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U I. INTRODUCTION

-. The purpose of this work is to present t the COM ILW.

" 4tpa general field theory describing the structure and interac-

1P tion of vortices, both atmospheric and extraterrestrial. This

field theory is characterized by four main element:

(1) New laws of physics,

(2) New mathematical expression for these laws,

(3) A conceptual framework for application of these

laws to vortex structure,

(4) Data for partial verification of these laws.

Such a general field theory is also termed a "paradigm", Kuhn

(1970). ter consideration of the field theory, if the scien-

tific community ac wl proposed paradigm, this
acceptance is termed a "paradigm shi . According to Kuhn

a paradigm is a "scientific achievement that some particular

scientific community acknowledges for a time as supplying

the foundation for its further practice." This achievement

is "sufficiently unprecedented to attract n enduring group of

*adherents away from competing modes of s entific activity."

Simultaneously it is "sufficientl en-ended to have all sorts

of problems for t group of practicioners to resolve."

(Kuhn (1970) cites paradigms as examples of scientific practice

which include law, theory, application and instrumentation. The

paradigm here introduced incorporates such laws, theory and

application, and is inspired by recently developed scientific

instrumentation, the spin-scan camera of the geosynchronous met-

eorological satellite. This paradigm further proposes an

expansion of mathematical systems and a theory for the structure

of a wide range of vortex phenomena for the utilization and

application of these laws., Lastly, the paradigm proposes a

theory incorporating two further laws to describe the behavior

..
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of interacting vortices.

The proposed laws are cast into a predominantly methematical

form which may then be checked in part through observation via

this new instrumentation which was the touchstone for the

paradigm articulation. Kuhn states (p. 26) that "seldom (are

there) many areas in which a scientific theory, particularly

if it is cast in a predominantly mathematical form, can be
directly compared with nature."

-The Anomaly of Band Behavior

Kuhn says further that "discovery commences with the awareness -

of anomaly, i.e., with the recognition that nature has some-

how violated the paradigm-induced expectations that govern

normal science." (p. 52). The anomaly in this case is the

* behavior and structure of synoptic scale vortices seen in

their entirety by the geosynchronous meteorological satellite.

The presence and behavior of the spiral bands of clouds in

both tropical and extratropical vortices was an event for

which satellite meteorologists were not adequately prepared.

The seemingly contradictory behavior of these bands in these

two types of storms only deepens the puzzle.

These phenomena have not been explainable in simple and

concise terms. Such an explanation of the structure of at-

mospheric vortices seen from meteorological satellites seems

to require a new body of theory. But as Kuhn says (p. 46) 4

"A new theory is always announced together with applications to -

some concrete range of natural phenomena; without them it

would not even be a candidate for acceptance." And rightly

so, for otherwise the scientist pursuing the research of
"normal science" would be too easily distracted by trivial

- exceptions to the paradigm under which he operates, and

.. thereby be unable to continue his own work.

2 -
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The theory advanced here has been developed to explain the

vortex structure (including spiral bands) and behavior of

these vortices observed from meteorological satellites. This

theory must then be accompanied by application to a concrete

*range of natural phenomena. The field theory, or paradigm,

. which explains the presence and behavior of spiral bands in

part by specifying the lateral flow field in the vortex, is

* correlated with flow fields of vortices ranging in size from

fifteen centimeters in radius, in a laboratory Dines vortex

cage, all the way up to the stellar velocities in the spiral

galaxy, M31, a range of 21 orders of magnitude.

THE GENERAL FIELD THEORY - AN OVERVIEW

By its very nature a general field theory is complex and

extensive. It is not surprising, therefore, that a road

5 map through the theory is needed. Such a road map is pro-

vided in the form of three sets of flow diagrams. In these
%4 accompanying diagrams the Field Theory is divided initially

into Theory and Application (See Set I). The first set

details the Theory, the second and third sets detail the

Application, Set II, the Vortex Structure and Set III, the

Vortex Interaction. Let us now consider Set I.

From Set I we see that the Theory is further divided into

! Field Physics and Mathematics. The Field Physics is comprised,

in turn, of five new field laws governing the structure and

interaction of vortices. The Mathematics provides a

systematic expression for these laws applicable to a host of

natural phenomena. These mathematical systems include both

extent and newly discovered coordinate systems separable in

three dimensions in Laplace's equation and the various

kinds (up to three) of solutions available in each coordinate

system.

i, 3



SET I

GENERAL FIELD THEORY

Theory Application

Field Physics Mathematics Vortex Structure Vortex I~teraction

, I " I- ,
.Field.Phsics Mathematics (Solutions to

Laplace's Eq.)

Stru cural Interaction Ellipsoid Cycidal
Laws Laws Coordinates Coordinates

i ..

- FIELD PHYSICS
I I

Structural Laws Interaction Laws

An [/
I-III V1 0,0 IV-V4 =l

n
(Lateral with regard [ Q

I to either vertical
axis or axial circle)

G" °I -

MATHEMATICS
4.I~1~~ I

Ellipsoidal Cyclidal *

:.o u (Spiral
Variants)

- E cidean Non Eucldean or Herbolic-!
m II

' Curvature - .0, positive constant, negative constant

4
.4 ,,-,., -'-,.,...,'-'v -'; .. ,," ...... ,,v -.' "." . . . , .-- . -. . .' .'. .- ." - , - . •i i • .



'7-.

Application is divided into Structure and Interaction. The

vortex structure includes such diverse phenomena as tornado

funnels, nuclear fireballs, the banded structure of the

Jovian atmosphere, the movement of stars and the shape of

q spiral arms in galaxies and the winding spiral frontal

systems of terrestrial extratropical storms. The vortex

interaction includes the mutual interaction of hurricanes

known as the Fujiwhara effect, looping and cycloidal hur-

ricane paths, and abrupt path changes. We will now look at
the Field Physics in greater detail.

FIELD PHYSICS

Field Physics implies the utilization of tensors. According

to Lanczos (1970),

"During the nineteenth century, when the importance

of tensors became increasingly manifest, the evo-

lution of physics tended to turn more and more deci-

sively from the particle physics of Newton to a

field physics, advocated by Fresnel, Faraday, Max-
pwell, and their followers. Here our attention is

focused on the entire space, or some limited portion
of it, without bias to certain small regions, the
'particles', which in Newton's time were designated

as the seats of physical action. Now the realization

came that the 'field strength' existed everywhere

and it was a mere accident that the material particle

was needed for the demonstration of its existence.

The concept of a 'field' thus came in use, in which

physical action is present in all points of space.

The Maxwellian equations, which describe the action of

electromagnetic forces, are partial differential

equations which involve the space and time derivatives

of the electric and magnetic field strengths."

t o . . .° o *, . j . o . . ° . • . -. .. ..--. . . " '..
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The field laws proposed here are partial differential equations

involving the space and time derivatives of the frictional and

pressure field strengths. The field physics is composed of five

physical laws, three governing the structure of vortices and

two their interaction.

Structure

The laws governing the structure of vortices are all expressed

2" in the two dimensional form of Laplace's equation. The

two dimensions in question are orthogonal to the axis of

reference of the vortex in question, whether that axis is a

central axis or constitutes the axial circle or a torus (cf.

Figure 1.1). This distinction is made more clear in the

Application part of the text. These laws state (in order)

that the two dimensional Laplacian of the normal component

vorticity (i.e. parallel to the axis), lateral divergence

(within the surface of reference) and pressure all either

satisfy Laplace's equation in two dimensions or else Laplace's

equation is undefined. The undefined condition would occur

at a field boundary of a piecewise continuous vortex. .

Interaction

The interaction laws arise naturally out of the consideration _

of vortices as discrete field entities. How do vortices

interact? Laws IV and V allow the vortices to remain as

discrete field entities and still satisfy Stokes' and Gauss'

theorems respectively. The partitioning of circulation, orbital

and spin vorticity in Stokes' circulation theorem is the heart

of the Fourth Law. The allocation of the general sink function

and the local sink function, and its radial counterpart are

the subject of the Fifth Law.

6
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Cylindrical-i~ / tral axis

Spherical

Figure 1.1 Comparison of Solenoidal and Toroidal Vortices.

Solenoidal vortices have a vertical central axis
as in figures on left, cylindrical and spherical

vortices. Figure on right has an axial circle.

Vorticity is defined in relation to axis on left

or axial circle on right. Solenoidal vortices

have surface of constant curvature, either

positive, zero or imaginary, and may have spiral

mutations. Toroidal vortices do not have

constant curvature and therefore no spiral

mutations. Schroedinger's and spatial wave

equation are separable in the former, but not

the latter.



77

Frictional Equivalents of Laws I and II

We may also restate Laws I and II: the lateral frictional

force possesses neither a curl nor a divergence, and though

it exists, it is so distributed as to locally alter neither the

circulation nor the sink function of the individual vortex.

As a consequence, the circulations and sink functions must

take on a specific form consonant with an integrated expression

of the first two laws.

* The lateral frictional force is defined as having components

only within the surface of interest. There are no components

outside of the surface, nor any derivatives of those components

outside of the surface. Hence, in cylindrical coordinates,

there are no derivatives with respect to height, z, in the

lateral frictional force. All derivatives are with respect

to either radius (or its logarithm), or azimuth, or a linear

recombination of the logarithm of the radius and the azimuth.

This latter is the subject of the mathematical coordinate

systems both extant and new. The linear recombinations are

properly the subject of the logarithmic spiral coordinates.

MAT"-.ATICS

The mathematical part of the Theory provides a framework

for solutions to the first three laws. These solutions

occur in a number of extant coordinate systems and six

newly-discovered ones, which are more general expressions

. of ones previously known. These coordinate systems are .

termed ellipsoidal and cyclidal.

CYCLIDAL COORDINATES

Cyclidal coordinates are divisible into toroidal and bi-

spherical. The former are useful in describing one fluid
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propogating as a pulse through another. This would include

a smoke ring created by a playful smoker, a drop of blood

* falling as a ring in a Copper Sulfate solution, a rising

cumulonimbus cloud or a rising nuclear fireball. It is

the toroidal coordinates which display an axial ring. The

surface normal to this ring is the proper forum for the

"* two dimensional Laplacian.

Bispherical coordinates also possess an axial ring but

at this writing a relevant dpplication is not apparent to

the author.

Toroidal coordinates are separable in Laplace's equation -

*i and possess solutions known as toroidal harmonics. The

* .solutions in the "radial" components of the torus are

" combinations of half order spherical harmonics of the first

and second kind on hyperbolic functions of the radial

, coordinate and sinusoidal functions of the azimuthal

. coordinate. Their cross sections are given in bipolar coor-

dinates.

ELLIPSOIDAL COORDINATES

The ellipsoidal coordinates, on the other hand, are degen-
erate forms of more general spiral forms documented in

Appendix A. The ellipsoidal coordinates may be divided

into Euclidean and non-Euclidean, or hyperbolic. The

former have surfaces of interest with curvature either a

. positive constant, or zero. These surfaces occur in cy-

lindrical and spherical forms respectively. In non-Euclidean

or hyperbolic coordinates, the surface of interest has a

curvature with a negative constant and is a circular hy-

perboloid of one sheet. The Euclidean coordinates may

be further subdivided into cylindrical and spherical types._*

1 10
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CYCLINDRICAL COORDINATES

There are three types of cylindrical coordinates; parabolic,
circular and elliptic. The parabolic coordinates consist

of confocal paraboloids and possess spiral variants with

spiral parabolic harmonics as solutions to Laplace's

equation.

The circular coordinates consists of circular cylinders

intersected by radial planes. These coordinates have

solutions which are linear in Zn r, circular harmonics

and log spiral harmonic solutions, consisting of a

linear recombination of kn r/r0 + i6. The elliptical

coordinates duplicate the results of the circular

harmonics, consisting of elliptic cylinders intersected

by confocal hyperboloids. Again, there are elliptic

" harmonics, spiral elliptic harmonics based on a linear

recombination of hyperbolas and ellipses and solutions

linear in the radial elliptic coordinate.

SPHERICAL SYSTEMS

The spherical systems may be divided into two classes,

spherical and conical. Spherical coordinates have nodes

defined by spheres intersected by circular cones, and

partitioned azimuthally by planes intersecting at a common

axis. Conical coordinates, on the other hand, have

nodes composed of the intersection of spheres, elliptic

* cones and cylindrical hyperboloids of two sheets. -

Each system has solutions to Laplace's equation which

are either linear in the logarithm of the tangent of

the half radial angle (suitably scaled), spherical

harmonics or spherical log spiral harmonics in the case

12
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Uof spherical coordinates, or their counterparts in conical
coordinates. The spherical harmonics may also be subdivided

. into zonal, sectoral or tesseral harmonics. Zonal harmonics

are a function of latitude only, sectoral of longitude only,

* and tesseral of both. The spiral harmonics may be considered

- to be a form of tesseral harmonics. Zonal harmonics have
solutions which are Legendre functions of the first kind

and yield bands of positive and negative solutions

alternating as a function of latitude. It is interesting to

note that solid rotation constitutesa solution of Laplace's

equation, since the Coriolis parameter is a Legendre

function of the first kind, and of order one, i.e. sin .

As such, therefore, the Coriolis parameter, 20 sino, is a

solution to the first Law, i.e., V2 0.

i.13
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1.2 APPLICATION - VORTEX STRUCTURE I
INTRODUCTION

In this section we deal with the Application of the General -

Field Theory to Vortex Structure. In the preceding section

the Field Physics and Mathematics were outlined. Here, the

first three laws governing vortex structure are considered

along with their mathematical manifestations as they appear

in natural phenomena.

Just as there are two kinds of Euclidean Coordinate systems,

the ellipsoidal and cyclidal, there are also two kinds of

vortex systems. These corresponding systems are the

Solenoidal and Toroidal systems. A solenoidal system is

characterized by a central vertical axis. A toroidal system,

on the other hand, is characterized by an axial ring, as

the name would suggest. The solenoidal vortices have log

spiral harmonic solutions. The toroidal vortices do not.

Following the mathematical subdivision, the solenoidal vortices

may be divided into cylindrical and spherical types. The

cylindrical vortices, in turn, may be divided into three

further kinds, depending upon the fluid in which they appear

most prominently, the terrestrial atmsophere, the ocean, or in

the rarified reaches of space.

SPIRAL GALAXIES

The movement of stars in M31 and the spiral arms are a

manifestation of the circular cylindrical vortex in space.

The stellar motions display a double maximum, peculiar to
the three piece, cylindrical model called the "Double Vortex"

which is discussed at some length later in the text.

14
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This double vortex, and others in the cylindrical genre, -

are three part vortices in which the vorticity and diver-

gence fields are piecewise and continuous. Each piece

satisfies Laplace's equation. At the juncture of the

pieces the Laplacians of divergence and vorticity are

undefined. The three parts of the vortex are the core,

inner regime surrounding the core, and the outer regime

exterior to the other two.

PREPLANETARY SOLAR SYSTEM

Using the spiral galaxy as a model of the preplanetary solar

system, we may hypothesize how the formation of the sun and

the planets might have occured from a dual vortex with spiral

arms consisting of a solar system sized nebula. The dual

vortex is characterized by two maxima in the tangential veloci-

ty field. These maxima arise out of a very steep concentration

of vorticity. To be precise, a steep concentration of vorticity

enclosing an even steeper concentration of vorticity. Since

each concentration accounts for a velocity maximum, the term

dual vortex.

The divergence pattern ordinarily follows the vorticity pattern

* so that the center of the vortex is characterized by an extreme-

ly high concentration of negative divergence, or in this case,

the necessary matter for the formation of the central star of

a solar system. Were the axially symmetric vortex the only

allowable mode, then it would be doubtful that the outlying

matter would achieve sufficient concentration to form planets.

The presence of spiral solutions, and their orthogonal counter-

parts presents a possible mechanism for concnetration of

planetary matter.

Just as in a hurricane, where the prominent divergence field ;A
is confined to the first three harmonics, so there may be

16
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such a concentration in the preplanetary vortex. If a

higher order (wavenumber 10) orthogonal spiral appears,

then the mechanism for separation of the arm into appropriate

segments, each coallescing into its own planetary mass is at

P hand. The phenomenon would be much like an interference

- pattern in a ripple tank. In this case, however, the interfer-

ence pattern would arise out of two separate but overlapping

solutions to Laplace's equation in the gaseous divergence field,

orthogonal spiral arms.

The concept of an interference pattern is a logical extension

of combining axially symmetric with spiral asymmetric solutions

to the vorticity and divergence fields. Such a solution is not

a priori impossible if the boundary conditions are appropriate

and independent.

Thus a mechanism exists for planetary and solar creation

based on the hypothesis that the lateral frictional force

within the preplanetary vortex be incapable of sustaining

a divergence field. Or more precisely, the field wide lateral

*frictional force is non-divergent.

Further support may be gleaned from the realization that the

bulk of the planetary masses for the outer planets - Jupiter,

Saturn, Uranus and Neptune - are composed of gases which, nearer,

would have been driven off in vast quantities by solar heating.

It is well known, for instance, that earth's atmsophere is

a secondary atmosphere. It is quite conceivable that if the
d.6 original mass of the earth's atmosphere were returned to the

• - earth, then its mass would be equal to if not greater than

Jupiter's. In that case, the divergence field creating the

masses of the respective planets, could very easily increase

in intensity in a manner consonant with the distribution

of divergence in the spiral arms of a hurricane.

17



OCEANIC VORTICES

Eddies shed by the Gulf Stream and other currents such as the

Kuroshio may also be described in cylindrical coordinates.

These eddies undoubtedly are far less vigorous than their

severe atmospheric counterparts, and as such probably are

describable by a single regime or "simple" vortex, also

described in more detail below.

ATMOSPHERIC VORTICES

The bulk of the latter section deals with cylindrical

atmospheric vortices. Data on their circulations has

been amassed, covering such divers phenomena as laboratory

Dines vortex cages, tornadoes, waterspouts and hurricanes.

Of the naturally occuring severe atmospheric vortices, all are

characterized by spiral phenomena of one sort of another.
Waterspouts have been observed to display spiral rain

curtains. Tornadoes show hook echoes on radar. Hurricanes

have spiral rain squalls preceding the main storm.

The dust devil, waterspout and tornado display funnels but

the winds exterior to the funnel are not accompanied by

characteristic optical phenomena except within the lower

reaches of the boundary layer. The only manifestation

of the winds, therefore is the debris kicked up in transiting

the earth's surface.

In the case of the waterspout, this amounts to spray droplets.

In the tornado, the debris can be considerably larger, includ-

ing lethal missiles such as lawnmowers, human bodies, flying

timber and even Volkswagons. The dustdevil funnel is made

obvious by the dust picked up from the surface of the earth.

The tornado funnel, on the other hand, is a manifestation of

18



-U the third law insofar as the funnel cloud itself is evidently

" a lowering of the lifting condensation level, and as such,

,. ~,-assuming a vertically homogeneous mixing ratio, represents

* a constant pressure surface. Since under appropriate condi-

* tions the height of the pressure surface may be substituted

for a pressure variation then the shape of the funnel, the

lifting condensation level, is a logarithmic surface of revolu-

tion, thereby satisfying Laplace's equation. The radial com-

ponent of the height of the constant pressure surface is

linear (although possibly piecewise so) in the logarithm of

the radius such that

z = z09.n(r/r 0 )

" ." where r0 is a typical scaling dimension of the tornado funnel.

Since the Laplacian is two dimensional, then the height of the

5 pressure surface, and even the central axis itself may move

back and forth horizontally, giving the funnel a sinuous,

rope like stucture.
4-,

p The tornadic winds may be described by the three part mature

*vortex discussed at length later in the text. It is not

*. unusual for dust devils to have a lowering of the pressure

sufficient that a tuba cloud descends into the middle of the

dust devil vortex turning the dust devil into a tornado.

Waterspouts may also reach tornadic intensity. The three

kinds of vortices evidently occupy positions along a continuum

.* where the dividing line is an arbitrary phase change for water

vapor. The division is therefore phenomenological rather

-~ than dynamic.

Less violent manifestations of these vortices are snow, sand

and fire devils. The snow devils most commonly occur over

freshly fallen snow, loosely packed and clean, the sanddevils over

19



white sandy beaches and firedevils over forest fires.

All of these are different natural manifestations of vortices

satisfying the first three laws in cylindrical coordinates.

The differences arise out of the funnel manifestation and the

causal energetics, but the overall dynamics are the same,

only the scale is different.

The largest atmospheric cylindrical vortex is the hurricane.

As the phenomena increase in size their duration is typically

longer. The hurricane may have a life cycle up to ten days

or longer, the tornado up to a half hour, the dust devil a

matter of five or ten minutes, and sand and snow devils a

matter of tens of seconds.

The funnel of the hurricane is invisible and manifest as the

eye, whereas the winds are underlined by clouds and rain.

Indeed the hurricane is divided into three parts, the eye,

* convective ring and outer hurricane corresponding to the three

*part mature vortex. The vortex structure of the divergence

field may, in the axially symmetric case, be described by a

double ring vortex or toroidal vortex. Thus the horizontal

and vertical components of the hurricane, and conceivably

*" other vortices, may represent the linking of toroidal and

solenoidal vortices. This would certainly be an interesting

point to pursue.

Thus the cylindrical vortices include, in roughly ascending

order of intensity, areal coverage and duration, sand and

snow devils, dust and fire devils, waterspouts, tornadoes

and hurricanes.

Sand and snow devils show no funnels and last less than a

20

4 '9 **

9. . p . . . . . . .. . .*9. . . .



minute. Their energetics arise out of a breakdown of the

surface superadiabatic lapse rate and usually occur over

snow or white sand, areas of high visible but low infrared
7' albedo. Dust and fire devils show a funnel like structure

due to the dust and flames and/or smoke incorporated into the

rising sleave or air and particulates in the "inner" vortex
in contrast to the clean and descending air in the core of

the vortex.

Dust devils commonly occur over superheated arid terrain and

may rise several thousand feet into the air possibly because

of the vast extent of superheated air in the lower planetary

boundary layer capable of feeding the dust devil's divergence

field.

