognition Murphy, Presley and Rose (1975) compared solutions
that at finite Reynolds numbers in subsonic flow from the Navier-Stokes to those obtained from a
for small separation regions, the interaction was scheme using boundary layer approximations in both
localized and could be represented as a perturbation laminar and turbulent supersonic shock wave boundary
of the exterior flow and determined by the particu- layer interaction. They concluded that in these
larly simple displacement body of linearized thin cases,as long as the flow angle remained small, the
airfoil theory (the Hilbert integral). Briley and neglect of the appropriate terms did not produce a
McDonald (1975) used linearized subsonic thin air- significant discrepancy between the boundary laver

*
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and Navier-Stokes predictions. Vatsa and Carter an initial value problem by forward marching in the
(1982) compared interacted boundary layer solutions streamwise direction. Convincing numerical evi-

with solutions obtained by a Navier-Stokes solver dence for the regularity of the Navier-Stokes equa-
for turbulent flow over a boattail with a sting, tions at separation has been presented for instance
where a small separation zone occurred at the by Briley (1971), Leal (1973), Ghia and Davis (1974).

boattail sting juncture. Relatively good agreement Clear numerical evidence of the presence of the
was obtained between these two sets of predictions. separation singularity in the steady boundary layer
Thus it has been demonstrated, at least for the flow equations when the streamwise pressure gradients

problems examined above, that use of the boundary are prescribed has been given by Werle and Davis
layer approximation does not lead to major errors (1972),and Klineberg and Steger (1974) for instance.
compared to the Navier-Stokes solutions. However, it has been established, and is now widely

accepted, that the steady interacted boundary

Structure of Proposed Solution Procedures layer/inviscid flow solutions both from the compos-
ite equations and from triple deck agree with the

It is at this point that details of the numeri- corresponding Navier-Stokes solutions, as discussed

cal schemes must be introduced, since it can be in the previous validation section, and hence are

concluded from the foregoing that a validated ap- regular at separation. Thus, the Goldstein singu-

proximate flow model for small separated flow larity in interacting flows may have a very con-

regions interacting with an essentially inviscid siderable impact on the calculation efficiency and
outer flow region has been firmly established, strategy, but it is a matter for the solution al-

The basic structure of this flow model leads one to gorithm, not of the formulation, and will be dis-

expect considerable economy of computation relative cussed in that context later. Insofar as the dif-

to solving, for instance, the full Navier-Stokes ficulties associated with reverse flow velocities
" equations with appropriate multi-scale resolution, are concerned, these too are features of the solu-

In the simplest of formats, the steady inviscid tion algorithm, not of the problem formulation, as
external flow around the geometry in question is can be seen for instance from the work of Klineberg

computed once. If the external flow can be assumed and Steger (1974), Carter (1975), and Williams

irrotational, a single scalar potential equation (1974). The problems here are rather obvious and
may be used with obvious computational savings, arise from forward marching in space against the

The correction perturbation to this inviscid outer mean flow velocity direction. Such problems clearly

flow may be obtained from linearized flow theory and affect certain types of solution algorithms, but

at worst in transonic flow with small separations again the elliptic boundary value nature of the

some perturbation potential would have to be solved interaction and its recognition in the formulation

' throughout the flow. For subsonic flow, the cor- support the contention that the presence of reverse

rection can be obtained from the simple Hilbert flows is not a difficulty of formulation, but of

line integral of thin airfoil theory. For super- solution technique.
sonic flow, the correction can be obtained on a
pointwise basis using for instance the linearized In the light of the foregoing, we examine some
wave theory of Prandtl and Glauert. The remaining aspects of the numerical algorithms which have been

issue is the computation of the interacted boundary and are being used to solve the steady composite

layer. The conventional boundary layer approach equations of interacting boundary layer theory.

leads one to think in terms of a parabolic system
of equations in space and prior experience indicates Development of the Numerical Methodology
that this system can be solved very rapidly and
efficiently. Unfortunately, the boundary value As mentioned above, the emphasis here will be

nature of the interaction problem described earlier elucidating some of the numerical aspects of the

indicates that the interacted boundary layer is not various approaches adopted to solve the composite

well posed as an initial value problem in space and, interacting boundary layer equations. The governing

if a forward-marching solution algorithm is to be equations can be written in the form:

used for solving this boundary value problem, then
multiple iterations through the parabolic system are

- required. Unless a sufficiently economical approach

• to the boundary value problem is adopted, the re- (pu)5+ ('0 :

suiting effort of solving the boundary value problem
will seriously degrade the overall apparent computa-
tional efficiency of the formulation and, hence,
the numerical approach adopted is of some importance, Pu'-x +pVU, = - (WHy'y (2)

Two subsidiary points emerge when the boundary
value nature of the problem is addressed, particu- where T is the sum of the laminar and turbulent

larly via iterated spatial forward marching ap-

proaches. The first point is the steady separation effective viscosity and an x or v subscript denotes

singularity commonly termed the Goldstein singular- differentiation. For turbulent compressible flow,tdepenrentaiable will tu be assmedssobleow

ity, and the second is the reversed flow streamwise the ependent variables will be assumed to have

velocities that are encountered after the separ been mass averaged following Favre. The governing
"- tion. Each of these points will be addressed in equations are subject to the impermeable wall and

more detail subsequently, together with their impact free stream boundary conditions.

on the solution algorithm. For the present, it is

noted that it is now widely accepted that the Y = Q, j = v 0 Y' p: pe(x) (3)

Navier-Stokes eq itions are regular at separation
while the Goldstein singularity arises in the

• steady (uninteracted) boundary layer equations when The imposed pressure gradient is related to the

the streamwise pressure gradient is specified as a streamwise velocity Ue
boundary condition and the equations are solved as

'"" ."." '"."''" '." " " ". / ' " . "-' " . i. . 2- ..' . ".- . ...... i ' " > "" "" " -" '". - " " :" " "3
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conditions. In this mode, the streamwise forward
p : - tI cu )( (4) marching iterates can encounter the two previously

6 0s e X mentioned problems of the separation singularity and
forward marching into regions of reverse flow.

and the streamwise velocity is decomposed into the Catheral and Mangler (1966) demonstrated that chang-
imposed and perturbation velocity Ue = U9 + Uc ing a boundary condition on the boundary layer equa-
where Uc is the perturbation to the imposed in- tions from specified Ue(x) to specified (smooth)
viscid velocity field ti? due to the interaction. 6*(x) was sufficient to ensure regular behavior near
For incompressible flow, this airfoil theory defines zero skin friction. Introduction of a specified
the perturbation velocity by the so-called Hilbert displacement thickness as a boundary condition is a
integral wherein minor and easily introduced modification to these

existing computer codes and the resulting schemes
f have been termed the inverse mode of solving the

UC = f * dc (5) boundary layer equations. Carter (1975), and Ghia,V -OD X - Ghia and Tesch (1975) have demonstrated that speci-

rfying a smooth skin friction distribution also
where the symbol ' ' denotes that the Cauchy served to produce a smooth solution of the boundary
principle part of this singular integral is taken, layer equation in the vicinity of separation. Once
and 5* is the usual boundary layer displacement past the immediate vicinity of the separation point,
thickness. An even simpler relationship between these initial value schemes encountered the problem
the local rate of change of displacement thickness of marching against the streamwise velocity. Here,
and the perturbation velocity Uc can be derived in iterative schemes have been constructed and demon-
supersonic flow relative to a perturbation flow strated by Klineberg and Steger (1974), Carter

" angle a, (1975), Williams (1974), Ghia, Ghia and Tesch (1975)
which remove the reverse flow problem without further

2i)_i2 approximation to the governing equations. An ap-
(Uc) /Ue = (Me- a5  (6) proximate noniterative technique proposed by flgge-

Lotz And Reyhner (1968) termed 'FLARE' has also been
shown to permit forward marching into regions of
reverse flow. The technique involves either neglect-

a=v/U)y= () ing the streamwse convective term in the axial
S(7 momentum equation or replacing the streamwise con-

vective velocity in the equation by its modulus.
The stabilizing effect of this modification is

In the supersonic literature some minor varia- obvious and the approximation valid so long as the
tion in this type of expression can occur depending streamwise convective term is negligible. Carter
on where the flow angle match point is taken and on (1975) has shown that noticeable errors could arise
the specifics of the linearization approximation, from use of this approximation when the negative

With this slight exception, the formulation given convective velocity exceeds about 10% of the free

above is remarkably standard and in addition to stream value. Since high reverse flow velocities

being part of the basic structure of triple deck (>10%) are observed, experimentally and theoretically,

[Stewartson, (1974)] has been used as the appropri- in the vicinity of reattachment in turbulent flow,
ate system of governing equations describing com- some concern over the widespread use of the FLARE
posite interacting boundary layer flows at finite approximation must be expressed.
Reynolds number. For instance, in subsonic flows
precisely this formulation has been used by Briley Given now that the iterative approaches can be
and McDonald (1975), Carter (1979), Carter and developed to streamwise march through the separation
Wornom (1975), Kwon and Pletcher (1979), Veldman region by operating in the inverse mode, it now be-

(1981), Cebeci and Stewartson (1982), Cebeci and comes necessary to complete the iteration and satisfy

Schimke (1982) and Carter and Vatsa (1982). In the external interacted boundary conditions. Here

supersonic flows, the composite formulation is es- some subtlety is required since the edge velocity
sentially that used for instance by Crocco and Lees deduced from the inverse solution of the boundary
(1952) and Baum and Denison (1966) for a wake and layer equations must eventually be the same, to
Werle and Vatsa (1974) for boundary layers. In within satisfactory numerical error levels, as that
view of the wide acceptance of the formulation, the arising from the displacement surface as given by
distinction between the various approaches can be the external flow calculation. The various investi-

made on this basis of the numerical solution gators have devised systematic ways of performing
algorithm, and/or the turbulence model adopted. the correction to ensure rapid convergence, in

general. Thus, this type approach can be evaluated
It is instructive to briefly review the evolu- numerically in four categories. One, how the

tion of the numerical methods used to solve the boundary layer equations are solved; two, how the
composite equations. It is apparent that the wide- separation singularity is dealt with; three, how the

spread availability of computer codes embodying problem of marching into the reverse flow is treated,

efficient and accurate numerical schemes which and four, how the interacted external flow boundary

solve the previously given boundary layer equations conditions are satisfic As will be shown subse-
as an initial-boundary value problem in the stream- quently, once this is anone a high degree of uniformity

wise direction, have greatly influenced the numerical is observed in the algorithm's structure used to solve

development. In approaching the boundary value the problem by the iterative or shooting approach.

problem arising from the composite system, it is
natural to attempt to utilize these existing computer The boundary value problem could be formulated

codes within an iterative technique. This is, of numerically as a large matrix inversion problem as

course, a perfectly legitimate approach if upon solved by a combination of Newton iteration and

convergence the appropriate solution is obtained direct elimination. This has, as yet, not been done.

satisfying the necessary interacted boundary In other fluid dynamics problems governed by elliptic

i,4

.............. . . .. . . . . . . . . . . . . . . . . . . .



equations, various time-dependent approaches to the pseudo-time term to give it a functional depen-
solving steady boundary value problems as the large dence on the streamwise derivative of displacement
time asymptote of a time or pseudo-time integration thickness, based on the observed behavior of dis-
process have gained widespread acceptance. For the placement thickness at the separation singularity.
present interaction problem, a time-dependent ap- With this modification, Werle and Vatsa were
proach can be attractive, although to date it has apparently able to forward march through separation
not been widely used in spite of the availability of with an imposed freestream velocity without en-
computer codes which can efficiently solve the time- countering singular behavior. The reverse flow
dependent boundary layer equations. Here an attempt problem was treated by introducing the FLARE approxi-
will be made to explain this somewhat anomalous mation mentioned earlier. The difficulties encoun-
result. In a time-dependent approach, the problem tered and dealt with in the Werle-Vatsa pseudo-time
is recast into an initial/boundary-value problem in formulation (for use as an iterated spatial forward-
time or a pseudo-time variable with a two-point marching algorithm) must be contrasted with a formu-
boundary value problem in space satisfied at each lation based on physical time dependence, wherein
time step. Since the problem is marched in time, the time derivatives represent local physical time
not in space, no difficulty with sign of the stream- accelerations. Since the physical time accelerations
wise velocity is encountered. As Phillips and vary with all spatial coordinates, they cannot be
Ackerberg (1973) and Cebeci (1978) point out, an equivalent to an imposed pressure gradient which is
unsteady separating and reattaching boundary layer independent of the normal coordinate y. In fact,
with specified free stream velocity as a boundary the particular time-dependent algorithm applied by
condition (the direct mode) does not encounter a Briley and McDonald to the unsteady boundary layer
Goldstein type of singularity. Since the interacted equations was a conventional Douglas-Gunn ADI scheme
formulation ensures that the Goldstein singularity in which each of the two steps is implicit in only
is not present in the steady solution, one is led to one coordinate direction. Consequently, although
the expectation that if steady solutions are ob- the freestream velocity was imposed as a (direct)
tained by an unsteady approach, these will be singu- boundary condition in one of the ADI sweeps, the
larity free both in the transient and at steady terms treated implicitly (as a two-point boundary
state, otherwise the results could not constitute value problem) in each sweep do not constitute the
(unique) solutions. steady boundary layer equations, and thus the

algorithm does not encounter the separation
A physical time-dependent approach was used by singularity.

Briley and McDonald (1975) to generate solutions to
the steady interacted boundary-layer equations sub- Another early use of a physical time-dependent
ject to the interacted freestream boundary-condition formulation to solve an interaction problem is that
and also to generate solutions of the Navier-Stokes of Rizzetta, Burggraf and Jenson (1975, 1978) who
equations for this same problem, subject to the same solved the triple-deck equations for steady hyper-

. boundary conditions. Subsequently, it was questioned sonic flow past a corner. The unsteady equations
by Carter (1975) and Kwon and Pletcher (1979) whether were solved using a semi-implicit algorithm, and
this time-dependent approach had removed the separa- these results were examined quite extensively for
tion singularity. Although an incomplete streamwise numerical errors by the authors, and in the vicinity
mesh refinement study prevented a firm conclusion at of separation compared very well with the previous
that time that the separation singularity was absent triple deck results of Stewartson and Williams (1969)
in the steady solutions, in light of the current for free interactions. No evidence of the separation
unanimity that the steady interaction formulation is singularity was encountered, and upwind differencing
nonsingular following convergence, any doubt con- of the streamwise convective term was sufficient to
cerning these particular solutions can only encompass maintain stability in the reversed flow region.
behavior of the algorithm itself prior to convergence, Although the implementation of boundary conditions
and not the interacted boundary-layer formulation during the transient and the effect of upwinding on
itself. Stated another way, if unique solutions the tridiagonal structure of the semi-implicit
exist the singularity obviously cannot be absent for algorithm were not discussed in detail, these details
a solution obtained by one particular numerical tech- are immaterial once convergence is obtained. Since
nique and not by another. If any particular solution Rizzetta, Burggraf and Jenson were able to perform a
technique produces steady results which show evidence complete streamwise mesh refinement near separation,
of singular behavior then this implies that con- their findings provide rather convincing evidence
vergence to the (nonsingular) interacted solution that the separation singularity is absent in the
has not been obtained. physical time-dependent formulation for solving the

incompressible boundary layer equations subject to
Concern for the adequacy of time-dependent the interacted freestream boundary conditions of

approaches in general may have been engendered by triple deck theory.
the previously mentioned study of Werle and Vatsa
(1974), who used a pseudo-time formulation for the As a final observation on avoiding the separa-
purpose of iteration to satisfy the interaction tion singularity during iteration procedures
equation. In the Werle-Vatsa formulation, a pseudo- for solving the nonsingular steady interaction
time derivative of displacement thickness is added formulation, it appears that at least three distinct
to the steady form of the momentum equation. As approaches have now been suggested. Each is con-
Werle and Vatsa point out, during each spatial sistent with the observation that the singularity
marching interaction this pseudo-time term (which is seems to occur only when the steady boundary layer
independent of y) behaves essentially as an imposed equations are solved (by any method) subject to an
pressure gradient, and since freestream velocity is imposed freestream velocity or pressure gradient
imposed during each forward-marching iteration sweep, (i.e., "direct" boundary conditions). In one
this particular algorithm is thus subject to the approach, the singularity is avoided during itera-
separation singularity and reverse flow problems tion by retaining the steady equations but changing
unless special solution techniques are introduced, to "inverse" boundary conditions (i.e., a specified
To eliminate these problems 4erle and Vatsa modified displacement thickness or wall shear stress). In
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another approach, the direct boundary conditions rate. This approach is termed "quasi-simultaneous"
are used during iteration but the equations them- because it provides a (partial) simultaneous coupling
selves are changed to the unsteady form. The third between viscous and inviscid flow regions during the
approach is that of Werle and Vatsa which apparently iteration. The stability of forward marching and con-
succeeded by retaining the direct boundary condi- vergence of the overall iteration are of interest.
tions but changing the pressure gradient term per- The results of Veldman demonstrate that this treatment
ceived by the equations to a special form dependent of boundary condition was both stable during the
on the streamwise derivative of displacement forward marching iterations and led to rapid con-
thickness. vergence of the overall iteration to satisfy the

Hilbert integral. Given that the forward-marching
Having discussed the various numerical strate- iterates are stable, the improvement in convergence

gies for solving the interacted boundary layer behavior observed by Veldman might be related to the
equations, attention is now devoted to examining highly localized behavior of the Hilbert integral.
some aspects of the numerical implementation of the Veldman's results are intriguing in light of
interaction boundary condition. In the main, the Garvine's analysis indicating that the interacted
subsonic problem resulting from the Hilbert integral simultaneous treatment of the freestream boundary
is addressed, this being a more difficult problem condition is ill-posed for the supersonic case
than the supersonic interaction, when posed as an initial value problem in space.

The stability or well-posedness of the subsonic
The Interaction Boundary Condition case is explored here by relating a model problem,

representing forward marching for a subsonic inter-
Since for subsonic flows the interacted boundary action, to Garvine's analytical result for the

condition represented by the Hilbert integral, supersonic case. The subsonic case is found to
Eq. 5, cannot be conveniently treated as fully have a close resemblence to the supersonic case
implicit at the advanced n + 1 iteration or time except for the sign of the exponent controlling the
level, alternative strategies are adopted in both exponential growth or decay in the solution. The
time dependent and spatial approaches. In the exponent can be made negative for the subsonic
main, the interactive boundary condition has been case, thus producing a well-posed initial value
applied explicitly at the n level iterate or time problem. In order to develop the analysis, it is
level. In the time-dependent approach where the necessary to perform some preliminaries and discre-
freestream velocity can be imposed directly as a tize the Hilbert integral. This will be done and
boundary condition without encountering a singu- the relationship to Garvine's supersonic result
larity, the n + 1 interaction contribution to the established.

". freestream velocity may be obtained from the inte-
gration of the known n level displacement thickness Consider the principal part of the Hilbert
via the Hilbert integral and applied as a direct integral of linearized thin airfoil theory. The
boundary condition through the specification of Ue .  Hilbert integral is singular at = x, and outside
In the inverse approaches, the interaction contri- a region xa < x < xb su 'unding the singularity,
bution to the streamwise velocity, Ucfn+l, may be it can be supposed that e integral is well
computed from n-level quantities as before and then behaved, and may be inte, ated by some convenient
used to deduce a new guess at the displacement quadrature formula. Here, a uniform mesh of
thickness (or skin friction) at the n + I level, spacing A& is adopted for simplicity, and a trape-
;*n+l. This displacement thickness 5

*
n+ is then zoidal rule is used. The quadrature is evaluated

imposed as the boundary condition on the n + 1 for a given value of x such that xa < x < xb as
level solution. When the freestream velocity follows:
Ue

n+ l 
obtained by integration of the boundary

layer equations with the prescribed displacement A
thickness 5*n+l is sufficiently close to the free- Uc g (x,. ) dC
stream velocity given by the sum of the Hilbert so
integral contribution and the imposed inviscid (8)
distribution Un = Jo + the iteration is termi- : g + +
nated and interaction boundary condition has been a o + g -T0
satisfied. Note that both here and subsequently
the effect on the inviscid flow is viewed from the
filbert integral correction point of view. How- fgXCd A[L + +_ c
ever most of the arguments carry over at least in b9b

principle to the case where the inviscid flow is
recomputed in its entirety

It is observed from Eq. 5 that the far field where g(x,&) :h(2/(x-c, and h(-) U*UeS/W
contributions to he velocity perturbation from the The principal part of the singular integral is
Hilbert integral eventually decay as x

-1
. The defined by

interaction perturbation to the freestream velocity
gradient decays even more rapidly, in fact as x-2 . . , K" 8
This rapid decay supports the localized view of the (g(x4)dc W.0 1- (- +

small separation bubble interaction effect, 
and as Xd

a result it is attractive to attempt to improve the 0 (-

iterative convergence of the interaction by taking (9)

as much as possible of the Hilbert integral im- Xb (ue )
plicitly at the advanced iteration level. In a e
recent development, Veldman (1981) has suggested a (X-O
semi-implicit evaluation of the Hilbert integral
during the spatial forward marching iteration
procedure, as a means of improving the convergence
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Note that although the integrand of the integral discrete form of the integral given by the trape-
is singular at - x, the variation of h() is zoidal rule, Eq. 13, can be written
regular. To illustrate a point, assume h() may be
described by some polynomial consistent with the
spatial difference operator of the boundary layer Uc yg x, d

finite difference scheme. For the present, a lin-
ear distribution consistent with the previous use
of the trapezoidal rule is written as follows: 1 r h(xc) h(xo1

2 L m +1/2-n m+1/2i

*)mc u, /v =~ q + r (10) Jz"-' ( 1 )(4MCI) (14)

j:j m+i/2-j

n-I
and of course the values for the constants q and r + Z+ X
follow from the function values of the argument at inm jm i
xa, xb. The required integration can now be per-
formed and the limit of E - 0 taken. If now the
singularity at x is placed at the mid point between
xa and xb (denoted xs), a logarithmic term which
arises in the definite integral disappears and tne
very simple result is obtained that the Cauchy
principal part of the singular integral is given by with Xo/ Ac : 0, Xc/L : n

b x/AC M + 1/2 /A j

Jg(xs,C )d * (x,-x,)r (11)
Xo

Most quadratures can be written in the form of a
Replacing r by the appropriate function values, and dist um, E.1 bu ti il e different
noting that ga ha/(Xs - Xa) and x, (xa + xb)/2, discrete sum, Eq. 14, but this sum will be different

for different quadrature formulae, particularly in
Eq. (11) can be written as the weights ejm. It will be shown later that the

sign of the weights, particularly the weight at
j = m, can have a considerable impact on the
stability of certain iterative algorithms. To

fg(xs c)dc (Xb-Xa)[h(Xb)-hNx. /(Xb-X) develop this point, it is necessary to introduce
x( '12) a model problem, and here we follow Garvine (1968)

and introduce the Oseen linearized boundary layer
* " AC equations.

Z 2 (gb + go The boundary layer equations given in Eqs. 1

. and 2 are now normalized by a reference length Z
* and velocity Uref, and subsequently all lengths and

velocities should be considered non-dimensionalized
accordingly. This introduces a Reynolds number R

With each half of the principal part inserted into based on Uref, Z and the turbulent effective
the appropriate trapezoidal rule, the overall viscosity vT. From the point of view of the devel-
result is opment, little is lost by considering the turbulent

effective viscosity VT as a constant. The solutionvariation from the n to n + 1 iterate or time level
X~g(xC)dC is examined. The velocity increments are expressed

Xo

n+l n
+ b+Cj ] (1.3) u =1 +i -- u (5

- go+  ... go + gb + gb+l+  " n 1 n (15)

n'l +AV

Neglecting the product of increments and introducing
the Oseen simplifications a model linear system is
obtained which yields an approximation to the incre-

which is identical to a straightforward application ment Au which is now a perturbation about the (non-
of the trapezoidal rule to the Hilbert integral dimensional) constant velocity Uo . This model
without special treatment of the singularity. With equation is
this particular quadrature, which has an equally
spaced mesh, and the singularity located at the
mesh center, the correction for the singularity U0 (Au) Uo (u) #- R-' ( au) (16)
is zero. This particular quadrature of the Hilbert

integral was used by Briley and McDonald (1975),
and other quadratures properly allowing for non-
uniform meshes and other positions of the singu- Consistent with the Oseen approximation, the

* larity are easily developed. Note here that the interaction boundary condition obtained from the
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Hilbert integral is

XC W Uo851a (21)

Auc  u(x) = f 6 (17) (Au) + X d (21

and and this integral can be represented by the same

quadrature formula as that developed previously for

O the velocity perturbation &Uc, Eq. 13, by redefining
t (I - u) dy (18) g(xO.

In the quadrature of the Hilbert integral, all
the required values of 6* and Uo are supposed known

Some initial profile is to be specified together except one, which is to be evaluated implicitly at the
with the usual no-slip and boundary condition at advanced spatial location xnt when marching from

large y. Following Garvine, the algebra is con- the known solution at x3  . Recall that the super-
siderably simplified if the boundary layer thick- script denotes the iteration level. The contribution
ness 6 is taken sufficiently large and constant to Hilbert integral for x less than xm+l is known at
with x. From the continuity equation, and the the n+l level having been determined as the solution
definition of the displacement thickness 6* it is forward marched. The contribution for x > xm+l
follows that is taken from the n level solution, that is the

integral is split between n and n+l levels and thus
evaluated semi-implicitly. This results in the

(Uo8*) * -f (6u dy integral for the velocity gradient being expressed
at the midpoint x = (xm+l + xm)/

2 
as

and (Uo08 c = -fo(Au) dy (19) j=n-I
0AUe)x =nm X /jm UoB*) + /3nm(Uos*) 6e

ccl (22)

I;m

Now the stability of semi-implicit interacting 
I-mmf

8  (AU)xXdY

spatial marching algorithms will be examined. The
solutions are to be spatially marched from some
station xm to xmrjl. The time or iteration level is /mm 2/w

advancing from the known n level to the n + 1 level, and the second derivative of the displacement thick-
For the evaluation of the spatial behavior of the ness in the latter expression is to be evaluated at
sweep, the steady Oseen approximation with appropri- x - xm. (This would cause Sn+l to apear if a central
ate boundary conditions will serve as an approximate difference at x - xm were used for d U06*/dx

2
).

model of the governing equations. In obtaining the
contribution of the interaction to the freestream
velocity gradient, it is convenient first to inte-
grate the Hilbert integral by parts with due
allowance for the Cauchy principle part. This + b AU - aAU5 - (23)
yields uyy f xx

=~c (' U.o COB*Uo a= o s r
4 C "s0 (X where b: -/mmRU0 a U0 R 3: - IRU0

[Og 'x' '(UoO* f: 10 (20) This equation may be solved subject to the required

boundary conditions by writing the dependen variable

in the form

X,'log I - Os~k( AU= :Z (x,y)+w(y) (24)

If it is assumed that at x = Xc and x , xo the with w defined as wyy - S subject to the boundary con-

boundary layer has returned to some relatively un- ditions w(0) w(5) 0. This results in the quadratic

disturbed state, consister with the local view of profile

the interaction, it is pe.missible and convenient Sy (25)
to neglect the first term in the integral. If this -T 8-Y

)

is not acceptable, then this same term may be dropped
after differentiation to obtain the velocity gradient
by making sure that xo and xc are far from the point
of interest. Proceeding to obtain the velocity
gradient

8
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Note that the w profile does not satisfy a zero flow a local increase in displacement thickness
* gradient outer edge condition, but that this could creates a local flow acceleration over the resulting

be imposed without changing the subsequent results 'bump'. This acceleration tends to thin the boundary
significantly. However giving up on this gradient layer thus reducing the displacement thickness 'bump',
condition leaves j subject to precisely the same and a stable situation arises. This can be con-
governing equation and boundary equations as trasted with supersonic flow where an increase in
Garvine's model problem for a supersonic inter- displacement thickness creates a local deceleration.
acting boundary layer, and hence his solution may The resulting deceleration further intensifies the
be taken over in its entirety to represent J. In thickening of the boundary layer and increases the
view of the rather complex structure of Garvine's displacement thickness, and an unstable situation
solution, we will not present it here. Instead we could arise. The argument in both the subsonic and
note Garvine's observation that his solution con- supersonic cases remains the same if a decrease in
tains an exponential term operating on a function the displacement thickness is postulated. Con-
of the initial profile and this term either decays siderable caution must be used when applying these

* or diverges with the sign of the coefficient b arguments, however, since in reality a supersonic
which scales the integral in the model interaction flat plate turbulent boundary layer is not unstable

* equation. With the coefficient b positive, the to small disturbances. The key missing physical
solution diverges exponentially with increasing x. element in the foregoing argument is the global

, Obviously, the addition in subsonic flow of the effect of the perturbation. In a real subsonic or
quadratic profile for w(y) to define our perturba- supersonic flow problem, the reaction to the per-
tion velocity Au - 5 + w, does nothing to correct turbation is not independent of upstream and down-
the exponential spatial amplification. With the stream effects. The arguments given earlier con-
particular quadrature and also the location of the cerning the local reaction to the displacement
chosen implicit term in the semi-implicit inter- thickness change were based on an interpretation
action integral boundary condition, it turns out of the behavior of the governing equations viewed

* that b is negative and the forward marching solution as an initial value problem in space. The interpre-
contains no exponentially growing terms with in- tation given is relevant in explaining the behavior
creasing x. The supersonic case is recovered by of iterative schemes for solving the interacted
setting the source term S in Eq. 23 to zero, and equations which make repreated initial value spatial
thus dropping the quadratic profile for w. As marching sweeps using the conventional steady
Garvine points out with a simple linearized wave boundary layer equations. Since only the converged
approach to the external flow, the sign of b in the solutions need to represent real flows, the behavior
supersoni5 situaj n is positive, in fact of the interations is of no real concern so long as
b = R/2 (Me - I)- , and the well known phenoL2non the algorithm converges to the correct solution and
of branching is observed in the model problem, is computationally efficient. These stability

* resulting from the presence of the exponentially concepts are well known and are discussed in detail
* growing component in the solution. Branching is, by Weinbaum and Garvine (1969), and more recently by

of course, a well known problem in supersonic LeBalleur (1978) and LeBalleur, Peyret and Viviand
interacting shear flows when solved by forward (1980). The sign of parameter b shown to determine
marching, e.g. Baum and Dennison (1966). The the presence or absence of the growing spatial modes
absence of exponentially growing spatial modes in in the linearized model interaction indeed, repre-
the linearized Oseen approximation to the inter- sents the sign of the relationship between the

* acted boundary layer equations is obviously not a induced edge velocity and the boundary layer dis-
sufficient condition to ens.2re a well posed iterated placement thickness. Thus the intuitive arguments

* forward marching approach to the interacted bound- given above, can readily be placed on a firm quanti-
ary layer equations. However, any spatially ex- tative footing at least for the model problem. The
ponentially growing modes in the Oseen approximation earlier remarks of the usefulness of changing the
to the interacted boundary layer equations would sign of b can be carried over into the qualitative

* give considerable concern and while the absence of model by noting for instance a forward and backward
such modes is not a proven necessary condition in difference of pressure gradient have a different
generating well behaved forward marching iterates sign in their local response to a change in dis-
to the interacted boundary layer equations, it placement thickness.
would seem a good working hypothesis to ensure such
modes were absent. As a final comment on the solution behavior in

iteration space, it is not sufficient to ensure that
Note also that the sign of b determines the the solutions sweep at each iteration be stable, as

presence or absence of the growing mode, and this was investigated here and by Garvine. It must also
sign can readily be altered. As mentioned earlier be demonstrated that the iterations, complete with
a different quadrature formula used to represent the iterated interacted boundary conditions, converge
Hilbert integral could give rise to a different and that the rate of convergence be measured and

. sign, as could the correction for the Cauchy prin- adequate. Since the iterated boundary layer formula-
- cipal part. Further changing the form of the tion is now standard and widely accepted, the

various spatial derivatives involved, for example numerical solution algorithm and its convergence
- by forward differencing in space and then taking rate become critical discriminatory features of the

the downstream unknowns at the prior iteratio (i.e. proposed schemes. To date, very little has been
the terms within the difference molecule are taken accomplished in developing a thorough theoretical
at the implicit n + 1 level where possible and the understanding of the convergence properties of the
known n-level otherwise) is an effective way to various schemes. A major difficulty in this regard

7T change the sign of b. appears to be the observed crutial role of the
interaction boundary conditions Je.g. Veldman

Some feel for the behavior of spatial marching (19f .)] and the theoretical difficulties of deter-
with a local interaction contribution can be ob- mining the convergence rate when the boundary
taned from very simple considerations. In subsonic conditions are included.

49



This discussion of iteration space convergence the region of -.IOU. the maximum skin friction
brings up the subject of FLARE, once again, since upstream of reattachment was different with andthe FLARE approximation changes the governing without FLARE by about 11% of the Blasius skinequations, i.e. one is no longer solving the inter- friction at the upstream boundary. The FLARE approx-acted boundary layer equations, but some approxi- imation to the boundary layer equations resulted in
mation thereto. Further, the FLARE approximation a smaller value of skin friction. It was observedto the governing equation system apparently does by Carter that the error was localized to the region
have quite different convergence properties than of the boundary layer reattachment and that the samethe unapproximated system. Thus, a brief discus- reattachment point was predicted "'itr and without" sion of the FLARE approximation will be given, the FLARE approximation. The solutions were essen-

tiailv unaltered beyond the reattachment point. InSome Remarks on the FLARE Approximation the context of the triple deck approach for super-
sonic free interactions, Williams (1975) has notedFirst of all, it should be recalled that there that use of a FLARE approximation introduced more

are at least two published variants of the FLARE error into the reverse flow velocity profile thanapproximation. For instance, in their original into the computed skin friction. These results of
proposal Reyhner and Flugge-Lotz (1968) showed that Carter and Williams provide a useful calibrationwhen u was less than zero setting the convection of FLARE accuracy for a laminar flow.

term pu ux to zero in the boundary layer streamwise
momentum equation, Eq. 2, allowed them to obtain Several items are worth noting if Carter's
stable finite difference solutions of the resulting observations are extrapolated to justify the use ofapproximation to the boundary layer equations by a FLARE approximation for transitional/turbulent
the usual procedure of forward marching even in the separation bubbles for finite Reynolds number flowspresence of separated flow. Some authors, e.g. with interaction. First, it is no, known whetherKwon and Pletcher (1979) have adopted a slightly incorporating the interaction boundary condition
different approach and replace the convective term alters the sensitivity to the FLARE approximation.Pu ux by cplu!ux with c=l when u>O and with c a Second, characteristically transitional/turbulent
small positive number, e.g., <2, when u<O, and bubbles show a sharp dip in the skin friction inagain were able to obtain stable finite difference the region of reattachment, consistent with a rapid
solutions of the resulting approximation to the decrease in displacement thickness during reattach-boundary layer equations by forward marching into ment and evidence of local high reverse flow veloci-regions of separated flow. ties, commented upon experimentally by Gaster (1966).

Reverse flow velocities of about .13U_ were observedThe use of the FLARE approximation, for the in the transitional separation bubble calculationsexpense of the resulting error, eliminates the need of Briley and McDonald (1975). As mentioned prev-
to perform an inner iteration to allow for reverse iously, by virtue of the time dependent approach
flow velocities. It also eliminates the need to the Briley-McDonald calculations did not require
store the various levels of the field of iterates a FLARE type approximate form of the boundary layerwhich would be used to obtain the solution with equations. Had such an approximate form been usedreverse flow. Since this inner iteration usually the predicted reverse flow velocities might haveoccurs within the outer iteration to satisfy the been lower if the trend observed by Carter wereinteracted boundary condition, elimination of this followed, so caution must be exhibited in the justi-
inner iteration is attractive and would be very fication and use of a FLARE type approximation to
beneficial from an efficiency point of view if the the boundary layer equations.
resulting errors were arceptable. Various methods

reverse flow velocities being in some sense per- rapid convergence of the interacted boundary layer

formed simultaneously with the outer iteration to equations if used during the initial iterations.
satisfy the interacted boundary condition. To date These iterations are required and undertaken in any'
little has been done to investigate such proposals, event to satisfy the interaction boundary condi-

tions, and during the later phases the iteration to
The question of the accuracy of a FLARE type remove the FLARE type approximation could be folded

of approximation for thin incompressible laminar in. Although not yet rigorously demonstrated, nor
separation bubbles was investigated by Carter (1975). even routinely oerfortied, such a computational
Using an inverse boundary layer procedure and a strategy would seem to have considerable potential.
global iterative scheme Carter obtained solutions of However, most investigators who use the FLARE type
the laminar boundary layer equations in a separation approximation to the interacted boundary layer
bubble without invoking a FLARE approximation. Two equations do not remove the approximations as the
bubbles involving maximum reverse flow velocities solution converges and hence the approximation
of -.05U. and -.I0U. where U. is the free stream induced errors remain in the converged solutions.
velocity, were examined. In each case a prescribed As has been noted earlier, depending on the problem
displacement thickness boundary condition was these errors could be quite significant. Comparing
applied. The interaction boundary condition was not Carter's solutions and the solutions of Briley and
enforced in this test and the prescribed displece- McDonald (1975), on and Pletcher (1979) and Cebeci
ment thickness remained unaltered during the iter- and Schimke (1982) for transitional separation
ations. The solutions thus obtained were compared bubbles, it seems plausible that the FLARE approxi-
with solutions obtained by neglecting the stream- mations could introduce errors of the same order as
wise convection of vorticity in the separated flow those resulting from the variations in the turbulence
region. For the case where the maximum reverse flow model.
velocity did not exceed -.05U. the predicted skin In some instances, it has been possible tofriction distributions with and without the FLARE obtain numerical results bv forward marching down-approximation were in quite good agreement. For the stream of separation without introducing the FLAREcase where the maximum reverse flow velocity was in approximation. Further iustification would be
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needed for general use of this approach, since a fundamentally alter the interaction numerical
" numerical stability analysis for simple linear model stability unless the numerical interaction algorithm

equations usually indicates instability when u is is changed.
negative. For example, the two-point backward
difference scheme applied to the linear model equa- The same is true for the boundary layer calcula-
tion u2 / an wherefcatio y . Since tion. Also, it has been presumed in the preceedingA = ( 1+ 4csn2,/2)

-
, where c = Ax/uy

2 . 
Since development that an (implicit) finite difference

JAI exceeds unity for sufficiently small negative c, calculation of the boundary laver would be performed,
this algorithm is unstable for negative u when the as moat investigators in recent
mesh is refined. In forward marching their inverse to do. Treating the boundary layer by a momentum
boundary layer solutions into regions of reverse i ap r d n moe,'. "integral spatial marchng approach does not remove
flow without using a FLARE type of approximation, tie numerical problems concerned with branching, and
Catherall and Mangler (1966) noted difficulty in although the Goldstein singularity and the reverse

* obtaining solutions at some finite distance down- flowproblems are not apparent, other singularities
stream of separation. This finite distance to pro- arise [Green (1965), Shamroth (1969), Cousteix,
duce observable problems with marching the boundary LeBaleur and Houdeville (1980)]. To this is added
layer equations into reverse flow regions is con- the need to characterize the mean velocity profile
sistent with the very reasonable notion of a spatial in some suitably general manner. In addition, for
amplification rate depending not only on the sign turbulent flow inherently the same basic information
of the convective velocity but also on the spatial on the turbuloat structure must be supplied, even if
mesh size. only in some moment form. Thus while boundary -

layer momentum - integral calculation schemes have

As a final observation on the u e of a FLARE much to recommend them by way of computational
type of approximate form of the interacted boundary effici ncy, they do not by themselves present a
layer equations, as has been noted earlier, most solution to the interaction computational problems
investigators do not remove the approximation as referred to earlier.
the solution converges. On the other hand, in those
cases where spatial marching is performed into the In reviewing the literature to try and
separated flow and the FLARE approximation is establish the relative efficiencies of various
removed, the iteration to enforce the interaction numerical approaches.considerable difficulty is
boundary condition has not yet been performed in the encountered. Often algorithms and codes are not

* published literature. The only demonstrated pro- optimized in view of their research nature, run
cedure to date to successfully treat the interacted times are available on dissimilar computers with
boundary layer equations, both applying the inter- unknown resource cost/time algorithms and/or
action boundary conditions and allowing for reverse relative efficiency. Only some rather general
flow velocities, is the physical time dependent comments on efficiency can be made, in spite of its
approach. Although the observed convergence rates critical role. Taking the individual components of
of some of the spatial forward marching iteration the formulation, the labor of computing each
procedures appear very promising for solution of the boundary-layer iteration or time step could be much
FLARE approximation to the interacted boundary layer less for an integral scheme which is comprised of
equations, these equations are not directly compar- a small system of ordinary differential equations.
able to the unapproximated formulation solved for If it were necessary to remove or improve on the
example by the time-dependent approaches, and thus additional approximations required to construct therelative efficiency of the two approaches has not integral boundary layer approach, then a finite
yet been established. difference solution of the boundary-layer partial

differential equations could be undertaken. From
Computational Efficiency and Related Topics numerical studies in the literature on solution

methodologies for the boundary layer equations, the
In discussing the interaction formulation in computational efficiencies of the var

4
ous possible

subsonic flow, it was assumed that for efficiency approaches mav be obtained. For the multiscale
the Hilbert integral perturbation would be the problem, highly efficient impli:it finite difference
method of choice to obtain the interacted potential schemes have been developed and currently generally
flow. In transonic flow this no longer seems require of order one CPU second on a CDC 7600 per
adequate and a more extensive inviscid flow calcula- thousand grid points to compute a solution or time
tion seems mandatory. As mentioned earlier for step in either the direct or inverse mode. It should
separated flow, LeBalleur (1978) and Carter (1979, be possible to obtain solutions via boundary layer
1981) have initiated such approaches. It is noted integral techniques using one to two orders of
that a number of efficient iterative transonic magnitude less computation. Insofar as the inviscid
potential flow solvers have become available and potential flow is concerned, fast iterative transonic
that it is possible that the boundary layer inter- solvers have been developed which require about five
action could be incorporated into the iteration CPU secs per thousand mesh points on a CDC 7600 to
that would be required in any event to produce the achieve a suitably converged solution. For accuracy
basic uninteracted potential flow. Such a prospect levels sufficient to define the drag of fairlyis obviously interesting and much remains to be conventional tra-sonic airfoils, the present schemes
explored in this regard. The point remains that require about £.¢e to ten thousand mesh points,
deleting the Hilbert integral in and of itself should distributed wisely, for the inviscid flow and about
not affect in any substantial way the various the same for the airfoil boundary layers (excluding
stability problems meationed earlier. The stability the wake).
problems arise from the interactive response of the
numerical system representing the potential flow The situation becomes very fuzzy when the
and boundary layer, the potential flow being approxi- interactive coupling between the boundary layer and
mated by a basic flow and a linearized correction. inviscid flow is allowed for. If one remains with
Improving the Inviscid flow representation even to the Hilbert integral as defining the inviscid flow per-
the extent of using the Euler equations, should not turbation, the required numerical evaluation introduces
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AN I NTERACTIVE APPROACH TO SUBSONIC FLOWS W4ITH SEPARATION
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Abstract Mueller5 and Mueller and Batill 6 . An important
theoretical ontribution was provided by Briley

A viscous-inviscid interaction procedure is and McDonald / who combined a Navier-Stokes cal-
presented for computing incompressible separation culation in the separation region with a boundary-
bubbles in two-dimensional flow over lifting air- layer calculation elsewhere. An interactive
foils. The scheme consists of an inviscid-flow boundary-layer approach was used by Kwa and
method, based on the technique of conformal map- Pletcher8 , and also by Crimi and Reeves who
ping, together with an inverse boundary-layer used an integral boundary-layer method with the
method which makes use of the Cebeci-Smith alge- interaction effects confined to the immediate
braic eddy-viscosity formulation together with the vicinity of the separation bubble.

I 'lechul-function approach. The coupling between the
viscous and the inviscid calculations is achieved Recently a nq interactive approach was pro-
through the use of a set of interaction coeffic- posed by Veldmanlu in which the viscous pertur-
ients computed using the conformal mapping method. bation to the inviscid velocity distribution is
These coefficients define the relationship between computed by a thin airfoil approximation. This
the boundary-layer thickness, represented by means approach was used by Cebeci, Stewartson and
of a blowing-distribution on the airfoil surface, Williamsl1  to study separation bubbles near the
and the external inviscid velocity distribution, leading Edge of a thin airfoil and by Cebeci and
Results are presented for the calculation of sepa- Schimke1  in an investigation of mid-chord sepa-
ration bubbles occurring at the leading edge a,~\ ration bubbles at small angles of attack. However,
midchord of the MACA 661-018 airfoil at both at higher angles of attack the thin airfoil approx-
lifting and nonlifting conditions. imation, as implemented in references 11 and 12,

does not account for the change in lift on an air-
I. Introduction foil due to the viscous effects. This paper there-

fore presents a generalization of this approach in
An accurate calculation of the lift on an air- which the thin airfoil approximation is replaced

foil requires a modeling of the interaction between by a surface singularity method.
the inviscid flow away from the airfoil and the
viscous flow close to the surface. In many cases The new method has been applied to the calcu-
of interest the boundary-layer flow may separate lation of the flow over the NACA 663-018 airfoil,
upstream of the trailing edge, causing a strong at both lifting and nonlifting angles of attack,
interaction between the viscous and the inviscid and the results are compared with the experimental
flow. For such cases if a boundary-layer method data obtained by Gault'. For small angles of
is used to account for the viscous effects, the attack the results are in agreeiont with those
solution obtained for the prescribed pressure dis- obtained by Cebeci and Schimke'z. At higher
tribution will break down at the point of separa- angles of attack, converged solutions are obtained
tion where the equations become singular. On the for flows involving both separation bubbles and
other hand, if the boundary-layer method is reform- trailing-edge separation. The comparison of the
ulated as an inverse procedure so that the pressure computed pressure distribution with the experi-
distribution is not prescribed but computed as part mental data around the nose indicates that the
of the solttion, the singularity at separation can method does not fully account for the viscous
be avoided', and flows with small separation can effects, particularly as the angle of attack in-
be computed. This paper presents an interactive creases. This discrepancy is believed to be due
method for combining such an inverse boundary-layer to the fact that the effect of the viscous wake on
procedure with an incompressible potential-flow the external velocity distribution has been
calculation. neglected. Further work is planned to extend the

interactive boundary-layer calculation into the
In addition to the separation near the trailing near-wake region.

edge, small separation bubbles are observed on
airfoils. They occur as the laminar boundary layer II. Governing Equations
begins to separate from the surface, transition
takes place, flow becomes turbulent and at a short The boundary-layer equations for steady incom-
distance downstream, it reattaches as a turbulent pressible flow are well known and with the concept
boundary layer. Such transitional bubbles have of eddy viscosity (Em), they can be written in
been observed in the midchord regions of compara- the form
tively thick airfoils at small angles of attack,
as well as near the leading-edge of airfoils at u +--= (la)
higher angles of attack

2 .3 . ;x ;y

A review of the earlier work on separation u Ud e
bubbles was provided by Tani4 , and there are u -+ v = e  e 4. u-) (lb)
several more recent experimental studies such as x ly e ax

the low Reynolds number work of Arena and while b v + cm.

%"•... . . ..-



Eqs. (1) are subject to the boundary condi- III. Turbulence Model
tions given by

The boundary-layer equations outlined above
y 0 0; u . v= 0, y = S; u = ue(x) (2) make use of the eddy-viscosity concept which

requires a turbulence model. This present study
In Eq. (2), the external velocity distribution uses the algebraic eddy-vscqity formulation

ue(x) is obtained either from experiment or from developed by Cebeci and Smith'4. Two separate
inviscid flow theory. In the latter case it is formulas are used to compute the eddy viscosity,
often necessary to consider the viscous effects on Cm. In the inner region of the boundary layer,
the calculated external velocity distribution. One 0 < y < Yc, we use
convenient way of doing this is to write the edge"'boundary condition with u@(x) denoting the invis- (¢mC z {0.4yT - exp(-y/A)] 2 Iulcid velocity distribution and Sue the perturbation m epr/(8)

,, velocity due to the viscous effects as
where

ue (x) = u(x) + Sue 
(3)

A = 26vu 1'[1 11 8p+] " 1/2 , ur - 1x /2
p max

The perturbation velocity Sue can be computed, n
several ways In the scheme used by , eldman , + vue due
Cebeci et al.17, and Cebeci and Schimke1 , this is P =T x" (9)
done by using a thin airfoil approximation, ue

6 i I Xb d .) dE (4) In the outer region, y > yc, we use
aUe = T Xa T (Ye*

"Jere d/dx (ueS*) denotes the blowing velocity used Cc 0 = 0.0168 0 ue - u)dyIYtrO (10i

to simulate the boundary layer in the interaction The value of yc is defined by the condition
region (xa,xb). However, for airfoils at higher that (Em)i Z (¢M)o which ensures the continuity of
angles of attack, this approach becomes less accu- th e ro hi e nsur th e u
rate. Under such conditions the boundary-layer the eddy-viscosity across the boundary layer.
separation at the trailing-edge can cause signifi- The intermittency factor Ytr accounts for
cant changes to the airfoil circulation which is the transition which exists between the laminar and
not accounted for by this approach. This paper
presents an alternative formulation to Eq. (4) in turbulent. The fogula used here is that suggested

which the interaction effects are calculated in by Chen an yson
terms of a surface singularity distribution on the
airfoil surface. In this way the change in lift I expl-G(x - x x e(
due to the viscous effects can be incorporated into *tr tr x 21
the interaction procedure. The approach described xtr
here makes use of the conformal mapping techniques, where xtr defines the location of the start of
developed by Halsey'3, to calculate the pertur- transition. The empirical factor G is given by
bation velocity. Thus, if ldz/dcl is the modu-
lus of the derivative of the function which maps 3
the airfoil to a circle, the perturbation velocity G = 1 ue R_1 3 4  (12)
on the airfoil can be written as TX xtr

2f I - with Rxt corresponding to the transition ReynoldsVn(@')[cot y(0-81) + cot2 ye']de' r

Su () Z 0 n ridz/d~ l number, (uex/v)tr.

IV. Solution Procedure
Here VNO denotes the blowing velocity in the When the boundary-layer equations are coupled
circle plane given by to the external inviscid-flow equations, two dis-

ndu ) tinct regions are identified. The first is the
V n(e) ds e 6*) I (6) weakly interacting region in which the boundary

layer remains thin and attached. In this region
Introducing a discrete approximation into Eqs. the boundary-layer equations are solved with the

(5) and (6), the external velocity distribution at specified external velocity distribution, a pro-
a point on the airfoil, Eq. (3), can be written as cedure which we will refer to as the standard prob-

n lem. In a region of strong viscous-inviscid inter-
U = + I c[(ue6*) - (Ue*l] (7) action with flow separation, the standard problem

i- lj e j breaks down and as a result we employ an inverse
boundary-layer method and compute the external

where [cij] is a matrix of Interaction coeffic- velocity as part of the boundary-layer solution.
lents, and where the computed velocity distribution
t4 corresponds to the displacement thickness In order to improve the behavior of the solu-
S*K obtained in each sweep as we shall discuss tions near the leading-edge stagnation point and
later. The interaction coefficient matrix depends reduce the sensitivity of the solutions to the
on the airfoil geometry and on the boundary-layer x-spacing, we use similarity variables for the
spacing used around the airfoil, but it can be standard problem16 . Thus, with the definition
computed once and for all at the start of the cal- of stream function i and the Falkner-Skan trans-
culation. formation,

2
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u= 1/2 Kellers' box method is used to solve both the
n Z V- y, (Uevx) /2f(x,n), (13) standard and the inverse problems with the echul

function approach being used for the inverse prob-
lem. A full account of this method is given in

Eqs. (1) can be written as several references, for example, see ref. 16. When
computing separated flow, the FLARE approximation

b + - is applied so that the convective term F'(aF'/ax)
Cbf") +-m-- f" + mU - (f') in Eq. (17) is set equal to zero in the recircu-lating region of the flow. For cases involving

f' - f small separated regions, this is an adequatex(f - - (14) approximation although for flows involving larger
regions of separation, it can be improved as des-

Here the primes denote differentiation with cribed in refs. 16 and 17.
respect to n, and m is a dimensionless pressure
gradient parameter defined by m = (x/ue)(due/dx). V. Results and Discussion
The boundary conditions given by Eq. (2) can also

, be written as The method described in previous sections has
n = 0; f M f' = 0: n = ne; f' = 1 (15) been applied to the calculation of the viscous flow

over the symmetric airfoil, NACA 663-018, f~r
In the interaction region, the inverse bound- which experimental data was obtained by Gault 3 .

, ary-layer method is formulated in terms of primi- The results presented here are for the nonlifting
tive variables in which a dimensionless normal case (Ca = 00) and for two lifting cases, (a =
coordinate Y and the dimensionless stream function, 70 and a = 120) for a Reynolds number Rc = 2 x
F, are defined by 106 based on the airfoil chord.

= 1/2 ~ uL 112 x,) (6 The experimental data indicates that for lowYz. ( o 1/2y (UovL) l/ Y) (6

"" ,angles of attack the flow remains laminar until the
midchord region. The flow then separates, becomes

Here L and uo denote the reference length and transitional and reattaches as a turbulent boundary
velocity, respectively. In terms of these vari- layer. At higher angles of attack, a separation
ables and with primes now denoting differentiation bubble forms near the leading edge which also re-
with respect to Y, Eqs. (1) and (2) can be written attaches as a turbulent boundary layer.
as

The midchord separation bubble case bAs been
examined in detail by Cebeci and Schimke[4 using

- (bF") + 6e F' - F" (17) the thin airfoil approximation for the interaction
+ -U ax ax coefficients based on Eq. (4). For low angles of

* attack, the boundary layer remains attached at the
trailing edge, and the viscous perturbation to the

Y - 0; F = F' O: Y = Ye; F' =ie (18) external flow is small. Equation (4) is therefore
a good approximation to this viscous perturbation.
The current method has therefore been compared with

where 1e = ue/uo. this earlier method for the nonlifting case and
N I these results are presented first before discus-

.% To perform the inverse boundary-layer calcula- sing the results for the higher angles of attack.
6tions at x = xi, in addition to the boundary

conditions given by Eq. (18), another condition is Our calculations and those of Cebeci and
derived from Eq. (7) which contains the unknowns Schimke12 indicate that the specification of the
uej and 6. Rearranging Eq. (7), we get transition location has a significant effect on the

computed boundary-layer behavior. If the transi-
'4 (I - ciist) M gi, (19) tlon location is specified a very short distance

i upstream of the laminar separation point, then the
* extent of the separation bubble is reduced or elim-

where inated entirely. On the other hand, if the transi-
tion is specified a little downstream of this

I-I point, then the separated flow region grows with
gi = u i + c u j[(U*) - CU ) (20) each sweep, eventually extending to the trailing

I j.1 edge, without any signs of numerical difficulties.
SIn terms of dimensionless variables defined by Eq. In subsequent sweeps, the solutions, however, be-(16), Eq. (19) can be written as come unstable and the calculations break down. An(a empirical formula has therefore been used to com-

" vL 1/2 pute the transition location for this midchord
7h-ii ) (YeF4' - F6) (21 separation bubble. The relatloplshlp used is thatuproposed by Crimi and Reeves- which indicates

where i * gf/uo. that, at the transition point

0 The solution of the system for the inverse Yu=O 106/[5*(Ue/v)2 ]s (22)
problem given by Eqs. (17), (18) and (21) is
obtained in an iterative manner by performing sev- where yu=O is the distance from the wall at which
eral sweeps for both the upper and lower surfaces the streamwlse velocity is zero, while the sub-
of the airfoil. For the first sweep where K = O, script s denotes the values computed at the sepa-
u. is the Invlscid velocity distribution. How- ration point. Thus, when a laminar separation is
ever, after each complete sweep, this velocity ue encountered, the right-hand side of Eq. (22) isis recomputed for the next sweep,. computed. The left-hand side is then evaluated at

3
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each station, and the turbulent flow calculation
is started at the point at which Eq. (22) is sat-
isfied. 5o 0 0o104 0 7141 0 7191 0o724L

Figure I shows the computed wall shear param-
eter Fw  for the converged solution plotted
versus the airfoil surface distance measured from
the leading edge. This figure also sh ws the val- 30/

ues computed by Cebeci and Schimke
1 2 . The two c o

methods can be seen to agree well through the sep- 20

aration bubble, although they differ nearer the / 7
trailing edge. This is due to the fact that the 0
current method takes into account the airfoil geom-
etry in that region. Gault's experimental data 10 10

indicates that the separation bubble extends from 0100

(s/c) = 0.62 to 0.725. The calculated results can
be seen to predict the length of the separation
bubble well, although its location is further down- Fig. 2 Continued.

stream than that measured by Gault 3 .
-1.0

10
40.2 0.4 0.6 0.8 1.0

3.0 _Qc

10c

0.0 002 0.4 0.6 08 1.0

-1S.C sc 0.5

Fig. 1. Computed wall shear parameter, F,
for a = 00, Rc = 2 x 100. Compari-
son of present method (solid line) and
ref. 12 tdashed line). 

l

The calculated velocity profiles are very close Fig. 3 Comparison of measured pressure distribu-
to the results of t airfoil method used by tion (symbols) and computed viscous solu-

Cebeci and Schimke
12 . Figure 2 shows the com- tion with (dashed line) and without (sol-

puted velocity profiles compared with the experi- =tunne wall

mental data at several stations through the sepa- 0% Rc = 2 x IO.

ration bubble. The agreement is again goodupstream of aout (s/c) = 0.72 after which the are seen to be too low even forward of the separa-
upsture ofaboutdary (s/) r 7a ter wtion bubble where the viscous effects are small.
measured boundary layer reattaches. This discrepancy is mainly due to wind-tunnel

Figure 3 compares the computed pressure distri- blockage effects present in the experimental data.
bution over the airfoil with the experimental val- A purely inviscid calculation was therefore per-
tie measured Gault3 . The computed pressures formed to evaluate the effects of the wind tunnel

corresponding to the model size used by Gault.
This was achieved using thl multielement mapping

5.0 method, developed by Halsey
3 , in which the upper

ic 0.612 0643 0663 0.683 and lower tunnel walls are simulated by two flat
plates aligned with the freestream, and extending

4.0- fore and aft of the airfoil. For this particular
I calculation, the flat plates were located one chord

above and below the airfoil, and extending one
30 chord fore and aft of the leading and trailing

Y'C , 10 edges. Figure 4 shows the pressure distribution
with and without this tunnel correction. This

20 J figure also shows the measure pressures obtained
for a Reynolds number of 10 , showing that the

10 tunnel interference does account for most of the
discrepancy observed in the inviscid solution.
This same wind-tunnel correction has been applied

o110 10 o 10 to the computed pressure distribution in Fig. 3.
There is still, however, some difference between

Fig. 2 Comparison of computed (solid line) and the computed and the measured pressures through the
neasured (symibols) velocity profiles for separation bubble, particularlyat the reattachment

0,asured sybl es point.ot 0° , Rc  2 x 105 .

4
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Fig. 5. Computed wall shear parar'eter, K"
for a= 7*, Rc = ? x 10r .

250-

Fig. 4. Comparison of measured pressure distribu-
tion (symbols) and inviscid solution with 200-
(dashed line) and without (solid line)
tu nel wall correction for a = 0° , Rc = 150
109 .  

10

This method has also been applied to the same 100

airfoil at two angles of attack, 7' and 120, for
which there is a leading-edge separation bubble. 5o

For both of these cases solutions were obtained
through the boundary-layer separation and reattach- ooL _

ment, and also in the separated region close to the
trailing edge. -5°'o 02 04 06 08 :J

SC

As in the calculation of midchord separation
bubbles, the transition location has a very import- Fig. 6. Computed wall shear parameter, F.,,
ant influence on the size of the leading-edge sep- for c = 12', Rc 2 x 10
aration bubble. It is interesting to note that Eq.
(22) is an empirical criterion based on data from

- leading-edge separation, including the two lifting DISPLACEMENT THICKNES
cases considered here. However, attempts to use iKE-
this formula for the calculation of leading-edge 30

a" bubbles have not been successful since the size of
the separation region is too small. For these
cases there is a very sharply defined pressure peak -20

near the leading edge. The transition location was
therefore taken to be at the pressure peak for a

number of iterations until the boundary-layer solu- -10
tion near the trailing edge had stabilized. The
transition point was then moved downstream in order
to compute the leading-edge separation. 00- 04 06 6

Figures 5 and 6 show the computed wall shear t c

parameter for the upper surface at 7' and 120,
respectively. At 70, the computed leading-edge 10

separation bubble is very small, with a larger Fig. 7a. Comparison of computed viscous (solid
bubble being computed at 120. However, for both line) and Inviscid (dashed line) pre sure
cases the method is able to compute a converged distributions for a = 7', Rc = 2 x 109.

*solution through the boundary-layer separation and
reattachment, as well as through the trailing-edge experimental pressure distribution is reasonable
separation. Figure 7(a) shows the computed pres- although at 12', the computed results account for
sure distribution for 7' for the inviscid and the only about half of the difference between the in-
viscous calculations, for which the computed lift viscid pressure and the measured values. Also, the
coefficients are 0.87 and 0.73, respectively. The computed results do not pick up the rapid pressure
pressure distribution around the leading edge is rise which occurs with the reattachment of the

* shown in figure 7(b), along with the measured pres- leading-edge bubble.
sure distribution obtained by Gault J . At 12' ,

the computed lift coefficients for the inviscid and There are two additional factors which must be
the viscous calculations are 1.49 and 1.22, respec- accounted for in order to improve the computed
tively, and the pressure distributions are shown results. As for the nonlifting case, we can exoect
in Figs. 8(a) and (b). For the lower angle of there to be some significant effect due to the wind
attack, the agreement between the computed and the tunnel blockage effect, which would increase the

..
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include the effects of the viscous interaction on
- the wake. Currently the approach described here

-3o ,Fis being also extended to the calculation of inter-
* .. acting flows on multielement airfoils. This code

..*will also be used to simulate the wind tunnel wall

-2.0 000 effects as outlined above.
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A CALCULATION METHOD OF

LEADING EDGE SEPARATION BUBBLES

by

C. GLEYZES, J. COUSTEIX, J.L. BONNET
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2 avenue Edouard Belin
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ABSTRACT Before presenting the calculation method, we
will give a brief summary of this experimental study.

This paper is devoted to the method we have
developed for the calculation of transitional sepa- I. EXPERIMENTAL STUDY
ration bubbles at the leading edge of an airfoil
at incidence. I.I. Global results

This method is mainly based on A first series of experiments has been carried
out on a 200 mm chord ONERA LCIOOD peaky profile.

- the solution in inverse mode, of global bound-i ary layer equations ; Wall pressure distribution has been obtained for
a range of Reynolds number Re between 8.10 4 and 106

- a viscous-inviscid interaction scheme ; and incidence between 3 and 8 .

- the solution, in inverse mode too, of a local-- inviscid problem. The corresponding velocity distributions are pre-
ii dr esented in figure 1, for an incidence of 7o 30'.

* The experimental study we have performed at the
same time is also briefly reported. In fact, we have
emphasized the different points which strongly guided 2,5 u.
us in the choice of the assumptions we have intro-

" duced in this method. In particular, the detailed U. o's
study of transition in a separation bubble gave us o9.8

the physics of the phenomenon and was at the origin a3,
of the transition criterion we have developed and 2 03.2

.# 13.0
introduced in the boundary layer calculation.

INTRODUCTION 
1,5

The positive pressure gradient, downstream of the
suction peak at the leading edge of an airfoil at
incidence, may, under some conditions, induce large 1 . 73
pert~cbations on the general pattern of the flow. _ _ 3_ 5L_ _ 7,_5 _ __ _ 18 I _ 1_m

If Reynolds number (for instance Re,,: U, c/v
where c is the chord of the airfoil) is large, the
boundary layer becomes rapidly turbulent and is not Fig. - LCVD profi'e-Velocity iisrrib -
much affected by this gradient. On the opposite, if tions in the Zeading edge region
Rec is low enough for the boundary layer to remain
laminar, separation may occur, followed generally by
a transitional bubble.

Previous studies have already shown that the
effect of this bubble upon the downstream turbulent The main results of this study are
boundary layer is important and that it must be taken
into account to be able, for instance, to predict a) for short bubbles (here, for Rec > 0.45 106),
the possible separation at the rear of the airfoil, the velocity distribution is close to the

high Reynolds number velocity distribution,
m n this purpose, we have developed a calculation except in a small domain around the bubble,

method which deals with short separation bubbles, in where the difference is however small
two-dimensional subsonic compressible flows.

b) for a given incidence, exists a Reynolds num-
In parallel, an experimerntal study /Re' . I/ has ber for which a sudden change in the velocity

been carried out, which str ly helped in ch' distribution occurs, corresponding to the
choice of the assumptions " i-atr c.d ir. the classical bursting of a short bubble in a
method. long bubble.



An important remark about this bursting point For a modera" incidence a2 (between 5 and 10
is that no discontinuity in the physical size of the depending upon the airfoil), the evolution of L/c,
separation region seems to exist /Ref. 2/. This can when decreasing Reynolds number, is characterized
be seen in figure 2 where momentum thickness at by a continuous increase, with a much higher rate
75 % of the chord is plotted, versus upstream velo- below bursting Reynolds number, leading progressively
city. For the corresponding bursting point, there is to a complete separation. The change in the slope
a change in the slope of the curve, but continuity of the curves increases when incidence increases.
in the evolution. The increase in momentum thickness

is also shown, compared with a calculation assuming If we look at the evolution of L/c for a given
transition at separation, with continuity of momen- Reynolds number, two major schemes exist
tum thickness. This increase is very large for long
bubbles and is far from negligible for short bubbles. If Rec is low (Reci for instance), increasing

angle of attack induces first decrease in the
size of the short bubble, up to a - a2. With

| Ee--n a further increase, bubble bursts and the size

-- Exneriments of the long bubble now increases with inci-
B -- Calculation dence, leading to a progressive stalling. The

0-4 LONG BUBBLE with transition lift coefficient curve may or not present a

at separation break at the bursting incidence, according to

- -- the airfoil.

tSHORT BUBBLE If Re is high (Rec2for instance), the evolu-
tion is similar up to the bursting point, but

"-----__due to the higher pressure gradient, an in-
crease in incidence causes boundary layer not

.. . .. to reattach, and stalling is then sudden.

BURSTING
I V 1.2. Detailed results about short separation

a Mbubbles
A study of the short leading edge separation

bubbles has then been carried out on a special mo-
Fig.2- L D profiZe-Momentwn thickness del, called "enlarged leading edge". This model,

at =75%presented in figure 4, corresponds to a 2.5 m chord
7t X/30

)  
ONERA D airfoil, truncated and fitted with a blown

flap. Position of stagnation point and consequently

velocity distribution in the leading edge region
could be set by changing incidence, flap angle or
blowing rate /Ref. 41.

L/ j

"ONERA LC 100 D"

Fig. 3 Schematic evolution of the length
of leading edge separation bubbles

A global result, collecting various information 3Mm
about the different types of bubbles /Ref. 2, 3, 4/ cu250 rtvn
is presented in figure 3. -0

We have schematically plotted the evolution of
a characteristic length L/c of the separated region, :7ig. - Experimental apparatus
for different incidences, versus chord Reynolds num-
ber. Below a given incidence (here ao), no separation
occurs and boundary layer remains laminar up to natu-
ral transition.

7.
.. 5.
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These experiments consisted of A simple flow-chart is presented in figure 5,
where a is the quantity involved in the viscous-

- oressure distribution measurements ;inviscid interaction.

- hot wire and LDA boundary layer surveys (mean

and longitudinal fluctuation velocity pro- 3. BOUNDARY LAYER EQUATIONS
files) ;

- oil surface and smoke visualization (using the Because it is fast and satisfactorily accurate,
laser light sheet technique) it is an integral method which has been chosen for

the boundary layer calculation.

- hot wire signal spectral analysis

6 The main equation is the streamwise momentum
for a wide range of Reynolds number (106 Rec8.10

6
) equation ; in some methods, the auxiliary equation

* and twofe rn leel of5 tublnc)Te. . may change with the nature of the boundary layer

- global continuity (entrainment) equation in

* .In the presentation of the method, we will point turbulent flow ;

* out the assumptions deduced from these results. - global kinetic energy equation in laminar flow.

2. PRELIMINARY REMARKS For the present purpose, we have to deal succes-
sively with a laminar, transitional and turbulent

In a classical "direct" boundary layer method, boundary layer. To avoid numerical difficulties

the external flow is the imposed input, the evolu- which could arise from a change in the equations,
tion of the different characteristic quantities of we have been brought to keep the same auxiliary

the viscous flow being the output of the calcula- equation all along the calculation domain : the

tion. entrainment equation.

For the present problem, this technique leads to Consequently, the system to be solved is

a singularity in the vicinity of the zero skin fric- Cf dB re + d )- Ue +_ I doe1
tion point /Ref. 5/, even if the experimental pres- 2y = + H + 2)e 

0
edx]

sure distribution is the data of the calculation. 3.)
A simple analysis of global boundary layer equation CE = Ue 

(
6 - 6A

))

and of the related turbulent closure relationships OeUe dx e

-. /Ref. 6/ has shown that the system is singular at
separation, except if the pressure gradient fills 61 being known through the viscous-inviscid inter-
up a compatibility relation, in which case the sy5 action relationship. Equations (3.1.) form a system
tem remains however undeterminate. The same conclu- of two equations for the five unknown quantities
sions are valid for a laminar separation, due to a Cf/2, CE, 8 (or H), 6 and Ue.

similar behaviour of closure relationships in the
neighbourhood of separation. Three closure relationships are needed.

The adjustment of the pressure distribution to
the compatibility condition leads to the inverse 4. CLOSURE RELATIONSHIPS
mode formulation of the problem /Ref. 7, 8/. The
external velocity is then the solution of the bound- We will just give here the general guideline of
ary layer equations, a distribution of a boundary these relationships. Detailed formulation can be
layer parameter (61 or Cf/2 for instance) being the found in /Ref. 9/.
input of the calculation.

If one wants to predict the evolution of the 4.1. Incompressible laminar flow

boundary layer through a separated region, an invis- 4.1.1. Similarity solutions
cid calculation must be associated, through a
viscous-inviscid interaction procedure. The inviscid FALKNER-SKAN self-similarity solutions are a
calculation may be done in direct or inverse mode. classical way of getting closure relationships for
We have chosen this second solution in spite of a attached laminar boundary layers. They provide a
strong under-relaxation necessary to the stability family of velocity profiles, depending upon a
of the method. pressure gradient parameter 8 ; 8 - -0.199 is the

minimum value of this parameter and corresponds to

the separation.

For boundary layers with reverse flows, the
-. oUd4 V y.r same equations can provide a family of velocity

icu, ~,cid :', , ct profiles, depending upon the same parameter.
It can be shown that for negative values of B
(-0.199 ; 5 S 0), the solution is not unique and

[I
1 ii........iiI :,x two profiles can be obtained for the same value of

B : the classical solution and a separated one,

":,.o,. , :eeul ion obtained by setting 2U < 0 at wall.

These solutions, calculated for example by
CHRISTIAN and HANKEY /Ref. 10/ provided the separated

-he -self-similarity profiles, complementary to the atta-:he "c' ched profiles we already had /Ref. H/.
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- 1.2. Closure relationship s le two is nd in 1 tran:StOldirV 1c t i , ,11 I
--------------------- stmet d t o orr-es --;poi id, i t Ie t,- Ir.ueii; i I i o i r i oi Oi , I A

It is then easy, for each velocity profile, to common via[ti of Cl oslire relit ,'nsb irovidv
'-'" get the characteristic boundarv laver quantities tier.tore respective characteristi, ;iantiti, ,I
. needed to close the system. these two boiiudarv lI vrs , uiant itis wih i ch ire

weighted through in "intermittencv I IuCtiOI" , to

rhese closure relationships have finallv to be provide the transitional bouindary av,,r lllolin .
L 7, represented in ters of an adequate pressure gradient characteristic quantities

parameter. In spite of its wide variations for se-
parated flows, the shape parameter H seemed to be Il = - I HL  HT
adequate. Closure relationships could then be

C Cf Cf, Cf1

_  R,) = - (H), CcR, - CER, (H) and H* H (H) CE  = I - ,: ~. i ~
In fact, the definition of would be included E

in both the two last relationships. However, a sin- rhis method las teen .su tessEu llV I sod for itta-
pie analysis of the entrainment equations shows ched flows Ind is based on the experimuntil ,iYstr-
that these two relationships are equivalent to the vation or intermittencv ine twecil laminar Elow ad
following ones turbulent spots ill a flat plate boindarv liv4r cran-

FL R, CE R ition.

- - = (H) and H : 
H 

li,/fl In fact, our experiments 'Ref. I/ have siown that
for separation bubbles, transition process no more

In this form, the first one is independent of the involves turbulent spots, but is due to the bursting
arbitrary definition of 5. We will see at § 4.4 how of vortices, born in the laminar separated shear
has been solved this problem for the last relation- laver. However, this transition is very East and
ship. the use of an intermittencv function provides sa-

tisfactory results.
4.2. Incompressible turbulent flow

S. '.'SCOUS-INVISCID INTERAC2TION

Self-similarity solutions proposed 
by MICHEL-

QUEMARD-DURANT /Ref. 12/, provided closure relation- the interaction relationshit ian be written in
ships for attached flows. They have been extended terms of the direction, relative to the wall, of
to the case of moderate separated flows (H . IO) the velocity vector at the boundary between viscous

however, due to the formulation of these relation- and inviscid flows.
ships, they could not provide negative values of
CfI2. We have therefore used a relation proposed LE BALLEUR /Ref. 6/ has shown that it could also
by EAST et al. /Ref. 13/, which is in good agree- he written in terms of vertical velocity at a given
ment with the one proposed by MICHEL et at. for the distance of the wall. An expansion through the
attached flows. To remain homogeneous with the Lami- houndarv laver of the inviscid velocity normal to
nar closure relationships, the set of turbulent ones the wall, associated with the boundary laver global
is continuity equation, provides this relation.

Cf Cf.--= (H, R,)  deduced from /Ref. 13 /
- Hd/If it is written at y = 0, one can see that the

boundarv laver is equivalent to a transpiration
CE = CE (H. R) deduced from /Ref. 12/, at wall, the magnitude of which is given b:

H H 
(I (- d"Pe dx e

Ht = H , (S,/) deduced from /Ref. 12/. e

ht. INVISCIl) PROBLEM EOUAFIONS
* Let us note that in this case, S is a parameter

of the self-similarity solution and is consequently rhe inverse boundary laver calculation could he
completely defined. introduced in a complete flow calculation throulh

this viscous-inviscid interaction telationship. In
4.3. Extension to compressible flows fact, ,tir ;pulrpose was not to develop such . complex

code, but rather t obtain a practical itu easy to
For laminar /Ref. I I/ as well as for turbulent Ise tetlod.

/Ref. 14/ flows, it has been shown that the use of
transformed quantities allows to extend the incom- t.I. I.mpressible flow
pressible closure relationships to compressible
flows. the flow around tile iirloil heing .ssumed irro-'tirtional , win. -mit first defilte, .I poitent ial , 0

4.. Treatment of the transition region that :
that)

- We have assumed that, in this region, two fic-
ticious boundary layers, laminar and turbulent,

" could be defined. At this stage, we have hence "'e X al ,
arbitrarily defined ' for laminar flows, so that

-,... incompressible laminar and turbulent zero pressure where ,uuu;iript . orrispids t,, ili,, It I xt I ,,xtvrnl
gradient flows correspond, through the relationsips l Iow wi th .a ihll .
H (') to the same value of 1/'.
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If we define :1. as the potential of the flow 7. SOLUTION OF THE INVERSE VISCOUS PROBLEM
around the geometric airfoil, we have also

The system of the two global boundary layer
, 4FP equations, associated with the viscous-inviscid

FP FP interaction relationship is the following, with U F "x and VFP

Cf = dl [( + 2) dUe d
We can then define the velocity U (x) induced by 2 dx Ue dx 

0
Oe dx

the separation bubble as :
C - Ue dx (DeUe 

(
6 -d))

Ui(x) , Ue(x) - Ufp(x) E d

Because of the linearity of POISSON equation, it =eUe d (Dele I*is easy to define the potential t so that:
On a quasi-conservative 

form, it can be written
= 0 as

U. and v. t d ( 
Ue  

(61 + 6)) = 4e1e5 Cf + a)) x Tv dxPe D e 2
subscript i corresponding to the perturbation indu-
ced by the bubble. d

- Ule 6) = le (C-dx- e e CE )

Once 1 is known, the solution of the complete

inviscid flow is then equivalent to the solution for d
the perturbation potential i. x (Pe 6) a

In fact, looking at the available experimental where a = - is given by the previous inviscid
results, it appeared that we could reasonably assume calculation.

*' that the velocity perturbation Ui was small and
vanished outside the vicinity of the bubble. The integration of this system in xm_ gives

Neglecting the wall curvature effects, the pro- 0 eUe6ped and Ue
2 

(6 + 8) in x
en e I e + 6)i m-

blem is then : 0
"0 t <Figure 6 gives a brief description of the method.

*i = 0 in (0)

= Ui on (T) ...... i
e H T

In fact, the determination of i is not neces-
sary and the problem is practically to determine /

on= (rw4. Laminar Turbulent

This result is easily obtained with a GREEN's
function which provides : Closure relationships

VOJ =l" dl Compressibility relation-v°x) = vs(xO) = (g-x) ships

In fact, experiments showing that Ui is negligi-
ble out of the vicinity of the bubble, the integral
is taken on an adequate finite domain around the cf
bubble. The results we obtain provide subsequent TT

-k validation of these assumptions.

6.2. Compressible sbsonic flows I

To keep the same formulation, we use a PRANDTL-
"" GLAUERT approximation for the linearized potential

flow equation :,,, Cf/2"-" 2 )2t ,2s i ,(I - 3o ) + = 0

SY - hsWith the use of coordinate transformation p
y Y.v T" " -e, the same assumptions lead to I 1:

V,(x) s (x,0) - Mx dr

.7- X-)

se %



8. TRANSITION Next paragraph will explain the way we have

tried to introduce these two major points in our

The problem of transition (practically, the criterion.
determination of the beginning of transition and
its extent) is one of the main points of the method.

8.2. Present transition calculation method for

A delayed transition would cause the bubble not
to reattach and the calculation would fail. On the
other hand, with a too early transition, the in- From our experiments /Ref. I/, we could point
crease in momentum thickness would be too small out that transition is initiated by the amplifica-
and the downstream turbulent calculation would not tion of laminar instability waves, similar to
be significant. TOLLMIEN-SCHLICHTING waves observed on a flat plate.

This amplification proceeds from a critical point
Before going through our transition calculation (point where Reynolds number reaches a critical

method, we would like first to have a quick look value below which no disturbance can be amplified),
at some of the existing methods. which is generally upstream of separation.

8.1. Examples of existing transition criteria In fact, ARNAL et al. /Ref. 20 / have shown that

for attached flows, an important parameter charac-
One of these separation bubble transition cri- teristic of this amplification is the difference

teria has been established by HORTON /Ref. 15/ and between local and critical momentum thickness
modified by VINCENT DE PAUL /Ref. 16/ and ROBERTS Reynolds number. We have hence tried to develop,
/Ref. 171. for transition in separated flows, a criterion si-

milar to the one proposed by ARNAL et al. for at-
Once the separation point S has been found, tached flows, and which would intend to take into

through a direct laminar calculation method, they account the previous remarks.
assume there is a sudden transition at a point T,
defined as follows : We will briefly give the principles of this

US . L K criterion.
NT - S  L with S 8.2.1. Stability calculation

where subscripts S and T respectively correspond ARNAL and HABIBALLAH /Ref. 21/ have studied
to separation and transition point, within the framework of spatial theory ano for

4 parallel flows, the stability of attached laminar
K is - a constant for HORTON (K - 4.104) self-similar velocity profiles. We have extended

- a function of Ras for VINCENT DE PAUL this study to the separated profiles used for the
closure relationships as described in 5 4.1..

- a function of Tufor ROBERTS.

These calculations provide, for a given profile,

Another criterion is used by KWON and PLETCHER I M
/Ref. 18,, where the onset of transition is given the amplification coefficient ai (F,R6=) A - x
by : of a sinusoldal disturbance, whose magnitude is A

RxT ' 1.059 Ras * 44720 and whose reduced frequency is F (F - 2wfv/Ue
2

with f, physical frequency), for a wide range of

The transition develops downstream of T with an R61 .
intermittency function c given by : A sweep in frequency provides then the stability

2 diagrams. An example is presented in figure 7. On
C - I - exp (CT (x - XT) this diagram, iso-amplification lines are plotted,

2 versus reduced pulsation w and Reynolds number
where Ci 0025/6 S R61 . The ai - 0 curve is the boundary between an-

plified and damped domains and is called neutral

We have tried to introduce these different curve. The shape of this curve clearly shows that

criteria in our boundary layer calculation, but we can define a critical Reynolds number (subscript

the results were very poor, and that can perhaps CR) below which any disturbance is damped.

be explained by the following remarks

The influence of the turbulence intensity level tuaFxR -

is generally not taken into account (except by is

ROBERTS). If this parameter is not essential, it / ..
has a non negligible influence on the length of H=16.5
the :aminar separated region. In our experiments
for instance, a change in upstream turbulence in-
tensity from 0.45 % to 0.65 7 reduces the "equi-
valent constant" K from 7.10 to 4.104. GAULT '.

/Ref. 19/ and ROBERTS /Ref. 17/ find such a quali- 00 -
tative effect of this parameter. In fact, recent .-ho
experiments we have performed with turbulence gene- / -

rating grids show that for a local turbulence inten-
sity of 2.5 %, transition happens practically at 0_ __"

separation and no bubble appears while, however, an so M M 2

increase in momentum thickness has been found. In
addition, none of these criteria are able to take
into account the physical phenomena which lead to

the onset of transition.

L



K., Neutral curves, with the corresponding critical .

, Reynolds number, are presented in figure 8. The jLn(A/A,) 1dFZ
great instability of these profiles is characterized

by low values of R
61CR , as well as by large aper- Z-

ture of neutral curves, indicating a wide range

of amplified frequencies. Flat plate neutral curve I n A/AO n

has been reproduced as reference. .(inA/Ao),rax=nl

1O_
=-0.08

H RACRH =16.5(W) -o,. 6, _U 3 _N1.4 -0,08 16, 7 36 5

1 -Q12 -qi99 4,03 70 -1 /0 Z59 1 Soo 0 too 50 1000

Q6

For attached flow, the choice of a mean POHLHAUSEN
0 parameter gives fairly good results. In our case,

.- , due to the non uniqueness of the velocity profiles
0"iO0 500 1J00 200 500 for negative values of this parameter, the choice

of the shape parameter H seemed to be the most
F!,6!T. F- NeutraZ ?urves adequate. In addition, and for better convenience,
-.- .rsrelation (8.1) has been used in its differential

form
dn
' (H, Re) = A(H) (8.2)

9R

8.2.2. Determination of the onset of For self-similarity solutions, the integration

transition of equation (8.2) from the critical point gives
back relation (8.1).

If we consider on figure 7 the evolution with
R61 of the amplification coefficient ai of a dis- For practical use, two problems arise
turbance of frequency F, the representative point
lays on a straight line coming from the origin. - the determination of the critical point,
For low R61 , this disturbance is damped, up to the where n = 0
first crossing point with the neutral curve. Let - the determination of the evolution of n for
Ao be the magnitude of this disturbance at this non self-similar flows.
point xo . From there, the disturbance is then am-

Splified, up to the second intersection point with For the first point, self-similarity solutions
S•the neutral curve. provide the evolution of the critical Reynolds

number versus pressure gradient parameter. Present-
. For each disturbance, at a given point x where ed in terms of shape parameter, this gives the

Reynolds number is R6I1 , we can define the local relation

amplification a (H, F, RS l) as follows :I'i = - Re CRF ' ROCRF (H) (8.3)

a (H, F, R61 ) - n( L)  i- i (x).dx plotted in figure 10.
A." X

O
"-" At each station, the integration of the boundary

*..- An example of this procedure is presented in
* figure 9, for a pressure gradient parameter of layer equation system provides local Reynolds num-

0.08 (H - 16.5). The dash line corresponds to ber R. and local shape parameter H. For this cal-
the - .8 = .the ocash amlineicorondrves for culated value of H, we deduce the fictitious criti-cthe enveloof the local amplification curves for c

. the different values of the parameter F. This thi fictos n RC^RF by using equation (8.3)
envelope gives the so called total amplification this fictitious Reyno number is the theoretical

n(H, R!,) or also n(H, R.), corresponding to the critical Reynolds number of a self-similar flow
amplification of the most unstable frequency, for whose shape parameter would be H. We assume then
any Revnolds number greater than the critical that the critical point of the flow is obtained
Reynolds number Rc when local R,, is equal to this fictitious R.CRF.

