
RD-RI34 141 RCCURACY CONSIDERATIONS WHEN USING SOME MINICOMPUTERS I/L
FOR SCIENTIFIC RND..(U) ARMY ENGINEER WATERWAYS
EXPERIMENT STRTION VICKSBURG MS W F INGRAM ET RL

UNCLRSSIFIED SEP 83 WES/TR/K-83-2 F/G 12/i NL

IhEEEEmoEEoiEEEElhEEEElhEEE
EEEEEEE~hEEEEE
EEEEElhElhIhhE
mEEEEElhEElhhE
EEEEEIhIEEEIhE
IEEIIII~lI

I& IQ 1 28

U. 13 2 .

Ll

II l1.25 fJ 11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-.

S. ~5 ~ .SV ~ *.~*~ ... * .. *.- 2-

TECHNICAL REPORT K-83-2

S s ACCURACY CONSIDERATIONS
N WHEN USING SOME MINICOMPUTERS

FOR SCIENTIFIC
N AND ENGINEERING PROBLEMS

by

Windell F. Ingram

University of Southwestern Louisiana
Lafayette, La. 70501

and

Deborah F. Dent, N. Radhakrishnan

Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station

P. 0. Box 631, Vicksburg, Miss. 39180

Iwo°

September 1983
Final Report

Approved For Public Release. Distribution Unlimited

.T.

Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

.

-k-...... -.. A....-.......... ,...

.. . t * . - _ . . % . ,_ .- .M, --. ,. I ,m , . . L ,, - . . . ' • : , : .- - 4 -.- . . - .

Destroy this report when no longer needed. Do not
return it to the originator.

The findings in this report are not to be construed as an

official Department of the Army position unless so
designated by other authorized documents.

'4.'

The contentG of this report are not to be used for
advertising, publication, or promotional purposes.
Citation of trade names does not constitute an
official endorsement or approval of the use of such

commercial products.

%°4",

.o4

I i4

m | ., . . .

Unc lass i f i pt1
:. SECURITY CLASSIFICATION OF THIS PAGE I1hoen Date Enered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

Technical Report K-83-2

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

, ACCURACY CONSIDERATIONS WHEN USING SOME Final report
MINICOMPUTERS FOR SCIENTIFIC AND._.'_
ENGINEERING PROBLEMS 6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(&) S. CONTRACT OR GRANT NUMBER(#)

Windell F. Ingram
Deborah F. Dent
N. Radhakrishnan

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

University of Southwestern Louisiana, Lafayette, AREA & WORK UNIT NUMBERS

La. 70501 & U. S. Army Engineer Waterways Experi-
ment Station, ADP Center, Vicksburg, Miss. 39180

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office, Chief of Engineers, U. S. Army September 1983
Washington, D. C. 20314 13. NUMBER OF PAGES

7R
14. MONITORING AGENCY NAME & ADORESS(#I dlffeent from Controllins Office) IS. SECURITY CLASS. (of this report)

Unclassified
IS&. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abelrct entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road,
Springfield, Va. 22151.

IS. KEY WORDS (Continue on everse side if neceeary and Identify by block numbor)
Arithmetic
Computer applications
Mathematical programming
Microcomputers
Minicomputers

20L A S NAC r (c am an peee eb i nece aemy md Idewlfy by block numbet)

--) This report presents some fundamentals of floating-point (FP) arithmetic
and some causes of substantial loss of accuracy and examines the internal FP
representations for large-scale minicomputers. Results of tests of relative
accuracy, which involved executing a set of test programs on several representa-
tive systems, are given along with some conclusions regarding the accuracy in-
herent in each system. The systems used were the Harris Series 500, VAX 11/780,
Prime 550, and IBM 4331. The CDC CYBER 6600 was used to establish a baseline
for comparing the results.

DO tfj 1473 EDWOOF'V S0soSSO.ETEr Unclassified

SECUmTY CLASSIFICATION OF THIS PAI.E (When Dete Entered)

L........
/.

'
5.q

PREFACE

This report examines the accuracy of some minicomputers in performing

floating-point computations. The work was accomplished with funds provided

to the Automatic Data Processing (ADP) Center, U. S. Army Engineer Waterways

Experiment Station (WES), Vicksburg, Miss., by the Coordination an' Integra-

tion Branch (formerly the CE-80 Project), Information Resource Management

Division, Resource Management Directorate, Office, Chief of Engineers (OCE),

*Washington, D. C. The need for this work was identified by the CE-80 Software

Working Group consisting of Dr. N. Radhakrishnan, WES, Chairman; Ms. Shirley

Hendry, North Pacific Division; Messrs. Bob Williams, Kansas City District;

. Leonard (Skip) Manson, New Orleans District; Jack Pickett, OCE; Earl V. Edris,

WES; and Wassil J. Lagoey, Engineer Automation Support Activity. The Group

worked under the direction of Mr. Harry Hardin, Assistant Project Manager,

CE-80 Project. Mr. Dick Colver was the CE-80 Project Manager.

The report was written by Mr,. Windell F. Ingram, formerly with the ADP

- Center, WES, and now with the University of Southwestern Louisiana;

Mrs. Deborah F. Dent, Research and Development Software Group, ADP Center,

WES; and Dr. Radhakrishnan, Special Technical Assistant, ADP Center, WES.

The authors would like to thank Dr. Leroy Eikin, Professor of Civil

Engineering, Georgia Institute of Technology, and Mr. Stacey Stringer, System

". Programmer, for their permission to use and their assistance in using the

VAX 780 and Mr. Samuel McCutchen, Director of Management Information System,

U. S. Army Mobility Equipment Research and Development Command, Fort Belvoir,

Va., and Mr. Dave Morgan, System Programmer, for their permission to use and

their assistance in using the Prime 550.

The work reported herein was under the direction of Dr. Radhakrishnan;

Mr. Harry F. Hardin was the OCE point of contact.

Commander and Director of WES during the work was COL Tilford C. Creel,

o ~. CE. Technical Director was Mr. F. R. Brown.

S~.% ~-*... S S.l 'n Iil
L

: ". ".d--; ' .a.-'' '. ,; ,

.41-MN0

CONTENTS
Page

PREFACE.

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 3

PART I: INTRODUCTION 4

Background. 4
Objectives. 5
Scope 6

*Efficiency Considerations. 6

PART 11: FUNDAMENTALS OF FLOATING-POINT ARITHMETIC. 7

*Basic Notation. 7
A Sample Representation. 8
Basic FP Operation Algorithms. 10
Errors in Operations. 12

PART III: FLOATING-POINT REPRESENTATIONS FOR EACH MACHINE 14
The VAX 11 Family 14
The PRIME 550 Series Family. 15
Harris Series 500 Systems. 16
IBM 4331 1

*CDC CYBER 6600. 19
Further FP Architecture Characteristics 19

PART IV: EXAMPLES OF FLOATING-POINT ERROR 20

- ~Failure of the Associative Law of Addition. 20
Failure of the Distributive Law. 22

PART V: TEST RESULTS 24

Mathematical Problems 24
Real World Problems 36

PART VI: EXECUTION TIME COMPARISONS 66

PART VII: CONCLUSIONS AND RECOMMENDATIONS 72

Relative Accuracy of the Three FP Architectures 72
Recommendations for Error Avoidance. 74

REFERENCES 75

3BIBLIOGRAPHY 76

APPENDIX A: RESULTS OF MACHAR, AN EVIRONMENTAL
INQUIRY SUBROUTINE Al

APPENDIX B: LISTINGS OF PROGRAMS USED IN MATHEMATICAL
TEST PROBLEMS. Bi

2

CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

M Multiply By To Obtain

feet 0.3048 meters

4-, inches 0.0254 meters

inch-pounds (mass) 0.01152125 kilogram-meters

kips (1000 lb mass) 453.59237 kilograms

pound (mass)-square inches 0.00029264 kilogram-square meters

pounds (force) per square foot 47.88026 pascals

pounds (force) per square inch 6.894757 kilopascals

-, pounds (mass) 0.45359237 kilograms

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter

pounds (mass) per cubic inch 27,679.905 kilograms per cubic meter

pounds (mass) per inch 17.85797 kilograms per meter

4 3

-A
".1 ,,,', - . : , , .:;; :. . :'- . . - .-.-.- . . " ' ' ' - ' . ' .,•.-.-., " ---

-- i -Il ltc.~
i i i L l i ' i L

I I.

-I. ACCURACY CONSIDERATIONS WHEN USING SOME MINICOMPUTERS

FOR SCIENTIFIC AND ENGINEERING PROBLEMS

4 7. PARIT I: INTRODUCTION.

Background

1. Floating-point (FP) computations are routinely used in programming

for scientific and engineering (S&E) applications. Novice computer users tend

to implicitly trust the computer to produce correct answers and might not

question the accuracy of results to as many significant digits as might be

printed. Experienced users tend to become disillusioned after experiences

with erroneous answers and eventually wary of FP computations that produce

believable answers that are nevertheless wrong. Indeed, FP computation is

* inherently inexact and can easily be inadvertently misused. Experience in

the Corps of Engineers has shown that FP processing on some computers is too

imprecise for many common S&E applications.

.1- 2. One approach to dealing with this problem is to require that all

real variables be double-precision, but this exacts penalties in main memory

required and often in execution time. The penalties frequently are so severe

-~ that this approach is impractical for many applications. Therefore, the

5tendency is to process precision-sensitive applications on long-word-length
machines; e.g., large-scale CDC systems with 60-bit words. In some cases,

careful analysis of a program might indicate that acceptable accuracy is at-

tainable with shorter word lengths if minor program modifications are made;

e.g., double-precision calculations only in a few critical areas. While the

modifications may be minor, the analysis often is not and might involve ex-

penditure of substantial human and machine resources. Such analyses are

rarely pursued by the engineer programmer since his expertise is usually not
in numerical analysis. From his perspective, the easiest and most cost-

effective solution has often been simply to move to a long-word-length machine.

This not only eliminates many actual problems caused by inadequate computa-

tional accuracy, but also allays fears that accuracy problems are lurking in

every program. The engineer programmer then has confidence in the machine

and can concentrate on algorithms for his application rather than on computa-

tional error analysis.

-

3. Within recent years, computer systems classed as large-scale minis

or superminis have become available, offering much of the sophistication and

power of mainframes at a much lower cost. These machines are exemplified by

the three families addressed herein: the VAX 11, the PRIME 550, and the

ft Harris Series 500. The functional capabilities and performance/price ratios

of such systems make them very attractive to many engineers. Some envision

such machines dedicated to a relatively small group of engineers--perhaps a

group, section, or branch--where there is no contention for machine resources

from management and business programs or from other users outside the group.

ft. The ability to manage and control one's own machine resources, rather than

sharing a central facility, has considerable appeal to many. Whether used as

, a "private" system or a central facility to provide a part of the computa-

.- tional requirements of a larger Corps organization (e.g., an Engineer Dis-

trict), this class of computer system holds great interest within the Corps

of Engineers. Witness the recent procurement of Harris 500 systems and the

planned Corps of Engineers' Automation Plan (CEAP) for local processor systems.

Objectives

4. The objectives of this report are to present some fundamentals of

FP arithmetic and some causes of substantial loss of accuracy, to examine the

internal representations for each of the three machine families, to test the

relative accuracy of the machine families by executing a set of test programs

on representative systems, and to draw some conclusions regarding the ac-

curacy inherent in each machine family. The test programs were chosen to in-

clude both "textbook" and "real world" problems. The problems consisted of a

simple arithmetic problem, two numerical analysis problems, and three S&E

problems. The same set of data for each program was used on each of the sys-

tems. The data for the S&E programs represented normal conditions and were

*i not "cooked-up" to show word-length problems. The minicomputers used in this

study were the Harris 500, VAX 11/780, and PRIME 550. Runs were also made on

an IBM 4331, to permit comparison with the very well known and widely avail-

able IBM FP representation, and on the CDC CYBER 6600, a large-scale system

whose results were used as a base for comparing the other results.

""5

*~i 2..-. 71 7

Scope

5. It is not intended to present details of each machine's internal

algroithms for performing FP operations (i.e., step-by-step register moves,

shifts, adds, etc.), nor to identify anomalies that may be present in each

vendor's implementation of the operations, since such information is not

readily available and is not necessary for drawing conclusions regarding rel-

ative accuracies for the three families in question. All runs were also made

on a CDC CYBER system to serve as a baseline. The systems were not selected

due to their competitiveness in either performance or price. Rather, they

were selected simply as three available systems with FP architectures repre-

sentative of the three families of systems.

Efficiency Considerations

6. FP operations are implemented on most modern minicomputer systems as

part of the computer architecture--either through hardware FP units or through

microprogramming. How the FP operations are implemented greatly affects

machine performance for S&E applications; i.e., hardware implementations are

generally much faster than microprogrammed implementations. While only a very

cursory and inconclusive comparison of program execution times is made herin,

it should be noted that a well-planned, rigorous comparison of FP computation

speeds is an important factor in selecting a minicomputer for S&E applica-

tions. Also note that all three families of systems have hardware implementa-

tions either as standard equipment or as options.

6

PART II: FUNDAMENTALS OF FLOATING-POINT ARITHMETIC

Basic Notation

7. A machine's representation of FP numbers is the computer equivalent

of the human representation used to express very large or very small numbers;

i.e., the familiar scientific notation. The number consists of two parts:

a signed part usually called the fraction or mantissa, which has an assumed

radix point which is fixed; and a part called the exponent which is the power

of the radix by which the fraction is multiplied to produce the value repre-

sented. The radix is the number base for the representation; e.g., in scien-

tific notation using a decimal number system, the radix is 10 and a number can

be represented as

X* 10 Y

where X is the fractional part and Y the exponent. Rather than using 10 as a

radix, computer systems generally use a radix of either 2, 8, or 16 to facili-

tate execution of FP operations on numbers stored as sequences of binary

digits (bits). Where the radix is 2 (i.e., a binary FP representation), a

number is represented as

X* 2 *Y

and FP operations can be implemented efficiently. The three primary machine

• 1 families examined herein use a binary representation; i.e., a radix of 2.

8. A general form for the internal representation of FP numbers can be

viewed as follows:

I± exponent ± fraction

A single bit is used for the algebraic sign of the fraction, an exponent sign

bit is sometimes used (see paragraph 9 for an alternate exponent sign repre-

sentation), and multiple bits are used for both the exponent and fraction

magnitudes. In this conceptual view, moving from left to right in either the

exponent or fraction fields is ving fr- most significant bit to least

significant bit. Some representari ma iace the assumed radix point to the

5 7

.s.

