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EXTENSIONS OF THE THEORY OF THE ELEC'RON-PHONON

INTERACTION IN METALS: A COLLECTION

ANNOTATED BIBLI OGRAPHY

1. "ELECTRON-PHONON INTERACTION IN THE f-BAND METALS La, Ce and

Th: ELECTRONIC ASPECTS INCLUDING THE SPIN-ORBIT INTERACTIONS."

*Physica 1lIB, 1 (1981).

An important parameter reflecting the strength of the elec-

* tron-phonon interaction is n=N(EF)<I 2>, where N(F) is the Fermi

level density of states and <I2> is the Fermi level mean square

electron-ion matrix element. The parameter n is calculated for

the f-band metals La, Ce and Th using self-consistent muffin-tin

potentials. The corrections within the rigid muffin-tin ap-

proximation (RMTA) due to spin-orbit coupling derived by John

and Hamann are found to increase n by 1% in La and 4% in Th, and

by 10% and 33% in the a and y phases of Ce, respectively. The

RMTA expression is reinterpreted to provide an understanding of

the low values of n in Ce (0.7 to l.leV/R 2 ) in spite of an

extremely large density of states at the Fermi level. Using

moments of the measured phonon spectra, the superconducting

transition temperature is calculated and compared with experi-

ment. The RMTA appears to overestimate n by approximately 25%

in these metals, although spin fluctuations may be contributing

*i to this apparent discrepancy with experiment.

Manuscript approved September 2, 1983.
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2. "TRANSFERABILITY AND THE ELECTRON-PHONON INTERACTION: A

REINTERPRETATION OF THE RIGID-MUFFIN-TIN APPROXIMATION." Phys.

Rev. B25, 745 (1982).

The expression for the McMillan-Hopfield constant "=N(EF)
N 2

<I > within the rigid-mufin-tin approximation (RMTA) is rein-

terpreted in terms of single-channel electron-ion matrix ele-

ments 12 Z, Z+I and angular-momentum-character fractions f Z of

the electronic states at the Fermi level. Reexamination of Nb-

and V-based A15 compounds suggests that 12  +l is more nearly

an atomic property, and thus transferable from system to system,

than other commonly used quantitities. The fractions f are

dependent *on bonding character and crystal structure but tend

* to be constant within a class of compounds. Criteria for

increasing i within RMTA are discussed.

3. "EFFECT OF A VARYING DENSITY OF STATES ON SUPERCONDUCTIVITY."

Phys. Rev. B21, 3897 (1980).

A microscopic treatment of the consequences for supercon-

ductivity of a nonconstant electronic density of states is

presented. Generalized Eliashberg gap equations valid for a

varying density of states are presented, from which the change

of Tc with static or thermal disorder can be calculated. The

-] temperature dependence of the effective mass is shown to be

* altered by disorder. Use of these results provides a possible

experimental approach for deducing the energy variation of the

* density of states of superconductors.
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4. "INFLUENCE OF ELECTRONIC STRUCTURE ON SUPERCONDUCTING PROP-

ERTIES OF COMPLEX CRYSTALS: THEORY AND APPLICATION TO Nb Sn."
3.

Solid State Commun. 38, 95 (1981). With B.M. Klein.

A thermodynamic theory valid for complex crystalline super-

conductors is applied to Nb Sn. It is shown how the structure
3

of the Eliashberg equation and the solution is altered by den-

sity of states fine structure. One important implication is

that the current method of inversion of tunneling data can be

only approximate.

5. "PARAMETER-FREE CALCULATION OF THE ENHANCED SPIN SUSCEPTI-

BILITY OF Nb Sn INCLUDING ELECTRON-PHONON EFFECTS." Physica
3

-07B, 703 (1981).

" A parameter-free calculation of the spin susceptibility

Xsp(T) of Nb3Sn, which includes static and dynamic disorder as

well as exchange-correlation enhancement, is presented. It is

found that Xsp is only 15% of the measured susceptibility, and

its small temperature dependence cannot account for the experi-

mental findings.

6. "GENERALIZATION OF THE THEORY OF THE ELECTRON-PHONON INTER-

ACTION: THERMODYNAMIC FORMULATION OF SUPERCONDUCTING- AND

NORMAL-STATE PROPERTIES." Phys. Rev. B26, 1186 (1982).

A thermodynamic formulation for the electron self-energy

is given which is applicable when the electronic spectrum

posseses structure on the scale of phonon frequencies, provided

only that the ratio of phonon phase velocity to electron Fermi

velocity is small. Electron-phonon, Coulomb, and electron-

3
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defect interactions are included on an equal footing and it is

shown that their different frequency dependencies lead to

specific effects on the Eliashberg self-energy: (a) The Coulomb

interaction contributes nothing of essence to the normal-state

self-energy (in this isotropic approximation) but retains its

usual depairing effect upon the superconducting gap' function,

(b) defects affect superconducting properties primarily through

a broadening of the electronic spectrum, and (c) phonons con-

tribute a thermal shift and broadening as well as the mass

enhancement. A generalization to intensive electron-phonon,

electron-electron, and electron-defect interaction constants is

necessary to redevelop an intuition into the effects of these

interactions. The change in the structure of the Eliashberg

equation due to a nonconstant density of states (DOS) and the

consequent interplay between static and thermal disorder is

analyzed in detail, with a central feature being the change in

frequency dependence of the self-energy compared to a constant

.- DOS solution. The effect of DOS structure on the superconduct-

ing transition temperature Tc , which is manifested in the

defect dependence of Tc, is analyzed in detail. Further it is

- proposed that an extension of the self-consistent Eliashberg

approach be extended above Tc to determine the normal-state

self-energy and thereby the electronic contribution to thermo-

dynamic quantities. Phonon broadening is shown to affect

the spin susceptibility at finite temperature. Reinterpretation

of several of the anomalous properties of A15 compounds in terms
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of the present theory is suggested. Several aspects of the

theory are compared to experimental data for Nb Sn.3

7. "RENORMALIZED THERMAL DISTRIBUTION FUNCTION IN AN INTERACT-

ING ELECTRON-PHONON SYSTEM." Phys. Rev. Lett. 48, 1548 (1982).

The electron-phonon interaction is used to demonstrate the

important effect of interactions on the electronic distribution

function at finite temperature. It is shown that the usual

picture of "thermal (Fermi) smearing" is a greatly overs,,p,-

tied one. The distribution function resulting from an Einstein

spectrum with various coupling strengths is presented and

interpreted, and an exact expression for the spin susceptibility

is used to illustrate the utility of this novel viewpoint for

thermodynamics.

8. "THEORY OF THE NORMAL STATE HEAT CAPACITY OF Nb Sn "

Superconductivity in d- and f-band metals, Edited by W. Buchel

and W. Weber (Kernf orschungszentrum Karlsruhe GmbH, 1982),

P.97. With B.M. Klein.

The experimental a 2 of Wolf et al. is applied to calcu-

late the T-dependence of the electronic heat capacity. it is

found that, if the phonon spectrum is Debye-like (which is not

. the case in Nb 3 Sn), this T-dependence results in an extrap-

' olated value of N(EF) (1 + X) which is overestimated by an

amount which is proportional N(EF)X, equal to 13% for Nb 3Sn.

It is further shown that the change in slope of C/T found by

Stewart, Cort and Webb can be modeled by a combined Debye and

Einstein spectrum with =267 K and having 1.5% of the acous-
D

*. tic modes at an Einstein frequency sz=40 K.
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ELECTRON-PHONON INTERACTION IN THE f-BAND METALS La, Ce AND Th: ELEC-
TRONIC ASPECTS INCLUDING THE SPIN-ORBIT INTERACTIONS

Warren E. PICKETT
N4awl Resech L4borawry, Washangton, D.C. 20375, USA

Received 16 March 1961

The electron-ion scattering parameter i is calculated for the f-band metals La. Ce and Th using self-consistent muffin-tin
potentials. The corrections within the rigid mufn-tin approximation (RMTA) due to spin-orbit coupling derived by John
and Hamann are found to increase 71 by 1% in La and 4% in Th. and by 10% and 33% in the a and y phases of Ce,

?, respectively. The RMTA expression is reinterpreted to provide an understanding of the low values of 17 in Ce (0.7 to
1.1 eVIA) in spite of an extremely large density of states at the Fermi level. Using moments of the measured phonon
spectra, the superconducting transition temperature is calculated and compared with experiment. The RMTA appears to
overestimate 11 by approximately 25% in these metals, although spin fluctuations may be contributing to this apparent
discrepancy with experiment.

1. Introductem to this point the expression for A is rigorous.
However, for all but weak scattering ions 5V/5R

In his classic work on the theory of the elec- is very difficult to compute precisely, and further
tron-phonon (EP) interaction McMillan [1) progress in the understanding of () or the
showed that the EP coupling constant A can be McMillan-Hopfield (2] parameter -q necessitates
expressed as approximations of 5V/R.

Noting that the muffin-tin approximation for
A N(EFXI .. V(r) has been very successful in describing the

M(o M(oW) (1) electronic structure of transition metals, Gaspari
and Gyorfy (31 suggested that the local environ-

where N(E) is the electronic (single spin) den- ment of a vibrating strongly scattering ion would
sity of states at the Fermi energy EIF, (I) is a be modeled realistically by rigidly displacing the
mean square electron-ion matrix element muffin-tin potential for that ion. Within this rigid
averaged over the Fermi surface, M is the ionic muffin-tin approximation (RMTA), Gaspari and
mass and (a2) is an appropriately defined [1] Gyorffy obtained the relation (in Rydberg units
mean square phonon frequency. Specifically (2) A = 2m - el/2 - 1 throughout this paper)
is given by

EF 1
V((3),,(P:) = kn V' °

x sin2(81 -(3)

x 8(E&. - E)8(E,.., - Ep)/N(E) 2?. (2)
where 81 is the phase shift for the /th partial

where k. n are, respectively, the wavevector and wave scattering from the muffin-tin potential.
band index of the state 1k, n) with E.. and The crystalline enhancement ratio P' f
8V(r)/BR is the change in crystal potential per N(EF)IN/('(Er) of the density of states is defined
unit displacement 8R of an ion at position R. Up in terms of the single scatterer partial density of

0378-4363/8 '"'1-O04' ,2.50 c 1981 North-Holland
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WE. Picken I Elecwon--,onon interacion in f-band metals

states to a reinterpretation (12] of the contributions to
,, in terms of a rearrangement of terms in eq. (3).

N ) F( 2 This reinterpretation and a discussion of its in-
Nt()( F) (21 + 1).f dr rR (r, E) plications for states which are nearly confined to

s0

0r the muffin-tin sphere are given in section 3. The
Sresults for the superconducting transition tern-

T(( perature T, which is found to be overestimated,

are resetedin section 4.m ~ ~~Here r, is the muffin-tin radius, R, is the radial arpesndinecon.

function and ie is the energy derivative of the
logarithmic derivative of the radial function 2. Spin-orbit effects in the RMTA
evaluated at r, and EF,. Eq. (3) has been applied
widely [3-5] in the study of elemental transition The expression for 1 given by John and
metals. Often it is found that the results of the Hamann [8], which includes spin-orbit effects, is
RMTfA in this form seem to agree with empir-
ically determined values to within 10-20% and to 7 E
reproduce trends with pressure [6] rather well. 7r2 =  ) 2(/+ 1)

Aside from the approximation of rigidly dis- "1+2
placed muffin-tin potentials, eq. (3) contains two x sin2(5 -8I)v'u.' t
simplifying assumptions. The first is the so-called

* "spherical band" approximation [31 in which the + 1
angular dependence of the bands is ignored. This 21+ +1

is not an essential approximation, and recent + 1 sin(5*- (5)
studies [5, 7] have generalized eq. (3) ap- (21+ 1)(21 + 3)
propriately and shown the corrections to be
small in elemental systems with cubic symmetry. The superscripts -t indicate the corresponding
The second approximation in eq. (3) is that of quantity for total angular momentum i = 1 ±'
ignoring the spin-orbit interaction (denoted by and the "single scatterer" density of states is
the superscript '0'). John and Harmann [8] have given by
shown how this restriction can be removed
(within the spherical band approximation) but to Nj1>(E) - (1) drr2IR(rEp)I2 , (6a)
date no numerical test has been performed to T f

* test the size of corrections. 0

In this paper the RMTA will be applied to the NE)_(EF) = -1 1
fcc phases of La, Ce and Th, each of which has f rj "

bands [9-11] near or at EF. Since spin-orbit 0

contributions to 17 may not be negligible in sys- The large component Rf of the radial wave
tems with large atomic number (Z - 57. 58 and function is normalized according to

;. 90. respectively, for these atoms), the expression
of John and Hamann will be evaluated in section R2(r,, EF) = ji(Kpr,) cos 8T - ni(Kpr,) sin 8-. (7)
2 and compared to the zero spin-orbit limit in
eq. (3). Contrary to the expectations of Butler where KF - V 4. in terms of the spherical Bessel
(5], the contribution to 17 from d-to-f scattering (/j) and Newmann (n) functions. Eqs. (6) can be
in Ce is surprisingly small in spite of a huge I = 3 expressed in terms of logarithmic derivatives y/
partial density of states N(EF). This finding leads analogously to eq. (4).

8
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WE. Pickett Elecwon-phonon interaction in f-band metals

Eq. (5) has been evaluated in detail for La, Ce 1- = + 1
and Th using the results of self-consistent, spin- 21+0
orbit, linearized-augmented-plane-wave band
structure calculations (9-11]. To compare with and similarly for v12 in terms of v, and el. Res-
the corresponding zero spin-orbit limit the fol- pectively, 1( and el represent the spin-orbit
lowing identifications have been made: splitting of the phase shift and the crystalline

enhancement of the partial density of states. It
,= [18 + (I + 1)8t]/(21 + 1). (8a) has not been emphasized previously that the
N,- =NT +N-(corrections to 17 in eq. (5) which are first order in
.N (EF) = N7(E,)- N7(EF). (8b) the spin-orbit corrections 1, and el vanish iden-

. NItI(EF) = Nj'?"(EF) + Nj1)-(EF). (8c) tically. This may be due to the traceless nature of
the spin-orbit operator and it is in keeping with

It is easily shown that in the zero spin-orbit limit the picture that quantitative changes in observ-
(8---& 8and vf-- til) eq. (5) reduces to eq. (3). It ables tend to be second order in the spin-orbit
is instructive also to introduce the quantities splitting.

In table I phase shifts 81:, crystalline
A,1 = 57 -57, (9a) enhancements vf and partial and total values of
P, = [h,7 + (I + 1)t]/(21 + 1), (9b) 71 (with and without spin-orbit effects) are

presented. In each case , is increased by spin-

el V1 - Y,. (9c) orbit corrections (this is not a general require-
ment), by 0.03, 0.08, 0.10 and 0.18 eV/A2 (or 1%.

in terms of which the relativistic quantities are 4%, 10% and 33%, respectively) in fcc La, Th,
given by a-Ce and y-Ce. (This is a fictitious "paramag-

netic -/-Ce" which, however, illustrates spin-
I aorbit effects more clearly than the other metals.)

2= 1 - I(10a) In thorium the increase arises from corrections

Table 1.
Relativistic phase shiits 81 (in radians), crystalline density of states enhancements v! and the
resulting contributions to 71(eV/2k); the = sign indicates i = 1I and ii''is the value of the
McMillan-Hopfield parameter neglecting spin-orbit corrections

La v-Ce a-Ce Th

8F.81 -0 - -0.96 - -0.98 - -1.23 - -1.14
. 1 -0.42 -0.50 -0.43 -0.51 -0.60 -0.69 -0.56 -0.82

2 0.59 0.54 0.56 0.51 0.63 0.58 0.75 0.61
3 0.026 0.024 0.142 0.067 0.187 0.109 0.095 0.079

,usV4 -0 - 0.71 - 1.33 - 2.30 - 1.05
1 2.46 2.65 1.41 1.50 1.16 1.17 0.74 1.01
2 1.20 1.45 0.63 0.77 0.48 0.57 0.58 0.82
3 3.10 3.61 0.99 7.01 0.65 2.75 1.44 2.24
4 7.86 7.74 6.89 5.94 4.30 3.77 3.12 2.51

sp 0.12 0.12 0.07 0.07 0.29 0.29 0.10 0.10
pd 1.58 1.57 0.24 0.24 0.41 0.41 0.93 0.87
df 1.08 1.08 0.30 0.14 0.23 0.15 0.85 0.83
fg 0.02 0.02 0.11 0.09 0.16 0.15 0.10 0.10

total 2.81 2.78 0.72 0.54 1.10 1.00 1.99 1.91

9
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4' W.E. Pkken J Electron-phonon interaction in f-hand metals

to p-d scattering while the channels involving f be noted that the small values of 77 calculated

states are unaffected. In the two phases of from the Ce band structure persist only for
cerium the increase occurs in the d-f channel, values of E lying within the 4f bands. If EF is

The spin-orbit correction is seen most clearly artificially placed above the f bands (say 0.05 to
in y-Ce. Using an obvious notation from eq. (5), 0.50 Ry above), larger ,'alues of q - 3 to 5 eV/A:
ell =17d + 71- + 17*-, it can first be noted that. result. just as obtained from a similar treatment
for I a 2. 17 - becomes negligible with respect to using the La band structure.
17 and ?I-- due to the factor [(21 + 1)(21 + 3)1- '.
The large increase in 77 in y-Ce arises from the
large crystalline enhancement of vf" at the 3. Reinterpretation of the RMTA expression
expense of i. This leads to i77 0.28. 1ish-=

0.02 compared to their zero spin-orbit counter- The discussion in the przious section did not
parts 0.08 and 0.05 (all in eV/A). Ultimately the address the cause of the small values of 77 in Ce.
spin-orbit increase results from the shifting of compared to La, in spite of much larger values of
states at EF by crystallinity (solid state effects) N(EF). The following rearrangement and rein-
from one member of the pair i = l t to the terpretation of the RMTA expression for 17 or
other. The central requirement for a large cor- (I) provides insight into this puzzle.
rection of this type to occur is that P,4 and P-1 be Begin by defining a rigid muffin-tin matrix
as dissimilar as possible (i.e., that one be maxi- element for the I -- I + 1 channel by (see also
mized at the expense of the other), and that this Butler [5] for the non-relativistic analog)
skewing be in the same direction for both I and
1 1. thereby maximizing either Pv"1P. 1  or I OW R T - RI',r dr/t ' , 1

i'1 v. 1 . To obtain the maximum ratio P', requires dr
that the crystal density of states (numerator) and
the single scatterer density of states (denomina-
tor) be oppositely skewed. In y-Ce this occurs (7-1) 2  e(RtYrdr. a" =. (12)
only for I = 3, with normal ratios (,+ =- v-) for 0

I = 2 and i = 4. This opposite skewing of the f
states N/Nt = 13.3/7.0. NtP /NPI- = 1.917.0 Evidently I.1' is independent of the nor-
leads to t,,/v7 = 7.08 and a factor of 2.5 increase malization of the radial functions and depends
in 77&. only on dV/dr and the shapes of the radial

An interesting limiting case occurs when all functions. Using the normalization in eq. (7) the
the crystal states (for both l and 1 + 1) are shifted numerator in eq. (11) is sin(5T - 5w). and the
to either j = I +,; or i = 1 -1. Assuming equal normalization integral can be expressed as
single scatterer densities of states for i = 1 "t ±, the
value of 71j.1 is increased by the factor (21+ (i'):= rIR (r,. EF)WT!' . (13)

3)/(1 + 1). Further increase may result from
oppositely skewing the single scatterer density of where -'! denotes the energy derivative of the
states as noted above, which will require a nar- logarithmic derivative of Ra. Finally. eq. (11)
row 1 resonance in the vicinity of EF. becomes

In the next section the problem of under-
standing the small values of 77 in Ce. which ( s.nIri = s -' " R '1R ""

possesses an extremely large f density of states at (14)
EF. is addressed in terms of a reinterpretation of
the RMTA expressions eqs. (3) and (5). It should In terms of these matrix elements J-) can be

10
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WE. Picket ! Electron-phonon interaction in f-band metals 5
expressed as .

n

'"(" (21+ 121+ 3) *

>1-

X (21+ 1)(If 1)fjfM + (21+ 3)(1i,)fT. f "

+ , (15) E- e ..

which in the zero spin-orbit limit becomes 2P X 10 . n-XX X XX .i

21'-2 4" X i,V .f2+ .2 (15') 2 . a " '
Z X 10..

In these relations (I) is expressed in terms of the ,
fraction ft = N(F)/N(EF) of states at E,, -10 -5 0 5 10
and f fT. This form for (P) has the desir- ENERGY (mRy)
able property [12J that the atomic-like quantity Fig. 1. The total density of states (left scale) and partial
[ f-., which depends only on the logarithmic wave ratios l 1 ... 4 (right scale) in a 20 omRy regionderivative and varies smoothly and predictably centered at the Fermi energy (0.450 Ry) in y-Ce. In thisregion N(E) has fine structure and varies by a factor of two,
with E, is separated from the crystalline pro- whereas the ratios f, vary much more smoothly.
perty fl. Although it requires a full band struc-
ture calculation to ascertain (f}, these fractions
typically vary much more smoothly [121 than states, R, peaks at or near r, and 7) will be small.
N1(EF) and N(EF) separately which generally Near the top of the bands, R , assumes very large
possess Van Hove singularities at the same values for r < r, compared to R1 (r,), resulting in
energies. This behavior is strikingly illustrated large values of r' and smaller values of Iu.t (and
for y-Ce in fig. 1 in a 20 mRy region centered on I-1J). Schematic radial functions are shown in
the calculated value of E,. In this region there is fig. 2. The boundary condition of fixed R(r,)
strong hybridization among the s, p, d and f results in "the dog (.") being wagged by the tail
bands and N(E) varies non-monotonically by [R,(r,)]"[13]. Physically, the small values of I,.,
more than a factor of 2 whereas the fractions ft at the top of the bands reflects the poor coupling
vary more smoothly. to plane waves of states which are too strongly

The form for given by confined to the muffin-tin sphere. (This dis-
cussion is somewhat oversimplified: the "fixed"

It,., = sin(8r - 8,.l) (11') value of R1 (r,) and the numerator sin(81 -8.)

both vary with EF, but these variations usually
is useful for understanding the contribution of f are secondary effects.)
states to () as E, is varied. As a result of the This description of n and its influence on II.1
boundary condition eq. (7) "fixing" R, at r,, the applies to wide bands such as s, p and 4d, 5d

. normalization integrals rj are unbounded (0< bands in transition metals. The narrow 4f bands
- < W) and they become the principal determin- in La and Ce (and the late 3d bands) present a
ing factors in the magnitude of Iu.i. Near the different behavior however. For these metals the
bottom of the bands derived from the atomic 1 f bands are only 1-2 eV wide and, even at the

:~~~. ;ii ...i . .iii.:2. . . i.:- .12 .,-.i - . "i" , .-.. . ........ ,_.....,. , : :.,
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Schematic 5d Radial R C
Charge Densities n aEi " 0 Dens ities at, EF

A I
m Near

-band top -Ce

a 0)a

0 a 3 2 3

• .Radius (a.u.) Radius (a.u.)
' Fig. 2. Schematic 3d radial charge densities r'RI(rE) illus- Fig. 3. "Me 1 3 radial charge densities at He for La and

Stratin$ the bonding behavior at the bottom of the band and a.-Ce, normalized to the same value at the muffin-tin sphere
,the antibonding behavior at the top of the band. The radial boundary. In La it is clear that EF is far off the 4f resonance.

wavefunctions (R2) have been normalized to the same value resulting in a small atomic 4f character (peak at 0.75 a.u.).
,'jat the sphere radius (taken as 3 a.u.). This graph clearly illustrates the order of magnitude

• . difference in normalization integrals TV between La and Cc.