For n , 2, the shape of the curve leads to a For the second point, we simply assume that
iimple analvtical representation the slope of the curve n(Ra) at a given station x,

is only function of the local calculated shape

n R q) - A(n) [ - Rz, n) + B(T' (8.1) parameter and is given by the corresponding self-
L C similarity solution.

* where TI is an adequate pressure gradient parameter.

./ . . . < . . - , .



calculations relative to zero pressure gra-

- 1 I  dient flows /Ref. 21/ exhibit a fairly weak
"R . influence of Mach number on critical Reynolds

number. Consequently, we have, in a first step,
500 determined the beginning of the amplification

by the same way as for incompressible flows,
using the incompressible parameters of the

boundary layer

ue 1 -u

i Hi - (1 -2-) dr/. -u ( I - -L) dy
" o Ra ue u (l - .._

-.i -21 -2(1-I) dv
'e ue ue

a already used in the closure relationships

sI transformations.

Calculations by MACK /Ref. 2 3/ indicate that,
if compressibility has a stabilizing effect,
this effect becomes significant when reaching
transonic regime.

In so far as no more specific results have been

10 obtained, we have finally calculated the total am-
plification n, by introducing the incompressible
parameters of the boundary layer, so that

5.n f R) dRi

.iCR ."" dn

where (Rdn)i is the value of dn corresponding

to the local incompressible shape parameter Hi.

% !The onset of transition is then obtained through
MACK's relation."- ' 4 6 8 10 20 40

-", 8.4. Intermittency function

.- .Formulation of E from Chapter 8.1. has been
tested, starting from our definition of beginning
of transition. Sudden transition as well as other
definition appeared not to fit with the experimen-

" The integration leads then to tal rapid but not ponctual transition.
n LR dn

, n(x) = - (H) dR. For attached flows, ARNAL et al. /Ref. 20/ found
-R-CR that intermittency function was fairly well corre-

where - R. and H are local Reynolds number and lated by the quantity 9/
9
T, where 9 is momentum

shape parameter at station x, thickness at a given point in the transition region,

- R4CR is the critical Reynolds number as iT is the momentum thickness at the beginning

previously defined, of transition.

The onset of transition is finally assumed to We have consequently tried to use the same type
cccur when the total amplification reaches a given of relation and the best results were obtained

value nT, function of the local turbulence level with :

through a relation proposed by MACK /Ref. 22/ E = I - exp (- 2.5 0 I))
9T

nT(Tue)- - 8.-3 - 2.4 Ln (Tue) very close to the relation used by ARNAL et al.
/Ref. 20/.

8.3. Extension to subsonic compressible flows
9. COMPARISON WITH EXPERIMENTS

At the present time, we have not yet performed

a detailed study of the stability of laminar com- 9.1. Preliminary remarks

pressible boundary layers, which would allow us
to develop the corresponding transition criterion. The present method deals with short leading edge

However, we have, as a first approximation, tried separation bubbles, in subsonic compressible flows,

to extend the present calculation method to sub- and only needs

sonic compressible flows, according to the follow-
ing remarks : a) a velocity distribution without bubble,

b) the local external turbulence intensit.- A review of experimental results /Ref. 211 (. 5 ),

showed that, for an airfoil, critical point
is generally located close to the suction c) condition for H and q at the first grid point.

peak, at a point where pressure gradient is
close to zero on the other hand, stability



rhe following remarks are to be done, relative These experiments have been carried out at

to these data :ONERA on another "enlared leading edge", corres-
ponding to a 2.85 m chord airfoil. Pressure distri-

The velocity distribution can be either a butions and boundary layer surveys obtained for

potential or an experimental high Reynolds Rec = 10b are compared to our calculation results

number one. If Reynolds number is far enough in figure Ii. Undisturbed velocity distributions

from bursting range, it is even possible to have been obtained by "smoothing" the experimental

use a "smoothed" experimental velocity dis- values, while local turbulence level is deduced from

tribution. Results so obtained for boundary mean upstream turbulence level of the wind tunnel

layer evolution remain quite significant, .Tu, = 0.4 to 0.5 %).

though calculated velocity distribution is
of course slightly different from experimental Here also, a slight shift exists between expe-

one. rimental and calculated separation regions ; in
addition, the level of the pressure plateau is

Concerning point b), it is generally sufficient underestimated. The definition of the undisturbed

to know the upstream turbulence intensity. The velocity is probably one of the main reasons of

local one can be obtained, assuming a constant these discrepancies. In spite of that, as it has

turbulence kinetic energy by been noted at § 9.1, if one is mainly interested in
the initial conditions for the downstream boundary

Tue - Tu. u..- layer, this approximation allows to predict the cor-
uem rect level for momentum thickness.

where uem is a mean value of the external

velocity in the transition region.
This assumption is no more valid for high 9.3. Experiments on OAGPI model

turbulence intensities, where turbulence decay
may be high (turbulence generated by a grid, 0.9 mMeE

in particular) and the knowledge of local Experiments

turbulence intensity is important, otherwise, -Calculation

increase in momentum thickness may be underes- '" -' (Tue =0.137)

timated through the previous assumption.

About the last point, an integral laminar 0

boundary layer calculation from stagnation
point gives correct conditions.

9.2. ERLICH experiments /Ref. 0.7 "UNDISTURBED" ,

um e Experiments
- Calculations O.6
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method, is also downstream of S . In spite of that,
These experiments have been oerformed at ONERA, the effect of the bubble on thel wnstream turbulent

to provide additional data about c,.e flow around boundary layer seems fairly well predicted, if we
compressor blades. The OAGPI model is a kind of
"enlarged leading edge", the shape of which has been compare our calculation to calculation /A/, for

designed to reproduce, at a large scale, the pressure that gr r than as er aotcaleulati s

distribution at the upper surface of a cascade blade, predict, downstream of the bubble, a momentum thick-

Upstream Mach number is .707 and total pressure is pess owr than momentum thick-
25 340 Pa. Reference chord of the model is 333 . ness lower than momentum thickness given by calcula25 30 P. Rfernce hor ofthemode is333mm. tion /B/, as it has already been noted in § 9.3.
Results relative to this test case are presented in
figure 12. _-_

A first remark, which, in fact, was the main
reason for our method to be used, is that a calcula-
tion assuming transition at separation point, pre- 1.5
dicted momentum thicknesses downstream of the bubble,
greater than the experimental values. These results
were, however, questionable, because measured inte-
gral quantities were probably affected with some
incertitudes because of the size of the boundary
layer. 1

For this model, neither undisturbed inviscid, 4
nor high Reynolds number velocity distributions were R
available. Consequently, the smoothed experimental
distribution was used as the undisturbed one. Local 3

turbulence intensity was deduced from the upstream
value (Tu. = 0.15 %). 2

Results seem to confirm that, effectively, this 1AJ
separation bubble does not induce increase in momen-

tum thickness. A more accurate calculation would
. however need a better definition of the undisturbed 1S

velocity distribution. e

9.4. GAULT experiments /Ref. 19/

These experiments correspond to a separation 05 a
bubble at mid-chord of a NACA 63018 at low angle
of attack u- 2*), for a Reynolds number
2 ec - 2 10 . Boundary layer surveys have been carried
out in the region around the bubble but, in the 0 5 06 a7 U
separated domain, the velocity profiles were limited SIC 0
to the positive values of U. Consequently, we have
only plotted the integral quantities for s/c - .592 .ArT e-ver i*ents
(about 30 mm upstream of separation) and s/c - .714
(nearly at reattachment).

. In our calculation, undisturbed velocity distri- 9.5. Comparison with our experiments
bution has been taken for Rec - 107, while local
turbulence intensity has been deduced from the
upstream value (Tu. - 0.15 to 0.20 %). Initial con- 9.5.1. Low turbulence level exeriments
ditions have been adjusted to fit experimental In figure 14 is presented une set of results
boundary layer integral thicknesses at s/c - .592. obtained for Rec - 2.2 106 and a local turbulence

intensity of 0.4 %. The undisturbed velocity dis-
Figure 13 presents the comparison between these tribution has been obtained for the highest Reynolds

experiments and our calculation results (full line), number experimental case. Local turbulence intensity
In addition, two other calculations have been plot- has been deduced from the upstream one. The choice
ted of a few grid points in the constant pressure gra-

dient region, provided good boundary conditions
- in dash line, a turbulent calculation ini- for H and 0 through similarity solutions.

tiated at the experimental reattachment point
(case /A/) ; Open circles correspond to hot wire results

while, in the separated region, closed circles
- in dotted line, a direct calculation, laminar correspond to LDA measurements. The agreement bet-

up to the calculated separation point SD, ween calculation and experiments is quite satisfac-
turbulent downstream of it, and assuming con- tory. In particular, the validity of the transition
tinuity of 9 at SD (case /B/). criterion seems good, owing to the correct predic-

tion of either the size of the pressure plateau
We can immediately note that the calculated or the evolution of the shape parameter in the

separation region (S - R) is relatively far down- vicinity of reattachment. Compared with a calcula-
stream of the experimental one (S - R ). Let tion assuming transition at separation (see dotted
us however note that, as in GAULT erportxhe sepa- line), the increase in momentum thickness is well
ration point SD, calculated through a direct laminar predicted.
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Figure 15 shows an other representation of this
phenomenon, with the evolution of experimental and

2.5 \calculated momentum thickness at a fixed point
-.5 ,53l\\ downstream of reattachment, versus tunnel speed.

Calculation with transition at separation has also
uUt been plotted, as well as local turbulence intensity

I \(this data is slightly function of tunnel speed).
UFp Agreement is here also very satisfactory. Note that

.& . even for U_ - 50 m/s (i.e. Rec - 8.0 106), a bubble
,/ still exists.

9.5.2. Moderate turbulence level experiments

,S On the same model, turbulence has been generated

1.5. imm by setting a grid at the beginning of the test sec-

0 so 100 tion. Here, local turbulence intensity has been
measured at the outer edge of the boundary layer,

- Calculation in the bubble region.

(Tue-.
42 )

7.5.Hot wire Figure 16 presents one set of experiments, cor-

0 L D A responding to the same Reynolds number of 2.2 106

5 * Pressure taps for a turbulence level of 2.5 %. A comparison bet-
i0 ween figures 14 and 16 immediately shows the influ-

ence of turbulence level on the position of transi-

2.5 0 tion and, consequently, on the size of the bubble.

om In fact, for the high turbulence case, no more
_ _ _ _ _ _ _MM__ 

=
___ 

]  
separated region seems to exist, transition begin-

0 so 100 ISO ning before theoretical laminar separation and
shape parameter (experimental as well as calculated)

0.7 reaches values of about 3.5. However, an increase
0.75 | ermml in momentum thickness still exists.

0." 2.5

Calculation
with transition U/QUp/

0.25 * at separation point t

-
4  mi2 /50 so00 I50

0i. "CrVarsoni with our eroeriments
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Abstract s' distance along surface measured from leadlng

An iterative viscous-inviscld interaction edge
calculation procedure is used to predict ieading
edge and midchord separation bubbles on airfoils u x component of velocity
in steady subsonic flow. The procedure utilizes
an inverse finite-difference boundary layer calcula- u friction velocity
tton scheme to predict the viscous flow and a
direct Hilbert integral formulation for the inviscid v y component of velocity
flow. Three models for laminar-turbulent transi-
tion are discussed. Predictions are compared with x coordinate along the surface
experimental measurements for several transitional
separatioj bubble flows at angles of attack up x' variable of integration in Eqs. 124) ana (26)
through 7'-

Ne u interaction starting point
Nomenclature

x, interacti.n end point
A function of Nach number (see Eq. It)

lx length of transition region

C constant
y coordinate normal to surface

c airfoil chord
a angle of incidence

C P pressure coefficient, tue/ u. )  
ageoindnc

y intermittency function

CT function of displacement thickness
*6 boundary layer thickness

o damping finction

. mixing length
&
'  

displacement thickness, (1 - u/u,)dv
L characteristic length f

0
'1 lJach number

K von Kirmin constant

p pressure

A extent of transition region
intensitv t line source or sink

H viscosity
teitis~riment pint

kinematic viscosity
-'--a..l,, Is :lmmi '.s selt ,i :4

R normalized streamwise coordinate in transi-
- .P I.' l , inininemh r i*e I in momentum thu Knss

tion zone, (x - x /X
, lr t t rh 'l

o density
1: '..in, e ii rK pper .ir ice f ii ,i I

n shearing stress
-inc nor I :r,,m stagnat ion p.oint



Subscripts ated regions at moderate or high Reynolds num-
bers.1

-3 
However, the solution of boundary layer

B DL denotes boundary layer equations alone provides only part of the answer to
the problem posed by separation in applications be-

c indicates value of correction cause information from, or at least compatible, with
the outer inviscid flow is needed to establish the

e evaluated at outer flow boundary outer boundary conditions for this boundary layer
calculation. In the neighborhood of separation,

FT evaluated for fully turbulent flow the inviscid flow solution over the displacement
surface of the viscous flow differs significantly

INV denotes inviscid flow from the inviscid flow over the solid body alone.
Neither the correct inviscid solution nor the cor-

in denotes inner region rect viscous flow solution can be obtained inde-
pendently. The two problems must be solved simul-

L evaluated at downstream flow boundary taneously or iteratively until the solutions
"match" through a common streamwise pressure grad-

' max evaluated at maximum condition ient at the solid surface. Thus, a practical cal-
culation scheme based on boundary layer equations

n denotes iteration level must include provisions for the viscous-inviscid
interaction.

o denotes reference quantity
There have been only a few reports of viscous-

ot denotes outer region inviscid interaction schemes being applied to sub-
sonic separated turbulent flow. These computational

s denotes evaluation at separation point studies have employed both integral and differential
procedures for the solution of the viscous flow.

T denotes turbulent flow quantity Integral procedures have been applied to fully
stalled turbulent flow in diffusers by Wooley and

t denotes turbulent flow quantity or transi- Kline
4 

and to the flow over a reward-facing step
by Kim et al. $ Crimi and Reeves6 and van Ingen 7

tion end point also used integral analyses in developing
prediction schemes for sexaration bubbles on air-

tr denotes transition initiation point foils. Gerhart and Chima reported only partial
success in their use of an integral boundary layer

. denotes evaluation at freestream conditions scheme in a viscous-inviscid interaction procedure
for subsonic turbulent flows.

• .far upstream of airfoil
Differential solutions to the boundary layer

equations were used in the interaction schemes
applied to subsoni: turbulent flow by Briley and

Superscripts McDonald, 9 Carter, 10 Cebeci et al. 11 and Kwon and
Pletcher. 12 The Briley and McDonald study utilized

() bars on dependent variables denote time mean a time-dependent analysis, whereas the others
employed inverse boundary layer procedures. Only

quantities Refs. 9 and 12 included comparisons with experi-
mental data.

C )' prime on dependent variables denotes fluctua-
In Ref. 12, an inverse boundary layer method

tions was combined with a Hilbert integral formulation
for the inviscid flow to predict a midchord transi-

1. Introduction tion bubble on an airfoil at zero angle of attack.
Two models for laminar-turbulent transition were

The prediction and control of turbulent flow evaluated and both were found to perform satisfac-
separation and reattachment continue to be impor- torily for this flow. In the present paper, the
tant in many engineering applications. Subsonic generality of the computational method and transi-
flow separation occurs or can occur on airfoils, tion models of Ref. 12 are tested by comparing pre-
helicopter blades, near the tail of axisymmetric dictions with experimental measurements for mid-
bodies, ship hulls, and in diffusers, compressors, chord and leading edge bubbles on airfoils at

" and engine inlets. In many applications it is angles of attack ranging up to 70. During the
desirable to avoid separation entirely. In others, course of the study, turbulence and transition

. some separated regions must be tolerated over some models were found to play a crucial role in deter-

. range of the operating conditions; and it is highly mining the accuracy of the predictions. Three
desirable to be able to predict performance even transition models are evaluated and discussed.
with regions of recirculation present. Although The key features of the calculation method and
progress is being made in the understanding and turbulence modeling are given below. Further
prediction of these flows, the accurate and eco- details on the method may be found in Refs. 12
nomical calculation of turbulent flows containing and 13.
regions of recirculation still remains one of the
major challenges in the field of computational Analysis

-. fluid dynamics.
Viscous Flow

Most recent investigators dealing with
separated flows have been optimistic that the The flow is assumed to be two-dimensional,
boundary layer equations may provide a suitable steady, and incompressible. Any separated regions
mathematical description for at least thin separ- are assumed to be sufficiently thin so that the

A5
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boundary layer form .)f the momentum and continuity where pT is a turbulent viscosity. External flows
equations provides an adequate mathematical model which give rise t; thin separation bubbles invar-
ior viscous regions. In any region of reversed iably separate in the laminar state and undergo
flow, the streamwise convective derivative is also transition to turbulent flow prior to or coincident
assumed to be negligibly small. Neglecting tur- with reattachment. Unfortunately, there are no
bulent normal stresses, the governing conservation known practical procedures for computing the de-
equations are tails if laminar-turbulent transition from first

principles. In the present study, the value of
Continuity WT was determined as the product of a viscosity

for fully turbulent flow, "FT' and an empirical
intermittency factor, Y:

a ._ 4u + av 0
ax ay = T 0 Y PFT (8)

Such an approach has proven useful for natural

Momentum transition on flat surfaces and airfoils.
15

The fully turbulent viscosity was evaluated
,,lul -u + u = - + ! (2) according to Model D of Ref. 1. In this model,

8x ay p dx p ay
2-Q 2 u(9)PFT =  

(a9

where C = 1.0 when u > 0, and C = a small (5 0.2)
positive constant when u S 0 and

where 2 is a mixin& length evaluated differently
= ap u (3) for the inner and outer regions of the boundary

T = P T - pv u' layer. For the region closest to the wall, the
mixing length is specified as

The inner boundary conditions are 9. = KDy (10)in

u(x,0) = v(x,0) = 0 (4) with 0 /i~i ~ / i u
1) exP[k(I L.2

For attached flows some distance from the
separation point, the standard direct finite- Here K was taken as 0.41. For the outer region,
difference method was employed for which the outer the mixing length was evaluated as
boundary condition was

2 = 0.12 L (12)lim u(x,y) = Ue(x) (5) 0

where L was determined from

For the inverse method, the second boundary
condition satisfied by the streamwise component of dL L(/3L
velocity was lau -=1.2 ju~ Ijj- (I13

f I - dy = 6*(x) (6) The motivation for the transport equation for L

was given in Ref. 1. In the present predictions,
wher = 0.089 6 was used to establish initial values
for L. The inner expression for 2 was used from

where 6.(x) is a prescribed function. the wall outward until k. = 2 At that point
the switch was made to t ouer formulation.

Equation (2) deviates from the conventional
momentum equation in the treatment (FLARE approxi- Three schemes for evaluating I have been

"*_ mation1t ) of the streamwise derivative term, applied in the present study.

SCu L . The form used permits marching the solu- Transition Model A: This model is based on

tion through regions of reversed flow by avoiding existing correlations for natural transition on
a negative coefficient for the streamwise deriva- flat plates and airfoils. Transition was assumed
tive term. The boundary layer equations were to start when Re8 equaled or exceeded the value

solved by the implicit finite-difference scheme given by Cebeci et al.'
5

" described in Ref. 1. "
"Re 1.174 1 +22400 Re0.-0 1.Turbulence and Transition Modeling +,tr . Re x

The Reynolds stress was assumed to be related
to the rate of mean strain according to for

0.1 106 % Re .40 10
v Ty (7) x

PT a



For the calculation of the extent of the Reeves
6
:

transition region, the correlation suggested by
Chen and Thysoni

6 
was used: 0, x x%." Xtr

Re6 Re
0
.
0
7 r 2]

tr xtr T= - exp -CTIX - XtrJ

where A is the function of Mach number expressed x xt (21)
by

where• '" 1. 92

A = 60 + 4.68M (16)

CT = 0.025/6 *2

Thus, the extent of the transition region is
Transition Model C: This model assumes that

transition occurs instantaneously at the point

xx t A x tr indicated by Eq. (20). Although the model gave
x x t  Xtr : 0.33 (17) surprisingly good results, its use was ultimately

Re x, discontinued in the present study because the con-xtr cept of "instantaneous" transition was thought to

be physically unacceptable. Transition is expected
The intermittency function was evaluated to occupy a finite, although possibly very short,

using the correlazion presented by Dhawan and region.
Narashima.

17 
The correlation was obtained based

on the source density function of Emmons'
5
,

*L y = 1 - exp(-0.412 2) (18) Inviscid Flow
It is assumed that the inviscid flow is two-

dimensional and irrotational, permitting the use
J where of superposition to develop the potential flow

solution. Letting u denote the tangential com-
x-x e,o

tr ponent of velocity of the inviscid flow over the
"-C = k(19) solid body without separation and u the velocity

on the displacement surface induced Conly by the
- sources and sinks distributed on the surface of

the body due to the displacement effect of the
viscous flow in the interaction region, the x-

" for x tr S S x. is a measure of the extent component of velocity of a fluid particle on the
of the transition region determined in the present displacement surface can be written as
study by letting y = 0.999 and x = xt in Eqs. (18)

• and (19). u = u + u (22)
.- .e e,o c (2

Transition Model B: This model is based on Following Lighthill,
2 1 

the intensity of the line

correlations for separation bubble transition, source or sink displacing a streamline at the dis-c o r e l a i o n f o s e a r a i o n b u b l e r a n i t i n , l a c e m e n t s u r f a c e o f t h e v i s c o u s f l o w c a n b e
According to the studies of Ward

1 9 
and Horton

2 0
, pla t ac

evaluated as
the pressure distribution from the separation
point to the point where the displacement thick-

. ness reaches a maximum is characteristically nearly d
uniform. Transition has frequently been associated (Ue6 

)

with this point of maximum &" where the flow "turns q dx
down" to reattachment, and experiments tend to con-
firm that transition is well advanced or completed
when reattachmunt occurs. This point, which marks Using a small disturbance approximation valid for

the end of the constant pressure region in transi- small values of rt tc x) can be evaluated as the
tional bubbles from several experiments, has been Hilbert integral:

.. correlated in Ref. 12 against the Reynolds number
at separation. In transition Model B, transition r d(ue5*)
was assumed to start at the point where the con- u e dx' 14j
stant pressure region ends, which is reasonably uc(x) r dx' (x - X')
well correlated by

Re = 1.0607Re + 33185 (20)SRx,t " x,s

Further details on the calculation Dt ue(the inviscid surface velocity on the hody wr out
where Re is based on the distance along the s h='"X's separation) will not be given here. u e '  a De

surface from the airfoil stagnation point. HavingSestablished the point where transition is initi- obtained by conventional methods, such is the Hess
etablishe the point hnertranifntion ini- and Smith

22 
procedure, or from experimental data.

ated by Eq. (20). the intermittency function is This distribution does not change luring the
evaluated by the form suggested by Crimi and iterac ti n don.", " interaction calculation.

OP
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For the numerical computation ,t u , it was viscous flow calculation is repeated over the
assume that strong interaction was lielied to the interaction zone in the inverse mode using the
reRqion x, x in Fig. 1. The intensity of the specified &*tx) The outer edge velocity, U ,

. source and, or sink was assumed to be significant in is obtained as part of the output of this calcula-

. this region and to approach zero as x approaches L. tion. The same distribution of 6 (x) is used to
Consequently, q was only calculated in the region calculate the correction to the inviscid velocity,
X, I x l x, using the boundary layer solution. Out- Uc(x), as indicated by Eq. (2b). A new inviscid
side of thts region, the source and/or sink distri- surface velocitv, u , can now be computed." e INV '
Oution was extrapolated by The edge velocities from the two calculations

-(viscous and inviscid) will not agree until con-

qbx) -2b 
vergence has been achieved.

S(25)
ii The boundary layer calculation is repeated

using a new 6* distribution obtained from

where b was computed to match q obtained from
* ," Eq. (23) at x = x1  and x = x2. /u

"2n 1 n l u ' n (2 7 )

Equation (24) can be rewritten as n e,INV,n

x x The form of Eq. (27), used previously by Carter'
0

I +u f 
2

q(x') and Kwon and Pletcher,
12 

has been justified on thec (x-x') J(xxx) dx' * basis of a local continuity concept
12 

and from a

-m xI  simplified momentum integral equation.'
0

It should be noted that Eq. (27) only serves
as a basis for correcting 6* between iterative

q'( dx' (26) passes, so no formal justification is required as
f (x-x') long as the iterative procedure converges. At con-
x2  vergence, Ue,BL = Ue INV and Eq. (27) represents

an identity, thereby having no effect on the nature
of the final solution. One of the main advantages

The first and third integrals can be evaluated of this method is that the need to use "smoothing"
analytically using Eq. (25). The second integral or under-relaxation can be avoided; in fact, suc-
is evaluated numerically using the trapezoidal rule, cessive over-relaxation (SOR) can be used.

Results

DISPLACEMENT SURFACE Comparisons have been made with the experi-
~* INTERqJQ mental measurements of Gault

25
'
26 

and McCullough
I O REGION and Gault

2 7 
obtained on two symmetric NACA airfoils

at angles of attack.

a

* Re In the study of Ref. 12, both transition
models A and B were observed to satisfactorily pre-
dict the midchord separation bubble on an NACA

SEPARATION BUBBLE 66 - 018 airfoil at zero angle of attack. When
MoAel A was used to predict the flow on the same

SURFACE OF BDDY airfoil at the same Reynolds number but at two
degrees angle of attack in the present study, the

Fig. I. Schematic diagram of interaction region model predicted the onset of transition prior to
on a two-dimensional body. the experimentally observed separation point and

the predicted flow did not separate at all. Tran-

where the singularity at % = x' is isolated in the sition Model A utilizes elements developed for

manner employed by Jobe.
23 

Further details of the natural transition with very small pressure grad-

procedure can be found in Ref. 24. ients and was evaluated in order to establish a
baseline comparison through which the differences

Viscous-Inviscid Interaction Procedure between bubble and natural transition might become
evident. Apparently the model predicts an early

A distribution of u is first obtained as (compared to experimental results) onset of transi-
e,o tion in some cases, which can permit the transi-

indicated in the previous section. Next, in order
to verify the expectation of separation and to help tional-turbulent flow to overcome the locally

determine the location and extent of the required adverse pressure gradient and remain attached.interaction region, an attempt is made to calculate counter to the experimental measurements. Because
teratioreion, a n te die mde ocacule of this shortcoming, not shared by Models B and C,

the entire viscous flow in the direct mode using Model A was not used for further predictions in theue (x) as a boundary condition. In a flow in
present study.

which viscous-inviscid interaction is required,
this calculation will end with a prediction of Figure 2 compares the pressure coefficients
separation. Based on the results of this first predictd by Models B and C with the measurements
viscous flow calculation, the interaction zone is of GauLt

2 s 
for tge NACA t6,-018 airfoil at y = Z'

established and a trial distribution of 6"(x) is and Re = 2 , 10 . Predicted separation and re-
specified throughout the interaction zone. The attachment points are shown in the figure The

..--..--..-- *- .- ---.-. • ..



bubble is seen to form somewhat downstream of mid- 2.4
chord. Velocity profile comparisons are presented
in Fig. 3 for this flow. Both transition Models B
and C are seen to provide fairly good predictions
although the velocity profiles predicted by Model
C can be seen to be in slightly better agreement
with the measurements.

1.6-

2.0- SPECIFIED tNVISCI VELOCITY,/R

PRESENT PREDICTION (TRANSITION MODEL 8) / /:

PRESENT PREDICTION (TRAN4SITION MODEL C) a1./

1.8 0 MEASUREMENTS OF GAULT [25] 6
(NACA 663 - 018. Rec - 2 x 10 . 20

)  
R

] S
0.4 IS,,
0.8 -_ 40

1.4 [ 

...- 70

0.4 +S :SEPARATION POINT
1.2 R R REATTACHMENT POINT

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.0
SIc 0.0 0.008 0.016 0.024 0.032 0.040

s'/C MEASURED FROM LEADING EDGE

Fig. 2. Comparison of predicted pressure 
distri-

bution with experimental data on NACA Fig. 4. Variation of displacement thickness
663-018 airfoil, a - 20. distribution with angle of attack on

NACA 63-009 airfoil, Re - 5.8 x 106.
c

+.-7 PRESENT PREDICTION (TRANSITION MODEL B)
---- PRESENT PREDICTION (TRA SITION MODEL C) sic

6- 0 MEASUREMENTS OF GAULT [25) (T4 0.15 0.2) 0.811 Figures 5-7 compare the predicted and
NACA) 66. - 318. Re. * 2 106, *. 2 ) 0.761 measured 2 6 ' 2 7 pressure coefficients for the NACA

.o 0.714 63-009 airfoil flows. The predictions which Crimi

0.673 0.0 and Reeves obtained by an interaction scheme that

0 0.663 calculated the viscous flow by an integral metLod

;/c 3.612 0.6320.653 are also shown in Fig . 7. The predicted sep', J n

k ,and reattachment points are indicated in r% I
urea. The agreement between the predicted .-j the

*2t measured pressure coefficient appears to be gen-

erally good.

0.00.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0
.ju - PRESENT PREDICTION (TRANSITION MODEL BI

Fig. 3. Comparison of predicted mean velocity --- SPECIFIED INVISCID VELOCITY
profiles with experimental data for 0 MEASURED BY GAULT [26]
NACA 663-018 airfoil, a - 20. 4.0 (MACA 63 - 009. Re r 5.8 106,

The remaining comparisons age for the NACA 0 0 0
63-009 airfoil at Re = 5.8 x 10 and angles of 0 0

attack of 4, 5, and 5 degrees. Leading edge bub- 3.0
bles were observed to form under these flow condi-
tions. An overview of the effect of increasing
angle of attack can be seen in Fig. 4 where the
predicted displacement surfaces and separation
and reattachment points are presented for the three 1 '.0-
flows. The separation bubble can be seen to move
toward the leading edge as the angle of attack in-
creases. This same trend can be observed in the
experimental measurements, although no displacement . I I

thickness was measured to allow a comparison in :12 . 20 :C :_3 :_24C

Fig. 4. Predictions were only obtained using sc
transition Model B for these three flows. Earlier
comparisons had indicated that both Models B and C Fig. 3. Comparison of predicted pressure distri-
gave acceptable and similar predictions. Model C butiun with experimental data on NACA
was dropped from further consideration only because 63-009 airfoil, L =4

.

the idea of instantaneous transition was thought to
be physically unrealistic.



- PRESENT PREDICTION (TRANSITION MODEL B) laminar until after the local peak in the displace-
ment surface has occurred, indicating that the-- SPECIFIED INVISCID VELOCITY- FC Eouter portion of the flow is turning toward the

500- 0 MEASURED BY GAULT [26] airfoil and that the reversed flow region is
(NACA 63-009, Re 5.810, a 6 5) shrinking. In one computed case, the NACA 63-

009 airfoil at a = 50, the predicted flow re-
attached laminarly, separated a second time, under-

4.0 - went transition to turbulent flow, and then re-
attached a second time. Despite this unusual pre-

* dicted flow pattern, the predicted pressure coef-
ficients and velocity profiles are in fairly good
a3.0 - R greement with the measurements. It should be

R remembered that the actual flow near separation and
0 reattachment points is frequently quite complex,

with certain portions of the flow fluctuating in
2.0 time between the separated and attached state.

2 8

1.0 - PRESENT PREDICTION TRANSI ON MODEL 8)
0.010 0.015 0.020 0.025 0.030 0.035 0.040 0 MEASURED BY GAULT :26]

MNACA 63-009, Re, 5.3 x iO
6.  

4o,
s/c C C

Fig. 6. Comparison of predicted pressure distri- V .n

bution with experimental data on NACA
63-009 airfoil, a - 50. 4

- PRESENT PREDICTION (TRANSITION MODEL 8)
SPECIFIED INVISCID VELOCITY 2-

10.0 -- PREDICTED BY CRIMI AND REEVES 0

o MEASURED BY GAULT [26]

* MEASURED BY McCULLOUGH AND GAULT [27]

8.0 - (NACA 63-009, Re =5.8 X 10 70) 0
00 00. 0.0 0.0 0.0 u.0 0.0 1.0

6.0 Fig. 8. Comparison of predicted mean velocity
it profiles with experimental data for

NACA 63-009 airfoil, a - 40.
4.0

- PRESENT PREDICTION (TRANSITION MODEL B) 2
0 MEASURED BY GAULT [26]

2.0 (NACA 63-009, Rec  = 5.8 106, 50 ) " '

4 - C

0.0

0.010 0.015 0.020 0.025 0.030 0.035 0.04 X o

s/c

Fig. 7. Comparison of predicted pressure distri- o
bution with experimental data on NACA 0 0
63-009 airfoil, a - 70

.

0 0

Predicted velocity profiles in and near the 1.0 0.0 . . 5.2 5.3 ."..
separated regions are compared with measurements
for the NACA 63-009 airfoil flows in Figs. 8-10.
The agreement between predictions and measurements Fig. 9. Comparison of predicted mean velocity
appears reasonable, except perhaps for the NACA profiles with experimental data on
63-009 airfoil at a = 70. The difficulty of ob- NACA 63-009 airfoil, a -

* taining accurate velocity measurements with con-

ventional pressure probes in and near separated
flows is well known. Predicted velocity profiles The inviscid surface velocity distribution
near reattachment are extremely sensitive to the for unseparated flow,u (x), needed in the present
location of the predicted transition point. For viscous-inviscid interaLion procedure was obtained

*u = 70, especially, the predicted transition occur- by the Hess and Smith procedure.
22  

From ten to
red slightly downstream of that indicated by the fifteen iterations through the viscous and inviscid

experimental measurements. Here, the steepening calculations were needed for convergence, as deter-
of the velocity profiles is taken as evidence of mined by the requirement that the maximum change in
transition from laminar to turbulent flow. Gen- the inviscid edge velocity be less than 0.6% between
erally, the velocity profiles suggest that the two successive iterations. The maximum difference

flow separates laminarly and remains essentially between ue,BL and ue,INV was less than 2%.

-- .
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Fig. 10. Comparison of predicted mean velocity 5. Kim, J., Kline, S. J. and Johnston, C. P.,
profiles with experimental data on 'ACA "Investigation of Separation and Reattachment
63-009 airfoil, t = '

°
, R-e 5.1 x 100. of a Turbulent Shear Layer: Flow Over a

Backward Facing Step," Report 1D-37, Dept. of
Mech. Engr., Stanford University (1978i.

Concluding Remarks C. Crimi, P. and Reeves, B. L., "Analysis of

The present viscous-inviscid interaction cal- Leading-Edge Separation Bubbles on Airfoils,"

culatron procedure was seen to provide predictions AIM 1., 14(11):1548-1555 (1976).

in fairly good agreement with experimental data
for both midchord and leading edge transitional 7. van Ingen, J. L.,"On the Calculation of Lami-
separation bubbles on airfoils at angles of attack. nar Separation Bubbles in Two-Dimensional In-

The predictions appeared quite sensitive to the compressible Flow," AGARD Conference Proceed-
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transition, proved unsatisfactory in the present
study because early transition was predicted for 8. Gerhart, P. M. and Chima, R. V.,"Development
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___ c chord transonic flow comrutation: are tresetti-

,* A lift coefficient comparei with experimental iata f' he .
airfoil with )sci'iatinw flan, fc'r '-iie

moment coefficient labout 2. I, nositive airfoil an :or a moe a
I nose down, in pitch. The computati ns w-re
hinge moment coefficient rositive trailing NLE version of the AAA-e o tr node
edge up coupled with the lag-ertrainment method of
pressure coeffi:ient for a turbulent boundary layer. -h comrit, d aff-ct
unsteady ressure .• of the boundary Layrr on the urteady a=._ a

p coefficient Eq. reduction of the magnitude and -a p itie r,.a
l iolacement thicaness inout in airfoil and shift 4enerally leads t,, a hotte areemer.
wade boundary 2onditions Eqs. - and experimental data. 7he remaining differences 'ay -e
,dimensionless, relative to chord, due to the low frequency -mail erturbation
freque:;cy tHz, potential approximation, the wea interaction
S coordinate of instantaneous airfoil modelling and wall interference effects. For
contour (dimensionless, relative to chord) various cases considered, in comparison,with the
reduced frequency based on semi-chord, unsteady boundary layer methods ievelocpd at "NERA

-"'rof the steady method of reen rredicts an about
U. similar effect of the boundary layer on the

k unsteady lift coefficient (Eq. Ii) unsteady airloads.
m a 'unsteady moment coefficient (about 0.25 c,

cositive nose down, Eq. 12)
I free-stream Mach number 1. Introduction

* n unsteady hinge moment coefficient (positive
trailing edge up, Eq. 13) Recently various unsteady transonic small

* rb relaxation factor on displacement thickness perturbation methods have been coupled withb i nputin ar o n diak ent boundary layer integral methods to improve the
input in airfoil and wake boundary prediction of unsteady airloads on airfoils
conditions (Eq. 7) oscillating in attached transonic flow. Results of

Re Reynolds number based on chord these methods have been reported in, for instance,
Re- Reynolds number based on momentum thickness -

Refs. I to 6. The two-cimensional methods developed
t time '(imensionless, relative to c/U . at ONERA (Refs. 1 and 2) employ versions of the
t airfoil thickness unsteady boundary layer method of Cousteix,

time, T = kt Houdeville and Desopper (Ref. 6', wbereas the
AC time step in unsteady flow computation LTRAN2-L'R version of the two-dimensional !A-A-
" local flow velocity !,imen:cianless, relative Ames code LTRAN2 (Refs. 4, 5, and the three-

to U , U = I dimensional code developed at Boeing (Ref. 3 are
' free stream velocity coupled with the steady lag-entrainment method of

x coordinate in free stream direction Green (Ref. 7). The methods described in Refs. S
and 3 employ different models if strong viscous-(dimensionless, relative to chord)
inviscid interaction, whereas the methods describedx transition point location
in Refs. Ia nd I employ a weak interaction model.

coordinate normal to x axis (dimensionless, The present paper contains a short description

relative to chord) of the LTRA2-NL? code coupled in weak interaction
a angle of attack (deg; with Green's method ("LTRAV" program and a com-
- flap deflection (deg) parison of calculated results for various
1* displacement thickness (dimensionless, oscillating airfoils with experimental data and

relative to chord, results of other theories. The aim of the paper is
1i unsteady displacement thickness (Eq. 10, twofold: first, to verify the expected improvement
Y ratio of specific heats in accuracy by taking into account boundary layer

perturbation potential dimensionless) effects both for conventional and urercritica
'. phase ohift (deg, (Eq. 5) oscillating airfoiis, and secon!, .nves;"i-t

,

bcrints the prediction -f these effect cy 'reen'_ !ai-

I pitching motion entrainment method in rommarison , h e '.

-fIap anti n boundary layer methois .cri.oyed a F. e
m,:%n - eqd~v ;ta - latter comparison 1is tifiei, Ceca-r he i

SI" . .ody tteflow methods usei a ::7. ' n .

first narmonic :.mponent
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theoretical basis (transonic small perturbation shock waves. Initial conditions and the transition
theory:, point location can be prescribed (e.g. in case of

An outline of the LJTAN;V _cde is given in forced transition), or they are calculated using
section 2. A summary of the transonic flow the laminar boundary layer method of Thwaites
computations and a definition of results are given (Ref. 10) with Illingworth - Stewartson transforma-
in section 3. in section - results are presented tion (Ref. 11) and the transition point prediction
for the NACA64AOC6 airfoil with oscillating flap, method of Granville (Ref. 12). The latter method
for the NACA6A0iC airfoil pitching about 0.25 was implemented in the form described by Cebeci
chord and for a supercriticai airfoil pitching and Smith (Ref. 13).
about 0.45 chord. The coupling with the boundary layer computa-

tion is carried out according to the weak inter-
action model: at each time step, the displacement

2. Outline of the JTBANi computer cr-gram thickness distribution is computed for the local
velocity distribution U (x) at the old time level

-he basis ,f P,'in the LTRAN2-NLR computer Tn , and is used subsequently as input (through
program ,Ref. ,, -' veroio of the equations (4) and (5)) for the inviscid flow
LTRAN2 code develcoped by Ballhaus ana loor;ian computations at the new time level Tr'1 . In order
(Ref. 9). This program computes the time history to suppress divergence in the iteration process
of the inviscid traznscnoc flow about a 2D airfoil relaxation factors have to be applied to U and to

ein unsteady motion. :t iz based on the low frequen- d. in Eqs. (4) and (5:
zy triosi .rc otential equation: .+ -

1 + .5- n- .5* M>x +x-c)";= e

where y* =--F- -or an instantaneous airfoil d= rb + (-r) d (7)
contour defined by: = h /x, t), the boundary

condition on the airoi i given by: In Eq. (7) the minus sign for r 6 is used for
the lower side of the airfoil. n practice, rbl=O. 33

zh× +h. (2) gives a converging unsteady flow computation.
It should be noted that the above relaxation factors

Across the wake the pressure jump is required to be introduce a phase shift in the viscous displacement
AC = 0, which results in the boundary condition: term d in the boundary conditions, which for

harmonic motions is approximately given by:
MO) + t (3)

In the unsteady flow computation the motion is a = 36o LT (deg). (8)
subdivided into a number of time steps, and at each 27 rbL
time step equation (i) is solved by a conservative The resulting error in the phase angle of the
alternating direction implicit (ADI) finite unsteady airloads depends on the computed effect
difference scheme. of the boundary layer, and therefore usually is a

In practical aprllostions, first a steady small fraction of At in Eq. (8).
state solution is _comuted. In the ZTFAC2-NLR The above viscous-inviscid interaction was
program this i: zerformei Ly a separate relaxation implemented both in the steady (line-relaxation)
method. Starting from thi st-ady state, toe and in the unsteady (ADI) computation. By accounting

unsteady low is usually calculated for a few for the effect of only the boundary layer on the
periods of sinussicai otion. Fourier analysis of airfoil the computational cost are increased by
the unsteady airl-ads luring the last period yields about 30 % relative to an inviscid flow computa-
the unsteady aerodynamic coefficients which can tion; accounting for the displacement effect of
be used for aeroelastic analyses. boundary layer and wake leads to a 50 % increase.

For viscous computations the boundary condition In order to improve the accuracy and
(2 is modified by adding the displacement thickness applicability of the code, in the near future the
effect to the airfoil oDnoary conditions: weak interaction model will be replaced by a

simultaneous solution of flow =quation and boundary
tz = h + i. + h., (4) layer equation as formulated by .. dnman (Ref. 14).

A rather similar coupling procedure was implied
To account for the displacement thickness of the in the method described by Rizzetta in
wake, the wake condition (3) is supplemented by Ref.15. This type of coupling should eliminate
the condition: instability in the computed interaction near

separation, and consequently reduce the need to
t( z ) = d×. (5) apply underrelaxation factors to the displacement

thickness variation.
The displacement thickness of the turbulent

part of the boundary layer and the wake are
computed using Green's lag-entrainment method, of 3. Computations and definition of results
which a full description is given in Ref. 7. The
three ordinary differential equations underlying Both inviscid and viscous flow computations
this method are the momentum integral equation, the were carried out for the following cases:
entrainment equation (based on conservation of (a; NACA64AO06 airfoil with oscillating flap wi*h
mass, and the lag equation (derived from the a hinge at 0.75 ( 'experimental data from
turbulent kinetic energy equation;. In the LTRANV Tijdeman and Schippers, Ref. 16,;
program these equations are integrated using a mean steady: M = 0.85, a.= 0 deg, Re = 1.4*10,
fourth-order Runge-Kutta method. Secondary x = 0.10;
influences such as curvature are neglected, and unsteady: 6, = 1 deg, k = 0,t)eA 0.1, 0.>
no special care is taken to treat the effect of

2
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(b) NACA6A0'0 airfoil (NASA Ames model) resulting into a better agreement with the experi-
oscillating in pitch about 0.25 c (experimental mental result. In the real and imaginary part of the
data from Davis and Malcolm, Ref.(7"; 6 pressure distribution at k = 0.24 (Figs 1b and ic)
mean steady: M = 0.8, a = 0 deg, Re = 12.5*10 , similar remarks apply. The peaks in ACp near mid-

transitionopoint assumed at 0.10c; chord are associated with the shock wave motion,
unsteady: a, = 1 deg, k = 0.05, 0.1, 0.2 whereas the peak in the real part of AOC at 0.75

(c) NLR supercritical airfoil with relative thick- chord is generated by the discontinuity in surface
ness t/c = 0.12, oscillating in pitch about slope at the flap hinge.
0.45 c (experimental data from Norsten, Ref. 18, The effect of the boundary layer on the lift, moment
and partly unpublished); and hinge moment coefficients is shown in figure 2
mean steady: M= 0.6 to 0.75, incidence matched for k = 0 to 0.24. Except for the phase angle of the

to obtain approximate agreement hinge moment coefficient the effect of the boundary
with pressure distributions layer (reduction of magnitude and a positive phase
measured at a = 0.75 deg, shift) leads to a better agreement with the experir
Re = 2.2*106 °x = 0.10; mental data. The boundary layer effect is opposite

unsteady: i = 0.5 deg, f = 10 Hz )k = 0.09 the effect of thickness, which illustrates the often
to 0.11). acceptable performance of linear theory at transonic

conditions. The viscous transonic flow computation
In the viscous flow computations for cases (a) and gives the best results for the moment coefficients.
(b! the displacement thickness of the wake was not For the lift coefficient the predicted phase angle
taken into account; in case (b) at k = 0.2, and is too negative and, for low frequencies, the
case (c) this effect was accounted for. magnitude is overestimated.
The unsteady flow was computed during two cycles of This may indicate an underprediction of the boundary

. oscillation at 120 time steps per cycle. The layer effect on the shock wave motion, inaccuracy of
* initial conditions for the turbulent boundary the TSP theory and the presence of wall interference

layer computation (0 and x ) were obtained by the effects at low frequencies. The significance of the
laminar boundary layer and transition point latter effects is illustrated by the quasi-steady
computations, with the transition strip location as wall-interference correction to kc at k = 0 in
downstream boundary for x , and the Reynolds figure 2. In general it should be remarked that the
number based on momentum thickness Re = 320 as presence of wall-interference effects prohibits a
lower boundary for the initial value of Re0. definite conclusion about the accuracy of the

The unsteady pressure and displacement thick- theories investigated.
ness distributions are presented in the following Also in figure 2, for k = 0.24 a comparison is
form, where A indicates the amplitude of the sinus- made with results of a rather similar TSP method in
oidal motion and subscript I indicates the first use at ONERA, which is coupled with an unsteady
harmonic component: boundary layer method (Desopper and Grenon, Ref. I).

P1  Compared with this method the method of Green
pressure: AC = AC'+i AC" = - (9) predicts a slightly stronger, though rather similar

p p p A effect of the boundary layer. Taking into account
the effect of the use of relaxation factors (in

6* equations 6 and 7, causing a slight positive phase
displacement thickness: A6*= Ad'+i A6"= - (10) shift of about 1 deg in kc to 3 deg in n.) it can

be concluded that the steady boundary layer method
The overall airloads are presented as follows, is equally well applicable, compared to the unsteady
There oveal ir ad re prindiest as fohin ow method. The same conclusion can be drawn from a com-
or a flap motion, respectively: parison of results of the present method and data

from Couston et al (Ref. 2) for a slightly different

C case (M_= 0.854, k = 0.18),presented in table 1.

Ccuston et al. also employ a TSP method, coupledlift: k - k'+ik"= -1 -- 01i,c 7 A with an unsteady boundary layer method approximately

similar to that of reference 1.
2m

moment (about 0.25 c): m = m'+im" = (12) 1.2 The NACA6AO10 airfoil (NASA Ames model)
c,c r A

An example of the computed mean steady and
2 n1  unsteady pressure and displacement thickness distri-

hinge moment: n = n'+in" = -- (13) butions (without viscous wake computation) is given
tA for k = 0.2 in figure 3. In the mean steady pressure

The reduced frequency is based on semi-chord and distributions (Fig. 3a) there is a reasonable
defined as: agreement between the experimental and thecretical

results. Accounting for the boundary layer leads to
k = Ircf (14 a more upstream and weaker shock wave, and to a

U. lower pressure at the tail, like in the case of the
airfoil with oscillating flap discussed in section
4.1. These effects can be associated with a local

4. Results and discussion increase of the displacement thickness at the shock
wave ("viscous wedge") and at the trailing edge.

4.1 The NACA64AO06 airfoil The theoretical results at the shock wave exhibit alower gradient than the measured data, which is

Figures 1, 2 and table 1 show some results likely due to the coarseness of the computational
for the NACA64AO06 airfoil with oscillating flap. grid.
The mean steady pressure distribution (Fig. la) The corresponding unsteady pressure and dis-
exhibits a weak shock wave near midehord. Addition placement thickness distributions are shown in
of the boundary layer leads to a more forward shock figure Bb (real part and figure 3c (imaginary
location and a lower trailing edge pressure, part . For the real part a good agreement is found

3
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" "tewen xprien a nd th~ela eut: st f h rear ia-inr ani _f 'uin- -.

"he msundary layer effect the same remars aPrly a- r eve.
-d" ," se. -7ni leads o- a tetter agreement The c:rrescn -:, . er- ,

,w:: t:o exmeri:ental data. .. e the steady case :.n fiure b real mar an- .

tno uIste xy resure peak at the shecs is smearel part . T'he real and !maginar t _h w
ott, cmpared to the experimental result. A strong same crder cf agreement with the experimenta
adien in the disolacement thickness reflects the results. The tressure distriuti.f bn the tl wer

-radiait in -he oressure d4stribution at the shock surface is tredicted satisfatr: . WS
.typical subsonic behaviour, excemt S r h

2 ar remarks apply :o the omaginary the weak shsck wave near the nose. .The :unar.
7'' pa:.- :: "'ure Sc. However, here the layer and wake hardly affect the mressure

r ee umstream of the shock wave tics.
i rler-predicted, which leads to signifi- fn the upper surface a iroad mea near -

in the phase angle of experimental hr' indicates the typical character if a shdcK-
- . e irloads discussed next. free mean steady state, which Is prodS5re! reasona-

rf unsteady lift and moment o-,'y well by both viscous and inviscid theory. Ohe
• :-: sic icade in figure 4. The results are droas mean s tue to the sensitivity of the pressure
ne as magnitude uns phase angle. For refer- distribution for small incidence variations about

- ense, a!:- results -f linear theory are shown. Like the shock-free mean steady state. The computed dis-
. osiwth sllating flap, the effects _sf placement thickness shows wedge-type changes at the

h er on lift and moment ic a reduc- unsteady pressure peaks and at the trailing edge,

.- n--, -n- a positive chase shift, wuioh cause some reauction of the pressure peaks
n7 . fhe efect of thickness. For k = C.2 and the loadim cn the rear cart of the airfoil.

h e I rpredictson of AC upstream of the The strong peak in the exoerimental unsteady pres-
:ncooki wave g. 3c leads to a cohsiderable differ- sure distributions near midchord is not predicted.

Snc" 'n phase angle of both lift and moment -his may be due to strong shock wave-boundary layer
-1 the magnitude of these quantities is interaction, not accounted for in the theoretical

"ra wl 'redicted. The error in phase angle results.
"ates inaccuracy of the low frequency For M = 0.6 to 1.5 unsteady lift and moment

• ma-1 7ertu.batin potential equation (1, for the coefficients for a constant frequency f = 40 Hz
oresent case. However, also a possible unsteady (k = 0.19 to 1.11 are shown in figure 6. A compar-
is en of The transition point in the experi- ison is made of results of linear theory, the
ment not accounted for may contribute to the present onviscid and viscous transonic flow compu-
,oserved aifference between experimental and theore- tations and experimental results. The experimental
Ica! results. :t is not known to what extent also mean steady state conditions range from subsonic at
wall-interference effects play a role. M = 0.6 through the shock-free transition condition

Fcr k = 0.2 also results are shown where the at M = 0.75 to separated transonic flow at N = 0.5.
displacement effect of the wake is taken into The mean steady incidences for the computation were
account. This effect reduces the effect of the chosen such that an approximate matching was
boundary layer by about 25 7 in magnitude and 50 5 obtained between theoretical and experimental mean
in phase angle. The explanation is that the wake steady pressure distributions.

psslacement thiskness reduces the pressures at the Compared to the results of linear theory,
trailing edge, which results in a thinner boundary which exhibit smoothly increasing air cads with
layer and a smaller influence of the boundary layer increasing Mach number, both the theoretical
on the unsteady airloads. transonic results and the experimental data exhibit
. he supercritical airfoil a stronger and qualitatively different effect of

in figures 5 an o M.. T'pical transonic effects on the lift are a
'esults are oresented for an oscillating super- larger magnitude and a more negative phase angle.
critical airfoil (relative thickness 12 5 chord; These thickness effects are reduced by the boundary
developed at :LP. To obtain stable viscous flow layer and the wake. The strong change of m. near
solutions for this airfoil, the distribution of Ue 4

= 
0.74 reflects the displacement of the shock

near the trailing edge was modified in the follow- wave and, correspondingly, the unsteady preosure
ing way before each boundary layer computation. The peaks from umstream the suarter-chord moint to a
trailine edge velocity was mrescribei J" and more downstream locaton. to flow cenaration
a omcot. distribution of e was matched cetweem these effects on -m2 are catsofactorily preiste my"
_uts vaiue and the values of Ue at AQ C, and 110 5 the l??ANV oroaram.
chord. The predicted effect of the boundary layer is

Sigure 
5
a shows the mean steady pressure rather similar to that on the NACAc ACIC airfoil.

distrioution for the experimental shock-free condi- Contrary to the latter airfoil, however, the phase
t0,n . 0 = 0.7 leg . The chock-free angles cf the lift coefficient on the sumercritical
theoretocal results were obtained at a lower Mach airfoil are predicted more negative comparei with

number M = .7321; at different angles of attack the experimental data. This may be due to stronger
'A=-'0.0 leg for the inviscid case, and a, 1.15 wall interference and viscous effects in the exper-

deg for the viscous case). -he difference in a, imental results for the supercritical airfoi=.
relative - the experimental incidence was necessary Finally it is interesting to note that the f4
largely 's account for wall-interference effects snce between excerimental and theoretical viscous
aps. deg, and additionally for the inviscid results in fisure - indicates a difference in

case, for viscous effects lCa .5 dee . The reduc- effective free-strean Mach number cf about
'son sn Mach number was probably reuirei to This difference also exists between the 'h,.ore I a?
account fr the small terturbtin potential and experimental shock fr-e r-rulto shown n
appr-ximation and mossibly again some wall-inter- figure As mentisn i cs re isth wll-in,
ference effects. -he viscous resulto show clearly affects and the small rertirbat sn potential a: m -

*o[] the bes: reement with the .xrerimental ata. The :mats 'n may ontrs cote t th- 4 f-er.o :"ff-u.-
oteady affect of the bouniary layer is a reducti.n T-he bov- e r o'-i"m -inst cot hat *h,

4



reasono'.':" rea -I pr e ,
at, an - -c t !at o"n: fl'2 " --,pe W'.-. 7
fix.. orndit ions. -wvr
tations to) the accuracy )f th _w 7ml t'! "'e
rerturbation formulati or ind h'- wea': n'ary-n-
O.nvI;301d nterac' -,n m'odel :nrr. a

oIecS:f wall intrer'' - it -y

draw a lefinte 7:r:'u na c-u'-2-'" raw
the toreoont LOPA'Y! p-oga'

.2nclusin -n.a Zrn Y. ;,a

In -teaiy tranoonic flow romoutatoono wereL
-a-roed rut usn he LC?.A.*L-NLR tode --ruci in ';me~an, alI-n'c: , -
weaK interaction witn tne steady lag-entrainment zi-le s~nr layer.,
metno: - ,reer.Acclicati'ns were madse 'or the Ln'c nterac* -n

:A.Ac4AOc airfoil' with oscillating flan>, the ' zia r _ msla
XAA,1 airf-il and a supercritical aiora:. of -"*n- aiy 4.-_nc i,;ii

Dscillating in nitch. :fA
A comparison of results of this programme wlo 'u oi Tjeman, H. ens c' ippc , ea,

*invoscod results and experimental data demonstrates pressure measurement-n an aari with
the generally improved accuracy as -ompared to the lating flap on '-do7)imenoor.nal high oubsonoc an:
onviscid method. For the cases considered, the use transornic flo1w zero onrilence and zero mearn

*of a steady boundarjy layer method yields an almost flap position . D L? 7F _07Q'2 1 7-.
s imo -lar effect on the unsteady airloads as unsteady 17 Davis, 3.S. and >aoz .. Experimental
boundary layer methods developed at DNEEA. unsteady aerr:aynamico of ocn-,entional and

The still existing differences relative to the sunercritical airfoils. :;'ASA-ThM-c 1221 , Auz-ust
experimental data may indicate limitations in 1980.
accuracy of LCPA:GV, in particular the low frequency 15 Morste., j.;.: Recent de'el:rrments: on the
trano-onic small perturbation theory, and the weak dnsteady pressure mneasuring technociue at >1?F.
interaction coupling procedure. Definite oorzclu- Paper presented at the Internatoonal S ymposium
sions about the accuracy of the LTBANV code cannot on Aeroelasticity, Nuremberg, Z;ermany, O ctober
be made due to unknown effects of wall interference. 1981.
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Viscous, 11Visc W Interac t ion Ana!s is
of Asymmetric Irailin4-Ed,- lOws,

Veer N. Vatsa and JIseph 'I. Verdon

United Technologies Research Center

C . East Hartford, CT 0b108

.Abstract three components which deal with the inviscid ilow,

the boundary-!over flow, and the wake flow are

well understood fluid dynamically, and solution

--Contributions are made to finite Reynolds methods are at a relatively mature state
3
,4

.  
Work

number, viscous/inviscid interaction theory for on the fourth component, the local interaction

laminar, subsonic flow past a thin-airfoil trail- solver, is the subject of the present paper. Here

P 4 ing edge. In particular, an analytical/computa- solution techniques are developed and demonstrated

tional technique is developed for predicting high for laminar, asymmetric trailing-edge flow.

Reynolds number, attached or separated, trailing-

edge and near-wake flow. The analysis is based on This effort is a continuation of the work

" interacting boundary-laver theory in which the initiated by Werle and Verdon
5 

in which separated

-* outer inviscid and the inner viscous flows are trailing-edge flows vere calculated based on asymp-

solved simultaneously to determine the complete totic triple-deck concepts. This approach was sub-

flow past the displacement body. Inviscid solu- sequentlv extended to treat finite Reynolds number

tions are based on linear airfoil theory and flows, and solutions were obtained for symmetric

viscous solutions are determined by a finite flows past thin flat-plate and elliptic-section

difference approximation to the boundary-layer trailing edges
6
. Flat-plate solutions were found

equations cast in Levy-Lees variables. A semi- to be in very good agreement with those of other

inverse viscousiinviscid iteration procedure is investigators for finite Reynolds number (Re),

employed in which viscous and inviscid solutions and with asymptotic triple-deck solutions in the

* are repeatedly determined until the inviscid pres- limit as Re . Under the present effort this

sure distribution at the displacement surface finite Re interaction analysis has been further

. match the viscous pressure distribution. This developed and applied to calculate asymmetric

approach is assessed through comparison~~h pre- flows past the trailing edge of a thin cambered

Svious solutions for incompressible flow/pas\a airfoil, and results have been determined for both

modified flat plate airfoil at an angle of a tack, attached and separated flows. Comparisons with

In addition, results of parametric studies are Veldman's
1 0 

recent incompressible results have

presented to illustrate the effects of angle of been made, and a detailed parametric study has

attack, Reynolds number, Mach number and wake been conducted to illustrate the effects of angle

curvature on trailing-edge flow behavior, of attack,. Reynolds number, Mach number, and wake

4- curvature on flow behavior in the vicinity of a

loaded airfoil trailing edge.
Introduction

The ultimate goal of the presen" research General Concepts

program is to employ viscous/inviscid interaction.'. "For flows of practical interest in either ex-

concepts to develop a reliable analytical/numerical t or internateoyais the r nu-

" etodfor predicting viscous effects in subsonic ternal or internal aerodynamics the Reynolds num-

me hod ber is usually sufficiently high so that the flow

to low supersonic cascade flows at high Reynolds• past an airfoil or blade can be divided into two

numbers. The approach to be followed is similar regions: an "inner" dissipative region consisting

to that being successfully applied to high Reynolds of the boundary laver and the wake, and an "outer"

number external aerodynamic flows wherein viscous/ the b on lae anteak nd an 'ote'

inviscid interaction concepts are used to construct the viscous and inviscid regions arises from the

the full flow field using locally relevant compon- discmen iness whi a s ooa the
en lwslesl2 hs o tecs fhg displacement thickness which leads to a thickened

ent flow solvers
1 2

. Thus, for the case of highcorresponding

Reynolds number flow in a cascade the full flow changesfin s uf a e body I th co r ation

field is broken down into the four major categories changes in surface pressures. If the interaction

to reprueent 1) the inviscid flow; 2) attached
Sf ) f nsmall (i.e., of O(Re

- 1/2
) in laminar flow or of

boundary-layer flow; 3) wake flow; and 4) locally O(ln Re)
-1 

in turbulent flow); then the complete

interacting (possibly separated) flow such as
" o flow problem can be solved in a hierarchial man-

occurs ner
I . 

The first step is to determine the inviscid
a general cascade flow solver involves first, the

flow past the airfoil. The resulting pressure dis-
developr.ent of component flow solvers, and second, tribution is then iposed on the viscous laer cal-

the matching if these component solvers into an culation to ten e the vscous lay e

overall computational procedure to produce a
to viscous dissipction and hence, the effective

reliable and efficient general flow solver. There-

fore, the utilit'. nd reliabilit: of this cascade shape of the body. The displacement effect on the
"= inviscid flow is then estimated by computing the

solver is criticall: dependent on the level of inviscid flw disten uion o mu the

develooment of its component -embers. The first inviscid pressure distribution over the displace-
ment body.

zI



The foregoing method for calculating the in- the present .lv1sis, viscous displacement thick-

teraction between the viscous ind inviscid parts nc. eltects it the trailing edge are regarded as

of tile :L.,. is based n a direct hierarcn v between strong, while wake curvature effects are regarded

the viscous and inviscid regions which applies as as weak. This treatment i, in accordance with the

* ng as the disturbances t.' the inviscid :1ow due triple-deck scaling requi:tments for laminar flow

to viscous displacement cfiects are small. How- at asvmptotically large Reynolds number 12
. 

Thus,

ever, to e fiow over an airfoil involves both a weak iterative solutions of the inviscid and viscous

overall interaction arising from standard displace- equations will be determined to account for strong

ment effects and also from wake curvature effects, displacement interactions and the resulting outer

and local "strong" interactions arising, for inviscid solutions will then be corrected to

example, from boundary-layer separation, shock account for wake curvature interactions.

boundary-layer interaction, or the rapid flow

acceleration immediately aft of the trailing edge. In the following discussion flow variables and

In such situations viscous displacements cause sub- spatial coordinates have been made dimensionless.

stantial changes in the local inviscid pressure Lengths have been scaled with respect to the length

field. The concept of an inner viscous region and of the airfoil (L*), density, velocity and viscos-

an outer inviscid region still applies, but the ity with respect to their freestream values (c ,

classical hierarchial structure of the flow breaks u* and -*, respectively), pressure with respect to

down. In a strong interaction region the hierarchv twice the freestream dynamic pressure (; u*-),

changes from direct (i.e., pressure determined by and temperature with respect to the square of the

the inviscid flow) to inverse (pressure determined freestream speed divided by the specific heat at

by the viscous layer), and this change must be constant pressure (u*
2
/c*). Here the superscript

* 10 posatpesr u2c).Hr h uesrp
accommodated in developing a complete solution . * denotes a dimensional quantity and the subscript

refers to the flow conditions at infinity.
The approach taken here employs an interacting

boundary-layer model in which the flow in the

outer inviscid region is potential and the viscous

flow is governed by Prandtl's boundary-layer equa- Inviscid Region

tions. At an airfoil trailing edge the strong

interaction arises from the abrupt change in the

slip condition that the boundary layer experiences Consider two dimensional, subsonic flow in the

at the termination of the airfoil surface. This x,y plane with freestream velocity, u., in the

4 leads to a singularity in the classical boundary- direction of the positive x-axis around a thin,

layer solution and subsequent local breakdown of slightly cambered airfoil at small angle of

a weak interaction procedure. However, strong attack relative to the freestream direction

viscousiinviscid interaction solutions can be (Fig. 1). The airfoil is located along the inter-

determined bv an iterative procedure which requires val [0,1] of the x-axis and the location of the

successive solutions for the viscous and inviscid upper and lower surfaces of the airfoil and wake

regions. Here an efficient semi-inverse solution displacement body are defined by

procedure using Carter's
1 1 

iterative technique is

applied to the local strong interaction region at V±(x):h±(x)±t (z), x[o,j1
an airfoil trailing edge. Thus both the "inner" (1)

viscous and "outer" inviscid flows are repeatedly :h w x)8 (), X>1

solved for a prcscribed displacement thickness

distribution until inviscid pressures at the dis- where h+ and h- define the upper and lower surfaces

placement surface match viscous pressures. of the airfoil and hw defines the location of the

* reference wake streamline, i.e., the streamline
We consider high Reynolds number (Re = .which emanates from the airfoil trailing edge and

u, L/.), adiabatic, laminar flow with negligible • is the viscous displacement thickness. The

body forces of a perfect gas with constant specific functions h+ and h_ are prescribed, but hw and

heats and unit Prandtl number past the trailing must be determined as part of the solution. Under

edge of a two-dimensional airfoil (Fig. I). In the stated assumptions concerning airfoil shape

and orientation, the projection of the airfoil and

wake displacement body on the y-axis will be small.

In addition, if the outer inviscid flow is assumed

to be isentropic and irrotational, a velocity po-

4 tential, :(x,y) exists which can be expressed in

terms of an asymptotic series, i.e.,

*:*oO, + O(R) = 0 +* 0 02 (2)

where is a small parameter. The disturbance

potential, :kx,v) is then governed by the linear

equation

Fig. 1 High Reynolds NumLer Flow Around a Thin 
2

Airfoil 
(I M-) bx 

+ 
<y 2 O (3)

2



To within first order (in -1 the inviscid flow can be referenced to any arbitrary curve which
properties are given by emanates from tne trailing edge and lies within

the wake. Note that for symmetric flows, the
Y2. -I) reference wake streamline (centerline) lies in the

M2Pp y -yM 0  T plane of the symmetry (v = 0) and condition (6)

can be applied for x 0 to determine the inviscid
I Ma (x solution in the upper half plane. Finally, the

disturbance velocity must vanish in the far-field,

where P is the pressure, - is the density, T is

the temperature, M is the freestream Mach number,

and . is the specific heat ratio. Note that V,-O as (9)

the pressure is related to the disturbance poten-

tial by where x is a position vector in the x,y-coordinate
frame.

P = PO + P yM-2 -

Symmetric and Asymmetric Flows

The inviscid flow is determined as a solution It is convenient to write the solution to the

of Eq. (3) and is subject to a flow tangency condi- foregoing problem as the sum of two terms; a

tion at the airfoil surface, jump conditions on symmetric term, pS, giving the flow due to thick-
normal velocity and pressure across the wake, and ness effects and an asymmetric term, A, giving

the uniform flow condition in the far field. To the flow due to loading effects. Both 7A and tS
account for the effect of viscous displacement must satisfy the differential equation (3) and the

thickness at the airfoil surface, the inviscid far-field condition, Eq. (9). In addition, the

solution must satisfy the following form of the symmetric component of the potential must satisfy
flow tangency condition the tangency condition

*.±dh±±sX[oI] (6) y TlX),  x>O (10)

where DT is one-half the displacement body thick-

where the prime denotes the differentiation. In ness; i.e.,

addition, two conditions arise from the formal DT (Y,-  )/2Z(h-h- ++  -)/ 2
, - - x 1

asymptotic matching of the viscous and inviscid

solutions along the wake . The first condition (11)
accounts for the wake displacement effects and x(>)/2S1/2, xi

requires that the inviscid solution for the normal The symmetric solution does not produce a pressure
compone.t of velocity must be discontinuous across difference across the airfoil or its wake, and
the wake with a jump given by teeoe

SW = W~x,  x>J (7)

14 =0 (12)

Here , denotes the difference in a quantity

(upper minus lower) across the wake and iw is The asymmetric component of the potential must
the displacement thickness of the complete wake. satisfy the following requirements
The second condition accounts for the wake curva-

ture effect which arises from the turning of the
low momentum flow along the curved wake stream- Al

. lines which generates a pressure difference across *O D.±: XLO[Ii (13)

the wake. The requirement that the outer inviscid

flow match this pressure difference leads to the rr 3
VIJ 11.110 (14)following jump condition on the inviscid pressureU O,(

xI ~ ~ ~ JA (8z~~~~[AJg5e x>i (15)

where 
7
w is the momentum thickness of the complete where y = Dc(x ) defines the location of the airfoil

" wake and , is the curvature of the reference wake and wake "camber" line, i.e.,

streamline which is taken as positive when the
reference wake streamline is concave upwards. A Dc:(y+y)/2:(h++ h.+8- S U/2, x1 0,11
complication arises in that the location of the (16)

, reference wake streamline is unknown apriori* how-

' ever, to lowest order in Re, the wake conditions h,,i8++9/2, ++X
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ielr iy t en . :ne sum ' r, e ssure ump r ss t!e tir , 1 aue t. .a5e

curvature , :tnen duter"ined i, i s, iti,,n .1 the

intra. eq uac ionS As+ : 7

is a solution of the original inviscid boundary O - " dC '23)

value problem.

In the present study of viscous, inviscid

A further decomposition of the disturbance interactions near the trailing edge of an airfoil,

velocit: potential will be used in the present displacement interactions are regarded as strong

s tudy to distinguish between displacement thick- whereas the wake curvature interactions are

ness and wake curvature effects on the outer in- regarded as weak. Thus,an inviscid solution for
A -A + A heete teptnil:S +Aviscid flow. Thus we set . where the the potential is determined by simultan-

asymmetric potential, A due to airfoil geometry eously solving inviscid and viscous-layer equation,

ind viscous displacement effects must satisfy con- for prescribed viscous displacement thickness dis-

" ditions (13) and (14) but it does not contribute tributions until inviscid pressures on the airfoil

* to the pressure jump across the wake, i.e., surface and on the wake streamline match the

viscous pressures. Once a converged solution to

11 the strong-displacement interaction problem is

[[pD*11:O, 5>1 (18) achieved, the resulting inviscid pressure will be

corrected to account for wake curvature effects.

For this purpose the wake curvature is taken to be
- while the asymmetric potential due to wake curva- the curvature of the inviscid wake "camber" line

ea1es,"ture effects, :wC must satisfy conditions (14) and as determined by the strong displacement interae-

1 53), but it does not contribute to the normal tion inviscid solution, i.e.,

velocity at the airfoil surface, i.e.,

a I- 2 1/2  
ILI% ]

A ,z)0 (I M- d f - d4, x~ (24)
Z.0, x ,i] (19) dx o X-

Finally, the pressure acting on the airfoil and

" Inviscid Pressure Distributions reference wake streamline is given by

Solutions to the foregoing boundary value p(,OpS(x,O) ±[[pAj /2, x10,]
*poroblems can be conveniently determined using com- :p1 (x,O) ± K (Sw+Ow)/2, ! (25)

- lex variable theory and, in particular, Cauchy's

integral formula 1
3 .  

It follows that the symmetric

component of the pressure acting on the airfoil

and wake can be determined in terms of a prescribed 7iscous Laver Region

thickness distribution DT(X) by evaluation of a

Cauchy principal value integral, i.e., The flow in the inner or viscous region is

assumed to be governed by Prandtl's boundary-laver

~D#()T equations expressed in s and n coordinates which

p
$ 

(xO- * -(,O) - -2)5 ---- d (20) are directed along and normal to the airfoil sur-
0 wx-; face and wake streamline, respectively, and u and

A o v which are the velocity components in the s and r
The asymmetric component of the pressure, pA(xo directions. These equations are then recast in
= [[pA/2 acting on the airfoil surface is Levy-Lees variables to minimize the growth of the

determiued from the solution of an integral equa- viscous layer in the computational domain. The
tion given by n A(C) new independent variables are defined by

+ a d ) + f Pe eeds

Both displacement and wake curvature effects con- : - f pdn 6b I
tribute to this pressure jump. To determine the 12-- 0

jump due to displacement effects alone [[ P6 ,

second term on the right-hand side is set equal tn where subscript e refers to the edge ,f viscous

zero. Analytical techniques (cf., Ref. 13) can laver. ',ith dependent variables, 7,-,n), In,

be used to invert the resulting singular integral . Je:ined ov

equation ind provide the following direct solution

for the oressure !umn due to displacement effects F 
= 
u/ue

A]= 2 ( 1/2  ,() -t/2
VhI-M!)"'2

as +r~ (rrdR d422 v_



the boundary laver equations for adiabatic flow at of the freestream and edge Mach numbers. It
unit Prandtl number reduce to the familiar form follows from Bernoulli's equation that

2= , M 2 1-)/Y

continuity (M- ue/Me)
2  

(MAe) 2 'M= peP'

2C v v-) O (28) Pe :(y- 1) MjTe (36)

=I(+ -M- ) ( I+T11M e

:-momentum

and therefore

62 dm e  (37)

M* d(
whe re

v PM'/(PeP'e
)  

In addition, it follows from the definition of the
u2 (30) displacement, f, and momentum, &, thicknesses that

z ue du 2 T/ (y

In addition, one requires the equation of state, Pe 8(Re/A C)' f= I [-F+ 2 MZ<I-FI dl

Si.e.,(38a)

Seuei(Re/2) ' / 2 :f (I-F)Fd, (38b)
p: ()-) pT/y (31) 0

Finally, the surface skin friction coefficient,

for relating pressure, density and temperature. Cf, is defined by

In the present study the viscosity is assumed to 2
vary linearly with temperature, and hence, it Cf -* - e-----) (38c)

follows from Eqs. (30) and (31) that Z = 1 since -pu (CRe) a77 1=0
the normal pressure gradient is zero across the
boundary layer. Viscous/Inviscid Iteration

Boundary conditions for the foregoing equa- The complete flow field is determined by*tions are as follows Tecmlt lwfedi eemndb
matching the solutions of the inviscid and viscous

Edge conditions ( ) equations. The inviscid flow is determined sub-

ject to the conditions of flow tangency at the air-

foil displacement surface and jump conditions due
F -(32) to viscous displacement and wake curvature effects

across the wake. The solutioa of the viscous layer

equations must approach the inviscid conditions on

Airfoil surface conditions -=0) the airfoil surface and on the reference wake
TV streamline at the outer edge of the viscous layer.

For weak viscous/inviscid interactions,flow proper-
F=V=O (33) ties at the edge of the viscous layer can be deter-

mined from the zeroth order inviscid solution and

ake streamline condition (-=0) the solution for the complete first-order flow
TE' field can be determined sequentially. For strong

interactions, flow properties at the edge of the

V 0 (34) viscous layer depend on the first order inviscid
solution. In this case inviscid and viscous equa-
tions must be solved simultaneously. Since neither

-r mmetric flow, the additional condition the pressure gradient at the edge of the boundarylayer nor the displacement and momentum thickness

of the viscous layer are known apriori, iterative
6-F _ O (35) procedures are required to determine the comolete

677 solution.

can be applied at the wake centerline to restrict In the present studv displacement effects at
the solution domain to either the upper 3r lower the trailing edge if the airfoil are regarded as
half-plane. Fluid properties at the edge of the strong while wake curvature effects ire regarded as
boundary layer (i.e., inviscid properties at the weak. Thus, simultaneous solutions ,f the inviscid
displacement surface, V) --in be expressed in terms and viscous equations are determined to account

5



for strong displacement interactiont and the 11+1
resulting inviscid solution is then modified to - (42b)

account for wake curvature interactions. It ha .2 s,; I-4
*

been found that a semi-inverse calculation pro-

cedure using underrelaxation provides a relatively

efficient method for determining the flow in stron4 and i and I are streamwise mesh point indices, IB
1i and LE refer to the mesh stations at the beginningviscous/inviscid interaction regions' . In this

approach the inviscid and viscous equations are and end of the strong interaction region, respec-

solved for a prescribed nth displacement thickness tively, and xi = (xi+ 1 + xi)'2. The integrals

distribution, *n (s), to determine the (n+l)th 11 and 1, in Eq. (42) are evaluated analytically.
n+l.. h Contributions to the local (at x - Pressure

inviscid pressure distribution, Pinvts), ats to xi)

displacement surface and the (n+l)tir viscous pres- due to thicknes effects upstream (0 IB
)

sure distribution, Pvisc(s), in the viscous layer. IE) of the strong interaction

The (n+l)th estimate for the displacement thick- region are determined by analytical or numerical

ness is then obtained by underrelaxation, i.e., (using trapezoidal rule quadrature) integration

depending on the assumed functional form of the

niti( n, Cs- n+1 1 thickness distribution, DT(X) (c.f., Ref. 6).

K (S):3(S) 1+"[Pgnv (S)-p 5 ()j (39)

I Asymmetric Pressure - Displacement Effects

where . is the relaxation parameter. It is somewhat more difficult to determine the
asymmetric pressure comAnent,pA, because of the

Equation (39) is applied to update the cal- singular term [/(li which appears inside the

culated displacement thickness of the boundary integral on the right-hand side of Eq. (22). How-

layers on the upper and lower surfaces of the air- ever, a first-order accurate approximation to this

foil and the complete wake. The process is re- integral has been determined and is given by

peated until the maximum change in S satisfies the

relation jD C ( 1.4/2 KO 0'C 14~/2DC d ; d c(;  /
xi-c"  d;

0

I C e8 (40) ' D~( ; '/2

where is a small positive number.

IT-a [)' //

Numerical Solution Procedure +xZf 3
C. ,) (- .4"/d4

Inviscid Region 1Oc (0) 1 3 (sXa ,R

The numerical integration procedure developed + D (I 13 II;iIT_

by Napolitano, et al.1
4 

has been extended to

accommodate a variable streamwise mesh spacing and
applied to determine the symmetric component of IT-2+ '(x 13 (X);, ,

the pressure acting on the airfoil and wake stream- + Z D]+ I 7
line. Thus,the integral appearing in Eq. (20) is (:0

approximated in the strong-interaction region by (43)

the following second-order accurate expression

where 0 and IT refer to the leading and trailing
11E A1 +1 edge mesh lines, respectively. The integral term
'h CT IE-I D' T CC) 13 is given by

- l te- _ ,-; dC

IE-, 13 (X,; I,1 2
)  

= f I --( I )
'/

D' X O ~ j+) l(X,;x ,71 1 ,x-

Jd. and is evaluated in closed form.
I, -1

'DI " x j + 1X+ )  1 2 ( X , 7 j , j + lX - D'!. 1Asymmetric Pressure-Wake Curvature Effects

where Once a converged solution to the strong-

*j+r displacement interaction problem is achieved, the

inviscid pressure distribution must be correctedI, ( ,, i+, (42a)
• I, - +1to account for wake curvature effects. The c-urva-

ture of the wake streamline is determined h': a

6



numerical approximation to Eq. (24). Since (x) derivatives are replaced by one-sided and central
must only be determined for x - L, the integral difference expressions, respectiveiy. For the --
on the right-hand side of Eq. (24) can be evaluated derivatives, an upwind differencing scheme is used,

by a simple trapezoidal rule. The asymmetric pres- i.e., backward difference is used if the local

sure difference across the airfoil due to wake streamwise velocity, F, is positive and forward
curvature effects PWc] is then determined by a difference is used if local velocity, F, is nega-

numerical solution of tne integral equation, tive. This results in a stable numerical algorithm

Eq. (23). This equation can be solved by first in the presence of reverse flow which is more
. transforming the interval [0,1] on the x-axis to accurate than the commonly used FLARE approximation

the interval [0,-] on the unit circle and then in which the streamwise convection terms are set
* invoking certain properties of Chebychev poly- to zero in reverse flow regions

1 6
.

nomials (c.f., Ref. 15). Thus with the transfor-

mation The set of linear difference equations are
then solved using Davis coupled scheme

4 
via a

x=(I-COSX)/2 superposition technique developed by Werle and
(45) Verdon

5
. Essentially. the dependent variables, F

and V, are decomposed into two components such that

one component depends on the pressure gradient

and the use of a trapezoidal rule quadrature, parameter : whereas the other component has no 1
Eq. (23) can be approximated by dependence. As a result of this decomposition,

two sets of linear algebraic equations are obtained.
*" If C Fixial closure is achieved by determining the value

A LP Cj dC . sin* of the pressure gradient parameter, 3, such that
o ti-C the resulting solutions satisfy the prescribed

(46) value of displacement thickness. It should be

Tr A IIPwW)E sin%, pointed out that the procedure briefly described

N . COS(k)COSX i :g(X,), here yields an extremely efficient numerical

k:1 Calgorithm because of its noniterative nature.

Complete details of this viscous laver solution".NIprocedure are available in Ref. 17.

where

:0.N Results
" Xi tir/N, iz 0,..., N Re u t

(2k-O (47) The analytical and numerical approach outlined

2 ' k=l,,N above has been applied to predict high Reynolds
2N number laminar flow, past the trailing ed e of a

and the source term g (si) refers to the right-hand thin lifting airfoil. Following Veldman , theA
side of Eq. (23). The system of difference equa- inviscid pressure distribution PA, due to the air-

tions, Eq. (46), is solved by a standard matrix foil alone, is assumed to be constant on the upper
inversion. To retain pressure continuity at the and lower surfaces of the airfoil upstream of the

trailing edge, the following condition must be point x - xc and equal to those acting on a flat

imposed plate inclined at an angle i relative to the uni-

form stream for xc x i. Thus,

DIwCPE[W'T (48) pA( 5 0 ±):;2a.C T E ( ,O -) a, ? ' 2 - -1/ 'C ° < X < x c

Viscous Region :; a...... (i- 1i/ 2 551T F-- - Xc<X<I (4q)

For strong displacement interactions, the (I-M )'
1 2 

(7/

inviscid and viscous flows are determined by an :0, X>l

iterative procedure which is continued until the
inviscid pressure (p - Po + pS + pA) at the dis-
placement surface matches the viscous pressure The foregoing pressure distribution ensures that

(Pe) at the edge of the viscous laver. At each the oncoming boundary layers remain attached until
step of this process the viscous layer equations (or shortly before) the trailing edge and corres-
are solved numerically for prescribed displace- ponds to a thin cambered airfoil (modified flat
ment thickness distributions. Solutions for the plate) which more closely approximates an inclined
boundary lavers on the upper and lower surfaces of flat plate as x -

the airfoil and the complete wake are determined

separately. In each case the continuity and momen- Since attention is being focused on local
tum equations are replaced bv a set of linear viscous,'inviscid interaction phenomena at the

algebraic equations using a finite difference trailing edge of toe airfoil, viscous displacements
approximation in which the nonlinear terms in the and wake curvatures upstream ,x x,) and down-
momentum enuation are linearized around the solu- stream (x ox) )I the strong-interaction region

Sinon at the previous iteration and the 7 and -

7
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are assumed to have I negligible impact on pres- lowr -i mU wak1 streamline, and

"" cures near the trailing eage. Chus, tar tne calcu- az ior-ist , r,.V-,-In tne ipper urt ace.
* lat ons presented here, .' for x xi Ind w and Both viscous displac:. -rt it. . .lz:.e "irvature tend

" ( w . w) for x xf are set equal to zero when to decrease tie loading in t7- .-- -- a toie

evaluating tie integrals in Eqs. (20), (22) and wake curvature effect gives rise ti t

(23). 'nless stated otherwise x i and xf have been loading in the immediate vicinity if the troiiti

set at 0.5 and 1.5, respectively. Further, the ex- edge. Finally, both effects contribute to a more

tent of the viscous solution domain normal to the favorable suction-surface pressure gradient at the

airfoil and wake streamline has been taken to be trailing edge which would tend to delay separation

5L where BL is the Blasius boundary-laver thick- of the suction surface boundarv laver.

ness. Inviscid and viscous solutions have been

repeatedly determined for prescribed displacement The present results for M_ = 0.1, Re = 106 and

thickness distributions until the maximum difference = 0.07 are compared with Veldman's incompressible

between the (n+l)th values of the displacement predictions in Fig. 3. In this comparison only

thickness over the strong interaction solution in- displacement interaction effects are considered.

terval was within 10
-

. The corresponding maximum Comparisons are provided for pressure distribu-

difference between the viscous and inviscid pres- tions (Fig. 3a), displacement thickness distribu-
sores was approximately l0

-
. This level of con- tions (Fig. 3b), and skin friction and wake stream-

vergence required appro-imately 15 iterations for line velocity distributions (Fig. 3c). The

the attached flow solutions and approximately 30 results obtained from the two different solution

iterations for the separated flow solutions, procedures are observed to be in very good agree-

ment.

