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1. Introduction
Let us consider two well-known stationary processes with memory [uo, X, R} and

1 Y, R]; where uo and ul the corresponding measures, X and Y the respective names
of the processes, and R the real line on which both processes take values. Let both
processes be discrete-time and let wi; j > 1 denote an observed data sequence
Qi,...,wa. Let the observations start at time zero, and let it be known that the
initially active process is [uo, X, R]. Let it be possible that at some point in
time, t, the process [uo, X, R] may become inactive, and that the process [ul, Y, R}
may be active, instead, and remain so. Let the two processes be mutually independent,
and let the time t above be allowed to take any nonnegative integer values 0,1,...,.}
that is, the possibility that the process [ul, Y, R] becomes active at time zero is
1nciu&ed. We cansider.the problem of formulating a test, that detects the [uo, X, R]
to [ul, Y, R] change (if and whenever such change may occur), accurately, and fast.

The problem of detecting the possible change from a given process to another
given process, has numerous applications, ranging from industrial quality control, to
edge detection in images, to the diagnosis of faults in the elements of computer-
communication networks. The case where both the processes [uo, X, R] and [ul, Y, R]
are mﬁmorylesé has been fully analyzed. Zacks and Kander [13] proposed an ad hoc
procedure where fixed size n data blocks are collected, and based on those data a
decision as to change is attempted. However, Page [7], [8] was the first to propose
a sequential; and one-step memory algorithm, for this case. Lorden [6] proved that
Page's algorithm is also asymptotically optimal, in a sense that will be explained
later. In [9], [10] Page's algorithm has been successfully applied in the effective
identification of faults in the links of Computer-Communication networks.

Although the problem of detecting a change in the active process has been fully

analyzed in the memoryless case, no consideration has been given to the case where

.....................
------
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the two processes [uo, X, R] and [ul, Y, R] are stationary with memory. In this
paper, we undertake this task. We will first present insight to our formalization.
Then, we will propose a sequential test. Finally, we.will prove the asymptotic

optimality of our test, in a sense that will be expiained.

3. Preliminaries

‘Let R be the real line, and let B be the Borel o-field genetét:ed by open intervals
on R. Then, (R, B) is a measurable space. Let Rn and Bn denote n-tuples of R and B
respectively. 'Let un be a probability measure defined on (Rn, Bn). Then, un has a
unique extension uw on (Rw, Bm). Let u: and u: be two stationary and ergodic proba-
bility measures defined on (Rw, B“). Let the Kullback-Leibler information Il}luo(n)
exist for all n; that is, let (1) below be true. Then, u; is aboslutely continuous

with respect to uz, for all n.

n

dyu

A 1 n .

qu(n)=/lndn-dul<°°;¥n. (1)
n

1o X o

Given probability measures u: and u: as above, let it be known that the measure

u: is initially active. Let it be possible that at some time instant m: m > 0, the

-2

measure u: may become inactive, and the measure |, may become active instead. Thus,

1
given an observation sequence w:; n > 0, it is possible that an initial portion w:

of the sequence has been generated by the measure u:, and the remaining portion w:'_l

has been generated by the measure uclo; where -1 < m € n; if m = -1, the total sequence
w: has been generated by the measure u:; if m = n, the total sequence has been
generated by the measure u:. Given some observation sequence, our objective is to

(]

decide if the u: to Y, change has occurred. Since the very occurence, and even more

1
the time, of such a change is uncertain, any decision test that we may develop should
be clearly sequential. To gain insight into the problem, however, we will initially

asgume that a fixed length n+l observation sequence w:: is available; where n: 0<n<w,

Ca e e e e » v . Y PN Y at
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Let n be a nonnegative finite integer. Let w:: be an observation sequence, and
let the measures u:, u: be mutually independent. Given w:, we want to make a decision,
regarding the possibilities:

m . ©
"o generated by ].lo
s Forallm: -1 <m<n (2)
n ©
Vio+l generated by 1]

For fixed n, the formalization (2) is a hypothesis testing problem, with n+2
hypotheseé. Let us denote by Hm the hypothesis that the u: to u: change occurred
just after the mth datum; where ll_l denotes the hypothesis that the total sequence
': has been generated by the measure 'u:, and where Hn denotes the hypothesis that the
total sequence w: has been generated by the measure uw. Let both the measures u:
and )II have density functions, and let fo (Wil"lj() and fl(wilvi) 3 3 > k denote
conditional density functions, induced by the measures u: and u: respectively.

