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ANNOTATED BIZ .IOGRAPHY

1. "ELECTRON-PHONON INTERACTION IN THE f-BAND METALS La, Ce and
Th: ELECTRONIC ASPECTS INCLUDING THE SPIN-ORBIT INTERACTIONS."
Physica 111B, 1 (1981).

An important parameter reflecting the strength of the elec-
tron-phonon interaction is n=N(EF)<IZ>, where N(F) 1s the Fermi
level density of states and <12> is the Fermi level mean square
electron-ion matrix element. The parameter n 1s calculated for
the f-band metals La, Ce and Th using self-consistent muffin-tin
potentials. The corrections within the rigld muffin-tin ap-
proximation (RMTA) due to spin-orbit coupling derived by John
and Hamann are found to increase n by 1% in La and 4% in Th, and
by 10% and 33% in the a and <y phases of Ce, respectively. The

RMTA expression is reinterpreted to provide an understanding of

the low values of n in Ce (0.7 to l.leV/Rz) in spite of an

‘il ol S

extremely large density of states at the Fermi 1level. Using

moments of the measured phonon spectra, the superconducting

transition temperature 1s calculated and compared with experi-

ment. The RMTA appears to overestimate n by approximately 25%

in these metals, although spin fluctuations may be contributing
. o thls apparent discrepancy wlth experiment.

Manuscript approved September 2, 1983.
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2.  "TRANSFERABILITY AND THE ELECTRON-PHONON INTERACTION: A
REINTERPRETATION OF THE RIGID-MUFFIN-TIN APPROXIMATION." Phys.
Rev. B25, 745 (1982).

The expression for the McMillan-Hopfield constant v=N(EF)

<12> within the rigid-mufin-tin approximation (RMTA) 1s rein-

terpreted 1in terms of single-channel electron-ion matrix ele-

2
2, 2+l

the electronic states at the Ferml level. Reexamination of Nb-
2

ments I and angular-momentum-character fractions f‘2 cf

and V-based Al5 compounds suggests that I 0 2+l is more nearly

an atomic property, and thus transferable from system to system,

than other commonly used quantitities. The fractions fg' are

dependent ‘on bonding character and crystal structure but tend

to be constant within a class of compounds. Criteria for

increasing n within RMTA are discussed.

3. "EFFECT OF A VARYING DENSITY OF STATES ON SUPERCONDUCTIVITY."
Phys. Rev. B21, 3897 (1980).

A microscopic treatment of the consequences for supercon-
ductivity of a nonconstant electronic density of states 1is
presented. Generalized Ellashberg gap equations valid for a
varylng density of states are presented, from which the change
of 'I'c with static or thermal disorder can be calculated. The
temperature dependence of the effective mass 1s shown to be
altered by disorder. Use of these results provides a possible
experimental approach for deducing the energy variation of the

density of states of superconductors.
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N 4. "INFLUENCE OF ELECTRONIC STRUCTURE ON SUPERCONDUCTING PROP-

53 ERTIES OF COMPLEX CRYSTALS: THEORY AND APPLICATION TO Nb3Sn."
{ Solid State Commun. 38, 95 (1981). With B.M. Klein.

% A thermodynamlc theory valid for complex crystalline super-
i

conductors is applied to Nb3Sn. It is shown how the structure

of the Eliliashberg equation and the solution is altered by den-

> sity of states fine structure. One important implication is

o that the current method of inversion of tunneling data can be
only approximate.

o 5. "PARAMETER-FREE CALCULATION OF THE ENHANCED SPIN SUSCEPTI-

S BILITY OF Nb3Sn INCLUDING ELECTRON-PHONON EFFECTS." Physica

o 107B, 703 (1981).

E A parameter-free calculation of the spin susceptibility

xsp(T) of Nb3Sn, which includes statlic and dynamic disorder as

well as exchange-correlation enhancement, 1s presented. It is

0
DT
LPADS

found that xsp is only 15% of the measured susceptibility, and

its small temperature dependence cannot account for the experi-

.‘.u'.'«_},- "(-

mental findings.
6. "GENERALIZATION OF THE THEORY OF THE ELECTRON-PHONON INTER-

ORI

ACTION: THERMODYNAMIC FORMULATION OF SUPERCONDUCTING=- AND
NORMAL-STATE PROPERTIES." Phys. Rev. B26, 1186 (1982).

A thermodynamic formulation for the electron self-energy
5 is given which 1s applicable when the electronic spectrum
- posseses structure on the scale of phonon frequencles, provided
only that the ratio of phonon phase velocity to electron Fermi

velocity 1s small. Electron-phonon, Coulomb, and electron-
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defect 1interactions are included on an equal footing and 1t 1is
shown that thelr different frequency dependencies 1lead to
specific effects on the Eliashberg self-energy: (a) The Coulomb
interaction contributes nothing of essence to the normal-state
self-energy (in thils isotropic approximation) but retains 1its
usual depairing effect upon the superconducting gap function,
(b) defects affect superconducting properties primarily through
a broadening of the electronic spectrum, and (c) phonons con-
tribute a theémal shift and broadening as well as the mass
enhancement. A generallization to 1intensive electron-phonon,
electron-electron, and electron-defect interaction constants 1is
necessary to redevelop an intultion into the effects of these
interactions. The change 1in the structure of the Elliashberg
equation due to a nonconstant density of states (DOS) and the
consequent interplay between statlce and thermal dilsorder 1s
analyzed in detall, with a central feature being the change in
frequency dependence of the self-energy compared to a constant
DOS solution. The effect of DOS structure on the superconduct-
ing transition temperature Tc’ which 1s manifested 1n the
defect dependence of Tc’ is analyzed in detail. Further it 1s
proposed that an extension of the self-consistent Eliashberg
approach be extended above 'I‘c to determine the normal-state
self-energy and thereby the electronic contribution to thermo-
dynamic quantities. Phonon broadening 1s shown to affect

the spin susceptiblility at finite temperature. Relnterpretation

of several of the anomalous properties of AlS5 compounds in terms




of the present theory 1s suggested. Several aspects of the
theory are compared to experimental data for NbBSn.
T. "RENORMALIZED THERMAL DISTRIBUTION FUNCTION IN AN INTERACT-
ING ELECTRON-PHONON SYSTEM." Phys. Rev. Lett. 48, 1548 (1982).
The electron-phonon interaction 1is used to demonstrate the
important effect of interactions on the electronic distribution
function at finite temperature. It 1s shown that the usual
picture of "thermal (Fermi) smearing” is a greatly oversimpli-
fied one. The distribution function resulting from an Einstein
spectrum with various coupling strengths 1s presented and
interpreted, and an exact expression for the spin susceptibility
1s used to 1llustrate the utility of this novel viewpoint for
thermodynamics.
8. "THEORY OF THE NORMAL STATE HEAT CAPACITY OF Nb,Sn."

3
Superconductivity in d- and f-band metals, Edited by W. Buchel

and W. Weber (Kernforschungszentrum Karlsruhe GmbH, 1982),
p.97. With B.M. Klein.

The experimental a2F of Wolf et al. 1is applied to calcu-
late the T-dependence of the electronlic heat capacity. it 1is
found that, 1f the phonon spectrum is Debye-like (which is not
the case 1in Nb3Sn), this T-dependence results in an extrap-
olated value of N(EF) (1 + ») which is overestimated by an
amount which i1s proportional N(EF)x, equal to 13% for Nb3Sn.
It 1s further shown that the change in slope of C/T found by
Stewart, Cort and Webb can be modeled by a combined Debye and
Einstein spectrum with OD=267 K and having 1.5% of the acous-

tic modes at an Einstein frequency Q=40 K.

L R UIRY S RTINS U L, e
- N . ISR S




AN e S e e e S T T R S A R ’ BCRSIN . REN

ACKNOWLELGMENTS

I am grateful to Barry M. Klein, both for many helpful
discussions and for allowing me to include papers #4 and #8

which he co-authored.

L]

c.‘ L Ay -.‘. _' U a: - .' 4, ~. e ..' AT et S N e e .
- A P N STl e '.'-- e e -','.\ I
".EZ’. :".u-. LL JL-F .}.{‘1"‘\.&.&. e Tt T e e At T T T T

———— w \iRicad A — Ll aiadi
AN JREON B S r I N S A Ao st it T Sl A R IS .. e it 4 S M g e P M e




3

- - —y ey T e O P Y ] ——————— e
R T NN Iy Ty o o ==, W

RN YN

Physica 111B (1981) 1-10 1
North-Holland Publishing Company

T

’

Ty i e

ELECTRON-PHONON INTERACTION IN THE {-BAND METALS La, Ce AND Th: ELEC.

ii:?. TRONIC ASPECTS INCLUDING THE SPIN-ORBIT INTERACTIONS
<

2 Warren E. PICKETT

. Naval Research Laboratory, Washington, D.C. 20375, USA
N

\ . Received 16 March 1981
)

: The electron~ion scattering parameter n is calculated for the f-band metals La, Ce and Th using seif-consistent muffin-tin
. potentials, The corrections within the rigid muffin-tin approximation (RMTA) due to spin-orbit coupling derived by John
o and Hamann are found to increase n by 1% in La and 4% in Th, and by 10% and 33% in the a and y phases of Ce,
[ respectively. The RMTA expression is reinterpreted to provide an understanding of the low values of 7 in Ce (0.7 to
) 1.1eV/AY) in spite of an extremely large density of states at the Fermi level. Using moments of the measured phonon
N spectra, the superconducting transition temperature is calculated and compared with experiment. The RMTA appears to
3‘_ overestimate n by approximately 25% in these metals, although spin fluctuations may be contributing to this apparent
> discrepancy with experiment.

Z: 1. Introduction to this point the expression for A is rigorous.
= . However, for all but weak scattering ions §V/6R
-: In his classic work on the theory of the elec- is very difficult to compute precisely, and further
. tron-phonon (EP) interaction McMillan [1] progress in the understanding of (I? or the

showed that the EP coupling constant A can be McMillan-Hopfield [2] parameter n necessitates

o expressed as approximations of § V/6R.

2 Noting that the muffin-tin approximation for
*. i N (Er)(l’)_ ﬂ ) V(r) has been very successful in describing the
:,; M Mw?®)’ electronic structure of transition metals, Gaspari
' and Gyorffy [3] suggested that the local environ-
a where N(Ey) is the electronic (single spin) den- ment of a vibrating strongly scattering ion would
o4 sity of states at the Fermi energy Eg, (I®) is a be modeled realistically by rigidly displacing the
:; mean square electron-ion matrix element muffin-tin potential for that ion. Within this rigid
N averaged over the Fermi surface, M is the ionic muffin-tin approximation (RMTA), Gaspari and
L mass and (w?) is an appropriately defined [1] Gyorfly obtained the relation (in Rydberg units

mean square phonon frequency. Specifically (I%) h =2m = ¢2/2 = 1 throughout this paper)

3 is given by
¢ sV 2 n"”*gé’—l—-zz(lﬂ)
- IH=3 3 l(knlﬁlk’n)l m* N(Eg)

i e X Sin*(§ = 1a1)ubrer 3)
3 X 8(Esn ~ Ep)8(Eyw — Es)/N(Er) . #3)

; where §; is the phase shift for the /th partial
'3 where k, n are, respectively, the wavevector and wave scattering from the muffin-tin potential.
-‘:; band index of the state |k, n) with E,, and The crystalline enhancement ratio v =
3 8V(r)/8R is the change in crystal potential per Ni(Er)/Nf™(Ep) of the density of states is defined
_ unit displacement SR of an ion at position R. Up in terms of the single scatterer partial density of
,‘ 0378-4363/8 IGO0 1:2.50 © 1981 North-Holland
i3
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NP(E,) = Y E

@l+1) ] dr *R¥(r, Es)
/]

E

E QL+ 1) riri(r,, Ee)iyl . )

Here r, is the muffin-tin radius, R, is the radial
function and ¥ is the energy derivative of the
logarithmic derivative of the radial function
evaluated at r, and Er. Eq. (3) has been applied
widely [3-5] in the study of elemental transition
metals. Often it is found that the results of the
RMTA in this form seem to agree with empir-
ically determined values to within 10-20% and to
reproduce trends with pressure [6] rather well.

Aside from the approximation of rigidly dis-
placed muffin-tin potentials, eq. (3) contains two
simplifying assumptions. The first is the so-called
“‘spherical band” approximation {3] in which the
angular dependence of the bands is ignored. This
is not an essential approximation, and recent
studies [5,7] have geéneralized eq. (3) ap-
propriately and shown the corrections to be
small in elemental systems with cubic symmetry.
The second approximation in eq. (3) is that of
ignoring the spin-orbit interaction (denoted by
the superscript ‘0’). John and Harmann [8] have
shown how this restriction can be removed
(within the spherical band approximation) but to
date no numerical test has been performed to
test the size of corrections.

In this paper the RMTA will be apphed to the
fcc phases of La, Ce and Th, each of which has f
bands [9-11] near or at Eg Since spin-orbit
contributions to n may not be negligible in sys-
tems with large atomic number (Z = 57. 58 and
90, respectively, for these atoms). the expression
of John and Hamann will be evaluated in section
2 and compared to the zero spin—orbit limit in
eq. (3). Contrary to the expectations of Butler
(5], the contribution to n from d-to-f scattering
in Ce is surprisingly small in spite of a huge / =3
partial density of states Ni(Eg). This finding leads

W.E. Pickea | Electron-~-sonon interaction in f-band metals

to a reinterpretation [12] of the contributions to
7 in terms of a rearrangement of terms in eq. (3).
This reinterpretation and a discussion of its im-
plications for states which are nearly confined to
the muffin-tin sphere are given in section 3. The
results for the superconducting transition tem-
perature T, which is found to be overestimated,
are presented in section 4.

2. Spin-orbit effects in the RMTA

The expression for n given by John and
Hamann {8}, which includes spin-orbit effects, is

E,
"= NE) % U+ D

1+2 . N
{21 73 sin?(87 = 87 )vivin
+ iTle Sin¥(87 = 8. vivia

1 . . fe N e
+m sz(al = 8Ta)vi VI»I} N &)

The superscripts = indicate the corresponding
quantity for total angular momentum j=/=}
and the ‘single scatterer’” density of states is

given by
Nf*(Eg) = ‘/f’ u+1) [drrAiRICEN,  (6a)
0
N-(En = YEx| [arriRiCEnP. (6b)
0

The large component Rf of the radial wave
function is normalized according to

R7(r,, E¥) = ji(xsr,) cos 87 = ny(xer,) sin 8T . N
where «r = \/Eg. in terms of the spherical Bessel
(i) and Newmann (n;) functions. Egs. (6) can be

expressed in terms of logarithmic derivatives y§
analogously to eq. (4).

...................
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Eq. (5) has been evaluated in detail for La, Ce
and Th using the results of self-consistent, spin-
orbit, linearized-augmented-plane-wave band
- structure calculations [9-11]. To compare with
< the corresponding zero spin-orbit limit the fol-
e lowing identifications have been made:

It is easily shown that in the zero spin—orbit limit
(67— & and »§ - 1) eq. (5) reduces to eq. (3). It
is instructive also to introduce the quantities

in terms of which the relativistic quantities are

Te N T W N

TR TR TR AT T T oa TN, T T,

tnteraction tn f-band metals

"

1+1

8i=8+35r7

&+

3, (10b)

and similarly for »; in terms of v, and €. Res-
pectively, 4, and ¢ represent the spin-orbit
splitting of the phase shift and the crystalline
enhancement of the partial density of states. It

S =67+ (1 +1)87)/RI+ 1), (8a) has not been emphasized previously that the

- . corrections to 7 in eq. (5) which are first order in

- Ni(Eg) = Ni(Ee) + Ni(EF) . (8b) the spin-orbit corrections A, and ¢ vanish iden-
- N{NEg) = N (Eg) + N (Eg). (8¢) tically. This may be due to the traceless nature of

the spin—orbit operator and it is in keeping with
the picture that quantitarive changes in observ-
ables tend to be second order in the spin—orbit
splitting.

In table I phase shifts

87, crystalline

A, =87-67, (9a) enhancements v7 and partial and total values of

- . n (with and without spin-orbit effects) are
w= i+ A+ 1pil/@l+ 1), (9b) presented. In each case n is increased by spin-
& =vi—-vi. {9¢) orbit corrections (this is not a general require-

ment), by 0.03, 0.08, 0.10 and 0.18 e V/A? (or 1%.
4%, 10% and 33%, respectively) in fcc La, Th.

given by a-Ce and y-Ce. (This is a fictitious ‘‘paramag-
netic y-Ce” which, however, illustrates spin-
. I orbit effects more clearly than the other metals.
Si=&-s7 74 (10a) . . y ) )
2 In thorium the increase arises from corrections
7
=2
i Table 1.
Relativistic phase shiits §7 (in radians), crystalline density of states enhancements »7 and the
resulting contributions to n(eV/A); the = sign indicates j = ! = { and n'*'is the value of the
McMillan-Hopfield parameter neglecting spin—orbit corrections
La y-Ce a-Ce Th
87.6il=0 - -096 -~ -098 - -1.23 - -1.14
1 -042 -050 -043 -051 -060 -069 -~056 -0.82
2 0.539 0.54 0.56 0.51 0.63 0.58 0.75 0.61
3 0026 0.024 0.142 0067 0.187 0.109 0.095 0.079
viwil=0 - 0.71 - 133 - 230 - 1.08
1 2.46 2.65 1.41 1.50 1.16 1.17 0.74 1.01
. 2 1.20 1.45 0.63 0.77 0.48 0.57 0.58 0.82
3 3.10 3.61 0.99 7.01 0.65 2.75 1.44 2.24
4 7.86 7.74 6.89 594 4.30 a7 312 2.51
] nusrn e
sp 0.12 0.12 0.07 0.07 0.29 0.29 0.10 0.10
w3 pd 1.58 1.57 0.24 0.24 0.41 0.41 0.93 0.87
dt 108 108 030 014 023 015 08 083
- fg 002 002 011 009 016 015 010 0.0
y total 281 2.718 0.72 0.54 1.10 1.00 1.9 191
9
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1 W.E. Pickent | Electron-phonon interaction in f-band metals

to p—d scattering while the channels invoiving f
states are unaffected. In the two phases of
cerium the increase occurs in the d-f channel.

The spin—orbit correction is seen most clearly
in y-Ce. Using an obvious notation from eq. (5),
ne=ng +nx +ni . it can first be noted that,
for [ =2, n°~ becomes negligible with respect to
n** and n~" due to the factor [(21 + 1)Q2] + 3)]™".
The large increase in n in y-Ce arises from the
large crystalline enhancement of vy at the
expense of v;. This leads to n& =0.28. ny =
0.02 compared to their zero spin-orbit counter-
parts 0.08 and 0.05 (all in eV/A?). Ultimately the
spin-orbit increase results from the shifting of
states at Eg by crystallinity (solid state effects)
from one member of the pair j=1%=} to the
other. The central requirement for a large cor-
rection of this type to occur is that v} and »7 be
as dissimilar as possible (i.e., that one be maxi-
mized at the expense of the other), and that this
skewing be in the same direction for both { and
{+1, thereby maximizing either »ivi.; or
vivri.;. To obtain the maximum ratio »7 requires
that the cryvstal density of states (numerator) and
the single scatterer density of states (denomina-
tor) be oppositely skewed. In y-Ce this occurs
only for ! =3, with normal ratios (v} =v7) for
I =2 and [ = 4. This opposite skewing of the f
states N{/N7=13.3/70, N{*/N{"=19/7.0
leads to vi/vy = 7.08 and a factor of 2.5 increase
in Na-

An interesting limiting case occurs when all
the crystal states (for both ! and ! + 1) are shifted
to either j=1!+1% or j=[—1 Assuming equal
single scatterer densities of states forj =1= i the
value of 7., is increased by the factor (21 +
3)/(I +1). Further increase may result from
oppositely skewing the single scatterer density of
states as noted above. which will require a nar-
row | resonance in the vicinity of E.

In the next section the problem of under-
standing the small values of n in Ce. which
possesses an extremely large f density of states at
Eg. is addressed in terms of a reinterpretation of
the RMTA expressions egs. (3) and (5). It should

AL SN

-t e, ) . NN -, U -
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be noted that the small values of n calculated
from the Ce band structure persist only for
values of Eg lying within the 4f bands. If E¢ is
artificially placed above the f bands (say 0.05 to
0.50 Ry above), larger values of n ~31t0 5 eV/A:
result. just as obtained from a similar treatment
using the La band structure.

3. Reinterpretation of the RMTA expressioa

The discussion in the pre.ious section did not
address the cause of the sinall values of n in Ce.
compared to La, in spite of much larger values of
N(Eg). The following rearrangement and rein-
terpretation of the RMTA expression for n or
(I provides insight into this puzzle.

Begin by defining a rigid muffin-tin matrix
element for the /= /+1 channel by (see also
Butler [5] for the non-relativistic analog)

v -
= fRf’%,— R7LPdr/Tryly, (1)
0
19 [ Repran. o=z a2
0

Evidently 7%, is independent of the nor-
malization of the radial functions and depends
only on dV/dr and the shapes of the radial
functions. Using the normalization in eq. (7) the
numerator in eq. (11) is sin(67 - 8{,). and the
normalization integral can be expressed as

(+7Y = riiR7(r.. Er)fiy7!. (13)
where y7 denotes the energy derivative of the

logarithmic derivative of R9. Finally, eq. (11)
becomes

(IF21) = sin®(87 — 6 )i[rd(RTRT LV (¥TvT )]
(14)

In terms of these matrix elements (/) can be
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expressed as 3 -
z 2
2 8,
=2 ey % | 2
e * £ - - pm Ee f,"' 'g
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fraction f7 = N7(Eg)/N(Ef) of states at E,,
and f; = f{ + fi. This form for (I?) has the desir-
able property [12] that the atomic-like quantity
Ifi.,, which depends only on the logarithmic
derivative and varies smoothly and predictably
with Epg, is separated from the crystalline pro-
perty f. Although it requires a full band struc-
ture calculation to ascertain {f}, these fractions
typically vary much more smoothly [12] than
N(Ef) and N(Ep) separately which generally
possess Van Hove singularities at the same
energies. This behavior is strikingly illustrated
for y-Ce in fig. 1 in a 20 mRy region centered on
the calculated value of Eg. In this region there is
strong hybridization among the s, p, d and f
bands and N(E) varies non-monotonically by
more than a factor of 2 whereas the fractions f;
vary more smoothly.
The form for I, given by

Liysr = sin(8; = 8101)/7m., aar)

is useful for understanding the contribution of t
states to (I?) as Ep is varied. As a result of the
boundary condition eq. (7) “fixing” R, at r,, the
normalization integrals v are unbounded (0<
7 < =) and they become the principal determin-
ing factors in the magnitude of I,,.;. Near the
bottom of the bands derived from the atomic /

.................
............

.............
-------
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ENERGY (mRy

Fig. 1. The total density of states Q(eft scale) and partial
wave ratios f, [=0,..., 4 (right scale) in a 20 mRy region
centered at the Fermi energy (0.450Ry) in y-Ce. In this
region N(E) has fine structure and varies by a factor of two,
whereas the ratios f; vary much more smoothly.

states, R, peaks at or near r, and 7, will be small.
Near the top of the bands, R; assumes very large
values for r <r, compared to Ry(r,), resulting in
large values of 7, and smaller values of 1., (and
I-11). Schematic radial functions are shown in
fig. 2. The boundary condition of fixed R/(r,)
results in “the dog (7;) being wagged by the tail
[Ri(r))"[13). Physically, the small values of I,.;
at the top of the bands reflects the poor coupling
to plane waves of states which are too strongly
confined to the muffin-tin sphere. (This dis-
cussion is somewhat oversimplified: the “fixed”
value of R,(r,) and the numerator sin(5 — §;.1)
both vary with Ef, but these variations usually
are secondary effects.)

This description of n and its influence on I,;.,
applies to wide bands such as s, p and 4d, 5d
bands in transition metals. The narrow 4f bands
in La and Ce (and the late 3d bands) present a
different behavior however. For these metals the
f bands are only 1-2eV wide and, even at the
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Schematic 5d Radial —- Radi
—_ adial Charge
= Charge Densities = \ 8
g g °1 \ Densities at Ep
C 3
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.S N 3 |
ear
>m{ band top :'J a—Ce
2 2
§ g
=] A,
5 57 [f
— —
<
3 3. La
& : Band bottom g
Ul Y T o — T ;
0 3 ] 1 2 3

s 2
Radius (a.u.)