--

bottom of the f bands, the 4f radial function is

'strongly confined to the muffin-tin sphere. This is course reflects the similar position of the f bands
* illustrated in fig. 3 for a-Ce, where REl lies near with respect to hE in L da [9 e and Th 11a.

dthe bottom of the 4f bands. Due to the strong The small df contribution to q in Ce, com-

i, . peaking of R1.3 at 0.75 a.u., 71-3 is correspond- pared to both La and Th, can be attributed to
heingly larger, and Iuor smaller, than for the s-rp-d the dramatically decreased value of th (see table

bands. Te detrimental effect only subsides at or Ie). This small value is illustrated graphically in
below about 2 eV below the 4f bands, which is fig. 4; la is two orders of magnitude smaller than
where Etd lies in La. The radial charge density at that for the other channels in a-Ce. The
Et in La is shown in comparison with that of extremely small value results from EF lying
iat-Ce in fig. 3, normalized such that the radial near" the center of both d and f bands giving
functions are equal at r, Although the sn 3 large values of r and r3 as well as a reduced

radial function in La shows a mild peak at numerator sin(8 - 83).
a0.75 a.u. due to the incipient 4f bands, it is A second important feature is illustrated in fig.

insufficient to decrease r3 significantly. 4. The quantities Ic, are seen to be slowly and

b.The squared normalizations at Eo for La, Cc smoothly varying with energy, while rapi reflects

and Th are included in table II. La and Ce differ the sharp structure which may occur in N(EF)
significantly only in the values of ("r)?, which for and, to a lesser extent. in ft. Ile fact that Ill.,
Ce are more than an order of magnitude larger can be written solely in terms of the phase shifts
than those of La. In the magnitude of d3, as in (or equivalently, logarithmic derivatives) and
the ae in of T, n is much more similar to La their energy derivatives [eqs. (1)-(13)] guaran-
than to the isoelectronic element Ce. atis of tees their smooth variation with energy. Fur-

o-2

and. "h"are included in table.". L an Cedfe'tesap.tutrewihacu in N
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8 . 8 Emodification of the McMillan [i equation

a - Ce Tcwo/.2) ex 1.0l + oA)
i sp_ _ _ _ _

dI xl100with wb, defined as usual [141 and ja 0.13. For
f..- i the phonon moments wft and (wa') of Th. the

pd - Butler (5] prescription

a ye LD~ds 0 .6 0 0,,

S(b) rotal1'
= -::= ------. / i (a:) a  0.69 O ,

pd has been applied, with the high-temperature
.-- ," SP Debye temperature 0, taken from the inelastic

df neutron scattering measurements of Reese et al.
S(2 0 2 4 [15]. The same prescription has been used [16]

ENERGY (toRy) for La and Ce.
Table III summarizes the results. (Note that no

Fig. 4. (a) The squared matrix element ilol for scattering comparison is possible between the theoretical
from I to I * I versus energy. Note that I1. is smaller by a "paramagnetic y-Ce' and the actual high tern-
factor of 100 than for the other channels, and also that the
variation with energy is smooth for all channels. (b) Con- perature magnetic phase.) In each of the metals
tributons nu-, to 1 (left scale) and average squared elec- T is substantially overestimated. It is not the
tron-ion matrix element (1i) (right scale) versus energy. Both purpose of the present paper to investigate these
(J2 and (to a greater extnt) v? show rapid variation with discr
energy between 2 and 4 mtry which comes solely from den- epancies in detail, but a few observations
sity of states factors. can be noted. For La and Th, the empirical

values of A which give the experimental value of
T (1.15 and 0.60, respectively) suggest that the

therr-iore, its atomic-like nature suggests that for RMTA overestimates iy by 0.5-0.6 eV/A2 in
a riven atom 1b., will possess a transferability, these similar metals. These overestimates have
fr%.r.i element to compound and compound to
compound. which the crystal structure related Table HI
quantities ft and x1 can never attain. These pro- Experimental and theoretical quantities determining the

perties have been investigated in detail else- superconducting transition temperature T,. The superscript
where [12] for the case of niobium and zero indicates quantities calculated disregarding spin-orbit

vanadium. corrections to the RMTA expressions

La a-Ce a-Ce Th

4. Ile transition temperature "(K) -4 -0 10 86

(0j")'"(K) 86 81 119 99

M'Aw4'e\ A i 1.84 0.92 1.99 2.28

In this section the calculated values of T,. with w.,,°eVA) 2.65.2.62 0.72.0.54 1.10.1.00 1.99.1.91

and without the spin-arbit correction discussed A.01K 1.44.1.42 0.7.0.S8 0.55.0.50 0.87.0.84

in Section 2. are compared with experimental T,.,TK) 8.4.8.3 2.8.1.0 1.3.0.8 3.9.3.6
T,6.05 - -0.01 1.4

values. For T we use the Allen-Dynes [141

14
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been discussed elsewhere, for La by Pickett et al. Acknowledgments
[91 and for Tb by Winter [17]. For a-Ce a good
case can be made [10] for invoking a paramag- I am indebted to D.D. Koelling for the Th
non contribution A,p,, detrimental to spin pairing, potential and to W.H. Butler for pointing out the
which need only be of the order of 0.15 to work in ref. (171. 1 gratefully acknowledge
explain the overestimate of T by two orders of numerous helpful discussions with, and com-
magnitude. Indeed, recent careful estimates by ments on the manuscript from, L.L. Boyer, B.M.
Rietschel and Winter [181 point to a probable Klein, D.J. Nagel and D.A. Papacon-
value of A.. -0.2 for Nb and V, so this effect stantopoulos.
may be contributing to the overestimate of T, in
La and Th as well.
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Transferability and the electron-phonon interaction:
A reinterpretation of the rigid-muffin-tin

approximation

Warren E. Pickett
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The expression for the McMillan-Hopfield constant rI = N (EF )(P) within the rigid-
muffin-tin approximation (RMTA) is reinterpreted in terms of single-channel electron-ion
matrix elements IL+.1 and angular-momentum-character fractions f, of the electronic
states at the Fermi level. Reexamination of Nb- and V-based A 15 compounds suggests
that L21,1 is more nearly an atomic property, and thus transferable from system to sys-
ten, than other commonly used quantities. The fractions f, are dependent on bonding
character and crystal structure but tend to be constant within a class of compounds. Cri-
teria for increasing q within RMTA are discussed.

I. INTRODUCTION with apparent success in understanding trends in

T , more recently it has been called into question
In his classic study of the electron-phonon in- by a number of calculations. Based upon the

teraction parameter X and its relation to the super- "rigid-muffin-tin approximation" (RMTA) of
conducting transition temperature T,, McMillan' Gaspari and Gyorffy,2 Papaconstantopoulos
showed that X can be written et al.,3 and Butler4 have shown that, within iso-

structural elemental transition metals, N (EF W(1 )

N (EF) ( ) can vary by as much as a factor of 3. Further-
(1) more, these estimates appear to agree rather well

with more recent experimental data. Thus varia-
tions of N(EF) and (12) separately must be taken

in terms of the density of states N(EF) per spin at into account.
the Fermi energy EF, a mean-square electron-ion Another early attempt to correlate superconduct-
matrix element (12), and an appropriately defined ing properties was made by Hopfield,5 who intro-

lattice stiffness M(a, 2). A topic of particular in- duced the notational convenience q = N (EF)( I)
terest in the ensuing decade has been the discussion (the "McMillan-Hopfield parameter"). Analysis by
of high T, metals in terms of one or the other of Hopfield which emphasized only the p-d scattering
the factors N(EF), (12), or M(W 2 ) as most im- led him to anticipate that, in transition metals
portant in leading to high-temperature supercon- which had a large d partial density of states, 17
ductivity. With one of these factors [say, N(EF)] would be essentially an atomic parameter. As
as the principal determinant of the high To, a na- such, 17 would be transferable, from element to al-
tural procedure which could be tried to produce a Ioy and within a class of compounds, and Hopfield
higher temperature superconductor is to "transfer" used this idea in an attempt to understand super-
this large value of N(Ep) to a metal with more conductivity in transition-metal alloys and within
favorable values of (2) and M(W 2

). A15 compounds. However, the startling discovery
The limited data available to McMillan' [all em- by Klein and Papaconstantopoulos 6 that the d-f

pirical except for a few calculated values of contribution7 to i? is not only appreciable but in
N(EF)] suggested that the product N(EF)(1 2 ) is fact dominant in transition metals, and the ensuing
roughly constant within a class of materials, in realization that the f contribution is a property of
which case the search for high T, materials should the environment rather than atomic in nature, has
concentrate on soft lattices with small values of pointed out the limited usefulness of Hopfield's ap-
M(W 2 ). Although this approach was used by proach.
several investigators in the following years, often There have also been suggestions that, within

25 745 1982 The American Physical Society
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746 WARREN E. PICKETT 25

limited classes or subclasses of compounds, there 11. REARRANGEMENT OF THE
may be an "atomic W" which is more or less GASPARI-GYORFFY EXPRESSION
transferable. Phillips$ suggested that, within the
NaCI.structure NbN family of compounds, the Gaspari and Gyorffy derived an expression for
sum of atomic contributions X=;., +Xg should be (12) which can be written (in atomic units
a useful concept. However, RMTA calculations by A-2m -e2/2-=1)
Klein, Papaconstantopoulos, and Boyer 9 indicate EF
). for carbon varies by more than a factor of 5 in ( 2 ) 2, 2(l+1)
the compounds NbC, TaC, and HfC. This idea of ,1rN(EF) I
"transferable ' was then further restricted to the
subclass "NaCI-structure compounds with phonon Xsin2(8j-,~ +)v v+, (2)
anomalies" by Haufe, Kerker, and Benneman.10

However, at such a specialized level the concept of where 81 is the Fermi-energy phase shift for partial
transferability loses much of its usefulness in wave 1. The "crystalline enhancement" of the den-
understanding superconductivity as well as for sity of states is given by
predicting higher T, materials.

In view of these largely unfruitful attempts to V )
identify transferable quantities related to supercon- where NI )(EF) is the corresponding density of
ductivity. and also the difficulty in calculating the states for a single scatterer rather than for a lattice
phonon spectrum and hence the lattice stiffness of scatterers. Specifically,
M(w 2), emphasis has shifted to attempting to
understand the behavior of 17 within rigid-ion NF (EF) = (21 + 1)
models, chiefly the RMTA. Notably, the group at Tr
the Naval Research Laboratory has published ex- R
tensive RMTA calculations for elements 3"' and for X fodr rR(r,EF) (3)
NaCl-structure9 ' compounds and A15 (Ref. 12) where R, is the radial wave function and Rs is the
compounds, among others. Butler4 has provided a muffin-tin radius. The trigonometric factor in Eq.
detailed RMTA study of the 4d transition metals, (2) arises from the RMTA matrix element
noting in particular the dependence of (12) on
atomic number (i.e., valence) and volume in this d V) (4)

-. class of metals. A simultaneous examination of O dr
the behavior of 7 across the 4d series was given by with the radial function normalization chosen to be
Pettifor,13 who related RMTA quantities to band-
structure parameters. R,(Rs,EF ) = j( KFRs )cos6j

In this paper I present a reinterpretation of the n(KR)sin6t (5)
original Gaspari-Gyorffy expression for (12)
which results from a simple regrouping of terms. Here j, and n, are the spherical Bessel and Neu-
In addition to providing more physical insight into mann function and K, =EF.
the quantities which determine (2), this rein- Several features of Eq. (2) should be noted.
terpretation has two other favorable consequences. First, the factor sin(8 1 -1.,,) which is bounded
One is that atomiclike quantities are identified, between 0 and 1, depends, from Eq. (4). on the
these being the electron-ion matrix elements 11.1 1 muffin-tin potential V, on its overlap with radial
for scattering, from partial wave I to partial wave functions, and on the radial function normaliza-
I + 1, by an atomic displacement. The atomiclike tion, which is not bounded [see Eq. (6) below].
nature of I,,, +I suggests an approximate transfera- Secondly, the rather unphysical single scatterer
bility which seems to hold at least in systems with density of states tends to obscure the physical in-
common bonding characteristics. The other is that terpretation. Thirdly, the factor EF, which seems
the fraction of states f, =,V=(EFV)/N(EF) with an- to imply an overt dependence on the zero of ener-
gular momentum 1, which multiplies Ih I is a gy, is in fact artificial, being canceled by the VEF
much smoother quantity (in several senses to be factors from Eq. (3). This last feature points to
discussed below) than the original crystalline the fact that the factor (V/ir) (21 + 1) was in-
enhancement factors. Results of various previous troduced into the expression (2) to convert the nor.
calculations are reviewed in terms of these ideas. malization integral

18
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it f R characteristic which was not evident in the orieinal
0 dr R (6) Gaspari-Gyorffy expression.

to a density of states. The behavior of'f, in La (Ref. 16) is shown in
Although the original expression (2) may be Fig. I and it can be compared with N, and V in

desirable from some points of view, the following Fig. 2. La is a good metal in which to illustrate

reinterpretation in many ways provides a simpler, this behavior because, although over most of its

and thereby more illuminating picture. Begin by spectrum it is typical of a 5d transition metal, it

defining a rigid-muffin-tin matrix element for the possesses 4f (1=3) bands centered 2.5 eV above EF
1- + I channel by (see also Butler') which provide an extreme example of the features

-- .s amentioned above. Figures I and 2 show dramati-
'uli=f"drr'R,-R./(srt.,) .d7 cally how the sharply structured behavior of NiE)' 0 dr is translated into a smooth, almost resonance-like

Evidently h.t.. is independent of the normaliza- behavior of f3(E). Likewise, the structured d spec-
tion of the radial functions and depends only on trum .V.E) is converted into a smoother form in
dV/dr and the shapes of the radial functions. This f 2 (E) which, however, is nearly split by the f

form of matrix element has been used previously bands. (In the absence of the f bands, as in more

by Pickett and Gyorffy,"' Pettifor,13 and to some typical transition metals, only a minor minimum in

extent by Butler,' and was also preferred by Al- f 2 (E) will occur in the low density-of-states

len." s In terms of these matrix elements and the o "gap."]
fraction f, of states of angular momentum 1, (W2 ) Deviation of ft(A) from very smooth behavior

can be expressed as results primarily from hybridization, as mentioned
above for the d-f interaction effect on f,(E). This

(21+2) 2 effect is more clearly drawn in fo(E) and fI(E),
"(2 1)"(-+3) .each of which show structure due to hybridization

This expression provides a more straightforward with d bands (at - 2 eV) and f bands (- 1.5 eV).

and useful interpretation for primarily two reasons. However, the resulting variation with energy in

The first reason is that L4,.I will be, to a degree to
be discussed in Sec. I1, an atomic property as it
depends only on the muffin-tin potential, through
its derivative dV/dr and its radial functions, but Lanthanum

not explicitly on the crystalline arrangement of "
neighboring atoms. This in fact is essentially the g x 40
idea of Hopfield, s but restricted to the muffin-tin
region and making no attempt to simplify the ra- * -
tios f, out of the expression. f

The second desirable feature of the summand in
Eq. (8) is its dependence on energy EF. From Eqs.
(4) and (7) and the expression

S" i-f= RIRRs,EF)2  9I

where j" is the energy derivative of the logarithmic
derivative, I is seen to be very smooth, varying
as do 8, and rt on the scale of the I and ( + )
bandwidths. This energy variation has been dis-
cussed previously by Pettifor.'3 Although it is a
somewhat less obvious, the ratios f, are much s x 10
more smoothly varying then either its numerator
or denominator alone. This is the result of (i) -4 -s a a 4 s a

'V,(E) and N(E) having canceling van Hove singu- ENERGY (eV)
larities at the same energies, and (ii) f, depending FIG. 1. The electronic density-of-states ratios f,
only on the character of eigenstates, rather than on versus energy for fcc La, 1=0, 1, 2, 3, 4. Successive
the density of states which may vary rapidly. It plots are displaced by one unit (05fj ! I). The zero of
follows that (12) is slowly varying with energy, a energy is fixed at the Fermi level.
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Lanthanum
(a) .-

* La Phase f/
g 2- Shifts ----------------

Mf a ..IN, /...
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FIG. 2. The total and partial densities of states of fcc-
La. Rescalings of the various partial densities of states o
ar asnte.-3 -z - 0 1 2 3 4 C.

ENERGY (eV)
each case remains much smaller than that of .
Nu(E). C) Ia

To give a full picture of the present approach to b U,1

(11), the quantities 81, i, and I.+I for La are --------
t ................

shown in Fig. 3. [For 8, and r, the (2j + )- ....-.......

weighted averages of the corresponding fully rela- 3-o

tivistic quantities for j =1 _. 7 have been used for

1= 1, 2, and 4. For 1=3 this averaging results in .-. ,S:d-t
unphysical behavior in the energy region between " ,

the j= and] =j Z resonances, so only the] = - ' ,

quantities are shown in Fig. 3. The full relativistic ; 2 -L 0 1 2 3 4 5 s

treatment of (2) will be presented elsewhere.' 7 ] ENERGY (eV)

The phase shifts for 1=0, 1, and 2 are typical of FIG. 3. La functions entering the RMTA expression

an early 5d transition metal, but the sharp 1=3 for 17. (a) Phase shifts 86 relative to -r. (b) Semilog plot

resonance (where 8 3=wr/2) at 2.1 eV gives rise to of the normalization integrals i,. (c, Semilog plot of the

flat 4f bands not present (or rather, fully occupied) single-channel matrix elements 1't, 1. Note the zero of

in heavier 5d transition metals. The 1=4 phase 1Z., at the point where 6:=83.

- shift is positive but less than 7x 10- 3 throughout
* this range. on I1, 1 is evident in Fig. 3(c), where I,3 drops by

The normalizations r, calculated from Eq. (6) over an order of magnitude in this region; in addi-

and shown in Fig. 3(b) are proportional (except for tion, I.3 vanishes where 82=8,. However, in the
the VT/ factor) to the "single scatterer" density absence of the 4f bands, Ih, I are smooth over the

of states used in the original Gaspari-Gyorffy ex- entire d-band region.
pression. For 1=0, 1, and 4 these are monotonic
in the interesting energy range. For 1=2, r, peaks

somewhat below the d-band center due to the clear III. TRANSFERABILITY OF 1121+1
nonresonant form of 82 in Fig. 3(a). The sharp
1=3 resonance results in a huge increase in -r3 in In this section we investigate the degree to

the 4f-band region. The effect of this resonance which the matrix elements 12[ +1 represent atomic-
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like, transferable quantities. For this purpose we dence of 81 is often weak. The resulting weak
- focus on Nb and V, for which Papaconstanto- dependence of qt on Rs is central to the usefulness

poulos, Klein, and Boyer (Refs. 3. 6, 9, 11, and 12) of the RMTA in that it provides a relatively
have carried out self-consistent band-structure unambiguous result to compare with experiment.
determinations and calculations of 7 for the ele- The quantities f, and i.2, _, the intermediate
mental metals, several A IS-structure compounds, quantities in the interpretation of RMTA being

, and two Nb-based NaCI-structure metals. These proposed here, are separately dependent on Rs.
compounds are listed in Table I. For a comparison of these quantities in various

A feature which was not mentioned in the previ- systems. renormalization to a common radius ,s
ous section is the dependence of the various quan- must be carried out first. This has been done as
tities on the sphere radius Rs. As far as the follows. For 1=0, 1, and 2 the radial wave func-
RMTA itself is concerned, Rs should be fixed at tions are varying slowly near Rs and the normali-

" the radius which most nearly reproduces the actual zation correction %,r2 is approximated by
: scattering properties. However, theoretical ambi- ISFdr R2r

guities can arise if spheres from distinct atoms 6 fr = f R'Ir)
overlap, and in the NRL calculations which will be R .s/

3  3

used here, maximal nonoverlapping spheres have =RF(Rs)(RS-Rs)/3 .01

• . been used. Each of the quantities 8,, .V,, and .n)
"deenusd. Eac Rs, the qantiti s , N 1 an Ni"' In addition the radial function R, itself is renor-
depend on R, but the ratio re =N,/.V ) is in- malized to the appropriate value at the new radius
dependent of Rs to lowest order and the Rs depen- Rs. Explicitly,

:.' 2

Jh(KFRs )COS6 - n,(KFR5s)sin8g 2
ri(Rs)[rfRS) +A1 I ji(RS)COS8 -n, FRs)sin6U 1)

For 1=3 the fact that Rj(r)I 3=(Fr) (inside as the elemental value of Rs and the mean of the
well as outside the sphere) was used to recalculate A 15-structure values given in Table I; these were
13(Rs) directly. No correction to the phase shifts taken as Rs =2.57 and 2.37 a.u. for Nb and V,
has been considered. respectively. The resulting values of rj(RfsU in the

The radius Ws was chosen to be midway between 415 compounds were 5-20 % increases over

TABLE I. Sphere radius Rs (a.u.), Fermi energy EF (Ry), density of states per metal atom per spin V N(EF) tRy'.
phase shifts 81 (radians) and density-of-states ratios fl, and enhancements v1, for Nb- and V-based compounds discussed
in the test.

R EpNA(EF) 8o : 82 83 o fA fA fh 0 V v V

NbC 2.313 0.869 4.76 -1.11 -0.51 1.30 0.0107 0.0086 0.0123 0.383 0.0288 0.193 0.150 0.361 2.571
NbN 2.308 0.849 6.43 -1.01 -0.47 1.72 0.0111 0.0057 0.0034 0.412 0.0234 0.161 0.056 0.613 2.945

Nb3AI 2.450 0.837 16.60 -1.13 -0.50 0.86 0.0076 0.0115 0.0613 0.530 0.0123 0.965 3.257 1.707 4.248
Nb3Ga 2.443 0.851 15.98 -1.14 -0.50 0.90 0.0082 0.0110 0.0668 0.529 0.0121 0.887 3.341 1.608 3.827

* Nb3Si 2.457 0.832 6.97 -1.12 -0.49 0.900.0079 0.0069 0.0557 0.560 0.0120 0.242 1.241 0.721 1.747
Nb3Ge 2.438 0.866 8.89 -I.15 -0.51 0.92 0.0086 0.0061 0.0583 0.563 0.0126 0.271 1.597 0.967 2.108
Nb3Sn 2o495 0.833 13.22 -toll -0.49 0.94 0.0083 0.0047 0.0544 0.594 0.0102 0.306 2.367 1.367 2.731
Nb3Sb 2.482 0.874 4.33 -1.15 -0.51 1.02 0.0094 0.0046 0.0502 0.594 0.0137 0.099 0.687 0.446 1.052

Nb 2.685 0.676 9.71 -0.93 -0.36 1.14 0.0074 0.0178 0.0746 0.724 0.0128 0.807 2.923 0.681 3.846
. V 2.477 0.675 12.70 -0.69 -0-17 1.03 0.0027 0.0102 0.0638 0.846 0.0071 0.549 2.841 0.634 6.936

V AI 2.282 0.819 15.74 -0.88 -0.28 0.95 0.0026 0.0047 0.0543 0.638 0.0056 0.365 2.698 1.003 4.288
V3Ga 2.276 0.827 24.63 -0.88 -0.28 1.02 0.0028 0.0037 0.0565 0.652 0.0044 0.445 4.333 1.539 5.173
V)Si 2.231 0.889 16.68 -0.94 -0.31 0.98 0.0031 0.0030 0.0568 0.629 0.0063 0.254 2.795 1.224 4.130

* VGe 2.253 0.871 9.56 -0.92 -0.30 1.02 0.0031 0.0038 0.0415 0.656 0.0071 0.183 1.183 0.670 2.776
VSn 2.355 0.803 10.25 -0.84 -0.26 1.07 0.0029 0.0028 0.0317 0.739 0.0052 0.133 1.048 0.617 2.665

21
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-r(Rs) for 1=0, 1, and 3 and 5 - 10 % decreases 5 % or less. whereas sin2(61 - St 1) and 7; may
for 1=2. The corresponding changes in elemental vary by more than 25%. Comparing the A 15 cor-
,Nb and V were of opposite sign in each case, since pounds with Nb and V, it is evident that 1,, of
Ks < Rs in these cases. It is notable that these re- the element is smaller (for I = 1, by nearly a factor
normalizations resulted in bringing i-; for the A 15 of 2) than that of the .415 compound. However,
compounds closer to the corresponding elemental for the dominant 1=2 channel, variations in
value only for 1=0 and 1. For 1=2 the renormali- sin-(8-6,+1) and rj1+ , partially cancel, leaving
zation worsened this "correspondence," while no I as the most transferable quantitity. The rela-
clear trend appeared for 1=3. In any case these re- tive constancy of (i2) in A 15 compounds,
suits seem to reflect real similarities or differences described in the form 17 c N(EF), has been pointed
between the Nb- and V-atom environments in the out previously.12

elements and the compounds. The situation for the Bl compounds is not as
In Tables I and 11 an extensive listing of the clear. As mentioned previously, the extrapolation

quantities which enter into the determination of to the radius R s = 2.57 a.u. may be introducing
Nb- or V- atom contributions to 17 is presented.' 8  some unphysical irregularities, so only a pair of
Both N, and N, have been renormalized to Rs by compounds is not sufficient to allow an evaluation
multiplying by the ratio rjifs)/rj(Rs), hence 17 is of constancy of I,.,+, within this class. It is clear,
unaffected. Although corrections to the phase however, that 1..:3 is significantly larger than in the
shifts could have been incorporated, this would A I5 compounds, which may lead to comparable
amount to investigating the (small) Rs dependence values of r/(Nb) in spite of a lower density of
of 7, which is not the purpose of this paper. It states. This is discussed further below and in Sec.
should be noted that the extrapolation from Rs to IV C.
R"s is somewhat more uncertain in NbC and NbN In addition to variations in IIt -I two possibili-
than for the other cases, due to the interval ties remain for producing a larger Nb or V contri-
R3 -RS being twice as large. buton to 17. The obvious possibility is to find a

The principal result here is the regularity in the compound with a larger value of N (EF) per atom.
values of 126 1 +,(Nb) and 111+1V) from system to This approach leads to a well-known instability to-
system, greater than that of the numerator ward formation of a material with a smaller value
sin 2 (5-,t,) or denominator ir-+, separately, of N(EF). Rather than placing a very large num-
each of which is dependent on radial function nor- ber of electrons at the highest occupied energy, the
malization. The deviations of IF +, from perfect compound will tend to (a) distort to a lower sym-
regularity within the A15 compounds are generally metry, thereby moving some electrons to lower en-

TABLE II. Normalization integrals ij (a.u.), sin,( 1-,t,)--$ .4 n, i1, ea .Ittn(eV/. )', 17',., and 1"(eV/J )2. and ')

(eV/A)2. Note the definition TlA=.V(E,)A(j")A, with N(E)A defined in the caption to Table I.