= Then, assuming equally probable hypotheses, the optimal Bayesian formalization
regults i.n the follaw:lng- test:

Decide in favor of H'l if:

iugf_l_(’lh_-_ (Ezo —é%:—};‘?—i))

fomtl fo (" l"i 1) 'm““ 1%k+1

3 where , 3

£ (%]v5

f1("m1“’:+1)

>

fp (wo)

>

£) Gipyy)

n

£ ("1| wn+1

">

Log

-----------------------------
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Given the density functions fl and fo’ let us define the following two

. statistics,

n i-1
,on A fl("il"kﬂ)
'.l'n(wo) = max ( Log —-—rﬁ
Sk e £y (wy I, )
n i-1
£ (w, |w )
T (wn) é max Log _].‘.—110_
no =1<k<n £f (w Iwi-l)

— = Vi=mk+l o il o

Given an infinite data sequence w, the natural sequential extension of the test

(4)

;
)

(5)

in (3) includes the statistic Tl'l(w:) in (4), and a threshold Yy, and it consists of

a stopping variable N'(w), defined as follows,

N} (w) & nffa : 2D > 1)

“‘

u: to u; change has occurred.

(6)

Given w, the sequential test stops then at N;,(w), and it is decided that the

" From the definitions of the statistics Tt;(wz) and Tn(w:) in (4) amnd (5), it is

clear that an appropriate 8§ threshold exists, such that the stopping variable,

Ny (W) & tntn - T (). > 8}

)

maps the stopping variable N,;(w) in (6). The sequential test determined by the

stopping variable Nd(w) in (7) has recursive properties that the test determined

by ll,;(w) does not possess. Indeed, it is easily concluded from (5) that the

following, recursion holds,

n+l n n+l
Tn+1(w° ) = max (0, 'l‘n(wo) +gn(w°
3 where
: £ (v, v
+ +
. | sn(w: 1) é Log 1  nt+l :
fo(v atl "o)

)

(8)
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It is clear from expressions (8) that the test determined by the stopping rule
NG(") is one-sided. For arbitrary stationary processes u:. u:. the recursions in
(8) require that the whole data sequence w:: be kept in memory. If the processes
u:, u: are l-order Markov, only an £-size memory is required. If the processes u:
and u'; are memoryless, no memory is needed. In the latter case, the two stopping
variables in (6) and (7) are identical (for vy = &), and either one is as in [7], [8],
and [6]. Lorden [6] proved that then, the sequential test determined by the stopping

variable NG(H) in (7) is asymptotically optimal; that is, for § + ®, we then have,

Euo{NG(w)} >8 | 9
. . 1 |
Eul{Né(")} |Log 8] I (10)
; where
£,.M)
A 1 -
L Eulflog £ (w)} < (11)

and any stopping rule N(§) that satisfies (9), is such that EIJ {n)}) > Eu {Ns(w)}.
: 1 1

Qualitative speaking, Lorden's result says that when the two stationmary processes

_ u: and ul are also memoryless, then, the stopping rule NG(W) in (7) gives for § + =

the minimum possible expected time from the occurence of the u: to u:

that this change occurred) to its detection, among all the possible stopping rules

change (given

that satigfy the false alarm bound in (9).

In this paper, we consider the case where the two processes u: and u‘; are
stationary with memory, and ergodic. We then propose the test determined by the
stopping variable Ns(w) in (7). We will prove asymptotic optimality of the tes.t in

a precise fashion, for processes possessing certain properties. We will derive
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\'boundo on the performance induced by one-sided tests, and we will show that those

bounds are attained by the stopping rule Na(w) in (7), 1f the above properties are

satisfied.

RS 3. Performance Bounds for One-Sided Tests
In this section, we will establish performance bounds on one-sided sequential

tests. To do that, we first need a theorem parallel to theorem 2 in [6].
'l‘hanm Theorem 1
- , | Let |.l and ul be two stationary and ergodic processes. Let w A- LA TR be

an infinite data sequence, and let N be an extended stopping variable with respect

to w, such that,

P (N<w») <a . (12)
M, -

- ; where

a:0<ax<1

For k = 1,2,..., let Nk denote the stopping variable obtained by applying N

- . to Vie? Viegpeceer and define,
;#ﬁ-.' , | " N = min {n + k-1lk =1, 2, ...} (13)