Fig. 2. Schematic 5d radial charge densities ~R¥(r.E) illus-
trating the bonding behavior at the bottom of the band and
the antibonding behavior at the top of the band. The radial
wavefunctions (R,) have been normalized to the same value
at the sphere radius (taken as 3a.u.).

bottom of the f bands, the 4f radial function is
strongly confined to the muffin-tin sphere. This is
illustrated in fig. 3 for a-Ce, where Ep lies near
the bottom of the 4f bands. Due to the strong
peaking of R,.; at 0.75a.u., 1.; is correspond-
ingly larger, and I;;., smaller, than for the s—p—d
bands. The detrimental effect only subsides at or
below about 2 eV below the 4f bands, which is
where E; lies in La. The radial charge density at
Er in La is shown in comparison with that of
a-Ce in fig. 3, normalized such that the radial
functions are equal at r,. Although the /=3
radial function in La shows a mild peak at
0.75a.u. due to the incipient 4f bands, it is
insufficient to decrease 7, significantly.

The squared normalizations at Eg for La, Ce
and Th are included in table II. La and Ce differ
significantly only in the values of (7§)?, which for
Ce are more than an order of magnitude larger
than those of La. In the magnitude of 75, as in
the value of T, Th is much more similar to La
than to the isoelectronic element Ce. This of

LA R

s ‘e alal g & 'aalmaa al

Radius (a.u.)

Fig. 3. The ! = 3 radial charge densities at Ef for La and
a-Ce, normalized to the same value at the muffin-tin sphere
boundary. In La it is clear that Ef is far off the 4f resonance,
resulting in 2 small atomic 4f character (peak at 0.75 a.u.).
This graph clearly illustrates the order of magnitude
difference in normalization integrals = between La and Ce.

course reflects the similar position of the f bands
with respect to Er in La [9] and Th [11].

The small df contribution to n in Ce, com-
pared to both La and Th, can be attributed to
the dramatically decreased value of Iy (see table
IT). This small value is illustrated graphically in
fig. 4; Iy is two orders of magnitude smaller than
that for the other channels in «a-Ce. The
extremely small value results from Eg lying
“near” the center of both d and f bands giving
large values of 7, and 7, as well as a reduced
numerator sin(5: - 8,).

A second important feature is illustrated in fig.
4. The quantities I,., are seen to be slowly and
smoothly varying with energy, while 7., reflects
the sharp structure which may occur in N(Ef)
and, to a lesser extent, in f. The fact that I,
can be written solely in terms of the phase shifts
(or equivalently, logarithmic derivatives) and
their energy derivatives [eqs. (11)-(13)] guaran-
tees their smooth variation with energy. Fur-
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8- g modification of the McMillan [1] equation
bo() |
~_ 8§ a — Ce - - 5 ___1.041+4) }
=¥ 8 T = (wey/1.2) expy = T 575 0.620)
S0P |
-5 '
';'§ } “‘x\m?.\\ ;r-§ with wy defined as usual [14] and . * = 0.13. For
N—"g_l fe — .8 the phonon moments wy, and (w°) of Th, the
popd e Butler [5] prescription
— ——————t0
~ ' Wieg = 0.60 80, ,
=+ (b) \\/’I‘otal{"‘m
— x/ <% o (@) =0690.,
= =3
3 . L\/ ] . : has been applied, with the high-temperature
:‘T sk“———_/ p !T'°"v Debye temperature 4. taken from the inelastic
| = =—2df neutron scattering measurements of Reese et al.
o-r T T T v a —tQ

o . -
- ‘:.-‘ 7

-4 =2 0 2 4
ENERGY (mRy)

Fig. 4. (a) The squared matrix element If,., for scattering
from [ to I + 1 versus energy. Note that /% is smaller by a
factor of 100 than for the other channels, and also that the
variation with energy is smooth for all channels. (b) Con-
tributions ny.y to n (left scale) and average squared elec-
tron-ion matrix element (I°) (right scale) versus energy. Both
Iy and (to a greater extent) n show rapid variation with
energy between 2 and 4 mRy which comes solely from den-
sity of states factors.

therriore, its aiomic-like nature suggests that for
a jiven atom I},., will possess a transferability,
fr..i element to compound and compound to
compound. which the crystal structure related
quantities f; and 1 can never attain. These pro-
perties have been investigated in detail else-
where {12] for the case of niobium and
vanadium.

4. The transition temperature

In this section the calculated values of T., with
and without the spin-orbit correction discussed
in Section 2. are compared with experimental
values. For T. we use the Allen-Dynes [14]

-..‘..‘. ".'h .-_‘ - .‘.--‘ . .. N .
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[15]. The same prescription has been used [16]
for La and Ce.

Table I summarizes the resuits. (Note that no
comparison is possible between the theoretical
‘“paramagnetic y-Ce” and the actual high tem-
perature magnetic phase.) In each of the metals
T. is substantially overestimated. It is not the
purpose of the present paper to investigate these
discrepancies in detail, but a few observations
can be noted. For La and Th, the empirical
values of A which give the experimental value of
T. (1.15 and 0.60, respectively) suggest that the
RMTA overestimates n by 0.5-0.6eV/A in
these similar metals. These overestimates have

Table 1

Experimental and theoretical quantities determining the
superconducting transitton temperature T.. The superscript
zero indicates quantities calculated disregarding spin-orbit
corrections to the RMTA expressions

La y-Ce a-Ce Th
wiog(K) -4 0 104 86
@'*K) 86 81 119 9
MiweV AT 184 092 199 228
n.n™eV/AY) 265262 0.72.054 1.10.1.00 1.99.191
AA® 144142 077058 055050 087083
T.TO™K) 84383 28.10 1.3.08 1936
T eo 6.08 - ~0.01 14
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been discussed elsewhere, for La by Pickett et al.
[9] and for Th by Winter [17]. For a-Ce a good
case can be made [10] for invoking a paramag-
non contribution A,,, detrimental to spin pairing,
which need only be of the order of 0.15 to
explain the overestimate of T, by two orders of
magnitude. Indeed, recent careful estimates by
Rietschel and Winter [18] point to a probable
value of Ay =0.2 for Nb and V, so this effect
may be contributing to the overestimate of T in
La and Th as well.

§. Conclusions

The specific conclusions of this study are two-
fold. Firstly, spin—orbit corrections to n (within
RMTA) may become important in metals with
large atomic numbers Z. One condition which
can lead to an appreciable correction is for the
spin—orbit interaction to be large enough to
result in a net displacement of j=1/+1} states
with respect to j = [ -} states, viz., a deviation of
the ratio fr/fi from the zero spin-orbit value
/(I + 1). These deviations are small (see table II)
in La (Z = 57) and even Th (Z = 90) at E¢. Due
to the proximity of E to the 4f bands. deviations
in Ce become significant. Perhaps a more import-
ant criterion for spin—orbit correction to n may
be that the spin-orbit splitting AE, of the [-
resonance [AE, = |E; - Er|, where &87(E7)=
57(E7)], be comparable to the distance of the !
band center from Eg. This leads to a variation of
the ratio ri/7i from unity (table [I) which is
large for Ce. As a result the matrix elements
Iti and I, differ. In the systems studied here
I =I5, and f7 is generally increased at the
expense of f7. resulting in increased values of 7.

Secondly for each of the *‘f-band metals™” La,
Ce and Th, the RMTA appears to overestimate
n by approximately 25%. In this respect these
f-band metals resemble d-band metals, where
similar overestimates [4, 5, 19] by the RMTA are
common.
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Transferability and the electron-phonon interaction:
A reinterpretation of the rigid-muffin-tin
approximation
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The expression for the McMillan-Hopfield constant 7=N (Eg}(I*?) within the rigid-
muffin-tin approximation (RMTA) is reinterpreted in terms of single-channel electron-ion
matrix elements /7., and angular-momentum-character fractions f; of the electronic
states at the Fermi level. Reexamination of Nb- and V-based 415 compounds suggests
that 77, is more nearly an atomic property, and thus transferable from system to sys-
tem, than other commonly used quantities. The fractions f; are dependent on bonding
character and crystal structure but tend to be constant within a class of compounds. Cri-
teria for increasing n within RMTA are discussed.

I. INTRODUCTION

In his classic study of the electron-phonon in-
teraction parameter A and its relation to the super-
conducting transition temperature T,., McMillan'
showed that A can be written

N(Eg){I?)
A=‘_—"z— (n
A"(‘l) )

in terms of the density of states N(Ef) per spin at
the Fermi energy Er, a mean-square electron-ion
matrix element (I2), and an appropriately defined
lattice stiffness M(w?). A topic of particular in-
terest in the ensuing decade has been the discussion
of high T, metals in terms of one or the other of
the factors N(Ef), {I*), or M{w?) as most im-
portant in leading to high-temperature supercon-
ductivity. With one of these factors [say, N(Er)]
as the principal determinant of the high T, a na-
tural procedure which could be tried to produce a
higher temperature superconductor is to “transfer”
this large value of N(Efr) to a metal with more
favorable values of (/%) and M (w?).

The limited data available to McMillan' [all em-
pirical except for a few calculated values of
N (Epr)] suggested that the product N (Eg)(I?) is
roughly constant within a class of materials, in
which case the search for high T, materials should
concentrate on soft lattices with small values of
M(w?). Although this approach was used by
several investigators in the following years, often

with apparent success in understanding trends in
T., more recently it has been called into question
by a number of calculations. Based upon the
*rigid-muffin-tin approximation™ (RMTA) of
Gaspari and Gyorffy,? Papaconstantopoulos

et al.,’ and Butler* have shown that, within iso-
structural elemental transition metals, N (Eg){I*)
can vary by as much as a factor of 3." Further-
more, these estimates appear to agree rather well
with more recent experimental data. Thus varia-
tions of N(Eg) and (I?) separately must be taken
into account.

Another early attempt to correlate superconduct-
ing properties was made by Hopfield,® who intro-
duced the notational convenience n=N(Eg){(I*)
{the “McMillan-Hopfield parameter™). Analysis by
Hopfield which emphasized only the p-d scattering
led him to anticipate that, in transition metals
which had a large d partial density of states, n
would be essentially an atomic parameter. As
such, 7 would be transferable, from element to al-
loy and within a class of compounds. and Hopfield
used this idea in an attempt to understand super-
conductivity in transition-metal alloys and within
A415 compounds. However, the startling discovery
by Klein and Papaconstantopoulos® that the d-f
contribution’ to 7 is not only appreciable but in
fact dominant in transition metals, and the ensuing
realization that the f contribution is a property of
the environment rather than atomic in nature, has
pointed out the limited usefulness of Hopfield's ap-
proach.

There have also been suggestions that, within

745 ©1982 The American Physical Society
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limited classes or subclasses of compounds, there
may be an “atomic A" which is more or less
transferable. Phillips® suggested that, within the
NaCl-structure NbN family of compounds, the
sum of atomic contributions A=A4, + Az should be
a useful concept. However, RMTA calculations by
Klein, Papaconstantopoulos, and Boyer® indicate
Ac for carbon varies by more than a factor of § in
the compounds NbC, TaC, and HfC. This idea of
“transferable A" was then further restricted to the
subclass “*NaCl-structure compounds with phonon
anomalies” by Haufe, Kerker, and Benneman.'°
However, at such a specialized level the concept of
transferability loses much of its usefulness in
understanding superconductivity as well as for
predicting higher T, materials.

In view of these largely unfruitful attempts to
identify transferable quantities related to supercon-
ductivity, and also the difficulty in calculating the
phonon spectrum and hence the lattice stiffness
M{w?), emphasis has shifted to attempting to
understand the behavior of n within rigid-ion
models, chiefly the RMTA. Notably, the group at
the Naval Research Laboratory has published ex-
tensive RMTA calculations for elements*® and for
NaCl-structure’!! compounds and A15 (Ref. 12)
compounds, among others. Butler* has provided a
detailed RMTA study of the 4d transition metals,
noting in particular the dependence of (I?) on
atomic number (i.e., valence) and volume in this
class of metals. A simultaneous examination of
the behavior of 7 across the 4d series was given by
Pettifor,'’ who related RMTA quantities to band-
structure parameters.

In this paper I present a reinterpretation of the
original Gaspari-Gyorffy expression for (72)
which results from a simple regrouping of terms.
In addition to providing more physical insight into
the quantities which determine (72), this rein-
terpretation has two other favorable consequences.
One is that atomiclike quantities are identified,
these being the electron-ion matrix elements I, .,
for scattering, from partial wave / to partial wave
{ 41, by an atomic displacement. The atomiclike
nature of I, suggests an approximate transfera-
bility which seems to hold at least in systems with
common bonding characteristics. The other is that
the fraction of states f; =N/ Eg)/N(Ef) with an-
gular momentum I, which multiplies I}, is a
much smoother quantity (in several senses to be
discussed below) than the original crystalline
enhancement factors. Results of various previous
calculations are reviewed in terms of these ideas.

I Ave et Vel DL sk sk Sadi aricaesdh MU e T T T T T T'r','-v.‘w

18

R R . cSe PO
RPN P I P IR ST Wi T U G Ny O

Il. REARRANGEMENT OF THE
GASPARI-GYORFFY EXPRESSION

Gaspari and Gyorffy derived an expression for
(I*) which can be written (in atomic units
fi=2m =¢’/2=1)

(I*)= A +1)

F
T N(Eg ) ;
Xsind8; =8, vivipy, (2

where §; is the Fermi-energy phase shift for partial
wave /. The *“crystalline enhancement” of the den-
sity of states is given by

vi=N|(Eg)/N{EF) ,

where N{'(Eg) is the corresponding density of
states for a single scatterer rather than for a lattice
of scatterers. Specifically,

VE;

NYEp)= —

21 +1)

RS b
Xfo drr‘R,z(r.E,.-) . (3)

where R, is the radial wave function and Rg is the
muffin-tin radius. The trigonometric factor in Eq.
(2) arises from the RMTA matrix element

A . dV .
fo drr‘R,—d-r-R,+,=Sln(8;—8,+,), 4)

with the radial function normalization chosen to be
RI(RS1EF)=jI(KFRS )COS&[
-—n,(x;Rs)sinﬁl . {5)

Here j; and n; are the spherical Bessel and Neu-
mann function and ;= Ef.

Several features of Eq. (2) should be noted.
First, the factor sin*(§; =5, ..,) which is bounded
between O and 1, depends, {rom Eg. (4), on the
muffin-tin potential ¥, on its overlap with radial
functions, and on the radial function normaliza-
tion, which is not bounded [see Eq. (6) below].
Secondly, the rather unphysical single scatterer
density of states tends to obscure the physical in-
terpretation. Thirdly, the factor Er, which seems
to imply an overt dependence on the zero of ener-
gy, is in fact artificial, being canceled by the V'E
factors from Eq. (3). This last feature points to
the fact that the factor (VZr/7) (2l ~ 1) was in-
troduced into the expression (2) to convert the nor-
malization integral
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» R, characteristic which was not evident in the original
= f o rrR (6) Gaspari-Gyorffy expression.

to a density of states.

Although the original expression (2) may be
desirable from some points of view, the following
reinterpretation in many ways provides a simpler,
and thereby more illuminating picture. Begin by
defining a rigid-muffin-tin matrix element for the
|-l +1 channel by (see also Butler®

R
1“.‘_|=fo Sdrfzkl%R,‘|/(flf[,|). N
Evidently I,, ., is independent of the normaliza-
tion of the radial functions and depends only on

dV /dr and the shapes of the radial functions. This
form of matrix element has been used previously
by Pickett and Gyorffy,'* Pettifor,'’ and to some
extent by Butler,* and was also preferred by Al-
len.'"’ In terms of these matrix elements and the
fraction f; of states of angular momentum [, (/?)
can be expressed as

2 (20 +2)
1 )=§ 2+ 12U +3)
This expression provides a more straightforward
and useful interpretation for primarily two reasons.
The first reason is that {;; ., will be, 10 a degree 10
be discussed in Sec. III, an atomic property as it
depends only on the muffin-tin potential, through
its derivative d¥ /dr and its radial functions, but
not explicitly on the crystalline arrangement of
neighboring atoms. This in fact is essentially the
idea of Hopfield,® but restricted to the muffin-tin
region and making no attempt to simplify the ra-
tios f; out of the expression.

The second desirable feature of the summand in
Eq. (8) is its dependence on energy Er. From Egs.
(4) and (7) and the expression

F=RIR(Rs.EeP | 71| » 9

where 7, is the energy derivative of the logarithmic
derivative, IE“., is seen to be very smooth, varying
as do §; and ¥, on the scale of the / and (/ +1)
bandwidths. This energy variation has been dis-
cussed previously by Pettifor.'> Although it is
somewhat less obvious, the ratios f; are much
more smoothly varying then cither its numerator
or denominator alone. This is the result of (i)
N(E) and N(E) having canceling van Hove singu-
larities at the same energies, and (ii) f; depending
only on the character of eigenstates, rather than on
the density of states which may vary rapidly. It
follows that (/%) is slowly varying with energy, a

odifie - (8)
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The behavior of f; in La (Ref. 16) is shown in
Fig. 1 and it can be compared with .V, and .V in
Fig. 2. Lais a good metal in which to illustrate
this behavior because, although over most of its
spectrum it is typical of a 54 transition metal, it
possesses 4/ (/=3) bands centered 2.5 eV above £,
which provide an extreme example of the features
mentioned above. Figures 1 and 2 show dramati-
cally how the sharply structured behavior of .Vt E)
is translated into a smooth, almost resonance-like
behavior of f;(E). Likewise, the structured d spec-
trum .V,(E) is converted into a2 smoother form in
J[:{E) which, however, is nearly split by the f
bands. {In the absence of the f bands, as in more
typical transition metals, only a minor minimum in
[:E) will occur in the low density-of-states
bonding-antibonding “gap.”]

Deviation of f;(E) from very smooth behavior
results primarily from hybridization, as mentioned
above for the d-f interaction effect on f,(E). This
effect is more clearly drawn in f(£) and f(E),
each of which show structure due to hybridization
with d bands (at —2 eV) and f bands (~ 1.5 eV).
However, the resulting variation with energy in

Lanthanum
- 0
g X 40
ol —{M

1

DENSITY-OF-STATES RATIOS

\ ; s x 10 '

° — “%"'L-; =
0 2 .
ENERGY (eV)

FIG. 1. The electronic density-of-states ratios f;
versus energy for fcc La, /=0, 1, 2, 3, 4. Successive
plots are displaced by one unit (0 f; < 1). The zero of
energy is fixed at the Fermi level.
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quantities are shown in Fig. 3. The full relativistic
treatment of {(I2) will be presented elsewhere.!’]
The phase shifts for /=0, 1, and 2 are typical of
an early 5d transition metal, but the sharp /=3
resonance (where §;=m/2) at 2.1 eV gives rise to
flat 4/ bands not present {or rather, fully occupied)
in heavier 5d transition metals. The /=4 phase
shift is positive but less than 7 10~ throughout
this range.

The normalizations 7; calculated from Eq. (6)
and shown in Fig. 3(b) are proportional (except for
the V'E factor) to the “single scatterer™ density
of states used in the original Gaspari-Gyorffy ex-
pression. For /=0, 1, and 4 these are monotonic
in the interesting energy range. For /=2, v, peaks
somewhat below the d-band center due to the clear
nonresonant form of 8, in Fig. 3(a). The sharp
I=13 resonance results in a huge increase in 7; in
the 4/-band region. The effect of this resonance
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- ; " o —
1 ot -~ZX..
o T T d..- 'j/ - //‘z \. ____________
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ENERGY (eV) i // —
FIG. 2. The total and partial densities of states of fcc / P ]
La. Rescalings of the various partial densities of states Z
are as noted. =2 -1 0 1 2 3 4 5 6
ENERGY (eV)
each case remains much smaller than that of ~=
.VI(E ). : (c) 2 :
To give a full picture of the present approach to é‘e L+
(I%), the quantities §,, 7, and I}, for La are = A S,
shown in Fig. 3. [For §; and r; the (2j + 1)- =8 o e A
weighted averages of the corresponding fully rela- =E=F R : X ONTP
s, ‘s . 1 = : K N
tivistic quantities for j =/+ < have been used for I ' ; ~
I=1, 2, and 4. For /=3 this averaging results in o e~ ¥ ~
unphysical behavior in the energy region between g~ e : yat
the j =< and j = resonances, so only the j =7 ;~,-° - :

n
w
F'S
w
(]

3 2 -1 0 1
ENERGY (eV)

FI1G. 3. La functions entering the RMTA expression
for . (a) Phase shifts §, relative to 7. (b) Semilog plot
of the normalization integrals ;. (c} Semilog plot of the
single-channel matrix elements l,f,“. Note the zero of
I3, at the point where 5,=8;.

on If“,, is evident in Fig. 3(c), where [ §,3 drops by
over an order of magnitude in this region; in addi-
tion, /3 ; vanishes where §,=5,. However, in the
absence of the 4/ bands, 1,?,4_, are smooth over the
entire d-band region.

III. TRANSFERABILITY OF I},

In this section we investigate the degree to
which the matrix elements I} ., represent atomic-
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LAPUTE A . 1 A U SN S AL WP - A oA VG SUORE WU S




.‘\ss-‘.-‘ .‘ »‘\ --' -Iv.‘- v\v‘..‘-r\!’ '»-..' --.‘.";r'."_r‘.. LT

23 TRANSFERABILITY AND THE ELECTRON-PHONON . .. 749

like, transferable quantities. For this purpose we
focus on Nb and V, for which Papaconstanto-
poulos, Klein, and Boyer (Refs. 3, 6, 9, 11, and 12)
have carried out self-consistent band-structure
determinations and calculations of # for the ele-
mental metals, several 415-structure compounds,
and two Nb-based NaCl-structure metals. These
compounds are listed in Table L

A feature which was not mentioned in the previ-
ous section is the dependence of the various quan-
tities on the sphere radius Rs. As far as the
RMTA itself is concerned, Rg should be fixed at
the radius which most nearly reproduces the actual

dence of §; is often weak. The resulting weak
dependence of n on R is central to the usefulness
of the RMTA in that it provides a relatively
unambiguous result to compare with experiment.

The quantities f; and I}, ., the intermediate
quantities in the interpretation of RMTA being
proposed here, are separately dependent on Rs.
For a comparison of these quantities in various
systems, renormalization to a common radius R
must be carried out first. This has been done as
follows. For /=0, 1, and 2 the radial wave func-
tions are varying slowly near Rs and the normali-
zation correction Arj is approximated by

AANSA St it Bt aiet et Sis S Mhaet Tt St Hhne _Sute Shaet Sn Shtec

scattering properties. However, theoretical ambi-
h guities can arise if spheres from distinct atoms
overlap, and in the NRL calculations which will be

3 used here, maximal nonoverlapping spheres have

- been used. Each of the quantities §,, .V;. and V,"
N depend on Ry, but the ratio v;=N,;/V;" is in-
ﬁ dependent of Rg to lowest order and the Rg depen-
h

R.S b
Arf= ridr Ri(r)
] fR’s‘ {
=RHRsURI-RI /3. (10}

In addition the radial function R, itself is renor-
malized to the appropriate value at the new radius

. Rs. Explicitly,

- / (K’.'R-s )COS&[ —n[(KFR.S )sin&, :
HRs)=[Rs)+ar] | £ .
l( S)=[ i S)+ l] j[(KFRs)Cossl—n((KpRs)Siﬂsl {an

f
the elemental value of Rg and the mean of the
AlS-structure values given in Table I; these were
taken as R5 =2.57 and 2.37 a.u. for Nband V,
respectively. The resuiting values of #H(Rs) in the
A15 compounds were 5—20 % increases over

For { =3 the fact that R;(r)asj;(xgr) (inside as
w’ell_as outside the sphere) was used to recalculate
13(Rg) directly. No correction to the phase shifts
N has been considered.
“ The radius Rs was chosen to be midway between
-
TABLE L. Sphere radius Rs (a.u.), Fermi energy Ef (Ry), density of states per metal atom per spin .V 4 E;) (Ry ™",
¥ phase shifts §; (radians) and density-of-states ratios f;, and enhancements v;, for Nb- and V-based compounds discussed
o in the test.