.4

left of the leftmost fraction bit, while others place it right of the right-

most bit. A common characteristic of representations is that FP values are
"normalized"; i.e., numbers are stored with no insignificant leading zeros in

*' the fraction so that the maximum number of significant digits may be stored.

, Normalization is easily accommodated since the value of the exponent deter-

* mines the effective binary point, just as the value of the exponent determines

the effective decimal point in scientific notation. The fraction can be

*i readily adjusted to eliminate leading zeros, accompanied by a corresponding

*: adjustmcnt of the exponent. Thus, the size of the exponent field determines

the range of numbers which can be represented, and the size of the fraction

field determines the precision of the representation. FP precision can be

characterized by the number of singificant digits which can be represented or

by the machine "epsilon," or , which is defined as the smallest number such

that 1. + > 1.

A Sample Representation

* 9. Many different FP number representations are possible with differ-

ences in radix, location of radix point, treatment of exponent and fraction

2 signs, size of exponent and fraction, and treatment of negative values. For

* purpr s of exposition, a sample FP format will be presented based on a 32-bit

word whose bits are numbered starting with bit zero at the left end as follows:

0 1 7 8 31
s xxxxxxx yyyyyyyyyyyyyyyyyyyyyyyyI

where

s represents the sign of the fraction (0 is +, 1 is -)

y represents the exponent

x represents the fraction

In this format, the exponent field, rather than having an algebraic sign, is

• ."biased" as a means of allowing for a negative exponent. A biased exponent

%. is one for which a zero exponent value is represented by an exponent field

containing a 1 for the leftmost bit and O's for all others. For example, a

zero exponent would be

8

* * . *aV -e m o -- ., ,2 * - - --4._.

1 7
110000001

The leftmost bit in the exponent field is considered the "bias bit," and the

exponent would have a bias of 1 * 2 A- 6 = 64. Therefore, positive exponents

would be represented by exponent fields containing values greater than 64,

and negative exponents would correspond to exponent field values less than 64.

Specifically, the exponent value for the sample format is equal to the content

of the exponent field minus 64. An exponent of +5 would be represented as:

1 7
1000101 (69

and an exponent of -5 would be represented as:

1 7
10111011 (59o)

This sample format has a binary exponent; i.e., the radix is 2, or the ex-

ponent denotes the power of 2 by which the fraction is multiplied to obtain

the value represented. The binary point is implicitly located to the left of

the leftmost fraction bit, and the fraction field is a signed-magnitude repre-

sentation (i.e., the fraction field for a negative number is the same as that

for the same positive number); but the algebraic sign field is different. All

values are "normalized"; i.e., numbers are stored with no leading zeros in the

fraction so that the maximum number of significant digits may be represented.

Note that a complement form rather than signed magnitude is used for the frac-

tion in some machines such as the PRIME. The PRIME's use of complement form

* for fractions will be explained in Part III. Some examples of values repre-

sented in the sample FP format are as follows:

01 78 31

10 =.12 2 =011000001 1000000000000000000000001

0 1 7 8 31

-1.10 -. 2 2 11000001 ooo000000000oooooooooooooo

0 1 7 8 31

.251 .1 2 21 0 0111111 iOOOOOOOO00000000000000

9

.

0 1 7 8 31

-.2510 -1 2 21 = 111011111111000000000000000000000001

01 O 78 31

0 1 7 8 3110 2II

-525.510 -.100000110112 2 = 1 1001010 100000110110000000000000

Basic FP Operation Algorithms

Addition and subtraction

10. These operations are accomplished by first aligning the radix point

*4 of the two operands to the same relative position, performing the required

* operation (addition or subtraction) on the fractions, then normalizing the

, result. Using the following notation:

x and y = operands

s sum
e(x), e(y), and e(s) exponents of x, y, and s, respectively

f(x), f(y), and f(s) fractions of x, y, and s, respectively

. an addition algorithm for the sample representation can be stated more spe-

cifically as follows:

a. If e(x) t e(y), then select the operand with the smaller ex-
ponent and shift its fraction right, incrementing its exponent
by I for each bit shifted, until e(x) = e(y); i.e., the radix
points are aligned.

b. Add the operand fractions to obtain the sum fraction; i.e.,

f(s) = f(x) + f(y)

One of three exception cases may then occur:

(1) Case 1: f(s) = 0. Then set e(s) to 0 (most negative
value); this forces s to 0.

(2) Case 2: f(s) overflows. Then shift f(s) right 1 bit
(shifting the overflow bit into the most significant posi-
tion) and set e(s) = e(s) + 1.

(3) Case 3: After Case 2, e(s) overflows. Then set the
magnitude of s to the largest value, maintaining the
proper sign.

c. Normalize s; i.e., shift f(s) left until the most significant
bit is 1, subtracting 1 from e(s) for each bit shifted; if
e(s) underflows, set s = 0.

10

The subtraction algorithm is the same except that in step b the operand frac-

tions are subtracted rather than added.

11. Note that when the exponents are different, loss of significance

sometimes occurs in the operand with the smaller exponent since its fraction

is shifted right and bits are lost as they are shifted out of the least

m* significant bit position. The larger the difference in the order of magni-

tude of the operands, the greater the potential loss of significance in the

smaller operand. This problem will be addressed further later in this part.

o Multiplication and division

12. Multiplication and division operations employ the following mathe-

matical relations:

x =f(x) *2 (e(x))

A y = f(y) *2 ** (e(y))

x * y (f(x) * 2 e(x)) * (f(y) * 2 * " e(y))

" (f(x) * f(y)) * 2 - (e(x) + e(y))

x/y (f(x) * 2 " e(x))/(f(y) * 2 ** e(y))

= (f(x)/f(y)) * 2 ** (e(x) - e(y))

Therefore, the multiplication operation, for example, can be accomplished by

multiplying the fractions, adding the exponents, and normalizing the results.

If p is the product and e(p) and f(p) are the exponent and fraction of the

product, respectively, an algorithm for the sample representation can be

stated more specifically as follows:

a. Multiply the operand fractions to obtain the double-length
product fraction; i.e.,

f(p) = f(x) * f(y)

b. Add the operand exponents to obtain the product exponent; i.e.,

e(p) e(x) + e(y) - bias

One of three exception cases may occur:

(1) Case 1: e(p) overflows. Then set f(p) to the largest
magnitude fraction with the proper sign and set e(p) to
the largest positive exponent.

(2) Case 2: e(p) underflows. Then set f(p) to 0 and set e(p)
to 0 (most negative value); this forces p to O.

(3) Case 3: f(x) or f(y) = 0. Then set f(p) to 0 and set
e(p) to 0; this forces p to 0.

i 11

S* * I

,,:T ? e. , ... t ../ .- ..- : ..-. ,'.... . %.'.- .-.. '....- .

".1

c. Normalize the double-length product (normalization may produce
Case 2 above).

d. Round the product to the proper word length, renormalizing if
required.

The division algorithm is similar and will not be stated here.

13. Note that the multiplication algorithm includes none of the frac-

tion shifting that produces lost operand bits as in addition and subtraction.

*One might intuitively believe from this that addition and subtraction, rather

than multiplication and division, are the major culprits in FP accuracy loss.

This conclusion can, in fact, be shown to be true (Knuth 1969), and it is

well established that substantial losses in accuracy can be expected from

- addition and subtraction in some cases, but not from multiplication and divi-

sion. These losses are addressed in the next section.

Errors in Operations

Large differences in operand magnitudes

14. From the description of the addition algorithm presented above, it

is apparent that addition or subtraction performed on two operands with large

differences in magnitudes will result in loss of significant digits in the

operand of lesser magnitude--perhaps even of the entire operand. Using the

sample FP representation, the fraction is represented by 24 binary digits

which is equivalent to less than 8 decimal digits. Hence, for the addition

40000. + .0025 S.

the second operand is totally lost during the operation and the sum produced

is simply 40000. However, our concern is generally with the relative error

(i.e., the magnitude of the error relative to the true result) which in this

case will be less than 1 in 10 ** 7, and in general will be on the order of

2 ** (-n) where n is the number of bits in the fraction. Therefore, in some

cases where a single operation produces a final result, loss of significance
due to magnitude differences in operands, such as shown in this example, may

be unimportant. In other cases where an expression requires several opera-

tions in sequence, errors due to greatly varying operand magnitudes can pro-

duce unexpected results if the order in which operations are performed is not

12

carefully selected. Specifically, the associative law and the distributive

* law can fail rather badly. (See Part IV for examples.)

Small differences in operands

15. FP subtraction of very nearly equal values (or addition of values

with nearly equal magnitudes but opposite signs) can produce very large rela-

tive errors. Again, considering the sample representation with 7+ decimal

digits precision, given

* S x - y

where

x = 2.575242

y = 2.575231

then

s = 0.000011 or 11 10 * (-6)

which is only a 2 significant digit result.

16. However, the potential roundoff error in each of the original
-6

operands is approximately .5 * 10 , meaning that the subtraction has produced

only 1 reliable significant digit from two 7-digit operands. Thus, the maxi-

mum relative error in this example is potentially very high; i.e., approxi- ,

mately 1/11. Improper expression construction can unnecessarily produce large

relative errors when the associative or distributive law fails due to nearly

equal operands. (Again, see Part IV for examples.)

.4 .

13

4L.

r, ~ ~ ~ ~ 7 7 ,,-o,, ' -., 7.. •..

PART III: FLOATING-POINT REPRESENTATIONS FOR EACH MACHINE

The VAX 11 Family

17. The VAX 11 FP representation takes advantage of the fact that for

signed magnitude normalized numbers the high-order fraction bit is always 1

(see Part II), and thus in the stored value this bit is redundant and need

not be kept. This feature allows, in effect, the gaining of an extra bit of

significance from a given size stored fraction. To facilitate use of this

concept, the hardware restores this "hidden" bit before performing arithmetic

operations and likewise removes the bit before storing in memory the results

of an operation. Thus, there are single- and double-precision representations

for FP numbers in memory which are not identical with the corresponding repre-

sentations in the arithmetic unit. Representations are shown below in a con-

ceptual sense; i.e., fields constituting the values are depicted without show-

ing the VAX numbering scheme for bits or byte addresses:

a. Single-precision:

(1) Value in memory:

S exponentl fraction

8 bits 23 bits

(2) Value as processed by arithmetic unit:

Slexponento fraction

8 bits 24 bits
'a

b. Double-precision:

(1) Value in memory:

slexponentl fraction

8 bits 55 bits

(2) Value as processed by arithmetic unit:

ISlexponentl fraction

8 bits 56 bits

- 18. Note that:

a. The sign bit applies to the fraction only.

b. The fraction has a signed magnitude representation.

14

-' =' * - - - : . . 7 " " .' ' ' " ' " " " " . ' ' , - " ' . i . " " " ' . " " - . " ' .

r-:.

c. As previously stated, the most significant fraction bit is not
present in values in memory, but is restored by the hardware
before arithmetic operations are performed.

d. The exponent has a bias of 12810; i.e., 2008 or 100000002.

In the VAX's implementation of algorithms for FP operations, the arithmetic

unit uses an "overflow" bit on the left and two "guard" bits on the right to

ensure the return of a rounded result identical with the corresponding

infinite-precision operation rounded to the specified fraction length; i.e.,

to ensure correct rounding. Thus, the rounded result of a FP operation has

a roundoff error bound of half of the least significant bit of the fraction.

Note that the 24-bit single-precision fraction is equivalent to approximately

7 decimal digits, that the 56-bit double-precision fraction is equivalent to

approximately 16 decimal digits, and that the range for each is approximately

.29 * 10-38 through 1.7 * 1038.

The PRIME 550 Series Family

19. The PRIME 550 Series uses memory representations of 32 bits for

single-precision and 64 bits for double-precision as shown below:

a. Single-precision:

Is fraction lexponent.

23 bits 8 bits

b. Double-precision:

ISl fraction exponent

47 bits 16 bits

20. Note that:

a. The sign bit applies to the fraction only.

b. The fraction uses a two's complement representation for nega-
tive numbers. In this case, "normalizing" the result of an
operation means shifting the fraction left until the most
significant bit differs from the sign bit, and the exponent is
decreased by one for each bit shift.

c. There is no "hidden" or "understood" most significant fraction
bit as in the VAX.

d. The exponent has a bias of 12810 (i.e., 2008 or 100000002) for

both single- and double-precision values in memory.

15

The FP register used by the arithmetic unit for single-precision operations

has a 16-bit exponent and 31-bit fraction. Thus, the arithmetic unit can use

1 nger fractions and larger exponents internally while executing the FP

operation algorithms, and representation ce-versiorns must take place auto-

, matically as FP values move between the arithmetic unit and memory. While

the added length of the arithmetic unit fraction certainly should allow cor-

i rect rounding to 23 bits, roundoff does not take place automatically when a

floating point value is stored from register to memory. Rather the extra

8 bits of fraction are truncated when a floating store is executed. In this

case, the error bound is equal to the value of the least significant bit of

the fraction. With double-precision operations, the FP register representa-

tion is the same as the memory representation, and the fraction is truncated

at 47 bits.

21. One might question the utility of a 16-bit exponent in the FP

register while only 8 bits are used for a stored value. The larger exponent

allows the generation of larger magnitude values within the arithmetic unit,

but an attempt to store such a value produces an exception condition, the pro-

cessing of which could provide for retrieval of the excess magnitude value

using special instructions. It is not known whether PRIME FORTRAN provides

any facility for using single-precision values with 16-bit exponents, but

there would seem to be little use for such a facility. The standard precision

and range of values for the PRIME are approximately the same as those for the

VAX with the exception that the 47-bit double-precision fraction is equivalent

to approximately 14 decimal digits as opposed to 16 for the VAX.
.- +

Harris Series 500 Systems

22. The Harris Series 500 Reference Manual (Harris Corporation 1978)

.4 specifies single-, double-, and quadruple-precision FP data formats as

follows:

a. Single-precision (non-SAU machines):

'SI I exponentlfraction (23 bits)I r1 its unusedll(7 bits)
Word 1 Word 2

16

*. o7

71- -1 "17* 7-- ., _ . .- ~.w-. . ~ . ~ -

b. Double-precision (and single-precision for SAU machines):

2 Isi Hfraction exponent
Sfraction (upper 23 bits) (lower 15 bits) S (7 bits)

Word I (I bit Word 2
unused)

c. Quadruple-precision:

S exponent (23 bits) ISifraction (upper 23 bis

-' Word I Word 2

*fraction (middle 23 bits) fraction (lower 23 bits)

(1 bit Word 3 (1 bit Word 4
unused) unused)

23. Note that:

a. Both the exponent and the fraction are signed.

b. Both the exponent and the fraction use a two's complement
representation for negative numbers.

c. There is no "hidden" most significant fraction bit as in the
VAX.

d. In each representation, a single "unused" bit in the high-order
position of each fraction word after the first, although not
used in the FP representation, is reserved for specific usage
during execution of some instructions.

e. The results of all operations are truncated, not rounded.