Present results for a flow at .t, = 0.1 and

Re = 106 past the trailing edge of the modified c 03 PRESETSOTION

flat plate airfoil described above with i = 0.07 .....VELDMANSSOLL':OCNP E:

are shown in Figs. 2 and 3. First-order pressure i a=00

(or pressure coefficient) distributions due to (I) M.

the airfoil alone as given by Eq. (49). (2) the

airfoil and viscous displacement effects, and (3) PRESSURE

the airfoil, viscous displacement and wake curva- 0 SURFACE-

ture effects are given in Fig. 2. It can be - \
seen that strong displacement interactions at the

trailing edge cause a rather substantial reduction

in the pressure acting on the lower (or pressure) oE

surface of the airfoil and a somewhat smaller a. I SUCTION
change in the upper (or suction) surface pressure

except for the reduction in the immediate vicinity - 02 -

of the trailing edge. In addition, displacement

effects cause a reduction in near wake pressures.

For this example (i.e., Re = 106), the effect of 085 090 095 '00 0.

wake curvature on pressure is generally smaller DISTANCE PROM LEADING EDGE -

than the effect of viscous displacement. The

former provides a reduction in pressure on the Fig. 3 Asymmetric Trailing-Edge Flow

a) Comparison of Pressure Distributions

- .NVISCID SOLUTION 30 -PRESENT SOLUTIO
AFOIL VEDMAN S SOLUOTION ,RE; '
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Fig. 2 Effect of '.iscous Displacement and yake Fig. 3 Asymmetric Irailing-Edge Tlow

Curvature .n Airfoil and w'ake Pressure )) Nomparison 'f Displacement Thickness

Distributions =t r isu :,ns
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Fig. 3 Asymmetric Trailing-Edge Flow

c) Comparison of Skin Friction and Wake a) Pressure Distributions

Streamline Velocity Distributions 40
Parametric Studies 40Re =6=

Having partially illustrated the effects of 
3 5

viscous displacement and wake curvature on pres- 1 I

sures in the trailing-edge region and having 3 04

established the accuracy of the present solution S SUCTIONI

procedure, we proceed to present results from para- SURFACE

metric studies. These studies were conducted to 2 51 '2

illustrate the effects of angle of attack or z z

trailing edge loading parameter (Dt), Mach number oc'

(l.) and Reynolds number (Re) on the flow behavior <=0-

in the trailing-edge region. L, 014

15 00 0'

Solutions for a flow at M = 0.1 and Re =
6 .- RESSURE

10 and values of , of 0, 0.07, 0.12 and 0.14 are SuRACE

shown in Figs. 4 and 5. These solutions indicate 008 90 095 00 0 - '

that flow separates from the suction surface at = DISTANCE FROM LEADING EDGE'

0.12 and a = 0.14. In the separated flow cases it b) Displacement Thickness Distributions

was found necessary to modify the linearization

procedure for the streamwise convection term in
the momentum equation in order to achieve a con- [ '0'

verged solution. In particular, this term was 1 25 Re='C6 4:5:

linearized relative to the solution at the pre-

vious streamwise station rather than the solution y 0o r-

at the previous iteration level. The pressure dis-

tributions depicted in Fig. ,'a reveal, as expected, I SURE

an increased loading on the airfoil with increasing 0 75 -

. angle of attack over most of the trailing-edge re-

* gion (i.e., x • 0.85); however, both pressure .

, (lower) and suction (upper) surface pressures, par- z

ticularly the former, tend co decrease with in- _.

creasing a in the immediate vicinity of the trail- 007

ing edge. Further, there is a strong adverse pres- 012

sure gradient in the near wake which increases with

increasing angle of attack. The slight pressure 0-------- ..............--

plateau just aft of the trailing edge for a = 0.12 -SUCTION

and = 0.14 arises from the small reversed flow .I SURFACE

regions which occur at these angles. 055 090 095

DISTANCE FROM LEAD'NG EDGE

Boundary layer and wake displacement thick- Fig. 4 Asymmetric Trailing-Edge Flow: Etfect

nesses (Fig. 4b) generally of Angle of Attack

ing angle of attack, particularly on the suction c) Skin Friction and.cake Streamline

surface of the airfoil. However, there is a c:eSkit Dritions
Velocity Distributions

9



rapid thinning of the wake for the separated flow

at = 0.14. The skin friction distributions

(Fig. 4c) indicate that the flow separates from '06

the suction surface at approximately x = 0.96 and -

x = 0.93 for a 0.12 and a = 0.14, respectively.

It should be mentioned that the case , = 0.12 has

also been investigated by Veldman
O
. Since only

the symmetric components of the displacement thick- - ESSURE SRFA-E-

ness and the pressure were presented in Ref. 10, 2

a detailed comparison with Veldman's solutions can-
not be made here for this case. However, the

skin friction distributions of Fig. 4c and the pre-

dicted location of the separation point on the suc-
tion surface compare very well with Veldman's results.-02 

•

The wake streamline velocity distributions shown

-' in Fig. Ac reveal a very rapid flow acceleration 004 SURFACE

just aft of the trailing edge generally followed by

a gradual acceleration to the freestream velocity.
For the separated flow at a = 0.14 the wake stream- 085 0 5 0 Is

line velocity is approximately constant in the OSTANCE FROM LEADING EDGE

near wake region (from x 1.01 to x = 1.05) after

undergoing a rapid acceleration just aft of the a) Pressure Distributions

trailing edge, and then it gradually accelerates to

the freestream value. The behavior of the wake 30

displacement thickness and wake streamline velocity PRESSURE :6

distributions for the a = 0.14 case is somewhat SURFC- /

surprising and will be interrogated in more detail 25

in our future work. The important point to be made

here is that converged strong viscous/inviscid in- 35 ,
teraction solutions have been achieved for =

separated, laminar, asymmetric, trailing-edge flow. D7 Z

DISTANCE FROM LEADING EDGE SCTION z

1=I O l 00 15 10A 13 1 0 7 7 SURFACE

zzF, =0 14

DISTANCE FROM LEADING EDGE

b) Displacement Thickness Distributions

2 05 0 '0 10 10 'G 0 10 10
STREAMWISE VELOCITY RATIO WI.u, 25a 5:

Fig. 5 Velocity Profiles in the Near Wake Region Re

for Separated Asymmetric Flow 10o

Velocity profiles in the near wake region are PRESSURE SURFACE

shown for the - 0.14 case in Fig. 5. A small M =5 Z

reverse flow region is apparent in the profiles at
x = 1 (i.e., at the trailing edge), x - 1.0074 and

x = 1.015. The minimum values of the streamwise ES SUR's C-
velocity occur on the suction surface at the trail- S;JC!ON SURFACE-

ing edge and above the wake streamline in the near I

wake. Further downstream the location of the mini-

mum streamwise velocity tends to coincide with the 0 . .........

wake streamline.

-0 25,

The effect of Mach number is depicted in Fig. 085 9C :95 3c 's

6. Here , - 0.07, Re - 106 and freestream Mach DISTANCE FROM LEAOING EDGE

numbers of 0.1, 0.5 and 0.7 are considered. The Fig. 6 Asymmetric TrailinS-Edwe Flow: Effect

pressure distributions (Fig. 6a) reveal an increase of Mach Number

in airfoil loading with an increase in Mach number c) Skin Friction and Wake Streamline

S. except in the immediate vicinity of the trailing Velocity Distributions

-"10



* . °,. S S * ** S...5 '* . r. .,- .. r. - -. * ;:: - , - . r : . 7•- r.-r . . . - .. , 'S. -. * * 7.- . . . ..

edge. In addition, there is a thickening of the

suction-surface boundary layer and the wake and a

ttiinning of the pressure-surface boundary layer with

increasing Mach number (Fig. 6b). Finally, the 0=.?

skin friction increases on the pressure surface and

decreases on the suction surface of the airfoil, 04

and the streamwise acceleration in the wake PRES0 ESURACE

decreases "ith increasing Mach number (Fig. 6c).
0 The trends for suction-surface skin friction and

wake streamline velocity depicted in Fig. 6c suggest
that an increase in freestream Mach number would

tend to promote flow separation in the trailing- ,08

edge region.

*' The effect of Reynolds number on trailing-
edge flow behavior is examined in Fig. 7 for -SUCO

M, = 0.1 and i = 0.07. The inviscid pressure dis-
tribution (i.e., due to the airfoil only) for this
case is shown in Fig. 2. Viscid/inviscid -0061

085 0 90 095 '20 '05
interaction results have been determined for Re =DISTANCE FROM LEADING EDGE "

10
4
, 16 and 10

8
, respectively. The extent of the

strong interaction solution interval was varied with a) Pressure Distributions

Reynolds number and set at 1.5, 1.0 and 0.5 for Re=
* 10

4
, 106 and 108, respectively. The results in Fig. 3a =007 6

*... 7 indicate that the streamwise length scale of the F I M=C

strong-interaction phenomena in the immediate vici- -

nity of the trailing edge decreases with increasing SUCTION
Reynolds number. Hence, at high Reynolds number a j SURFACE Re=108

* very fine mesh is required to accurately resolve R 20 0

flow gradients near the trailing edge. '0 L 10.
6

The pressure distributions in Fig. 7a reveal z

that the interaction between the viscous and in- 0, '0

viscid flows tends to reduce airfoil loading with L RESSUE

decreasing Re, particularly at lower Re. In addi- I
tion, wake curvature effects become stronger with

decreasing Reynolds number. Note that for Re = 0.5 .

- 108, wake curvature has a negligible impact on ,

pressure. The corresponding displacement thickness 01
* distributions are shown in Fig. 7b. The larger 085 090 095 100 105 'Ic

displacement thicknesses on the suction surface DISTANCE FROM LEADING EDGE .

tend to "uncamber" the airfoil and reduce lift. b) Displacement Thickness Distributions
This effect as well as the wake curvature effect
becomes more pronounced with decreasing Reynolds

number since boundary layer and wake displacement 125 a=007 5

* thicknesses generally scale with Re
-
/
2
. The ='

skin friction (Fig. 7c) decreases with increasing 1 -Oo
Re on both the pressure and suction surfaces of -

the airfoil. In addition, the predicted skin Sfriction distribution for Re - 108 indicates hat075PESR

rgo spre dUS S - . r
there is a small region of separated flow adjacent
to the suction surface of the airfoil. Such a

trend is anticipated on intuitive grounds since a 6/

smaller disturbance (or angle of attack) is needed ''

to serarate the flow as Reynolds number is in- 025 '06-"

creased, eSUCT'ON

Concluding Remarks

An efficient analytical/numerical approach has -325
095 090 095 OC 25

been developed to determine high Reynolds number, DISTANCE FROMTRAILINGEDGE

*laminar flow in the trailing-edge region of a

lifting airfoil. Here strong viscous/inviscid Fig. 7 Asymmetric Trailing-Edge Flow: Effect

interactions arise from the change in boundary of Reynolds Number

condition experienced y the fluid as it leaves c) Skin Friction and Wake Streamline

the airfoil surface and accelerates into the wake. Velocity Distributions

l1

.



In the present study the inviscid flow has been Asymptotically Large Reynolds Numbers." paper
determined by the methods of classical linear presented at the International Conference on

theory and an inverse numerical solution procedure Boundary and Interior Layers, held at Trinity
has been used to calculate the flow in the viscous College, Dublin, Ireland, June 3-6, 1980.

layer. Thus, both inviscid and viscous solutions 6. Vatsa, V. N., Werle, M. J., and Verdon, J. M.,

are determined for a prescribed displacement thick- ""iscid/Inviscid Interaction at Laminar and
ness distribution. For strong-displacement inter- Turbulent Symmetric Trailing Edges," AIAA Paper
actions, simultaneously determined inviscid and No. 82-165, presented at the AIAA 20th Aero-

viscous solutions are underrelaxed until the com- space Sciences Meeting, Orlando, Florida,
puted pressure distribution converges. The re- January 11-14, 1982.
sulting inviscid solution is then corrected to
account for the weak-interaction effect of wake 7. Veldman, A. E. P., "A New Calculation of the

curvature. Wake of a Flat Plate," Journal of Engineering
Mathematics, Vol. 9, pp. 65-70, 1975.

The capability for computing the flow in the 8. Veldman, A. E. P., "Boundary Layer Flow Past a
trailing-edge region has been demonstrated for a Flat Plate," Ph.D. Thesis, Mathematical

thin lifting airfoil (modified flat plate). Re- Institute, University of Groningen, The

suIts of the present analysis have been shown to Netherlands, 1976.
10be in very good agreement with Veldman's incom- 9. Davis, R. T., and Werle, M. J., "Progress on

pressible predictions. In addition, a brief para- Interacting Boundary Layer Computations at High
metric study has been conducted to illustrate the Reynolds Number," paper presented at the Con-
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wake region have been obtained. In future work, Viscous-Inviscid Interaction," AGARD Symposium

the analysis describad herein will be extended to on Computation of Viscous-Inviscid Flows, AGARD-
include thickness effects and a more detailed CPP-291, Chapter 12, 1980.
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Technique for Separated Flows," AIk Paper No.
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MEASUREMENTS OF ATTACHED AND SEPARATED TURBULENT FLOWS IN THE TRAILING-EDGE REGIONS 
OF AIRFOILS

A. Makayama
* Douglas Aircraft Company, McDonnell Douglas Corporation

Long Beach, California

We Summary simpler turbulence models are not expected to be
Measurements of turbulent flows able to predict the complex rlow accurately, and

nt fincompressible dubuvelfow
near the trailing edge have been made in three development of more advanced turbulence models

different configurations: (1) a conventional air- require detailed data.

foil at zero incidence with near-symmetric flow, The present results contain extensive mean-flow
* (2) a supercritical airfoil at an angle of attack

of 4 degrees with strongly asymmetric but attached and turbulence data including all one-point veloc-

flow,) and (3) supercritical airfoil at a high angle ity correlations up to the third-order and the

of " ttack of 12 degrees with upper-surface frequency spectra (from which the rate of energy

y. dissipation was reduced) in the regions near the

.boundary-layer separation. trailing edge, in the upstream boundary layers and

Mean flow and turbulence including three the downstream wake of two practical airfoil

SReynolds stress components, four triple correla- models. One of the models is designated by Model

tions and some frequency spectra were obtained A and is a conventional airfoil and the measure-
uiong presure a nc as bas ments with this model were made at zero incidence.
using pressure and hot-wire probes as well as a The second model is a supercritical airfoil Model
laser-doppler velocimeter. Selected results are B. Measurements with this model were made at two
presented to show the features of viscous-inviscid angles of attack. The first one is at 4 degs
interaction and characteristics of turbulence in angle ofratta hirst oneti ae4deg
the trailing-edge region. which represents a highly asymmetric case but

without any flow separation and the second one is

I. Introduction at 12 degs which includes a small trailing-edge
separation. Since the volume of data is very

Tratoextensive, samples will be presented to illustrate
There are mainly two problems in the calculation important results that are discussed.

of the trailing-edge flow for which no unanimously
accepted satisfactory solution method has yet been II. Experimental Arrangements and
given. The first one is how to account for the Techniques

viscous-inviscid interaction. It is trivial that

one way or another an interactive approach is nec- 2.1 Wind Tunnel
essary in order to avoid the stagnation pressure
predicted by the potential-flow theory at a finite- The experimnts were conducted at the 38 x 54 x
angle trailing edge. The second one is how to 120-inch low-speed wind tunnel at DAC Long Beach

model the turbulent stresses in the case of prac- fa c l o-s pe e presn t exp ri m n g Be a s

tical high Reynolds number flows. The present facilities. For the present experiments it was

paper presents some experimental evidences that operated at a fixed speed of 3fm/s with a honeycomb

may uggst beter ay f clcuatio an moel- and six screens to keep the freestream turbulence
nmay suggest a better way of calculation and model- level smaller than 0.05 percent. Over the portion
ing method, test existing methods and help under- of the test section (2m) used for the present
standexperiments the total streamwise pressure variation
cases of asymmetric lifting airfoils with or with- was only one-percent of the dynamic pressure. Over
out separation under incompressible conditions. most of the cross-section the cross-stream nonuni-

In recent years, while the present investigation formity was less than 0.1 percent per inch.

has been in progress, a number of experimental All pressure data were measured relative to
studies have been published that are related to the Al l p e ter mesure whive to

* ~trailing-edge flows. man ofre 1  aecn ef, the tunnel piezometer pressure, which can
cr n-edgithte neaow any of themlI  are con- e regarded as the freestream pressure. All vel-cerned with the near wake of flat plates, for which ocity data were normalized by
the problem of viscous-inviscid interaction is very

small and the main concern is the structure of
turbulence. Airfoil flows have also been studied
by a number of investigators. Perhaps the most Uref
detailed data were obtained by Yu4 with a non-
lifting symmetrical airfoil. Measurements with where p0 , is the pressure in the settling chamber

lifting airfoils have been eported by Hoad et and o isothe air density.
*a? 5, Johnson and Spald , and Hah and

Lakshminarayana7  under unseparated conditions. No flow control was used to maintain the two-Separated flows were measured by Coles and Nofwcntlwa usdomitin hew-
eacocrat d f o g we a .  Some by soieuland dimensionality of the flow even in the separated-

taclckg ade Yloun etudied a b Som ima flow measurements. However, since the separated
trailing-edge flows .. hre studied by Salignac region is small, relatively good two-dimensionality
and Viswanath et el. di. These experimental data over the center-sr .-i region was confirmed by mea-
have increased the understanding of the turbulent surements of spanwise variations of surface pres-
flow near the trailing edge of a streamlined body sure, skin friction, mean velocity and Reynolds
but by no means are they adequate. The sets of stresses.
data that contain details near the trailing edge
are only in the simpler symmetric cases. The mea- 2.2 Models
surements of asymmetric airfoil flow with or with-
out separation are either sketchy or incomplete in The two airfoil models used for the measurements
terms of quantities measured. Detailed measure-
ments of turbulence quantities are important since were hodel A and odel a. The former is a

1O-percent-thick conventional airfoil and the



latter is a 14-percent-thick supercrltical airfoil All the probe data were obtained by traversing
with a large camber near the trailing edge. The the probes normal to the airfoil surface in the
included angles of the two surfaces meeting at the boundary layers and in the vertical direction in
trailing edge of the two airfoil models are nearly the wake. Figure I shows the coordinates used.
the same and about 10 degrees. For the present
tests, two-foot chord, 54-in. span models of the
airfoils were used. They were equipped with a

* total of 72 pressure orifices, most of them
arranged along the midspan and some were arranged Yu

in four spanwise arrays. A flat shaped orifice
was installed at the trailing edge where the 6u

- thickness of Model A was 0.6mm and that of Model B X Y
* " was 0.1mm: these backward facing pressure holes

dictate the "base pressure." The trailing-edge
thickness of Model A is comparable to the viscous
sublayer thickness at the trailing edge. Circular U.,

wires of diameters 0.5mm and 1.3mm, respectively,
" were placed at 5-percent chord on the lower

surface and 16-percent chord on the upper surface Fig. 1. Definition of coordinates.
to insure the transition.

2.4 Laser Doppler Velocimeter Measurements in the
* The blockage effects due to the tunnel walls Separated and Near-Wake Region

were not negligible in the sense that the minimum
surface static pressure is lowered by about 10 Measurements of mean and fluctuating velocity
percent of the dynamic pressure and the wake tra- components in the region where the flow can reverse
jectory was found to be slightly upwards at down- its direction (upper-surface boundary layer near
stream positions. Other than the fact that these the trailing edge and the near wake of DSMA 671
effects can influence the way the viscous and model at a = 12 degs) were made using a direc-
Inviscid parts of the flow interact, the direct tionally sensitive two-component laser-doppler
effects of walls on quantities such as turbulence velocimeter. The velocimeter consisted of an
can be regarded as negligible, argon-ion laser of maximum power 4 watt, a TSI

series go0 two-color dual-beam backscatter optics
equipped with two Bragg-cell frequency shifters

2.3 fleasurements of Unseparated Region modified for an off-axis (about I0 degs) forward-
scatter operation and TSI 1990 two-channel counter-
processor system.

In all flow configurations, pitot and static
tubes were traversed throughout the flow field to WND TUNNEL TEST SECTION MIROPS

obtain the distributions of total and static pres- OPTICAL GLASS

sure separately. The pitot tube used was either a
flattened tube of thickness 0.76mm or a round one
of outside diameter 1.6mm. The static pressure MODEL

data were obtained with a standard NPL-type tube ECEIVINSIN

with side holes and with a wedge-shaped tube. LPNC

Turbulence measurements in the unseparated
regions were made with two TSI 1050 hot-wire ane-
mometers operated in the constant temperature mode
and 3.8um tungsten wire sensors in a cross array.
At most measurement stations, the probe was placed LASER AND TRANSNITTIN G OPTICS
in the flow such that the plane of sensors was

d. parallel to the x,y-plane. At a few selected sta-
tions the probe was placed parallel to the
x,z-plane to measure the spanwise fluctuation w2.

"ILLIN6 BED
The anemometer outputs were analyzed with on- TRAVERSER

site analog averaging methods and off-site digital
averaging techniques. For the digital averaging,
the signals were first recorded on magnetic tapes
and reproduced later at a slower speed for sampl- "
ing, digitizing and averaging. Analog linearizers
were not used but the calibration curve was

:.t approximated by a parabola locally fitting the Fig. 2. Laser anemometer optical system and
King's law for the on-site analog averaging and traverse mechanism.
the digital analysis included the inversion of the
nonlinear calibration relation. The mean veloci- Figure 2 depicts the optical system and the
ties and Reynolds stresses obtained by the analog traverse mechanism. All optical components, both
and digital methods agreed well with maximum dis- transmitting and receiving, were attached to a
crepancies less than 5 percent, and the Reynolds large U-shaped frame and to a milling table which
stress results reported here are the anaiv- allowed translation in the three orthogonal direc-
averaged results but the averages of triple pro- tions. The laser, a color-separating prism, beam
ducts and the frequency spectra used to obtain the splitters, frequency shifters and a beam expander
rate of dissipation of the turbulent kinetic were mounted under the wind tunnel test section.
energy, are the digitally-averaged results. The beams coming out of the beam expander were

2
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. . . -

deflected upwards to the level of the measurement
position and then into the test area by eight mir- "... ._

rors. The green beams (514.5nm line) were aligned . .-- . ______ __"- _

to form a vertical set of fringes, which moved ". *....

downstream with a velocity greater than the maxi- ... "-" A -

mum flow speed to measure the horizontal component " _____ . .r
of the velocity while the blue beams (488nm line)
were arranged to form a horizontal set of fringes . ..
moving upwards. -L . .... .* ...... . .

To make measurements close to the airfoil sur-
face, the axis of the incident beams was inclined
approximately 5 degrees towards upstream so that
the velocity component uh measured by the __ 2< L
vertical fringes of the blue beams corresponds to .

uh = (U + u) costh - w sineh (1)

where 0h(= 51) is the angle of inclination Fig. 3. Signal processing and data acquisition
of the fringes in the horizontal plane. system.

In the measurements of the upper-surface bound- fm is t mixing-siqnal frequency fixed at 30 MHz
ary layer, the beam axis was inclined downwards, and df M and df ( are the spacings of the green
by 4v (= 50), so that the velocity compon- and blue fringes, respectively.
ent uv measured by the blue beams was The expected ranges of the velocity components

uv = [(V + v) cos s - (U + u) sines] cossv are

- w sinev (2) -Sm/s < uh . 35m/s

where 4s is the angle between the vertically- -bim/s < Uv < lOm/s
upward direction and the direction normal to the
surface. In the data analyses, however, the con- and the corresponding ranges of f10 and fS2) are
tribution from w was ignored since the mean span-
wise velocity and correlations Involving w are 2.5MHz < 41) < 11MHz
small in the flow very close to two dimensional
and sinev is small. Table 1 summarizes the -8 MHz < 42) < 12 MHz
characteristics of the optical and geometrical s e t ) and df(2) are about 5v (seeconfigurations. since both dl n f2 r bu -m(e

Table 1). The estimated minlmum number of doppler

O Table 1. Laser Anemometer Optical and cycles per burst is at least 8 if the signals are
, Geometrical Data produced by particles traversing near the center

of the measuring volume at any speed within the
- Laser Operating Power 1-2W expected range. On these assumptions, the down-

mixed signals were band-pass filtered between I MHz
Focal Length 1219mm (theoretical) and 20 MHz for the green channel and between 5 MHz

and 20 MHz for the blue channel and the counters
Beam Crossing Angle 6.260 (theoretical) were operated in a fixed 8-cycle mode.

Measuring Volume, The data sampled by the two counters were passed
length 2.B8m (based on e-2 ) to the data acquisition system only if the time
diameter 0.15mm delay between the two channels was less than 20

psec which is smaller than to the smallest turb-
Fringe Spacing, ulent time scale. The data acquired by the mini-

green (514.5nm) 4.7lum (theoretical) computer were first written on a 1/2 in. magnetic
blue (488nm) 4.47im tape by a single-buffering method and later trans-

ferred to a Tektronix graphic system for averaging.
Number of Fringes 32 (based on e 2 ) The data were averaged by weighting the individ-

The signal processing and data acquisition sys- ual sample by
tom is shown in Figure 3. The signals from the
photomultiplier systems were high-pass filtered to 2 2 2 _-7)1/2
remove the pedestals and downmixed with 30 MHz w(uhluv) = (uh + uv + (b/a) w (5)
signals before being processed by the counters.
The relation between the velocity components and where b/a the ratio of the length and the diam-
the frequencies of the u..,nixed signals fE' eter of the measuring volume, and V is the
and f42), considering the frequency shift, can be spanwise squared turbulent intensity which was
expressed by estimated from the first 100 samples by

fo (1) = (fs - uh/df ()). fm (3) *T 1 , .

fo (2 ) . (fs + uv/df (2)) " fm (4) w 7 uh v)

The usual "two dimensional" bias correction (ref.
where fs is the shift frequency fixed at 40 MHz, 12) is a particular case of Eq. (5) with b/a = 0.
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' In the present measurements where the instantaneous The mean values and correlations up to the third
velocity can reverse, this two-dimensional weight order involving uh and uv were obtained by the
which assumes infinitely long measuring volume, is averaging and then the mean velocities U and V and
unrealistic since uh = 0 and u, = 0 can be correlations up to the third order involving u and
realized with a finite probability. The above v, the fluctuating velocity components parallel and
weighting is based on the fact that the sampling perpendicular to the local surface, were reduced
probability is proportional to the product of the by coordinate transformation. A nominal total of
total velocity and the projected area of the mea- about 4000 samples were used (2400 in the low -

* suring volume in the direction of the velocity turbulent - intensity region but 4800 in the high
vector (see Refs. 12 or 13) and that the instan- intensity region) for each average with an average
taneous w2 in the derivation may be approximated data rate which was 100 per second at the best.
by the average w2 . This weight does not take
into account the fact that a single particle may Results of hot-wire measurements and the laser
produce more than one sample. Since this multiple measurements are presented in Figures 4(a,b), for
sampling is likely to occur only when uh = uv = 0 unseparated and separated cases, respectively, and
and the effect can be partly reflected by using indicate maximum discrepancies in U and V for the
the value of b/a larger than the actual value. unseparated case are of less than about 5% and
b/a = 8 was used for all the data shown. The about 10% in the turbulent intensities excluding
difference between the two-dimensional bias cor- near the edges of the wake. The hot-wire cannot
rection method and the present one is very small respond to flow reversals and the averages are
unless uh  and uv can become very small simul- erroneous in the region -0.05 < y/C < 0.15.
taneously, and practically no difference was found It is noted that in the rest of the flow, where
when the instantaneous velocity does not reverse the velocity is likely to be in the downstream
directions. direction all the time, the agreement is good.
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III. Results-

3.1 Overall Flow Fields ults

Two dimensionality and stationarity of the flow - .-
was very good in the unseparated cases. Even in
the separated case, the entire flaw was found to .t
be free from quasi-periodic low-frequency unstead-
iness and the flow near the center span was found
to be fairly uniform in spite of the fact that the
lower-surface boundary layer undergoes a natural '.

transition at about X/C = 0.75.

The spanwise nonuniformity of the flow in the
separated case was investigated extensively. The 3.
surface static pressure variation was no more than
3 percent of the freestream dynamic pressure over'-. the mid-6 inches of the span. The spanwise vari- : =
ation of the skin-friction coefficient just

upstream of the separation was within 0.00015 over
the same range. The spanwise distributions of
mean velocity and the shear stress in the boundary - ' .'
layer near separation were also measured. Over
about two-boundary-layer thicknesses near the -

-, center span, velocity changed only about 5% and ' -- ' ',- +
" the shear stress about 10% which are about the .

ranges of expected errors. :1 C, 2P PR4 PFCE

0 Co LOWEP -PrAcc

" Figures 5(a,b,c) through 7(a,b,c) show the , -E SE

- overall flow fields of the three cases investi- *i"EPS

gated. These plots (a), (b) and (c) in each fig- I.: 7.6 D.8 .0 . 4. .1 .

, ure correspond to the near-symmetric flow about
" the conventional airfoil at a = 0, the strongly
* asymmetric attached flow about the supercritical

airfoil at a = 4 degs, and the separated flow
• about Model B at a = 12 degs, respectively. The

isobar contours shown in Figure 6 were generated 1.

from the static-tube data. The actual data points "
are shown in the accompanying cross-sectional -,
plots at a few stations and com- pared with the
integration of the y-momentum equa- tion including

- all significant terms. The agree- ment is
-L" generally good in spite of uncertainties in the -3

static-tube data. The mean velocity vectors
are plotted in Figure 7 together with the displace-
ment thickness added to the airfoil contours. The - --
mean velocities shown in Figure 7(c) for the sepa- .-. rA

rated case are the laser data except for the first _ " " j- P ,,E
and the last stations and the lower-surface sta- .E lhE , EJAfC 0.)

tion. The positions of the shear layer edges were , - -"E' SU E

a taken to be the points where the total-pressure • NE' S!7E

-. defect is one percent of the maximum defect across z. --
the layer. The edge velocities shown in Figure 5 '.z :.6 - .- '. ' . ' .5 .7E
were calculated from the measured total and the
static pressures at the edges. Strictly speaking,
they.represent the total velocity rather than the Fig. 5. Surface pressure and edge velocity distri-
x-dlrection component. butions. (a) Conventional airfoil Model A

at a = 0% (b) Supercritical airfoil
In Figure 8, the distributions of the skin- Model B at a =40, (c) Separated flow

friction coefficient Cf and the momentum thick- about Model B at a = 120.
ness e are shown. Except for the separated and
the laminar region, Cf was determined by fitting In the case of the conventional airfoil, the
the log-linear portion of the mean velocity pro- pressure rises on both surfaces towards the
file by trailing edge. Figure 5(a) indicates that the

pressure is highest at the trailing edge and it
U u Y decreases in all directions. The boundary-layer

=.6 log + 5.2 (7) experiences positive pressure gradient and the
wake is accelerated. These pressure gradients are

In the separated region, the measured total shear mild and the streamlines curve mildly. The
stress (-ouv + uOU/ay) was extrapolated to the sur- boundary-layer and wake developments are expected
face. Figure 12 represents the closeness to the to be only a small perturbation of flat-plate
sepa qtion in the form of the Sandborn correla- flows and similar to the trailing-edge flows of
tion' between the shape parameter H =*/9 and symmetric airfoils with wede-shaped trailing
Atontes. edges like those measured by Yu -

.""
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Fig. 7. Mean velocity distribution in the trailing-edge region. (a) Conventional airfoil Model A
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Fig. 8. Skin-friction coefficient and momentum thickness in boundary layers. (a) Conventional airfoil
SModel A at a = 0°, (b) Supercritical airfoil Model B at a = 40, (c) Separated flow about

Model B at a = 120.

flow which has the larger momentum, deflects the

6 Istreamline upwards just downstream of the trailing
edge. In the thicker boundary layer on the suction
side, the curvature and even the sign of the

ST =0 streamlines change.
5 W

at X/C=O.93 At a = 12 deg, the mean flow is in the up-
I 0.990 stream directTon in the region 0 < y/C < 0.03
.499 between X/C = 0.93 and 1.07. The bac~flow ismall

and at no place was the instantaneous velocity
SH 97 backward all the time, as is seen in figure 90 which shows the maximum fraction of time, yp,

3 - 0 the flow is backwards. The values of yp were
FULLY-DEVELOPED .-- 0.918, reduced from tFe laser-anemometer data which were
SEPARATION /.- - - taken downstream of X/C v 0.918 where yp is

2 Z already 0.35. Following Simpson's15  terminology,
INTERMITTENT -

/
-- the incipient detachment is the position where

SEPARATION -- yp = 0.01 and it appears, by extrapolating back-
CSANDBORN14 ' 0.893 wards, to be in the region X/C = 0.85 ±0.02.

1 0.843 The intermittent transitory detachment where yp
X/C=0.793 = 0.2 occurs around X/C = 0.90 with transitory

detachment at X/C = 0.93 where yp = 0.5. The
, i i position where 'w = 0, from Figure 8, is also

0.2 0.3 0.4 0.5 0.6 0.7 at X/C = 0.93 which is very close to the point
where the mean flow starts reversing. Figure 10
shows that Sandborn separation correlation agrees
well with the present data.

Fig. 9. Sandborn-Kline separation correlation. Figure 6(c) shows that the pressure on the suc-

In the case of the supercritical airfoil at tion side further reduces to C - -0.2 and is
4 degs, the highest pressure point moves up- very uniform over the recirculatihg region. On the

. stream about 10-percent chord on the lower surface lower side, however, the pressure changes very
and the pressure within the flow decreases in the rapidly and mainly in the vertical direction. The
counter-clockwise direction around the trailing edge velocity distribution implies deceleration on
edge. The pressure difference between the upper both sides as far downstream as X/C - 1.25 and may
and lower edges of the wake is sufficient to cause be compared with the case of tie conventional air-
nearly 6% difference in the edge velocities. The foil where the entire wake is accelerated and with
boundary-layers experience opposite and strong the case of the supercrltical airfoil with c = 4deg
pressure gradients and the upper-surface boundary where only the upper half of the initial wake is
layer is about 2.5 times thicker. The upper half decelerated. Both upper and lower side edge vel-
of the initial part of the wake up to about X/C 2 ocities in this case approach asymptotic value
1.07 is still decelerated while the lower half is which is slightly higher than the freestream vel-
accelerated. The streamlines near the trailing- ocity, due to the increased displacement thickness
edge curve very accurately. The lower half of the of the wake.

S'. ". .;" -5.- " ." .*.- --". .'-."-'. . -5-. ... . . .- J
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Fig. 10. Maximum fraction of time flow is back- l S o 0 o

ward near the trailing edge of super- 0 0 00

critical airfoil Model B at a = 12. ,

3.2 Mlean Velocity and Reynolds Stress Data ,o00 0 300 o 0

The mean velocity profiles in the upper-surface
boundary layers, X/C < 1.0 are plotted in semi- 10100 oo0
log coordinates in Figures l(a,b). The mean vel- 0 0 0000

ocity distributions in the trailing-edge region are ,oL 0 0

already well represented by the vector plots in 0.- -
!. Figure 9. ,o.

The development of the wake minimum velocity 
i 10°

shown in Figure 12 together with flat-plate data - I oi
and the symmetric airfoil data of Yu4 . Although
there is a considerable range where the mir1_mum_ _ _ _

velocity increases logarithmically, the slope can o, , ,0
depend very much on the degree of asymmetry. Th
asymmetric case of Andreopoulos and Bradshaw_
which is obtained by roughening one surface of the -

flat plate is somewhat different from the present
asymmetric wake flows. Although the ratio of the oo 0

thicknesses of boundary layers at the trailing edge
is large, the ratio of the time scale 6/u is 36

nearly one. In the case of asymmetric trailing- 0 0

edge flow, however, the ratio of the time scale 0 0 0

6/ut is very large since the suction-side boundary 32-

layer is decelerated with smaller UT and larger 6 °'
but the pressure-side is less decelerated or 2

8 o 0

accelerated with larger u. and smaller S. 2- 0 0

In the case of the conventional airfoil at 24 . 0 0

a = 0, the velocity profiles retain the loga- 0 000

rithmic similarity up to the trailing edge. 2 o 00 0

Although not very clear from the present set of ° o 0

data, there is an extension of this inner layer 00 0 0

into the wake with changing velocity scale u, '° 0 o
and the origin of the distance y. The Reynolds "F - 0 0 0 00

stress distributions in the boundary layers were ,2 o 0 o 00 00 00

found to be consistent with known characteristics ,. 0 0

in mild adverse pressure gradients. In the near J 00"°

ients in the upstream boundary layers make the '2 0 o° o

distributions closer to and approach faster to 12 -o0

those in the far wake than in the wake behind a 12 0 o0 o
flat plate. , 0

In the case of unseparated flow about the super- 12 1- .
critical airfoil, the pressure gradients are so ,2  0

large that at the trailing edge there is hardly any 2,L
semi-log portion left in the velocity profiles. ___

In the near wake, there is only one sharp velocity ,o ,0 ,0
gradient, as opposed to two opposite sharp gradi-
ents in the symmetric or near symmetric case. Fig. 11. Semi-logarithmic plot of upper-surface
Since this single sharp gradient that occurs just boundary-layer velcity profiles. (a)
below the wake centerline is so strong that the Conventional airfoil at a - 0%, (b) Super-
initial part of the wake presents locally mixing- critical airfoil at .40.
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is constant across the layer and equal to the edge
30 pressure Pe and does not consider the turbulent

-a normal stress, is integrated to
uc I P e e a 2 Pe

MODELA"' 2 (Q
(Q,+AQ) * -  (TO+*--d

2SYMMETRIC (9)
FLAT-PLATE WAKjt~~~vo A\ (REFS 1-3) . where AQ and AT are the deviations from the

- - "true" velocity and the shear stress or the
LASYTETRIC "errors" due to the neglect of the normal pressure

(REF 2) gradient and the turbulent normal stress. If, for
10 the purpose of the present discussion, the shear

stresses in Eq. (9) are correct (AT - 0) and if
a MODELSa=4' /MODEL B 12°  the differences in the paths of the integrations

•5 in Eq. (8) and (9) are small, the error Aq in
the solution of the boundary-layer equation is, to
the first order,

1000 10.000u, .[X - Cl (P " P e u 7'  U e
+ (10)

P PU U7
e e

Fig. 12. Growth of wake minimum velocity, if the local flow direction deviates mildly from

layer like characteristics and large Reynolds the x-direction, Q may be set equal to U and Eq.
stresses are generated (see Figure 4(b)). (10) may be converted to

At the angle of attack of 12 deg. the upper- AU ,P Pe 11e
surface boundary layer separated at about X/C = 1Tr = pU T
0.93 and the lower-surface boundary layer remains e e e
laminar up to about X/C - 0.75. The turbulent
intensities and the shear stress in the upper Eqs. (10) and (i) may be used to evaluate
boundary layer are now very large. The boundary- whether or not the presently observed normal
layer thickness on the separated side is as much pressure gradient and the normal stress are
as 8 times thicker than the pressure-surface one. significant. _In the case of the conventional
The initial part of the wake is dominated by the airfoil at zero incidence Ue/U never exceeds 3
mixing between almost stagnant upper half and the outside the viscous sublayer. The pressure
high velocity flow in the lower side where the variation across the upper-surface boundary layer
existence of the thin upstream boundary layer is is at most (P - Pe)OUe 2 - 0.015 (Figure 6(a)).

*almost insignificant. Consequently, the stress The normal stress 5 M/e 2 was found only 0.005 atalmst nsinifcan. Cnseuenlythestrss its maximum. Even if all these occur at the same
* distributions have only two peaks, one is a broad

one in the upper half the other other is a very point, the error AU is 6 percent ?f U ince
* sharp peak in the mixing-layer region, the largest values of (p - pe)/pUe , u27ue and

ge/U do not occur at the same point, the actual
IV. Discussion error would be smaller.

4.1 Effects of Normal Pressure Gradient and If similar analysis is made with the data in the4 oNormal Stresses upper-surface boundary layer of the supercritical
airfoil at a = 4 deg, it was found that AU/Ue can

It was seen in the pressure-field plots of Fig- be as large as 15 percent, the region where the
ure 6 that there are some normal pressure varia- estimated error exceeds 5 percent extends over
tions across the boundary layer and the wake near 0.95 < X/C < 1.0. In the lower-surface boundary
the trailing edge. The !mportance of this varia- laye calteFough athe ressure variation (P Pe)/
tion in connection with the viscous-inviscid oUe  n be ch larger than in the upper-
Interaction is discussed here. The question is surface boundary layer, Ue/U is very small due
whether or not the boundary-layer equations are to st ong acceleration and the signs of p - Pe
sufficient to describe and to be used to calculate are opposite tending to cancel each other
the flows near the trailing edge. so that the implied error is small.

The momentum equation, if written in the stream- In the separated case, it is obvious, because
line coordinates (s,n), may be integrated to give mean velocity can become zero, that the normal

pressure gradient and normal stresses are very
important.

p 0 7po ( Comparing the three cases measured, it is
interesting to note that the pressure variation

where Q is the total velocity, the subscript o across the layer becomes less near separation or
Izdicates the quantity at the upstream station and in the separated flow, but its importance in the
u2is tht turbulent normal stress in the stream- calculation is greater. It may be said that the
line direction. The turbulent stress terms asso- normal pressure gradient and the normal stress
ciated with the streamline curvature is ignored terms are unimportant in the pressure-surface
being of smaller magnitude. Similarly, if the boundary layer where the boundary layer is accel-
boundary-layer equation, which assumes the pressure erated or decelerated very mildly. In the case of

10
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the near symmetric case of the conventional air- shape of the distributions change very little. In
foil, these effects are small on both surfaces, the case of the supercrltical airfoil at a - 40,
In the suction-surface boundary layers of more the level normalized by Ue6* decreases markedly to
asymmetric flows about the supercritical airfoil, only 0.003 at X/C = 0.99, which is considerably
the normal pressure gradient and the normal smaller than the value 0.0168 used in the exten-
stresses do play an important role. sively-tested (ingyariety of situations) model of

Cebeci and Smithla. It is remarkable that the
In the near wake in any case the difference of eddy viscosity reduces further and becomes negative

the upper- and lower-edge velocities can only be in the separated case. The region where the eddy
accounted by the variation of the static pressure viscosity is negative extends much further away
across the wake, which is also important in the from the surface than the minimum velocity point.

' prediction of the curving of the wake. The negative eddy viscosity in this region, how-
ever, does not imply the reversal of the energy

The contributions to the normal pressure varia- from turbulence to mean flow since there is a sig-
tions from different terms In the y-component nificant production by the normal stresses. The
momentum equation were examined when the results distributions of the mixing length are similar
of its integration shown in Figure 6 were obtained. (not shown) to those of the eddy viscosity. Mod-
Although the detailed results are not shown, the ifications, if eddy viscosity model is to be used
conclusion agrees partially with the conclusion of in the empirical constants may be required for an
Simpson et al. , namely that: the convective accurate prediction.
acceleration terms are unimportant where the vel-
ocity is small in the region near and inside sepa- The distributions of the eddy viscosity and the
ration and the turbulence term 3V2/y is more mixing length in the near wake are complicated.
important. Outside the separated region and in the They have minima at the locations of maximum vel-
near wake, convective terms are significant. In ocity gradient and not at the minimum-velocity
the intense mixing regions found just downstream points where the mixing length quickly becomes
of the trailing edge in the highly asymmetric infinity. The eddy viscosity assumes local minima
cases, the streamwise gradient of the shear stress at these points and at maximum mean velocity grad-
was found to be non-negligible, but this region is lent points. The maximum value of the mixing
confined in a relatively small region. It may be length was found to grow linearly with streamwise
concluded that the boundary-layer approximation distance in the region where the minimum velocity
used in an interactive approach may be sufficient increased logarithmically.
for calculating near symmetric flow about the con-
ventional airfoil but an extension allowing the In Figure 14, various length scales of turbu-
normal pressure variation and the normal stress lence and combination of mean and turbulence are
would be required for an accurate prediction of shown at X/C "- 1.05 of the supercritical airfoil
more asymmetric flows about the supercrltical model at --40, The integral scale of the cor-
airfoil. relation of the fluctuating streamwise velocity Lu

and the dissipation length, both of which are the
4.2 On the Turbulence Modeling Near the Trailing scales of the large eddies, are nearly propor-

Edge tional. However, the mixing length and Prandtl-
Kolmogoroff length scale are not proportional to

In this section, implications of the present the former two length scales: they have dips near
data on the modeling of turbulence is discussed, the point where the mean velocity gradient takes
Detailed analyses of the data of the separated maximum value.
case are still in progress and discussion in this
case is made only briefly.

V. Conclusions
In Figures 13(a,b,c) the distributions of the

eddy-viscosity coefficient In the upper surface From the three sets of data obtained with the
W boundary layer are shown. In the boundary layer two airfoils, the following conclusion may be

of the conventional airfoil, the level and the extracted.
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Fig. 13. Eddy-viscosity distributions In the upper-surface boundary layer. (a) Conventional airfoil
Model A at a - 00, (b) Supercrltlcal airfoil Model B at a 40, (c) Separated flow about
Model B at ot - 120.
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00
NUMERICAL SIMULATION OF TURBULENT

.TRAILING EDGE FLOWS

C. C. Horstman

NASA Ames Research Center
kmMoffett Field, California

: 0Abstract =turbulence energy dissipation

Numerical simulations of the time-dependent, 9 = boundary-layer momentum thickness
Reynolds-averaged, Navier-Stokes equations, employ-

ing a two-equation turbulence model, are presented W = molecular viscosity

and compared with measurements from a series of

trailing edge experiments at transonic Mach numbers. P = density
0 The test flows include an asymmetric flow with no

.C separation, an asymmetric floieith aesmall region t = shear stress
of separation and a symmetric flow with a large
shock-wave induced separated zone. Comparison'are W = turbulent dissipation rate
made for mean surface quantities as well as for
mean and fluctuating flow-field quantities. For the Subscripts
trailing-edge flows with little or no separation,
the solutions correctly predict all the major fea- RET = reattachment point
tures of the flow field. Treatment of the viscous-

inviscid interaction was found to be important for SEP = separation point
predicting these test cases. .. o-equation eddy-

. viscosity turbulence models ere found to be ade- t = turbulent
quate for these flows. How:er, for the shock-wave
induced separation case, these rbulence models T = total
were inadequate to predict this f ow field. Modifi-
cations of the turbulence model to correct these w = wall conditions
deficiencies are discussed.

= free stream conditions

Nomenclature Superscripts

c - airfoil chord ( )' = fluctuating quantity

Cfe - skin-friction coefficient based on boundary- <( )> = rms value
layer edge conditions

C - pressure coefficient Introduction
P

k = turbulent kinetic energy In the past several years, considerable
advances have been made in the prediction of tran-

p - pressure sonic trailing-edge flows. For modern supercritical

airfoils the trailing edge region is dominated by
t - time viscous-inviscid interaction. In the near wake the

flow field is complicated by streamline curvature

u - velocity in x direction and due to the interaction of the merging of two

significantly different shear layers. Integral
u - sonic (reference) velocity boundary-layer methods coupled with an inviscid

flow-field solution have been successfully applied
v - velocity in y direction to both symmetric and asymmetric trailing-edge

flows provided there is no boundary layer separa-
w - velocity normal to u and v tion.

- 3 
These methods are not satisfactory for

flows with strong adverse pressure gradients leading
x - streamwise coordinate parallel to model to significant separated regions.

2
,4 Differential

centerline measured from model trailing methods employing either a boundary-layer code

edge for test cases I and II and from air- coupled with an inviscid solution or the mass-
foil leading edge for test case III averaged Navier-Stokes equations throughout the flow

field have also been successful provided separation
y - vertical coordinate normal to model center- was not present.3,

5 
Recently an asymmetric trailing-

line measured from model surface and in the edge flow with a small separated zone was success-
wake from the extension of the model trail- fully predicted using the Navier-Stokes equations.

t

ing edge The ability to calculate trailing-edge flows with
large separated zones remains to be tested.

.5 - boundary-layer displacement thickness

For flows with no trailing-edge separation and

moderate pressure gradients, the viscous-inviscid
interaction effects are dominant and turbulence

Thispaperisdeclaredaworkofthe U.S.Govemmentand therefore modeling may play a secondary role.3 FoL flow
ismtepubic domain. fields where separated regions are present,
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turbulence modeling becomes important.i ,  Further measurements included surface pressure, skin fric-
progress in calculating separated trailing-edge tion, mean flow-field pressure and velocity dis-
flows relies heavily on extracting information tributions, and fluctuating velocity and shear
relevant to turbulence modeling from well planned stress data throughout the flow field in trailing-
experiments involving turbulence measurements. edge and near-wake regions of each test model.
Several recent experimental investi ations per- A two-color laser Doppler velocimeter was used to
formed at NASA Ames Research Centerl, 7 - have pro- measure both the mean and fluctuating flow field.
vided excellent test cases for symmetric and Further details of the experimental techniques,

asymmetric trailing-edge flows ranging from accuracy of the measurements, and results are con-
attached flows to flows with large shock-wave- tained in Refs. 5, 7-9.
induced separated zones. The measurements included
both mean and fluctuating flow-field quantities in
sufficient detail to allow a proper assessment of Solutions to the Navier-Stokes Equations
the turbulence modeling employed in the calculation
method. The partial differential equations used to

describe the mean flow field are the time-dependent
This paper presents a detailed comparison Reynolds averaged Navier-Stokes equations for two-

between numerical calculations and experimental dimensional flow of a compressible fluid. Restric-
results for the trailing-edge flows described above. tions on the equations include the perfect gas
The computed results are solutions of the time- assumption, constant specific heats, the Sutherland
dependent, Reynolds averaged, Navier-Stokes viscosity law, and zero bulk viscosity. For the
equations using variations of a two-equation eddy- turbulence closure, the k-c eddy-viscoisty model1 0

viscosity turbulence model. By employing the was used.
Navier-Stokes equations throughout the flow field,
the near-wake merging process is properly calcu- aok a(puk+q kx) +a(vk +qky)
lated and the effects of normal pressure gradient, + + =(
viscous-inviscid interactions and ellipticity of at ax ay

the flow are automatically included. The emphasis 3(puc+q 3(pv +q 2
of this paper is to access the ability of a two- ape + ex+ y C1 C pvcq -- (2)equation eddy-viscosity turbulence model with no at ax ay 1kk k
special corrections for trailing-edge egions to
predict these complex flows. The turbulent eddy viscosity is given by

Description of Experiments lit C W (3)

The experiments were performed in the Ames P represents the production term for the kinetic
High Reynolds Number Facility (38.1-by 25.4-cm). k
A sketch of the flow geometries is shown in Fig. 1. energy of turbulence and qkx,qk , P and qare the flux vectors associated wlth te tublnce
For models I and II, the test configurations con- ae turbuie

sisted of forebody spanning the test section with field variables. Modifications to these equations

two trailing-edge geometries. For model I the proposed by Chein
11 to model the low Reynolds num-

cross section of the trailing-edge region is a ber near wall terms are also employed to permit

12.50 wedge with the lower surface alined with the integration to the wall. The constants employed

forebody. Data were obtained at a nominal Mach are C1 - 1.35, C2 - 1.8 and C,, = 0.09. The com-
..' plete equations are described in Refa. 11 and 12.

number of 0.4 and a free-stream unit-Reynolds num- Addti cuations are p efm wi show

ber of 2.5 x 107 /m.5 The resulting flow field Additional computations are performed which show
-. remained attached for this case. For model iI the that the solutions for the experimental test flows

remanedattche fo ths cae. or ode LIthe investigated here are essentially independent of
cross section of the trailing-edge region is the
upper rear quadrant of an 18% thick, circular-arc the choice of near-wall treatment of the lowairfoil; the arc has a radius of 40.4 cm and the Reynolds number terms and of the inclusion of cor-

trailing-edge angle of the flap is 20.4 . Data rections for streamline curvature.
. were obtained at a nominal Mach number of 0.7 and a

free-stream unit Reynolds number of 4.0 x 10
7/m.7  The numerical procedure used here is the basic

A small separated zone was obtained over the final explicit second-order, predictor-corrector, finite
cm of the upper surface. For both cases the test difference, time-splitting method of MacCormack,2cmiof the uer surace. modified by an efficient implicit algorithm. 13

section walls were straight.
Model III is an 18% thick, circular-arc air- The computational domain extended in the

foil at zero incidence spanning the test section. streamwise direction from x - -50 to 65 cm for
Tdipcases I and II and from x/c - -5 to 3 for case III.TtA mesh was developed that allowed a variable point
obtained at a free-stream Mach number of 0.785 and s iac odinat drcon. One setnoa enlsnmbr ae nmoe hro spacing in each coordinate direction. One set ofa Reynolds number, based on model chord, of

to 11 x 106.8,9 The flow field includes an extensive grid lines was placed normal to the free-stream

shock-induced separation extending from x/c - 0.65 direction and the other parallel to the model sur-
to 1.26. For this case the test section walls were face and wake centerline. Total mesh sizes were

contoured to minimize wall interference effects. 79 points in the streamwise direction and 82 points
normal to the model surface (41 points on each

For the three test flows, two-dimensionality side) for cases I and It and 134 - 48 for case IIIFr tfe wthe este o(centerline symmetry was assumed). In the stream-
was verified with surface oil-flow patterns and
spanwise-surface pressure measurements. Additional wise direction mesh spacing varied from 0.08 cm

verification was obtained for models I and II with near the trailing edge to 12.5 cm at the downstream

spanwise flow-field measurements and momentum boundary for cases I and II and from x/c - 0.005

integral balances using the measured data. The near the shock wave to n/c - 1 at the upstream

........................ .... . ..........



boundary for case III. In the direction normal to correctly predict. This displacement thickness is
the surface, first an exponentially stretched necessary to predict the pressure distribution and
spacing was used near the wall after which a uni- thus predict the lift and drag. Comparisons of the
form spacing was used. The distance of the first present computations with experimental values of
y mesh point from the model wall was selected displacement thickness are shown in Fig. 6. The
small enough such that the solutions are indepen- boundary-layer edge is defined at the first grid
dent of spacing (typically within point where the computed total pressure was 99% of
Yin Y twwlUw < 1 "0)'5' the free-stream value. Also shown are the computedl =displacement thicknesses from a boundary-layer

The upstream boundary conditions were pre- code. 14 The Navier-Stokes computations are in good
scribed by uniform freestream conditions and for agreement with the data while the boundary-layer
cases I and II combined with the result of a results substantially underpredict the data.
boundary-layer computation along the model surface. Reasons for these differences will be discussed
For cases I and II the downstream boundary was later.
positioned far enough aft so that all of the gra-
dients in the streamwise direction could be set to The computed and experimental wall-pressure
zero. This boundary condition was verified by the distributions for the trailing-edge flow with a
lack of any substantial change in the numerical small separated zone (test model II) are compared in
results when the location of the down-stream bound- Fig. 7. The agreement is very good. Note that the
ary was changed. For case III a constant static computed pressure is slightly higher than the mea-
pressure condition was used at the downstream sured pressure on the upper surface ahead of the
boundary (x/c - 3) which matched the experimental hinge line. When computing this flow field it was
data at that location. At the model surface, no- found that the upper surface free-stream Mach number
slip boundary conditions were applied along with a had to be lowered to 0.85 from the quoted experi-
constant wall temperature. The turbulent kinetic mental value of 0.87 to prevent a shock wave forming
energy k and dissipation rate E were set equal on the flap. The maximum Mach number in the flow
to zero at the wall. At the upper and lower bound- field is 1.00 for the solution shown, which occurs
aries (the wind tunnel walls), inviscid solid-wall near the hinge line. The experimenters7 found that
boundary conditions were used. a 0.02 increase of the free-stream Mach number also

produced a shock wave on the flap.

Results and Discussion Figures 8, 9, and 10 compare the mean velocity,
turbulent shear stress and turbulent kinetic-energy

Solutions have been obtained for the three flow profiles in the trailing-edge and near-wake regions.
fields described above. These solutions, which An excellent agreement is observed between the com-
used the k-E turbulence model10 with Chien's low puted and measured mean-velocity profiles (Fig. 8).
Reynolds number terms, 11 will be compared in detail Also, good qualitative agreement is seen for the
with the experimental results. Additional solu- turbulent shear-stress (Fig. 9) and kinetic energy
tions were obtained using the Jones-Launder low (Fig. 10) comparisons. For the wake at x - 5.08
Reynolds number terms,1 0 a correction to C1 for and 12.07 cm the magnitude of the computed shear-
streamline curvature and the k-w2 eddy-viscosity stress and kinetic-energy profiles are slightly less
turbulence model.1 4  Only minor differences were than and do not fill out as fast as the measured
discovered between these additional solutions and values. Although the present results do not extend
the ones presented. In addition to the Navier- into the far wake, the trends shown here suggest
Stokes solutions, results obtained using boundary- that the turbulence model employed will not predict
layer codes 1" and viscid-inviscid interaction the correct asymptotic growth rate of the far wake.
codes 15 will be compared with the present calcu-
lations and the data. Finally a solution using an Comparisons of the present computations with
ad hoc modification to k-e model will be pre- experimental values of displacement and momentum
sented for the massive separation case (test model thickness for the upper model surface are shown in
III) to demonstrate the influence of turbulence Fig. 11. These comparisons show good agreement.
modeling on large separated flows. Also shown are results from a boundary-layer code

14

using the measured pressure distribution and a
The computed and experimental wall pressure viscous-inviscid interaction method coupling the

distributions for the attached trailing-edge flow Euler and momentum and mean-flow kinetic-energy
(test model I) are compared in Fig. 2. The agree- inverse-integral turbulent boundary-layer equations
ment is very good. Figures 3, 4 and 5 compare the described by Whitfield. 1 5 The viscous-inviscid
mean velocity, turbulent shear stress and turbulent interaction results are in good agreement with the
kinetic energy profiles in the trailing-edge and data as opposed to the separate boundary-layer
near-wake regions. To compare the kinetic energy results which underpredict the data by 60% at the
profiles it is necessary to convert the measured trailing edge.
values <u' 2 + v' 2> to the computed value k or
vice versa. For the three test cases presented Previous Navier-Stokes solutions 6 for this flow
here, it was assumed that <w'2 > _ 1/2 <u' 2 + v'2>. field have shown that the present results are inde-
Good agreement is observed between the computed and pendent of the choice of the low Reynolds number
measured mean velocity profiles (Fig. 3). Also near-wall terms, the inclusion of various stream-
good qualitative agreement is seen for the turbu- wise curvature corrections, and the choice of the
lent shear-stress (Fig. 4) and kinetic-energy (Fig. two-equation turbulence model itself. However, when
5) comparisons. The largest differences are noted an algebraic eddy-viscosity model with special near-
in the wake at x - 14 cm. wake treatment was used, the solutions were not as

good as those employing the two-equation models.
For the airfoil designer who uses interactive For example, the computed algebraic model results

procedures, the displacement thicknesh on the air- underpredict the experimental displacement thick-
foil is the most critical viscous parameter to ness by 30% at the trailing edge. In addition,

3
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severa boundr-lyer2slunaveZbeen increased:to x/c -0.67 to:1.25. When changes:to
obtained6,7 for this flow field. Both algebraic C2  larger than 15% were tried, the solution became

boundary-layer edge pressure distributions. None arc airfoil flow field employing the Navier-Stokes
of these solutions differed significantly from the equations with the Wilcox-Rubesin two-equation
boundary-layer solution shown, turbulence model.14 Although a splitter plate was

used in the near wake it was also found that sig-
It was suggested6 that the failure of the nificant modifications had to be made to the

boundary-layer code to predict the measured data turbulence-model constants to predict the experi-
was either the result of the boundary-layer assump- mental shock-wave location.
tion (neglecting normal-pressure and streamwise-
turbulent-normal stress gradients) or the strong Figures 14, 15 and 16 compare the mean velocity,
viscous-inviscid interaction process and ellipticity turbulent shear stress and turbulent kinetic-energy
of the flow field. The present results show the profiles over the aft portion of the airfoil and in

*latter to be valid. Evidently for a strong inter- the near wake. While the unmodified computation is
action flow such as the present trailing-edge flow in fair agreement with the measured mean velocity
field the boundary-layer solution is extremely profiles (Fig. 14), the computed results with the
sensitive to the streamwise flow gradients and hence modified turbulence model show a marked improvement.
both the viscous and inviscid portions of the flow Neither computation shows much agreement with the
field must be solved interactively. The turbulence measured shear stress (Fig. 15) or turbulent
model used in the integral boundary-layer equa- kinetic-energy profiles (Fig. 16). In fact, the
tions15 is based on correlations of experimental modified results are not as good as the original
data and would be expected to correctly model flow computations for x/c - 0.8 and 0.9. The measured
fields where these correlations are valid. The high levels of shear stress and kinetic energy in
present case with a small separated zone is such a the shear layer were not computed. One possibility
flow field. However, the extension of this method for this disagreement is that the shock wave
to flow fields with large separated zones will unsteadiness on the airfoil produces these high
require additional data correlations not yet avail- energyr levels which the computations do not cap-
able. 15 ture. 7A detailed experimental investigation of

shock-wave unsteadiness and its effects on the flow
The computed skin-friction distribution on the field would be required to resolve this issue. The

test model is compared with the experimental values present computations did not indicate any signifi-
in Fig. 12. The scatter bars on the experimental cant shock-wave unsteadiness.
data points represent experimental uncertainty. The
computed Navier-Stokes values are in fair agreement The predicted displacement thickness distribu-

*with the data. The measured separated zone extended tions are compared with the data on Fig. 17. As
from -2 cm on the flap to 0.4 cm in the wake. The expected from the mean-velocity profile comparisons,

*cooputed separation extended from -0.25 to 0.1 cm. the computation using the modified model is in good
The results from the interactive solution described agreement with the data.
above did not predict separation but elsewhere the
results were in close agreement with the present Computed Mach contours are shown in Fig. 18
computations, for both solutions. For the computation using the

original turbulence model, the shock wave extends
The computed and experimental wall-pressure far into the flow field and the sonic line inter-

coefficient distributions for the circular arc air- sects the wind-tunnel wall (near y/c - 1). When
foil with a large shock induced separation (test the modified model was used both the extent of the
model III) are compared in Fig. 13. The predicted shock wave and sonic zone are significantly reduced.
shock location (x/c -0.73) is significantly down- Experimental data showed that the flow near the
stream from the measured location (x/c = 0.64). wind-tunnel wall remained subsonic. These results
Also the calculated size of the separation indicate the important role that the turbulence
(x/c - 0.73 to 1.15) is much smaller than the model plays for flows with large separated zones.
experimental size (x/c -0.65 to 1.26). As a test
to determine the relative importance of turbulence Conclusions
modeling for this test flow, a small modification
was made to the turbulence model to increase the Three transonic trailing-edge flow fields have
size of the separation. This modification lowered been calculated and compared with detailed experi-
the constant C2  in Eq. (2) by 15% for all values mental results. The three test cases included an
of y at the computed separation point and with a asymmetric attached flow, an asymmetric flow with a
linear variation in x to the original value of small separated zone, and a symmetric flow field

*C 2  at the computed reattachment point, with a massive shock-wave induced separation. When
employing the mass-averaged Navier-Stokes equations

C2 -C 2 11 - 0.15 NET - X)/(xPET - xSEP)] with a two-equation turbulence model we found that
the solutions correctly modeled all the major

This increased the dissipation rate E in and above features of the flow field for the two asymmetric

the separated zone thus lowering the eddy-viscosity test cases. Present turbulence-modeling concepts
*and increasing the size of the separated zone. The seem to be adequate for trailing edge flows with

correction was applied interactively such that little or no separation. (Previous work 5'6 has

xSEP and xRET were determined from the computed shown that algebraic eddy-viscosity models are not
solu tion at each time step. The results from this adequate for these flow fields.) However, for the
modified solution show improved agreement with the flow field with a large separated zone, the com-
data (Fig. 13). The computed shock location moved puted results did not predict the proper size of the

forward to x/c -0.66 and the separated zone separation or the location of the shock wave.

4
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By modifying the turbulence model in an ad hoc 'Viegas, J. R. and Horstman, C. C., "Comparison
fashion, the improved agreement was obtained. This of Multiequation Turbulence Models for Several Shock

* shows the importance of turbulence modeling for the Boundary-Layer Interaction Flows," AIAA Journal,
computation of flow fields with large separation. Vol. 17, Aug. 1979, pp. 811-820.
Improved turbulence models are necessary before we
can compute these flow fields. 1

3
MacCormack, R. W., "A Numerical Method for

Solving the Equations of Compressible Viscous Flow,"
Large differences were obtained between the AIAA Journal, Vol. 20, Sep. 1982, pp. 1275-1281.

Navier-Stokes solutions and for boundary-layer pre-
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, PROBLEMS ASSOCIATED WITH THE AERODYNAMIC
DESIGN OF MISSILE SHAPES

*- Jack N. Nielsen
Nielsen Engineering & Research, Inc.

Mountain View, CA 94043

" *Abstract High angle of attack aerodynamics has
received much attention over the past

-The purpose of the paper is to discuss several years, particularly as applied to
. arious trends in the design of tactical enhance maneuverability of missiles, and

. missiles which influence the future direc- many problems impacting aerodynamic design
tions of missile aerodynamics. Some of the need more attention in this area. Improved

'subjects discussed include airframe-inlet accuracy of prediction methods for angles
a interference, high anqle of attack problems, of attack greater than 20* is needed.

waveriders, efficient hvoersonic missiles,
* computational fluid dynamics applied to One discipline which can be brought to

(missile aerodynamics, aerothermal design bear more heavily on missile design
and supersonic stores. A number of problems is computational fluid dynamics.

* specific areas where increased emphasis is It seems that missiles have not received
needed in missile aerodynamics are the attention they deserve in this area,
suggested. but there are signs of increased activity

g in this field. Applications of CFD to
subregions of the missile flow field are

1. Introduction frequently made at the present time, but
applications to the complete missile flow

The purpose of this paper is the fields are lagging.
review of aerodynamic problems involved in
the design of tactical missiles, both There is a changing role of the
present and future. Many of the subsystems missile aerodynamicist in missile design.
of missiles interact with the complete In the past it has frequently been the
missile aerodynamic characteristics in ways practice to test the final design over the
which determine the important trends in the entire operating range in wind tunnels. It
evolution of missile aerodynamics. One is now possible to do conceptual and trade-

* important subsystem is propulsion wherein off studies up to angles of attack of about
the type of propulsion, airbreathing or 200 using existing predictive methodology
non-airbreathing, is the significant since more confidence is now placed in
parameter. The warhead size necessary to these methods than formerly. However,
effect kill based on the CEP from the wind-tunnel tests for angle of attack above
guidance and control sets the basic diam- 200 are still required. As predictive
eter of the missile. The guidance sensor methodology and CFD continues to improve,

* characteristics such as frequency band- hopefully the amount of expensive wind-
width, tolerable boresight error slope, and tunnel testing will be reduced although
needed aperture influence the size and this can be argued. However, it is certain
shape of the seeker dome. The launching that missile aerodynamicists are making
platform usually imposes certain con- more extensive use of analytical tools.
straints on missile dimensions such as wing

, span. Nonlinearities in lateral-directional In the following sections we will dis-
* control and control cross-coupling interact cuss in greater detail some of the subjects

strongly with the autopilot performance, or mentioned above. The treatment will
". alternatively constrain the configuration necessarily be in breadth rather than

or its responsiveness. Also, the structure depth.
and its vibration are strongly influenced
by aerodynamics as a source of steady and A number of investigators have
unsteady loads as well as coupling between reviewed missile aerodynamics or special
bending, vibration, and loads, areas of it in References 1 to 7, and

their work has been very helpful in pre-
Some specific subjects of present and paring the present paper.

future interest are of particular
importance in future missile designs.
Since airbreathers are now receiving 2. Problems in Airbreathing
increased attention in the quest for Missile Design
z:tte space and for intercepting standoff
targets, problems of interference between 2.1 Introductory Remarks
inlet and airframe arise. Hypersonic
mlissiles are of great interest as a means Solid fuel rockets are the principal

Af of quickly neutralizing standoff targets. propulsion means of existinc tactical
and achieving high L/D at high speeds missiles, and it is well known that the

" through such devices as waveriders is range of such missiles is limited by the
receiving renewed emphasis. The carriage fact that they must carry their own
and delivery of stores at supersonic speed oxidizers. Increased missile rance is
i'ls increased importance for penetration. needed to enlarce the battle space and t2
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engage the enemy further out. It is also and mass flow ratio for the same case as
* needed to counter stand-off jammers and to Figure 1. The reference area is now the

deny close-in airspace to reconnaissance capture area Ac. Note that reduction of
aircraft. In addition there is a need to capture area ratio at constant angle of
get out to the limits of the battle space attack increase the inlet lift and drag
quickly. These requirements iead to the substantially. The drag of two inlets at
future importance of the hypersonic air- a = 00 varies from 29% of the total air-
breathing missile. Existing and plane drag at A/Ac = 0.4 to 15% at
developmental supersonic airbreathing A/Ac = 0.7, illustrating increase in drag
missiles appear to operate with critical due to off-design operation of the inlet.
or supercritical flow in the inlet for We have used this airplane case since
simplicity. By-passing the extra airflow comparable data for a missile are not
to avoid spillage or varying compression available.
ramp angle to avoid subcritical operation
is avoided for the most part. The basic The variable mass flow into an inlet
problems of importance are the effects of has an influence on the stability and con-
airframe on the inlet, the installed trol of the airframe. In subcritical
inlet forces, and the effects of the inlet operation, more flow will go around the
on the airframe which includes flow changes inlet (spill) and the pressures on the
at downstream lifting surfaces. Operation fuselage and tail will be influenced. Not
over wide ranges of angle of attack, angle only is the trim of the airframe influenced
of bank and Mach number will provide many by spillage, but so also is tail control
aerodynamic problems for future airbreath- effectiveness. There does not seem to be
ing missiles. a good data base on this subject, nor do

any reliable prediction methods for
2.2 Mutual Interference Between Inlet missiles appear to exist.

and Airframe
2.3 State of Prediction Methodology

Consider first the interference effect for Flow Fields
of the airframe on the inlet. Inlets are
often tested alone with uniform onset flow, Let us consider the role of finite-
but when they are mounted on a body the difference methods, panel methods, and
onset flow is not uniform. The onset flow hybrid methods in treating inlet-airframe
can vary in Mach number, flow direction flow fields including flow at the tail.
and magnitude, and it may possess vorticity With regard to Euler codes, it is possible
and total pressure losses. A basic problem at this time to solve a two-dimensional
is to locate the inlet in a region of high or axisymmetric problem for interaction
mass flow rate per unit area and high total between an internal and external flow 9 .
pressure to keep the inlet small. Inlet In such solutions both the internal and
placement from the viewpoint of stealth external flows must be covered by the mesh
is also important but at odds with inlet and the solution developed in time from
performance considerations. some assumed initial conditions. The mass

flow ratio for the inlet is controlled by
The effect of the inlet on the air- the downstream boundary condition of the

frame is complicated and important and it internal flow and is generally not directly
depends very much on the quantity of air controllable. The type of downstream
flowing through the inlet. Data Illustrat- boundary condition to use is not clear. An
ing this effect are available from Refer- achievable back pressure may be specified
ence 8 on the drag of the i-15 airplane with a uniform flow as an approximate
with two-dimensional inlets forward of the boundary condition. A large number of time
wings. The inlets have three ramp angles. steps are required before the wave system
Tests were performed of the inlet installed stabilizes so the calculation is lengthy.
-on the airplane but mounted on a balance The subcritical case takes longer than the
independent of the airplane. Airplane and supercritical case. For the supercritical
inlet forces and moments were individually case the external flow up to the normal
measured as a function of angle of attack shock can be carried out by time marching

* and mass flow through the inlet. The inlet in the streamwise direction. However, for
mass flow was controlled by choking the the subcritical case the three-dimensional
flow in a tube into which the flow exhausts calculation appears beyond the state of the
at the rear of the aircraft. Figure 1 art. Euler codes should be gord for
shows how the airplane drag varies with matching internal and external flows and
capture area ratio (mass flow ratio) at thus getting the external aerodynamics
various angles of attack. The quantity Ac well. However, the internal aerodynamics
is the streamtube capture area for a = 0 may be inaccurate if viscous effects are
with the shock at the throat of the inlet, large.
Data were not obtained to A/A = 1 because
of choking in the tube. Significant The application of supersonic panel
increase in drag occurs in the low angle of methods to predicting loads on complete
attack range as a result of the reduced configurations without inlets is an
mass flow ratio. accomplished fact 1 0 ,11 . An approximate

panel method accounting for flow. int' tne
Figure 2 shows how the inlet drag and inlet has been used by Dillenijs,2 in a

lift coefficients vary with angle of attack supersonic external store separatxcn

2
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program. In this approach panels which 3. What type of aerodynamic control
permit variable nonzero normal velocity is best?
are placed across the streamtube entering

K.the inlet. In this fashion the effect of 4. Will asymmetric vortices compli-
mass flow ratio on the external flow is cate the design of the control system?
accounted for. The method appears to have
the potential for accounting for subcriti- If wings are used to obtain the high
cal flow as well as supercritical flow, normal accelerations, planforms which have
it is also possible to control the mass small shift in axial center-of-pressure
flow ratio as a parameter in the panel location with Mach number and angle of

Vmethod. attack such as delta wings should be used.
.5' A body-alone might be used together with

A third approach to flow-field thrust-vector control.
analysis is to use approximate equations in
the regions where they are valid and to In a study of the type of control

*patch the solution tegether in an attempt systems for a vertically launched missile,
to reduce computer time. As an example, the authors of Reference 14 arrived at a
a marching code might be used up to the combined system utilizing a body-tail
inlet normal shock, a Navier-Stokes code configuration plus an ejectable jet-vane

* -in the region of the shock, and some code control. The jet-vane control is
such as a parabolic NS code in the particularly useful during the low dynamic
diffuser. pressure part of the trajectory. The

combination of controls increases the
A handbook of experimental data for available maneuverability.

the effects of inlets on airbreathing
missile external aerodynamics is embodied with regard to aerodynamic controls,
in Reference 13. one might consider canard controls, wing

controls, or tail controls of the all-
movable kind. Canard and wing controls are

3. Vertically Launched Missile With known to stall at lower angles of attack
Transonic Turn-Over than tail controls since their control

deflections are additive to angle of attack.
There is a need for a vertically Canard and wing controls however show poor

launched missile that can turn over hori- roll control because of interference
zontally at low altitude very quickly after effects on the tail (the exceptional case

*launch. Such a need arise for defense occurs when the wing control fin span is
from low-flying threats such as missiles, much greater than the tail fin span) . Con-
RPV's, helicopters, and airplanes. Also, trol by a tail alone has the well-known
such a missile and launcher are required disadvantage that it puts the trimming
to eliminate the need for trainable missile force in the opposite direction to the de-
launchers that are frequently pointed ir. sired maneuver and thereby increases the
the wrong direction. Vertical launch is missile time constant. It's hinge moments
required because the threat may come from are influenced by body vortices and are
any direction for combat at the forward nonlinear. In selecting the fin planform
edge of the battle area, and airfoil section special attention

should be paid to the transonic regime
The requirements for vertical launch where control effectiveness can be very

are very severe. The missile must get low and hinge-moments high due to transonic
aloft and turn over as quickly as possible. nonlinearities. Figure 4 from Reference 15
This means that it will be subject to large illustrates the effectiveness of pitch

*normal accelerations and must have a short control at high angles of attack at two
time constant in pitch. An example of the transonic Mach numbers. The factor kw is
variation with time of the predicted flight basically the ratio of the normal force
parameters is shown in Figure 3 as taken developed by the all-movable control panel
from Reference 14 for a range of nine to half of that developed by the wing alone
nautical miles. Angles of attack of up to at an angle of attack equal to a~ + 6.

*300 are experienced with corresponding high These data are for canard fins with an
normal accelerations. For shorter ranges, aspect ratio of 3.53, a taper ratio of
higher angles of attack will be met. 0.06, and ratio of body radius to fin semi-

span of 0.4. The problem of good all-
*A number of interesting problems movable controls for large ri + 4at

arise in connection with the design of transonic speeds is an unsolved one.
such a missile, a partial list of which Control effectiveness and hinge moment are

*follows. strongly influenced by both planform and
airfoil sections. Neither a good data base

1. Over the transonic/supersonic nor a good predictive method exist for
range of high angle of attack operation selecting the control.
how can we achieve a high turn rate: that
is, powerful pitch control. The well-known subject of "induced

yaw," the appearance of large side forces
2. To what extent should aerodynamic and yawing moments on a body of revolution

or thrust vector control be used? at large angles of attack, could be a
A limitation on the amount of controilab-le
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normal acceleration ava11jbi ,-t L r- 4.2 Genesis cf !!.iz-h Steed Configurations
sonic missile. The onset .,f such

. asymmetric forces is determine: bv bod. Current rccket-powerpd missiles
• ". fineness ratio and nose bluntness for dovelooed in the USA emploving cruciform

bodies of revolution. For a fineness fins mounted on bodies of revclusi n have
ratio of about 10, an anole of attack of been designed principally for maneuver-
about 25' to 30" marks the onset of ability or other characteristics, not for

* asymmetry. Asymmetry starts to disappear high lift/drag ratio or long range.
when shock waves form on the sides of the Accordingly, it is not surprising that
body for crossflow Mach numbers above the their lift/drag ratios at Mach numbers
critical speed which is about 0.4 for a greater than 3 are low and become lower
circular cylinder. From Mc = 0.4 to 0.8 with increasing Mach number.
the magnitude of the side force as a
fraction of the lift or normal forces The mid-inlet concept of Hunt,
descreases until it essentially disappears et al. 1 8 for a hypersonic missile is shown

; at M = 0.3. Figure 5, from an article by in Figure 7. This is a sketch of the
Ward~aw and Morrison1 6 , exhibits data proposed design of a missile to fit a
showing this trend. If these limits for U.S. Navy vertical launching system (VSL),
the transition of asymmetric vortices to to be boosted to M = 4 by a booster, and

- symmetric vortex regions are adopted, to cruise at M, = 6.0. One of the aero-
and if = 25" is taken as the boundary dynamic considerations in the design is to
between concentrated symmetric and asym- make use of the high air density on the
metric vortices, then the diagram shown windward side of the missile to give suf-

* in Figure 6 results. By plotting the same ficient thrust to maneuver at angle of
data of Figure 5 against free-stream Mach attack. Another point is that the boundary
number, Wardlaw and Morrison1 6 show that layer is sufficiently thin on the windward
the induced yaw is greatly reduced at meridian that boundary-layer diverters may
supersonic speeds and disappears for Mach not be required for the inlet. (The
numbers greater than 1.3 except in a few question of the shock layer still remains.)
instances. By specially tailoring the nose and fore-

body to make it flatter in front of the
There are several other ways of inlet, the inlet flow can be improved and

alleviating the asymmetric vortex switching its lateral divergence lessened.
* problem besides avoiding the region

L > 250 and M, < 1.3. The use of vortex The Air Force Flight Dynamics
generators on the nose has been shown by Laboratory over the past years has pursued
Clark, Peoples, and Briggs 1 7 to eliminate a line of investigation to exploit the
induced yaw. An approach to harnessing aerodynamic potential of supersonic
induced yaw is fixing the asymmetry with missiles to achieve significant improve-
a nose strip or proturbance and simultane- ments in performance for tactical iong-
ously controlling the roll attitude of the range air-to-air missions. The concepts
missile. If this is done, it is possible which have emerged are termed "aerodynamic
to fly at an increased maneuvering load configured missile" (ACM) . Once concept
equal to C? + CC. In this case one would taken from Krieger 1 9 is a "noncircular

L C body cruiser" as shown in Figure 8. One
want to maximize the square root for maxi- novel aerodynamic feature of this design
mum maneuverability. Innovative ideas for is the spatu'a nose and flat bottom which
controlling induced yaw are still needed. produce high L/D ratio and neutral

9 stability to a = 20o. The high wing and
twin vertical tails provide good lateral-

4. The Search for High L/D at High directional stability characteristics. An
Speeds; Waveriders L/D ratio of 5 to 8 at M = 4.0 is quoted.

4Because of the large range of operating
4.]. Introductory Remarks conditions, a two-dimensional inlet with

variable internal contraction ratio is
The need for ground-launched or air- needed to maintain high pressure recovery

launched missiles which fly out far and during cruise and climb. A two-dimensional
>:st and intercept launch platforms beyond variable geometry nozzle provides the
the range of their attacking missiles has capture area nece-sary for cruise and
lead to the studies of the hypersonic climb. In seeking the highest LID
airbreathinc missile. A number of feasi- configuration, it was found that CDmin was

h" bilitv studies have been made to determine
aerodynamically efficient missile shapes a controlling parameter. Since for a
which meet this mission. Hunt, et al. 1 8  symmetric parabolic drag curve (CD Vs. C
have orocosed a mid-inlet conept;
Krreer- has proposed a noncircular body

. conceot and a liftino body conceot; 1 C DRasmussen 2 0 and Schi'de121 have adapted hav a
"." the waverider airplane concept to hyper- Dmx \ C2 , Ci

sonic missiles. We will briefly describe
these concepts and then discuss waveriders with
in creaser detail.

r'in
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control of both minimum drac: and irag-rise in anagle of attack or Mach numher, the
factor CD. C) is needed for maximum L,'D aeroynamic surface pressures snow smooth

Cti variations with these variables. It is
ratt-.possible to derive efficient waveriders

Another efficient aerodynamically usinc nonconical flow at the design point.

configured missile emerging from the study The primary problem in conical or nonconi-

is the lifting body missile shown in y cal design is to get ood volume into the

Ficure 9. This configuration used a tri- waverider with high L/D ratio. One inter-

ancular body with wine tips and an inlet on esting question concerns the general lack

* the lower surface. It is noted that both ot axisymmetroc noses or clahn-ede blunt-

of these missiles tend to look like air- ness with waveriders. Axisvmnetric noses
planes. The lack of radomes in the design are desireable to minimize radome bore-
is noteworth, sight error and bluntness is needed for

aerodynamic heating reasons. It appears

Another type of hypersonic missile de- that such waveriders can be constructed
" sign which is receiving current considera- using Euler codes coupled with blunt nose

tion is tha waverider. The most elementary starting solutions. The penalties for

form of waverider is due to Nonweiler
2 2 and bluntness need assessing,

has the form shown in Figure 10. It is There are a number of problems that
*also termed the caret wing because of its

similarity to the proofreader's mark. At need attention for waveriders. First, the

the design condition the upper surface of questions of integrating the airframe with
the wing is streamwise and has no pressure the engine needs attention. Some ideasdrag. A ilanar shock stretches across the for incorporating inlets have been
rlowAr surpana shock thes aros advanced by Rassmussen 2 4 . Good ideas for
ler suface between the wing leading

edges, producing a uniform pressure between incorporating controls are needed. Base
them. The wing thus rides the wave and drag is a problem for waveriders, and the

hence the term waverider. At off-design use of boattail to lessen base drag is
conditions the leading edges can be sub- feasible

2 3 .

sonic or supersonic. There are a number of viscous problems

The waverider concept has been exten- concerning waveriders of which friction
sively studied in Great Britain for its drag is one. All present methods of

potential application to hypersonic air- deriving waveriders shapes ignore separa-
craft. The late Dietrich Kuchemann in his tion, yet probably most waveriders will

delithtful book "The Aerodynamic Design of experience separated flow at the sharp

Aircraft" 2 3 has an extensive discussion of leading edges for some Mach numbers. At
waverider technology. In this country, high Mach numbers transition is delayed to
Rasmussen

2 0 and Schindel
21 have started to high Reynolds number, and a large part of

exploit this technology by applying it to a waverider might encounter laminar flow.

the hypersonic missile. At reattachment lines the heat transfer
rates can be high even if the location is

A.• lon the leeward side of the missile. TheSA large number of waverider concepts ato siaigha rnfrrtsi

are available. A simple way to obtain the art of estimating heat transfer rates is

on-design well developed and can be applied to wave-

sider, for example, a conical flow as over riders. However, there are still problems
a circular cone or elliptical cone at angle of heat transfer as influenced by separa-
of attack. Many streamsurfaces exist be- tion, reattachment, and shock-wave

N. tween the cone surface and the shock wave. intersections.
-'. The cross-section of a conical waverider
* is then formed by the body, the shock wave, One problem that has arisen with

C and two such streamtube surfaces. This is respect to waveriders is how to calculate
possible since the flow above and below the their characteristics at off-desion condi-
streamtube surfaces cannot communicate tions. It appears that Euler codes can be

* pressure effects except possibly through applied fruitfully to this problem although
the boundary layer. Examples of waveriders they have not been so far.
derived from cones by Rasmussen 2 0 are given
in Figures 11 and 12. The wave rider
shapes studied by Schindel

2 1 are of the 5. Hich Anqle of Attack
following cross-sectional shape. At Aerodynamics!'% M = 5.3

5.1 Introductory Remarks

The aerodynamic problems of rissilos
at high angles of attack have recelvec
much attention in the last few Years, Lut
the problems are only nartzall: sloea.
The importance of hi-h anles t

Schondel 7ets an LD of 4. Hicher values arises 0 rAmarl
are predicted for caret winns23. maneuverability t- ... .. .. .