3
: Rs Er NYUEF) & & & & fo N S [ Vo v va vy
g
NbC 2.313 0869 476 —1.11 -0.51 1.30 0.0107 0.0036 0.0123 0.383 0.0288 0.193 0.150 0.361 2.57t1
» NbLN  2.308 0.849 643 ~1.01 —-047 1.72 0.0111 0.0057 0.0034 0.412 0.0234 0.161 0.056 0.613 2.945
:: Nb;Al 2.450 0.837 1660 -—1.13 -0.50 0.86 0.0076 0.0115 0.0613 0.530 0.0123 0.965 3.257 1.707 4.248
) Nb;Ga 2.443 0.851 1598 -—1.14 —~0.50 0.90 0.0082 0.0110 0.0668 0.529 0.012! 0.8387 3.341 1.608 3.827
:,' Nb;Si 2.457 0.832 697 —1.12 —-0.49 0.90 0.0079 0.0069 0.0557 0.560 0.0120 0.242 1.241 0.721 1.747
K Nb;Ge 2.438 0866 889 -—1.15 —0.51 0.92 0.0086 0.0061 0.0583 0.563 0.0126 0.271 1.597 0.967 2.108

Nb,Sn 2.495 0.833 1322 —1.11 —0.49 0.94 0.0083 0.0047 0.054+ 0.594 0.0102 0.306 2.367 1.367 2.731
Nb;Sb 2482 0.874 433 —1.15 —0.51 1.02 0.0094 0.0046 0.0502 0.594 0.0137 0.099 0.637 046 1.052

Nb 2.685 0676 9.71 —093 —0.36 L14 0.007+ 0.0178 0.0746 0.724 0.0128 0.807 2923 0.681 3.346
v 2477 0675 1270 -0.69 -0.17 1.03 0.0027 0.0102 0.0638 0.8346 0.0071 0.549 2.341 0.634 6.936

ViAl  2.282 0819 1574 -0.88 -0.28 0.95 0.0026 0.0047 0.0543 0.633 0.0056 0.365 2.698 1.003 4.238
V;Ga 2276 0.827 2463 038 -0.28 [.02 0.0028 0.0037 0.0565 0.652 0.0044 0.445 4.333 1.539 5.173
ViSi 2231 0.839 1668 —0.94 —0.31 0.98 0.0031 0.0030 0.0568 0.629 0.0063 0.254 2.795 1.224 4.130
ViGe 2253 0871 956 -092 -0.30 1.02 0.0031 0.0038 0.0415 0.656 0.0071 0.183 1.183 0.670 20776
ViSn 2355 0.803 10.25 -—0.84 -0.26 1.07 0.0029 0.0028 0.0317 0.739 0.0052 0.133 1.048 0.617 2.665

.
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7(Rs) for /=0, 1, and 3 and 5—10 % decreases
for /=2, The corresponding changes in elemental
Nb and V were of opposite sign in each case, since
R <Ry in these cases. It is notable that these re-
normalizations resuited in bringing 7 for the 415
compounds closer to the corresponding elemental
value only for /=0 and 1. For /=2 the renormali-
zation worsened this *“‘correspondence,” while no
clear trend appeared for /=3. In any case these re-
sults seem to reflect real similarities or differences
between the Nb- and V-atom environments in the
elements and the compounds.

In Tables I and I an extensive listing of the
quantities which enter into the determination of
Nb- or V- atom contributions to 7 is presented.'?
Both ¥ and N, have been renormalized to R by
multiplying by the ratio #{(R5)/7H(Ry), hence 7 is
unaffected. Although corrections to the phase
shifts could have been incorporated, this would
amount to investigating the (small) Rg dependence
of 7, which is not the purpose of this paper. It
should be noted that the extrapolation from Rs to
R is somewhat more uncertain in NbC and NbN
than for the other cases, due to the interval
Rs — R being wwice as large.

The principal result here is the regularity in the
values of If,“(Nb) and I}, (V) from system to
system, greater than that of the numerator
sin¥8;— &, ,,) or denominator rfrf,., separately,
each of which is dependent on radial function nor-
malization. The deviations of /7., from perfect
regularity within the 415 compounds are generally

AR S At AV I AR Sea. il RS Bung i i i et S L SRR AN i o)

5% or less, whereas sin“(§, -8, .,) and r77_, may
vary by more than 25%. Comparing the 415 com-
pounds with Nb and V, it is evident that I, of
the element is smaller (for / =1, by nearly a factor
of 2) than that of the 415 compound. However,
for the dominant /=2 channel, variations in
sin*(8,—8; ) and 177, partially cancel. leaving
I{; ., as the most transferable quantitity. The rela-
tive constancy of (J*) in A15 compounds,
described in the form 1 < .V(Ef), has been pointed
out previously.'?

The situation for the Bl compounds is not as
clear. As mentioned previously, the extrapolation
to the radius Rg=2.57 a.u. may be introducing
some unphysical irregularities, so only a pair of
compounds is not sufficient to allow an evaluation
of constancy of I7,, within this class. It is clear,
however, that 12, is significantly larger than in the
A15 compounds, which may lead to comparable
values of 7(Nb) in spite of a lower density of
states. This is discussed further below and in Sec.
IvVC.

In addition to variations in If,,, two possibili-
ties remain for producing a larger Nb or V contri-
buton to 7. The obvious possibility is to find a
compound with a larger value of N (Eg) per atom.
This approach leads to a well-known instability to-
ward formation of a material with a smaller value
of N(Eg). Rather than placing a very large num-
ber of electrons at the highest occupied energy, the
compound will tend to (a) distort to a lower sym-
metry, thereby moving some electrons to lower en-

TABLE II. Normalization integrals 77 (a.u.), sin®(8; =8, . )=S% 41, [71+1 €V/A2, nfi., and 7' (eV/A). and (1%)4
(eV/AP. Note the definition 7= VMEF)*(I*)*, with N (Ef) defined in the caption to Table I.

% = 73 % S&, St

2
Si3

n, n, I13i; w oty 0t oot UH4

NbC 0.715 0436 340 00257 032 095
0.0249 0.26 0.67

0.0235 0.3 095
0.0246 036 0.97
0.0235 035 097
0.0256¢ 0.36 0.98
0.0242 0.34 098
0.0271 035 1.00

0.0176 029 1.00
0.007t 0.25 0.87

0.0101 032 0.89
0.0104 032 093
00122 034 092
0.0117 033 0.94
0.0101 0.30 0.94

0.92
0.98

0.56
0.61
0.61
0.62
0.64
0.72

0.82
0.73

0.66
0.72
0.69
0.73
0.77

675 421 7000 0.02 0.18 462 482 138
505 333 8850 0.00 0.06 691 697 148

966 498 4480 0.55 5.27 6.09 1191 9.8
956 495 4580 0.55 548 590 1193 102
929 478 4570 0.12 2.04 269 4.85 9.5
959 508 4600 0.15 291 365 671 103
932 466 4400 0.15 391 444 850 8.7
963 480 44950 005 122 200 326 102

743 262 3900 047 272 442 761 107
495 122 5230 020 164 506 6.90 74

822 231 6220 0.16 247 438 7.0l 6.1
808 230 6400 0.20 4.09 S5.72 1002 5.5
919 284 6500 0.13 3.32 545 890 73
869 262 6480 0.07 1.34 364 505 7.2
733 200 5840 0.03 094 292 390 5.2
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ergy and lowering V(E;i (the band Jahn-Teller of-
fect), ‘b crystallize in an unrelated structure with a
smaller value of V(E;), or (¢c) phase separate into
distinct compounds with lower values of .Y (Eg).

The alternative choice is to increase n by shift-
ing the character of states at £, that is, altering
the tractions f; to maximize (/). An extreme ex-
ampl~ of this effect is to shift :somehow) the s and
p character ‘or an equal amount of d character) in
Nb to f character, thereby taking advantage of the
stronger d-f scattering described by I3 ; in Table
IL. and in this particular example increasing (I°)
by a factor of 8. It is not immediately clear how
such a shift is to be accomplished. although a
change of crystal structure and/or bonding charac-
ter is probably required.

A possible example of this effect may be provid-
ad bv the refractory compounds NbC and NbN,
which are currently understood in terms of a much
more covalent type of bonding'® than the pri-
marily metallic bee elements and 415 compounds.
As a result f is rwice as large, and f; much
smaller for Nb in these compounds than in the
other in Table I. Since Nb has no atomic f siates,
f; results primarily from the Nb-site decomposi-
tion of neighboring atom states,* '’ and covalent
bonding (1.e., strong overlap extending into the Nb
sphere) with C or Np states evidently enhances the
Nb /=3 character of states of Ef in these com-
pounds. Of course, () will be maximized if as
much weight as possible is shifted into the channel
I'with maximum If, | such that fr=/f;_,, with
other fractions f; vanishing. However, such shifts
may well lead to small values of V(Ef), or if not,
the resulting increase in the electron-phonon in-
teraction can lead to a “covalent instability” as dis-
cussed previously.2!#

IV. DISCUSSION AND CONCLUSIONS
A. Elementai transition metals

Expressing n=.V(Ef)(I*) with (I%) given by
Eq. (8) leads to a simple understanding of the vari-
ation of T, in transition metals and their alloys.
Both I,f,,,,, and f; vary smoothly with Fermi-level
position (equivalent to the mean valence or alloy
concentration in the rigid-band model), so rapid
changes in T, such as occur in the NbMo alloy
system®’ result from variations in .V (Eg), with
some contribution due to changes in (w*). On the
larger scale, however, Butler* has found (/°) to
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vary by a factor of 40 within the 4d transition
series, in large part due to the factor f;. On this
point there is little to add to his thorough discus-
sion except to recall the interesting crystal-
structure effects found in Ru. Fur Ru iwhich is
actually hcp) Butler carrier out both bee and fec
calculations, finding /; and (/*) to be about 20%
larger in the fcc phase. However, V' E¢) is small-
er by 33%, leading to a smaller value of n in the
fcc phase. The differences in /' between the two
phases are no doubt related to the nearest-neighbor
distances and coordination numbers. hut such de-
tailed relationships are not well understood at
present.

The present picture provides a new viewpoint on
the differences in the /=3 effects between V and
Nb. In the impcrtant df channel /3, is one-third
larger in V than in Nb, with the smallness of 1 in
V more than compensating for the less favorable
values of % and sin*(8.—8,). The average matrix
element (I*), however, is only two-thirds that of
Nb. Although this is due partly to large values of
1%, and I'%. in Nb, it is the larger value of f; in
Nb which is primarily responsible. This illustrates
that the presence of a larger f; will be accom-
panied by a larger =, and hence smaller [ i;and
that the relative importance of these effects is not
necessarily reflected in the crystalline enhancement
vy (which is nearly twice as large in V as in Nb).

B. A15 compounds

It can be noted from Table II that within each
of the Nb,X and V,.X classes, the values of I},
are virtually constant. The Nb,X class includes X
atoms with valences of 3, 4, and 5 leading to
differing positions of the Fermi level and varia-
tions of V(Eg) by a factor of 4. Nb;Sn and
Nb,;Sb. with T,'s which differ by 2 orders of mag-
nitude (18.2 and 0.2 K, respectively), illustrate
dramatically how their differences in 7 arise solely
from the differences in .V(Eg). More to the point
of this study, however, is the degree of regularity
of I,f,“ and f; which is not apparent in the v; nor
always in the factors of sin*(§; — 5, . ) (see Tables [

and ID).
It has been established in several A15 com-

pounds** that T is sensitive to the degree of
disorder (as measured by the residual resistivity).
The main effect of disorder in the low-disorder re-
gime is to broaden the electron states (“lifetime ef.
fects™). The effect on n and on T, if the electron-
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phonon spectral function a*F is not altered by the
disorder, can be accounted for by using
Lorentzian-broadened values of N(Eg) and {I?).
As was pointed out above, however, (I%E)) is a
smooth function which will be insensitive to
broadening. On the other hand, many unusual
properties of 415 compounds have been interpreted
in terms of sharp structure in NV (E) and such
structure has been verified by band-structure calcu-
lations.'**% The present interpretation of the
RMTA makes it clear that the extreme sensitivity
of T, to disorder must be reflecting the fine struc-
ture.

C. NbC AND NbN

These B1 (NaCl-structure) compounds differ
from the 415 compounds in having a more strong-
ly covalent (metal d state with nonmetal p state)
and ionic (metal-to-nonmetal charge transfer of the
order of one electron) bonding, rather than pri-
marily metallic bonding. This difference is reflect-
ed in the Fermi energy falling nearer the d reso-
nance (5, =/2) and results in a value of I ; that
is 80—90 % larger than in Nb and the Nb-based
A15 compounds. Another apparent consequence
{in this case) of the strong bonding is the low value
of N(Eg), which leads to a rather unimpressive
value of 7y in spite of (I*) being 40— 50 %
larger than in the 415 compounds. These com-
pounds do illustrate, however, that a change in
bonding character can lead to substantial increases
in (I*) relative to those in 415 compounds, and
there remains the possibility that compounds with
larger values of  may be found.

The predominance of Nb-based compounds in
high T, materials is still not completely under-
stood. It is clearly not due to (I%)yy, since (I2)
peaks strongly at Mo rather than at Nb in the 4d
series.* The evidence suggests>® this predominance
is due instead to the tendency of Nb-based tand
similar) compounds to form phases with strongly
split bonding and antibonding d bands. For Nb,
with its slightly less than half-filled d shell, the
Fermi level is left in a favorable region for large
values of N(E¢). The half-filled d shell Mo in-
stead leaves Ef in the low density-of-states “‘gap.”

The bece transition-metal alloys and the 415
compounds are prime examples of this behavior.
This point of view suggests that Mo will only be
useful in raising T, if a d electron is transferred
onto another atom, transforming Mo into
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“pseudo-Nb.” Exactly this behavior occurs™® in
the Chevrel phase compounds MMoS; and
MMoSeg (M =metal atom, e.g., Pb, Sn,...), for
which 4 bonding between neighboring Mo atoms is
strong. An electron is transferred from each Mo
to the chalcogen atoms and Ef falls in a region of
high density of states just below the bonding-
antibonding gap. For PbMo,Sgs, T, =15 K results.

This behavior is violated in Mo-chalcogen com-
pounds in which d —d bonding is less dominant,
and such compounds tend toward semimetallic or
semiconducting character. It is also violated in the
Bl-structure compounds such as those discussed
above, where metal d, nonmetal p bonding dom-
inates and no d —d bonding-antibonding gap oc-
curs. Approximately one electron is transferred'
off the metal atom in the Nb-based compounds,
and similar behavior is expected in their Mo-based
counterparts, since Nb and Mo are expected to
form good rigid-band systems. A rigid-band pic-
ture suggests .V (E¢) in MoC should be 10%
larger'! than in NbC, and the results of Butler*
suggest (I)y, will be somewhat larger than
(I*)xp (as in the elements). Indeed, it is found
that T, is 30% larger in MoC (14.3 K versus ~ 1
K.

The same argument suggests T, of MoN should
be considerably larger the: that of N¥& (T, =16
K). Rigid-band behaviex .53gests a 20%
increase™® in N (E); s wever, (%), may be
slightly less in MoN since Ef aiready lies slightly
above the d resonance in NbN (see Table I). The
few studies of molybdenum nitrides reported in the
literature®” have not unambiguously established the
existence of Bl-structure MoN. Although negative
results often go unreported, there are at least two
reasons why an extensive search for this material
may have not been undertaken. The first is the ap-
parent dominance of Nb-based compounds in high
T, superconductors, as mentioned above, which
makes the substitution of Mo for Nb in these com-
pounds unappealing. The second reason is the
electron-atom ratio of MoN (e /a=5.5), which
violates he “Matthias rule"*® that high T, materi-
als cluster ‘round e/a=4.75 and 6.5 with a deep
intermediate valley. The Matthias rule can be un-
derstood in terms of the structure in .V(E) in ma-
terials dominated by d —d bonding, and it is of
considerable interest to establish whether this
guideline is violated in the Bl structure. Finally,
the lack of stability of MoN itself is suggestive of
a strong electron-phonon interaction in this com-
pound. The phonon spectrum will also affect the
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b - value of T, but such considerations are beyond the this point (neither fy nor I3 ; is sensitive to Rg).
§~::' scope of the present paper. We want merely to caution here that requirements
N (i) and (ii) above are necessary to maximize f;
' within RMTA, but that the RMTA is least certain |
D. A caveat here. It seems likely that the inclusion of the non- |
: i - rigid potential®® and the concomitant relaxing of
Allen and Dynes™ have noted that, although the / <=1 +{ selection rule in a more rigorous
{ soft lattices may contribute somewhat to high theory may be necessary to lead to a more funda-
i values of T, known metais with high T, achieve mental understanding of the best mechanism by
this primarily through a large value of . Within which to increase 7.
the RMTA, higher values of 7 in transition-metal For f-band metals with atomic contributions to
compounds thus seem to rely on a larger .V(E¢) or the /=3 quantities, that is, rare earths and ac-
I35 or on larger f; ratios. The /=13 character tinides, Butler* has suggested that the f bands may
arises from tails of states on neighboring atoms, be useful in reaching large n values. Calcula-
and an /=3 expansion of these tails requires (i) tions'”*""3 for La, Ce, and Th do not confirm
they behave approximately as j;(xr) as seen from a these expectations, however, and the discussion of
neighboring atom, as pointed out previously by Sec. Il shows why narrow f bands will not lead to
Butler,* and (ii) they are expandable in /=3 angu- large 7's, in spite of extremely large densities of
lar functions. These requirements might be expect- states.
ed to point the way to crystal structures and chem- Note added in proof. Calculations of T, for
ical configurations with larger values of f;, and NbN and NbC have been presented by W.E. Pick-
perhaps 7. The NaCl-structure compounds, it ett, B.M. Klein, and D. A Papaconstantopoulos
should be noted, have Nb f; ratios rwice as large [Physica 107B, 667 (1981)].
as for the 415 compounds, much of which prob-
ably derives from C or N p states.
However, the contribution to 7 involving f; ACKNOWLEDGMENTS
arises in real space from near the sphere boundary, _
where the RMTA model of the screened potential The author is indebted to D. A. Papaconstanto-
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what arbitrarily) divided by two.”® It is at first Table I. A critical reading of the manuscript by
glance surprising that this df contribution, from D. J. Nagel and comments on the Bl compounds
near Ry, is not sensitive to the value of Ry, al- by D. U. Gubser and S. A. Wolf are also ack-
though the present treatment of RMTA clarifies nowledged.
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A microscopic treatment of the consequences for superconductivity of a nonconstant electron-
ic density of states is presented. Generalized Eliashberg gap equations valid for a varying densi-
1y of states are presented, from which the change of T, with static or thermal disorder can be
calculated. The temperature dependence of the effective mass is shown to be altered by disor-
der. Use of these results provides a possible experimental approach for deducing the energy
variation of the density of states of superconductors.

I. INTRODUCTION

There is currently an active interest in the effects
upon the electronic properties of metals when the
density of states N(E) cannot be assumed to be con-
stant near the Fermi level £r. Recent band-structure
calculations, especially on the 415 compounds, con-
{irm that in transition-metal compounds with saveral
atoms per cell, sharp structure in N(E), at least on
the order of the Debye frequency k8p ~ 25 meV, oc-
curs in a region around £r. Since there is no general
agreement (nor will there be soon) among band-
structure calculations on this scale, the general trend
has been to attempt to fit experimental data with
models of V(E), usually with ad hoc phenomenologi-
cal expressions or oversimplified theories. Since the
phenomenological approach appears to be the only
way at present to deduce the structure in N(E) on
this scale, it is evident that correct theoretical expres-
sions are needed to allow a proper unfolding of the
data.

The effect upon the critical temperature T,, due to
static disorder has been studied extensively in 415
compounds, where T, may either decrease or increase
with disorder.! Explanations of this phenomenon has
postulated a smearing of structure? in N(E), gap an-
isotropy.’ changes in the phonon spectrum,* or the
special type of defect® which is present, although not
all of these could raise T.. Unfortunately, there is a
great deal of uncertainty in the literature about the
form the energy smearing will take, with the only mi-
croscopic theory (Labbe and van Reuth, Ref. 2) be-
ing based on a special type of disorder and an over-
simplified model of an A 15 compound.

In this paper a more rigorous theoretical treatment
than previously available is given for the supercon-
ducting properties of a metal with a nonconstant
N(E). The results wiil be confined primarily to the
effect on T, and the effective mass. Theoretically,
the effect upon T, has been considered in different
approximations by Horsch and Rietschel® (HR) and
Ho. Cohen, Pickett’ (HCP), with apparently conflict-

2

ing conclusions: HR suggested that the structure in
N(E) is responsible for the high T. found in many
A1S5 compounds, while HCP contended that structure
in N(£) is ultimately of no importance in raising T..
Here it is shown that both situations are consistent
with a full theory. In addition it is found that, for
metals in which the spectral function o*F is accurate-
ly known, the dependence of T, on (nonmagnetic)
impurity concentration n; and the aitered temperature
dependence of the mass enhancement [1 +A(T)]
due to disorder may provide information on the vari-
ation of N(E) in the region of Er. The change in
A(T) has apparently not been anticipated.

II. ELIASHBERG GAP EQUATIONS

The Eliashberg gap equations assume a particularly
simple form when expressed on the imaginary-
frequency axis. The complex frequency-dependent
normal [ Z(w)] and anomalous [#(w)] self-energies
collapse to functions defined at discrete imaginary
frequencies /w, =i2mwnkgT. Unfortunately, in this
representation there is no straightforward intuitive in-
terpretation, and numerical results which are ob-
tained with relative ease are not easily analytically
continuable to the real axis. Since one aim here is a
clear understanding of the effects of a varying V(E),
the real-frequency expressions will be developed and
interpreted.

The irreducible self-energy £=X, +X.+Z, ist0
be determined self-consistently from contributions
from phonon, electron, and impurity scattering. The
latter usually is not treated explicitly, as it has only
the effect of changing the reference-band structure,
i.e., changing N(0). The seif-energy is expressed as

:(E,w)-_wn—Z(F.w)lro
+xX(K. 0)ry+o(K. 0, N

where 7; and r; are the Pauli matrices. and =g is the
2 x 2 identity. The phonon contribution is given (on
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the imaginary-frequency axis) by?
Il Kiwy) ==g" 3 lf—.—;—-PT)G( -k".un.-)
)

XTJD(;-E'.N"."IN.:) (2)

where G, D are the electron, *honon Green's func-
tions, respectively, and £ is the screened eiectron-
phonon matrix element. In this approximation for
I, it is assumed that Migdal’s theorem is valid. i.e.,
that other diagrams give a contribution to X,, which
is smaller than Eq. (2) by the factor (k9p/Ef),
which is of the order of (electron mass/ion mass)'/?
in ordinary systems. Although Migdal's analysis no
longer guarantees that other diagrams always give a
negligible resuit when the system contains very nar-
row bands, there should remain an important regime

Troevw , v WL, 9 ¥+ ¥ 8°7% - 7 00 7 0 =R R8s e e
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where the following treatment of Eq. (2) will give the
domsnant contribution to X,

To convert the wave-vector { k) dependence lo en-
ergy ( £) dependence,’ define for any function C (k)

CIEIN(E)Ym3 C(K)SlE-E7) . 3)
N

It will be assumed that the replacement

SCURKICHUK)IS(E~-EL)=CHUEICHEIN(E) (4)
k

is valid. This amounts to ignoring anisotropy and
contributions which are off-diagonal in the
(suppressed) band index,'® but allows us to retain the
energy dependence, which is the point of interest in
this paper. This allows Eq. (2) to be written

'y

The phonon spectral density is denoted by B, and
alF(0,0;0) is the usual electron-phonon spectral
function a’F.

From Eq. (5) it is evident that the E dependence of
T arises from the £ dependence of a*F and the
analogous Coulomb and impurity functions, a fact
noted by HR. In systems where N( E) varies appre-
ciably, very listle is known about this energy depen-
dence. For clarity we make the approximation

a’F(EE Q) =a’F(0,0,Q) ma’F(Q) ;

it should be kept in mind that this approximation is
untested. The full energy dependence can be re-
tained in the development which follows, but doing
so complicates the expressions considerably.

What must be evaluated then is

-1
n(w) ==L [T ENDGEW . ™

This can be_: done formally by introducing the con-
tinuation N(§) of N(E) off the real axis

v L -
Mem-L f_:dEN(E)/(E 6 . ®)

3 N is analytic in both the upper and lower half-planes
¥ of £ but has a discontinuity 2N(E) along the real
L axis. This property allows 7 to be written
\ 1 .
n(@) =- [ deRG @ | ®
b where the contour C encircles the real axis in the
L negative sense at a distance 5 =0* above and below,
3
! 28
L{. q:" \:' -;‘_:.'ﬁ . \ ;l ;.' ':.;.1..‘\ ..-4 Al ‘. ORI Py

) m gl N(E) 20a°F(EE;Q)
Zm(Efwn) = =8 Zf ENO f‘m(m.-m,.ﬁ TG (Eriwn ©)
where .
N(EIN(EVaF(EE Q) =N(0) 3 |Fo ' B(K-K Q)BE-EQ)S(E'~E) . ®

and £ is substituted for £in G. The contour can be
removed 1o infinity, leaving only the contributions
from the poles of G at

£=+0(w), Q(w)m((wZ)?-¢!1V2

X will be ignored, as its effect can be shown to be
negligible in all except the most pathological cases.
The resuit is

Nw) =ill(wZry+d1)/QINAQ) +13N.(Q)) ,

(10)
with

N(Q)=[N(Q) tN(-Q)]/2 . an

In the limit of a constant density of states, .
N_(Q) —N(0) and N.(Q) —0. In general Re V. is
the dominant term, as discussed below. The other
contributions [Im N_, Re N.. aad Im N.] are much
smaller, since cancellation is present in their defini-
tion and, being oscillatory about zero as a function of
w’ through Q(w'), contributions to the ' integral
will tend to cancel. These factors will be neglected
relative 10 N_.