2 1i S2, . 1A 77A .
"..." 0, 12 S 0. Po, : .

NbC 0.715 0.436 3.40 0.0257 0.32 0.95 0.92 675 421 7000 0.02 0.18 4.62 4.82 13.8
NbN 0.770 0.449 2.95 0.0249 0.26 0.67 0.98 505 333 8850 0.00 0.06 6.91 6.97 14.8

NAJ 0.676 0.358 3.54 0.0235 0.35 0.95 0.56 966 498 4480 0.55 5.27 6.09 11.91 9.8.,o

Nb3Ga 0.677 0.363 3.58 0.0246 0.36 0.97 0.61 956 495 4580 0.55 5.48 5.90 11.93 10.2
Nb1 Si 0.688 0.359 3.73 0.0235 0.35 0.97 0.61 929 478 4570 0.12 2.04 2.69 4.85 9.5
Nb3Ge 0.671 0.366 3.49 0.0256 0.36 0.98 0.62 959 508 4600 0.15 2.91 3.65 6.71 10.3
Nb3Sn 0.694 0.349 3.98 0.0242 0.34 0.98 0.64 932 466 4400 0.15 3.91 4.44 8.50 8.7
Nb3Sb 0.678 0.355 3.88 0.0271 0.35 1.00 0.72 963 480 4490 0.05 1.22 2.00 3.26 10.2

Nb 0.819 0.316 7.90 0.0176 0.29 1.00 0.82 743 262 3900 0.47 2.72 4.42 7.61 10.7
V 0.900 0.363 12.97 0.0071 0.25 0.87 0.73 495 122 5230 0.20 1.64 5.06 6.90 7.4
V3AI 0.704 0.366 6.96 0.0101 0.32 0.89 0.66 822 231 6220 0.16 2.47 4.38 7.01 6.1
VJGa 0.706 0.370 7.21 0.0104 0.32 0.93 0.72 808 230 6400 0.20 4.09 5.72 10.02 5.5
V3Si 0.658 0.376 5.71 0.0122 0.34 0.92 0.69 919 284 6500 0.13 3.32 5.45 8.90 7.3
V3Ge 0.676 0.376 6.31 0.0117 0.33 0.94 0.73 869 262 6480 0.07 1.34 3.64 5.05 7.2
V3Sn 0.746 0.362 8.62 0.0101 0.30 0.94 0.77 733 200 5840 0.03 0.94 2.92 3.90 5.2

-*" 22
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ergy and lowering .V( E' (the band Jahn-Teller ef- vary by a factor of 40 within the 4d transition
fect), bt crystallize in an unrelated structure with a series, in large part due to the factor f3. On this
smaller value of .V(EF), or (c) phase separate into point there is little to add to his thorough discus-
distinct compounds with lower values of .V(EF). sion except to recall the interesting crystal-

The alternative choice is to increase q by shift- structure effects found in Ru. Fur Ru which is
ing the character of states at EF. that is, altering actually hcp) Butler carrier out both bcc and fcc
the fractions f, to maximize (1 ). An extreme ex- calculations, finding f 3 and ( 1 to be about 20%
ample of this effect is to shift somehow) the s and larger in the fcc phase. However, N, EF is small-
p character (or an equal amount of d character) in er by 33%, leading to a smaller value of Y7 in th,
Nb to f character, thereby taking advantage of the fcc phase. The differences in f- between the two

. stronger d-f scattering described by 12.; in Table phases are no doubt related to the nearest-neighbor
II. and in this particular example increasing (1 1 distances and coordination numbers, but such de-
by a factor of 8. It is not immediately clear how tailed relationships are not well understood at
such a shift is to be accomplished, although a present.
change of crystal structure and/or bonding charac- The present picture provides a new viewpoint on
ter is probably required. the differences in the I= 3 effects between V and

A possible example of this effect may be provid- Nb. In the important df channel 1-. 3 is one-third
-d bv the refractory compounds NbC and NbN, larger in V than in Nb, with the smallness of -I in
which are currently understood in terms of a much V more than compensating for the less favorable
more covalent type of bonding 'Q" than the pri- values of r_ and sin(-2 -81). The average matrix
manly metalli, bcc elements and .4I5 compounds. element (I2), however, is only two-thirds that of
As a result f3 is twice as large, and f, much Nb. Although this is due partly to large values of
smaller for Nb in these compounds than in the 10.1 and If. in Nb, it is the larger value off 3 in
other in Table I. Since Nb has no atomic f states, Nb which is primarily responsible. This illustrates
f3 results primarily from the Nb-site decomposi- that the presence of a larger f3 will be accom-
tion of neighboring atom states,4' 13 and covalent panied by a larger -,3 and hence smaller I.. 3 and
bonding (i.e., strong overlap extending into the Nb that the relative importance of these effects is not
sphere) with C or Np states evidently enhances the necessarily reflected in the crystalline enhancement
Nb 1=3 character of states of EF in these com- v3 (which is nearly twice as large in V as in Nb).
pounds. Of course, (W2) will be maximized if as
much weight as possible is shifted into the channel
'with maximum 1 2r+t such that fr=fr+ i, withr B. A415 compounds

other fractions fl vanishing. However, such shifts
may well lead to small values of ,V(E,), or if not, It can be noted from Table II that within each
the resulting increase in the electron-phonon in- of the NbX and V ,X classes, the values of I +
teraction can lead to a "covalent instability" as dis- are virtually constant. The Nb 3 class includes

cussed previously. atoms with valences of 3. 4, and 5 leading to

differing positions of the Fermi level and varia-
... tions of,.V(EF) by a factor of 4. N 3Sn and

IV. DISCUSSION AND CONCLUSIONS Nb3Sb. with T,'s which differ by 2 orders of mag-

nitude (18.2 and 0.2 K. respectively), illustrate!:)A. Elemental transition metals dramatically how their differences in '7 arise solely

from the differences in N(EF). More to the point
Expressing '/=.V(EF)(1 2 ) with (W2) given by of this study, however, is the degree of regularity

!i"Eq. (8) leads to a simple understanding of the vari. of if,.t., and f/t which is not apparent in the vt nor

" ation of T, in transition metals and their alloys, always in the factors of sin2 (S, -8, 1) (see Tables I
Both ifh and f, vary smoothly with Fermi-level and II).
position (equivalent to the mean valence or alloy It has been established in several A 15 corn-
concentration in the rigid-band model), so rapid pounds N that T, is sensitive to the degree of
changes in T, such as occur in the NbMo alloy disorder (as measured by the residual resistivity).
system23 result from variations in NV(EF), with The main effect of disorder in the low-disorder re-
some contribution due to changes in (o2). On the gime is to broaden the electron states ("lifetime ef-
larger scale, however, Butler" has found (1W) to fects"). The effect on r and on T, if the electron-

23
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phonon spectral function a 2F is not altered by the "pseudo-Nb." Exactly this behavior occurs : 6 in
disorder, can be accounted for by using the Chevrel phase compounds MMotS& and
Lorentzian-broadened values of N(EF) and (V2). MMo6 Ses (M=metal atom, e.g., Pb, Sn,...), for

As was pointed out above, however, (1 2(E)) is a which d bonding between neighboring Mo atoms is
smooth function which will be insensitive to strong. An electron is transferred from each Mo
broadening. On the other hand, many unusual to the chalcogen atoms and EF falls in a region of
properties of A 15 compounds have been interpreted high density of states just below the bonding-
in terms of sharp structure in N(E) and such antibonding gap. For PbMo 6Sg, T, = 15 K results.
structure has been verified by band-structure calcu- This behavior is violated in Mo-chalcogen com-
lations. 1' -25 The present interpretation of the pounds in which d -d bonding is less dominant,

RIMTA makes it clear that the extreme sensitivity and such compounds tend toward semimetallic or
of T, to disorder must be reflecting the fine struc- semiconducting character. It is also violated in the
ture. Bl-structure compounds such as those discussed

above, where metal d, nonmetal p bonding dom-
inates and no d -d bonding-antibonding gap oc-

C. NbC AND NbN curs. Approximately one electron is transferred"
off the metal atom in the Nb-based compounds,

These BI (NaCI-structure) compounds differ and similar behavior is expected in their Mo-based

from the A 15 compounds in having a more strong- counterparts, since Nb and Mo are expected to
ly covalent (metal d state with nonmetal p state) form good rigid-band systems. A rigid-band pic-
and ionic (metal-to-nonmetal charge transfer of the ture suggests N(EF) in MoC should be 10%

- order of one electron) bonding, rather than pri- larger" than in NbC, and the results of Butler 4

marily metallic bonding. This difference is reflect- suggest (I 2 )Mo will be somewhat larger than
ed in the Fermi energy falling nearer the d reso- (1'),,rb (as in the elements). Indeed, it is found
nance (62= ir/2) and results in a value of I2.3 that that T, is 30% larger in MoC (14.3 K versus l
is 80-90 % larger than in Nb and the Nb-based K).
A 15 compounds. Another apparent consequence The same argument suggests T, of MoN should
(in this case) of the strong bonding is the low value be considerably larger th,, , 1hat of N'bN IT, = 16
of N(EF), which leads to a rather unimpressive K). Rigid-band behavim .algests a

value of 1lNb in spite of (I2) being 40-$0% increase9 b in N(Ef); h4,wvtver, (I 2 ),Mo may be
larger than in the A 15 compounds. These com- slightly less in MoN since EF aiready lies slightly
pounds do illustrate, however, that a change in above the d resonance in NbN (see Table I). The
bonding character can lead to substantial increases few studies of molybdenum nitrides reported in the
in (2) relative to those in A 15 compounds, and literature27 have not unambiguously established the
there remains the possibility that compounds with existence of Bl-structure MoN. Although negative
larger values of 71 may be found. results often go unreported, there are at least two

The predominance of Nb-based compounds in reasons why an extensive search for this material
high T, materials is still not completely under- may have not been undertaken. The first is the ap-
stood. It is clearly not due to (1 2 ),,r, since (I2) parent dominance of Nb-based compounds in high
peaks strongly at Mo rather than at Nb in the 4d T, superconductors, as mentioned above, wlich
series.' The evidence suggests 5 this predominance makes the substitution of Mo for Nb in these com-

is due instead to the tendency of Nb-based tand pounds unappealing. The second reason is the
similar) compounds to form phases with strongly electron-atom ratio of MoN (e/a=5.5), which
split bonding and antibonding d bands. For Nb. violates he "Matthias rule 5: 8 that high T, materi-
with its slightly less than half-filled d shell, the als cluster ,round e/a=4.75 and 6.5 with a deep
Fermi level is left in a favorable region for large intermediatt valley. The Matthias rule can be un-
values of N(EF). The half-filled d shell Mo in- derstood in terms of the structure in N(E) in ma-
stead leaves EF in the low density-of-states "gap." terials dominated by d-d bonding, and it is of

The bcc transition-metal alloys and the A 15 considerable interest to establish whether this
compounds are prime examples of this behavior, guideline is violated in the B1 structure. Finally,
This point of view suggests that Mo will only be the lack of stability of MoN itself is suggestive of
useful in raising T, if a d electron is transferred a strong electron-phonon interaction in this com-
onto another atom, transforming Mo into pound. The phonon spectrum will also affect the

24
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value of T, but such considerations are beyond the this point (neither f 3 nor 12.j is sensitive to Rs).

scope of the present paper. We want merely to caution here that requirements
(i) and (ii) above are necessary to maximize f3
within RMTA, but that the RMTA is least certain

D. A caveat here. It seems likely that the inclusion of the non-
rigid potential"° and the concomitant relaxing of

Allen and Dynes2 have noted that, although the I --- I + I selection rule in a more rigorous
soft lattices may contribute somewhat to high theory may be necessary to lead to a more funda-
values of Tc, known metals with high Tc achieve mental understanding of the best mechanism by
this primarily through a large value of q/. Within which to increase 77.
the RMTA, higher values of q in transition-metal For f-band metals with atomic contributions to
compounds thus seem to rely on a larger N(Er) or the 1=3 quantities, that is, rare earths and ac-

'2.3 or on larger f3 ratios. The 1= 3 character tinides, Butler4 has suggested that the f bands may
arises from tails of states on neighboring atoms, be useful in reaching large Y values. Calcula-
and an I=3 expansion of these tails requires (i) tions 1'

31'32 for La, Ce, and Th do not confirm
they behave approximately as j3(Kr) as seen from a these expectations, however, and the discussion of
neighboring atom, as pointed out previously by Sec. [ shows why narrow f bands will not lead to

- Butler,4 and (ii) they are expandable in 1=3 angu- large ifs, in spite of extremely large densities of
S.lar functions. These requirements might be expect- states.

ed to point the way to crystal structures and chem- NVote added in proof. Calculations of T, for
ical configurations with larger values of f3, and NbN and NbC have been presented by W.E. Pick-
perhaps q. The NaCI-structure compounds, it ett, B.M. Klein, and D. A Papaconstantopoulos
should be noted, have Nb f3 ratios twice a large [Physica 107B. 667 (1981)].
as for the A 15 compounds, much of which prob-
ably derives from C or N p states.
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Effect of a varying density of states on superconductivity

Warren E. Pickett
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A microscopic treatment of the consequences for superconductivity of a nonconstant electron-
ic density of states is presented. Generalized Eliashberg gap equations valid for a varying densi-
ty of states are presented, from which the change of T with static or thermal disorder can be
calculated. The temperature dependence of the effective mass is shown to be altered by disor-
der. Use of these results provides a possible experimental approach for deducing the energy
variation of the density of states of superconductors.

1. INTRODUCTION ing conclusions: HR suggested that the structure in
N(E) is responsible for the high Tc found in many

There is currently an active interest in the effects A 15 compounds, while HCP contended that structure
upon the electronic properties of metals when the in N(E) is ultimately of no importance in raising To.
density of states N(E) cannot be assumed to be con- Here it is shown that both situations are consistent
stant near the Fermi level E. Recent band-structure with a full theory. In addition it is found that, for
calculations, especially on the A 15 compounds, con- metals in which the spectral function a2Fis accurate-
firm that in transition-metal compounds with several ly known, the dependence of T, on (nonmagnetic)
atoms per cell, sharp structure in N(E), at least on impurity concentration n, and the altered temperature
the order of the Debye frequency k0 - 25 meV, oc- dependence of the mass enhancement [I -- x( T)J
curs in a region around Ep. Since there is no general due to disorder may provide information on the vari-
agreement (nor will there be soon) among band- ation of N(E) in the region of E£. The change in
structure calculations on this scale, the general trend k( 7 has apparently not been anticipated.
has been to attempt to fit experimental data with
models of N(E), usually with ad hoc phenomenologi- II. ELIASHBERG GAP EQUATIONS
cal expressions or oversimplified theories. Since the
phenomenological approach appears to be the only The Eliashberg gap equations assume a particularly
way at present to deduce the structure in N(E) on simple form when expressed on the imaginary-
this scale, it is evident that correct theoretical expres- frequency axis. The complex frequency-dependent

; sions are needed to allow a proper unfolding of the normal [Z (a)] and anomalous [(w)] self-energies
data. collapse to functions defined at discrete imaginary

The effect upon the critical temperature T,, due to frequencies i w, - i2srnke T. Unfortunately, in this
static disorder has been studied extensively in A 15 representation there is no straightforward intuitive in-
compounds, where T, may either decrease or increase terpretation, and numerical results which are ob-

, with disorder. Explanations of this phenomenon has tained with relative ease are not easily analytically
postulated a smearing of structure2 in N(E), gap an- continuable to the real axis. Since one aim here is a
isotropy,3 changes in the phonon spectrum,4 or the clear understanding of the effects of a varying N( E),
special type of defect5 which is present, although not the real-frequency expressions will be developed and
all of these could raise T,. Unfortunately, there is a interpreted.

* great deal of uncertainty in the literature about the The irreducible self-energy Z - Z,, + ,c - Z, is to
form the energy smearing will take, with the only mi- be determined self-consistently from contributions
croscopic theory (Labbe and van Reuth, Ref. 2) be- from phonon, electron, and impurity scattering. The
ing based on a special type of disorder and an over- latter usually is not treated explicitly, as it has only
simplified model of an A 15 compound. the effect of changing the reference-band structure,

In this paper a more rigorous theoretical treatment i.e., changing N(0). The self-energy is expressed as
than previously available is given for the supercon-
ducting properties of a metal with a nonconstant 1( Z, w) - (a[ I - Z('. w) I r0
N(E). The results will be confined primarily to the
effect on T, and the effective mass. Theoretically, + X( k Z,)i 3+b( .w)r, (1)
the effect upon T, has been considered in different
approximations by Horsch and Rietschel' (HR) and where 71 and 73 are the Pauli matrices, and ro is the
Ho. Cohen, Pickett' (HCP), with apparently conflict- 2 x 2 identity. The phonon contribution is given (on

21 3897 l1980 The American Physical Society
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the imaginary-frequency axis) by' where the following treatment of Eq. (2) will give the
dominant contribution to Y".

--- . -To convert the wave-vector k) dependence to en-
F ergy (E) dependence,9 define for any function C(k)xT;D(kk'.d, - ,4,) (2)

two.) (2) C( E)N(E)-,C( " )8¢E - E") (3)
where G, D are the electron. ,4onon Green's func- 7
tions, respectively, and ,F is the screened electron- It will be assumed that the replacement
phonon matrix element. In this approximation for

o, it is assumed that Migdal's theorem is valid, i.e., YC,( )C2( )8(E -E) -Ci(E)Cz(E)N(E) (4)
that other diagrams give a contribution to ,ph which t
is smaller than Eq. (2) by the factor (k O9/EF),
which is of the order of (electron mass/ion mass)" '  is valid. This amounts to ignoring anisotropy and
in ordinary systems. Although Migdal's analysis no contributions which are off-diagonal in the
longer guarantees that other diagrams always give a (suppressed) band index,' 0 but allows us to retain the
negligible result when the system contains very nar- energy dependence, which is the point of interest in
row bands, there should remain an important regime this paper. This allows Eq. (2) to be written

* I( Eiw.) -'fdWNE)"fdn 2flalF(E';n) (5)
a,(N O)-(i0. - ,- )2'.- 3 G(

where

NV(E)N(E')a2-F(E,E;M)-NV(O), i ia ;ISE E 8E- (6)

The phonon spectral density is denoted by B, and and f is substituted for E in G. The contour can be
a1F( 0,0; {l) is the usual electron-phonon spectral removed to infinity, leaving only the contributions
function a2F. from the poles of G at

From Eq. (5) it is evident that the Edependence of f ±Q() Qw mI(wZ) 2 _,Z1t12
M arises from the E dependence of a2 F and the
analogous Coulomb and impurity functions, a fact X will be ignored, as its effect can be shown to be
noted by HR. In systems where N(E) varies appre- negligible in all except the most pathological cases.
ciably, very little is known about this energy depen- The result is
dence. For clarity we make the approximation 71(-) -i [(,Z'rO+'')lQl[-(Q) + 7'3,V-(Q)I

a 2F(EE;(1)--a2 F(0,0;fl)i-a2 F(f1) ; (10)

it should be kept in mind that this approximation is with
untested. The full energy dependence can be re- N±(Q) "[N(Q) ±:19(-Q)]/2 (11)
tained in the development which follows, but doing In the limit of a constant density of states,
so complicates the expressions considerably. n(Q) - N(0) and (Q) -0. In general Re , _ isWhat(Q -ust ande e)a-0uIntgeeralenN ii

What must be evaluated then is the dominant term, as discussed below. The other

(7) contributions [lm R_, ReR., and Im N.] are much
. )smaller, since cancellation is present in their defini-

tion and, being oscillatory about zero as a function ofThis can be done formally by introducing the con- 0 hog (0',cnrbtost h 'itga
tinutionRQ of M of th rel axs w through Qi w'), contributions to the w' integral

will tend to cancel. These factors will be neglected

(o) I-L . dEN(E)/(E-) (8) relative to R_
I17"

, is analytic in both the upper and lower half-planes I1. CONSEQUENCES OF ENERGY DEPENDENCE
of f but has a discontinuity 2N(E) along the real
axis. This property allows 71 to be written It is straightforward to apply the same approxima-

tions to the Coulomb and impurity (or more general-
.w) -- - dR( )G(f.o) . (9) ly any static-disorder) contributions and continue the

2w Cresulting expressions to the real axis.' The equation

where the contour C encircles the real axis in the for the gap .1 - 61Z - .1,* -&- -A, + A, is most easily
negative sense at a distance & -0 above and below, derived using 11h -6h + (I - Z) 11. etc., with the
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result at T- T, becoming

A =n) - c') PC_( W. -_ 1C , CAD ,JO t W

aut

- .~~')(.c,.(~. ')f - -. (w. -w')f (ca') U, tanh.g-wJ

+ ir F d 11 aF( () n M(12

Here , , - ( -(-)f - i8, U. is the Coulomb pseudopotential, w, is the cutoff frequency.

