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I. Introduction

Let us consider two well-known stationary processes with memory [po, X, R] and

0

[ul, Y , R]; where u. and p, the corresponding measures, X and Y the respective names

of the processes, and R the real line on which both processes take values. Let both

processes be discrete-time and let w ; j > i denote an observed data sequence

w,9.009V . Let the observations start at time zero, and let it be known that the

initially active process is [P , X, R]. Let it be possible that at some point in

time, t, the process [0 , X, R] may become inactive, and that the process [t , Y, R]

may be active, instead, and remain so. Let the two processes be mutually ndependent,

and let the time t above be allowed to take any nonnegative integer values 0,1,...,.;

that is, the possibility that the process [Ul, Y, RI becomes active at time zero is

included. We consider the problem of formulating a test, that detects the [V , X, R]
0

to [pig Y, R) change (if and whenever such change may occur), accurately, and fast.

The problem of detecting the possible change from a given process to another

given process, has numerous applications, ranging from industrial quality control, to

edge detection in images, to the diagnosis of faults in the elements of computer-

communication networks. The case where both the processes [po' X, R] and [pl, Y, RI

are memoryless has been fully analyzed. Zacks and Kander [13] proposed an ad hoc

procedure where fixed size n data blocks are collected, and based on those data a

decision as to change is attempted. However, Page [7], [8] was the first to propose

a sequential, and one-step memory algorithm, for this case. Lorden [6] proved that

Page's algorithm is also asymptotically optimal, in a sense that will be explained

later. In [9], [10] Page's algorithm has been successfully applied in the effective

identification of faults in the links of Computer-Communication networks.

Although the problem of detecting a change in the active process has been fully

analyzed in the memoryless case, no consideration has been given to the case where
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the two processes [po. X, R] and [l, Y, R] are stationary with memory. In this

paper, we undertake this task. We will first present insight to our formalization.

Then, we will propose a sequential test. Finally, we. will prove the asymptotic

optimality of our test, in a sense that will be explained.

3. Preliminaries

Let R be the real line, and let 8 be the Borel a-field generated by open intervals

on R. Then, (R, B) is a measurable space. Let Rn and en denote n-tuples of R and 8
respectively. Let pn be a probability measure defined on (R, 5n). Then, n has a

unique extension p on (R , B ). Let pl and po be two stationary and ergodic proba-

bility measures defined on (R , 8 ). Let the Kullback-Leibler information (n)

exist for all n; that is, let (1) below be true. Then, V is aboslutely continuous

with respect to %n for all n.

Il o(n) t n •d 'n< co;vn.(l
P .. d U o

Given probability measures Vo and pl as above, let it be known that the measure

to is initially active. Let it be possible that at some time instant m: m > 0, the
GO CO

measure p may become inactive, and the measure p1 may become active instead. Thus,

n1 agiven an observation sequence who; n > 0, it is possible that an initial portion w

of the sequence has been generated by the measure Uo, and the remaining portion 
Vn

has been generated by the measure 111; where -1 < m < n; if m = -1, the total sequence

has been generated by the measure U if m - n, the total sequence has been

generated by the measure V o. Given some observation sequence, our objective is to

decide if the p to V 1 change has occurred. Since the very occurence, and even more

the time, of such a change is uncertain, any decision test that we may develop should

be clearly sequential. To gain insight into the problem, however, we will initially

assume that a fixed length n+l observation sequence w is available; where n: O<n<o.

0,. .....
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Let n be a nonnegative finite integer. Let w be an observation sequence, and

o n
let the measures 10 ,U I be mutually independent. Given w , we want to make a decision,

resarding the possibilities:

W generated by i

; For all m :-l<m<n (2)

Vw4 .1 generated by 1l

For fixed n, the formalization (2) is a hypothesis testing problem, with n+2

hypotheses. Let us denote by Hm the hypothesis that the V to 11I change occurred

just after the nth datum; where H_1 denotes the hypothesis that the total sequence

un has been generated by the measure i1=, and where H denotes the hypothesis that the
0 n

total sequence w0 has been generated by the measure 1o" Let both the measures Uo

md have density functions, and let fo ( iI ) and fl(wid ) ; j ? k denote

conditional density functions, induced by the measures p and V, respectively.