11l. CONSEQUENCES OF ENERGY DEPENDENCE

It is straightforward to apply the same approxima-
tions to the Coulomb and impurity (or more general-
ly any static-disorder) contributions and continue the
resulting expressions to the real axis.® The equation
for the gap A = ¢/Z = A, + A, + 13, is most easily
derived using A, =y + (1 = Z) A, etc., with the
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result at 7 = T, becoming

Mw) -J:de' V(o)

.\(w)
'

+in [T a0alF(Q)n(Q) z

g

w

“ww)'[x-( w @)f(~w) +xlw ~0)f(o)]

i kelw, @) f (=) —kulw. —w) f()] =, lanhL

Nlw,) . 8]

Here w, = + (=)} +i3, U. is the Coulomb pseudopotential, w. is the cutoff frequency.

x:lw w) -fdﬂ AF(MTw +u+Q) +t T 0w —w-Q)] , Bk}

V(03 (w) =R V(@) - T [~ dE

E-Tw

f(n) denotes the fermion (boson) thermal occupa-
tion function, T{x) = (x +i8)~}, and
M(w)-il(w) =wll =Z(w)] denotes the normal-
state seif-energy at T 3 T.. Within the approxima-
tions outlined above, the sole change in the gap
equation (12) is the replacement of ¥(0) by
N(0)N(w), given by Eq. (14). Physically V(w) isa
dimensioniess function (as defined here) which re-
flects the average of the density of states at the
quasiparticle energies +{w— M(w)], broadened by
the quasiparticle damping '(w). It should be noted
that, for strong electron-phonon coupling and a
varying V(E) near Er, neglecting the temperature
dependence of the energy shift M may not be justi-
fied.

The first effect [averaging over t(w—M)]| was
studied in some detail by HR, who neglected the
smeanng and made the replacement .

N(0) —-—[N(«»-M) +N(=w+M]. Using a model
density of states with an £/ singularity, numerical
solutions indicated an enhancement of 7., over the
value for constant V(0), for Fermi-level placements
Ep= %(l +A)awp relative to the singularity, while
other placements gave a reduction of T.(wp is the
Debye frequency). This behavior was interpreted as
a reduction of the repulsive part of the interaction
resulting from the interplay of the energy dependence
of V(E) and the {requency dependence of the in-
teraction. Part of the effect no doubt is due to the

(V[E—w+."!(w)]*-N[E‘w—.ll(w)” . (14)

fact that ${.V(w— M) + N(—w +M)] > N(0) for

the important frequencies for this placement of Ef.
In a sense the effective value of the density of states
is increased. Since the other parameters are fixed,
this results in an increase in T,.. The treatment of
HR is valid if the damping () is negligible: this
approximation is close to breaking downat 7T =T, in
high-T. 415 compounds.’

The second effect, the smearing of NV(E) resulting
from quasiparticle damping, has been considered by
HCP, who argue that for strong-coupling (and high
T.) superconductors, peaks in V( E) become ineffec-
tive in raising T.. A large A leads 10 a large damping
F(w) and thus a greater smearing of V(E). It was
argued that for large enough A, the peaks in V( £)
will be smeared out at T = T, implying that large
values of .V(0) (resulting from sharp structure in the
T =0 band structura) are ultimately useless in reach-
ing very high T.. Roughly speaking, the broadening
effect, with peaks heights decreasing in proportion to
A, will dominate over the increase in 7., (ultimately)
proportional!’ to A2, By assuming that £ lies near
the center of a very narrow peak in V(E), it was es-
timated that T, could be reduced by ~2-4 K by this
effect in high-T, (~25 K) 415 compounds. The
averaging of V(E) over a range +wp was neglected
by HCP, but in fact tends to strengthen their conclu-
sions if £f lies precisely at a peak in V(£).

The normal self-energy at T2 T is

M() =iC(w) = [ do B(w) L0, 0) f(=0") +x-(w, =) f ()]
—lﬂj;-dﬂazF(ﬂ)n(ﬂ)[xV(w+ﬂ)+h7(w—ﬂ)l+(l—Z),w—in,N(O)IV'I’.\.I(w). (15

The Coulomb contribution (1 - Z).w arises from
high-frequency processes and is unchanged by struc-
ture in V( E); the impurity contribution is obtained
by the replacement ¥ (0) —N(0)V(w) and a small
real part has been ignored. The impurities, with
(constant) matrix elements | V12, have been treated

29

in the second Born approximation'? and in the small
impurity concentration limit #n; << 1. It is this self-
energy which must be inserted in Eqs. (14) and (12)
when solving for T.. The impurities do not enter ex-
plicitly into the gap Eq. (12), a manifestation of
Anderson’s theorem.!? [This appears not to be true if
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the energy dependence of a’F(E.E', Q) is important,
in which case the gap is renormalized by the impuri-
ties!] The impurities, however, do add to the damp-
ing, and hence contribute to the smearing of N(E) in
Eq. (12). This implies a variation of T, with impurity
content which in principle can be used to provide in-
formation on the variation of N( E).

The temperature dependence of the effective mass
(m*/m)=1+\(D) is also altered by a variation in
N(E). The phonon contribution is given by

MD =2 [ dwN(a)

j'dnar(m

a less than obvious generalization of the usual ex-
pression.’* This relation generalizes the known
result!’ that strong impurity scattering does not des-
troy the electron-phonon mass enhancement. Impur-
ity scattering does enter into .V and may lead 1o either
an increase or decrease in A.

f{-w)
() +w)?

S{lw)
(ﬂ—w)z

IV. DISCUSSION

In previous treatments*’ a dc relaxation time 7,
usually taken from the resistivity, together with the
uncertainty relation AE =£/r, has been used to
smear an assumed N(£). The resulting effective
density of states Ny Er), together with the assump-
tion AA = AN(EF), was used to estimate changes in
T.. The form of Eq. (12), as well as the analysis of
HR, suggests that this procedure will give a reason-
able approximation only if the scale of the important
structure in N (E) is much larger than wp, as in the
case of large disorder (concentrated alloys, large im-
purity concentrations, or radiation damage). The
present treatment of course is only strictly valid for
small amounts of disorder.

A quantitative study of the usefulness of these
results in empirically inferring structure in N(E) will
be discussed elsewhere. A few observations should
be made here. Superficially Eq. (16) appears to be
the more promising approach, since the relation
between V( E) and the measured quantity is more
direct, and A( ) can be extended (in principle) to
temperatures T > T, where the energy smearing is
larger. Although light effective masses have been
seen up to 7 ~ 100 K in de Haas-van Alphen oscilla-
tions,'¢ the heavy masses which should be associated
with structure in N (E) most likely will be observabie

WARREN E. PICKETT u

only over a much more limited range of T. Another

point to consider is whether a given experiment will

actually measure the T-dependent mass enhancement

as given by Eq. (16). For exampie, the usual T

dependence'® of A [i.e., when N(E) can be con-

sidered constant} is measured by cyclotron reso-

nance'” but apparently not by the de Haas-van Al-

phen effect.'”-'¥ More theoretical work is necessary

to determine the appropriate experiments (o measure

A(T) of Eq. (16). .

In the case of the dependence of T. on disorder,
the difficulty is less with the observation than with
the interpretation of the effect. The variation of T, .
with large amounts of static disorder has been known
for some time.!* However, for large static disorder
the variation of a’F(Q),® as well as the variation of
N{(w), is important in Eq. (12) which determines 7.
Of course a’F should be determined by inverting Eq.
(12) rather than the usual, simpler N(E) —N(0)
equation; there is a difference even at T =0.

A different approach to these equations has been
taken by Lie and Carbotte,?! who have evaluated
8T./8N(E) for a number of superconductors. Their
results allow an estimation of the change in T, due to
a change in N(E) more directly than the procedure
outlined in this paper. However, since their resuits
are numerical, so far they have not provided much
insight into the physical mechanisms which affect 7.

In this paper a microscopic formulation of the
manner in which a varying density of states affects
the superconducting properties of a metal has been
developed and discussed. It is shown that the tem-
perature dependence of the effective mass reflects
the energy variation, as does the T, dependence on
impurity concentration. Finally, it is suggested that
the energy spectrum near the Fermi level may be in-
ferred from a careful inversion of experimental data
on T.(n) and A( D).

Nove added in proof. Although the chemical potential
has not been exhibited explicitly in this paper, its
variation with temperature can be imporiant and
must be incluaed :n Egs. (12)=(15). This point
often has been neglected in previous work.
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INFLUENCE OF ELECTRONIC STRUCTURE ON SUPERCONDUCTING PROPERTIES
OF COMPLEX CRYSTALS: THEORY AND APPLICATION TO Nb;3Sn
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A thermodynamic theory valid for complex crystiline superconductors is applied 0 NbySn. [t is shown how the
structure of the Eliashberg equation and the solution is aitered by density of states fine structure. One important impli-
cation is that the current method of inversion of tunneling data can be only approximaie.

3 1. Introduction
Z, =1+ 2—-;— Z{A(n-m) -~A(n +m)IN,, (4)
The anomaious temperature (T) dependence of normal m=o
state properties of AlS compounds' have often been supposed
to arise from a variation in the electronic state density N(E)
near the Fermi energy £ on the scale of the maximum phonon
., frequency . That such structure should occur in crystals con-
K taining several transition-metal atoms per cell can be argued
; quite generally,’ and recently several band siructure studies ’ of
A15 compounds have verified structure on this scale. Unfor-
tunately the usual theory of strongly coupled eleciron-phonon
systems is based on a constant density of siates (CDOS) as-
sumption and is not directly applicable in the more general
case,

. Since the early weak-coupling models of the critical tem-
- perature 7. due to Barisic and collaborators’, only a few at-
tempts’ at a general strong coupling theory have been made.

Xe® —«k,rf;{i(n —m) «K(n +m) =2 *P,. ()

The state density enters through the even and odd averages

E- £+x. E—{+x ) +aizl

It is notable that the normally ubiquitous factor V{(Es) nowhere
appears in the theory. Accordingly the CDOS quantities A and
# . which are formally proportional 0 V(E,-) are replaced by
the corresponding inrensive quantities X and 4 which depend on
the character of the wavefunctions, but not on the density of

L

SR

3

However, each of these makes unnecessary approximations
and/or uses pathological density of states models which obscure
the underlying principles. Recently one of the authors® has
generalized Eliashberg strong-coupling theory, subject only to
the isotropic approximation. Ia this paper we report the applica-
tion of this theory to Nb;Sn. We point out several novel impli-
cations of the theory, emphasizing that superconducting proper-
ties, and in particular the gap function A(w), will be affected
significantly by even non-pathological structure in N(E).

2. Formalism

The electron self-energy £, = L(kiw,) in the Nambu-
Matsubara formalism is given in standard nomic:m7 by

Zo=iwy(l = 2Z,) +x,7;+d,7,. (1)

In Eliashberg's approach I is determined self-consistently in
terms of the renormalized Green's function, given by

G l=iw, = (E,~{)r;~ L, 2)

where { is the chemical potential and w, = (2n+1)rksT. In
the isotrapic approximation the wavevector (k) dependence of
L is averaged over®, leaving only a weak dependence of L(£)
on the energy £ which can be disregarded. For a general state
density the generalized gap equation at T, can be written

L)

i Kin=m) +X(n +m) (3)

-%*-8,,02n +1)— N.3,=0,

where 3, = An/wp, Am = &./Z, and N, is the cutofl integet.
The normal seif-energies w, Z, and x, are given by

states, in the vicinity of £s. In the limit of a slowly varying
N(E), N(E)A—\ and V(Egld *—u * In the equations above.
A ) is given by

K() = 2f wi Flwdw/ w? + [20T1D ™

in terms of an intensive electron-phonon spectral function éF.

Equations (3)-(6) and the relation® determining { (T) form
a system of coupled non-linear matrix equations which must be
solved 10 find T, and the self-energies. In the CDOS limit v,
approaches N (E;), P, vanishes and ihe gap equation reduces 10
the well-known form.” We show below, however, that for a
realistic N(E), N, and P, differ greatly from these limuts for
Nb;Sn (and no doubt for other compounds). Before discussing
the numerical results it is heipful 1o understand the implications
of this new behavior.

The eigenvector components of the gap Eq. (3) are given
by N, 4., rather than by A, as in the CDOS theory. The ker-
nel is aitered from the usual theory only by the changes in the
diagonal term Z./.V,, with changes in Z, tending to be can-
celied by the denominator. If {or the moment the correction to
the kernel is ignored. 7. and the corresponding eigenvector is
unchanged but the gap function A, is ahered by a fraction
1/N,. This {eads to the conclusion that the gap funcuon Alw),
which is given by the analytic continuation of i, to the real
axis, is fundamentally altered by a non-constant NV(E). It then
becomes evident that A(w) and hence a’Fiw) wil be different
from that inferred from tunneling data using the CDQOS inversion
procedure. 1t will be shown below that T, in fact is altered
appreciably by the corrections 10 the kernel diagonal.

3. Application to Nb,; Sn

We have solved the coupled equations'® for Nb,Sn using
a®F and u * deduced by Wolf er al.'! and the caiculated V(£)
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(a)  Nb3Sn x=1.8
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N(E)/N(E) 104
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Klein et al. $ WOLF et al. |
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N(E)/N(E)
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20 40 60 80
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Fig. | ~ (a) The experimenually deduced spectral function a’F(w) of Woif er al. for Nb;Sn (Ref. 11) for Nb,Sn
and the calcuiated function V(£) of Klein et al. (Ref. 3) on the same scale as a’F, (b} N(£) shown on a larger

scaie 1o display its fine structure.

of Klein et al.’ We make the somewhat arbitrary identification
aFlw) = a’F (w)/N(E;), and similarly for & * as the most
reasonable choice available. The functions a*F and N(E) (the
latter interpoiated linearly between values on a | mRy grid) are
shown in Figure 1 on the same scale to emphasize that,
although N(E) has fine structure, it is utterly non-pathological,
in contrast to those used previously’ which had singularities
and/or discontinuities. The general behavior we discuss is not
critically dependent on the chosen functions a*F(w) and N(E).
[It should be noted that we find that accurate numerical resuits
cannot always be obtained if { and x are disregarded. It is not
appreciated generally that {(T) is strongly influenced by the
electron-phonon interaction.]

In Figure 2a we show N, and P, for Nb,Snat T, = |8 K.
Clearly N, differs greatly from N(E;) and P, is strongly non-
zero. Both vary rapidly for small , reflecting the fine structure
near E;, before tending to saturate at larger vaiues of n. As dis-
cussed above. the variation of N, leads to corrections to A,
relative to the constant VN, approximation A;. In Figure 2b this
difference A, - A7 is displayed. The normalization
A,= 1= 47 is used since the magnitude of A is arbitrary
(infinitesmal) at T,, but below T, the magnitude as weil as the
Jfrequency dependence of A will be aitered. To learn the effect of
N(E) on the complex gap function A{w) the solution {a,) of
the (appropriately generalized®) equations at 7 € 7, can be
analytically continued to the real axis. Unfortunately we have
found the Padé approximant approach'l! to be inadequate at
T. = 18 K due to having only 3-4 Matsubara frequencies in the
region w, < {1 where A(w) has sharp structure. However,
Vidberg and Serene'? have shown that this continuation to the
real axis can be performed teliably from the first 100-200
values of A, at low temperature. Since the shape of A(w,7) is
nearly T-independent, the sensitivity of A(w) upon the values

- T N L,
Y Wl Tody Y . . : TN Wpar

{A,} found by Vidberg and Serene indicates important correc-
tions to Alw) will result. Numerical solutions 10 Eqs. (3)-(6)
at T << T, will be needed to study this effect more quantita-
tively.

Figure 2 indicates that corrections even f{rom non-
pathological DOS functions can be ~5% of A, = Alw = 0).
However, to give a reliable picture of the structure in a’Fit is
necessary'! to invert tnneling data to a relative accurscy of
~107%. Here it is noteworthy that this has not been achieved
in AlS compounds, although heretofore this deficiency has
been ascribed solely to difficullies in preparing ideal junctions.

To illustrate the effect of DOS structure upon 7, we allow
the assumed Fermi level £, to vary over a range of 5 mRy near
the calculated value Ef, of Klein er al. In Figure 3 it can be
seen that T, resulting from the CDOS theory, denoted T7,
varies from 10 to 26 K within 3 mRy, whereas T, from Eq. (3)
varies only from 13 10 18 K. Not least among the impiications
of this drastic smoothing of T, is that band theory need not be
absolutely accurate on a | mRy scaie 10 provide reasonable
values of T.. conversely, T, contains less straightforward infor-
mation about N(E) than usuaily assumed.

Currently there is considerable interest in obtaining
approximate T, values by using an appropriate average over
N(E) in the CDOS theory in the spirit of Nettel and Thomas.®
Equation (3) suggests an average N,/ given by

Ny=3IN.3,/ T3, (8)
L] J

The resulting critical temperature T?”/ also is shown in Figure
3. Although TY/ is 100 large by a nearly constant amount
(=~1.5K), it reflects the trends in 7. quite well. Improvements
upon this result will be investigated in a subsequent paper.
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Fig. 2 — The even and odd density of siates averages N, and P, respectively for the caiculated value
T. = 16.6 K for NbySn) piotted versus Matsubara frequency w,. and the correction to the gap function A, due to
the density of states shown in Figure 1. Note the change of scale at 7 = 20, above which only every tenth value
is shown.

24 P

20 < \ 4

T, (K)

-3 -2 -1 (o] 1
EF 'Eg'o(MRY)

Fig. 3 = The behavior of the critical temperature versus the assumed position of £r. Resuits of the general
theory are denoted by T.. those of the CDOS theory by 77 and those of the average value of N(£) suggested in
the text by T,
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4. Discussion

We have shown that when fine structure in the electronic
specirum exists near £, it is necessary 10 take it into account in
the inversion of the tunneling data to obtain accurate values of
A and G3F as well as 7.. Our use in the calculations of 6°F(w)
« a’F(w), with the latter deduced from the CDOS theory, was
an expediency which wiil not be satisfied by a self-consistently
determined a *F.

It should be emphasized that the present calculations have
disregarded the disorder which is present in all Nb;Sa samples.
It is weil known that disorder broadening of the DOS will tend
to smooth fine structure and thereby reduce the effects dis-
cussed in this paper. The theory presented here recently has
been extended to inciude the effecis of disorder. Preliminary

work indicates that for a resistivity ratio p(300 K)/p(20 K) =
10 (a “good” Nb,Sn sample), the correction (A, — AN/4) in
Figure 2 is reduced by roughly a factor of 2. This snould ieave
observabie consequences of fine structure. which for more
highly disordered matenal will become progressively weaker.
As an experimentai test of this effect, high quality Nb,Sn tun-
nel junctions could be lightly irradiated thereby increasing the
disorder in the Nb;Sn, and the observed tunneiing DOS moni-
tored for alterations. A full discussion of the theory and
further numerical results will be published elsewhere.®

Acknowledgment — We thank E.L. Wolf for providing us with
the urpublished numerical values of a°F and acknowledge
stimulatng discussions with M.R. Beasley.
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PARAMETER-FREE CALCULATION OF THE ENHANCED SPIN
SUSCEPTIBILITY OF Nb3Sn INCLUDING ELECTRON-PHONON EFFECTS
Warren E. Pickett

Naval Research Laboratory
Washington, D.C. 20735

A parameter-free calculation of the spin susceptibility ng(T) of Nb,Sn,
a

which includes static and dynamic disorder as well as exc

nge-correlation

enhancement, is presented. It is found that x4y is only 157 of the
measured susceptibility, and i{ts small temperature dependence cannot

account for the experimental findings.

It is a well establjished fact that the
anomalous varlation® of the susceptibil-
ity x(T) below room temperature in V-
and Nb-based Al5 compounds is directly
correlated with the superconducting
transition temperature T.: d log x/dT
is largest for the high T, compounds.
Attempts to explain the behavior of x(T)
have focussed on the spin susceptibility
Xgp, which is presumed to vary due to
thermal repopulation of a narrow peak in
the density of states N(E) near the Fermi
level Ep. 1In this paper I present the
results of a parameter-free calculation
of xgy for Nb3Sn which includes (1) the
effecgs of both static and dynamic dis-
order and (2) electron-electron inter-
actions through an ab_initio Stoner en-
hancement. It is found that X is_only
15% of the measured suscepcibiigcy,z and
that dXgp/dT accounts for oaly 15% of the
measured temperature variation.

A theory for the electron sslf-energy Z
has recently been developed’ which ac-
counts for cases where N(E) varies on the
scale of a typical phonon frequency, such
as often occurs in Al5 compounds. Both
defects and phonons are included in a
self-consistent way. Calculation of [
requires solving several nonlinear cou-
pled matrix equations involving N(E) and
the Green's function G. The input to the
calculation of I {s (1) the a“F function
derived from proximity zttecc tunneilng
on NbiSn by Wolf et al.® which describes
the electron-phonon interaction (EP1),
(2) the N(E) function calculated for
NbySn by Klein et al.? and (3) a Lorentz-
ian defect broadening corresponding to

10 ulcm of residual resistivity, typical
of the best samples of Nb;Sn.

0378-4363/81/0000-0000/30250 © North-Holland Publishing Company
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The quasiparticle density of states is
evaluated from the relation

n(w,T)==7"lIn TrG(w), (1)

and therefore includes the effects of
static and dynamic disorder. z 1is actu-
ally evaluated on the imaginary frequency
axis, leading to the matrix equations
mentioned above, and TrG is analytically
continued to the real axis. From n the
unenhanced spin susceptibility ng is
given by

xm‘;(r)-un2 f dw ee=g p(m,r)-uBZR(c) ¢

where £ denotes the Fermi distribution.
A crucial feature of the present calcu-
lation is that the chemical potentialil
is retained explicitly.

Liu et al.6 have shown that, with local
density (LD) theory, exchange and corre-
lation enhancement of X 3 may be included
at finite T through the gtoner-like re-
lation

Xgp =4 T)/ A-T()T(e)), 3)

where f(c) is the thermal average around
¢ of the LD Stoner parameter I, which can
be evaluated frgm the band calculations

of Klein et al. Here it will be assumed
that Eq. (3) holds when Nn(Z) includes the
effects of disorder, a case which was not

considered by Liu et al.

The calculated values of X9 and X,, are
compared in Fig. 1 wicth the measureg
total susceptibility of Reywald et al.
Although d log X4,/dT=-1x10"3K"1 {3
similar to the measured value of

d log XdT, Xgp accounts for only about
15% of X. This last result is surprising,
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since Klein et al.” were able to fit *(T)
with only two parameters, T and a T-inde-
pendent (''orbital") contribution ¥, by
ignoring disorder effects and including
only thermal redistribution. The differ-
ences between this fit and the present
calculation arise in two waya. First,
the calculated value (only weakly T-de-
pendent) of T(Z)= 2.3 mRy is only about
half the fitted value of 4.4 mRy. Both
the Stoner enhancement (1-T7)~l and its
temperature variation are reduced (rela-
tive to the fit value) by more than a
factor of two._ Secondly, including dis-
order reduces n(Z), and thereby reduces
ng as well as further reducing the en-
hancement factor.

With regard to this second point, it is
notable that n(z) is reduced more by the
variation of %Z(T) than by the explicit
defect broadening. The effect of includ-
ing broadening corresponding to 10 uQ cm
of residual resistivity is to displace
£(0) upward by 2 mRy toward a region of
lower N(E), and this effect alone leads
to a value of n(c) which is 85% of N(Ep).
Moreover, merely turning on the EPI fur-
ther shifts electronic spectral weight
our of the peak, shifting § upward by
another 3 mRy (at 25K, the lowest tempera-
ture considered here) and resulting in a
further decrease of n(:;) to 707% of N(Ep).
At 200K, the highest temperature consider-
ed thus far, I find :=10.5 mRy (relative
to Ep) and n(£)=0.62 N(Ef). The temper-
ature variation of X , shown in Fig. 1
results from this nearly linear decrease
in n(3) with temperature.

The results presented in Fig. 1 indicate
that Xgp cannot account for experimental
data for NbySn. It should be noted that
these results are not sensitive to de-
tails of the density of states which was
used (the very fine structure is smoothed
out by the disorder) as is the case when
disorder {s ngt included, and only the
strength of o°F (i=1.8) is important in
determining Z(T) and n(Z). It now ap-
pears that the orbital susceptibility may
be larger than X4, and may even show con-
siderable temperature variation. A more
detsi{led discussion of all aspects of this
study will be published elsewhere.