Then, N is an extended stopping variable, and,

E, {*) > ot , (14)
[+}

+
E {N* } Eu {N*} < Ell {N}; for amy stationary and (15)
ll1 1 1 ergodic ul
_ Proof

The fact that N* 1s an extended stor~ ng .arlable, and expression (15) are

[ 4

proven exactly as in theorem 2, reference [6]}. Indeed, since the events

n-i+ll}; < < n are termine ¥ the sequence w,, and the event n
¥, <o-im1l; 11 < de d by th T, and th {x* <}

PN SA\‘,\;,-".\'.'--.‘_\' N N IR e
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is the union of the above, N* is an extended stopping variable. Also, (15) holds
since .

+ m-1 :
EulfN* lw} < Eul{Nm|"1 } = E, )= E, {5

1 1

To prove expression (14), define as in (6],

1;Nk<°°
Ekﬂ s k>1

O;Nk=°°

- Since u: is ergodic, we have,

n
-1 :
fim n =E {£}=P (N < «) <a a.e.(P ) (16)
S TR .

Yo () °

be such tb

1f E {N'} = », (14) is trivial. Let E, {8*} <, let N 4 0, and let N:; i>1

N*<N*

g <Ny 3 ¥4

If N;—l = n, apply N to Voar® Voardr® o000 for all r's,

and define N; as the first time that stopping occurs.

Then, NI - N*, and the variables N: - N::—l are identically distributed, for

different m values, no less than two. Since gN*+r = 1 for some r, that causes

stopping at N:+1, we have,

+ ... + *x >1
EN;+1 5um+1-

and

£1+o.o "'ENl*nz-m;mzo




Thus,

§1+...+§N:l .
* >2—%sim2>0 an
N N
m m

Due to (16), the left hand part of (17) is bounded from above by a, as m + =,

The right hand part of (17) converges to E;]'{N*}, as m > @, by the ergodic theorem.
o

We point oyt here, that if the extended stopbing variable N is determined by
-1
the statistic ), gn(w:); where gn(_w::) is given by (8), and the threshold is a ,
n>0 ‘
then expression (12) in theorem 2 is satisfied [11]. Thus, theorem 1 applies to the

stopping variable N_.(w) in (7), if we put § =a—l. The stopping variable N_(w) is
§ ()

exactly N* in (13), for N determined by the statistic Egn (w:). Thus, we have,
n>C

Euo{NG W)} >34 (18)

E {INW} <E {8} 19
U s} ‘

for

n
N = inf{n : ZgiCWb > 6} (20)

i=0

Due to theorem 1, and the conditions (18), (19), and (20), satisfied by the
- stopping variable N& (w) in (7), we will now focus our ultimate objective on showing

that for § + ®, and under certain conditions » Eu {NG (w)} is the infimum among all
1
the expected values Eu {N*}; where N* is any extended stopping variable that satisfies

the condition E {N*} > 8. Thus, we will show that the stopping variable Ng(w) is
°

then optimal in the above sense. Our approach will be as follows. We will first

find an upper bound on En {Nﬁ(w)}, for § + ©», Then we will show that this upper
1
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bound can not be smaller asymptotically (§ -+ «) than Eu {N*}; for any extended

1
stopping variable satisfying Eu {N*} > §, and under the appropriate assumptions.
°
Let us define,
n-1
_ £.(w_ )
L 4 n 1 Log _I_QT. (21)
n £ ™5
oo
L, & tm L ' (22)
10 50 n
vy dr @ <w (23)
n ¥, o

Let us now impose the following conditioms,

exists (I,, < ®) and is equal to E {Ilo}, a.e. (B, )

1
10 o1 1

For v € (O, Ilo), we have,

(a)
Lim np = 0

no
v <o
n

The conditions (A) are relatively mild, and they are satisfied by most ergodic

processes. If those conditions are satisfied, then we have (Berk [1]):

tin £ {n) ~ ool

a0 M Eul{llo}
or (24)
Lim E_{N} "ilzLo%fs‘lT‘ for § = a ¥
] W, 10

;s where N the extended stopping wvariable in (20).
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We note that conditions (24) are also satisfied if instead of conditions (4),
the martingale conditions of Chow and Robbins [2], or the strong mixing conditions
of Lai [4) hold. From (19) and (24), we thus conclude that, for § + w,.and if the
conditions (A) hold, the expected value Eul{NG(w)} does not exceed |Log §| - E;i{llo}'
Therefore, [Log 8] * E;:{Ilo} is then an upper bound on Eu {Ns(w)}.