Fire devils have been observed over volcanoes, forest fires

i and may have been present in the firestorms over the burning
cities of Dresden, Hiroshima and Nagasaki. Firestorms are
conflagratory equivalents of min-hurricnaes, and like hurri-

canes are capable of spawning their own lesser vortices.

Hurricanes may spawn tornadoes which are weaker than their

Great Plains equivalents and fire storms may spawn firedevils.
Like hurricanes, it is conceivable that there may be spiral

characteristics to the burn patterns, but that remains to be

seen.

The largest vortex which can be treated in cylindrical

coordinates is the hurricane. Even this is borderline
since the larger hurricanes, or typhoons, approach the

dimensions of smaller extratropical storms. The hurricane is

characterized by three regimes and spiral rain bands which

include wind shifts first backing then veering and pressure

jumps. This is indicative of spiral patterns not only in the

divergence field, but the vorticity and pressure fields as

well. The three regimes, core, inner and outer regimes of
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the mature vortex corresponds approximately with the hurri-

cane eye, the convective ring and the outer storm. The spiral

bands represent log spiral harmonic solutions of the low level

divergence field to Laplace's equation. The larger vortices

are more properly treated in spherical coordinates since the

lateral dimension begins to display evidence of the curvature

term. Since the effective atmosphere is only about ten miles

thick, the outer portions of a larger vortex bend more than

the thickness of the atmosphere, so that unless the earth's -

curvature is taken into account, horizontal coordinates become

meaningless after a certain distance.

SPHERICAL VORTICES

Spherical vortices may be divided into two types. The first

type, or storms, do not occupy the whole sphere and mathe-

matically a scaling factor must be introduced into the spiral

variation of spherical coordinates. The second type, or

general circulation does occupy the whole sphere and spiral

phenomena centered at one or the other of the poles character-

ize both Earth and Venus.

*. Both partial spherical vortices and complete spherical vortices

may be divided into vortices associated with the inner planets,

Venus, Earth and possibly Mars, and the outer planets, Jupiter,

Saturn, Uranus and Neptune. The inner planets are character- -

ized by moderate to slow rotation rates and strong solar in-

solation resulting in pronounced radiation imbalances between

poles and equators necessitating significant meridional heat

exchange between equator and poles in the planetary atmospheres,

and in the case of earth, the planetary oceans.

The outer planets, on the other hand, are characterized by

weak insolation, rapid rotation rates and pronounced zonal

characteristics. The general circulation of the inner planets
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may be modelled by a combined vorticity and divergence field

with both spiral and axially symmetric characteristics.

The axially symmetric properties are discussed in greater

depth in Appendix B. Essentially, the planetary vorticity

fields are of two parts, polar and tropical. The absolute

*" vorticity of the polar region is constant. The absolute

vorticity of the tropics is linear in the logarithm of the

- tangent of the half colatitude, or

( ) = ( 3 + In tan(/2 + 7/4)
'0

where # is latitude and i the gradient of C and 6 with

respect to the logarithm of the tangent of the half

colatitude at = o. The spiral asymmetries in the diver-

gence field are spherical log spiral bands which appear as

. straight bands in Mercator projections in Kornfield (1969) and

as ordinary polar log spirals in stereographic projections

also in Kornfield (1969).

Terrestrial storms are characterized by spherical log spiral

bands in the cloud fields. These bands are also accompanied

by pressure jumps and backing and veering of the winds indica-

ting like spiral asymmetries in the pressure and vorticity

fields. The outer planets are distinguished by alternating

zones of banding in the atmosphere. These zones and the

accompanying circulation fields may be modelled by zonal

harmonics, solutions to Laplace's equation of the divergence

and vorticity fields dependent solely on latitude given by

Legendre polynomials in cos 9 and cos 20 and their corresponding

series, where 9 is the colatitude, 7/2 - 4. This is treated

in greater detail in Appendix C.

The corresponding partial spherical vortex in the outer planets,

the Great Red Spot of Jupiter, is modelled by conical coor-

dinates and their spiral equivalent. This is an elliptical

24
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Uvortex arising in a high shear environment.

The general circulations of Jupiter and Saturn and probably

Uranus and Neptune are characterized by multiple peaks and

am valleys increasing in amplitude toward the equator. These

S peaks and valleys show promise of being described by the

phase shift in the difference of two close Legendre polynomials

of the first kind corresponding to the planetary vorticity

field. Such a phase shift constitutes a Legendre series.

Thus the theory of solenoidal vortides describes both cylindri-

cal and spherical vortices. The atmospheric cylindrical
vortices are predominantly warm core, but also include oceanic

eddies and spiral galaxies. The spherical vortices are

*' cold core and cover partial spherical vortices, or storms,

terrestrial extratropical and the Great Red Spot; and full

spherical vortices,or general circulations. The latter are

both mixed meridional and zonal for the inner planets and

nearly exclusively zonal for the outer planets. These

alternate soultions to Laplace's equation correspond to the

*different insolation and rotation rate requirements between

the inner and outer planets.

." The theory of solenoidal vortices would not be complete without

reference to the atmospheric anticyclone, prevalant on earth.

° Since the anticyclone appears to have a cohesive structure,

and interacts with other vortices in compliance with the

fourth and fifth proposed Laws, there probably exists an

adequate description of the vorticity, divergence and pressure

fields of the anticyclone consonant with the first three laws

-in conical coordinates. Perturbations in the anticyclone shape

may be accounted for by conical spiral asymmetries. While

the author has not yet done this analysis, it is worth mention-LiJ
ing in the interests of completeness.
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THE STRUCTURE OF TOROIDAL VORTICES

The final part of Set II details the structure or ring vortices.

Toroidal or ring vortices may be divided into two kinds,

atmospheric and plasma. Atmospheric toroidal vortices

describe pulses of one fluid through another. This may range

from synoptic scale, where tropical cloud clusters evolve into

cloud rings, to possible explanations of the structure of the

throat of the hurricane, all the way down to the mesoscale

cumulonimbus and cumulus families.

The ring vortex is characterized by minimal entrainment with

zero slip conditions on the lateral boundary of the rising

fluid pulse. The outer, downward circulation is exactly

compensated by the rate of rise of the ring vortex as a

whole. The ring vortex has a structure predetermined in

toroidal coordinates with a vorticity distribution such that

the frictional curl within the rising pulse is zero. Such a

constraint does not mean zero friction. The frictional force

is non-zero, but its distribution is such that the curl of

the frictional force is zero. By this means the ring circula-

tion is explicitly governed, yet allowing for an azimuthal

Fourier variation. These theoretical distributions include

the toroidal harmonics discussed in greater detail in Appendix

D.

Ring vortices may also be applied to a micrometeorological

and oceanic level. The smoke ring blown by the playful

smoker is one such vortex, and a drop of blood in a Copper

Sulfate solution is another such.

It is not inconceivable that in a larger ring vortex with

azimuthal harmonics that smaller ring vortices may form.

Laplace's equation may be satisfied in a piecewise manner.
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Hence, the Great Red Spot in the Jovian circulation and ring

cloud clusters in the Terrestrial tropics, composed of lesser

ring vortices, cumulonimbi.

PLASMA VORTICES

Both nuclear fireballs and toroidal fusion reactors fall under

this category, being directly addressed in Appendix D.

The mushroom cloud is merely a rising ring vortex with its

main propogation in the center. The outer falling component

of the vortex is exactly compensated by the rate of ascent of

the vortex as a whole. The rising fireball literally eats

its way through the atmosphere pulling a tail of debris behind

it. As is true in any active vortex, a distinct circulation

and sink field is accompanied by a characteristic pressure

distribution. Creation of a vortex in a toroidal containment

vessel by electromagnets will invariably alter the pressure

* field in the plasma, possibly pushing the internal pressures

". locally beyond the crictical values necessary to sustain a

-. continuous fusion reaction.

MISCELLANEOUS VORTICES

Under this category falls vortices produced by airfoils

and the ring vortices produced by the downwash from the

blades of a helicopter. The lift of an airfoil is given by the

cross product of the oncoming airstream into the vorticity of

the airfoil. Knowledge of the distribution of the vorticity

about the airfoil which is itself a potential boundary in

Laplace's equation may contribute to an understanding of

the relevant phenomena. Likewise, the circulation distribution

for downwash from both moving and hovering helicopters may

be useful in maximizing their efficiency.
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PSTRUCTURAL REVIEW
We have now reviewed the kinds of toroidal vortices describable

by the field theory thus far. The atmospheric toroidal vortices

range from droplets of blood in Copper Sulfate, to smoke rings,

rising cumuli and cumulonimbi and possibly the throat of the

hurricane to cloud clusters in the tropics. The plasma

torodial vortices include those which are free, i.e. nuclear

fireballs and their non plasma little cousins, high explosive

detonations, and those which are contained, the toroidal

plasmas in fusion containment vessels.

In review, then, the Structural Application encompasses both

• .toroidal (or ring vortices) and solenoidal (or vortices with

"* central axes). The latter may be either cylindrical or

spherical, and each of these has elliptical variants. All

U of the solenoidal vortices have both spiral and partial

variants which account for the new branch of mathematics out-

lined in Appendix A.

-.
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1.3 APPLICATION - VORTEX INTERACTION

The final application of the Model Theory is given in

Vortex Interaction discussed at greater length in Chapter VII.

As shown in Set III, the vortex interaction is conveniently

divided into phenomena predominantly associated with either

Law IV or Law V. The Vortex Interaction may be either

dual or multiple vortices.

Dual Vortices

The dual circulations are given by interactions between a

set of cyclones or a cyclone and an anticyclone. The latter

is most predominantly displayed with a hurricane rotating

about the center of mass of the cyclone-anticyclone pair.

This phenomenon was suggested by Riehl in 1956. The speed of

rotation, however is determined through the fourth Law so

that the translational circulation of the hurricane is less

than the ambient speed of the anticyclonic steering current.

The presence of the cyclone diminishes the anticyclonic

vorticity budget so that the net circulation is a difference

of the circulations of the two vortices.

In the case of two hurricanes the fourth Law provides for

the Fujiwhara effect. Both hurricanes rotate about one

another at a speed greater than the ambient steering current
would suggest. If one of the hurricanes is replaced with

an extratropical storm, then not only does the hurricane

rotate about the other storm, or their common center of mass,

to be precise, but it also spirals in toward the center of

the extratropical storm. Thus is introduced Law V, which

accounts for radial movements much in the same manner that

Law IV accounts for tangential movements.
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Law V dominates the multiple vortex interactions, more from

a stylistic standpoint rather than a phenomenological one.

A group of multiple vortices is termed a 'gyre'. This

term is borrowed from both Oceanography where a large

oceanic body of water rotating is called a gyre, and from

Lewis Carrol's Jabberwocky,

"Twas brillig and the slithey toves

did gyre and gimble in the wabe."

Hopefully a new general field theory will not be significantly

less entertaining than Alice in Wonderland, and will be perceived

as having somewhat more information content.

The Multiple Vortex part of the Field Theory taxonomy falls

into three catagories dealing with Gyre Formation, Gyre

Exchange, and Gyre Translation.

Gyre Formation

Gyre formation involves the creation of a hurricane bearing

group due to the approach of a hurricane to close enough

proximity for the group to act as an integral unit. In this

case the hurricane encountering an anticyclone will not

appreciably be affected until the 1013 mb isobar wraps at

least half way around the storm. The hurricane must there-

fore be lodged in the anticyclone. Otherwise the hurricane

would continue to follow a great circle route.

Upon approaching another hurricane, the two have a minimal

distance, usually about 600 miles before they interact

in the manner prescribed by the Fujiwhare effect and

explained in greater detail in the seventh chapter.
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~Gyre Exchange

Just as hurricanes may enter a group to form a gyre, they may

also leave a group to join another, undoubtedly through the

* interaction governed by the fifth Law. In this way, hurricanes

-- may be passed form one group to another, like a football from

one player to another. This coupled with the following

phnomenon will lead to some interesting hurricane paths.

* Gyre Translation

'- Not only will a hurricane rotate about the common center of

mass of a gyre, but it will also translate with the gyre.

. Thus, rotation and translation may produce some very interest-

ing hurricane paths, among which are cycloidal paths

characterized by looping.I
Summary

In summary, therefore, the vortex may interact with one other

or several other vortices. The hurricane may simply rotate

about the common center of mass, as with an anticyclone, or

may actually spiral into the center of the other vortex,

* as with an extratropical storm. The hurricane may lodge in

the edge of another vortex, as the 1013 mb isobar of an

. anticyclone, or approach to a minimum distance as in the

Fujiwhara effect. Finally, the hurricane may make an

"- abrupt path change due to gyre formation, may loop due to

gyre exchange and translation, or may simply translate along

a great circle due to lack of any other interfering vortices.

The fourth and fifth Laws are necessary for the vortices to
retain their own internal field characteristics. The

U
fourth and fifth Laws enable interacting individual vortices

" to individually and independently satisfy Laws I-III inclusive.
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EXPOSITION OF THE PARADIGM

The remainder of this paper will deal with the exposition of

the new paradigm which addresses, inter alia, spiral band

structure and behavior. The exposition of the paradigm deals

with the new laws, their mathematical formulation (including

the new mathematical systems discovered for articulation of

these laws) and the incorporation of these laws into a theory

of vortex structure, which is then correlated with data.

Chapter II deals with the new laws of vortex structure and

their interpretation and understanding. Chapter III discusses

the paradox of spiral behavior and the new spiral mathematics

which results. Chapter IV and Appendix A discuss the mathe-

matics of orthogonal log spiral coordinate systems and solutions

for Laplace's equation separable in these coordinates.

Chapter V deals with the theory of the structure of vortices

and provides application of the laws. Appendix B is a

monograph detailing the application of a simple two part vortex

to a model of the two dimensional general circualtion for

the inner planets, including earth. Appendix C outlines

a proposal for studying the general circulation of the outer

planets, specifically Jupiter and Saturn. Appendix C also

discusses the circulation of earth as being a possible

intermediate case between the circulation of the inner planets

and the outer ones, and proposes a simple explanation of the

phenomenon of the Inter Tropical Convergence Zone.

Chapter VI deals with the correlation of the vortex theory to

observed data. This includes the axially symmetric version

of the first Law, and the spiral asymmetric version of the

*? second Law. Data in support of Law III is also presented.

Appendix D presents a discussion of the solutions to Laplace's

equation in toroidal coordinates and its application to

ring vortices in general and toroidal plasmas in particular.
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Appendix E details the computer code used in the correlation

of the data with the axially symmetric version of the first

Law. Chapter VII presents the hypothesis of vortex interaction,

including its two governing laws. Appendix F presents prelim-

inary results to orthogonal spiral analyses of hurricane David.

The evidence suggests that Law II does indeed obtain and mathe-

matically describes the divergence field resulting in cloudiness
*: in the hurricane vortex. A summary with suggestions for future

articulation of the paradigm is then presented in Chapter VIII.
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II. THREE LAWS PROPOSED FOR GOVERNING

THE STRUCTURE OF VORTICES

The introduction of a general field theory has new physical

laws as its first main element. This chapter introduces the laws

for vortex structure and discusses their physical meaning. The

laws then become fundamental building blocks from which the rest

of the field theory may be constructed. In this section then

three laws that govern vortex structure are proposed.

The first two laws are presented first in their most general

form. The laws are then recast in a more dynamical and

mathematical from, giving three separate but complementary

physical interpretations of the first law based on a common

factor in the explanation. The third advance of these laws-

involves a mathematical transformation at which point the laws

are joined by the third law and displayed in matrix form with the

ramifications for the mathematics examined in some detail.

The laws Related To Overall Vortex Properties

The first two laws are stated in the context of their effect

on the two most fundamental properties of the atmospheric

vortex. These two properties are the circulation function,r ,

* . and the sink function, Q. The circulation function is simply

N another way of indicating that in a vortex the flow has a

component of closed circulation. The sink function simply means

that the flow has a component moving in at one level, up and out

at another level. In an atmospheric vortex this component

results in clouds and precipitation. More simply stated r and

Q bring wind and rain.

The first three laws may be stated most simply in terms of

the effect of the lateral frictional force on these two
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properties of the vortex, and the countermanding effect of the

pressure gradient force. The laws may be stated as follows:

I. The lateral frictional force in a vortex either
does not exist, or if it does, changes the
circulation in a :,anner independent of radius.

II. The lateral frictional force in a vortex (if it
* exist) changes the sink function, Q, of the

vortex in a manner independent of radius.

III. Since the frictional operation on the circulation
" and sink functions constitute forms of work, then
*i the pressure gradient force* (if it exists) does

work against one or both of the other two forces,
on r and/or Q, also in a manner independent of
radius.

Thus, the atmospheric vortex, which is a combination of an

atmospheric sink and a circulation has both of these properties

changed by a force in a manner independent of radius.

The lateral frictional force is usually ignored in

contemporary thinking, especially in the science textbooks which

i present the old paradigm. Either the force is assumed to be

trivial by order of magnitude considerations, or it does not

exist to begin with. The order of magnitude considerations are

interesting in that the lateral coefficient of eddy viscosity, a

component of the lateral frictional force, is not measureable and
can only be estimated indirectly from numerical models or simply

guessed. In any event, the researcher ordinarily choses to

concentrate on the vertical component of friction instead.

Further examination of the nature of vortices and attempts

to simulate them have led to disquieting indictments of the
validity of the assumptions given above that are used to dismiss
the lateral frictional force. The underlying assumption is that

if a force is zero it is therefore irrelevant. In severe

vortices, especially hurricanes, the role of lateral friction in

the maintenance of components of vortex structure has been

recognized as essential both by numerical modelers, such as

Anthes (1970) and tropical meteorologists such as Malkus (1960).

*assuming constant specific volume with radius. This assumption is
relaxed further into the text.
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This being the case, it is apparent that a deeper understanding

of the laws proposed is needed.

Lateral Frictional Curl and Divergence

A more specifically dynamic way of looking at the first two

laws is to state them with reference to their most evident

physical implications:

I. The lateral frictional force is either undefined or

(a) if the vortex were to be divided into a series of

concentric annuluses, each annulus in the flow

field would exert an identical fricional drag upon

the adjacent annuluses immediately interior and

exterior to it,

(b) the lateral frictional force exerts a torque on

the angular momentum field independent of radius or

(c) the lateral frictional force exerts no curl, i.e.

neither creates nor destroys vorticity

irrespective of considerations of axial symmetry

or azimuthal averaging of the vortex properties.

These three statements will now be examined in greater detail.

The common factor to all three versions of the first law is that

the lateral frictional force is an hyperbolic function of radius

except in (c) where it may assumeother forms which we will come

to presently.

Since the lateral area of an annulus of vanishingly small

thickness is directly proportional to the mean radius of the

annulus, Y, by 2T1?h, where h is height, then the increase

of annular radius is directly compensated by the hyperbolic
decrease of the frictional force per unit area. The first
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version of Law I states that the drag per unit area on the

annulus wall, when integrated over the entire annulus is

identical from annulus to annulus, regardless of annulus size.

Hence, the lateral frictional force neither speeds up nor slows

down any given annulus at the expense of the others.

The second version of Law I states that the torque on the

angular momentum field due to the lateral frictional force is

independent of radius. This implies that a parcel travelling

from the outer limits of the vortex toward the center will have
its angular momentum constantly modified as it passes through.

The only exception to this occurs when the frictional force

ceases to exist, even if only for an instant, in which case the

frictional torque changes to a new but constant value. In the

mature hurricane, as we shall see later, this event happens twice

at locations roughly equivalent to major phenomenological changes

encountered while traversing the storm inward, the entrance to

the wall cloud, and the entrance into the eye. The torque, T,

is given by k-r X F where r is the radial distance from the

center of the vortex coordinates to the force, F. If T is to

be constant, independent of radius, F must be hyperbolic in r.

The final version of the First Law involves the curl of the

frictional force C. The form of the curl for axially symmetric
m ~a
flow is given by C r F. If F is hyperbolic with

radius then the curl is zero. Analogously to vorticity the shear

term is equal and opposite to the curvature term, so that if

V 2 XFO

* then a- r F = + F 0 or
r ar r ar

F (curvature term) = - - (shear term)
r ar

The second Law may be reexamined in a more specifically dynamic

way.
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II. The lateral frictional force either exerts no

divergence or is undefined.

We now examine an alternate statement of the second Law

comparable to those of the first.

Laws II and III deal, in the axially symmetric case, with

the actual dimensions of the annulus itself. The second Law

states that the component of the lateral frictional force normal

to the annular wall is non divergent. The same may be said for

the component of the pressure gradient force which does not
involve the toroidal acceleration, i.e. V.-cVp = -Vc.Vp - aV 2p.

So, the first right hand term is the toroidal acceleration (to

differentiate it from the lateral, solenoidal acceleration). The

second right hand term, when set to zero, constitutes the third

law.

Law II states that the lateral frictional force normal to

the annular wall resists contraction of the annulus into a

smaller annulus in a manner independent of radius. Thus each

annulus is democratically entitled to the same protection from

forces seeking to shrink (or expand) it. Of necessity, the

tensor describing such behavior is non divergent.

This democratic resistance to outside influences would be
meaningless if there were not a compensating distribution of

*. counteracting forces inimical to the resisting frictional force.

Law III provides such a force with such a behavioral pattern.

". The toroidal acceleration counteracts other frictional

components. The Laplacian of pressure provides a distribution
for the pressure such that the fields are similar, but identity

depends on boundary values. The similarity is limited to each

axially symmetric field being a logarithmic surface of

revolution. Laws II and III are not to be construed as

indicating that these forces are equal and opposite to one

another. As we shall see in Chapter VI, they may even act in
concert. In any event, each force component acts upon the

annular surfaces in a manner independent of radius.
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Both the first and second laws may be represented

mathematically by

I k'V2 X F 0,-

II V2 " F = 0,-

It is relevant now to examine the Navier-Stokes (read

PNewtonian applied to a fluid) formulation for lateral friction.
The frictional force, F, is usually given by

= V2" Kh V2
where K h  is the coefficient of eddy viscosity. Kh  is

* often assumed constant for the sake of convenience, but only with

much trepidation and innumerable caveats. If Kh  is assumed

• . constant, then

F =K 72

f and we may then rewrite the first two laws one more time and

finally add the third Law.