:ets r to percr

When a waverider with conical flow 0n problems are
design ces off desirn, either by." chances
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vorticity effects or compressibility reason, possibly due tc forward influence
effects or both. A recent survey of high Or the shock wave.
A nonlinearities and means for calculating
them is given in Reference 25. There are 5.3 Some Supersonic/Hypersonic High
fundamental differences between some of the Problems
nonlinear phenomena at transonic speeds and
those at supersonic speeds that are a con- 5.3.1 High a wing theory
sequence of stall and vortex behavior.

While a large body of theory exists
5.2 Transonic Versus Supersonic Problem for the design of subsonic and supersonic

Areas wings at low angles of attack, there is no
general method for wings at high angles of

One of the high a nonlinearities, attack. This fact probably results from
which occurs at transonic speed but not at the complexity of the viscous phenomena
supersonic speed, is wing stall. An including separation at high angles of
example of effects of wing stall on normal- attack. Examples of the various types of
force coefficient and axial center-of- leeward flow over a thick delta wing are
pressure position are shown in Figures 13 shown in Figure 15 as taken from Refer-
and 14, respectively. Results are shown ence 30. In this figure the Mach number
for two wings of PR = 2.0 and ' = 0.5 for in a plane normal to the leading edge is
M = 0.8. Wing P8 has a thickness ratio of the abscissa and the angle of attack in
8.85 percent at the root chord and is a that plane is the ordinate. Without de-
wing of uniform thickness except for 30' scribing the various flows in detail, it is
wedge angles normal to all edges. Wing T2 3  sufficient to say that six different cases
on the other hand has a root chord thick- are differentiated. Four of these cases

. ness ratio of 4.9 percent increasing to involve leading-edge separation which can
9.7 percent at the tip. The sections are be handled by a Kutta condition. This
double wedges in the tip region and modi- lends some promise to the hope that the
fied double wedges inboard. These data Euler equations can be used to develop a
are taken from Reference 26 wherein their general theory of supersonic wings at high
original sources are quoted. Note the angles of attack2 5 . Eventually, the
stall of the thicker wing in Figure 13 and Navier-Stokes equations will prevail.
the larger center-of-pressure travel of the
thinner wing in Figure 14. There is no 5.3.2 Wing-body interference at high a
stall at M = 1.2 and the curves coincide
up to 200 but differ as much as 0.2 in C Most airplanes and missiles encounter
at higher angles of attack. favorable wing-body interference at low

angles of attack through most of the speed
The point I want to make is that air- range as a result of increased wing lift

foil section effects are important on due to body induced upwash. However, at
* transonic wing normal force and center of high angles of attack and high speeds the
" pressure at high angle of attack due to strong nose shocks significantly reduce the

stall, and this effect is absent at dynamic pressure at a wing position. In
M = 1.2 and above. This makes a predic- fact, the interference can turn from highly
tion method for transonic wing-body or favorable to highly unfavorable. This re-
wing-body-tail combination difficult for sult is for conventional fins mounted on a
high ancle of attack since it must account body of revolution. A number of ways of
for the effects of airfoil section on improving high M and a wing-body interfer-
stall. Present pjjdictive methods are ence include wing blending, and unconven-
data-base methods ', and apply strictly tional configurations (waveriders) . Other
only to the airfoil sections used in the concepts are needed.
tests. While this difficulty is present,
it is usually ignored in preliminary de- Fin problems at high angles of attack,
sign. Areas where it cannot be ignored is in addition to adverse wing-body interfer-
in control effectiveness (fig. 4), hinge ence, include loss of control effectiveness,
moments, and control cross-coupling. Pre- control cross-coupling, and induced rolling
dictive methodology is largely lacking in moments. A simple example will illustrate
these important areas, all three problems. Consider a cruciform

wing-body at high angles of attack such
Returning now to the important tran- that the density on the leeward side of the

sonic problem of induced yaw, Brian Hunt body is very low, approaching a vacuum.
has summarized the present state of knowl- With the configuration in the + position,

edge 4n Reference 29. It is known from call for a yaw command by equally deflect-
vortex-cloud theory that the separation ing the upper and lower fins. The normal
points on bodies of revolution at transonic force on the upper fin is far less than
speed can be estimated by the Stratford that on the lower fin so that a large
criterion based on adverse pressure gradi- rolling moment is induced as a result of
ents. However, for supercritical crossflow yaw control. If the missile rolls so that
the as,mmetric vortex effects art achieved the upper fin is in the body vortex, a
or eliminated with the appearance of strong further rolling moment is induced. These
shock waves in the crossflow. What is severe nonlinearities greatly compl cate
interesting in this case is that separation the stability and control of oruciforoor-
occurs at nearly uniform pressure for some figurations at high angle of attack. The

5,
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nonlinearities can be greatly reduced by airbreathers. While most have angle of
utilizing a monoplane bank-to-turn config- attack capabilities to = 401, the accu-
uration. One wonders to what limits racies of the methods are not good to such
cruciform missiles can be operated before high angles, particularly for lateral!
reaching their ultimate capability, directional characteristics which about

half do not treat. Most do not have all-
5.3.3 Wing-body-tail interference movable control capability, and none

handles control characteristics accurately
For wing-body-tail configurations, through the entire range of applicability.

wing-tail interference is an important There is a need for better design tools
cause of nonlinearities in the range up to for high angles of attack, both for conven-
about 200 angle of attack. Both roll angle tional cruciform missiles and other
and wing deflection contribute to the advanced configurations, including lifting
nonlinearities. These nonlinearities in- body types and airbreathers. Reliable
clude loss of longitudinal stability, large prediction methods for lateral/directional
induced rolling moments, and loss of fin stability and control parameters for angles
normal force. At higher angles of attack, or attack greather than 200 remain to be
depending on the distance between the wing accomplished.
trailing edges and the empennage, the wing
and forebody vortices pass well above the
tail, and cause much diminished nonlinear- 6. Some Observations on the Application
ities. However, now the afterbody section of CFD To Missile Aerodynamics
between wing and tail sheds its own vorti-
ces which impinge on the tail. These 6.1 Methods Other Than Navier-Stokes
afterbody vortices are not necessarily
symmetric since the missile may be rolled In Reference 34, Klopfer and Nielsen
or the wings deflected to cause asymmetric survey the application of CFD to missile
flow over the afterbody. A powerful new aerodynamics. Some of the applications
series of nonlinearities thus come into noted in that paper are listed in Fig-
play for angles much above 200. One scheme ure 17(a) for methods other than the
for handling these nonlinearities does a Navier-Stokes methods and in Figure 17(b)
fair job of predicting longitudinal char- for the Navier-Stokes methods. Refer-
acteristics 2 7 but needs improvement in ences 35-59 are covered in the figure.
calculating lateral/directional character- Figure 17(a) shows that the inviscid
istics. The problem area is a difficult methods of transonic small disturbance
one which needs more attention. theory and of full potential theory have

been applied by several investigators to
5.3.4 Vorticity effects; noncircular bodies and fins with no flow separation.

bodies In addition, three cases of application of
the Euler equations are considered. The

There are a number of reasons that first case is that of the straight Euler
missiles will use noncircular bodies to a equations with no boundary layer and the
greater degree in the future. Airbreathing second case is with boundary layer dis-
missiles will have noncircular bodies be- placement thickness included. The third
cause of inlets and ducts; bank-to-turn case is the case of the Euler equations in
missiles do not require round bodies. which the separation lines are specified
Also, the use of square bodies to enhance as input data and a Kutta-like condition
internal packaging and submunition deploy- is introduced at the separation lines.
ment is under active development 31 . They This latter approach yields good results
may also be of importance becuase of radar for those cases where convection of vorti-
crosssection. It is not possible to pre- city overshadows any effects of diffusion
dict the high angle-of-attack aerodynamics of vorticity.
of these noncircular bodies in supercriti-
cal crossflow using any theory but that of A few words on the Kutta condition are
Navier-Stokes because of flow separation. in order. It was found in Reference 44
For subcritical crossflow, where separation that at the sharp subsonic leading edges
is still controlled by adverse pressure of missile fins five boundary conditions
gradients, it is possible to apply vortex- can be specified without over-determining
cloud theory with some success. An example the problem, and the choice of these con-
of such a calculation is shown in Figure 16 ditions involves some arbitrariness. Some
following Mendenhall3 2 . of these arbitrary boundary conditions have

only a small effect which is confined
5.3.5 Status of engineering prediction locally to the neighborhood of the edge.

methods The dominant boundary condition that deter-
mines the vorticity shedding rate at the

A number of engineering prediction edge is the requirement that the flow
*methods exist for defining the forces and leaves the edge in a plane tangent to the
moments acting on wing-body and wing-body- extended chord plane, a Kutta-like cond:-
tail combinations from subsonic to hyper- tion. A set of boundary conditions can
sonic speeds. Ten of these methods are also be specified for a separation 1.e cn
reviewed by Williams in Reference 33. All a body of revolution which properly re-
apply to cruciform configurations, about dicted the vortex shedding rate fOO tSe
half to lifting bodies, and several to body as shown in Figure IS. Fair agree-ent



between the flow field as predicted and as by neglectino the unsteady terms and by

measured was obtained except near the top modifying the streamwise con.'ective flux
of the body where secondary separation was vector. This makes the equations
ignored. hyperbolic/parabolic in the streamwise di-

rection. For steady supersonic flow, this
This experience appears to be contra- permits marching in the streamwise direc-

dictorv to that of Schmidt, Jameson, and tion. It is possible to get solutions for
Whitfield 5 2 who found that they did not many cases of interest within present com-
have to impose a Kutta condition when puter resources. The method is stable if
applying the Euler equation to an airfoil the subsonic part of the flow (boundary
with a sharp trailing edge. Also, Eriksson layer) is small. Large-scale separation
and Rizzi 6 0 has a similar experience when generally cannot be handled by the PNS

applying the Euler equations to airfoils equations, not only because of stability,
and a delta wing with sharp subsonic lead- but because of the lack of a good turbu-
ing edges. lence model.

A simple explanation can resolve these The full Navier-Stokes equations are
differences. We must differentiate between applicable to missiles at any speed or
distinguished separation locations like angle of attack. However, their general
sharp trailing edges the location of which application is limited by computer re-
are known a priori and other separation sources and turbulence modeling. The only
locations like the separation line on a application to a wing-body combination was
body of revolution which are not known a made by Shang 5 4 , for zero angle of attack,
priori and which are Reynolds number, Mach but no angle-of-attack cases seem to have
number, and angle of attack dependent. It been run to date.
is known that the action of viscosity is
to make a sharp trailing edge a separation 6.3 Future Directions
location. However the potential equations
cannot handle the trailing vortex sheet It is of interest to speculate on the
explicitly because it is rotational. The application of CFD to complete missile
Euler equation, which can support a rota- configurations in the future. It is prob-
tional flow, might be expected to recognize able that panel methods and Euler equations
a Kutta condition if viscous effects could will be the principal tools for complete
be introduced into them. It is probable configurations for some time to come. The
that the artificial viscosity introduced Euler equations are just emerging in this
by the algorithm provides the necessary connection, and a great deal of work is
mechanism for the Euler equations to do needed in all areas from mesh generation to
this, and separation will appear at the finding better ways of treating separation.
distinguished location since its position The limits of applicability and the
is not Reynolds-number dependent. accuracy of the Euler equations in various

cases need to be determined. It will be a
The Euler equations are also known to long time before Navier-Stokes equations

produce separation on cones and other will be used routinely in conceptual
bodies of revolution 4 4 . However, the sepa- design. While the size of existing compu-

ration does not appear at the correct ters is a limiting factor, it may not be so
position since the effective Reynolds num- limiting as the lack of understanding of
ber due to artificial viscosity is usually turbulent modeling for separated compres-
incorrect and it is also grid-dependent. sible flow.
lAcordingly it is necessary to introduce a
separation line based on experiment and Some specific advancerents which could
Kutta-like boundary conditions to get good aid future applications of CFD aerodynamics
-esults for separated rlow on bodies which include both calculative and experimental
do not have distinguished separation efforts. These include:

:l ocations.
1. Special data to help formulate the

6.2 Navier-Stokes Methods Euler equation boundary conditions for
separated flow near sharp edges.

in figure 18(b) three different ver-
sions of the Navier-Stokes equations are 2. Experimental separation-line data
listec for both laminar and turbulent flow. on noncircular bodies.
The thin-layer Navier-Stokes equations are
obtained by neglecting viscous terms in 3. Starting solutions for the Euler
one streamwise and/or spanwise direction. equations for spatula noses.
Ths is ;ustified on the grounds that
-7recient s in the boundary layer normal to 4. Starting solutions far bnt n-E -e wall are much greater than in the other spherical noses with detached shccks.

iections. No wing-body combinations have
reean attempted using these to the best of 5. Prediction of vortex burstonz at

kncwledae. high Mach numbers.

Tse parabolized Navier-Stokes equa- 6. Method of predicting-
:ins are a simplification of the full mation in wing-body 4 unctures.
Re'v'atlis-averaed Navier-Stokes equation

[%"
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. Other Areas Imoacting Future the emphasis is upon bodies with multiple
Missile Design differing diffraction paths, leading to

noncircular cross-sections, rounded bases,
A number of other areas influencing and non-cruciform fins tc avoid corner

future missile design will be mentioned reflectors.
but will not be discussed in any detail for
lack of time. The areas are supersonic
carriage and separation of stores, aero- 8. Concluding Remarks
thermal design, and radar cross-section.

A number of trends in future missile
It is well-known that an airplane with design have been discussed with respect to

a load of external stores mounted on pylons the ways in which they influence aerody-
has too much drag to fly at supersonic namic design. Among the subjects discussed
speed. This has led to a multitude of are:
concepts for other methods of carrying and
launching "external" stores, including the a. Airframe-inlet interference in
following ones: airbreathing missiles.

1. Conformal b. Transonic aerodynamic problems for
vertically launched miosiles with quick2. Semi-submerged turn-over.

3. Cavities and open bays
c. Obtaining high L/D at hypersonic

4. Internal carriage speeds.

5. Topside carriage
d. Waveriders; aerodynamically con-6. In pod with salvo launch figured missiles.

Work needs to be done to determine which of e. High angle-of-attack problems.
these concepts or other ones are the most
promising, and then research needs to be f. Status of CFD applied to missile
concentrated on the promising ones. The aerodynamics.
impact on missile design comes about from
constraints for carrying the stores and for g. Supersonic carriage and launch of
providing safe launch. stores.

With regard to aerothermal design, the h. Aerothermal design.
general problem areas are well known for
ICBM and space shuttle technology. Also i. Radar cross-section.
the methods for predicting heat transfer
are fairly well developed. Special prob- A number of specific suggestions have
lems exist for missiles with regard to fin- been made where more work is required in
body junctures on windward sides, and with the above areas including the following
hot spots near separation and reattachment
regions and in the neighborhood of shock

impingement. In addition, IR seekers are 1. Methods for determining the
limited by self noise as well as thermal effects of airframe-inlet interference on
shock of their brittle ceramic materials. drag and stability and control are made-
When boundary layer transition occurs on
the seeker dome, the resulting increase in quate. Panel methods may be helpful in

heating at the dome base leads to hoop this area.

stresses that may cause failure of the 2. For missiles which must operate
material. There are similar thermal prob- 2. For msles whih trate
lems with radomes and leading edges which at high angles of attack in the transonic
may require large radii at tne expense of range, special nonlinearities need atten--g tion. These include better control systems
crag. and control prediction methodology, elimi-

nation or harnessing of induced yaw, and
Since the total temperature at Mach 6, higher normal accelerations.

100,000 ft. altitude is about 34000 R,

airbreathing engine and air inlet compo- 3. Better aerodynamic efficiency at
nents must be fabricated from refractory hypersonic speeds (high L/D) is needed.
metals and insulated with nonablative
materials such as Zirconia. In such de- 4. While waveriders are promisin i
sign, thermal control via radiation losses connection with 3, much more work is ree e4
becomes an important factor. to provide radomes and inlets for wa e-

In applications where radar cross- riders. Also methods for predictino ther

section must be minimized, there could be aerodynamic characteristics at cff es1n

a definite impact both on the design of the are generally lacking.
missile and on its carriage position on
the aircraft. Providino minimum radar 5. Methods for predictinoco

I ~ ~ miiu effectiveness, hinge m7oments, ow_ n_--cross-section with hiah aerodynamic effi- cross-couplina forlarce anIesciency will be a definite problem in a c ntos-deeinio n fa r -a nc e s tO
cerain applications. In RCS minimization, n

movable controls anc; ther ccntrt -"017s.



6. Ideas for producing favorable hy- 9. Biringen, S. H. and McMillan, 0. J.:
personic wing-body interference with high An Implicit Method for the Calculation
lift-drag ratio configurations are needed, of Inlet Flow Fields. NASA CR 3413,

Jun. 1981
7. Methods for predicting vortex

behavior for noncircular bodies are needed 10. Rubbert, P. E. and Saaris, G. R.:
for supercritical crossflow. Review and Evaluation of a Three-

Dimensional Lifting Potential Flow
8. Missile engineering prediction Analysis Method for Arbitrary Config-

method for lateral/directional character- urations. AIAA Paper 72-188,
istics for u > 200 need improvement. Jan. 1972.

9. The application of the Euler equa- 11. Dillenius, M. F. E. and Nielsen, J.
tions to complete missile configurations N.: Computer Programs for Calculating
needs to be extended especially witn re- Pressure Distributions Including
spect to flow separation phenomena. Vortex Effects on Supersonic Monoplane

or Cruciform Wing-Body-Tail Combina-
10. CFD application to missile aero- tions with Round or Elliptical Bodies.

dynamics needs more attention. NASA CR 3122, Apr. 1979.

11. Supersonic carriage and launch, 12. Goodwin, F. K., Dillenius, M. F. E.,
radar cross-section, and aerothermal design and Mullen, J.: Prediction of Super-
need increased emphasis. sonic Store Separation Characteristics

Including Fuselage and Stores of Non-
circular Cross Section. Vol. I -
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(a) Non Navier-Stokes Codes

--- -_Flow Configura- Bodies With Bodies & Fins Bodies & Fins
tion Flow No Flow Flow Unsteady Flows

Ecuotlons Separation Separation Seoration

Tihin Laver Navier- Pulliam (W9)
Stokes, Laminar [lung (41)

Thin Layer Navier- Pulliam (40)
Stokes, Turbulent Schiff (51)

Deiwert (38)
lung (42)

Parabolized Mavier- Rakich (50)
Stokes, Laminar Tannehill (57)

Lin (1!5)

Parabolized Navier- Raklch (50)
Stokes, Turbulent Sturek (5E)

Scnlff (51)

Full "lovier-Stokes, Grahan (39)
Lainar

Full Ilavier-Stokes, Graham (39) Shang (53) Shan (53)
Turbulent Hiankey (40)

(b) Navier-Stokes Codes

Figure 17,- SURVEY OF CFD IN MISSILE AERODYNAMICS,
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T EORETICAL AND EXPERI IENTAL CY?!AMIC STALL 'NrESTTGA.TO' S -A "O. OLAE -:P.

!1. Geissler
*ODFYLR, I!est Germany/!ASA Ares Pesearch Center, 'ST

* Summary region leads to rerarkabe irprcvetcnt ......

the experimental data.O 'Theoretical and experimental investigations have
been carried out on oscillating blade tips at mod- it is assumed that the information needed 'or
erate and high steady mean incidences and oscilla- such a phenomenological correction orocedure can t?
tion amplitudes, miaed by a detailed unsteady boundary-'ayer

investigation before flow separation. The unsteady
Some selected data of these tests are compared behavior of the boundary-layer characteristics and

with a previously developed prediction method based the mechanism of unsteady separation itself ara
on potential theory to investigate the main effects necessary problems for investigation.

Sof viscosity in different domains of dynamic stall.
A simple correction procedure is described to take Therefore a numerical method to calculate tim-
into account the main effects of viscosity on the dimensional unsteady boundary layers has been
unsteady airloads. To get a more detailed insight developed and first of all applied to the oscillat-
into the beginning of unsteady seoaration on oscil- ing flat-plate oroblem. -his 9inite-differenco
lating profiles a finite-difference procedure has procedure, working in the time-!omain, will then be
been developed to calculate the unsteady boundary- applied to oscillatino profiles taking into account
layer equations. This method has been applied to the unsteady boundary conditions obtained by the
the oscillating flat plate problem as a first step. panel method described in ref. 1.
The application to problems of more practical
interest like profiles under pitching motion is
straightforward. K II. Experimental Investigations

I. Introduction Figure la shows the rectangular blade tip model
in the open test section of the 3-m low-speed wind

The flow about a retreating helicopter rotor tunnel of the DFVLR in Gdttingen. The model with a
blade is highly affected by viscous plenomena like NACA 0012 airfoil section was mounted vertically on
dynamic stall and unsteady tip vortex and wake a ground plate and allowed to oscillate about its
interactions. These comolicated unsteady flows are quarter-chord axis. The chord reference length was
still far from satisfactory analytical solutions. c = 400mm and the span s = 2c = 8CCmm (A : .
Details of unsteady flow separation, transition from The model was equipped with a tubing system con-
laminar to turbulent flow and turbulence itself are necting about 150 pressure orifices within 8 span-
still not understood well enough such that numerical wise sections over four scanning valves with a
methods can take these complicated problems suffic- pressure transducer below the ground plate. The
iently into account. experiments have been performed at a tunnel soeed

of 50 m/s leading to a Reynolds number of Re = 1.2
For the investigation of viscous phenomena on x 106 based on c. Further details of the model

oscillating helicopter rotor blade tips, measure- and measuring technique as well as the experimental
ments of steady and unsteady (first harmonic com- results are given in ref. 3.
ponents) pressure distributions have been carried
out in the low speed 3-m wind tunnel of the DFVLR 1I1. Calculation Procedures (Panel "ethod)
in Gdttingen, West Germany. These experiments were
,!one within the scope of a cooperative agreement The potential theoretical method applied for
between NASA, Langley Research Center and the DFVLR, calculating the steady and unsteady pressures on
Institute of Aeroelasticity in Gdttingen. The the real surface of an oscillating 3-D-wing config-
measurements included variations of frequency uration has been given in ref. 1. Figure lb shows
(f = 0/4/8/12 Hz), steady mean incidences: the arbitrary wing geometry with the corresponding
0 o < 0  < 200 and oscillation amplitudes: panel arrangement, control point locations and t"e
To Z < ST. wake surface divided into wake strips. Each panel

is represented by a source/sink and doublet distri-
In addition to the experimental investigations, bution, each of constant strength. The wake is

a panel-type method to calculate the inviscid steady represented by doublets alone. The wake geometry
and unsteady pressure distributions about three- is prescribed and not cranged during the
dimensional wing configurations undergoing plung- calculation.
ing, pitching or control-surface oscillations has
been developed1 . The panel method has been applied to a variety

of problems including three-dimensional swept wings
The following discussion will concentrate on a and wings with oscillating control surfaces. Com-

comparison of measured and calculated pressure dis- parisons with other methods and, in particular with
tributions for a rectannular blade tip at various experimental data, show quite satisfactory corres-
incidences and oscillation amplitudes. The results pondence in cases where viscous effects are small.
are given in a similar manner as has been proposed Influences of steady boundary layers on the steady
in ref. 2. The discussions will show the effects as well as unsteady pressure distributions have also
of viscosity at the beginning of separation as well been taken into accountl and give an improvement
as in the deep dynamic stall region. It will be of the steady and real-cart unsteady pressures.
shown that a simple correction procedure for the The imaginary parts, however, are not influences
calculated inviscid results within the separated properly by this simple correction procedure.
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SFig. 1 (a) Photo of the rectangular blade tip in the
test section of the 3m-low speed wind 0 0 V/Ctunnel of the DFVLR/Gdttingen. pr c 0g 7

(b) Panel-method: wing geometry, panel
arrangement. Fig. 2 MACA 0012: cau 80 + 10/7.370 sin wt,

inner section 1.5).
IV. Results (a) Steady, real and imaginary pressures.

(b) Amplitude and phase.
In the following series of figures (figures

2-4), some selected steady and unsteady pressure reduction close to the trailing edge. This effect
distributions are given for small (6 = 10) as must be attributed to the beginning of a trailing-well as for higher (~=80) oscillation ampli- edge separation, because these effects on the phase
tudes about ct0 = 80 and 160 steady mean inci- angle distribution are similar to cases of higher

*dence. The plots always give calculated and mea- incidence where separation is obviously apparent,
sured steady as well as real and imaginary parts of as will be discussed in the next section.
the unsteady pressures and, in addition, amplitude
and phase angle distributions for complete informa- 4.2 Deep Dynamic Stall
tion. The pressure data are plotted versus
instead of x/c in order to expand the leading edge Figure 3 displays results for the high incidence

' region of the profile. Several additional results case of ao = 160 with E = 10 and 8.140 oscil-
are discussed in ref. 5. lation amplitude (inboard station, n = 1.5). In

the small amplitude case there is still a good cor-
respondence between inviscid theory and experiment.- 4.1 Stall Onset Again the phase angles in Fig. 3b show larger devi-
ations from the calculated results which must beFigure 2a shows steady as well as real and referred to the beginnirn of a turbulent trailing-

imaginary part of the unsteady pressure distribution edge separation. The !,tuation changes, however,
* at the inboard station (n a y/c = 1.5 with y = 0 completely for the high amplitude case: On the

at the wing tip). The steady mean incidence is syction side the leading edge pressure peak of
ao a 8* and the experimental results are C) (Fig. 3a) is now considerably reduced. At
obtained for 6 - 1.050 and 7.370 o~cillatlon the same location a strong peak is built up in the
aplitude. The unsteady pressures C, and imaginary pressures. Further on the C-values
C" are referred to the amplitude. The measured remain on a nearly constant level compared to theory
steady and real part unsteady pressures show only a over large parts of the upper wing surface. The
small reduction compared to theory which must be phase angles in Fig. 3b show a quite contrary
referred to boundary-layer displacement effects, behavior on the wing suction side. These phase
Figure 2b shows the amplitude and phase angle dis- differences between theory and experiment are
tributlons for the same case. Only the phase angies responsible for the strong shift of the unsteady
on the upper surface of the wing show a remarkable real-part pressure peak into the imaginary part.

2
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The results shown in Figures 2-4 are a few typ-
Fig. 3 NACA 0012: a = 160 + 1/8.140 sin wt, ical examples of the flow situation on oscillating

inner section (n 1.5). wings under separated flow conditions. Further
(a) Steady, real and imaginary pressures. examples are discussed in ref. 5. To show that the
(b) Amplitude and phase. separation effects on the unsteady pressures are

not a feature of the special wing configuration,
In this high amplitude case the flow obviously Figure 5 shows results of a supercritical wing-

separates from the leading edge over a part of the section (Va-2 supercritical airfoil) with oscillat-
cycle. Due to this leading-edge separation, large ing trailing-edge control. The steady mean flap
vortex-like disturbances are created which propagate deflection in this case is 6 = 10 ano the oscil-
downstream over the upper side of the wing. The lation amplitude 3" = 1' (frequency f = 9 Hz).
separation mainly affects the phase angle of the The results in Fig. 5a show again steady, real and
unsteady pressures whereas the amplitudes remain imaginary parts of the unsteady pressures and Fig.
nearly constant within the separated region. 5b displays amplitude and phase angle distributions.

The inviscid theoretical results are corrected by a
4.3 Effects on Outboard Sections simple procedure taking into account the displace-

ment effect of the steady boundary layer. This
For the very tip region of the wing, the situa- correction improves the steady and real part

4 tion is completely changed. Figure 4 shows the unsteady pressures but does not have the right
corresponding results at n * 0.1 (y/c - 0.1 mea- influence on the imaginary parts. Strong deviations
sured from the wing tip). Now the leading-edge between theory and experiment can again be observed
region is only affected slightly by viscous effects on the suction side of the oscillating flap which
even in the high amplitude case. On the other hand, must be referred to turbulent separation. The real
characteristic effects of the tip-vortex near the part pressure peak at the control leading edge is
trailing edge can be observed in the steady and real now considerably reduced and shifted into the
part pressures. The imaginary pressures, however, imaginary part. This is again due to the contrary
remain nearly unchanged. behavior of the phase angle inside the separated

region (Fig. Sb). In the following section it is
4.4 Unsteady Separation on a Profile Section with shown how a simple correction procedure is able to

-sc11ating control take care of these viscous effects.

3..
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o Viscous correction procedures of this type have,
05' of course, the disadvantage that the correction6: 100= factor, in this case the' image value )m, can

c A=6 only be found by comparison between theory and

" i :9HZ experiment. To change this unsatisfactory situa-

~-correction tion, calculation procedures must be developed to

c4r A10 take into account unsteady viscous effects ;.nicn at
least give more insight into the phase and amplitude

4 behaviors at separation or inside the separated

., regions.

V. Unsteady Boundary-Layer Calculations -

Oscillating Flat Plate Problem

,.- -i'!- -L- -7 -: One possibility to obtain some detailed infor-
v 2 Profile mation of unsteady viscous flows before and close

* "to separation can be achieved by the investigation
of unsteady boundary layers. As a first step

* .towards this goal, a finite-difference procedure has
- been developed to calculate the unsteady laminar
XII boundary layer by a time-marching procedure. ThisK method, which is described in detail in !ef. 5, has

first of all successfully been applied to the well-/" known problem of a flat plate oscillating in its own

plane. The flat-plate problem is on one hand very
-- or suitable to check a nurerical procedure againstS , ndvarious results existing already in the literature

and make comparisons with low and high frequency
-'es're sid. - solutions which can be found in Ref. 7. On the

a,,-050 L Prohie other hand some characteristic features of unsteady
ag-0V boundary layers, which differ considerably from
6 , 10 their two-dimensional steady counterparts, can

A- 6 already be studied.

! .9Hz The most remarkable feature, which can be found
C in Figs. 6a-c, is the appearance of reversed flow

' regions over a part of the oscillation cycle. The
soo implicit numerical calculation procedure of a

Crank-Nicolson type, which has been applied here,
does not show any difficulties in marching through

9O! .these reversed flow regions. This is, of course,
l- " lonly possible as long as the numerical stability

condition limited by the zone of influence of the
oj 0 05 ' 7 X/ )5 flow characteristics is not violated. In Figs.

6a-c the results of a high frequency solution

Fig. 5 Va2 supercritical airfoil section with oscil- obtained from a .imple system of ordinary differ-
lating control: 6 = 100 + 10 sin wt ential equations' are used for comparison. The
(a) Steady, real and imaginary pressures. results fit extremely well with the numerical data
(b) Amplitude and phase. giving a lot of confidence in the validity of the

numerical procedure.
4.5 Viscous Correction Procedure

Two other important features of the unsteady
In Fig. 3b, for the wing case, as well as in boundary layers can also be studied in Figs. 6a-c.

Fig. 5b, for the profile with oscillating control, Figure 6c shows the large amount of unsteadiness
the phase distribution in the separated region can during a cyclr of oscillation which makes it diffi-
simply be corrected by cult to choose a suitable family of profiles for a

simpler intcgral procedure. Figure 6b finally dis-
0cor = 2om - plays the behavior of the boundary-layer displace-

ment thickness: 6 shows an unsymmetric behav-
where :m is given in the corresponding fig- ior (low minimum, larger maximum) during a cycle
ures. Comparing inviscid theoretical with experi- which is mainly influenced by the oscillation amp-
mental phase-angle distributions inside the sepa- litude E. Tw, as well as 51 show considerable phase
rated regions, Qm serves as an "image line." shifts with respect to the movement of the plate.

The effects of the corrected theoretical

e-distributions on the real ano imaginary pres- VI. Extension of the Unstead% Boundary-Layer
sures are given in Figs. 3a and 5a. The shift of Method to Oscillating Profiles
the pressure peak from the real part Into the imag-inary part is in surprisingly good agreement with With the experience from the flat plate oroblem,

the experimental data. Deviations In the real parts the numerical calculation procedure can now be
of Fig. Sa must be referred to amplitude differences apolied to the more complicated problem of oscil-
which have not been taken into account. lating airfoils. In this case, suitable initial

4
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and boundary conditions must be determined before VII. Conclusion
the calculation can start.

Theoretical and experimental investigations have
Results from the unsteady panel method described been carried out on a rotor blade tip oscilating

in Section 3 serve as useful boundary conditions at in pitch about its quarter-chord axis. Comparisons
the outer edge of the boundary layer. Initial con- between an inviscid, panel-type theory and experi-
ditions along the profile at t = 0 can be calculated nent show the effects of viscosity on the steady
by the solution of the steady-state boundary layer. and, in particular, on the unsteady pressure dis-
Initial conditions close to the front stagnation tributions on the wing surface. Special features
point can be determined by using a stagration point which seem to be common have been found to influence
fixed frame of reference, i.e. a system which moves the unsteady airloads under seoarated flow condi-
harmonically with the stagnation point. The same tions. Simple correction procedures are suitable
finite-difference procedure can then be applied as to take care of these effects, but for this type of
before, but care must be exercised with respect to correction, experimental data are necessary. 'ore
the numerical stability condition. Due to the very insight into unsteady viscous flows may be obtained
high pressure gradients, the step sizes in the by the study of unsteady boundary layers. There-
x-directlon must be very small, leading to even fore, a finite-difference procedure has been devel-
smaller tine steps to fulfill numerical stability oped to solve the unsteady boundary-layer equations.
requirements. This method has first of all been applied to the
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EFFECT OF ROUGHNESS ON THREE-DIMENSIONAL
TURBULENT BOUNDARY LAYERS

P.A. Krogstad* and T.K. Fannel0p**

Abstract

S>'he paper describes a three-dimensional From a physical point of view roughness
boundary layer experiment on a rough sur- could affect the 3D in two different ways.
ace. The data obtained are compared to The increase in transverse friction would
reference experiment having the same tend to reduce the crossflow. On the

geometry and flow conditions but with other hand, the increase in streamwise
a smooth surface. The boundary layer wall friction also tends to slow down
data are compared using scaling criteria the fluid, making it more sensitive to
developed from two-dimensional flows, the lateral pressure gradient and there-
It is found that the results, in terms of fore increases the production of crossflow.
scaled variables, agree well in regions Which one of these two opposing effects is
where pressure gradients are the dominant dominant is not quite clear but in their
cause of three-dimensionality. In regions sample computation of the infinite swept
where shear stresses are more important, wing experiment documented in reference 17,
significant deviations in profile charac- substantial differences in crossflow was
teristics appear. A possible interpre- noted when a small amount of roughness
tation is that the degree of anisotropy was specified. If this is a physically
is greater in three-dimensional rough significant effect it should be discern-
boundary-layer flows than in the corre- able when the same 3D boundary layer
sponding smooth-wall case. experiment were repeated with a rough and

a smooth test surface.

I. Introduction In this paper we discuss some of the
results obtained by repeating a previously

During the last few decades a large documented boundary layer experiment per-
number of boundary layer experiments on formed at our institute (ref. 18) with
rough surfaces have been conducted in sand paper roughness added to the test
two-dimensional flows both with and with- surface. The data from the smooth sur-
out pressure gradients (ref. 1 to 9). face tests will be used as a reference
This has provided invaluable information in analyzing the data.
to the development of computational me-
thods (ref. 10 to IS) which seem to be
able to predict the 2D rough boundary II. Experimental setup
layer flows successfully. However, to and instrumentation
our knowledge, no experimental infor-
mation is available or 3D, rough boun- The experiment for the smooth surface
dary layers. case is fully documented in reference 18.

The model consists of a semi-infinite
Recently, Ryhming and Fannelop" pu- blunt body mounted on a flat surface ex-

blished a 3D law-of-the-wall formulation tending 3.34 m upstream of the model. The
including surface roughness effects. shape of.the blunt body is produced by
The results of their analysis show, that computing the potential flow contour of a
in 3D boundary layer flows, the effects line source in a uniform flow. After
of roughness on the velocity profiles taking into account the effect of the wind
cannot fully be accounted for by a down- tunnel walls by the method of mirror images
ward shift Ay + of the wall coordinate, it is shown in ref. 18 that very good
Additional terms,proportional to y+ or agreement between the analytical and mea-
y Iog y+ appear, which would seem to be sured pressure distribution was obtained.
of increasing importance away from the Figure 1 shows the model with the coordi-
wall. These terms are related to the nate system, the computed inviscid stream-
curvature and convergence/divergence of lines and the surface streamlines obtained
the wall streamline and would therefore for the smooth case by means of oil flow
not be present in 2D flows. The theory visualization. The measurement stations
presumes the existence of the law-of- are also 'idicated. Unfortunately no sur-

- the-wall and no conclusions can be drawn face strtamlins are obtainable for the
concerning the flow outside the loga- rough surface su the exact position of
rithmic region. the separation line could not be estab-

SINTEF, The foundation of scientific lished for this case.

and industrial research, Trondheim,
Norway.

Norwegian Institute of Technology,
Trondheim, Norway
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Figure 4 and 5 show law-of-the-wall by the addition of roughness, the height
and wake plots of the rough and smooth of the separation vortex relative to the
surface boundary layer profiles at station boundary layer thickness of the oncoming
11 for the same Rex (3.76.106). G was flow is much reduced in the rough wall
found to be 6.73 in the smooth case which case. This will reduce the effective
is somewhat higher than the values nor- normal pressure gradient which in turn
mally specified for flat plate boundary could influence the crossflow angle.
layers, confirming the presence of a Figure 11 shows a polar plot of the same
slight adverse pressure gradient. The data which clearly shows the differences
logarithmic region is seen to be well de- in the outer flow but agreement near the
veloped in both cases and the wake com- wall.
ponents collapse on the same curve.

Figure 12 shows wake plots for the
streamline furthest out from the line of

VI. Experimental results symmetry. The wakes are seen to collapse
for rough and smooth surfaces at a'l

,.. Figure 6 shows the wake profiles for stations. The estimated skin friction
the measurement stations along the line of coefficients along this streamline are
symmetry. It is seen that the data for considered reliable as all profiles show
rough and smooth surfaces collapse at extensive logarithmic regions (fig. 13).
each station supporting the assumption of At station 37 the pressure gradient is
a constant G-function. The law-of-the- favourable which results in a wake part
wall plots in figure - show an increasing that drops below the logarithmic line.
wake function as separation is approached.
For station 18 the logarithmic region has Crossflow angles have been plotted in
disappeared in the smooth case which most figure 14 and polar plots are shown in
likely is also the case for the rough sur- figure 15. The flow along this line
face flow making the estimate of cf ques- differs from that along the other streamline
tionable. (The solid line is the van because the pressure gradients are weak
Driest formulation of the law-of-the-wall and the shear forces relatively more
for a smooth surface). important. This will influence the flow

most significantly in the region outside
Figure 8 shows the wake profiles for the viscous sublayer extending to about

the second streamline. (The profiles for the middle of the boundary layer, where
station 21 have been omitted because they the shear forces have been strongly re-
are practically identical to those of duced. It is seen from the crossflow
profile 11). Some deviations are seen at plots that the most significant differen-
station 28. Possibly it is the result of ces between the smooth and rough data is
"forcing" the data to produce a larger found up to yuT/6*U e of about 0.1 cor-
logarithmic region than what is physically responding to y/6 ot approximately 0.3.
correct (fig. 9) with results similar to For profile 35 the crossflow is increased
those illustrated in figures 2 and 3. by almost 50% in this region compared to

' As discussed previously, the method re- the smooth case. It has been shown in
lies on the existence of at least a small numerical experiments that these effects
but recognizable logarithmic region in can occur if the turbulent shear stresses
the law-of-the-wall plot. are anisotropic (Fannelop and Humphreys' ).

By reducing the eddy viscosity in the
Assuming that the proper length scale lateral direction substantially more

- for the lateral velocity component in the crossflow can be produced. A parametric
" outer flow is the same as that character- study of the 3D law-of-the-wall by

izing the streamwise velocity defect, the Ryhming and Fannelop1' also supports this.
crossflow angle has been plotted against For the flow closest to the wall the
yuT/ 5*Ue as shown in fig. 10. It should differences are minor although for profile
be pointed out however, that it is not 37 the rough surface crossflow comes out
obvious that the shift of origin should be slightly negative at the wall whereas the
the same for the streamwise and lateral smooth data show a small positive angle.

* velocity profiles, as c could depend on
- the shear velocity in the respective di-

rections. The figure indicates that the VII. Conclusions
magnitude of the crossflow angle close to
the wall is not much affected by the sur- A 3D boundary layer experiment is de-
face roughness. In this region the flow scribed where smooth and rough wall data
angle is primarily determined by a balance have been obtained for the same geometry
of local pressure gradients and the tur- and flow conditions.

. bulent shear stresses. Further out the
crossflow for the rough surface experi- A method for comparing rough and smooth
ment is considerably reduced. Because surface boundary layer data has been de-
the extent and shape of the separated scribed. It is believed that the method
region seems to be influenced very little gives reliable estimates of the wall skin

friction coefficient as well as of the
shift in origin, which is required to ob-
tain correct values of the integral
length scales.

.
9%



,j,

I I A I. - IL

,.I .. , J . \eronautical Sci.

e. I , t tj. , I 1e,.i' stress measure- 21. Patel, V.C., J. Fluid Mech., Vol. 23,

S1c . vt t be jperf,)rred. No. 1, 1965.

Be-ause it is impossible tc use common 22. Brown, K.C., Joubert, P.N., J. Fluid

surface flow visualization techniques on Mech., Vol. 35, No. 4, 1969.

the rough wall, precise information on

the wail flow direction is not available. 23. Winter, K.G., Prog. Aerospace Sci.,

However, there was little indication that Vol. 18, 19,7.

the flow, direction in the inner layer is
much affected by the surface roughness. 24. van Driest, E.R., J. Aeronautical Sci.

1956.

VIII. References 25. Fannelop, T.K., Humphreys, D.A., FFA
Rep. 126, 1975.

1. Nikuradse, J., NACA TM 1292, 1950.

2. Schlichting, H., Ingenieur-Archiv,
Vol. VII, No. 1, 1936. "

3. Moore, W.F., Ph.D. dissentation, State

Univ. of Iowa, 1951.

4. Perry, A.E., Joubert, P.N., J. Fluid ------ 
-- ---  

-- ---

Nech., Vol. 17, 1963. .

S. Scottron, V.E., Power, J.L., David- __

Taylor Model Basin, Rep. 2115, 1965. I

6. Perry, A.E., Schofield, W.H., Joubert, I____

P.N., J. Fluid Mech., Vol. 37, 1969.....

7. Antonia, R.A., Luxton, R.E., J. Fluid Fig. 1 Geometry of experiment.

Mech., Vol. 48, 1971.

S. Karlson, R.I., Proc. Int. Symp. on

Ship Viscous Resistance, 1978.

1 9. Aswatha Narayana, P.A., Aeronautical u.

Quarterly, 1980. 30 0 Present method

10. Rotta, J.C., Progress Aeronautical 
O

Sciences, Vol. 2, 1962.
0

11. Dvorak, F.A., AIAA J., Vol. 7, No. 9, 20.
1969.

12. Chan, Y.Y., Nat. Research Council
Canada, Aero. Rep. LR-546, 1971.

13. Antonia, R.A., Wood, D.H., Aeronau-
tical Quarterly, lV'5.

14. Cebeci, T., Chang, K.C., AIAA J.,
Vol. 16, No. 7, 1918. ._ . . . .. _ _ _._ _

1 2 3 to& y

1S. Krogstad P.A, SINTEF Rep. STF 1S
A81014, 1981. Fig. 2 - Law-of-the-wall plot of pro-

16. Ryhming, I.L., Fannelop, T.K., Proc. file 16.

IUTAM Symp. Berlin, 1982.

,bb
% L!1.



0. L

a* OC Cstatioln 33

o oQ r, e'a - • •
e O

0~ 0

A 3 Stati.n 1

0 A 0

/, ir aO

ooz • 0.1 O

"lop .A0 ~ a a m
U AoU ,"*m0

0.0
Fig. 13 Law-of-the-wall plots ;long Amat

outer streamline. stationS3 A AL £A
4A

A £&AA-

0.0 ,
0 0.50 0.75 1.0

u/Ua

.. - Fig. 15 Polar plots of profiles 33,
35 and 37.

9.
a A

ILL
0 ,,rAr " ,• I:_

I
"

.o O

Fig. 14 - Crossflow angles along outer
streamline.

\ .

, , . . ., , '-. .. ,'," ... ,,' ,,,' " , '.', .. . . . . . . . . .. 0,, .% % - " '- .: 1 -: . :. . .,'

,:'-7:,' .. ,'.-',. .. 'm ' ." ' , ," "' " " ' 
:

'-' i: ,kl',,,l~ag ;,=n~, .;,.as-"' 
, - : , - - : "

.. .. . .......



It,
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of attack is 8* (normal incidence). The free-stream

Abstractvelocity is 35 m/s so that the Reynolds number based

*The properties of a turbulent three-dimensional on the chord length is 4,7 105. The free-stream

* wake behind a swept wing are analyzed. The sweep

* angle and the incidence have been chosen to generate turbulence level is IW~iu. - 0,7 %.

very dissyimmetric initial conditions of the wake.

One of the aims of the experiment is to study the On the suction side, the transition is natural

relaxation of this initial dissyanetry. The experi- and is caused by a leading edge bubble. On the

*ment is also aimed at providing a detailed set of pressure side, the transition has been tripped by

data for testing calculation methods and turbulence using a wire parallel to the leading edge.

schemes. For this, detailed measurements of mean

*velocity profiles and of Reynolds stresses profiles The boundary layers developing on the pressure

*have been carried out. Particular attention has been side and on the suction side have been measured in

paid to Reynolds stress measurements. These have detail but the results are not given here. They are

been carr~ed out by using several types of hot wire reported in /Ref. 3/.

probes (45' slanting sensor probe, K-wire probe and

four-wire probe) and the various results are com-

pared.} 
hwg

Two calculation methods have been applied. The

first is an integral method and the second is a

field method in which the turbulence scheme is a

transport equation model. The results -arc presented _________________

and discussed with special emphasis on the turbu-

lence model.
Mit5  W si

* 1. INTRODUCTION

The objective of the present experimental study 4W -.

* ~of a turbulent three-dimensional wake is manysided. . , u .,, btw
First it is aimed at providing a set of data on a

flow which has been rarely studied /Ref. 1, 2/. From '-

*a fundamental point of view, this flow is interesting 
a

because it is a relaxed flow :the initial conditions Fig. I - Experimental set-up
* at the trailing edge, which are very dissysmmetric

and three-dimensional, are generated on the airfoil

by a rather strong adverse pressure gradient which

becomes very small in the wake. Therefore, knowledge The static pressure distribution has been meca-

of turbulence behaviour is valuable for comparison sured by using a static pressure probe. From these

with turbulence modelling. Another aspect of the measurements, an "inviscid velocity" distribution

interest of such data is that more and more calcula- has been deduced and is given in Fig. 1. This figure

tion procedures of the flow field around an airfoil shows that the suction side boundary layer develops

are taking into account the wake and the three- under the effect of an adverse pressure gradient

dimensionality of the flow. Therefore, these data leading to a boundary layer which is almost sea-

should be useful for validating the calculation rateatherilned.Teefr, hehe-

methods. Finally such an experiment is also a good dnsal tefftsln aedvery Treogea the tra-

opportunity for testing measurement techniques of dieing a ed efedeviaio eteng:a the stra-

turbulent three-dimensional flow especially if the lingedand the bdaryo laerwedetew streamsi

Reynldsstrss cmpoent areconideed.about 35*. On the contrary, the pressure side bound-

ary layer develops in presence of a favourable pres-

2. EXPERIMENTAL CONDITIONS sure gradient so that the three-dimensional effects
are very small. Moreover, the thicknesses of the

The wake is generated by a swept wing mounted suction side- and pressure side-boundary layers are

between the lateral walls of a subsonic wind tunnel very different :at the trailing edge, they are res-

of the EIFVEL type (Fig. 1). The wing section is an pectively about 20 mm and 5 msm ; the shape parame-

ONERA D profile. The chord length is constant and ters of the streetwise velocity profiles are also

equal to 200 mm. The sweep angle is 22,5*. The angle very different respectively 3.75 and 1.5.



Therefore, it follows that the initial conditions At the trailing edge, the suction side and pres-
of the wake are strongly dissymmetric. One of the sure side-boundary layers lead to very dissymmetric
purposes of the experiment is precisely to analyze profiles of the streamwise component and of the
the evolution and the relaxation of this dissymmetry. crosswise component as well. Gradually, there is a

symmetrization of these profiles which results in
For this, measurements of the mean velocity and particular in a transfer of three-dimensionality

of the Reynolds stresses have been performed. from the upper side to the lower side. At the same
time, a flattening of the velocity profiles is ob-

These measurements have been carried out mainly served. It should be noted that the time scales of
- in the vertical median plane of the wind tunnel up symmetrization and of flattening of crosswise and

to a distance of 1.24 chord length downstream from streamwise profiles have the same order of magnitude.
.* the trailing edge. However, due to the rather small

ratio between the wing chord and the wing span, the
flow is not exactly invariant in the spanwise direc- x =1
tion. In order to produce a set of data useful for U/L ,

comparison between calculation and experiment, wake
measurements have also been performed in off median T
plane. A total of five planes has been investigated (N

* (Fig. 2). The distance between the two extreme
planes is 100 mm. All the data are tabulated in 1110
/Ref. 3/. In this paper, only characteristic results / 1,28
are given. 

Q2

1,51

1,0 5

Fig. 3- Streamwise and crosswise velocity

profiles

-" -I These evolutions can also be analyzed in the
2 Ihodograph plane (Fig. 4). Just downstream from the

trailing edge, the polar plot becomes a simple

closed loop, the pattern of which is very different

from that obtained just upstream from the trailing
Fig. 2 - Measurement stations edge : this is due to the sudden removal of the no-

• mean velocity profiles slip condition.
X Reynolds stress profiles

W

Ue
3. MEAN VELOCITY MEASUREMENTS i .. ,

The mean " x/ -1, TO
The mean velocity has been measured by using a L

clinometric three tube probe. The probe can rotate ' . . .
about its axis and the velocity direction is known• "
when the two lateral tubes (which are symmetrically I /

45*-chamfered) indicate the same pressure. In this I "
way, the probe is aligned with the mean velocity, " "
the magnitude of which is known from the pressure !,

measured with the central tube. C Ue Xjt."84
* *."scf ..... ,.

The mean velocity is decomposed into streamwise . . ,.

. and crosswise components (Fig. 1). The evolution of -"

these components is given in Fig. 3 at several sta- ,

tions located along the vertical median plane of the
wind tunnel. In this figure, y -0 represents an
horizontal plane containing the trailing edge. Fig. 4 - Polar plots.l



It is noted that the points representing the upper

side and the lower side become closer and closer
because of the symmetrization of the profiles.

However, it is difficult to tell if the svmmetri-

zation is achieved before or after the limit form
is reached (the limit form is defined by the point Method1 45 slanting sesorprobeutcrg rcce

such that u- I and -W- - 0). In fact, it seems and straiht probe
ue Ue

that all these phenomena develop with the same

* time scale.

theThe static pressure has also been measured within

the wake at several stations (Fig. 5). At stations

close to the trailing edge, the static pressure has

a maximum near the point of minimum velocity and a Method2: X-wireprobe (ttingpmbe)
normal pressure gradient is observed. Outside the

wake, the static pressure is not constant either

it should be noted however that even in inviscid

flow, there would be a static pressure variation
which is generated by the airfoil. further down- --- " '.

stream, say half a chord length, the normal static

pressure gradient becomes negligible.

. Method 3 four wre probe n= rcz;r prcte

1weh Fig. 6 - Hot wire probes

-- - In this formula, T is the roll angle of the
probe ; u is the velocity fluctuation in the probe-

. .. e0C'1Y1WW axis direction ; v' and w' are velocity fluctuations

in a plane orthogonal to the probe-axis ; k is the
magnitude sensitivity coefficient and r is a direc-
tional sensitivity coefficient. These coefficients

tr k and r are determined from calibration.

To get the Reynolds stresses, the r.m.s. values

Fig. - Static pressure variations across the wake e are measured. For any value T, the quantity e
T

(Pie : external stagnation pressure - is a function of the six components of the Reynolds
P : local static pressure - Po: reference stress tensor. Then, e must be measured for six
static pressure) different values of T. However, this is not suffi-

cient because the system so obtained is indetermi-
nate and it is necessary to perform an extra mea-
surement. The simplest consists of measuring u2
with a straight probe aligned with the mean velocity
vector.

4. REYNOLDS STRESS MEASUREMENTS -This procedure is very time-consuming since three

EXPERIMENTAL TECHNIQUES steps are needed : the mean velocity is first mea-

sured ; then, u is determined with a straight
The Reynolds stresses have been measured by using probe and finally the five other components of the

constant temperature hot wire anemometry. Three ty- Reynolds stress tensor are calculated from the
pes of hot wire probes have been used and compared r.m.s. values of e--r measured for five T angles. In

(Fig. 6). fact, to improve the accuracy, ert has been measured
for eight values of T and the Reynolds stresses have

4.1. Method I : 450 slanting sensor probe been calculated by using a least square method.

In this case, the probe is placed in the direc- 4.2. Method 2 : X-wire probe
tion of the mean velocity vector at each measure-

* ment point, this direction being known from clino- The second method which has been tested uses a
metric three tube probe measurements. X-wire probe (Fig. 6). In this case also the probe

has been aligned with the mean velocity vector and
It is assumed that the fluctuation of voltage measurements are performed for several values of the

applied to the wire is a linear function of the - angle.

velocity fluctuations /Ref. 4/.

(I) e' = k(u' + r(w' cos Y + v' sin 0))

A7



However, there is a difference with the method

described previously. In effect, for each value of Us

'Y, in addition to the r.m.s. values of the voltages
applied to each wire, an additional independent vt. t1

piece of information is available : this is the * r'.

correlation between each voltage. Moreover, this - -

method no longer needs the independent measurement L
ofiu-Y. 08

4.3. Method 3 : four-wire probe A Y.

The third method uses a four-wire probe which 10 00

consists of a set of two X-wire probes (Fig. 6).
The four wires are electrically independent. With
this probe, it is possible to measure the six com-
ponents of the Reynolds stress tensor without rotat-
ing the probe. To define a quite efficient proce- L0 t p

dure, it is interesting to measure the mean veloci- * -
,. ty and the Reynolds stresses in the same single

operation. This means that the direction of the

probe with respect to the mean velocity vector is
a priori unknown. In this case, it becomes neces- r
sary to use a hot wire law containing two direc- I
tional sensitivity coefficients. +

2 2 + /rn0(2) e e +B Ueff 0
0 0 5 0

eo is the zero velocity voltage and B and m are Fig. 7 Comparison of streamwise and crosswise
coefficients determined from calibration. Ueff is velocity profiles (X/C - 1.10)
an effective velocity defined as :2

2 2 2 2 2 2 Figure 8 shows comparisons of v
2
, u and v-w'

(3) Ueff = Un + ks U +k 2  U measured either with the 45* slanting sensor probe
, or with the four-wire probe at stations x/c = 1.10.

where U is the velocity component parallel 
to the

wire, U
t 

is orthogonal to the wire (in the plane of
the re and the prongs) and U is orthogonal to U -

U and Ut . kI and k? are directional coefficients
determined from calibration.

With this kind of probe, the instantaneous val-
ues of the voltages applied to the four wires are
measured. From them, the three components U , U s 1 I -0
U are calculated by using a least square methos.
After, the mean velocity components are calculated 1Fig. 8 C of
from a statistical treatment of a sampling of a .-

'

great number of values of Un Ut, U . The next step (+ 450 single wire probe

consists of calculating the fluctuations u'n, ut, + four-wire probe)
u's and a statistical treatment enables us to know /
the Reynolds stresses.

Obviously, this method is much more attractive .y
than the first two methods since the instantaneous 4,

values of fluctuations are known. It can, therefore, "+
be imagined that a lot of turbulence characteristics

can be deduced, such as, for example, spectra, time+
correlations...

5. REYNOLDS STRESS MEASUREMENTS - RESULTS U \

5.1. Comparisons of measurements techniques

* The various techniques have been compared at
several stations. Here, only a sample of these .
comparisons is given. Figure 7 shows the comparison
of mean velocity profiles measured either with the q2
clinometric three-tube probe or with the four-wire
probe. The agreement is pretty good even for the

crosswise velocity which is rather small compared
with the streamwise velocity. This demonstrates the 0 ,
good directional sensitivity of the four-wire probe. 0 5 0 0



The overall agreement seems acceptable. The largest 5.2. Results
discrepancies are obtained on the v--r component.
It should be noted, however, that v- is smlier Figure 0 gives the evolutions of u'2  - r

than the other five Reynolds stress components. In v and u--' at several stations located in the
addition v-w is the most difficult correlation to median vertical plane of the wind tunnel. Let us
measure. In the case of the technique using the._ specify that these stresses are expressed in a lo-
45* slanting sensor probe, the measurements of 7 -a cal axis system. This means that u' is aligned with
for two values of T (Y - 0 and T - 1800) enable us the mean local velocity, v' is orthogonal to u' such
to determine u-Y if u-  is known. Indeed, we have that the plane (u', v') is vertical and w' is ortho-

2 -- --~ -i--,gonal to u' and v'.
(4) e'2(7,-0)- k2 (u2 , r2 w2__ 2r uru-)

(5)~~~~ * U,2,2 -- ~
(5) e' (V - 1800) =k (u r w - 2r uw ) u

On the contrary, v can be determined only _28
from equations containing the six components of the 151'5'
Reynolds stress tensor. Therefore, all the inaccu- I69

r acies are accumulated on 7r.

Figure 9 shows comparisons of v 2 , r and -rwr
measured either with the 45" slanting sensor probe
or with the X-wire probe at station 2/c = 1.69. The
overall agreement between the two techniques seems
slightly better than that observed in figure 8 be- -20 -D 0 20.=y_
tween the 45' slanting sensor probe and the four-
wire probe. Possibly, this is due to the fact that
there is a closer resemblance between methods I 1U
and 2 than between methods I and 3.

0 a 209

•X' 'Ps +e

0 -0,2.LC go

j.,.

0 *1
22

.10? __ _ __ _ __ _

oo 0 2

Fg 10 Evlto fi''M* ' n '

___________ 
•/ -1.9
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Fi. - Comparison of _r* T (4. Xwr The component u' 2 has been measured with a straightprobe -~ e 45' probe aligned with the mean velocity vector.probe e 450slanting sensor probe)



" At the trailing edge, the profile is very dis- are zero when U and y resp. are extrema. This pro-
* synmetric. On the lower side (y < 0), the profile perty is not exactly verified in experiments be-

has a peak near y - 0 and it looks like a flat plate cause the zeros of uv and wv are slightly
boundary layer profile. On the upper side (y > 0), shifted with respect to the extrema of u and y.
the profile has a bump located at one third of the However not too close to the points where W77
thickness of the boundary layer ; this reflects the and wv- are zero, the signs of these correlations
existence of a positive pressure gradient on the are in agreement with the ones given by formulae 9,
suction side of the airfoil. Downstream, a progres- 10. In addition, expressions 9, 10 show that the
sive symmetrization is observed. At V/c - 2.24, the vector of components (77, 77-) is aligned with
overall feature is that of a classic two-dimensional the y-derivative of mean velocity. To check this,
wake but the profile is still significantly dissym- the parameter N defined as
metric. (12) N =tan (YTI -

The profiles of u-rv, v'w and u-wr are also tan - Y)
. very dissymmetric at the trailing edge and become is plotted in figure 11. In this definition (12) of

more symmetric downstream. More precisely, the N, the quantities (yT -
Y
) and (yg - y) define res-

profiles of uv' and v-- tend to be antisyanetric pectively the directions of vector T (U-- , --V7)
whereas 7177 tends to be symmetric. It is noted that aV
the magnitude of 

7
rT is of the same order as the and of the y-derivative - of the mean velocity

one o 717 and 717w-. Byone of u with respect to the direction of mean velocity.

5.3. Analysis of the cross correlations The parameter N is equal to I if T and LV are

The evolution of the cross correlations can be aligned. Figure 11 shows that N is around I but

analyzed by considering a turbulence model as the there is a rather large scatter in experimental
" one proposed by LAUNDER-REECE-RODI /Ref. 5/. values which is due to the difficulty in measuring

the Reynolds stresses v--T and ur7.
If the modelled Reynolds stress equations are

simplified by neglecting the convection and dif-

fusion terms and if only the components 2- and 2Wy

of the velocity gradient are considered, simple ex-
pressions of Reynolds stresses are obtained. In a 

WV

cartesian coordinate system, these are :

(6) - t . V auv

I :I t ay

4 where the index I means that the velocity components

are defined in a cartesian system. In the local - _

streamline coordinate system, the Reynolds stresses

Sare:

-v t By

79"

(0) - -v =Vt  o y s os

I(II) - VC2- +2 k u By 3

BC t t y Fig. II - Evolution of N

where y is the direction of the mean velocity with

'"respect to any given axis (for example, y can be 6. CALCULATION METHODS
defined as y - tan -l (Wi/UI)).Proposed values of
constants are C1 - 1.5 and C2 - 0.4. Two calculation methods have been implemented

the simpler method consists in solving the global
In thea boe o expressions, k and t e are the turbu- equations of the wake and the more elaborate uses

lent kinetic energy and its dissipation rate and the partial differential equations by introducing
Vt is the eddy viscosity coefficient. a transport equation model.

Figure 1 0 shows that u is negative in the 6... Integral method

whole thickness of the wake. This is coherent with
muu s t c ett The integral method is based on the solution

forula8 bcaue bth uanitisy y chne of global equations which are the momentum equa-
tthre same location i the wake. tions and the continuity equation integrated with
In fact t could be that there is a thin regio n the lower and the upper bound-
where uw is positive but this has not been detec- aries of the wake. The main unknowns of the equa-
ted from experiments. tions are characteristic thicknesses between which

Sclosure relationships are needed to solve the sys-The formulae 9, Oi show that r - te of equations. To obtain these relationships,

t



a representation of the velocity profiles is
needed. For this, rather crude hypotheses have been 6.2. Transport equation model

made. The streamwise velocity profile is divided The partial differential equations of the wake
into two parts : I) one between the minimum velo- have been solved by using either a two-equation

city point and the lower boundary of the wake ; model or a four-equations modei. In both cases,

2) the other between the minimum velocity point the equations for the turbulent kinetic energy and
and the upper boundary of the wake. its dissipation rate are used. In a cartesian

-' ."Each part is represented by a profile used in coordinate system, they are

two-dimensional flow: (16) U w + )( 1 6 2 - _ - U - -W - : . _ v r, + )
(-'" 3/ -t 9Y3y ok  3y

(13) TU - 2u
De C (--r 3U - 3W

min (17) y- - c k (u v - + v w

The crosswise velocity profile is determined by £2 a a 2)
using a simplified representation of the polar plot -C 2  - + ( a y
which is assumed to be a triangle as shown in 2

figure 12. with vt = C1 k
2

The modifications proposed by ROTTA /6/ for calcu-
W lating 77 and v'w' have been tested. If four-

Ue equation model is used, the u'v'- and v'w'-equations
are :

(18) - = - k(apx x 2- + a pxz 3- C1

Dt ay cY

(19) -w -k (a -U + a - ) -C- w
Dtpzx 3y pzz 3y 1 k

(20) with a = C U2 +TW
2

XX T u
2  

W
2

(21) a = a -C 0- T) -
Ue pzx pxz TU2 + W

2

TU
2 

+W
2

Fig. 12 Simplified representation of polar plot (22) = C T
2 

+W
2

in a wake
The continuity equation also needs the specifi- If a two-equation model is used, 77 and 77

cation of the entrainment coefficient for each are calculated from
half part of the wake. This coefficient is :2 -1 3W

CE=3 e(23) -uv =vr (a -U+ a
CT pxx y pxz 3y)

where 6 is the thickness of the lower (or upper) (24) 't (a U- + 3W
part of the wake, s is the coordinate along the C pzx yy pzz y

external streamlines, Ue is the velocity magnitude y p

at the wake boundary and Ve is the normal velocity In these models, a new parameter T has been intro-
component at the wake boundary. This coefficient is duced. Formulae (23) and (24) clearly show the effect
calculated by a formula used in two-dimensional of this parameter : when T = 1A a classic model is
flow : obtained, in which the vector r of components (-7,

(15) CE 0,14 Ue 
1

)min vr is aligned with the vector 2- of components

(1)3EW 3y
"."311 ") ; when T # 1, T is no longer aligned with

In the method which has been developed, the -y'" In fact, when u'v' and vw' are calculated from
upper and lower points of the wake are calculated
separately. For this, global equations are written equations (23), (24), the parameter T is exactly

identifiable with the parameter N defined by equa-for each part of the wakeont fumiimu tea- tion (12) ; this is no longer true when hoand,..are introduced : ) the points of minimum stream- 77 are calculated from transport equations (18),

* -' wise velocity and of maximum crosswise velocity
are assumed to be at the same location ; 2) at this (19).

point, the shear stress components are assumed to
be equal to zero. 6.3. Results

Obviously, all the hypotheses introduced in the The integral method and the transport equation
integral method are very crude but this method has models have been applied to the previously descri-
been developed with the aim of providing a simple bed experiments. The partial differential equations

and practical tool.

.5.!



have been solved by assuming invariance in the The various methods give nearly the same overall

direction parallel to the trailing edge (infinite agreement on the evolutions of the shape factor H,

swept wing hypothesis). This is not exactly true the minimum streamwise velocity and the thicknesses

in particular because initial conditions of the 912 and 62. The transport equation model gives,

' wake (at the trailing edge) are not invariant in however, better results in the immediate vicinity
the spanwise direction. The influence of the ini- of the trailing edge. The results obtained from the

tial conditions has been studied by using the inte- two-equation model, not represented here, are prac-

gral method. For this, two calculations have been tically the same as those obtained from the four-
performed : one takes into account the variations equation model.
of initial conditions, the other does not. The

differences between the results are not absolutely

negligible but they are rather small. .8 u.
A sample of results obtained from the various

calculation methods is given in figures 13, 14, 15.

The shape factor H is defined from streamwise velo-

city profiles (H (I- -!)dy/j--(I- -)dy) and .
the thicknesses 2 and 12 :re defined from cross- -

wise velocity profiles (6, U y

fw u e
612 - (- -)dy.
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With the transport equation model, two values of whereas the comparisons with the present experiments
T have been tested : T - I and T - 0.5. The influ- show that a value T - I is more appropriate. It is
ence of this variation of T on the shape factor and believed that the right way for obtaining a good
on the minimum streamwise velocity is negligible model for calculating three-dimensional thin shear
whereas small variations of the thicknesses 62 and layers is not the use of the parameter T. Possibly,
e12 are observed. Nevertheless, the effect of T on the solution could be to keep in the modelled Reynolds
62 and e12 is not representative of its effect on stress equations extra rate of strain terms, i.e.

the crosswise velocity profiles (Fig. 15). It can be terms in aU aU 3W W ... This means that the
said that I plays the role of a time constant for ax 3 z , ax , z"

the decay of the crosswise velocity. With T - 0.5, boundary layer hypotheses, even if they are accept-
the evolution of the crosswise velocity profiles is able for momentum equations, are not necessarily

* too slow : the decay and the symmetrization of this valid for the Reynolds stress equations : a small
profile are not fast enough. The value I = I gives a extra rate of strain term in the Reynolds stress
reasonable agreement with experiments, equation can have a strong effect on the calculation

of Reynolds stresses.

0°e X200mm 7. CONCLUSION

.1 The experimental study of a three-dimensional
turbulent wake has led to a set of data consisting
of mean velocity profiles and of the six components
of the Reynolds stress tensor profiles. Since the

". flow is not invariant in the spanwise direction, the
investigation has not been restricted to a single

Soo aplane of measurements.
1_ Three different hot wire techniques of Reynolds

-10 0 10 . stresses measurements have been tested and compared.
Comparisons between experiments and YmM The agreement between the various results is not

calculation * experiment - four- perfect but is sufficiently good to credit the
equation model T-I --- four-equation measurements with a certain level of confidence. In
model T-0.5 particular, it is interesting to note that the four-

It appears, therefore, that a simple hypothesis wire probe works quite well. As discussed in section
leading to an alignment between t and 3 is accept- 4.3., it can be hoped that it could be used for

a measuring turbulence characteristics other than theable for calculating such a three-dimeahional wake Reynolds stresses.

flow. This is at variance with certain other cases
of boundary layer flow IRef. 4/. In fact, it is A simple integral technique for calculating the
believed that the validity of the hypothesis that wake development has been elaborated. Comparing the

T and 2are aligned depends on the nature of the results with experimental data shows that the inte-
flow, more precisely if extra rate of strain terms gral properties of the wake are rather well deter-

mined ande therefore, it canr bet thogh suchi atmetho
are important or not. Let us explain this. The main mined and therefore, it can be thoughesuch a method

feature of the present experiment is that the flow could be fruitfully included in an interactive tech-

is a relaxed flow. This implies that, except near nique for calculating the three-dimensional flow

the trailing edge, the evolution of any characte- field around a wing.

ristic is slow and parameters such as streamline If more details about wake development are wanted,
curvature or longitudinal derivatives of mean velo- the partial differential equations are solved. In
city have negligible effects. Then, the dominant thi asea turbuence emeais neded. i-
terms of the velocity gradient are the y-derivatives sn s w e p riment e sh own t a a si mp mo e

au W sons with experiments have shown that a simple model
aU and . This hypothesis, introduced in the in which the shear stress is assumed to be aligned

ay ay with the y-derivative of mean velocity works quite
Reynolds stress equations modelled by LAUNDER et al., well. Therefore, the model including a prescribed
leads to the results given in section 5.3. : the value of T different from I is not correct. It is
vector T is aligned with the y-derivative of mean believed that a model capable of describing a large
velocity. On the contrary, in three-dimensional variety of thin shear layers should include extra
boundary layers submitted to strong pressure gradient rate of strain terms such as those reflecting the
(as is the case of Ref. 4), parameters such as stream- curvature of streamlines.
line curvature are certainly not negligible and terms'J'aU 3W . U aU 3W 3W
other than - and - (i.e. ' ' aW Dz ... )

a y ay ax z x zREFERENCES
should be retained in the complete Reynolds stress
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THREE-nIMENSIONAL BOUNDARY-LAYER CALCULATIONS ON WINGS, STARTING FROM THE FUSELAGE

J.P.F. Lindhout, B. van den Berg, A.C. de Bruin
National Aerospace Laboratory NLR

Amsterdam, The Netherlands

Abstract

Computation of a Wing Boundary Layer better than simple eddy viscosity models, espec-
ially for pressure driven flow. The equations are

To compute the three-dimensional turbulent dealt with in a general nonorthogonal coordinate
boundary layer on wings, it is required by many system. For each new configuration a subroutine
methods to prescribe initial data on a line of has to be written with which the geometric quanti-
constant chord percentage and data at the lateral ties are computed. An expanding library of con-
boundaries of the computational domain. At NLR a figuration subroutines can be considered as a part
method is developed which requires a minimum amount of the method.
of data to be prescribed at initial lines or
boundaries. For a general configuration, the A hybrid difference scheme is used combining
boundary-layer flow is computed in the region of the simpleness and stability properties of first-
determinacy of the initial data. A point is sit- order schemes and the accuracy of second-order
uated in the region of determinacy if all the schemes. These difference approximations are con-
streamlines through the corresponding normal can tained in implicit as well as explicit difference
be traced back to the line of initial data. If we molecules. Explicit difference molecules suffer
consider the pattern of edge- and wall-streamlines from stability restrictions on the stepsizes in

" for attached flow on a wing, it is clear that marching direction. A computational sequence is
almost the complete wing is covered by streamlines adopted exploiting implicit molecules as much as
emerging from the wing-body junction near the possible.
leading edge. Therefore, the flow in the covered
region can be computed from initial data given at The boundaries of the computational domain are
that very position. The calculations are per- treated mathematically correct: no redundant in-
formed in three stages: the computation marches formation is required for outflow boundaries
from the leading-edge-wing-body junction between neither data is found on it by extrapolation for
two lines of constant chord. Data are found by inflow conditions. The boundaries are constructed
this computation on the lateral boundaries. Then such that only outlfow can occur across the bound-
the program continues with the upper and lower aries. This requires difference molecules which
surfaces employing the data at the chord are not aligned along the coordinate lines.
lines as initial conditions.

Reference

Description of the Method 1. Lindhout, J.P.F., Hoek, G., de Boer, E. and

van den Berg, B.: A method for the calcula-
The general features of the method (1) are tion of 3-1) boundary layers on practical wing

given below: An eddy viscosity turbulence model configuratons. Joint ASME/CSIE Applied Mech-
is implemented. Although there exist much more anics Fluids Engineering and Bioengineering
advanced turbulence models, it is difficult to do Conf., Niagara Falls, 1979.
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THE OUASI-SIMiULTAMEOUS CALCULATION fF STPONGLY INTERACTING VISCOUS FLOW AROUND AN
INFINITE SWEPT WING

A. E. P. Veldman and J.P.F. Lindhout
National Aerospace Laboratory NLR

Amsterdam, The Netherlands

Abstract

Introduction nal flow description is approximated by a simpli-

The "classical" way of calculating boundary fied version
layers and wakes, by prescribing a pressure distri-
bution, gives rise to (large) difficulties in interaction law: p - I" (3)
regions where a strong interaction exists between
the viscous and inviscid parts of the flow field. The equations (2) and (3) are treated simultane-
Using inverse techniques, in which displacement ously (for details see ref. 2). The external flow
thickness or wall shear is prescribed, these dif- description (1) is incorporated by means of an
ficulties can be overcome. However, sufficiently outer iterative process
accurate starting values for these quantities are p(k) - 16*(k) p8*(k-l) -
generally not available. The appropriate values
have to be obtained, as part of the overall prob-
lem, from the interaction between the viscous p(k) Bs*(k) = 0

layer and the external flow; thus a method which
iterates frequently between the viscous and invis- such that upon convergence (k * w) the solution
cid parts of the flow field is required. satisfies the exact relations (1) + (2).

A semi-inverse method has been introduced a few Choice of Flow Equations

years ago by le Balleur (ref. 1). In regions with

strong interaction he solves the viscous flow equa- The above description allows a large flexibil-
tions with prescribed displacement thickness; the ity with regards to the choice of the viscous and
regions where the interaction is weak are treated inviscid flow equations. At the conference we will
in the "classical* (direct) way. present results for two-dimensional flow past an

infinite swept wing. The flow equations are
A somewht different numerical strategy is being chosen as follows:

followed by NLR (ref. 2). Here the viscous flow
equations are solved using a boundary condition The viscous part of the flow is described by
which prescribes, essentially, a linear combination compressible boundary-layer equations. Normal
of pressure and displacement thickness. This com- pressure gradients can be included. Turbulence
bination, called the interaction law, is chosen is incorporated by means of a zonal mixing

, such that it gives an approximate (but adequate) length model.
description of the outer flow. As the interaction
law is treated simultaneously with the viscous flow The matching with the external flow is per-
equations we have termed the method quasi- formed by means of a higher-order outflow con-
simultaneous. cept.

Treatment of the Interaction The interaction law is based on thin-airfoil
theory with leading-edge separation.

Briefly, the quasi-simultaneous method can be
sketched as follows. For ease of presentation, let The external flow is taken to be incompres-
the coupling between the viscous region and the sible.

.. external flow region be performed in terms of pres-
sure p and displacement thickness *. Then in References
each part of the flow field a relation exists
between p and M. In operator notation we will 1. le Balleur, J.C.: Calcul des bcoulements a
write these as forte interaction visqueuse au moyen de methods

de couplage. AGARD-CP 291, Computation of

external flow region: p = P*, (1) viscous-inviscid interactions, Paper 1, 1980.

. boundary-layer/wake: p = Bd*, (2) 2. Veldman, A.E.P.: The calculation of incompres-
sible boundary layers with strong viscous-

In order to facilitate a simultaneous numerical inviscid interaction. AGARD-CP 291, Computa-
treatment of viscous and inviscid flow, the exter- tion of viscous-inviscid interactions, Paper

12, 1980.
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TRANSONIC SMALL DISTURBANCL CAI.CI!IATIONS
INCLUDING ENTROIY CORRECTIONS

H. Hafez and D. Lovell
The George Washington University/NASA-Langley Research Center

Hampton, Virginia

4 Abstract are presented.

Nurman's fully conservative mixed type finite- 1. Potential Equations
difference operators are first modified. A special

."" sonic point operator with an iterative damping term For 2-D flows, the continuity equation in
is introduced which helps the convergcnce and does Cartesian coordinates is:

''" not affect the spatial conservative differences.
Reliable calculations with second order supersonic (Pu)X  (pv) = 0 (I)

* *'.: C schemes are obtained using two sonic operators, the 1 y
1: regular sonic point operator followed by a first Assuming inviscid irrotational flows, there exists

order supersonic scheme. Also, shock point operator a potential function 4, such that u= r, and v=

is shown teeian to fitting a locally nor- Moreover, the density can be determined uniquel; in
mal shock terminating the supersonic region, terms of the speed via the energy equation:

>The potential calculations are then modified to I

account for the non-isentropic jump conditions using P = (1 - 2I. N2 (u2 + - 1)]Y
- 1 (2)

"'N' a simple shock fitting procedure based on Prandtl
relation._, .,entropy increase across the shock is and
calculate n terms of the Mach number upstream ofach number. The xthe shock a the effect of the generated vorticity y- momentum equations are automatically satisfied

is estim ted a Crocco relation. Different exam- for smooth flows. Equation (1) admits a weak solu-

ple r c ted and extensions to the full poten- tion conserving mass. If the potential function is

tial equation discussed continuous across the shock, the tangential momentum
is conserved but not the normal momentum. The cn-

Introduction tropy increase across the shock is, in teins of
shock strength, of third order and hence can be neg-

In 1971, Murman and ColeM introduced an iter- lected for moderate transonic flows.

ative type dependent finite difference method for Equations (1) and (2) can be combined in a sin-
transonic flow calculations. Their pioneering work gle nonlinear partial differential equaticn in t
triggred an intensive effort in this field. and together with the impermeability, wake and far

(2) field boundary conditions, the formulatior of the
In 1974, Murman introduced the fully con-

servative operators and(j 7 cently conservative bound- problen. is complete.

ary c::nditions are used . Convergence accelera- Equation (1) can be written in the form
tion is achieved by the use of ExtrapolationC4), FastEqainl)cnbwrteinhefm
Solver (5),(A pproximate ractorizationC 6), and finally a2 _2~, - 2 +a

2 _ v2> 0
Multi-Grid (7 methods. (a xy yy-2u (

where 2 1 2 2

-ameson extended Murman's work to solve the a2 = )
full potential equation(8,9). For complex geometries, 2  u*
accuri-to treatment of boundary conditions are needed
and finite elements (finite volumes(1 0 )) are success- Equation (3) can be rearranged as follows:
fully applied for calculations of transonic flows 2
around practical configurations, with fast iterative ( -1. 0

• "metho-'s 0I I1). ss nn
mehosll where

:2. For high Mach number flows with shocks, the 
2  u2 2  a2  v 2 a2

irrot.tionality assumption as questioned and efforts - 2  + 2uv +J y2
are directed towards efficient methods to solve the a q 5 q a4
full lEuler equations. and a2  v2 a2  a 2  2 2  (4)..-" .... . 2uv +

here are two main entropy corrections to the an2  2q 2yu
potential calculations, namely, the nonisentropic

%.r jump conditions and the vorticity generated due to s and n are interpreted as the natural co(rdinates
the riock. Both corrections are studied within the (along the stream line direction and norm;l to it).
small disturbance assumptions and extensions to the
full uquations are discussed. Assuming srw.'ll disturbances, the streamlines are

almost paral!cl to the axis and Equation 4) reduces
;n the following, modifications of urman's to the transonic small disturbance equation (in

full). conservative op!rators are introduced first, terms of 4,; = ,x + f):
and then methods to implement entropy corrections

bob"'
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2
(1 - M' )gxx + yy 0 If the coeffiicent of the term at the sonic

point is small and if is finlit. .quatiol (8)

Furtlermore, a consistent approximation of Cl-M reduced to Lqt.atioii ( 3 x(

is:
s- M2)  yl) (6) Enouist and 0sher"1 5) an.J Goorjian and Van(I j -) (Y1 1) x-6 n

Buskirk(1 6 lclaim that Equation (13) admits a local

Comb ning r-quations (5) and (6) gives expansion shock and propose a Godunov-typt scheme
to overcome this difficulty.

(1 - M - (Y-,)Ml)%x + y 0 (7)
A simple remedy is suggested here by intro-

or, an conservative form, ducing aL iterative dampint term at the ;=onic point,
without upsetting mass conservation at steady state.

((I - -) x - m -X )x + (¢y) 0 (8) Equation (13) is replaced bi:

Bailey and Ballhaus (1 2) used a modified ver- Cox
sion of (8),% = where e vanishes %,ith iteraLion. For ex.,ple, C is

((1 -ql)¢x - -. ..V) + ( y = 0 (9) chosen to be proportional to error, ,4here error
is max - - .- Results based oi- L uation

wher. n is determined such that either the sonic ' w ,3 , u
cond: tion natches the exact potential condition or UL') where b-ckard differences are used Xcr qt

the iturp conditions at the shock are matched. and centered differences for v, are shotn
in figure (2). The convergencb" histor. crayares

Newman and Klunker (13) used a more general favorably with calculations based on ' Murii,ns
scheme. In both cases, the subsonic poiit.s are

form: 2 3 overrelaxed and the relaxation factor for super-

( - + + 2C )5 * (y)y= 0 (10) sonic points is one.

where c1 and c car. be chosen to match both the

sonic and shoci coditions. 1I1. A Second Order Schcr;.e for Sia-uth

The two terms between brackets in Equation St_ r10i Flows

(8) ire an approxiination for the mass flux in x MurMan used a first order scheme for super-
and y directions. Different ~proxhtiota are sonic poirts. Second order sc':emes(l,17) are

given by van der Vooren et al(l1) by expanding the found to be unreliable. Sccond order schcwmrs have
flux directly in terms of the velocity, three ,pstrco cints and switching acres. the

sonic line from centered differe:nces to bckkard

The linearized boundary condition usually differences tnmy lead to inconsistency at lath the

associated with Equation (S) for a s'mIetric aii- sonic point and the point after. In ReferTnce ( 1,

foil at zero angle of attack is two sonic points are, introduced, tie first is the
regular sonic point followed 1, the fir.t order

.= f(x) (11) superso.ic schen and then second order sc'el;e.,
"" arc used for the rest of the supersonic pc.i:ts.

where f(x) is the shape of the airfoil. The flux These iodificstions ore skeiched in figure (3),

conservative boundary condition( 3 ) is and the corre:ponding results are shown in figure
(4).