* 1

*
Let C6 be the class of all the extended stopping variables N , satisfying

E, {N*} > §. Let us define,
.0

n*@é) & ine B (V%) (25)
N*ecg o1

Our final objective will be to prove that for processes u: and ﬁ: that satisfy

conditions (A), we have,

Lim n*(8) > |Log &) - E-N1 ) (26)
o W 10

We will undertake this task in the next section. In the remaining of this

section, we will present a useful theorem and a lemma.

Theorem 2 (Wald [i111)

Let N be the sample size of a test uo againsf ul, with error probabilities

and B respectively. Let u, and W be stationary, let the conditions (A) hold; and

let 110 be as in (22). Then,
N-1
f.(w ) _
Log Lo > (1-B) Log 1-B + B Log "'_‘E > (1-8) |2og o] ~ Log 2 (27)
U N-1 a 1-o
1 fo(w )
o
Proof

. The first part of the above double inequality is in Wald [11].

— — - * v
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‘,

rfj ’ The lower bound in the above inequality is due to B Zog(l-a)-l being nonnegative,

ey

‘f and due to the fact that the minimum value of B Log B + (1-B) Log (1-B) is equal to

~Log 2,

o]
d.%,
I

Lemma 1

Let {ai} and {b:l} be two sequences, such that,
. (-]
>0 ;¥1, E a, = 1

1

b, >20; %41, 0

LG

KL
X
[

[¥y

Yt e ;f’q

&

I

£

>b i

120443 ¥

- Then,

e
",
™

s

© ®

‘ ‘ : Z 1ag®y E(Z 1 ai)(f: 3y bi) o (28)

i=1 1 1

]

Proof

Define,

[- -]
4 5"12:‘1"’1*‘1 € "a; by L0~
1 .

X . : % o 00
o2 - Z - Z
i > Zai b1 cl ai + cl al al b1 < cl ai
. 2

2 =~

S ¥

T |2

B R N L N o € ¥ %
A PR X
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Similarly,
[- -] [. -] X
E:aibis_cj E aif_clz a; 3322
. h | h
Now,
(- -] o0 o (-]
Zi“i 1 ZE "15252"1'32“1
1 k=1 k k=1 k 1

and the proof is complete.

4. The Infimum of the Stopping Time

In this section, we will prove that for stationary processes u: and ﬁ;, that
satisfy the conditions (A), the bound in (26) holds. We will do that via a theorem.
In the proof of the theorem, theorem 2 and lemma 1 will be used. Note that if the
limit I10 in (22) exists, and the processes ﬁ; and ﬁ: are also ergodic, then the

limit I, is the mismatch entropy of ﬁb

0
10 1 with respect to uo.

Theorem 3
Let C; be the class of all extended stopping variables N*, that satisfy the

condition ED {n*} >8. Letn (6) be as in (25), let the conditions (A) be satisfied,

‘and let 110 be as in (22). Then,
fa o) - B

Proof

It suffices to show that for every € in (0,1), there exists c(€) < », guch

that for any stopping variable N in Cg, we have,

~ oy ; P Ae e e e e e
TR R P RN N N
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Bululo} . Eul{N} > (1-¢) Log Euo{N} - c(g) (29)

Step 1

" Given €, let us define stopping variables Ti; i > 0, such that,

g Ty <=3 ¥1

'1'1+1 : the smallest n (or «® if such an n does
not ex:lst) such that T4 <n and

f( )<ef(v )

Yy +1 '1'+1

From Wald's [11] argument, we have that P (T, < ®) = P (decide H ) = B.
1 Hy o

Then € is the lowest threshold for deciding in favor of Ho. which in Wald's test

is larger than B(l-a)-l > B. Thus, Pu ('I'l < ®) < €. Let us define,

& ok

D wy : T =k} ; k<N (30)

rk

Let us denote by Pk +1 the probability induced by the measure u: and applied
. to data sequences Vi1’ k+2’ ees o« Then, provided that Pl(Drk) > 0, we have
due to the arguments above: Pk+l(Tr < mlDrk) < €. On the set D, in (30), and
for given N in Cg, g'iven Tr’ we define a sequential test based on the sequence

Vi1’ k+2’ «oey 88 follows:

Stop at min (N, T ) -
P s E N ST

P s IEN>T
r

The number of observations taken for the above test is min (N, Tr) -k,
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vhose conditional expectation P, _(.|D,) is at most E {N}. To this point, our
k+1 rk My

-derivations are basically as in the proof of theorem 3 in Lorden [6], with the

el

appropriate sodifications.