±((a. W')"fdflaF(fl)[T(w'+w-flt"(w cafl)] 113)

-()(W) - ReQ[Q(w) - ma- fE !N[E-,,w+M((w) I -,V[E--cu-.Mtw I l (14)2v" El - r2( w)

f(n) denotes the fermion (boson) thermal occupa- fact that T. -V( )-) .V(-w +.M )] > V(O) for
tion function, T(x) - (x -i)-1, and the important frequencies for this placement of EF.
M(ca) - i (m) - [ -Z (w)I denotes the normal- In a sense the effective value of the density of states
state self-energy at T a T. Within the approxima- is increased. Since the other parameters are fixed,
tions outlined above, the sole change in the gap this results in an increase in T, The treatment of
equation (12) is the replacement of N(M) by HR is valid if the damping r(w) is negligible. this
N(O)S(w), given by Eq. (14). Physically ,V(w1 ) is a approximation is close to breaking down at T-- T, in
dimensionless function (as defined here) which re- high- T, A 15 compounds.7
flects the average of the density of states at the The second effect, the smearing of N(E) resulting
quasiparticle energies ±[w- MW( )1. broadened by from quasiparticle damping, has been considered by

_- the quasiparticle damping r(w). It should be noted HCP, who argue that for strong-coupling (and high
that, for strong electron-phonon coupling and a T) superconductors, peaks in N(E) become ineffec-
varying .V(E) near E,, neglecting the temperature tive in raising T,. A large X leads to a large damping
dependence of the energy shift M may not be justi- r(w) and thus a greater smearing of V( E). It was

*. fled. argued that for large enough x, the peaks in V( E)
; The first effect [averaging over ±(w(o-M)I was will be smeared out at T- T,, implying that large

studied in some detail by HR. who neglected the values of .V(O) (resulting from sharp structure in the
smearing and made the replacement T -0 band structure) are ultimately useless in reach-
N(0)- [V(-M) +N(-+Mj. Using a model ing very high T,. Roughly speaking, the broadening
density of states with an E-' n singularity, numerical effect, with peaks heights decreasing in proportion to
solutions indicated an enhancement of T,, over the X, will dominate over the increase in T, (ultimately)
value for constant N(0), for Fermi-level placements proportional" to kill. By assuming that E4 lies near
EF" -( +)+wo relative to the singularity, while the center of a very narrow peak in V(E), it was es-
other placements gave a reduction of T,((ao is the timated that T, could be reduced by -2-4 K by this
Debye frequency). This behavior was interpreted as effect in high-T, (-25 K) A 15 compounds. The
a reduction of the repulsive part of the interaction averaging of (E) over a range ±WD was neglected
resulting from the interplay of the energy dependence by HCP, but in fact tends to strengthen their conclu-

* of V(E) and the frequency dependence of the in- sions if E, lies precisely at a peak in N(E).
teraction. Part of the effect no doubt is due to the The normal self-energy at T T T, is

M(f) -ir(., dr'NVo') [ (a,)f(-w') + x-(w. -ow)f(a') I

The Coulomb contribution (1 - Z),(a arises from in the second Born approximation z and in the small
high-frequency processes and is unchanged by struc- impurity concentration limit n, << 1. It is this self-
ture in V(E); the impurity contribution is obtained energy which must be inserted in Eqs. (14) and (12)
by the replacement N(O) -N(O),'(a) and a small when solving for T. The impurities do not enter ex-
real part has been ignored. The impurities, with plicitly into the gap Eq. (12), a manifestation of
(constant) matrix elements I V112. have been treated Anderson's theorem.13 [This appears not to be true if
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the energy dependence of a2 F(E.; fl) is important, only over a much more limited range of T Another
in which case the gap is renormalized by the impuri- point to consider is whether a given experiment will
ties!] The impurities, however, do add to the damp- actually measure the T-dependent mass enhancement
ing, and hence contribute to the smearing of N(E) in as given by Eq. (16). For example, the usual T
Eq. (12). This implies a variation of T, with impurity dependence" of A [i.e., when N(E) can be con-
content which in principle can be used to provide in- sidered constant] is measured by cyclotron reso-
formation on the variation of N(E). nance' but apparently not by the de Haas-van Al-

The temperature dependence of the effective mass phen effect.' s  More theoretical work is necessary
(m/m) - I +A ( 7) is also altered by a variation in to determine the appropriate experiments to measure
N(E). The phonon contribution is given by A( 7) of Eq. (16).

-.0 In the case of the dependence of T. on disorder,
M(7) -2JF dwN(w) the difficulty is less with the observation than with

f (f)(C) the interpretation of the effect. The variation of T,
Jd :F( fl) ,,,+ with large amounts of static disorder has been known

.x , ( I -for some time.t 9 However, for large static disorder

* a less than obvious generalization of the usual ex- the variation of a:F( ),. as well as the variation of
pression. 4 This relation generalizes the known N(cv), is important in Eq. (12) which determines T.
result' s that strong impurity scattering does not des- Of course a 2F should be determined by inverting Eq.
troy the electron-phonon mass enhancement. Impur- (12) rather than the usual, simpler N(E) -N(O)
ity scattering does enter into ," and may lead to either equation; there is a difference even at T - 0.
an increase or decrease in k. A different approach to these equations has been

taken by Lie and Carbotte, 21 who have evaluated
8T,/8N(E) for a number of superconductors. Their

IV. DISCUSSION results allow an estimation of the change in T due to
a change in N(E) more directly than the procedure

In previous treatments ' 7 a dc relaxation time r, outlined in this paper. However, since their results
usually taken from the resistivity, together with the are numerical, so far they have not provided much
uncertainty relation 1E -I/r, has been used to insight into the physical mechanisms which affect T.
smear an assumed N(E). The resulting effective In this paper a microscopic formulation of the
density of states Nr(EF), together with the assump- manner in which a varying density of states affects
tion 1A c .IN(Er), was used to estimate changes in the superconducting properties of a metal has been

STe. The form of Eq. (12), as well as the analysis of developed and discussed. It is shown that the tem-
HR, suggests that this procedure will give a reason- perature dependence of the effective mass reflects
able approximation only if the scale of the important the energy variation, as does the T dependence on
structure in N(E) is much larger than (Io, as in the impurity concentration. Finally, it is suggested that
case of large disorder (concentrated alloys, large im- the energy spectrum near the Fermi level may be in-
purity concentrations, or radiation damage). The ferred from a careful inversion of experimental data
present treatment of course is only strictly valid for on 1(n) and A( 7).
small amounts of disorder. Note added in proof Although the chemical potential

A quantitative study of the usefulness of these has not been exhibited explicitly in this paper, its
results in empirically inferring structure in N(E) will variation *;th temperature can be important and
be discussed elsewhere. A few observations should must be inclucted ;n Eqs. (12)-(15). This point
be made here. Superficially Eq. (16) appears to be often has been neglectet in previous work.
the more promising approach, since the relation
between (E) and the measured quantity is more

*direct, and X( 7) can be extended (in principle) to ACKNOWLEDGMENTS
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INFLUENCE OF ELECTRONIC STRUCTURE ON SUPERCONDUCTING PROPERTIES
OF COMPLEX CRYSTALS: THEORY AND APPLICATION TO Nb 3Sn

W. E. Pickett and B. M. Klein

Naval Research Laboratory.
Washington. D.C. 20375

A thermodynamic theory valid for complex crystalline superconductors is applied to Nb 3Sn. It is shown how the
structure of the Eliashberg equation and the solution is altered by density of states fine structure. One important impli-
cation is that the current method of inversion of tunneling data can be only approximate.

I. Introduction IZ.-l+ ( in-m) - i(n + m)IN., (4)

The anomalous temperature (T) dependence of normal
state properties of A15 compounds' have often been supposed vto arise from a variation in the electronic state density M E) X"-' k1?TJ:(i (n - m) 4-. i(n + m) - 41 "}.. (5)

near the Fermi energy £F on the scale of the maximum phonon -0

frequency fl. That such structure should occur in crystals con- T e s a e d niy e t r h o g h v n a d o d a e a e
taining several transition-metal atoms per cell can be argued The state density enters through the even and odd averages

quite generally, and recently several band structure studies of JN"AI5 compounds have verified structure on this scale. Unfor -. " g !( N (E)2 dE. (6)
tunately the usual theory of strongly coupled electron-phonon

systems is based on a constant density of states (CDOS) as- It is notable that the normally ubiquitous factor N(E,-) nowhere
sumption and is not directly applicable in the more general appears in the theory. Accordingly the CDOS quantities A and
case. %.. which are formally proportional to ,V(EF). are replaced by

Since the early weak-coupling models of the critical tem- the corresponding intensive quantities i and A! which depend on
perature T due to Barisic and collaborators', only a few at- the character of the wavefunctions. but not on the density of
tempts at a general strong coupling theory have been made. states, in the vicinity of Er. In the limit of a slowly varying
However, each of these makes unnecessary approximations N(E), N(Er)i-x and N (EF)p! *-7, ". In the equations above.
and/a uses pathological density of states models which obscure U .) is given by
the underlying principles. Recently one of the authorsb has
generalized Eliashberg strong-coupling theory, subject only to U)- 2fw&dF(ia)dia/(w' [2j) (7)
the isotropic approximation. In this paper we report the applica- in terms of an intensive electron-phonon spectral function & 2F
ion of this theory to Nb3Sn. We point out several novel impli- Equations (3)-(6) and the relation s determining C (T) form

cations of the theory, emphasizing that superconducting proper- a system of coupled non-linear matrix equations which must be
ties, and in particular the gap function A(e,). will be affected solved to find T and the self-energies. In the CDOS limit V.
significantly by even non-pathological structure in N(E). approaches N(E4) P, vanishes and the gap equation reduces to

the well-known form.' We show below, however, that for a
2. Formalism realistc N(E), N. and P., differ greatly from these limits for

NbSn (and no doubt for other compounds). Before discussing
The electron self-energy Z. - Z(k,diw.) in the Nambu- the numerical results it is helpful to understand the implications

Matsubara formalism is given in standard notation' by of this new behavior.

Z.- I.(l - Z.) + X T 3 + 1,7 1 . (I) The eigenvector components of the gap Eq. (3) are given
s r it in by N,., A.,, rather than by ., as in the CDOS theory. The ker-

In Eliashber$'s approach Z is determined self-consistently nel is altered from the usual theory only by the changes in the
terms of the renormalized Green's function, given by diagonal term Z/.V.,, with changes in Z. tending to be can-

G.-' - iw. - (E, - - Z,, (2) celled by the denominator, If for the moment the correction to
the kernel is ignored. T and the corresponding eigenvector is

where C is the chemical potential and ii., - (2n-l)irk&T. In unchanged but the gap function .1, is altered by a fraction
the isotropic approximation the wavevector (k) dependence of IIN.. This leads to the conclusion that the gap function ai1w),
Z is averaged over*, leaving only a weak dependence of E(E) which is given by the analytic continuation of .1., to the real
on the energy £ which can be disregarded. For a general state axis, is fundamentally altered by a non-constant N(E. It then
density the generalized gap equation at T, can be written becomes evident that A(w) and hence a2 F(w) will be different

from that inferred from tunneling data using the CDOS inversion
tii(n - m)+ i(n +m) (3) procedure. It will be shown below that T in fact is altered

appreciably by the corrections to the kernel diagonal.

- 2Z * -A.n2n -+ 1).&} N.S. 0, 3. Application to Nb3 Sni

where *,, - A.,,,. A,, - .,/Z,, and N, is the cutoff integer. We have solved the coupled equations0 for NbSn using
The normal self-energies w,Z, and X. are given by aF and a deduced by Wolf et al. and the calculated N(E)

- 95
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. Fig. I - (a) The experimentally deduced spectral function a2 F(w) of Wolf er al. for Nb 3Sn (Ref. I) for Nb3Sn
and the calculated function N(E) of Klein et al. (Ref. 3) on the same scale as aF (b) V(E) shown on a larger
scale to display its fine structure.

of Klein et aL3 We make the somewhat arbitrary identification (A.1 found by Vidberg and Serene indicates important correc-
-2F(CM) _ a 2F (W)/N(EF), and similarly for ;Z*, as the most tions to .O) will result. Numerical solutions to Eqs. (3)-(6)

reasonable choice available. The functions a-F and N(E) (the at T << T will be needed to study this effect more quantita-
latter interpolated linearly between values on a 1 ry grid) are tively.
shown in Figure I on the same scale to emphasize that, Figure 2 indicates that corrections even from non-
although N(E) has fine structure, it is utterly non-pathological, pathological DOS functions can be -5% of .- A.(w - 0).
in contrast to those used previously s which had singularities However, to give a reliable picture of the structure in a F it is

• and/or discontinuities. The general behavior we discuss is not necessary" to invert tunneling data to a relative accuracy of
* critically dependent on the chosen functions a2 F(w) and N(E). - I0-I . Here it is noteworthy that this has not been achieved

[it should be noted that we find that accurate numerical results in AIS compounds, although heretofore this deficiency has
. cannot always be obtained if C and X are disregarded. It is not been ascribed solely to difficulties in preparing ideal junctions.

appreciated generally that C (T) is strongly influenced by the To illustrate the effect of DOS structure upon T, we allow
electron-phonon interaction.] the assumed Fermi level Er to vary over a range of 5 mRy near

In Figure 2a we show N, and P, for Nb3 Sn at T - 18 K. the calculated value EF., of Klein et a. In Figure 3 it can be
Clearly N, differs greatly from N(EF) and P. is strongly non- seen that T resulting from the CDOS theory, denoted P_
zero. Both vary rapidly for small n, reflecting the fine structure varies from 10 to 26 K within 3 mRy, whereas T from Eq. (3)
near E,, before tending to saturate at larger values of n. As dis- varies only from 13 to IS K. Not least among the implications
cussed above, the variation of N,. leads to corrections to A. of this drastic smoothing of T, is that band theory need not be
relative to the constant N, approximation A.'. In Figure 2b this absolutely accurate on a I mRy scale to provide reasonable
difference A. - 4: is displayed. The normalization values of T, conversely, T. contains less straightforward infor-
,. - I - .1: is used since the magnitude of A is arbitrary mation about N(E) than usually assumed.
(infinitesmal) at Ti, but below T, the magnitude as well as the Currently there is considerable interest in obtaining

frequency dependence of A will be altered. To learn the effect of approximate , values by using an appropriate average over
N(E) on the complex gap function A() the solution 1(.1 of N(E) in the CDOS theory in the spirit of Nettel and Thomas. s

the (appropriately generalized') equations at T 4 T can be Equation (3) suggests an average Nf f given by
analytically continued to the real axis. Unfortunately we have
found the Padd approximant approach'2 to be inadequate at N(8) , _ N, ",, / .
T, - IS K due to having only 3-4 Matsubara frequencies in the

region w, < 1 where A(w) has sharp structure. However,
Vidberg and Serene'] have shown that this continuation to the The resulting critical temperature 7 'f f also is shown in Figure
real axis can be performed reliably from the first 100-200 3. Although 7rf is too large by a nearly constant amount
values of A. at low temperature. Since the shape of A(w.T) is (-1.5K), it reflects the trends in 7, quite well. Improvements
nearly T-indepndent, the sensitivity of A(w) upon the values upon this result will be investigated in a subsequent paper.
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Fig. 2 - The even and odd density of states averages N. and P. respectively (for the calculated value
T - 16.6 K for Nb3Sn) plotted versus Matsubara frequency c.. and the correction to the gap function .1, due to
the density of states shown in Figure 1. Note the change of scale at a - 20. above which only every tenth value
is shown.

22-

Te ,,C% o ff14-
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Fig. 3 - The behavior of the critical temperature versus the assumed position of E. Results of the general
theory are denoted by T.. those of the CDOS theory by 7," and those of the average value of V(E) suggested in
the text by '.
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4. Discussion work indicates that for a resistivity ratio p (300 K)lp(20 K) -
10 (a 'good' Nb)Sn sample), the correction (.,, - in)/.. n

We have shown that when fine structure in the electronic Figure 2 is reduced by roughly a factor of 2. This should ;eave
spectrum exists near E, it is necessary to take it into account in observable consequences of fine structure, which for more
the inversion of the tunneling data to obtain accurate values of highly disordered material will become progressively weaker.
A and d2Fas well as I". Our use in the calculations of i:F(h,) As an experimental test of this effect, high quality NbSn tun-
c a 2 F(w), with the latter deduced from the CDOS theory, was nel junctions could be lightly irradiated thereby increasing the
an expediency which will not be satisfied by a self-consistently disorder in the NbSn, and the observed tunneling DOS moni-
determined J 2 F tored for alterations. A full discussion of the theory and

It should be emphasized that the present calculations have further numerical results will be published elsewhere. '

disregarded the disorder which is present in all NbSn samples.
It is well known that disorder broadening of the DOS will tend
to smooth fine structure'and thereby reduce the effects dis- Acknowledgment - We thank E.L. Wolf for providing us with
cussed in this paper. The theory presented here recently has the urpublished numerical values of e;F and acknowledge
been extended to include the effects of disorder. Preliminary stimulating discussions with M.R. Beasley.
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PARAMETER-FREE CALCULATION OF THE ENHANCED SPIN

SUSCEPTIBILITY OF Nb3Sn INCLUDING ELECTRON-PHONON EFFECTS

Warren E. Pickett

Naval Research Laboratory
Washington, D.C. 20735

A parameter-free calculation of the spin susceptibility X s(T) of Nb3Sn,
which includes static and dynamic disorder as well as exchange-correlation
enhancement, is presented. It is found that X is only 15 of the
measured susceptibility, and its small temperature dependence cannot
account for the experimental findings.

It is a well establ shed fact that the The quasiparticle density of states is
anomalous variationt of the susceptibil- evaluated from the relation
ity x(T) below room temperature in V- -l
and Nb-based A15 compounds is directly n(wT)--r Im TrG(w), (1)
correlated with the superconducting and therefore includes the effects of
transition temperature Tc: d log x/dT static and dynamic disorder. z is actu-
is largest for the high Tc compounds, ally evaluated on the imaginary frequency
Attempts to explain the behavior of x(T) axis, leading to the matrix equations
have focussed on the spin susceptibility mentioned above, and TrG is analytically
Xsp, which is presumed to vary due to continued to the real axis. From ' the
thermal repopulation of a narrow peak in unenhanced spin susceptibility X 0 is
the density of states N(E) near the Fermi given by
level EF. In this paper I present the B _____(2

results of a parameter-free calculation X s(T)u fd af(w-)p(wT)um2(¢ (2)
of x5 o for Nb3Sn which includes (1) the SawB
effec sof both static and dynamic dis- where f denotes the Fermi distribution.
order and (2) electron-electron inter- A crucial feature of the present calcu-
actions through an ab initio Stoner en- lation is that the chemical potentialC
hancement. It is found that' X is only is retained explicitly.
15% of the measured susceptibilty,2 and 6
that dX5p/dT accounts for only 15% of the Liu et al. have shown that, with local
measured temperature variation, density (LD) theory, exchange and corre-

lation enhancement of X 0 may be included
A theory for the electron silf-energy Z at finite T through the5shoner-like re-
has recently been developed which ac- lation
counts for cases where N(E) varies on the 2-
scale of a typical phonon frequency, such sp(T)-uB2 )/{1-l(})(3)
as often occurs in A15 compounds. Both
defects and phonons are included in a where I( ) is the thermal average around
self-consistent way. Calculation of E C of the LD Stoner parameter I, which can
requires solving several nonlinear cou- be evaluated frim the band calculations
pled matrix equations involving N(E) and of Klein et al. Here it will be assumed
the Green's function G. The j$put to the that Eq. (3) holds when (C) includes the
calculation of E is (1) the a F function effects of disorder, a case which was not
derived from proximity rttect tunneiing considered by Liu at al.
on Nb3Sn by Wolf et atL. which describes
the electron-phonon interaction (EPI), The calculated values of X 0 and X are
(2) the N(E) function calculated for compared in Fig. 1 with the measured
Nb3 Sn by Klein et al.5 and (3) a Lorentz- total susceptibility of Reywald et al. 2

ian defect broadening corresponding to Although d log X5s/dT-lxl0"
3 K'l1is

10 6cz of residual resistivity, typical similar to the measured value of
of the best samples of Nb3 Sn. d log V/dT, Xs accounts for only about

15% of x. This last result is surprising,
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since Klein et al. 7 were able to fit X(T) discussions with D.A. Papaconstantopoulos
with only two parameters, r and a T-inde- and C.M. Soukoulis about disorder broad-
pendent ("orbital") contribution 7, by ening and with B.M. Klein about the sus-
ignoring disorder effects and including ceptibility fit described in Ref. 7.
only thermal redistribution. The differ-
ences between this fit and the present REFERENCES
calculation arise in two ways. First,
the calculated value (only weakly T-de- (1) See Testardi, L.R. in Physical
pendent) of 1)- 2.3 mRy is only about Acoustics, edited by Hason, W.P.
half the fitted value of 4.4 mtRy. Both Thurston, R.N. (Academic, New York,
the Stoner enhancement (1-T-n'l and its 1973) V. 10.
temperature variation are reduced (rela- (2) Reywald, W., Rayl, M., Cohen, R.W.

tive to the fit value) by more than a and Cody, G.D., Phys. Rev. B6
factor of two. Secondly, including dis- (1972) 363.
order reduces n( ), and thereby reduces (3) Pickett, W.E., Phys. Rev. B21

X o as well as further reducing the en- (1980) 3897; Pickett, W.E. andsp
hancement factor. Klein, B.M., Solid State Commun.

38 (1981) 95; Pickett, W.E., to be
With regard to this second point, it is published.
notable that ( ) is reduced more by the (4) Wolf, E.L., Zasadzinski, J.,
variation of (T) than by the explicit Arnold, G.B., Moore, D.F., Rowell,
defect broadening. The effect of includ- J.M. and Beasley, M.R., Phys. Rev.
ing broadening corresponding to 10 wn cm B22 (1980) 1214.
of residual resistivity is to displace (5) Klein, B.M., Boyer, L.L., Papa-
;(0) upward by 2 mRy toward a region of constantopoulos, D.A. and Mattheiss,
lower N(E), and this effect alone leads L.F., Phys. Rev. BI8 (1978) 6411.
to a value of '(c) which is 857. of N(EF). (6) Liu, K.L., MacDonald, A .H., Daams,
Moreover, merely turning on the EPI fur- J.M., Vosko, S.H. and Koelling,
ther shifts electronic svectral weight D.D., J. Magn. Magnetic Mater. 12
out of the peak, shifting C upward by (1979) 43.
another 3 mRy (at 25K, the lowest tempera- (7) Klein, B.M., Boyer, L.L. and Papa-
ture considered here) and resulting in a constantopoulos, D.A., Phys. Rev.
further decrease of i(;) to 70% of N(EF). Lett. 42 (1979) 530. See also the
At 200K, the highest temperature consider- fit of van Kessel, A.T., Myron,
ed thus far. I find -10.5 mtry (relative H.W. and Mueller, F.M., Phys. Rev.
to EF) and n(c)-0.62 N(Ep). The temper- Lett. 41 (1978) 181.
ature variation of Xs shown in Fig. 1
results from this nearly linear decrease

" in i(;) with temperature.

The results presented in Fig. 1 indicate E

that X cannot account for experimental
data for Nb3 Sn. It should be noted that 'I

these results are not sensitive to de-
tails of the density of states which was
used (the very fine structure is smoothed Nb 3 Sn
out by the disorder) as is the case when
disorder is nt included, and only the Xorb+-Xdio
strength of a F (X-l.8 is important in
determining ;(T) and n(t). It now ap- .
pears that the orbital susceptibility may
be larger than Xsp and may even show con-
siderable temperature variation. A more A;o
detailed discussion of all aspects of this 0
study will be published elsewhere... , TEMPERATURE (K)

The author wishes to acknowledge the use Figure 1. Susceptibility versus tem-
of unpublished results of the Nb3Sn cal- perature as discussed in the text.

"'-* culations (Ref. 5) as well as the 7 Xex p is from Ref. 2.