Since the order of operation for the cross or dot product of

the del operator and the Laplacian upon a scalar or vector field

is immaterial, so that

2 2 2 2 .2 2 2

then the curl or divergence of the Laplacian of velocity is

identical to the Laplacian of the curl or divergence of the

velocity or

I Vk 0, where k =k'V 2 x U

II V16 0, where 6 = V- U

and by adding pressure we obtain Law III

III V~p 2 0,0
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Succinctly, then, all three laws may be expressed simultaneously

in matrix form by

e.V~ = O,a

or the horizontal divergence, vertical component vorticity and

pressure either satisfy the two dimensional Laplace's equation,

*. or their Laplacians are undefined. From a statement concerning

the effect of the lateral frictional force on the two major
characteristics of a vortex we have arrived at three atmospheric

parameters which satisfy a homogeneous, linear, second order

. partial differential equation whose solution is uniquely

" determined by boundary conditions.

Hence, these force components do not simply modify major -

. vortex characteristics, they specify their distributions.

Since the vorticity, divergence and pressure fields either

-' satisfy Laplace's equation or do not have a definable Laplacian,

these two characteristics determining the types of fields

governed by the new laws. The emphasis now shifts from the

fields themselves to the field boundaries. We are concerned not

only with their values but also with the boundary shapes,

locations and orientations.

*While the divergence of the pressure gradient force, -aVp,

* is given by

-V2 a'V2p - aV2p,

. the proposed law addresses only the second term. Strictly

speaking, then, only one component of the pressure gradient force

operates in opposition to lateral friction, the other component

must compensate for the vertical shear component of friction.
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III. MATHEMATICAL APPLICATIONS OF THE PROPOSED LAWS

I
The application to the real world of the proposed laws

requires an understanding of the atmospheric vortex's salient

features; spiral bands of cloudiness, precipitation and water

vapor seen by the meteorological satellites. This understanding

includes not only their geometry, but also their behavior.

Further, we need a grasp of their underlying dynamics.

Geosynchronous time lapse pictures assist the exploration of the

nature of the bands. The satellite sees a wide range of synoptic

* scale vortices, from the Aleutian Low churning in the Gulf of

Alaska to tropical hurricanes spinning off of the Intertropical

Convergence Zone (ITCZ). This separation in geography parallels

the separation in behavior of spirals in the extratropical and

• tropical cyclone.

The two kinds of vortices exhibit contradictory, even

* paradoxical behavior. In the midlatitude storm, a product of the

clash betwen two sharply contrasting air masses, the occluded

front winds itself around, as a spiral band into tight, nearly

. concentric rings. In contrast, in the hurricane, the offspring

of vast stretches of the homogeneous, maritime tropical

*atmosphere, wild t'ghtly turning winds blow thunderheads through

stationary spiral bands. Cumulonimbi, born on one edge of the

band, arc inward and across the band only to die at the other

edge. The bands themselves, however, neither rotate nor wind up.

Band Behavior Reconciliation

The reconciliation of the band behavior in the presence of

two different kinds of vortex flow gives birth to a theory of

vortex structure that applies these laws to the flow.

U
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The laws applied to the extratropical flow field yield

information for flow in hurricanes. The behavior of the flow in

extratropical storms producing these spiral fronts is now

examined.

Timeline Behavior In Occluded Fronts of Extratropical Stormsi
Occluded fronts in midlatitude storms wind up into almost

concentric rings. The front acts as a "time line" indicating the

progress of a group of streamlines over a series of time

intervals. Figure 3.1 shows how the front not only rotates but

changes its shape at successive times. Timeline I at time I

displays slight curvature. Curve II at time II has rotated and

increased its curvature. Curves III and IV show progressive

stages of the line winding up. These curves represent the

movement of the front and its distortion by winding. We may

simplify this process by transforming the spirals into semilog

coordinates. The mathematical transformation of the curves into

the artificial, but mathematically relevant coordinates of

azimuth vs. the logarithm of the radius replots log spirals as

straight lines, shedding light on their interaction. Figure 3.2

shows the front at the various stages. Here, all log spirals are

straight lines, including the frontal position. Assuming the

streamlines are also logarithmic spirals, then Figure 3.3

presents the schematic movement of trajectories in semilog

coordinates.

* Spiral Slope As A Function of Time

This geometric representation yields its mathematical form

upon inspection. From the azimuthal and logarithmic components
of the streamlines in Figure 3.3 we may formulate the velocity

components. The azimuthal velocity, e , and logarithmic radial

'. velocity, d Zn r/ dt, may be written by inspection,
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e - A + B In r/r0  (3.1)

and

d In r/dt = A' + B' In r/r0  (3.2)

where A, B, A' and B' are constants.

Multiplying (3.1) and (3.2) by r yields the tangential and

radial velocities, Ua and Ur , respectively

U r A + rB In r/r0  (3.3)

and

U r = r A' + r B' £n r/r0. (3.4)

VELOCITY AS A FUNCTION OF ITS MAXIMUM

Eq. 3.3 supports a maximum such that

A + B £n rx/r 0 + B =0 (3.5)

where rx is the radius of the maximum velocity. B may be

expressed in terms of the maximum angular velocity Gx by

B = - X

We may rewrite (3.3) as

Ue  r x(1.0 + In rx/r) (3.6)

or

rUe

U( ) x n(e r/r) (3.7)

where e is the base of the natural logarithms. Thus the

tangential velocity is expressed entirely in terms of its

maximum Ue x, and the location of the maximum rx, and the
location of the velocity itself, r.
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• . Vorticity and Divergence of Simple Flow

U Further derivatives which combine the shear, (3.5), and

curvature, (3.1) terms utilized above are the vorticity, C , and

divergence, 6 , fields. The vorticity and divergence fields of

both of these flows satisfy Laplace's equation. Thus,

-r r r r U (3.8)

. combined with (3.3) yields

" 2(A + B In r/r0 ) + B (3.9)

and likewise for

U rU r  (3.10)r 3r

combined with (3.4) yields

6 - 2(A' + B' £n r/rO) + B' (3.11)

From (3.10) and (3.11) it is evident that both and 6 are

linear in the logarithm of the radius, a sine qua non for an

azimuthally averaged function to satisfy Laplace's equation.

Moreover, the linearity is evident not as a line, but as a line

segment beginning at ro.

The Laplacian for axially symmetric flow is given by

2 1 L r ( (3.12)"*-2 ar ar

2Then v2 C may be written

1 r (2(A + B £n r/rO) + B) (3.13)

ar ar 0

which yields

rE F" 2B = 0.
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Reintegration and Boundary Values

Linearity in the logarithm of the radius presents new

opportunities. Reintigration of the Laplacian of vorticity must

take into account boundary conditions so that the integration

occurs between ro  and r. Consequently three derivatives of

the velocity field resulting in zero must integrate to three

constants describing the field, not just the two which describe

the flow field in equat'n3.4. Thus the velocity field may now be

written

O= r C1 + r C2 zn r/r 0 + C3 r (3.14)

where C3  is a new and puzzling element attributable to

boundary conditions.

In the extratropical storm C3 may indeed be zero, but

need not be. For C3  to be zero is actually a special and

limited case. Equation (3.14) may be further expanded for n

regimes where the linear fragments of vorticity join at rl,

r2 , ..., rn. 2  to r n-I  The vorticity looks like a stick

,- figure with a series of breaks in it, shown in Figure 3.4 (The

, same may be said for the divergence distribution). We express

vorticity as

fr ar U r1 r2rn
r r r i dr + J r --2 + J r ndr *

r0 r r r
0 1 n-i

(3.15)

where

1 a 2 A1 + 2 B2 . n r + B2 up to

C n =2 An + 2 Bn Z n r + Bn

*The relation of the C's to A's and B's are made clear at Eq.
(3.18).
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The C3 's are functions of the boundary values and locations

of the boundaries interior to the point of interest.

The Nature of C3

Integration of circulation from one end of the vorticity

fragment to the other makes the nature of C3 explicit. The

value of C3 plays a critical role in the difference between

the hurricane and extratropical storm.

Thus,

r r r
% & dr = r~dr = (2 r A + 2rBt n r + rB) dr (3.16)

f' a r
r r r

becomes

r r..- 2 2
rU^ - roUe r A + r B In r

o0" (3.17)

rue rooU +r A-r A+r B"nr-r 2Bnr
000

or

"r 2 22r 205 6U 0 O U r 0 A O A+ B£ r 0 B In rO 0

U r A + r B nr 2 A r 2 Bn re r r r (3.18)
Letting C 1  A, C2  B and C3  r0 U 0

r 2 A r 2 B In r o

We obtain (3.14)%Eq. (3.18)may be further expanded where the

*subscripts 1, 2, 3 refer to the values in the core, inner and

outer regime, respectively with boundaries given by ro,
rI, r2  and r respectively.
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Again:

rD r U 6 dr rr dr + r dr + r 3dr (3.19)
0 ar 0 1 2

so that

" r U0 - ro U8 0= r A1 + rB 1 2kn r r, +'> o (3 .20 )

r0 0o

2 A 2 +r 2 B Ln r
2 2

2 r 2 r
t: A3  + r B3 kn r+r rrA

r2  r2

which yields
(3.21)

Sr U r ro U 0 ro02 A 1 + ro02 B 1  n r°0 ...... I

2 2
+ r1  (A1 - A2) + r1  (B1 - B2) n r ....2

+ r22 (A2 - A3) + r2 2(B2 - B3) Rn r2  ..•.3

+ r2 A + r2 B Zn r .4

Eq. (3.21) may be expanded or contracted to fit any number of

regimes. Line 1 contains all the terms which constitute C31
i.e. C3  in regime 1 which may be zero. Line 2 contains the

* terms for C32 and line 3 for C33. If there are only two

regimes then line 3 is dropped and the subscript 3's in line 4
* become 2's.

The winding occluded front implies a flow which in turn

satisfied the first stated law. The flow field implied by the

W4 behavior of the occluded fror, is only one of many possibilities
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allowed by a reintegration of the law. The flow field of the

hurricane, as will be seen in Chapter V satisfies the law in a

piecewise fashion. In two of the pieces, C3  (the boundary

value term resulting from integration of the vorticity field) is

the most significant term. Spirals of the occluded type cannot

coexist with a flow field in which C3  is non zero. Yet,

exist they do, seemingly in spite of the flow field rather than

because of it, since they do not rotate or windup. Another
solution to this puzzle must then be found. This brings us

simultaneously to both the second law and spiral solutions to

Laplace's equation; in this case spiral harmonics in the low

level divergence field. We now look at the component of this

problem.

First, since the phenomena of interest are log spirals we

shall examine the meaning of the term. Then the relationship of

log spirals to formulations of Laplace's equation in six new

spiral coordinate systems is examined. Secondly, the spiral

solutions to Laplace's equation are applied to the second law to

* seek a solution to the puzzle of the spiral cloud bands in

* .. hurricane which "defy" the flow field.

* . Finally, the circular motion and moving spiral fronts are

accounted for by considerations of Law I. It is by considering

Law II that the stationary spiral bands in hurricanes are

explained, while the tangential winds, piecewise compiled from

Law I blow through them.

Summary

In summary, the flow field which produces logarithmic spiral

bands that rotate and wind up has the following properties.

There is a velocity maximum. Indeed, the entire flow field may

be specified as a function of the maximum and its location. The

divergence and velocity fields are linear functions in the

logarithm of the radius, satisfy Laplace's equation, and

52



therefore the first and second laws. For divergence and
vorticity distributions comprised of linear fragments the
c3 ,s are functions of the boundary values and locations of the
boundaries interior to the point of interest. The fragmentation
itself satisfies both laws. The fields exhibit first order
discontinuities at their joints-there, the Laplacians are undefined." R!

.%
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IV. THE RELEVANCE AND MATHEMATICS OF LOG SPIRAL
COORDINATE SYSTEMS

As we saw in Chapter III, the winding occluded front of an

extratropical storm implies a flow which in turn satisfied the

first stated Law. The flow field implied by the behavior of the

occluded front is only one of many possibilities allowed by a

reintegration of the law. The flow field of the hurricane, as

will be seen in Chapter V satisfies the law in a piecewise

fashion. In two of the pieces, C3 (a boundary condition term)

is the most significant term. Spirals of the occluded type

cannot coexist with a flow field in which C3  is non zero.

Yet, exist they do, seemingly in spite of the flow field rather

than because of it, since they do not rotate or windup. Another

solution to this puzzle must then be found. This brings us

simultaneously to both the second Law and spiral solutions to

Laplace's equation, in this case spiral harmonics in the low

level divergence field. We now look at the component parts of

this problem.

First, since the phenomena of interest are log spirals we

shall examine the meaning of the term. Then the relationship of

log spirals to formulations of Laplace's equation in five new

spiral coordinate systems is examined. Finally, the spiral

solutions to Laplace's equation are applied to the second Law to

seek a solution to the puzzle of the spiral cloud bands in

hurricanes which "defy" the flow field.

Nonsatellite Observed Spiral 2henomena

There are, however, other atmospheric vortices not seen from

the geosynchronous satellite harboring spiral bands. Indeed, the

universe of vortices is replete with spiral phenomena. Spiral

bands occur in waterspouts (Golden, 1974), as hook echoes in

tornadoes, spiral rainbands in hurricanes and extratropical

storms as mentioned above, as spiral bands on the elliptically
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shaped Great Red Spot on Jupiter, and even as spiral bands of

star clusters in spiral galaxies, a range of 18 orders of

U magnitude. The careful bather will also note that spiral

standing waves in the surface of the water appear about a vortex

funnel in draining bathtubs. These are spiral waves which appear

upon the surface of the water in conjunction with the formation

* of a particularly vigorous bathtub funnel. This phenomenon

•- expands the range of interest to 21 orders of magnitude and the

third proposed Law.

What accounts for these spiral phenomena, and what has all

of this to do with Laplace's equation or the three proposed laws?

These are questions which will now be addressed. First, let

* us examine more closely the meaning of the term "logarithmic

spiral."

- Logarithmic Spirals

s Even the name, logarithmic spiral, is ambiguous. The spiral

in question may just as easily be called an exponential spiral

since the relationship which defines the parameters may be

validly expressed in either of two forms

U 1) npae (4.1)

or

2) P eae

" where p is the dimensionless radius. Dimensionless, perhaps,

but expressible in radians, nevertheless. The fundamental

characteristic of the logarithmic spiral, that which

distinguishes it from every other spiral, is that the spiral's

slope (sometimes called its inflow angle) is a constant, or
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if n P ae,(4.2)
ae /a In p = a

or p ae/ap = a.

The slope mentioned above is defined in polar coordinates, and is

therfore coordinate dependent. The slope in Cartesian

coordinates is given by ay/ax, and when the slope is constant

.. for a curve, there exists a family of straight lines that

satisfies the slope.

For example, the gradient in coordinates is given by

i+ Lj (4.3) "
(1/f l 1' E 2' E 3)) 1  2 2 ~ (4.3)

and the slope of a logarithmic spiral in those coordinates is C
given by

2 = constant (4.4)

- The gradient in polar coordinates is given by

V M 1+ j o 1 n  i + e rJ (4.5)r: ge r~+ (a °r r ~ ~

and the Laplacian by

= V + (4.6)

The slope of a log spiral is given by a in r/ae = constant

" likewise, the gradient in spherical coordinates is given by

*(holding r constant)

"V2 ="E + 3- j(47
- r 3e r sine a (4.7)

Factoring out 1/r sine yields .

V2 1 sine -i + (4.8)
r sine ae ~ (48
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"" or

V =r sn ( csce ae (4.9)

and since in (4.9),

Icsce de = £n tan (e/2), then

and the Laplacian may be expressed as

2= 2- 2 2 £n tan (0/2)2 + 2 (4.10)

and the slope of the spherical log spiral by

3tn tan . / = constant (4.11)

If the spiral is expressed in semi-log coordinates, then it

too may be expressed as a straight line. In point of fact, by

S rotation of the semi-log coordinate axes one may obtair a

coordinate system where the axes are themselves logarithmic

spirals and the coordinates of any point may be defined in terms

"" of spiral coordinates yielding a spiral space. There are other

* coordinate systems besides the polar or circular cylindrical

where this is possible.

For example, the definition of the slope on the surface of a

sphere, given in spherical coordinates is, as given above,

•e/ sin 8 - a (constant) (4.12)

or

e3 n tan . /a€ -a.

For small angles e = tan (e/2) so that 3 tne /3e-a but not
so for large e •
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We may immediately construct another semilog coordinate

system for the surface of spheres which upon rotation yields a

spiral spherical space. Therefore, any point on the sphere may

be redefined in terms of this spiral spherical space.

Any coordinate system in which one coordinate may be held

constant and upon which the slope depends only on the other two

coordinates* is subject to rotation into spiral form, and has a
Laplacian (the dot product of the gradient into itself), which

may also be expressed in this form.

Laplace's Equations In Spiral Systems

Laplace's equation is a classic elliptic equation with

complex characteristics. The axially symmetric solution

(linearity in knr) is not the only solution to Laplace's

equation. The asymmetric solution is the product of an

exponential and periodic function such that the Laplacian in

Cartesian coordinates is given by

2 2 2

then if

a = Y(n)enx cos ny or

a = Y(n)eny cos nx or

a = y(n)enx sin ny or

a = y(n)eny sin nx (4.13)

where n may be an integer in a Fourier series, and y(n) is a

" . Fourier amplitude dependent on n,

V2 a = 0 (4.14)

The relevance of the solution to the asymmetric vortex is

now addressed.

*i,e., where the curvature of the surface containing the spiral

is a real or imaginary constant (positive, negative or zero).
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In Cartesian coordinates it is axiomatic that rotation of
coordinates implies a direct transformation of the form of the
Laplacian from the old coordinate axes to the new ones (Figure

4.1). The Laplacian before rotation is expressed as

B2 2
.*' 2 = a + (4.15)V2  2~ + - 1

ax ay

and after rotation as

" 2 2V2 + (4.16)
2 ax,2 ay 2

S"- In polar coordinates the Laplacian is written

S2 r L(4.17)2 r9*r 2 e 2=r

by multiplying the radial term by r/r, recombining and

factoring out 1/r2 the Laplacian may be rewritten as

V 2 =1+L 21 (4.18)r r2 ae

2Laplace's equation may dispense with the i/r to give

22 -k a = -0 (4.19)

Thus, any linear solution in e and R nr satisfies (4.19) as

well as the product of an orthogonal set of exponential and

periodic functions. As can be seen in (4.16) rotation of the

coordinate system , nr by angle a in Figure 4.2 would give

a new expression for Laplace's equation
* .2

r 2V 2 a - 2a + 2a =0
2  a s 2a (4.20)r e

ri
U
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Figure 4.1 Rotation of Cartesian coordinates x,y

to produce new coordinates x',y'. The

Laplacian is independent of the rotation,
since it is the dot product of the gradient

upon itself.

S8

S

- log spiral coordina, tes. The ray and circle

are actually degenerate types of logarithmic
spirals.
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where Sr and So are the new coordinate axes illustrated

in Figure 4..;. This rotation brings the cloud bands parallel to

. So and periodic in Sr . Since both So and Sr

satisfy (4.4)they are log spirals, and the

-S S
S-new coordinate system e and e are log spiral coordinates.

So and Sr are in units of radians. They vary in the model

from 0 to 2 Tr cosa and 0 to 2 Trsinc respectively.

The scalar transformations between e, £nr and $,

Sr  are

Sr= inr Cosa + e sine (4.21)

S= cose - knr sine (4.22)

Thus (4.13) may be written in S0 and Sr as

a = y(n)en(SO) cos(nSr), etc., being exponential
in S and

periodic and linear in Sr .N
Spiral Space

Spiral space is represented pictorially in Figure 4.3

below. The spirals are defined by Sr and So being

constants.

For

S r K - mnr cosa + e sine (4.23)

and

Se K' = Ocose - Lnr sine (4.24)

the orthogonal log spirals which define spiral space are given by

r - exp K - osina (4.25)

for constant Sr' i.e., the coordinate along which S, only changes and

and

J p .cosc - K'
: r exp sine (4.26)
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for constant Sq, i.e., the coordinate along which only Sr

changes. Thus any point in spiral space may be defined in terms

I of values of the log spirals eSe and eSr , or simply

S r  and Sq.

Spherical Coordinates

Spiral space may also be defined in geographic or spherical

coordinates, so that all algorithms applicable to polar
*. coordinates may be applied to spherical ones as well. The two

dimensional Laplacian in geographic coordinates *, X is given

*! by

2 a sino a + 2_a 2  (4.27)
r sino- r sin0 2

rearranging terms gives

V 2 12sn ( a sc a a + B2 (4.28)2 r2sin 2 csc a cscO aF

or

'v = 2  + a2  (4.29)r sin2 3(kn tan J)2 aX2
2 ax2

Rotating the coordinate system in tan&, X through the angle

2'

a produces

2 1 -2...+ (4.30)r sin22 2

* where So and SX are log spirals on a sphere conforming

to the equation

tan a _r sin 0 1(1 - ra() g constant. (4.31)
atn tan2
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The elliptic solution

e(S + i Srl may equally be applied to e(SX + i Sq)

where
-7

So= n(tan .) cosa + X sin a (4.32)

and

S X X coss - Ln(tan A2) sina (4.33)2

The spherical space is defined in terms of spherical log spirals

so that

S 2 tan -I (exp K -A sin a (4.34)cos a•

for constant S. and

SX 2 tan -  (exp cosa -K'435)= ~~sins 4.5

for constant S""

Transformations in Complex Space

The transformation from polar to spiral coordinates involves

the successive transformations of shortening, rotation, scaling

and stretching.