Step 2

_ Now, Wald' inequality (27) in theorem 2 holds, on Dy with a =B (N < T |D,)
[+

; and 1-8 = Pk-i-l(u < 'l'tll)rk). So, we have,
£, ()
‘ Eb'_ltog———nrk k+1(u<‘r|n )|zogp (N<T|D )| - Log 2 >
‘ ' £, (v +1)
2 (1) |Log B, (N < T |D )] - Log 2 6D
° .

3 where N' -A- win (N, Tt) and the last part in (31) is due to,

A R rrlnrk) >P

k+1(Tr = wlDtk) 2 1-

Due to the conditions (A), given & > 0,3 NO(E) < g

£ ("k+1)
Ek+1 :l—k) —1-— - Eu {110}| <E; ¥i>k+ NO(E) (32)
£o(iear) 1
Due to (32), we now obtain,
)
k+1
"k+1{‘°3 'f'L w|P rk}
- V)
kH_(E)
f (w,_..)
Z Py (8= 10,0 B, { Log kﬂ N=4, D,
1okt £ ¥ern)

+(E+e (1. 1 -up ess sup Z (1-k) Pkﬂ{N - 1|wl;} <
i=k+N (§)+1

15 10
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K (£) | PPN
- _ Y5 1l
_ | < !:ul{n} . (€ + Eul{llo}] + Z B, (N =1[D ) E  )log I N=1,D,
. 1=k+1 0 k1
(33)

-1 £ O]

But, due to conditions (A), the expected values Eu n = Log N are
1 £ (w))
o1l

fl( 1)
bounded for all n. If this bound is B, then E {Log <n B <®; for n <>,
! £ (W)
k+n o1l
‘ | £ 004 | &
Therefore, E {fog ————|w_( 1s bounded a.e. (P ).
u k+n,] 1 U
1 £ o4 1

Due to the above arguments, and since NO(E) is finite, we conclude that there

exists some finite constant C(£) such that,

HNO(E) i
fl(wk+l) ’
2 Pk+1(N'1|°rk) E, 41) 08 n—;—)— N=1, D, (<C(
{=k+1 o k¥l
) ; for almost all wl{ in measure M- , (34)

From (33), and (34), we obtain,

N'
£ (w, ..)
1' k+l
1"k+1{£°3 N

D.(<E {N} - [E+E {1,.}]+ C(®)
rk}— M M, 10
£ ) 1

1

;s a. e. in Drk’ in ul

E—»o Eul{u} . Eul{llo} + C' (&) . _ (35)

Step 3
Let R be the smallest integer r > 1 such that T_ > N; where {T,} the sequence

. instep 1. IfP (R21) >0, then P (R<r+ 1|R > r) is well defined and it
o o
. equals Pu (N < TrITt-l < N), which is an average over k of the probabilities




B RErTTmTEme . et n. o a e TSN TNNATVE LWLW PaciRie i Wil Sad --.f,-.'-. PR G Y S i NN A
: 16
“
X
,g Puo(N < Trlrr-l = k < N), satisfying (31). Therefore, PDO(R > r) >0, and convexity
> ) of ~Log implies,
Y
(,) - Lo (kﬂ > (1-€) |€og P, (R < r+1|R > r)| - Log 2
; Zk-!-lrk L) gf( )rk— 8B, 2 8
k=0 Vil °
(36)
S 1f Pu (R<rtl|R > 1) > Q; x> 1, such that Pu (R>r) >0, then Pu (R > r+l) < a-0F;
’ o (] o
) hence E, {R} < QL. Thus, we obtain from (36):
# °
(D) Lo ( k+1) > (1-€) E_ {R} - Log 2 (37)
| 1 (P Byt = ( Drk(2 u g
5 k=0 WY
e
3 We observe that due to (35) and (37), E {R} is bounded, that is E (R} <.
N A o o
K Also, from (35) and (37), we obtain, '
;5‘;
x (1-€) nuo{n} - Log 2 < zul{N}-li + Eu {1,031 + €@ ~
+ E_ {N}. ‘E, {1 } +C' (®) (38)
g0 W1
Step 4
ol
The sequence {Ti} in step 1 is a sequence of cumulative sums of ergodic and
étationary integer valued random variables, under the probability measure uo. We
have,
zu{'r}-zr(n 1)E{T|R-i}
g 1=1
* o«
* - P - . - .
E: u (R =1) Euo{rlhz i} 1. (39)