24. Upon examination of the data formats, one might immediately ques-

tion the value of the single-precision format since it uses the same amount of

memory while providing significantly less precision. In fact, Harris documen-

tation clearly indicates that for the Series 500 all FP operations performed

by the Scientific Arithmetic Unit (SAU) (i.e., its FP hardware) are executed

in the double-precision FP format. Thus, use of single-precision numbers

would seem to be of value only in machines without the SAU option; i.e., those

in which FP operations are constructed from sequences of integer operations

("software" FP). In this case, software implementations of single-precision

operations could definitely execute significantly faster than those for double-

precision operations. While it seems clear that use of single-precision

values is prudent only for non-SAU equipped machines, the Harris FORTRAN Man-

ual (Harris Corporation 1981) leaves one in doubt as to how FP data types are

implemented for SAU-equipped machines. Specifically, the Harris FORTRAN

17

. - . -

Manual shows the REAL data type to be the standard single-precision representa-
tion shown above unless the compile time option "P" is used which changes the

REAL data type to the double-precision representation shown. But in fact,

execution of test programs (detailed later) shows that, for SAU-equipped

machines, the stated double-precision representation is actually used in-

ternally (both in memory and within the SAU) for all REAL values, regardless

of the use of the "P" option. Therefore, the accuracy of computations is

identical for single-precision and double-precision values. The only detected

difference in the treatment of the two is in the input/output field lengths

provided. Values implicitly or explicitly declared to be single-precision

have input and output field lengths truncated to the specified single-

precision length; e.g., the formatted output of a single-precision value is

truncated to 7 significant decimal digits. Given that there is no signifi-

cant advantage to using so-called "single-precision" values, it is probably

wise to use the "P" compiler option as standard practice unless there is

specific justification for not doing so. (Note that all existing Corps of

Engineers' Harris 500 systems have the SAU option.)

25. Harris also provides a quadruple-precision data type, as shown in

paragraph 22, apparently implemented via software FP operations. Such soft-

ware implementations of extended-precision data types are generally very slow,

a fact which execution of the test programs confirmed, and are not candidates

for widespread usage in Corps S&E applications. However, they can be valu-

able in conducting application accuracy studies and sometimes in production

programs when extended-precision data items are carefully selected.

26. In summary, the Harris 500 Series, with optional SAU, provides a

data type used for both single- and double-precision values which has a 38-

bit fraction providing approximately 11 decimal digits, and a software imple-

mented quadruple-precision data type providing approximately 20 decimal digits.

IBM 4331

27. The IBM 4331 FP representations, shown below, are used widely

throughout the IBM product line. The FP accuracy for IBM systems is not the

primary subject of this study and no explanation of the representation will

be presented.

18

**.,". . " * , ..' -" -' . **" "" "".". " " ." " " . . .

a. Single-precision:

I lexponent fraction]

0 1 7 8 31

b. Double-precision:

IS exponent ifraction fraction
0 1 7 8 31 32 63

CDC CYBER 6600

28. The CDC CYBER 6600 is a large-scale computer system with a memory

word size of 60 bits. The FP representation for single-precision format is

shown below. This system has been the subject of several accuracy studies

(Ward 1976, O'Neil and Peterson 1976). The results of these studies have

*1i shown the CDC 6600 to be a highly accurate system for the Corps' S&E problems.

(For this study, all test programs run on the CDC system used only single-

precision FP values.)

0 47 48 58 59
Ifraction lexponent I Sl

.Further FP Architecture Characteristics

29. Several machine accuracy characteristics which may be of interest

(e.g., machine epsilon, largest and smallest FP numbers, etc.) can be deter-

mined from actual machine execution of FP operations. In Appendix B of Cody

and Waite (1980) is a subroutine called MACHAR for determining 13 machine con-

stants which allows one to check manufacturer's claims. Results of execution

of this subroutine on each of the five test systems are presented in

Appendix A.

'1

19 "

,: ',-.:'. .. /..'..--''.., ..>..., ..-.-...... -. -... . . ,

PART IV: EXAMPLES OF FLOATING-POINT ERROR

30. Since FP values and the operations on such are approximations of

real values and the corresponding exact operations, the fundamental laws re-

lated to operations on real numbers sometimes break down producing substantial

and even dramatic errors. Examples of two such cases and of the effects of

fraction length and treatment of rounding are given below.

Failure of the Associative Law of Addition

31. It is quite common practice in programming to apply the associative

law of addition:

(x + y) + z = x + (y + z)

That is, in performing a sequence of additions, to produce a single sum, the

order in which the additions are performed is usually not considered a matter

for concern; i.e., associativity is assumed. This is not surprising since com-

mon mathematical notations for summation are inherently based on associativity.

:' ~However, failure of the associative law can occur in FP operations; i.e.,

(x + y) + z t x + (y + z)

in some cases.

32. For example, consider a hypothetical FP representation with exactly

7 decimal digits; i.e., a true decimal representation. Then, the expression

(5505026. + (-5505024.)) + 3.9375

= 2. + 3.9375

= 5.9375

which is the exact result.

33. However, if we change the order of evaluation such that the ex-

pression becomes

5505026. + (-5505024. + 3.9375)

= 5505026. + (-5505021.)

= 5.0

if truncation rather than rounding takes place, or

20

'o o

= 5505026. + (-5505020.)

=6.0

if rounding takes place, neither result is exact. The associative law has

failed in both cases, but where rounding was not used, the failure is much

more pronounced.
34. Now consider a binary FP representation with a 23-bit fraction

(such as those for systems examined herein) and the summation expression

above. The values in the expression have fractions and exponents as follows:

fraction

(5505026.) 101010000000000000000101 exp = 2310

(5505024.) 10101000000000000000001 exp = 2310

(3.9375) 11l11000000000000000000 exp = 2

As above, the first expression for the sum of the three values will produce

the correct result and the second will not. The subexpression (-5505024.

+ 3.9375) again is of interest as the source of error. The addition algorithm

(see Part II) shifts the fraction for 3.9375 some 21 bit positions right to

align the binary point, resulting in the following:

fraction

(3.9375) 000000000000000000000111 exp = 2310

35. In effect, 3.9375 has become 3.0 and the addition will produce

-5505021., if truncation rather than rounding takes place. However, if addi-

tional fraction bits are employed within the arithmetic unit to achieve cor-

rect rounding, the result of the subexpression is -5505020., producing a com-

plete expression result of 6.0. Thus, in this case, the result of truncation

and rounding in the FP binary representation is much the same as we would ex-

pect if we examined a true decimal representation with the equivalent number

of decimal digits. Such is not always the case, as illustrated by the next

example of failure.

36. In the example above, single-precision truncation of results in

the PRIME would produce an expression result of 5.0 rather than 6.0. The VAX,

with the extra "hidden" bit and the facility for correct rounding, would pro-

duce 6.0. The Harris single-precision or use of double-precision in any of

'.

..-" 21

M NI ,
g o N <'' ,- - 5 7:,,< ?,q, : "+ha,,ha.,-.w=.._.. ... _. _ . . x.+ •..

the three machines would produce correct results; i.e., 5.9375. While this I
example was specifically chosen to illustrate a case where a 23-bit fraction

is inadequate to support associativity, the principle holds for any size

fraction.

Failure of the Distributive Law

37. Similarly the distributive law

x * (y + z) = (x * y) + (x * z)

is commonly assumed to be valid for FP operations, but in fact can fail rather

badly in some cases. Consider again the hypothetical FP representation with

exactly 7 decimal digits. Given that x = 20000., y = -6.0, and z = 6.000003,

x * (y + z) = 20000. * (.000003)

= .06

which is the correct result.

38. However, if we attempt to apply the distributive law,

(x * y) + (x * z) = (20000. * -6.) + (20000. * 6.000003)

= -120000. 120000.1

= .1n

4.,

if correct rounding takes place, or

= -120000. + 120000.0

=0.

if truncation takes place. Thus, the failure using a true decimal representa-

tion in this case could be disastrous; e.g., if truncation takes place and the

result is used as a divisor.

39. However, true decimal representations are rarely used for FP

arithmetic (it is shown here only for illustrative purposes). Therefore, let

us consider this example using a binary representation with a 23-bit fraction,

as in the previous example. It cau be shown (the multiplication is lengthy

22

and will be omitted) that for such a representation, the distributed expres-

sion above produces results of

.0625

if correct rounding is achieved, or

.0469

if truncation is used. Again, neither result is the true value which is pro-
duced by the first expression. Thus, the distributive law has failed; i.e.,

x * (y + z) (x * y) + (x * z)

While the magnitude of the error is small, it must be remembered that it is
the relative error that is significant, and the relative error here is large.

It is also significant to note the large increase in the relative error if

rounding is not used; i.e., for rounding

relative error = (.0625 - .06) _ .0025
.06 .06

= 4+0/

4 %4

* for truncation,

" (.06 - .0469) - .0131relative error =0 0' .06 .06

= 21 ,-

Such errors which are small in an absolute sense but large in a relative sense

can easily produce large magnitude errors when the results are used in further

computations; e.g., if the result above is used as a divisor with a large

dividend, the absolute error produced could be very large.

40. Again this example was chosen to illustrate a severe case, but such

cases could easily be produced in real programs.

23

* ' , - -" -'. .-. . ' - - .- , -.... -. . ,•. ". - . . , , ,, • .. • .- , .. .-. ' .-

PART V: TEST RESULTS

41. Two sets of test problems were run on the computers selected for

this study. The problems were chosen carefully to ensure that they would pro-
vide information on accuracy of the computers. The first set is a group of

mathematical problems. The problems strain each system to a considerable

extent in its ability to handle computations. A simple example of adding a

* series of numbers forward and backward is followed by an evaluation of a poly-

nomial function and the inversion of a simple but intriguing matrix. Complete

"" listings of the mathematical programs used are included in Appendix B.

42. The second set of examples was chosen from Corps of Engineers files.

This set represents real world conditions, and the problems and data chosen
*1 were what one could reasonably be expected to encounter in design and/or anal-

ysis applications. The first problem is an analysis of a flexible sheet pile
bulkhead using the finite difference approach. The second problem uses the

finite element technique for analysis of a soil-structure interaction problem

of a sheet pile embedded in soft clay. The last problem involves computing
- the buckling load of a pile using again the finite difference procedure.

These problems were selected to show that engineers must be careful in using

computer programs in machines that do not carry a sufficient number of signif-
icant digits in computations.

Mathematical Problems

Addition of a series of integers--program MAXJ

43. The first test program is very short and simple but demonstrates
how accuracy can be lost in simple arithmetic operations.

44. One of the basic arithmetic laws, the commutative law of addition,

says that

a + b =b + a

i.e., in adding two numbers, it does not matter which is placed first. This

*" law holds rigorously for arithmetic in which all numbers are exact, even when

extended to apply to a sequence of an arbitrary number of additions. However,
'* for a sequence of an arbitrary number of FP additions, the law does not

necessarily hold.

24

- * ' - . . '_: : * " . . " ,*******

45. Program MAXJ, which is given a maximum value in J, will calculate

a forward and backward sum of the positive integers from 1 through J. The

program first computes the forward sum "SL" in which

SL = 1. + 2. + 3. + ... + Float(J-1) + Float(J)

and the backward sum "SU" in which

SU = Float(J) + Float(J-l) + Float(J-2) + +2. +1.

MAXJ then calculates the difference in the two sums as "DIFF."

46. All computers have a maximum FP value, determined primarily by

their maximum exponent value. Thus, in computing the sum of a sequence of

integers from 1 to J, any system's FP value will overflow at some value of J.

Computers that have larger exponent fields can be expected to overflow at a

larger value of J than those with a small exponent field. If FP number repre-

sentations were exact for all sums less than a machine's maximum FP value,

then it would be possible to calculate DIFF in the forward and backward

sums, as shown above, and DIFF would always be zero so long as no FP over-

flow occurred. However, FP representations are approximate not only for

fractional values but also for integers whose magnitudes exceed the number of

digits which can be represented exactly. Such approximations occur frequently

since it is quite common for FP representations to accommodate magnitudes of

10 *- 38 but only store the equivalent of approximately 7 significant decimal

digits; e.g., in the VAX and PRIME representations. Where sums exceed the

maximum value which can be represented exactly, forward summing will produce

roundoff errors different from those produced by backward summing, and thus

nonzero values of DIFF will occur long before the occurrence of a FP value

overflow. The results of program MAXJ, summarized in Table 1, illustrate this

condition. Program runs were made on each system using each available pre-

cision with J = 103 10 , 10 106, and 10 in that order. When a given value

of J produced a nonzero value of DIFF, no further runs were made on that sys-

tem at that precision. Only single-precision was tested on the CDC. The

[Harris and the CDC were the only systems in which DIFF was 0 with J as large
53as 10 in single-precision. The other systems failed beyond J = 103. In

double-precision, the Harris failed beyond 105 as in single-precision, but

25

L

Table 1

Summary of MAXJ Runs

Computed Results for Cited J

System Precision 10 3 10 4 10 5 106 10

CDC Single 0 0 0 99999. NR*

Harris Single 0 0 0 20630. NR
Double 0 0 0 20630. NR
Quadruple 0 0 0 0 0

IBM Single 0 -29552. NR NR NR
Double 0 0 0 0 0

PRIME Single 0 -13408. NR NR NR
Double 0 0 0 0 0

VAX Single 0 1972. NR NR NR
Double 0 0 0 0 0

*Not run.

* . all the other minisystems were able to compute up to 107.

*i Evaluation of a polynomial function--program POLY

47. This example was run to obtain some "overall" comparisons between

- the systems. First, however, the concept of "noise level" will be explained.

