
AD-RI34 i9 ON SOOE ISSUES CONCERNING OPTIMIZRTION RND DECISION i/i
TREES(U) RRIZONA STRTE UNIV TEMPE GROUP FOR COOPUTER
STUDIES OF STRRTE. N V FINDLER ET RL 1983 GCSS--R-14

UNCLRSSIFIED RFOSR-TR-83-0788 RFOSR-82-8340 F/G 12/1 , NLEIIIIIIIIIIIl



I-L

I:4

11111 LO12.0

11111.!2 .4J *22
11111 La IEN

173

I.-

L I_
.. . i- ;-.:._ - .; " . -" _ . -'. .; ; i ;',.:'.; --;: .;:._ ,...; :.., .. : -1,.,1, ...- , , ... II-. . .. . ._



- - o-R' . -~b 8 3 -0 -- --0

Department of
iisvComputer Science

IW ~ELECT

oCr 27 1183

TEMPE, ARIZONA 85287

CL. ~c~r ~''~



ON SOME ISSUES CONCERNING
OPTIMIZATION AND DECISION TREES

Nicholas V. Findler, Michael S. Belofsky,
and Timothy W. Bickmore

k\4roup for Computer Studies of Strategies
Computer Science Department
Arizona State University

Tempe, AZ 85287; USA

DTICSOCT 27 198

Group for Computer Studies of Strategies
Technical Report Number: 14

Departmental Technical Report Number: TR-83-003

NOTICE OF lrkf S -,',AL TO DT 1"
Iwbig tei re;,o!t ha3 beenl revien '

opprovsd for pu"I Le else U-W #-R~
pistritution ,t uniim1ited

MA?191W 3. - iC WJV3t

DISTRIBUTION STATEMENTJ A ~ r ehbOli 1trtOl1il

Approved for public reIewqj
Distributio Unlimited



•IINT.AqqTFT~n
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
- HU RBEFORE COMPLETING FORM

1 REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUJMBE.4

-.. TITLE (and Subtlla) S. TYPE OF REPORT 6 PERIOD COVERED

"ON SOME ISSUES CONCERNING OPTIMIZATION INERI
AND DECISION TREES" S PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(&)

Nicholas V. Findler

Michael S. Belofsky
T.W. Bickmore AFOSR-82-0340

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Science Department AREA & WORK UNIT NUMBERS

Arizona State University 61102F 2304/A2

Tempe, AZ 85287

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM 1983
Bolling) AFB, Washington, D.C. 20332 13. NUMBER OFPAGES

15
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of thia report)

UNCLASSIFIED
ISo. DECLASSIFICATIONDOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse oideIf necessary and Identify by block number)

20. ABSTRACT (Continue on revere side t neceeeary and identify by block number)

We describe the context and the constituent modules of a large-scale program-

ing system, the Quasi-Optimizer. Its objectives are (a) to observe and

measure adversaries' behavior in a competitive environment, to infer their

strategies and to construct a computer model, a descriptive theory of each;

(b) to identify strategy components, evaluate their effectiveness and to

select the most satisfactory ones from a set of descriptive theories; (c)

to combine these components in a quasi-optimum strategy that represents

ADD , 17 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

.•.., ..o-



, UNCLAS SIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wmen Date Ent.?.d)

a normative theory in the statistical sense.

We also discuss certain properties of decision !trees whiCh-are the primaryrepresentational structures of strategies in the computer. The verification
of these properties, such as identity, equivalence and similarity between
two decision subtrees, enable us to eliminate redudancies in the decision
trees.

ceession Thr

AvaiIlM~ 11t7 Codes
v- '.! %:ijor

.o4 Dia

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE(WPhen Date Entoped)



ON SOME ISSUES CONCERNING

OPTIMIZATION AND DECISION TREES

Nicholas V. Findler, Michael S. Belofsky,

and Timothy W. Bickmore

Group for Computer Studies of Strategies

Computer Science Department

Arizona State University

Tempe, AZ 85287; USA

We describe the context and the constituent modules of a

large-scale programming system, the Quasi-Optimizer. Its

objectives are (a) to observe and measure adversaries' behavior

in a competitive environment, to infer their strategies and to

construct a computer model, a of each; (b) to

identify strategy components, evaluate their effectiveness and to

* - select the most satisfactory ones from a set of descriptive

.- - theories; (c) to combine these components in a quasi-optimum

strategy that represents a nprmativ_ t in the statistical

sense.