= f,(x).[_M 2 2
0y fWX 2 ~ x (12) Second order accuracy is depcndent on the

number of supersonic points bt, it is achi ,ed fm

II. Plodification of ,lhrwan Sonic Point Operator moderate supersonic regions in spite of th first:1order schemes at the sonic boundary.

Murman's fully conservative operators are

sketched in figure (1). A test function (based Finally, the first sonic point operator can

on c.entered differences everywhere) is used to be based on Equation (14) rather than Equa ion (13).

chec< whether the flow at a point is subso.ic or

supe:sonic. The first point in the supersonic IV. Murman Shock Point Operator

region is called sonic point and the first point

do,;tream of the supersonic region is called At the shock point, Nurrcn used centc ed dif-

shoe!: point. Centered differences :re used for ferences of 'yv but for the x-term he used the sum

subsonic points, and backward differences are of centered anO backward differences. It s shown
used for supersonic points, that mass is thus conserved across the sho, k. Non-

conservative calculations produce weak shotks which

At the sonic. point, the flow based oil the are usually displaced upstream. Shock jur condi-

test function is supersonic, hence if backward tions are not satisfied and artificial soui ce, are

differences were used, the coefficient of ', 4 generated at the shock(1
9 ).

ter.i at that point .ould be positive. To a oid
such inconsistency, Murman used the following cq- More precisely, let

uation: = ( -M)x- (Y1),2 (IS)
§ =0 (1I3)M

yy Equation (8) in terms of 5 reads

2
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S+ (§ 0 )y = 0 (16) Obvioasly, there are tvo main corrections to
2 xisentropic (irrotationa') calculatio:s:

At a shock point (i,j), Murman's OFrrator is
a) Non- i sent ropc JuwfnliP t ions:

0 +-1 x 1', A jump condition across a normal shock is given"2 + by Pra dtl rclation:

AX
2 2

I 2 § ( l + 2 = 
a *2 a a (21)

2 x - , 2- x i -3,J 2
2 2.- Axsince a ,(22)6x yl-l -

+ 0§y i,j+ - (y)i,j-1 (17) Equation (21) becomes: 2

• , Ay UlU u+ u2  2 (23)
.I + - 2

or simply, (y+l)NM

2"2If the term u u is neglected, Equation (23) reduces
1 (§2). 1 . -1(§2). 3 . to Equation (l85.
2 2'j 2 X ,

Ax Equation (23) is eisily implemented using the
simple shock fitting procedure discu.sd earlier

(§y. y1 ( ).• 1 where a derivative boundary condition is used down-
y2 0 (17) r tin stream of the shock. For an oblique shock, Prandtl
A) (7 relation reads

A ~2 y-l 2 (4In Equation (17'), differencing across the shock qIq2 =a* V-14)
in the x-direction is avoided and it is clear that = a - v
the flux (I) is conserved across a locally norral where ql and q2 are the normal velocity components
shock between i and i-i points. upstream and dwnstream of the shock and- is the

(20) tangential component.
Hafez and Cheng -  treated the shock as an

inte:'nal boundary with Neuman ic,undary condition b) VorticityGenerated by the Shock:
derhvcd from the slock jump relation, namely,

(§X)t 3 V the vorticity, w, is neglected in Equation
X= - "  (18) (20), Equation (19) reduced to the potent*..I :'qua-

tion (3). Sore transonic flow fields of :nterest,

where (S ) is downstream of the shock, are, however, associated with strong shiucl: waxes
x X of variable strength with a variable entr.p," from

one streamline to another and according 1) Crocco's
The finite difference euqation at the shock point theorem, ,orticity is generated due to the differ-
with the derivative boundary condition 318) is

idertical to Murman's shock point operator Equation ences =r. entropy:
(17'). Results may differ slightly due to different w = T. = T ds (25)
linrarization p)rocedures as shown in figure (5). d'" q dn

Eqution (18) is the isentropic jump condition ad- The jutop in entropy across a shock is given by:
A', mitted by the weak solution of Equation (16) and As + It 2 si 2  1

reproscnts conservation of mass under the transonic As- In [1 + 2( M sin R-l)1 --d
small disturbance assumptions. r y 2l)M1

repesnt cnsrvtin f inaa ndr hetrnsni (yflM sin 2 B y(26)

V. ntropy Corrections x (y-I sin 2Bi

An inviscid flow is governed, in general, by
Eule- equations where mass, momcntum and energy where R is the shock inclination to the urstream
are conserved. For steady state, pressure can be flow direction.
elir.,'nated and three conservative equations in
p, li, and v are solved simultaneously. For a weak normal shock, Equation (26) reluced to:

.Nonconervative equations in u and v in terms As 2y 2 3 (27)
of a are easily derived, namely R - 2 1 -

(a -U )U -uV u -uv vx + (a -V )u = 0 (19) According to small disturbance assurption;, stream-

lines are almost parallel to the axis and Equations
u v --W (20) (19), (20) and (25) reduce to:

[(I- )-(Y+I1)M u] u (28)
In this case, jump conditions (Rankine-Ilugonoit)
must be impesed across the shock. uy- V - - As

* 2 R YN y

he notice that the nonisentropic correction in equation (23) is 0(e 2 ) or T ) where t is the thicknes;s,
whil: the vrticity in equition (28) is 0(t'/;

3



where As/R is assumed to be a function of y oi.ly. 7 ds
, Hence Equation (29) can be written in the for:.: y x = x q -n (25)

(u + y A-) - V = 0 (30) where the density is given by
Y;P = P i e'aS/R (37)

and consequently a potential function is defiled
such that Equation (30) is automatically satiified, p. is the isentropic density (Equation (2)).
namely, 1

(u + (31) In general, a velocity vector (u,v) can be decom-
2 R  = . v ' Oy posed into a gradient of a potential plus another
yO vector (u', v'):

substituting Equation (31) in Equation (28) yields: u = ox + u', v = t+ V, OF)

[(-2 +(Y+l) £ s _ Y N20 x[(- )* - (y+l)Mb Jx]4, + = C 32)
X XX Different choices of (u', v') are discussed:

2or 1 As 1 2 A 2 a) u' and v' can be chosen such that
[-M, )(;; (Y+) - Ox- 2 Jx yy=000 l .f f' 7) 2y V 1x+ == "x (39)

(33) y x

Hence Euqation (25) becomes
According to Equation (32), the transonic sin," larity + T ds
parameter K is modified with a second order quantity +xx -yy 

=  (40)yy qdn

= K Y/+ -(Y+I) (34) It should be mentioned that 4= constant is not a

W 2streamline. The streamline direction is
where, K ( i O(2, ) t=0(t2/3) d' X* (41)

and in terms of scaled variables: dx stream =  4x 
+  ()

As L "-k - [ ' 3 c3downstream of

Y X) the shock (35) On the body surface, if we choose
=0 elsewhere

( IX is the jimp of 4 x across the shock) 
1n = 0 (42)

Equations (32,34) call for a fuller and consit:tent the corresponding boundary condition for 4 is

treatment of second and third order terms in deriv- = 0 (42')
ing a higher order transonic small disturban(e equa-
tion. For example, terms lke ,Oyy and ,y ,xy Similarly across the shock, the jump condition is
appear in second order equations and are neglected
here. In this study, the entropy term is singled dY :Jul lox ] + N I
out and its effects are shown numerically. dx shock -- --T-- [' (43)

y x
In passing, the drag can be calculated Jii terms

of entropy production via Oswatitsch relatiorI21): If 0 is chosen to be continuous across the shock,
the corresponding shock boundary condition for lb is,

D = p q A di (36) (assuming 4, vanishes upstream of the shock)

shock *n = 0 (44)

Murman and Cole (22) obtained an estimate of the drag
based on (35) and (36) and it is indeed consistent The boundary conditions of 4-prob!c. are sketched
with surface pressire integration, 

in figure (7). *

Results based on modifications of small distur- b) Without loss of generality, v' in Equation (38)

bance calculations according to Prandtl and C'-occo can be chosen identically zero, and Equation (40)

relations are shown in figure (6). Convergen-e reduces to a simple ordinary differential equation:
rate and computational work are hardly affected by T ds (45)
such modifications. u'y q dn

VI. Extension to Full Equations where u' vanishes in the far field where the flow is
irrotational. The right hand side of Equations

The full potertial calculations can be similar- (40) or (45) has to be evaluated downstream of the
ly modified to acccunt for entropy correction.; where shock. The entropy across the shock is first com-
the small disturbance assumptions arc relaxe,| at puted based on shock relations and since the entropy
least in deriving the governing equations. The exact is constant along a streamline, it can be easily
equations are: calculated evcryhhure else. The choise of the grid

may simplify the calculations. For sake of simpli-
(PU)x + (pv)y = 0 (I) city, it is assuried here that T ds is approximat!y

*It is assumed that, at the foot of the shoc., the rot.,tional flow is no more singular than the potential
and even the shock curvature may be ilfilli1V there, tile vorticity j, finite.
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equal to I daS as in small disturbonce calcula- 6. Ballhaus, W. F., Ja.,eson, A., and Albert, A.
ymel "Implicit Approxim.te Factorization Schemes for

tions. Preliminary numerical results using artifi- the Efficient Solution of Steady Transonic Flow
cial compressibility method(2 3 ,24 ) are shown in Problems," All\ 3rd Computational Fluid Dynnamics
Figure (8). Conference, New Mexico, June 1977.

Concluding Remarks 7. South, J. C. and Brandt, A. "The Multi-Grid
Method: Fast Relaxation for Transonic Flows,"

Transonic small disturbance calculations are Advances in Engineering Science, NASA CP-2001, Vol.
" revisited and Murman's fully conservative operators 4, 1976, pp. 1359-1369.

are modified. The sonic point opcrator is au!.mented
by an iterative damping term and a reliable strcond 8. Jameson, A. "Iterative Solution of Transonic
order supersonic scheme is used with two soni. op- Flows Over Airfoils and Wings," Comm. Pure Appl.
erators. Shock point operator is shown to be cqui- Math., Vol. 27, 1974, pp. 283-309.
valent to fit a locally normal shock terminat'ng the
supersonic region. 9. Jameson, A. "Transonic Potential Flow Calcula-

tions Using Conservative Form," AIAA 2nd Computa-
Entropy corrections to potential calculations tional Fluid Dynamics Conference, Connecticut, June

are studied including nonisentropic jump conditions 1975.
and vorticity generated due to shocks. Modifica-
tions based on Prandtl and Crocco relations are in- 10. Jameson, A., and Caughey, D. A. "A Finite Volume
troduced and numerical results are obtained. Exten- Method for Transonic Potential Flow Calculations,"
sions to the full equations are discussed and pre- AIM- 3rd Computational Fluid Dynamics Conference,
liminary results axe presented. The effects of such New Mexico, June 1977.
modifications on convergence rate and computational
effort are minor. 11. Jam-son, A. "Acceleration of Transonic Potential

Flow Calculations on Arbitrary Meshes by the Multi-
In general, Etler corrections lead to weaker ple-Grid Method," AIAA Computational Fluid Dynamics

shocks which are usually located upstream of those Conference, Virginia, July 1979.
obtained from poteritial calculations. For high
Mach numbers, cons.rvative potential calculations 12. Bailey, F. R. and Ballhaus, W. F. "Comparison
result in a fish ta.il shock while with Euler correc- of Computed and Experimental Pressure for Transonic
tions, a normal shock occurs at the trailing edge. Flows About Isolated Wings and Wing-Fuselage Con-

figurations," NASA SP-347, Part I, 1975, pp. 1213-
Although in tLis paper, only steady flows are 1231.

discussed, the above corrections can be easily ex-
tended and itiplemeirtcd to unsteady potential calcu- 13. Newman, P. A. and Klunker, E. B. "Computation of
Jations( 25 ). Transonic Flow About Finite Lifting Wings," AIAA

Journal, Vol. 10, No. 7, 1972, pp. 971-973.
Aclnowl edg.ement

14. Van der Vooren, Sloof, J. W., Iluizing, G. H.,
This work was supported in part by NASA-Langley and VanEssen, A. "Remarks on the Suitability of

Research Center. The first author wishes tc thank Various Transonic Sinall Perturbation Equations to
Jerry South of The)retical Aerodynamic Branch for Describe Three Dimensional Transonic Flows," S yr-
helpful discussion. posium Transonicum I, Oswatitsch (ed.) Springer

Verlag, New York, 1976.
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THE EFFICIENT SOLUTION OF TRANSONIC WIN; FLOW FIELDS

C dkTerry L. Holst* and ;. R. Subramanlan
* NASA Ames Research Center, Moffett Field, California

and

Scott D. Thomas*

Informatics General Corporation, Palo Alto, California

Abstract condition is prescribed in an exact manner (rela-

tive to the TSD approach) at the geometry surface.
"An evaluation of the transonic-wing-analysis Thus, a more complex mapping procedure is requiredC computer code TWING is presented. TWING utilizes a with this approach. Example applications using the

* fully implicit, approximate-factorization iteration FP formulation are given in Refs. 6-10. In addi-

" scheme to solve the full-potential equation in con- tion, a survey of computational transonic methods
servative form. A numerical elliptic-solver grid- in which the TSD and FP formulations are compared

generation scheme is used to generate the required and contrasted is presented in Ref. 11.

: finite-difference mesh. Several wing configurations
have been analyzed, and comparisons of computed Recently, a large number of researchers have

results have been made with available experimental investigated various ways of improving solution

data. Results indicate that the code is robust, convergence. This research has been largely neces-

- accurate (when significant viscous effects are not sitated by the slow rate of convergence associated

C" present), and efficient. TWING generally produces with the standard relaxation algorithm, successive-
* solutions an order of magnitude faster than other line overrelaxation (SLOR). Some of the new algo-

conservative, full-potential codes using successive- rithms investigated include multigrid,''
- 6 

the
line overrelaxation. The present method is appli- strongly implicit procedure (SIP),' and various

cable to a wide range of isolated wing configura- approximate-factorization schemes. ,.8- k

-tions, including high-aspect-ratio transport wings

and low-aspect-ratio, high-sweep, fighter In this study, the TWING computer code

configurations. (Transonic Wing analysis) is described and evalu-
ated. This code uses the AF2 fully implicit,

approximate-factorization scheme to solve the FP
I. Introduction equation in conservative form.

:
' Supersonic regions

of flow are stabilized in the spatial-differencing
During recent years, inviscid transonic flow scheme by using an upwind bias in the density

computations have been obtained using two formula- evaluation. This causes the spatial

tions: 1) the transonic small disturbance (TSD) differencing scheme to be first-order accurate in
formulation and 2) the full-potential (FP) formula- supersonic regions and second-order accurate in

tion. The TSD formulation is valid for isentropic, subsonic regions. A variety of isolated wir,

irrotational flows involving thin bodies at small geometries with variations in wing aspect rt i

angles of attack and for transonic conditions. taper ratio, sweep, twist, and airfoil c'-@so ,C-

Flow-tangency boundary conditions are imposed on tion have all been investigated. Correlai. ns with

mean geometrical surfaces, for example, wing "slits" experimental results are included for most of the

or fuselage "boxes." Thus, simplified grids can be cases presented.
used, usually involving sheared, stretched Cartesian
coordinates. This is the primary reason why the TSD

formulation was introduced before the FP formulation II. Numerical Algorithm

and why more complete geometrical configurations
have been solved using the TSD approach. Governing Equations

* The worst problem associated with the TSD for- The three-dimensional, full-potential equation

mulation occurs at the wing leading edge where the written in strong conservation-law form is given by

stagnation region generally causes the small-

disturbance assumption to break down. However, this (Cx)x + (:v)y + (cz)z = 0 (1a)
formulation yields results that are generally

better than expected. Indeed, good correlationsr 1 -/

with experiment have been obtained for a wide + - ( + : + + : ] (ib)
variety of applications. Example applications using

-* the TSD formulation can be found in Refs. 1-5.

Although the TSD formulation is capable of computing The density and velocity components 'v,

flows for relatively sophisticated geometries, the and Zz are nondimensionalized by the stagnatibn

FP formulation is generally desired when an accurate density s and the critical sound speed a*,
solution near the wing leading edge is required. respectively; x, y, and z are Cartesian coordi-

nates in the streamwise, spanwise, and vertical

directions, respectively, and is the ratio of
The FP formulation is valid for isentropic, specific heats.

irrotational flows ranging from incompressible to
transonic conditions. The flow-tangency boundary Equation (1) is transforned from the ohvsical

domain (Cartesian coordinated) to the computational
*Research Scientist, domain by using a general independent variable

-Senior NRC Associate. transformation. This transformation (see Fig. 1
This paper is declared a work of the U.S. Government and indicated by

therefore is in the public domain.



- xv .z) solved using a fast ipproximate-ractorization
relaxation algorithm.

This establishes values for x and z in each
* - x,v.z) spanwise plane used as a defining station. Coor-

dinate values ix and z) for computational planes
maintains the strong conservation-law form if between the defining stations are obtained via
Eq. 0) (see Ref. 27). The full-potential equation linear interpolation. For the case of a wing with

-rwritten, in the computational domain -7 no taper or section variation, only two defining
coordinate system) is given by stations are required, one at the root and one out-

board of the tip in the wing-extension region. The

L\ (.V\ (W\(a rootn station is user-specified, but the wing-
/ \/ L = 0ia) extension station is always chosen as a flat plate.

In addition, wing taper, twist, thickness, and
,' / -. sweep variations can be specified at each defining

- (U: + V: + Wtj (3b) station.

where The coordinate values in the spanwise direc-

tion (y values) are computed from a stretching

U A_, A + Az formula, which in its simplest form gives equal
A Aspacing over the wing with relatively rapid stretch-

ing beyond the tip. The x and z values generated
V A-;- A-- + At. (4a) for the first station outboard of the tip are used

for each wing extension station. Then a smoothing
step for the two y = constant planes on either

S= A A Aside of the tip is implementad to remove grid dis-

continuities, which may arise in the transition
A. = + 'z + -from an airfoil of positive thickness to one of

x y z zero thickness. An example grid generated using the
procedure just discussed will be presented in the

A. = + section on computed results.
*.- x y z

"A: = - + + -- Spatial Differencing

x y Z
(4b) A finite-difference approximation for Eq. (3)

A = + y +:> suitable for both subsonic and supersonic flow
regions is given by

A- - + t -J z(CU/i) i+/,j,k + /-(VJ)i41+:,k

A=- +
x' yy:W/iJ) k = 0 (6)

and
where the operators :( ), A(), and 7-( ) are

-. -.. z x 4- K Jx first-order-accurate, backward-difference operators

in the Q, -, and , directions, respectively.
_ : v x - K x - - j The density coefficients 2 and 7 are defined by

(5) a 1(1 -
= ,x.yz. + x yz 4- xj k I

+I

"- z - xiz. - xyz:",j,ki+r ijk
(7)

Note that this formulation for the FP equation is
more general than the formulation of Ref. 24. The
simplification that all = constant surfaces ij+:
coincide with = constant planes has been removed.
Thus, completely general orientations of the where

- mesh can oe supported with the present .1 w
:ormulation. For more discussion of the details of r = ti when U>., , 0

this transfhrmation procedure see Ref. 24.! i8)

;rid Generation a = :1 when i, . ,k
and

the grid-generatt)n scheme used in the present
three-dimensional :ormuatin 4s a simple extensio .k
, of the two-dimensional scheme presented in Ref. 28.
The finite-difference mesh is generated using a ima fr .
standard two-dimensional ilgorithm. This requires i k  i*. ,
solution of two l'aplace equations in each sDanwise

plane used as Jefining station. These equations max(M;, - C" tor ,

are transformed to the )mputational domain and
5.)
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The quantity M4 k is the local Mach number; C 7he quantitv appearing in Eq. 0 :an he
is a user-specitied constant (usualiy between .0 considered as t-. The best choice tor is to,
and 2.0); and the quantities U, V, and W are the rse a sequence ot va.ues. The small values are

standard, second-order-accurate, finite-difference frequency errors, and the large values are partiru-
tormulas. :he density - is computed from the larlv effective for reducing the high-freqcn;;
second-order-accurate discretized version of errors. The .-sequence given in Ref. I9 has been
Eq. i3b) and is stored at half points in the finite- used for the computations presented herein.
difference mesh ie., at i - 2,j,kJ. Values
needed at i,j - l:2,k or i,j,k + 1 2 are A >. -twne term has been added inside the
obtained using simple four-element averages, brackets of step 2 see in Eq. (lOb) . This

The spatial differencing scheme given bv term is necessary to provide time-like damping to
The spatialo siffeencin schem givente bysusr

Eqs. (6)-(9) is centrally differenced and second- the iteration scheme. The parameter is rser-
specified and usually ranges between 0.05 and 0.3.order accurate in subsonic regions. ln supersonic Larger values are generally required for cases with

regions, the differencing is a combination of

used in subsonic regions and 2) the first-order-
accurate upwind differencing resulting from theis obtained b Solving
acurtea of the density coefficients a tridiagonal matrix equation for each = constant
upwind evaluation if thens cofficind line in the kth plane. in step 2, the f-array Is

I pobtained from g by solving a tridiagonal matrix
evaluations of the density have been used along only equation for each = constant line, again for just
the i and j indices (wraparound and spanwise
directions, respectively). Thus, the fully rotated the kth plane. Next, step is used to obtain

form of the spatial difference scheme has not been the g-array for the k
used. This has not adversely affected convergence is used to obtain the f-stray for the k -
tor any of the plane, etc. This process continues unti. a:!

cases presented herein. However, values of f in the three-dimensional mesh are
other cases involving large regions of supersonic established. Then, bv using step 3, the correction
flow at the wing trailing edge may require the
fully rotated difference scheme with all three array is obtained from the f-array by solvtng a

values of density in Eq. (6) biased in the upwind simple bidisgonal matrix equation for each linein the entire finite-difference mesh. Other aspects
direction.

of the present spatial differencing and iteratton

AF2 Iteration Scheme schemes are discussed in more detail in Ref. 2-.

The AF2 fully implicit iteration scheme used Boundary Conditions

in the present study can be expressed in a three- The wing-surface boundary condition r ne
step format. body-fitted coordinate system is implementec a':

Step 1: applying

iAjkgt (_+ j )A -

- + A = ,jk Ak+: fn i.jNK+:/ ijNK--

(10a) where NK is the wing surface. A similar reflec-

Step 2. tion condition is used for the symmetry plane
(y = 0). Along the free-stream and outer boun-

1 n daries, the initial free-stream distribution of
.Ak - Ail)fi,j,k ( is fixed for nonlifting conditions. For lifting

wings, the outer boundary is updated by the usual
Step 3: compressible vortex solution with circulation i.

A user-specified relaxation parameter (RGM) is
.k + )C i,j,k (Ic) used to control the circulation build up. Details

describing the circulation algorithm are given in

where the n superscript is an iteration index; Ref. 24.

is an acceleration parameter; L:?,',k is the nth
iteration residual [defined by the left-hand side III. Computed Results
of Eq. (6)]; . is a relaxation factor, equal to

" 1.8 for all cases presented; g% j is an intermediate In this section several results computed from
result stored at each grid point in a given Ik the cter seeal results c n each
plane and f, is an intermediate result stored the TWING computer code are presented. in each

Se ofn i ecase the solution procedure started with the numeri-q ~~at each point in the finite-difference mesh. The clgnrto ftefnt-ifrnems. AAi, j, nd k  coffiiens ar deine bycal generation of the Finite-difference mesh. An
Ai, A1 , and Ak coefficients are defined by example grid is shown in Figs. :-7 for the wing-C

A 
geometry obtained from Ref. 29. The x c , v c, and

i, - i-:,,,k z/c Cartesian coordinates used in these figures
are based on an origin at the wing-root midchord

A. = 7A ,)n and are normalized bv root chord c. This grid
A i,:~ *,s contains 127 27 20 = 68,580 points wraparound

spanwise, and near-normal directions, resoecrivelv,
A. = A and is typical of the grids used for the results

presented herein. Note that with this grid

1'7 - 17 = 2159 points are used to define the
and the density coefficients and ire definedby Eq (7).wing-surface geometry.
by Eq. (7).

3 ~.~~ = .



This configuration is a high-sweep viz = 45°), angularity effects, etc., and 2) the removal of
high-taper (TR = 0.3) wing with 80 of twist. The numerical error owing to inadequate modeling of
amount of taper and twist is apparent from Figs. 2-4 viscous effects, etc. Obviously, this procedure
which show blowups of the root and tip airfoil sec- does not always work. For instance, when viscous
tions and the wing-extension station outboard of effects are moderately strong, the local errors at
the tip plotted to the same scale. Note the effi- shock waves cannot be simulated by such global
ciency with which the "0 mesh" topology clusters effects as Mach-number or angle-of-attack correc-
points around the airfoil-section geometry regardless tions. However, in the code validation phase, such
of its position in the span (root or tip). For this simplistic corrections can be quite useful. More

* particular grid, a special clustering procedure has details regarding the categorization of error in a
been used to cluster grid points at the wing leading numerical/experimental comparison are presented and

Sedges. This is especially useful for wings with discussed in Refs. 11 and 32.
sharp leading edges. The wing planform including
the surrounding mesh is shown in Fig. 5, and the The foregoing procedure requires an a priori
grid in the . = constant plane corresponding to the experimental value of lift and therefore is not
wing half-chord position (i.e., the wing on edge) is totally predictive. Having the accuracy of an
shown in Fig. 6. Apparent in these views is the absolutely predictive technique is a noble goal but
wing-tip grid topology and the stretching rates may not in every case be a necessity. In a prelim-
used above and below the wing, as well as outboard inary design stage, sometimes the only question of
of the wing tip. Finally, Fig. 7 is a perspective importance is whether a shock exists at the design
view of the three-dimensional grid which consists of point. If it does, then other more quantitative
the symmetry plane, wing surface, and vortex-sheet details about the solution are irrelevant.
grid distributions. This view very much represents
the view of the wing mounted in the wind tunnel More sensitive details about a given design can
(except for the vortex sheet) and presents a good also be investigated. First, the experimental and
picture of the overall grid topology, numerical error associated with a particular

facility and a given configuration can be "cali-
This wing grid was generated with three airfoil brated" out of the solution. This is accomplished

defining stations. The first two stations were by applying "adjustments" or "corrections" to the
user-specified and served to define the wing-root angle of attack, free-stream Mach number, and, if
and tip airfoil sections. Through interpolation, necessary, the wing twist distribution, until a
these two stations were then used to define the good numerical/experimental correlation is achieved.
entire wing. The third station was the internally
specified, flat-plate section used to define the After the results are calibrated, geometry
wing extension outboard of the wing tip. The entire perturbations are sought either by trial and error
wing grid-generation procedure for this configura- or by using a suitable design approach to force
tion required 1.3 sec of CPU time on the Cray IS desirable characteristics into the solution; for
computer. example, reduction in shock, strength at constant

lift or a reduction in the isentropic pressure
The first transonic-wing calculation presented gradient also at constant lift to avoid separation.

consists of the wing-C geometry just discussed (see With this kind of approach, the use of numerical
Refs. 29 and 30). This geometry represents a diffi- methods is most attractive. A large number of

cult test for any transonic analysis procedure geometry perturbations can be examined quickly and
because of the large sweep (A-LE - 450), twist efficiently. Once the optimal configuration is
(8.170), and taper (TR - 0.3). A comparison of the found numerically it can then be verified experi-
wing surface-pressure distribution with two differ- mentally. As a result of this type of approach,
ent experiments (Refs. 29, 31) is shown in Fig. 8. much larger design spaces can be explored in the
The nominal conditions for these experimental and time available to the designer. This ultimately
computational results are M. - 0.82 and a - 5*. translates into more efficient aircraft designs
Results are shown at five semispan stations, obtained more cost effectively.

1- - 0., 0.3, 0.5, 0.7, and 0.9. The agreement
between the three results at all stations is gener- The results of a "calibration study" are pre-

* ally good for the lower surface. The agreement sented in Fig. 9. The pressure coefficient distri-
between the three results on the upper surface is butions at two span stations for the wing-C con-
good at the first station (- - 0.1) but deteriorates figuration of Ref. 29 (- - 0.3 and 0.7) are compared
toward the tip. The Keener data

3
' and the TWING with the Hinson-Burdges'

3 
experimental results for

results are in reasonable agreement but the several conditions: 1) the experimental conditions
Hinson-Burdges dataZ" underpredict the leading- with both the angle of attack and Mach number
edge expansion and the shock position at corrected (M, - 0.8, a - 4.0*), 2) the experimental
- - 0.5, 0.7, and 0.9. conditions with the angle of attack corrected

(M 0.82, , 4.0'); and 3) the uncorrected
The substantial difference between the two experimental conditions (M_ 0.82, A - 5.0*). As

experimental results shown in Fig. 8 is one of the seen from Fig. 9, the results with corrected Mach
difficulties facing code developers. How can the number and angle of attack are in excellent agree-
accuracy of a code be established with the uncer- ment with experiment (upper surface). The result
tainties that exist in experimental results? One with only the angle of attack corrected is, by

* technique is to assume Mach-number and angle-of- itself, in good agreement with experiment, thus
attack corrections suitable to match experimental indicating the importance of the :-correction.
lift. A wing-surface comparison using this philos-
ophy establishes the basic physics-capturing capa- Adjustment of these two parameters 'M, and
bility of a computational technique. The Mach- has greatly improved the experimentalnumerical
number and angle-of-attack corrections attempt to correlation on the upper surface while producing

" serve two purposes: 1) the removal of experimental slightly poorer agreement on the lower surface.
error owing to wind-tunnel-wall interference, flow This indicates that the less sensitive lower surface
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"  
solution has been (to an extent) sacrificed. That The effects of the angle-of-attack (L,) and

" is, a significant portion of the 'a used in this Mach-number i M) corrections used for the wing-C
. calculation has been used to model viscous correc- design case just discussed are shown in Fig. 12.

tions or wind-tunnel wall interference. The pressure coefficient distributions at two span
stations (' 0.30 and 0.70) are compared with the

Two additional comparisons utilizing the wing-C Hinson-Burdges experiment for several conditions:
geometry and experimental results from Ref. 29 are I) the corrected experimental conditions using the
presented in Figs. 10 and 1L. Figure 10 shows a present corrections (M1, = 0.83, = 5.0'); 2) the
weakly supercritical case, M. - 0.7 and - = 4.949', corrected experimental conditions using the correc-
and Fig. 11 shows the supercritical condition for tions cited in Ref. 29 (M - 0.845, a = 5.00); and
which this wing was designed, M, = 0.85 and 3) the uncorrected experimental conditions

- * 5.9'. For the first case, the experimental (M. - 0.85, a - 5.9'). As seen from Fig. 12, the
Mach number was matched and the angle-of-attack angle-of-attack correction is again more important
correction was -0.55'. Except for a slight over- than the Mach-number correction. The conditions
prediction of the minimum pressure at the leading- cited in Ref. 29 yield a reasonable solution in
edge upper surface, the overall agreement is the present case, primarily because both angle-of-
excellent, attack corrections are the same.

For the wing-C design case (M. - 0.85, The moderate sweep, taper, and aspect ratio
= - 5.9') the Mach-number and angle-of-attack cor- case presented in Ref. 29 (wing B) is discussed

rections were LM - -0.02 and -a - -0.9'. The next (LE - 35', TR - 0.4, and AR - 3.8). Pressure
agreement for this case is quite good everywhere coefficient comparisons with experiment are pre-
except at the tip, where the need of viscous correc- sented for wing B at M. - 0.9, and ) - 3.9'
tions is apparent. Of particular note in this cal- (experimental conditions) in Fig. 13. The SM and
culation is the ability of the TWING code to predict 2a corrections used in the TWING results were
the oblique shock which exists at both the third -0.02 and -1.7'. The corresponding 'M and !a
( = 0.5) and fourth (ni - 0.7) span stations. The corrections computed in Ref. 29 were -0.005 and
differencing scheme in this region is entirely -1.0'. Overall, the agreement between experiment
first-order accurate and yet little shock smearing and TWING is good at every span station. The aft
is exhibited. shock position near the root is about 5%-10% too

far downstream, but moves into good agreement out-
The wind-tunnel-wall interference study con- board of the midchord position.

ducted in Ref. 29 produced similar, but smaller
corrections for the wing-C design case (SM = -0.005 Figures 14 and 15 present the results of an
and Lot = -0.9'). The angle-of-attack correction interesting study to determine the ability of TWING
of Ref. 29 was determined from the FLO 22 computer to handle both positive and negative sweep. The
code 3 by varying the computational angle of attack shock sonic line has been plotted in each figure on
until the computed upper and lower surface pressures a normalized planform of the wing. This configura-
in the wing leading-edge region matched experiment. tion consisted of a parallelogram NACA 0012 wing
Then the difference between the experimental and (i.e., TR = 1.0) at M. - 0.8, a - 3'. The aspect
computational angles of attack was taken as the ratio was 6. Figure 14 shows results for positive,
desired angle-of-attack correction -a. After -a or aft, sweep (sweep = 0', 20', 30', 50', and 60'),
was obtained, the Mach-number correction (LM) was and Fig. 15 shows results for negative or forward
determined by using the Bailey-Ballhaus TSD computer sweep (sweep = 0', -20', -30', -50', -60', and
code. Experimentally measured wind-tunnel-wall -70'). A case involving +70' of sweep was also

* pressures were imposed as boundary conditions on the obtained, but because it was entirely subcritical,
outer boundary of the computational domain (set to no result at A - 70' appears in Fig. 14. As
model the wind-tunnel-wall position). Next, free- expected, the shock position moves forward and
air solutions were computed with variations in the decreases in strength for increasing sweep (either
Mach number to produce a "best match" free-air solu- positive or negative). For all cases the shock
tion with the wind-tunnel solution. The difference approaches the symmetry plane wall (2y/b = 0) in a
in Mach number (if sufficiently small) between the normal fashion (i.e., in the physical domain), as
wind-tunnel-wall case and the "best-match" free-air it must to satisfy inviscid tangent-flow boundary
case was taken to be IM. conditions. This causes the variation in position

of the shock/symmetry-plane intersection, as shown
This wind-tunnel correction procedure seems to in Figs. 14 and 15.

be a good one, for it includes nonlinear, three-
dimensional effects; however, it could suffer from Of particular interest in these calculations
numerical uncertainties arising from viscous model- is the robustness displayed by the TWING code. The
ing, as well as other numerical errors, for example, TWING grid mapping becomes singular as the sweep
nonconservative differencing and mesh effects. It angle approaches 90'. In addition, cross-derivative
should be noted that the corrections determined in terms in the transformed FP equation grow as the
Ref. 29 for the wing-C geometry, as well as other sweep increases. Since these cross-derivative terms
geometries not discussed herein, produced good are not represented in an implicit fashion in the
ment, but not good agreement between other computer to develop for even moderate levels of sweep.

codes and experiment. The probable reason is that However, as indicated by the present results, very
this correction procedure removes both experimental large values of sweep (-70' < 70') can be
errors and the numerical errors associated with the accommodated, in a stable fashion, by the TWING
FL022 computer code. This suggests that separate computer code.
corrections tailored to each individual computer
code may be required. A summary of computer times obtained from the

TWING computer code for a range of computed examples
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is shown in table I. The convergence !ror each ) . A.

these cases is generally nonootimal. Ehe Iteration -. 1. no a . nll: -

number corresponds to the number of iterations it'r a la u nr' m r-al: :i

required to reduce the initial maximum residual by tias I.' Jescrlre lr - iientna "

two orders of magnitude. Computation times based Examples it O'mIutt-in., ,f ln 1, a -- n t'tt.

on this measure of convergence range from 28 sec to Rotated Di- erenc. She:e." i7p'sZ ."n.A 7. :7

55 sec. Essentially converged results are obtained 'I. Gottngen, ePt. 5 frSnt-r.ag -

when the lift is bounded by a 2' band about the

final value of lift. This level of convergence '.a. .'M.hra, I.. in, .DP,: oil,

yields computational times ranging from 13 sec to K. Transonic Perturbatt .n Anal. e-.in
L8 sec. The grid-generation time is also shown in Fuselage-Nacelle-P-on ,onflguratlns *=i:. s wered
Table 1; it is 1.3-1.4 sec (three defining stations). 'et Exhausts." AIAA Paper 82-'25r. an. 4S2.
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Table 1 TWING convergence times on the Crav-IS computer (nonopcimal

convergence), all times are for a 127 x 27 20 (68,380) grid with
W 127 , 17 (2159) surface points

CPU time CPU CPU time for

Wing M . W, grid generation, 98%lift,
deg iterations

sec sec sec

C 0.7 4.4 1.4 90 27.6 17.2

C 0.8 4.0 1.4 90 27.5 17.4
C 0.83 5.0 1.4 99 30.9 18.1

B 0.88 2.2 1.3 170 54.9 12.9

Two-order of magnitude reduction in the maximum residual.
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TRANSONIC FLOWFIELD COMPUTATION USING
A MODIFIED SHOCK-POINT OPERATOR

S--L. T. Chen

lMcDonnell Douglas Research Laboratories
St. Louis, Missouri 63166

. 0- Abstract u, v, . velocity components in \. and z directions

C The development of higher-order finite-difference schemes for defined in Eqs. (34)-(36)f application to transonic wing-body flow calculations is de- U, V. W velocity components defined in Eqs. (18)-(20)
.cribed. These schemes treat supersonic flows and shocks more x.y, z coordinates in physical space
accurately than most existing schemes. A transformed full

VS location of shock in the channel axis"- __ potential equation in a general curvilinear coordinate system is
derived, and higher-order operators are introduced. A new switch function defined in Eq. (54)

" shock-point operator produces Mach number jumps at a shock d local flow density
that agree reasonably well with Rankine-Hugoniot values. flow density at I =
Second-and third-order, quasi-conservative, and fuliv conser-
sative schemes are thereby developed for general geometries Introduction
where flow directions can be approximately aligned with coor-
dinate lines in supersonic regions. The fully conservative Shock structures on supercritical wings are generally complex
schemes are developed by modifying an existing finite-volume so that the conventional first-order schemes) - 5 may not be ac-
algorithm, while the quasi-conservative schemes are developed curate enough to capture their subtle changes. It is therefore
by solving the transformed full potential equation directly with desirable to deelop higher-order schemes to improve the solu-
the addition of the second-and third-order artificial viscosities at tion accuracy in supersonic regions. It has also become clear
supersonic points, and the corresponding first- and second-order that prediction of shock strength and location in potential flow
shock-point operators at shock points. e. calculations depends almost entirely on the so-called shock-point

To evaluate the proposed shock-point operators, a model operator, i.e., the equation solved at the first subsonic point
" problem was studied, consisting of flow through a converging- downstream of the shock. Therefore, it is important to formu-

diverging planar channel, with a shock in the diverging section. laten adequate shock-point operator so that the predicted
The computed shock locations and strengths were compared shocks are in good agreement with physical shocks.
with a one-dimensional analysis including Rankine-Hugoniot Several second-order schemes6-9 have been introduced for air-
shocks. These methods were successfully extended to three- foil and cascade flowfield calculations. Jameson i and Chen-
dimensional flowfield computations. Computed results are demonstrated that second-order fully conservative and quasi-
presented for an ONERA-M6 wing on a vertical wall and on a conservative schemes, respectively, are capable of predicting
semi-infinite fuselage, and compared with corresponding ex- double shocks on an airfoil surface, which cannot be accurately

' perimental data. resolved using a first-order scheme without a large number of
grid points. Chen' also demonstrated that his second-order

Nomenclature quasi-conservative scheme provides better resolution of a double
a speed of sound shock than the second-order fully conservative scheme. l',es and

Liutermoza8 showed that their second-order nonconservative
a. stagnation speed of sound scheme provides better resolution for transonic cascade flows

Sa. speed of sound at M = 1 than first-order nonconservative schemes. A discussion of first-
A B C transformation matrices defined in Eqs. (3), (4), and second-order nonconservative schemes has also been given

and (5) . in Ref. 7. A study of artificial viscosities and conservative
c( shock-point operators of different orders was provided in Ref.c1, c2 ...C9  coefficients defined in Eqs. (9)-(17) and (38)-(42) I by Chen and Caughey. who also introduced a third-order

D determinant of Jacobian transformation matrix quasi-conservative scheme. In the present study, second- and
defined in Eqs. (33) and (47) third-order artificial viscosities are first introduced for transonic

G reduced velocity potential defined in Eq. (69) potential flowfield computations about wings and wing-body
h l . h,...h9 coefficients defined in Eqs. (21)-(29) combinations.

" H artificial viscosities at supersonic points defined in Methods for differencing the small disturbance equation at
Eqs. (53) and (56) 3hocks were investigated by Murman 12 and Hafez. 13 Methods

H, artificial viscosities at shock points defined in Eqs. for treating shocks in a full potential formulation were studied
(55), (57). (64), and (65) by Jameson 6 and Chen and Caughey. I Fully conservative

rh mass flow rate defined in Eq. (68) schemes for treating the potential equation conserve mass flux
isentropically across shr ks; therefore, the predicted shocks areM local Mach number always stronger than Rankine-Hugoniot shocks. 2 In the present

M normalized Mach number = u/a, study, a shock-point operator is derived from an approximate

P, partially conservative parameter defined in Eqs. one-dimensional flow analysis. Use of this operator results in
(55) and (57) Mach number jumps at shocks that are in reasonable agreement

with Rankine-Hugoniot values. Methods for differencing atP" Y, Pt second-order transformation derivatives defined in shocks are evaluated using a model problem consisting of flow
Eqs. 130)-132) and (48)-(49) through a converging-diverging planar channel, with a shock in
coordinate in streamwise direction the diverging section. In flowfield calculations about wings, par-

, .. .
. - . - . -- .



tially conservative shock-point operators provide results that are where u, ,, w are the x, y, z components of the flow velocity,
in better agreement with experiment than a conservative scheme respectively, and a is the local speed of sound determined from

To the author's knowledge, this result is the first demonstra- the energy equation
tion of a successful third-order scheme applied to solution of
the full potential equation, the first presentation of both second- a2 = a2 - (u vz + w". (7)
and third-order solutions for transonic potential flowfield com-

' putations about wings and wing-body configurations, and the where -f is the ratio of specific heats for the assumed calorically
first attempt to formulate a shock-point operator that produces perfect gas and ao is the stagnation speed of sound.
Mach number jumps in a potential flow that are in reasonable Substituting Eqs. () and (2) into Eq. (6), and aftera g r e e mn e n t w i t h R a n k i n e -H u g o n i o t a l u e s .S u s i u i g E .( ) a n ( 2 i t o E . 6 , a d a t eperforming matrix inversion, multiplication, and careful

Full Potential Equation algebraic manipulation, a full potential equation multiplied by
the determinant of the Jacobian transformation matrix, D. in

Quasi-conservative schemes are used to solve finite-difference arbitrary curvilinear coordinates can be derived as
approximations of the full potential equation. Therefore, it is
convenient to first formulate the full potential equation in com- CIOxx + cZyY + c30zz + C40xv + CSOvz + C6Pxz
putational coordinates. By applying the chain rule, derivatives
of the potential function o in physical coordinates (x, y, z) can + 

0 X C5~y + cez 0, (8)
be related to its derivatives in an arbitrary curvilinear coordinate where
system IX, Y, Z) as follows:

C= a2(hj' + h12 + h-5 - U21/D(9
c, = Ia

2
(h2 + 

h- + h2)} - V21/D (10)

) c = [a2(h2 + h2 + h2) - W2]/D 0 1)
c4 =[2a (hlh + h-,h, h~h )  2UVI/D (12)
c5 = 2a-(hh7 + hsh + h6hg) 2VW)/D (13)

- Oxx C6= [2a(hlhT+h~hs+h~h9) 2UW]/D (14)
Ov =- CA . , c7= (hlPx+ h2Py + hpz)/D (15)

VvOz O j , + h~py + hOxz (16)

OxzJ c9  (h7PX + hpy + hqpz)/D, (17)
L~ddy-() U, V, W art velocityj component-, defined as

- where
U = hu , hv + h3w (18)

r -I V + h v + h6 w (19)*x A (X YW Ly) 
W h~ u+hgv+h

9 w (20)

A = ~Xy yv Zy '(0

Lxz Yz (3) coefficients ht, h 2, . . . hg are first-order transformation
derivatives defined as

Xx Yx2  2
xxyx  Zx2 2xXzx 2yxZx  h= yy Yz v (21)

- iy 2  
yy 2  

Zxyyy Zy2 
2Zyzy 2yyzy h2 = LYXZ - zXv (22)

li = .xxv Yx .XYy + XyYX zxzY XxzyXZy -v yxzy +-yYZ h3 = Xyy7 - XzYY (23)

xzZ Yz2  2
xzyz ZLZ 2XZzZ 2yZz2  h4 = YZX - YXZZ (24)

xxxZ yXyz x yz +xzyx ZXZ z XXZZ+X ZLX Yxz+yzZx 11, = ,zxx - xXz (25)
"XyXz YxYz XyYz+XzYy Zyzz Xyz "Zy yvyZZ+YZZj (4) h5 

= x-yx - xxyz (26)

h, = yxzy - yyzx (27)

hq = Zxx y - ZyXx (28)

xz Th9 = 
zxyy - xyyx, (29),, |' XY Xy y 1 XZZ XXz  "yI

C Yxx YYY YxY YzZ Yxz YYZ and coefficients PX, pY, and PZ are second-order transformation

, Zxx zYy Zxy Zzz ZXZ zj derivatives defined as

The full potential equation to be solved is Px cixxx + c2xyy - cjxzz + c4 xv .,xvz - c6xxz (30)

S(a 2 
- u2)0, + (az 

- v2)0YY + a - w)0, - 2uve,, p -- ctYxx + C"YYY + cyZZ * c.Yxv + csYvz * c6yxz (30

- 2vwoyz - 2uwo,, = 0, (6) Pz CIZXx + C2ZyY + ,3Zz + C4ZxY  Cyz + C6Zx. (32)

2
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The determinant of the Jacobian transformation matrix is Supersonic Flow and Shocks." defined as
dee aThe finite-difference approximation to the full potential equa-

="+ x t~on discussed thus far is adequate for flow- that are entirelyD=hxx--hx + hsxz. (33 subsonic. To treat transonic flows, proper artificial viscosities or

densities are normally added to the finite-difference approxima-
The velocity components u, v, w are defined as tion of the potential equation solved at supersonic points. The

directional bias .f supersonic flows can thus be reflected in the
u =l ,X + h4Oy + h.z)/D (341 governing equaticn.

-h'.< * hy ' h o/D (35 The so-cailed full, conservative and quasi-conservative

w = ih3o x + h6 0y + hg.oz)/D. (3t, ,cnerres .on,c:,e !hc arzificial %iscostties or densities along
"teamline.;; in otner words, the total summation of artificial

Equation (8) can be reduced to a two-dimensional equation v i costes o- denitiet added to the potential equation at all
given n Ref. 7. pcints alo"g 'he treaml:ne :s exactly zero. Naturally the shocks

hus precic:ed are .onsisent with isentropic mass-conservingAfter the physical coordinates of grid points have been Ocks, h~ch 6c to, simultaneously conserve momentum and
pres.:ribd, the transformation derivatives xx, xy, xZ, YX. ner Liwe are rot.ger than the Rankine-Hugoniot shocks.
xx .xy, Xyy. .. . can be computed at each control point
within a local mesh element. A second-order-accurate, finite- In the nonconservatuve schemes, the total summation of artifi-
difference approximation of th2 transformed full potential equa- -al v*isosities .r cersittes added aiong the streamline is not
:ion thus cart be obtained by applying a ,econd-order element zero. ! :-he limit ,1 .e :inite-difference approximation, this un-
(Fig. I). Within the element, X Y, and Z vary from - I to I )aianed summation 0erm appears as a nonzero source term on
'onm nodal point to nodal point. Therefore the mesh element is the right side of the potential equation solved at certain points
uniformly spaced in the computational space. Second-order alorg the streamline generally at the shock point, the first sub-

, shape functions can be constructed that relate the function at sonic point aonstream of the shock. This source tern in the
any naine p %,ithin the element to the values of the function at equation reoresen-s a mass source in the flowfield. Therefore,
27 nial points. If the control point is chosen to be X = Y = the solutions thus zb:ained deviate from the isentropic mass-
Z = 0. then the well-known second-order, centered, finite- conserving olutuon-. Si."ce the potential formulation does not
difference formulations14.t5 are obtained, permit simultaneous conservation of mass and momentum flux

at shocks, errors in tne iumps in fluid properties are inevitable.
A desirable method from an engineenng point of view is one in
which errors in the properties of primary interest are minimized.
As a matter of fact, it has been consistently shown that theshocks computed by these nonconservative schemes agree better

(a) Ph. %icat ,pace with experiment than tose computed by the conservative
Z schemes. 16 The nature of the nonzero source term was under-

stood to be related to the addition of mass flux; however, an
adequate mathematical explanation of its effect has not been
given. An attempt to explain the nonzero source term will be
given in the form of a simple one-dimensional flow analysis,
following introduction of artificial viscosities.

Artificial Viscosities and Partially Conservative Shock PointOperators

The second derivative of the potential function in the stream-
wise direction, s, is given as

__a
2 

u +v2(u,, v + w + 2uv y

+ 2vwo,, + 2uwb") (37)

Substituting Eqs. (1) and (2) into Eq. (37) yields
ib) Computational ,pace

(L2X 2Y W2Ozz 4. 2UVOxy:" Cs= - (U2
OxX * V20yy "€"  2V~

I q"

+ 2VWOyz - 2UWoxz), (38)

-- - /where U, V, W are given in Eqs. (18)-(20).

The directional bias of supersonic flows can be properly
simulated by performing an upwind differencing or adding arti-

/ / ficial viscosities in the approximate streamwise direction. If Y =
/ - constant lines are in the approximate s direction, the principal

part of 0,, can be approximated by

U
2  

(39)
lb - OXX

Fill. I Trantformalion of a iecond-trder element.
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A second-order artificial viscosity can be expressed as A Simple One-Dimensional Flow Analysis and a Shock-Point
Operator

H == An alternative new method to formulate a shock-point
Lx \-- operator is described in the following paragraphs. This method

is based on an approximate one-dimensional analysis in which
information from the Rankine-Hugoniot relations is

w 2 ( x -) (MU20X ,) (40) incorporated.

The flows upstream and downstream of the shock can be
where considered as relating to two branches of isentropic flows.

Because of the entropy increase across the shock, the stagnation
* $= maxk1- , (2 density decreases, while the stagnation speed of sound remains

unchanged because the process is adiabatic. The continuity
equation can therefore be written as

H is then added to the finite-difference representation of Eq. (8)

at supersonic points. At shock points, i.e., the first downstream 3
subsonic points after the shocks, the following first-order arti- (I I -L M-) =oll M2 (45)ficial viscosity H, is added with Pm controlling the nonconserva- 2 2 2)

tive differencing: or

Hs = ;Pm - I) 1 [(j 2XX) [(2 'd

[ 2 x =0 (46)

u -oxx
- p -P~ I). (42)

D -where x I and x, are the axial positions just upstream and down-
stream of the shock and p . p;, M , and M, are sonic densities
and Mach numbers of the flows just upstream and downstreamIf Pm = 0. the quantity/ UOx is conserved along Y = con- of the shock. If the Mach number is assumed to change

stant lines, implying that the added artificial viscosities are con- smoothly across the shock, as it does in most finite-difference

served along approximate streamlines. If Pm > 0, a numerical solutions, the integration followed by the differentiation of the

mass flux is introduced at shocks, modifying the locations and term inside the bracket can be performed to give the following

strengths of the shocks. The effect of Pm on the captured ter oiimte equ a n

shocks will be discussed later. Although . is a ramp function, approximate equation.

both H and H, reduce to zero as the mesh size goes to zero. The --
-

solution is second-order accurate at both subsonic and super- I M, -

sonic points and first-order accurate at shock points. The

scheme is second-order quasi-conservative. In the so-called (47)

quasi-conservative schemes, only the differencing of artificial ,
viscosities is in divergence form; the differencing of the govern- where M = u/a. = o,/a. and a. is the sonic speed at M = I.

ing potential equation is not. A second-order fully conservative Two approximations have been made: the (I - M*2) term on

scheme also can be constructed by incorporating H and H, into the left side and the [I - (I - l)/(y + I)M,']M* term on the

the existing finite-volume algorithm, right side are treated as constants during integration, and the
relative change in p' is assumed to be small. In a fully isentropic

Third-order, quasi-conservative and fully conservative schemes flow, o° is constant, the right side of Eq. (47) is therefore zero,
can be developed by adding the following third-order artificial and the left side can be rewritten as the familiar one-
viscosity at supersonic points: dimensional potential equation

H = [AX3M21x] tU = ___ 3_ - (UZOXX) (a2 - U 2) OXX 0. (48)

A change in p" occurs across a shock in a real flow. The right

S / )U2 0XX side of Eq. (47) should be related to the error incurred at a
3 D - (43) shock in a potential flow calculation. M' on the right side of

,-2 t-Eq. (47) is the average value of M, and M1, and therefore a
reasonable approximation is M" = 1. If this approximation is

and adding the following second-order artificial viscosity at made and the left-side notation of Eq. (48) is retained for
shock points: clarity,

H r (X)_U2Oxx] = [(U2x' D (a - u2)0xX =- a3" - a-i)/K.x (49)

where _ is the axial spacing across the shock. Numerical values

-2 \ ( ) - Ifor the right side of Eq. (49) can be obtained by introducing a
- 2 X) J P_ - 1). (44) Rankine-Hugoniot relation.

If,, is set to zero,. the quantity o is conserved along ,,., I ' .

Y = constant lines. If Pm is set to be greater than zero, a N =M - -- M< (1 -

numerical mass flux is added at shocks, as in the second-order J
schemes. (50)

4
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where op and o: are values of o upstream and downstream of strategy to treat the artificial viscosities at supersonic and shock
shocks, respectively,. and M, is the normalized shock Mach points. A similar strategy can also be developed for the third-
number upstream of the shock. order quasi-conservative and fully conservative schemes.

This result is used to modify the conservative first- andAnlssoShcsiCaneFow
second-order artificial viscosities at shock points as followsAnlssoShcsiChneFow
(see Eqs. (42) and (44)): A model problem, consisting of flow through a planar,

symmetric converging-diverging channel (Fig. 2) was used to
..x ,, evaluate various methods for treatment of shock waves in

H, - -,- a3_ - .x, (51) potential flow. This configuration provides a relatively simple,
x , inexpensive framework for evaluation of numerical methods

and prior to incorporation into a three-dimensional method.

[(AX)3/aUOxx] a ~( The flow becomes sonic at the throat, x, and shocks occur in.,.-H , = .X -'4 -O X _ L a!( I - 2 x, (52) the diverging section extending from x to xe. The slope of the
0X diverging wall can be adjusted so that the predicted shock Mach

• .. numbers range from 1.0 to 2.0. Values of Pm vary from -0.6
where AX, is the distance between the shock point and its up- tom0.8, ana fro s eac t tatis ompute to chec.,,.to 0.8, and mass flux across each x station is computed to checkstream supersonic point in the streamwise direction, the mass flux conservation.

Relaxation Strategies A previously developed inlet program' 4 was modified to com-
The finite-difference approximation to Eq. (8) can be solved pute the flows with shocks in the channel by incorporating the

by a line-relaxtation scheme with the boundary conditions second- and third-order artificial viscosities and the partially
described in the previous section. To ensure that the relaxation conservative shock-point operators described previously. A
scheme corresponds to a convergent process, the old and up- typical grid system is presented in Fig. 3. In the calculation, two
dated values of the potential functions. o and 0*, must be meshes were used; the coarse mesh had 50 mesh elements in the
mixed properly. The basic relaxation strategies developed for the unwrapped X-direction, 12 mesh elements in the surface normal
present method are similar to the ones described in Refs. 14 and direction, and 20 equally spaced streamwise mesh elements in
17, except for careful treatments of artificial viscosities at super-
sonic and shock points.

In the second-order quasi-conservative scheme, the old and
new values of o contributing to the terms (q2 

- a)oss + H (or 1.0
H) of the relaxation equation are chosen to ensure a convergent
process in the i = constant line sweep according to

[ ,U2 ~ ,(~U2)~ y-.e -
(q2 -a 2 ) o,, + H D 4(' .~ -~~

/(j~k ci - m.j,k

T X (Cl.hk -c-M.J!k) -0.5 0 0.5 1.0 1.5D ) i- 2m.j,kJ 
x

mk ( )2ml Fig. 2 A converging. liverging channel.

x (ci.Jk - ci - m.j.k) + Rs (53)

for supersonic points, and

l__ 12 1.8 r
(q2 

- a2) 0,, - H, = 2 +
Si -2m,j,k

1 .4

X 1 - Pm) (ci,j,k - ci-mj,k) - -mj,"

, I.0 l-

-2 D )

i - 2mdj.kl 0.6 "

X (1 PM ) (Cs.~k - i-2mj.k) +  R,, (54) . . : ,* ....... -, -' - .6

for shock point where ci.il 0." k - 0. 1 is the correction[ ;,:0:: !i i; .iif~ i~!!ii 2iiii~: i f :to th oenil unto .g i ], t, -0.toth ptntalfuc in m is qa to I o'r - I if U > 0 or U -0.8 -0 0 04 08 12 1.6
<0, respectively, and Rs is the residual of the lfinite-difference X

approximation to (q2 - a ),b, evaluated using old values of o.
The second-order fully conservative scheme applies the same Fig. 3 Grid distrihution about nozzle (



the diverging section. The fine mesh ind i-, as ra'y nesh T e I pes.ntF a summary of results. channeis A, B, C, D,

elements in both directions. To ensur: thi-( a (o, , rrca solti,)n E, and F tiav. ,al js of diverging wad slopes of 0.15, 0.20,
in the fine mesh existed and to impr :%e ,h, .JI1 e-r.ce ra e '225. ) 40, u.5(, and 0.875, respectvely; H represents iht order
the potential function at :he down.:een. u i.)t.,- wtuniary as :f ari-cl ,.--si,; Pm :s the parame-.er. irst introdced in

frozen after 300 iterations, while !he - 3'eci ve .t.rue. I, a Eq. ,-2), k.n r . Iliin.g .he degree of noncorservative aifferencing;
total of 600 iterations. The number o7 .,upe so rc iointS usl' RH t "t. rotuin means that the shock-point cperator

ceases to change in the last 50 to 200 iteraviors. So itons ver! defned ,n Ecs. (Si) or (52) were used, and x, is the shock 'o(.a-
obtained for various slopes of the uise-gl; \a;l -t id %ancus ir- ('or, \1,,i i, tt~e average Mach number at the channel exit:
let and exit conditions. After each Xv f:e il o'-rutati e X e 1 = 01 tor 1 1 .:.Ases ccnsidered here. M, and M., are the

:otal mass flux across each cross-sec.,on \,a, c,:.t,' d h. .'.c'agc' L: nunilers upstream and downstream of the shock.
numerical integration: BM' a.ah.itg ." = at the throat (x = 0), the channe; area

rtio ar. ie uied to find a one-dimensional ,,aiue of N, at the

' s i.uc K. 3imiiarlv. he area ratio (between x = xs and x = :)
pu dy and \le, car. be .sed to determine a corresponding salie of

M,. The .Mach oarnrier downstream of the shock is M2 RH'
given by the RanKine-Hugoniot relation. (p,:pr),: is the' stagna-

wall tion density rat:o acros the shock, computed by numerically in-

h ( M ".. (55) tegra:!ng the "unction gien in Eq. (55). (p;/Pi)RH.is the
a axis "analytical stagration density ratio across a Rankine-Hugoniot

ahock given 6y Eq. 15.,), and f is the relative error of (p2, P), to

where M., is the component of the Mach number parallel to the (P;/P*)RH As Pm increases from 0 to 0.8, (p/,po) decreases

nozzle axis. The nozzle flow diffe:s trom an ex:ernai :lcw with from near unity t: a %aiue less than (P:1.l)RH. Smaller values

a shock in that the flow downstream of :he shock in the channel of E generally mean petter agreement between M2 and M.) RH

can be regarded as a potential flow with po = ,. = constant, Figure 4 compares computed shock Mach numbers, M1 and
since the variation in shock strength across the channel is M2, with Rankine-Hugoniot shocks and Mach numbers obtained
relatively small. For each flowfleid comoutation. 'ne mass flow from isentropic, mass-conserving relations. Solutions obtained
rate and a* were assumed constant, and tne change of the by setting Pm = 0 always lie below the isentropic, mass-
integral upstream and downstream of the shock was interpreted conserving shock curve. Solutions obtained by ;etting pm = 0.6
as a change in p' across the shock. to 0.8 give reasonable agreement with the Rankine-lHugoniot

Table I. Summar) of channel flow calculations.

Case H Channel Pm N, MI M2 M2)RH Mei, P2*"DIQ14 P2-I* iRH (t-0)

1 2 A -0.6 0.475 1.312 0.709 0.780 0.617 1.01 0.977 3.7
2 2 A -0.3 0.475 1.312 0.713 0.780 0.621 1.011 0.977 3.4
3 2 A 0 0.475 1.312 0.713 0.780 0.620 1.011 0.977 3.4

4 2 A 0.6 0.475 1.312 0.760 0.780 0.651 0.383 0.977 0.6
5 2 A 0 0.900 .435 0.626 0.725 0.612 1.022 0.946 7.6

6 2 C 0 0.725 1.508 0.577 0.699 0.530 1.025 0.927 9.8
7 2 D 0 0.600 1.587 0.515 0.672 0.435 1.059 0.900 15.9
8 2 D 0 1.000 1.763 0.464 0.625 0.464 1.007 0.829 17.8
9 2 B 0.6 0.150 1.200 0.792 0.843 0.580 0.992 0.993 -0.1

10 3 A 0.8 0.450 1.303 0+766 0.785 0.650 0.977 0.979 -0.2
II 3 B 0.8 0.475 1.364 0.737 0.755 0.615 0.971 0.967 0.4
12 3 B 0.8 0.575 1.402 0.788 0.739 0.665 0.930 0.958 -2.8
13 2 D 0.8 0.375 1.460 0.716 0.716 0.511 0.936 0.942 -0.6
14 2 C 0.7 0.875 1.560 0.712 0.681 0.675 0.888 0.910 -2.2
15 3 D 0.8 0.575 1.574 0.704 0.676 0.559 0.885 0.904 -1.9
16 2 E 0.8 0.725 1.726 0.656 0.634 0.558 0.826 0.845 - 1.9
17 2 E 0.8 0.950 1.832 0.623 0.609 0.606 0.782 0.798 - 1.6
18 2 F 0.8 0.725 1.96 0.545 0.584 0.450 0.768 0.739 2.9

19 2 F 0.8 0.975 2.110 0.568 0.560 '.558 0.660 0.670 - 1.0

20 2 A RH 0.550 1.336 0.743 0.768 0.653 0.982 0.973 0.9
21 3 B RH 0.550 1.393 0.707 0.742 0.610 0.975 0.960 1.5

22 2 B RH 0.550 1.393 0.708 0.742 0.610 0.973 0.960 1.3
23 3 B RH 0.725 1.454 0.691 0.718 0.632 0.953 0.944 0.9
24 2 C RH 0.675 1.490 0.662 0.704 0.589 0.954 0.932 2.2
25 3 D RH 0.475 1.527 0.635 0.692 0.496 0.945 0.921 2.4
26 2 C RH 1.000 1.602 0.655 0.668 0.657 0.896 0.894 0.2
27 2 D RH 0.875 1.719 0.608 0.636 0.577 0.856 0.8
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Fig. 4 Comparison of computed aserage shock Fig. 5 Comparison of computed stagnation densit)
Mch number with analtical solutions, changes across shocks with analilical solutions.

curve over a wide range of M1. Solutions obtained by applying shock-point operator to compute airfoil flows. In the nonlifting
Eqs. (51) or (52) depend on the determination of Mj in Eq. case, his partially conservative solutions agree reasonably well
(50). However, in the solution process, M, is chosen to be the with Euler solutions, while in the lifting case, a discrepancy per-
largest value of M' at the last two supersonic points upstream sists. Since the present work gives a shock-capturing technique

. of the shock. The value of M* so chosen is always smaller than resulting in Mach number jumps that are close to the Rankine-
the exact M; because of the smearing of the shock over a few Hugoniot values, it is possible to interpret the computed velocity
mesh spacings. Therefore, M; is in general, overpredicted. In potential distribution downstream of the shock using the

- case 26, the shock occurred at the end of the diverging section, Rankine-Hugoniot values of stagnation pressure or density at
and the prediction of Ml agrees with the Rankine-Hugoniot each streamline, rather than with the conventional isentropic
value almost exactly; flowfield gradients upstream of the shock assumption. This interpretation would have the effect of carry-
were small, resulting in a more accurate value of M;. The ing the inherent error in the solution from the immediate
scatter in the computed solutions is believed to depend on the vicinity of the shock wave, where mass and momentum are now
variation of Mach number across the channel height, i.e., the conserved, to the region downstream of the shock. Comparisons
two-dimensionality of the channel flow and the effect of mesh of potential flowfield computations with numerical solutions of
spacing relative to the shock orientation, the Euler equations are needed to evaluate the usefulness of this

interpretation because comparisons involving experimental data
Figure 5 presents computed values of o 2 /p, compared with are usually complicated by wind-tunnel wall effects and viscous-

the exact Rankine-Hugoniot solution. The exact solution for inviscid interactions.
. zlp, for an isentropic, mass-conserving shock is unity. Solu-
," tions obtained with pm = 0 are all slightly greater than unity.

Figures 4 and 5 are actually alternative methods of presenting Wing-Body Flowfleld Computations
the same information because of the unique relation between
M and p /p; for a-particular value of M'. Figures 6-1, Grid Generation and Computational Domain
present tables and line-printer plots of computed Mach number The finite-difference approximation of the governing equation
distributions on the wall and along the axis of symmetry, and obtained in the previous section can be constructed with the
Rankine-Hugoniot Mach number distributions for various cases, knowledge of mesh-point locations. The coordinate transforma-
The columns labeled MACH-RH present the analytical one- tion derivatives are found at each control point within a local
dimensional Mach number distribution; columns labeled second-order element shown in Fig. 1. Any scheme that gener-
MACH-AXIS and MACH-WALL are computed Mach numbers ates a grid system in a regular computational domain'can be in-
distributions along the axis of symmetry and along the wall, corporated with the finite-difference equation solver.
respectively. In the present study, a grid-generation scheme developed in

The preceding channel-flow calculations demonstrate that, in Ref. 20 is applied. The transformation of the physical space to
this instance, it is possible to obtain solutions from a potential the computational space is shown in Fig. 12. The computational
formulation that closely approximates solutions to the Euler space is truncated at a finite distance from th- wing surface. For
equations. In the flow about an airfoil or wing, the shock the results presented here, the farfield boundary is placed
strength is maximum near the surface and decreases to zero with approximately five to six root-chord lengths from the wing sur-
increasing distance normal to the surface. Vorticity, which is face in the streamwise and surface normal directions, and the
neglected in the potential formulation, is thereby introduced spanwise farfield is located two to three semi-span lengths from
into the real flow. Although the vorticity effect in transonic the wing tip and the outboard farfield. C-type meshes are gener-
flowfields is second-order, S potential flows with variable- ated which wrap around the fuselage nose and wing leading
strength shocks contain errors which can be minimized, from an edge. Outboard of the wing tip, the mesh wraps around a sur-
engineering standpoint, but not eliminated. A good example of face extending from the wing tip to the outboard farfield.
this is shown by Lock 19 who applied a partially conservative Details of the grid-generation scheme can be found in Ref. 20.
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X V MACN-QM MAC"-.XIS MACH-WALL PLOT )F C .u"'fQ DISTRiUTION
*0

-. 108 .406 0.00000 .85976 .86343 0
-. 087 .405 0.00000 .87311 .87304 3
-. 066 .404 0.00000 .882 .88294 0
-.044 .402 0.00000 .0S68 .88819 -0
-.022 .401 0.00000 .92618 1.1178