. 37



--- 

-

PHYSICAL REVIEW B VOLUME 26, NUMBER 3 1 AUGUST 1982

Generalization of the theory of the electron-phonon interaction:
Thermodynamic formulation of superconducting- and normal-state properties

Warren E. Pickett
Naval Research Laboratory, Washington, D.C. 20375

(Received 25 January 1982)

A thermodynamic formulation for the electron self-energy is given which is applicable
when the electronic spectrum possesses structure on the scale of phonon frequencies, pro-
vided only that the ratio of phonon phase velocity to electron Fermi velocity is small.
Electron-phonon. Coulomb, and electron-defect interactions are included on an equal foot-
ing and it is shown that their different frequency dependencies lead to specific effects
on the Eliashberg self-energy: (a) The Coulomb interaction contributes nothing of essence
to the normal-state self-energy (in this isotropic approximation) but retains its usual de-
pairing effect upon the superconducting gap function, (b) defects affect superconducting
properties primarily through a broadening of the electronic spectrum, and (c) phonons
contribute a thermal shift and broadening as well as the mass enhancement. A generali-
zation to intensive electron-phonon, electron-electron, and electron-defect interaction con-
stants is necessary to redevelop an intuition into the effects of these interactions. The
change in the structure of the Eliashberg equation due to a nonconstant density of states
(DOS) and the consequent interplay between static and thermal disorder is analyzed in
detail, with a central feature being the change in frequency dependence of the self-energy
compared to a constant DOS solution. The effect of DOS structure on the superconduct-
ing transition temperature T, which is manifested in the defect dependence of Te, is
analyzed in detail. Further it is proposed that an extension of the self-consistent Eliash-
berg approach be extended above T, to determine the normal-state self-energy and there-
by the electronic contribution to thermodynamic quantities. Phonon broadening is shown
to affect the spin susceptibility at finite temperature. Reinterpretation of several of the
anomalous properties of A I5 compounds in terms of the present theory is suggested.
Several aspects of the theory are compared to experimental data for Nb3Sn.

I. INTRODUCTION to be assumed that Midgal's theorem is inapplica-
ble if N(E) is not constant [to within (m/M)' / J

Deeply ingrained in the formal theory of the in- over a range +if around EF. As will be shown in
teracting electron-phonon (e-ph) system in metals this paper, however, there exists an important re-
are two simplifying approximations. The first is gime within which the CDOS approximation may
an extension of the adiabatic, or Born-Oppen- be relaxed in a straightforward manner while re-
heimer approximation' in which the light electrons taining Migdal's simplification. The resulting gen-
are considered to respond instantaneously to the eralizations of the CDOS expressions often are not
heavy ions (of mass M. Central to the theory of intuitively obvious, and the consequences involve a
e-ph systems is Migdal's theorem,2 which demon- reinterpretation of many of the properties of this
strates that nonadiabatic effects can be obtained class of materials.
accurately by low-order Feynman-Dyson perturba- That structure in the DOS on the scale of F1
tion theory, to lowest order in an expansion param- should be expected in crystals containing several
eter of the order of (m /M)112 << I. The second transition-metal atoms per unit cell can be deduced
simplification is the assumption of a constant den- from general considerations.3 Elemental transition
sity of states (CDOS) over a region :-f around the metals are known to have peak structure in their
Fermi energy EF, where fl is a few times of the DOS which may be only a few tenths of an eV
mean phonon frequency. This approximation al- wide. A compound with (for example) ten atoms
lows the DOS function N(E) to be approximated per unit cell will have 10 times the number of
by N(EF,) in certain energy integrals. The two ap- bands in the same overall bandwidth, leading to
proximations in fact are related, and it often seems structure on the order of hundredths of an eV.

26 1186
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: 26 GENERALIZATION OF THE THEORY OF THE ELECTRON-... 1187

Recent band-structure calculations4"5 on A 15 corn- Carbotte. t who calculated a functional derivative

pounds (eight atoms per unit cell) indeed have veri- 6T,/6N(E) for several superconductors. Its shape
fled structure on this scale. DOS structure can be was found to be quite insensitive to the metal con-
important even in elemental metals if the Fermi sidered. having a maximum at E =EF. decreasing

* level EF lies near a van Hove singularity. such as to half maximum at
occurs in Pd and Pt.

The most intriguing consequence of the e-ph in- E-E; =-5- lOT,

teraction. both theoretically and technologically, is and becoming negative (but remaining very small)
superconductivity, and it has not been overlooked above
that the superconducting transition temperature T,

* might be affected by DOS fine structure. An early E- EF: :50-70T,.

study of A 15 compounds was carried out by Bar- This (linear) approach leads to an average DOS
isic and co-workers in the weak-coupling limit.

where it was noted that the DOS within a region STc / dTc

, naround EF contributes in the determination of " ' f d (E) dN EF (1.2)
T. Cohen, Cody, and Vieland7 applied a strong- which is useful for estimating T, from a CDOS
coupling version of the Koonce-CohenS formalism thoy In eq. (or etmtnE is the intgra

to investigate the effect of model A 15 DOS func- over In 18N () dT,/is gis by
tions upon T. over 5T /&N(E), and T, is given by

In a model solution of the Eliashberg equation T = o+[ _NE)] dT(
with non-CDOS effects included approximately dN (E) (1.3)

Nettel and Thomas9 suggested an average DOS
given by Written in this form NLC clearly has an interpreta-

tion as an effective value of N(EF). Since the im-
fV*T= , dcf portant contributions to the integral in Eq. (1.2)NTT f", Z(W) come from the region :E-EF; <10T -fl, (for

x (N(cdZ)-)-' -oV.Z)l]n(fl, IT,) strong coupling superconductors), for nonpatholog-
ical DOS functions the averages N4T and 'VLC

(1. 1) should be similar.Whereas an average over the DOS may be suffi-
as being most relevant in determining T. Here cient for understanding T, for many properties of

Z (w) is the strong-coupling renormalization (real interest (e.g., the T dependence of the spin suscep-
pat), fl, = r is a cutoff frequency, and the DOS tibility t, no such simplification will be possible.
function will be taken with origin at EF through- In this paper a general approach for obtaining the

out this paper. It was evident to Nettel and Tho- electronic self-energy, and thereby the thermo-
mas that there is great utility in identifying, when- dynamic properties, is described. Both static and
ever possible, an effective value of N(EF) for use dynamic disorder are included in a straightforward
in the CDOS version of Eliashberg theory rather generalization -'2 of the usual Eliashberg approach,

than having to deal always with the full energy and it is shown that each type of disorder contri-
dependence explicitly. This simplication will be butes to the shift in chemical potential as well as
explored further in this paper. to a shift and renormalization of the electronic

Horsch and Rietschell0 obtained numerical solu- spectrum. Although the emphasis here will be
tions to the Eliashberg equation in the small focused on the superconducting state, implications
kT/ limit where the imaginary part of the self- for normal-state properties also will be discussed.
energy can be neglected. They found an enhance- A preliminary report' of the application of this
ment of T, relative to the CDOS value T for theory to Nb3Sn has been published elsewhere.
placements of a square root DOS peak near The plan of the paper is as follows. Section II is

EF-flZ(O). This was interpreted as a reduction devoted to the description of the system of in-
of the repulsive part of the e-ph interaction due to teracting electrons, phonons, and defects which

DOS variation. It could equally well be considered will be studied, and the approximations leading to
as an enhancement of the attractive part of the in- our expression for the electronic self-energy are

teraction (which occurs at w < M), with an approxi- discussed and justified. The treatment of the encr-
mate value of the enhancement given by 7..4T. gy dependence in the Eliashberg equation is given

A more general approach was taken by Lie and in Sec. III. where it is argued that the band-energy
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118 WARREN E. PICKETT 26

dependence of the self-energy should be negligible H,= ,

in most cases. This leads in turn to a less formid- k'.v

able numerical procedure for solving for the self- X qp,
energy. In Sec. IV the generalized Eliashberg sys- (2.1e)

tern of equations is presented and the alterations
arising from DOS structure are discussed. As a
byproduct of retaining the band-energy dependence Htm j - I

of the e-ph interaction in the equations, a better
understanding of the Coulomb pseudopotential and where 7 denotes a second-order term. In the

of the role of impurity scattering is obtained. A Nambu scheme the spin index is eliminated in

discussion of several aspects of the theory at T, is favor of the two-component field operator

presented in Sec. V. In Sec. VI the spin suscepti- C (2.2)
bility is discussed in terms of a self-energy deter- %yk = tc-.,
mined from an Eliashberg-type equation at T" > T, C. k

Unlike previous uses of Eliashberg-type equa-
tions,"4 which of necessity require an infinite sum- in terms of the electron annihilation operator Ck,.

mation of diagrams to describe appropriately the The Pauli matrices are denoted by r, r2, and r 3.

appearance of a gap (superconducting or spin- Electron-band and phonon-mode indices will not

density-wave) in the spectrum, this novel applica- be exhibited explicitly except where necessary.

tion accomplishes more easily what could be ac- In this form of the Hamiltonian TP describes

complished (at least approximately) in some finite band electrons, for which the electron-static lattice

order of perturbation theory. It is suggested that and electron-electron interactions have been includ-

this approach may be fruitful for studying other ed in a mean-field sense. For the electron-lattice

thermodynamic properties. Indeed, there has been interaction the remaining coupling is given, to

little concern over non-CDOS corrections above T, second order in the ion displacement, by the

* •with the exception of the T dependence of X., and electron-phonon Hamiltonian H,.ph. TLe second-

the elastic constants, both of which show anoma- order term, which has not been displayed explicit-

Ions behavior in high-T, AIS compounds. ly, is required to keep the theory translationally in-

variant.t 6 The residual Coulomb interaction be-

tween band electrons is assumed to be representable

.1. GENERALIZATION OF THE in the usual four-body form and is denoted by V in

ELIASHBERO SELF-ENERGY the electron-electron Hamiltonian H,.,. The effect

The usual treatment of Eliashberg theory on the of this term on superconducting behavior is not

imaginary frequency axis is clearly set forward in understood in detail but fortunately an approxi-

the literature.' s We will provide only the back- mate treatment in terms of an empirical "Coulomb

ground necessary to clarify the generalizations we pseudopotential" (see below) seems sufficient for

propose and the approximations which remain, most purposes.

The system we consider is described by the Hamil- The "impurity" term Him1 represents' 7 n1 identi-

tonian 
cal, randomly distributed imperfections centered at

positions Rj. The scattering potential Vst p

H=H,+Hph+H,., +H,.ph+Himj, (2.1a) represents the difference between the potential in

the region of the imperfection and the perfect-

where crystal potential. The phonon Hamiltonian Hph is

expressed in terms of bare phonons (with creation

Hr , (2.1b) operator bt,) of frequency ng, which are dressed

- to the observed frequencywe, by the band-electron

polarization as described for example by Migdal.

, Hp ,  Ovbgbg, , (2. 1 c) In this paper we will not consider the effect of lat-

-. tice imperfections on either the phonon spectrum

or the electron-phonon coupling g, although the ef-
H,.4 - . V(k,k;q)4.r fect may become large for highly disordered ma-

kk terials.
The electron thermodynamic Green's function is

X qTkk +q +rk ' ,(2. Id) given by
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:'.' G (k,iw. )-1 -=io. -(Ek - )-i"3- Y.kjiw.),n ,,

(2.3) X " i 1 "

where co, = (2n + 1)rT and the self-energy I con- G G

ventionally is given by15  PHONONS, CREENED DEFtcr
COULOMB

FIG. I. Proposed phonon, Coulomb, and defect con-
(k,ia ) i [I -Z ( k, i) ] tributions to the electron self-energy I. The double

( lines indicate the renormalized Green's function G(I).
+Y'(kiw, ) r3 +e ( k,i) )7r. (2.4) giving a self-consistent, infinite order relation for 1.

For bulk superconducting properties the r 2 term in

I is proportional to 6 and is assumed to be elim- tive infinitesimal quantity), will be retained expli-
inated by the choice of phase. Two points should citly. Second, we also retain the energy shift r

be noted here. First, the chemical potential , (not to be confused with the susceptibility) and

which is determined by the relation find that although it does not reduce to a trivial

N, T TrG (k~ '' (2.5) shift in the chemical potential, its effects are usual-
, (2. ly of a secondary nature.

The Eliashberg equation for the self-energy,

in terms of the number of electrons N, (E is a posi- represented diagramatically in Fig. 1 is 15

'(k,iw,)- - T 7 r3G(k',io,)'r3  [ , (k -k',i. -io,)

+ V(k,k';i w.. -i ,+ )[ni t(k,k',ioi,) I 2/715.. . (2.6)

The first term results from coupling to phonon w(?/Q to electron group velocity vk. Even for A 15
branch v with renormalized phonon Green's funr- compounds with large N(Ef) and low electron ve-

tion D,. The second term arises from the dynami- locities the ratio of these quantities averaged over

cally screened and Coulomb-vertex-corrected the Brillouin zone is (2-3)X 10-x (e.g.," (aC/Q)
electron-electron interaction , which is discussed - x IO0 cm/sec and' ( Vk ) " ( v _ ) 1/2 V

further below. The third term, which is usually -2 x IC7 cm/sec for Nb 3Sn). The approximation
not included, results from neglecting correlated r,.p,,-= I can break down in the immediate vicinity

multiple scattering between distinct static defects, of a van Hove singularity VA =0, but such a small

but includes multiple scattering from a single de- number of electrons within Ek -E/. < f have

fect by means of the t matrix' t. This treatment Vk <a. /Q that the contribution to the Brillouin-
strictly applies to the dilute limit; however, the zone sum in Eq. (2.6) will be negligible.
transport theory which results usually is found to Recently Drozhov' 9 has provided more insight
be valid to rather large defect concentrations. into this problem. The situation Drozhov studied

In writing the phonon contribution to I as in is that in which an M, van Hove critical point

Eq. (6). Migdal's theorem 2 has been invoked. In its falls at EF, which is one situation for which
-., usual form this theorem states that, to within a vA <"JQ/Q. It was found that so much dispersion

quantity of order (m /M) " 2, the electron-phonon is introduced into the electronic states by the e-ph
vertex function r,.ph can be taken as unity (for the interaction that the corresponding quasiparticles
purpose of calculating the electron self-energy). are for the most part removed from the region of
Within simple metal language an equivalent expan- the critical point (and, of course, are highly
sion parameter is IE,. This had led to specula- damped). The quasiparticle velocities tend to

tion that Migdal's theorem may not hold for sys- diverge a: the critical point. Thus, if the fully re-
terns which have DOS structure, and in some sense normalized Green's function, rather than its bare
an effective degeneracy temperature (EF) on the counterpart, is used in Eq. (2.6) (as is done in
scale of f. As Scalapinols" ' has emphasized. Eliashberg theory and as it is shown in later sec-

however, the validity of the approximation rests on tions must also be done in the normal state), it
a small value of the ratio of phonon phase velocity may well be the case that the criterion Vk > wa /Q

4,
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in terms of renormalized velocities Vk (if they can ized somewhat in Appendix A, with the result
be defined) is satisfied even near critical points

* v--0 where Migdal's theorem as stated is unprov- I/U=I/V+N(wj)ln(wpi/c&)c). (2.7)

en. Assuming this to be the case, the only remain- This relation, and the effective DOS .V(wp), will be
ing difficulty is with optic modes, for which near discussed further in Sec. IV A. Using this pseudo-
zone-center phase velocities coQ/Q diverge. It ap- potential and utilizing the evennessiSb in frequen-
pears that a small enough number of modes are in-volvd tat he riloui-zon su fo I s uaf-cy w. of the functions Z, X, and 6, Eq. (26) can
volved that the Brillouin-zone sum for Ir is unaf- be reduced to an N, x .V matrix equation with
fected. (2N -I )rT =c, (i.e., n =0, 1 ..... V, - 1).

Migda 2 also demonstrated (for the normal state
at T =0) that the renormalized Green's function G
appearing on the right-hand side of Eq. (2.6) can Il. TREATMENT OF THE
be replaced. in the CDOS system he considered, by ENERGY DEPENDENCE

*" the unrenormalized Green's function, thus allowing
a formal solution for low frequencies. No corre- In its most general form the Eliashberg equation
sponding simplification is possible when variation is extremely difficult to solve even if the kernel in
in N(E) is not negligible, as observed by Eliash- large parentheses in Eq. (2.6) is known. Besides
berg' 5 for the superconducting state in which the the four-dimensional frequency-momentum vari-
opening of the gap gives a sharply varying density ables which are summed over, G and I also are
of quasiparticle states. A central point of this pa- matrices in band index,: although this fact is
per is that, when the energy variation of N(E) oc- nearly always ignored. To date little of a quantita-
curs on the scale of phonon energies, I must be tive nature is known about the importance of off-
determined self-consistently from Eqs. (2.5) and diagonal (in band index) contributions to G; how-
(2.6) for the normal state as well. ever, cases where these corrections seem to be

The three contributions to I in Eq. (2.6) differ necessary have been extremely rare (but see
fundamentally in their frequency dependence. The Chakraborty and Allen2 1). In the present paper all
phonon Green's function D,(ia,,) has its important such "band-mixing" effects will be neglected. We
frequency variation for )w,,) <?1 and decreases as will concentrate on including the energy depen-

w.- for I (a,, I >>1. The Coulomb interaction dence of the band density of states within an iso-
V(iai3 ) varies only on the scale of the electronic tropic, band-diagonal approximation.
plasma frequency (peak in the energy-loss function) The isotropic average A (E) of a wave-vector-
wp- 10 eV. The impurit', contribution is energy dependent quantity A (k) is defined by
conserving, with (1/T)8,. in Eq. (2.6) represent- A (E) 7 A (k)&E- E), (3.1)
ing the 8 function 6( w-s') in the thermodynamic k

*- formulation. For the phonon and impurity contri-
butions the sum over I w.,1 in Eq. (2.6) can be where to simplify notation we have introduced a
truncated at a cutoff frequency , - s - 10A with dimensionless, normalized averaging function given
negligible loss of accuracy. The practical necessity by
of using a minimal frequency range for solving for 8(E-e)=8(E-e)/N(E).
I has prompted the folding down of the Coulomb
potential P into a pseudopotential U as described A further approximation necessary to reduce Eq.
in detail elsewhere.1s"'  The treatment is general- (2.6) is

i OGk,iw,.)B(k,k';ico. -iw.})(E -Ek) (E'-E,.)-G(E',io .)B(E,E';iw, -icu.), (3.2)

hA"

where"
:' O (Eia.)-1affiar,-(E - ) ' -1(E, iw.) •(3.3)

*. B(k,k';i. -ico,) is any of the three kernels in Eq. (2.6) and B(E,E';iw. -iow.) is defined by Eq. (3.2).
The self-energy becomes t5') 1 5(h)

I (E,ioj}--T X, f dE'rjG(E',iai.)i'jN(E')f ME, E';ioi.-ias.) - '(E,E')-((E,E')/'T6,,

2(3.4)
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where

i~R 'v- R t (k -k',iw.)6(E -E,)6(E -E ) (3.5)
kk'v

,' 1 (E,E')=X Ulk,k';O)SE -Ek )8(-Ek .E U(E,E';0), 3.6)

N" F(EE')=rn , It(kk;O)L&E-Ek)E'-Eko) (3.7)

In the CDOS limit N(E)-.N(EF), the usual with
electron-phonon coupling constant X, pseudopoten- CE , ),(E

tial it*, and impurity width r are given by M -

N(EF)(EF,EF;O), N(EF)r1(EF,EF), and (3.11)
N(EF)F(E,EF), respectively. It will become ap-
parent, however, that the normally ubiquitous The gap function is given by 4A. =,1/Z.. Even

quantity N(EF) nowhere appears explicitly in this and odd averages over N(E) result, given by

more general theory, although we will identify in IN, 1 Vfz. (&can +a )2I/2

Sec. V an effective average density of states which 1 f dE x
is useful in an approximate determination of T. P. C(E,iw,.) [ E-+, I
The Coulomb pseudopotential ! * is discussed fur- (3.12)
ther in Sec. IV A and in Appendix A.

The E dependence of I arises solely from the E with each average incorporating in the denomina-
. dependence of the kernel tor C(E,iw.) an energy shift -X. and broaden-

ing half-width Z,(wi, +L% ) 2. Both functions are
XE( even in w.. The following sections describe the ef-

-(l/wiT)F(E,E'), fects of a nonconstant N(E) that are included in
N. and P., which for a constant density of states

which in turn is due to variation with energy of reduce to
the character of the wave functions and scattering
, properties but not the density of states. In general (.3
we expct thi variation to be small compared to p. 3.13
DOS effects, although this question deserves fur-

ther study. Information on the E dependence of
*.(E,E) can be gained by studying the E depen- IV. GENERALIZED ELIASHBERG THEORY
dence of the mean-square electron-ion scattering
matrix element 12(E) which enters . Using the The generalized equations for the Eliashberg
calculated electronic structure and wave functions self-energies are
of Klein et a. s (to be used in the calculations N
described in Sec. V), it is found that 12(E) varies cWZ. w.+irT I X -N. e+rN'ew.
by only 2% in a 4-mRy region centered at E, M -0

where N(E) changes by a factor of 3. Neglecting (4.1)
this small energy dependence of the kernel gives

1. -i .h-iwo.i)F. (3.8) X=-rT -
Id-, <% M -0

where 1. a ZViw. ), etc, and the density-of-states (4.2)
effects are confined to the factor Neffects confined. ~e,, n l,,

(2n + U0, k 2A -2 VNe.6./Zm
F,- f dEr3GE,iG.)V(E)• (3.9) M-0

Inverting G - in Eq. (3) leads to +rNVe .o./Z 1 , (4.3)

rjG(E,iw.)73 -- io.Z 1-(E-+X)r, where !'+ and the DOS "enhancement" e, are de-
C(E,iw,) (3.101 fined by
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1192 WARREN E. PICKETT 26

TIL, M---L iWo - iW ,) -_XU(ie + im,, 1 (4.41 ReeW '= Rejw /[w "- 12( (0)], / 21 ( 4.5')

A. The Coqlomb psaudopotential

From Eq. (4.2) it follows that the contribution to
A nonzero solution to Eq. 4.3) exists only for Y from the Coulomb interaction is independent of
T S T,. However. Eqs. (4.1) and (4.2) may be use- W,,. This results in a constant shift Y, in all quasi-
ful at higher temperatures as well, a fact which is particle energies and consequently a compensating
discussed in Sec. VI. shift - 1C, in the chemical potential. There-

Convening Eq. (4.3) into an equation for the gap fore the Coulomb contribution to in Eq. (4.2)
function leads to can be disregarded without loss of generality. On

the other hand, phonon and impurity scattering

.,, = rT ( . - 2/1 (N,,, e,,, give rise to nonconstant energy shifts ., which
S-0o must be retained in an accurate theory.

