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OPTICAL PROBING OF PHOTOACOUSTIC PROPAGATION FOR NONCONTACT
MEASUREMENT OF FLOWS, TEMPERATURES AND CHEMICAL COMPOSITIONS'

A. C. Tam
W. Zapka®
H. Coufal
B. Sullivan
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San Jose, California 95193

ABSTRACT: Noncontact techniques of optical probing of photoacoustic pulses provide new
opportunities for ultrasonic and/or spectroscopic measurements in hostile environments (e.g.,
flames, corrosive fluids, dangerous aerosols, erc.), and also basic understanding of
photoacoustic generation processes. This paper provides examples of such applications in the
new field of "optical ultrisonics”" (whereby ultrasonic determinations of flows, temperatures,
erc., are measured optically), including "optical ultrasonic spectroscopy"” (whereby ultrasonic
dispersion and relaxations are measured optically).

tThis work is partially supported by the Office of Naval Research
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INTRODUCTION

Most photoacoustic (PA) experiments have been performed by using some types of
transducers in contact with, or in close proximity to, the sample to detect the acoustic signal.
These are contact PA monitoring techniques. There are situations where noncontact PA
monitoring techniques are necessary or preferable. For example, the sample may be remote
or inaccessible (e.g., in a vacuum chamber). Also, for high temperature or highly reactive
samples, the use of contact transducers or other material probes may result in chemical

modifications, aging, irreproducibilities or other difficulties. Several ways for noncontact

photothermal (PT) detections have been demonstrated in the literature. For example, Nordal
and Kanstad! have developed the technique of "photothermal radiometry" which relies on
the detection of the increased black-body radiation from the sample after optical absorption.2
A thermal refractive index gradient is also produced which causes "thermal lensing"3 and
"probe-beam refraction"? effects. These PT techniques have been shown to be useful for
spectroscopy’ and subsurface imaging® applications, but not for determining the ultrasonic .
properties of the sample. The PT techniques do not provide such information, because no

ultrasonic propagations are involved. i

OPTICAL ULTRASONICS

We have recently developed the noncontact technique of "optical ultrasonics,”" whereby l
only optical beams are used to excite and to probe the sampie to perform ultrasonic
measurements.’ This represents one area of application of photoacoustic (PA) techniques, '{
and is to be distinguished from the conventional PA spectroscopy technique, as summarized
in Table 1. The optical ultrasonic technique has the following advantages compared to

conventional contact ultrasonic methods: (a) measurements can be reliably and easily made

in hostile environments, and (b) nonperturbing measurements can be made with high spatial
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and temporal resolution. This provides an all-optical method for performing uitrasonic
~ ‘ velocity, dispersion or attenuation measurements in the sample. Parameters that can be
derived from such noncontact acoustic measurement technique include temperature and
composition (which affect the stationary acoustic velocity) and flow velocity (which affects
the directional variation of the observed acoustic velocity). This new experimental technique
has been successfully applied to corrosive gases"' and liqnids.8 to a flowing pure air stream?

and to a propane-air flame for temperamre-profiling.m

Our first experiment7 is concerned with uitrasonic velocity measurements in hot,
} corrosive metal vapors, namely, a saturated Cs vapor in the temperature range of 300°C to
520°C. A flashlamp-pumped dye laser (Candella LFDL-1) is used to cause the transient
| plasma formation in a saturated Cs vapor. The excitation pulse energy, E, is adjustable from
1 mJto 1l uJ. The transient plasma formation causes sudden heating, and an acoustic puise
is produced. We observed that the propagation of this cylindrical acoustic pulse can be

monitored by a weak cw probe lasér (HeNe or Kr) which is parallel to, but displaced from,

the puised excitation beam with a variable displacement R. The acoustic puise arriving at the
probe beam causes transient deflections of the probe, observed by using a knife edge to

block half of the probe beam before detection with a fast photodiode. The observed relation 4

of the range R of the acoustic pulse versus the propagation time t (as measured by the probe "
beam deflections) shows an initial supersonic propagation (which is faster for larger E) and
an ultimate linear sound propagation (at large t). We found that our data provide

verifications of the blast wave trajectory predicted by Vlases and Jones,!! which was

previously verified oaly for acoustic pulses of much larger Mach numbers.