48. Let us suppose that a continuous function defined by y = f(x) needs

* " to be plotted. In a computer, to plot y versus x, y is evaluated for various

values of x. Since the function is continuous, one would expect to obtain a

. nice smooth continuous curve for y. However, if the function is complicated,

due to rounding errors, a scatter of values could result, as illustrated be-

low in an exaggerated manner.

*1 O O / O O -/ y$f(x) (EXACT)

/ M E A N C U R V E (C O M P U T E D)

/0,

• .
,'.

- 0-

S • 0 x O 0

The computed function would lie in the band indicated by the dotted lines.

-One could also produce a "mean curve" by computing not simply a single value

26
9 %

*

r.
. .

. -. '. ' '* . '
,,-.

.,
- ,,7 . -. ,,

of y for each selected value of x, but the mean of values of y computed at x

and at several points on either side of x. If the arithmetic were exact

(i.e., infinitely precise) and the points on either side of x were chosen to

be very close to x, then the computed mean curve would coincide very nearly

* to the exact function curve. However, given the limited precision of FP

representations, this mean curve will not necessarily coincide exactly with

the function y = f(x); i.e., there will be a "bias." The computed points will

* be scattered around the mean curve. A convenient measure of this scatter has

* been chosen to be twice the standard deviation from the mean curve and has

been designated as the "noise level" (Noble 1982).

49. We will now evaluate a particular example using this concept. The

polynomial equation whose roots are the first 20 integers is given below:

-4(x = (x - 1)(x - 2) ... (x - 20)x2 0 119 +ax 1 8
+...+ a2 0

This function has roots that are very sensitive to small variations in the

coefficients of the higher powers of x: This example may be too ill condi-

tioned for the smaller systems, so we will use a program called POLY which

uses a polynomial whose roots are the first 11 integers:

P 11 (x) (x - 1)(x - 2) . .. (x -11)

=xl +a Ix 10+a 2x 9+ +a1

Figure 1 shows a plot of this function when P 11 (x) is evaluated for various

values of x (taken from Noble 1982).

50. The evaluation of P11 Wx at the smaller x values shows small devia-

tions (noise level), but as the x values increase we can see an increase in

the noise level.

51. Program POLY first computes the coefficients of the polynomial,

a1 , i =I ... 11. (Computation of the a.i values on each of the systems pro-

duced identical results in all precisions.) It then evaluates mean and

standard deviation values of P(x) for selected values of x; i.e., it in ef-

fect produces the mean curve and standard deviations from the mean at selected

points on the curve. hean and standard deviation values of P 11(x) are com-

puted from a set of values obtained by computing, by nested multiplication,

27

i .-. . .

10 '

VERY SMALL LARGE 4

6 - NOISE LEVEL NOISE• ~LEVEL " % _

4 "

00
- •- 027

X

i • .
-6

•0

-8

" 1 2 3 4 5 6 7 8 9 10 11 "
x

Figure 1. Plot of a polynomial function of degree 11

Pll(z) for z = x + ie for i = -m, -m+l, ... m-1, m (where x, m, and are sup-

plied by the user); i.e., POLY computes 2m + 1 values of P1 1 (z) for each

selected value of x and then takes the mean and standard deviation of these

2m. + I values.

52. The theoretical mean of values around a root of a function should

be close to zero if m and & values are small (since Pll(X) = 0 at the roots).

Computed values of the mean and standard deviation at roots can be used as

- metrics of the relative accuracy performance of the various systems.

53. The same set of data was supplied to each system. Parameters used

were m = 2 and = 1.E-7. The mean and standard deviation of P W(X) were

computed at each root of the polynomial; i.e., at x = 1, 2, ... , 10, 11.

Tables 2-5 present the results from the runs on all of the systems.

54. It is obvious from the results that different systems compute dif-

ferent mean and standard deviation values. This effect is primarily due to

differences in FP precision. When we examine the standard deviation, we can

28

Table 2
POLY-Computed Means of P11 Wx in Single-Precision

Mean Computed by Cited System
x CDC Harris IBM PRIME VAX
1.0 **16 1.2 -5
2.0 **512 120. 36
3.0 ill11 360. -158

4.0o -.1 1555. 1476. 302
*5.0 *-.2 2214. 3358. -1000

6.0o -.4 -6749. 2035. -2188

7.0 *-1.1 12602. 22776. -4704
8.0 *-1.7 11846. 45353. -6656

9.0 *-6.4 85098. 51174. -8554
*10.0 *-16.1 146330. 272236. -36800

11.0 *-21.4 214960. 65844. -79762

* *Value less than ±0.05.

Table 3

POLY-Computed Means of P11 (x) in Double- and Quadruple-Precision

Mlean Computed by Cited System in Cited Precision
Harris in IBM in PRIME in VAX in

X Double Quadruple Double Double Double

1.0 1Sn

2.0 * *

3.0*****

4.0 -.1****

5.0 -.2***

6.0 -.4 ***

7.0 -1.1 3 .**

8.0 -1.7****

9.0 -6.4****

10.0 -16.1***

11.0 -21.4***

*Value less than ±0.05.

29

7 7 _P7. w

Table 4

POLY-Computed Standard Deviations of P1 l(x) in Single-Precision

Standard Deviation Computed by Cited System
x CDC Harris IBM PRIME VAX

1.0 1.18 1.18 4.90 2.60 3.02
2.0 .08 .08 85.90 121.26 12.33
3.0 .18 .19 354.20 85.43 47.55
4.0 .01 .01 1105.50 1173.10 184.25
5.0 04 .22 7430-90 3198.46 1155.51
6.0 .03 .07 20396.60 9619.22 462.30
7.0 04 19 56699.00 15829.48 12721.25
8.0 .07 3.90 179411.00 133981.78 15684.96
9.0 18 4.00 64710.00 146073.44 38611.73
10.0 .81 4.83 167855.00 416287.44 89089.88
11.0 8.08 21.27 242729.00 686520.50 124516.00

Table 5

POLY-Computed Standard Deviations of P11 (x)

in Double- and Quadruple-Precision

Standard Deviation Computed by Cited System in Cited Precision
A Harris in IBM in PRIME in VAX in

x Double Quadruple Double Double Double

1.0 1.18 1.18 1.18 1.18 1.18

2.0 .08 .08 .08 .08 .08

3.0 .19 .18 .18 .18 .18

4.0 .01 .01 .01 .01 X1

5.0 .22 .04 .04 .01 .04

6.0 .07 .03 .03 .01 .03

7.0 .19 .04 .04 .08 .04

8.0 3.90 .07 .07 .01 .07

9.0 4.0 .07 .07 .01 .07

10.0 8.83 .81 .81 .66 .81

11.0 21.27 8.11 8.1 8.4 8.4

30

Ao
•

•

.

* - = -" ' " , - "7 .. ." " .

note that the noise level of the Harris in single-precision increases for the

larger values of x, but much less than the increase in noise levels of the

IBM, PRIME, and VAX single-precision runs. The noise levels of the IBM, PRIME,

and VAX in double-precision are smaller than that of the Harris in double-

precision runs, and very close to those of the CDC and Harris quadruple-

precision runs. As expected, the results of POLY show the Harris to be more

{. accurate in single-precision than the IBM, VAX, or PRIME but less accurate

than these systems in double-precision.

55. It should be noted that this is a severe test of accuracy; i.e.,

the "noise" produced for the higher values of x is extremely sensitive to dif-

ferences in FP precision. Any machine can be made to perform badly in this

test by choosing polynomials of higher and higher order. However, the order

of the polynomial and the values of m and e were chosen with the objective

of producing a reasonable test of the relative accuracy of the machines in

question.

Inversion of a matrix--program MATRIX

56. The last "textbook" test problem involves a numerical analysis pro-

gram that will invert the Hilbert matrix using Gaussian elimination. This

problem has been used in many studies on accuracy because:

a. Gaussian elimination is a straightforward, commonly used pro-
cedure for inverting matrices.

b. The Hilbert matrix is numerically unstable due to the "close-
ness" of the numbers.

c. This matrix has a known inverse against which we can compare
the results (Ward 1976).

57. The Hilbert matrix is an n x n matrix of the following general form:

; - 1 "
H J i+j- 1

For example, if n 2, then

H
2x2[

2 3

Or if n 3, then

31

. .*.

- .- j,. - .- --. - - " " - . - -.. * . ..

1 1 1"

5 j

58. The inverse of a matrix A is defined as a matrix A such that

A*A = I

where I is the identity matrix of l's on the main diagonal and O's elsewhere.

For example, if n 2, then

H2X2 =-6 12

59. Ward (1976) gives a general algorithm of the Gaussian elimination

method. The algorithm is as follows:

. H ii and H .

c. Divide row i by p.

d" Q.. -H.. - I for all j such that j i and I < j < n.

e. Multiply row i by Qji and subtract this product from row j for
all j such that j i and I < i < n.

f. i4i+ 1.

S. If i < n, then go to step b. Otherwise, stop here. H now con-
tains the inverse of the n x n Hilbert matrix.

60. Program MATRIX was first executed on each system to compute the

inverse of a 2 x 2 Hilbert matrix to verify the validity of the program.

(Note: the input values used in the program are not the exact values of the

imput matrices because the computers rounded or truncated the values to their

greatest number of significant digits.) The computed inverse matrix was sub-

tracted from the known exact inverse matrix (Figure 2) to obtain an approximate

absolute error matrix. The error matrices for all the systems were very

small. Next, a 6 x 6 Hilbert matrix (see Figure 3) was run on each of the

systems. The error matrices for each system are shown in Figures 4-8 (the

32

- S ~

36 -630 3360 -7560 7560 -2772

-630 14700 -88200 211680 -220500 83160

3360 -88200 564480 -1411200 1512000 -582120

-7560 211680 -1411200 3628800 -3969000 1552320

7560 -220500 1512000 -3969000 4410000 -1746310

-2772 83160 -582120 1552320 -1746310 698544

Figure 2. Exact analytical solution of a 6 X 6 Hilbert matrix

1 1 1 1 1 1

1 1 1 1 1o 11

Figure 3. 6 X 6 Hilbert matrix

Fiur 4. CD aprxmt *bolt ero*mti

in icsvlels tha 1.0 E-6

* * * * 33

.3. .3'.3

T . .. - .

"" - * * .1 .1

• .1 .7 1.7 1.9 .7

* 7 4.4 11.6 12.8 5.1

.1 1.7 11.5 30.1 33.3 13.2

.1 1.9 12.8 33.3 36.8 64.5

* .7 5.0 13.1 64.5 5.7

a. Single- and double-precision

• .1 .3 .9 1. .4

• .3 2.3 6.1 6.7 2.6

.,9 6.1 15.8 17.4 6.9

* . 6.7 17.4 19.3 57.6

* .4 .3 6.9 57.6 3.

b. Quadruple-precision

Figure 5. Harris approximate absolute error matrices
(* indicates value less than 0.05)

5.5 154.5 1034.5 2671.8 2933.6 1151.2

153.7 4311.3 28846.7 74455.0 81715.1 32057.2

1025.3 28744.3 192224.4 495963.9 54418.3 213443.6

2641.1 74000.4 494695.5 127607.4 139989.4 549005.2

2894.2 81058.2 341741.2 654081.0 153257.5 600934.0

S1134.1 31751.1 311796.7 158732.5 269860.6 220955.7

a. Single-precision

1.6 45.4 302.4 778.3 852.9 334.3

45.4 1260.5 8345.2 21620.7 23702.8 92936.6

A 302.4 8395.2 55941.5 144133.8 158072.6 61998.1

778.3 21620.7 144133.8 371498.5 407547.6 159884.9

852.9 23702.8 158072.6 753045.2 447203.1 175426.8

334.3 9293.7 461961.9 197455.5 312320.3 237598.8

b. Double-precision

Figure 6. IBM approximate absolute error matrices

34

.4 11.6 79.6 209.4 233.1 92.5
11.9 348.9 2397.2 6300.9 7007.2 2776.7

83.8 2447.9 16799.4 44116.0 49026.2 19416.0
223.9 654.9 44770.5 117491.5 136502.5 51663.2
251.9 734.1 50299.0 131935.0 146470.0 58025.0
100.7 2933.2 20087.6 52670.0 58513.7 23132.4

a. Single-precision

1. J° .2

..-- .2 * *

b. Double-precision

Figure 7. PRIME approximate absolute error matrices
(* indicates value less than 0.05)

.5 14.2 94.9 244.9 268.8 105.4
-14.1 397.8 2661.8 6868.1 7534.3 2954.3
94.8 2661.8 17800.9 45912.5 50351.7 19738.9

244.9 6868.0 45912.5 118385.4 129804.4 50877.7
268.8 7534.3 50351.7 129804.4 142301.8 55719.1
105.4 2954.3 19738.9 50877.7 55719.1 21854.2

a. Single-precision

b. Double-precision

Fgr8.VAX approximate absolute error matrices
Figre .(,indicates value less than 0.05)

35

* .2

i ~~~~~~~~~~~~~~~.. .-..."..'.. -.".......-...,..'...."...--.... ,. - •. "

results have been rounded to 1 decimal place).

61. The CDC, the baseline system, has a very small absolute error

matrix. The Harris is the only system with a small error matrix in single-

precision. The double-precision approximate error matrices for the PRIME and

VAX were smaller than that for the Harris in quadruple-precision. The IBM

had large error matrices in both single- and double-precision.

Real World Problems

62. For the S&E problems in this study, three computer programs were

selected that have been in use for several years and have been thoroughly

validated. These programs solve certain types of soil-structure interaction

problems that are complex and for which no simple closed-form solution exist.

Often the algorithm employed in the solution of a soil-structure interaction

problem will yield incorrect results if the number of significant figures

carried in the calculation is insufficient.

63. Three problems were chosen to show that different results can be

obtained when identical problems are run on each of the systems tested using

the same program. The problems have already been used in a previous study

(O'Neil and Peterson 1976) with the same programs on a CDC system. The re-

ported solutions from the CDC were duplicated in this study. The conclusions

from the previous study indicated that the CDC's solutions were acceptable;

therefore, these solutions are used for comparison with the results from the

systems tested.