"'-" .The pseudopotential U in Eq. (3.6) is given as
X8, Ntel A.,, . usual2 as a solution to an integral equation de-

1-= scribing the folding-down of high-frequency

(4.6) scattering processes included in P. The zone-
pi ivaveraged pseudopotential 7* satisfies the approxi-

Ep- Amate relation (see Appendix A)
XMica, - w.,)1 If~ (4.9)

-. =2f dnfla F()/n+(.(-w)'m) (4.7) 7 - ' '

in terms of an intensive electron-phonon spectra where N(oi) denotes an average over N (E) on the
function (i.e.. coupling per electronic state) scale of wa, and R is given in terms of V by an

F(E,E';fl)= I 't~k..I (E -Ek) equation analogous to (3.6). However, according to
k.k., 'the gap equation (4.6) it is approximately the di-

mensionless quantity ff(wA)A° which enters into
X 6( E'-Ek) the determination of the gap function (and hence

T,). Here w& denotes the range of the average over
x• -8( I-k_k,,), (4.8) V(E) appropriate to the gap equation, which will

and be discussed further below. In the limit of a slow-

- 2 - 2. ly varying DOS near EF, N9czi.)- N(EF) and

aZF(fl) aFE, E :fZ) £Z E" = I I (4.1i0))

Equations (2.5), (3.12), and (4.1)-(4.3) (or (4.3) /- + V nEF (4.10)
replaced by (4.6)] form a system of coupled non-

linear matrix equations which must be solved itera- This leads to a dependence of /p upon N(EF) simi-
tively for the self-energies at each temperature of lar in form to that of Bennemann and Garland,2 '
interest. Their solution allows (at least in princi- who used 1 =0.26 and V(wj)ln(Wp,/a ,)

pie) the direct calculation 2 of electronic thermo- = 3.85 (eV atom)-' for transition metals. How-

dynamic properties," | ' such as T#, specific heat, ever, since A in Eq. (4.10) is formally proportional
etc. Numerical solutions of these equations have to ,V(EF), which can vary widely within a given

- been presented elsewhere' 3 (and see below) but a class of metals, Eq. (4.9) is the appropriate relation
number of effects, and their interpretation, result- from which to determine FA. The quantities / and
ing from a complex electronic structure will be dis- ,Vuoi) vary slowly within a class of metals, with

. cussed in this section. The care which must be ex- the dominant variation arising from scaling with
ercised in any interpretation of the imaginary fre- bandwidth.
quency equations is exemplified by the "enhance-
ment" e, defined by Eq. (4.5). Evidently e, lies in
the range 0 < : e, :g 1. The designation "enhance- B. Impurity scattering and "Anderson's theorem"
ment" is appropriate since, when continued to the
real axis. the real part of this function gives the In the CDOS limit N. - N(EF), P, -0, ',
well-known DOS enhancement on the real axis vanishes, and the chemical potential is constant.
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26 GENERALIZATION OF THE THEORY OF THE ELECTRON.... 1193

The gap equation (4.6) reduces to the usual form CDOS expression, as given for example by Allen
and, for r-N(EFr-.o, the equation (4.1) for Z and Dynes.26 Ignoring for the moment corrections
does likewise. For nonzero r the static impurities to the kernel diagonal, the primary change is the
give a contribution to Z related to disorder replacement of the CDOS eigenvector 7, by .Vl ,.
broadening of the energy spectrum. Obviously this This replacement has no effect upon either T, or
has no effect on the normal state, since (in the the eigenvector, whose components are now N,.
CDOS limit) there is no structure to broaden. The This means that (at this level of approximation) A,.
gr-ninduced structure in the superconducting state, will be altered by DOS structure in proportion to
where the quasiparticle DOS is .N- . A similar correction to the gap occurs at

2 - -1/2 T < T€, and this indicates that the analytic con-
N(EF)Re'ca[w tinuation A(w) can be altered substantially 13

.
27 by

also is unaffected by the broadening since the energy dependence of the DOS.
equations for Z and A are uncoupled in this limit. The correction due to DOS structure to the pho-
This is a manifestation (indeed, a proof) of non contribution to Z. - 1, proportional to N, in

Anderson's theorem,25 which states that supercon- Eq. (4.11), tends to be canceled by N., while the
ducting properties (of CDOS systems) are unaffect- factor N, "1 multiplying (2n + 1) in the diagonal

ed by dilute nonmagnetic impurities. can be regarded as the self-consistent response of

The generalized Eliashberg equations above show A. to the DOS structure. It is this latter effect
that this statement of Anderson's theorem breaks which gives rise to much of the correction to T,
down when structure is present in the DOS, due to compared to the CDOS limit. The structure of
the disorder broadening of the underlying electron- Eq. (4.11) will be clarified further in Sec. V where

ic structure. Although r does not enter explicitly an approximate T, equation is discussed.

into the gap equation (4.6) (due to the energy-
conserving nature of this interaction), disorder V. DISCUSSION AND CALCULATIONAL
scattering can lead to important spectral broaden- RESULTS AT LOW TEMPERATURE
ing via Z, and conceivably to non-negligible spec-
tral shifts X. - . The effect on the gap and on A. How much DOS variation?
T,, is transmitted to the gap equation entirely
through the resulting set I.V, 1. The system of generalized Eliashberg equations

has been applied to Nb3Sn and Nb at T= T.
Technical aspects of the numerical solution are dis-

C. T =T cussed in Appendix B. For Nb 3Sn the corrections
to the CDOS results are substantial, both for T,

At T= T, (A, - 0) the alteration of the quasi- and for the self-energies A,, ao,,Z,, and Y,. Crys-
particle density of states due to the gap vanishes, talline Nb was checked as a possible fringe case,

where corrections might be noticeable if not really
a,,/(a~ +A~n )i/2_.. sgrie,, important. The DOS of Nb is characterized by a

and the expressions (4.1), (4.2), and (4.6) simplify large value of .V(EF)-m 10 (Ry spin)- with EF ly-
somewhat. The equation for the (infinitesimal) gap ing 20 mRy above a peak, and the energy variation
becomes linear and decouples from the remaining being described sufficiently well by a slope of
equations, which still must be solved iteratively for -200 (Ry Ispin)- I over a range of ±20 moRy
N,.. The equation determining T, can be written = ±x3 103 K around E F. The correction to T,
( Eq. (4.6) with e.-- 1] was found to be 0.4% (downward), with corre-

spondingly small corrections to the self-energies at
.+ ' T,. Although this correction is well below the ab-
0 solute accuracy of the Eliashberg equations as de-

rived (keeping only certain classes of diagrams) and

2n I y, J = applied (especially the treatment of the Coulomb
-6n,, [. /-+XX-7 JNn----0, interaction), it nevertheless represents faithfully the

10 " accuracy of the CDOS approximation in Nb and in
(4.11) metals with similar or less DOS structure near E-.

A preliminary report of the Nb.'Sn calculations has
where A,, =A,,,. Written in this form the T, been reported" and further results are discussed
equation is a straightforward generalization of the below.
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B. Approximate relations for T, pie, on the order of 1/2.
The average .V, multiplying jZ* is less straight-

In the CDOS limit T , is determined by a 2F and forward, since i has no frequency cutoff to make
1&*, or equivalently, a partial sum coverage. Numerical solutions3° '01

show that 4. approaches a negative constant value
[ (( for large n (for nonvanishing A*). Obviously

where a2F is described by a strength X and shape N. also approaches a constant average DOS value
function N. If both N. and 4, have approached their

asymptotic value at n =k <N, it follows that .,
given by

Generalizing the pioneering work of McMillan,N N,
Allen and Dynes-6 showed that, for widely varying N, - N A, / !V A
strengths and shape functions, this functional of g 0 0
can be replaced to high accuracy by a function in- k-
volving only two moments (ja1 g and W2 of g. N,, + +N. Aln(Ne/k)

o TAD(X a1  ) 
(5.7)

(5. A2 + I.ln(N/k)
One of the most useful applications of such an ap- 0
proximate T, equation is the extraction of k from is weakly dependent on the cutoff V. This cutoff
experimental data on T, and reasonable estimatesr9  dependence is artificial and arises from the incon-
of a08, a,, and u*. sistent treatment given to A'* in folding j9 down to

In the previous sections it has been shown that A . The energy integral leading to Eq. (4.9) does
the general functional form of T, is not take into account the full variation of N(E)

Tc =T ,j,;N(E,F]J, (.) whereas the "unfolding" to the cutoff N, in Eq.(3 (5.7) is taking this energy dependence into account.
where I is defined analogously to g. The form of It is straightforward to correct this discrepancy by
the gap equation (4.6), together with the work of generalizing Eq. (4.9), that is, by using the relation
Allen and Dynes, suggests an approximate T, (AS). However, the following approximation will
equation of the form suffice to illustrate some effects of DOS structure.

T (5Owing to the rapid decrease of A. with n and
Te =Te(x.,~lq~at 2,";N,,NpNlr), 5. the (2n + 1) factor in 4.,, the DOS average,

where N,, N,, and Na are averages over N(E). A . _ .
few general features of these averages will be noted NO(M)m 7 N.1. 1-. , (5.7)
here. 8-0

The average denoted N,, is that which should for small M "converges" (i.e., becomes stationary
multiply A. -)in the kernel diagonal in the approx- with respect to M) rapidly before the cutoff depen-
imation dence mentioned above becomes a consideration

and leads to the unwanted limit N. - N.. In a
, t-..- N, 3 (5.5) preliminary report'3 of this work applied to Nb3Sn

two -0 (also see below) the first term alone
'. Since X decreases as w. for u,, >>i, N,. will cor- N,(M O)=,V(rTZo)-Neff

respond approximately to a Lorentzian average of
N(E) over a frequency half-width ?i around EF was used in the CDOS theory, giving an approxi-
(actually ). mate value T eff which could be compared to nu-

In the off-diagonal terms the corresponding re- merical solutions of the full system of matrix equa-
placement is tions for T. In essence T f is given by (for F=-O)

.v Te 7fr= T."O(N pr, A,,*,,Nff") (5.8)ZXu'n ,m N& I X,,, "-m . (5.6)
, .S- -0 (although numerical solutions to the CDOS equa-

tions were actually used rather than the Allen-
However, since Sm decreases rapidly with increas- Dynes equation). Note that
ing w,., even changing sign for ,. < fl, N. aver.
ages over a smaller region than does .,,, for exam- 'T Zo 0. 85 -0.90w, /2
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26 GENERALIZATION OF THE THEORY OF THE ELECTRON-... 1195

2tion [T ( r)j can be incorporated into the analysis.
, A more realistic approach for interpreting experi-

24. / \TS mental data is to use a single average Neff, with
Nf =N) being a good choice, in the CDOS ex-

-A' pression of Allen and Dynes. This in effect is the
20 "/" usual practice, except that the value of Xeff=.Vf.

Sextracted in this manner may differ from the mass
enhancement value derived from heat capacity or

.. other measurements.
"14 'X Although the DOS average appropriate for an

,4 "\ "x% approximate T, equation given above differs in de-
12 N sN tail from that of Nettel and Thomas,9 the spirit of

\0- othe approximation is similar to theirs. The more
1 1 1 rigorous, but linear, approach of Lie and Car-

- -2 F- 0 1 2 botte 1 for calculating 6T, /SN(E) follows from theKp -Epo'*R,)

FIG. 2. Superconducting transition temperature T, of present formulation by calculating the correction
Nb3Sn vs Fermi-level position, calculated within dif- .T# arising from an infinitesimal variation of en-
ferent approximations. Full line, solution from full ergy E from a constant DOS given by
energy-dependent equations; dashed line, solution assum-
ing CDOS N(E)=N(EF); dot-dash line, solution assum-
ing CDOS N(E)=Ndf (see text). It could be of interest to study the effects of the

supralinear terms for a particular DOS function
for Nb 3Sn (T, = 18 K, Zo=2.7, w2 = 175 K). The using the present theory. However, the Lie-
results of this approximation are shown in Fig. 2, Carbotte results provide an important intuitive
where it is evident that T reflects the trends of grasp of the general behavior of STe/SN(E) as
the numerical solution quite well as the assumed well as a first approximation for numerical calcula-
value of E, is varied, although being - 1.5 K too tions.
large. The crude approximation 10 resulting from
the assumption N(E)=N(Ep) is seen in Fig. 2 to C. Defect dependence of T, and N(EF)
give a much stronger N(EF) dependence than actu-
ally occurs. It was observed in Sec. V B that experimental

For nonzero impurity scattering each DOS aver- data on Tj IF [i.e., T, versus defect concentration
age N. has its broadening half-width w.Z. in- ni, since r=,rnj I 12 from Eq. (3.7)] provide
creased by fN. [see Eq. (4.1)]. A low-order ap-

* :proximation can include this by increasing by
rd r N;.r each of the widths which determine (SI Nins_ .,s

N, Na, and N,., of which the former must be cal- 0s - om
culated self-consistently (at least in principle). The it
calculations described below result from numerical ==N-(E)/N(J , " 04

solutions to the full energy-dependent equations, o 5 -02

however. it-
. The quantities N,., N,, and N, offer a reason- - 0 1 " 2 "

able possibility of obtaining a realistic value of T, QM

without solving nonlinear coupled matrix equa-
tions. Unfortunately it is a monumental task to to

ascertain even an appropriate form of the approxi-
mate T, equation envisioned in Eq. (5.4), as this '.505
would involve full solutions for a wide variety of __, _, , ,_ ,____
shapes of N(E) and 1(w) as well as coupling -, 0 -40 -20 0 20 40 60 00

strengths X, ,r, and r. Worse, it begins to appear FIG. 3. Comparison of electron and phonon energy
hopeless to extract unambiguous information from scales for Nb3Sn. (a) a F() from tunneling data by
an experimental value of T, in the face of so many Wolf et al. (Ref. 32) and N(E) function calculated by
unknown parameters. The only compensation is Klein et al. (Ref. 5), shown on the same mRy scale. (b)

- that the behavior of T, with the level of imperfec- Same N(E) function on a scale of - 1 eV.
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1196 WARREN E. PICKETT 26

direct information on the energy variation of proaches the asymptotic limit T_-9 K whereas the
M(E). Calculation of To( r) has been carried out experimental values saturate at T,=--3 K. This in-
for Nb3Sn using the DOS function calculated by dicates that, for po > 75 Afl cm, the disorder is de-
Klein et al.5 For a2F we have assumed creasing the electron-phonon coupling a 2(W )

and/or hardening the phonon spectrum F(w), nei-
a F(w) =,V(aph)a F( ') (5.9) ther of which is included in the present theory

W;,,,= 300 K, with a'2F(wa) derived from tunneling which treats a"F as independent of disorder.

data by Wolf et al. 3, Both .N(E) and aF are The correspondence between defect concentra-

shown in Fig. 3 on the same scale to allow an easy tion and residual resistivity (r1 -pg) is not as sim-

comparison of their energy variations. For I!* the ple as Eq. (5.10) implies. It should be observed,

value ii" =0. 16 determined by Wolf et al. has been for example, that rl in Eq. (5.10) must be deter-

used in the form V(EF)i--0. 16. mined self-consistently from the relation
To compare with experimental data the defect- U -( U1F 5.13)broadening half-width r was related to the residual

resistivity p0 by where, as will be shown below, the r dependence

2 of V(r) is strong. Therefore, although r increases
po=4frr/f, (5.10) linearly with disorder, P is distinctly sublinear.

.l =(41re2/3)N(EF)vp, (5.11) However, the factor Ill in a suitably generalized
version of Eq. (5.10) also contains the factor .V(r)

S-with" fi ,=4.0 eV. The experimental data on so the DOS dependence of po cancels. As a result
p( T, )=p(O) has been converted to the "true" resi- the defect concentration dependence of p0 goes in-
dual resitivity pa by the use of the parallel resistor versely with that of vF, a result analogous to an
formula equivalent observation for the phonon-limited resis-

I I I tivity made previously by Allen.36 This result can
+ , (5.12) be written. P(0) P0 P.

p..= 150pilcm, since Weismann et at -4 have po=3Fe 2 v (F)j. (5.14)

found that po given by this expression, and not We find by calculation, however, that 41(r") c I/
• p(O), is approximately linear with damage-inducing V(r") (since ;( P) is constant to within 2%],

radiation dose. The theoretical prediction is com- which makes Eq. (5.14) numerically equivalent to
, pared to four sets" of experimental data in Fig. 4.

The calculation is consistent with experimental po,.-44r/fl(E F )JN(r)r . (5.14')
data for residual resistivities below 75 1 fl cm. For Conceptually Eqs. (5.14) and (5.14') are not at all

* larger disorder the theoretical prediction ap- equivalent and the former relation gives the correct

physical picture.

achoah & strongin In Fig. 5 the effective defect broadening (or
* .Curvitch at aL

-Orlando at aL
-P @- at al. Defect Broadening

o in Nb 3Sn

_ CDOS

Nb3Sn 
N(E)

b'a

A (oA0 Cm) 0 to Zb 30 40 50

FIG. 4. Calculated T, of Nb]Sn ifull curve) vs "true" r. (mRy)
residual resistivity po (i.e., from parallel resistor formula) FIG. 5. Self-consistently determined defect broaden-
compared with experimental data (Ref. 35). The theory ing width r (equivalently residual resistivity po)-full
is not expected to be accurate for large defect concentra- line-vs disorder r,,, determined from .V(E) shown in
tion (po> 75 Afl cm) since changes in a Fare not includ- Fig. 3. The dashed line gives the CDOS approximation
ed in the theory. r .ro,

48

'• ." -', . - '. " ', ," ', ,' .% ,," , . - , . .•* - ..* * "-. . " -. . . . . . -. • . ".- .. . ." .,
r" " """ " .. °... I 

" *
'. ' 

"  
"* . -: ' " -,". "- - " " - * -'* -""""" " " " "" "

I
M

, r ., • ,,a, , : . % : , _ a j ~ ~ .a t .t _. _t. .,l d ,.k "s'.'. . -.-- .



26 GENERALIZATION OF THE THEORY OF THE ELECTRON.... 1197

- Nb 3 Sn P0-0

o ) oo,0.0

> .......
5...

F4.6 Efcie est*o tt .(F vsrsda .[G my

* 1.8 3!1-
40~

r,~ An cm
-N(Ep)vp= cons~tant

0 20 40 60 so 100 120
,.(4cL0 cm) a -

FIG. 6. Effective density of states 5(r) vs residual ENERGY (mRy)
resistivity po for NbSn. Solid line: theory, including e- FIG. 7. Effect of defect broadening on the V(E)
ph interaction with ) = 1. 8. Dashed line: theory, no e- function shown in Fig. 3. Vertical lines indicate the
ph interaction. Symbols: experimentally inferred values respective Fermi levels, determined from conservation of
(Ref. 38), assumed two different constraints on N(EF)vF electrons. Circles denote Vt r)=,N(EF). The best sam-
with varying disorder. ples of Nb3Sn have residual resistivites Po= 10 Mn cm.

which precludes extreme energy variation of the density
of states.

equivalently, po) is plotted versus
ro__N(EF)F=7rjN(EF)1t2J .are in slightly better agreement with the empirical

values obtained assuming N(EF)vF=const [howev-

Owing to broadening of the peak in N(E) near EF, er, the argument given above in the discussion of
r increases more slowly than that for a CDOS T,(po) indicates N(EF)vF)=const would be the
N(E)mN(E,), shown by the dashed line. Howev- proper assumption]. The analysis of Ghosh et al.
er, for Po 0 50 os ncm, r is approximately linear of course also needs generalizing along the lines of
with defect concentration, just as the data of the present theory. It is clear from Fig. 6 that ex-
Weismann et al.34 for po are approximately linear trapolation from the existing data to obtain a "per-
with radiation fluence in this range. fect crystal value" of N(EF) may not be valid,

The behavior of the factor of N(EF) in the since a kink may occur at or below 10 /fl cm.
* linear specific-heat coefficient , versus residual The degree of broadening of the full N(E) curve is

resistivity may provide more direct information on illustrated more clearly in Fig. 7. A peak of width

N(E) than does T,(p;), since only a straightfor- 3-4 mRy or less is virtually lost for a residual
ward Lorentzian broadening3" of N(E) is involved, resistivity of 10 jfl cm, which corresponds to the
In the few cases which have been studied systemat- highest quality samples of Nb3Sn. Such a large
ically, however, y has been inferred instead from perfect-crystal value of N(EF) implies a tendency
the temperature dependence of the upper critical toward defect formation, which serves to lower
magnetic field,3' which involves independent infor- N(EF) and thereby decreases the number of elec-
mation (or assumptions) about the values of ma- trons at high energy, resulting in a more stable ma-
terial constants such as X, vF, mean free path 1, terial.
etc., as well as an assumption about the behavior
of band-structure-related quantities with defect
concentration. The resulting values of 7(r) for D. Defect dependence of T,:
"'b3Sn obtained by Ghosh et al.,3 resulting from Previous studies
the assumption that N(EF)vF, or secondly, uF it-
self, remains constant with increasing disorder, are There have been several previous applications of
compared in Fig. 6 with that calculated from the broadening to account for properties, especially T ,
DOS function in Fig. 3. Calculated values of of A 15 compounds. Most of these have been
9(r) are shown both for the (usually assumed) phenomenological, as typified particularly by the
case where only defect broadening is taken into ac- work of Mattheiss and Testardi. 39'  The studies

count (dashed line), and the more general case in of Aleksandrov, Elesin, and Kazeko,4 and Huang,
which e-ph broadening is included (full line). Chu, and Ting," however, have used a more fun-

The calculated values including e-ph broadening damental approach. Both groups studied T, using
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a weak-coupling formalism and model DOS func- it is very difficult to understand the rather large
tions to illustrate the effect of defect broadening of T, and measured a2F of highly disordered Mo
N(E) upon T,. (Kimhi and Geballe, Ref. 46). Ruvalds and

Aleksandrov et al.' purported to explain the sa- Soukoulis' 7 have attributed most of the high T, (at
turation in Nb 3Sn of T, at 3 K for high defect least in Nb3Ge and V3 Si) to an acoustic plasmon
concentration solely in terms of DOS broadening. mechanism which decreases in strength as the elec-
The present generalized theory and realistic DOS tronic spectrum is broadened. However, there is
function shows saturation at -8-9 K if only de- strong evidence from tunneling measurements that
fect broadening is taken into account. In addition, the electron-phonon interaction itself is strong
this limit depends on the DOS function on only a enough to account for the high T, in V3Ga (Ref.
large ( - I eV) scale, for which all band-structure 48), Nb 3Sn (Ref. 32), Nb 3AI (Ref. 43), and Nb.Ge
calculations4'5 give results similar (modulo (Ref. 44), so there is now little reason to except
5 - 10 % bandwidth-type differences arisings from the acoustic plasmon mechanism to apply to any
different exchange-correlation approximations, etc.) A 15 compounds.
to those of Klein et al. 5 which were used here. A
similar limit (-7 K) follows from the DOS
broadening study of Soukoulis and Papaconstanto- VI. NORMAL-STATE SPIN SUSCEPTIBILITY
poulos,42 if T,( 10 jfl cm) is normalized to the ex-
perimental value of 18.6 K. To understand the 3- In Sec. IV it was shown that in general T, does
K saturation it is necessary to invoke a weakening not provide a measure of N (EF), but rather of an
in the strength of a2F by approximately a factor of average of the DOS over a region irTcZo or larger.
2. This weakening may result from weaker cou- In this section we investigate what information
pling or harder phonons. In fact, both of these ef- about N(E) is contained in the spin susceptibility
fects have recently been observed in tunneling stud- . For the sake of generality the full k depen-
ies of Nb3AI (Ref. 43) and Nb 3Ge (Ref. 44) with dence of the expressions will be retained as far as
varying degrees of disorder. possible.

Huang et al." assumed a singular one-dimen-
sional DOS and obtained results similar to those of
Aleksandrov et al. and the present results. They A. General considerations

concluded that, due to DOS variation near EF, a
high T, compound can have a small value of The magnetization M is given by the difference
N(EF). A look at Fig. 7 shows-that this cannot be in number of spin-up and spin-do.an electrons
the case for A 15 compounds with appreciable times the moment per electron,
amounts of disorder, as in all samples of Nb 3Ge,
Nb3Ai, or for that matter, Nb3Sn. For po= 10 M( ,n=YB(N,.t
pflcm, i.e., a clean Nb 3Sn sample, the broadening
half-width r is 1.6 mRy=250 K, which is roughly - (6.1)
equal to the maximum phonon frequency fl. Thus al
,(a), which determines T, (see Sec. V B), cannot
be much different from the value of N(E) at EF with
[ (g() in the present notation]. A very low Po,
high-T, crystal may have a relatively low value of N,,=T G,(k,ia.)e lR (6.2)
N(EF) if a large peak lies within -fl of EF, how-
ever.