3  
0

-. 00 .400 0.00000 .9430 1.42-58 0
~~~ I :44917

.0 0 .*0 8 1.0.13 .-5981 007S .12 1.1850 1.06293 1.4662

.15 *20 |5800 1.09013 1.4373' 0
150 424 1.28474 1.11006 1.42567 0

S .28 1.30862 1.15147 1.'1865 0 *
0 0 .432 1.3 094 1.14 23 1.41504 0

.2 S .:436 1.3 197 1.21 7A .. 137 0 'I

.2 0 .440 137102 1 .?2!7 1 a1 8
7S 4 139004 1.28686 1.41290J8' : 46 ,.'a , o ,.91 +° ,.1,2oo 0.,S ..2, :32,, 17 1,006053 .35670 N.189 0 -

.350 .456 1 .4434R 1.39151 14940

.375 .460 1.45976 1.o2604 1.424S4 0
.400 .464 1.47592 1.46015 1.43071
•425 .468 1.49080 1.4369 1:43819 .*:
.450 .472 1.5064 1.24 1.68
.475 .476 1.152008 1: SSAS4 1.45661
.500 .4AO 1.53&15 1.58S04 4.671
S525 48 , 54787 1.61037 1.7870

.5 • .488 1.56127 1.64783 1.47841 * 0

.575 .4q2 1.57436 1.67466 1.27526 . 0

.600 .406 .67234 1.69965 .79019 4 3

.65 .500 .66183 1.69121 .b267 0

.650 .SO& .6S1A3 .97388 .53051 * 0

.675 .508 .64 29 .45714 .51978 0 .

.700 .5 2 .63318 .45861 .50913 0.
.6 62644 .4S09 .98 a.

070 .61606 .4A087 .41921 0 *
.775 .526 .60800 .46118 .8000 0.
.800 .528 .60024 460 4 .47113 0
.825 .532 .59275 .6025 .46 44 *
.8S0 .S36 .58552 .4522 .45375 0
.875 .5.0 .5785 .45792 4481 0
.900 .544* 5777 .45646 .43SjS *0

92 .548 6522 .45480 .24 5 .0
.950 .5S2 . 588A .45328 .41102 *
.97S .556 .55270 .45166 .38337 0

1.000 .560 .54672 4,4005 .36765 * 0
1.029 .560 .5S672 .44914 .38678 0 0 *
1062 .560 .54672 , .628 .40791 "
1.101 .560 .54672 .44431 .1655 .0

.560 .54672 .44235 .42232 0 *t: .~o .14672 440550 .,263,

.5 60 45672 .438A5 4916 01.324 .560 .54672 .43749 .43110 0 Second-order quasi-conservative solution03 .960 *.54672 .43885 .4326 0 *

.:403 105 .5 S6 .54672 .43S83 .433 8 0 * partially conservative parameter. pm 0

Fig. 6 Mach number distribulion of channel flow for case 7.

7 MACH-Om MACH-AS~4 MACH-WALL PLOT OF~ MACH NQKS~E9 00$ 91710
*0

-,108 .406 0.00000 .85953 .86321
CA.07 .405 0.00000 .87290 .87284 0

:.066 .40 0.00000 .88802 .88277 0
.044 .402 0.00000 .90550 .88805 .0

:.022 .401 0.00000 .92602 1.11780 0
00 :400 0.00000 .9*915 1.42464 0

• 02 .404 1.11265 .98517 1.44919 0 *
OSO .408 1 050 . 1.'5978 075zo+ :-12 :flS

•.4 0 *p890 .09013 4 0
.424 .28*74 1.11096 44556 075 . 8 1.30862 I1.5146 1.41855 0

.0 .432 1.33094 1842 1.41495S
.436 1.35|I7 1.21787 1.41330 0

"250 .440 1.37192 1.25214 0. 1272 0 *
'S .444 .3904 1:28685 1:41294 0.
9-O .448 .40914 1.2175 1.43298 0*:3 0 .42 1.2663 J:5668 .3 996 0. *

3 0 -6 14348 1.39149 .98397 * 0 *
.37S .460 .71583 1.42615 .68976 0
.400 .464 .7022 1.:459 .69960 * 0.425 .468 ,6854 1.04684 .68985 0
.450 .472 .67760 .683028 .6846•.75 .476 .66633 .66299 .6668

.48 .65506 .6t830 .65S
:484 :64;O :6 191 .6-47

M .496 ,6J772 ,62972 .61484
".:6 Soo .60922 .62003S .60SS6 .0

650 .50 .60106 .61318 .59656

.7S .50 . g32 .60S75 6 578.2 5 .59860 .7917*
9 1 :5 31*035 76

70 .50 12 4 .922 .56215 oR5 .52 6441 .799
.800. .528 .. 779 7, ...

.58 32 1 37 6 S6~1 * 36 0
.81 :3O 54515 .S6f26 .52737 --o

.540* 9:.S7 ?. 6;
.975 S .5 .51695:

:9,,. .5448. 4,459
.9 0 S1e . 19 50 .407863 .*0

.975 ,55 .S1656 .54086 .*4572 •*

109 . 60 * S .171 4 .40 4 :
.062 .60 ,53021 .4 679 .*0
.01 :560 * 28 2668 .48793
j44 * 60 *518 .233 .94
.96 .560 .18 *0 7  .O5

1. 56 .560 ,41109 .50021 9:.24, ., :S, 0.+ .+o,1.3,j .o60 1118 .51,, .50o,, Second-order auasl-conservatve solution
1.49 560 .51 .S1310 .s0970 * partially conservative oarameter. pm = 08

Fig. 7 Mach number dislrihulion of channel flow for case 13.
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X Y MAC-RH MACH-AXI5 4ACH-MALL PLOT OF MACM NUMBER DISTRTRUTION
0 0

-. 108 .406 0.00000 .OSQ9S .86451 0
".087 .405 0.00000 .87309 .87449 0
-.068 .404 0.00000 .AAA0 .8849S 0-.044 .402 0.00000 .90510 .89131 .0
-.022 .401 0.00000 .92%04 1.09898 0"0 .400 0.00000 .9476 1.38298 0

6.04 265 .97187 1.42990 0i075 .t0 1102 1.00380 131 8

0 .5 2 9.I 850 1.2673 :. 73 5 0

0 0 :1. '0 1:07406 1.429 9 0
.10 .424 1.2 474 1.10377 4.41550 0
175 .28 1.30862 .13591 I1.41175 0 ::,00 4 32 1340* 1.1,S78 1 4117
2 25 :436 1:357 :S0910 0 0

.250 . 1.17197 1:20484 :04
.206 40747

.27S .444 1.39094 .?7702 1.40S87

.300 448 1.40914 1.31363 1.4062I 0

.325 .452 .42663 1 .305 1.4086 4

.350 .456 1.44348 1.35705 1.41266 00

.375 .460 1.:97 1.42360 1.41780
:40 464 1.41552 1.' 5987 1.42394 .

:425 .468 1.405 1.49575 1.43112
.4so . 472 1.50564 1.53110 1.43938 * .0
.475 .476 1.52008 1.56579 1.44868

.gN80 1534185 %4970 1.483 o
. 84 .5477 1.63268 1.45638 * * 0

5 0 88 .56127 1.6,5@ 1.23268 0
.57S .4q2 .67631 1.6q608 .85929 . 0
.600 .4q6 .6655 1.3063) .68902 00
.625 .500 .65532 .83553 .67879 *
.650 .504 .64557 .69324 .66S64 '0
.675 .S08 .63627 .67866 .6537% 9.0
.700 .512 .62736 .66665 .64249 .
.725 .51b .61582 .65631 .63159 .0
.750 .520 .61061 .64714 .6 095 .'0
.775 ,524 .60272 .63MA3 .61048
.800 .528 .59"Il n .63121 .60005 40
8S5 .532 .58776 .2418 .8949 '0
.8 0 .53 .58066 .61766 .57563 * 0
.875 .540 .57380 .61163 .56717 .0
.900 .S44 .S675 .606 5547 0 ..0
.925 .548 .56071 .60092 .54039 ..O
.950 .552 .55446 .59620 .52211 .0
.975 .596 .54839 .59155 .48510 . • 0

1.000 .560 .S4249 .58766 .46428 . . 0
1.029 .560 .542&Q .58357 .49045 .'0
1.062 .560 .5.249 .57944 .51979 ..0
101 .6 S4249 .S7540 .53240 .o
1.145 .560 .54249 .S?161 .54096 .0
.96 .560 54249 %68 3546148 '0
56 .560 .54269 .56535 .55120

1.324 .560 .54244 .56310 .55409 0
1.403 .560 .5424, .56150 .55596 .0 Third-order quasi-conservative solution
1.495 ."60 .54,29 .56053 .55701 -0 partially conservative parameter, Pm 0.8

Fig. 8 Mach number distribution of channel flow for case 15.

0 Y MACH-PH MACH-AX S 44CH-WALL PLOT OF MACK NUMBER DISTRISu1TON
0

-. 108 .406 0.00000 .9514 .86266 0
-.087 .405 0.00000 .57145 .87262 0
-.066 .402 0.08000 .88642 .88270 0
-. 044 .402 0.00000 .90358 .88869 .0
-.022 .401 0.00000 .92357 1.05919 0
-.000 .400 0.09000 .94621 1.16421 0+ : :402 .0982A .97396 I.73630 *

-il .03 1.0 722 1.00S2S 1.62?30

40 1. 873 1.05224 1.23003 0 •.12 8 io 1564 .0769A 1:21718 0

ISO .409 1.17102 1.10378 1.2098 0o*-
,17S .411 1.18522 1.13193 1.20543

S.412 1.19850 1.16090 1.20308 0.
.2 . 14 1.21101 1.19026 1.20234 %
.250 .a15 1.22289 1.21956 1.20339 .4

. .4,17 1.234?1 1.24R34 1.20633 *'0";~ i so, 1.+?61o t' t • .
S .:10 5501 1.0*.- 0

3 0 .421 1.26S58 1.32591 .2 562 .4 0
.37S .423 1.27531 1.34626 1.23501 0
.400 .424 1'84741 1,36215 1.2456 026:l .t 9.Z390 1.37239 .273 . 0

1 .30281 1.37605 004 0
.47S .429 1.31149 1.37258 1.28351 ." 0
.00 .430 1.31996 1.36379 1.

2 96
JO ." 0

.j o ,3J I 3 823 2 8 1 22 7 ais .919*9 .95676• O*0.0
.,3:1 1.3ZB23 1.22821 1.25 51* .

.575 .435 .76104 .74312 .73722 0
.600 .436 .75421 .73615 .73565

.8 .74763 :701 .792
.60 :4439 .74128 724 .7 38
.675 .441 .73514 .7194 .71784 0.
. :42 .7292j .71451 .7177 O"

.44 7 .7345 .7097 47B

.445 .70786 .70504 .69%86 .6
.775 . .71243 .70044 .69399 .4
.800 .448 .70715 .69606 .68811 0*:S .&so .7001
• 40 .0201 69182 .68215 0.S :51 .69700 .68775 ,67602
S .I 3 .69211 .68394 .66956

9 .' .68734 .6102 .165
.9 .4 6 .6269 .67 1 .65457
970 .47 7814 67411 .6,4456

.970 .459 .67369 .67338 .62471 .0'
"000 .460 .66933 .66b,4 .6124 57
1.29 .460 .66933 .66623 .6557

62 .460 .66933 .66379 .64 006
1:101 :460 .66913 :664SO :64516

96 .46 669 .6 ?79 63.6893 .65156
1.62 .460 .6693 .65647 .60253

::60 .66933 .635m 6S363 4 Second.order quasi-conservative Solution
1.401 .60 .6933 :&5489 .59

.460 .66933 .65452 .6S414 * R-H shock-point operator

Fig. 9 Mach number distribulion of channel flow for case 20.
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) °7.-

X y MACH-RM MAC"-AXIS 
4
ACM-WALL PLOT OF MACH NUMBER DISTRISUTION

0

-.108 .606 0.00000 .ASS03 .859880:06 :40 0.00000 .86778 6930

-. 044 .402 0.00000 7 8846 0
. .401 :00000 .9147 61 0 ":4" ,'0 .907185| 0•

050 .404 .11869 1.0583 1.30515 0 
.075 .406 1.14378 1.06400 1.29358 0 *
409 .408 1.14537 1.07569 .238 0

4 .10 1463 09387 
0*

0 12 1.102?2 1.11302 1 . 29340 86 037 1 00•
I5 .414 1.I452 1.14625 1.26949 0 4.

!00 .416 2 37 1.1772 1.2?329

:is : :1. o1.21 o ..20 136190 1. 4& 12 17050

75 412 I: 498 1:2 7912 ~6784 ~• 00 :44 a 2 .3 3 6s .

• 32S .46 99S599 .34'T |-6&O *
.350 .428 31123 1.7489 1:6681 0.37S .430 1.32250 .40942 1.27156 .4 0

S400 . 342 1.4374? 1*7941142.34 . 2 461 6 1895 ..4S0 .436 1.35434 1.48017 1.30091 06475 .43 1:3438 1:48943 1.31303 .4 0.501.37,9 1. 23 l.3 588 3 8 0
g .442 .83 6 1:46 9 966 .4 0

0- 1.39312 274 .351.SS .446 1.40229 1.38869 1.3703, .4
.600 8 1.41126 1.3683 1.38692 0%

..625 •5 1.4206 1.3811 1.40394 .* .60 .42 1269 4185 142115
.675 .4S4 1.43711 1.46011 1.43839 .0
:709 :456 1.44548 1.29,64 1.45546 0'J. .468 .7181S 8"12 1.2091S .0
70 40 71114 .67180 081654

-775 .462 .70437 .67680 .65690 .0.
:s800 464 .69783 .67539 6S36io!!i": .466 •6qBo .617q7 •64948

•468 •603" .6 6 S3 .644bss 0.
.87S .T •6 79 .66326 •63471 •
.999 .. 72 .6736 65925 .6317*
9 .474 66801 .65859 .62338 .4

.910 .476 .66254 .65230 .61245..

.97S .478 .6S721 .64936 .58911 4
1*000 .480 .65202 .64660 .57460 *0•

1.101 .4A80 .6!20 .63949 .61796
-14,S .48 •6 60 .6 6 .0314 0

9 4 .6520 .6609 .606 8.1. S6 .480 .65202 .63485 .62992 0*
:421 :4110 :6920 :66n 6309O

40 6 2 6330 .63059 O Thirdorder quasi-conservative solution

.49 .400 .6 0 .63327 6324 0 R-H shock-point operator

Fig. 10 Mach number distribution of channel flow for case 23.

X y %ACN-9 'ACN-AXIS 4ACM-wALL PLOT OF MACM NUMBER OISTOIRUTION
* 0

-.108 ::06 0.00000 .85030 .85488 0-. 087 .OS 0.00000 .86298 .86416 0,066 .404 0.00000 .87676 •87346 0
': .044 .402 0.00000 .8917' .7760

.022 .401 0.0000 .9073S 1.08982 00
4.00 0 0 0 000 .2846 133437 0

,' 5 .0o .0o99' .9972 .3449 0'"0 .404 .13471 1.1191 1.33541 0*
.40 16273 94D I .8 33421 0•'1 I .1 685 1,1247 1,31036 03I .0843 . 3 1.30958 0417,01 1.3096
75 .1 .2814 1.1525 1 30967 0*

's ::,$ S4643 .77 1.31422 0
2 ::3 4 0.

210 .62S 1.13 .69 :3 3196 *

.5 :416 j * 19 11 .360S .4 : 1.89 1M. 1,358 .0

.470 .44 1412 .1134 .31I3462S * 0
537 1 3 2 1.25 :36718 4

4 . .39 AS 40 134 0
:414 ""- .,,0,,, :3,. 5o

b 0 1.3'9!9 1.49284 S983 0

.575 .458 : .49. 0 .396 .081 H* * 0

-- : ., 1. 5,o, .| 0
:57 34 = .31
.6 8 1..36 A 1.467 *:4 i:065-O .46?7 O.

A4 9 * 0 '6* * •775 •478 818 I.3343 •.3225 403 9 I.S4370 1: 31
18 j 799S. .' . * 5 • 5 o 1•5,380 1.7954. : . • .'0, o1S.

619 •, 0..
.9 0 .4 9 ..$5 8 . 63 6801.

.9 69 1 A i.391 . 0
• 1 .100 :6677 • 60 as19001 6 66'"1 .67es, ..,1905.

:.00 00 .6677 .66 .446.
".[i .6677 .663 *64498 4

.68. .66 .1 Second-order quas -conservative solution

.67 .60 6.64803 R-H ShOCx-otnt operator:600 .6677 .66 0 .6 360

-9Fig. 11 Mh number disltrihution of channel flow for case 26.
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(a) Physical space

HA- .<- -.

• I

i Fig. 13 Grid distribution on an ONLRA-M6

::i~ o°,0a ,wing and a vertical wall.

A PA

,. ,, ,'ri

0 C E

-Fig. 1 Grid distribution on an OERA-6 wing
.- ;a..-g... wand a simvplifieid fuselage.

"-- -M Equation (57) is obtained from Eq. (8) by neglecting all
'-'. "" ".'derivatives in the X-direction.

a wing-fuselage configuration. tion is applied:

" +.'-'i dig. ll Pit~()sta adComputational cerO tefslg nd wn ufcetei pr eaiiyc ni

*. . V = 0, on the wing surface, (58)
°' ::"and

Typical grids used in the present calculation are presented in W = 0, on the fuselage surface. (59)
[' ' . '.- Figs. 13 and 14. Figure 13 shows the grid distribution on an
- '- ',_ONERA-M6 wing on a vertical wail, and Fig. 14 shows the grid Exact surface-boundary conditions can be enforced at boundary

- _ distribution on the same wing on a semi-infinite fuselage, points by substituting Eqs. (19) and (20) into Eqs. (58) and (59),
Boundry".indiionsrespectively, and solving the equations for the value of theBondryCodiiospotential function at boundary points. One-sided differencing is

:,.--'.,-"The necessary boundary conditions include the impermeability used in the surface-normal direction so that there is no need to
condition on the wing and fuselage surfaces, the Kutta condition extrapolate the potential to imaginary points inside the wing or
along the trailing edge, the zero streamwise variation on the fuselage surfaces. However, Ect. (59) may not be suitable for

...- ,,-.downstream Trefftz plane, and the freestream condition on the highly distorted grids near tihe faselage and wing intersection.
- -- , .* other farfield boundaries. For easy implementation of the far- Boundary conditions ob.'aini from the finite-volume algorithm1

-= 'field freestream condition, a reduced potential, 0, representing give better results near the intersection. Therefore, all solutions
- a perturbation from the freestream, is introduced according to presented in the following section were obtained by applying the

-... '-.'..finite-volume surface-boundary condition in the cross-plane AC-
. ." ,., =U=(x coso -,- y sin t, + G), (56" MG.

" i"i-,where U is the freestream velocity and is the angle of attack. Ajong the trailing edge, the linearized equation

- .'-.' **On the boundary cross-planes, ACUSA and SUNOS, G is set (h + h . + hj),(x + (h + h + Cv
< to zero, representing the freestream condition. On the Trefftz

t- '..plane or the boundary cross-plane AGOSA and CMNUC, the + (h h + h )0ZZ = 0 (60)
'-'.''.'."streamwise variations are assumed to be zero; therefore, the
,""._-"'following two-dimensional equation is applied: is assumed to hold. Equation (60) is obtained from Eq. (8) by

'-::'. '-.'neglecting the nonlinear velocity contribution and the cross- and
'." -" "-Cleyy +cs,)zz + c .z -' € I + c~tz = 0. (57) first-derivative terms. This linearized equation is approximately

-11 11
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valid along the trailing edge only for wing cross-sections having 1.-
a finite trailing-edge angle where zero flow velocity can be
approximately assumed; Eq. (60) can be regarded as an inter- 'Ot Semi-span
polation operator when the wing trailing edge is cusped. The cir- t 0.84
culation r at each spanwise location is determined iteratively as - 1.2 -= 3.06
the solution proceeds. Constant discontinuities in potential
across the cut downstream of the trailing edge are enforced
along the streamwise coordinate lines extending from the trailing

*-edge to the downstream farfield. The value of the discontinuity -0.S
in each spanwise plane is computed at the trailing edge by satis-
fying Eq. (60) at both the upper and lower trailing edges.

Beyond the wing tip, the continuity of the potential function -t0.4 - S

across the surface about which the mesh is unwrapped can be X-

approximated by solving (P = O at points on this surface and .........
just next to the tip. The same condition is applied in the
FLO-22 codezt to solve for the potential function at points lying

*or. on the vortex sheet. 0

Numerical Results
Typical solutions obtained using the second- and third-order. 0.4 - - - Firt.order fully

quasi-conservative and fully conservative schemes are presented conser\aii,e k, in I
in this section. Two meshes are used in all calculations. The Second-order fulh, body
coarse mesh contains 44 mesh cells in the X-direction, 10 mesh conser\ative 9
cells in the Y-direction, and 7 mesh cells in the Z-direction, 0.8 o a Experiment (wing alonei
where 32 x 5 mesh cells are on the unwrapped wing surface. The
fine mesh has double the number of mesh cells in each direc-
tion. Two-hundred relaxation sweeps were performed on the
coarse mesh. followed by two-hundred relaxation sweeps on the I
fine mesh. 0 0.2 0.4 0.6 0.8 1.0

Figures 15 and 16 present comparisons of first- and second-

order fully conservative solutions obtained for the ONERA-M6 Fig. 15 Comparison of first- and second-order full%
wing on a semi-infinite fuselage shown in Fig. 14. The fuselage conservative solutions.
has a constant radius of 0.2 semi-span length, measured from
the wing root to wing tip, in the section of the wing-fuselage in-
tersection. There are no experimental data for this configura- - 1.6
tion; however, experimental data are available for the same wing I I
on a vertical wall in Ref. 22. Computed solutions at 20% and 6517 Semi-span
650o semi-span locations are presented in Figs. 15 and 16. M = 0.84
respectively, for M. = 0.84 and a = 3.06, where a is the 1.2 = 3.06'
angle of attack and also the angle of incidence between the wing
and fuselage. The fuselage effect is not pronounced in this case,
and agreement between the computed solutions and experiment
is generally good. At the 20% semi-span location, the first-order -0.
solution agrees with the second-order solution except for minor
differences in suction peaks and details at the shocks. At the
65% semi-span location, experimental data show a distinct
double shock on the upper surface. The second-order solution -0.4
obviously resolves tfiis double shock better than the first-order
solution, although there are still small discrepancies between the C'
second-order solution and experiment, presumably because the
mesh used for the computation is relatively coarse. 0

In Figs. 17-21 pressure distributions obtained for an ONERA-
M6 wing on a wall, Fig. 16, are shown and compared with
experimental data.22 The freestrearn Mach number is 0.84 and
,he angle of attack is 3.06*. Second-order quasi-conservative 0.4 - - - First-order full)
and first- and second-order fully conservative solutions were conserxatie t ,inp
obtained at the 20%, 65%, and 950o semi-span locations and - Second-order full( bod\
are shown in Figs. 17-19. At the 20% semi-span location. :onsersate c
numerical solutions predict lower suction peaks. The plateau 0 . Ext imem ~ing alonei
pressures at the 20% and 65% semi-span locations are slightly
overpredicted, while the pressures downstream of the shocks are
slightly higher than the experimental data. The locations of _. __._________ .__
shocks are predicted accurately by the numerical solutions. 0 1.2 0 a ) 6 ). I t
Although the mesh used is still relatively coarse, the overall
agreement between the numerical and experimental results is
satisfactory. The quasi-conservative solutions predict a more Fig. 16 (omparion ,f first- and ,econd-order full%
positive pressure at the trailing edge and yield better agreement conservative %olution%.

12
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Fig. 11 Pressure distributions on the upper and Fig. 19 Pressure distribution on the upper and
*lower surfaces of an ON ERA wing on a lower surfaces of an ON. ERA-M6 wing on

wall a( the 20'o iemi-span location, a wall at the 95"n semi-spun location.

1.6 1 I 1.6T

\1 084
a = 3.06'

-0 8 S

00 0

0-

P 1
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Fig. 18 Pressure distributions on the upper and Fig. 20 Stud% ot partialli ciinsersiti~- hici.piiint
lower surfaces of an ON ERA.N16 wing on ioperator, it 21)'. semi-pan location on in
a wail at the 6501o semi-spain location. t)lR -- \6 .inji.
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1.6 previous results, and a triple shock pattern was found in the
results.23 However, this triple shock pattern may be the result of

M,,, 0.84 a numerical oscillation. To study the characteristics of the third-
oa = 3.062 order solutions, finer-mesh solutions were obtained. In the

- 1.2 - finest mesh, there are 128 mesh elements in the unwrapped
* chordwise direction, 24 mesh elements in the surface normal

direction, and 12 mesh elements on the wing in the spanwise
I direction. First-, second- and third-order partially conservative

-0.- solutions were obtained and presented in Figs. 22-24. The par-
tially conservative parameter Pm = 0.7 was used. The second-J •order solution agrees better with experimental data than the
first-order solution. However, the third-order solution shows
unreasonable oscillations at various semi-span locations. The
cause of these oscillations is unknown; it may be related to the

C, fact that artificial viscosities were not used in the cross-flow
- I direction.

Conclusions

Second- and third-order, fully conservative and quasi-
0.4 conservative schemes ha e been developed to compute flowfields

= 0 about transonic wings and wing-body configurations. The quasi-
p,, = I conservative scheme was developed by solving a finite-difference

representation of a transformed full potential equation for-
0.8 ----------- P = 2 mulated in this report and enforcing an exact body surface-

. Expertment boundary condition.

The second-order solutions obtained have been shown to pro-

1.2 * I I I vide better resolution for a double shock than the conventional
0 0.2 0.4 0.6 0.8 1.0 first-order schemes. The third-order solutions show a triple-

.. C shock pattern. Addtional study will be required to determine
whether this pattern is a real flowfield characteristic or a feature
of the numerical scheme. The enforcement of an exact surface-

operators at 65o semi-span location on an boundary condition in the quasi-conservative scheme provides

ONERA-M6 wing. solutions with better agreement with experiments upstream of
the trailing edge.

with experimental data upstream of the trailing edge. This result
is apparently attributable to enforcement of the exact surface - 1.6
boundary condition and the linearized equation, Eq. (72), which
approximately simulates a flow stagnation condition for finite 0" =0.84

trailing-edge angles, as mentioned previously. However, the
quasi-conservative solutions predict a more-downstream shock - 1.2 - = 3-06 -
location at a 65W0 semi-span location and do not resolve the
suction peak as well as the fully conservative scheme. The poor
resolution of the suction peak is caused by the second-order ele-
ment not resolving the surface curvature and potential gradient

near the leading edge as the exact surface-boundary condition is
enforced. The leading-edge resolution can be significantly im-

proved by using a tiird-order element as shown in Ref. 7. -0.4 0 0

A study of the shock-point operator for the same ONERA- n

M6 wing on the wall at M. = 0.84 and a = 3.06 is shown in C,

Figs. 20 and 21. As mentioned previously, Pm is the parameter
controlling the nonconservative differencing of the shock-point 0
operators in Eqs. (61) and (64). Solutions are obtained for
Pm = 0, 1, and 2 at 20% and 6576 semi-span locations by using
the second-order artificial viscosity at supersonic points. A
second-order fully conservative solution is obtained as Pm = 0. 0.4
As Pm increases, the amount of nonconservative differencing in-
creases, and the additional mass flux intioduced at the shock in- First-order
creases. By adjusting the value of Pin, part of the shock-induced 0.8 - Second-order
boundary-layer displacement effect can be simulated. By in- - - Third-order
creasing the value of Pmn, the shock moves upstream, the shock 0 0 Experiment
strength decreases, and agreement of the computed pressure
with experimental data is significantly improved both upstream 2 I I I
and downstream of the shocks. Solutions obtained by setting 0 0.2 0.4 0.6 0,8 1.0
pm = 2 seem to yield best agreement with experiments. Xc

Third-order, quasi-conservative and fully conservative solu- FIg. 22 Comparison of first-, second-, and third-order partiall%
tions were obtained by using the mesh used to obtain the conservative solutions obtained with a finer mesh.
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- 1.6 A partially conversative shock-point operator is introduced to
6 s control t0e amount of nonconservative differencing at shock
65% semi-span points and thus modify the location and strength of shocks.
Q 306 Proper choice of the shock-point operator significantly improves
a = 3'06= - the agreement of computed pressure distribution with experi-

- I.2
mental data near the shocks. A new shock-point operator is
p 0 derived from an approximate one-dimensional flow analysis that

0 properly considers the stagnation density change across the
-0.8 shock and predicts shocks in reasonable agreement with

Rankine-Hugoniot shocks.
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y, ISCOUS-TNVISCI INTERACTIONS '*ITH A THREE-PIMETSIONAL INVERSE BOUNDARY-LAYER CODE

L. Wligton and H. Yoshihara
The Roeing Company
Seattle, !ashington

Abstract

Consideration of three-dimensional inversq ance of correctness than would otherwise have been
boundary-layer codes to treat separated flow is possible.

*motivated by the success enjoyed by two-dimensional
inverse boundary-layer codes. Infdeed, as was first In the usual direct mode used in the attached
shown by Catherall and Mangler , the separation case we prescribe UE and a so that (1) may be

j singularity which occurs in the direct mode (inte- written:
grating the boundary-layer equations with a pre- 1pr
scribed inviscid outer edge velocity Ulnv) can C + D r (2)
be eliminated by using an inverse mode. With an
inverse mode somecther quantity such as displace- where p' = (0, H, B, CE)T and C and D are 4 x 4
ment thickness _o ris prescribed, and the outer matrices. The eigenvalues of the matrix C 1 are
edge velocity which we call uvis is generated by all real, so that the system (2) is hyperbolic.
the boundary-layer calculation. A coupling scheme This enables us to solve (2) as an initial value
must then be devised to insure that the velocity problem using a marching procedure (say in the
uinv from the outer inviscid flow agrees with x-direction). Unfortunately, just as in the two-
Uvi s from the boundary layer.. -Recently several dimensional case, near flow separation the matrix
efficient coupling schemes have been developed C becomes ill-conditioned which disrupts our cal-
(e.g. Carter 2, Le Balleur 3 , ligton and Holt4) culation. In order to avoid the singularities
which have led to successful calculations of vis- associated with flow separation, we consider the
cous-inviscid interactions, including those involv- use of inverse boundary-layer methods.
ing flow separation. In view of these successes
in two-dimensional calculations, we attempt in this Variables other than U and a may be pre-
paper to extend inverse boundary-layer methods to scribed in equation (1) leading to other equations
the three-dimensional case. of the form (2) with different matrices C and D.

Additional inverse modes can be found by adjoining
The present investigation starts with the the equation for the transpiration velocity and

integral three-dimensional compressible turbulent that for the irrotationality of inviscid edge flow.
boundary-layer method developed by Peter Smith". All these methods lead to equations of the form
The velocity profiles in the streamwise direction (2). A program which is capable of operating in
are assumed to b those used in Green's Lag any of these modes has been written, and the cor-
Entrainment method%. The Mager representation responding elgenvalues and nature of the singular-
of the crossflow velocity profile is used. The ities have been analyzed. In many cases, includ-
dependent variables used to describe the boundary ing those used by other investigators, some of the
layer include: eigenvalues of the matrix C-1D are complex. In

this case the system of equations (2) is not hyper-
9 momentum thickness of streamwise profile bolic. and cannot be solved as an initial value

problem unless the derivatives in the y direction
H incompressible shape parameter of stream- happen to be 0. Such methods may be used for two-

wise profile dimensional or infinite yawed wing calculations but
are not suitable for general three-dimensional

B angle between external streamline and the boundary-layer calculations for which one expects
limiting wall streamline to use a marching procedure. Accordingly, atten-

tion is directed towards methods for which the
CE entrainment coefficient eigenvalues of the matrix C- D are all real and

for which the watrix C remains well-conditioned
I1E magnitude of velocity at outer edge of for as large a range of input variables as pos-

houndary layer sible.

a angle between x axis and the external After selecting promising inverse boundary-
streamline, layer methods we next consider coupling schemes

with the outer inviscid flow. The coupling schemes
The dependent vector p = (9, H, 8, cE , U!, a)T introduced by Carter and Le Balleur are generalized

satisfies the x-momentum, y-momentum, continuity to the three-dimensional case. A successful cal-
and the lag entrainment equations. These equations culation involving flow separation around a
can be cast in the form: nacelle-sting combination at angle of attack is

presented.
A .+ B = r (1)

x ;y It appears that in the general case involving
where A and B are 4 x 6 matrices, r is a vector and flow separation and large cross-flow anqles, a
x and y are nonorthogonal curvilinear coordinates coupling scheme based on a strictly local analysis
in a body surface. The formidable algebra involved is inadequate. Thus, generalizations of the Carter
in generated the code for evaluating the entries algorithm and that introduced by Le Ralleur are not
in A, B fnd r was performed on the computer using always effective in the three-dimensional case.
REDUCE 2' and a specially designed FORTRAN pro- Therefore, a new global coupling scheme is now
gram. This enabled the boundary-layer code to be being developed and applied to the case of a swept
written much faster and with a far greater assur- wing with shock-induced senaration. Here the in-



viscid code used is the exact potential code FLO 4. 1igton, L.B. and Holt, M.: Viscous-Inviscid
30 with multigrid developed by Caughey. Interaction in Transonic Flow. AIAA Computa-

tional Fluid Dynamics Conf., June 1982, Palo
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AN INVISCID COMPUTATIONAL METHOD
FOR TACTICAL MISSILES

A. B. Wardlaw, F. P. Baltakis, J. M. Solomon and L. B. Hackerman
Naval Surface Weapons Center

White Oak, Silver Spring, Maryland 20910

Abstract Existing computational capabilities and short-
comings are then discussed along with possible

Several methods for numerically calculating the remedies.

inviscid flow field about tactical missile

configurations are discussed. An approach based II. Strategies for Computing Inviscid Flow Fields
on the thin fin assumption is outlined which

treats body and fin geometry separately. Compari- In the current study flow field calculations
sons between calculation and experiment are are implemented by marching the steady three
provided and problems associated with applying dimensional Euler equations in the Z-direction
this method to configurations of design interest (Figure 1), from an initial data plane near the
are given. Deficiencies in the state-of-the-art
are summarized and possible remedies are suggested.

I. Introduction

A practical means of predicting the nonlinear, rc( ,z)
niviscid, supersonic shock layer on missile U .BOW SHOCK)

configurations is to numerically solve the steady, INITIAL
three-dimensional inviscid equations using anPLANE
efficient finite difference method. Several

computer programs are currently available for
calculating flow fields about arbitrary bodies
in sunersonic flow.l-

7 
However, their application

to nractical wing-body-tail configurations presents a

some serious computational problems. The primary V=

focus of the present study is the development of a z4 0.0

more efficient numerical technique for treating
"inned bodies. To achieve this, the approach used
here departs from the basic computational strategy Fig. 1 Cylindrical coordinates used for inviscid
used in Refs. 1-7 when fin surfaces are present. calculations.
Instead of considering the cross-sectional body-fin
geometry as a single entity, the present method
considers the body alone (i.e., the body with all
fin surfaces removed) and the fin geometries missile nose. One of the principal issues in this
seoarately. The computational grid is generated type of calculation is the selection of a trans-
iusing normalizing transformations 1,4,5,7 applied formation which at each step maps the cross-
to the body alone configuration. The fin surfaces sectional plane under consideration into a
are allowed to extend into the computational rectangular computational domain. One of the most
region and can be adequately resolved within a direct approaches is to use the simple grid of
relatively coarse computational grid. In order to Figure 2a which maps into a square computational
treat the complex flow in the immediate vicinity domain with a stretching in the radial direction
of fin leading and trailing edges, appropriate and a clustering about the fin surfaces in the
local analyses are built into the program which circumferential direction. In the resulting
Jecend strongly on the local Mach number of the computational domain the body and fin surfaces lie
- low component normal to the edge. These local along the bottom edge while the bow shock is
analvses can range from locally exact, when the positioned along the top. The primary advantage
edge is sharp and the normal velocity component is of this approach is its simplicity. However, the
Sufficientiv supersonic, to ad hoc or semi- skewness of the mesh in the vicinity of the fins
emnirical in other situations. It is possible to causes computational problems and a large number of
exercise the above computational procedure without mesh points are needed to resolve cross-sections

rurse to a special leading edge analysis, with several fins present. An improvement on this
Ho,'ever, such a procedure is not as robust and does approach is to use a more sophisticated trans-
not resolve the leading edge region as accurately, formation that maps the computational domain onto a

more nearly rectangular mesh in the crossflow
A detailed description of the computational plane. Generalized conformal transformation

"e:'hod developed during this study for treating methods exist which can accomplish this.
6
,
1 0  

As
7. iile configurations can be found in Refs. 8 and depicted in Figure 2b, the resulting mesh in
-. tncluded in these reports are a number of physical space is qualitatively appropriate since
iamole cases in which calculation and experiment it clusters points about the fin tips. Such
are compared. Although fairly versatile and methods have been applied in Refs. 6 and 11 and
• - lcient, this computational method does have are viable for tackling many missile computations.
areas in which improvement is desirable. In this Possible drawbacks to this approach are solution
ianer ";e will describe possible methods for sensitivity to small variations in the transfor-
setting in tactical missile computations, outline mation and difficulty in controlling mesh point
tre unique aspects of our current computational locations throughout the flow field on complicated
oroedure and present several sample calculations. configurations. 'hen a r'olicnt'd transftrrat;n

-.- - . . .. . . . . ,,.- *- -.,... - - .



is used, a significant portion of the computation
is associated with its implementation.

In the current study a multiple zone approach
is used. The concept of the multiple zone approach
entails dividing the flow field up into several
regions as shown in Figure 2'c. As originally
applied (e.g. Refs. 6 and 12) the boundary of the

SHOCK zones are taken to coincide with shock waves.
I I I I I I I I,, I IIIa Along the zonal boundaries two computational points

w are associated with each location in space, one
I I with each of the two adjacent regions. The

m w availability of two mesh points along the shock
front allows the shock to be fitted, with upstream

* -------- conditions stored at one point and downstream
mocv FIN BODv conditions in the other. In the current study all

interior shocks are captured and zone boundaries
are based on missile geomet.-v and the bow shock
location. A fin or inlet cowi oecomes a

a) radial stretching convenient interface with boundary mesh points from
one of the adjacent regions describing one side of
this surface and boundary mesh points from the
adjacent region the other side. In the most general
application of the multiple zone method a separate
mapping is applied to each zone. Since zones can
be constructed to ensure relatively simple
geometries, the resulting transformations are also
simple. A sample of a missile cross-section
treated with the multiple zone approach is

SHOCK illustratdd in Fig. 2c. The great advantage of the

multiple zone approach is its flexibility and
Xi i telative ease of application. Its disadvantage is

that it requires a more comolicated computer
wIa program to aplement. This is primarily because

£ of the bookkecoing and special numerical

techniqueq required to treat points along the
interfaces between adjacent zones.

BODY FIN BODY

To simpliry development of computational

methods for the current study, an abreviated
b) conformal transformation version of the multiple zone approach has been

applieJ. The analysis is restricted to relatively

thin fins with sharp leading edges which lie

approximately along constant 0 planes. A thin fin
approximation is employed which neglects fin
thickness but retains the actual fin slopes. The
resulting location of the body, shock and fin
surfaces in the computational plane is shown in

01. Figure 3. Use of the thin fin approximation makes
REGION I REGION II it convenient to treat the computational domain

SHOCK SHOCK

,WINO THICKNESS DESCRIPTION

BODv ov .. , SHOCK SOUNOARY

FIN SURFACE C,.. . . . - -

S Multiple zone . . . .FI.. . N -

~0 ~~~ 
~ A 

WING-'

BODY SOUNDARY

PHYSICAL PLANE COMPUTATION PLANE

FiR. 2 Possible maopings for missile Fig. 3 Thin fin aproximation in phvsical and

cross sections computational coordinates.
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as one region. Along planes on which fins are shown in Fig. 3. The thin fin approximation

located, cuts are placed and two points are carried, assumes that a is small and thus places the fin

one describing each surface of the fin. For many surfaces along the fin Diane corresponding to

configurations, only a stretching in the radial Y '% in each Z = constant nlane. Although the

direction is necessary, even though improved local fin is approximated by i ze, thickness plane lying

resolution can be obtained with or r clustering. on , 4 f, the surface slopes are described to

The current computational algorithm admits O(Jaj). The fin surface is prescribed by specify-

transformations of the form: ing 6(r,z), v(r,z), L(z) and the first derivatives
of these quantities. Here 6 and V are the angles

Z - z; X - X(r,$,z); Y - Y(,z) (i) between the fin surface tangency plane and the fin

where X, Y. Z are the computational coordinates, planes in the r and z directions respectively, and
the quantity L is the radial location of the fin

A disadvantage of the thin fin approach as edge. In terms of 6,v the derivatives of a correct

outlined above is an absence of mesh clustering to O(IaI) are given by:

near the wing tip where large gradients in flow
* properties occur. Clearly, these areas are not rar - tan 6, roz  tan V,

being accurately resolved. However, viscous (3)
effects are important near fin 

tips and accurate

resolution of these regions with an inviscid rorr - sec 2 e(er- r ) -1 r
computational method seems of dubious pragmatic
value. Furthermore, resolution of the fin tip
region with a highly clustered mesh is computat- r zz .V2 sec

2 V - ar tan2 , ra rz sec 2 (6 - z

ionally expensive. Smaller marching steps must be
used to satisfy the CFL condition of explicit Within the restriction that Iol be "small", the
methods. Implicit schemes, while allowing larger thin fin approximation can be applied to arbitrary
time steps, also feature a greatly increased amount fin geometries including surfaces with discontinuous
of work per step. Retaining accuracy in the slopes and fins with "Small" deflections, camber,

. marching direction places a limit on the allowable and variations in dihedral.
step size and thus application of implicit schemes
also results in an expensive calculation. The numerical algorithm for treating fins by

the thin fin approximation requires that the

SIII. The Computational Algorithm computational mesh be chosen so that each fin plane
Te ais coincident with a computational mesh plane,
-The algorithm for advancing the inviscid flow Y m Yf. Two sets of computational points are

field quantities from Z - Zk to the next axial carried on the Y = Yf plane to describe the flow

station Z - Zk+AZ depends on the location of the properties on the upper and lower surfaces as is
individual mesh points in the shock layer. These illustrated in Fig. 3. As the calculation is
are divided into the following four types: interior, marched down the length of the body, fin surfaces

body surface, shock, and fin surface points. The are encountered on Y - Y. Thus a point at some
numerical procedures used to treat the first three X may at one axial location be an interior flow
types of points are essentially the same as those field point and in the next axial step move onto

given in Ref. 7. The only difference is that the the fin. Here the interior point is split into two
inviscid, weak conservation equations have been points corresponding to the upper and lower fin
recast to simplify the source term. For interior surfaces. The fin noints thus created are referred

points the MacCormack predictor-corrector scheme to as leading edge points. For a fixed X, a pair
is applied directly to the associated conservation of points which are on the fin at one axial step
form of these equations in the X, Y, Z space. The can in the next step move off the fin and become a
points on the body and bow shock surfaces are single interior flow field point. Such a point will
treated using predictor-corrector methods applied be referred to as a trailing edge point. The flow
to certain characteristic compatibility relations variables at leading and trailing edge points are
for each surface along with the appropriate flow determined from an appropriate local analysis which

boundary conditions. See Refs. 7 and 8 for is described in the following subsections. The
deal. A complete disc-ission of various

techniques for treating fir. surface points is adjustment for the presence of a leading and trail-
ing edge is made immediately after the completion

given in Refs. 8 and 13. In the remainder of this of the step in which the edge is encountered. The
section these procedures are outlined along with values of the flow variables prior to the adjustment
certain special procedures used when fins are are termed upstream while the adjusted values are

.4 Dresent. termed downstream. Note that the locations of
111.1 Fin Surfaces leading and trailing edge points are within one AZ

of the physical edges of the wing.

THE THIN FIN APPROXIMATION. The thin fin FIN SURFACE BOUNDARY CONDITIONS. On a fin
approximation is applicable to fins with surfaces surface, the velocity component normal to the
that lie close to a constant € plane, say t - tf, surface must vanish: i.e.,
which is defined as the fin plane. The fin
geometry is assumed to be represented by two
surfaces, the upper and lower surfaces, each v/r - (w - ru m 0 (4)

described independently by relations of the form

The numerical methods used to advance the fin
.f + i(r,z) (2) surface points are based on the appropriate

In the cross-section Z m constant, the actual fin characteristic compatibility relations associated
surfaes wills-eitin th comutant, iohenaal mesh a with the Euler equations which are derived in Ref. 8.
surfaces will lie within the computational mesh as Both the upper and lower fin surfaces, although

3
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considered separately, are treated using the ;ame and dissipative properties of the interior point
techniques. For fin surface points not on the fin scheme without additional numerical smoothing.
body junction (X=O), three compatibility relations
are used to advance a, V3 = u -4- rc~rv and P = ln p At the leading edges where a compression turn
a lang the fin surface. is required. the condition Mn >1 does not

guarantee the existence of an oblique s hock and

*The fin body junction is assumed to he a sharp for sufficiently lag1 unadtahdsokwv
will be present. If Mn < 1 neither oblique shockcorner. At this corner both fin and body tangency no Prdt-erexasncnbe pli. Udr

conditions are satisfied and thus flow is directed thes coandtions uexpnof aa puel loaplid anaysiei
*along the corner. This implies that entropy is teecniin s faprl oa nlssi

consantalon th coner xcet a comresiveat best an approximation. However, it has been
diconatian te norner excespt n at p essive possible to formulate empirical rules for determin-

* diconinutie inbod or in lop an atleaing ing leading edge conditions that give satisfactory
and trailing edges. Since the stagnation enthalpy reut whncmadto xpiet. Ts
is als~o constant only one additional relation is reutwhnCmadtoxp iet.T s

*needed to completely determine the flow variables empirical procedure is described in detail in Ref.8.
along the junction. This is given by a character- I ssgiiatyls hnuiy h

iati copatbiliy cndiion. Howver anJump conditions assigned by option 1 often do not
* ~ambiguity arises in the choice of an appropriate giestfaor rsus. Tsisptclry

characteristic condition. Two possible equations treo thexasnsufcswntelcl
are derived in Ref. 8. Both equations appear to aayi rdcseteeylwpesrs h
produce similar results except when large pressure cndlyii odnuce exoccrsnm gly wpeset wing
gradients occur in the vicinity of the junction whni fture'I< Ieesiderseparationl and p a wlag

* (iseclosenu to edngeg.r ufc leeside vortex. Under these circumstances, the
discotinuty).streamlines on the upper and the lower wing

surfaces are directed outward at locations near
LEADIN4G EDGES. Several different strategies the edges. The conditions at the leading edge are

are available for treating leading edge points, thus strongly influenced by the flow on the fin
The simplest approach is to switch from the interior surface. To handle this situation, option 2 is
point advancement scheme to the fin surface scheme. introduced. When an interior point (Xn,Ym) moves

*This is referred to as option 0 and represents a onto the fin, the leading edge pressure and density
formal descretization of the various applicable is determined by averaging values at (Xn-..,Ym) and
equations without recourse to additional modeling (Xn,ym).
at the leading edge.

For the leading edge points at the fin-body
junction a special procedure is required. The

An alternative approach is to apply locally flow in the vicinity of these points features a
an analysis which models the flow very near to the cmlctdsokitrcinptenwihcno

leadfaing edge thi sdsae s option is thti o th be resolved within the relatively coarse mesh used
justfictio fo ths o~ionis hatin ostin the present calculations. Accordingly, a simple

calculations, for reasons of computational heuristic procedure is used to determine'the flow
efficiency, the mesh spacing in thLe vicinity of the variables immediately downstream of the leading
edge is not sufficiently fine for option 0 to yield edge corners. The upstream velocity vector on the
satisfactory results. The computational algorithm body lies in the body tangency plane which also
proceeds by completing the step in which acotisheor rdrcin.Tefwdw-

*leading edge is encountered without taking the cotainsf the ledn dcorner dietin Tefowtadown-b
fin surface into account. The resulting flow sotamiof the vlading edecornerthis thoband y
properties are then taken as the conditions rttn h eoiyvco ihntebd

*immediately upstream of the leading edge. An tangency plane and aligning it with the corner
* ~appropriate local analysis is then used to deter- uigete h biu hc rtePadl

mine the flow quantities immediately downstream Myrtrigrltos
of the edge for both the upper and lower fin
surfaces.

TRAILING EDGES. At a trailing edge the two
points on Y = Yf representing the upper and lowerThe downstream flow properties at leading fin surfaces, are coalesced into a single interior

* ~edge points are determined by a local analysis fo il on sn oa nlss h
base onthe omptedflowupsrea of he dgecomputational algorithm proceeds by completing

and the prescribed local fin geometry. Using this the step in which a trailing edge is encountered
information, the Mach number normal to the leading without taking the fin edge into account. The
edge, Mn, is determined. If Mn > 1 an attached resulting flow properties on the upper and lower
shock or expansion fan occurs in most cases which fin surfaces are the upstream values and represent
permits a local analysis. The velocity component the flow properties on the two fin surfaces
tangent to the edge, is unaffected by the edge and immediately upstream of the traili4ng de
all other downstream flow quantities are determined.ged .

by turning the normal flow component using either
an oblique shock or a Prandtl-Meyer expansion. A

*similar procedure for the case of an attached The trailing edge local analysis is dependent
oblique shock has also been used in Ref. 6. In on the Mach number normal to the trailing edge.
Ref. 6, the leading edge shocks are "tracked" If the flow component normal to the trailing edge

adownstream of the edge whereas in the present work on both surfaces is sufficiently supersonic, the
these shocks are "captured" using the conservation streamlines from the upper and lower sides of the

- * 4



* fin will turn onto a slp suroface 'r "an, ti.,t.h ufc'cnt eneralitv to allow c to pe

s..vstem of oblique shocks and/or exnansions .ji idvanc.d isine ,itrir A- and B, A niv or B onl.'.
are attached to the trailing edge. Te ori~'ntat on
of this surface is such that the final nres~ures SUPPRESSION OF Y DERIVATIVES NEAR THE LEADING
on both sides will be the same. Referenc 13 EDGF. Fiv. illustrates the calculated surface
describes an iterative nrocedure for determinine -ressures on a fin in uniform flow. The calculated
the plane orientation. Unfortunatelv this scheme results should exhibit a constant pressure down-

* is cumbersome to apply and convergence cannot be stream of the leading edge, but in fact overshoot
guaranteed. Thus, this procedure has been discard- the leading edge value. The excessive pressure
ed in favor of a simpler method that turns both values aft of the leading edge are a consequence
of the surface streamlines onto the fin olane. of the numerical procedure and the error becomes
The coalesced property values for ), o. u.v are more severe as the magnitude of the pressure lump

then determined by averaging the results an the at the leading edge increases. Such inaccuracies
unoer and lower surface streamlines. The velocity at the leading edge can have a strong influence on
comoonent w is solved by requiring that the the total vehicle aerodynamics. The calculated
coalesced trailing edge point has the correct pressure overshoot at the leading edge may be
total enthanlv. suppressed by damping the Y derivatives occurrine

in the relations that advance the fin and corner
If the flow component, normal to the trailing pressures. Such a procedure is automatically

edge on either wing surface are subsonic, a implemented on leading edges which feature a
different algorithm is applied. At a trailing pressure rise.

edge point (Xn,Ym), flow properties are assigned
to be those at (Xn+l, Ym

)
' unless this point is aI .*a

fin point. In that case properties at (XnI, Ym
)  

C

are used. If both of these points are on the fin, 8
the upper and lower surface properties are set to
the average values at points (Xn, Ym+l

) 
and

(Kn, Ym-)""

111.2 Special Procedures . ...

The presence of fin surfaces in the interior of NO DAIWG OF VRIvATIVU

the computational domain requires the introduction Do oWoWr
of some special differencing procedures. In
addition, physical considerations have motivated
other adjustments to the differencing used at . * • e *
both fin and interior points located next to the 1.
fin edge.

ALTERATION OF X DIFFERENCING FOR FIN AND
INTERIOR POINTS ADJACENT TO THE FIN TIP. The types 2 4 6 a 10 is

of points under consideration in this subsection Op"af

are A, B, C of Figure 3. Selection of appropriate Fig. 4 Effect of suppressing Y derivative for
schemes for advancing these points depends on the vario sre s .

*,- Mach number normal to the leading edge and the various strength jumps.
applied leading edge treatment. Several differ-
encing strategies are available. APPLICATION OF SMOOTHING TO INTERIOR, BODY AND

Option 0 for FIN POINTS. In computations featuring body
interior toints such as C is similar to the separation, and on highly swept wings with subsonic

norintsatsuchmeas C Ise similaredto theg
computational algorithm applied elsewhere in the normal Mach numbers at the leading edge, large
flow field. Fin points A, B are advanced using vortex structures develop in the flow field. In

the usual fin surface point algorithm. The such circumstances it is often necessary to smooth
the calculated flow field. This is accomplishedMacCormack scheme for advancing point C must be by aplving a switched Schuman filter" with a

modified since there are two adjacent sets of flow
values (i.e., points A and B) corresponding to the density switch after the completion of each

corrector step, prior to decoding. (The -ise of the
er and lower fin surfaces. Point C is advancedtroducin

in two ienarate calculations using first the Shmnfle soewvo nrdcn
artificial viscosity.) For interior points smooth-

lower fin surface values at A and then the upper
fin surface values at B. The resulting two ing is applied to the conservation vector ' while

at the body and fin surfaces it is anpijed aloneconservation vectors are then averaged, the surface to the advanced cuantities. A non-

second strategy. otion 1. advances the fin Schuman type smoothing of the fin tip points can

edae Points A, B without using the information at also be applied which averages advanced fin tip

noint , and interior points such as C without nuantities with those f .d'aent in noint;.
recourse to the information at points A, B. To

IV. :D~liatio of he -mn,itational
acvance point C using this option, X differences t. igirati i
ire taken in the direction away from the fin in

-t- -ne oredictor and :orrector sters. Using
diided ifferences to advance points A., BI T 2'Pl,7* -ES11-S

pa; -een found to produce unsatisfactory results.
.nstead. Coprivatves calculated from flow Pmputed results have been -t arec exper:-

ironertleq at A and . ir R and are ;et to pero. iept for a re number
* ,comnltational -lzorithm has een constructed

°.7
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been selected from this report to indicate the

zeneral capabilities of the computational method.

These cases are representative of wings with lead- . ..--- --
ing edge normal velocity components which are 

7

supersonic transonic and subsonic. Fig. 5 exhibits '1

fin surface pressures on a body tail configuration
in which the velocity component normal to the fin oW ,w, ftr,

leading edge is supersonic and leading edge
conditions are determined using oblique shock and
Prandtly-Meyer relations. Body surface pressures
are shown in Fig. 6 for a body-wing configuration 2

with transonic leading edges. Here empirical WIND-SIDE E)
relations are used to specify leading edge ID
conditions. The wing shown in Fig. 7 has a 13 E) 130

subsonic normal velocity component and on the
windward surface the solution was directly marched

through the leading edge without applying a local P Z-7.5 0 EXPER.. REF. 26
analysis (option 0), while option 2 was applied
(c. f. Sec. 3) on the lee side. - COMPUTED

An examination of the predicted and measured
surface pressures indicates satisfactory agreement
in most areas, however, there are clearly a few G) [D

locations where discrepancies exist. Three such 'LEE.SIDE
regions are the body-wing junctio, the lee

surface of a wing with supersonic normal compon-
" ents and body pressure near the 900 meridian

(e. g. Fig. 6). In these areas viscous effects
are expected to play an important role and it is 00

not surprising that an inviscid model leads to

poor agreement with experiment. For further a) surface pressure at Z = 7.5

discussion of these problem areas see Ref. 8. Data from Ref. 17.

1.1.
0. ,

P3 (WINDWARD . -.,"",

I
N

A'.4•.• • ""• T/ / W

,.(.WAR.. .'

PLANE)
M. . . ", 100. ,

-i ° , . ,, ,

0 Si '''''' I ' I 11 EEWAR b) commutedI cross 'flow velocity vectors
26 0 3 4 5 5 upstream of trailing edee.

z

i ,Fig. 6 Calculated and ,measured surface oressures
~along body in "X" roll position at

,,,M =, 2.7. 100O. Data from Ref. 16. Fig. 7 Calculated and measured results on a

delta wing.
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More serious problems are encountered when
EFFECT OF SMOOTHING M.5 Z-100 applying the computational method to wings or

fins having subsonic leading edges. In particular,
the computation is not robust in the vicinity of

2.0 the fin tip. In Ref. 8 a set of leading edge and
fin differencing options are recommended. The
current practice differs from this and consists of

p xg-0----~-rnmarching through the leading edge without using
.. N.20-- .-- a local analysis (i.e. option 0). The interior

1.2 point adjacent to a fin tip (i.e. point C of
Fig. 3) is differenced across the tip onto both

.2 .surfaces (option 0) while the tip point is
advanced using one sided differencing on the lee
side (option 1) and differencing across the tip

*. on the windward side (option 0). This prescrip-
.. tion is generally adequate as long as the wing

.4 geometry and flow conditions do not result in the
formation of strong vortices. When such
vortices form, the computation tends to break

0 20 0 60 0 100 120 140 ISO Igo down unless artificial viscosity or smoothing is
introduced. This tendency and the need for

Fig. 8 Influence of smoothing on circumferential smoothing generally increases with the angle of
pressures for a body of non-circular incidence. Low aspect ratio wings also tend to

cross section at M. = 5, a = 80. form stronger vortices at lower incidences. Here
the effective incidence of the wing is increased

IV.2 PRACTICAL PROBLEMS IN APPLICATION OF THE due to the body upwash. Recommended values of
COMPUTATIONAL METHOD artificial viscosity for interior and surface

METHODpoints are given in Ref. 8. If the computation

Figs. 5, 6 and 7 illustrate the general breaks down at an interior point the interior

quality of results that have been obtained to date artificial viscosity is increased and similarly

on missile type configurations. It is, however, for the surface points. In severe cases (i.e.,

relevant to discuss the practical problems incidences > 100 on low aspect ratio wings) it

encountered when applying this computational may be necessary to apply smoothing to the fin

method to new configurations. The current tip point also (see Sec 3.2).
computational method is most robust for config- The current computational method also requires
urations with wings that feature leading edges special attention when applied to bodies of highly
with supersonic normal velocity components. Here non-circular cross-sections such as the one shown
relatively few problems are encountered to complet- in Fig. 8. Here vortices tend to form leeward of
ing calculations and there is little ambiguity protrusions and the calculated flow field in this

* associated with setting up the calculation. The area becomes ill-behaved. This behavior can be
standard procedure is to apply a Prandtl-Meyer controlled through addition of artificial
expansion or oblique shock at the leading edge viscosity.
(i.e. Option 1). Differencing at the fin tip and
at the adjacent interior point is accomplished
using option 1. As pointed out in Sec. 3.2 the
number of steps for which the Y derivatives are
to be suppressed following the occurance of a
leading edge is controlled by an algorithm built
into the code.

45 ~ ~ PINIn'FI

2

2.0 " -5

SMOOTHING

1.6 - INTERIOR SURFACE IS ml
p - 05 0 CN. 27 XCPP- 24 'N "

1.2- .70 .2 , CN-.421 XCPP..en 1.2 1.2, . • ...lga

1.0-

,'0q ..-

.--

00 20 40 40 90 120 140 1go Igo ROTIP 0OTTi

Fig. 9 Influence of smoothing on circumferential
pressures ror a bodv-wing configuration.
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The effect of artificial viscosity has been (iii) Fin edges must be sharp and the radial
investigated to some extent. In Figs. 8 and 9 location of the fin edge, L(z) must be
surface pressures are shown on a body with cross single or double valued in z. This
flow plane protrusions and on a body with low allows wings with forward or backward
aspect ratio wings featuring subsonic leading sweep to be treated.
edges. These figures indicate that the variation
in the level of artificial viscosity principally (iv) Fins cannot extend through the bow
influences only surface pressures in the regions shock.

* featuring large pressure gradients. However, as
* may be noted in Fig. 9, a high level of interior (v) The velocity component in the axial

smoothing may significantly alter the surface direction must remain supersonic through-
* pressure levels. The normal force and center of out the entire calculation. This

pressure for both of the cases shown in Figs. 8 precludes bodies with blunt protuber-
and 9 are insensitive to the level of smoothing. ances which feature upstream subsonic

flow.

"- /p.o V-, 9,, to " SConfigurations which do not strictly meet these

-' &requirements can often be treated using a slightly
-'

7
' altered geometry. The feasibility of such modeling

M hn .k \is dependent on the type of results desired from
'f ... the computation. If such results are aerodynamic
I coefficients then significant latitude is possible.

COMPUTED EXPERIMENT For example, fin deflection can be simulated by
a a NO TAIL OEFLECTION increasing the fin slope by the angle of incidence
0 0 TAIL DEFLECTED 20  

on one side of the fin and decreasing it by the
7 same amount on the other. This misplaces the

ZAC location of the shocks and expansions generated by
I. the fin, but generally produces a reasonable

6 pressure values on the fin. The integrated effect
on the overall aerodynamic coefficients is
adequately modeled, as illustrated in Figure 10.

a Ref. 8 is suggested for additional illustrations
and comparisons.

4 IV.4 MODELING OF SEPARATED CROSS FLOWS

It is well known that at incidences above a few
3 degrees the flow over a delta wing with subsonic

leading edges separates to form lee side vortices.
2 As can be seen in Fig. 7, the calculated flow field

contains the appropriate vortex structure. At
CN incidences greater than about 5 degrees, the flow

I over circular bodies also separates and forms
vortices. The resulting cross flow separation has
a large effect on the lee side pressure of the body

0 and on the body upwash experienced by the lifting

I Z surfaces. Unfortunately, inviscid solutions on
circular bodies do not adecuately predict flow

4 a 12 o 3 field vortices. Generally, a cross flow shock
ANGLEOFINCIOENCE, a. DUO, occurs with little or no separation. It has been

Fig. 10 Normal force coefficient and center of shown in Refs. 8, 21 and 22 that by the application
Pressure for a body-wing-tail configuration of a Kutta condition, a flow field vortex structureswith and without fin deflection. Data from can be generated which approximates what has been
Ref. 18. observed experimentally. Application of a Kutta

condition entails prescribing a separation line
along the body surface and a velocity direction
along the separation line. In the current procedure
the velocity vector is aligned with the separation
line, which differs from the method used in Ref. 15

IV.3 TREATING COMPLICATED GEOMETRIES and 16. A comparison of the calculated and measured
surface pressures and flow field velocities are

The present computational method is limited to sho%.i in Fig. 11. Qualitatively, the correct
. the following types of configurations: vortex structure is captured in this solution.

Computed surface pressures are satisfactory for
i) The body alone surface, b(z.0), must be calculating normal force and pitching moment

single valued in $. This precludes a although there is substantial disagreement between
direct treatment of geometries containing measured and computed pressure profiles near the
items such as detached inlets. seoaration line.

In Table 1 calculated normal force coefficients(ii) Fins must be relatively thin and lie and centers of pressure on bodies with several
near constant _ planes. By moving the different cross sectional shapes have been compared
coordinate origin, it is often possible to experiment. Each configuration was calculated
to position fins along constant t planes, in three modes: as a smooth body, with a Kutta

9



condition and with a low aspect ratio wing located
at estimated separation lines. In the case of the
circular body the separation line was determined •
using the empirical correlation of Ref. 8 while
in the remaining cases separation was assumed to
occur at the corners. On the square shaped body
two separation points were thus prescribed.
Application of the low aspect ratio wing to the * , ,
circular body required the use of a separation line , .
with constant angular orientation. An examination . , * .
of Table I indicates that all three types of , , . ,
calculations produced the correct trends with
variation in cross-sectional shape. Best results I

for normal force were obtained using the low aspect . . t I

ratio wing approach. However, application of the .

*". Kutta condition yielded the closest center of I '

pressure comparisons. The flow field calculated
on the diamond body is shown in Fig. 12, and
appears to exhibit the correct qualitative .

|'*~i structure. , . , .

r- tti I

*~ ~ /1IrT,,

-- , I h/J,' ;;

"" r7 f' - Ar r -- - ---

COMPUTED EXPERIMENTAL Fig. 12 Cross flow velocity vectors for a

a) cross flow velocities. Data from tangent-ogive-cylinder body of diamond

Ref. 19. cross section at M = 3.88, a = 100.

L=10 V. Discussion of Results and Conclusions

An examination of the test cases described in
MI-2 the preceding sections indicates three notable

deficiencies in the current predictive capabilities:
o EXPERIMENT. RE/IN.- -3. 10'. REF. 17 accounting for viscous effects: treating arbitrary

- EXPERIMENT. RE/IN. - .35* 10
=

0CEXPEIMENT EAR .39X1geometries typical of the next generation of low
1.4 7 - COMPUTED, WIThOUT SEPARATION cross-section, airbreathing missiles; and a lack

of computational robustness.

* 1.2
Clearly, viscous effects cannot be directly

treated with an inviscid code. However, as may be
1.0 - noted in the last section, the most I orLan-

- ,influence of viscosity from the point of view of
S8 o 8o0o0 predicting vehicle aerodynamic characteristics, is

Caccounting for body cross flow separation. This
.L V is of oaramount imoortance since the occurrence of

F, I large body vortices alters the flow field
surrounding lifting surfaces. As shown by the work

.4- •of NEAR (Refs. 21 and 22) and the results of Ref. 8,
application of a Kutta condition along a prescribed

.2 -separation line gives a correct qualitative
description of flow field vortices. In the case

* ,of a circular cylinder the predicted pressure
0 20 40 so so 1 120 140 160 10 levels on the lee side of the body are adequate

RADIAL ANGLE. 0. DEG. for accurate determination of body normal force
b) surface pressures distribution. and pitching moment. However, it remains to be

Data from Ref. 20. shown through additional comparisons between
calculation and experiment on winged bodies that
application of the Kutta condition quantitatively

Fig. 11 Computed results 6n a circular body using accounts for cross flow seoaration.
a Kutta condition

10
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TABLE I
It Z/D = 10 4[ Normal Force and Center of Pressure at Mach 3.88 at 100 Incidence

Cn cp Cn Xcp Cn Xcp Cn Xcp

Experiment .934 .425 1.126 .425 1.376 .465 1.720 .465

Separation not .967 .433 .932 .395 1.250 .464 1.306 .407
Simulated

Kutta 1.022 .448 1.05 .437 1.287 .479 1.55 .461
Condition

Fin at .960 .431 1.187 .458 1.420 .494 1.62 .456
' Separation

Point

A second major deficiency of the described
computational method is its inability to handle
unconventional missile geometries. This short-
coming can be removed by further extending the r -
multiple zone approach, described in Sec. 2, or by . , =
applying a generalized transformation procedure. .-* .

.
...

The multiple zone approach appears to provide a-.
more flexible framework but at the expense of / - .

increased complexity of the resulting cotputational : y /
method. ... / ,...

A final deficiency in the current computational ' / --
method is a lack of robustness in the numerics. /
As discussed in the previous section, the formation

of large vortices in the flow field leads to -

computational difficulties which are currently
resolved by an ad hoc addition of artificial
viscosity. Recently robust methods have been -...
developed for unsteady inviscid flow which can
capture strong discontinuities in only a few steps. a) density ratio
Of particular interest here are the methods based
on Godunov's scheme. These methods treat boundary

points as well as interior points in conservation
form using a control volume formulation. Aside
from increased robustness, application of such
schemes to steady flow problems may improve

. resolution of winR shocks and eli"'inate the nroble ,-- - - -
* of the pressure over-shoot on compression surfaces. I
- To investigate the possible application of robust

schemes to the steady supersonic problem,Godunov's

method has been extended to this case. Fig . 13
.* illustrates the ability of this method to capture

a strong shock and expansion in a two dimensional
internal duct with a ramp. Of course the robust-
ness of Godunov's method when large variations of

* vorticity are present or its ability to properly
convet.t vorticity downstream have vet to be tested

b) velocity vectors

* Fig. 13 Computed flow field in a two dimensional
Vduct using an extension of Godunov's

* method to steady flow at Y. = 5.

". 11
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'. STORE SEPARATION AT TRANSONIC SPEEDS

iO Stephen S. Stahara*

Nielsen Engineering & Research, Inc.
Mountain View., CA

Abstract problem in general includtng a brief discussion of
the various factors involved, the sequence of

'.A rewiew is provided of the state of tne art operations necessary to determine a store traiector,,
a of methods currently employed for predicting store and some particular problems created by a trarsonic

* separation at transonic speeds. Both experiment- environment. Next, we review the complete problem
* ally- and theoretically-based methocs are surveyeo. of store separation prediction, some of The

A discussion of the various underlying aspects of simplifications generally adopted, and the predic-
the store separation problem, in particular, those tive methods in current use. Finally, we discuss
most crucial at transonic speeds is Provided. some uture developments required for these methods.

-* Future developments required for these methods to
", become usable in a design mode are identified, and

* a possible next plateau of theoretical modeling The Store Separation Problem- , development is suggested.
d o t s s Categories of and Parameters Effecting Separation

Introduction The most basic subdivision of the store
separation problem arises from store type:. -his

The safe and controllable separation of classifies the problem into the following three
external stores from modern fighter-bomber aircraft categories:
throughout their flight envelope is a problem of
current significant military importance. The Jettison
ability to carry and deliver externally-mounted
weapons with a minimum of detriment to speed and • Delivery
performance basically defines the mission effect- • Launch Transient
iveness of attack aircraft. Placement of external
stores on aircraft has two major effects. First, The first category involves those classes of stores
unless attention has been given to an integrated (fuel tanks, pods, etc.) which are released uncer
design, there is a large increase in drag as shown either emergency or normal conditions with no

* schematically in Fig. 1, resulting in both lower requirement for accurate delivery but only for safe
operating and delivery speeds1 . Even more separation. This is the most hazardous of the
important, however, is the necessity of imposing three categories. The second involves stores such
restrictive operating limitations because of as unguided general purpose bombs and munitions
dangerous store release or jettison characteristics, released for target delivery, and requires both a
thereby compromising the entire weapon delivery safe and benign separation to maintain accuracy.
capability 2. The ability to establish weapon The third category involves those classes of stores
system designs which alleviate these effects (optically guided bombs, radar directed missiles,
depends upon the development and use of accurate etc.) which lock onto target prior to release, and
and reliable methods of predicting store separation usually have active controls during launch to avoid
characteristics. target breaklock. These are the most difficult to

analyze, but they normally do not pose a danger to
1lission requirements of ever higher operation- the launch aircraft in either the jettison or

al and delivery speeds have resulted in the normal launch mode unless control failure results
occurence of either local or global transonic in abnormal control deflection.
environments for the separating external store.
Prediction of separatior characteristics in the Because there are three separate geometric

" linear subsonic and supetonic regimes is a complex, components involved (parent aircraft, ejector rack,
difficult, and presently incomplete task. The and store) having a first-order influence on
corresponding prediction in the transonic regime seoaration characteristics, there exists a large
is severely compounded by the essential non- number of both aerodynamic and physical parameters
linearity of the basic flow field. Nevertheless, that must be accounted for. The most significant
it is in this regime that separation problems of these 2 are depicted in Fig. 2. All of these
become most severe. At this time, much effort parameters are coupled to and interact with each
both experimentally and analytically has lead to other with varying degrees of importance. Much
advances in the understanding of the underlying work has been done to investigate the relative
physical phenomena and in the preliminary predic- importance of these parameters on store separation
tion of these characteristics, characteristics, for example, ref. 3. The general

conclusions of these studies2 are that the most
The purpose of this paper is to provide a significant parameters are:

review of the state of the art of current methods
employed for predicting store separation in the • store stability
transonic regime. As a prelude to that discussion, aircraft flow field as a function of (M.,3.)
we provide a description of the store separation

aircraft acceleration at release

Senior Research Scientist, Associate Fellow AIAA 
ejector induced moments
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Complicating, or rather adding another dimension to is not necessary. Many features of store trajectory
these parameters, is the necessity of current calculations can be well approximated by relatively
military aircraft to carry a variety of different simple analytic considerations. The essential art
weapons in a multiplicity of combinations and in these applications is to identify those aspects
configurations. Fig. 3 illustrates just several most critical for a particular problem and, because

*of the various store carriage possibilities for an of the requirement for many repetitive calculations,
*F-16 4. to simulate them with as simple an analytical model

Partculr Prbles atTrasoni Spedsas possible while retaining the required accuracy.

Rational Simplifications Possible
At transonic speeds, the mutual coupling

between the various aerodynamic and physical Perhaps the most important simplification
parameters intensifies. New high-gradient regions usually introduced into the separation problem is

*are created in the parent aircraft flow field, and the time-dependent quasilinearization or quasi-
those already existing at lower speeds usually steady assumption. This replaces consideration
become more severe. The store itself will begin of the store's unsteady motion through the nonuniform
to generate its own transonic effects, and these flow field with a sequence of steady states. The
can interact with and itensify those of the parent. quasi-steady approach is valid only if the time
Additionally, store stability generally reaches its variation of forces acting on the store occurs
minimum in this regime. IUnsteady effects can occur sufficiently slowly when compared to the character-
both in the flow field (buffeting, etc.) and in istic time associated with the store's motion so
the aircraft structure (flutter). The store as to be negligible. The characteristic time of
separati on problem in general reaches its most the store's motion can. be taken as the store length
critical stage in this speed regime. This is due divided by its instantaneous speed. If this
primarily to the rapid lateral propogation of variable time increment is used in the trajec-ory
disturbances in the flow field which enhances the calculation and is short compared to that taken for
interaction between the various geometric compon- the force variations on the store to occur, then
ents involved. the quasi-steady assumption is valid. The crucial

force variations on the store inevitably occur
during release, and this is when the sensitivity to

Sequence of Operations for Store Trajectory time steps in the trajectory calculation is greatest.
C alculation Fig. 4 illustrates-the effect of selecting an

improper time step in the initial portion of a store
*To perform a store trajectory calculation, a trajectory (dashed line) compared with corresponding

sequence of operations is required. The first step results for the proper time steps. In that figure,
is the simulation and description of the flow field store inclination has been plotted versus flight
about the parent aircraft. The simulation can be time, and the result of too large of a time step
accomplished either experimentally in a wind tunnel along the dashed portion of curve 1 results in the
or analytically via a computational model. The prediction of the store alternatively undergoing
resultant description can be provided in the form large pitch-up/pitch-down oscillations which result
of local velocity components or more commonly in in the high-drag deceleration of the store and the

*terms of flow field angularities. Next is the prediction of a much reduced flight time and range
determination of the forces/moments acting on the than for the correct result indicated by the

*store in this nonuniform flow field. This also completely solid line of curve 2.
can be accomplished either directly through experi-

*mental measurements on a model or determined In addition to the quasi-steady assumption,
analytically from surface pressures predicted from the remainder of the important simplifications
a flow field simulation or by using a sectional relate to the treatment of the various interference
loading procedure. Finally, using the determined effects on the separating store. In terms of
aerodynamic forces acting on the store together decreasing importance, these effects classifs' as

*with gravitational and any other forces (ejector follows 5:
impulse, engine thrust), the six-degree-of-freedom
rigid body Euler equations of motion of the store I st order - steady interference on the
are integrated to determine the trajectory. By attached store due to the parent aircraft,
far the most time consuming and expensive operation ejector rack, and adjacent attached stores
is the definition of the parent aircraft flow field. .2nd order - store motion and aircraft motion

effects on the effective angles of attack

Transonic Store Separation Prediction and sideslip (a,s) incident on the store
3rd order - unsteady effects on store due

*The General Problem to motion of nearby stores during multiple
release/jettison

In order to solve the complete transonic store higher order - mutual interference on the
separation problem, it would be necessary to separated store due to reciprocal interaction
describe the unsteady, nonlinear, three-dimensional of the store with the parent
interference flow field about such formidably
complex parent aircraft/multiple store configura- An ideal inteference procedure would solve the
tions such as shown in Fig. 3, simultaneously quasi-steady motion of the store, accounting for
accounting for all of the aerodynamic and physical alo h bv nefrneefcsa ahtm
parameters indicated in Fig. 2. Even at the alo h bv nefrneefcsa ahtm

invicid stady smal-dstubane leelthi is step along the trajectory. This would require a
not presently possible. Fortunately, for most newreermito n ofel ateahe 3-f mutiomstpnen Sinter
separation applications such a complete description frnefo il tec ftoeses ic
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typical trajectory calculations require several sectional slices of the store together with :1e
hundred time steps, such a procedure is not nonuniform parent-generated crossflow veloc~t'
practical. components at the locus of points corresponding to

the position that the longitudinal axis of :he
Various approximations to this procedure have store would occupy in the flow as shown ir Piq. 7.

been proposed and developed to various degrees. The procedure can directly account for buoyancy
In what can be considered indicative of the current due to streamline curvature as well as loca. slender-
state of the art realization of the ideal method body loading, and a viscous crossflow correction to
(although restricted to subcritical speeds), NWC6  account for vortex separation can also be easily
is currently extending a method originally devel. included. Such procedures avoid the comOutationally
oped by Dillenius, et. al. 7 which will ultimately expensive integration of surface pressurEs a: each
embody the following interference effects: 1st time increment, and have proven to be quite
order effects due to parent aircraft, ejector rack, accurate for the many subsonic applications carried
and other attached stores, 2nd order effects of out to dateT, 1  

. At transonic speeds, these
store motion on effective store (aa), and higher concepts must be modified in order to account for
order mutual interference on the store due to the presence of shock waves on the store6t .
reciprocal interactions between store, wing pylon,
triple ejector rack, and the other attached stores.
The effects neglected include: flow field changes Methods Currently In Use
as store is displaced through it, unsteady aircraft
motions, and unsteady effects of nearby stores The methods currently available for predicting
during multiple release. store separation characteristics at transonic

speeds can be broadly categorized according to
The most important of the effects reglected whether they are primarily experimentally or

in that method6 as well as all other separation theoretically based. Several of these methods,
methods commonly in use is the assumption that however, such as the influence function method have
the parent-generated nonuniform flow field so been used with both experimental and theoretical
determined, as shown in Fig. 5, remains unchanged flow field results, and could be placed into either
as the store is released and displaces through it. classification.
Within this assumption, there are two alternative
approximations. In the first, the parent-generated In this country, for the prediction of store
flow field is determined with the store whose separation characteristics there has been and

• "-trajectory is to be tracked mounted in the carriage continues to be a broad reliance by government

poition. In the second alternative, the parent agencies on experimental methods based on wind
flow field is determined with the store to be tunnel results, In particular, the flow angularity

tracked absent. This approach assumes that the method8 in conjunction with wind tunnel data for
flow field through which the store moves is gener- parent aircraft flow fields is heavily used in
ated only by the adjacent stores and parent store certification programs by the U.S. Air Force.
aircraft structure, Neither alternative is correct. European approaches also currently favor the flow
The first properly accounts for mutual interference angularity method but usually coupled with theore-
between the store and the parent with the store in tically predicted aircraft flow fields5. A major
the carriage position, but not thereafter. The incentive to develop theoretical methods caoaole of
second neglects this mutual interference altogether, accurate transonic store separation simulaton occurs
To date, these two alternatives have not been at the preliminary conceptual design stage where
systematically compared against each other. The tunnel testing is often not practical. Understand-
one currently favored is the first, since it is ably, much of the current transonic method
known that the store/parent.mutual interference is development detailed below is occurring in the
strongest in the carriage position and then rapidly industrial arena. In the following subsections,
decays as the store moves away. we provide a summary of those experimental and

theoretical techniques in current use.
The final simplification of the trajectory

calculation concerns the determination of the aero-
dynamic loads acting on the store. The obvious Experimentally Based
choice of determining and then integrating surface
pressures over the store at each time increment There are four major experimental techniques
along the trajectory can easily be the most time used today to predict store separation character-
consuming oeration of the entire trajectory istics. These are 2

calculation . Many of the currently based schemes,
therefore, employ a sectional loading concept as • Captive Trajectory System
illustrated in Fig. 6 whereby loads along segments Grid
of the store are determined based upon the local
flow angles at that section. The number of • Flow Angularity
sections employed in these procedures vary from as
few as two8 , to the order of 105,9 , to the contin-
uous loading distribution methods7 . Both experi- A fifth, the influence function method mentionedmental and analytical flow fields have been Affh h nlec ucinmto etoe
mpentald analytheectinal lofis hvep. previously, is under current development. Although
employed with the sectional loading concept. it has not yet reached the stage of completeness
Since the methods are all similar in concept, we
brieflycof the other methods, we discuss it here in view of
tion methods described in detail in ref. 7, With its future potential as an alternative method.

the parent generated flow field with store absent"•. ".available (Figs. 5, 6), the store loading Detailed descriptions of the first four
aadtbuto is 5,d6),et e stor loadyapying methods have been provided in the open literature,
distribution is determined by locally applying for example refs. 17-20. Here we orovide a summary
apparent mass concepts to individual cross
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dscussion of these methods to provide background flow angles acting at the center of pressure of the
for the theoretically-based methods to follow, body and fins. Those interference coefficients are

then used together with the flow angularity data
The Captive Trajectory System (CTS) is consi- and thie free stream characteristics of the store

dered the most versatile and accurate of all the in a six-degree-of-freedom calculation of the
experimentally-based methods and is often used as trajectory. Although of all the preceding methods,
a benchmark for evaluating the other techniques, the flow angularity method is the least accurate,
The operation of the CTS method, as shown in a comparisons6 with CTS and full scale flight tests
typical installation in Fig. 8, proceeds as follows, have generally been reasonably good. The method's
Using the wind tunnel flow about the parent model main advantage is that it can be used to predict
together with a six-degree-of-freedom store model trajectories for weapon configurations not tested.
support system controlled by a closed-loop computer
system, it solves the Euler equations of motion The freedrop method involves the release or
using the measured aerodynamic forces and the mass, ejection of dynamically scaled store models from
inertia and other characteristics of the store, the parent, and the subsequent determination of
Based on these solutions at a particular time separation characteristics by photographic means.
increment, the store is moved to its next position Three different scaling laws, termed 'heavy',
along the trajectory where the process is repeated. 'light', and 'Froude', are currently in use and
The principle advantage of the CTS method is differ depending upon how the aerodynamic, static,
accuracy, while its main disadvantage is cost. and inertial characteristics of the store are

scaledI72023-26. Unlike the previous methods,
In addition to cost, however, other factors the freedrop, technique can be employed to study

have led to consideration of alternative methods, long trajectories of simultaneous multiple releases,
For example, the continuing trend to develop guided without sting interference effects. However, while
weapons having autopilot and control systems that it is well suited to flow-down tunnels, it is much

incentive for developing the grid method. Since tunnels.

it is not feasible to remotely control and accurate-
ly model the control surfaces of store models this The influence function method 9,2 7-29 is the most
size, some technique for simulating the trajectories recently developed store separation technique.
of guided weapons having active controls during the The method employs conventional grid survey force/
launch sequence was necessary. The grid method moment data to identify the local flow angularities.
accomplishes this by using the CTS to traverse the As illustrated in Fig. 9, the method proceeds by
store through a predetermined grid in the vicinity assuming that the normal force and pitching moment
of the store carriage location. The forces/moments coefficients of any store can be expressed as a
acting on the store are then measured. This infor- linear combination of local influence function
mation, obtained as a function of Mach number and coefficients associated with finite axial segments
parent aircraft attitude, is then used off-line in of the store multiplied by the local flow angles
six-degree-of-freedom trajectory simulations of the acting on each of those segments, together with
weapon which incorporate the characteristics of the the zero-lift angle of attack o and zero-lift
weapon flight control system2. It has been found pitching moment coefficient Cm .The local
that in many circumstances 18,21,22 the primaryinleccofcetsad( C) reeemnd
dependence of the store aerodynamic coefficients is ifunecefcet n mlCo)aedtrie
with vertical displacement with weak dependence on by placing the store in a known calibration flow
lateral and longitudinal displacement. This has field. With that information, the local angle of
lpad to use of the 'limited grid' concept in which attack along the grid survey is identified in a
data is obtained only as a function of vertical least-squared sense. With the flow angularity
displacement, Mach number, and aircraft attitude, known, the force/moment characteristics for any
ComparisonsZ2 -2  with CTS and full scale results other store in that parent flow field can then be
have indicated that reasonably accurate correla- determined once that store's influence coefficients
tions can be obtained in certain flight regimes, and (at0 1 Cm ) are known.
The primary advantages of the grid method are 0o
tunnel time savings and the ability to simulate The method was originally developed for super-
trajectories for conditions beyond those obtained sonic floWS9 27 -2 8 for which the calibration flow
in the tunnel, such as simulation of store active field used to determine the influence function

contolsand orerelase hil th parnt ir- coefficients were simple wedge flows. The method
craft is in a climb/dive or accelerated flight has since been applied to subsonic/transonic
condition. However, grid results are limited to flows29 and has employed both experimental and
the particular store configuration tested. Appli- theoretical PANAIR flow fields9 to determine the
cations to other stores require the local flow influence coefficients. The method has not yet
angularities to be inferred from force/moment data incorporated side force/moment characteristics nor
and this is not always accurate, has it been employed in a complete trajectory

The lowfiel orflowanglariy mthodwas determination. Consequently, final comparison of
Thole flowafild tor lowiangulaity methodurawas the method with other techniques cannot be made

evoled rimril toeliinat ths cnfiuraion at this time. In Fig. 10, comparisons are shown
dependence. With the flow angularity technique, of normal force coefficient results and data along
a data bank of local flow angles is obtained for a fuselage centerline location at Z/D g4.67 for a
a particular aircraft as a function of Mach number GBU-15 store in the presence of an F-15 at
and attitude over a predetermined grid in the M 0.95 and display reasonably good agreement2g.
vicinity of the carriage station of interest.
Next, using the free stream aerodynamics of the
store, interference aerodynamic coefficients are
determined for the various forces/moments acting
on the store, separately accounting for the local '



Analytically-Based At least one nonlinear 3-D finite-difference
solution is required to simulate such effects,

Historically, due to the absence of reliable although it is not necessary for that solution to

3-D transonic solvers, the initial theoretical be for the complete geometrically complex config-
transonic store separation predictions were based uration. In the nonlinear 3-D correction method
on panel method flow field simulations. The methods proposed, the effect of the wing pylons is
used and applications reported have included among simulated by invoking the .hypothesis that the
others the following: addition of geometric complexities to a basic

configuration can be treated with differences
* NEAR subsonic/supersonic codes

3 1- 33  
between appropriate 3-D paneling method solutions.

*• MMB codes
5  

The primary nonlinear transonic effects generated
Sby these configurations are due to the wing and

- PANAIR derivative codes
2 8  

can be adequately accounted for by computing the

S• Northrop/NEAR codes
33  

3-D transonic small-disturbance (TSD) flow about
/ ca simpler basic configuration. For pylon addition

Although it was recognized that deficiencies to a basic wing-body, we then have

*. existed in the predictions due to neglected non-
linear effects, many features of these calculations L L NL

* were found to compare favorably with data - for = WBP - tWB WB
-* example, the extensive comparisons of store loading
*', distributions made in ref. 31 - and were correct

for reasons that will be discussed below. As an where L and tWB denote linear paneling method
example of these results for a trajectory calcula- oW ib

tion, Fig. 11 displays comparisons of panel method solutions for the wing-body/pylon and wing-body
results using the Northrop/NEAR subsonic code

3 3  
alone configurations and nLalone ~ ~ cofgrain, Bn denotes a nonlinear

with data for the normal force coefficient for an 3e

MK-83 bomb separating from an outboard wing/pylon 3- TSD finite-difference solution for the wing-

location of an F-18 at the transonic flight body alone.

condition, M = 9.95. These comoarisons are The basis for this hypothesis was derived from
reasonably tpical of panel method results at extensive comparisons of 3-D paneling method
transonic conditions in that trends are generally solutions with the data

3
4'
35 

from this program at
predicted but magnitudes and displacement of flow conditions throughout the transonic range.
maxima/minima peaks are usually in error. Conse- It was found that surprisingly good predictions

quently, use of panel methods, which are widely of the lateral velocity components (upwash and
available, for initial transonic calculations
continues, with the results used as guidelines for sidewash), but not the axial component, could be

certain preliminary analyses. Clearly, however, obtained from paneling method solutions for these

accurate simulation of store separation character- configurations at Mach numbers throughout the

istics at transonic speeds can only be realized transonic regime even in the vicinity of shock

with full 3-D nonlinear transonic flow methods, waves. A similar solution decomposition has been
Those nonlinear methods currently under development employed with success in ref. 36 to model geometric-
oare identified below, ally complex fuselage effects on wing pressures of

a the F-Ill at transonic speeds. The primary point

The earliest systematic investigations
30
,
3
1 is that as long as detailed transonic effects are

* aimed at establishing a routinely-usable predictive not required on the modeled component, then such

method capable of determining the nonlinear tran- a procedure is capable of providing good represen-
sonic separation characteristics of stores from tations of the primary lift and volume effects of

fighter-bomber aircraft are summarized by Stahara the modeled component upon the remainder of the
in ref. 32. One of the primary objectives of the

study reported in ref. 32 was to investigate methods In Fig. 13, we illustrate the effect of the 3-D
that were capable of predicting with sufficientacuayth setilnnieaiisoftenn nonlinear correction where a comparison is provided, . accuracy the essential nonlinearities of the non-

uniform parent-generated 3-0 transonic flow field of theoretical and experimental results for local

surrounding the store, while requiring a minimum upwash and sidewash for the wing-body of Fig. 12

of computational resources. Three different with wing pylon at a flow survey location directly

methods summarized below under the wing pylon. The theoretical result with
the nonlinear correction is shown as the solid

Classical transonic equivalence rule curve, while the corresponding paneling method
result is shown as the dashed curve. Both predic-

* Extended transonic equivalence rule tions compare quite well with data, with the

Nonlinear 3-0 correction procedure nonlinear results somewhat superior

were investigated and compared with data from an The importance of these favoraule lateral

extensive parallel experimental program
3
" s velocity component predictions to the store loading

involving the simplified F-16 wing-body/pylon/-tore determination is paramount. The loading distribu-
tion on external stores in the presence of parent

configuration shown in Fig. 12. The conclusions aircraft depends primarily on the lateral velocity
drawn were that neither the classical equivalence
rule nor the extendec version in which the classi- components (see Fig. 7) and secondarily on the

cal 2-0 crossflow solutions are replaced by 3-0 axial velocity component. The exception is regions

linear paneling method solutions are capable of where parent-generated shocks or other high-

adequately predicting the 3-D spanwise variations gradient regions impinge on the store. These

of shocks or other high-gradient regions that occur effects are illustrated in Fig. 14 where normal

near the wing trailing edges oftheseconfigui ations. force loading distribution results based on the

procedure described in Fig. 7 are provided based
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on the flow field results given previously in Fig. store separation applications was suggested.
13. The theoretical results indicate little
difference in loading when employing the 3-D non- In ref. 38, a similar fine mesh/coarse mesh is
linear corrected flow field or the linear paneling employed for the wing-body but with the addition of
method flow field - presumably since the loading a third mesh about the store to facilitate treat-
method only makes use of the lateral velocity ment of store fins. Preliminary results have been
components for which Fig. 13 indicated no substan- reported3a for several isolated stores, and also
tial differences. Comparison of the theoretical for a F-16 wing-body and B-16 store combination
results with data indicates generally good agreement for which the wing pylon has not yet been incor-
except in the vicinity of the large axial gradient porated. Future work is being directed toward