Case 1--flexible sheet pile bulkhead in sand

64. The deflections and moments produced in a flexible sheet pile bulk-

head embedded in sand are to be computed for the physical system depicted in

Figure 9. The problem was solved by using a computer code (BMCOL 28) which

* establishes the finite difference equations for a beam on an elastic subgrade

at predesignated equally spaced nodes along the bulkhead (Matlock and Ingram

1963). The system of linear difference equations so generated forms a matrix

equation in which the stiffness matrix is tightly banded. Recursive tech-

,; niques are used to solve for the deflection at each node, and moments, shears,

* and soil reactions are subsequently computed.

65. It is common practice to analyze problems like that shown in Fig- %

ure 9 by utilizing 50 to 100 nodes, but such solutions may be relatively

36

* ... :.......'.......,

100 TIE 8ACK - . • - WATER LINE

200

MZ-38 SHEETING

300-
DENSE SAND

2i t

DREDGE LINE
U" 5 0 0 - . :.
a :.:: :.'.v: ::

600"

*. DENSE SAND
700,

.

800[

900*

Figure 9. Physical system for Case 1

crude, especially if rapid moment gradients occur. Improved solutions can be

obtained by increasing the number of nodes; i.e., by decreasing the increment

length of finite spacing between nodes. However, as the increment length de-

creases below some value, the difference in deflection between two adjacent

nodes decreases, which results in poorly defined derivatives and hence in an

invalid solution. The increment length at which unrealistic answers are out-

put is a function of the physical parameters input and of the number of

significant digits used in the machine calculations.

66. Soil and bulkhead parameters input for this problem are shown in 4--

Figure 10. Specific numerical values given are for a solution using 900 in-

crements. Identical runs were made with 9, 100, 225, 300, 400, 450, and 900

-increments. The results are summarized in Figures 11-16.

67. The solutions from the IBM, PRIME, and VAX in single-precision are

inconsistent and deteriorate as the number of increments increases. The
.* Harris single-precision runs were identical with the Harris double-precision

runs. All double-precision runs on all of the systems were virtually identical .4.

with the solution given by the CDC, with the exception that the Harris was off

37

." S..." . .." " ."""" " " ""I ". ' " " , ,=, 'a m'.- ,... , ' , -,,-.- - - - . -. '' " "-".

0- a=0

TIE BACK
100- .-------- 25 LB 2. JA S 10 4 LB/I N.-

200 DNESN
DENSE~ SN*El 1 7.22 x 109 LB-IN.2 %

'Y Y=120 PCF
300 '= 57.5 PCF

KA= 0.3

S 0

600-

700-..*. E DENSE SAND

800 ~Es 0.625 Z' LB/IN.5

900 .0- -73LB .

S =3000 LB/IN.

NOTE: 0 = IMPOSED LOAD/INCREMENT
S = SPRING CONSTANT FOR ONE INCREMENT
ALL VALUES FOR INCREMENTAL LENGTH OF 1 IN.
1-FT-WIDE SECTION

Figure 10. Soil and bulkhead parameters for Case 1

4 38

'.-4

Ez 0

ww

00

0 W

0 3
.4
41
u

a 4.4

U; OA 4~ z

39.

q.44

u

0 W 0 ")

a 0It0 C
$-4
4)

-q

0

w ia

gl'N 9-O INz niv

400

00

"-4

4-4

.4 4.

0u -

Co -4

inx

WL 0n00CD L
Ln rur- L cu0

* .1;

414

Sx
0:

'4

w

0

w

0

cu CA

9-01 .LN3OW WWIX-

-42

-' - .b &~Xr~ -. .- a - -- -w- --- ~-~-w--.-w--------- ~0

00

Ck

*04

I14

41

(U

* 0 4-4

0 00

43-

40

4-4

00

o z3
* IiiM

WE>

.4-

C%31

m4 C;.)

9--

44-

. ~~ 7

slightly only on the 900-increment run. Thus, it can be concluded that the

only acceptable system for single-precision execution of Case 1 is the Harris,

while all systems are acceptable in double-precision.

Case 2--steel pile in clay

68. A steel pipe pile is driven into soft clay, as shown in Figure 17.

A load of 31.4 kips* is applied to the butt of the pile, resulting in an

applied load of 5000 lb/radian as viewed from the top. It is desired to de-

termine the distribution of total vertical stress in the soil surrounding the

pile.

69. The problem was solved using a simple axisymmetric finite element

computer code called AXSYM (Wilson 1965), assuming linear stress-strain be-

havior in both the pile material and the soil. The elastic parameters are

shown in Figure 17, and the finite element model is depicted in Figure 18.

.; The particular code used in this study employs quadrilateral elements composed

of four constant strain triangles. As with most axisymmetric finite element

codes, two stiffness equations are developed for each node in the system (one

, for vertical and one for horizontal displacement), and the equations are

assembled into a global matrix equation. The pairs of equations containing

stiffness contributions from the pile (e.g., for node 13) contain terms of

large magnitude, whereas those containing stiffness contributions only from

the soil (e.g., node 14) contain terms of much smaller magnitude. The ratio

of these magnitudes is very roughly the ratio of the elastic moduli of the

materials. Equation pairs appear in the global equation in order of nodal

numbering; hence, since nodes are numbered horizontally to minimize matrix

bandwidth, along each horizontal row of nodes there exists a pair of rows in

the stiffness matrix with large terms followed by a pair with very small terms.

70. The global stiffness matrix equation is solved by a decomposition

procedure that is mathematically equivalent to Gaussian elimination. In

essence, the terms in the rows of the matrix having large-magnitude entries

are multiplied by ratios obtained by dividing small terms in the row being

reduced by the large-magnitude entries. These results are then added to the

small terms in the row being reduced. The effect is that, except for the

terms being eliminated, the small terms in the row being reduced are changed

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.

45

7 -

5000

LB/RAD

400
.

2 IN.

350

STEEL PIPE PILE

300 E = 30 x 106 PSI
v = 0.3

O.D. = 40 IN.
L =250 IN.

250

z
U SOFT CLAY SOIL

E = 90PSI
z v = 0.445a200-
d-

0
0

N

150

+2 IN.

100-

AXIS OF SYMMETRY

50

000 50 100 150 200 250 300
R COORDINATE, IN.

Figure 17. Physical system for Case 2

46
- 1

5000 LBFREE BOUNDARY

1 4 5 6 7 8 9 10 11

2ir

22

320

L
U.
o0 2

620)
72 - -

82 7891 (9 10

0

102 _0 _

12

122 W
___ ___ 130 >4

143 ____ _ _ _

154
S 155 165

z

0

cc
-j
-1 177(870

LU 188 >0
I 21 222 223 22 25 226 227 22829

FIXED BOUNDARY

Figure 18. Finite element model for Case 2

47

.'

°. -

only in their higher significant figures, and some of the significance of the

physical system may be lost if the number of significant figures being used in

the calculations is insufficient. Since many such "hard-soft" interfaces

occur, the errors so produced become mangified.

71. Errors of the type just described can be reduced (but not -

eliminated) by restructuring the matrix stiffness equation (renumbering the

nodes), but restructuring can result in matrices with larger bandwidths re-

quiring considerably more storage.

72. The solutions to the problem are summarized in Figures 19-21. Fig-

ure 19 shows that the Harris single-precision solution is the only one that

matches the CDC solution. The PRIME double-precision solution (Figure 20)

varies from the CDC solution when the depth is less than 50 in. All other

double- and quadruple-precision runs match those from the CDC.

* Case 3--pile buckling analysis

73. A problem of interest to the geotechnical engineer is the computa-

tion of the buckling load on a pile driven through soft soil to bedrock. The

physical problem depicted in Figure 22 was solved using a version of the BMCOL

finite difference computer code described in Case 1 that includes axial load

in the formulation of the equations at the nodes. However, in this case, it

was necessary to model load-deflection characteristics of the soil in a non-

-, linear fashion. This so-called "p-y" input, shown for a typical increment of

* the pile in Figure 22, is based on published criteria for one-time loading of

the soil. Other necessary data are described in Figure 22.

74. The applied load was assumed to act with an eccentricity of 1 in.,

resulting in a concentric axial load and a moment at the top of the pile. The

load was increased from the Euler buckling load of approximately 300 kips

(assuming the pile is pinned at both ends) to approximately 900 kips. The

moment was also increased in proportion to the loads. No axial load transfer

was assumed to occur between the top and the tip. Primary output needed to

°" evaluate the buckling load is lateral deflection at the top of the pile versus

*' applied load. Figures 23-35 show the solutions obtained on each of the sys-

tems. The Harris results conformed closely to the CDC results except that

"" substantial differences occurred at or near the buckling point (Figures 23-25).

The other systems were badly in error in single-precision but were identical

" with the CDC solution in double-precision. The Harris quadruple-precision

result was also identical with the CDC solution.

48

, ,:,'.-.......,.......,-...-.-... /. ,,?

In

04

w

x U
.4

~x -4

.4 C1

'-44

cu f-
*N~. EHd3

49s-

*~ th

C.9

.4)

60-

0

C;,C

10

I ~4 00..

ODO

505

I 0

64-

C-4

0 04

0
-4-

(5) (5) 4J

'-4

00

. L,4

ab a. C

51*51

- j4 e= IIN.

INPUT FOR FINITE DIFFERENCE SOLUTION

VERY SOFT CLAY NUMBER OF INCREMENTS = 320
150PSFINCREMENTAL LENGTH =3 IN.

El -(PILE); 2.73 x 101() LBN 2IN
AXIAL LOAD -0 (LB)
TOP MOMENT= 1.0 0 IN, LB

40-

M 200

16I.x 16-IN. .1(V R SA INI PRESTRESSED 100 13
CONCRETE PILE

BEDROCK y, IN.

PHYSICAL SYSTEM p-y RELATIONSHIP

Figure 22. Physical system and finite difference inputt for Case 3

-4
4)

rr -04

4.

0-4 0

CLI

-4

Us 93

Ii 4
10
*14

'NI '(311d A1 dol) NOIIV1SNni1 10~31V1 WflWIXVW

53

-r4

0 00

- - - -- -

II cc

m 0* w

41

80

4 .- 4

C..)
qp (U

4Da 0 Cu

014

540

.11

4.-'

0000

4A U-
-04

U o

00

"* 0

00

.4 -1 .1

"..

9>

L GJ

of If:v

,. O C.. . 14v . . ,,

"NI '(3l1d J'dO.L) N01IVISNW~I lV d3iVl wnwIXVw "

"" 55 "

"": W

:..', -:-...:,,.::...::..--.., :.:: ::: :. :i ::::. :::: ::: . , : . .2:.. . -o :: . ,

*~c .,4** . * . . .

.to

r V
0V)

(0

mI -.

-J U

.. 41

I f U

-r4Im

*N 9,0l~ -0 d(0NIVSVIIV3V niv

I .~.56

... .-,. ., "- .".---., ,,.,,.,-, r . -'- - - - ''- - - .' . ' - ' • -" " -" " "

.;r K i [°

"0-4
'-.0* - S~ l

Ito

":I -vJ 0 .a 0 1
0o rU'

" 1 ..4 -

-. I' U
-, -t -

00

ec w r €f

,r4

w .7

6 4

" II I g ad I I i

0- CA,

-4

a a,4

'N .4-4A ~)NOIl~i TII nIV

U 1.457

k-4

0.-

~0

o *1-4

- G-4

4~r4

'NI (3ld A ~l)NOIIlSNdi IH31I wnCl)

58 .

o

xU
.9 ~ -

-n

E a.

0M

0

0
-

*-

jiA

110 00

*Nl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L '(ld3 ~)NIVSNd V3V nI

59w

o

o .

00

D Co

n • n

(-0.
.j U

'Ne1

o 00,-

crcm

* 0°

CL

; 0.)
o >

LJ
o0

" .. I ..

--
* C.)

-. - 0 -

,I'- rl '0

1i4

A a

*. NI '(311d J0 dOl) NOI.VISNVWd IVH31VI WnNIXVW

60
.J 0 ,,

--, '" .' . .,t* " ,c,, , . ," . , . -.- , /"" "" " " ",, ,,' '. .' .' .".'' ''J-- - . - - -
| - _ i i l h l /il i i L1 (U d i lZ_.

000

A

'VV

00

4A 04
C3 0 t
LL- .4

4D " t
(a -1 4

4. C3

-.- 4

LV

.4 CA

M

1 00

*NI (3l~ 30 ~l)NO~lI.SNSI VU31I Wn'-V

61 %

Na

C-7
- -0

.14.

00
* 0i

0 0

'Mcm
LLGJ

--

w0

*54

IV~: 10 tapO

I I

*NI (3l~ JO ~l) OIIISNO InR I WnIXV

.5. '-62

co

o to

Ne x

LL4J

1 4-)

4. 0 .4
w 0)

lww

cu 40

'NI ~~~ ~ ~ ~ i '-'d3 ~) OII~iWHV nIV

63C.

~4j

00

*4 =
I~ u.

.19

~~41

00
la..* U .- I

- m

II . aro

644

co
W

444

i.,

i.%

LIIx
C-A

* (0*j

0 .4"

Q]

C) 0

-oo

.4

o V

o

0q

0

44

U) 41

I.
, .,0--.*t.I- * i-Il ll;;

"NI '(3lld "30 dO.l) NOI.LVISNV .i 1VH31.V' WnlWIXVW r,,

.P_

.i" 65 -

...liii/ ~ill lli i i .. , i li,,l ".--o

PART VI: EXECUTION TIME COMPARISONS

75. While it was not a primary objective of this study to compare test

program execution times on the systems tested, accuracy considerations do

-. interrelate with execution efficiency since there is often a trade-off between

accuracy achieved and execution time expended. In fact, increased accuracy is

* always possible through software implementation of extended-precision arith-

metic which exacts a heavy toll in execution time. And, as stated earlier,

execution efficiency of FP operations cannot be ignored when evaluating mini-

computer systems for S&E applications. Thus, the compile and execution times

which were collected as a by-product of running the test programs are pre-

sented in Tables 6-9. Some points to note are:

a. As would be expected, compile time differences between single-
precision and double-precision compilation on a given machine
were in each case insignificant.

b. For most programs, compile times on the three primary systems
tested show that the VAX was fastest, followed by the PRIME,
and then the Harris, with time ratios (slowest to fastest) of
no more than approximately 1.5. There were exceptions to this
ranking; e.g., the PRIME compile time for program MATRIX did
not fit the pattern.

c. Execution time differences between single-precision and double-
precision object codes on a given machine were in most cases
insignificant. There was no clear pattern to indicate that
double-precision execution required substantially more time
than single-precision on any of the three systems.

d. For the larger, longer running "real world" programs, the exe-
cution time rankings were the same as those for compile time;
i.e., VAX, PRIME, and Harris, in that order, with time ratios
(slowest to fastest) ranging from approximately 1.5 to 2.6.
However, for the shorter "textbook" programs, the speed rank-
ings were Harris, VAX, then PRIME, with the Harris far outper-
forming the other two in these cases. Since the Harris had the
slowest times for the "real world" programs and the fastest
times for the shorter, "textbook" programs, it might be sur-
mized that the textbook program execution times are probably
dominated by program initialization time, with the Harris out-
performing the other two systems in this task. Regardless of
the actual explanation of the contradictory timings, the real-
world execution times are probably much more valuable as per-
formance comparison metrics.

e. The PRIME, VAX, and IBM execution times in double-precision
were generally shorter than those observed for the Harris in
single- or double-precision.