By considering complex space

Z M rei8 (4.36)

and its conjugate

F re1i  (4.37)
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"" then by the transformation of shortening (operating on the

conjugate in the northern hemisphere) we obtain

"ni = Z.nr - i6 (4.38)

Scaling by i and n where i = V-i and n is an integer

produces

0 ni Ln! = n(e + i knr) (semilog coordinates) (4.39)

Scaling by the versor, eia (equivalent to rotating the semilog

coordinates), produces

nie i  XnZ = n(8 +iknr)e = n(Sa + isrd (4.40)

*. Restretching to obtain real space curvilinear coordinates
produces* r

inie = exp n( + i Rnr) eji  (4.41)

= exp ( n(Se + iSr)) (4.42)

The Laplacian in complex coordinates is given by

V24 a (4.43)

-, so that

49_ (-niela)

4 z _ ni ) = 0 (4.44)

"7,
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SPIRAL COORDINATE SYSTEMS

" Laplace's equation and the three laws are expressible in

* spiral coordinates. Of the thirteen systems mentioned by Morse

- and Feschbach (1953) which are separable in Laplace's equation,

only five (of the non Cartesian* systems) can be changed into

*i  spiral form. That is to say, that five of the coordinate systems

given by Morse and Feshbach are actually degenerate forms of more

general spiral systems.

Three of these degenerate systems are cylindrical, with unit

surface curvature k = 0, while the other two are spherical, with

. unit surface curvature, k = 1. There are four of relevance to

.* meterology and vortex studies.

_. The first is the circular cylindrical coordinate system

* -where the gradient is taken with the cylindrical axis held

- constant. This coordinate system is, of course, a degenerate

*'.. form of the elliptic cylindrical coordinate system, just as a

circle is an ellipse whose two foci have merged into a common

origin. The coordinates orthogonal to ellipses are hyperbolas

which in a circular form degenerate into rays.

Both of these coordinate systems are degenerate forms of the

even more general spherical and conic systems respectively. The

spherical system has coordinates described by the intersection of

circular cones, vertically intersecting planes and spheres. The

conic system is created by elliptic cones and conic hyperboloids

with a sphere. The slopes of the latter two are taken on the

surface of a sphere and are a function of only the other two

coordinates. This is not so of the various toroidal,

bispherical, spheroidal and paraboloidal coordinate systems. The

only exception is the cylindrical parabolic coordinates, where

*There is a sixth, non-Euclidean spiral coordinate system
obtained by substituting i for the radius of the sphere in
spherical coordinates.
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the horizontal coordinates are given by confocal orthogonal

parabolas. Explicit derivations are given in Appendix A.

Therefore Laplace's equation can be expressed in five

separate spiral coordinate systems. Just as circular harmonics

are solutions to Laplace's equation in polar coordinates, so

P are spiral harmonics solutions to Laplace's equation in the

pressure, velocity and divergence fields of vortices. The

*. reader need only ask himself which spiral phenomena in a

waterspout (spiral rainbands), a tornado (hook echo), hurricane
(spiral bands of severe thunderstorms), an extratropical

. storm (spiral occluded front), spiral arms of galaxies (where

stars are born as they enter the spiral arms) can definitely

be excluded from any relationship with spiral harmonics or

bands. The zero Laplacian condition may obtain just as easily

for low level divergence fields complemented by upper level

convergence fields, and vice versa.* It is only on the verti-

cal distribution of divergence that the phenomenon producing

(rain clouds, cb's) vertical velocity may be postulated. The

proposed law specifies only the horizontal divergence distribu-

tion.

In summary, we have examined spiral behavior in both tropical

and extratropical storms. This examination has led to an under-

standing of flow behavior and characteristics. Piecewise

linear distributions of divergence and vorticity are comple-

mented by spiral harmonic distributions. In the next section

we will construct various models of atmospheric vortices based

on these solutions to the proposed laws. In Section VI, follow-

'- ing the exposition of the models in Section V, data will be

correlated with the models from an array of atmospheric vor-

tices. The fidelity of the fit to the models will be the

linchpin of the new paradigm.

* In the case of spiral galaxies, spiral harmonics may be a
solution to Newton's expression for gravitational potential
satisfying Laplace's equation, in a relative sort of way.
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V. THE THEORY OF VORTEX STRUCTURE

In Chapter II we dealt with the new laws of physics.

Chapter III presented the mathematical application of these

laws. Chapter IV and Appendix A discussed the mathematics of or-

thogonal log spiral coordinate systems, and solutions for

Laplace's equation separable in these coordinates. In Chapter V

we present the theory of vortex structure. This theory

incorporates four different sub "models" for fitting the vortex

structure together. These models will later be applied to

appropriate naturally occurring atmospheric vortex data and

contrasted with other, competing vortex models arising out of a

different field theory and a different paradigm.

The vortex models presented in this section are two

dimensional models of divergence, vorticity and pressure fields

utilizing the solutions of the structural laws discussed in the

previous chapter. The models display correllary flow fields of

tangential and radial velocities. These are the components of

circulation, r , and sink function, Q, mentioned in Section

II. First we will deal with the axially symmetric models in

ascending order of complexity. We will then address the

asymmetric spiral model components.

Symmetric Models

One Piece -Simple Model

The first simple model, shown in Figures 5.1a and 5.1b, is

one piece. The vorticity field in 5.1a is linear in the

logarithm of the radius. The velocity field in 5.1b has a

maximum. The tangential velocity field may be expressed entirely

in terms of the wind maximum and its location. A ray in this

field will deform into an evertightening log spiral. This is the
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classic field of the extratropical storm, or the stirred coffee

cup. The same is true of the divergence and radial velocity

*fields.

Two Piece - Compound Model

p6 From the elementary one piece model we now discuss the two

part model. The inner portion we shall call the inner regime,

the outer, the outer regime.

In Figure 5.2a and 5.2b the vorticity field has been broken

into two parts with the majority of the vorticity crowded into
* the inner regime. The same holds for the divergence field. The

consequences in the velocity fields have been a sharpening of the
flow field maxima with a displacement inward. Several of the

data sets are fit to the tangential velocity of this model

- because of data density inadequate to define a further innermost

"- field, the core evident in the mature vortex in Figures 5.3a and

* 5.3b.

Three Piece - Mature Vortex

The mature vortex is characterized by the presence of a core

regime. Here the vorticity rises from a small value increasing
' to the boundary of the core, whereas the divergence field starts

at a positive value descending through zero to a negative value

* at the edge of the core. From there outward the vortex is

similar to the compound vortex structure. The tangential

velocity field, however, has a deeper and wider eye structure.

The radial velocity is initially positive, becoming large and

negative and then approaching a small negative absolute value.

The creation of the core regime and the corresponding core

pressure field suggest the "bomb" concept of Sanders.
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Three Piece - Double Vortex

One final vortex completes the roster of the axially

symmetric vortices. This is the double vortex. The data

supplies one example of this particular vortex shown in Figures

5.4a and 5.4b. The vorticity field has a core beginning with a

very large, rather than a low, vorticity value. This field then

decreases to the boundary of the core regime, there to join with

the field of the inner regime. The velocity field is unique in

having two maxima separated by a minimum. The outer maximum is

always the greatest.

Composite Vortex Structure

The atmospheric vortex is a composite of symmetric and

asymmetric components. The tropical hurricane is a composite of

the "mature vortex" and the spiral vortex with wave numbers one,

two and often higher. The preponderance of data collected for

this paper displays a correlation with three of the four

symmetric vortices, the compound, mature and double vortex.

* Further work is being done to perform a Fourier analysis of

hurricane bands in spiral space. Is is now appropriate to

examine the data in these three categories to assess the goodness

of fit of the model.
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i VI. THE VERIFICATION OF THE AXIALLY SYMMETRIC PORTION

OF LAW I.

Chapter VI is devoted to verification of a small but

significant part of the new paradigm. First we shall examine

* that aspect of the paradigm to be verified. Following that will

be a brief explanation of the extant models of the vortex

structure competing with those advocated by the paradigm. Then

the extant models and the paradigm models will be compared. The

criteria for utilization of the various paradigm models will be
* set forth based mainly on availability of data. The variety and

range of data instrumentation and vortex types will then be

examined.

The mathematical procedures for fitting the paradigm models

(also called the zero Laplacian vortex, or zLv) are then

outlined. The question of extrapolation of the data inward to

the center of the vortex is addressed. Boundary layer vortices

I are examined first. Since two of these vortices are the lower

sections of the Dallas tornado, the remaining portion of the

tornado is then examined, followed by an examination of three

consecutive days in the life of hurricane Daisy including a

period of most intense winds.

There follows an examination of four hurricanes which are

,- dissimilar in their wind fields but are rich in data and similar

in their vorticity fields. There then follows two days in the

life of hurricane Carrie, interesting from the standpoint of

watching a hurricane organize.

We then switch to hurricane Camille with data provided by

the movement of thunderstorms vertically integrating the momentum

fields through which they travel(Bradbury 1971). In wrapping up,*

* from the far reaches of space we examine the behavior of the

spiral galaxy in the Andromeda Nebula, M31.

*in a spiral sort of way, naturally.
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Finally a summary of the data results and interpolation is

presented.

Law I - Symmetric Part

Verification of the three laws requires analysis for both

azimuthally averaged and spiral asymmetric components. Full

verification of all three laws is well beyond the scope of this

work and must be left for future work, a task characteristic of a

new paradigm, i.e., that it be "sufficiently open-ended to leave

all sorts of problems for the redefined group of practitioners to

resolve." (Kuhn, p. 10). In this parer the investigation is

confined to verification of the azimuthally averaged version of

the first law. The first law in this form,

1 a _ _1 a
r -7 r = o,w or 2  2  = 0,- (6.1)r r 2nr -

is satisfied when the velocity field fitting the data has a

corresponding vorticity field which is a piecewise, continuous

and linear function of the logarithm of the radius. In the

previous chapter the kinds of vortex models to be fit to the data

were examined. In this chapter the data is examined for its

conformity to one or other of these models and the competing I

models of Herbert Riehl (1963) and Rankine (1888).

The Riehl and Rankine Models of the Symmetric Vortex

The Riehl and Rankine models have similarities and

differences to one another in the tangential velocity field. The

similarity lies in the interior vortex (interior to the maximum

wind) being in solid rotation, an assumption which provides a

significant portion of the root mean square error of these models

when fit to the extant data. The difference is that the Rankine

model is irrotational in the outer vortex. The frictional force

and hence frictional curl are zero. The Riehl model follows an
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i inverse square root law based on bulk aerodynamic considerations

of conservation of potential vorticity. Here the lateral

* frictional curl is zero, but for a vertical component of friction

only. The lateral frictional force is assumed zero. Vertical

integration of an hyperbolic frictional curl yields

rT = constant (6.2)es

-. where Te is the surface tangential stress component. This
"rS

* stress is commonly expressed as proportional to the square of the

surface wind

T = C ve2/cos a (6.3)6 s  D S S

where CD is the drag coefficient, Ps is the surface

density, v8 s is the tangential wind component measured at

3 ship's deck level, and a is the inflow angle. Riehl sets

cos a = 1., based on observations by Ausman (1959).

Combining (6.2) and (6.3) yields rv2 =constant, or,

ve r0  = constant. (6.4)
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Riehl combines this exterior wind profile with an interior one of

solid rotation. Unfortunately, the resultant juncture exhibits a --

first order discontinuity and a zero order vorticity

discontinuity. The same is true of the Rankine vortex, which

suffers from dynamical inconsistencies as well (Nicholson,

1972). Not only do these vortices have velocity discontinuities

between their inner and outer portions, but discontinuities in

the physics behind the choice of an inner vortex to match the

outer one. If the physics is good enough for the outer vortex,

it should be valid for the inner vortex as well. Interestingly,

the Rankine vortex is nearly a degenerate form of the zero

Laplacian vortex since in both the inner and outer vortex

vorticity is constant, thereby satisfying Laplace's equation.

Again, however, neither for the Rankine nor the Riehl vortex

model are there piecewise continuous distributions of vorticity

linear in the logarithm of the radius.

It was found that for hurricanes Riehl's vortex model was

superior to Rankine's. For non hurricane cases, Rankine's was

superior to Riehl's. In all cases both models had a higher root

mean square error than did the zero Laplacian vortex (zLv). This

was the case despite the fact that the zLv labors under the

constraint of first order discontinuities in the v3rticity field,
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- while the other two exhibit the dynamically difficult, but less

constraining zero order discontinuities. The velocity field is

smooth and continuous in the zLv while the other velocity fields

exhibit first order discontinuities. Lastly the zLv has smooth

S"maxima and minima in its velocity field, whereas the other two

possess no minimum whatsoever and no true maximum but rather an

artificial maximum created by the juncture of two velocity fields
which occur at the union of two separate regimes. In the zLv the

maxima and minima occur within the regimes, not at their borders,
thus satisfying the part of the law which requires the Laplacian

of vorticity to be zero rather than to be undefined.

Model Choice

The mathematical niceties of the data fit to the model are

reserved for Appendix E. The models are chosen strictly on the
availability of the data for the various regimes, specifically

the innermost or core regime. Depending upon this data

availability, either a two part (compound) or three part (mature,

and in one case double) vortex is chosen. The three part model

differs from the two part primarily by the introduction of a core

regime. The mature and the double vortices are determined

strictly by the same computational procedure, i.e., the only

specification initially is for a three part rather than a two

part regime.

Data Variation

The range of vortices from which the data are gleaned is

vast. Vortices are analyzed from the laboratory, the free,

maritime tropical atmosphere and the far reaches of outer space.

The extent of the size difference is from 15 cm to 120 minutes of

celestial arc. Maximum velocities vary from less than 20 m /sec

to greater than 300 km/sec. Data was taken by a wide range of
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instrumentation. In the laboratory a combination of stagnation

pressure velometers and small three cup anemometers were used.

Stellar velocities from Hu  at a dispersion of 135 X/mm and

NII\6583 emission lines were determined with accuracy of 10

km/sec in the spiral galaxy in Andromeda, M31. The gas in the

galaxy is assumed to move with the speed of the stars.

Photogrammetry was employed in the analysis of spray from the

ocean surface in the winds of the Lower Matecumbe Key waterspout

and flying pieces of lumber and other debris in the Dallas

tornado. Clover leaf fly throughs from the National Hurricane

Research Labs (NHRL) were supplemented by the observed motion of

cumulonimbi on radar PPI scopes in hurricane Camille. Data was

taken in the first few centimeters of the boundary layer in the

Dines vortex cage, at 15 m in the waterspout and 150' and 300' in

the Dallas tornado. The NHRL reconnaisance flights varied from

5500' to 15,600 ft. In the spiral galaxy in the Andromeda Nebula

there is no "bottom" boundary layer. Needless to say this data

collection has been taken from a variety of authors nearly as

extensive as the vortex kinds and instrumentations. First we

will examine the data taken from vortices in the planetary

boundary layer. Before this, however, it is important to

consider how the velocity and vorticity fits were made.

Least Squares Fit of Circulation

In Chapter III the velocity as a function of a piecewise

vorticity structure was presented in equation (3.2). For a given

set of data corresponding to a segment of the vorticity within a

regime a least squares fit of the circulation for three or more

*. points may provide both upper and lower values of circulation for

the regime. If only two data points are available, then the

lower value needs to be specified. For the core regime this

indicates that C3 - 0, eq. (3.14) that the "y intercept"

exists at r0 - 1, or is otherwise specified (e.g., by the
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upper bound of the adjacent, inner regime. For the outer

regimes, the lower boundary and value of circulation is identical

* to the upper boundary and circulation of the regime interior to

the regime of interest.

* Thus, in the core, if three data points are available, then

an additional degree of freedom is provided so that the

. circulation at the lowest datum may not be extrapolated to the

center of the vortex. This is true for the vortex data sets with

even numbers in parentheses ( ) after their titles, indicating

that the number of parameters includes the circulation value
interior to the innermost datum. Otherwise, it is assumed that

the circulation extends to rU = 0 at r = 0. A curiosity of

the latter assumption is a small but discernable anticyclonic

velocity at short radii in such vortices where the core

circulations extrapolate to zero at the center. The velocity in

"even" vortices becomes rapidly large indicating an hyperbolic

dependence upon a positive C3 . In others it becomes zero at

.* r * 0 indicating a negative C3.

The data are indicated by "x's." The zLv velocity and

vorticity are both given by the solid lines. The values

corresponding to the Riehl vortex, are given by a simple dashed
line. The Rankine is given by the dashed-dot line. The velocity

* for the Riehl and Rankine vortices interior to the maximum datum
are solid rotation, linear with radius. Both are represented by

the Riehl vortex interior to the maximum datum. The vorticity

for this solid rotation is also represented by a constant value

for both in the inner vortex. The Rankine vortex is irrotational

in the outer vortex - its vorticity is therefore zero. Only the
Riehl vorticity is indicated in the outer vortex. Both the Riehl

and Rankine vortices exhibits zero order discontinuities in the

vorticity field.°I
.. 1
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Boundary Layer Vortices

Let us first examine the vortices in the boundary layer.

These are the Dines vortex cage, Figure 6.1; the Lower Matecumbe

Key waterspout, Figure 6.2; and the Dallas tornado at 150 and 300

feet respectively, Figures 6.3 and 6.4. Two of these are odd

vortices, the vortex cage and waterspout. Two are even, the

Dallas tornado at 150 and 300 feet. All four exhibit a slight

negative vorticity at the juncture between the outermost regime

and the regime immediately interior to it. The zLv has a lower

root mean square error than either of the other two models.

The waterspout exhibits slight anticyclonic velocity when
extrapolated inward which may either be real or simply a result

of fixing the lower boundary of the core arbitrarily. The Riehl

vortex model fares worse than the Rankine model in all of these

cases. With the exception of the two part Dines vortex cage,

where there is not enough data the boundary layer vortices

exhibit a sharp rise in vorticity in the core, and a plunge in

the interior regime to a negative value, followed by a rise to

ambient values in the outer regime.

Dines Vortex Cage (Figure 6.1) (Wilkims, 1962)

The data from this laboratory vortex are thoroughly

critiqued in Nicholson (1972). The inner data are from

stagnation pressure velometers. The outer from small, three cup

anemometers. The outer data had to be corrected in order to

remove a bias introduced by assumptions of conservation of

vangular momentum in the data presentation. The zLv rms for the

Dines vortex was just over 1 m sec 1, 1.049. The Riehl and

Rankine errors were ? and ?respectively. The boundary of

the inner regime is within a half a centimeter of the radius of

the fan opening at the top of the cage, indicating a dynamical

rationale for the boundary placement.
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Lower Matecumbe Key Waterspout (Figure 6.2) (Golden, 1974)

This boundary layer vortex data analyzed by Golden is taken

by photogrammetric analysis of flying water droplets at 15 meters

height. The zLv rms is just under 3 msec- , with a maximum

wind of almost 65 m sec -1 . Riehl's error was 9.058 m sec -1

and the Rankine error, 5.998 m sec -1 . It is evident that the

collar of maximum convection occurs between about a 6 and 16 meter

radius.

BOUNDARY LAYER TORNADOES (Moecker, 1960)

The Dallas data, though ingenious, exhibit the greatest

possibility for error since they are based on interpolation of

observations of flying debris which are averaged over a time

period of 17 minutes. At the 300' level, two suspect

observations were dropped at a radius of about 220'. This is

based on the lack of data supporting the distribution of

isopleths at this level, coupled with the enhanced fit of each of

the vortex models.

Dallas Tornado at 150' (Figure 6.3)

The Dallas tornado at 150' has a zLv rms of 8.926 mph and a

maximum wind of 190 mph at about 125'. Both the Riehl and

Rankine vortices underestimate the wind maximum, the Riehl by 50

mph and the Rankine by 25 mph.

Dallas Tornado at 300' (Figure 6.4) .j

At 300' the wind maximum decreases 
by about 10 mph, and the

Riehl error is about 25 mph. 
The rms for the zLv is 10.83 mph

out of 175 mph maximum, 12.74 for the 
Rankilne vortex and 25.44

*In Riehl's model v~ m cr 0 .5 and 0.5c r

88

. .o . .. . . ..



- - o!- 40 -

-0-.

rn/s
JI

0 to20304

So t-y

S-20
• 03

Radius* meters
Figure 6.2a: Lower atecwee Key water.
spout tangential velocitY. Key as in 6.1.

RMS=2.931, RMSL=9.058, RMSK=5.998

'. w-

.. 10

S - * *- . ***- .- - - .4 4 , - , *4 , ... , , , , , 4 -
44'"--.4-.... 

,



bf

2 10 . ..- I
I Ir * ,-
•t00 ___ ___ __

mph 50,o "

0 log 200 300 400 500 -

Radius feet
Figure 6.3a: Dallas Tornado at 150' tangen-

tial velocity profile. Key as in 6.1.
(6)
RMS=8.926, RMSL=27.38, RMSK=16.74

0.002 .-

o~oi- - ,

0.001 ---------------- --

sec-

0.0031 , 10, , ,, , , , ,,', r'-r rr'r

Radius
Fiqure 6o.3b; Dallas Tornado at l":0'

vorticity profile,

90

'I Iq " " " " ° ," -*"" - ' -""""-----.--------- ' "."." "." ."." . -" ",. -''" . ' " . """""". - " .



.- . -. - -. --. 1

JO -

U9  -150 I

50 -

Figue 64a:Dallas T,,rnaCo ; t 300'
targenti'. velocity profile. Key as in 6.1.

RmS=l0.83, RMSL=25.44, RMSK=12.74

Radius
Figure 6.4b; Vorticity profile of Dallas

tornado at 300'.

3 91



for the Riehl vortex. The necessarily poor quality of the data

due to temporal averaging and spatial interpolation precludes

curve extrapolation inward of the innermost datum.

According to Bozart (personal communication) the presence of

negative relative vorticity in the vortex is indicative of

intense convective activity. This juncture occurs just beyond

the radius of maximum winds (not at it, as in the Riehl and

Rankine vortices). This is the location where classically the

ring of most intense convection occurs in a hurricane, and quite

possible in other severe vortices.

Dallas Tornado at 1000' (Figure 6-5) (Hoecker, 1960)

At the lowest level in the Dallas tornado, 150', the maximum

vorticity is 12 x 10-4 sec -1. This vorticity is cut to 8 x

10-4 at 300' and 4.5 x 10-4 at 1000'. The vorticity

concentration is up to an order of magnitude greater than ambient

vorticity. The two data at the maximum appear to be the most

suspect, although the distributution of the isopleths in
Hoecker's analysis appears reasonable. The zero value for both

the 300 and 1000 ft level isdiscarded by virtue of the

theoretical difficulty of incorporating a circulation value at or

near a mathematical singularity and the relative uncertainty of

the exact position of the vortex center. The zLv rms for the

Dallas tornado at one thousand feet (away from the flying lumber)

was 5.919 mph, the Rankine 7.182 and Riehl 16.44. The zLv was 5

mph short of the maximum data, whereas the Rankine is 10 mph in

excess. Riehl is 15 mph short.

