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ABSTRACT: Noncontact techniques of optical probing of photoacoustic pulses provide new
opportunities for ultrasonic and/or spectroscopic measurements in hostile environments (e.g.,
flames, corrosive fluids, dangerous aerosols, etc.), and also basic understanding of
photoacoustic generation processes. This paper provides examples of such applications in the
new field of "optical ultrisonics" (whereby ultrasonic determinations of flows, temperatures,
etc., are measured optically), including "optical ultrasonic spectroscopy" (whereby ultrasonic
dispersion and relaxations are measured optically).
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INTRODUCrION

Most photoacoustic (PA) experiments have been performed by using some types of

transducers in contact with, or in close proximity to, the sample to detect the acoustic signal.

These are contact PA monitoring techniques. There are situations where noncontact PA

monitoring techniques are necessary or preferable. For example, the sample may be remote

or inaccessible (e.g., in a vacuum chamber). Also, for high temperature or highly reactive

samples, the use of contact transducers or other material probes may result in chemical

modifications, aging, irreproducibilities or other difficulties. Several ways for noncontact

photothermal (PT) detections have been demonstrated in the literature. For example, Nordal

and Kanstadl have developed the technique of "photothermal radiometry" which relies on

the detection of the increased black-body radiation from the sample after optical absorption. 2

A thermal refractive index gradient is also produced which causes "thermal lensing" 3 and

"probe-beam refraction" 4 effects. These PT techniques have been shown to be useful for

spectroscopy 5 and subsurface imaging 6 applications, but not for determining the ultrasonic.

properties of the sample. The PT techniques do not provide such information, because no

ultrasonic propagations are involved.

OPTICAL ULTRASONICS

We have recently developed the noncontact technique of "optical ultrasonics," whereby

only optical beams are used to excite and to probe the sample to perform ultrasonic

measurements. 7 This represents one area of application of photoacoustic (PA) techniques.

and is to be distinguished from the conventional PA spectroscopy technique, as summarized

in Table I. The optical ultrasonic technique has the following advantages compared to

conventional contact ultrasonic methods: (a) measurements can be reliably and easily made

in hostile environments, and (b) nonperturbing measurements can be made with high spatial
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and temporal resolution. This provides an all-optical method for performing ultrasonic

velocity, dispersion or attenuation measurements in the sample. Parameters that can be

derived from such noncontact acoustic measurement technique include temperature and

composition (which affect the stationary acoustic velocity) and flow velocity (which affects

the directional variation of the observed acoustic velocity). This new experimental technique

has been successfully applied to corrosive gases 7 and liquids,8 to a flowing pure air stream9

and to a propane-air flame for temperature-profiling. t0

Our first experiment 7 is concerned with ultrasonic velocity measurements in hot,

corrosive metal vapors, namely, a saturated Cs vapor in the temperature range of 300*C to

520 C. A flashlamp-pumped dye laser (Candella LFDL-l) is used to cause the transient

plasma formation in a saturated Cs vapor. The excitation pulse energy, E, is adjustable from

I mJ to I 1. The transient plasma formation causes sudden heating, and an acoustic pulse

is produced. We observed that the propagation of this cylindrical acoustic pulse can be

monitored by a weak cw probe laser (HeNe or Kr) which is parallel to, but displaced from,

the pulsed excitation beam with a -ariable displacement R. The acoustic pulse arriving at the

probe beam causes transient deflections of the probe, observed by using a knife edge to

block half of the probe beam before detection with a fast photodiode. The observed relation

of the range R of the acoustic pulse versus the propagation time t (as measured by the probe

beam deflections) shows an initial supersonic propagation (which is faster for larger E) and

an ultimate linear sound propagation (at large t). We found that our data provide

verifications of the blast wave trajectory predicted by Vlases and Jones,1 1 which was

previously verified only for acoustic pulses of much larger Mach numbers.
-1

We have recently demonstrated 9 a new application of the laser-induced acoustic source

for measuremenis in a flowing gas. We show that we can monitor the flow velocity of a pure

. .. .
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particulate-free gas (as well as liquid) to an accuracy of 5 cm/sec and simultaneously

measure the fluid temperature to an accuracy of O.1VC. Such noncontact measurements were

not possible previously by other known laser-scattering methods (like laser Doppler

velocimetry, coherent anti-Stokes Raman scattering or stimulated Raman-gain spectroscopy).