66

--I t -:-.-. - , - " ' . .. " . .

Table 6

Compile Time Comparisons by Program

Compile Time, sec, for Cited Precision Operation

*System Single Double Quadruple

Program MAXJ

CDC 0.031

Harris 0.96 0.98 1.00

IBM 1.85 1.49

PRIME 1.027 1.000

VAX 0.98 0.97

Program POLY

CDC 0.093

Harris 2.66 2.68 2.81

IBM 2.46 2.42

PRIME 2.448 2.481

VAX 2.01 2.07

Program MATRIX

CDC 0.089

Harris 3.00 2.37 2.49

IBM 2.24 2.37

PRIME 0.124 0.166

VAX 1.76 1.81

67

Table 7

Compile Time Comparisons by Case

Compile Time, sec, for Cited Precision Operation
System Single Double Quadruple

Case 1

CDC 0.954

Harris 25.87 25.69 28.18

IBM 29.35 30.26

PRIME 19.008 21.475

VAX 16.24 15.89

Case 2

CDC 1.578

Harris 44.96 44.59 45.2

IBM 19.95 20.80

PRIME 35.067 38.227

VAX 26.52 26.51

Case 3

CDC 0.954

Harris 25.87 25.69 28.18

IBM 29.35 30.26

PRIME 19.008 21.475

VAX 16.30 16.42

-'6

,..:2.68

* Table 8

Execution Time Comparisons by Program

Execution Time, sec, for Cited Precision Operation

System Single Double Quadruple

Program POLY

*CDC 0.046

Harris 0.581 0.706 1.98

IBM 2.62 3.17

PRIME 1.218 1.306

4VAX 0.95 1.08

Program MATRIX

CDC 0.019

Harris 0.204 0.204 0.206

IBM 1.08 1.10

PRIME 0.568 0.557

VAX 0.43 0.45

96

Table 9
Execution Time Comparisons by Case

Execution Time, sec, for Cited Precision OperationV4

System Single Double Quadruple

Case 1

CDC 1.417

Harris 19.89 18.97 49.54

IBM 82.21 130.34

PRIME 17.036 19.075
VAX 12.29 13.48

Case 2

CDC 3.629

Harris 58.04 58.10 254.58

IBM 83.15 139.51

PRIME 34.112 35.190

VAX 22.68 31.66

* Case 3

CDC 3.04

Harris 37.73 38.54 181.80

IBM 53.34 90.31

PRIME 36.001 37.848

*VAX 25.42 27.26

70

f. Harris quadruple-precision execution times, except for one
textbook program (MATRIX), were substantially longer than
Harris double-precision times. For real world programs,
quadruple/double time ratios ranged as high as approximately
5.0. For programs with a high percentage of total execution
time expenditure in FP computations, it is certainly conceiv-
able that the ratio may go substantially higher. Such time
penalties are generally unacceptable for production execution
of long-running SE programs.

76. The timing comparisons are presented here only as interesting

observations that came from the accuracy tests. The reader should avoid draw-

ing erroneous conclusions. Specifically:
a. No "benchmark" or performance study was intended or designed.

Programs were selected only to measure computational accuracy
and not to measure performance. The program mix and indeed
the entire approach to the problem would have been substan-
tially different had this been a comparative performance study.

b. Past experience has shown that program timings obtained on some
minicomputer systems are greatly affected by system load condi-
tions; on some systems much more than others. For example, an
identical program execution may register much less execution
time under a "no-load" or uniprogramming condition than during
a period of heavy system load. Timings presented here were not
obtained under no-load conditions to eliminate system loading
influences. Neither were attempts made to control load condi-
tions during program runs so that similar conditions would ex-
ist on all systems. In fact, load conditions in most cases were
unknown during program runs. Thus, the "repeatability" of the
timings is highly suspect.

c. The specific systems used in this study, the VAX 11/750, the
PRIME 550, and the Harris 500, were not selected to be directly
competitive in performance or price. No attempt was made to
determine the exact configurations on which the programs were
executed, the price of the systems used, or the vendor's per-
formance rating of the particular system and configuration
relative to others in his product line or in competitor's
product lines. In short, the systems were not selected as
approximately equally priced alternatives for competitive pro-
curement, but simply as three available systems with FP archi-
tectures representative of the three families of systems.
Therefore, no conclusions should be drawn comparing the general
performance or price/performance of the VAX 11 family versus
the PRIME 550 family versus the Harris Series 500 family.

71

PART VII: CONCLUSIONS AND RECOMMENDATIONS

Relative Accuracy of the Three FP Architectures

'4 77. Both examination of the FP representations and execution of the
4.l

test programs indicate that, for single-precision computations, the Harris is
substantially more accurate than either of the other two systems and the VAX
is slightly more accurate than the PRIME. Harris superiority is achieved by

* use of the double-precision representation for all FP values in machines

equipped with a SAU. This feature provides the equivalent of approximately

11 decimal digits. While both the VAX and the PRIME store a 23-bit fraction

providing the equivalent of approximately 7 decimal digits, the VAX is more

accurate due to:

a. The added "hidden" bit giving it a 24-bit rather than 23-bit
fraction.

b. The achievement of correct rounding.

78. However, the test cases indicate that users should be wary of using
single-precision computations for S&E problems on any of the three systems.

The VAX and PRIME single-precision runs failed rather badly in all three of

the "real world" test cases. While the Harris's 11-digit representation

failed to provide sufficient accuracy in only one of these three cases, it too
must be considered suspect since it fails to provide the level of confidence

* needed to allay doubts as to its accuracy when used for such problems. It

must be remembered that results obtained at one or more points during computa-

tion may in fact be accurate and that, while final results may not appear un-
reasonable, they may in fact be wrong.

79. Double-precision representations provide approximately 16, 14, and

11 decimal digits for the VAX, PRIME, and Harris, respectively. All have

hardware implementations of double-precision operations. The 16-digit VAX
* data format produced no failures in any of the tests and could be used with

confidence for common S&E applications in the Corps requiring highly precise
data values. The PRIME's 14-digit double-precision results conformed well to
the CDC "standard" in all but one test case (real world Case 2), where there
was a small but significant deviation. The PRIME's double-precision would

probably suffice for the great majority of applications but would provide a

somewhat lower level of confidence than the VAX or CDC. As previously stated

72

9.

(Part III), Harris double-precision and single-precision representations are

Sthe same in SAU-equipped machines; thus, the single-precision comments above

apply here as well.

80. Previous experience with software implementations of FP arithmetic

leads to the conclusion that use of the Harris quadruple-precision capability

*. would exact too great a performance penalty for many applications. Timings

from the test cases executed for this study confirm this belief.

81. In summary, this study indicates that:

a. Single-precision arithmetic should be avoided as a standard
practice when using either the VAX or the PRIME system for
S&E applications in the Corps. This is not to say that such
use should be totally prohibited, but that it should be re-
stricted to cases where a careful analysis and thorough under-
standing of the problem to be solved and the programmed solu-

xtion indicate that the choice is prudent. Since it is not
necessarily known a priori when double-precision is needed
(this may be more data-dependent than program-dependent), the
cost of making a definite determination will, in most cases, be
unjustified. Thus, it is recommended that double-precision be
used as standard practice when using either the VAX or the
PRIME system. The double-precision arithmetic of both systems
proved to be highly accurate in the tests reported herein, with
the VAX having a small but significant advantage.

b. Since the Harris uses the same representation for both single-

and double-precision values, the options are limited to
standard-precision or software-implemented quadruple-precision.
Quadruple-precision execution times will probably be prohibi-

.3 tive for most precision-sensitive Corps applications; thus,
the question reduces to whether Harris standard-precision is
sufficient. Based on this study, the answer seems to be that
for many (perhaps most) applications, the degree of accuracy
provided is sufficient, but for some existing SE applications

.4 in the Corps, accuracy may be a problem for the Harris system.
While the Harris standard FP arithmetic certainly provides far

-* greater computational accuracy than either the VAX or the PRIME
single-precision arithmetic, it may not provide a level which
will inspire confidence and allay fears in the Corps' engineer
programmer community. Thus, it is recommended that, for S&E
applications, all the tested systems be used with caution and

* that users be ever alert to indications that an application is
or will be precision-sensitive. Such indications will require

*either an accuracy study for that application or a move to
another system. Note also that it is recommended that the "P"
compiler option be used as a standard practice (see Part III)
so that input/output data fields are not artificially re-
stricted to the documented single-precision length.

82. Note that blanket use of double-precision values imposes a penalty

in memory required and in some systems a penalty in execution time. While

.a. 73

*4 .'

4o

" 4 ' " " ."' ""t q" '"" """ """.. " . .."" . . , . - -

7 -. 7r. r'r 7r .777 -7- .V '77 7. _7. .

JJ

this study did not specifically address FP computational speed, no significant

difference in execution time for single- versus double-precision computation

was detected for any of the three systems. A further study would be required

to make definitive statements regarding single- versus double-precision speed

* comparisons for the systems in question. Note also that any performance

penalties that may accompany blanket double-precision are imposed as a default

in the Harris system; i.e., every FP value requires 2 words (6 bytes). Thus,

when comparison is made of resource requirements, it must be realized that the

VAX or PRIME double-precision representation (8 bytes) does not require double

the data memory required by Harris standard representation, but that the ratio

is actually 8 bytes to 6 bytes.

Recommendations for Error Avoidance

83. Given an understanding of the basic algorithms for FP operations

and the mechanics of how errors occur, and care in coding accuracy-critical

calculations, errors which might otherwise be inadvertently created can be

avoided. Specifically, the user should:

a. Be very careful when subtracting very nearly equal values. The
result may contain very few significant digits, and loss of
digits in a subsequent operation could be disastrous. Also,
be aware that the distributive law may fail. (See example in
Part IV.)

b. Be careful of addition or subtraction operations performed on
numbers of vastly differing magnitudes. Some loss of signif-
icance is certain, and the associative law of addition can
fail. (See example in Part IV.)

c. Never test for absolute equality of FP values. Instead detect
approximate equality by testing for a difference in value less
than some relative e.

d. Be aware that the effectiveness of adherence to recommenda-
tions a and b can be negated by an optimizing compiler which
reorganizes code assuming associativity and distributivity.

74.

~. e

U,,,

-, - v ~~ . * . . t - ~* '* . . - '

REFERENCES

Cody, W. J. and Waite, W. 1980. Software Manual for the Elementary Functions,
Prentice-Hall, Englewood Cliffs, N. J.

Harris Corporation. 1978. Reference Manual, Series 500 General Purpose
Digital Computer Systems, Fort Lauderdale, Fla.

_______ 1981. Harris FORTRAN Reference Manual, Fort Lauderdale, Fla.

Knuth, D. E. 1969. The Art of Computer Programming, Vol 2, Addison-Wesley,
Reading, Mass.

Matlock, H. and Ingram, W. B. 1963. "Bending and Buckling of Soil-Supported
Structural Elements," Proceedings, Second Pan American Conference on Soil
Mechanics and Foundation Engineering, Sao Paulo, Brazil.
Noble, B. 1982. "Accuracy Comparison Study," Letter Report, University of

Wisconsin-Madison, Madison, Wis.

O'Neill, M. W. and Peterson, E. H. 1976. "Analysis of Machine Dependent
Errors in Soil-Structure Interaction," Department of Civil Engineering, Uni-
versity of Houston, Houston, Tex.

Ward, D. L. 1976. "The Impact of Word Length in Scientific Computation,"
unpublished paper, Texas Eastern University, Tyler, Tex.

Wilson, E. L. 1965. "Structural Analysis of Axisymmetric Solids," AIAA
Journal, Vol 3, No. 12, New York.

75

SI_

75,"

-r ..--.......,,.d,,, ...-.... * .. ,....,-...,... . -.-..- . . ,, ., .-. - ... , _.-. .. .,.2, ...:.-:,.,....2.-.

BIBLIOGRAPHY

Digital Equipment Corporation. 1979. VAX 11 Architecture Handbook, Maynard,

Mass.

"___ 1980. VAX Technical Summary, Maynard, Mass.

• . Katzan, H., Jr. 1977. Microprogramming Primer, McGraw-Hill, New York.

S. Prime Computer, Inc. 1981. Assembly Language Programmer's Guide, Framingham,
Mass.

1981. System Architecture Reference Guide, Framingham, Mass.

Ralston, A. 1965. A First Course in Numerical Analysis, McGraw-Hill, New
York.

Shugan, T. A. 1982. "Relative Accuracy of the Computed Matrix Inverse on
Small and Large Computers," Technical Memorandum No. M-51-82-06, Naval Civil
Engineering Laboratory, Port Hueneme, Calif.

Stone, H. S. 1975. Introduction to Computer Architecture, SRA, Inc.,
Chicago, Ill.

* -

'S

76

4-% , ,,-,, .,i..• . . -,•. . , .. -.... - - -.

ILT Z. T, 7E 7. T..