near the pylon trailing edge. pylon addition and separation simulation.

These loading comparisons serve to identify
two deficiencies of the loading calculation proce- Future Developments and Concluding Remarks
dure outlined in Fig. 7: (1) the procedure as
constituted cannot accurately handle steep axial With the continuing advances in 3-D computa-
gradients in the parent-generated flow field, and tional flow simulations, theoretically-based method
(2) the method does not account for store-induced development is capable of contributing significantly
transonic effects. A modification to the loading to reducing the cost/time involved in both wind
calculation method'that is capable of accounting tunnel and full scale store certification programs.
for both of these effects has been reported in Because primary usage of theoretical store separa-
ref. 16. The method proceeds by applying the tion methods will be in a high-frequency repetitive
transonic equivalence rule to the store alone and use environment, any basic procedure must be
accounting for store-induced transonic effects on capable of both accurately simulating the flow and
the crossflow velocity components. Details of the providing some means of performing repetitive
procedure are given in ref. 16 together with results calculations without major computational demands.
for a variety different body shapes at conditions
throughout the transonic regime. Broadly speaking, the improvements and

advancements necessary for such methods to become
An indication of the magnitude of this a usable design tool can be categorized under two

improvement is given in Fig. 15 which displays a major subdivisions:
comparison of the difference in the pitching-moment
coefficient Cm. variation throughout the transonic I. Improved realism of simulation

regime when including and not including store- * Parent related
generated transonic effects. The results indicated
in the bottom plot are for an ogive/cylinder store
similar to that shown in Fig. 14, but of 5 caliber Inlets
rather than B.5 caliber length. These results were Multiple pylons
carried out for free air flow past the store alone, TER & MER's

for which the loading method shown in Fig. 7 with- * Store related
out parent-generated flow field curvature reduces
to the slender-body result. The effect of the Canards
improvement to the loading calculation has an even Tail fins
more dramatic effect when boattailing (and/or fins) Blunt noses
are employed on the rear of the store. That change * Combined parent/store
in pitching moment for a boattail addition is also

-. indicated in Fig. 15 for a 1/2 caliber 7' conical

boattail. II. Computational efficiency

- In addition to the 3-D methods described in Rapid 3-D solvers
refs. 30-32, 3-D TSD simulations of the combined Combination with nonlinear
parent plus store have been reported in refs. 37 approximation methods
and 38. Both of those methods are based on the
modified transonic 3-0 small-disturbance potential Increasing the realism of the simulation by
equation solver of Ballhaus, et a139 later refined more accurate modeling of the geometric details of
by Mason,etal"0 . In ref. 37, the flow field about the parent and store is clearly achievable with
a simple fuselage-wing-pylon-store configuration the current state of computational procedures. Of
is discretized about convenient computational the various components listed above related to
support surfaces, as shown in Fig. 16. A fine parent, store, and combined parent/store, all can
grid is employed about a rectangular region encom- be accounted for at the TSD level given the
passing the computational configuration with a development effort. Increasing the level of
coarser grid exterior to that region. Image points solution accuracy beyond small-disturbance does
are used to simulate the boundary conditions on the not appear to be warranted at this time. Perhaps
pylon and store computational surfaces. Wing the -ingle, most serious impediment to the use of
surface pressure results for, a modified F-5 wing/ thes;e methods is their potential massive computa-
pylon/store configuration have been determined and tional demands when used in the design mode.
compared with the clean wing, as shown in Fig. 17, Before these methods will be accepted for routine
and provide a preliminary validation of the proce- use, some means must be available to reduce sub-
dure. Additionally, a parametric study of a wing- stantially their computational requirements. In
fuselage-pylon-store configuration has been made. this regard, an important technique has recently
Both results are for the store in the carriage been developed which can be coupled with the
position. No trajectory calculations have yet nonlinear 3-0 parent flow field solvers to provide
been reported, but a sectional load procedure for such a means. The technique is a rapid
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approximation method for predicting nonlinear flows For a given parent,'store configuration, a
and allows minimization of the actual number of 3-0 series of these 3-D TS0 calculations with the store
nonlinear finite-difference solutions required to in the carriage location will be determined as a
perform a store separation certification study. function of (M.,a.) to fill a certain sparse data
The method has been applied to a variety of 2- and base matrix defined below) of these parent flow
3-0 transonic problems lbv2 and ref. 42 provides fields. Those flow field results throughout the
a summary of a large number of nonlinear transonic spacial volume encompassing the anticipated flight
flow applications, corridor of the store would then be archived in a

data bank.
In relation to the store separation problem,

* Fig. 18 displays an application of the method to The store loading procedure would employ a
prediction of 3-0 transonic flow fields about the transonic modification: 6 of the continuous
simplified F-16 wing-body/pylon combination for sectional loading conceptr; and would simultaneously
which results were previously provided in Fig. 13. account for high axial-gradient flow field effects
In Fig. 18, we have used the 3-0 nonlinear correc- on the store due to the parent flow field and
tion solutions [see Eq. (1)] for the local upwash store-generated transonic effects. Since this
"1 L at M = 0.95 and a = 0' and 59, given by the procedure would involve, as a component calculation,

dashed and dash-dot curves, respectively, to predict several axisymmetric TSD finite-difference calcu-

the corresponding result throughout a range of lations about the store alone at various M.'s,
angles of attack without need for further finite- those finite-difference results on the surface of
atntthe store would also be archived.
difference solutions. The predicted result for

* = 2 is given by the solid curve and is meant to Next, with the 3-0 nonlinear approximation
be compared with the data points indicated by the method of refs. a1-42 configured so as to account
crosses. Agreement is excellent, for simultaneous changes in (M,,a_), that method

Given the present status of computational together with the archived parent aircraft flow

technology and theoretical store separation method- field results would be used to predict aircraft

ology, together with the current and future needs flow fields throughout the entire (M.,,,,) flight

for predictive transonic store separation methods, range desired. If the flow topology within the

it is of interest to project the next plateau of desired (M.,,) range does not change fundament-

theoretical modeling development in this area. In ally, then only three independent parent-aircraft
a fflow field solutions are needed to determine all. what follows, we describe a possible near-term terqie lwfed. I h lwtplg

transonic store separation computational model the required flow fields. If the flow topology

applicable to externally-carried stores that is does change, for example if additional shock waves

both achievable within present technology and are generated or other high gradient regions
created, then additional parent flow field solutionsonigenvironment are needed, generally one for each topology change.

For the axisymmetric TSD store-alone component

The primary simplifications discussed in solutions required in the loading determination,

Section 3.2, i.e., quasi-steady motion, parent flow the 2-0 version of the approximation method would

field invariance to store displacement, and store also be used with the archived store-alone results

continuous sectional loading concept are employed, to predict those required solutions. This

The parent aircraft flow field will be obtained via combined parent aircraft/store loading solution

a 3-D TSD solver, with separate computational boxes procedure would then provide the aerodynamic
surrounding the fuselage and the various pylon/ forces/moments acting on the store as input to the
stores as sketched below, six-degree-of-freedom store trajectory calculations
st s as sthroughout the (M.,a.) flight range.i -wSymnzetry plane
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Navier-Stokes Computational Study of the Influence of Shell
Geometry on the Magnus Effect at Supersonic Speeds

Walter B. Sturek*
Donald C. Mylin**
Bernard Guidos***

Charles J. Nietubicz****

U.S. Army Ballistic Research Laboratory, ARRADCOM

Aberdeen Proving Ground, Maryland 21005

Abstract normalized by a.

Recent papers have reported the application UVW = contravariant velocity components

of the thin-layer Parabolized Navier-Stokes (PNS) x,y,z = physical Cartesian coordinate axesa = angle of attack
computational technique to predict the flow over y = ratio of specific heats
spinning shell at supersonic speeds. This paper K = coefficient of thermal conductivity,
reports the results of a computational study using normalized by free-stream value 

thin layer Navier-Stokes codes to examine the
effects of shell nose tip and afterbody geometry u = coefficient of viscosity, normalized
The geometries considered include sharp, hemi- by free-stream value p.
sphere cap, and flattened nose configurations and
a parametric variation of boattail shape. The , = computational coordinates in theaxial, circumferential, and radial
results are presented primarily as the aerodynamic directions (Fig. 1)
coefficient versus Mach number for 1.5 < M < 5. = density, normalized by free-stream
The Magnus effect is shown to be strongly influ-
enced by nose bluntness as well as the geometry of density p.
the shell afterbody. Subscripts

- = free-stream conditions
Nomenclature aw = adiabatic wall

a = speed of sound w = body surface values

CP = center of pressure for normal force x = based on axial distance from nose
CPY = center of pressure for Magnus force
Cm = pitching moment coefficient I. Introduction

CM = d2Cn/[d(-P)-daj, slope of Magnus Recent papers" '2' 3 
have reported the develop-

moment coefficient evaluated at ment and application of the thin-layer Parabolized
PD/V = 0.O, - 0 Navier-Stokes computational technique to predict

Cn = Magnus (yawing) moment coefficient the flow about slender bodies of revolution at

CN  = normal force coefficient supersonic velocities. Reference 3 showed the
Cy = Magnus (side) force technique to be a viable computational tool for

predicting Magnus effects for a six-caliber slen-
D = diameter of model der shell with a one-caliber, 70 boattail as veri-
e x total energy per unit volume of fied by comparison to wind tunnel force measure-

fluid, normalized by p.a. 2  ments. The results of Reference 3 represent thefirst successful efforts to compute the Magnus
E,Es,F,G = flux vectors of transformed gasdynamic effect for boattailed shell using sophisticated

equatione
Jtation bnumerical computational techniques. In this
phyial and computational paper, the ability of the PNS computational tech-coordinates nique to predict normal and Magnus forces at

L c reference length angles of attack up to 10-degrees and the effects
M a Mach number of nose and afterbody geometry on the aerodynamics

p - pressure normalized by p.a. 2  of shell are examined. The influence of nose
bluntness is determined using a starting solution

Pr - Prandtl number, P.c/K generated by the unsteady Navier-Stokes (time
marching) computational technique and then usingPD/V = non-dimensional spin rate about model the PNS (space marching) code to compute the flow

axis
Re = Reynolds number, p U.L/P. over the remainder of the shell.

S - viscous flux vector
u,v,w - Cart sian velocity components along

t;,e x, y, z axis, respectively,

*Chief, Aerodynamics Research Branch
**Mathematician

• Engineer Trainee
****Aerospace Engineer
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II. Computational Technique The numerical algorithm used to march Eq.
(1) downstream is an approximately-factored, fully

a. Space Marching Solution implicit, finite-difference scheme. The algorithm
is conservative and of second-order accuracy in

The steady thin-layer Parabolized Navier- the marching direction. A two-layer, algebraic
Stokes equations can be written for general eddy viscosity model4 is included for the computa-
spatial coordinates C, n, c asi  tion of turbulent flows. Details of the Parabol-

ized Navier-Stokes assumption and the derivation
aEs + @F 1 ~ Sof the algorithm are included in Reference 1.

,- B{~ ~ + + - =- I

Ka an C Re aC (1) The computations are started from a
converged conical solution near the tip of the
projectile. The full solution is then obtained by

where C = C(x) is the streamwise marching over the body in the streamwise (axial)
(marching) coordinate direction. This marching technique is depicted in

n = n(x,y,z) is the circumferential Figure I along with the coordinate system. A
coordinate logarithmic stretching is used to achieve adequate

c = c(x,y,z) is the normal coordinate grid resolution of the turbulent viscous layer.
The grid generator employs an adaptive capability

The inviscid flux vectors in Eq. (1) are which insures that adequate resolution of the
viscous layer is maintained over the full length

PU pV of the model. The streamwise marching stepsize
was adjusted to yield 500 to 800 computational

-puU+ xps  PuV+nxp steps for the full length of the shell. The com-
Es = pvU j-I pvV+nyp putational grid consisted of 36 stations about the

.vU Fv ycircumference of the model (Ao = 10') and 50
pwU PwV+nzp points between the body and the outer boundary.

(e + ps)U (e + p)V b. Blunt Nose Solution

pW The solution for the flow over the blunt
nose of the shell has been obtained using the

puW+C P three dimensional thin-layer Navier-Stokes solver
=j-1 pvW+;P recentl reported by Chaussee, Kutler and,. Pulliam . This is a fully implicit computational

pwW+c zP technique which solves for the entire flow field

(e + p)W by converging to a steady flow solution. The
outer boundary for this code employes a shock-
fitting scheme. Since the solution is obtained

The vector q(P, pu, pv, pw, e) contains the depen- for only a small flow field region near the nose,
. dent variables. Variations of body geometry are good grid resolution has been achieved. The grid

included in Eq. (1) through the presence of the used consisted of 30 points from the body to the
metric terms nx, ny, nz , etc., which appear in the outer boundary, 20 points axially along the sur-
flux vectors. The thin-layer viscous term, valid face of the shell, and 36 points circumferentially

for high Reynolds No. flow, is around the shell.

The nose region has initially been model-
0 ed as a hemisphere cone. The conical extension is

of sufficient length to achieve a well established

"1 2+ 2+ 2 supersonic conical flow in order to apply the zero
4i x cy cz)uc + (u/3 )(c U;+yv 4+ z w)c x  gradient outflow boundary condition with confi-

dence. This modeling of the nose region is depic-

2 + 2. + (u/3 )(; U+;yvszwo)cy ted schematically in Figure 2. The bluntness
~x+'y z VI  /,xU yVC zW y ratio is defined to be the ratio of the diameter

2= 2+ 2. of the cone at the forward tangency point to the
j- u(cx c yc z)w; + (u/3 )(;xu;+cyvC+czwc)Cz maximum diameter of the shell.

222 [(u/2)(u2+v2+ w In addition to the hemisphere blunt nose,{(Cx++) / v several cases have been run for a flattened nose.

-1 -12 The intent is to model as closely as possible the
* pr'(-ly1(a + (u/3)( x meplate (flat face) configuration of typical Army

shell.

+ yV+ czw)(xU; + cyV + zW()1
*'y z''x c y z The time-dependent thin-layer Navier-

Stokes equations can be written in strong
conservation-law form as

*Equation I is parabolic-like with respect to C and
can thus be marched downstream in the & direction aS+ aE + F + aG =I S (2)
from an initial data plane (subject to appropriate a a+ an iz = e a(
body and free stream boundary conditions) under
those conditions where the local flow is super-
sonic, where T t is the time (marching)

2
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C = (t. x, y, z) is the longitudinal a c 60. However, the computed results for a = 10'
coordinate are not in close agreement with the trend of the

experimental data for a > 60. This is more clear-
n = ni(t, x, y, z) is the circumferential ly indicated in Figure 8. This discrepancy is not

coordinate unexpected since, as shown in Reference 2 where
comparisons between computation and experiment for

; = c(t, x, y, z) is the near normal surface pressure were made, good agreement was
coordinate achieved at a = 6.3' and significantly less satis-

factory agreement was obtained at a = 10.40. The
discrepancy at a = 10.4' was attributed to the

. .. inability of the computational technique to accur-
The inviscid flux vectors are E, F, G and contain ately model the significant development of lee-
terms for the conservation of mass, momentum, and side vortical flow.
energy in the three coordinate directions. The

e) contains the dependent The ability of the computational techni-
' v o ,uque to accurately predict Magnus for a e 6' does

variables. The S matrix contains the viscous represent a significant capability. This demon-
terms which are valid for high-Reynolds number strates that useful engineering results can be
flows, achieved for highly three-dimensional flow fields

using a very simple turbulence model.
The contravarient velocity components are

b. Effect of Boattail Geometry
U = xu + {yV+ Czw

x y Z 1. Scope of Computational Effort
V = nxu + ny v + nzW

y -A series of computations have been
W Cxu + Cy v + 4 W. accomplished for a parametric variation of boat-

.zW" tail configuration. The geometries are shown in
Figure 9 and include boattail lengths of one and

Variations of body geometry are included in two calibers for boattail angles of 0', 5', 7-
Equation (2) through the presence of metric terms 1/20 , and 100. This range of boattail length and
( x' n , etc.) and the Jacobian J, which appear in angle effectively spans the range for practicalx shell application.
the flux vectors and contravariant velocities. A
two-layer algebraic eddy viscosity model is used The computations were accomplished
for the turbulent viscous solutions, for standard atmospheric and wall temperature

conditions commonly encountered in projectile
Ill. Results firing tests. These conditions are summarized in

Table 1.

a. Comp s to Aerodynamic Forcei'"i Measureets

TABLE 1. Summary of Boundary Conditions for
In Reference 3 a series of resultsPamercCputin

obtained for a = 2' were compared to experimental
measurements (Reference 6) of aerodynamic forces
for 2 c M r 4. The model configuration for this
study is shown in Figure 3. The sign convention
for the aerodynamic forces Is shown in Figure 4. MACH a, T., p., Tw,
The results in Reference 3 indicated that the No. degrees PD/V 'K atm 'K
thin-layer PNS computational technique achieved - degrees PD/V atm
excellent agreement in comparison to experimental 2 2 .19 294 1 239,294,325
measurements of aerodynamic forces including the 3 2 .19 294 1 239,294,325

Magnus effect. Comparisons of the PNS computed 4 2 .19 294 1 239,294,325

for a C 10'. Computed results were obtained for MACH
a = 2', 4', 6', and 10'. No. FREE STREAM REYNOLDS NO.

Comparisons between computation and

experiment are shown as a function of angle of 2 4.53 x 107/m
attack for normal force for M = 2 and M = 3 in 3 6.80 x 1O

7/m

Figures 5 and 6, respectively. Results for two 4 9.06 x 10
7/M

boattail configurations are shown. The notation
SOCBT depicts the 7', one c.llber boattail model
in Figure 3. The notation SOC depicts a model
with a 0' boattall. Excellent agreement Is 2. Aerodynamlc Forces versus Axial
achieved for a ( 10' for magnitude as well as the Position

non-linear behavior of the normal force
coefficient. The development of the normal force

as a function of axial position is shown In Figure
A similar comparison is shown for Magnus 10 for boattall angles of 00 and 7-1/20. The

force for M 2 and M = 3 In Figures 7 and 8, normal force increases monotonically for the 0'
respectively. These results indicate very good boattall in contrast to the behavior for the 7-

, agreement between computation and experiment for 1/20 boattails where the normal force reaches a

3
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maximum and then decreases as the boattail length cylinder-boattail (SOCBT) shape shown in Figure 3.
increases. Figure 2 shows the nose tip geometries in detail.

Flow field computations have been obtained for
The development of the Magnus force wind tunnel test conditions and for free flight

as a function of axial position is shown in atmospheric conditions. The wall temperature
Figures 11 and 12 comparing the effects of boat- boundary condition has been modeled as an adiabat-
tail length (Figure 11) and boattail angle (Figure ic wall for the wind tunnel tests and as a con-
12). Figure 11 shows that the length of the boat- stant wall temperature equal to the atmospheric
tail strongly affects the magnitude of the Magnus temperature for the atmospheric flight conditions.
force. Figure 12 shows that the Magnus force
increases monotonically for increasing boattail Examples of u-velocity profiles at the
angle for the cases considered here. starting plane for sharp and blunt noses are shown

in Figure 17. The profile for the blunt nose
3. Aerodynamic Coefficients versus Mach cases are significantly distorted in the inviscid

No. flow region compared to the sharp nose case which
has a comparitively flat profile. An interestng

Parametric comparisons for pitch and comparison is shown in Figure 18 which illustrates
yaw plane aerodynamic parameters are shown in Mach contours for the blunt starting solutions.
Figures 13 and 14. These examples illustrate the The more severe flow expansion around the flatten-
ability of the computational technique to develop ed nose compared to the hemisphere nose is clearly
data which reflect the effects of body configura- illustrated. Figures 19 and 20 show the distribu-
tion and Mach number. tion of surface pressure for windward and leeward

rays for the two blunt nose shapes.
The effect of boattail angle and

length for the slope of the pitching moment (CG = Additional examples of u-velocity pro-
3.6 calibers) is shown in Figure 13. These files for the different nose configurations are
results show that both boattall length and angle shown in Figure 21 for a longitudinal station near
have a significant effect on the pitching moment, the start of the boattail. Small but distinct
The trends indicate that CM is increased for differences are apparent upon comparison of these

C9 profiles indicating that the effect of the initial
increasing boattail angle and boattall length. conditions does not wash out rapidly.
This trend is accentuated for flow velocities near
Mach = 2. The wind tunnel test 7 conducted recently

for the BRL at the Naval Surface Weapons Center,
The slope of the Magnus moment coef- White Oak Laboratory obtained measurements of the

ficient (CG = 3.6 calibers) is shown in Figure 14. aerodynamic forces on the slender shell with
The effect of boattail length is seen to strongly sharp, hemisphere, and flattened nose configura-
affect the Magnus moment coefficient. The trend tions. Force balance measurements were obtained
illustrated is that CM is increased as boattail for pitch plane and Magnus forces. Computational

pa results for sharp and hemisphere nose geometries
length and angle are increased, have been obtained for comparison to these data.

The computational and experimental results for
c. Effects of Nose Bluntness Magnus force are compared in Figure 22. The

experimental data indicate an increasing Magnus
A spark shadowgraph of an artillery shell force for increasing nose flatness. The agreement

at a speed of approximately Mach = 2.25 taken in between computation and experiment for the sharp
the BRL Transonic Range is shown in Figure 15. and hemisphere nose configurations is quite good.
This shadowgraph shows the deteched bow shock that However, there is substantial disagreement between
occurs for supersonic flow over artillery shell, computation and experiment for the flattened nose
Note the presence of a shock at the sharp corner geometry. The computation for the hemisphere and
of the flattened nose. This shock is caused by the flattened nose yielded virtually identical
the local flow separation that is induced by the results. This is in sharp contrast to the experi-
strong expansion at the sharp corner, mental results which yielded a substantially

greater Magnus force for the flat nose case than
A recent wind tunnel test 7 was performed that for the hemisphere cap. Further computations

in which aerodynamic force measurements were made for which the boundary layer on the nose cap was
for spinning models with sharp, hemisphere, and laminar yielded results that were virtually
flattened nose tips. A Schlieren photograph of identical to the results for which the boundary

* the flow over these nose tips at Mach - 3 is shown layer on the nose cap was turbulent. A possible
in Figure 16. It is obvious that the bow shock cause for the discrepancy is the difference
pattern is different for each of these configura- between the flatness of the nose for the computa-
tions. The inner shock at the nose tip that is tional model and the model used in the wind tunnel
very distinct in Figure 15 also occurs at the test. As shown in Figure 2, the flat part of the
sharp corner of the flattened nose in Figure 16. nose does not extend to the full t"ameter of the
This shock is not visible for the hemisphere nose. meplate. Additional computations are planned in
The shock waves starting about one diameter down- which the actual flatness of the fuze configura-
stream of the model nose are generated by a bound- tion will be modeled more closely. It would also
ary layer trip. be useful to have experimental data for a wider

range of free stream Mach number for comparison to
In this portion of L.e study, the signi- the computations.

ficance of the technique for modeling the nose
region of spinning shell on the predicted aerody- An example is shown in Figure 23 of the
namic behavior at supersonic velocities is development of the Magnus force as a function of
examined. The model geometry used is the ogive- axial position comparing computational results for

,%
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sharp, hemisphere, and flattened nose configura- 3. Sturek, W.B., and Schiff, L.B., "Computations
tions for atmospheric flight conditions. The of the Magnus Effect for Slender Bodies in
results indicate a significant increase in the Supersonic Flow", AIAA Paper No. 80-1586-CP,
Magnus force for the blunt noses. The trend of AIAA Atmospheric Flight Mechanics Conference,
increasing Magnus force for increasing nose flat- August 1980.
tness is observed. Examples of the Magnus force
as a function of Mach number for the sharp and 4. Baldwin, B.S., and Lomax, H., "Thin Layer
hemisphere blunt noses are shown in Figure 24. Approximation and Algebraic Model for Separ-
The blunt case is consistently greater in absolute ated Turbulent Flows", AIAA Paper No. 78-257,
magnitude than the sharp case. 1978.

% The slope of the Magnus moment coeffi- 5. Chaussee, D.S., Kutler, P., and Pulliam, T.H.,
cient as a function of Mach number is shown in "Three Dimensional Viscous Flow Field program;
Figure 25 comparing results for sharp and hemi- Part I: Viscous Blunt Body Program (Interim
sphere noses. Again, the blunt nose results are Report)", AFWL-TM-81-63-FIMG, March 1981.
consistently greater than those for the sharp
nose. The results also predict a greater 6. Nietubicz, C.J., and Opalka, K., "Supersonic

, influence of nose bluntness as the Mach number Wind Tunnel Measurements of Static and Magnus
- decreases. The behavior of the Magnus center of Aerodynamic Coefficients for Projectile Shapes

pressure is shown in Figure 26. These results with Tangent and Secant Ogive Noses", ARBRL-
"." indicate that the Magnus center of pressure is: MR-02991, U.S. Army Ballistic Research Labor-

(1) located well downstream of the CG location atory/ARRADCOM, Aberdeen Proving Ground, MD
(3.6 calibers); (2) weakly sensitive to Mach 21005, February 1980.
number; and (3) not highly sensitive to the nose
bluntness. 7. Unplublished Wind Tunnel Data. Test performed

.- at the Naval Surface Weapons Center, White Oak
The slope of the pitching moment coeffi- Laboratory, Silver Spring, Maryland for the

cient as a function of Mach number is shown in U.S. Army Ballistic Research Laboratory.
Figure 27. These results indicate that the pitch-
ing moment is not sensitive to small nose blunt- MQ>1 INITIAL DATA PLANE
ness typical of artillery shell

IV. Summary

A computational study has been described in
which thin-layer Navier-Stokes computational tech-
niques have been tinployed to predict the aerody-
namics of slender, spinning shell at supersonic

' velocit -_

Results have been discussed which illustrate 0 ° 6
the ability of the computational technique to

accurately predict Magnus and normal forces for
angles of attack up to six degrees. Parametric
results showing the effects of boattail length and
boattail ingle were discussed for pitching moment
and Magnus moment. 1. Coordinates and Notation.

Comparisons have been shown between results
obtained in which the nose tip of the shell has 0.15-
been modeled as a sharp cone, a hemisphere-cone, TIME MARCHING STARTING SPACE MARCHING
and a truncated cone. The results indicate that PLANE
small nose bluntness, typical of artillery shell, 0.10

can significantly increase the Magnus moment. The 13.1' CONE
results further indicate that the pitching moment
is not strongly affected by the small nose blunt-
ness considered in this study. .... .. ........

Y/D 0 ~ FZ
RefeenesBLUNTNESS RATIO 10)Jw' Re ferences

-0.05
1. Schiff, L.B., and Steger, J.L., "Numerical FLAT TIP

Simulation of Steady Supersonic Viscous Flow",HFT
AIAA Journal, Vol. 18, No. 12, December 1980, -0.10 ISPHERE TIP

, ;'-,pp. 1421-1430.

2. Schiff, L.B., and Sturek, W.B., "Numerical -0.1 0.20 0.25 0.30 0.3S 0.40 0.AS 0.5
Simulation of Steady Supersonic Flow Over an
Ogive-Cylinder-Boattail Body", AIAA Paper No. X/D

80-0066, AIAA 18th Aerospace Sciences Meeting,
January 1980. 2. Illustration of Blunt Nose
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15. Aerodynamics Range Spark Shadowgraph of Artillery Shell at Supersonic Velocity, M a2.3
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11k.DEVELOPMENT OF BOUNDARY LAYERS AND SEPARA- The objectives concerning activities of
TION PATTERNS ON A BODY OF REVOLUTION AT the DFVLR, Institute for Experimental Fluid

t INCIDENCE Mechanics, Gbttingen, in this field of
woo Iresearch are:

i Meier, H.U.*; Kreplin, H.-P.*; Vollmers, H.** - to determine the laminar to turbulent

boundary layer transition on bodies of
* DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT revolution at incidence, which cannot be

FUR LUFT- UND RAUMFAHRT E.V. calculated at the present time,
~NAERODYNAMISCHE VERSUCHSANSTALT GOTTINGEN

- to provide experimental data for the exa-
*) Institut fUr Experimentelle Str6mungs- mination of calculation procedures and

mechanik physical models,
**)Institut fUr Theoretische Strdmungs-

-mechanik - to investigate by means of mean velocity
_: distributions in three-dimensional boun-

dary layers, separated flow fields, and
flow visualizations the separation patterns

Abstract: on bodies of revolution at various angles
of incidence and Reynolds numbers.

-Detailed measurements in three-dimensional

boundary layers and separated flow fields, In this contribution we shall concentrate
developing on a prolate spheroid, are pre- on physical aspects of the development of
sented. The discussion is concentrated on three-dimensional boundary layers, and the
the possible topological structure of sepa- corresponding separation pattern if these
ration patterns resulting from laminar or laminar, transitional or turbulent boundary
turbulent boundary layer flows. A hypothesis layers leave the surface and create vortex
about the transition from an unsteady two- flows. It will be investigated whether the
dimensional axisymmetric flow separation laminar or turbulent boundary layer separa-
into a steady three-dimensional vortex flow tion on an axisymmetric body of revolution
is established., at zero incidence can lead to a meaningful

interpretation of the separation pattern
observed in the three-dimensional case.

I. Introduction

The calculation of the viscous subsonic II. Description of the Experiments
flow around bodies of revolution at inci-
dence has attracted much interest during The model investigated in the 3m x 3m
the past. Most of the research activities Low Speed Wind Tunnel of the DFVLR G6ttin-
have been concentrated on the calculation gen is a sting-mounted prolate soheroid
of three-dimensional laminar and turbulent 1 : 6 (Fig. 1). The wind tunnel model was
boundary layers up to a region where the
boundary layer concept is no longer valid.
In this region e.g. the static pressure euA Z
variation normal to the surface implies
that such a shear layer cannot be des-
cribed by parabolic equations. Therefore
the determination of the "separation line"
is not unequivocal because it may not be
related to real physics. However, for low
angles of incidence (a < 100) the agree-
ment between "separation lines" determined
from calculations and experiments agree
quite well. A detailed description of the ,
state of the art as far as three-dimensio- -

nal boundary layer calculations are con-
cerned is given by T. Cebeci et al. in
Ref. [1]. D A %.

Methods which approximate the Navier T, X
Stokes equations encounter similar problems Tw,
as long as the equations are parabolized.
To date solutions of the full Navier Stokes
equations require computer time and storage
which are not acceptable. In addition to
the problems discussed, the modelling of
the turbulence in three-dimenional shear
layers has not been investigated suffi-
ciently - neither by experiment nor theory
- in order to develop generally applicable Fig. 1
calculation procedures. Model and boundary layer co-ordinate system.

* .. . . . . . . . . . . . . -.-



especially designed for the investigation light sheets and the hydrogen bubble method
of three-dimensional boundary layers and in a water towing tank.
separated flow fields. The measuring tech-
niques used, which are described in detail
in Refs. (2, 3, 4], enable us to measure
the following quantities at the surface III. Results

- pressure, The purpose of the qualitative flow inves-
tigations was to achieve a better insight into

- shear stress (magnitude, direction and the development of three-dimensional boun-
fluctuations), dary layers and the topology of the flow

separation on such a body of revolution and
and in the boundary layer or separated flow to enable us to interpret the quantitative
field measurements. As an example the followingtest result is presented:

- components of the local 
velocity vectors.

As found from surface hot film measure-
The measurementof the velocity distri- ments, Ref. (4], the boundary layer flow

bution in the inviscid flow field were car- over the prolate spheroid is completely
ried out by the HNW*, cf. Ref. [5]. For flow laminar at an angle of incidence a = 100
field measurements the 3m x 3m Low Speed and a free stream velocity of u = 10 m/s.
Wind Tunnel is equipped with a ten-hole- As demonstrated in (4] one can calculate
pressure probe mounted on a traversing wall streamlines from measured wall shear
mechanism, which is placed well outside of st ess vectors. In Fig. 2 the derived wall
the open wind tunnel test section. The streamlines and a typical example of wall
probe allows measurement of

Total pressure () hole)

Static pressure (4 holes) a i0-
V.- 10m/S

Two directions of the flow (4 holes) L 2.: 2

Reverse flow (1 hole). t-.

Two of the four pressure tappings for
the detection of the flow direction were
connected to an electronic circuit. This
arrangement allowed an automatic alignment ___

of the probe in the (x,z)-plane of the
wind tunnel Cartesian co-ordinate system
(x = free stream flow direction). For each 7 0/Lt.tX64
test run the position of the probe, the
velocity of the probe displacement, and
the integration time of the measurement\IrIfmi, I
were computer controlled and programmed in
advance. The probe, together with the tra- I1III/II///////h//// /// ..
versing mechanism, enabled us to determine
3 velocity components in an arbitrary flow 0 6 p 1200----

fieLd at defined positions. Despite the
finite size (d = 6 mm) and the automatic
alignment of the probe in one plane, errors Fig
due to strong velocity gradients in the wall streamlines calculated from measured
neighbourhood of vortex cores or probe dis- wall shear stress values in 12 cross sec-
placement effects cannot be avoided or cor- tions. The wall shear stress vectors for
rected, because comparative measurements laminar boundary layer flow in the cross
using non-intrusive methods were not avai- section x0/L z 0.64 are shown as an example.
lable. The boundary layer measurements were
carried out applying a three-hole-direction shear stress vectors measured in the cross
probe, which allows the determination of section x0 /2a Z 0.64 for this flow case
the magnitude and the direction of the are shown.
local velocity in the (x,z)-plane. The cali-
bration and data reduction procedure is This result clearly indicates two facts:
descrjyed in detail in Ref. [6].

1) One obtains converging streamlines
These quantitative measurements were supp- which merge to an envelope.
lemented by different flow visualization
techniques like oil flow patterns, Laser 2) In the regime of the enveloping stream-

line the wall shear stress reaches a
HNW =DFVLR Hauptabteilung Niederge- minimum and its circumferential component

schwindigkeitswindkandle (Depart- vanishes, if the co-ordinate system of
ment for Low Speed Wind Tunnels) Fig. 1 is applied.

2
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* This wall streamline pattern is difficult 20 0.)0 0.-C .. 0 0. 80

to understand if the corresponding wall ..*, pressure distribution (Fig. 3) is conside- 1
red. At a first glance the differences ' \ ' '

Is'

comparison wi h calou e v s we on t Ie t

potential flow theory (laminar boundary .
layer flow). S ' .. 00> a."

*between the measured and the potential " . .I,''

flow pressure distributions do not lead i

to the supposition that a vortex flow isi created. The wall pressure measurements
were carried out by means of pressure

transducers (SETRA D239 SS) with a suffi- 'Ps
ciently high resolution at a range of
+ 70 N/m . On the other hand, for a three- PI
dimensional laminar boundary layer, all
viscous effects are directly coupled withthe difference between the actual and
potential pressure field. In order to ob- _cLtain more detailed information about the a 2a
measured viscous wall pressure distribution,- ofcowe .91 Oftn I
the first derivatives of the surface pres-
sure with respect to the circumferential
angletp and the direction x were calcu- 0 .. 0. 0.8
lated. In Figs. 4 a b pressure gradients x~/23cP/3,Pand / 30 derived from measurements

are plotted !or different cross-sections Fig. 4a,b
(x const.). They show small but syste- Derivatives c p/3 and )cp/)for cross-
magic differences compared to those cal- section x0/L const. (Q 100, U.culated from the potential flow. It is 10 m/s.)

*clearly indicated that in the regime
where negative deviations between the
derivatives (;c /.) and (c /p) patterns at 50 m/s in the im Low Speedp exp. p pot. Wind Tunnel of the DFVLR G6ttingen. Theoccur, an enveloped limiting streamline oil flow pattern obtained is in excellent
was found. That means, two different mea- agreement with the wall streamlines derivedsurements - pressure and wall shear stress - from measured wall shear stress values
lead to similar results. It can be conclu- (Fig. 5). For comparison, the calculated
ded that at least a weak viscous-inviscid
interaction exists. This implies that the
cross flows induced from the vortex flow
are still small compared to the longitu-
dinal velocity component at this angle
of incidence and Reynolds number. To
check this result an oil flow pattern was
performed at a = 100. Because a laminar boun-
dary layer flow on the 2.4 m long model could Fig. 5
only be established at very low free stream
velocities (U. z 10 m/s), a smaller model Oil flow pattern for laminar boundary layer(scale 1 : 5) was built in order to allow flow (a 10", U 50 m/ model length
flow visualizations by means of oil flow L = 50 cm-Re 1 6 x 10

°,



line of boundary layer "separation"*) is in Ref. [7] would differ only slightly

shown in Fig. 6. This result published if other calculation methods (Refs. [1]
and (8] to (10]) were applied. Differences
in the calculated separation lines would
mainly be caused by different numerical
methods which result in different break
downs of the calculations. The reason for

EiIpsoid F.s-, 1 .I? the good agreement between the laminar
IL "boundary layer calculations - all based

n-o a on the potential pressure distributions -
YdNew O S0w t ee ioimA.. s"with the experiment is simply due to
' " "the small differences in the potential-and measured pressure distributions.

0-- In order to obtain some more detailed
information about the topology of the

separated flow field the Laser light sheet
.--.. _ Line mnFow technique in the im Wind Tunnel and the
A., swee, Flo hydroqen bubble method in the DFVLR Water

Towing Tank (11] were applied. Both flow

Fig. 6 visualization techniques lead to a flow

Calculated "Separation Line" for laminar pattern on the leeward side of the prolate

boundary layer flow at a = 10* (Ref. 7). spheroid which is shown in a systematical
sketch in Fig. 7. In an attempt to describe

CROSS SECT IO.

".. PLANE OF

DETAL 3ASYMMETRY

SI

**5* SeSato.. '; "R" Reattachment

J%. (Pos tire Bifrcation)

. "S" Separaion

CR SECO, (Negative Bifurcation)

Fig. 7
Topological considerations of the separation pattern on an inclined
prolate spheroid.

%:

•) We put this word in quotation marks,
because a proper definition of three-
dimensional boundary layer separation
is not yet offered here.

4
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- three-dimensional separated flows unamti- necessary to introduce a third vortex V'.
guously, Hornung and Perry [12] intro- The correspondirg system of strearsurf~ce
duce the concepts of streamsurface and bifurcations shcwn in Fig. 7 is similar to
streamsurface bifurcation. In this manner that descrioed in Detail ®. As indicated

* they avoid using the terminology of two- in the "Cross Section Q" we have in addi-
dimensional separation for three-dimensio- tion to the saddle point in the Dlane of
nal flow, in which streamsurfaces (rather symmetry one saddle point on each side due
than streamlines) constitute the boundaries to the vortices V and V3 *

* between distinct regions of space. As indi- -
cated in Fig. 7, Detail ® , two wall sheets The schematic flow pattern of "Cross
result in one free sheet at a negative Section ' " is confirmed by experiments
streamsurface bifurcation. The bifurcation shown in Figs. 8a and 8b, where measured
line AB terminates at A , and does not
form a closed curve. This pattern is defi-
ned in Ref. [12] as an open negative
streamsurface bifurcation which is referred Ue.Smis
to as-a separation line in the literature. - 30

N The streamsurface S1 rolls up into a vor- xOL.072 zO

,;*" tex which induces a velocity field near ._., 4
-" the surface whose cross-flow component , -> K

is opposite to that on the other side of. .
the bifurcation line. A consequence of this - § . -----. V

is that a second streamsurface bifurcates ,i / -
positively at the wall and creates a surface ,
streamline pattern which is known as a
reattachment line. The corresponding
oossible crossflow pattern is shown in the
schematic sketch of "Cross Section37' in
Fig. 7 which describes a symmetric pairof open negative bifurcations in this plane. 4i.,
In Detail © it was tried to show the hi-
furcation of surface sheets in a perspec- 4
tive view, which can be interpreted in the
following manner: The free vortex sheet S 7P1
snown in Detail A - issuing from the negi-
tive bifurcation Tine AB - and a similar
symmetric one on the other side of the axi- II

symmetric body roll up into two vortices ".--- ,,
Sa*. These vortices induce a velocity --

4

0.

field in the region of the plane of sym-
metry which results in two special stream- I I I I I

surfaces S which bifurcate along the open " 27"
free doublA bifurcation line CD (D corres- " V
ponds to the saddle point shown in the
"Cross Section @"). CD is a double bifur-
cation line because sheets S4 and S5 have a) Cross flow velocity components in the
to issue from the same line. Due to symme- y0 -z0-plane of the leeside flow field
try conditions the sheet S4 has to be on an inclined prolate spheroid. (Tur-
perpendicular to the sheet S3 and conse- bulent boundary layer separation in the
quently does not roll up. We will give cross section x0 /L = 0.72 at a = 30',
some experimental evidence for that later. U = 45 m/s.)
S% is the free sheet of a subsequent open
positive bifurcation along the line CE. velocity vectors in the (y0-z )-plane at
Considering bifurcation lines on the sur- x /L = 0.72 are shown. The measurements
face, the free vortex sheet S2 issues wre carried out on the prolate spheroid
from the negative bifurcation line FG. The at a free stream velocity of U. = 45 m/s
virtual origins of the lines CD, CE, and for an angle of incidence a = 30* with

" FG are drawn as the points C, F, although the ten-hole-probe. As demonstrated in
- they are, in general, regions of finite Ref. [3] the three-dimensional boundary

extent. layer is fully turbulent for the given
flow conditions before separation. The

Due to the induced velocity field on the measured velocity field (Fig. 8a) clearly
leeward surface a secondary boundary layer indicates a strong vortex with a core at
separation occurs. An oil flow pattern about %0 n 2000. An enlargement of the
would indicate for such a flow case a details ",etween % = 210* and 'P = 240'
reattachment line in the leeward line of (Fig. 8j) elucidates the existence of
symmetry and a separation line resulting two additional vortices. The directions
from the positive and negative streamsur- of rotation are identical with those shown
face bifurcations. In order to avoid a in Fig. 7. Even a free saddle point is
free shear layer in the flow field it is indicated, so that the supposed topology

of the separation is clearly supported by
*) Due to the symmetry conditions the experimental evidence. Unfortunately, we

., streamsurfaces are only named on one could not determine the velocity field
4side.

.D

a



Fig. 2.

Measured surface pressure distributions
in comparison with calculated values based
on potential flow theory (laminar, transi-

Surface of the tional and turbulent boundary layer flow).
-, proiate spheroid

In Fig. 10 the development of the limiting
S-Saddle wall streamlines indicates a convergence
V- Vortex Core only at the rear part. Following again the

oFig. 8.
b) Detail(of Fig. 8a) indicating two rn/a

vortices and a saddle point, a topolo- 2r7
gical structure as described in Fig. 7.

for the laminar case (a = 10, U.=10 m/s,
Figs. 3-6) by means of the ten-hole-probe.
However, the expected result should have
led to a similar topological structure,
as we concluded from the limiting wall
streamline pattern obtained by flow visua-
lizations and wall shear stress measure-
ments (Fig. 5 and 2). These wall stream-
line patterns are in fact very similar
for the laminar and turbulent boundary
layer flow (cf. Ref. [4]), even if the
pressure distribution in the turbulent case
differs considerably from corresponding
values calculated by potential theory
(Fig. 9). This implies that we have,
in contrast to the laminar flow separation, 0. 60. 120- IS0

O

.. a strong inviscid-viscous interaction on
the leeward side flow field but a compa-
rable topology of the separated flow field.

If we increase the free stream velocity Wall streamlines calculated from measured
U to 45 m/s, at an angle of incidence wall shear stress values in 12 cross sec-
a = 100 we can expect to have a separation tions. The wall shear stress vectors for
of a three-dimensional turbulent boundary laminar, transitional and turbulent bounda-
layer in the cross section x /2a = 0.64 ry layer flow in the cross section x0/L =

(compare Ref. [4]). The surface pressure 0.64 are shown as an example.
distribution for this flow condition is
very similar to that shown in Fig. 3. How- interpretation of the streamsurface bifur-
ever, the topological structure of the cation,Ref. [12], the surface flow pattern
flow separation seems to differ considerab- leads to a negative streamsurface bifur-
ly from that we found for the laminar case. c tion of the form shown in Fig. 7, Detail

( .That means we have only one pair of
vortices at the rear part of the prolate



7.

spheroid. These vortices do not cause a IV. A possible interpretation of the flow
secondary boundary layer separation as it separation at small angles of incidence
was determined in the laminar case (Fig. 2).
In the body-orientated co-ordinate system So far we have considered the three flow
(Fig. 1) the limiting streamlines which cases summarized in
are nothing else but skin friction lines
indicate in the cross section x /L = 0.64 Case No. a[*] U-[m/s] Boundary Layer
a change of sign for the circumierential Separation
shear stress component at z 1400.

0 10 10 laminar

Measured boundary layer profiles of the
velocity components u,v at the angles © 30 45 turbulent
P 1200, 1400 and 1600 indicate the

change of sign of the crossflows close Q 10 45 turbulent
to the surface (Fig. 11). As far as the
boundary layer separation is concerned

One fundamental result obtained was the
V. similar topological structure of the se a-, ration patterns in cases No. (D and 2)

160 . U=5swhich differ clearly from case No.
z mml 00 To study the Reynolds number effect at

] 120- small angles of incidence we investigated
the axisymmetric flow case by means of oil
flow patterns. For this purpose a smaller

caicuationmodel with a 240 mm was investigated in
25 0 (T Cebeco) the im Low Speed Wind Tunnel. At a free
25 _Y_ stream velocity of 50 m/s (Re 1.6 x 10 )

:, . Urand axisymmetric flow conditions the
boundary layer is fully laminar up to
separation. This is confirmed by surfacehot film measurements on the 2.4 m long
prolate spheroid, [3], as well as by
calculations applying J.C. Rotta's
boundary layer programme (14].

-05 0 05 10
Ur, Ur The corresponding oil flow pattern

1obtained at a 00, (Fig. 12a) indicates

Profiles of the velocity components u,v
in three-dimensional turbulent boundary
layers(a = 100, U. - 55 m/s).
Comparison of measurements with calcula-
tions by T. Cebeci [Ref. 13].

these boundary layer measurements do not
lead to an answer as to where a negative
streamsurface bifurcation occurs. The
negative crossflow is certainly not an
unequivocal identification of a flow
separation, because its location depends
only on the co-ordinate system chosen for
the data reduction procedure. Consequently
for the identification of separation other
criteria should be applied which have to
be independent of co-ordinate systems.
These may be obtained by calculating the
divergence of the wall shear stress and/or
determinating the eigen-values of the
Jacobian matrix of the velocity field.
The measured boundary layer data are com-
pared with calculated results obtained 

by

T. Cebeci [13]. The calculations, based
on the potential pressure distribution,
agree quite well with the measured results. L - - ---- ____

O Separation

Reattachmeot

Fig. 12
a) Oil flow pattern at a = for a laminar

boundary layer separation.
b) Possible topological structure for an

unsteady laminar two-dimensional boun-
dary layer separation.

7



a separation line at x /2a = 0.86. (The At high Reynolds number it appears to be
streamline deflection 2n this region is true that separation is either unsteady or
simply due to the extremely low wall shear three-dimensi.onal. On the other hand, a
compared to the gravity forces). A second three-dimensona± separated flow can be
separation line can be seen at x /2a = 0.93. steady, because the entrained fluid is
Behind that line we observed reverse flow. transpcrted downstream by longitudinal vor-
In this region the colour dried out much tices. if thts consideration is accepted
faster compared to the region between the we can establish a hypothesis about the
first and second separation line. The transition of an unsteady two-dimensional
latter fact indicates that the flow is boundary layer flow separation into a
laminar in the first separated flow region steady three-dimensional one as the angle
and turbulent after the second separation of incidence is increased from zero. The
line. Such flow conditions at the surface possible topological descriptions of the
possibly can result from a separation boundary layer separation in Figs.12b and

* pattern as described in Fig. 12b. This 13b are similar to those shown as crossflow
flow has to be unsteady because fluid is patterns in Fig. 7 (Cross Sections a and
entrained in the vortices so that they g). Therefore it seems to be possiBle
grow and are transported downstream. This that the first axisymmetric separation line
is not necessarily a periodic process (Fig. 12b) changes into a negative three-

* because the exchange of the flow can be dimensional streamsurface bifurcation line
turbulent, too. if the body of revolution is inclined to a

small angle of incidence. in a series of
If we force the boundary layer flow oil flow patterns obtained on the small

, to become turbulent by introducing an arti- model we found a systematical change of the
ficial disturbance at x /L = 0.3 the boun- location cf the negative bifurcation line
dary layer separates at the very rear part (Fig. 14), if we increase the angle of
of the prolate spheroid (x /L = 0.98)
(Fig. :3a). This leads to Rimple separation a:
patterns as it is described in Fig.,,13b. dh~ IIIIIIZE r 00

p2.50
c~z-I;2z:3.50
c7-~~~Is~t50
~Z'5z750

turbulent

* 100

laminar
S/

R Fig. 14
Negative bifurcation lines derived from oil
flow patterns of laminar boundary layers.

(5 sopartion incidence up to a = 100. At small anglesof incidence (a < 10' ) we found similari) Reoltacnment surface streamline patterns as we had found
at a a 100 (Figs. 2 and 5) but the spatial
resolution was too poor to identify bifurca-
tion lines. All these observations lead to

Fig. 13 the supposition that the unsteady two-dimen-
a) Oil flow pattern at a = 00 for turbulent sional boundary layer separation is preser-

boundary layer separation. ved in its fundamental topological structure
b) Possible topological structure for an if the prolate spheroid is inclined. The

unsteady turbulent two-dimensional main change in the separation pattern is
boundary layer separation, the transition of an unsteady two-dimensio-

nal separation to a steady three-dimensional

"< i " ~~~.. .......-.. ............ - ..
• - -:" • " : -' L " " ' "*•... ..- " .'., ,.'.



. vortax flow pattern. This considexation is :4 ircplin, H.-P.; Vollners, H.;
- inderlined if we consider the turbulant Meier, H.U.: Measurements of the Wall

separation at a = 00 and 1C0 (Figs. 13 3n Shear Stress on an Inclined Prolate
13). The unsteady two-dimensional turbil~et Spheroid.
boundary layer separation changes only at ;resented at the 5th US-FRG DEA Meeting,
the very rear part of the model into a Ar.napolis, Maryland, 16-18 April '980,
negative streamsurface bifurcation wnich XFDL-TR-80-3088, pp. 315-332, 1980,
forms one vortex on each side. Z.Tlugwiss. Weltraumforschung 6,

Heft 4, pp. 248-252, 1982.

V. Summary [ Meier, H.U.; Kreplin, H.-P.;

The investigations lead to the fclJo- Vollmers, H.: Velocity Distributions in
wing results and conclusions: 3-1 Boundary Layers and Vortex Flows

:eveloping on an Inclined Prolate Sphe-
- The topological structure of the separa- rcid.

tion patterns on the prolate spheroid -resented at the 6th US-FRG DEA Meeting
indicates considerable differences at W.-Germany, 28-30
an angle of incidence a = 100 between April 1981.
laminar and turbulent three-dmensinr.al ZFVLR-AVA-Report IB 222 81 CP 1, 1981.
boundary layer flow. [61 Meier, H.U.; Kreplin, H.-P.:

- The viscous-inviscid interaction at Experimental Study of Boundary Layer
a = 100 is weak, thus only small cross Velocity Profiles on a Prolate Spheroid
flows compared to the longitudinal ve! - at Zcw Incidence.
cizty components occur. For this reaszn Presented at the 5th US-FRG DEA Meeting,
differences between the measured and the Annapolis, Maryland, 16-18 April 1980,
calculated potential flow surface pres- AFFDL-TR-80-3088, pp. 169-189, 1980.
sure c , which would indicate a flow sepa-
ration, are not recognizable. The corres- [7] Schneider, G.: Calculation of Three-
ponding derivatives c /)%P and )c i)X, dimensional Boundary Layers on Bodies

P p of Revolution at Incidence.
. lead to systematical deviations in a Presented at the 5th UJS-FRG DEA Meeting,

region where flow visualizations and wall Annapolis, Maryland, 16-18 April 1980,
shear stress measurements indicate nega- AFFDL-TR-80-3088, pp. 287-314, 1980.
tive streamsurface bifurcations.
The topological structure of the separa- (8] GeiBler, W.: Calculation of Threedimen-
The tpologrncal structue of thcenea- sional Laminar Boundary Layer Around
ta1on pattern at an angle of incidence Bodies of Revolution at Incidence and
x = 10° for laminar boundary layer flow With Separation.
is similar to that observed at a = 300 AGARD CP 168, 1975.
where a turbulent boundary layer separa-
tion occurs. This separation pattern is [9] Wang, K.C.: Boundary Layer Over a Blunt
discussed in detail and compared with Body at Low Incidence With Circumferen-
experimental results. tial Reversed Flow.

- Based on some experimental evidence it is J.Fluid Mech. 72, 49-65, 1975.

shown how the transition from an unsteady [10]Patel, V.C.; Baek, J.H.: Calculation of
two-dimensional axisymmetric flow separa- Three-dimensional Boundary Layers on
tion to a steady three-dimensional vortex Bodies at Incidence.
flow could be explained. Presented at the 7th US-FRG DEA Meeting
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- CALCULATION OF BOUNDARY LAYERS AND SEPARATION
00 ON A SPHEROID AT INCIDENCE

V.C. Patel and J.H. Biek
Iowa Institute of Hydraulic Research

The University of Iowa
Iowa City, Iowa 52242

Abstract extracted from even the most detailed
experiments. In a few instances where the results

Three-dimensional boundary layers on a 6:1 of the calculations have been compared withO spherold at an incidence of 10 degrees have been experimental data (e.g., Refs [15,18,21,22]), it
calculated at two Reynolds numbers and comparisons is found that some of the observed features of the

Shave been made with the corresponding data of flow can be reproduced quite successfully while
Meier et al. The results clearly demonstrate the others remain unexplained. In particular,
capabilities and limitations of first-order experiments on bodies of revolution as well as

Sboundary-layer theory. other shapes indicate different types of flow
separation resulting in a wide variety of flow

At the lower Reynolds number, the laminar patterns, whereas most calculations terminate at
boundary-layer calculations are in good agreement an ill-defined separation point or line.
with the data on the windward side of the body and Frequently, separation is said to occur when the
separation is predicted in the region where the particular boundary-layer calculation method meets
experiments indicated near zero wall shear stress with some numerical irregularity or catastrophe.
just before transition to turbulent flow. The Thus, the problem of identifying the type and
solutions have been interpreted in the light of location of separation of a three-dimensional
previous proposals concerning the topology of boundary layer by numerical means remains
three-dimensional flow separation. Although the controversial. This paper attempts to address
results support several alternative possibilities, this issue by means of detailed comparisons
it is concluded that boundary-layer calculations, between boundary-layer calculations and
by themselves, are insufficient to identify a experimental data.
clear choice. _

% The calculation method employed here has been
The calculatioh at the higher Reynolds described previously [15, 23] in some detail. For

number involve laminar, transitional and turbulent the present purposes, it suffices to note the
flow. The results indicate the need for major features. The method solves the usual thin
improvements in the turbulence model to better boundary-layer equations in the body-fitted
describe transitional flow. However, when the orthogonal coordinates shown in Figure 1 using an
boundary layer is fully turbulent and thin, the ADI (Alternatlng-Dlrection-Imp licit) numerical
calculations are in good agreement with scheme. The turbulence model is based on the
experiments. Finally, the solutions with turbulent kinetic-energy equation, a prescribed
potential-flow as well as measured pressure turbulence length-scale distribution and the
distributions fall to provide an adequate assumption that the directions of the stress and
description of the development of the vortical rate-of-strain vectors are coincident. The method
flow in the thick turbulent boundary layer on the is capable of calculating laminar as well as
leeside even though the flow is far from turbulent boundary layers, transition being
separation. This is attributed to the neglect of simulated by 'switching-on' the turbulence model
the strong viscous-inviscid interaction due to the along a prescribed transition line. No attempt
thick boundary layer. has yet been made to tailor the model constants or

functions for better representation of the
development of turbulence over a finite transition
length. Finally, for turbulent as well as laminar

1. Introduction flow, the equations are solved numerically upto

The three-dimensional Incompressible boundary tewl ihu sn n wl ucin'

layer on bodies of revolution has been the subject
of many recent investigations. Among the
experimental studies are those of Werle [1],
Wilson [2), Peake, Rainbird and Atraghjl [3), Han __

and Patel [4), Ramaprian, Patel and Choi [5),
Hayashlta [6) and Meier et al. [7-10). Most of
the early, studies were restricted to flow
visualization and, to date, much of the available
infor .dtion is concerned with flow at or close to Figure 1. Notation
the surface. Measurements within the boundary
layer are quite limited [Refs. 5, 6-8). On the In the following, we shall consider the flow
other hand, there is an increasing number of over a prolate spheroid of axes-ratio 6:1 which
numerical studies (see, for example, Refs. [11- has been used in the detailed experimental
22)) in which different methods are used to solve investigations of Meier et al. [7-10).
the boundary-layer equations for laminar as well Furthermore, we shall confine our attention to a
as turbulent flows. These are of course able to moderate incidence of 10 degrees since it has been
generate much more information than can be explored in greatest detail. The experimental



information is first reviewed to point out the W, respectively, in the notation of Figure 1, were
most significant features. The results of the also measured across the boundary layer at two
boundary-layer calculations are then presented and axial positions at the higher Reynolds number.
compared with the data. The comparisons lead to Since a tripping device was not employed, the
several important observations concerning the boundary layer is initially laminar, and
capabilities and limitations of thin boundary- transition, when present, occurs naturally.
layer theory, the role of viscous-invisicd
interactions, and a plausible topology of flow The pressure distributions measured at the
separation and vortex formation, two Reynolds numbers are compared with that

predicted by potential-flow theory in Figure 2(a)
at several representative axial sections. The

II. Review of Experiments corresponding longitudinal and circumferential
pressure gradients are shown in Figures 2(b) and

In the experiments of Meier et al. [7-10], 2(c), respectively. These are defined as follows:
conducted in a large, low-speed wind tunnel at the
DFVLR in Gottingen, a 6:1 prolate spheroid, 2.4 m a(2Cp) a(2Cp)
long and 0.4 m maximum diameter, has been tested (vCp) = (Cp) = ha_
over a range of incidences and at twp Reynolds
nuwbers, namely Re R (U L/v) = 1.6 x 10' and 7.2 x
100 corresponding to the reference freestream where h, = {1+(dr/dX)2}I/2 , h3 = r(X) and r is the
velocities, U - 10m/s and 45m/s. As noted transverse radius of the body. It should be noted
earlier, we shall consider the case a = 100. The that this is one of a few experiments in three-
available measurements include the distributions dimensional boundary-layer flows where the

f 2  pressures have been measured at such closely-
of the pressure coefficient, Cp = (p-p.)/pU., and spaced intervals in both directions that the
the magnitude and direction of skin-friction gradients can be evaluated without much
v 1 2  

uncertainty. Secondly, these and the other datavector, Cf = Tw / U- , at the surface at both discussed below have been taken from tapes and
Reynolds numbers. The longitudinal and tables kindly made available by the experimenters
circumferential components of mean velocity, U and through the auspices of the US-FRG Data Exchange

Agreement.
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Figure 2 indicates several interesting stresses and is in accordance with the
differences among the three pressure observations of Meier and Kreplin [7] on the basis
distributions. Over the windward side of the body of the surface hot-film signals. For later
the measured pressure distributions resemble that reference, the position of the transition line
in notential flow but are consistently higher, determined by Meier and Kreplin at this Reynolds
This is presumably due to a 'negative blockage' number is shown in Figure 5. Finally, Figure 4
usually encountered in an open-jet wind tunnel, indicates a zone of near-zero stress at X/L =
As shown in Figures 2(b) and 2(c), however, the 0.936, which is close to the sting used to support
influence of these differences on the pressure the model in the wind tunnel.
gradients, which enter the boundary-layer
equations, are quite small upto X/L = 0.65. As noted earlier, mean-velocity profiles were

measured at several circumferential positions at
At the lower Reynolds number, the measured X/L = 0.64 and 0.71 at the higher Reynolds

pressure distribution and gradients show marked number. From Figures 4 and 5 it is evident that
departures from potential flow starting at the flow at these axial positions is turbuient
approximately X/L = 0.25 in the region 120 ° < 8 < although it may still be recovering from the
1500 and spreading to 800 < e < 1800 by X/L = delayed transition on the windward side.
0.75. The development of a short circumferential
plateau of constant pressure at and beyond X/L = The foregoing review of the available
0.35 is reflected in the positive (adverse) experimental information indicates the
longitudinal and circumferential pressure complexities of the flows to be addressed
gradients. The plateau is followed by a pressure computationally. It is clear that the two cases
rise towards the leeward side and associated with provide ample opportunities to explore the
this are somewhat larger pressure gradients than
in potential flow.

At the higher Reynolds number, Figure 2(a)
shows that there is no constant-pressure plateau
but there is a gradual reduction in the pressure X/L
coefficient on the leeward side, starting Ikff
at e = 1800 near X/L - 0.40 and spreading to 1050 0.3l
< e < 1800 by X/L = 0.75. Significant departures o0sI& u11"
of the experimental pressure gradients from
potential flow are also not evident until about 0. tIDImw
X/L = 0.65. 

ItlIll

The observed pressure distributions have been
described here in some detail since they are
indicative of the level and extent of viscous-
inviscid interactions and consequently of the 0-73Ma~ "

limits of validity of the first-order boundary-
layer approximations. Secondly, they will be used Ili
to confirm or support the occurrence of certain
flow phenomena observed experimentally or 11
indicated by calculations. !

The measured wall shear-stress vectors at the o.
two Reynolds numbers are shown in Figures 3 and

4. At the lower Reynolds number (Figure 3), we
can distinguish a narrow region, starting ,
at e - 1250 at X/L - 0.395 and extending 0.4W ttttlil lfl ra,
to 0 - 900 at X/L = 0.825, of rather small near-
zero wall shear stress. The relationship between
this and flow separation will be discussed . llilllll////// I/I#,. .\1 t
later. Just beyond the near-zero stress region, 0Miii.AI
in the circumferential direction, Is a growing
wedge of much larger stresses. This is believed
to be due to transition to turbulent flow. The 0.G
wedge grows from 1400 < e < 1600 at X/L = 0.395 to
1050 < 6 < 1800 at X/L = 0.825. The lower
stresses along the leeward plane of
symmetry (e - 1800) upto X/L - 0.74 indicate that 0.223
the flow continues to be laminar over a
diminishing region on the leeside upto that
station. O.i3

The shear-stress measurements at the higher 0.0 30.0 60.0 90.0 120.0 150.0 150.0
Reynolds number, shown in Figure 4, are quite 9
different since the flow over a large part of the
body is turbulent. The location of the zone of
transition from laminar to turbulent flow can be Figure 3. Measured Wall iear Stress,
inferred from the relative magnitudes of the Re = 1.6 x 10
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________________________________ step size of 7.50, primarily for better resolution
X/Lof the flow in certain key areas. DetailedX/L comparison, between the two sets of calculations,

wit h respect to the integral parameters as well as
tevel ocity profiles, indicated grid dependence0. 9rA ......... and lack of numerical convergence in regions where

an the magnitude of the wall shear stress became very
small (typically JCfI < 0.0001). Although weUt tttt~lll~llII~nfty/,,,,~14 ~shall discuss the possible reasons for this, it

M25( should be emphasized that such regions have been
excluded from the results presented in this

tfltllllllhlllfIM~lh~flhI/l#i~1 section.
10.731 IIII9IIII/IIII/Iii/lllt In view of the differences noted earli.?r

between the potential-flow and experimentalttttttltfIIIf/fflf/tl~f,,,~,,pressure distributions and pressure gradients,
JD 652( lhllIihIII//II/ //'// 1lhIIt ~~ calculations have been performed using both.Since the experimental pressure distributions in

the nose region indicated more scatter, the
calculations in these cases were started at X/L =0.55 0.2 using the solutions with the potential-flow
pressures and scaling the velocity profiles for
the difference between the measured and

0.lllhI/%III//ll0//iIIlllfflf(lt theoretical pressure coefficients. Note that the4 JIIIIII(ilIiiiiiiiiiiitiii~iii boundary layer is laminar at X/L =0.127 at both
Reynolds numbers. The subsequent solutions
utilized the experimental pressures and gradients

0.35 shown in Figure 2.

(a) Re = 1.6 x 106

For this case, calculations were performed
assuming laminar flow. Although these solutions

% 0223.. . were continued almost upto the tail of the body,
we shall show the results only upto X/L = 0.4
since numerical problems were first encountered
just downstream of this position over a region on0.! 13M fll ",1"Jf~A._' the body roughly coincident with a line along

0.0 30.0 60.0 90.0 120. 0 150.0 180.0 which the wall shear stress became very small and
0 the leeward plane of symmnetry.

Figue 4.Measred allThe main results of the calculations, with
Fiur 4 Masre .%lh~ea r Stress, potential-flow and measured pressure

Re =7.2 x 10 distributions, are shown in Figures 6 through 8.
To facilitate comparison with the experimental
wall shear-stress data of Figure 3, the same
scales have been used for the computed results in
Figure 6, and calculations are shown at the axial(locations corresponding to the measurement
stations. Figure 7 shows the resultant of the

'p-..circumferential (W) and normal (V) components of
the velocity vector. For clarity, these profiles
are shown only in the region 75 < a < 1800 , and

Figre5. rasitonLin a R 7.2 X 106 the vertical scale has been expanded Cy a factor
Figre . raniton in atReof five. The corresponding axial component of

velocity is shown in Figure 8.

Consider first the calculated results byperformance and limitations of three-dimensional themselves. Figure 7 shows the development of aboundary-layer calculation methods, zone of circumferential ly reversed flow starting
on the leeward plane of symmnetry just downstream* 11. Numerical Solutions of X/L -0.16 and spreading outwards from there
until, at X/L 0.4, it occupies 1200 < 6 < 180'The calculations were started just downstream in the calculations with potentia flow pressureof the axial position containing the potential- distribution, and 1350 < a < 1800 in those with

flow stagnation point using the procedure the experimental pressure distribution. The
described in Ref. £15]. The number of grid points boundary layer in this region is relativelyacross the boundary layer is 21. Some earl ier thick, It is also possible to identify thissolutions, reported in Ref. [22], were obtained region in Figure 6 from the changes in thewith a circumferential step size 69 = 150 . The direction of the wall shear stress relative to the
results to be presented here were obtained with a axis of the body, and define a line on the body

4



that demarkates circumferential flow-reversal (CFR Calculations with both pressure distributions
line). This line starts on the leeward symmetry Indicate that there exists a point at X/L =
pane and proceeds to mre windward positions 0.4 (e - 1200 and 135 ° in Figures 6(a) and (b),

further downstream. Note that such aline is respectively) at which the direction of the wall
'geometric' Insofar as it is defined with respect shear stress changes abruptly and its magnitude

to the geometry of the body and not that of the becomes very small. Within the resolution of the
flow. Since the flow outside the boundary layer numerical grid, this point coincides with almost

" is known by virtue of the assumed pressure explosive growth in boundary layer thickness (see
distribution, it is also possible to determine Figures 7 and 8) and with the beginning of the
another line, namely the crossflow reversal line numerical difficulties noted earlier.
(XFR line, say), which indicates the reversal of
the direction of wall shear stress relative to A comparison between the solutions obtained
that of the external flow. This line lies a few with the two pressure distributions indicates that
degrees to the windward side of the CFR line. they are qualitatively similar. The major

difference lies in the extent of the

X/L (a) X/L (b)

* 0.40 0 . 111!M
0 . 3M0.

0-160( 0.160

0.0 30.0 60.0 90.0 120.0 150.0 280. 0 0.0 30.0 60.0 90.0 120.0 150.0 180.0e 8
Figure 6. Calculated Wall Shear Stress, Re -1.6 x 106

Sa~ Potential-Flow Pressure Distribution
iExperimental Pressure Distribution

XL(a) X/L -- (b)

I I

Il..,, JP IF P.o.u ////IP,,,pun1o. // i,

°s.0 .a 1 0i.0 12 0.0 150.0 15 .0 180. 90.0 as, 6 0 I. 0 1 0. 150 0 E.0 .0

9 9

Figure 7. Velocity Vectors in the y- Plane, Re 1.6 x 10 6

(a) Potential-Flow Pressure Distribution
M Experimental Pressure Distribution
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"-(a) x/. (b)

- ~9 . - -

Figure S. Axial velocity Profiles, Re *1.6 x10
(a) Potential-Flow Pressure Distribution
(b Experimental Pressure Distribution

correlated with the zone of small wall shear and
circumferential flow reversal zone and the rapid boundary-layer growth.
location of the point of minimum wall shear stress
and abrupt changes in its direction. Both occur
closer to the leeward plane of symmetry with the
experimental pressure distribution. Mb Re - 7.2 x10

Finally, a comparison can be made between the For this case, the laminar boundary-layer
calculations shown in Figure 6 and the calculations were continued upto the
corresponding experimental data of Figure 3. The experimentally observed transition line shown in

*following observations can be 'made. (a) In the Figure 5 and the turbulence model was activated as
*laminar flow upto X/L -0.3, the calculations with this line was crossed along each meridian. Thus,

potential-flow pressure distribution agree well for example, at X/L = 0.3 (see Figures 4 and 5),
with the data with respect to magnitude as well as the computation domain includes laminar flow over
direction (see also Figure 12) except in a small the windward side, transitional and turbulent flow
region around the CFR line, where the predicted over the middle, and again laminar flow near the
stresses are larger. (b) As may be expected from leeward plane of symmetry. The flow becomes
the relief of the measured pressure gradients in turbulent over the entire circumference only

*this region, the use of the experimental pressure beyond X/L = 0.56 where the transition line
*distribution leads to even higher stresses and crosses the windward symmetry plane.

therefore somewhat poorer agreement with the
*data. (c) Beyond X/L = 0.3, the two calculations These calculations also indicated
*agree over a large region (a < 1000) on the circumferential flow reversal in the upstream

windward side of the body with the measured stress laminar boundary layer but due to transition to
Ndirections but the predicted magnitudes are turbulent flow numerical difficulties were not

higher. However, the corresponding data indicate encountered at X/L = 0.4 as in the previous
some irregularities in magnitude. (d) At X/L = case. The solutions failed to converge within the

*0.4, the experiments indicate transition just maximum 10 iterations allowed in the ADI cycles
beyond the stress minimum and the CFR line. In only beyond X/L = 0.88.
this region both calculations predict very small
stresses. However, the accompanying abrupt The results of the calculations with the

*changes in the direction of the wall shear stress potential-flow and measured pressure distributions
are not observed in the experiment. (e) The point are shown in Figures 9-11. As pointed out earlier
of minimum stress in the experiment is located in Figure 2, the measured pressure gradients at
at e -1270, whereas the calculations with this higher Reynolds number are in substantial

*potential-flow and measured pressure distributions agreement with those in potential flow over a
predict near-zero stress at e = 1220 and 1360 , large region on the windward side of the body.
respectively. Mf The calculated shear stress Consequently, the two sets of calculations are
along the leeward plane of symmetry, e - 1800 , essentially the same in this region. The
continues to agree well with the data upto X/L = calculated wall shear-stress plots of Figure 9,

*0.4, indicating laminar flow along that line, the cross-stream velocity vectors of Figure 10 and
(g) Figures 6, 7, 8 and 2 show that the observed the detailed axial and circumferential velocity

*changes in the pressure distribution are profiles of Figure 11 indicate that significant

6



differences between the results with potential- region near the leeward plane of symmetry.
flow and measured pressure distributions are However, substantial differences are observed in
observed, as expected, on the leeward side. Also, the region where the experimental data Show a
as in the laminar case, the region of stress minimum, the calculated magnitudes being
circumferential-flow reversal is smaller with the higher. Note that the data indicate almost zero
experimental pressure distribution, stress at X/L = 0.883, ae 1200 and at X/L=

0.936, 900 < e < 1300 , and the flow features are
Comparison of Figure 9 with Figure 4 shows somewhat similar to those observed in the lower

* .that the calculations reproduce the major features Reynolds-number case. As noted above, the present
observed in the experiments except in the calculations indicated the first signs of
neighborhood of transition. The agreement in this numerical difficulties just beyond X/L = 0.88.
region can be improved by incorporating a damping
or intermittency function in the turbulence model The reasons for the poor performance of the
in order to accomplish a more gradual change from calculations in the zone of the stress minimum are
laminar to turbulent flow. The calculated shear not entirely evident from the wall shear
stresses in the turbulent flow just after stresses. The cross-stream velocity vectors shown
transition tend to be lower than those measured, in Figure 10 provide some explanation. It should
This again may be due to the inadequacy of the be pointed out that, unlike the corresponding plot
turbulence model for transitional flows. Further of Figure 7 for laminar flow, the vertical and
downstream, where the flow has recovered from horizontal length scales are nearly the same in
transition, both calculations show good agreement Figure 10 and therefore it provides a picture of
with the data over a large portion of the body on the variation of the boundary-layer thickness in

*the windward side and over a somewhat smaller the circumferential direction. Thus, for example,

X/L(a) XL(b)

O.4ml 0-747

0.310 0.311,

0.215 11 0.2154

0.143 014

0.0 30.0 60.0 '90.0 120.0 150.0 186.0 0.0 30.0 60.0 90. 0 120.0 150.0 1ieo 0

86
Figure 9. Wall Shear Stress Vectors, Re = 7.2 x 106

(a) Poeta-Flow Pressure Distribution
()Experimental Pressure Distribution
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YJ I I /
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• C o.- . -zJ s a L . . iM I -.

* 38

Figure 10. Velocity Vectors In the y-e Plans, Re - 7.2 x 106

(a) Potential-Flow Pressure Distribution
(b) Experimental Pressure Distributio

at X/L = 0.75, the ratio of the maximum boundary- the external flow are not compatible with thelayer thickness, which occurs at - 157.50 , to pressure distribution measured at the surface. If

the local body radius is approximately 0.67. The systematic experimental errors of this magnitude
rapid thickening of the boundary layer and the are discounted, the differences imply not only a
development of a vortical fPo on the leesde is variation of pressure across the thick boundary

associated with the convergence of near-wall layer but also significant changes in thestreamlines from both sides. The thick boundary direction of the external flow over regions quite
layer implies a strong vscous-nvsc d remote from that where the boundary layer Is
interaction even in the absence of separation, and thick. Thus, the peak n the displacement
it is not surprising that the use of the measured thickness associated rsth the thick boundary layer
surface pressure dstributon does not guarantee is respionsobte era lowtover of the external

improved agreement with experiment in all flow over the entire circumference. The observed
respects. decrease in the measured transverse component of

velocity on the windward side is compatible with
The detailed velocity-profile comparisons of this explanation.

Figure 11 show that there is little to choose
between the two sets of calculations except in the Two other aspects of the calculations are
region of viscous-inviscid interaction. At X/L = also noteworthy. The first is that the boundary
0.64, the calculations are in good agreement with layer along the leeward plane of symmetry is
the data everywhere except in the predicted quite well, especially with the measured
zone 1350 < a < 1650, where Figure 2 first shows pressure distribution, almost upto X/L - 0.71.
substantial differences in the pressure gradients Secondly, the calculated axial or primary
and where Figure 10 indicates a thickening of the component of the mean velocity in the wall region
boundary layer. However, the measured boundary is in good agreement with the measurements. These
layer is thinner than that predicted by either suggest that the turbulence model employed here is
calculation. The situation at X/L * 0.71 is quite not a major source of the disagreements observed
similar but with one important differe,.e, namely in the outer part of the boundary layer. Since
the measured velocity components at the edge of the calculated distributions of the turbulent
the boundary layer do not agree with those kinetic energy and the Reynolds stresses are
calculated with either the potential-flow or the readily available it would be informative to
experimental pressure distribution over a compare them with corresponding turbulence
circumferential extent much larger than that in measurements in progress at the OFVLR.
which the boundary layer is thick. In other
words, the measured velocities and directions in
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IV. Separation

We shall now explore the reasons for, and the I

implications of, the numerical problems 0002 X 0.56 0

encountered in the laminar boundary-layer POOOOOOOOO 0
calculations at the lower Reynolds number. 0001 00 0

Continuation of the present calculations beyond 00

X/L - 0.4 showed well behaved solutions over a
diminishing domain on the windward side of the ICfI o 0
body upto a line just beyond the CFR line. As 0480o

this line was approached, the magnitude of the 0002 0o

*wall shear stress became very small and its °°°°°°oO °OOooo 0 0°

direction changed rapidly, the angle between the 0001
stress vector and the body axis changing from zero 0

" at the CFR line to values so large (- 750) that o0I
the wall crossflow angle (i.e., the angle between
the wall shear stress and the external flow) o02 040

became 900. Note that the latter criterion is 00000000000 0 0

often invoked to pronounce separation, especially 0001 0 0 00

in integral calculation methods.

Solution features similar to those noted 0.002 o0o000
above have also been observed in previous
calculations (see, for example, Wang [12, 13), 0.001
Patel and Choi [15), Cebeci, Khattab and
Stewartson [18), and Ragab [21]). It is generally
agreed that the flow on the windward side, at 0c2 ,
least upto the CFR line, can be calculated with o.ooo o .-23

some confidence using a variety of numerical°O)
schemes since there is no difficulty in 0.001 0000
identifying the corresponding zone of dependence oo °

for this region. It is also acknowledged that the 0
behaviour of the solutions in the neighborhood of 0 20 40 60 80 100 120 140 160 1So

the CFR line is related in some way to the 80
imminence of separation. Another point of
agreement is that the convergence of skin-friction
lines, or the limiting streamlines at the wall, Figure 12.Wa11 Shear-Stress Magnitude,
from both sides is a symptom of separation. Re - 1.6 x 10 , 0 Experiment; -Calculation
Unfortunately, there is little concensus among
researchers on the precise definition of
separation. line, regardless of how that line is defined or

the shape it takes further downstream.
Figure 12 shows the magnitude of the wall

shear stress according to the present calculations The solutions beyond X/L = 0.4 are quite well
with the potential-flow pressure distribution, behaved on the windward side and show a very rapid
This is the same information as in Figure 4(a) decrease in the wall shear stress magnitude beyond
except that typical solutions beyond X/L = 0.4 the CFR line. It is tempting to infer, by very
have been added and it is now possible to make a short extrapolations from the windward side, that
direct comparison with the data. In order to the shear stress vanishes along some line lying a
explore the detailed behavior of the calclations, short distance to the lee of the CFR line.
Figure 13(a) shows the variation of Cf. The Although this would provide an unambiguous
recent results of Cebeci, Khattab and Stewartson definition of separation, the numerical evidence
[18) for a 4:1 spheroid at a = 60 are presented in is not sufficiently conclusive. Furthermore, such
the same format in Figure 13(b) to show the a definition would not be general enough to
remarkable similarity between the two sets of encompass certain special cases, such as the
calculations for different spheroids and separation on an infinite swept wing. However,

incidences. the present solutions, like those of Cebeci et al.
Sicdcand others, indicate a singular behavior in the

It is evident from Figures 12 and 13(a) that, boundary-layer equations and consequently we
in the present case, the resultant wall shear conclude that it is not possible to determine the
stress approaches zero, within the uncertainties flow properties at the line of separation from
of numerical analysis, at X/L a 0.4 and 8 - 1220. boundary-layer equations alone, regardless of the
In fact, Figure 13(a) shows that Cf vanishes as numerical scheme used to approach the separation
the square-root of the distance from this point line. Finally, it is interesting to r te that
from both sides but at different rates, suggesting between the CFR line and the extrapola-ed zero-
the presence of a Goldstein type of singularity stress line is a line that demarkates the
(see also Cebeci et al. [18)). Thus, it is not vanishing of the streamwise component of wall
surprising that numerical difficulties are first shear-stress, which, as noted earlier, has often
encountered there. It Is reasonable to infer that been used as a separation criterion.
this Is the most upstream point on the separation Unfortunately, it is also known to fail in the

simple case of an infinite swept wing.
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of separation. Of the three possibilities
attributed to Cebeci et al., they favor the
version (b). The fundamental differences between

XL*o3o . oz"PS these and the open-separation idea of (a) due to
* o -. ,0Lsmwqo Wang are quite obvious. Also shown in this figure., ..- is another possibility proposed originally by

G ".,Legendre [25] and supported by Peake and Tobak
\ ,''\[26) on the basis of the suggestion of Lighthill

.- x - [27) that separation lines must originate at au 2 saddle singularity.

\ '\ -- -- The problem of determining which of these
i '--- possibilities actually exists in a particular case

o 20is not a simple one since the available40 60 80 00 120 40 40 (60 experimental evidence may be interpreted to
support each pattern. The present calculations
for laminar flow on a 6:1 spheroid at a = 1000.5 c*02 - suggest that the most upstream point on the

TE-W C S C AsoN separation line is a singular point. According to"04- 05 4, 1 SPHEROID

04' ! oSP t.o"" Lighthill, this singularity must be connected to
06 other singular points on the body. There are two

to 03 , possibilities. It may be connected to the saddle
point of separation on the leeward plane of

0.2 symmetry, by a continuation of the separation line
O' 07 on the leeside, thus producing a closed separation04, line, in agreement with Wang's suggestion and

Cebeci et al.'s conclusion for low incidences

04 (a - 60 for a 4:1 spheroid). The second is that
o o o oo 2o 40o so o the point in question is itself a saddle point and6 8 .is connected with another singularity, such as a

spiral node or 'focus', as in Figure 14(c).
According to Wang [24], this would constitute a

Figure 13. Transverse Variation of Cf2  special case of an open separation since it does
not require the separation line to encircle the
body. Also, this possibility is not at variance

Yet another controversy concerns the origin with the results of Cebeci et al. since the line
of the separation line. The basic issue is of accessibility would lie ahead of the separation
whether the separation line on the windward side line. The directions of the calculated limiting
originates at the most upstream singular point, streamlines at X/L = 0.4 shown in Figure 6 and thediscussed above, or continues downstream on the corresponding velocity field away from the body
leeward side. Wang [12, 13, 24] maintains that shown in Figure 7 and 8 are also compatible with

* both possibilities exist, with the former the two possibilities discussed above and sketched
occurring at higher incidences and the latter at in Figure 14(b) and (e) but they are not
lower incidences. From their solutions marching sufficient to enable a clear choice between
out of the leeward plane of symmetry, Cebeci et them. The present results do not confirm the open
al. deduced a limiting line of 'accessibility' (to
the upstream flow) and suggested that this is a
continuation, on the leeside, of the separation
line on the windward side (which they defined on
the basis of certain irregularities in the
numerical solutions). At the lower incidences
they infer that this line is closed and terminates Co)
at the well-defined saddle point of separation on
the leeward plane of symmetry. This is in
agreement with the suggestion of Wang and the ~~i~
experiments of Han and Patel [4]. At the higher
incidences, a = 150 and 300, Cebeci et al. suggest
that the separation line also continues on the Cc) (€)
leeside but the problem of whether it is closed or

open could not be resolved since the line of
accessibility lay upstream of separation.
However, the notion that the separation line
continues on the leeward side appears to
contradict the concept of 'open separation' of
Wang [24], who maintains that the windward
separation line can originate at a point on the
body and does not need to bend back towards the
leeside.

Figure 14 summarizes the various Figure 14. Possible Wall-Streamline Configurations
possibilities concerning the behavior of the skin- at Origin of Separation Line (L)
friction lines in the neighborhood of the origin (a) Wang; (b).(c),(d) Cebeci et al. (ef Legendre
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separation as shown in Figure 14(a) and further The calculations using the potential-flow as
calculations are required at high incidences to well as experimental pressure distributions
verify that such a possibility exists, clearly demonstrate the limitations of first-order

boundary-layer theory. In particular, it is shown
It is clear from the foregoing discussion that knowledge of the experimental pressure

that several issues concerning the topology of distribution on the surface does not lead to a
- separation lines remain unresolved. It is dramatic improvement in the prediction of either

unlikely that these can be settled on the basis of separation or thick boundary layers. The latter
boundary-layer calculations alone since the observation is of considerable practical

- irregularities observed in the solutions indicate significance since extensive regimes of thick
singularities in the equations themselves. Note boundary layers may be present on bodies such as."that the use of the experimental pressure aircraft fuselages and ships (Patel [28]) without

distribution in the first-order boundary-layer encountering separation. The results presented
equations leads to essentially the same here suggest that such flows can be calculated
behavior. Thus, further progress can be made only only by recourse to higher-order equations which

* with the use of higher-order equations which take allow for the viscous-inviscid interaction through
into account viscous-inviscid interaction and the relaxation of the pressure field. The data of

- numerical techniques that can handle massive flow Meier et al. at the higher Reynolds number
. reversals. Secondly, experimental information provides an excellent test case for the validation

which provides only the foot-print of the flow on of such calculation methods.
the body, e.g., direction of the limiting
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STRUCTURE OF THE TURBULENT SHEAR FLOW IN SHIP BOUNDARY LAYERS

ThABits YUcel Odabasi
TheBriishShip Research Association,
Walisend, Tyne and Wear, England

Melvyn E. Davies
National Maritime Institute
Feltham, Middlesex, England

Abstract

This paper sunmmarizes the findings of a transport velocities as well as typical mixing
research conducted on the behavior of turbulent length, eddy viscosity and integral length scale
shear layers around the aft-ends of ships during a distributions are presented. As a new phenomenon
recent project on Propeller-Hull Interactive Vibra- the concept of shear separation (see Figure) is
tion Excitation (PI4IVE) joi~tly nerkn 3te introduced and its differences with respect to free
British Ship Research Association (BSRA) and the vortex layer separation are brought out. The paper

*National Maritime Institute (NMI). points out similar flow structures also exist in
boundary layers with weak shock-wave interaction

The paper commnences with a brief description and in this respect a discussion is given on the
of the full flow study within the PHIVE project roles of curvature and pressure gradient effects.
where the research strategy and the aims are
clearly outlined. To provide a suitable background The following part of the paper is devoted to

*a selective review of the assumptions commonly the numerical simulation and correlation studies
employed in turbulent shear flow calculations is undertaken by BSRA. Here a computer program suite
provided and a critical evaluation of some commonly developed to calculate the flow around the aft-ends

*used turbulence models (e.g. algebraic eddy viscos- and near wakes of ships is briefly described and a
ity, k-c, and turbulent kinetic energy models) comparison of computed results with experimentalis made. Next, the flow around the aft-ends of data is presented. Conceptual and numerical dif-
ships is introduced as an example of nonhomogeneous ficulties associated with the calculation of flows
and anisotropic complex shear flows with the aid after shear separation is discussed and a possible
of wind tunnel measurement made on scaled ship memory effect on the wall shear velocity is intro-
models by NMI. A brief description of the experi- duced. Initial results of a newly developed pro-
mental setup, and measurement and calibration tech- cedure are presented.
niques is provided in an appendix.

Finally the utility and usefulness of the
To provide further insight into the flow struc- for further experimental and theoretical research

ture, relative magnitudes and gradients of the ele- is emphasized. Certain areas are offered for
*ments of the Reynolds stress terms r and of shear immediate attention.



* ,STERN BOUNDARY-LAYER FLOW ON TWO THREE-DIMENSIONAL BODIES HAVING ELLIPTICAL
TRANSVERSE CROSS-SECTIONS

T.T. Huang, N.C. Groves and G.S. Belt
. ,-- David W. Taylor Naval Ship R&D Center

Bethesda, Maryland 20084

, Abstract

0A comprehensive set of experimental pressure, Several experimental quantities are compared
velocity and turbulence data are presented for two with data from existing theoretical methods using
simple three-dimensional models having 2:1 and 3:1 an iterative scheme. The potential flow distribu-
elliptical transverse cross sections. The Lighthill tion on the body surfaces is computed using an up-
displacement body concept is used to predict the dated version of the Hess-Smith [4] Potential Flow
pressure distributions over the models. The pre- Computer Program, known as the XYZ Potential Flow
dicted pressure distributions are in good agreement (XYZPF) computer code of Dawson and Dean [5].
with the measured pressure distributions. Around Initial boundary-layer computations, using the
the corner regions over the major axes of the models McDonnell Douglas Corporation [6], Cebeci, Chang,
the three-dimensional boundary-layer equations do Kaups (C2K) computer code, are made using the first