=1 ©




But the expected value Eu {TIIR = 1} decreases with increasing i and lemma 1
- o
applies. Thus, we obtain from (39),

zuo{'rr} < [21 Puo(k - 1)] [Zpu (R = 1) Eu {TllR = 1}:,
1=1 i=1 © °
- Euo{R} . Euo{Tl} (40)

s with equality if the processes uo. M, are memoryless, which is Page's

1
and Lorden's case.
From (40), and due to the definition of R in step 3, we obtain,

Log E, {N} < Log Euo{TR} < Log E)

. {Rr} + Log Eu {rl}

o [+
or

Log E"o{x} > Log Euo{N} ~ Log F‘uo{Tl} (41)

From (38) and (41) we now obtain directly,

(1-€) Log E"o{N} - (1-€) Log Euo{Tl} - Log 2 <

< zul{u}-[g + Eul{llo}] + C(8&)

;0 Eul'[N}-Eul{Ilo} + C' (&)

or

zul{nl-zulfxm} > (1-€) Log E"o{N} - [(1—8) Log Euo{Tl} + Log 2 + C'(E)]

(42)

But Bu {TI} is finite, and it does not depend on N, but only on € in step 1.

()
Also C'(E) is finite and independent of €. We can thus write

.........
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dme(kﬂlmEuHﬂ+£u2+C%a<w
[+]

and we have proven inequality (29).

The proof of the theorem is now complete.

5. Concluding Remarks

Via the derivations in section 3, and theorem 3, we have basically proved the

following theorem.

Theorem 4

Let ¥, and B be two stationary, ergodic, and mutually independent stochastic
processes with memory. Let conditions (A) in section 3 be satisfied. Consider the
extended stopping variables N*, genérated by testing a LR to Y change. Let Cz be
the class of all such extended stopping variablgs N*, that also satisfy the condition

El-! n*} > 8. Let n*(G) be defined as follows,
o .

n*¢s) 4 ine, B (8}

* |
N eC‘s 1
Lét: I].0 be defined as follows,
-1
£ W)
110 é Limn n 1 Log —%i_
R e fo(wo )

exists a.e. (Pu ) and is equal to E‘1 {z

}.
1 p 10

Then, due to conditions (A), 110

Furthermore,

Log &
Lim n*(8) ~ +
oo E“x 110}

and for the extended stopping variable NG (w) in (7):
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What theorem 4 basically says is that, the sequential test described by the

stopping variable Ns(w) in (7), is asymptotically (6*=) optimal among all tests

in c;ass C; in the theorem. The test then minimizes the expected time between the

occurence of a uo to ul change and its detection, under the constraint that if this

change does not occur, then the expected time for a false alarm (exceeding the upper

' threshold 8) is no less tﬁan the threshold value §.

The.sequential test described by the stopping variable Na(w) in (7)
operates in a way exhibited by expressions (8). The statistic Tn(wz) is updated

sequentially as follows.

£ (w o |w)
n+l n 1 'n+l' o
T |1(w° ) = max (0, Tn(wo) + Log W)
o wn+1 o
n
fl(wh+1lwo)

The updating step is fog , and the u: to ﬁ: change is decided

n
fo(wn-l--l‘“o)

the first time N that the statistic TN(wg) excegds the threshold §.

We note that the conditions (A) for optimality, hold for a large class of

" ergodic and stationary processes. As an example, let ﬁ; and ﬁ: be both Gaussian

with common spectral density and means eqiial to O and O respectively. Let Rn
denote the n-dimensional covariance matrix induced by the common spectral density,

and let R;I be its inverse. Let f-lau) denote the spectral density induced by

-1 -1 N | -1
R.n , for n*o, Then, if f ~(w) and (2m) I f “(w) sinw {l-cosw] ~ dw exist,
-7 :

n
fl(wn+1|wo)

the conditions (A) are satisfied. Furthermore, the updating step fog

n
fo(wn+1|wo)

has then a linear from G-pn[wh+1 - hn(w:)]. The constant pn and the function

hn(w:) can be updated themselves sequentially, if the spectral density function of

o0 o
the processes g and o has convenient form.

...........
...........
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