Then, assuming equally probable hypotheses, the optimal Bayesian formalization

results in the following test:

Decide in favor of H if:

tog -- ( max ( _ Log -- i1)
i-mIF w0(ijw" 1) -lck<n W (ww)J

; where (3)

t og IF (W wii) -
iinn+l o il o

2!e

'w ¢ -, ;. ' r . .',,';'.''.. .. '..''2 -''. ".-'" "".- ." ". G "," .'. '. .;',. ,",,'.,% ', ,' .... A, A -" '-A - ---',.' - .



4

Given the density functions fl and f, let us define the following two

statistics,

nO l n ~ f f(w Ii)

Tswo) ax ( t~ og f( 1 wil) (4)
0 -fn (wi wi"l)

Given an infinite data sequence w, the natural sequential extension of the test

in (3) includes the statistic T'(wn ) in (4), and a threshold y, and it consists of
n o

a stopping variable ' (v), defined as follows,

N'(w) A inf~n :T'(wn) > y} (6)Y no0

Given w, the sequential test stops then at N'(w), and it is decided that the

o to P, change has occurred.

From the definitions of the statistics T'(w ) and T (wo ) in (4) and (5), it isno 0no

clear that an appropriate 5 threshold exists, such that the stopping variable,

N.(w) 0 inf(n : Tn(w ).>6 (7)

maps the stopping variable N'(w) in (6). The sequential test determined by the
Y

stopping variable N6 (w) in (7) has recursive properties that the test determined

by N'(w) does not possess. Indeed, it is easily concluded from (5) that the
Y

following, recursion holds,

Tn+l T n (wn)g n+ln+l(Wo 0 max (0., T w0)+ gn(Wo ))

; where (8)

n+l A fIwn+l 0gn(w0 tog fo( W )
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It is clear from expressions (8) that the test determined by the stopping rule

NS(w) is one-sided. For arbitrary stationary processes Uo09 p, the recursions in
n

(8) require that the whole data sequence w°n be kept in memory. If the processes
* 0

I Pl are L-order Harkov, only an t-size memory 
is required. If the processes Uo

and U' are memoryless, no memory is needed. In the latter case, the two stopping

variables in (6) and (7) are identical (for y - 6), and either one is as in [7], [8],

and [6]. Lorden [6] proved that then, the sequential test determined by the stopping

variable N6(w) in (7) is asymptotically optimal; that is, for 6 * =, we then have,

E V No ()) > (9)

E L (w))} - Ieog 61 Il (10)

; where

f(

and any stopping rule N(6) that satisfies (9), is such that E {N(S)} > Ep {N6 (w)).

Qualitative speaking, Lorden's result says that when the two stationary processes

o and jl are also memoryless, then, the stopping rule N6 (w) in (7) gives for 6 + 0

the minimum possible expected time from the occurence of the pO to PO change (given

that this change occurred) to its detection, among all the possible stopping rules

that satisfy the false alarm bound in (9).

In this paper, we consider the case where the two processes p and 11' are
0 1

stationary with memory, and ergodic. We then propose the test determined by the

stopping variable N 6(w) in (7). We will prove asymptotic optimality of the test in

a precise fashion, for processes possessing certain properties. We will derive

_ * % * 3,V1* * - - . . . . . . . . .



6

bounds an the performance Induced by one-sided tests, and we will show that those

bounds are attained by the stopping rule N (w) in (7), if the above properties are

satisfied.

3. Performance Bounds for One-Sided Tests

In this section, we will establish performance bounds on one-sided sequential

tests. To do that, we first need a theorem parallel to theorem 2 in [6].