Hurricane Daisy (Figures 6.6, 6.7, 6.8) (Riehl, 1963)

Riehl's model came in a poor third for the vortices in the

boundary layer. In all fairness his model was designed for

vortices in the free atmosphere. Let us then examine his fit to
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these models. There are two hurricanes, Daisy and Carrie which

comprise more than one data set. We will deal with the less

troublesome Daisy first, and reserve Carrie for later.

Hurricane Daisy, Figure 6.6, on the 25th of August 1958 at

5500' fits Riehl's outer vortex with a slope of -0.36 rather than

the -0.5 theoretically predicted. The rms for the zero Laplacian

vortex (zLv) of the proposed paradigm with n minus four degrees

of freedom was 1.316 kn. With n minus three degrees of freedom

the Riehl vortex has an rms of 3.645 kn and the Rankine of 10.74

kn. The rms of the zero Laplacian vortex model is small enough

to verge on the suspect, and may be attributed virtually to

measurement error. -

Two days later at 13,000' on the 27th, Figure 6.7, with n

minus four degrees of freedom the zLv-rms is only 1.18 kn,

Riehl's rms 2.88 kn and Rankine's 15.98 kn. The boundary between

the inner and outer regime has shifted inward from 20 n. mi. to

12 with a corresponding sharp jump in the slope of the vorticity

distribution reflected in the C2 's and enhanced tangential

velocity maximum. Both the Riehl and Rankine vortex model fits

are calculated with n minus three degrees of freedom apiece. On

the 28th of August, Figure 6.8, the slope of the vorticity in the

inner regime relaxes again with a corresponding decrease in

maximum velocity. Riehl's model does quite well in the outer

vortex but loses considerable ground in the inner vortex

resulting in an almost 3 to 1 lead in rms for the zLv with n-5

degrees of freedom. The Rankine model again runs a poor third

with an rms of 12.86 kn.

Hurricanes Cleo, Helene, Donna and Hannah (Figures 6.9, 6.10,

6.11, 6.12) (Riehl, 1963)

These four are grouped together because they are three part
(mature) vortices with a fixed lower bound for the vorticity of

the core. All are characterized by a relatively large and

98-59
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negative slope to the outer vorticity distribution compared to

the positive slope in the boundary layer vortices. Cleo, Figure

3 6.9, gave Riehl the most problems in this group. The data

between 20 and 70 n. mi. were best fit with a -0.2 slope rather

* than a -0.5 slope. This is reflected in the overall rms for

Riehl of 6.01 kn and the relatively steep slope for the vorticity

p. in the outer regime. As usual, the Rankine rms is poorest at

16.03 kn. The zlv-rms ranges from 1.403 to 2.412 kn which may be

attributed both to instrument error and analysis uncertainty.

Hurricanes Helene,Figure 6.10,and Donna,Figure 6.11,are

distinguished by having outliers skewered by the zLv. In Riehl's

original fit the outliers did not fare quite so well. The

zLv-rms is 2.412 kn for Helene reflecting that the data is a

composit from missions at three low and mid-tropospheric pressure

altitudes, Hurricane Donna, taken at 8200 feet has a zLv-rms of

*i 2.125 kn, whereas the Riehl model has 5.01 kn as an rms. Like

Helene, Donna's zLv skewers the outlier and has a pronounced

*negative slope in the outer regime vorticity.

Hurricane Hannah, Figure 6.12, of 20 October, 1959 completes

* this group. Its zLv-rms is 1.544 kn compared to Riehl's 4.02 and

the Rankine 12.88. As with the others the outer vortex has a

pronounced negative slope in the vorticity. In summary these

-. four hurricanes are classic examples of the mature vortex with

similar vorticity fields but substantially different velocity

fields. Donna and Cleo display a change in curvature in the

velocity field in the outer vortex. Cleo gave the Riehl model

-. the most trouble. The velocity fields in the outer regimes of

-the four hurricanes varies from remaining nearly at maximum wind

* speed for Cleo and Hannah to falling off rapidly as in hurricanes

Helene and Donna. The Rankine vortex has an rms between 12.88

and 16.03 kn for this group. The zLv rms ranges from 1.403 to

. 2.412 kn, an error which may be attributed to instrument error

and analysis uncertainty.
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Hurricane Carrie (Figures 6.13, 6 .14)(Riehl, 1963)

Hurricane Carrie: 15 September, 1957, at 14,200 feet,

Figure 6.13. 17 September 1957 at 11,000 feet, Figure 6.14.

This data set is of special interest for several reasons.

On 15 September, Carrie demonstrates two velocity maxima with a

93.64 kn root mean square error for the zLv. The zLv gives no

indicationof picking up the dual maxima, although it can and does

in other cases, e.g., the stellar velocities in M31. The reason

for this may be that as Riehl says "The B-47 data are rather weak

and do not cover the hurricane well." (Riehl, 1953).

The sinusoidal variation may be attributable to

contributions to the velocity field from the spiral asymmetries

in the vorticity field. The poor coverage precludes these

variations from being subjected to azimuthal averaging since,
presumably, all of the clover leafs were not completed,

accounting for the weak B-47 data. The zLv is still better than
Riehl's model by 2:1 and the Rankine model by 4:1 with a rms of

8.25 and 18.27 kn apiece.

This error diminishes somewhat over two days for all of the

". models. The zLv rms is reduced to 2.593 kn, Riehl's to 4.2 and

Rankine's to 7.144 kn.

Both days are well represented by a three part vortex

similar to the structure found in the group of four comprised of

Cleo, Helene, Donna and Hannah. The difference is in the

migration of the regime boundaries outward over the period two

days with a concurrent disappearance of the inner velocity

maximum. The vorticity slope in the outer regime is still strong

and negative indicating a healthy creation of negative divergence

by the advective term in the divergence equation.* At the

maximum wind, this term is -2 x 10"2 sec- 2. This value

*This term is given by = 20C2
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reduces to -6. x 10- 4 sec "2 in the outermost regime. The

creation of divergence in the eye is 3 x 10-3 sec -2 at 18 n

mi.

Hurricane Camille (Figures 6.15, 6.16) (Bradbury, 1971)

Departing for the moment from the data of the NHRL clover

leafs we now turn to the movement of cb's in hurricane Camille

analyzed by Bradbury(1971). Figure 6.15. With n minus four
- degrees of freedom this riurricane had a zLv-rms of 4.735 kn,

Riehl's of 6.737 kn and the Rankine at 20.56 kn. It would be

difficult to obtain movement of a cb from PPI's with less error

that 5 kn, so that the error may be attributed predominantly to

instrument or measurement error. Moreover, the cb's need not be

of uniform height so that as a measure of the vertically -

*' integrated momentum field the vertical integration limits may

*" introduce error by their variation.

This is universally true for all of the vortices. A greater

error in measurement, produces a greater rms; a more accurate

measurement provides more fidelity to a truly azimuthally

averaged state.
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The logarithmic distribution of pressure in the vortex model

has a corresponding value in pressure distribution measurements

of Camille shown in Figures 6-16a, b and c. Each of these

figures demonstrates a pressure distribution piecewise linear in

the logarithm of the radius. Figures 6.16a and 6.16c show a

break at about 28 n. mi which also appears in Figure 6.15 in the

vorticity distribution. The log distribution is compatible with

the funnel shape of tornadoes Figure 6.17 and waterspouts (and

draining bathtubs). In bath tubs standing spiral waves on the

surface of the water may occur. This indicates that measurements

of such waves may be taken in the laboratory, even as

measurements of the wind were taken in a Dines vortex cage. As

in the case of the latter, such measurements would provide

information to establish conformity with the third law. All of

these laws may be checked or simulated in the hurricane to

establish either their presence or compatibility with Newton's

laws.

Andromeda Nebula in M31 (Figure 6.1C) (Rubin and Ford, 1970)

This data set is a radical departure (Figure 6.18) from the

data of atmospheric vortices. There are two distinct velocity

maxima separated by a minimum. The data are not azimuthally

averaged, coming from both the NE and SW quadrants of the

galaxy. There are data from the separate emission lines,

, ~ NII, and H , and there is an inherent error of 10 km

sec -I . The three part vortex model fits this data with an rms

of 26.7 km sec - . The inner minimum is not captured well

possibly due to the scatter in the other parts of the vortex

attributable to failure to azimuthally average. It should be

pointed ou.t here that one basic code was used to analyze all of

the vortex data, and that the code for the double vortex produced

in M31 is identical to the code for the Dallas tornado, logical
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paths and all. The changes for the other vortex models are

really contingent on the absence or presence of data.

Conclusion

In this chapter we have examined the application of part of

the first law proposed as part of the new paradigm. As Kuhn

says, (p. 46) "A new theory is always announced together with

. applications to some concrete range of natural phenomena, without

: them it would not be even a candidate for acceptance."

Applications of the theory of piecewise, continuous vorticity

linear in the logarithm of the radius is another way of

- expressing the azimuthally averaged part of the first law, i.e.

1 a2

2 r2  M =  ' (6.5) ad

The data was analyzed for the zero Laplacian vortex models, and

the competing Riehl and Rankine models. In some cases the Riehl

model (hurricanes) was superior to the Rankine model. In other

non hurricane cases (with the exception of M31) the Rankine was

superior to the Riehl model. In no case did either of these

models show superior fit to the zLv. No case was unexplainable

by the zLv. Riehl's model failed for fully one third of the -

cases he selected, hurricanes Cleo, Daisy - 25 August and Carrie

- 15 September. Riehl's model failed for all other non hurricane

cases as well. On the other hand, where the Riehl vortex model

did well the Rankine vortex failed even worse than the Riehl

vortex in non hurricane models. There would be little

justification for utilizing the Rankine vortex to simulate a

hurricane's wind field.

The zLv, However, operates successfully in all cases and

under the severest of restrictions. This is true despite the

fact that the zLv is extraordinarily sensitive to boundary

.4 conditions. The slightest displacement of either regime boundary

or value produces wild variations in the velocity profile. The
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major term in the velocity profile for both the inner and outer

regimes in the mature vortex is one comprised entirely of

3 boundary conditions shared with a regime interior to it. These

values become incorporated in the hyperbolic terms in the

velocity profiles, the C3's. In the four hurricanes fit by

the mature vortex, the wide variation in the velocity profile

- arises out of minor displacements of the regime values and

boundaries, even though the vorticity distributions are

remarkably similar.

The velocity maxima are directly related to the slopes of

the vorticity segments. The slightest deviation in any of the
above also assures the wildest of errors in the velocity

profiles. Both Riehl and Rankine's model suffer from zero order

*: discontinuities in the vorticity field producing first order

discontinuities in the velocity field. This zero order

.. discontinuity decouples one vortex segment from the another

dynamically at a point where the critical wind maximum is

presented. This leaves us two vortex models with wind maxima of

dubious dynamic validity. The Rankine maximum is universally too
high for the data, except for the boundary layer tornado, and the

Riehl maxima are too low for non-hurricane cases. Riehl's model

is based on bulk aerodynamic considerations of the surface wind

field. Rankine's is a combined spiral vortex model with dynamic

. inconsistencies (Nicholson, 1972) making its application to

actual vortices difficult. The zLv gives promise of dynamic

insights. The divergence equation

IL - -k • U x V2 + + vV2 (6.6)-.. t ~- "..

indicates that for a positive vorticity gradient divergence is

created. For a negative vorticity gradient convergence is

created. The former obtains in the core regimes of the four

hurricanes and in three of the four boundary layer vortices.

Divergence is further created in the outer part of the boundary

layer vortices. In the case of the waterspout and low level

115'4.
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tornadoes the convergence sandwich between two rings of

divergence is appropriate for the dual toroidal circulation

ascribed by some authors to severe low level vortices.

Since the radial velocity may be constructed in the same way

as the tangential, from a piecewise, continuous distribution of

divergence, linear in the logarithm of the radius, inspection of

the divergence and vorticity equations indicates that

specification of the distribution of tangential, radial (and from

mass conservation the vertical) velocity field, and the fields of

divergence, vorticity and pressure goes a long way toward

determining the distribution of the terms in the divergence and

vorticity equations given below

(1) (2) (3) (4)

-6 -k U U xV 2 - w L V(U-U/2)at - ~ V.Vp -~U

(5) (6) (7) (8)

+ ( + f) - Vw" au aV2 p +
.Z

(9)
+ VV 2 6 [Divergence Equation]

and

= - U-V- w-_ - k'V2a xVp -6
at az

-k.Vw x --  + 2_v 21 + vV2 (Vorticity equation]
iz z-V 2

where U is lateral velocity 6, divergence, , vorticity;

w, vertical velocity; a, specific volume; p, pressure; v,

eddy viscosity and f, Coriolis parameter.

With the exception of the terms containing specific volume,

., all of the other terms are comprised of values of velocity

U and their horizontal divergence (6), vertical component

vorticity (c), pressure (p), and vertical velocity w

derivable from the conservation of mass. The new laws do not
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usurp Newton's laws. They merely help govern the distribution of

the terms in Newton's Laws. Since the laws specify the various

fields as solutions to Laplace's equation, the fields themselves

are expressible in terms of boundary conditions.

-0 Finally, it is important to note that the only restriction

on the zLv models is the availability of data. None of the

*models fits the data so poorly that the rms may not be attributed

to either instrument error or uncertainty from analysis technique

.* (e.g. Dallas tornado), or limitations in obtaining azimuthally
averaged values for asymmetric phenomena (e.g. M31).

The range and kind of data is vast, utilizing anemometers

and velometers, photogrammetry, spectroscopy, aircraft sorties

and radar. The data availability is limited only by the

ingenuity of the individual investigator, and in the case of the

Dallas tornado, the courage of the observor. Not only are the

*; fits the result of piecewise continuous vorticity fields, but the

kinds of models which fit the kinds of data share common

characteristics, e.g., boundary layer vortices, the four

hurricanes, hurricane Carrie, etc..

The choice of an extra core or inner regime is based on data

availability, certitude of vortex center and data quality. The

poorer the data, the more degrees of freedom needed to get a

satisfactory fit. Hence the tornado data, ingenious but crude in

comparison to the hurricane data, loses six degrees of freedom

and is fit by an even vortex. The center of the tornado is, at

best, an educated guess. The choice of a lower boundary in the

core is possible due to a large number of data points, but

necessary because of measurement uncertainty, non synoptic

observations and uncertainty concerning the center of the

tornado. The lack of azimuthal averaging or smoothing in M31

requires similar procedures.
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Theoretical Difficulties

Mathematically speaking, the azimuthally averaged

vorticity, C , is identical to the shearing deformation, •

The azimuthal component is summed rather than subtracted from the

radial component

C r r Ur; r rU + U

r r rU r r Br r r ae r

Johnson (personal communication) has indicated that the

azimuthally averaged vorticity distribution may be derived from

angular momentum considerations. This is not possible, however,

for asymmetric spiral versions of the law. It is possible that

in this instance Newton's Laws and the proposed laws overlap,

even as Einstein's laws of relativity overlap with Newton's laws

for low speeds. The possibility and importance of further

overlap and the question of shearing deformation vs. vorticity in

. an azimuthally averaged vortex remain further parts of the puzzle

which those who follow may choose to address.

Further Conclusions

Thus, these data corroborate the model of a piecewise

continuous vortex satisfying the symmetric version of the first

proposed law. In Chapter VIII Conclusions and Proposals for

further research suggestions for corroberation of the asymmetric

(spiral) versions of the 2nd law will be advanced.

The following chapter outlines the laws governing the

behavior of multiple vortices comprised of distributed fields of

divergence and vorticity, the "Interaction" part of "Vortex

. Structure and Interaction."
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CHAPTER VII. TROPICAL CYCLONE MOVEMENT THROUGH LARGE
SCALE VORTICITY AND DIVERGENCE BUDGET CONSIDERATIONSU

7.1 INTRODUCTION

* This treatise has proposed a field theory which

incorporates, among other things, five proposed laws of physics

and a new branch of spiral mathematics. Although it is beyond

the scope of this paper to provide verification of more than the

axially symmetric or azimuthally averaged component of the first

law (apart from some scanty data supporting the third law), (a

* subsequent paper will provide evidence for the second law in

.' asymmetric-spiral coordinates), nevertheless, it may prove to be
useful to discuss the interrelation of the laws and their

5placement in the hierarchy of the field theory. The theory is
termed "field" for good reason. The first three laws are

* expressible in terms of Laplace's equation, while the fourth and
fifth relate the interaction of vortices as a consequence of

* their individual field integrity.

Laplace's equation is truly a field equation since the

* equation specifies that there are neither maxima nor minima in

the variable which satisfy the equation, and that this variable's

field is entirely determined by values at the boundary. The

theory deals with the manner and consequences of multiple fields
linking up and the consequences both for vortex structure and

• "interaction.

The laws are given below:

I. 2= 0,

II. V16 = 0,

III. V2p = 0,

n

IV. r 0 r i
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where , 6, and p are vertical component vorticity,

horizontal divergence and pressure, respectively and r and Q

stand for the circulation and sink functions. The subscript
'o' and 's' stand for orbital and spin, respectively and V'

is the two dimensional Laplacian. The first three laws specify

that the vorticity, divergence and pressure, either satisfy

Laplace's equation or that their Laplacians are undefined. The

undefined part occurs at the boundary of the field. By

L'Hospital's rule the divergence of the gradient of the scalars

in question approaches zero as a limit as we approach the field

boundary from either field common to the boundary. -

By Helmholz's theorem, fluid flow may be divided into

rotational and divergent components. The first law states that

the limit of the spin per unit area, the vorticity, has no maxima

or minima in the field, i.e. satisfies Laplace's equation. This

has multiple ramifications which will be treated below. Since

• .the rotational limit has no maxima or minima, it would seem

." unusual for nature to single out only that part of the flow.

Consequently, the limit of the sink function, the divergence, is

. postulated as having no maxima or minima either, giving the

"" second law. Since Laplace's equation represents the divergence

of the gradient of field entities, and the entities in this case

represent lateral frictional stresses, then Laws I and II may be

considered as saying that the divergence of the tensors

represented by the gradients of these stresses operating on

. annular surfaces is zero. Again, it would be curious if the

lateral frictional force operating upon an annular surface

providing a sink for kinetic energy (or even a source) were the

only lateral component body force operating on an annular surface

,- so that the divergence of the resulting tensor were zero.
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This leads us to the third law, which sets the Laplacian of

pressure to be zero. Thus, part of the pressure gradient force

5 is non divergent, whereas the toroidal acceleration is free to

provide work to compensate for the energy lost due to lateral

" ifrictional forces derivative from vertical shears.

The Laplacians of vorticity, divergence and pressure appear

in the prognostic vorticity and divergence equations. The first

three laws may not be derived from either of these equations

without making numerous and unjustifiable assumptions regarding

the other terms. The incorporation of three new laws into

understanding of the field distribution of the other component

terms of these equations may prove fruitful since by doing so we

obtain partial field solutions for the Navier - Stokes equations.

Thus none of the laws are derivable from one another or even

other laws. This is a characteristic of laws of physics. There

are no more fundamental entities from which these building blocks

of nature may be derived. Their place in the general field

theory is a consequence of their interrelation. Laws IV and V

* Iarise from consideration of the impact of the first three laws on

Stoke's and Green's theorems. Since the component vortices in a

group or gyre, as it will be termed in Chapter VII, maintain a

certain integrity in conformity with the first three laws, Laws

.n IV and V are the means by which the vortices may satisfy the
Stokes' and Green's theorems without violating their structural

integrity. The result is application of these theorems in view

of the structural integrity of the vortex in order to obtain

tangential and radial components of motion around a common center

of mass.

Satisfaction of the area integral of vorticity or divergence

Ocould be brought about either by an asymmetric mutation of the

individual vortices so that they may stay in place and still
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satisfy Stokes' and Green's theorems (and coincidentally violate

the first three laws) or they may move in conformity with Laws IV

and V and satisfy both the first three Laws and Stokes' theorem

in IV and Green's in V.

Thus the circulation of a group of vortices about a common

center of mass (orbital circulation) is equal to the sum of the

spin and solid body orbital circulations of each individual

vortex. The radial velocity of the individual vortices may be

obtained in the same manner. These two concepts are further

expanded upon in Chapter VII.

7.1.1 History

The interaction of vortices with their environment and with

other vortices has long been the concern of hurricane

forecasters. As early as 1921 Fsjiwhara pointed out the tendency

of two tropical cyclones to rotate one about the other in a

cyclonic fashion but he did not seek either an explanation or a

further application of this phenomenon, later to be called the

"Fujiwhara effect." Riehl (1954) noted the interaction of

subtropical highs with tropical storms but developed the concept

no further. Thus far the only extant non climatological model in

use by the National Hurricane Center is that developed by Sanders

(1968) which is a filtered barotropic model.

7.2 VORTEX INTERACTION

In this series of thought experiments we simulate the

interaction of vortices by application of a three dimensional

mass weighted Stokes' Vorticity Theorem and Green's theorem in

accordance with Laws IV and V.

.'Jr f (kVx pU d A d p) (7.1)

pA
0
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where r is the orbital or translational circulation, pJ is
the mass weighted Jacobian in pressure coordinates and A is the
area covered by the region of interest. From Stokes' theorem,

r is equal to the sum of all of the circulations within the
"' volume encompassed by the region A and the pressure surfaces

p and po. Thus the translational circulation rt of an

* interacting group or gyre is given by the sum of the individual
circulations, or

n n *

* LAW IV rt= ; LAW V t= Qi (7.2)i=l i=1l

-k where r. is the individual circulation of a specific vortex,

and Qi the individual sink function.