APPENDIX A: RESULTS OF MACHAR, AN ENVIRONMENTAL INQUIRY SUBROUTINE

1. Subroutine MACHAR (Cody and Waite 1980) dynamically determines

13 machine constants relating to the floating-point arithmetic system. These

constants can be used to check manufacturer's claims or documentation for a

system and are specified below:

IBETA - Base of the floating-point representation

IT - Number of base IBETA digits in the floating-point
significand

IRND - 0 if floating-point addition truncates

1 if floating-point addition rounds

NGRD - Number of guard digits for multiplication:

0 if IRND = 1, or if IRND = 0 and only IT base IBETA
digits participate in the post-normalization shift of
the floating-point significand in multiplication

1 if IRND = 0 and more than IT base IBETA digits partici-
pate in the post-normalization shift of the floating-point
significand in multiplication

MACHEP - Largest negative integer such that 1.0+FLOAT(IBETA)
*MACHEP.NE.I.0, except that MACHEP is bounded below by
-(IT+3)

NEGEPS - Largest negative integer such that 1.0-FLOAT(IBETA)
"'NEGEPS.NE.1.0, except that NEGEPS is bounded below by
-(IT+3)

IEXP - Number of bits (decimal places if IBETA = 10), reserved
for the representation of the exponent (including the bias
or sign) of a floating-point number

MINEXP - Largest magnitude negative integer such that FLOAT(IBETA)
"'INEXP is a positive floating-point number

MAXEXP - Largest positive integer exponent for a finite floating-
point number

EPS - Smallest positive floating-point number such that
1.0+EPS.NE.1.0. In particular, if either IBETA = 2 or
IRND = 0, EPS = FLOAT(IBETA)"MACHEP. Otherwise,
EPS = (FLOAT(IBETA)"MACHEP)/2

EPSNEG - A small positive floating-point number such that
1.0-EPSNEG.NE.1.0. In particular, if IBETA = 2 or
IRND = 0, EPSNEG = FLOAT(IBETA)"NEGEPS. Otherwise,
EPSNEG = (IBETA"NEGEPS)/2. Because NEGEPS is bounded
below by -(IT+3), EPSNEG may not be the smallest number
which can alter 1.0 by subtraction

XMIN - Smallest nonvanishing floating-point power of the radix.
In particular, XMIN = FLOAT(IBETA)"MINEXP

Al

..~ ib~ i ml~ddl,,,
, z

...

XMAX -Largest finite floating-point number. In particular,
)GMX = (l.0-EPSNEG)*FLOAT(IBETA)"NAXEXP. Note: On some
machines, XMAX will be only the second, or perhaps third,
largest number, being too small by 1 or 2 units in the
last digit of the significand

2. These constants are discussed further in Cody and Waite (1980). The

results of ?IACHAR are given in Table Al. Subroutine MACliAR is listed on

pages A-A.

.A2

4c a0 ao M 0% 4

N 't0~ 0 '%0' 0 coao r-0 P--

04- Of-. 004 -- 0 4

1000~4 00 e

C~~a404 62)40 O

am IL I3 Al pa

- CLn' * -4)
c -'0'0. C4.D 0%4 C4.O T-- al go C') 00L .EU -

IN 00 C) 0-E1 -t)

044

4

-,4

-n 10 000 '0.0 e .

to %a *0CIInnn.09.'-4-cLncM"4 4L CW) Coco 0014

.A C - M r4~ I %a SC M to.. 00. to oL- L--- -f) wn 414
I .2 a6 om aa C-- a 0to W... coo; .

P-..') .3, .. 10%0 0oo *41 a
'.0) 6n -4D , , - P, - 0

~ 1anc~ C4 m' C, C' N
*0~~~e a'N an.. lal I--04

1 41 10 -

IA 41

41- to. 0.~4

.- 0a c00. cok % %

4- Z ~ ., N 10 1aa1 ~ 014 U 1 a c

.44 2.... 04-
o 4 04 00 agg as% f-r 0r c -4 -a op -r . 'l 11 40 4 a am *.4 144

m4 %D04 M5404 %a104 M004 M4D1.040 C q . IA
41 hn LM .4 00 C,~

00 t f-..) --00 1')C')N000-. C 4 go wa
M00t-r 00 C*C -t' tf- 00 n 0 0 5P P C4 U

- Nu 40

4141 4:461

UA $. a 41
u '4.4 -4141

M 44 *,4 441

-t .t 05 N4 416..4
I+ am060.

4j4 6.a

in A -.

.4'A 41414..a

-A 60 4-I

041a4.0 v

aj lu 4) 4 l0.WE I 4O 401 41
GOA V.4. U0. vU l . 00000 t

414 a g 3 - 00-

.4.- 0.A0. ",000
I. I I4 a0 A 4ls "

41 0 a -A a -, .0~

A 93la a am10

'V A3

0001 INTEGER I,IBETA,IEXP,IRNDIT,IZ,JA,MACHEP,
S MX,HEGEP,H.AD

0002 DOUBLE PRECISION A,B,BETA,BETAIN,BETAM1,EPSEPSNEG,ONE,XMAX,
3 XMIN,Y,Z,ZERO

C
C THIS ROUTINE IS INTENDED TO DETERMINE THE CHARACTERISTICS OF
C THE FLOATING-POINT ARITHMETIC SYSTEM THAT ARE SPECIFIED BELOW.
C
C IBETA - THE RADIX OF THE FLOATING-POINT REPRESENTION
C IT - THE NUMBER OF BASE IBETA DIGITS IN THE FLOATING-POINT
C SIGNIFICAND
C IRND - 0 IF FLOATING-POINT ADDITION CHOPS,
C 1 IF FLOATING-POINT ADDITION ROUNDS
C NGRD - THE NUMBER OF GUARD DIGITS FOR MULTIPLICATION. IT IS
C 0 IF IRND=I, OR IF IRHD:O AND ONLY IT BASE. IBETA
C DIGITS PARTICIPATE IN THE POST NORMALIZATION SHIFT
C OF THE FLOATING-POINT SIGNIFICAND IN MULTIPLICATION
C I IF IRND=O AND MORE THAN IT BASE IBETA DIGITS
C PARTICIPATE IN THE POST NORMILIZATION SHIFT OF THE
C FLOATING-POINT SIGNIFICAND IN MULTIPLICATION
C MACHEP - THE LARGEST NEGATIVE INTEGER SUCH THAT
C 1.O4FLOAT(IBETA)NWMACHEP .HE. 1.0, EXCEPT THAT
C MACHEP IS BOUNDED BELOW BY -(IT+3)
C NEGEPS - THE LARGEST NEGATIVE INTEGER SUCH THAT
C 1.O-FLOAT(IBETA)NNHEGEPS .HE. 1.0, EXCEPT THAT
C NEGEPS IS BOUNDED BELOW BY -(IT+3)
C IEXP - THE NUMBER OF BITS (DECIMAL PLACES IF IBETA = 10)
C RESERVED FOR THE REPRESENTATION OF THE EXPONENT
C (INCLUDING THE BIAS OR SIGN) OF A FLOATING-POINT
c NUMBER
C MINEXP - THE LARGEST IN MAGNITUDE NEGATIVE INTEGER SUCH THAT
C FLOAT(IBETA)*NMINEXP IS A POSITIVE FLOATING-POINT
C NUMBER
C MAXEXP - THE LARGEST POSITIVE INTEGER EXPONLT FOR A FINITE -
C FLOATING-POINT NUMBER
C ESP - THE SMALLEST POSITIVE FLOATING-POINT NUMBER SUCH
C THAT 1.0+EPS .NE. 1.0. IN PARTICULAR, IF EITHER
C IBETA = 2 OR IRHD 0, EPS = FLOAT(IBETA)N*MACHEP.
C OTHERWISE. EPS (FLOA(IBETA)*NMACHEP)/2
C EPSNEG - A SMALL POSITIVE FLOATING-POINT NUMBER SUCH THAT
C 1.0-EPSNEG .NE. 1.0 IN PARTICULAR. IF IBETA = 2
C OR IRND=O, EPSNEG = FLOAT(IBETA)**NEGEPS.
C OTHERWISE, EPSNEG = (IBETA*NNEGEPS)/2. BECAUSE
C NEGEPS IS BOUNDED BELOW BY -(IT+3). EPSHEG MAY NOT
C BE THE SMALLEST NUMBER WHICH CAN ALTER 1.0 BY
C SUBTRACTION.
C XMXN - THE SMALLEST NON-VANISHING FLOATING-POINT POWER OF THE
C RADIX. IN PARTICULAR, XMIN = FLOAT(IBETA)*NMINEXP
C XMAX - THE LARGEST FINITE FLOATING-POINT NUMBER. IN
C PARTICULAR XMAX = (1.0-EPSNEG)NFLOAT(IBETA)NNMAXEXP
C NOTE - ON SOME MACHINES XMAX WILL BE ONLY THE
C SECOND, OR PERHAPS THIRD, LARGEST NUMBER, BEING
C TOO SMALL BY 1 OR 2 UNITS IN THE LAST DIGIT OF
C THE SIGNIFICAND.
C
C LATEST REVISION - OCTOBER 22, 1979
C
C AUTHOR - W. J. CODY
C ARGONNE NATIONAL LABORATORY
C
C --

0003 CALL MACHAR(IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,
SMAXEXPEPS,EPSHEG,XMIN,XMAX)

C
0004 WRITE(6,1O)IBETAIT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP

&,MAXEXPEPS,EPSNEG,XMIN,XMAX
0005 10 FORMAT(1X,IlBETA 1,10, /,

& 1X,'IT = ',110, ,
a 1X,'IRND = ,I10, ,,

IX,iNGRD = ,I10, /,
1X,'MACHEP = ,110, /,
IX,'NEGEPS = ,110, /,
IX,'IEXP = ,IO, ,
1X,'MINEXP = ,I10, /,

a 1X,'MAXEXP = ,I10, /,
a IX,IEPX = ,D15.9, -,
a 1X,tEPSNEG = ,D15.9, ',
a IX,'XMIN = '415.9, ,
a 1X,'XMAX ',D15.9);,0006 STOP -

0007 END

A4

s61 SUBROUTINE MACHARCIBETA, IT. IRNO, NORD, MACHEP, NEGEP,
a IEXP, MINEXP, KAXEXP, EPS, EPSNEGXMIN.
& XMAX)

C
1012 INTEGER IIBETA, IEXPIRND, IT, Z, J, K, MACHEP,

a MAXEXP, MINEXP, MX, NEGEP, NORD
003 DOUBLE PRECISION AB,BETA,BETAIN,BETAMI,

& ESP,EPSNEGONE,XMAX,XMIN,Y,ZZERO
c
C THIS SUBROUTINE IS INTENDED TO DETERMINE THE
C CHARACTERISTICS OF THE FLOATING-POINT ARITHMETIC
C SYSTEM THAT ARE SPECIFIED BELOW.
C
C ---

630'. ONE:DBLEIFLOAT(l))
o05 ZERO = 0.0D0

C --
C DETERMINE IBETA,BETA ALA MALCOLM
C ---

0#6 A ONE
1547 10 A A + A
s0o8 IF (((A+ONE)-A)-ONE .EQ. ZERO) 00 TO 10
g0e B ONE
0010 20 B : a + B
OlI IF((A+B)-A .EQ. ZERO) GO TO 20
6012 IBETA INTCSNGL((A + B) - A))
0$13 BETA DBLE(FLOAT(IBETA))

C ---
C DETERMINE IT, IRND

$61* IT = 0
3is B: ONE
0616 1#$ 1T: IT + I
017 3B 0 * BETA
Sol& IF(C(B + ONE)-B)-ONE .EQ. ZERO) GO TO 100
0019 IRND = 0
3020 BETAMI = BETA -ONE
3021 IF((A+BETAM1)-A .HE. ZERO)IRND 1

C ---
C DETERMINE NEGEP, ESPSNEO
C---

022 NEGEP = IT + 3
#623 BETAIN : ONE/BETA
024 A = ONE

C
025 DO 200 1 : 1,NEGEP
6626 A : A * BETAIN
027 203 CONTINUE

C
ooze D 2 A .
629 213 IF((ONE-A)-ONE .NE.ZERO)GO TO 220
639 A = A BETA
0031 NEGEP NEGEP - 1
6032 0 TO 210
6633 223 NEGEP -NEGEP
3334 EPSNEG A
1 6035 IF((IBETA .EQ. 2) .OR. (IRNO .EQ. 8)) 60 TO 300
3036 A = (A*(ONE+A)) /CONE+ONE)
6037 IF (CONE-A)-ONE .HE. ZERO)EPSNEG A

C-------------.......--- .-----------------------------------
C DETERMINE MACHEP, EPS
C--

6038 300 MACNEP = -IT - 3
3639 A :B
146 310 IF((ONE+A)-ONE .NE. ZERO)GO TO 320
0661 A A NBETA
0442 MACHEP 2 MACHEP + 1
0343 GO TO 310
0644 326 EPS % A
345 IF ((IBETA .EQ. 2) .OR. (IRND .EQ. 0)) G0 TO 350

6646 A = (A(ONE+A))/(ONE+ONE)
0047 IFC(ONE+A)-ONE .NE. ZERO) EPS = A

C ---
C DETERMINE NORD
C ---

0648 350 NORD = 0
6049 IF(CIRND .EQ. O) .AND. (CONE*EPS)NONE-ONE) .NE. ZERO) NGRD : 1

C------- --
C DETERMINE IEXP, MINEXP, XMIN
cC LOOP TO DETERMINE LARGEST I AND K : eN*l SUCH THAT

C (1/BETA) *N (2*NC1))
C DOES NOT UNDERFLOW
C EXIT FORM LOOP IS SIGNALED BY AN UNDERFLON
C --

$659 16
6651 K :1
0152 Z B IETAIN
8053 4OO Y : Z

3514 Z Y Y

A54--

'4'

C CHECK FOR UNDERFLOW HERE
C ---

055 A= ZN ONE
0056 IF((A+A .EQ. ZERO) .OR. (DABSIZ) .GE. Y)) GO TO 410
0057 I = I + 1
6058 K : K + K
0059 GO TO 400
0060 410 IFCIBETA .EQ. 10) GO TO 420
0061 IEZP = I 1
0062 MX K + K
0063 GO TO 450

C FOR DECIMAL MACHINES ONLY

0064 420 IEXP = 2
0065 IZ = IBETA
0066 430 IF(K.LT.IZ) GO TO 440
0067 IZ = IZ X IBETA
0068 IEXP = IEXP + 1
0069 GO TO 430
0070 440 MX : IZ + IZ - 1

C ---
C LOOP TO DETERMINE MINEXP, XMIN
C EXIT FORM LOOP IS SIGNALED BY AN UNDERFLOM.
C ---

0071 450 XMIN Y
0072 Y : Y BETAIN

C CHECK FOR UNDERFLOW HERE
C ---

0073 A zY NONE
0074 IFC((A*A) .EQ. ZERO) .OR. (DABSCY) .GE. XMIN)) GO TO 460
0075 K : K + 1
0076 GO TO 450
0177 460 MINEXP = -K