-Wte__ao -- siues-certain properties of decision trees which

are the primary representational structures of strategies in the

computer. The verification of these properties, such as

identity, equivalence and similarity between two decision

subtrees, enable us to eliminate redundancies in the decision
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1. INTRODUCTION

First, we give a brief description of a long-term project,

the Ouasi-Optimizer (QO) system, in which decision trees (DTs)

are used as the primary representational structure.

The QO has three major objectives (Findler and van Leeuwen,

1979; Findler, 1983):

(a) to observe and measure adversaries' behavior in a

competitive environment, to infer their strategies and to

construct a computer model, a descritive to, of each;

(b) to identify strategy components, evaluate their

effectiveness and to select the most satisfactory ones from a set

of descriptive theories;

(c) to combine these components in a quasi-optimum strategy

. that represents a normatv& thor in the statistical sense.

Let us define some terminology. A sategy is a

decision-making mechanism that observes and evaluates its

environment, and prescribes in response to it an action. This

- action, at the simplest level, does not change for the same

environment over time, is a single and one-step response.

We have extended this concept in several directions.

L arnins Ltagles no longer are static. They improve the

technique of evaluating the environment as well as the selection

of the action, on the basis of experience. The single (that is,

one-dimensional) action can be replaced by a set 2L (that is,

4 multi-dimensional) actions. Instead of a one-step (momentary)

action, we may have a ji.gjg= 2f actions that are unordered,

• * * d q A - • o . o ... . . .. . . .
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weakly or strongly ordered over time. Finally, the decision

variables defining the environment may also include descriptors

that characterize relevant aspects of the his 2f the

environment.

All these extensions make our studies more realistic, taking

into account learning strategies, which can issue also

multi-dimensional responses to complex environments. The actions

may be the results of long-range planning processes and are based

on both short-term and long-term considerations (tactical and

strategic objectives, respectively).

As described later, we represent static strategies

prescribing simple actions in terms of DTs. We note here only

one important representational extension concerning learning

strategies. We have developed a program that "freezes' the

learning component of such a strategy and takes a 8snapshot" of

*it in the form of a DT (Findler and Martins, 1981). Another

*module (Findler, Mazur and McCall, 1983) receives such a sequence

of snapshots and, if it is statistically justified, computes the

* asymptotic form to which the sequence converges. We also note

that the automatic generation of the computer model, the

-. snapshot, can be done by the system either in being a passive

observer or "under laboratory conditions," according to some

experimental design. The experiments in the latter case are

. specified in one of three different ways:

.(i) in an exhaustive manner when every level of a decision

*variable is combined with every level of the other decision

* . . . .* .. . . .



- 4 -

variables;

(ii) by a binary chopping technique while relying on the

. assumption of a monotonically changing response surface;

(iii) according to a dynamically evolving design in which

the levels selected for the decision variables, and the length of

the whole experimentation, depend on the experimental results

obtained up to that point (Findler, 1982; Findler and Cromp,

1983). This module minimizes the total number of experiments for

a given level of precision.

2. QINOI SQETIV ENVIRONMENTS AN2 TME OUASI-OPTIMIZER MODULES

Let us consider an environment in which several

organizations compete to achieve some identical goal. (We may

assume, for the sake of generality, that a gI vector is

specified whose components need not be orthogonal in real life

situations. In business management, for example, the relative

share of the market and the volume of sales may be non-orthogonal

goal dimensions.) Each organization perceives the environment by

observing and measuring certain variables (numeric or symbolic)

jt considers relevant. Part of the strategy of the organizations

aims at intarpratjn the measurements, determining a coura 2L

action leading to goal achievement and preventing the adversaries

from achieving it. At any moment, the "rules' of competition,

and the past and current actions of the competitors determine the

next state of the environment.