7.2.1 Two Bodied Problem : Anticyclone -Tropical Cyclone

Equation 7.2 for the two bodied interaction of an
anticyclone and tropical cyclone may be set up in the following
manner assuming that each vortex is cylindrical and of the same

vertical extent,

(1) (2) (3) (4)
rt  2 7rt Ut 2 rAUA+ Trc c + 7 r2 U - i r U

t AA C c t/r t c A (73

where the movement of the tropical cyclone is given by the

circulation speed, Ut, and the circulation budget is the sum
for the circulations of the anticyclone, term (1), the
circulation of the tropical cyclone, (2), and the vorticity of

*. the storm due to this assumed solid body rotation about the

*The essence of Laws IV and V is not that Stokes" or Green's

theorems are satisfied, but that the storms' movement conforms

to these theorems.
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center of the anticyclone, (3) and term 4 is the bite taken out

of the anticy done by the huricane. The simplifying assumption

that rt = rA" leads to the solution for the translational speed,

Ut , the speed of the vortex floating in the net circulation to

which it makes a contribution.

Ut = UA( 2 rt-rc) + rc Uc/(2 rt  r c2/r t )  (7.4)

where UA is the windspeed at the perimeter of the idealized

anticyclone, rA, and rt is the radial distance from the

center of the anticyclone to the cyclone and rC is the radius

of the cyclone, and U is the wind speed at the perimeter of

.,- the cyclone. For rt= 500 miles, rC = 100 miles, Uc = 50

mph and UA = -20 mph, Ut  is solved as -13.26 mph. Thus

the cyclone pictured in Figure 7.1 moves slightly slower than 2/3

rds of the speed of the ambient current.

7.2.2 Dual Hurricanes-Fujiwhara Effect

Let us assume identical hurricanes 600 miles apart. The

total area is given by an ellipse with the semiminor axis of 100

miles, the radius of the hurricane and the semimajor axis as 300

miles, half the distance between the storms. The reason for the

ellipse is for computational convenience. This is not too

t-. ;arbitrary a shape for the group since for a distance over 100

miles from the center of the hurricane the circulation may be

approximated by a constant, independent of distance. Equation

* 7.2 may be written

rt 2 2  Ut= Tr rc Uc (7.5)

For a-100, b300, Uc=50 mph, Ut  is solved as 11.18 mph.
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7.2.3 Hurricane and Large Cyclone

For a large extra-tropical cyclone with the same physical

dimensions as the anticyclone, but a wind speed of + 20 mph at

the periphery, the solution to(7.4)is + 26.74 mph,the hurricane

adding 6.74 mph to its translational velocity instead of

* subtracting it,to give -13.26 mph.

7.2.4 Dual Anticyclones and A Hurricane

If a hurricane is part of-d group in which there are two

.1 contiguous anticyclones of equal strength, the hurricane can be

expected to follow the cycloidal path of the circulation given in

*< Figure 7.3a. If the whole group is migrating from west to east

the path may involve looping, as is illustrated in Figure 7.3b.

If the westernmost anticyclone is significantly weaker than

the eastern one such that when considered alone with the

hurricane, the net circulation of the two were positive, then the

U - hurricane could be expected to pass between the two of the

anticyclones as illustrated in Figure 7.3c. This could occur if

. the circulation of the lesser anticyclone were not as strong as

the circulation of the hurricane. Thus, the magnitudes of the

circulations of the vortices would increase going from west to

east.

7.2.5 System Tilt With Height

Since the vorticity is mass weighted through a volume the

total system may tilt with height. Under these circumstances the

hurricane would float in a vertically integrated circulation

field, and its path would not correspond neatly to paths

considering only surface distributions of the vorticity fields.
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7.3 CONCLUSIONS

This model of cyclone movement attempts to investigate

tropical cyclone movement in terms of larger scale vorticity

considerations of which the tropical cyclone is an integral and

contributing part. Obviously far more work must be done in this

field, but hopefully this will prove to be an interesting and

profitable first step.
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Figure 7.1 Plan view of cyclone-anticyclone interaction.

NI

Figure 7.2 Plan view for two interacting hurricanes

* exhibiting the Fujiwhara effect.
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Figure 7.3a,b Upper stationary group illustrating 2'o

cycloidal path, lower group translating

illustrating looping.

2;''

12 --

Figure 7.3ab pper statonar guroupan illstaingwn

t~ycodailoath owiferng trnslatini-
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VIII. SUMMARY AND PROPOSALS FOR FURTHER RESEARCH

Summary

In Chapter I we attempted to prepare the reader for an event

outside of the ordinary realm of science - the initiation of a

scientific revolution - the introduction of a new paradigm

incorporating theory, laws and application and inspired by the

*"instrumentation of the space age, the meteorological spin-scan

camera of the geosynchronous satellite. In Chapter II three new
laws governing vortex structure were presented along with various

physical understandings of the first law, its relation to lateral

friction, torque and circulation or angular momentum. The second

and third laws were added with little further physical

explanation.

Chapter III discussed the mathematical application of the

proposed laws. The paradox of band movement in extratropical

storms, indicative of the flow vs. bands in hurricanes,

stationary in defiance of the flow, was examined. The evolution
of the concept of piecewise structures in the vortex and a second

law governing divergence with solutions in a new coordinate

* system(s) rounded out application of the laws. The issue of the

nature and kinds of logarithmic spirals was next addressed. In
. Chapter IV steps were then taken relating these spirals to

-. solutions of the laws in the new spiral coordinate systems. The

new coordinate systems were examined in order to achieve a better

comprehension of the concept of "spiral space."

Examination of the mathematical transformations of

shortening, scaling, rotation and stretching followed with

application to five* new spiral coordinate systems separable in

" *Plus a sixth non Euclidean system. There are probably more, but
they will be investigated more fully in other papers.
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Laplace's, Schroedinger's and the spatial wave equation. These

* five are more general cases of five extant systems mentioned by

Morse and Feschbach detailed in Appendix A. The features of the

five new systems with examples of spiral phenomena were looked at

next.

Chapter V presents the various combinations of the

azimuthally averaged tangential velocity based on a piecewise

continuous vorticity field linear in the logarithm of the

radius. Also radial velocities corresponding to a piecewise

continuous divergence field were presented. The latter clearly

provide an outflow component in the eye of the "mature vortex

model." Vortices with double maxima, eyes and timelines as log

spirals were presented. The simplest model explains the behavior

* of a marker of Pream in a stirred coffee cup.

In Chapter VI sixteen examples of vortex data covering 21

orders of magnitude are examined and seen to fit the model to
within instrument or measurement error. Ramifications of the

satisfaction of these laws for Newton's laws are examined at the

end of Chapter VI. Chapter VII deals with the volume integration

" of the sink and circulation values of multiple vortices, and

their motions about a common center of mass. Explanations are

provided for the Fujiwhara effect, cycloidal paths, recurvature,

abrupt path changes and reversal of movement of tropical storms

interacting with one another and other vortices.

Appendix A details the expansion of five non-Cartesian

coordinate systems separable in Laplace's equation into more

general spiral coordinate systemL, also separable in three

dimensions in Laplace's, Schroedinger's and the spatial wave

equations. These five systems include two for application to

cylindrical phenomena and two for phenomena on a sphere. The

fifth, while of interest,escapes direct meteorological

application.

Appendix B has presented a simple two part model of the

axially symmetric general circulation. This model incorporates
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both the zonal wind and meridional transport due to spiral asym-

metries superimposed on the zonal vorticity distribution.

In this model the Laplacian of absolute vorticity is taken to
be zero. As we have seen, the atmosphere at rest also has a

vorticity whose Laplacian is zero. This model is applicable to

the inner planets and displays Polar easterlies, prevailing

westerlies and tropical trades. Enhancement of the cold polar

dome of air results in mutations of the wind pattern above with

ramifications for ice age behavior. Examination of the data of

2 Kornfield (1969) indicates spherical log spiral asymmetries in

the low level divergence field resulting in straight cloud bands
flowing from the pole to the equator in Mercator projections,

and ordinary log spiral bands in stereographic projections.

Appendix C provides proposed explanations for the general circu-

lation of the outer planets, particularly, Jupiter and Saturn.

U Full verification awaits analysis of the Voyager data in the

context of the field theory as outlined in Appendix C. Appendix

.2 C raises important questions concerning the possibility of

terrestrial circulation becoming more Jovian, with bands other

than the Intertropical Convergence Zone appearing as zonal har-

monics.

Proposals For Further Work

The new paradigm is sufficiently open ended that all sorts of
new problems may be considered. Not least of these is whether

the remaining seven parts of the proposed laws are satisfied

and in what instances applicable. Work is being done to

analyse IR returns from cloud bands in hurricanes to establish

conformity to the spiral component of the second law. Prelimin-

ary results are given in Appendix F. This law requires that

the bands exhibit logarithmic spiral spacing simultaneously

with amplitudes linear in space with extent determined by wave

number. Appendix F shows promising preliminary results where

this is precisely the case.
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Following is a partial list of derivative projects under investi-
gation. Sections a,b, and c are proposed numerical model changes.

(a) Spiral Asymmetries: Asymmetric heating and cooling

implicit in the spiral bands of hurricanes allows the solenoidal

term in the vorticity equation to be non zero. Incorporation of

spiral features of divergence, vorticity and pressure are neces-

sary for realistic simulation of highly asymmetric flow and mass

distribution fields.

(b) Implicit Nesting: Considerations of spiral features

and symmetric satisfaction of Laplace's equation focuses atten-

I tion on the logarithmic features of both the Laplacian and the

gradient. Finite difference schemes may make use of logarithmic

spacing. This focuses attention on the closely packed features

of the eye and cloud wall without missing the overall features

of the outer cloud bands. The expanded gridding in the outer

vortex may be made more easily to fit into a synoptic scale grid.

(c) Forecast of regime formation: The velocity profile

in hurricanes is particularly sensitive to the value and place-

ment of vorticity. Even more fundamental is the question of

the cause of the formation of regimes in the mature vortex.

Dose the mature vortex progress through stages, from simple

to complex and then mature? If so, what are the roles of en-

* strophy, and the bulk aerodynamic Richardson number. Can their

evolution by used to predict the formation of the inner and

core regimes of a hurricane, and possible tornado formation?

(d) Application to the outer planets: Both the general

circulation and the Great Red Spot of Jupiter are considered in

Appendix C, which is itself a logical outgrowth of Appendix B,

where the general ciruclation of the inner planets is considered.

The question of not only ice age circulation but of a possible

Jovian type circulation needs to be addressed. Is the Inter

Tropical Convergence Zone itself a manifestation of Jovian

circulation?
I,

(e) Application to determination of the wind fields of
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extratropical storms: The data already present in observing

extratropical storms from satellites needs to be exploited.

The band spacing and winding rate of the frontal bands contribute

* information which may be useful in obtaining a vertically integ-

Im rated wind field in the lower troposphere, including the vertical

as well as lateral wind field. This subject is addressed more

thoroughly in Appendix G.

(f) Application of toroidal vortices: From plasma

fusion reactors to thermonuclear fireballs, the toroidal vortex

has applications in nuclear physics. Because of the great

efficiency with which the model allows one pulse of fluid to

travel through another, the concept of toroidal vortices needs

. to be examined in the context of cloud physics, particularly

the physics of cumulus and cumulonimbus clouds.i
(g) Applications in mathematics: The utility of new

coordinate systems separable in Schroedinger's and the spatial

wave equation needs to be explored. The pechant of nuclear

particles to follow spiral paths may be made more easily

understandable in spiral coordinates.

All of the above are possibilities for further work in the new

paradigm and some are being pursued by the auther. Obviously the

work is more than one individual can do in a lifetime. The
possibilities are limited only by the ingenuity of the

researchers who follow.
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APPENDIX A

SPIRAL COORDINATE SYSTEMS SEPARABLE

IN LAPLACE'S, SCHROEDINGER'S, AND THE SPATIAL WAVE

EQUATION



1. INTRODUCTION

Various physical phenomena are most easily described in coordinate

systems which provide the simplest representation of their activities.

Thus, the flight of an arrow is well described in Cartesian coordinates,

whereas the flight of an airplane makes more sense in geographical coor-

dinates. The rotation of a tornado is naturally described in cylindrical

coordinates, but the general circulation of the earth's atmosphere requires

spherical coordinates.

Over and above the facile description of certain processes in one

coordinate system or the other, if the coordinate systems are appropriately

chosen, they also have properties relevant to the behavior of certain homo- =
geneous second order, linear, partial differential equations. Of particular

interest are Laplace's, Schroedinger's and the spatial wave equation. The

relevant quality, called separability, renders solutions of these equations

simple and rapid.
pj

* According to Morse and Feshbach (1953) there are thirteen coordinate

systems separable in Laplace's equation in three dimensions. After discard-

ing the rather esoteric toroidal and bispherical coordinate systems, the

remaining eleven are also separable in the spatial wave and Schroedinger's

.equation. Ten of these coordinate systems are degenerate forms of the very

general eleventh, the ellipsoidal coordinate system. Of these eleven, it

appears that six are also a degenerate type of another kind of coordinate

system, a system with spiral characteristics.* This subset of systems ha.-

the characteristic of maintaining separation upon rotation or linear reccm-

bination of two of the axes about the third (after appropriate factoring).

The non-spiral Cartesian coordinate system may also be rotated, but it

neither undergoes factoring nor does it then exhibit spiral characteristics.

*" *The sixth is an imaginary version of the spherical log spiral
coordinates. By using Lambert's sphere of radius i = /-l, sin
becomes sinh and tan, tanh so that we have the non-Euclidean
circular hyperboloid as a degenerate form of the more general

exp{(tn tanh(e/2) + if)ei}. There are probably others, but
they are beyond the current scope of this work.
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2. CIRCULAR CYLINDRICAL COORDINATES

somewhat more complicated case than the Cartesian coordinat stem

involves the circular cylindrical coordinate system. The Laplacian is

given in this system by

2 2

r Dr rar + 2 2 + 2r a68

By multiplying the first right hand term of C) by r/r we may recombine

and rewrite (1) as

j 21 ( - + (2)

r2 aenr 2) z

-2Thus r is the factor and the semilog variants of this coordinate

system must be rotated about the vertical or z axis.

Semilog coordinates may be rotated to create logarithmic spiral

coordinates by the transformation

- Zn r cosa +6 sina (3)"#% r

Se -ecosa - Zn r sina (4)

where Sr  and S0  are the new logarithmic spiral coordinates illustrated

in Figure 1, Zan r and 6 are the original semilog coordinates, and a

is the angle of rotation.

Equations (3) and (4) may be inverted to obtain Zn r and 9 in
terms of S and s, so

r s

Zn riS cosa S sina (5)

S=S e cosa + Sr sinc (6) N

".
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in r

Figure 1. Rotation of Semilog Coordinates Zn r, e To
Produce Spiral Coordinates S rand S

leading to a reexpression of (1) as

2 e2(S sina S cosct) 2,(7

3. SPHERICAL COORDINATES

A similar procedure is possible for spherical coordinates with

Lap laciani

1 ~1 2  a2
7sino + 2 2 2 2(8)
r 2sinp ab r 2sin 2 96 ar2
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By using the same technique on (8) as was used on (1), multiplying the

first r.h.s. of (8) by sino/sind, we obtain

7 2 12 +-i (9)
r sin 2  ( 7r 2

Rewriting sin as - - or n (tan( /2)) we obtain19 -csco 30 U (a((/)
2 1 22 2

V2  21- 2 2 - (1)
r sin (;((n (tan p/2))2 r2

Subjecting (10) to the same sort of rotation about the r axis, we may

express in (tan(0/2)) in terms of S and S . Then, since in (tan(0/2))
r

S cos - S X sin, we may express 0 as

- 2 tan (exp(S cosa - SXsina))

-2 -2 2and r- sin-2 a

sin2  (2tan- (exp(S cosa - SXsin)))

so that (10) may be rewritten entirely in spiral spherical coordinates as

S2 12 sin-2 (2tan- (exp(S cosa - S sina)))
r

2  2
2

aS 2 2 -- (11)
( -

4. ELLIPTICAL CYLINDRICAL, CONIC AND PARABOLIC CYLINDRICAL COORDINATES

The other coordinate systems are less familiar, but no less interesting.

They are two cylindrical coordinates: elliptic and parabolic, and conic

coordinates, formed by the traces of elliptic cones on spheres. The conic

coordinates are the spherical representation of elliptic cylindrical, just

as the spherical coordinates are the spherical representation of the circular

cylindrical coordinates.

A- 4
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Unlike the preceding systems, none of these three requires factcring

in order to establish a quasi-Cartesian framework for a spiral Laplacian.

The three Laplacians may be written immediately as

72 . 1 2 2 (12)- (cosh2 -Cos2 + 7 + -- (12)

d 3

for the elliptic cyclindrical system,

2 + + + _2 (13)21+  2 ;z2
12

for the parabolic cylindrical system, and

21 a2 272=22+ + 0 (14) h

cn + sn2(,) U) ar

for the conic coordinate system.

In the case of (12- 14) we may rotate the complex space by the versor,
ia ia
e to get the spiral forms S + i S for (,o + io)e i,SPl + i S 2 for

( (1 +  E2 )e i , and S X + i S for (X + iw)e i .

The parameters p + i, Ei + i 2 and X +iLi may be expressed

individually as functions of their spiral equivalents in the same pattern

as (5) and (6). We have

U S cosa - S sin

€-S cosa + S sina

so (12) may be rewritten as

A-5
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7 2 2 2I d (cosh (S cosa-S sinc) - cos (S cos + S sina))

+ + 2 (15)

and (13) may be rewritten as

2 1 a 22 (16)

S + S72) 2 + + az

'2 +-

since

m S COS06-S sina

in5S Cosa+ S sina
"2 2

and (14) as

°" 2= 1
2 2 12 2

a cn ((S cosa-S sina),a) + B cn ((S cosa+S sina),B)

2 + ;
X2 7S2) 2

since

X4 iS cosct - S sint

x4 1.-" - S Cosa + Sl sina
'4.

U

A-6

LI

,:4-:.. '- :. -- -. .i. :.2. -- : - : - i . . .- . 4 - -. .. .. . . .: 4 .: . v -. 4..- ,, .4 . -. ± . -. -



- - -.. . .. . . .': . . . - - .- .-. .

5. CONCLUSION

The three-dimensional Laplacians for the five coordinate system

mentioned above may all be rewritten entirely in terms of their rotated

spiral equivalents. Thus, there exist solutions in spiral coordinates

for the three forms of the homogenous, second order linear equations

2 + k 1 0, k2  0.

The analysis above also applies when k2 2 0, permitting Helmholtz and

Schroedinger equations to be included in the application.
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ABSTRACT

The general circulation is parameterized in

term.s of a vorticity distribution which satisfies LaPlace's

equation both in symmetric and asymmetric modes. The

correlation of the extent of polar eastrlies and the

strength of the westerlies and possible disappearence

of the trades-during an ice age are considered. Com-

parison is made between the Mintz-Arakawa 2-level

model and the observed data for the southern hemisphere.

"- The parameterization provides a simple yet coherent way

of describing in two dimensions atmospheric fow above

the boundary layer.
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1.0 Introduction

In this paper a simple analytical expression for

horizontal planetary flow is presented. The expression,

presented in spherical coordinates, has the property that

the Laplacian of the vorticity derived from the flow is

zero. Examples will be given and discussed. First the

model is developed with a zero wave number, and then a

non-zero wave number is introduced.

2.0 Description of the Model

The model shown in Figure I is divided into two

sections, the northern, or circumpolar regime and the

southern or tropical regime. Since the Laplacian of vorticity

may be zero both if the vorticity is constant and also if

it varies in a prescribed manner, the absolute vorzicity

will be considered as constant in the polar regime and-as

zero at the equator, increasing with latitude to the value

of the constant vorticity in the polar regime at the boundary

of that regime so that the vorticity distribution is con-

tinuous. In addition, the velocity distribution is also

continuous.

This approach has a partial precedent in the

work of Rossby (1947) who suggested "that the broad scale j
features poleward of the latitude of maximum wind could be

accounted for on the basis of a north-south mixing of

B-2
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absolute vorticity." (Rossby, C. G., 1947 ) This mixing

is implicit in the ass,umption that the Laplacian cf the

absolute vorticity is zero, which is to say that turbulent

mixing, conceivably by extratropical cyclones and anti-

cyclones, distributes the absolute vorticity in such a

manner that turbulent mixing causes neither vorticity con-

vergence or divergence.

3.0 Derivation of the Analytical Expression for the Zonal

Model

The expression for the zero Laplacian of vorticity

in spherical coordinates is given by

r o C osO ) 0 (1)

1 _oO v (cos$ U>l
where 1 = - r cos (2)

where U. is the zonal velocity.

3.1 The Tropical Regime

Multiplying by r2coso and letting I - -we

7' obtain upon integrating the resulting expression between

S0 and *coso I - - 0 where

o - 0 r - L 0secO (3)

U
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Further integration yields

(c/ao) do - ~seco do (4)
0 O-0SO

aI

S.0 =  to tan(! +

where Co 0. After substituting (2) into (5) and multiplying

by -(r coso) to obtain

"*, rr
. .coso U do r1o coso Zn tan(Z +)do (6)

-) W 0= =0 -

The right hand side may be integrated by parts

udv - uv - vdu where u - tn tan( +)4 2
", du - secodo, dv - cosodo and v = sino.

Thus coso U - U -M -rlo(Sino Ln tan( + 1) + Ln cosO)
0 -4

* where the right hand expressions are zero at 0-0. By

rearranging and subtracting rncoso we obtain the relative

velocity,

U = . sec - r, seco{sino tn tan(. 4 ) +
X r X0 4 2

Zn coso)- rncoso (7)
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3.2 The Polar Regime

Where the vorticity is constant, ;N) from (2)

1 ao

then by multiplying both sides by -(r cosO) and integrating

we obtain

-COS4 U TJd6 r cos~dO (8)

* iw/2

coso U r N sinoI or

U r N (seco tano N) r~ccso (9)

where U 0 at 0 N then
r

CN ScosON/CsecON -tan ON) - Scos20/(l-sinV)

-Thus ~N may be expressed in terms of the latitude 0± zero

relative velocity. Also 1 0 may be solved for by substituting

Cfor C and 0, (the latitude of the boundary separating

the two regimes) for 0 in (5).
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Since not only the vorticity but the velocity is

continuous between the two regimes, U may be determined
0

by equating the right hand side of (7) and the right hand

side of (9), substituting 4 for-0. By adding r.coso to

both sides and multiplying both sides by cos i we obtain

.U rCN(l-sino i ) + rjo(sinoiln '#an(- + 2

:"-..- ~n coso i ) (I

Thus from a knowledge of where U is zero in the polar
r

regime, and the boundary between the two regimes we may

-specify the total zonal circulation.