Other mechanisms involving defect broadening and
have been proposed to account for the degradation
of T, by defects. Meisel and Cote"s suggested that G 1 (k,io ) = ioj. - (Ek - -- aH)
an assumed inability of phonons with wavelength
longer than the electron mean free nath to scatter -Z ,k,i ,) (6.3)
electrons effectively (and. hence bind Cooper pairs)
could account for the defect dependence of high T, where H is the magnetic field. Luttinger" has
compounds. This cannot explain the increase in T, shown how this -self-evident' exact expression for
with Po in low-T materials,6 however. Moreover, M can be derived diagrammatically.
if this "phonon-ineffectiveness' concept is accepted The measured zero-field susceptibility is given
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JP

by

X.P_ IM T V.IM 0 IMI

*=, 4TY -oGV (k- oi.)e,', dG;'(k'iai.) (6.4)
A~nr I d(Ajaff) IH-O _

-2#T G(k,iw.)(+Y.,(kw )] (6.5)
• 1 k,a

where we have used Eq. (6.3) and the expansion

Z" ,(k~iio. ) = Z k,i ) _- GH Z,( k~ial. )+0(H2 ). (6.6)

Equation (6.5) is an exact expression for Xp in terms of the renormalized Green's function and the field
derivative of the self-energy. As can be seen from Wolffs" diagrammatic theory for X.,P, the G2 term in

* Eq. (6.5) arises from the simple, but renormalized, bubble diagram in Fig. 8(a), whereas the G'1' term arises
from all vertex corrections (i.e., diagrams with other than self-energy insertions to G). With I given by the
diagrams of Fig. 1, we can write, introducing J, = -dG'l /d(tso H) I =O=J-, =J,

J d T , I-k,k;doT -iw. )G.(k',iW.,) (6.7)J~, o, ==1 -d(A #aH) tn

"- = 1 + T . X.enkk';iw. -ij,,)G 2(k',i.,)J (k',ijco.)
ka'

-T . d - o..
-T " d ( dH ( k,k';ioJ -i)..) G(kio..) . (6.7')

The second term in Eq. (6.7') describes "ladder- a large class of diagrams for Xp which are not in-

type" vertex corrections (see below), with a typical cluded in Eq. (6.7) by virtue of the approximation

graph shown in Fig. 8(b). The third term repre- for I from which this equation is derived.

sents field corrections to the effective electron- For T--0 Luttinger.4 has shown that, as long as

electron interaction, with the lowest-order phonon $a) [1(w) a-m (w)-i aw)] vanishes as fast as w

- contribution shown in Fig. 8(c). There is of course as o--0, M is given b)

M =- Boe(;- S,,) (6.8)

where e is the unit step function and X6,, is the

-0 "renormalized energy given by

, 6,=-,,-m m,,., ,&- , . (6.91
The susceptibility is given by

kv dH
U,:''" , e (6.10)I

The derivatives

FIG. 8. Susceptibility diagrams discussed in the text. Vk,=
For simplicity the renornalized Green's function is - 8,rn (k,w) , - k_;V,6k,
denoted by single full lines rather than double lines as in
Fig. 1. Other notation is as in Fig. I. (6.11)
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d6k , dEk., ak 6, - =[7j, -km 0 tk.0)]/(1 -;.k *6.13)
dH - dH - dkk, 8mk,O)/ddadH ---, t 8m ,l-,-k

-a 'm ik' )!" '- dH dH A8 la tH)-
f6.)

(6.12) :6.l4
where X-k = -3,, Ik,w) ',=o is the usual mass re-

at the Fermi surface 4 k=g become normalization. Equation 16.10) becomes

-. ', T =0 ) =2,u .V ( .) I ~H -_(6 15

Here Vk = Vk and Vq =Vk 6k, and the angle itein phonon spectrum of strength X, where it was
brackets ( ) denote a Fermi-surface average, found that, with increasing X, -dfidE becomes

Equation (6.10) expresses Y,, in terms of a renor- ever more long ranged, resulting in considerably in-
malized density of states, including mass enhance- creased averaging over N(E) as well as a greater
ment from Eq. (6.9), and a susceptibility per state variation of ;(T) given by the isotropic form of
-dtk,/dH which also includes a mass enhance- Eq. (6.2):
mert factor (Eq. (6.14)]. Equation (6.15) expresses
Y', in terms of the bare factor N() in which the ., 2fd~f(E -)N(E) (6.2')
total mass enhancement cancels out. That the For even moderate values of k, of the order of 0.5,phon n m ss e han eme t ca cel ou was fir t f differs significantly from f0 and results in an
recognized by Quinn and Ferrell,5s who interpreted erinifecatlro fep ande sults in an
the cancellation as the result of each of the spin- t
s b c n o s o i(6.18). Bhatt 3 has found previously that a low-isplit bands carrying its own mass renormalization temperature expression leads to an enhancement

Reverting to the isotropic approximation for G. (I +) of the T dependence of X.

the relation for the thermal distribution function Returning to the expression (6.7) for the en-
hancement J, neglect of the field dependence of the

f(E -)=T G(Ejiw.)ei ''  (6.16) interaction leads to

J Uwd~ I + T Xenfiia -iw.')
can be differentiated to yield a

_ df(E - ) = -T G2(E,jiw.) ,, 6.17) X fdEN(EGZ(E,ia.,)JiW.,)
dE '

the convergence factor being unnecessary here. (6.19)

Equation (6.5) for XP can therefore be written in the isotropic approximation. As was the case

. (T).2.fdEL df(E-,) for the self-energy in Sec. I1. the (assumed) in-

dE dependence of -ftt on Ek and Ek' leads to an E-
independent J. Also as was found for 1, the dis-

""×N(E)[I +Z-'(E,T)] , (6.18) tinct frequency dependences of the Coulomb, pho-
non, and defect interactions lead to different"; characteristic behaviors for J.

with Z'(E,T) being defined from Eq. (6.5) by this

equation.
• % The crucial feature of this expression is that in- B. Coulomb interaction

teractions can alter f(E) drastically from its free-
particle counterpart In the presence: of only Coulomb interactions (in

fo(E) exp(EIT) + the approximation of Secs. 1I and III) .f is essen-
tially unchanged from f0. In the range of interest

The behavior off has been presented elsewhere: in Eq. (6. 18). of the order of -,,T. the frequency
for the case of electrons interacting with an Ein- dependence of the screened exchange interaction,
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which will be denoted as usual by I, can be (6.20), Eq. (6.18) becomes the usual Stoner-en-
neglected. Equation (6.19) becomes (J j =J) hanced expression for Xp-

S(EC. Interaction with defects::. ~J 1 l+1 f dE N dfE (E)J
f dE (Defects drastically alter the occupation of crys-

talline eigenstates, even at T =0. Assuming a con-

= 11/ -INef( )] , (6.20) stant density of states, it is straightforward to
show that f is given (in the dilute limit) by the
convolution of fo with a Lorentzian of width

where r =N(E,)f:

_____ (Eir" N,(C)= f dEf df(E-) N(E) (6.21) f(E)= f dE'fo(E') (E-/E')'+F2  (6.22)

If N(E) varies on the scale of N(EF)F, r must be
is the effective density of states at " at temperature determined self-consistently as discussed in Sec.
r. With the enhancement J = I + V given in Eq. V C.

I

Defects give rise to a susceptibility enhancement given by
J~ia,)= I +(r/f)JfdEN(E)G2(E,i, J(i0, )- 1/til -I1 (ia, 7], (6.23)

where 1i is given, after partial integration, by

dN(E)l iuw.)= -( /lr) f dE-E G (Eiw.s). (6.24)

Clearly no enhancement occurs for a constant N(E). To provide an estimate of the magnitude of this

correction we evaluate the lowest order correction 6X t, pictured in Fig. &W,

= -- 4 (l'/ir)TX -- T X G(k,iw,)'G(k',i,,) 2

k'dEk dE,,.
a dEf d 1 I_ T [G(k,i.)-G(k',w.)]e'"
kk. dE, dE, Ek,-E

/ d d f((6)-2(E).)
(." , dEk dEt. Ek,-E (6.25)

The k dependence of the self-energy has been N'(E)=AN(EF)/W, (6.27)
neglected in writing the energy denominator as
E.-Ek. Using the isotropic approximation and where A is a constant of order unity and W is the
performing partial integration in each variable bandwidth, leads to the result
gives 8Xt_=2pN(EF)A n2 r

ir W (6.28)
6X? "=2,4- f dE N'(E) Thus defects may lead to a nonvanishing but usu-

ally small contribution to the Stoner I. For com-
× fdE'NEf(E) -f (E') pounds with several transition-metal atoms perE'-E cell, however, W may represent a subband width

(6.26) such that F/w is not small, in which case it is
necessary to do the integral in Eq. (6.26) more

We consider first the case where N'(E) carefully. Nevertheless. we expect this contribu.
,dN(E)/dE can be taken to be constant in the tion to X generally to be secondary to the change
important range around EF. Setting in N(EF) in the simple bubble term due to defect
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broadening. Finally. it should be noted that this addressed here.
defect contribution to Y,, need not always be posi- Previous treatments sS " of the effect of e-ph in-
tive as in Eq. :6.2S). If EF occurs at a peak. or a teractions on the susceptibility have approached
dip, in N(E). in which case N'(E) and .V"E') in the problem from the viewpoint of a phonon con-
Eq. (6.26) have opposite signs in the important re- tribution to the Stoner interaction parameter I.
gion of integration, the correction to YP may be These treatments have all assumed a CDOS sys-
negative. tern, however, and in the general case it is not clear

that this -Stoner r, viewpoint provides a useful
D. Interaction with phonons approach. To see this, consider the Eq. (6.7')

It is not generally recognized that phonons can neglecting the field dependence of the interaction:
seriously alter the thermal occupation of crystalline The frequency dependence of . from the e-ph in-
eigenstates if the e-ph interaction is even moderate- teraction is essential to the correct evaluation of
ly strong. It has been shown elsewhere5 ' that e-ph this term and results in a frequency-dependent
interactions shift the spectral weight of low-energy enhancement J(iw,). As a result J cannot be writ-
electronic excitations drastically, and as a result ten in the simple (constant) form (6.20) as is the
the thermal occupation f E) broadens, correspond- case for Coulomb interactions, nor even in the still
ing to occupation of higher-energy bare electrons simple (but frequency-dependent) form (6.23) as for
and holes. The resulting modification of the first defects.
term in Eq. (6.18) can be substantial. Since this ef- We content ourselves here with studying briefly
fect of the e-ph interaction on f(E), as well as the first correction to XP from e-ph interaction
many of its implications, is described elsewhere,52  (beyond self-energy insertions to G). This correc-
only phonon effects on the susceptibility will be tion is shown in Fig. 8(e) and is given by

.ph -TGi k )X(k k; a- ik)G(ki,ito ). (6.29)
kt
k'xf

In the isotropic approximation this becomes

8X4,,, " 1-. = Z~iT- ?(iw-iw.i)fdE fdE'.'(E)G (EIi)N'(E')G(E',iw.). (6-30)

anR

If N(E) varies on the scale of fl, no further sim- suggesting that a ladder summation of such contri-
plification of this expression is possible. In partic- butions would lead to a contribution to the Stoner
ular, 641, 1. is not bounded in magnitude by any I given by

small parameter and it may be of either sign.
Since this contribution to .1s, is the first [Fig. 8(e)] kflE W
in the e-ph ladder series leading to a generalized 4,ph W - In--W (6.33)

, Stoner enhancement, the e-ph contribution to a

Stoner r" may be large and of either sign.
If N'(E) can be approximated by a constant Oscillation in v'(E) in transition-metal compounds

N(EF)/W over the range E,- W to E, + W, and is likely to severely reduce the dependence of be
is negligible otherwise, Eq. (6.30) can be evaluated on the cutoff W, so the net result is likely to be
for an Einstein phonon spectrum a 2F(dO
=(kE/2)&o.- flEt). The energy integral gives It is notable that Eq. (6.33) is of exactly the

same form deduced by Fay and Appel" from the
fdE.V'(E)G(Eica) same diagram without invoking the isotropic ap-

'-/ n(proximation used here. Fay and Appel also em-';"rr -.- [N (Ep /W1sgnw, (6.31)
%, phasized that other diagrams may give phonon

For W >> fl the frequency sums lead to the result contributions to Y,, of the same order as that re-
1 suiting from Eq. (6.33). Although the contribution

.-8 gI', 2M2,(Er) J- I W (6.32) (6.30) to Y,, is not bounded by any small quantity
• ,,.ph t- . I 4W fl ' like n1IW, there is still no assurance that other di-
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agrams will not give importt contributions. Eq. (6.30) through Ndf will be necessary for a
However, Eq. (6.30) has the advantage that the more quantitative theory.
electron Green's function is dressed by phonons, VI. CONCLUSION
implicitly accounting for an infinite subset of dia-
grams for X W A generalized formulation of the Eliashberg ap-

Kim,56 taking another point of view, has con- proach to the electron self-energy has been devel-
sidered the magnetic field dependence of the pho- oped which is valid for crystals for which the elec-
non frequencies arising from changes in electronic tronic spectrum varies on the scale of phonon fre-
screening of the ion-ion interaction. The change quencies. The formulation has been kept on the
AwQ depends on the spin polarization, which may imaginary frequency axis where it is numerically
be Stoner-enhanced by the Coulomb interaction, tractable, and further numerical application of the
Kim finds the result that the phonon contribution theory to A 15 compounds will be presented else-
to I may itself be enhanced by the same factor, where. Although there is no difficulty in extend-
thereby greatly increasing the importance of I,.h ing the formalism to the real axis,12'60 the resulting
for nearly magnetic metals. Figure 8(c) gives the calculational difficulties make this approach unat-
lowest-order diagram which arises from field tractive when detailed results are wanted.
dependence of the phonon spectrum. Recently The present generalization of Eliashberg theory
MacDonald and Taylor" have suggested that re- proposes a system of equations for describing the
finements of Kim's theory will not lead to correc- superconducting onset at T, as well as the gap and
tions as large as were envisioned by Kim. renormalization functions below T,. Calculations

at and below T, have shown that tunneling spec-
tra 13

,
27 as well as thermodynamic behavior6

0 can be
E. Combined effects of interactions significantly altered by DOS structure. In addi-

tion, it is proposed that the self-consistent ap-
A realistic calculation of X, requires that all proach of Eliashberg be extended above T, to

three of the interactions discussed above be taken determine the normal-state electronic self-energy.
into account simultaneously. The ladder diagrams, This theory lays the foundation for a more unified
e.g., Fig. 7(b), can only be fully included by a nu- picture of the relationship between high-
merical solution of Eq. (6.19), and corrections temperature superconductivity and the anomalous
beyond the ladder approximation present additional normal-state behavior of A 15 compounds, as in the
difficulties. It might be expected that a reasonable conclusion that the temperature dependence of the
first approximation would be to retain only the susceptibility is increased substantially by the
Coulomb part of drr in Eq. (6.19) but include de- strong electron-phonon interaction.
fect and phonon contributions to G. The set of di- The satisfying agreement between the calcula-
agrams included in this approach is typified by the tional results discussed in Sec. V and the experi-
Coulomb ladder diagram of Fig. 8(f), and the cor- mental data indicates that (1) the present proposal
responding contribution to X.1, is given by for the self-energy (Fig. 1) is adequate at low tem-

perature, and (2) the DOS for Nb3Sn calculated by
Xp=2#jNff()/[1 -INT( )], (6.34) Klein et al. is realistic. The disagreement between

the theoretical and experimental susceptibility is
with Nff given by Eq. (6.21). certainly too large to be ascribed to an incorrect

The results of the application of this expression, theoretical DOS function. A conceivable source of
with I calculated from local-density-functional this discrepancy is that this ansarz for the self-
theory, have been described elsewhere."' It was energy is inadequate for temperatures approaching
found that, although the temperature dependence the Debye frequency; it is known (see Allen, Ref.
was qualitatively similar to the data of Reywald 21) that even in CDOS systems there are further
et al.,59 both the calculated absolute magnitude adiabatic corrections to X which cannot be shown
and T dependence were only - 15% of the experi- to be small. However, I consider it more likely
mental values. The orbital susceptibility can cer- that the expression (6.34) for X, is insufficient.
tainly account for much of the discrepancy in An important area which has not been addressed
magnitude, as well as for some of the T depen- in this paper is the normal-state specific heat C.,
dence which arises from the variation of with which has been used often to extract empirical
temperature. However, it seems likely that disor- values of N(E.). Let us assume, as the simplest
der contributions to X,1, other than those entering situation, that the specific heat can be divided into
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electron and phonon contributions, as was shown the measured specific heat can be used to deduce
to be the case for CDOS systems by Grimvall. a' detailed information about variation in N(E).
Generalizing Grimvall's general relation Eq. IA7" ACKNOWLEDGMENTS
along the lines of the present theory leads to addi-
tional contributions to C,., due to DOS variation. It is a pleasure to acknowledge numerous helpful
arising from the temperature variation of and of discussions with B. M. Klein on various aspects of
uj). GrimvallI has already concluded that C,., this work, discussions with D. A. Papaconstanto-

is "far from linear at Tz-T,*" for certain strong poulos and C. M. Soukoulis on disorder broaden-
coupling superconductors. In addition, many A 15 ing, and technical assistance by A. Koppenhaver.
compounds are known to have highly anharmonic Helpful discussions with L. J. Sham and P. B. Al-
phonons, which complicates the identification of len while at the Aspen Center for Physics are also
C,.ph. Thus much theoretical work remains before gratefully acknowledged.

APPENDIX A

The usual expression '" for the Coulomb pseudopotential U generalizes in the present case to

V( k,V ;iw. )U(k",k';O)
U(kk';O)--(k,k';O).,i] 2 +Z(k,,. 2( +A(k,I,). (A)

The treatment to this point ignores the possibility of spin fluctuation contributions and also assumes1sl that
V is essentially positive, eliminating the consideration of enhancement of superconductivity by plasmon or
exciton mechanisms. In principle, the dynamically screened Coulomb interaction P includes Coulomb renor-
malization and Coulomb vertex corrections.

For the "frequencies" w, and energies Et,. of interest in Eq. (Al) it suffices to ignore the self-energy
corrections to the denominator. Performing the energy surface averages leads to

N(E") ' ",).A2

(E,E')-(E,E')+ T f dE"A(E,E") NE ' + (E",E). W)

To make contact with later notation/A O(E,) L (,,pE ) N'()p )!(awp )
a U(EE';O) and A(EE') a P(EE';O) have been
introduced, and also the frequency dependence of t.JV(Wa,)ln(Wa,,,/0), (A6)

7- P has been ignored.
Assuming further that where V(wJ4) is the mean DOS over a region

{ h 'Icp EF±w and (aV,,') (introduced by AllenU"1 ) is
the function L (o,d') with N(E) replaced by unity.

S oterwise(A3) In the (strict) CDOS limit ,V(wj)-.N(E), the

and that N (E) vanishes for E >(a,, one finds usual expression

1 1A = I IAE + L (Ua, w ), (A4) I /,u I /p + In(owpl Iwa) (AW)

where is recovered, where 1 = N(EF)j and j"
V dE N(E) =N(EF)A*. However, the CDOS limit of Eliash-

L (awmPI)- a , - dE 4- -*, berg theory applies if .V(E) is approximately con-

stant over the range Ec: w, in which case a more
(AS) precise expression for/"* is given by

For a specific model of N(E), L can be evaluated !//I* = /A/+ f(Wrs) /N(EF)]ln(ap/ol e ) . (k8)
explicitly. Given the level of approximation lead-
ing to Eq. (A4) however, it suffices to note that This relation is discussed further in the text.
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APPENDIX B subsystem to the 2m x 2m subsystem, the assign-
ment

The calculations described in this paper require
the self-consistent solution of the N, X N, matrix JNJ1 .= N- 1  m<j52m (BN,)
equations (2.5), (3.12), and (4.1)-(4.3). Two tech- PjIp m <B
niques used in the present computations will be
described briefly here. was made. A search for more sophisticated extra-

These equations have the feature that the low- polations of these functions did not result in signi-frequency (small h a) rows and columns are in ficantly more efficient solutions.
A crucial step in attaining reasonably accuratesome sense more critical for obtaining convergence solutions to this system is finding a procedure for

than those of larger frequency. It has been found
that the technique used by Allen62 of using the function g0 , for instance, gives rse to the Fermi-

solution of the m Xm subsystem as an approxi- Dirac distribution function g s e

mate solution of a larger subsystem provides an ef-
ficient method of providing an iterative solution of fo(E)= T j G0(Eiw )ei 0" (B2)
the system of equations. The sequence m = 1,2,
4,8, . . . N, used by Allen has been used here,
with N, = 128 for all calculations described in this only after an infinite summation; truncation of the
paper- frequency sum in Eq. (B2) at any point leads to a

The only arbitrary assignments in this procedure function which is nonexponential. In the present
occur in setting initial values of N, and P,. The calculation ; has been evaluated as follows.
iteration is begun by setting No=jAT(EF), P0 =o, For the m Xm subsystem, m = 1,2,4, ... N,
then calculating Z0 , Xo, , and 0)( 7, the first we make the definition
approximation to 7) (see below). Then N o wrid Z=AjXj= 0, j>m. (B3)
P0 are recalculated until self-consistency is ob-
tained. In proceding from the solutions of m x m Then Eq. (2.5) can be written

N-2T E f dEN(E)ReG(Eaiw;C)e"'"

=2TRe f dEN(E) Y {Go(Ei ,; C)+[G(Eiw;C)-Go(Eiw;r)]I

=2 f dEf 0 (E-C)N(E)+2TRe f dE N(E)[G(E,iw.;C)-G0 (Eiw;,; )]. (B4)
-,0

The relation G(E,-io.)=G(Eiw,)* has been used in writing the sums over a. >0 only. The dependence
on C, the interacting chemical potential has been displayed explicitly to emphasize that introducing
Go(E,i*.;C) and fo(E -C) is merely a mathematical method for evaluating the infinite summation. In par-
ticular,

2 f d fo(E - I )N(MO.N,. (B3)

Finally, the noninteracting chemical potential Co( 7', determined by

N,= f dEfo(E-o)N(E), (B6)

was used to write the equation determining ; as

2TRe f dE N(E)[G(Ei01.;C)-Go(E,iw.; )] =2 f dE [fo(E -Co)-fo(E -C)]N(E). (B7)
6-0

This equation is solved iteratively for C at each step of the iteration of the system of equations.
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Renormalized Thermal Distribution Function in an Interacting Electron-Phonon System

Warren E. Pickett
,Vaval Research Laboratory.. Washing,,. D. C. 20375

(Reoeived 1 December 1981)
The electron-phonon interaction in used to demonstrate the important effect of inter-

actions on the electronic distribution function at finite temperature. It is shown that the
usual picture of "thermal (Fermi) smearizW" is a greatly oversimplified one. The dig-
tribution fmction resulting from an Einstein spectrum with various coupling strengths Is
presented and interpreted, and an exact expression for the spin susceptibility Is used to
illustrate the utility of this novel viewpoint for thermodynamics.