We have recently demonstrated® a new application of the laser-induced acoustic source

“ for measurements in a flowing gas. We show that we can monitor the flow velocity of a pure




particulate-free gas (as well as liquid) to an accuracy of $ cm/sec and simuitaneously
measure the fluid temperature to an accuracy of 0.1°C. Such noncontact measurements were
not possible previously by other known laser-scattering methods (like laser Doppler
velocimetry, coherent anti-Stokes Raman scattering or stimulated Raman-gain spectroscopy).
The experimental arrangement for the simultaneous measurement is shown in Figure 1. An
acoustic pulse in a flowing air stream is produced at position 0 by the dielectric breakdown
produced by a pulsed excitation laser (Nd:YAG laser, ~10 mJ energy and 10 nsec duration).
Three probe HeNe laser beams, 1, 2 and 3 at distances /;, /, and /5 from 0, are used to
monitor the acoustic pulse arrival time t;, t, and t, respectively. The acoustic pulse arrival
at each beam is signified by the transient deflections of the beam. We have shown that the
three probe beams provide enough data to give both the flow velocity and the fluid
temperature simultaneously; furthermore, possible errors due to a blast wave being produced
at the origin can be minimized? by suitably positioning the probe beams and by suitabie data
reduction. This new "noncontact" flowmeter and thermometer is demonstrated!? to be

ideally suitable for flame diagnostics.

QUANTITATIVE PA PROFILE MEASUREMENT;
OPTICAL ULTRASONIC SPECTROSCOPY

Although PA puise generation was known for a long time and theories!2+13 have been
developed, 2 quantitative experimental verification of the dependence of PA pulse profile on
the excitation laser profile (spatial and temporal) has been lacking so far. This is quite
difficult in previous measurements using transducers or microphones due to the limitations of

instrumental ringing and slow risetimes.

In our present experiment, an excitation laser pulse of various durations (10 asec to

1 usec) and various beam diameter (10 um to 1 mm) is used to generate the PA pulse in a




liquid (e.g., ethanoi). The PA pulse profile is detected by a focused cw probe laser beam
(HeNe) that is parallel to but displaced from the excitation beam. The arrival of the PA
pulse at the probe beam causes a transient probe deflection which is proportional to the #
spatial derivative of the PA puise profile. This provides a true measurement of the PA pulse
shape, since the previous instrumental limitations, due to the use of transducers, are

eliminated.

Some results are indicated in Fig. 2. The theoretical PA pulse profile generated by a

Gaussian laser pulsen is indicated as curve (a). The theoretical probe beam deflection signai
is obtained by differentiating the above curve, as given in (b). An observed probe deflection
signal is shown in curve (c). There is reasonably good agreement between curves {b) and
(¢); the difference between them is believed to be due to the excitation laser pulse being not

exactly Gaussian, as assumed in the calculation.

The above totally optical method of PA puise profile monitoring opens up a new

o« -—

application, namely, noncontact optical probing of uitrasonic relaxation and dispersion

measurements, i.e., "optical ultrasonic spectroscopy’ which is not to be confused with
opto-acoustic or photoacoustic spectroscopy. Chemical reactions, nucleation, precipitation
and other physical changes in a system frequently result in changes in the ultrasonic
absorption or dispersion spectra. This causes a well-defined distortion and attenuation of the

PA pulse as it propagates through the sample; the position dependent PA profiles are reliably

detected by our probe deflection technique.
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Table 1

Summary of Various Applications of Photoacoustic (PA) Techniques

Principie of Operation

Examples

1. PA spectroscopy

Absorption spectrum is obtained

by varying the excitation waveleagth

to produce a corresponding variation

in acoustic response. Constant quantum
efficiency for thermal de-excitation

is usually assumed.

Contact acoustic detection includes the
use of gas coupled microphones and
piezoelectric transducers. Noncontact
acoustic detection includes a variety

of probe-beam deflection techniques.

2. PA monitoring
of de-excitation

The quantum efficiency for

thermal de-excitation is varied (¢.g., by
changing concentrations, temperature,
electric fields, €rC.) to make inference
on the quantum efficiency of a
complimentary channel.

Contact acoustic detection has been
generally used; complimentary
channels include luminescence, photo-
chemistry, photelectricity and energy
transfer.

3. PA sensing of
physical properties

The thermal or acoustic waves
generated in the sample are used to
sense subsurface features, material
composition or crystallinity, sound
velocities, flow rates, temperatures,
efc.

Contact acoustic detection has been
geaerally used to sense subsurface
features. Noacontact acoustic
detection for various velocities

and temperature sensing measurements
involve the use of probe beams, and are
called the techniques of "optical
uitrasonics."”

4. PA gsneration
of mechaaical

PA pulses or shock waves (e.g.,
dus to boiling or breakdown) may
generste mechanical motions
efficiently.

Liquid droplet formation and ejection
{from a nozzle have been demoastrated
(see Ref. 14).
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Figure 2. Puised photoacoustic profile excited by a laser pulse of full-width at half maximum
about 2 usec.
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