The author wishes to acknowledge the use
of unpublished results of the Nb;Sn cal-
culations (Ref. 5) as well as the
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discussions with D.A. Papaconstantopoulos
and C.M, Soukoulis about disorder broad-
ening and with B.M. Klein about the sus-
ceptibility fit described in Ref. 7.
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A thermodynamic formulation for the electron self-energy is given which is applicable
when the clectronic spectrum possesses structure on the scale of phonon frequencies, pro-
vided only that the ratio of phonon phase velocity to electron Fermi velocity is small.
Electron-phonon, Coulomb, and electron-defect interactions are included on an equal foot-
ing and it is shown that their different frequency dependencies lead to specific effects
on the Eliashberg self-energy: (a) The Coulomb interaction contributes nothing of essence
to the normal-state self-energy (in this isotropic approximation) but retains its usual de-
pairing effect upon the superconducting gap function, (b) defects affect superconducting
properties primarily through a broadening of the electronic spectrum, and (c) phonons
contribute a thermal shift and broadening as well as the mass enhancement. A generali-
zation o intensive electron-phonon, electron-electron, and electron-defect interaction con-
stants is necessary to redevelop an intuition into the effects of these interactions. The
change in the structure of the Eliashberg equation due to a nonconstant density of states
(DOS) and the consequent interplay between static and thermal disorder is analyzed in
detail, with a central feature being the change in frequency dependence of the self-energy
compared to a constant DOS solution. The effect of DOS structure on the superconduct-
ing transition temperature T,, which is manifested in the defect dependence of T, is
analyzed in detail. Further it is proposed that an extension of the self-consistent Eliash-
berg approach be extended above T, to determine the normal-state self-energy and there-
by the electronic contribution to thermodynamic quantities. Phonon broadening is shown
to affect the spin susceptibility at finite temperature. Reinterpretation of several of the
anomalous properties of 415 compounds in terms of the present theory is suggested.
Several aspects of the theory are compared to experimental data for Nb;Sn.

1. INTRODUCTION

Deeply ingrained in the formal theory of the in-
teracting electron-phonon (e-ph) system in metals
are two simplifying approximations. The first is
an extension of the adiabatic, or Born-Oppen-
heimer approximation' in which the light electrons
are considered to respond instantaneously to the
heavy ions (of mass M). Central to the theory of
e-ph systems is Migdal's theorem,* which demon-
strates that nonadiabatic effects can be obtained
accurately by low-order Feynman-Dyson perturba-
tion theory, to lowest order in an expansion param-
eter of the order of (m/M)'/? << 1. The second
simplification is the assumption of a constant den-
sity of states (CDOS) over a region ={I around the
Fermi energy Ef, where {1 is a few times of the
mean phonon frequency. This approximation al-
lows the DOS function V{E) to be approximated
by N(EF) in certain energy integrals. The two ap-
proximations in fact are related, and it often seems

26

to be assumed that Midgal's theorem is inapplica-
ble if N(E) is not constant [to within (m /M)'/}]
over a range +{} around Ef. As will be shown in
this paper, however, there exists an important re-
gime within which the CDOS approximation may
be relaxed in a straightforward manner while re-
taining Migdal's simplification. The resulting gen-
eralizations of the CDOS expressions often are not
intuitively obvious, and the consequences involve a
reinterpretation of many of the properties of this
class of materials.

That structure in the DOS on the scale of {1
should be expected in crystals containing several
transition-metal atoms per unit cell can be deduced
from general considerations.’ Elemental transition
metals are known to have peak structure in their
DOS which may be only a few tenths of an eV
wide. A compound with (for example) ten atoms
per unit cell will have 10 times the number of
bands in the same overall bandwidth, leading to
structure on the order of hundredths of an eV.
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Recent band-structure calculations®* on 415 com-
, pounds (eight atoms per unit cell) indeed have veri-
; fied structure on this scale. DOS structure can be
] important even in elemental metals if the Fermi

level Ef lies near a van Hove singulanity. such as
. occurs in Pd and Pt.

The most intriguing consequence of the e-ph in-

f: teraction, both theoretically and technologically, is
s . superconductivity, and it has not been overlooked
. that the superconducting transition temperature T,
:' might be affected by DOS fine structure. An early

g study of 415 compounds was carried out by Bar-
E: isi¢ and co-workers® in the weak-coupling limit,

- where it was noted that the DOS within a region
E +{ around Ef contributes in the determination of

T.. Cohen, Cody, and Vieland’ applied a strong-

N coupling version of the Koonce-Cohen® formalism
- to investigate the effect of model 415 DOS func-
E:'. tions upon T,.

In a model solution of the Eliashberg equation
with non-CDQOS effects included approximately
Nettel and Thomas® suggested an average DOS
given by

n
= ! e do
V=7 fre wZ(w)

X{NwZ)+N(-u2)]/ Q. /T,)

N (L.

as being most relevant in determining 7,. Here
Z(w) is the strong-coupling renormalization (real
part), Q. = is a cutoff frequency, and the DOS

* function will be taken with origin at £, through-
:: out this paper. It was evident to Nettel and Tho-
- mas that there is great utility in identifying, when-

ever possible, an effective value of V(Ef) for use
in the CDOS version of Eliashberg theory rather
than having to deal always with the full energy
dependence explicitly. This simplication will be
explored further in this paper.

Horsch and Rietschel'® obtained numerical solu-
tions to the Eliashberg equation in the small
kT./% limit where the imaginary part of the self-

. energy can be neglected. They found an enhance-
ment of T, relative to the CDOS value T for
.. placements of a square root DOS peak near
- Er—01Z(0). This was interpreted as a reduction
y of the repulsive part of the e-ph interaction due to
DOS variation. It could equally well be considered
as an enhancement of the attractive part of the in-
teraction (which occurs at w < {1), with an approxi-
mate value of the enhancement given by Nur.
A more general approach was taken by Lie and
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Carbotte.'" who calculated a functional derivative
8T, /8N { E) for several superconducters. Its shape
was found to be quite insensitive to the metal con-
sidered. having a maximum at E = E. decreasing
to half maximum at

{E—Ep; =5—10T.

and becoming negative (but remaining very smaill)
above

'E—Ef' =50—70T, .

This (linear) approach leads to an average DOS

Vie= [ dE ST vip /2L 2
e SN(E)" /d.’V(E,-) .2

which is useful for estimating T, from a CDOS
theory. In Eq. (1.2) dT,./dN(Eg} is the integral
over 5T, /8N (E), and T, is given by

T.=T +[Nc=NE)] a7 1.3)
e=de+ 1 N1c—¢ F dN(EF) . (1.

Written in this form V¢ clearly has an interpreta-
tion as an effective value of V(Eg). Since the im-
portant contributions to the integral in Eq. (1.2)
come from the region : £ —Egi < 10T, ~ Q. (for
strong coupling superconductors), for nonpatholog-
ical DOS functions the averages .Vyr and .V ¢
should be similar.

Whereas an average over the DOS may be suffi-
cient for understanding T, for many properties of
interest (e.g., the T dependence of the spin suscep-
tibility X,;) no such simplification will be possible.
In this paper a general approach for obtaining the
electronic self-energy, and thereby the thermo-
dynamic properties, is described. Both static and
dynamic disorder are included in a straightforward
generalization'? of the usual Eliashberg approach,
and it is shown that each type of disorder contri-
butes to the shift in chemical potential as well as
to a shift and renormalization of the electronic
spectrum. Although the emphasis here will be
focused on the superconducting state, implications
for normal-state properties also will be discussed.
A preliminary report'* of the application of this
theory to Nb;Su has been published elsewhere.

The plan of the paper is as follows. Section II is
devoted to the description of the system of in-
teracting electrons, phonons, and defects which
will be studied, and the approximations leading to
our expression for the electronic self-energy are
discussed and justified. The treatment of the encr-
gy dependence in the Eliashberg equation is given
in Sec. lI1. where it is argued that the band-energy
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dependence of the self-energy should be negligibie
in most cases. This leads in turn to a less formid-
able numerical procedure for solving for the self-
energy. In Sec. IV the generalized Eliashberg sys-
tem of equations is presented and the alterations
arising from DOS structure are discussed. As a
byproduct of retaining the band-energy dependence
of the e-ph interaction in the equations, a better
understanding of the Coulomb pseudopotential and
of the role of impurity scattering is obtained. A
discussion of several aspects of the theory at T, is
presented in Sec. V. In Sec. VI the spin suscepti-
bility is discussed in terms of a self-energy deter-
mined from an Eliashberg-type equation at T > T..
Unlike previous uses of Eliashberg-type equa-
tions,'* which of necessity require an infinite sum-
mation of diagrams to describe appropriately the
appearance of a gap (superconducting or spin-
density-wave) in the spectrum, this novel applica-
tion accomplishes more easily what could be ac-
complished (at least approximately) in some finite
order of perturbation theory. It is suggested that
this approach may be fruitful for studying other
thermodynamic properties. Indeed, there has been
little concern over non-CDOS corrections above T,
with the exception of the T dependence of X, and
the elastic constants, both of which show anoma-
lous behavior in high-T, 415 compounds.

II. GENERALIZATION OF THE
ELIASHBERG SELF-ENERGY

The usual treatment of Eliashberg theory on the
imaginary frequency axis is clearly set forward in
the literature.'® We will provide only the back-
ground necessary to clarify the generalizations we
propose and the approximations which remain.
The system we consider is described by the Hamil-
tonian

H=H,+Hp+H, o +Hegp+Himy, (212

where
H,= 3 EVin¥, 2.1b)
K
H” = 2 ngbé,bg. v 2.1¢)
Qv

Hyo=1 3 Vikk'q¥iqrs
kky

XV W peri¥i s (2.1d)

Hl-ph= Z gu’v(b;—k'.v+bk'-hv)

k.k'.y
XWr W+, (2.1e)
A
H:mp= 2 2 V[“TP(RI')W]:?;\!Q , 2.1
ki’ j=|

where 7 denotes a second-order term. In the
Nambu scheme the spin index is eliminated in
favor of the two-component field operator

Cit

v |

(2.2

in terms of the electron annihilation operator ¢x,-
The Pauli matrices are denoted by 7, 7, and 73.
Electron-band and phonon-mode indices will not
be exhibited explicitly except where necessary.

In this form of the Hamiltonian ¥ describes
band electrons, for which the electron-static lattice
and electron-electron interactions have been includ-
ed in a mean-field sense. For the electron-lattice
interaction the remaining coupling is given, to
second order in the ion displacement, by the
electron-phonon Hamiltonian H, ;. The second-
order term, which has not been displayed explicit-
ly, is required to keep the theory translationally in-
variant.'® The residual Coulomb interaction be-
tween band electrons is assumed to be representable
in the usual four-body form and is denoted by ¥ in
the electron-electron Hamiltonian H,.,. The effect
of this term on superconducting behavior is not
understood in detail but fortunately an approxi-
mate treatment in terms of an empirical “Coulomb
pseudopotential” (see below) seems sufficient for
MOoSt purposes.

The “impurity” term H,pp represents'’ n; identi-
cal, randomly distributed imperfections centered at
positions R;. The scattering potential ¥'™P
represents the difference between the potential in
the region of the imperfection and the perfect-
crystal potential. The phonon Hamiltonian H,p, is
expressed in terms of bare phonons (with creation
operator bé,) of frequency 0g,, which are dressed
to the observed frequency wg, by the band-electron
polarization as described for example by Migdal.?
In this paper we will not consider the effect of lat-
tice imperfections on either the phonon spectrum
or the electron-phonon coupling g, although the ef-
fect may become large for highly disordered ma-
terials.

The electron thermodynamic Green's function is
given by

. R I S ORI .
T WY ;'4_“-'4'_4'.'.""‘\3_.'!-'-);\-'-' A
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Glkiw,) ' =iw, —~(Ey =&)ry—2k,iw,) ,
(2.3)

where w, =(2n + )7T and the self-energy X con-
ventionally is given by'

Z(k,iw, ) =iw,[1-Z (k,iw,)]

. +X(kiwy )3+ d(kiw, )T . 2.4)

For bulk superconducting properties the r, term in
2 is proportional to ¢ and is assumed to be elim-
inated by the choice of phase. Two points should
N be noted here. First, the chemical potential &,
which is determined by the relation
N,=T I TrG(k,iw,)e
k.»

(2.5)

in terms of the number of electrons N, (€ is a posi-
j

The first term results from coupling to phonon
branch v with renormalized phonon Green's func-
2 tion D,. The second term arises from the dynami-
' cally screened and Coulomb-vertex-corrected
electron-electron interaction ¥, which is discussed
further below. The third term, which is usually
not included, results from neglecting correlated
multiple scattering between distinct static defects,
but includes multiple scattering from a single de-
fect by means of the ¢ matrix'” t. This treatment
strictly applies to the dilute limit; however, the
transport theory which results usually is found to
be valid to rather large defect concentrations.
. In writing the phonon contribution to £ as in
Eq. (6), Migdal's theorem? has been invoked. In its
usual form this theorem states that, to within a
quantity of order (m /M)'/2, the electron-phonon
. vertex function I, can be taken as unity (for the
ol purpose of calculating the electron self-energy).
- Within simple metal language an equivalent expan-
N sion parameter is ﬁ/E,. This had led to specula-
tion that Migdal's theorem may not hold for sys-
tems which have DOS structure, and in some sense
an effective degeneracy temperature (Ef) on the
scale of f1. As Scalapino'*c’ has emphasized,
however, the validity of the approximation rests on
a small value of the ratio of phonon phase velocity
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FIG. |. Proposed phonon, Coulomb, and defect con-
tributions to the electron self-energy Z. The double
lines indicate the renormalized Green's function G(X),
giving a self-consistent, infinite order relation for Z.

tive infinitesimal quantity), will be retained expli-
citly. Second, we also retain the energy shift X
(not to be confused with the susceptibility) and
find that although it does not reduce to a trivial
shift in the chemical potential, its effects are usual-
ly of a secondary nature.

The Eliashberg equation for the self-energy,
represented diagramatically in Fig. 1 is'®

Stkyiwg)=—T 3, G k' iogrs | D | iky | Dylk —k'siw, —iwy)
k'.n’ v

(2.6

T

wg/Q to electron group velocity vx. Even for 4 15
compounds with large N (E/) and low electron ve-
locities the ratio of these quantities averaged over
the Brillouin zone is (2—3)x 1072 (e.g.,'* (wg/Q)
~5% 10° cm/sec and® (v ) =~(vi)'"?
=2X% 10’ cm/sec for Nb;Sn). The approximation
[.pn=1 can break down in the immediate vicinity
of a van Hove singularity v, =0, but such a small
number of electrons within | Ex —E,| <1 have
vk Swg/Q that the contribution to the Brillouin-
zone sum in Eq. (2.6) will be negligible.

Recently Drozhov'® has provided more insight
into this problem. The situation Drozhov studied
is that in which an M, van Hove cntical point
falls at Ef, which is one situation for which
v Swp/Q. It was found that so much dispersion
is introduced into the electronic states by the e-ph
interaction that the corresponding quasiparticles
are for the most part removed from the region of
the critical point (and, of course, are highly
damped). The quasiparticle velocities tend to
diverge a: the critical point. Thus, if the fully re-
normalized Green's function, rather than its bare
counterpart, is used in Eq. (2.6) (as is done in
Eliashberg theory and as it is shown in later sec-
tions must also be done in the normal state), it
may well be the case that the criterion V; >wgq/Q

=Ur
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in terms of renormalized velocities Vi (if they can
be defined) is satisfied even near critical points

v —0 where Migdal’s theorem as stated is unprov-
en. Assuming this to be the case, the only remain-
ing difficulty is with optic modes, for which near
zone-center phase velocities wg /Q diverge. It ap-
pears that a small enough number of modes are in-
volved that the Brillouin-zone sum for X is unaf-
fected.

Migdal® also demonstrated (for the normal state
at T =0) that the renormalized Green’s function G
appearing on the right-hand side of Eq. (2.6) can
be replaced. in the CDOS system he considered, by
the unrenormalized Green's function, thus allowing
a formal solution for low frequencies. No corre-
sponding simplification is possible when varniation
in N(E) is not negligible, as observed by Eliash-
berg'¥™ for the superconducting state in which the
opening of the gap gives a sharply varying density
of quasiparticle states. A central point of this pa-
per is that, when the energy variation of ¥ (E) oc-
curs on the scale of phonon energies, £ must be
determined seif-consistently from Egs. (2.5) and
{2.6) for the normal state as well.

The three contributions to X in Eq. (2.6) differ
fundamentally in their frequency dependence. The
phonon Green’s function D,(iw,) has its important
freziuemy variation for |, | <{} and decreases as
w;* for |@, | >8. The Coulomb interaction
V(iw,) varies only on the scale of the electronic
plasma frequency (peak in the energy-loss function)
wpi~ 10 eV. The impurit,’ contribution is energy
conserving, with (1/T)§, ,- in Eq. (2.6) represent-
ing the § function 8w —o") in the thermodynamic
formulation. For the phonon and impurity contri-
butions the sum over | w, | in Eq. (2.6) can be
truncated at a cutoff frequency w. ~S—~ 108 with
negligible loss of accuracy. The practical necessity
of using a minimal frequency range for solving for
Z has prompted the folding down of the Coulomb
potential 7 into a pseudopotential I as described
in detail elsewhere.'*®® The treatment is general-

ized somewhat in Appendix A, with the result
1/T=1/V+Nlwy)nwy/w,) . 2.7

This relation, and the effective DOS V(wy,), will be
discussed further in Sec. IV A. Using this pseudo-
potential and utilizing the evenness'*®' in frequen-
cy w, of the functions Z, X, and 4, Eq. (2.6) can
be reduced to an V., X.Y, matrix equation with
2N - )rT =w, lie, n=0,1,...,N.—1)

III. TREATMENT OF THE
ENERGY DEPENDENCE

In its most general form the Eliashberg equation
is extremely difficult to solve even if the kernel in
large parentheses in Eq. (2.6) is known. Besides
the four-dimensional frequency-momentum vari-
ables which are summed over, G and X also are
matrices in band index,! although this fact is
nearly always ignored. To date little of a quantita-
tive nature is known about the importance of off-
diagonal (in band index) contributions to G; how-
ever, cases where these corrections seem to be
necessary have been extremely rare (but see
Chakraborty and Allen®!). In the present paper all
such “band-mixing” effects will be neglected. We
will concentrate on including the energy depen-
dence of the band density of states within an iso-
tropic, band-diagonal approximation.

The isotropic average A (E) of a wave-vector-
dependent quantity A4 (k) is defined by

AE)=F A(KS(E —E}), 3.1
k

where to simplify notation we have introduced a
dimensionless, normalized averaging function given

by
8E —€)=8(E —€)/N(E) .

A further approximation necessary to reduce Eq.
(2.6) is

3 Gk’ iwy )B(k,k iw, —iwy W E ~Ex)8(E' — Ex) =G (E' iwg )B(E,Ejiw, —iwy) , 3.2
&~

where??
G(Ejiw,) " 'miw, —(E -¢)r3— 2 E iw,) .

(3.3)

B{k,k';iw, —iw,) is any of the three kernels in Eq. (2.6) and B(E,E";iw, —iw, ) is defined by Eq. (3.2).

The self-energy becomes!3!#15t¢)

IEiv)=T 3 [ dE'GE iog ItV (ENVKE E iy —iwg)=F (EE) = [T EEN/TTI60m]

L
oy <o,

(3.4)
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where

X(E.E’;i(l)' )=— 2 ig.kk'v ! zDv(k ‘k"iwn )S(E —Ek )S(E' —Ek) ’ (3.5

kk'v
AYEE=S Ulk,k",008(E - E,)BE'—E ' = U(E,E";0) (3.6)
Py
DEE)=mn 3 |t(kk 0 |*BE —E SE —Ep) . 3.7
P
T

In the CDOS limit N(E)—N(Ef), the usual with
electron-phonon coupling constant A, pseudopoten- o ey el 3 a2
tial 4#°, and impurity width I" are given by ClEiwy)=tE =g+ ¥, +Z;wy +85) .
N(Ep)A(EF.Ep;O). ‘V(Ep )ﬁ.(EF,EF). and 3.1

N(Ep)(Ep,EF), respectively. It will become ap-
parent, however, that the normally ubiquitous
quantity N (Eg) nowhere appears explicitly in this
more general theory, although we will identify in
Sec. V an effeciive average density of states which
is useful in an approximate determination of 7.
The Coulomb pseudopotential Z° is discussed fur-
ther in Sec. IV A and in Appendix A.

The E dependence of £ arises solely from the E
dependence of the kemnel

AylE,E"N=XEE)V-E°EE"
-(1/sDI(EE"),

which in tum is due to variation with energy of
the character of the wave functions and scattering
properties but not the density of states. In general
we expect this variation to be small compared to
DOS effects, although this question deserves fur-
ther study. Information on the E dependence of
A(E,E) can be gained by studying the E depen-
dence of the mean-square electron-ion scattering
matrix element /%(E) which enters A. Using the
calculated electronic structure and wave functions
of Klein et al.® (to be used in the calculations
described in Sec. V), it is found that I*(E) varies
by only 2% in a +-mRy region centered at Ef
where N (E) changes by a factor of 3. Neglecting
this small energy dependence of the kernel gives

S,=T 3 Iglio,—iw,)F, , (3.8)
[.’.o(“.

where X, =2(iw,), etc, and the density-of-states
effects are confined to the factor

F,= [ dE 1,G(E,iw, )N (E) . (3.9)
Inverting G ~' in Eq. (3) leads to
—iwyZy —(E=§+X,)1y
G(E,i = L o
Kttt C(E.iw,) SNERL

The gap function is given by A, =é,/Z,. Even
and odd averages over N(E) result, given by

' fz,,(wi+A;‘,)”3]

| E-¢+x, |-
with each average incorporating in the denomina-
tor C(E,iw,) an energy shift {—Y, and broaden-
ing half-width Z.(w? +A2)'2. Both functions are
even in w,. The following sections describe the ef-
fects of a nonconstant .V (E) that are included in
N, and P,, which for a constant density of states
reduce to

i

IV. GENERALIZED ELIASHBERG THEORY

_1 f _NE
C(E iwy,)

{3.12)

3.13)

N(E;)
=1 o0

The generalized equations for the Eliashberg
self-energies are

N, _
Wy Zy=wy+7T 3 Ko Nmem +TNaeqw, ,

m =0
4.1
X,=—-nT 2 Aok = 25i*\Prpem — [ Pyen0, |
m =0
4.2)
(2n+1)p, = 2 (K — Zﬁ‘)-—N mbm/Zp
m=0
+ENendwn/Z, (4.3)

where A'*' and the DOS “enhancement™ ¢, are de-
fined by

T ——————y 1—,.‘“1
- . PN NN P A T e T
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Nl Zhie, —i0m) =0, +iny . @4

ey Ew, Aol +A5172 (4.5)

A nonzero solution to Eq. (4.3) exists only for
T < T.. However, Egs. (4.1) and (4.2) may be use-
ful at higher temperatures as well, a fact which is
discussed in Sec. VL

Converting Eq. 14.3) into an equation for the gap
function leads to

N,
Ap=7T 3 (A =20")Nnen

m=) |

v,
="
- snm 2 A'nl ‘vlel
=0

A,/ /Om -

(4.6)
Explicitly A is given by
Miwy —iwm)
=2 [ dOQa' P/ (0 Hw, —wa )] (4]

in terms of an intensive electron-phonon spectra
function (i.e., coupling per electronic state)

GFEE Q=3 |Zw. BE-E)
k.k',v

X ME' —E)

XM Q—wg gy}, 4.8)

and

& F(Q) =& FEE"Q)| gxe e, -

Equations (2.5), (3.12), and (4.1)—(4.3) [or (4.3)
replaced by (4.6)] form a system of coupled non-
linear matrix equations which must be solved itera-
tively for the self-energies at each temperature of
interest. Their solution allows (at least in princi-
ple) the direct calculation®® of electronic thermo-
dynamic properties,'*! such as T, specific heat,
etc. Numerical solutions of these equations have
been presented elsewhere'® (and see below) but a
number of effects, and their interpretation, result-
ing {rom a complex electronic structure will be dis-
cussed in this section. The care which must be ex-
ercised in any interpretation of the imaginary fre-
quency equations is exemplified by the “enhance-
ment” e, defined by Eq. (4.5). Evidently ¢, lies in
the range O < | e, | < 1. The designation “enhance-
ment” is appropriate since, when continued to the
real axis. the real part of this function gives the
well-known DOS enhancement on the real axis

e ain ol o ndhspalien deandie
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Reetwi=Rejw/[w’ - ANw)}' ) . (4.59
A. The Coulombd pseudopotential

From Eq. (4.2) it follows that the contribution to
Y from the Coulomb interaction is independent of
w,. This results in a constant shift Y, in all quasi-
particle energies and consequently a compensating
shift {— § + . in the chemical potential. There-
fore the Coulomb contribution to ¥ in Eq. (4.2)
can be disregarded without loss of generality. On
the other hand, phonon and impurity scattering
give rise to nonconstant energy shifts Y, which
must be retained in an accurate theory.