Theorem 1
0 A

Let 1t0an be-two stationary and ergodic processes. Let w w w0 w1 , .. be

an Infinite data sequence, and let N be an extended stopping variable with respect

to w, such that,

P (N< W) < (12)

wvhere

For k 1.2,,... let Nk denote the stopping variable obtained by applying N

to kw.~ k~lv-** and define,

mi f~ -1 , 2, .. 1(13)

Then, N~ is an extended stopping voriable, and,

E {N*J >ca- (14)
P0

E (it } - {V*} < E PNW; for any stationary and (15)
P- 1' ergodic Poo

Proof

The fact that N~is an extended stov,-.ng ariable, and expression (15) are

'-proven exatly s in theorem 2, reference [6]. Indeed, since the events

< n-i+11; < I < n are determined by the sequence W1, and the event < U)n
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Is the union of the aboveN is an extended stopping variable. Also, (15) holds

since

E bNe + 1) <E {N jwr- 4 }= E {NI E {NI.
Illi m 11 m UI

To prove expression (14), define as in [6],

Since Vk 0 is ergodic, we have,

ei nI F mEj {C 1} P (NI < <) a a.e.(P )(16)
n-w k-1 0 0 0

if E Po N*} l (14) is trivial. Let E PO{N*} <0-, let N*0 0, and let Ni; i > 1

be such tk-

IfN n, apply N to w , w ... . for all r's,
*21nr'nrl

and define N as the first time that stopping occurs.

* * * *

Then, N1 - Ne, and the variables N* - N are identically distributed, for
1 m u-l

different m values, no less than two. Since N +r 1 for some r, that causes

stopping at N* , we have,

*~ q*~"+~ > 1
m l

and

+ .. + ~*> m m m> 0

m
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Thus,

El + + EN*
m m

>?- ;m> 0 (17)
N N

m m

Due to (16), the left hand part of (17) is bounded from above by a, as m -.

The right hand part of (17) converges to E- {N*}, as m 0, by the ergodic theorem.
1o

We point out here, that if the extended stopping variable N is determined by

the statistic E gn(v ); where g (wn ) is given by (8), and the threshold is a- 1,

then expression (12) in theorem 2 is satisfied [11]. Thus, theorem 1 applies to the

stopping variable N6 (w) in (7), if we put 6 -a -1 . The stopping variable N6 (w) is

exactly N in (13), for N determined by the statistic , gn(wn) Thus, we have,
n>C

Eh {N6 (w)) > 6 (18)
i0

E {N6(w) I< E P{NI (19)

for

n

N inf : =giwo) > 6 (20)
i=0

Due to theorem 1, and the conditions (18), (19), and (20), satisfied by the

stopping variable N6 (w) in (7), we will now focus our ultimate objective on showing

that for 6 -P a*, and under certain conditions, E P{N6 (w)) is the infimum among all

the expected values EI {N*); where N* is any extended stopping variable that satisfies

the condition E Po{N*} > 6. Thus, we will show that the stopping variable N6 (w) is

then optimal in the above sense. Our approach will be as follows. We will first

find an upper bound on E {N 6(w), for 6 . Then we will show that this upper

. . . . . . . . . . . . . . . ... . .. .. ..
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bound can not be smaller asymptotically (6 ) than E N*1; for any extended

stopping variable satisfying E {N*1 > 6, and under the appropriate assumptions.
P1o

Let us define,

fl(Wn-l

L -n- t og 1 - (21)
n f (w )-

0 0

i 0  tin L (22)
n-" n

pn ( ) ( ) lPl(Ln < V) (23)

Let us now impose the following conditions,

110 exists (110 < 0) and is equal to E l {I 1, a.e. (P,)

For v e (0, 10), we have,
,, (A)

Lira nPn - 0

n.N,

' Pn <m

n

The conditions (A) are relatively mild, and they are satisfied by most ergodic

processes. If those conditions are satisfied, then we have (Berk [1]):

imEIg a

or (24)

r -tim E { ItlltO ; for 6- (ct

8-"~ li E Ul{I 10

; where N the extended stopping variable in (20).