PACS numbers: 65.50.+m, 63.20.Kr, 71.38.+i

One of the primary characteristics of a metal thermal expectation of the number operator i,.
at a finite temperature T is that the crystalline For T >0, f is given in general in terms of the
electronic eigenstates (labeled by index k) of en- thermodynamic Green's function G by the rela-
ergy E, are occupied according to a thermal dis- tion2
tribution f(E,,). Almost universally in the theory
of metals this distribution is taken to be that of f(E,)-T G(k,iw,)expiw, (1)
nomnteracting fermions, i.e., the Fermi-Dirac " '"
distribution fo(E ,). TypicalLy this assumption ap- where w, a (N + 1)iT and 77 is a positive infinites-
pears as a thermal broadening ("Fermi smear- imal. (In our units X a ks = 1, and for simplicity
ing"), given by -fEW)/dE, of some quantity over an isotropic approximation for electrons will be
a region around the Fermi energy E F. The effect used.) It is easily verified that (I) in the absence
of interactions, If included at all, Is not intro- of interactions, f-f,, and (ii) by converting the
duced into the occupation function. For systems sum to a contour integral fcan be written
where the density of states (DOS) function N(E) f(E) - .. dwf(w)A(kw) (2)
varies sufficiently slowly near £ F thermal averag-
lg is expected to be insensitive to the actual form in terms of the spectral density A. Evidentlyf
of/. For varyng DOS systems, however, of =f, if and only IfA is a 8 function at wmE,. When
which theA15 class of compounds provides the A is broadened by interactions, f can differ con-
canonical example,' the understanding of their siderably fromfo (a result not often stated in
anomalous thermal behavior may depend critical- quantum statistical theory texts), as I now ex-
Ly on the proper description of f and dig4S. plcitly demonstrate.
Two questions arise: What Is the effect of in- For simplicity let us initially consider a con-

teractions on the thermal distributionf, and is stant-DOS electronic system interacting with an
our understanding of thermodynamic properties Einstein phonon spectrum with EP spectral func-
clarified by a viewpoint which includes nterac- tion a2F given by
tions inf? In this paper we use the example of a2F(w) - 0Ix/2)6(w- 0), (3)
the eloectron-phonon (EP) interaction to show that
f, and thereby the interpretation of thermodynam- where n is the Einstein frequency and X is the EP% ic quantities, can be radically altered by Interac- coupling constant. A straightforward calculation
tions. of the electronic sfh-energy z iM - ir on the

The distribution function AVE I) In defined as the real axis gives, with energies measured relative

M M (+ ,/2)o - W) (( 1 sn( ). (4)

oHere and no denote the digamma and Bose-Einstein functions, respectively. The spectral density is

Work of the U. S. Government
1543 Not subject to U. S. copyright
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given simply by ( chemical potential) havior may occur even for a realistic spectrum
at lower temperatures. General features of-t'

A -Imw- -1)- ,(w) "(6) include these: (a) at high energy E -C; -> n it
decreases as a Lorentzian of width r = (vX/2)[1

In Fig. I I display M (w) and r (w) for several + 2no(Q)j rather than exponentially as does -to',
values of T. Spectral functions at T =0 have been (b) at high T 3 f2, -f' is essentially Lorentzian
studied previously by Engesbeg and Schrieff er3  [r . ru t,(92)] everywhere, and (c) the behavior
and by Shimojima and Ichimura,4 who find that, at T =0 is as given previously by Shimojima and
even for IE, -E F% a, spectral weight is spread Ichimura4 : f possesses a discontinuity of (1 +)'
over a region of several times n around E F. At at C, which indicates that the Fermi surface re-
T > 0 this spread is further increased because of mains sharp, and -,f' has a 0-function contribu-
the Increasing width r(w) (Fig. 1). Neither of the tion of corresponding amplitude, with the re-
previous studies have noted the affect of EP in- maining weight X/(1 + A) displaced over the range
teractions on the distribution function.

The change int due to EP Interaction is repre- -,

sented most easily in unitless differential form .(a) T=O
- TdfdE a -f'. The results, for several values - ,
of T and A, are presented In Fig. 2 for E >C t O.
[Note thatf'(E)-f'(-E).] At T=O Fig. 2(a) in- '. g
dicates that increasing A leads to the displace-
ment of weight in -f'(E) (i.e., occupation of bare o ...

electron and hole states) from the region JE -C I
S20 to the higher excitation energy tails. At T 0 2 4 E/T6 10

0 0/2 [Fig. 2(b)] the behavior is similar. How-
ever, as the frequency dependence of Z becomes
sharper at T << 0 (Fig. 1), qualitatively new be- (b) T=Q/2

havior-negative weighting near C-can occur at e

low energy, an shown in Fig. 2(c) for T =12/4. -1
This unusual behavior is exaggerated by the En-
stein spectrum used here, although similar be- "

0 3 6 8 10
E=M-i', Einstein Spectrum E/T

.. 4, ...n - "

C () T=Q/4

- S . ...........................
.5.Q

'V'. 06-' 08 -FG .Tedrvtvef E TfE/Eo hoo

ow a

0 2 4 6 S 10
17 E/T

1 ~FIG. 2. The derivative -f'(E) -df (E)dE of the'
0L 2 3thermal distribution function f calculated from Eqs.

(2) and (6) and the sell-energies of Fig. 1., for several
values of A. The dashed line shows -f'( -f G') in the

FIG. 1. Eleotron self-enargy Z (w) m) -m w) for absence of electron-phonon interaction (A - 0). Note
an EMostein spectrum at energy 0, for several temper- that interactions broaden the thermal distribution oo*-
atures r. The self-energies are proportional to X and siderably evon for modest values of A at all tempera-
arra shown for X- 1. tires.
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:E -EF1 -An. pansion of the thermodynamic potential, which is
For systems in which the electronic spectrum accomplished most concisely6 in terms of G (rath-

varies on the scale of fn, I becomes a functional5  er than G,), on the other. The conservation of
of N(E) and the computation of f becomes corre- electron number Nei, for example, is given nat-
spondingly more involved. However, because of urally as the thermal redistribution of crystalline
the substantial widths in the spectral density states:
peaks for finite w and/or T, the qualitative be- N fdEf(E CW(E), (7)
havior of -f' will generally reflect that of the Ne i

constant-DOS model. The proper interpretation although it can also be written
of thermodynamic properties, however, can be
substantially altered in nonconstant-DOS systems, e I = 2fdwf0 (w - C)%(w) (7')
as will now be shown.

The case of the spin susceptibility X p will be in terms of a noninteracting electron distribution
used to demonstrate that the renormalized ther- over a broadened and renornalized DOS 7  given
mal smearing function -f', rather than -4', by
often arises naturally in the formalism. That this 5(w+ ) JE N(E A (E -C , ). (8)
should be the case is suggested by the relation-
ship [Eq. (1)] betweenf and the (renormaized) This is simply a question of whether the w or E
Green's function G on the one hand, and the ex- integral is carried out first. However, from the

magnetization XI, given by$

2=98 I7N4 g E7fELEN(E)TEGoE,iw)expiw,y7, (9)

in terms of the number N, of spin a electrons, xp can be written exactly (within this isotropic treat-
ment) as

dsp l 4~c-f,=.s(y)'2.-,i. dG-.'(A iwj epiw.ddH

z2J.4efdEN(6)[- ME _Q]1+K(ST)I (10)

where -f/dE is identified by differentiating Eq. (1) with Go'1(E,iw. )ja,, - ( - -M, H) - (iw),
and the thermal average X of the field derivative of the self-energy is defined by

K(E ,T)=- 7rG2(9.,iwo.) E. .o 8[T_..G2(E ,iw. )j-". (11)

Equation (10) gives an interpretation of X,p as arising from the bare DOS, appropriately enhanced by
1 +K and averagid around C according to the interactin thermal smearing function. Equation (10)
gives directly an enhancement due to the EP Interaction of the T dependence of X,, arising from a peak
In N(W), as surmised by Bhatt9 for low temperature.

Esentially all other interpretations of x,9 (T) have assumed a form like Eq. (10) withf-f-o. By
meos of the standard analytic continuation2 to express the frequency sum in Eq. (9) in terms of an
Intega over rel frequencies, X,, can be written in ter ms of fo as two contributions X,p °' +, :

X,°' -2e s'fdw(-)1(w + C), (10')

which is reminmscent of but not identical to the first (uneohanced) term in Eq. (10), and the "enhance-
IImet"

Ai "p f V ~( .J~ 4 
J ,w ) /o( )w, - "  (10")

lraw 1-I.ZZ

where Z,,' =dZ, m s/d(vjugH)iN.o and Z.'=s uaE/ w (superscript R denotes retarded functions).
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The simplicity of Eq. (10), and a general knowl- provides a conceptual basis as well as a compu-
edge of the behavior of - af/BE from Fig. 2, al- tational approach for the detailed understanding
lows one to identify the underlying causes of ther- of many classes of interesting compounds.

.. ma anomalies in exotic systems. In VX corn- The author acknowledges several helpful con-
pounds, for example, the strong T dependence of versations with B. M. Klein, technical assistance

" X correlates closely 0 with high superconducting of A. Koppenhaver, and referral by L. C. Pickett
7T,, and thus with large X , exactly as Eq. (10), to Ref. 13 which gives an accurate algorithm for
with a peak in N(E) near C and broadening propor- evaluatin the digamma function. Penetrating
tional to 1, suggests. It is also evident that the queries from P. B. Alien and L J. Sham during
ncluence of the lattice should lead to an isotope a brief tenure at the Aspen Center for Physics
effect on the critical temperature for Itinerant- are also acknowledged.
electron magnetism distinct from that proposed
by HoptieLd.11 Neither of these properties s evi-

* . dent In the form given in Eqs. (10') and (10"). B. . Klein, L. L. Boyr, D. A. Pacoup ,
In terms of the two questions posed at the out- ad L. F. Matthess. Phys. Rev. B 18. 6411 (1978);

set, (1) the behavior off is qualitatively as shown W. E. Pickett, K. M. Ho, aid M. L. Coben, Phys. Rev.
in Fig. 2 and is of itself useful and perhaps neces- B 19 1734 (1979); T. Jarlborg. J. Phys. F 9, 283

• -sary in interpreting thermodynamic behavior, (1979); A. T. van Kesel, EL W. Myron. ad F. M.

and (2)f has been shown to arise simply and nat- Mueller, P"ys. Rev. Led. 41, 181 (1978).
ura~ly in the expression for Xp. In general, each 2A. A. Abrikosov, L. P. Gorkov, and 1. Ye.Dxyaioekln-

thermodynamic quantity must be Investigated in- aid. Quantum Field Theoreticul .Methd in tatiftet
Physics (Pergamon, New York, 1965).dlvidua~ly for a useful expression involvlngf and/ 3. E Siber and J. R. c . Phy. Raw. 131,

orfo. It is encouraging that Lee and Yangl have 993 (1963).
Sshown that thermodynamics can be formulated 4K. Shimoima and H. Ichimura, Prog. Theor. Phys.

exactly in terms off, although the author is un- 43, 928 (1970).
aware of any application of their very formal ap- "w. E. Pic, Phys. ROY. 321, 3897 (1900). sad
proach to metals. unpblihad.

nJ. M. Lutdager and J. C. Ward, Phys. Rev. 118,
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thermodynamic properties In terms of noninter- of Fermi liquids; se L. D. Landau Zh. -kap. Teor.
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normalized quasiparticle density of states X. JETP !, 920 (1957), and , 101 (1957].
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THEORY OF THE NORMAL STATE HEAT
CAPACITY OF NbSn

Warren E. Pickett and Barry W. Klein

Condensed Matter Physics Branch
Naval Research Laboratory
Washington, D.C. 20375

The experimental a2 F of Wolf et al is applied to calculate the T-dependence of the electronic heat capa-
city. l is found that. if the phonon spectrum is Debye-like (which is not the case in VbSn). this T-dependence
results in an extrapolated value of N (E,) (1 + A) which is overestimated by an amount which is proportional
N(E,)A. equal to 13% for Nb$Sn. It is further shown that the change in slope of CITfound by Stewart. Con
and Webb can be modeled by a combined Dete and Einstein spectrum with OD - 267 K and having 1.5% of
the acoustic modes at an Einstein frequency Qi - 40 K.

I. INTRODUCTION

The specific heat of NbSn has long been an enigma. Vieland and Wicklund (1968) fit the normal
state specific heat C(T) above the superconducting transition temperature T - 18 K to the form

,'. C,/T- V 
2

However, the inferred normal state entropy S(T) obtained by extrapolating this form below T was 14%
larger than the measured entropy in the superconducting state S,(T ). strongly violating the thermo-
dynamic constraint S.(TC) - So(To) for a second order phase transition. Thus, although C. had assumed
the *low temperature form' of Eq. (1) in the range of their measurements, it was evident that this form
must change at still lower temperatures.

Recently Stewart, Con and Webb (1981) (hereafter referred to as SCW) have resolved this particu-
lar enigma by measuring C in fields up to 18 T, which lowers T, to around 6.5 K. The Vieland-Wicklhmd
form was found to hold down to 12-13 K. whereupon the slope rapidly changed to give 0o - 207 K and
an extrapolated y - 35 "- 3 mJi/mole K2 at zero temperature compared to y - 96 mJ/mole K2 from
above 13 K. Although this new extrapolation satisfies the entropy constraint, the interesting question
arises as to what causes the rapid change in slope ("knee or "kink*) between 10 K and 12 K.

In this paper we initiate an investigation into this unusual and unexpected behavior. We assume at
the outset, following the argument of Grimvall (1969), that even in systems in which the electron and
phonon subsystems are strongly interacting, the specific heat nevertheless can be separated into two parts
interpreted as due to renormalized electrons and renormalized phonons. It is not clear how this approach
is to be reconciled with Allen and Hui's (1980) observation that the effects of electron-phonon (EP)
interaction appear to be double-counted in such an approach. Furthermore. Grimvall's analysis does not
take anharmonicity of the phonon system into account, while the phonons are known to show strong
temperature variation in Nb3Sn. For the present study, however, we shall proceed to investigate the heat
capacity of Nb3Sn in terms of the usual electron/phonon separation.

1I. ELECTRONIC HEAT CAPACITY

Gnmvall (1969) has shown how Prange and Kadanoff's (1964) generalized quasiparticle expression
*for the electronic heat capacity

T- 2N(") f AI aM(E. T) Il . 4 + (E. T) 8f(E)(
C.:(.• - d 1  eE aT T a I)

can be derived from field theca, 'cal considerations. Here V is the real part of the electronic self-energy,
f is the Fermi function and other quantities have their usual meanings. Using standard expressions for
M this can be written explicitly as

i'- .,h C,,(T) - [')yo + -,t(T)]T -3 "y( T)T (2)
with

y" (2r 2/3) V(EF) ki (3)
and

?I(,PY 3 f d " f ,E' 1-,,E,) Lfd (E -r)(4
(irkT)2  EO-E- E - (4)

where a2Fis the eiectron-phonon spectral function.

')-TC-'.!Ctid-y III d. ' f-53z':%d WIetafs 1932
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Equation (4) has been evaluated previously for an Einstein model (Grimvall 1968). for Pb and Hg
(Grimvall 1969) and for amorphous Pb (Bergmann et at 1971). Here we use the aFfunction for Nb1Sn
obtained by the inversion of tunneling data by Wolf et at 11980) to evaluate Eq. (4). In Fig. I we showif'';" the result for C_.Ilyo - I + yj (PlTi'fn the range 0 to ' 00 K. The result is similar to those of Pb and

Hg (scaled to the stiffer phonon spectrum of NbSn) At 9 K -V, peaks at . value 10% higher ihan its
value xy (A - 1.78) at T - 0. Then -,i/Vt decreases rapidly. reaching its minimum value of -0.24 at
approximately 100 K.

This drpi ,below yohsinteresting implications. The thermal mass enhancement -Y is pro-portional to the magnitude of oaF. i.e.. A, and its shape depends only on the shape of a:F As A is
increased. C, will vanish at the temperature at which -I has its minimum for a critical value A, of A.
and will become negative for a range of temperatures when A > A,. For oZAF having the NbSn shape
A, - 7.4. For the Pb shape A, - 8.2 and the minimum in -y, occurs near 35 K. for an Einstein spectrum
(which gives the sharpest structure possible) A, - 37 and the minimum occurs near A r - hilE,,,,.'2
This negative "electronic' specific heat causes no obvious violation of thermodynamic principles, since
increasing A will lead to a softening of the phonon spectrum and thus an increase in the "lattice" contri-
bution. which should keep the total heat rapacity positive. (The condition C . 0 can be used to put a
weak constraint on how hard the phonon spectrum can be.) Nevertheless, this behavior raises further
questions into the separation of C into "electromnic' and lattice" contributions in strongly interacting EP
systems.

It is now widely accepted that variation of VE) on the scale of phonon energies is a likely
occurrence in high T 4 15 compounds. Nb1Sn in particular. In such a case the expression for C., is
altered in several ways. Following Grimvall s (19691 derivation of Eq. 1). %ariation of S(E) near E4
results in an explicit dependence of C., on iht imaginary pan r of the electronic self-energy talso see
Gnmvall 1978); i.e.. a breakdown of the generalized quasiparticle expression Eq. (I). This dependence
will be neglected for reasons to be discussed below. Then Eq. (1) is modified by replacing N(E,) by
V(E) under the integral, with a similar replacement in the equation defining ,(E. TI (see Grimvall
1969). Finally one obtains

6rk, r) 8E E 8) E - E, + W

with the normalization yI(O) - A. Equation (5) has been evaluated by Fradin (1975. 1977) for a model
N(E) function thought to be appropriate for VGa. but no comparison with experiment was attempted.

-~ Nb3 Sn

Nb 3Sn X=l.78

A 0

,,0 5 100 5 200 -to -5 0 5 tO

T (K) ENERGY (toRy)

Fig. I - The variation of v/v) - I + v /Vo with rempera- Fig. 2 - Density o' states near
ture in Nb3Sn. The difference between this curve and unty' E, - 0 o/ :VhbSn (solid line) -m
1s proportional t A. Klein el al (/978). Also shown are,

the elfects of deject scattering due to
5.10.20 and 40 ILO cm of residual
resistivity. Vertical lines denote the
respective Fermi energies. The It)
,H cm curve is used top the calcula-
tions described in the te.t
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We have evaluated Eq. (5) for ,NbSn using the experimental data for a"Fand the VNE) functionI calculated by Klein et al (1978). Since Nb 3Sn samples invariably have a residual resistivity of 10 Lfl cm
(or more), we have broadened N(E) accordingly (Pickett 1982). These V(E) functions and the shift in
E, due to smearing are pictured in Fig. 2. It should be noted that N(E) functions with even sharper
structure than that calculated by Klein et al will not lead to broadened N(E) functions with significantly
more structure than the "10 Ifl" cm* curve in Fig. 2.

In the range of interest here (T 4 30 K) the temperature variation of the chemical potential is
negligible. In this range y1 from Eq. (5) differs from that of Eq. (4) by less than 0.2%. This null correc-
ton results because M(E) is essentially linear in the energy region sampled by Eq. (5) at these tempera-
lures. and inmreased weighting at E < EF is cancelled by decreased weight at E > EF. This is also why
the contribution to C,, from r(E. r) (mentioned above) is negligible. This contribution arises only
from changes due to the energy variation of N(E), and for a linear variation these changes are vanishingly
small. Even if Er is artifically placed at the peak of the '10 Ail cm" curve in Fig. 2, where 'he effect is
largest, the correction is only 2% at 30 K.

It remains to determine the effect of the variation of "yt upon the interpretation of C. In Fig. 3
y(T) - C1,/ 'is plotted versus ' along with the normal state experimental data of SCW. On the scale
shown the peak in -1 (7") is comparitively weak and has little to do with the knee in the data, despite the
fact that both structures occur in the same temperature range. However, above 12 K the curve is
approximately linear, with slope ' - -0.014 mJ/mole K". Removing this linear contribution from the
linear fit to the data above 12 K results in OD - 2b 7 K in this region, rather than the SCW value of 270
K.

The temperature variation of y, can lead to a more significant correction to the extrapolated value
of V10(i + A). Assuming the lattice contribution C,, - 07'3 (i.e., extrapolates to zero), the approxi-
mately linear decrease in yo + yj vs r' above the peak in Vt leads to an overestimate of
V(O) - .VEr) (I + A) which is proportional to N(EF)A. For NbSn this overestimate is 13%. If N(EF)
is known independently. the overestimate of x is further leveraged by (I + )/XA, equal to 20% for
Nb3Sn. Use of incorrect values of V(E) can of course lead to worse empirical estimates of ). This
overestimate of A (0) in itself can lead to an apparent violation of the entropy constraint mentioned in the
Introduction. For the actual data for NbSn above 12 K, where the phonon ;ontribution does not extra-

polate to zero. the overestimate of y1,0 1 + h) is 4.7 mJi/mole K2 , a rather small fraction of the difference
(61 mJ/mole K2) between the high and low temperature extrapolations of SCW.

0=40 K Sum
,e 6n=0.015

a" =267 K

E - Debye

Total: Exp. data .

- Einstein
/ - -Electronic : /

0 300 600 900 0 300 600 900
Ta (K) Tz (Kz)

Fig. 3 - C.,/ T vs T2 from 0 to 30 K. The calculated Fig. 4 - Normal state data points of Stewart er al
curve is normalized to 35 mI/mole K2 at 7 - 0. Data (198/). with constant ekerronic contribution removed.
points (x. H - 0 + , 7T, o. 18 , , 19 7') are compared with the Debye + Einstein model (plotted
normal state values at various magnetic fields (Stewart curves. see text).
et al /981). The lowest 6-7 data points reflect a
broadened transition at , = 6 K in 18 T The dotted
line represents the extrapolation of Stewart e al
(19111).
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Ill. LATTICE HEAT CAPACITY

The complexity of the lattice dynamics of Nb 3Sn makes a quantitalive evaluation of the lattice heat
capacity C,( T) impossible. "Good" samples-typically those with low residual resistivity-undergo a
cubic-to-ietragonal transition at T,, - 43 - 51 K. as did the SCW sample. Definitive neutron scattering
studies tShirane and Axe 1971. 1978: Axe and Shirane 1973a.b) have uncovered a "soft mode" type of
behavior of the (4.4.0i T branch: as Tapproaches 7, from above, the small C modes tend to disappear
under a narrow central peak broadened by instrumental resolution, whereas for T < T. only broad
scattering centered at zero energy transfer could be observed for , 4 0.2 (./a). Thus the lattice dynam-
ics are not only unknown but are also expected to be strongly anharmonic. at least near T,.

We initially investigated two (spherically symmetric) acoustic phonon dispersion models with
upward "kinks* in one TA branch, as found by Axe and Shirane (1973b) for T > 7",. In one of the
models the branches were tied to the T-dependent sound velocities at ( - 0. Both models displayed a
smoothly increasing Debye temperature with temperature, qualitatively similar to the data, but neither
could be fit even semiquantitatively to the data.

It is therefore surprising that the following, much simpler, model provides a quantitatve fit to the
SCW data above 8 K. We take a fraction 8n or the acoustic modes to be modeled by an Einstein fre-
quency fl and assume the remaining I - 6n to be characterized by a Debye temperature 9. The results
for f - 40 K = 3.5 meV, 8n - 0.015. 0 - 267 K are shown in Fig. 4 compared to the normal state data
of SCW. (For this comparison we have neglected the small T-dependence of y and subtracted out a con-
stant electronic contribution of 35 mJ/mole K2.) The model provides an excellent fit above T2 - 60 K2.
with a possible small discrepancy in the range 100 4 T2 < 150 K* where the data points are sparse.
SCW concluded that an "abrupt change" occurs in this range, but a few more data points are needed to
ascertain the abruptness. We emphasize that this model of the phonon spectrum should not be inter-

* preted literally. it does not. for example, reproduce RD - 208 K in the range 8 4 T2 4 20 as is found
from data taken in the superconducting state (Stewart er al 1981). Nevertheless it removes much of the
mystery in the Nb3Sn data by showing how an "excess' of soft modes can produce the observed behavior.

IV. FINAL POINTS

A question remains: why. SCW have asked, is the abrupt change in slope not observed in the
superconducting state data? Again, the SCW data in the superconducting state are sparse in this range
and it is the authors' opinion that structure in this region, where the electronic contribution is increasing
rapidly, should not be ruled out. A definitive answer to this question will require a calculation of the
electronic heat capacity in the superconducting state, as was done by Daams and Carbotte (1979) using
earlier experimental data, in addition to more experimental data.

Finally we note that abrupt changes of slope of the CIT curve at low temperature are not
uncommon: Nb shows such anomalies at 3 K and 9.5 K (see Leupold et al1977 and references therein).
Nb3Sn is however unusual in the magnitude of the slope change.

We are indebted to G.R. Stewart for helpful conversations and for providing the experimental data
in numerical form.
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