not predict well the measured mean velocity distri- potential-flow pressure distribution onoriginal body
butions. In these regions the boundary layers are The potential and boundary-layer flow calculations
much thicker than the cross section dimensions and are repeated once for a modified body and wake
differences in curvatures between the flow and body geometry, formed by adding the computed effective
surface are very large. However. over large areas displacement thickness. Flow separation is pre-
of relatively flat body surfaces, the computed and dicted for both models by the C2 K code at axial

* measured mean velocity distributions are in good locations x greater than 89 percent of the body
agreement. As was found in the axisymmetric case, length L and angular locations greater than 80
the measur d-e-ddy viscosity and mixing-length degrees, based on the pressure distributions of the
parameters in the stern region are much smaller original bodies. Flow separation is predicted at
than those of'a thin boundary layer. x/L - 0.93 for the 2:1 elliptical model and at x/L

S=fi 0.91 for the 3:1 elliptical model if the pressure
distributions of the displacement bodies are used

I. Introduction in the boundary-layer calculations. Flow visual-
ization indicated that flow separation occurred at

Many single-screw ship propellers operate in- x/L =. 0.91 for the 2:1 elliptical model and at
side of thick stern boundary layers. Satisfactory x/L - 0.90 forthe 3:1 elliptical model. The
predictions of turbulent boundary-layer character- region of separation is limited to angles between
istics can be made for the forward portions of a 80 and 90 degrees (See Figure 1 for geometric de-
body by solving the boundary-layer equations in tails). Comparison of predicted and measured re-
either integral or differential forms. However, at sults shows that this procedure predicts accurate
the ship stern, the thickness of the boundary layer values of pressure over most of the bodies and
increases rapidly, mainly due to the diminishing accurate mean velocity profiles in locations where
cross-sectional area. The thickness of the stern the boundary layer is thin compared with cross-see-
boundary layer usually exceeds the thickness of the tional area. The measured eddy viscosity distri-
body. Detailed measurements of the turbulent bound- bution is compared with the thin boundary-layer
ary layer characteristics in the thick stern bound- model of Cebeci [6,7] and is found to be smaller
ary layers of axisymmetric bodies have been made by than predictions.
Huang et al. [1,2] in order to gain insight into
the physics of thick stern boundary layers. These In the following sections, the experimental

" measurements have been used to validate the dis- techniques and model geometries are given in de-
placement body concept as suggested by Lighthill tail. The experimental data are presented and com-
[3] for solving viscous-inviscid flow interaction pared with theoretical predictions.
and to obtain an improved turbulence model
for computing thick axisymmetric boundary-layers on
two convex sterns and one concave stern [1,2j. The II. Wind Tunnel and Model
present work is an initial investigation into ex-
tending to three-dimensions the previous studies on The experimental investigation was conducted
axisymmetric bodies by Huang et al. [1,2]. in the DTNSRDC Anechoic Wind Tunnel Facility. The

wind tunnel has a closed jet test section that is
Experiments have been made to measure the flow 8 ft (2.4 m) square and 13.75 ft (4.19 m) long.

across the thick stern boundary layers of two simple The corners have fillets which are carried through
three-dimensional bodies having 2:1 and 3:1 ellip- the contraction. The test section is followed by
tical transverse cross sections. The 10.06 ft an acoustically-lined large chamber 23.5 ft (7.16 m)
(3.07 m) fiberglass models were tested in the long. It was found I eviously, by Huang et al.,
DTNSRDC Anechoic Flow Facility at a speed of 100 [1] that the ambient free-stream turbulence levels
ft/sec (30.48 m/s), resulting in an overall Reynolds are 0.075, 0.090, 0.100 and from 0.12 and 0.15 for
number based on length of 6.5 x 106. Pressure taps, free-stream velocities U., of 24.4, 30.5, 38.1, and
embedded in the models, were used to measure the 45.7 m/s, respectively. Integration of the measured
pressure distributions on the surface. Velocity noise spectrum levels in the test section from 10
and turbulence characteristics were measured using to 10,000 Ht indicated that the typical background
a two-element hot-film sensor and were analyzed acoustic noise le"'Is at 30.5 m/s were about q3 dB
with an on-line computer. Measurements include re 0.0002 dyne/cm (0.0002 Pa). These levels of
mean velocity profiles, turbulence intensities, ambient turbulence and acoustic noise were con-
Reynolds stresses, eddy viscosity, and mixing-length.
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L sidered low enough so as not to unfavorably affect The disturbance generated by the supporting system
* the measurement of boundary-layer characteristics. is not significant. The models are shown in the
• The maximum air speed that can be achieved is 200 Anechoic Wind Tunnel Facility in Figure 2.
-. ft/sec (61 m/s); in the present experiments the

wind tunnel velocity was held constant at 100 The location of the boundary-layer transition
ft/sec (30.48 m/s). from laminar to turbulent flow was artifically in-

duced by a 0.024 in. (0.61 mm) diameter trip wire
" Two simple three-dimensional models having located at x/L = 0.05. Huang et al. [1] found that

2:1 and 3:1 elliptical transverse cross sections the trip wire effectively moved the location of the
were chosen for investigation. The longitudinal virtual origin to x/L = 0.015 for axisymmetric
distributions of the transverse cross-sectional models at a length Reynolds number of 5.9 x 10 6.

, areas of the two simple three-dimensional models The virtual origin [8] for the turbulent flow is
" are equal to that of the axisymmetric body I of defined such that the sum of the laminar frictional

reference 1. Thus, the three models have the same drag from the nose to the trip wire, the parasitic
volume and longitudinal distribution of buoyancy, drag of the trip wire, and the turbulent frictional
However, the 2:1 and 3:1 elliptical models have drag aft of the trip wire is equal to the sum of
9% and 23% more wetted surface area, respectively, the laminar frictional drag from the nose to the
than the axisymmetric body. The two models have virtual origin and the turbulent frictional drag
the same bow entrance length of 1.667 ft (50.8 cm) from the virtual origin to the after end of the
and the same afterbody length of 3.949 ft (120.4 model. The virtual origin locations for the three-
cm). The total model length is 10.06 ft (306.6 cm). dimensional body are expected to be different for
The length of parallel middle body is 4.444 ft different streamlines. Due to the limited number
(135.4 cm). The 2:1 elliptical model has a maximum of grid locations used in the present calculations,
major axis of 1.296 ft (39.5 cm) and a maximum the location of the transition for the C2K bound-

* minor axis of 0.648 ft (19.8 cm). The 3:1 ellip- ary-layer calculation is set at a constant value
tical model has a maximum major axis of 1.588 ft of x/L - 0.030. The computed differences in
(48.4 cm) and a maximum minor axis of 6.35 in velocities using x/L - 0.01 and x/L - 0.03, for
(16.1 cm). A schematic of the two three-dimen- axisymmetric body 1, [1,2] are found to be less
sional afterbodies with the 2:1 and 3:1 elliptical than 0.1 percent of the free-stream velocities in
cross sections is shown in Figure 1. The major the tail region. Thus, the error of using the
and minor elliptical axes are shown in Figure 1 as constant transition location of x/L - 0.03 for the
a and b, respectively. present C2K computation is expected to be negli-

.* gible.
The 3:1 elliptical model was initially sup-

ported by two streamlined struts separated by one-
third of the model length. The struts are 0.5 in. III. Instrumentation
(1.27 cm) thick with a 1.5 in. (3.81 cm) chord up-
stream and 2.25 in. (5.72 cm) thick with a 6.0 in. A series of 0.031 in. (0.8 mm) diameter pres-
(15.24 cm) chord downstream. The model is designed sure taps were embedded normal to the surface of
to rotate 90 degrees radially about a center axis the stern at numerous locations. When a model

* to permit vertical traversing normal to the surface was rotated about its axis, the pressure taps were
pressure taps (see section on Instrumentation). at the upper meridian location. Additional taps
The disturbances generated by the supporting struts were added for model alinement; see Figures 3a and

were within the region below the horizontal center- 3b. A model was alined by balancing the surface
, plane. Therefore, all of the experimental data static pressure about a line of symmetry. From

were taken above the model on the vertical center- Figure 3b, a model is alined when symmetrically
plane along the upper meridian where there was no located pressure taps at c and d, and at e and f
effect from the supporting struts. On both models, give equal pressures, i.e., p (c) - p (d), and
one-half of the model length protruded beyond the p (e) - p (f). Each model was rotated to the test

, closed jet working section into the open-jet positions and the alinement was checked by the
section. The ambient static pressure coefficients pressure balance technique. A Preston tube using
across and along the entire open-jet chamber (7.2 m a 0.072 in. (1.83 mm) inside diameter was attached
x 7.2 m x 6.4 m) were found to vary less than 0.3 and alined with the flow at the pressure taps to
percent of the dynamic pressure. Tunnel blockage measure the shear stress. The Preston tube was
and longitudinal pressure gradient effects along calibrated in a 1-in. (2.54 cm) diameter water-pipe
the tunnel length were almost completely removed flow facility described by Huang and von Kerczek
by testing the afterbody in the open-jet section. [9]. These pressure taps were connected to a

multiple pressure scanivalve system that takes one
A portion of the experiments on the 3:1 ellip- integral pressure transducer with its zeroing cir-

tical model were repeated with a second model sup- cuit and measures a single pressure in sequence
port system. This second support system was also used along the stern upper meridian. The pressure trans-
with the 2:1 elliptical model. A ducer was designed for measuring low pressures of
streamlined strut located one foot (30.5 cm) down- up to 1 psi (6.895 x l0- 3 Pa). The zero-drift
stream of the after end of the model,was attached to linearity, scanivalve hysteresis, and pressure
a 1.0-inch (2.54 cm) diaueter supporting shaft transducer zeroing circuit were carefully checked
which ran longitudinally through the center of the and the overall accuracy was found to be within
model. Three streamline guide wires were attached 0.5 percent of the dynamic pressure.
to the same shaft inside the model at the location
x/L - 4.51 from the nose of the model. The diff- The mean axial and radial velocities and the
erences in the measured axial velocity and the .arbulence intensities for the Reynolds stress cal-
pressure coefficients between the two supporting culations were measured by a TSI, Inc. Model 1241-
systems were found to be less than the experi- 20 "X" type hot-film probe. The probe elements are
mental accuracies of the measurements (one percent). 0.002 in. (0.05 mm) in diameter with a sensing
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, length of 0.04 in. (1.0 mm). The spacing between normal distance from the surface. The velocities
, the two cross elements is 0.04 in. (1.0 mm). A in the x.vz directions are u,vw and the values

two-channel hot-wire and hot-film anemometer with of u and w just outside the boundary layer are Ue
linearizers was used to monitor the response of the and We. On the symmetric lines of the major and
hot-film probe. A temperature compensating sensor minor axes, the transverse "volume-flow thickness"
(probe) was used with each hot-film element to re- 6z is zero.
gulate the operating temperature of the sensor with
changes in air temperature. The "X" hot film and An equivalent body of revolution is constructed
its temperature-compensated sensor were calibrated to compute the displacement wake of the simple 3-D
together through the expected air temperature- models. The computed distributions of the three-
range and supplied with their individual linear- dimensional values of C and the local values of
ization polynomial coefficients at the factory, the offset at each merigian are used as the distri-

butions of Cp and radius for the equivalent body of
The frequency response of the anemometer revolution. The integral relations of Granville

system, for reliable measurements claimed by the [10] are used to calculate the displacement effect
manufacturer, is 0 to 100 kHz. Calibration of the of the wake following the computation procedure
'X" hot film was made before and after each set of given by Wang and Huang [11]. The differential
measurements. It was found that the hot-film equation for the momentum of an axisymmetric wake
anemometer system had a + 0.5 percent accuracy, is
+ 0.75 ft/sec (+ 0.23 m/s) accuracy at the free-
stream velocity of 150 ft/sec (45.72 m/s), during dO n (b +
the entire experiment. An estimate was made of the dx + (h + 2) (3)
crossflow velocity by yawing the "X" hot-film probe dx
in the free stream. It was found that the cross- wr
flow velocities were about one percent of the free- where (- f r dr, momentum area
stream velocity. 0 Ue e

A*- ft (1- -11-) r dr , displacement areaThe linearized signals were fed into a Time/ eu

Data Model 1923-C real-time analyzer. Both channels *
of the analog signal were digitized at a rate of h - A axisymmetric shape factor
128 points per second for 8 sec. These data were
immediately analyzed by a computer to obtain the At far wake (x/L > 2), the momentum loss of the
individual components of mean velocity, turbulence flow should be equal to the total drag on the body.

fluctuation, and Reynolds stress on a real time Therefore, the momentum area at far wake, Q,, isequal to CTS/ 2 , where CT is the computed total drag

A traversing system with a streamlined strut coefficient and S is the surface area of the equiva-
lent body of revolution. An empirical relation of

was mounted on a guide plate that permitted the

traverse to be locked in various stationary posi- Granville [10] for h
tions parallel to the longitudinal model axis. h 1 + (1.42 -1) En (t./U 0 ) (4)

En (Ur/Ut)
IV. Viscous-Inviscid Interaction

is used. Here, U. is the free stream velocity, Ue
Lighthill's displacement body concept [3] was and Ut are the edge velocities on the surface of

used to compute the viscous-inviscid interaction the displacement body at any point on the wake, and
of the two simple three-dimensional models. The at the tail, respectively. Equations (3) and (4)
potential flow is calculated by the Hess-Smith can then be used to calculate 0 and A* in terms of

. [4] potential flow computer program. The version P and Ut . The wake thickness is given by
used is the XYZ Potential Flow (XYZPF) computer _
code updated by Dawson and Dean [5]. The initial a*- 2A
input offsets to XYZPF code are shown in Figure 1.
The three-dimensional boundary layer over the body In the near wake region xu/L < x/L < Xd/L, where
is calculated by the differential method of Cebeci, neither the computed three-dimensional displace-
Chang, and Kaups (denoted C2K) [6]. ment surface nor the equivalent far wake equations

(3) and (4) are accurate enough to generate a
The three-dimensional displacement thickness smooth surface for potential flow calculation, a

* 63D derived by Lighthill[3J, fifth-degree polynomial is used to connect the up-

stream and downstream displacement surfaces.
6 1 U h 6 d (1) Usually, xu/L is taken to be 0.93 and xd/L is taken
3D U h 3z e x z to be 1.05. However, for meridians having boundarye z layer separation, the matching points xu/L must be

is used to calculate the boundary-layer displace- moved a small distance upstream of the predicted

ment effect on the body, The streamwise and trans- separation point. At the upstream matching point,- mnt ffet o thebod. Te sreamlseandtras- he offset and surface slope of the faired dis-

verse "volume-flow thickness" 6 and 6 are
x z placement surface are set equal to their respective

r/ values for the computed three-dimensional displace-'3U (U- u)dy, 6
x ( vdy (2) ment surface, while these values at the downstream

e U e point are set equal to the computed displacement
wake. The iteration process, consisting of calcu-

and (x,z) form any orthogonal system of coordinates lating the pressure distribution over successive
on the surface, such that the distance between the displacement bodies, continues until a given con-
point (x,z) and (x + dx, z) is hx dx while that vergence criterion is met or until the prescribed
between(x,z) and (x, z +dz) is hz dz, y is taken as number of iterations is exceeded. In the present

3
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computation, onil one iteration is used. which is the eddy viscosity in the inner region.'N with Z - 0.4y [l-exp (-Y)]

The C
2
K method consists of using Keller's w

two-point finite difference method [12] and Cebeci A - 26-

*. and Stewartson's procedure [6] for computing flows 1/Z
in which the transverse velocity component contains U / tw)
regions of reverse flow to solve three-dimensional u .
boundary-layer equations. The governing equations .'u2 3 w 3u 3w
for three-dimensional incompressible laminar and T I& ) + ( 2 cos B ( )w i

turbulent flows are given by tw L w 0 W

" Continuity Equation 0.0168 (Ut.- dy
0..,Ot -

3 2 2
(uh2 sin O )+- (whlsine ) + u (ue + w + 2uwcos 8)

x z5) ee

-(vhh sin 6) 0 ut = (u 2+ w
2 
+ 2uw cos B)

Yc = is the value of y at which c i=
x-Momentum Equation

u" au + w 3u + u - K o2 - 2 The characteristics of Lighthill's [3] three-

h h - - u co 3 2  dimensional thickness are demonstrated in Figures

2 - 4 and 5 for the 2:1 elliptical model and in Fig-

csc e + K csc 8 3(p/o) + ures 6 and 7 for the 3:1 elliptical model. Fig-
12. h 3x ures 4 and 6 show the distributions of the stream-

1 wise integration of $2, while Figures 5 and 7

cot 9 csc 8 3(p/p) + . ( u - -r-7) (Sb) show the three-dimensional effect in terms of the
h 2  9z 3y ay ratios of the displacement thickness associated

with the transverse "volume-flow thickness" 6,

z-Momentum Equation to the streamwise "volume-flow thickness" 5,.
The importance of the three-dimensional nature

2u 3w w 3w + w 2 2 - of the displacement body is clearly demonstrated
u 

+w  
L- 

+ 
v-Lw - K w cot T+ Ku csc B + in Figures 4 through 7. At each longitudinal

1x 2 3 y 2 station, the computed distribution of the three-
cot e csc e 3(P/p) dimensional displacement 63D over the transverse

K2 1uw h ax - cross section is used to generate a faired dis-
1 placement body for the next potential-flow com-

'' 2 -- __ putation. Typical displacement surfaces after
c 2 B z 3- oy - v ) (5c) one iteration for the two elliptical models
h y yare shown in Figure 1.

where u, v, and w = velocity components in the x, V. Comparison of Experimental and Theoretical
y, and z directions, respec- Results

tively
x,y, and z = nonorthogonal boundary-layer All data are presented in the coordinate system

coordinates, as given in used to experimentally measure the boundary-layer
Reference 6 flow. The coordinate system, denoted x-ne-B, is

p - fluid density given in Figures I and 3. The axial coordinate x
p = pressure on the body is measured from the nose of the body and passes

hI , h2  = metric coefficients through the center of the elliptic profile. The
KI, K2  = geodesic curvatures of the coordinates 

0
e and B are defined along an axial cut

curves z = constant and x = normal to the x-axis, i.e., in the y-z plane. The
* constant, respectively normal comoonentne is measured from the model sur-

K1 2, K2 1  = functions of the geodesic face and is normal to the elliptic surface. The
curvatures and metric coeffi- angular coordinate 8 is defined as the angle, in
cients degrees, measured from the z-axis to the line

. angle between the coordinates joining the surface offset and elliptic center.
x and z

v - kinemaic viscosity of the Pressure Distribution
fluid

u v, v w - Reynolds stresses The steady pressure was measured along the

stern surfaces using pressure taps. The pressure
The eddy-viscosity concept is used to relare coefficient Cp is computed from the measured pres-

the Reynolds stresses to the mean velocity profiles sures by the relationship
yP-P -

C - L-:Po (7)

"u inner region O< y Y- P
-
P U

2

" u < (6) where p - measured local static pressure
"0- -, , _u te reins

"y uter region y y p = measured ambient pressure

"where a 2 U)2 + (w2 + 2 cos g (3u)(I Pt - measured dynamic total pressure
whr &i L Y -§) 3y 2;yj6.L
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P - measured static pressure the turbulence characteristics in the thick bound-
s ary layer. T1g, mean-square turbulent veloci ,=-mass density of the fluid fluctuations u' in the axial direction and v-'in

Uo - free-stream velocity the ne direction, and the Reynolds stress -uxvn
were measured with the "X" hot-film probe elements

The measured values of the pressure coeffi- alined vertically. The probe elements were rotated
cients are compared in Figures 8 and 9 with two 90 degrees to the horizontal position to measure
analytically-predicted distributions of pressure both the turbulent fluctuation w i
coefficient. The dashed curve, denoted by poten- tion and the Reynolds stress -u' w. Linear inter-
tal flow theory, represents the predictions of polation was used to approximate w -uw 
the XYZ potential flow method of Dawson and Dean the same off-body positions as the data measured
[5] before using th- displacement body concept. in the vertical direction.
The solid curve shows C on the displacement body
after one iteration of he displacement body pro- Eddy Viscosity and Mixing Length
cedure. The computed pressure coefficient is

fU\ arThe values of eddy viscosity and mixing length

C = 1 2 Ue (8) are not measured directly, but are obtained, as in

P the axisymmetric case 1,2] 1from the measured val-
ues of the Reynolds stress - vn and the mean vel-

where Ue is the computed potential flow velocity ocity gradient aux/3ne. The definitions used to

on the displacement body and U. is the free-stream compute these quantities are

velocity, 100 ft/sec (30.48 mIs). -u---T -
3
ux

After one iteratio of the displacement pro- xn ne

cedure, overall agreement between theoretical and F['ae Ixlu l
measured values of the pressure coefficient is =

2 i 74+q + 
2k-1Vwn-/

considered reasonably good. No further iterations Lne -e

of the displacement method have been implemented D 3u
at present. cos 3n A (9)

4 e
Measured Mean Velocity and Turbulence Character-
istics When the values of w9/ux are less than 0.1 and the

value of e is 90 degrees for the present measure-
Mean velocity and turbulence measurements were ments, Equation (9) may be approximated by

taken with an "X" hot-film sensor which was stepped
away from the body in the ne direction. Measure- _2 3uxI u 1
ments of velocity in the axial x and normal ne u, v' = Z2 - -(xnI (n10n

directions, ux and vn, respectively, were taken x n 3ne 3 e
with the probe elements alined vertically. The
sensor elements were rotated 90 degrees to the hori- A spline curve is used to fair the experimental
zontal position to measure the mean velocity we in data before the velocity gradient is obtained
the 6 direction. An on-line computer was used to numerically.
collect data at a sample rate of 1024 data values
in 8 sec. The root-mean-square values of turbu- The nondimensional distributions of t-, Idy
lence velocity were recorded at each probe position viscosity c/(U 66 *) determined from the r, * the
and the eddy viscosity and mixing length values 3:1 elliptical m

8
del are shown in Figur, fZ. The

were computed from the measured Reynolds stresses parameters U5 and 6 * are defined as Lhe potential
and the measured mean velocity profiles, flow velocity at the edge of the boundary layer

and the planar displacement thickness, respectively,
Figures 10, 11, and 12 show the measured and for the displacement body. The solid curve shown

predicted velocity profiles on the two models. The in these figures is the Cebec! and Smith [7] thin
model surfaces are relatively flat and the rate of boundary layer formula, given by
change in curvatures are small over the region of
the minor axes of the models (6 = 0). The bound-
ary-layer equations are good approximations of the c 0.0168 (11)
flow in this region. The agreement between the U 6p* 1 + 5.5-
measured and predicted profiles are excellent along r
B - 00 for the entire length of the two models.
The good agreement extends up to B - 730 for the
2:1 elliptical model and up to B - 770 for the 3:1 All values of eddy viscosity for the 3:1 elliptical
elliptical model. However, around the corner region model are smaller than the experimentally-derived
over the major axes of the models (0 - 900), the value recommended by Cebeci and Smith [7] for thin
curvatures of the surfaces are relatively small and boundary layers.
the curvatures undergo rapid change. The boundary-
layer equations are not good approximations of the The exoerimentally-determined distributions of
flow in this corner region. The poor agreement the nondimensional mixing length, Z./S , of the
between the measured and predicted velocity profiles 3:1 elliptical model are shown in Frgue 14. The
are anticipated. Typical discrepancy of the mea- solid curve in these figures represents the thin
sured and predicted profiles is illustrated in boundary-layer model of Bradshaw et al. [13].
Figure 1. Agreement between theory and measurements is, at

best, fair for angular locations of 0 and 67 de-
The distributlg9 o.Le Rerw4 stresses grees; for angular locations greater than 67 de-v - _u u.' d,- vx n ' 3 ux" n ,an wa represent grees,the measured values of mixing length are much

C)



smaller than the predictions. Comprehensive boundary layer measurements, in-
cluding mean and turbulence velocity profiles and

For an axisymmetric turbulent boundary layer, static pressure distributions are given in detail.
" Huang et al. [1.21 proposed a turbulence model re-

lating the mixing length to the square root of the An initial attempt has been made to implement
entire turbulence annulus arae between the body Lighthill's three-dimensional displacement body
surface and the edge of the boundary layer. The concept [3] to treat the viscous-inviscid stern
values of measured turbulence intensity, eddy vis- flow interaction. The results of this initial in-
cosity, and intermittency across a turbulent bound- vestigation indicate that the use of the displace-
ary layer decrease from a maximum value at 60 per- ment model method significantly improves theoret-
cent of the boundary-layer thickness to zero at the ical predictions of the measured pressure coeffi-
outside edge of the boundary layer. The effective cients on the body surface, Theoretical predic-
gross turbulence area relevant to the mixing length tions of the measured mean axial velocity profiles
parameter is[(a+0.68a)(b+0.66b)-(a+ca)(b+cb)]; are excellent for the flat portion of the model
where ea and Eb are the effective thicknesses of surface, but are generally poor for the corner
the separation bubble (low turbulence mixing) in region over the major axes of the models, where
the direction of the major and minor axes, a and b, model curvatures are relatively small and undergo
respectively, of the elliptical cross-section , and rapid change.
8a and 

6b are the boundary-layer thicknesses along
the a and b axes. A new empirical mixing length Measured values of eddy viscosity and mixing
model is assumed to apply to a thick three-dimen- length in the thick stern boundary layer were
sional stern boundary layer. The schematic repre- found to be smaller than values which have been
sentation of effective turbulence areas, as deter- proposed for thin boundary layers. Because eddy
mined by the areas between the body surfaces and viscosity and mixing length models play an impor-
the contours of 0 .66 r are shown in Figure 15. The tant role in boundary-layer calculations, a new

outside edges of the effective bulence areas are empirical mixing length model is proposed and can
very close to the contours ofdu ZlUo - 0.04. be incorporated into the three-dimensional boundary
Further outside of these edges, turbulence intensi- layer computation.
ties reduce to 0.01 at the edge of the boundary
layer. The mixing length parameter is assumed to Further work in this area is needed. Improve-
be proportional to the square-root of these effec- ment of the flow computation method for the region
tive turbulence areas, e.g., where the curvatures of the body and the flow under-

go rapid change are essential. A larger data base
of experimental results on a variety of three-

Z l I(a*0.66 a)(b+0.66 b) -ab = A(x) dimensional geometries will aid in the development
of improved theoretical models to predict the

where the value of Ca is assumed to be small and viscous-inviscid stern flow interaction. The pro-
will be neglected and the value of cb is zero since posed new empirical mixing length formulation must
no separation occurs there. The values of ea and be evaluated further.
Eb may not be negligible if the separation region
is so large that the effective turbulence area is
reduced significantly. However, in the inner Acknowledgments
region, the conventional mixing length in the wall
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Figure 2a - The 2:1 Elliptical Model Figure 2b - The 3:1 Elliptical Model

Figur e 2 -Models Mounted In Ansohoic Wind Tunnel
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Calculation of Three-Dimensional Boundary Layers

around Ship Hull Forms

Shunji Soejima

Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo, Japan

A bstract% on ship boundary layers in SSPA, 1980 1). Most
calculation methods of boundary layer on ship

'Numerical investigations is made into complex surface neglect the laminar and transitional flow
S three-dimensional boundary layers around ship hull region and start their calculations from turbulent

forms, flow region.
Calculated examples of laminar and

At first, simple model of natural transition transitional flow region around ship model were
for boundary layers on ship fore-body surface is reported by Soejima and Yamazaki 2) and lHoekstra
presented. Transitional boundary layer from 3). In these two papers, two models which predict
laminar to turbulent calculated by using this model occurance of natural transition were used, however,

7 agreed very well with experimental results, examination about accuracy of these models was not
Investigation is carried out about influence of the conducted by taking account of Reynolds number

*change of laminar boundary layer region and effect. Soejima 4) tried comparative study about
Reynolds number on the flow field around ship fore- three models of laminar flow stability and three
oody. Th'e results shows that unstable flow pattern models of transition occurance for boundary layers
at bilge part is varied drastically due to above around ship fore-body taking account of effect of
influence at comparatively low Reynolds number Reynolds number. The models of laminar flow
since turbulence intensity is smaller than that at stability indicate quite satisfactory results

*high Reynolds number.,- qualitatively in spite of the models for two-
dimensional flows, and neutral stability line of

Investigation about calculation method of laminar flow predicted by these models seemed to be
thick boundary layer on ship aft-body surface are actual starting line of transition. On the

*also carried out by comparing measured results with contrary, the three models of transition occurance
calculated results by using a thick boundary layer did not indicate satisfactory results.

*equation. And it become clear that calculated In second chapter of this paper, simple
velocity profile can be improved by taking account natural transition model for ship boundary layers
of curvature of body surface, viscid-inviscid flow is presented and accuracy of this model is examined

*interaction, and peculiar magnitude of Reynolds by comparing calculated results with experimental
stress in thick boundary layers. results. Then variation of boundary layer

parameters on ship fore-body surface due to the
*1. Introduction change of transition starting position and Reynolds

number is also investigated by boundary layer
Boundary layers around ship have complex calculation.

characteristics since the ship hull surface has
three-dimensional complex curvature. Namely, flow It is very important to estimate viscid flow
transits from laminar to turbulent, phenomena like field around ship aft-body for prediction of ship
three-dimensional separation occasionally occur and performance. It is because viscous pressure
boundary layer on aft-body surface become very resistance ammount to 15 -300 of all viscous
thick rapidly. resistance due to very thick boundary layer on ship

In case of actual ship, natural transition is aft-body surface and propulsor is located in this
estimated to occur near the fore end of ship. But, thick boundary layer and wake. But, such viscid
in case of model ship experiment in towing water flwiedcnobeacutdacrtlyyusg

tank laina bonday lyer xiss i wie rnge thin boundary layer equations because many
around ship fore-body due to comparatively low neglected terms in thin boundary layer
Reynolds number and existance of favorable pressure approximation become to have significant influence
gradient. Therefore model ship is generally on this viscid flow fields.
provided with turbulence stimulator at the position Main phenomenalistic difference between thin
of about 5% Lpp from fore perpendicular to simulate and thick boundary layers can be summerized as
the flow field of actual ship as far as possible, follows.
Laminar boundary layer still remains in the region (1) Thickness of boundary layer become same order
of about SO of ship surface in the case of most of magnitude with radius of body surface
full hull form ship models. In such case, flow curvature.
pattern behind turbulence stimulator should be (2) There are strong interaction between inviscid
different from the case of fore end transition and viscid flow.
although turbulence grew, and this difference may (3 Distribution and magnitude of Reynolds stress
cause some difficulty in evaluation of resistance. are different from that obtained by Reynolds
Therefore it is important to investigate the stress model for thin boundary layer.
influence of existance of laminar boundary layer on The above items cause some problemes. From item
the flow field around ship fore-body in order to (2), for example, pressure variation across
evaluate ship performance. boundary layer cannot be neglected and then

pressure distribution on body surface is differetit
Prediction method of viscid flow field around from that obtained by potential flow calculation

*ship hull forms has been developed rapidly, and alone. Furthermore, in the case of full hull form
thin boundary layers on the most part of ship hull ship, thick boundary layer problem becomes more
surface became possible to be calculate with high complex due to the existance of large longitudinal
accuracy by using conventional three-dimensional vortex which is caused by open separation occuring
thin boundary layer equation as shown at workshop at around 101 Lpp from aft perpendicular.



bouIn third chapter, some discussion are made where is thickness of boundary layer.

about numerical calculation method for thick
" boundary layers on ship aft-body surface by In this paper, the eddy-viscosity concept for

comparing measured data and calculated results by Reynolds stresses is used as
using thick boundary layer equations which include
some higher order terms. - = uv

sv = t-- -ov w (2-7)

2. Thin Boundary Layer around Ship Fore-Body
According to Cebeci and SmithS,

6
) the eddy-

, 2-1 3-D Thin Boundary Layer Equation viscosity of three-dimensional thin boundary layer
is expressed as follows:

A three-dimensional curvilinear orthogonal
coordinate system ( , 7, ) is chosen so as to take = for inner layer (0c<- c)
f and I axes on the hull surface, and r axis is j

normal to the hull surface as shown in Fig. i. The
equations governing the turbulent thin boundary Vo for outer layer (%Ai-)
layer for incompressible three-dimensional flow are

Scve .s follows: where

1/2

-- 2) <(hj:) + -Wv(hih'w) = 0 (2-1) ) 2,(3u 2 2(0. 4) I-eXP( 7 (- 'J
• 

A 6 -,'-U _Ju v u -u . 1/2
S 4 t -- _K"+ +K u. -UKs-(u+v)
,12 21,to '0 5 }d,".V+5.5()

=K V -hK V2  + 1 1 (2-2) (2-8)
is; h2 r 12 21 z

h v 
+  3v2 ; 2

-_ + -- +w--+K, uv - K u6lj h2 V n 21 12 A uA (1 1.8 +)I/ 2

U )v +' LV-  + K21UV - K 2U 2 +  3 T2 - (2-3)T
hl v v 22 1r Ut (12l.8~

2u 2 1/2 1/2

U [{(-)+ ( ) } ] (2-9)
where T

3u , Sv -+ vis 113/2

-= , -r- cv'' (2-4) V _

+ 3s * 2
= 2 P = 3 Us ' s (U +

U-

In these equations, U and V are velocity components
in the f and 7 directions, respectively, at the Here, Us is velocity along a streamline at = ,
outer edge of boundary layer. (u, v, w) and (u', and dS is a line element of this streamline.
v', w') are the components of time mean and Further ( )w indicates a value at the wall, i.e.
fluctuating velocity, respectively. hl and h2 are 5 " 0. For laminar boundary layer, the above eddy-metric coefficient and K12 and K21 are defined by viscosity is zero.

I 1hl 1 h2 The govering equations are solved by using the
1 12 hlh 2 ;r 21 h2hl (2-5) method based on Keller's box scheme and finite-

difference approximation2 ,5). Calculation is
Boundary conditions for Eqs. (2-1) through (2-3) started from assumed leading edge which is
are given as positioned near the stagnation point and where flow

is laminar and no cross flow exists
2
).

u =va=w =0 at aO

(2-6) 2-2 Transition Model
' u =U, v-=V ar-C=

Soejim&4 ) tried to examine some models of
natural transition for boundary layers around ship

z fore-body. However the predicted starting position
of natural transition by using each model showed
entirely different from each other at high Reynolds
number and also seemed to be different from actual
one. On the contrary, neutral stability position

1/ -Y of laminar flow predicted by using three
models7 ,8,9) shown in Fig. 2 seemed to be actual
starting position of transition. Therefore, in
this paper, neutral stability position predicted by

-- 71- using the above three models of laminar flow
stability is used as the starting position of
natural transition. These are the models for two-
dimensional flows, and parameters in Fig. 2 are
defined as follows:

., Fig. 1 Coordinate System
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(2-10)

R Us/, Re =Us/Here, A° denotes a sectional area of the body at
6* each section.

where 8* is displacement thickness and 9 is
momentum thickness. When the three models are 2-3 Calculated Results and Discussion
applied for three-dimensional flows, d* and 9 are
replaced by 61* and ell, respectively, where 81" Calculation of the boundary layer around fore-
and 811 are streamwise displacement thickness and body of a crude oil vessel (Lpp/B - 6.52, CB =
streamwise momentum thickness defined by 0.825) was performed in order to examine the

accuracy of the present transition model and also
C1 f0(Us - usd4/Us to investigate the effect of transition and

0. )d-/1s Reynolds number on the flow pattern.

(2-11)
-usdI/Us2 Pressure distribution on the hull surface

J Al "0 s - calculated by using Hess and Smith method11 ) is
shown in Fig. 3, andA-distribution on the side

Region of transition is assumed to spread like a hull surface obtained by laminar boundary layer
wedge which has half angle of 5 degree relative to calculation is shown in Fig. 4. From these
the inviscid streamline even if each point in the figures, it is understood that the hull form of
wedge does not satisfy the above natural transition this ship has strong stable laminar boundary layer
condition. And eddy viscosity modell tr in region on the lower part of the side hull in front
transition region is modified as follows: of X/L - 0.05. Such region where strong favourable

pressure gradient and comparatively large A-value
-v t exists has a possibility of no transition or

'r tr"  reverse transition even if turbulence stimulator
fitted in front of this region, as reported by

where Vt is Cebeci and Smith's eddy viscosity model Asano et. all2 ).
defined by eq. (2-8) and rtr is Chen and Thyson's

* intermittency factorI0 ) defined by 2-3-I Comparison with Experiment

S dS dS (2-12) In this section, accuracy of the transition
" l-exp{-G'r (f S )(f s model is examined by comparing calculated results

tr 0r 0  tr with experimental results.

* where Fig. 5-a shows a bottom view photograph of

3 2 1.34 limiting streamlines observed in circulating water
G - /1200vR channel by using 2.5 M length model ship. Reynolds

tr number was RLpp (- LppUfn/.) - 2 x 106 and
turbulence st imulator was not fitted. Calculated

R S  , S Utr'Us/vP limiting streamlines are shown in Fig. 5-b in which
r tr calculated starting line of natural transition is

also shown for reference. In Fig. 6 comparison of
r (Ao/)1/2 calculated and observed results is made about

ro girthwise distribution of angle[3w between X-axisx
and limiting streamline. The calculated peak of

. Z
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(3w1 and converged line of limiting streamlines are resistance of studs. To compare calculation with
positioned a little towerds the side hull compared the above resistance measurement, additional
with the observed results. But it is generally boundary layer calculations were also carried out
understood that the converged streamline at the for three cases. Two are the cases that transition
bottom of bow observed by oil flow method is starts compulsorily at X/L - 0.05 under the
somewhat closer to the center line than actual one conditions of RLPP - 1 x 106 and 2 x 106 and
due to the effect of the outer flow. Therefore it another is the case of natural transition under the

* can be said that calculated limiting streamline condition of RLpp - 1 x 106. Frictional resistance
agreed very well with actual one. RFG and viscous resistance Rv a of the fore-body

Calculated limiting streamlines are very were calculated for each case by using following
similar to the lee side surface flow pattern on equations:

body of revolution with high incidence case (ot= 1Y
reported by Wang

3
), called open separation or

circumferential reverse flow. Furthermore l2 l 2aS (2-13)

longitudinal vortex is clearly indicated by the F 7opa Cf (or) ds

calculated tangential velocity distributions at X/L 
N X

- 0.10 shown in Fig. 10-(b). 2
2 (2-14)

As another experiment to examine natural a
transition model, resistance measurement was also
carried out in towing water tank for the cases where
without and with turbulence stimulator of rows of

* studs at x/L - 0.05. Difference of resistance 1 2
between above two cases includes the Cf -w/ 2 s
difference of viscous resistance due to different

* starting position of transition and the own

. -. . . .. . . ..

"-'i Calculated limiting streamlines are very ~wer acltdfrec aeb sn olwn
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RLpp A p ob

"p ARV. a

i x 106 3.1 2.6 2 - 3 108
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UNIT: GRAM

Table 1 Difference of Viscous Resistance between ----.......
The Case of Natural Transition and
The Case of Transition at X/L 0.05

0.2 0.1 0
U b

7.= fi1(--) dl Fig. 7 Calculated Starting Line of Natural
.. Transition

b = (H + 3).2, H =

Here Se is the area of ship hull surface before X/L
= 0.50, S* is the girth length at X/L - 0.5, U.. is MARKS -NATURAL TRANSITION
model ship speed or uniform flow speed at infinity ------ TRANSITION AT X/L-0.05
and Cf is a X-component of local shearing stress - TRANSITION AT FORE END
Cf. Te equation of RV is Squire and Young's
relation for two-dimensfonal flow assuming that the 1.0 110
flow at X/L = 0.50 is similar to two-dimensional - ,--

flow. Comparison of calculated and measured 0Z.5
difference of resistance is made in Table I, in "

" which measured ones are corrected by deducting the 0
own resistance of studs calculated according to" Tagori's study resultsl

4
). The calculated results

agree very well with the measured results at two / --- 2-"'d iffe ren t Reyno lds num be rs . .1 " ," / - -- 10-3

By Considering that the calculated results of 6.0 C 4d'i 60
above two examination agree very well with Cf
experimental results, it can be said that the 4.0. - -- 40

" present simple model of natural transition estimate 23 ------------
very well actual transition around ship fore-body. 2.0 - ' 10 ---- 203

present considered to 1
sufficient for the purpose of investigation about .

the influence of laminar boundary layer and the & 0 1Reynolds effect on the flow pattern around ship
fore-body. 2. -------- 2.52.5 .. .

2-3-2 Influence of Starting Point of Transition H"
and Reynolds Effect 2.0 2.0

At tirst, calculated variation of starting 1.5 . 1.5
position of natural transition by using present

- method due to the change of Reynolds Number is 1.0 _110
shown in Fig. 7. This figure shows that starting KEEL 50

%  LWL KEEL 50% LWL
line of transition moves forward on the side hull GIRTH LENGTH GIRTH LENGTH
and also moves gradually upwards from the bottom as
Reynolds number increases. In the case of RLpp 1(a) " 106 (b) RLpp 7
100, stable laminar boundary layer remains at the RLpp =
lower part of the side hull surface in front of X/L
' 0.05, which coincides with the region of strong
favourable pressure gradient and largeA-value as at X/L - 0.10

shown in Fig. 3 and 4.

To investigate the influence of the change of
laminar boundary region and Reynolds number on the influence of starting position of transition on
flow field around ship fore-body, boundary layer girthwise distribution of boundary layer parameters
calculations were carried out for three transition at X/L - 0.10 for RLpP - 106 and 107. As shown in
conditions, namely, natural transition, forced this figure, degree of influence of transition
transition at X/L w 0.05 and at the fore end at condition on flow field around ship fore-body
five Reynolds numbers (RLpp - 106, 2 x 106, l07, changes depending on Reynolds number.
108, 10't. In the case of RLpp 10 , variation of

boundary layer parameters on the side hull surface
Fig. 8 shows the calculated results of the between mid girth and LUL due to different

.........................................................
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transition condition is almost similar to flat transition is also included in this case.
*plate case. On the bottom surface between keel to Therefore, the variations of boundary layer
*mid girth, variation is entirely different from the parameters at mid girth where phenomenon called

case of side hull. Judging from the distribution open separation occurs at low Reynolds number are
of boundary layer parameters in the case of natural very large as Reynolds number changes. In Fig.
transition, phenomenon called open separation or 10, calculated tangential velocity distributions
circumferential reverse flow occurs at mid girth. for each Reynolds number of this case are shown.
This tendency is gradually weakend as starting For reference, velocity profiles of streawise,
position of transition moves forward, and almost crosswise and normal component are also shown in
disappears at the case of fore end transition. Figs. 11 and 12. In these figures, longitudinal

I'Here, we have to pay attention to the fact that vortex is clearly shown at RLpp - 106, and with
even if transition is stimulated at X/L - 0.05, increase of Reynolds number, tangential velocity
flow pattern at X/L - 0.10 is still entirely component decreases rapidly and finally
different from the one of fore end transition case longitudinal vortex Decome neglegibly small at RLpp
at low Reynolds number RLpp - 106 as shown in Fig. 107.
8-, (a). In the next case of transition at X/L - 0.05

At the case of RLpp = 107, on the other hand, shown in Fig. 9-(b), the variations of bounEnary
variation of boundary parameters due to different layer parameters are smaller then the case of
transition condition is very small comparing with natural transition. But tendency of phenomenon
the case of RL 106. Namely, the variation of called open separation still remaines at
$3w is very small. And'similar to flat plate case, coprtvl-o enlsnme fRp 106 and
the variations of other parameters means only that 2 x 106. Therefore it is clearly undernood that
velocity profile becomes the one of turbulent flow pattern is considerably changed by Reynolds
boundary layer from the one of laminar boundary effect even if transition starts at same position
layer as the starting position of transition moves in the range of RLpp - l06 - l07.
forward, i.e. turbulence grows. Boundary layer parametis in the case of fore

end transition shown i r ?4t. 9-(c) show systematic
Next, calculated results about influence of variation entirely differen from the above two

Reynolds number variation on girthwise distribution cases. Especially in the range of RLpp - 107

of boundary layer parameters at X/L - 0.10 are 10 , the variations ofo w and 911 due to the change

shown in Fig. 9. of Reynolds number are in proportion to the
In the case of natural transition, the variations of Cf. This results agrees very well

variations of boundary layer parameters for range with Tanaka and Himeno's conclusionl5) about scale
of Reynolds number of RLpp = 106 _ 107 are shown in effect which was derived from first order
Fig. 9-( a). In addition to Reynolds number effect, approximation to three-dimensional turbulent
influence of starting position of natural boundary layer.

vaitono oudr armtrsdet dfeen aerprmtesae alrthnte aeo
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On the other hand, in the range of RLpp - 106
2 0- (M/')max. 200 -107, a different relationship is found between3 w

and Cf. This reason is considered as follows:
E Shear stress included in turbulent boundary

H layer equations is expressed from Eqs. (2-4) and (2-

1u27) as

1 I 5 100 T pv(l + a-) (2"l5)

and ;it/ls is generally propotional to R6 I (
U V). It means that with decrease of Reynolds
numer, dt/' and Reynolds stress becomes small and

10 0 solution of turbulent boundary layer equation
0. 105 106 10 approaches to solution of laminar boundary layer

equation in which ; t/) is zero. For reference
Fig. 13 Variation of t/,. and H calculated ratio of ,;t/;) and shape factor H for

Flat Plate, Rxc = 10
3  

flat plate case are shown in Fig. 13. From this

figure, we can understand that shape factor H

I . -• .
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4 TRANSITION AT OL=005 CALCULAT!ON I Lpp iX100 2x10
6 N NATURAL TRANSITION

rLAT PLATE(RWc=O0Y I+KF(SCHOENHjLL) 0.832 0,874 0.915
1; ------- SCHOENHERR'S ;ORMULA

"+K
F
g(CALCULATION) 0.861 0.909 0.956

3

6.CASE TRANSItION AT x/L - 0.05

It - RLpp 6 2x10
6  1x10 7

I . 1+KFU(SCHOE1ELL) 0.960 0.947 0.947

IS-Kp§(CALcIJLATIoN) 0.993 3.986 3.989

Fig. 14 Frictional Resistance Coefficient

for Ship Fore-Body

CASE TRANSITION AT FORE END

Rip ix106 1 X107 ,ix108 1 x109

increases rapidly below Rx = 106 and becomes close 1+KfI x
to the value of laminar boundary layer (H = 2.6). O 1.022 0.996 1.009 1.026

* This implies that the tendency of unstable flow I

pattern still remains slightly even if turbulence l+f T 1.057 1.040 1.039 1.040
is fully stimulated in case of a three-dimensional CWULATION
flow field which has very unstable flow pattern Table 2 Form Factor for Frictional Resistance
under laminar flow condition. Namely, the increase 1+1F6 0 CF/CFO
rate of w becomes large compared with that of CF
as Reynolds number decreases below 106. Therefore, CF: Frictional Resistance Coefficient
it can be concluded that scale effect derived from of Flat Plate
first order approximation to three-dimensional CF : Frictional Resistance Coefficient
turbulent boundary layer can not be applied for of Ship Fore Body
unstable flow field at low Reynolds number.

Frictional resistance of fore-body before X/L
= 0.5 for the above each case is calculated and is starting position and Reynolds number for flow
plotted in Fig. 14 on the basis of Reynolds number field around ship fore-body were investigated.
for the distance from fore end to X/L = 0.5. For a The following conclusions are derived.
comparison purpose, Schoenherr's and calculated
frictional resistance curves for flat plate are (1) Present simple model of natural transition is
also shown in this figure. Furthermore, form considered to be sufficient for a purpose of
factors KF for frictional resistance are shown in studying the influence of laminar boundary
Table 2. layer and Reynolds effect on viscous flow

In the case of natural transition, frictional field around ship fore-body.
resistance of the fore-body is lower than that of
flat plate due to the existance of wide laminar (2) Flow pattern called open separation or
boundary layer region, and gradually approaches to circumferential reverse flow observed on bow
the level of flat plate as Reynolds number bottom surface of model ship is generally
increases. On the other hand, in the case of caused by the fact that turbulence does not
transition at X/L - 0.05, frictional resistance is sufficiently grow. And in the case of actural
nearly equal to that of flat plate and form factor ship, such flow pattern will not appear or
for frictional resistance is indicated to be almost will be smaller scale even if appear than that
constant for each Reynolds number. on model ship.

In the case of fore end transition, form
factor based on Schoenherr's frictional line varies (3) At low Reynolds number, the influence of
for each Reynolds number, but form factor based on transition starting position on flow pattern
the calculated frictional resistance of flat plate is considerably large and there is a
is almost constant except the case of RLpp - 106. possibility that even if turbulence is
From this result, form factor for frictional stimulated at X/L - 0.05, flow pattern is
resistance som not to be influenced by the entirely different from the one of actual
difference of Reynolds number under the condition ship.
that transition starts from ship fore end at
sufficiently large Reynolds number. (4) At high Reynolds number greater than RLpp

107, influence of transition starting position
2-4 Conclusion is almost similar to flat plate case, and

resistance of actual ship can easily be
Simple model of natural trandition for estimated from model test results. Further

boundary layer calculation was presented and study is necessary to investigate whether this
calculated results by using this model agreed very can be applied for other ship hull form which

. well with experiments. And effects of transition has larger scale unstable flow pattern than

f' ' 4 4 . . . ' . . . ' . ? . . ~ . i .i. - . - -. "



the one of the hull form in this paper. where

(5) Scale effect derived from first order
approximation zo three-dimensional turbulent C1  

for ;/6 a 0.3

boundary layer is applicable to boundary layer
around ship fore-body, and form factor for =cCI. 2  for /5 < 0.3
1r~i,4znil 

-nttan e if ship fore-body 
is

considered not to be influenced by difference

of Reynolds number under the condition that (1 + 2R /6)16
transition starts from ship fore end at C1 = min.
sufficiently large Reynolds number. 1.0

3. Thick Boundary Layer on Ship After-Body = 333(10 - C3 )r/1 + C3

3.1 3-D Thick Boundary Layer Equations

thcGeneral equations governing 
three-dimensional m 2C 1 1.0

thick boundary layers are not established yet 3
although several equations has been presented by 

0.3

many researchers. Here, the following equationsl
6 ) (K2L) w  for (K, )w > 0which take account of curvature of body surface and K 23 w

pressure variation across the boundary layer are Ro 
= min.

examined. 1 (Ao/7)i/2

h )+ -(hiv) + -L(h h2w) . o (3-1)0
'(h 2u) +an 3 0 Here, )t. and are expressed in Eq.(2-8). The

above m;Ael is derived from the measured Reynolds

SU V u u K1 v)+ stress distribution across axisymmetric thick
S+ h - +n d,+ 12u 21 boundary layer17 ), and is very convenient to

investigate the effect of Reynolds stress intensity
on velocity distribution in boundary layer although

+L-- () = 0 (3-2) this model has no physical explanation.
h a P p h h 2 a 1

The governing equations can be solved by using

u 3v v 3V the same method with thin boundary layer equations.
J"h, + - +(K21v K u)u Boundary layer on fore-body surface is calculated

2 by using thin boundary layer equations mentioned in

S1 0previous chapter.

+2 ( ) h I - (hh 2 2 ) 3-2 Calculated Results and Discussion

" v _w + w 2 2 3 P In this section, calculated results about an
"r"  +  13u - + 2 (v)  axisymmetric body and three ship models are

T2 + compared with measured data and discussions are

made.
+ --(w-) - 0 (3-4)

3-2-1 Calculated Results for An Axisymsetric Body
where

Calculation of thick boundary layers was

1 ah1 3h 2  performed for axisysmetric body which is named
.K h3 9 K23 hh ac after body-l by Huang et. a11

7 ). The body length L
13 h1h 34 23 h23is 3.066 m and the maximum radius Ra x . is 0.1397

m. In this case, static pressure distribution was

Here, metric coefficient hl and h2 are functions of corrected by taking account of displacement effect

-, 1 and 5 because curvature of body surface is by iteration of potential flow and boundary layer
considered. Eq.(3-4) express existance of static calculation.
pressure gradient across boundary layers. In the Calculated results of velocity profile at four

- process of numerical calculation, straight line sections are compared with the measured results in

distribution of static pressure across the layer is Fig. 15. Both results shows very good agreement
adopted instead of Eq.(3-4) by connecting the except radial velocity component near outer edge of
static pressure value on body surface and at boundary layer. Calculated eddy viscosity

boundary layer's outer edge. The static pressure distributions at X/L a 0.934 and 0.964 are also

at each point is obtained by potential flow agree very well with the measured results as shown

calculation. in Fig. 16. From these results, it can be said
that present method including eddy viscosity model

For assumption of the Reynolds stress, the estimate very well the characteristic of

. eddy viscosity concept is used as in previous axisyimetric thick boundary layer.
chapter, but following modification

1 6) is made from
Cebeci and Smith's eddy viscosity model. Investigations were made into the influences

of body surface curvature, static pressure gradient

' for inner layer (0<C c) across the layers, and eddy viscosity magnitude on
" (3-6) velocity distribution across the layer. This study

r t . ; Iwas carried out by calculating boundary layer by
C.Vt for outer layer (y¢<C<6 ) using four different methods as shown in Table 3.

0



,<.09W4-V.. r.Ol

A-A A-

-0

Fig. 15 Velocity Profiles across Axisymmetric Boundary Layer
Afterbody-l, Measurements Performed by Huang et.al.
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Table 3 Calculation Method

Fig. 16 Eddy Viscosity Distribution
across Axisymmetric Boundary
Layer, Afterbody-I,
Measurements Performed by ------METHOD!

Huang et.al.17 )  C-.- D 2
-- Do 3

D 42

In these calculations, static pressure distribution
on the body surface corrected for displacement
effect was used to clarify the effects of the above I
three items. Calculated velocity profiles at X/L =
0.977 are shown in Fig. 17. By comparing each
velocity profile, influence of above each item can /U
be summarized as follows. ;0
(1) Curvature of body surface plays an important

role in estimating boundary layer thickness. Fig. 17 Calculated Streamwise Velocity
(2) velocity profile near wall is significantly Profiles across Axisymmetric Bounday

influenced by the magnitude of eddy viscosity. Layer at X/L - 0.977, Afterbody-i
(3) By taking account of pressure gradient across

the layer, we can match the boundary layer
with inviscid flow at the outer edge.

It is to be noted that the influence of viscid-
inviscid flow interaction other than static inviscid flow interaction was not taken into
pressure gradient in the layer are included in account.
these calculated results.

From the above results, it is clear that Calculated streamwise and crosswise velocity
curvature of body surface, viscid and inviscid flow profiles for each ship models are compared with the
interaction, and peculiar intensity of Reynolds measured results in Fig. 19. For Cargo Ship Model
stress in the thick boundary layer should be taken shown in Fig. 19-(a), the calculated results by
into account in order to calculate thick boundary using thin boundary layer equations (Method 1) are
layer accurately, also plotted only at X/L - 0.90 since the

calculation did not converge at X/L = 0.95. The
3-2-2 Calculated Results for Ship Models location of profile number (P.N.) in Fig. 19 is

indicated in Pig. 18 (Body Plan).
Calculation of thick bounA -v layers was also

performed for three ship models, ramely, Cargo Ship From Fig. 19-(a), it is noted that calculated
Model18 ), SSPA Model 72019) and HSVA Tanker results by using Method 4 (i.e., thick boundary
Model20 ). Body plans of these ship models are layer calculation) are improved from the results by
shown in Fig. 18. In these cases, static pressure using Method 1 in predicting thickness of boundary
distribution obtained from potential flow layer and cross flow velocity profile, especially,
calculation alone was used, namely, viscid and in predicting reverse cross flow. The improvements
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(a) Cargo Ship Model
18 )  (b) SSPA Model 72019) (c) HSVA Tanker Model

20 )

Fig. 18 After Body Plan and Potential Streamline

n-. the present method were also shown on two ship boundary layers on three-dimensional body
models (i.e., SSPA Model 720 and HSVA Tanker Model) surface accurately.
at 3SPA-ITTC Workshop 19801).

(3) In case of three-dimensional thick boundary
Calculated wake contours for the three models layer on ship aft-body surface, calculated

are shown in Fig. 20 comparing with measured velocity profiles by using the present method
" results. The calculated results estimates very were improved from those obtained by using

well characteristic of the measured velocity thin boundary layer approximation, especially
distribution, especially location of swelled wake in estimating reverse cross flow.
contour just above the bilge. In such region,
calculated results in Fig. 21 show a flow pattern (4) With respect to Reynolds stress, it will be

- having concentrated limiting streamlines which is necessary to introduce more accurate
observed in the phenomenon called open separtion. turbulence model in order to improve the

But it is observed in Fig. 19 that the calculation of three-dimensional thick
measured streamwise velocity near wall at such boundary layer around ship aft-body.
position of swelled wake contour (e.g., P.N.D1,
P.N.12 and P.N.182) is smaller than calculated 4. Acknowledgement
results. This tendency is also found in the
velocity profiles on the body of revolution in Fig. The author wishes to express his deep
17 calculated by using Method 2 and Method 3 which gratitude to Professor R. Yamazaki of Kyushu
showed the influence of magnitude of eddy University and the members of Ship Turbulent Group
viscosity. According to the results of turbulence for many usefull discussions and encouragement in
measurements on Series 60 Model (CB = 0.8) reported writing this paper. He is grateful to Mr. M. Nito
by Fukuda and Fujii 2l) , magnitude of eddy viscosity of Mitsui Engineering & Shipbuilding Co., Ltd.
in a position of swelled wake contour is in a order (MES) who assisted this work at initial stage and
of 15% of the value obtained by the CS Model as to the members of Akishima Laboratory of MES for
shown in Fig. 22. Considering the fact that the their cooperation.
value of eddy viscosity for these three ship models

. calculated by using the present method is about 5 Finally, his thanks are also extended to Dr.
times of the above results, the overestimation of H. Narita, Messrs. H. Yagi, K. Yoshida and M.
magnitude of eddy viscosity in the calculation may Mizobe of MES for their assistance and
be one of causes of difference in velocity profiles encouragement.
at such position of swelled wake contour.
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' CALCULATIONS OF ICK BOUNDARY LAYERS UsING A STREAt-ID:E C7URVATtW. .ET. oL

Lars-Erik Johansscn and Lars Larsson
Swedish Maritime Research Centre SSPA, S3teborg, Sweden

Abstract sponsor being the Swedish Board for Technical Devel-
A opment. The ultimate goal of the program is tc le-
The inability of ordinary boundary layer methods veloc calculation methods for the viscous flow

to compute the viscous flow close to the aft end of around the hull and the viscous drag. Such theoreti-
fat bodies, like ships, has been clearly demon- cal work must be supported by experimental data,
strated in several recent results, published in the and the first project within the program was an
literature. Such methods use appromations for the experimental investigation of the turbulent bound-
pressure, the stresses and the coordinate system. ary layer on a ship model reported in 19 [!.
It is claimed in the paper that the most serious Based on this information a three-dimensicnal r-
one of these approximations is the 4pproximation bulent boundary layer integral method was developed

for the coordinate system, which, i$ the surface [2]. This method seemed to work well for the ma'or
of the body has a large curvature, may cause con- part of the ship hull, but in the after region the
siderable errors, particularly in the continuity results deterioratei considerably. The reascnc ±r this
equation. It is also claimed that, while the press- were investigatedt3] and in 197t the research program
ure distribution may be quite important, the ap- was enlarged to include several different projects

proximation for the stresses may not be too criti- judged necessary to improve the prediction accuracy
cal, provided the solution is matched to a wall close to the stern. Thus, an extensive experimental
function, which covers the region of high shear investigation of the Reynolds stresses in the stern
near the surface. Th% latter argument is based on boundary layer on a ship model was initiated, and
experimental evidence'iIn the paper, a new method is the development of calculation methods of three
described, which has shown results, considerably different Kinds was outlined.
better than those obtained by ordinary boundary
layer methods. Its most important feature is that The first result of the enlarged program was re-
the continuity is maintained exactly (within the ported in 1980 (4] when one of the new calculation
numerical approximation) even if the surface has methods was presented. It represents an extension
a considerable curvature. The equations are cast to higher order of the original boundary layer
in a Cartesian coordinate system, whose x-axis is integral method and incorporates such features as
directed along the local streamline at every point boundary layer - free surface potential flow inter-

in the thick boundary layer. In this way the equa- action, pressure variation across the boundary
tions become quite simple, t4-one in the x-direc- layer and a coordinate system which is (at least
tion expressing the change In \total head due to approximately) fitted to the hull and the space
shear forces, and the two in tii other directions occupied by-the viscous region. In March of 1982
expressing the balance between tjpe centrifugal the first reports on the Reynolds stress measure-
force and the pressure and shear Vtress gradients. ments were published [5], [6], and in August a
The solution is obtained by stepping streamlines first version of the second calculation method,
downstream from an initial grid, and apart from called the streamline curvature method, was pre-
the momentum equations, the continuity equation sented [7]. This method is based on a new approach,
is used for locating the streamlines. The first especially designed for thick viscous regions, and
results of the method were presented at the 14th does not necessarily have to rely on any boundary
Symposium on Naval Hydrodynamics in August 1982. layer assupmtions. The third method of the program,
At that stage the computations were based on developed in cooperation between Chalmers University
measured pressures. This restriction has now been of Technology and SSPA, is still not ready for pre-
removed and the pressure variation across the sentation, but it includes an analytical body fitted

. viscous region is considered, coordinate system and flow equations of the par-

1. Introduction tially parabolic type. In the present paper the more
recent development of the streamline curvature

As a result of the rapidly increasing cost of method will be described.
oil it has become more and more important to de-
sign fuel-efficient ships. The possibilities of 2. The Weak Points of the Boundary Layer Arrroxima-
reducing the drag are therefore of great interest tion
to ship builders and owners and at many ship re-
search organizations considerable efforts are made As mentioned in the introduction, the original
to achieve this goal. Clearly, improved knowledge boundary layer method could not predict the flow
about the flow field might enable the scientists near the stern, and it was confirmed at the inter-
to develop calculation methods which could be used national workshop on ship boundary layer calculations,
for parametric and optimization studies at the organized by SSPA in 1980 [8], that this is typical
design stage, without huge expenses for model tests. for all first order boundary layer methods. Dn this
The latter could then be used for the fine final occasion 17 different calculation methods, some cf
tuning of the design, to obtain more efficient them from the aircraft industry, participated in
ships. comparative calculations for two different hull forms,

and the results were quite discouraging near toe
At SSPA, a program for fundamental ship flow ztern.

studies, particularly the viscous part, has been
n existence since the early seventies, the main There seem to be three main reasons why toundary

This research was sponsored by the Swedish Board for Technical Developrm-nt, Cuntract No. S--:
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layer methods cannot accurately predict a flow three-dimensional flows. In principe the only dif-
field of the kind found on the afterbody of a ship. ference is that one more pressure gradient - centri-

fugal force equation has to be introduced in the

A. The coordinate systems which are used in lateral direction. The one-dimensional continuity
boundary layer methods are assumed curvilinear equation can still be used, but for individual
only in the plane of the surface. The normals are stream tubes, which are formed by the streamlines
thus assumed straight and parallel, so the metrics traced downstream. Unfortunately the additional

. are not considered functions of the coordinate at freedom for the streamlines to bend laterally
right angles to the surface. Since in reality the causes huge difficulties in the streamline tracing,
normals may even intersect, see [ 7 1, within the odd stream tube shapes, instabilities, etc, which
boundary layer, this approximation is too crude, make the development of a three-dimensional ver-
A major effect of this is that the continuity of sion of the approach considerably more difficult
the flow is not maintained downstream, so the volume than the two-dimensional and axisymmetric ones. -'

flux may be quite unrealistic near the stern. Nevertheless, in light of the very prcmising results
obtained by Dyne, this is the approach chosen.

B. The pressure is assumed constant through the
boundary layer .nd equal to that on the surface in 3.1 Governing Equations
a potentiai flow, without boundary layer displace-
ment effects. In reality the boundary layer inter- The governing equations may be derived from
acts with the potential flow, and the pressure may the Reynolds equations, cast in a Cartesian co-
vary significantly across the layer. Matching be- ordinate system, (x, y, z)
tween the two regions should be carried out at
some surface on, or outside, the boundary layer a u *au +au\
edge. X y av-

C. Usually, only two Reynolds stresses are con- p V2 u - p u' au'v' au'w'1 a
sidered in the equations, and these stresses are ax +-ax ay az
computed using turbulence models, which may not be

applicable in ship stern flows, mainly due to the fuav av + av
strorgeffects of flow convergence and normal curva- O \ + V1y + z

ture.
.. t -. [au'v' ' ' (1b)Ofthese three L ]x+ a' - W

Of these three approximations the first one ay ax ay 3z
seems to be least serious. Thus, all available in-

* formation on Reynolds stresses close to the stern
of ship hulls [5], [6], [9], [10], (11] and similar P ( aw aw + awz
three-dimensional [12] and axisymmetric [13] bodies 73 - -

indicates that the magnitude of the stresses is
very much reduced as compared with the thin bound- -p + V2_ [ + a (1)
ary layer case. Since this holds also for the az x a "z
stress gradients, turbulence seems to play a fair- 2
ly limited role in the flow close to the stern, where 2 is the Laplace operator, (u,v,w) the
Provided the stresses close to the surface could velocity vector, p the static pressure,_ vthe
be handled properly, it might even be possible to dynamic viscosity, P the density, and u'

2, u'v' etc
use amessentially inviscidmethod in the stern region. the Reynolds stresses.
The effects of the stresses would then be included
through the initial velocity profiles, which are If the system is locally oriented in such a way,
a result of stress actions further upstream, that x is along the mear. flow streamline, v and w

are zero, although their gradients are not. Leaving
3. The Basis of the Streamline Curvature Method the exact form of the stress terms for later dis-

cussion and denoting them si, 32, S3, the equations
In the search for a method, in which the weak may be written

points of the boundary layer approximation could
be removed, or at least reduced, the attention au - a a
was directed towards a very original method for 0UC a 1

*two-dimensional [14] and axisymmetric [15] flows,
. developed by Dyne. The basic feature of this ap- v a 2+
* proach is that the coordinate system is aligned 'Ux - 2

with the local streamline, which is traced inside
* the boundary layer. In this way, the governing a w + (2)

equations become quite simple, the longitudinal -x - 3z
momentum equation being the Bernoulli equation
and the equation in the normal direction repre- Introducing the normal curvature, K, 2 , for a
senting the balance between the pressure gradient streamline
and the centrifugal force. A one-dimensional form
of the continuity equation is used to compute the a (tan v/u) av au I av
distance between neighbouring streamlines. The K12  ax u +v2  ( a (tra. (3)

simplicity of the equations are of course obtained
at the expense of having to trace the local stream- Since a corresponding relation holds for the
lines. lateral curvature, K13, the equations may be

written

Q Quite simple governing equations are ob-
* tained also if Dyne's method is extended to

L".. ', ... *.*...."............... ....
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-xff si (4a)
I.X

QL uK 12  yI EPA CNTN
Qu2K13 = "az 3 (4c)

where P0 is the total head suCS_, STREAMLINES

PC = P + JPu 2  (5)

4a is recognized as the Bernoulli equation with
total head losses due to friction. 4b and c are the
pressure gradient - centrifugal force equations
also modified by friction. These are to be solved
in connection with the one-dimensional continuity
equation applied to each stream tube.

= u • A = const (6) Figure 2. The local coordinate system x,yz

where V is the volume flux, um the average velocity
in the stream tube and A its cross-sectional area.

3.2 Outline of the '.lution ,ocedure COMPUTE SOURCES,
I

The two coordinate systems used in the solution GENERATE INITIAL VALUES AND

are defined in Figs 1 and 2.(X, Y, Z)is a global X I
system with X backwards, Y to starboard and Z up-
wards. x, y, z is the local, also Cartesian, system COMPUTE STRESSES AND STRESS

with x along the streamline, z along a stream sur- GRADIENT$ AT X - Xi

face and y outwards. I A
SCOMPUTE .Cp/ 9 AMD K13

AT X ,

OSTEP FORWARD IN x-2-PAE

ISLACE STREAMLINES ALONG Y
TO OSTAIN CONTINUITY AT X Xi,

atS O TO COMPUTE aca/dy ATm T

EDGE. COMPUTE K12 THERE

OBTAIN K, ON THE SURFACE

ASSUME A LINEAR VARIATION OF K
1 2

W It a d e Cc nPUTE cp/uy 
AT ALL"RID NDES. X "X1,1

BCOMPUTE ;oa h ck AND INTEGRATE FRya f3 THE EDGE OBAIN T ALL GRID

NODES AT X - Xi AT VLOITE

oFigure . The globa coordinate system X,Y,Z

Sote thatthe index i runs in the X-direction, v
outwards from the surface and k in the circumferen- usin SO N

tial direction. A stream surface is formed by the
streamlines having the same j. SO

.By use of Fig 2 and the flow chart in Fig 3 the
solution procedure may be outlined as follows Fgr .Shmtcfo hr

1. Solve the integral equation for the sogrce velocity and pressure atthe outermost stream surface,
strength on the hull in a potential flow, using using the stored sources and assume (only in this

the ess& Smth ethd. Sorethe oures.plane) that the pressure is constant along each
normal. Use the velocity and pressure at each grii

2. Define the starting points for all streamlines point to calculate the total head and compute the

in a grid at XsX1 , generated by the projections in volume flux through each stream tube, defined by a
the plane X-X1 of the normals to the surface, and mesh in the grid, using the average velocity of
a set of lines at constant fractions of the bound- the four corner streamlines. See Fig .

ary layer thickness. Give initial data for the
velocity vectors at all grid points. Compute the

::.,..',,'......'. .*d.... ... .' . .',* "* ', '. . . . .."", , .,'..;.; , +; . - " . . . "- -~ 5.



.. Ccmoute the shear stresses in the rlane X=. nornal :treamnine :urvature octaine: in a revizus
* using the given velocity distributicn. (Mixing iteration. This approacn turned out tc be highly

length theory used so far.) Compute necessary unstable, unfortunately. Even if c=sideratle unaer-
* Q-* stress gradients neglecting longitudinal aeriva- relaxation was appli when introducing tre cress-

tives, i e determine s1, S2, S3. ure change due to streamline curvature, the previous
solution was disturbed tc sue, an extent that the

4. Compute the lateral pressure gradient 3c /3z procedure became divergent In ome regions. There-

,. knowing the pressure at the grid points and thi fore, the present approach was adopted. The press-
ure gradient is now almost independent of the solu-

longitudinal pressure gradient 3cpi/3x (assumed tion, since at the outer edge the curvature is ob-
zero in the first ster). Use equacion (hc) to ob- tained from the potential flow, and at the surface
ta. the lateral curvature K13 of each streamline, from the curva-are of the surface itself. Linear

interpolation between these limits is used for all
5. Step forward each streamline to X=Xi.i, intermediate points. The direction of the limiting

using the known streamline direction at X=Xi and streamline, used for computing the normal curvature,
the lateral curvature K1,. Assume, as a first ap- has, however, to be found from the solution at a
proximation, that the pressure can be obtained pvs step.

from the previous step, using a constant longitudi-
nal pres-are gradient. Compute the velocity, using As appears from the scheme outlined, no viscous-
(Ia). inviscid interaction is included so far. This is,

-. Start at the innermost stream surface (i e admittedly, a serious limitation which will beStar attheInnemos steam urfce i e removed in further work.
the hull) and displace the streamlines in the y-
direction in such a way that the correct volume
flux is obtained in each stream tube. (At the sur- Although a considerable part of the present com-
.face of the hull "limiting streamlines" are ob- puter program is the same as the one described in
t sufcaned from the projection of the streamlines next (7] its logic has been changed. The main reason for
to the surface.) The first approximation for the this is that the input pressure is now taken from
location of the streamlines at X=Xi+ I is now the edge of the viscous region (initially unknown),
obtained. while in the previous approach a surface pressure

7distribution was used. As explained in [7] good
r7. Use the stored sources to compute the press- results were obtained only if measured pressures
ure at the outermost two stream surfaces at X=Xi were used as input. The objective of the present
and obtain the normal pressure gradient ac2/3y at work is to enable calculations based on computed
the edge of the viscous region. Use (4b) to com-'.'.:potential flow pressures.
pute the normal curvature K1 2 at the edge.

8. Extrapolate the limiting streamlines to the
station X=Xi+ 2 and compute the coordinates and
the direction cosines after this step. Compute the X-Xi.1
normal curvature of the surface along the limiting X-X1
streamlines, using the change in direction cosines
compared with the previous step. M1-..

9. Assume a linear variation along the gridlines J.k+

k = const of the normal curvature of the stream-
lines, the boundary values being given by 7.and 8. VCONST
Compute the normal pressure gradient acp/3y at
each grid point at X=Xi+ I from (b). \

10. Use the pressure gradients in the x, y and
z directionsto compute the gradient along each line
k = const and integrate from the known pressure
at the edge to get the local pressure everywhere
in the grid. Compute new velocities from (ha) and
return to 6. Iterate until cp changes less than
_.0c4 between two iterations. (Usually 2-3 iter- Figure 4. A stream tube
ations.) 4. Details of the Streamline Curvature Method

:N 11. Return to 3. and step to the next X.
Since a number of details in the present version

Comparing the present approach with an ordinary of the method are similar to the ones described in
boundary layer method it is seen that the most [7] this description can be made relatively short.
essential weak points of the latter have been re- There is not much point in repeating all equations,
moved. Thus, continuity is maintained exactly so only brief descriptions will be eiven of fea-
(within the numerical approximation), since the tures unchanged.
viscous region is correctly covered by the com-
putational grid. Further, the pressure variation 4.1 The Pressure at the Edge of the Viscous Region
across the viscous region is considered, albeit
approximately. The hull is represented by a large number of

quadrilateral panels defined by the three space
When starting the development of the method the coordinates of a set of points cn each section of

intention was to compute the local pressure gradi- the hull. On each panel the source strength, 0, Is
ent across the boundary layer iteratively from the assumed constant. a is solved by Gauss-Seidel iter-

n4



ation from a set Cf" mi.ultanecus equat ions cf the
k 2 1 4- -- for y: 6C; k = C for y

Z A..a. u (7) Su and 3v are the potential and viscous :czs -

flows resp. at the wall, and u e -s the velocity

where is the undisturbed velocity usually put at the edge of the viscous rezocn. :n
equal to unity), R. is the unit vector in the nor- non-cross-over profiles are ouite well represented
Mrldirection at panel i, and Aij is a set of in- in this way.

fluence coefficients, defined by

A. n4.3 Stresses

S, Of the six Reynolds stresses only the two shear
r* stresses in the plane of the stream surface are

r.. is the distance from a point on element j to considered. As explained in (7] these are computed

the centre of panel i. Different numerical evalu- using the mixing length model, with Michel's et al

ations of the integral are used, depending on the representation of the mixing length acro e
distance between panels i and j. viscous region and van Driest's damping factor

close to the wall.

Eaving solved The system of equations, the ai:s
are stored. Once the oressure is needed at (or
close to) the edge of the viscous region, a sub- The turbulence model is thus of the common' boundary
routine is called for computing the velocity com- layer type. This is not a very good approximation
ponents, using the following formulae in the viscous region close to the stern, as ap-

pears from (5] and [6]. In a more complete model
U = U + E X.0. (9) all six Reynolds stresses should be consdered, and

i Jthe effects of curvature and flow convergence

V = E y.C. should be included. The main effect of the approxi-
J J mation is that the two stresses computed become too

W = Z.o. large, yielding too large total head losses. How-
J J ever, as was shown in (7] viscid and

where X- Y-,Z-represent influence coefficients for inviscid calculations using the present method are
the thre' veloity components not very much different, indicating that convection

in this case is far more important than diffusion.

Xj = f )dSIn (7] the cLtails are also given an the computation3j J rj, of the necessary distance from the wall(which is

Si not used otherwise), the computation of a shear

(41'-I)d velocity from the innermost streamlines and the

% 3 evaluation of the necessary stress gradients from
S5 the grid points.

Si = II -(-)dS (00) 4.4 The step

Sj JThe computation of the pressure gradient in the
z-direction is fairly straightforward and this

Knowing U, V, W the pressure is computed from yields the lateral curvature K13 from (hc). Knowing
Bernoulli's theorem, this, the step may be taken from X = Xi to X = X.+I

in the plan x-z (a stream surface), see Fig 2. T~e
4.2 initial Values starting direction is then defined by the location

of the streamline at X = Xij1 and X = Xi, and the
As will be discussed later, the method is ver-y formula for computing its location at X = Xi,

sensitive to the initial values, so a good repre- considering K,,, is obtained by series expansion
sentation of the velocities at the initial plane to second order about X = Xi (x = 0), see (7].
is needed. For the longitudinal velocity ul,
(along the streamline at the boundary layer edge) 4.5 Continuity
either the wall - wake law or the power law with a
variable exponent is used, see (7]. Once a layer of streamlines (corresponding to a

stream surface, j say) has been stepped forward,
The cross-flow, uc, is assumed composed of two the continuity is checked. Each pair of streamlines

parts, one due to the potential flow variation j, k and j, k+1, form, together with the corre-
across the region occupied by the viscous flow and sponding lines at the surface j-1 (i e 5-1, k and
the other due to the viscous cross-flow itself. j-1, k+1), a stream tube, in which the continuity
The former is taken to be linear with y, while the equation (6) should hold. Since "4 is known from the
latter is computed from Mager's formula, specifying entrance conditions, the necessary cross-sectional
a cross-flow boundary layer thickness, 6 chosen area at X = X +, may be computed, taking u. as the
so as to obtain a good fit to the initiaJ data. average velocity of the four corner streamlines.

The outer edge (between j, k and J, k+1) is then
u C  I tan (kIS + tan- (ktan8 l adjusted so as to obtain the required area.

ue Ue Now, since the stream surfaces should be con-
tinuous, the outer edges of the stream tubes cannot

ki 0 1 - be moved independently. The procedure for satisfying

5
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both the smoothness requirement and the flow con- measured data were used.

tinuity is described in [7].
5.1.1 Boundary Layer Parameters

4.6 Gene 4-n of 'Jew Grids
Results from the present calculations at Rn =

It was found, when testing the first version of 5"106 are compared with three other methods in
the method, that the streamlines could not be Figs 5-10. The other methods are chosen to re-
traced all the way to the stern without diffi- present one typical boundary layer integral method
culties. There are two main reasons for this. (Larsson's [18]), one typical boundary layer dif-

Firstly, in regions of large cross-flow,corre- ferential method (Johansson's [19]). and the best
sponding streamlines in adjacent stream surfaces of all methods participating in the Ship Boundary
may depart considerably from one another, creating Layer Workshop (Muraoka's (20]). Muraoka's method
very distorted stream tubes. Secondly, in regions is based on the partially parabolic approach by
of strong convergence, the streamlines tend to Spalding and his co-workers at Imperial College
merge into one another, which, of course, makes and is considerably more general than ordinary
the procedure blow up. It was therefore found boundary layer methods.
necessary to introduce a special subroutine, for
generating a new undistorted grid, whenever necess- In Fig 5 the distribution of the momentum thick-
ary. The new grid is generated by one-dimensional ness, 0.., around the girth at X = 0.7 from keel to
interpolation along the lines j = const in the water-line is shown. Note that all lengths are
plane X = Xi and the quantities interpolated are normalized by the model half length according to
the velocity direction cosines, the pressure co- Fig 1. It is seen that the present method and
efficient and the volume flux in the layer of Muraoka's yield very good results, while the bound-
stream tubes between the stream surfaces j and j-1. ary layer results at this station (15 % of the
To avoid large local peaks in very convergent length from the stern) are somewhat fluctuating,
regions there are also two possibilities of smooth- although the level is correct.
ing the grid. Either the volume fluxes or the di-
rection cosines of the streamlines can be adjusted.

Experience has shown that the smoothing parameters
may be varied within fairly wide limits without
changing the results, except locally.

°-".- Sa
4.7 Boundary Conditions *

At the hull surface the no-slip condition is
applied, and in the innermost layer of stream
tubes either of two assumptions is made for the
velocity distribution. When computing the volume
flux a linear variation is assumed, while when
computing the friction velocity, similarity func- -
tions are used [7]. MWA

Since the shear stresses cause a total head drop 0
along each streamline, there will be a discontinuity
at the outer edge of the computed region. To avoid
this, new streamlines should be included as the Figure 5. Momentum thickness. X = 0.7 (SSPA)
calculation proceeds downstream. This is not done
at present, so part of the viscous region is lost. The velocity profile shape factor, H1 2 , at X =
Since, however, the total head drop is quite small, 0.7 is shown in Fig 6. The average deviation be-
this is not considered a serious limitation. Sym- tween the present results and the measurements is
metry conditions for velocities and pressures are about 0.05, which must be considered satisfactory.
applied at the lateral boundaries. Also in this case reasonable, but fluctuating,

boundary layer results are obtained. Muraoka's
5. Results and Discussion method fails, probably due to bad grid resolution.

The two test cases presented in [7] have been The fluctuations of the boundary layer methods
recomputed using the new version of the method, are found also in the computed wall cross-flow
The first one is the SSPA Model 720 experimentally angle, w. Both the present method and Muraoka's
investigated by Larsson [1] and L~5fdahl [5], (6] fail to predict the peak around mid-girth, but
and the second one is a tanker hull for which data otherwise the results, at least for the present
by Hoffmann (16] and Wieghardt and Kux [17] are method, are quite good.
available. These are the two test cases used at
the Ship Boundary Layer Workshop [8]. Comparisons Turning to the results obtained at X = 0.9
will be made with some Workshop results. (5 % of the length from the stern, the aftermost

station where measurements are available) it is
5.1 The SSPA Model 720 seen in Fig 8 that, except for a region near the

keel, the present method and Muraoka's produce
The computations were started at X = 0.5, using almost identical results. These are smooth andinpamos identles resordin. Thes areio smoot aasnd

input profiles according to section 4.2, based on have the right trend but are about 25 % too low.
measurements. In future calculations initial values Larsson's boundary layer method broke down (pre-
will be generated by a boundary layer method, but dicted separation) at X = 0.88, so no results are
to eliminate possible errors from this source, the available at X = 0.?. The fluctuations in

6
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Johansson's method are excessive at this station
*- and quite unrealistic results are obtained in the

* upper region (outside the figure).
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• [/J k. // .... .u. \\ / ISumming the comparisons, the present method

'- and \ / Muraoka's seem to be equally accerate except
I , -P, S~m"\k / I in the prediction of the shape factor, where

I THO \"'/ I Muraoka's results are far too low. The boundary
"i -'. %/layer methods are clearly inferior in the corn-

., LWATERLU puted region.

*Figure 7. Wall cross-flow angle. X = 0.7 (SSPA)

The shape factor predicti~on by the present
[.-, method in Fig 9 is reasonable, while the boundary

layer results are again too irregular. Muraoka's
[2, shape factor is far too low at this station.

*i From Fig 10, finally, it appears that the wall

~cross-flow angles predicted by the present method

~are too low in the central region, where Muraolca's
.resultsearebetter. The opposite is true. however,
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Figure 10. Wall cross-flow angle. X : 0.9 (SSPA)

5.1.2 Isovels

Wake contours (isovels) are shown in Figs 11
and 12. The upper figure represents the calcula-
tions, while the lower one is obtained from
Larsson's boundary layer measurements [E].

B. MEASURED
Disregarding the fine details of the plots, it

is seen that the predictions are quite good at X =
0.7. The thinning of the viscous region near the
keel is realized, as is the concentration of mo-
mentum loss near midgirth.

At X = 0.9, Fig 12, the results are not so good.
As could be seen in Fig 8, there is a concentration
of momentum loss in the lower part of the vertical
side. This effect is not found in the measurements.
The reason for this is the pressure distribution,
as will be discussed in the next paragraph.

The results presented in (7] were considerably
better at X = 0.9. This is essentially due to the
fact that the measured pressure distributiun was
used as input. Another reason is that the direc-
tions of the initial velocity vectors have been
slightly changed. The present ones should be
more accurate, but they seem to distribute some-
what too much momentum loss to the region near
the water-line. Again th:.s might be due to the Figure 11. Isovels sl X = 0.7. (u/u : 0.6, C.7,
neglect of viscid-inviscid interaction and its O.P, 0.9, 0.95, 1.0) (SSPA)
effect on the direction of the velocity vectors the viscous flow. This is a bit surprising since
at the edge of the viscous region. In Fig 13 the the velocities in the present method are lower,
results of the previous calculations are shown which would yield a smaller variation across the
for comparison. region.

5.1.3 The Pressure Distribution Also at X = 0.9 the two methods produce similar
results. A slightly better correspondence with

Computed surface pressures at X = 0.7 and 0.9 measurements is however obtained in the upper
are compared with measurements in Figs 14 and 15. region by the present method.

[* Good results are obtained in the lower half of
the girth at X - 0.7, while in the upper region The too high computed pressures will push the
the predictions are somewhat too high. It is low speed viscous flow Jownwards tc the zress' re
interesting to note that the present predictions minimum. This s the reason why the :redizte! _-
yield results very similar to the potential flow vels exhibit a bump in the lcwer regicn. Mcst r-,-
pressures on the surface. The same pressure vari- ably the erroneous pressures are :ausei -:e
ation lof -he order of 0.05) is thus preiicted neglect of the viscid -inviz:._ :naerazt.Q-..
by both methods across the region occupied by the



A, CALCULATED

Figure 13. Isovels at X = 0.9. (u/u = 0.6, 0.7,
0.8, 0.9, 0.95).From [7]? (SSPA)

B. MEASURED KEEL WATERLINE
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Figure 12. Isovels at X 0.9. (u/u e 0.6. 0.7,
0.8, 0.9) (SSPA) e

5.2 The HSVA Tanker Model

Figure 14. Pressure distribution at X 0.7 (SSPA)
While the first test case is a relatively fine

ship with a block coefficient of 0.675, the HSVA 5.2.1 Boundary Layer Parameters
tanker is very bluff, having a block coefficient
of 0.850. It might therefore be suspected that Since no measurements are available at X : C.7,
this case would be more difficult to compute, but results -will be given only at the aftermost station,
this has turned out not to be the case. After X = 0.9. (The measured boundary layer paiameters
trimming the method on the SSPA model, it has been were however obtained at X = 0.884.) Unfortunately
quite simple to apply it to the second case. Johansson's method has not yet been applied to this

case, so the comparisons will be made only with
Initial values based on measurements were Larsson's and Muraoka's methods.

specified at X = 0.5 and the computations were
carried out at a Reynolds number of 6.8 x 106. In Fig 15 the momentum thickness is given.
Boundary layer parameters and isovels will be Larsson's method could be used only in the lower
presented. half of the hull and as seen in the figure un-

realistically high e :s are predicted near mid-
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girth. Muraoka's results are quite reasonable but

a bit too high. The present results are a bit too
low in the centra' region of the girth. A con-
siderable part of the momentum loss has been
pushed to tne water-line and there is also a some- 2.5.

what too large loss further down. The tendencies
are thus the same as for the SSPA model. "12

ID

2.0-
.0. i-

Cp LARSSON PRESENT

SHMETHOD

0.C11.5 0

ME RAOKA

1.0.
OKEEL WATERLINE

Figure 17. Shape factor X = 0.9 (HSVA)

The final boundary layer plot is the wall cross-
-0.05 flow angle, Fig 18. The best results are here ob-

KEEL WATERLINE tained by Muraoka's method, since the drop near the

keel is well predicted. On the other hand, the
large angles near mid-girth are missed, as in the
present method.

Figure 15. Pressure distribution at X = 0.9 (SSPA)
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Figure 18. Wall cross-flow angle X = 0.9

Figure 16. Momentum thickness X = 0.9 (HSVA) 5.2.2 Isovels

The shape factor in Fig 17 is quite well predicted
by the present method except at one location. The features found in the boundary layer para-

Looking at the measured velocities, there is ob- meters are confirmed in the wake contours of Fig 19.

viously a vortex at this position. This vortex has Compared with measurements the momentum loss has

not been predicted by any of the methods. As in been spread too much. For comparative purposes -he

case of the SSPA model Muraoka's shape factors are results based on the measured pressure distribution

too low. are shown in Fig 20. The much better correspondence
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%I



indicates that the viscid-inviscid interaction to the ones from the first case.

has to betaken into account to obtain results of
high quality. Comparisons have also been made with results

from two different boundary layer methods and a
more general method for viscous flows based on
Spalding's partially parabolic approach. It turned
out that the latter and the present methods were
fairly equal in accuracy, both superior to the
boundary layer methods.

3. MEASURED
Figure 20. Isovels at X = 0.9. (u/u = 0.6, 0.7,

O-.8, 0.9) From [7] (HSVAI
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