=".- . .-...... .
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We note that conditions (24) are also satisfied if instead of conditions (A),

the martingale conditions af Chow and Robbins [21, or the strong mixing conditions

of Lai (4] hold. From (19) and (24), we thus conclude that, for 6 , and if the

conditions (A) hold, the expected value E{N 6 (w)1 does not exceed [tog 61 * E1'{I

Therefore, og 6" E- {I- ) is then an upper bound on E {N 6 (w)}.

Let C6 be the class of all the extended stopping variables N , satisfying

E %N*} > 6. Let us define,

n () inf E{N*} (25)

s~cco

Our final objective will be to prove that for processes po and that satisfy

conditions (A), we have,

tim n*((6) > [tog 61 " E-1I{I,^} (26)

We will undertake this task in the next section. In the remaining of this

section, we will present a useful theorem and a lemma.

Theorem 2 (Wald [11])

Let N be the sample size of a test V 0 against Ui. with error probabilities a

and B respectively. Let 11o and 1 be stationary, let the conditions (A) hold, and

let 110 be as in (22). Then,

I f 1 (w°Nl))II- Bf(Nl > (1-B) og + B to g  E > (1-B) Itog al - tog 2 (27)

Proof

The first part of the above double inequality is in Wald [11].

W" .; :,.; /z';.',,....%"."."/.'....a ... , .-' . . ..-.-- .."-. . .- ."--. .: - .: , - - ' -



The lower bound in the above inequality is due to 8tog(1-a)- being nonnegative,

and due to the fact that the minimum value of 8 tog 8 + (1-B) Log (1-8) is equal to

-tog 2.

Lemma 1

Let {a i and (b Ibe two sequences, such that,

bi 0 1 abj; V i 1

Then,

i a~ b i i a.~ a~ b~)(8
i- 1 1 28

Proof

Define,

Then,

- E a ab+a~
1 2 2

I b 1E a, W b1 I ) a1 C 1 -a1 b 1 < 0-

F a bi -cl~a, + cl a1 -a 1 b1 <c ~a
2 2 2

................................. ** el
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Similarly,

a a b t  iCl ai  2a

i a, b, a, b, F c1  c1 C ,i
Skl k k-i k 1

and the proof is complete.

4. The Infimum of the Stopping Time

In this section, we will prove that for stationary processes )f and , that

satisfy the conditions (A), the bound in (26) holds. We will do that via a theorem.

In the proof of the theorem, theorem 2 and lemma 1 will be used. Note that if the

limit 110 in (22) exists, and the processes v and V 0 are also ergodic, then the

limit I is the mismatch entropy of aG with respect to V

10 wit repc 0t

Theorem 3

Let C be the class of all extended stopping variables N*, that satisfy the

condition %0(N)'> 6. Let n*(6) be as in (25), let the conditions (A) be satisfied,

and let 110 be as in (22). Then,

Lim n* (6) - Eii

64- 10

Proof

It suffices to show that for every E in (0,1), there exists c(e) < m, such

that for any stopping variable N in C*, we have,

- * A .. . .. .l "i..,.. . . .J" "'€
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SP, {10} {NJ (1-C) tog E(} - c() (9)

Step 1

Given c, let us define stopping variables Ti; i > 0, such that,

.T " 0 , T i < Ti < -° " V i,O T <+;I

T : the smallest n (or - if such an n does
not exist) such that Ti < n and

l(WT  ) 0 o(WT +l)

From Wald's [111 argument, we have that P I(T1 <c) - P (decide H ) = 8.

Then c is the lowest threshold for deciding in favor of Ho, which in Wald's test

is larger than 0(1-o) > 0. Thus, P U(T 1 < M) < c. Let us define,-1

D A {w- I : T r- , k) ; k < N (30)

Let us denote by Pk+l the probability induced by the measure tl and applied

to data sequences wk+l , wk+2, .... Then, provided that P1 (Drk) > 0, we have

due to the arguments above: Pk+l(Tr < MIDrk) < C. On the set Drk in (30), and

for given N in C*, given Tr, we define a sequential test based on the sequence

k+1 wk+2..., as follows:

Stop at min (N, T d

: if N < Tr
Decide :

P ;if N > Tr

The number of observations taken for the above test is min (N, T ) -kr

. ,",f ',-,-,', , C, ", , C , ,,, ': , ,. .. -'""''''' . '' . '''" ...... ' . "' .. "" . ..
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whose conditional expectation P k+l(.ID rk) is at most E {N). To this point, our

derivations are basically as in the proof of theorem 3 in Lorden [6], with the

appropriate modifications.