4.0 Illustrations of Various Possible Circulations

In the illustrations given below the two variables

* . are the latitude of the zero relative velocity in the polar

regime, indicated by the numerator in the accompanying

fraction, and the latitude which delineates the boundary

between the polar and tropical regimes. The lower the

numerator, the more intense the circumpolar vortex. The

lower the denominator, the greater the extent of the

-7' circumpolar vortex.
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Figure 2 illustrates a circulation with the relative

zonal wind at 60 degrees north as being zero, and the

boundary of the two regimes at 55 degrees north. The trade

winds are well developed wi~h a maximum of about 16 m/s.

The westerlies begin at 26 north, reaching a maximum of

14 ir/s at 45 north, and ceasing at 60 north. The polar

easterlies reach a maximum at 74 north of 6 m/s.

In, figure 3 the latitude of zero relative velocity

is shifted north by 5 degrees reducing the extent and magni-

tude of both the trades and the polar easterlies. The

westerlies, however, have intensified, extending their sway

as far south as 15 degrees north and as far north as 65

degrees north. Obviously, the latitude of the zero relative

velocity in the polar regime is also the northern boundary

of the westerlies.

By virtually eliminating the circumpolar vortex

and the polar easterlies and shrinking the polar regime

to 58.5 north we increase the magnitude of the westerlies

to about 26 m/s and displace their maximum north. The

trades also increase in magnitude and extend their realm

north to 21 degrees north. This is shown on the next page

in Figure 4.

B-7
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The next two illustrations indicate possible

various stages in the advance of an ice age. In Figure 5

the northern limit of the westerlies is at 50 degrees

north, and is coincident wi , the limit of the polar regime.

There are weak westerlies, very weak trades, but strong

and extensive polar easterlies. As the polar easterlies

deepen and become more extensive, with both the limit of

the polar regime and of the westelies at 45 north, the

.. . trades disappear altogether, to be replaced by strong

westerlies with a slight maximum at 25 north of 19 m/s.

If this were indeed the case then north of 45 degrees the

winds would virtually all be from the east, cold and dry.

Such a situation would be devastating for western Europe

which depends upon winds from the Atlantic to bring both

warmth and moisture. South of 45 degrees the winds would

blow from the west, reversing patterns of the present, --

perhaps bringing more moisture to the Sahara and even

altering the patterns of the monsoon in India and southeast

d Asia. Undoubtedly the flow of the oceanic currents would

also be disrupted, first by the lowering of sea level which

must of necessity accompany an ice age and then by the

significant shift in the driving torque due to the south-

ward shift of the westerlies, the disappearance of the

trades and the intensification and greater extent of the

polar easterlies.
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Comparison to Actual Data and Numerical Simulation

The General Circulation Model of Nicholson (1976)

based on the Zero Laplacian Vortex in spherical coordinates

simulates the southern hemispbere's axially symmetric

atmospheric circulation in January 1973 for the levels at

800 and 400 mb in a manner comparable to the Mintz-Arakawa

two level model, as can be seen by the comparisons in Figure 7.

Obviously further development of the model is warranted to

assess the model's capabilities to simulate asymmetries

in the general circulation.

i1
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5.0 The Asymmetric- Portion of the Zero Laplacian Vortex

The general circulation model may be made more

7- realistic by relaxing the constraint of axial symmetry.

* Preliminary analyses from tbe ATS and NOAA satellites as

well as the knowledge that planetary waves have a tilting

axis from soutH to northeast (Palmen and Newton, 1969)

suggests the following analysis. This is done by first

considering the mathematical form of spiral asymmetries..

5.1 The Spherical Laplacian

For an asymmetric case the spherical Laplacian of

the scalar 0 is given in geographic coordinates by

721p 2 os cos 2 -(12)
r coso ao) r Cos2 a0

*where A signifies longitude and * latitude and r is the

radius of the earth. Equation (12) may also be condensed

into the form given below.

r oS~ ain(tan

A coordinate system can be constructed using

X as the ordinate and In tan (0/2 + n/4) as the abscissa.

.Oo
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In this coordinate system, a curve of

a special mathematical nature plots as a straight line.

This curve is a "spherical" logarithmic spiral and appears

as a straight line on a Mercator projection.

The cylindrical log spiral id described by the

equation

Ln ( ~- 14)

:.: where here r is the radius, and e the azimuthal angle. The

analogous expression for the spherical log spiral is given

by

n tan (! + ) / tan (. 1 =

4 2 4 2

± a (X-X) - (15)

where * is the latitude and X longitude. Any curve which

is a straight line in the Ln tan (n/4 + 0/2) ,. A

coordinate system is by definition a spherical log spiral,

including meridians and lines of longitude. By a simple

rotation of axes, we may express functions in terms of the

othogonal spherical spiral coordinate system. When two

axes are rotated through the angle a (a<450 ) the new

coordinates may be described in terms of the old by the

following relations

B-18
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-2

S M In tan + cosa + A sina (16

, S . coso - In tan (1 + sina (17)
4 2

IW where S, is most nearly parallel to meridians and S most

nearly parallel to longitude lines. Consequently the

Laplacian may be rewritten

Vp, .. 2o +L rIo s a (18)

assuming an asymmetry which may as-easily be the height of

a pressure surface, a divergence pattern or a vorticity

pattern.

(20)

In spherical spiral coordinates, p,v the function f(z)

is represented by

B-19
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1

f()- -~t

0 0 \ 4)

Symmetric

Z yo(n) exp (v + itn tan -1)e (21)

nl Asymmetric

The transformation from spherical to geographic coordinates

may be made by substituting v for A and (w/2 + *) for 1j.

./.1

A slight modification of the two regime symmetric

model to include a third, equatorial regime, may. also provide

a rationale for the existence of the Intertropical Con-

vergence Zone, explaining both its location and possible

seasonal fluctuations.*

*See Appendix C for further explanation of the ITCZ in terms
of zonal harmonics in the divergence field.
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5.2 Climatic Implications

A possible result of an extension of the circum-

polar vortex would be the accentuation of the difference

in temperature between the icontinents and the oceans.

. According to Yeh and Chu (1958) the effects of heat sources

cooperate with .those induced by mountain chains to maintain

mean troughs near the east coasts of Asia and North America

in winter. These two contributions differ over Asia how-

ever so that a weakening or strengthening of the influence

of the heat sources due to oceans could result inta signifi-

cant difference over Asia. The wintertime Siberian high

would not exist at all were it not for the influence of the

7long west-east mountain chain across southern Eurasia.

Mintz (1965) found that with the simulated absence of the

"' mountains baroclinic disturbances occured between the air

warmed by the Indian Ocean and the air over Siberia which

is cooled by radiation. The net result was a transport of

heat into Siberia from the Indian Ocean....

:-.
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6.0 Conclusion

This paper has presented a model of the general

circulation based on the spherical Zero Laplacian Vortex.

The long atmospheric waves tnay be handled by a Fourier

series with spiral coordinates defining the argument of

the series. This provides a simple non dispersive wave

with an axis tilted so as to satisfy angular momentum

exchange considerations. Both meridional and zonal

atmospheric motions may thus be simulated.

The limiting parameters which govern these

hypothetical circulations should be investigated more

thoroughly in a numerical model using the filtered equations

in their full extent using satellite albedo data for input

into the vorticity and divergence fields. The interaction

with the oceans, how the currents may have altered under

these'different wind regimes derived from satellite cloud

motions thus affect adjacent continents would provide some

interesting insights.

With an analytical model of the atmospheric

circulation it may be possible to analyze short term

atmospheric trends. Man's modification of the sea air

interface may show up as a primary factor in these trends

by changing the forcing functions in the wave equation.
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Among these trends are the displacement of storm tracks

which may increase rainfall and even flood some areas while

bringing droughts to others.

With thisparameteritation as a start, it may be

possible to achieve greater understanding some of the paleo-

climates and their radical changes which led to the possible

extinction of numerous prehistoric fauna. Further research

along this line may also reveal how close man may be to

radically altering his own climate.

Evidence of asymmetric spiral divergence fields

appearing in the climate may be found in Kornfield (1969) where

-cloud bands appaer as straight lines in Mercator projections

and log spiral bands in stereographic projections. The bands are

t;,tme averages over weeks and months. Any phenomenon wSich

is a straight band in a Mercator projection is also a spherical

. log spiral with the pole as its center. The same is true of

a stereographic projection. Any phenomenon in such a pro-

jection is also a spherical log spiral if it shows up as an

ordinary log spiral in this projection. Kornfield's cloud

averages appear as both.
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I. Introduction.

The transit of the Voyager spacecrafts past Jupiter and

Saturn provided an unequaled closeup view of the features

of the Jovian and Saturnian atmospheres. The spacecraft

obtained explicit details of their banded structure as well

.3. as movement of atmospheric features revealing the zonal

general circulation. Thus far, there has been no theory

extant which simply and concisely explains the atmospheric

banding or general circulations, let alone the structure

of the elliptically-shaped storms appearing between the

bands, major among which is the Great Red Spot, itself

characterized by spiral bands.

Nicholson (1983), in a report to the Office of Naval

Research, proposed a new General Field Theory for Vortex

Structure and Interaction. This field theory advances five

new laws of physics and a new branch of mathematics. The

laws are field laws and as such describe the structure of

* - the vortex and the behavior of vortex interaction. The

number and kind of phenomena to which the field theory has

been applied are extensive. These phenomena include

waterspouts, tornadic winds and funnels, hurricanes, extra-

tropical storms, the general circulation of Earth and

spiral features around the Venusian poles, and now the

atmospheric banding and circulation of Jupiter and Saturn,

and quite possibly Uranus and Neptune. The field theory

further provides models of the circulation of the Great Red

- Spot, nuclear fireballs, smoke rings, and circulation and

pressure distribution of toroidal plasmas in nuclear fusion

reactors. Moreover, the movement of stars and the structure

of spiral arms in spiral galaxies, the winding of spiral

fronts of extratropical storms, the hook echoes of tornados,

and the flow field in laboratory Dines vortex cages are all

modelled.
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An attempt to duplicate the full field theory will not be

made here; only that part of the theory relevant to the

atmospheres of Jupiter and Saturn will be discussed.

II. The First Two Field Laws of Vortex Structure..°4

Of the five laws proposed to govern vortex structure and

interaction, the first two are described by solution of

the two-dimensional Laplace's equation applied to the

divergence and vorticity fields in the general circulation.

The two dimensions constitute the surface of the sphere.

The divergence, 6, occurs within that surface. The vorticity,

S,.is normal to it. Therefore,
-. -. . . . . .VI 0, l-

(the Laplacian is either zero or tmdefined) where = k.V2XU,

and 8 = V2-U. U is the velocity and k is the unit vector

normal to the spherical surface containing the two dimensions

of interest.

Let us assume that the bands on Jupiter and Saturn represent

alternating upwelling and downwelling accounting in turn for

the different band colors due to different physical phases

and/or chemical composition for the rising, as opposed to

sinking, gases of the planetary atmospheres. Then the bands

would represent solutions to the divergence field. The spec-

ific solutions are indicated by band spacing which corresponds

to the placement of nodes in the solution to the divergence

-~ field.

The conventional solutions to Laplace's equation on a sphere

are called spherical harmonics. Bands such as are observed

on the outer planets varying solely with latitude are further

termed zonal harmonics and are discussed below.
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III. Zonal Harmonic Solutions to the First Two Laws.

Laplace's equation for scalar psi (q) in spherical coordin-

ates is given by

1 r2'P11 a 32*Aj _ 0 2s 2e H-si0+I r 2 sin 2e si 2  0. +2)

This equation separates as follows:

4 = R(r) 0(e) 0 (0) (3)

d + 2= 0, (4)
€.2

..I d + (n(n+l) - = 0, (5)-s , sin28 -6

-_.'.'d jr d R  n(n+l) R = 0. (6)
3 r p drr

Solutions of the second equation are the Legendre functions

mP (cos 8) = sinmO Tm (cos 9) (7)
* n n-rm

The functions where m =0 are called zonal harmonics. Since

these functions depend only on 9, the nodal lines divide the

sphere into zones.

Letting x=cos 0, the general solution to the second equation

in the case where n= 0, 1, 2, 3, ... is given by

y P C(x) + c Q (x)

where P (x) are Legendre polynomials and n(x) are Legendre
nn

functions of the second kind which are unbounded at ±1.
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Not only are two different Legendre polynomials orthogonal

in the interval -1<x< i, but if f(x) satisfies the Dirich-

let conditions, then at every point of continuity of f(x)

in the interval -1 < x < 1 there will exist a Legendre series

expansion having the form

f(x) = AoPo (x) + AIPI (x) + A2P 2 (X) +

= k X AkPk(x) (8)k=

where Ak = 2k+1 (X)Pk(x) dx. (9)

This being the case, then, any solution of Laplace's eq-

uation for the divergence and vorticity fields may be

expressed as a Legendre series, and any solution of the

general circulation must be a spherically integrated

Legendre series since

1 a
rsine 6- sin 0 O = k AkPk(cos 2e), (10)k= 1 "

so that

U = --- r s i sin I a AkPk(cos 2e) d8, (11)
k= --

where Ak are the series coefficients; Pk(cos 2e) are

the Legendre polynomials, and U is the zonal velocity.

IV. Analysis of Legendre Coefficients.

Haltiner and Williams, in chapter 6 of their text, Numerical

Prediction and Dynamic Meteorology, discuss in some depth the

problem of integrating Leqendre polynomials over a sphere to

obtain the series coefficients discussed above in (9). In
particular, application of the spectral method to the barotropic

vorticity equation is discussed using the Galerkin method.
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Specifically, the Legendre integrals in latitude are

evaluated by Gaussian quadrature following Eliasen et

al. (1970). If the integrand is denoted by Q(x), we may

have the following expression for the non-linear terms:

1 n (K) Q(x (12)IFr, n  7 1 k k e

Haltiner and Williams say, "The summation is carried over

* K values of xk where the Xk's are roots of the Legendre

polynomial P0 ,k and GK) are the corresponding Gauss

. coefficients. The formula is exact for any polynomial of

degree smaller than or equal to 2K-1. Thus, apart from

roundoff errors, no approximation is introduced by computing

the integral when a sufficiently high value of K is used."

. V. Application.

Sincn ntimerical methods exist for determining the basis

functicns describing the divergence and vorticity fields,

the task remaining is to apply these methods to the data

at hand.

Since neither vorticity nor divergence may be measured

directly, it is necessary to utilize measurements of planetary

albedo and circulation. The albedo measurements in the

terrestrial atmosphere are closely correlated with low-level

- divergence fields which induce cloudiness through phase change

of water vapor due to updrafts and consequent cooling. Similar

• -. phase changes in methane (CH4) and ammonia (NH ) on Jupiter

and Saturn may arise out of pseudoadiabatic cooling due to

., upwelling.

Determination of the appropriate Legendre polynomials by

Gaussian quadrature to fit the albedo maps of both planets

should give an indication of the underlying divergence field
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and the zonal harmonics satisfying Laplace's equation.

The vorticity may easily be determined by finite differencing

of the circulation data after weighting by the sine of the

colatitude. The procedure given above may be employed to

obtain the zonal harmonics for the vorticity fields.

The findings may then be compared and the spectral energy of

the vorticity and divergence fields may be assessed. Peaks

or concentration in the spectra indicate fidelity to the two

proposed physical laws. Preliminary investigations are

examined below.

VI. Preliminary Findings.

Preliminary examinations of Legendre series' integrated over

the surface of a sphere to obtain the corresponding planetary

circulations demonstrate patterns and potential for spectral

grouping. These groupings suggest applicability as solutions

to Laplace's equation expressed in the proposed physical laws

mentioned above.

m

Major aspects of patterns in both the Jovian and Saturnian -

circulations have been synthesized by the addition of a minimal

number of polynomials in the Legendre series. Given a set of

reasonable assumptions, to be described shortly, description of

the circulations of the two planets appears likely. The first

of these assumptions, which is supported by data, is that the

circulation described by integration of a polynomial in cos e

over 20 radians is similar in its general featuires to one

described by integration of the same polynomial in cos 20 over

e radians, or

r nsOn1d20 1 (13)U ;- n-9r Pn(cos e) d cos 8 r s-cs20 os0(3

This is an important assumption since the left-hand side of (13)
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may be integrated directly by inspection to a polynomial of

one degree higher, while the right side of (13) may not.

This assumption is important in estimating the circulation

of Jupiter.

The second assumption, derivative from the first, is that if

a short series of Legendre polynomials may be found approx-

imating a planetary circulation (as in the case of Saturn),

• .then another short series probably exists which in integrated

form also represents the planetary circulation. The actual

*: series, of course, must be found by Gaussian quadrature upon

the properly prepared data itself, following Eliason et al.

(1970). In the first case, an exact rather than numerical

integration, while only an approximation to the series of

interest, is rapid and avoids roundoff: errors. Integration

of the right-hand side of (13) by the trapezoidal method

leads to a cumulative error large enough to cause wild

i fluctuations after the integration of the polynomial and

division by the sine of the colatitude past w/2 radians.

Since the integration must show symmetry, the approximation

and exact integration of the left-hand side of (13) is

preferable, replacing the range 0- 28 with 0- 9 in the graph

of the results. Comparisons of numerical integration of

circulations for several series and their exact approximations

are given in figure 1. It can be seen that the assumption is

both meritorious and utilitarian. The left-hand side of (13)

may be expressed as

U = (--o-rP ) d cos8 = rP'+(cO (14)
* sinO e Jn n+1(os6

where Pn' is not a Legendre polynomial but rather a simple

polynomial of one degree higher than P

The second assumption states that if a series of Legendre
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polynomials exists which well-describes the general circulation,

there also exists an integrated series of lower degree describ- -

ing the same general circulation. Or, if the general circulat-

ion may be well-described by a short series, then so too may

the corresponding vorticity field. The second assumption is

merely an alteration of (14), i.e.,

U = 2en'l ip n(C°s) d2cos = rjP (cos 26) (15)Ti -. r'nl* sn- 1 lfo n=ln

In the first assumption applicable to the circulation of Jupiter

shown in Figure 2, the integration of the series

sine... P(cos 6- P, (cos e) dcos e

is substituted for

P (cos 2e) - P (cos 2) } d cos B71n8 fO 1o 0

and-is shown in figure 3.

The general features are well-represented, particularly the .'
outlying foothills leading up to a topographic feature

characterized by an inflection point reminiscent of the

integrated series

U 20__

ieJ{P4(Cos e) - P (cos 6)} dcos e (16)

shown in figure 4.

Obviously, the final assessment must come from an analysis

of the data itself by Gaussian quadrature, where any set of

data will be representable by a Legendre series. Hopefully,

this series will be confined to a handful of polynomials, as

is indicated by the synthesis of P1 0 - P, and P - P3.

C-8
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The circulation of Saturn shown in fig. 5 is simulated in fig. 6 by

the series P 1 0 (cos2e) - 0.8P,.(cos 2G) - 0.2P,(cos 2e) shown in

figures 7, 8 and 9, respectively. By the second assumption,

also only verifiable by analysis of the data by Gaussian

quadrature, there exists a series of polynomials which

satisfies the vorticity field of Saturn. The actual poly-U
nomials are probably closer to P8 - P., which would account

for fewer wave numbers in the circulation spectrum, while

retaining the central Everest among the lesser foothills.

It should be pointed out that even solid rotation with a

vorticity of 2Q cos 0, the Coriolis parameter of the vorticity

of a solid rotation sphere, is itself a Legendre polynomial

of the first kind, P1 (cos 8) = cos 8.

Again, both Jupiter and Saturn have circulations bearing

striking similarities to the difference of the two close

Legendre polynomials including central plateaus (P4 - P,),

central peaks (P 1 0 - P.) and attendant foothills increasing

in amplitude from the poles toward the equator.

In any event, the determination of the Legendre polynomials

representing the vorticity field derived from the Saturnian

circulation should prove both interesting and rewarding.

Ca
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VII. The Great Red Spot.

The Great Red Spot is characterized by ellipticity and bands

* similar to log spirals but displaying the same elliptic

distortion as the spot itself. From Appendix A it is evident

that this system may be analyzed in either elliptic coordin-

ates or its spherical equivalent, conical coordinates. For

simplicity's sake, we will restrict ourselves to elliptic

cylindrical coordinates. The nodes in this system are

ellipses and confocal hyperbolas. The terrestrial equivalent

of the Great Red Spot is the extra-tropical storm. This storm

is characterized by the logarithmic spiral bands which move

with the flow, becoming more tightly wound in the flow. The

bands are spherical log spirals and as such have harmonics in

.. the divergence field satisfying Laplace's equation and thus the

second law, V I= 0.

Parallel to the development of the terrestrial extra-tropical

storm where the vorticity is linear in the logarithm of the

tangent of the scaled half-radial angle, i.e.,

= A + B~n tan (V/p0), (17)

the vorticity of the Great Red Spot should be linear with the

hyperbolic radius, V, shown in figure ro. The spiral bands

therefore would represent divergence fields satisfying the

elliptic Laplacian

VI = -l (cosh - cos 2 0) + 2 ) (18)

where ±d are the foci, * the elliptical azimuth, and U the
hyperbolic radius. The divergence field therefore exhibits

harmonics given by the following:
6 [60 no ( + io)e ac

6 - (n)e (19)
n-i
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where eia is the versor rotating the bands into elliptic log

spirals. Elliptic log spirals are defined as spirals making

a constant inflow angle to the intersected ellipses and hyper-

bolas. Appendix B outlines a procedure for obtaining a

Fourier analysis of these bands for the earthly storm in

spiral coordinates. The procedure may be modified for

,- elliptic log spiral coordinates or, to be more precise,

conical. The resultant spectral analysis should indicate

the fidelity of the theory and applicability to this phenom-

enon by the ratio of signal to unexplained noise.