The picture of the environment as perceived by an adversary
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is unclear because some information may be unavailable, missing

(risky or uncrain -- according to whether or not the relevant a

priori probability distributions are known, respectively) or

obscured by noise. Noise may be caused by latent environmental

factors or deliberate obfuscation by the competitors. There may

also be conflicts and biases within an organization (e.g.,

rivalry between different divisions or personalities), which can

perturb its measurements and distort its image of the

environment. If a competitor's decisions based on such

incomplete or faulty information are less sound than those of the

others, resources will be wasted and goal attainment will be

further removed.

If a new organization wants to enter such a confrontation,

it must develop a strategy for itself. Assume that this strategy

is to incorporate the best components of the extant adversaries'

strategies. The process must start with a period of Rassijv or

active obevain, i.e., before or after having entered the

confrontation. In this phase, the new organization, therefore,

has to construct first a model (a descriptive the.r) of every

other participant. To select the most satisfactory components of

the (model) strategies, it would assign to each component some

measure of quality, i.e., an outcome-dependent c assignment

must be made (Findler and McCall, 1983). (This assumes that the

models are of uniform structure such as decision trees or

production systems. Furthermore, credit must be assigned not on

the basis of immediate outcome but often in relying on long-term

L.1
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considerations in view of planning strategies.)

Both short-term and long-term objectives can be discerned in

the behavior of the adversaries. Short-term objectives comprise

local and momentary goals, such as to mislead temporarily the

others or to eliminate one of their resources, but short-term

* objectives naturally contribute to the long-term ones. The

*long-term objectives are achieved through the overall stragy

which is an aggregate of tactici directed toward some short-term

objective. A strategy is also more than that. It includes the

means of evaluating the adversaries' situation and actions,

scheduling of ones own tactics, and making use of feedback from

the environment in modifying the rules of tactics both in terms

of their contents and their inter-relations. In short, strategy

gives tactics its mission and seeks to reap it results.

The strategy obtainable from the best components of the

model strategies is a normative the which is potentially the

best of all available ones, on the basis of the information

-accessible by the new organization. This normative strategy is

in fact only uasi-optimum for four reasons. First, the

resulting strategy is optimum only against the original set of

strategies considered. Another set may well employ controllers

and indicators for decision-making that are superior to any of

the Otraining" set. Second, the strategy is normative only in

the statistical sense. Fluctuations in the adversary strategies,

whether accidental or deliberate, impair the performance of the

quasi-optimum strategy. Third, the adversary strategies may

S.
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change over time and some aspects of their dynamic behavior may

necessitate a change in the quasi-optimum strategy. Finally, the
/generation of both the descriptive theories (models) and of the

normative theory (the quasi-optimum strategy) is based on

approximate and fallible measurements.

This is the general context and the underlying motivation

for the QO system. The following is a brief description of the

different modules it comprises:

(i) The MU assumes a monotonic strategy response surface

and uses either exhaustive search or binary chopping to contruct

a descriptive theory of static (non-learning) strategies. The

program can make an inductive discovery in identifying

correlations, if any, between the stochastic components of the

strategy response and the subranges of the decision variables.

The program can also be rendered a passive observer of the

conflict situations -- in addition to operating under *laboratory

conditions" under which it specifies the environment the strategy

is to respond to. It can then experimentally discover the

probability distribution of occurrence of the different regions

of the domain of competition.

(ii) The D"2 extrapolates a finite sequence of decision

trees, each representing the same learning strategy at different

stages of development, and computes their asymptotic form. The

latter is then used in constructing the normative theory.

(ia) The 00- minimizes the total number of experiments

00- has to perform. It no longer assumes that the strategy

. •
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response surface is monotonic and also deals with

.. multi-dimensional responses. Q0- starts with a balanced

*l incomplete block design for experiments and computes dynamically

the specifications for each subsequent experiment. In other

words, the levels of the decision variables in any single

* experiment and the length of the sequence of experiments depend

on the responses obtained in previous experiments.