C --
C DETERMINE MAXEXP, X14AX
C ---

0078 IF((MX.GT. K*K-3) .OR. CIBETA .EQ. 10)) GO TO 500
0079 MX : MX + MX
0680 IEXP =IEXP + 1
0081 500 MAXEXP = MX + MINEXP

C --
C ADJUST FOR MACHINES WITH IMPLICIT LEADING
C BIT IN BINARY SIGNIFICAND AND MACHINES WITH
C RADIX POINT AT EXTREME RIGHT OF SIGNIFICAND
C ---

0082 I = MAXEXP 4 MINEXP
0083 IF(CIBETA .EQ. 2) .AND. (I .EQ. 0)) MAXEXP m MAXEXP - 1
8004 IF (I .GT. 20) MAXEXP = MAXEXP - 1

0085 IF(A.HE. Y) MAXEXP = MAXEXP -2
0086 XMAX = ONE - EPSNEG
0087 IF(XMAXNONE .NE. XMAX) XMAX ONE - BETA N EPSNEG
0088 XMAX = XMAX / (BETA N BETA N BETA N XMIN)
0089 1 = MAXEXP + MINEXP + 3
6096 IF(I .LE. 6) GO TO 520

C
0091 DO 510 J =11
0092 IF(IBETA .EQ.2)XMAX = XMAX + XMAX
0093 IF (IBETA .HE. 2) XMAX XMAX N BETA
0094 510 CONTINUE
0095 520 RETURN

* " 0096 END

.%

-°,

A6

... . q . . .4. .*. :..m d . m d,, -.-" , - -. --".. J'.-':-. .---7

APPENDIX B: LISTINGS OF PROGRAMS USED IN MATHEMATICAL TEST PROBLEMS
PROGRAM MAXJ

C IMPLICIT DOUBLE PRECISION (A-H,O-Z) MAXO001O
6661 SL 2 0. MAXO0020
6002 SU : 0. MAXO0030
0003 READ (SPN)J MAXO0040
8664 K z J + I MAXO00SO
005 DO 166 I : It J MAXO0060
0006 VL = FLOAT(I) MAX00070
@so7 VU = FLOAT(K - 1) MAXO0080
6080 SL = SL + VL MAXO 0090
9609 SU : SU + VU MAXO0100
010 100 CONTINUE MAXO0110

6611 WRITE(6,10)SL,SU MAXO0020
OO12 16 FORMAT(V ',E14.8,2X,El4.8) MAX00130
0013 DIFF : SU - SL MAXO0140
0014 RITE(6o20) DIFF_ _ MAXOl0SO
6615 20 FORMAT(' ',' DIFFERENCE : F1O.1) MAXO0160
0016 STOP MAX00170
0017 END MAXOOlBO

B,

CIC,,

C.".o."

* Program MATRIX

0601 REAL HCB.6)oPoQ MATOO0lO
3002 INTEGER 1. J, K. N MAT00020

N0003 WRITECBDBOO) MATODOSO
02104 800 FORMAT(1N1,40X,37HTHE SIX BY 515 MATRIX TO BE INVERTED I)MATOO040
0005 READC5.900)N NATO 0050
0006 900 FORMATCI2) MAT 00060

C MAT0070
C READ IN THE ORDER OF THE MATRIX AND COMPUTE THE MATRIX MATOSOBO
C PRINT OUT THE ORIGINAL MATRIX BY ROWS AFTER COMPLETING THE INPUT PHASEMAT0OO90
C NATO 0100

0037 DO 901 I =1.N MAT00110
0008 DO 901 J =1.N MAYO00120
0009 901 N(I,J) =1.0 / FLOATCI+J-1) MAT00130

C MAT00140
0010 WRITE(6,BO1) CCHCI,J).J=1.N),I=1.N) MAT00150
0011 801 FORMATC1H I1OX,6E16.7//) MAT00160

C MAT00170
C SELECT THE PIVOT P AND SET HCI,I) TO 1 IN THE OUTER LOOP MAT00180
C MAT00190

0012 DO 20 1I 1,N MAT00200
0015 P = NCI.I) MAT00210
6014 H(II) =1. MAT00220

C MAT00230
C DIVIDE ROW I DY THE SELECTED PIVOT P MAT00240

AC MAT00250
0015 DO 30 J * 1N MAT00260
0016 N(I,J) HCI,J) /P MAT0O270
0017 36 CONTINUE MAT002I0

C MAT00290
C MANIPULATE ALL ROWS OTHER THAN I TO EFFECT THE ZERDEING OF ALL MAT00300
C ELEMENTS IN THE MATRIX ABOVE AND BELOW THE SELECTED PIVOT MAT00310
C MAT00320

0018 DO 40 J = 1,N MAT00330
0019 IF (I .EQ. J) GO TO 40 MATO05340

C MAT 00350
p IF .1 NE J THEN SELECT THE ROW MULTIPLIERS 0 AND ZERO HCI.J) MATO0360
C MATOO370

0026 0 = N(J.I) MATO0380
6621 HCJ.I) =0. MATOO390

C MAT00400
C MANIPULATE ALL COLUMS FOR ROW J SO THAT THE ELEMENT UNDER THE MAT0041O
C PIVOT IS ZEROED MAT00420
C MAT 00430

0022 DO 50 K =1.N MAT00440
*0623 NCJ.K) z HCJ.K) - QNNCIK) MAT00450

0024 50 CONTINUE MATOO460
S0025 40 CONTINUE MAT00470

0026 20 CONTINUE MAT004BO
C MAT00490
C THE ALGORITHM IS NON COMPLETED AND THE INVERSE IS NOW IN THE ORIGINAL MATOO500
C MATRIX H MAT00510
C MAT 00520

No MAT00530
6027 WRITEC6.801) (CHCI,J), J *1,N), 11.,N) MAT00540
6028 STOP MAT00550
6629 END MAT00560

a.

aB2

a'

I.

4.'

Prrogracm.w~:... * . MATR-X-.-

-- . -~. -

0001 EAL H6,6),- *.AO001 a

Program POLY

C NOISE LEVEL FOR POLYNOMIAL WHOSE ZEROS ARE FIRST N INTEGERS POLO0010
C POLO0020
C PROGRAM EVALUATES POLYNONIAL FOR X 2 Z+JNH, J=-M(1)M. POLO0030
C THEN COMPUTES MEAN AND STANDARD DEVIATION OF P-VALUES. CARE IS POLO0040
C NEEDED TO CHOOSE H SMALL ENOUGH SO THAT TRUE P-VALUE ESSENTIALLY POLOO050
C CONSTANT IN RANGE. POLO0060
C POLO0070
C 1. INPUT DEGREE OF POLYN. AND EVALUATE COEFFTS. POL00080
C POLO0090

0061 DIMENSIOH A(20)#P(21) POL00100
6002 10 WRITE (6.20) POL00110
0003 20 FORMAT(' ENTER N - DEGREE OF POLYN. TO STOP, ENTER N=0.') POLOO120

C POLO0130
0004 READ(S,N) N POLO0140
0005 IF (N.EQ.O) STOP POL0150
0006 A(2) = -1 POLO0160
0007 A(l) = 1 POLO0170

' 0068 DO 40 K
=

2PH POL00180
0009 A(K I) = -KNA(K) POLO0190
0010 DO 30 J = 1,K POLOO200
0011 A(K-J I) = A(K-J I) - KNA(K-J) POLO0210
0012 30 CONTINUE POLO0220
0013 40 CONTINUE POLO0230
0014 "Mm = N + 1 POLO0240
0015 PRINT N,(A(I),T=MMM) POLO0250
0016 50 WRITE (4,60) POLO0260
0017 60 FORMAT ('ENTER Z,H,M FOR POLY. EVAL. M=O TO ALTER POLY DEG') POLO0270
0018 READ (5,K) Z,HM POLO0280
0019 IF (M.EQ.O) GO TO 10 POLO0290
002 MMM 2NM+1 POLO0300
0021 DO 80 J : 1,MMM POL0310
0022 X m Z-(M-J+I)NH POLO0320
0023 PVAL = A(1) POLOO330
0024 DO 70 I =1,N POLOO340
0025 PVAL c PVALNX+A(1 1) POLO0350
0026 70 CONTINUE POLO0360
0027 P(J) = PVAL POLO0370
0028 80 CONTINUE POLO0380
0029 mMM = 2NM1 POLO0390

C PRINT N, (P(J),J=IMMMl) POLOO400
0030 5 = 0.0 POLOO410
0031 MMM 2NM+1 POLOO420
0032 DO 90 K : 1,MMM POLO0430
0033 S = S + P(K) POLOO440
0034 90 CONTINUE POLO0450
0035 PHEAN = S/(2 M+1) POLO0460
0036 VAR 0.0 POLOO470
0037 MMM 2NM+1 POLO0480
0038 DO 100 I = 1,HMM POLO0490
0039 VAR = VAR+(P(I) - PMEAN)mN2 POLOO500
0040 100 CONTINUE POL00510
0041 RN = FLOAT(M) POLOO520
0042 PSDEV = SQRT(VARs(2.*RM)) POLOO530
0043 PRINT NPMEAN,PSDEV POL00540
0044 GO TO 50 POLO0550
0045 END POLOO560

B3

. .4-r

II

.to

isj

AD-A134 FOR SCIENTIFIC AND.. IUI ARMY ENGINEER WATERWAYS

UNCLSSIIEDEXPERIMENT STATION VICKSBURG MS V F INGRAM ET AL.
UNLASII D P Al WIFtl/K.RI-21 F/0l 12/1 N1*flflfIlflN

I

LIiglO 12.0

111111.25 I1 1 .4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1q63 A

SUPPLEMENTARY

IM

INFORMATION
' ,UN d i .IN NUJAu) Iv El~iJoU gl, gt~ ~o-

• ' - :"r "- . , Y"t ." -. ¢ r

DEPARTMENT OF THE ARMY
WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS

P.O. lOX n3
VICKSBURG. MISSISSIPPI 36100

~RELY TO

ATTENTION OF

WESKA 30 May 1985

Errata Sheet
ZNo. 1

ACCURACY CONSIDERATIONS WHEN USING

SOME MINICOMPUTERS FOR SCIENTIFIC

AND ENGINEERING PROBLEMS

Technical Report K-83-2

September 1983

1. Pages 33, 34, and 36: Replace these pages with the inclosed corrected
pages. (Double a.terisks appear in the left margin to indicate those
places that have been changed.)

InORULICS G6?CNA. STIUCTURE INmNSTL CATAL VOSM6
LABORATORY IAAA TO LONATO"W LASONATLr SWM

-""T " LABO-RATORY,1. -

36 -630 3360 -7560 7560 -2772

-630 14700 -88200 211680 -220500 83160

3360 -88200 564480 -1411200 1512000 -582120

-7560 211680 -1411200 3628800 -3969000 1552320

** 7560 -220500 1512000 -3969000 4410000 -1746360
* -2772 83160 -582120 1552320 -1746360 698544

Figure 2. Exact analytical solution of a 6 6 Hilbert matrix

1 1 1 1 1 1
T T T - "

1 1 1 1 1 1

1 1 1 1 1 1

I1 1 1 1 1 1

1 1 1 1 1 1

Figure 3. 6 x 6 Hilbert matrix

a * a * I a

* I I * I I

Figure 4. CDC approximate absolute error matrix

(a indicates value less than 1.0 E-6)

33

-o ••.1 .1 0 -

.1 .7 1.7 1.9 .7
.7 4.4 11.6 12.8 5.1

1 1.7 11.5 LD.1 33.3 13.2

1 1.9 12.8 33.3 36.8 64.5

* .7 5.0 13.1 64.5 5.7

a. Single- and double-precision

* .1 .3 .9 1. .4

* .3 2.3 6.1 6.7 2.6

* .9 6.1 15.8 17.4 6.9

* 1. 6.7 17.4 19.3 57.6

.4 .3 6.9 57.6 3.

b. Quadruple-precision

Figure 5. Harris approximate absolute error matrices
(' indicates value less than 0.05)

5.5 154.5 1034.5 2671.8 2933.6 1151.2

153.7 4311.3 28846.7 74455.0 81715.1 32057.2

1025.3 28744.3 192224.4 495963.9 54418.3 213443.6

2641.1 74000.4 494695.5 127607.4 139989.4 549005.2

2894.2 81058.2 341741.2 654081.0 153257.5 600934.0

1134.1 31751.1 311796.7 158732.5 269860.6 220955.7

a. Single-precision

b. Double-prec13ion
SFigure 6. IB approximate absolute error matrices.

at(0 nd tate value 1033 than 0.05)

f 34

a;L

results have been rounded to I decimal place).

61. The CDC, the baseline system, has a very small absolute error

matrix. The Harris is the only system with a small error matrix in single-

** precision. The double-prec1sion approximate error matrices for the PRIME,

00 IBM, and VAX were smaller than that for the Harris in quadruple-precision.

Real World Problems

62. For the S&E problems in this study, three computer programs were

selected that have been in use for several years and have been thoroughly

validated. These programs solve certain types of soil-structure interaction

problems that are complex and for which no simple closed-form solution exist.

Often the algorithm employed in the solution of a soil-structure interaction

problem will yield incorrect results if the number of significant figures

carried in the calculation is insufficient.

63. Three problems were chosen to show that different results can be

obtained when identical problems are run on each of the systems tested using

the same program. The problems have already been used in a previous study

(O'Neil and Peterson 1976) with the same programs on a CDC system. The re-

ported solutions from the CDC were duplicated in this study. The conclusions

from the previous study indicated that the CDC's solutions were acceptable;

therefore, these solutions are used for comparison with the results from the

systems tested.

Case 1--flexible sheet pile bulkhead in sand

64. The deflections and moments produced in a flexible sheet pile bulk-

head embedded in sand are to be computed for the physical system depicted in

Figure 9. The problem was solved by using a computer code (BMCOL 28) which

establishes the finite difference equations for a beam on an elastic subgrade

at predesignated equally spaced nodes along the bulkhead (Matlock and Ingram

1963). The system of linear difference equations so generated forms a matrix

equation in which the stiffness matrix is tightly banded. Recursive tech-

niques are used to solve for the deflection at each node, and moments, shears,

and soil reactions are subsequently computed.

65. It is comon practice to analyze problems like that shown in Fig-

ure 9 by utilizing 50 to 100 nodes, but such solutions may be relatively

36