The pseudopotential U in Eq. (3.6) is given as
usual®® as a solution to an integral equation de-
scribing the folding-down of high-frequency
scattering processes included in ¥. The zone-
averaged pseudopotential I° satisfies the approxi-
mate relation (see Appendix A)

—~l:' = % +AV(UP| Nn » 4.9)

g
where ¥(w) denotes an average over N (E) on the
scale of w, and I is given in terms of ¥ by an
equation analogous to (3.6). However, according to
the gap equation (4.6) it is approximately the di-
mensionless quantity V(w,)d* which enters into
the determination of the gap function (and hence
T.). Here w, denotes the range of the average over
N (E) appropriate to the gap equation, which will
be discussed further below. In the limit of a slow-
ly varying DOS near Ef, V(w,)— N(Ef) and

@e

1 1 Nop), |eog
—_—=—4+—In|— 4,
‘.L‘ [ + N(EF) " @, 4.10

This leads to a dependence of u* upon N(Ef) simi-
lar in form to that of Bennemann and Garland,?*
who used p =0.26 and N(w)In(wy/@,)

=3.85 (eV atom)~' for transition metals. How-
ever, since 4 in Eq. (4.10) is formaily proportional
to V(Eg), which can vary widely within a given
class of metals, Eq. (4.9) is the appropriate relation
from which to determine Z°. The quantities 7 and
Nlwp) vary slowly within a class of metals, with
the dominant variation arising from scaling with
bandwidth.

B. Impurity scattering and “Anderson’s theorem™

In the CDOS limit ¥, — N(Eg), P,—0, X,
vanishes, and the chemical potential is constant.
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The gap equation (4.6) reduces to the usual form
and, for T=N(E;)F — 0, the equation (4.1) for Z
does likewise. For nonzero I' the static impurities
give a contribution to Z related to disorder
broadening of the energy spectrum. Obviously this
has no effect on the normal state, since (in the
CDOS limit) there is no structure to broaden. The
g o-induced structure in the superconducting state,
where the quasiparticle DOS is

N(EpRe|w/[w?-AUw)] ™3,

also is unaffected by the broadening since the
equations for Z and A are uncoupled in this limit.
This is a manifestation (indeed, a proof) of
Anderson’s theorem,” which states that supercon-
ducting properties (of CDOS systems) are unaffect-
ed by dilute nonmagnetic impurities.

The generalized Eliashberg equations above show
that this statement of Anderson’s theorem breaks
down when structure is present in the DOS, due to
the disorder broadening of the underlying electron-
ic structure. Although I" does not enter explicitly
into the gap equation (4.6) (due to the energy-
conserving nature of this interaction), disorder
scattering can lead to important spectral broaden-
ing via Z, and conceivably to non-negligible spec-
tral shifts X, —5. The effect on the gap and on
T,, is transmitted to the gap equation entirely
through the resulting set |V, ].

C. T=T.

At T=T, (A, — 0) the alteration of the quasi-
particle density of states due to the gap vanishes,

m,,/(w,z, +A2)2 4 sgnw,

and the expressions (4.1), (4.2), and (4.6) simplify
somewhat. The equation for the (infinitesimal) gap
becomes linear and decouples from the remaining
equations, which still must be solved iteratively for
N,. The equation determining T, can be written
[Eq. (4.6) with e, — 1]

N,
3 | -2
m =0
—8m 2;.,,,"-‘v— Nn3, =0,
n =0 ‘'n
4.10

where 3,, =A,, /. Written in this form the T,
equation is a straightforward generalization of the
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CDOS expression, as given for example by Allen
and Dynes.*® Ignoring for the moment corrections
to the kernel diagonal, the primary change is the
replacement of the CDOS eigenvector 3, by V,13,.
This replacement has no effect upon either T, or
the eigenvector, whose components are now .V, 3,.
This means that (at this level of approximation) A,
will be altered by DOS structure in proportion to
N,”'. A similar correction to the gap occurs at

T <T,, and this indicates that the analytic con-
tinuation A(w) can be altered substantially'>*" by
energy dependence of the DOS.

The correction due to DOS structure to the pho-
non contribution to Z, — 1, proportional to .V; in
Eq. (4.11), tends to be canceled by .Y,, while the
factor N ! multiplying (2n + 1) in the diagonal
can be regarded as the self-consistent response of
A, to the DOS structure. It is this latter effect
which gives rise to much of the correction to T,
compared to the CDOS limit. The structure of
Eq. (4.11) will be clarified further in Sec. V where
an approximate T, equation is discussed.

V. DISCUSSION AND CALCULATIONAL
RESULTS AT LOW TEMPERATURE

A. How much DOS variation?

The system of generalized Eliashberg equations
has been applied to Nb;Sn and Nb at T=T,.
Technical aspects of the numerical solution are dis-
cussed in Appendix B. For Nb;Sn the corrections
to the CDOS results are substantial, both for T.
and for the self-energies A,, w,Z,, and Y¥,. Crys-
talline Nb was checked as a possible fringe case,
where corrections might be noticeable if not really
important. The DOS of Nb is characterized by a
large value of V(Ef)=10 (Ryspin)~! with E¢ ly-
ing 20 mRy above a peak, and the energy variation
being described sufficiently well by a slope of
—200 (Ry*spin)~! over a range of 20 mRy
= +3% 10’ K around E,. The correction to T,
was found to be 0.4 (downward), with corre-
spondingly small corrections to the self-energies at
T.. Although this correction is well below the ab-
solute accuracy of the Eliashberg equations as de-
rived (keeping only certain classes of diagrams} and
applied (especially the treatment of the Coulomb
interaction), it nevertheless represents faithfully the
accuracy of the CDOS approximation in Nb and in
metals with similar or less DOS structure near E;.
A preliminary report of the Nb\Sn calculations has
been reported'’ and further results are discussed
below.

N il i sandl Sadh _andh o

. PRSPPI W WAE 1YY UG W 2P 1P PSSP ST VL VK Y _‘L'J




B. Approximate relations for T,

In the CDOS limit T, is determined by a*F and
u°, or equivalently,

T.=T.[lgla)u'], (5.1)
where a’F is described by a strength A and shape
function

glw)=(2/ w)a*Flw) .

. Generalizing the pioneering work of McMillan,®
Allen and Dynes® showed that, for widely varying
strengths and shape functions, this functional of g
can be replaced to high accuracy by a function in-
volving only two moments wy,g and w; of g.

T. = TAP (L wnogwa,n®) . (5.2

One of the most useful applications of such an ap-
proximate T, equation is the extraction of A from
experimental data on T, and reasonable estimates®’
of Wi w3, and u®.

In the previous sections it has been shown that
the general functional form of T is

T.=T.[A.§l0),GN(E)T], (5.3)

where § is defined analogously to g. The form of
the gap equation (4.6), together with the work of
Allen and Dynes, suggests an approximate T,
equation of the form

Te =Te( X, anoq@2,8° ¥\, N, N, T (5.4)

oot e v yryvyew T oot

where N, N, and N, are averages over N(E). A
few general features of these averages will be noted
here.

The average denoted ¥V, is that which should
multiply X'~ in the kernel diagonal in the approx-

imation
N _ N _
SN N, SR (5.5)
{=0 =0

Since X decreases as w2 for w,, >>{, ¥, will cor-
respond approximately to a Lorentzian average of
N(E) over a frequency half-width {1 around Ef
(actually §).

In the off-diagonal terms the corresponding re-

placement is
Ne _ N o
2 }‘:;"VMAM—"VA 2 AL;'A,,, . (5.6)
m=0 m=0

However, since A, decreases rapidly with increas-
ing wm, even changing sign for w, < a3, Ny aver-
ages over a smaller region than does .V;, for exam-
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ple, on the order of /2.

The average .V, multiplying Z° is less straight-
forward, since Z° has no frequency cutoff to make
a partial sum coverage. Numerical solutions’®!
show that A, approaches a negative constant value
A, for large n (for nonvanishing Z°). Obviously
N, also approaches a constant average DOS value
N .. If both vV, and A, have approached their
asymptotic value at n =k < N, it follows that V,,

given by
N,.A, /

-1 -
S N, + 7N A In(N, /k)
0

N

I

a,

il
~ oM<
OM,;<

(5.7

S 8, +7A,In(N, /k)
0

is weakly dependent on the cutoff N,. This cutoff
dependence is artificial and arises from the incon-
sistent treatment given to Z° in folding 7 down to
ii*. The energy integral leading to Eq. (4.9) does
not take into account the full variation of V(E)
whereas the *“unfolding™ to the cutoff N, in Eq.
(5.7) is taking this energy dependence into account.
It is straightforward to correct this discrepancy by
generalizing Eq. (4.9), that is, by using the relation
(AS). However, the following approximation will
suffice to illustrate some effects of DOS structure.

Owing to the rapid decrease of A, with n and
the (2n + 1)~ factor in A,, the DOS average,

M M

N= S NE, / S a,. (5.7)
n =0 s =0

for small M “converges” (i.c., becomes stationary

with respect to M) rapidly before the cutoff depen-

dence mentioned above becomes a consideration

and leads to the unwanted limit N,—N_,. Ina

preliminary report'? of this work applxed to Nb;Sn

(also see below) the first term alone

N M=0)=N(rT.Zo)=Nys

was used in the CDOS theory, giving an approxx-
mate value Tefr which could be compared to nu-
merical solutions of the full system of matrix equa-
tions for T.. In essence TS is given by (for I =0)

T = TAO(N gk wnoge w2, NogiZ®) (5.8)

(although numerical solutions to the CDOS equa-
tions were actually used rather than the Allen-
Dynes equation). Note that

#T.Zo20.85—0.90w,={1/2

P
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FIG. 2. Superconducting transition temperature T, of
Nb,Sn vs Fermi-level position, calculated within dif-
ferent approximarions. Full line, solution from full
energy-dependent equations; dashed line, solution assum-
ing CDOS N(E)=N{(Ef); dot-dash line, solution assum-
ing CDOS N(E)=N 4 (see text).

for NbySn (T, =18 K, Zy=2.7, w;=175 K). The
results of this approximation are shown in Fig. 2,
where it is evident that T2 reflects the trends of
the numerical solution quite well as the assumed
value of E is varied, although being ~ 1.5 K too
large. The crude approximation T resulting from
the assumption N(E)=N(Eg) is seen in Fig. 2 to
give a much stronger N (Eg) dependence than actu-
ally occurs.

For nonzero impurity scattering each DOS aver-
age N, has its broadening half-width @,Z, in-
creased by "N, [see Eq. (4.1)]. A low-order ap-
proximation can include this by increasing by
Fqr=N,T each of the widths which determine
N3, Na, and N, of which the former must be cal-
culated self-consistently (at least in principle). The
calculations described below result from numerical
solutions to the full energy-dependent equations,
however.

The quantities N,, N4, and .V, offer a reason-
able possibility of obtaining a realistic value of T,
without soiving nonlinear coupled matrix equa-
tions. Unfortunately it is a monumental task to
ascertain even an appropriate form of the approxi-
mate T, equation envisioned in Eq. (5.4), as this
would involve full solutions for a wide variety of
shapes of N(E) and §(w) as well as coupling
strengths A, Z°, and I'. Worse, it begins to appear
hopeless to extract unambiguous information from
an experimental value of 7T, in the face of so many
unknown parameters. The only compensation is
that the behavior of T, with the level of imperfec-
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GENERALIZATION OF THE THEORY OF THE ELECTRON-. .. 1195

tion [T.()] can be incorporated into the analysis.
A more realistic approach for interpreting experi-
mental data is to use a single average N, with

N =N, being a good choice, in the CDOS ex-
pression of Allen and Dynes. This in effect is the
usual practice, except that the value of A =N A
extracted in this manner may differ from the mass
enhancement value derived from heat capacity or
other measurements.

Although the DOS average appropriate for an
approximate 7, equation given above differs in de-
tail from that of Nettel and Thomas,’ the spirit of
the approximation is similar to theirs. The more
rigorous, but linear, approach of Lie and Car-
botte!! for calculating 8T, /SN(E) follows from the
present formulation by calculating the correction
AT, arising from an infinitesimal variation of en-
ergy E from a constant DOS given by

AN(E')=€dE'-E) .

It could be of interest to study the effects of the
supralinear terms for a particular DOS function
using the present theory. However, the Lie-
Carbotte results provide an important intuitive
grasp of the general behavior of 8T, /6N(E) as
well as a first approximation for numerical calcula-
tions.

C. Defect dependence of T, and N(Ey)
It was observed in Sec. V B that experimental

data on 7:‘_.[1?‘] [i.e., T, versus defect concentration
ny, since C=mwn; |¢?| from Eq. (3.7)] provide

{6) NdySn

NIE)/N(E,) 1o

NIEVNIE,)

T80 60 40 0 0 % 40 6 80
E-E, (mRy)

FIG. 3. Comparison of electron and phonon energy
scales for NbySn. (a) @*F(w) from tunneling data by
Wolf et al. (Ref. 32) and N (E) function calculated by
Klein er al. (Ref. 5), shown on the same mRy scale. (b}
Same N (E) function on a scaie of ~1 eV.
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direct information on the energy vanation of
N(£E). Calculation of T.(I'} has been carried out
for Nb;Sn using the DOS function calculated by
Klein et al.® For &@'F we have assumed

a*Flw)=V(wy)d@ Flw) (5.9

Wy =300 K, with a*Flw) derived from tunneling
data by Wolf er al.’> Both V(E) and a°F are
shown in Fig. 3 on the same scale to allow an easy
comparison of their energy variations. For 7° the
value u® =0.16 determined by Wolf et al. has been
used in the form NV(Eg)Z=0.16.

To compare with experimental data the defect-
broadening half-width " was related to the residual
resistivity pg by

po.—.4ﬂr/ﬂz ’
0} =4me®/3IN(Ep W} ,

{5.10)
(5.10

with?? i), =4.0 eV. The experimental data on
P T =p(0) has been converted to the “true” resi-
dual resitivity py by the use of the parallel resistor
formula
1 1 1

—_—————

pl0)  po * Pmas
Prmax =150 uQ cm, since Weismann et al.** have
found that pg given by this expression, and not
pl0), is approximately linear with damage-inducing
radiation dose. The theoretical prediction is com-
pared to four sets’® of experimental data in Fig. 4.
The calculation is consistent with experimental
data for residual resistivities below 75 uQQcm. For
larger disorder the theoretical prediction ap-

(5.12)

sChosh & Strongin
Curvitch et al
©Orlando et al
‘Poate et al.

Nbgsn

A (uf) em)

FIG. 4. Calculated T, of Nb;Sn (full curve) vs “true™
residual resistivity py (i.e., from parallel resistor formula)
compared with experimental data (Ref. 35). The theory
is not expected to be accurate for large defect concentra-
tion (g > 75 uflcm) since changes in @'F are not includ-
ed in the theory.
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proaches the asymptotic limit 7. ~9 K whereas the
experimental values saturate at T, ~3 K. This in-
dicates that, for pg> 75§ uQ cm, the disorder is de-
creasing the electron-phonon coupling &(w)
and/or hardening the phonon spectrum F(w), nei-
ther of which is included in the present theory
which treats a*F as independent of disorder.

The correspondence between defect concentra-
tion and residual resistivity ([—py) is not as sim-
ple as Eq. (5.10) implies. It should be observed,
for example, that I in Eq. (5.10) must be deter-
mined self-consistently from the relation

=N,

where, as will be shown below, the I' dependence
of N(I') is strong. Therefore, although T increases
linearly with disorder, " is distinctly sublinear.
However, the factor Q: in a suitably generalized
version of Eq. (5.10) also contains the factor V(I')
so the DOS dependence of pg cancels. As a resuit
the defect concentration dependence of p, goes in-
versely with that of v#, a result analogous to an
equivalent observation for the phonon-limited resis-
tivity made previously by Allen.’® This result can
be written

po=3C e} ()] .

(5.13)

(5.14)

We find by calculation, however, that vAD)x1/
N(T) (since Q.:(F) is constant to within 2%],
which makes Eq. (5.14) numerically equivalent to

po—{4m/QIUERIN(DIT . (5.14")

Conceptually Eqs. (5.14) and (5.14") are not at all
equivalent and the former relation gives the correct
physical picture.

In Fig. 5 the effective defect broadening (or

3 g

Defect Broadening r
o] in NbSn
- —
29 .~ CDOS 85
: L <
-~ g 2
e V] 5
MNB) [ 4
e.
e ‘ - - v =)
0 10 20 30 40 %0
L, (mRY)

FIG. 5. Self-consistently determined defect broaden-
ing width T" (equivalently residual resistivity py)—full
line—vs disorder [y, determined from .V(E) shown in
:—:ig. [3 The dashed line gives the CDOS approximation
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- Nb38n
-
=
c - =
-
«
2 =18
A ° .
:‘\ .
- 4 oN(Ep)vp= constant
. vy = constant
=)

-

DA O 20 40 60 8 100 120

: o (LQ cm)

. FIG. 6. Effective density of states V(I") vs residual

2 resistivity po for Nb:Sn. Solid line: theory, including e-
ph interaction with A=1.8. Dashed line: theory, no e-
ph interaction. Symbols: experimentally inferred values
{Ref. 38), assumed two different constraints on N(Ef v,
with varying disorder.

equivalently, pg) is plotted versus
Fo=N(Ep)T=mm;N(Eg) | 22 .

Owing to broadening of the peak in N(E) near E,
" increases more slowly than that for a CDOS
N(E)=N(Eg), shown by the dashed line. Howev-
er, for pg> 50 uQ cm, T is approximately linear
with defect concentration, just as the data of

o

: Weismann et al.** for py are approximately linear
% with radiation fluence in this range.

: The behavior of the factor of N(Ef) in the

linear specific-heat coefficient y versus residual
resistivity may provide more direct information on
N N(E) than does T.(py), since only a straightfor-
~ ward Lorentzian broadening’” of N(E) is involved.
o In the few cases which have been studied systemat-
¥ ically, however, ¥ has been inferred instead from
the temperature dependence of the upper critical
magnetic field,”® which involves independent infor-
~ mation (or assumptions) about the values of ma-
terial constants such as A, vg, mean free path /,
I etc., as well as an assumption about the behavior
. of band-structure-related quantities with defect
concentration. The resulting values of N(I") for
. *VbsSn obtained by Ghosh et al.,* resulting from
the assumption that N(Eg)ug, or secondly, vr it-
self, remains constant with increasing disorder, are
compared in Fig. 6 with that calculated from the
DOS function in Fig. 3. Calculated values of
" N(T') are shown both for the (usually assumed)
case where only defect broadening is taken into ac-
" count {dashed line), and the more general case in
which e-ph broadening is included (full line).
The calculated values including e-ph broadening
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DENSITY OF STATES (Rel. Units)

° E.\"ERGY" (mR;) °

FI1G. 7. Effect of defect broadening on the V(E)
function shown in Fig. 3. Vertical lines indicate the
respective Fermi levels, determined from conservation of
electrons. Circles denote V() =N (Ef). The best sam-
ples of NbySn have residual resistivities po= 10 uQcm.
which precludes extreme energy variation of the density
of states.

are in slightly better agreement with the empirical
values obtained assuming .V (Ef Jup =const [howev-
er, the argument given above in the discussion of
T.(po) indicates N(Egv})=const would be the
proper assumption]. The analysis of Ghosh et al.
of course also needs generalizing along the lines of
the present theory. It is clear from Fig. 6 that ex-
trapolation from the existing data to obtain a *“per-
fect crystal value™” of N(Ef) may not be valid,
since a kink may occur at or below 10 {1 cm.
The degree of broadening of the full N(E) curve is
illustrated more clearly in Fig. 7. A peak of width
3—4 mRy or less is virtually lost for a residual
resistivity of 10 uQ cm, which corresponds to the
highest quality samples of Nb;Sn. Such a large
perfect-crystal value of N(Eg) implies a tendency
toward defect formation, which serves to lower
N(Er) and thereby decreases the number of elec-
trons at high energy, resulting in a more stable ma-
terial.

D. Defect dependence of T.:
Previous studies

There have been several previous applications of
broadening to account for properties, especially T,
of A15 compounds. Most of these have been
phenomenological, as typified particularly by the
work of Mattheiss and Testardi.’®*® The studies
of Aleksandrov, Elesin, and Kazeko,*' and Huang,
Chu, and Ting,*' however, have used a more fun-
damental approach. Both groups studied T, using
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a weak-coupling formalism and model DOS func-
tions to illustrate the effect of defect broadening of
N(E) upon T..

Aleksandrov et al.*! purported to explain the sa-
turation in Nb;Sn of T, at 3 K for high defect
concentration solely in terms of DOS broadening.
The present generalized theory and realistic DOS
function shows saturation at ~8—9 K if only de-
fect broadening is taken into account. In addition,
this limit depends on the DOS function on only a
large ( ~ 1 eV) scale, for which all band-structure
calculations** give results similar (modulo
5 — 10 % bandwidth-type differences arisings from
different exchange-correlation approximations, etc.)
to those of Klein et al.® which were used here. A
similar limit (~7 K) follows from the DOS
broadening study of Soukoulis and Papaconstanto-
poulos,*? if T.(10 uQcm) is normalized to the ex-
perimental value of 18.6 K. To understand the 3-
K saturation it is nccssary to invoke a weakening
in the strength of & F by approximately a factor of
2. This weakening may result from weaker cou-
pling or harder phonons. In fact, both of these ef-
fects have recently been observed in tunneling stud-
ies of NbjAl (Ref. 43) and Nb,Ge (Ref. 44) with
varying degrees of disorder.

Huang et al.*! assumed a singular one-dimen-
sional DOS and obtained results similar to those of
Aleksandrov et al. and the present results. They
concluded that, due to DOS variation near Ef, a
high T, compound can have a small value of
N{(Eg). A look at Fig. 7 shows.that this cannot be
the case for 4 15 compounds with appreciable
amounts of disorder, as in all samples of Nb;Ge,
Nb;Al, or for that matter, Nb;Sn. For pg=10
ucm, i.e., a clean Nb;Sn sample, the broadening
half-width I is 1.6 mRy =250 K, which is roughly
equal to the maximum phonon frequency Q. Thus
N(0Q), which determines T, (see Sec. V B), cannot
be much different from the value of N(E) at E¢
[(N(T) in the present notation]. A very low pq,
high-T, crystal may have a relatively low value of
N(Epf) if a large peak lies within ~Q of E¢, how-
ever.

Other mechanisms involving defect broadening
have been proposed to account for the degradation
of T, by defects. Meisel and Cote*’ suggested that
an assumed inability of phonons with wavelength
longer than the electron mean fres nath to scatter
electrons effectively (and. hence bind Cooper pairs)
could account for the defect dependence of high T,
compounds. This cannot explain the increase in T,
with pg in low-T, materials,’® however. Moreover,
if this “phonon-ineffectiveness™ concept is accepted
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it is very difficult to understand the rather large
T. and measured a°F of highly disordered Mo
(Kimhi and Geballe, Ref. 46). Ruvalds and
Soukoulis*’ have attributed most of the high T. (at
least in Nb;Ge and V;Si) to an acoustic plasmon
mechanism which decreases in strength as the elec-
tronic spectrum is broadened. However, there is
strong evidence from tunneling measurements that
the electron-phonon interaction itself is strong
enough to account for the high T, in V;Ga (Ref.
48), Nb;Sn (Ref. 32), Nb;Al (Ref. 43), and Nb,Ge
{Ref. 44), so there is now little reason to except
the acoustic plasmon mechanism to apply to any

A 15 compounds.

V1. NORMAL-STATE SPIN SUSCEPTIBILITY

In Sec. IV it was shown that in general T, does
not provide a measure of V(E¢), but rather of an
average of the DOS over a region #T.Z, or larger.
In this section we investigate what information
about V(E) is contained in the spin susceptibility
Xsp- For the sake of generality the fuil k depen-
dence of the expressions will be retained as far as

possible.

A. General considerations

The magnetization M is given by the difference
in number of spin-up and spin-do./n electrons
times the moment per electron,

M(;gn=“B(N¢~t—'l "‘)

—psSoN.o, 6.1)
o

with

Neo=T 2 Golk,iw, )em"' {6.2)
k.n .

and

G, (kjiwy)=iwy —(Ex~,—pgoH)
—3 ki), (6.3)

where H is the magnetic field. Luttinger*® has
shown how this “self-evident™ exact expression for
M can be derived diagrammatically.