(iv) The Q-4 performs the credit assignment. That is, it

identifies the components of a strategy and assigns to each a

quality measure of the 'outcomes'. An outcome need not be only

the immediate result of a sequence of actions prescribed by the

*i strategy but can also invoke long-range consequences of planned

I  actions. An important extension of this subproject enables a

meta-strategy to channel the domain of confrontation to such

- regions in which a given strategy is most proficient.

(v) The 00-5 constructs a 'Super Strategy' by combining

- strategy components associated with outcomes of a quality above a

threshold value.

(vi) The Q-6 generates a Quasi-Optimum strategy from the

" Super Strategy by eliminating inconsistencies and redundancies

* from the latter. It also tests and verifies the OO strategy for

completeness.

• 3. QN DISION TREES ADCERTAIN PROPEES QE THEIRS

A recent survey (Moret, 1982) has described in detail a

-' particular type of DTs which are suitable for problems in

S* * *..
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switching theory, taxonomy and pattern recognition. Our

investigations have used a different structure, as shown in the

example of Fig. 1. (See last page.)

Each level of the DT is associated with one of the decision

variables, I , !2 , ., The values of the latter may be

numerically-oriented, rank numbers, symbolic (attributes, ordered

or unordered categories) or structured data (hierarchies,

relationships or priorities). The total range of each variable

is mapped onto a normalized scale of (0, 128). The out-degree of

every node equals the number of distinct subranges of the

variable associated with the level at hand. The leaves attached

to the branches at the last level, M , ... , a, represent

actions. Thus a particular combination of values of every

decision variable characterizes the environment -- as perceived

by the strategy the DT represents -- and defines a pathway from

the root down to an action.

One can easily see that the representation of strategies by

DTs is reasonably complete (with the extensions of the concept

described earlier), including the uncertainties inherent in the

- identification of the environment and in the relation between

given environments and given actions prescribed by the strategy.

Next, we discuss certain relations between two DTs or

decision subtrees (DSTs): id.ntity,1 giva.L ± n and imilarity.

. Algorithms to verify or disprove these properties are needed, for

" example, in the M-1 module, mentioned before, that eliminates

redundancies in DTs. There are four dimensions along which

* - * . * * * t & . . a h , . . - - -- - . * -
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testing must be done:

i) The ordered set of decision variables that appear in two

DTs or DSTs;

(ii) The out-degrees of the corresponding nodes;

* (iii) The boundary points of the corresponding subranges of

decision variable values;

(iv) The corresponding actions prescribed by the strategy.

We call two DSTs idenial if the entities are the same with

- each corresponding member in the above four categories.

Two DSTs are ngwalent if there is a permutation on the

sequence of decision variables of the first DST that transforms

- it to another DST identical with the seco d DST. (Actually, the

-" permutation is performed in our program only if the DSTs are

1.k ta to be equivalent -- as suggested by some inexpensive

heuristic calculations.)

We note that one could argue that two DSTs are equivalent

-. also in the case in which one or more functional mappings of

certain decision variables of the first DST can transform their

subranges to those of the decision variables at corresponding

levels of the second DST. We contend, however, that any

" non-linear transformation changes the 'sensitivity' of the

affected decision variables. In other words, the minimum

-discernible difference between adjacent values would change.

* This means that, in certain borderline cases, the strategy

represented would no longer be the same.

Finally, we must provide a parametrizable metric to assess



the d e.£ of smilarity between two DSTs. Let it suffice to say

4here that the user specifies for the program relative levels of

dissimilarity tolerated in each of the four categories noted

before. The aim is to reject the assumption of similarity, if

such is the case, with as little calculation as possible.

Therefore, the tests are carried out in an order of increasing

complexity. Also, heuristic rules can be employed that recommend

for execution the most likely test to fail.

4. FINAL COMMENTS MRif CONLIONSI

We have described a large-scale programming system, the 0, that

has several theoretical and practical aspects of interest. We

are in the process of integrating its different modules in order

to use the whole system for several different appligations.

We have also discussed certain properties of decision trees, the

primary representational structures of competitive strategies in

.L the computer.
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