Stev 2

Now, Wald' inequality (27) in theorem 2 holds, on Drk with a - P o(N < TrIDrk)

md 1-B - Pk+l(N < TrIDrk). So, we have,

::::NI )I (N < T ID ).jtog P (N < T_ ID )I - tog 2 >

> (l-)Itog P 1 (N < Tr rD)j -Log 2 (31)

; where N' 4 =in (N, T ) and. the last part in (31) is due to,

Pk+(N < TrIDr ) '> Pk+l (Tr " Drk) > 1-E

Due to the conditions (A), given C > O,3 No( ) <co:

(-k)-Lo o < ; V i > k + N () (32)

£k~l 111 K) ak+l) 1 1 1 J

Due to (32), we now obtain,

+o (k+l)

E fw ) g m

-k+(N" lDrk) Ek+l tog f1(wk+1 N i,

L.- k+l(i o . -kl~

+ IC + 3(IJft I sup ess sup (i-k) Pk {N jw kw~ <
i-k+N ( )+1

= o -" S ', ',' 'L.:," ':,:%: ', ..,5 -.-".:.-. i: i . - i . .-"... '. . ..'.."5 : . .. .. .i0

........................................... .............................................................................
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k+N

-N) E [ 1E110 ] +iFa P k+(N = ilDrk ) Ek+ l tog f)E N+1) Drk
i-k+1 a wk+1~

(33)

But, due to conditions (A), the expected values Etn - i tog 1 n  I are

P I& Itw" f 0 (I

bounded for all n. If this bound is B, then E 'o < n B <-; for n
k-In olk (1

' { 1 f(k+1)k

There fore, E tog k j is bounded a.e. (P .Therefore,0 E 1  owk+l )

Due to the above arguents, and since N () is finite, we conclude that there

exits soma finite constant () such that,

t Pk+l(N-mIDr) Ek+l {og f i N - i, Drk < C()

i-k+l o k+1

* k
; for almost all w1 in measure lI" (34)

From (33), and (34), we obtain,

f N'
log I(wk+l)D {N + E(10] + C(M)

1k+1  .N' .- rk <
fo twk+l; I

; a. e. in Drk, in 111

- (N E {I)0 } + C' () (35)

Step 3

Let R be the smallest integer r > 1 such that Tr > N; where {T i the sequence

in step 1. If P o(R > r) > 0, then P o(R < r + 1IR > r) is well defined and it

equals PV (N < TJTr 1 < N), which is an average over k of the probabilities

t0

q r ~~~~~~~..-..-.. . . •. .. "........ -......-- "..... . "-.". --........ .. ". . ...
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P14O(N< TrT r. - k < N), satisfying (31). Therefore, PPo(R > r) > 0, and convexity

of -tog implies,

+1 Drk.,NPk+(Drk) - log f N' VIk > (1-C)jtog P (R < r+lIR > r)I -t og 2

k-0 (k+1) -

(36)

If Po(R < r+1IR> r) >Q; r>1, such thatP Po(R> r) > 0, thenP Po(R> r+l) <(1-Q)r;

hence Eo(R} < Q -1. Thus, we obtain from (36):

Pk+l(Drk) Ek+l Log 1 .'.[rk+ > (l-e) E (RI - tog 2 (37)
fo wk+l) }

We observe that due to (35) and (37), E o{R is bounded, that is E (R) < m.
110 Po

Also, from (35) and (37), we obtain,

(1-) E Po{R)- og 2 < E(t {N}-[N + EUI{110} ] + C(C) -

-E {NE}.s { }+C' () (38)
U-O~l 10

Step 4

The sequence {T I in step 1 is a sequence of cumulative sums of ergodic and

stationary integer valued random variables, under the probability measure 11 . We

have,

" .P {TR} ( - i) E1o (TRIR i-

- Po(R- i).E {TlIR i i• i (39)

i,. 0 1"
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But the expected value E o{T1 IR - i} decreases with increasing i and lemma 1

applies. Thus, we obtain from (39),

R P T I P (R - idP 1 R - i) E oI R - i}
o 0

E 1-0 {R) • E 1 o0 I} (40)

; with equality if the processes po, V1 are memoryless, which is Page's

and Lorden's case.