The experimental arrangement for the simultaneous measurement is shown in Figure 1. An

acoustic pulse in a flowing air stream is produced at position 0 by the dielectric breakdown

produced by a pulsed excitation laser (Nd:YAG laser, -10 mJ energy and 10 nsec duration).

Three probe HeNe laser beams, 1, 2 and 3 at distances 11, 12 and e3 from 0, are used to

monitor the acoustic pulse arrival time tI, t2 and t3, respectively. The acoustic pulse arrival

at each beam is signified by the transient deflections of the beam. We have shown that the

three probe beams provide enough data to give both the flow velocity and the fluid

temperature simultaneously, furthermore, possible errors due to a blast wave being produced

at the origin can be minimized 9 by suitably positioning the probe beams and by suitable data

reduction. This new "noncontact" flowmeter and thermometer is demonstrated 10 to be

ideally suitable for flame diagnostics.

QUANTITATIVE PA PROFILE MEASUREMENT; _
OPTICAL ULTRASONIC SPECTROSCOPY

Although PA pulse generation was known for a long time and theories12 '13 have been

developed. a quantitative experimental verification of the dependence of PA pulse profile on

the excitation laser profile (spatial and temporal) has been lacking so far. This is quite

difficult in previous measurements using transducers or microphones due to the limitations of

instrumental ringing and slow risetimes.

In our present experiment, an excitation laser pulse of various durations (10 nsec to

1 Asec) and various beam diameter (10 si to I rm) is used to generate the PA pulse in a

_ _.- - - - - - 4 tw
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liquid (e.g., ethanol). The PA pulse profile is detected by a focused cw probe laser beam

(HeNe) that is parallel to but displaced from the excitation beam. The arrival of the PA

pulse at the probe beam causes a transient probe deflection which is proportional to the

spatial derivative of the PA pulse profile. This provides a true measurement of the PA pulse

shape, since the previous instrumental limitations, due to the use of transducers, are

eliminated.

Some results are indicated in Fig. 2. The theoretical PA pulse profile generated by a

Gaussian laser pulse 13 is indicated as curve (a). The theoretical probe beam deflection signal

is obtained by differentiating the above curve, as given in (b). An observed probe deflection

signal is shown in curve (c). There is reasonably good agreement between curves (b) and

(c); the difference between them is believed to be due to the excitation laser pulse being not

exactly Gaussian, as assumed in the calculation.

The above totally optical method of PA pulse profile monitoring opens up a new

application, namely, noncontact optical probing of ultrasonic relaxation and dispersion

measurements, i.e., "optical ultrasonic spectroscopy" which is not to be confused with

opto-acoustic or photoacoustic spectroscopy. Chemical reactions, nucleation, precipitation

and other physical changes in a system frequently result in changes in the ultrasonic

absorption or dispersion spectra. This causes a well-defined distortion and attenuation of the

PA pulse as it propagates through the sample; the position dependent PA profiles are reliably

detected by our probe deflection technique.



TabmeI

Samuma of Varous Appklcatloms of Photoecoustic (PA) Techaiques

PboTocousc Principle of Operation Examples
Techniques _

1. PA spectroscopy Absorption spectrum is obtained Contact acoustic detection includes the

by varying the excitation wavelength use of gas coupled microphones and

to produce a corresponding variation piezoelectric transducers. Noncontact

in acoustic response. Constant quantum acoustic detection includes a variety

efficiency for thermal do-excitation of probe-beam deflection techniques.

is usually assumed.

2. PA monitoring The quantum efficiency for Contact acoustic detection has been

of do-excitation thermal de-excitation is varied (e.g., by generally used; complimentary

changing concentrations, temperature, channels include luminescence, photo-

electric fields, etc.) to make inference chemistry. photelectricity and energy

on the quantum efficiency of a transfer.

complimentary channel

3. PA sensing of The thermal or acoustic waves Contact acoustic detection has been

physical properties generated in the sample are used to generally used to sense subsurface

sense subsurface features, material features. Noncontact acoustic

composition or crystallinity, sound detection for various velocities

velocities, flow rates, temperatures, and temperature sensing- measurements

etc. involve the use of probe beams, and are

called the techniques of "optical

ultrasonics."

4. PA generation PA palses or shock waves (e.g., Liquid droplet formation and ejection

of mechanical due to boiling or breakdown) may from a nozzle have been demonstrated

modem generate mechanical motions (see Ref. 14).

efficiently.

-I
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