The measured zero-field susceptibility is given

=
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oM

H e

tuye | _ 462 (kiiwn)
d(ﬂ.‘dﬂ)

Xp=

¥

T.N, H-O H=0{=(IN,)

=u}T S PGilkiwyle (6.4)

kao

H=0
=~2u3T S GHk,iw, [1+2'kiwy)], (6.5)
k.

where we have used Eq. (6.3) and the expansion
Solkiiwg)=2k,iwy ) —pgoHZ (kjiw, ) +O(HY) . (6.6)

Equation (6.5) is an exact expression for X, in terms of the renormalized Green's function and the field
derivative of the self-energy. As can be seen from Wolff's* diagrammatic theory for X,p» the G term in
Eq. (6.5) arises from the simple, but renormalized, bubble diagram in Fig. 8(a), whereas the G’ term arises
from all vertex corrections (i.e., diagrams with other than self-energy insertions to G). With = given by the
diagrams of Fig. 1, we can write, introducing J, = —dG;' /d(ugoH) | y wo=J _o=J,

d

J(k.ial.)=l—m7‘2lgﬂ(k K3y =i, )G oK iw,) 6.7

=14T 3, Xk, kiw, —iw, )GUK iwy W (k' iwy)
k'n’

-Tz d(ngo H) Adf(k,k i, —iwy) ”-OG(k oy . 6.7)
I
The second term in Eq. (6.7') describes “ladder- a large class of diagrams for X,; which are not in-
type” vertex corrections (see below), with a typical cluded in Eq. (6.7) by virtue of the approximation
graph shown in Fig. 8(b). The third term repre- for 2 from which this equation is derived.
sents field corrections to the effective electron- For T—0 Luttinger *? has shown that, as long as
electron interaction, with the lowest-order phonon @) [2{w)=m (w)—ir{w)] vanishes as fast as o°
contribution shown in Fig. 8(c). There is of course as w—0, M is given by
M ’“32"9(;_6)&0) 6.8)
ko
where © is the unit step function and &, is the
renormalized energy given by
ik,zE,,,—m,(k.z!’k,—{) . (6.9}
"'@ "'@ The susceptibility is given by _
ds
X T=01=2, S | - —= ‘5(;-6,,) .
Py dH

o 0 6.10
e @ The derivatives

Yo
FIG. 8. Susceptibility diagrams discussed in the text. ViBro= ViEo—3imolk,Eyo=4)
For simplicity the renormalized Green’s function is ~3,m K@) yma, = ‘6' «Eko
denoted by single full lines cather than double lines as in ' *
Fig. |. Other notation is as in Fig. I. 6.1
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dé,; dE, . . Vebro=[Vi—3xmatk 0]/l =iy,  -6.13)
dH = aH ~3Hoth Sy
» dé., (f Imyik,0) | ‘
. : —g = ks o+ (1R,
—3m k) g dH " Bush |
6.12) 6.14)
. . where Ay = —-3,m'k,w)' 40 1S the usual mass re-
at the Fermi surface 4 ,,=¢ become normalization. Equation 16.10) becomes
J
[ am, (k0 | -
=0)=2u}. - ] f = Temik 01/ ) (6.15)
Yl T =0)=2u3.V(S) <'}l am,,H) !/ Uk k k
Here vy = ¥V, ' and ¥, =vk.5kv and the angle stein phonon spectrum of strength A, where it was
brackets ( ) denote a Fermi-surface average. found that, with increasing A, —df/dE becomes
Equation (6.10) expresses Y, in terms of a renor- ever more long ranged, resulting in considerably in-
malized density of states, mcludmg mass enhance- creased averaging over .V (E) as well as a greater
ment from Eq. (6.9), and a susceptibility per state variation of §(7T) given by the isotropic form of
—d & ,/dH which also includes a mass enhance- Eg. (6.2):
ment factor [Eq. (6.14)]. Equation (6.15) expresses
X,p in terms of the bare factor V(&) in which the Ne=2[dEfIE-§N(E) . (6.2

total mass enhancement cancels out. That the
ou at For even moderate values of A, of the order of 0.5,

phonor.1 mass enh.'.mcemcnt cancelssl out was first [ differs significantly from f; and results in an
recognized by Quinn and Ferrell,”' who interpreted enhanced tcmpc rature dependence of Y., in Eq.
the cancellation as the result of each of the spin- (6.18). Bhatt>® has found previously th:t a low-

split bands carrying its own mass renormalization
P frying its 1zatio temperature expression leads to an enhancement

with it ngldly. . . L {1+A) of the T dependence of X,
Reverting to the isotropic approximation for G. Returning to the expression (6.7) for the en-

the relation for the thermal dxsu"xbuuon function hancement J, neglect of the field dependence of the
SIE =£)=T 3 G(E,iw,)e" " (6.16) interaction leads to
n

Jiw)=1+T 3 Alio, —iw,)
can be differentiated to yield n nz emien )

~UEZD 1% GYEw,) 617 X [dE N(EVGHE, iy (iwy)
dE RO T '

the convergence factor being unnecessary here. .19

Equation (6.5) for X,; can therefore be written

df(E ~§)

dE

in the isotropic approximation. As was the case
for the self-energy in Sec. IIl, the (assumed) in-
dependence of Ay on E, and Ej- leads to an E-
independent J. Also as was found for 2, the dis-
tinct frequency dependences of the Coulomb, pho-
non, and defect interactions lead to different
characteristic behaviors for J.

Y, T=2u} [ dE |-

XN(ENI+Z(E D], (6.18)

with 2'(E, T) being defined from Eq. /6.5) by this

equation.
The crucial feature of this expression is that in- B. Coulomb interaction
teractions can aiter f(£) drastically from its free.
particle counterpart In the presence of only Coulomb interactions fin

(E)= (E/T+11-" . the approximation of Secs. II and IID f i5 essen-
fo [exp(E/T1+1] tially unchanged from f,. In the range of interest

The behavior of f has been presented elsewhere™ in Eq. (6.13). of the order of =T, the frequency
for the case of electrons interacting with an Ein- dependence of the screened exchange interaction,
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which will be denoted as usual by I, can be
neglected. Equation (6.19) becomes (J, =J, =J)

J=1+1[dE

=D }Mw

=1/[1-INg(0)], (6.20)

where

Ne$)= [dE [-ﬂiffﬂ lN(E) (6.21)

is the effective density of states at { at temperature
T. With the enhancement J =1+ X' given in Eq.
|

1201

(6.20), Eq. (6.18) becomes the usual Stoner-en-
hanced expression for X,,.

C. Interaction with defects

Defects drastically alter the occupation of crys-
talline eigenstates, even at T =0. Assuming a con-
stant density of states, it is straightforward to
show that f is given (in the dilute limit) by the
convolution of f, with a Lorentzian of width
F=N(EFT:

(C/m)
(E—-E"+T? "
If N(E) varies on the scale of N (E)T, I" must be

determined self-consistently as discussed in Sec.
vcC.

[(EY= [dE' fo(E" (6.22)

Defects give rise to a susceptibility enhancement given by

Jliw,

where I, is given, after partial integration, by

dN(E)

Tliwy=—(F/n )de G(Eiw,) .

=1+(F/m [dE N(EYGYE,iw, Wlin,)=1/[1-T{iv,)],

Clearly no enhancement occurs for a constant N (E). To provide an estimate of the magnitude of this
correction we evaluate the lowest order correction 8X!', pictured in Fig. 8(d),

XM=} T/mT 3 36kiw,*G (k' iw, )
n kk'

=2“5‘f/"’§§15—,,ds, TS G(k,iw,)G(k' iw,)
’ L]

2, d d 1
aZp,(I‘/v)édEk dE, E, —E,

a2 d__d Sf(EJ)—fIE)
_z“,(f/mk% JE, i,

Ey —E;

The k dependence of the self-energy has been
neglected in writing the energy denominator as
E,-—E;. Using the isotropic approximation and
performing partial integration in each variable
gives

(l)= lr '
st =2} — [ dEN'(E)
e gy LUE)V=f(E")
x [dE'N'E") -l

{6.26)

We consider first the case where N'(E)
=dN (E)/dE can be taken to be constant in the
important range around Ef. Setting

53
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(6.23)
(6.24)
TS[Gk,iw,)~Gik' in,)]le ™
»
(6.25)
I
N'E)=AN(Ep)/W , (6.27)

where A4 is a constant of order unity and W is the
bandwidth, leads to the result

o 21"2 l'
8X," = 2N EpA == - . (6.28)

Thus defects may lead to a nonvanishing but usu-
ally small contribution to the Stoner I. For com-
pounds with several transition-metal atoms per
cell, however, W may represent a subband width
such that /W is not small, in which case it is
necessary to do the integral in Eq. (6.26) more
carefully. Nevertheless. we expect this contribu-
tion to Y generally to be secondary to the change
in N(Ef) in the simple bubble term due to defect

—_



e

+'a

L 2P

» 0

-

N st e et
P UL I I S ThiE )
RPLIRTNL P U N AL PR G AT SRy oL )

1202

broadening. Finally, it should be noted that this
defect contribution to Y., need not always be posi-
tive as in Eq. 16.28). If E¢ occurs at a peak. or a
dip, in .V (E), in which case V'(E) and V' E'} in
Eq. (6.26) have opposite signs in the important re-
gion of integration, the correction to Y, may be
negative.

D. Interaction with phonons

It is not generally recognized that phonons can
sertously alter the thermal occupation of crystalline
cigenstates if the e-ph interaction is even moderate-
ly strong. It has been shown elsewhere® that e-ph
interactions shift the spectral weight of low-energy
electronic excitations drastically, and as a result
the thermal occupation f(E) broadens, correspond-
ing to occupation of higher-energy bare electrons
and holes. The resulting modification of the first
term in Eq. (6.18) can be substantial. Since this ef-
fect of the e-ph interaction on f(E), as well as
many of its implications, is described elsewhere,*?
only phonon effects on the susceptibility will be

J

8o on=2u3T" T Glkiiwg Xk ~k'iw, —iw, )Gk iwy) .
kn

k'n

In the isotropic approximation this becomes

X m=223T* 3 Niwy —iwy) [ dE [dE' N(E)G (E,iw,IN'(EG(E iw,) .
<

If ¥ (E) varies on the scale of Q, no further sim-
plification of this expression is possible. In partic-
ular, 8Y,'5, is not bounded in magnitude by any
small parameter and it may be of either sign.
Since this contribution to X,; is the first [Fig. 8(e)]
in the e-ph ladder series leading to a generalized
Stoner enhancement, the e-ph contribution to a
“Stoner I"* may be large and of either sign.

If N'(E) can be approximated by a constant
N(Eg)/W over the range Eg— W to Eg + W, and
is negligible otherwise, Eq. (6.30) can be evaluated
for an Einstein phonon spectrum &°F(w)
=(X0g/2)8(w—Ng). The energy integral gives

JdE N'EIGIE.iw,)

— —im[ N(Ep)/ W]sgnw, . 6.3

For W >> ¢ the frequency sums lead to the result

(6.32)

E
—_— g —

b M
6¥,.ph~2y5.V(Ep) W Q;

W i
1
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addressed here.

Previous treatments®**® of the effect of e-ph in-
teractions on the susceptibility have approached
the problem from the viewpoint of a phonon con-
tribution to the Stoner interaction parameter /.
These treatments have all assumed a CDOS sys-
tem, however, and in the general case it is not clear
that this “Stoner I'* viewpoint provides a useful
approach. To see this, consider the Eq. {6.7")
neglecting the field dependence of the interaction:
The frequency dependence of A from the e-ph in-
teraction is essential to the correct evaluation of
this term and results in a frequency-dependent
enhancement J{iw,). As a result J cannot be writ-
ten in the simple (constant) form (6.20) as is the
case for Coulomb interactions, nor even in the still
simple (but frequency-dependent) form (6.23) as for
defects.

We content ourselves here with studying briefly
the first correction to X,, from e-ph interaction
{beyond self-energy insertions to G). This correc-
tion is shown in Fig. 8(e) and is given by

(6.29)

{6.30)

suggesting that a ladder summation of such contri-
butions would lead to a contribution to the Stoner
I given by

AQ
A LA (6.33)
T AW T

Oscillation in V'(E) in transition-metal compounds
is likely to severely reduce the dependence of /,.p,
on the cutoff W, so the net result is likely to be
dominated by DOS structure near Ex.

It is notable that Eq. (6.33) is of exactly the
same form deduced by Fay and Appel®* from the
same diagram without invoking the isotropic ap-
proximation used here. Fay and Appel also em-
phasized that other diagrams may give phonon
contributions to ¥, of the same order as that re-
sulting from Eq. (6.33). Although the contribution
(6.30) to Y., is not bounded by any small quantity
like /W, there is still no assurance that other di-
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agrams will not give important contributions.
However, Eq. (6.30) has the advantage that the
electron Green's function is dressed by phonons,
implicitly accounting for an infinite subset of dia-
grams for X,

Kim,* taking another point of view, has con-
sidcred the magnetic field dependence of the pho-
non frequencies arising from changes in electronic
screening of the ion-ion interaction. The change
Awgq depends on the spin polarization, which may
be Stoner-enhanced by the Coulomb interaction.
Kim finds the result that the phonon contribution
to I may itself be enhanced by the same factor,
thereby greatly increasing the importance of /,.
for nearly magnetic metals. Figure 8(c) gives the
lowest-order diagram which arises from field
dependence of the phonon spectrum. Recently
MacDonald and Taylor’ have suggested that re-
finements of Kim’s theory will not lead to correc-
tions as large as were envisioned by Kim.

E. Combined effects of interactions

A realistic calculation of X, requires that all
three of the interactions discussed above be taken
into account simultaneously. The ladder diagrams,
e.g., Fig. 7(b), can only be fully included by a nu-
merical solution of Eq. (6.19), and corrections
beyond the ladder approximation present additional
difficulties. It might be expected that a reasonable
first approximation would be to retain only the
Coulomb part of Ay in Eq. (6.19) but include de-
fect and phonon contributions to G. The set of di-
agrams inciuded in this approach is typified by the
Coulomb ladder diagram of Fig. 8(f), and the cor-
responding contribution to X, is given by

Xsp=2u3N gl &)/ (1IN 4(8)] , (6.34)
with N4 given by Eq. (6.21).

The results of the application of this expression,
with [ calculated from local-density-functional
theory, have been described elsewhere.® It was
found that, although the temperature dependence
was qualitatively similar to the data of Reywald
et al.,* both the calculated absolute magnitude
and T dependence were only ~ 15% of the experi-
mental values. The orbital susceptibility can cer-
tainly account for much of the discrepancy in
magnitude, as well as for some of the T depen-
dence which arises from the variation of { with
temperature. However, it seems likely that disor-
der contributions to X, other than those entering
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Eq. (6.30) through N will be necessary for a
more quantitative theory.

VII. CONCLUSION

A generalized formulation of the Eliashberg ap-
proach to the electron self-energy has been devel-
oped which is valid for crystals for which the elec-
tronic spectrum varies on the scale of phonon fre-
quencies. The formulation has been kept on the
imaginary frequency axis where it is numerically
tractable, and further numerical application of the
theory to A15 compounds will be presented else-
where. Although there is no difficulty in extend-
ing the formalism to the real axis,'>* the resulting
calculational difficulties make this approach unat-
tractive when detailed results are wanted.

The present generalization of Eliashberg theory
proposes a system of equations for describing the
superconducting onset at T, as well as the gap and
renormalization functions below T,. Caiculations
at and below T, have shown that tunneling spec-
tra'*?’ as well as thermodynamic behavior® can be
significantly altered by DOS structure. In addi-
tion, it is proposed that the self-consistent ap-
proach of Eliashberg be extended above T. to
determine the normail-state electronic self-energy.
This theory lays the foundation for a more unified
picture of the relationship between high-
temperature superconductivity and the anomalous
normal-state behavior of 415 compounds, as in the
conclusion that the temperature dependence of the
susceptibility is increased substantially by the
strong electron-phonon interaction.

The satisfying agreement between the calcula-
tional results discussed in Sec. V and the experi-
mental data indicates that (1) the present proposal
for the self-energy (Fig. 1) is adequate at low tem-
perature, and (2) the DOS for Nb;Sn calculated by
Klein er al. is realistic. The disagreement between
the theoretical and experimental susceptibility is
certainly too large to be ascribed to an incorrect
theoretical DOS function. A conceivable source of
this discrepancy is that this ansatz for the self-
energy is inadequate for temperatures approaching
the Debye frequency; it is known (see Allen, Ref.
21) that even in CDOS systems there are further
adiabatic corrections to £ which cannot be shown
to be small. However, I consider it more likely
that the expression (6.34) for X, is insufficient.

An important area which has not been addressed
in this paper is the normal-state specific heat C,,
which has been used often to extract empirical
values of N(Eg). Let us assume, as the simplest
situation, that the specific heat can be divided into

. . I - T e T e
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:-',3 electron and phonon contributions, as was shown the measured specific heat can be used to deduce
o 10 be the case for CDOS systems by Grimvail.*! detailed information about variation in .V (E).

Generalizing Grimvall's general relation Eq. 'A7)"
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APPENDIX A

The usual expression'** for the Coulomb pseudopotential I generalizes in the present case to

Tk 0=Pkk0+T 3 3 Pk i Uk k':0)
ST T (S, B Ee— g+ XK i0) P+ Z (K" 0, 0} + K", ia})]

(A])

The treatment to this point ignores the possibility of spin fluctuation contributions and also assumes'¥¢' that
¥ is essentially positive, eliminating the consideration of enhancement of superconductivity by plasmon or
exciton mechanisms. In principle, the dynamically screened Coulomb interaction ¥ includes Coulomb renor-
malization and Coulomb vertex corrections.

For the “frequencies” w, and energies E,~ of interest in Eq. (A1) it suffices to ignore the self-energy
corrections to the denominator. Performing the energy surface averages leads to

EUEEV=MEE+T 3 [dE"REENED) zupr . (A2
o e . E" vy
-y c
—
To make contact with later notation Z*(E,E’) L{we,0p) = Nwg)lw,oy)
=U(E,E’;0) and i(E,E’)= V(E,E’;0) have been
introduced, and also the frequency dependence of = ﬁ(wﬂ oy /o), (A6)
V has been ignored.
Assuming further that where N(wy) is the mean DOS over a region
- o ' Eftoy and l(,0) (introduced by Allen'¥®) is
[ L EEY g, |E|,|E'| <oy A3) the function L (w,«") with N(E) replaced by unity.
o HEET= 10 otherwise In the (strict) CDOS limit F(wy)—N(Ef), the
t::' and that V(E) vanishes for | E | > wy, one finds usual expression ‘
1/E*= 1/ +Lwewy) , (A4) 1/p*=1/p+Inlwy/w,) (A7)
where is recovered, where u=NV(Er)i and u*
Yy N(E) =N(Ef)i® However, the CDOS limit of Eliash-
Lw,w)=T 3 f B berg theory applies if V(E) is approximately con-
AP m E°+w; - A .
" 7T stant over the range Er~w,, in which case a more
(AS) precise expression for u® is given by
For a specific model of V(E), L can be evaluated /u*=1/u +[;V(w,.)/N(EF)]In(w,./w,) . (A8)
explicitly. Given the level of approximation lead-
ing to Eq. (A4) however, it suffices to note that This relation is discussed further in the text.
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APPENDIX B

The calculations described in this paper require
the self-consistent solution of the N, X N, matrix
equations (2.5), (3.12), and (4.1)—(4.3). Two tech-
niques used in the present computations will be
described briefly here.

These equations have the feature that the low-
frequency (small |, |) rows and columns are in
some sense more critical for obtaining convergence
than those of larger frequency. It has been found
that the technique used by Allen®? of using the
solution of the m X m subsystem as an approxi-
mate solution of a larger subsystem provides an ef-
ficient method of providing an iterative solution of
the system of equations. The sequence m =1,2,
4,8, ..., N, used by Allen has been used here,
with N, =128 for all calculations described in this
paper.

The only arbitrary assignments in this procedure
occur in setting initial values of N, and P,. The
iteration is begun by setting N, =7 (Ef), Py =0,

roufi " . Sl EuEn
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subsystem to the 2m X 2m subsystem, the assign-
ment
N N,
lej,: P: , m<j<2m (B1)

was made. A search for more sophisticated extra-
polations of these functions did not result in signi-
ficantly more efficient solutions.

A crucial step in attaining reasonably accurate
solutions to this system is finding a procedure for
determining {(T) from Eq. (2.5). The free Green's
function G, for instance, gives rise to the Fermi-
Dirac distribution function f,

fAEY=T 3 Gyl Eiiwy e (B2)
L]

only after an infinite summation; truncation of the
frequency sum in Eq. (B2) at any point leads to a
function which is nonexponential. In the present
calculation { has been evaluated as follows.

For the m X m subsystem, m =1,2,4,. .., N,,

we make the definition
Then Egq. (2.5) can be written

then calculating Z,, Xo, Ag, and £O(T), the first
g approximation to §(7T) (see below). Then N, and
> Py are recalculated until self-consistency is ob-
tained. In proceding from the solutions of m X n
J

» N,=2T S [dEN(ERG(E.in,;)e'™
AN 820
! .
- =2TRe [ dEN(E) 3, {Go(E.iwg:$) +{G(E,iw;$)—GolE,iand)]}
e 20
m
" =2 [ dE folE ={N(E)+2TRe 3, [ dE N(E)[G(E,iwyi8) —Go(Eriwg;d)] - (B4)
- A=0
: ‘:: The relation G(E, —iw,}=G(E,iw,)* has been used in writing the sums over w, >0 only. The dependence
- on §, the interacting chemical potential, has been displayed explicitly to emphasize that introducing
- Go(E,iw,;$) and fo(E —§) is merely a mathematical method for evaluating the infinite summation. In par-
ticular,
:gi 2 [ dE foE =§IN(EV£N, . (BS)
:.-: - Finally, the noninteracting chemical potential {o( T), determined by
Nem [ dE folE =(oIN(E) " (B6)
’ was used to write the equation determining { as
2T Re i de N(ENG(E,iwy;§)—GolE,iw,;5)] =2 f dE [folE =§o)—folE =8 IN(E) . (B7
n=0

This equation is solved iteratively for { at each step of the iteration of the system of equations.
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Renormalized Thermal Distribution Function in an Interacting Electron-Phonon System

Warren E, Pickett
Naval Research Laboratory. Washington, D. C. 20375
(Received 1 Dacember 1981)

The electron-phonon interaction is used to demonstrate the important effect of inter-
actions on the electronic distribution function at finite temperature. It is shown that the
usual picture of “thermal (Fermi) smearing” s a greatly oversimplified one. The dis-
tribution function resulting from an Einstein spectrum with varicus coupling strengths (s
presented and interpreted, and an exact expression for the spin susceptibility is used to
{llustrate the utility of this novel viewpoint for thermodynamics.

PACS numbers: 65.30.+m, 63.20.Kr, 71.38.+{

One of the primary characteristics of a metal
at a finite temperature T is that the crystalline
electronic eigenstates (labeled by index k) of en-
ergy E, are occupied according to a thermal dis-
tribution /(€ ,). Almost universally in the theory
of metals this distribution is taken to be that of
rnoninteracting fermions, i.e., the Fermi-Dirac
distribution f,(E,). Typically this assumption ap-
pears as a thermal broadening (“Fermi smear-
ing”), given by —-df,E)/dE, of some quantity over
a region around the Fermi energy E;. The effect
of interactions, if included at all, is not intro-
duced into the occupation function. For systems
whers the density of states (DOS) function N(E)
varies sufficiently slowly near E ¢ thermal averag-
ing is expected to be insensitive to the actual form
of f. For varying DOS systems, however, of
which the A15 class of compounds provides the
canonical example,' the understanding of their
anomalous thermal behavior may depend criticai-
ly on the proper description of / and df /dE .

Two questions arise: What is the effect of in-
teractions or the thermal distribution /, and is
our understanding of thermodynamic properties
clarified by a viewpoint which includes interac-
tions in /? In this paper we use the exampie of
the slectron-phonon (EP) interaction to show that
f, and thereby the interpretation of thermodyname-
{c quantities, can be radically aitered by interac-
tions.

The distribution function f(E,) is defined as thol

M(w)--(m/z)n.{w(-}+ 228\, (3 s=0)!

T )T\ T

f

L(w) = (TAR/3] £,(Q = w) + /(3 + w) + 21,(Q)} sgn(w).

thermal expectation of the number operator #,.
For T >0, f is given in general in terms of the
thermodynamic Green’s function G by the rela-
tion?

fE=T T Gk,iw,)expiw,1, (1)
niem

where w, = (21 +1)7T and 1 is a positive infinites-
imal. (In our units Faky =1, and for simplicity
an isotropic approximation for electrons will be
used.) It is easily verified that (i) in the absence
of interactions, f-f,, and (ii) by converting the
sum to a contour integral / can be written

FE,)m Lodwf(wih(k,w) )

in terms of the spectral density A. Evidently f
=f,if and only L A is a § function at w sE,. When
A is broadened by interactions, f can differ con-
siderably from f, (a result not often stated in
quantum statistical theory texts), as I now ex-
plicitly demonstrate.