From (40), and due to the definition of R in step 3, we obtain,

tog% IN < tg %IT o< % {R} + LogE {TI

or

tog E paR1 > og R PO-L} og E U{ T}1 (41)

From (38) and (41) we now obtain directly,

(1-) -tog E 11o - (1-C) togE Uo{ T og 2 <

SiU (NIE U {I0} + C,()

or

I{N}'EU {I0 > (-) toE EIo{N} - 1(1-) Log E {T1 1 + tog 2 + C'(E)]

(42)

But o T,} is finite, and it does not depend on N, but only on c in step 1.
Also C'() is finite and independent of £. We can thus write

. .. .. ....... .-... -.--. -"
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"(c). (1-c) tog E O{T1 + tog 2 + C'( <

and we have proven inequality (29).

The proof of the theorem is now complete.

5. Concluding Remarks

Via the derivations in section 3, and theorem 3, we have basically proved the

following theorem.

Theorem 4

Let po and p, be two stationary, ergodic, and mutually independent stochastic

processes with memory. Let conditions (A) in section 3 be satisfied. Consider the

extended stopping variables N*, generated by testing a po to P1 change. Let be

the class of all such extended stopping variables N*, that also satisfy the condition

E {N*} > 6. Let n *(6) be defined as follows,
PO

n N EC N*}
(6 #*CC* )II

Let 110 be defined as follows,

f wn-1-l f 1 (w -

I tim n- 1 tog n-o
10 n-" f (w n-)

Then, due to conditions (A), 110 exists a.e. (P ) and is equal to E V{I1 1.

Furthermore,

Lim n*(6) ~ 6.Ll

6-'" ti 10

and for the extended stopping variable N6 (w) in (7):

. I, . .* , . .--. ,...,,.- .... ... ;... ..... ....................... r... ... . .. . . .. '
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E ll [1 1 110.

What theorem 4 basically says is that, the sequential test described by the

stopping variable N6 (w) in (7), is asymptotically (6o) optimal among all tests

in class C* in the theorem. The test then minimizes the expected time between the

occurence of a Uo to pI change and its detection, under the constraint that if this

change does not occur, then the expected time for a false alarm (exceeding the upper

threshold 6) :-s no less than the threshold value 6.

The sequential test described by the stopping variable N6 (w) in (7)

noperates in a way exhibited by expressions (8). The statistic Tn (w ) is updated

sequentially as follows.

T n+ (W max (0, T (w 0) + tog f (w nw)fo n+l

fl (wn+l In) O Go
The updating step is tog n , and the ° to 1J I change is decided

the first time N that the statistic T (wN) exceeds the threshold 6.
No0

We note that the conditions (A) for optimality, hold for a large class of

ergodic and stationary processes. As an example, let I11 and PO00 be both Gaussian

with common spectral density and means eqbal to 0 and 0 respectively. Let Rn

denote the n-dimensional covariance matrix induced by the common spectral density,

and let R71 be its inverse. Let f-l(W) denote the spectral density induced by
n 17

R7I , for n-m. Then, if f-(W) and (27r)-  I' Cl(w) sinw (l-cosw]-1 dw exist,
nr

f (w w n )
* the conditions (A) are satisfied. Furthermore, the updating step Log 1 n+lwn

f (v Iv"n)
o n+l 0

has then a linear from O.Pn[wn+1 - hn(wn)]. The constant pn and the function

hn(n) can be updated themselves sequentially, if the spectral density function of
no0

the processes and Vo has convenient form.
0

* .-. -. ~.... ..21
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