VIII. Conclusion.

Appendix C contains the application of the general field

theory for the terrestrial and possibly Venusian atmospheres.

Evidence of validity for the outer planetary circulations

lends credibility to assessment of the circulations of the

U inner planets by the different application of the appropriate

laws. The inner planets are characterized by low rotation
*rates and strong insolation. The outer planets display more
''I4

rapid rotation and very much lower insolation. The inner

planets display significant meridional transport consonant

with their rotation rates and radiation balance differential

between the poles and the equator. This is manifest in the

spiral bands in cloud averages shown by Kornfield (1969) and

in the spiral bands around the Venusian poles (Krauss et al.,

personal communication). The outer planets seem to have

predominantly zonal circulations, evidence of which appears
in the banding which we hope to explain by zonal harmonics in

the planetary divergence field.

The inner planets are referred to as terrestrial planets,

and the outer planets as Jovian; there are a number of factors

which.separate the two types. Of interest here is the distance

from the sun, which is small for the terrestrial planets, 0.4

to 1.4 Astronomical Units (AU), and large for the Jovian planets,

C-11
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5.2 to 30.1 AU. Bearing in mind that the strength of the

insolation falls away as the square of the radius, then

Jupiter receives less that 1/25th of the unit insolation of

Earth. Saturn, on the other hand, receives less that 1/170th

of the insolation of Venus. The radiation gradient in the

infrared is correspondingly much greater for the terrestrial

that the Jovian planets and requires meridional transports to

achieve balance. Slow rotation rates make this possible.

Jupiter and Saturn, on the other hand, with rotation rates

of the order of ten and eight hours, respectively, and an

almost vanishingly small insolation gradient between the poles

and the equator, have less need and less allowance for merid-

ional transport.

The rotation rate of the terrestrial planets is moderate to

slow, with Earth the fastest, 24 hours to 243 days; for the

Jovian planets, 8 to 16 hours. Moreover, Uranus is tilted so

far in its orbit that its North pole pointee toward the Earth

in 1946.
i

The exciting possibility raised by assessment of the relevance

of the General Field Theory to the circulations of the Jovian

planets is that there already exists such an application

tailored for the terrestrial planets and included in Appendix

C. Over and above the applications contained in Appendix C,

evidence of spiral bands in the climatological divergence

field are apparent in both terrestrial and Venusian atmospheres.

In Kornfield et al. (1969), the cloud bands appear as straight

bands emanating at an angle from the South pole when displayed

on a Mercator projection. This is the sine qua non for the

bands to be logarithmic spirals on a sphere described in each

of the appendices. The occurrence of such bands was postulated

in 1974 when Appendix C was first written and included among the

abstracts for the conference held in Germany. A solution to

Laplace's equation on a sphere may be given by spiral bands
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having a constant inflow angle. Such a spiral is a straight

line on a Mercator projection, or an ioxodrome or ship path

of constant angle with lines of longitude.

Conceivably, the Inter-Tropical Convergence Zone, which seems

to migrate back and forth across the equator in a seasonal

manner, is a convergence zone in a Legendre polynomial for a

field defined in the tropics, whereas the rest of the planet's

circulation is modelled more on the meridional mode given in

Appendix C. Laplace's equation may have different solutions

for different regions, as long as the boundary values are

appropriately matched. Thus, the terrestrial atmosphere may

represent a transition between the other terrestrial planetary

atmospheres and the truly Jovian atmospheres.

If this is the case then it is important to understand whether

there is a trigger mechanism by which the planet may go from

3 one circulation type to another. Is the Earth's atmosphere

now in a delicate balance between the two types, and could man-

, made atmospheric changes tilt it one way or the other? Could

lack of meridional transport initiate another ice age? Is an

ice age indicative of a more general Jovian circulation on Earth?

Bearing in mind that the present climate is an inter-ice age

climate, is it not reasonable that there is a manifestation of

Jovian circulation in the tropics in the presence of the ICTZ?

There are both short- and long-term bdnefits to this study. A

field theory explaining both the Jovian and terrestrial types

of atmospheres has ramifications in the short run for a poss-

ible explanation for the mechanism of the advpnce and retreat

of the ice age circulation and the behavior of the atmosphere
at rest, where = P1 (cos 8).

In the long run a conceptual structure such as the field theory

can be checked to see if it is scientifically "true." Accord-
ing to Holton (1979), Einstein felt that such "truth" "depends

C-13
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on how nearly the aim of making a system deal with a large

amount (ideally, cover the totality) of diverse sense exper-

ience has been achieved, and how economical or parsimonious

the introduction of separate basic concepts or axioms into

a system has been.... A really good theory, one that has a

high scientific 'truth' value, is correct not merely by

virtue of not harboring any logical contradictions, it also

allows a close check on the correspondence between the pred-

ictions of the theory and a large range of possible exper-

imental experiences. He summarized all this in the following

way: 'One comes nearer to the most superior scientific goal,

. to embrace a maximum of experimental content through logical

deduction from a minimum of hypotheses.... One must allow

the theoretician his imagination, for there is no other poss-

ible way for reaching the goal. In any case, it is not an

aimless imagination but a search for the logically simplest

possibilities and their consequences.'" (The'Problem of Space,

Ether and Field in Physics, in the translation by Seelig)

In the Jovian and Saturnian atmospheres there are data of

inestimable value in assessing the fidelity of the General

Field Theory of Nicholson (1983). These data are the digital

albedos of the two planets complete with navigation, the

circulation of the two planets, and the vorticity and albedos

of the Great Red Spot.

Fits of Legendre polynomials to the albedo and derived vorticity

fields and the cross-correlation and spectral grouping would

provide evidence for the General Field Theory on the planetary

scale. The spiral Fourier analysis in elliptic coordinates and

the assessment of the circulation of the Jovian storm to determine

whether or not vorticity is linearly proportional to the hyper-

bolic distance supplies evidence for such applicability on the

planetary synoptic level. Both instances provide a powerful new

set of tools for understanding the atmospheres of not only the

Jovian planets Jupiter, Saturn, Uranus and Neptune, but ultimately

the terrestrial planets, especially Venus and Earth.
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ON OPTIMAL DOPPLER RADAR SAMPLING OF

HIGH EXPLOSIVE DETONATIONS

AND

S THE CONTAINMENT OF TOROIDAL PLASMAS

by Francis H. Nicholson, Ph. D.
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ABSTRACT "

A model of the nuclear and high explosive fireball

is proposed in toroidal coordinates where the vorticity
* fieid satisfies Laplace's equation. Recommendations

for ascertaining vortex geometry and subsequent circu-

lation parameters through Doppler and photogrammetric

sampling and their evolution are made.

A model of the contained fusion plasma is pro-

posed in toroidal coordinates where the pressure field

satisfies Laplace's equation. Possibilities of enhan-

cing local pressures through toroidal harmonics to

achieve pressures critical to reaction completion

are considered.
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I. Introduction

Current Model and Code

The modelling of high explosive detonations and, by analogy,
nuclear fireballs currently requires an extensive and complicated

hydrodynamic code based on a physical model of the fireball.

This code incorporates initial shock, buoyancy and the Euler

equations. The code presumes an inviscid fluid and probably

a Hill spherical vortex.

Typically, numerical models of such events simultaneously (or

alternately) solve a series of partial differential equations

* by finite difference methods employing a spacial matrix of

• points at which values of pressure, temperature, velocity
and sometimes water vapor are specified (and in this case

radioactive debris and byproducts of nuclear fusion) and from

their relations one to another undergo sequential readjustment

in accordance with the governing partial differential equations.

Unfortunately, such a procedure must be initialized and then

takes some time to adjust to the shock of initialization. More-

over, the governing equations are defined at a point so that the

evolving field is a function of matrix spacing, simplifying

assumptions, and above all, the physical laws which the equations

purport to represent.

. _Code Initialization and Data

The code is useless unless initialized. The initialization

' depends on data. The ability to procure the data for a high

explosive detonation is limited. Currently, Doppler radar is

the only viable means of obtaining any kind of velocity fields.

Unfortunately, the fields must be obtained by scanning, and

only then provide radial velocities. There is no extant
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model available to govern the sampling procedure, let alone to

direct the interpretation of the data for optimal inclusion in

the code. This leaves us in a double bind. On the one hand,
* we have a code worthless without initialization. On the other

hand we have a sampling device, but no way to optimize the

* sampling in order to achieve proper initialization parameters.

The problem is further complicated by lack of an adequate

- physical model governing chaff and/or dust distribution so that

the Doppler radar may operate in the first place. The ultimate

goal of the code is to provide a realistic flow field and per-

haps pressure field simulating the fireball phenomenon and other
sequential vortex phenomena.

II. The Fireball as a Toroidal Vortex

General Vortex Field Theory

Both a crisis and a resolution are brought about by the discovery I
of a new branch of mathematical physics presented in A General

Field Theory for Vortex Structure and Interaction , Nicholson(1983).

The field theory presents, among other things, a toroidal vortex

model based on a proposed law of physics. This law states that

the frictional curl of the fluid parallel to the axial circle of

the torus vanishes (cf Fig. 1), but that the fluid is viscous so
that F, the frictional force, is non zero. Since the frictional

force may be represented as proportional to the Laplacian of the
velocity field, and the order of the operators is immaterial, then

the curl of the Laplacian of the velocity is equivalent to the

Laplacian of the curl of the velocity. Thus the vorticity parallel

to the axial circle of the torus satisfies Laplace's equation.

* . In mathematical form, then, since

F = V2 "vV2U

where v is the lateral (in the cross sectional circle of the torus)
coefficient of eddy viscosity, then k.V2xF = vVI(k.V 2XU) =VI,

where is the axial component of vorticity and k is the unit
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vector parallel to the axial circle.

Another way of looking at this is to say that the vorticity grad-

ient is as small as possible under boundary conditions. Laplace's

equation is a field equation. Therefore both the vorticity of

the entire field and the circulation are analytically determined

by boundary conditions. Toroidal coordinates constitute such a

set of boundary conditions since Laplace's equation separates

in three dimensions in these coordinates. Thus the toroidal

nodes may be used to express solutions to this homogeneous,

linear second order partial differential equation.

The toroidal vortex is so structured that it travels through

the enveloping fluid as rapidly as its inviscid counterpart

because the torus actively clears its own path through the am-

bient fluid. Due to the geometry and the requirement of zero

frictional curl the torus propogates with no effective drag.

No slip conditions can be observed on the lateral boundaries
of the rising torus. (cf Fig. 2) By this means the torus both

- propogates and retains its structural integrity. Indeed, its

structural integrity is predicated upon its optimal propogation

through the viscous host medium.

Vortex Geometry

- Consequently, initialization and evolution of the entire fluid

field is a function of geometry and the field values at the

-" geometrically determined boundaries. Thus the proper utilization

iii of a numerical code should be to describe the initial state and

. evolution of both the geometry and field boundary values. Point

equations are replaced by field equations. A new branch of phy-

sics describing not only flow but pressure distribution is ini-

tialized and incorporated into a model of the rising fireball.

This model even has physical prototypes such as the smoke-ring

produced by a playful cigarette smoker.

D-3
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From a negative standpoint, any code which overlooks a relevant

branch of physics (including models, laws, geometry and mathema-

tics) describing vortex evolution is about as relevant as a code

omitting Newton's Laws. The incorporation of the new physics

may not be able to guarentee success, but omission of the physics

is certain to ensure failure.

III. Scanning the Toroidal Vortex

Toroidal Coordinates

Vertical and lateral Doppler scans, supplemented by photogrammetry,

are called for to determine coordinate geometry and thereby circu-

lation parameters consonent with a vorticity field satisfying

Laplace's equation in toroidal coordinates. First, it would be

useful to review the cross section of a torus given by bipolar

coordinates. Toroidal coordinates are obtained by rotating

bipolar coordinates around the perpendicular bisector of the

line joining the two poles. The coordinate, o, is the surface

of a torus with axial circle of radius a coth o and cross section-
al radius of a csch E, where

= 1.( 2 axtanh- 1  t ax2 av
a2 + x + yJ a 2  x 2 - y

and 8 is the angular coordinate ranging from 0 to 2r. The

surface 8o is a sphere of radius a csc 8o centered at y = a cot eo.
Every 8 circle goes through the points + a,0 in the cross

sectional x-y plane. The complex transformation between the

Cartesian x-y plane and the toroidal (with azimuthal constant)

E-0 "plane" is as follows,
z = x + iy; w = + i8

-1
z = a tanh(w/2); w = 2 tanh (z/a).

It should be pointed out that the circular cross sections are
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not concentric with the axial circle. The circles are displaced
outward with increasing size, crowding the surfaces together

interior to the axial circle. Circulation distribution may be

determined by knowledge of the toroidal parameter a coth Co so
that the circulation r is given by

r = 2w a csch U,6 (cf. Fig. 3)
where U8 is the azimuthal average of the velocity parallel to E's.
The axial parameter, a, may be inferred either from a lateral

Doppler scan or photogrammetrically. Of course 'a' can and
probably does change with time, just as a smoke ring expands
prior to ultimate dissolution. U6 (E,8) may be determined by
a vertical scan for certain values of e. The e dependence

may be determined photogrammetrically on the surface of the
fireball where is a constant.

Solutions to Laplace's Equation

Typical solutions to Laplace's equation incorporate , ,
e cos 0, cosh(nE)sin(n6), etc.. In toroidal coordinates solu-
tions of Laplace's equation for the radial E component occur

as half-order spherical harmonics. Thus, a solution for the
vorticity field would have the form

0 (cosh oI r osn)• . _ .o 2(cosh - cos68) |'P - (cOsh~. P)
-- Tn- (cosh 0)Pn- (cs )cs(S

, n=On-

where Q and P
n- n-

are half order spherical harmonics.

Scanning Problems

If the rate of ascent of the fireball is rapid compared to scan
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time of the radar, the radar may be most appropriately used in

a stationary mode scanning the fireball as it passes, then

incrementing up and letting the fireball pass again, etc.. A

vertical scan would probably present a dual bimodal distribution

(cf Fig. 4) due to observations of the velocities at the far

-end of the torus. (cf Fig. 5) From the scan angles, if a pseudo-

synoptic flow field can be determined, then the circulation may

be reconstructed. Naturally, the translational component of

the moving torus would have to be subtracted from the observed

circulation, as necessary, in order to reconstruct the circulation

of the torus seen moving with the torus. The whole flow field

may then be reconstructed by adding back in the translational

to the rotational velocities.

IV. On The Containment of Toroidal Plasmas

The branch of physics featuring five field laws and a complementary

branch of mathematics may prove relevant to the problems of

magneto-hydrodynamic (MHD) stability in a toroidal plasma. The

relevance to the problem of formulating MHD equilibrium would

be simplified by knowledge of pressure distribution in the torus,

and in particular of its toroidal harmonics. A solution to

Laplace's equation of the pressure field specifies that the

pressure gradient be as small as possible, given boundary condi-

tions. The boundary conditions, including harmonic variations,

may conceivably be induced by appropriate design of the contain-

ment vessel and/or the placement of the electromagnets. j
The distribution of pressure in a toroidal plasma is a vital

,. ingredient for determining stability. A critically high pressure

is needed for the fusion reactions to go to completion.

Currently, pressure is parameterized as a function of the magnetic

field strength, B. If the pressure in a plasma in the form of a

toroidal vortex does indeed satisfy the third proposed law, the
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S consequences would be as follows:

1) The MHD stability occurs as a consequence
of satisfaction of the third law, including the
toroidal harmonics in the pressure field;

2) Numerical codes become greatly simplified

by utilization of an analytic expression

describing pressure distribution, dependent

solely upon boundary values;

3) Critical pressures and temperatures may be

reached in toroidal harmonics which would not

otherwise be possible.

Utility of these proposed laws in a plasma is yet to be demonstra-

U ted, but promise is indicated. Manipulation of the boundary

conditions of the plasma to produce toroidal harmonic solutions

of a specified wave number may spell the critical difference in
achieving temperatures and pressures necessary for fusion.
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A PP EN D IX E

PRELIMINARY FINDINGS FOR SPIRAL ANALYSIS OF

HURRICANE DAVID 243.6



The orthogonal spiral Fourier analysis technique is designed

to determine the Fourier components of the hurricane's spiral

bands in spiral coordinates and the distribution of the ampli-

tudes. The task is to separate out the spiral amplitudes by

taking cuts along the main axis of the bands. These cuts are

perpendicular to the bands. The sampling along these orthogonal

spirals occurs at regular azimuthal intervals.

The validity of the analysis is dependent on several factors.

First among these is the ability to fit a spherical log spiral

to the spiral bands as observed from the satellite. This means

that the spiral bands must be navigated so that there are no

errors due to foreshortening. This is accomplished in the

program "Tactical Environmental Display System" (TEDS) resident

on the Satellite Processing and Display System (SPADS) at the

Naval Environmental Prediction Research Facility, Monterey,

California.

The pixels from the satellite picture contain both navigational

information and values for the infrared return from cloud tops
to indicate the depths of'the cumulonimbi observed. The assump-

U: tion is that the link between low level divergence, vertical

extent of the cumulus element and infrared return is sufficient-
ly linear that the measurement of the last gives an indication

of the first. -

The satellite pictures provide both signal and noise. The signal

is the infrared vaulue of the cloud spiral. The noise enters in

in ground contamination (holes between the spiral bands with the

earth showing through), the graininess due to cumulus and cumulo-
nimbus elements, and the graininess due to pixel size. The first

is particularly evident in the outer part of the spiral band.

The second appears midway through the bands, and the third in

the close quarters near the center of the storm.

1E-1
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Three harmonics stand out in the histogram cuts taken at the

first, tenth and nineteenth intervals along the ni:in spiral band.

Figure 1 shows the histogram at the first cut. The amplitudes

for wave numbers one, two and three contain the majority of the

signal. These amplitudes are due to the first three spiral

bands analysed in David. Thus amplitudes 1-3 predominate in the

analysis. Wave numbers 6-10 show a very shallow peak and can be
attributed to the graininess due to the convective elements,

cumulonimbi and cumuli. Wave numbers 12-15 show another shallow

peak attributable to the graininess due to the boxiness of the

pixels.

Altogether, in the analysis of David there were forty samplings

along each cut, sufficient to provide wave numbers 1-20. A random

distribution, indicative of low signal to noise ratio would

not have been grouped so distinctly with the great weight of

the signal, greater than 90%, grouped in only the first three

wave numbers. Moreover, in a random distribution the peaks due

to graininess attributable to cumulus elements and pixel size

would not have stood out so clearly against a backgroui-aO virtiJly

devoid of signal attributable to the bands themselves,

In cut ten, the logarithmic spacing of the sampling tends to

crowd the cumulus and pixel graininess into the signal due to

the bands, so that all of the peaks are crowded into the har-

monics lower than twelve. All this means is that the separ-

ations centered at 4 and 11 are masked due to the shift into

the lower wave numbers of the three sets of signals due to the

logarithmic sampling necessary in spiral analysis. This is shown

in Figure 2.

Figure 3 shows the histogram for cut 19. Again, the variance

is predominantly in wave numbers one and two. The only other

peak appears in wave numbers five and six.
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I Thus, at three samplings of the Fourier amplitudes performed

in spiral coordinates, the signal to noise ratio is sufficiently

high that the observed spiral bands are reducible to mathematical

parameterization. There does exist one other test, however.

P The field theory specifies that the divergence field satisfies

- Laplace's equation. The divergence is given by the infinite

series

-- = [ enSv cos nSP.
n=l

nS- In this series the amplitude, e v, is a function of the wave

number, n. If the amplitudes of the wave numbers were plotted

vs. the IR return from the bands then there should be a relation-

ship directly between the two proportional to the wave number.

More simply,

£n 6 = nSV = nv cos a.
Thus the logarithm of the IR return is proportional to the

azimuthal displacement of the cut that the amplitude is determined

. along. The proportionality is given by the wave number itself.

*[ Therefore, not only should the logarithm of the amplitude be

linear in the azimuth, but the slope of the linearity is given

by the wave number, n. Figure 4 shows the amplitudes plotted

in a semilog scale. The logarithm of the amplitude beyond 0.7

are linear in the azimuth, given by the abscissa. The circles

represent amplitude for wave number 1, x's for number 2, and

- triangles for number 3. As can be seen, the slope of the fitted

* straight line is directly proportional to the wave number, so that

#2 has twice the slope (albeit negative) as #1 and #3 has
* three times the slope. This is precisely what the field theory

predicts.

The data to the left of 0.7 is contaminated by the IR signal

from the surface of the sea, the first set of data contamination

Imentioned above. As such it is disregarded in the analysis.
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Obviously one case study does not constitute proof for the

discovery of a second law of physics. The evidence is promising,

however. The signal to noise ratio is very high. The unexplained

noise in the analysis is vanishingly small. The distribution of

IP the amplitudes is proportional to the wave number, as predicted

by the field theory and the amplitudes themselves are propor-

tional to the azimuth when plotted in semilog coordinates.

Figure 5 shows the analysis of hurricane David. The bright

white spiral running through the center of the cloud band is

the original fitted spiral. The solid spiral beginning in the

lower left corner of the illustration is the delimiting spiral

and runs parallel to the fitted spiral. The dotted spirals

orthogonal to the delimiting spiral are the spiral "cuts" and

the dots represent the pixel values sampled to obtain the

appropriate Fourier amplitudes. The Fourier amplitudes are

displayed in the picture as being linear in space along the

fitted spiral. The linearity is directly proportional to the

wave number. The center of the spiral is given by the 'x' in

the center of the storm, and the box is a navigational aid

used by TEDS to find the storm center given a user defined spiral

indicated by the rather crooked dashed spiral running through

the fitted spiral.

Part II of the Field Theory will present further analyses of

the amplitudes of various hurricanes in order to determine

the validity of David's representation of the field law

governing the distribution of low level divergence in a
khurricane.
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Figure 5. Hurricane David 243.6 with spiral analyses.
Axial spiral goes through cloud center.
Delimiting spiral encompasses cloud band
beginning in lower left han corner.
Orthogonal analysis spirals are given by
dotted spirals perpendicualr to delimiting
spiral. Dots are loci for sampling.
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