For simplicity let us initially consider a con-
stant-DOS electronic system interacting with an
Einstein phonon spectrum with EP spectral func-
tion a’F given by

a’F (w) = (A0/2)0(w - Q), )

where €1 is the Einstein {requency and ) is the EP
coupling constant. A straightforward calculation
of the electronic self-energy Z =M «iI on the
real axis gives, with energies measured relative
©Eg,

(4)

®)

Here ¥ and n, denote the digamma and Bose-Einstein functions, respectively. The spectral density is
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given simply by (£ = chemical potential)

1
G- &, ~D-Z@I’

In Fig. 1 I display M{w) and T'(w) for several
values of T. Spectral functions at T =0 have been
studied previously by Engelsberg and Schrieffer®
and by Shimojima and Ichimura,* who find that,
even for |[E, -E¢| 5 Q, spectral weight is spread
over a region of several times § around E;. At
T >0 this spread is further increased because of
the increasing width I'(w) (Fig. 1). Neither of the
previous studies have noted the affect of EP in-
teractions on the distribution function.

The change in f due to EP interaction is repre-
sented most easily in unitless differential form
~Tdf/dE = =f'. The results, for several values
of T and A, are presented in Fig. 2 for E >{ = 0.
[Note that f’(E)=f'(~E).] At T=Q Fig. 2(a) in-
dicates that increasing A leads to the displace-

A(}z,w)=;l; Im

6)

" ment of weight in -=f’(E) (i.e., occupation of bare

electron and hole states) from the region |E - ¢!
< 2Q to the higher excitation energy tails. At T
=20/2 [Fig. 2(b)] the behavior is similar. How-
ever, as the frequency dependence of Z becomes
sharper at T « @ (Fig. 1), qualitatively new be-
havior-—negative weighting near {—can occur at
low energy, as shown in Fig. 2(c) for T =Q/4.
This unusual behavior is exaggerated by the Ein-

‘stein spectrum used here, although similar be-

L=M~il', Einstein Spectrum

w/Q

F1G. 1. Electron self-energy Z (w) = MW) ~iCW) for
an Einstein spectrum at energy 2, for several temper-
atures 7. The self-energies are proportional to A and
are shown for A= 1,

e e T e - - S L
- CORRE v T Lt G Ty
P W R O g Wy RS y O WO R WA WY Wl N

havior may occur even for a realistic spectrum
at lower temperatures. General features of -/’
include these: (a) at high energy .E -{, :>Q it
decreases as a Lorentzian of width I' = (mAQ/2)[1
+21,(Q)] rather than exponentially as does -f,’,
(b) at high T 2Q, -/’ is essentially Lorentzian
[r=7a2n,(Q)] everywhere, and (c) the behavior
at T =0 is as given previously by Shimojima and
Ichimura': f possesses a discontinuity of (1+A)"!
at {, which indicates that the Fermi surface re-
mains sharp, and -f’ has a 8-function contribu-
tion of corresponding amplitude, with the re-
maining weight A/(1 + 1) displaced over the range

h
.v L)
- . 00
=3
Q
g
- R T §
?‘ R 1 L3
(] 2 4 ] 8 10

E/T

FIG. 2. The derivative—f’(E)= =Tdf(E)/dE of the
thermal distribution function f calculated from Egs.
(2) and (6) and the self-energies of Fig. 1, for several
values of A. The dashed line shows ~f'(= =f,’) in the
absence of electron-phonon interaction (A = 0). Note
that interactions broaden the thermal distribution con-
siderably evcr for modest values of A at all tempera-
tures.
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iE -E pl ~ Q2.

For systems in which the electronic spectrum
varies on the scale of U, T becomes a functional®
of ¥(E) and the computation of f becomes corre-
spondingly more involved. However, because of
the substantial widths in the spectral density
peaks for finite w and/or T, the qualitative be-
havior of -/’ will generally reflect that of the
constant-DOS model. The proper interpretation
of thermodynamic properties, however, can be
substantially altered in nonconstant-DOS systems,
as will now be shown.

The case of the spin susceptibility Xsp Will be
used to demonstrate that the renormalized ther-
mal smearing function -f', rather than -f,’,
often arises naturally in the formalism. That this
should be the case is suggested by the relation-
ship {Eq. (1)) between / and the (renormalized)
Green’s function G on the one hand, and the ex-

|

pansion of the thermodynamic potential, which is
accomplished most concisely® in terms of G (rath-
er than G}, on the other. The conservation of
electron number N, for example, is given nat-
urally as the thermal redistribution of crystalline
states:

N, =2[dEfE ~EW(E), (1)
although it can also be written

No =2fdwf (w = i(w) (1)

in terms of a noninteracting electron distribution
over a hroadened and renormalized DOS’ A given
by

K(w+L)= [dE NEW (E ¢, w). (8)

This is simply a question of whether the w or E
integral is carried out first. However, from the
magnetization M, given by*

M2uy 0N =uy T 0[dENENTLC € ,iw,expiw,n, (9)
in terms of the number N, of spin ¢ electrons, Xsp can be written exact!y (within this isotropic treat-
ment) as

-] :
XIP'% wso== b 2, 0|dENE)TL G E piwy) Q&THM“F‘U-" Heo
=2 fae ) [- LEE (s ke, 1)), (109

where - df/dE is identified by differentiating Eq. (1) withG ;" (€ ,iw,)=iw, = (E ={ = 0ugH) =5 (iw,),
and the thermal average & of the field derivative of the self-energy is defined by

K(EvT)'-mG'G.iW.)%lnolTZG’(E Jw )t (11)

Equation (10) gives an interpretation of x,, as arising from the bare DOS, appropriately enhanced by
1+X and averaged around { according to the inferacting thermal smearing function. Equation (10)
gives directly an enhancement due to the EP interaction of the T dependence of x,, arising from a pesk

in N(E), as surmised by Bhatt® for low temperature.

Essentially all other interpretations of x,,(T) have assumed a form like Eq. (10) with f=/,. By
means of the standard analytic continuation® to express the trequency sum in Eq. (9) in terms of an
integral over real {requencies, x,, can be written in terms of f, as two contributions x ,,‘*’ +x,,'*:

X.p“" = z“.:fm(-g-an)a(w +{),

(101

which {8 reminiscent of bu¢ not identical to the {irst (unenhanced) term in Eq. (10), and the “enhance- -

ment”

x"u) ,__2%[: nnj: dwfa NEGHE ,w)%{/o(W)

S HE L, (10°)

where £, sdZ ,*/d(0LgH)| yao and T’ =3 L2 /3w (superscript R denotes retarded functions).
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The simplicity of Eq. (10), and a general knowl-
edge of the behavior of -3f/3E from Fig. 2, al-
lows one to identify the underlying causes of ther-
mal anomalies in exotic systems. In VX com-
pounds, for example, the strong T dependence of
X correlates closely!® with high superconducting
T,, and thus with large A, exactly as Eq. (10),
with a peak in N(E) near { and broadening propor-
tional to A, suggests. It is also evident that the
incluence of the lattice should lsad to an isotope
effect on the critical temperature for itinerant-
electron magnetism distinct {rom that proposed
by Hoptleld.!! Neither of these properties is evi-
dent in the form given in Eqas. (10’) and (10”’).

In terms of the two questions posed at the out-
set, (1) the behavior of f is qualitatively as shown
in Fig. 2 and is of itself useful and perhaps neces-
sary in interpreting thermodynamic behavior,
and (2) f has been shown to arise simply and nat-
urally in the expression for x,,. In general, each
thermodynamic quantity must be investigated in-
dividually for a useful expression involving f and/
or f, It is encouraging that Lee and Yang'? have
shown that thermodynamics can be formulated
exactly in terms of f, although the author is un-
aware of any application of their very formal ap-
proach to metals.

A contrast can be drawn between the present
viewpoint and that of Fermi-liquid theory.” The
latter approach describes the low-temperature
thermodynamic properties in terms of noninter-
acting quasiparticles described by f, and a re-
normalized quasiparticle density of states X.
Typically X is a constant for excitations of inter-
est, and this approach has been very successful
for phemomenological descriptions. It is pro-
posed here that viewing the interactions as dis-
tributing the excitations over the noninteracting
spectrum will prove a more useful approach when
variation of N(E) is important. This formulation

provides a conceptual basis as well as a compu-
tational approach for the detailed understanding
of many classes of interesting compounds.

The author acknowledges several helpful con-
versations with B. M. Klein, technical assistance
of A. Koppenhaver, and referral by L. C. Pickett
to Ref. 13 which gives an accurate algorithm for
evaluating the digamma function. Penetrating
queries from P. B. Allen and L. J. Sham during
a brief tenure at the Aspen Center for Physics
are also acknowledged.

!B, M. Klein, L. L. Boyer, D. A. Papaconstaatopoulos,
and L. F. Mattheiss, Phys. Rev. B 18, 6411 (1978);

W. E. Pickett, K. M. Ho, and M. L. Cohen, Phys. Rev.
B 19, 1734 (1979); T. Jariborg, J. Phys. F 9, 283
(1979); A. T. van Kessel, H. W. Myron, and F. M.
Mueller, Phys. Rev. Lett. 41, 181 (1978).

A, A. Abrikosov, L. P. Gorkov, and I. Ye.Dzyslosiin-
ski, Quantum Field Theovetical Methods in Statistical
Physics (Pergamon, New York, 1965),

'S, Engelsberg and J. R, Schrisffer, Phys, Rev. 131,
993 (1963).

K, Shimojima and H. Ichimura, Prog. Theor. Phys.
43, 925 (19870).

“Sw, E. Pickett, Phys. Rev. B 21, 3897 (1980), and
unpublighed.

3. M. Luttinger and J. C. Ward, Phys. Rev. 118,

1417 (1960); G. M. Eliashberg, Zh. Eksp. Teor. Fis.

43, 1008 (1962) { Sov. Phys. JETP 16, 780 (1983,
“VIhis 1a more in line with the phesomenological theory
of Ferm{ liquids; see L. D. Landau Zh. Eksp. Teor.

Fiz. 30, 1058 (1956), and 32, 59 (1957) [ Sov. Phys.
.n:'rp 3, 920 (1957, and §, 101 Q9871

%3, M. Luttinger, Phys. Rev. 119, 1153 (1960,

*R. N. Bhatt, Phys. Rev. B 10 1915 (1977).

10y, J. Willfams and R. C. shorwood. Bull. Am. Phys.
Soc. 5, 430 (1960),

17,7, Hopfleld, Phys. Lett. 27A, 397 (1968).

137, D, Lee and C. N. Yang, Phys. Rev. 117, 22 (1960).

“E W. Ng, ACM Trans. Math. SOMnrl 1, 36 1973);

H. Kuki, Commun., ACM 18, 262, 271 (19?2)

1551

63

WP L W RS N AT N ALY (PR PR

e




T
ALALSA SRS
O AT

x

‘. "-

&K

—_—97 —

THEQORY OF THE NORMAL STATE HEAT
CAPACITY OF NbySn

Warren E. Pickett and Barry M. Klein

Condensed Matter Physics Branch
Naval Research Laboratory
Washington, D.C. 20375

The experimenial a’F of Wolf er al is applied 10 calculate the T-dependence of the elecironic heat capa-
city. It is found that, if the phonon spectrum is Debye-like (which is not the case in NwSn). this T-dependence
results in an extrapolated vaiue of N(Eg) (1 + L) which is overe d by an which is proportional
NCEg)N, equai to 13% for NbySn. [t is further shown that the change in slope of C/ T found by Stewart, Cort
and Webb can be modeied by a combined Debyve and Einstein spectrum with §p = 267 K and having 1.5% of
the acoustic modes at an Einstein frequency §} = 40 K.

1. INTRODUCTION

The specific heat of Nb;Sn has long been an enigma. Vieland and Wicklund (1968) fit the normal
state specific heat C,(7) above the superconducting transition temperature T, = 18 K 10 the form

C/T=y+8T%

However, the inferred normal state entropy S,(T.) obtained by extrapoiating this form below T, was 14%
larger than the measured entropy in the superconducting state S.(7.), strongly violating the thermo-
dynamic constraint $,(7,) = S,.(T,) for a second order phase transition. Thus, although C, had assumed
the “low temperature form"™ of Eq. (1) in the range of their measurements. it was evident that this form
must change at still lower temperatures.

Recently Stewart, Cort and Webb (1981) (hercafter referred 10 as SCW) have resoived this particu-
{ar enigma by measuring C in fields up to 18 T, which lowers T, to around 6.5 K. The Vieland-Wicklund
form was found to hold down to 12-13 K, whereupon the siope rapidly changed 1o give 85 = 207 K and
an extrapolated y = 35 + 3 mJ/mole K? a1 zero temperature compared to y = 96 mJ/mole K? from
above 13 K. Although this new extrapolation satisfies the entropy consiraint, the interesting question
arises as to what causes the rapid change in slope ("knee” or “kink") between 10 K and 12 K.

In this paper we initiate an investigation into this unusual and unexpected behavior. We assume at
the outset, following the argument of Grimvall (1969), that even in systems in which the eleciron and
phonon subsystems are strongly interacting, the specific heat nevertheless can be separated into two parts
interpreted as due to renormalized electrons and renormalized phonons. [t is not clear how this approach
is 1o be reconciled with Allen and Hui’s (1980) observation that the effects of electron-phonon (EP)
interaction appear to be double-counted in such an approach. Furthermore. Grimvall's analysis does not
take anharmonicity of the phonon system into account. while the phonons are known to show strong
temperature variation in Nby,Sn. For the present study, however, we shail proceed 10 investigate the heat
capacity of Nb;Sn in terms of the usual electron/phonon separation.

I1. ELECTRONIC HEAT CAPACITY

Grimvall (1969) has shown how Prange and Kadanofl's (1964) generalized quasiparticle expression
for the electronic heat capacity

Corl D) = 20 [ dE ‘ﬂ M r)l BE) | OMIE T) 3f(E) 0

aT er .13

can be derived from field thecr ‘cal considerations. Here M is the real part of the electronic self-energy,
/ is the Fermi function and other quantities have their usual meanings. Using standard expressions for
M this can be written explicitly as

CoelT) = lyg + M(DIT = (DT, )
with :
you Qu¥Y3) N(Es) k§ )
and
AriE) am;') ) (E EN
- e (
n(ivo= s e f e f a2 S dwaFw) 22E 3

where a!F is the elecxron-phonon spectral function. .
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Equation (4) has been evaluated previously {or an Einstein model (Grimvall 1968), for Pb and Hg
(Grimvall 1969) and for amorphous Pb (Bergmann er a/ 1971). Here we use the a’ F function for Nb,Sn
obtained by the inversion of tunneling data by Woll er a/ (1980) (0 evaiuate Eq. (4). [n Fig. | we show
the result for C,,./yo7 = 1 + y,(T)/yqn the range 0 to 200 K. The result 1s similar 10 those of Pb and
Hg (scaled to the stiffer phonon spectrum of NbySn). At 9 K y, peaks at 4 vaiue 10% higher than us
value Ayg (A = 1.78) at T = 0. Then y,/y, decreases rapidly. reaching i1ts mimimum vaiue of —0.24 at
approximately 100 K.

This drop in C,, below yoT has interesting implications. The thermal mass enhancement y, 1S pro-
portional to the magnitude of a’F. i.e.. A, and is shape depends only on the shape of a°F. As A s
increased. C,, will vanish at the temperature at which y, has its mmimum for a cnitical value A, of A.
and will become negative for a range of lemperatures when A > A,. For a°F having the Nb,Sn shape
A. = 7.4, For the Pb shape A, = 8.2 and the minimum sn y, occurs near 35 K. for an Einsiein spectrum
(which gives the sharpest structure possibie) A, = 3.7 and the minimum occurs near ky 7 = 1 Qg nuem 2
This negative “electronic™ specific heat causes no obvious violation of thermodynamic principles. since
increasing A will lead to a softening of the phonon spectrum and thus an increase in the “latice™ contri-
bution. which should keep the totai heat -apacity posiive. (The condinon C 2 0 can be used to put a
weak constraint on how hard the phonon spectrum can be.) Nevertheiess, this behavior raises further
questions into the separation of C into “electronic™ and “latuce™ contributions in strongly interacung EP
sysiems.

It is now widely accepted that vanauon of V(£) on the scale of phonon encrgies 1s a likely
occurrence in high 7 415 compounds. Nb,Sn 1n particular. In such a case the expression for C,, is
altered in severai ways. Following Grimvail's (1969} denvation of Eq. (1), variation of V(E) near &
results in an explicit dependence of C,, on the imaginary part T of the electronic seif-energy (aiso see
Grimvall 1978): i.e.. a breakdown of the generalized quasiparticle expression Eq. (1). This dependence
will be neglected for reasons to be discussed beiow. Then Eq. (1) is modified by replacing V(Ef) by
V(E) under the integral, with a similar replacement in the equation defining M(E, T) (see Grimvall
1969). Finally one obtains

we am:) (E - EY
3 _ NE) [ dE NUED o LE-EY
"m“(krﬂI"E S E J 'F-f+a

with the normalization y,(0) = A. Equauon (5) has been evalualed by Fradin (1975, 1977) for a model
N(E) function thought 10 be appropriate for V,Ga. but no comparison with experiment was attempted.
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Fig. | = The variation of y/yo = | + v,/yq wih tempera- Fig. 2 — ODensuy of states near

E; = 0 of NSn (solid line) from
Klein et al (1978). Also shown are
the eflects of deleci scatering due to
5.10.20 and 40 uf) cm of residual
resistvity.  Vertical hnes denote the
respective  Fermi energies.  The 10
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nons described m the text.

ture in NwSn. The difference between this curve and umity
is proportional 10 A .
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We have evaluated Eq. {$) for Nb,Sn using the experimental data for a’F and the N(£) function
calculated by Kiein er af (1978). Since Nb;Sn samples invanably have a residual resistivity of 10 0 cm
(or more), we have broadened N{E) accordingly (Pickett 1982). These V(£) functions and the shift in
£; due 10 smearing are pictured tn Fig. 2. It should be noted that V(E) functions with even sharper
structure than that calcuiated by Kiein er a/ will not lead to broadened N (£) functions with significantly
more structure than the "10 £} cm” curve in Fig. 2.

In the range of interest here (T < 30 K) the temperature variation of the chemical potential is
negligible. in this range y, from Eq. (5) differs from that of Eq. (4) by less than 0.2%. This null correc-
tion results because .V(£) is essentiaily linear in the energy region sampied by Eq. (5) at these tempera-
tuses, and increased weighting at £ < E is cancelled by decreased weight a1 £ > E,. This s aiso why
the contribution to C,, from F(£ T) (mentioned above) is negligible. This contribution arises oniy
from changes due to the energy varianon of N(E), and for a linear variation these changes are vanishingly
small. Even if £ is artifically placed at the peak of the "10 . cm" curve in Fig. 2, where the effect is
largest. the correction is only 2% a1 JO K.

1t remains 1o determine the effect of the variauon of y; upon the interpretation of C,. In Fig. 3
y(T) = C,./Tis piotted versus T? along with the normal state experimental data of SCW. On the scale
shown the peak in y(T) is comparitively weak and has littie to do with the knee in the data, despite the
fact that both structures occur n the same temperature range. However, above 12 K the curve is
approximately linear, with slope 8 = -0.014 mJ/mole K*. Removing this linear contribution from the
linear fit 10 the data above 12 K results in 85 = 207 K in this region, rather than the SCW vaiue of 270
K.
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The temperature variation of y, can iead to a more significant correction to the extrapoiated value

- of yo{l +1). Assuming the lattice contribution C,, = BT (i.e., extrapolates 10 zero), the approxi-

: mately lineac decrease in yp+y, vs T? above the peak in y; leads to an overestimate of

y{0) ~ N(E;) (1 + &) which is proportionai 10 N(E;)A. For Nb;Sn this overestimate is 13%. If N(E;)

is known independently, the overestimate of A is further leveraged by (1 + A)/A, equal 10 20% for

z Nb;Sn. Use of incorrect values of N(Eg) can of course lead to worse empirical estimates of A. This

- overesuimate of A (0) in itself can lead 10 an apparent violation of the entropy constraint mentioned 1n the

introduction. For the actual data for Nb;Sn above 12 K, where the phonon zontribution does not extra-

polate 1o zero, the overestimate of yo(1 + A) 1s 4.7 mJ/mole K?, a rather small fraction of the difference
(61 mJ/moie K%) between the high and low temperature extrapolations of SCW.

3 3
- - 0=40 K Sum ,
P I % én=0.015 o
® 8- - w8 ©=267 K (A
-é g iy ' s § '-v"
- ‘\P‘. s o - Debye
- R4 ow’:’ Total: Exp. data 581 0\'
g /’g N A Einstein
© _~Electronic < ;o /

o o L

o 300 800 900 0 300 600 900
T* (K% T? (K?) .

Fig. 3 = C,./Tvs T from 0 10 30 K. The calculared Fig. 4 — Normal siate data points of Stewar: et al
curve is normalized 10 35 mJ/mole K* a1 T = Q. Data (1981). with constant electromic coniribution removed.
ponts (x, H= 0,4+, 17 T.0 18T.A, 197T) are compared with the Debye + Einstein model (piotred
normal state values ai various magnetic fields (Stewarr curves, see rext).

et al 1981). The lowest 6-7 data points reflect a

broadened transition ar T, == 6 K n 18 T. The doted

line represenis the exirapolation of Stewart et al

(1981).
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I LATTICE HEAT CAPACITY

The compiexity of the lattice dynamics of Nb,Sn makes a quantitative evaluation of the lattice heat
capacity C,(7T) impossible. "Good™ samples—typically those with low residual resistivity —undergo a
cubic-to-tetragonal transition at T, ~ 43 - 51 K, as did the SCW sample. Definitive neutron scattering
studies tShirane and Axe 1971, 1978. Axe and Shirane 1973a.b) have uncovered a "soft mode" type of
behavior of the ({.{.0) T, branch: as T approaches 7T, from above, the small { modes tend to disappear
under a4 narrow central peak broadened by instrumental resolution, whereas for T < T, only broad
scatlering centered at zero energy transfer could be observed for { € 0.2 (»/a). Thus the lattice dynam-
Ics dre not nnily unknown but are aiso expected to be strongly anharmonic, at least near T,,.

We imually investigated two (spherically symmetric) acoustic phonon dispersion models with
upward “kinks" in one T4 branch. as found by Axe and Shirane (1973b) for T > T,. In one of the
models the branches were lied 10 the T-dependent sound velocities at { — 0. Both models displayed a
smoothly increasing Debye temperature with temperature, qualitatively similar to the data. but neither
could be fit even semiquantitatively to the data.

it is therefore surprising that the following, much simpler, model provides a quaniitanve fit 10 the
SCW data above 8 K. We take a fraction 8n of the acoustic modes 10 be modeled by an Einstein fre-
quency 1 and assume the remaining | — 87 to be characierized by a Debye temperature 8. The resuits
for 1 = 40 K == 3.5 meV, 67 = 0.015. 8 = 267 K are shown in Fig. 4 compared 1o the normal state data
of SCW. (For this comparison we have neglected the small 7-dependence of y and subtracted out a con-
stant electronic contribution of 35 mJ/mole K¥.) The modet provides an excellent fit above T2 = 60 K2,
with 2 possible small discrepancy in the range 100 < T2 < 150 K where the data points are sparse.
SCW concluded that an “abrupt change™ occurs in this range, but a few more data points are needed 10
ascertain the abrupiness. We emphasize that this model of the phonon spectrum should not be inter-
preted literally. it does not. for example, reproduce 8, = 208 K in the range 8 < T? < 20 as is found
from daia taken in the superconducting state (Stewart er g/ 1981). Nevertheless it removes much of the
mystery in the Nb,Sn data by showing how an "excess” of soft modes can produce the observed behavior.

IV. FINAL POINTS

A question remains: why, SCW have asked. is the abrupt change in slope not observed in the
superconducting state data? Again, the SCW data in the superconducting state are sparse in this range
and-it is the authors’ opinion that structure in this region, where the electronic contribution is increasing
rapidly. should not be ruled out. A definitive answer to this question will require a calculation of the
electronic heat capacity in the superconducting state, as was done by Daams and Carbotte (1979) using
earlier experimental daia, in addition to more experimental daia.

Finally we note that abrupt changes of slope of the (/7T curve at low temperature are not
uncommon: Nb shows such anomalies at 3 K and 9.5 K (see Leupold er a/ 1977 and references therein).
Nb;Sn 1s however unusual in the magnitude of the siope change.

We are indebted 1o G.R. Stewart for helpful conversations and for providing the experimental data
in numerical form.
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