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1.  INTRODUCTION 

BBN's ARPA project in Knowledge Representation for Natural Language 

Understanding is aimed at developing techniques for rendering computer-based 

assistance to a decision maker who is attempting to understand and react to a 

complex, evolving system or situation. The decision maker's access to the 

situation is mediated by an intelligent graphics display system, which is 

controlled largely through natural language irput. A typical and motivating 

instance is that of a military commander in a command and control context, 

either of strategic situation assessment or of more tactical crisis 

management. In such situations the commander requires a flexible and easily 

controllable system capable of manipulating large amounts of data and, most 

importantly, cf presenting information in a variety of forms suited to the 

user's expressed or inferable needs and capacities. 

A display system of the kind envisaged would have the capacity to present 

information in tabular, graphical, textual, and perhaps cartographic forms. 

The user of such a system must be able to monitor, add, change and delete 

information and, independently, to create and alter the various 

representational forms. Moreover, for the system to be truly flexible and 

adaptive, it must maintain models of the domain (situation) being represented, 

of the repreüentational systems at its disposal, and of the user's conceptions 

of these domains, situations, and systems of representation. For this last 

purpose, the system must also be able to construct models of its interactions 

with the user. 

■.-., 
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On the basis of these different kinds and sources of information, the 

system must produce intelligible and appropriate displays in response to 

high-level descriptions and commands. That is, the commander can usually be 

expected to request a presentation of certain aspects of the situation or 

system being monitored in terms appropriate to the domain itself and not in 

terms of display forms. Even when the request, explicit or implicit, is 

expressed in terms of display forms, the specification will typically be at a 

level of abstraction appropriate to the commander's purpose - not to those of 

a graphics system designer or programmer. The system must be able to accept a 

description of the information to be represented together with an abstract 

specification of a display-type and then it must intelligently determine the 

details required actually to produce an effective dsiplay. Finally, given 

information about the user's knowledge of the situation being monitored and 

his particular concerns with respect to it, the system must, in some cases, be 

able to infer what kind of display a user might want to see, produca it and 

monitor the user's response to its initiatives. 

The crucial requirements for a medium of communication with such a system 

are robustness, flexibility, the ability to express specifications while 

abstracting from details of various kinds, and the ability to express 

conceptualizations of both the presented domain and the modes of display in 

ways that match a user's conceptualization. By far the mont natural form of 

eccess to and contr i over such a system for most users fill be through the 

use of natural language input. Hence a major focus of our research has been 

the design of a system powerful enough to represent the content of natural 

language utterances together with facts about the user's beliefs and goals as 

£a^:v<:>:-:^ 



Report No. 5421 Boll Beranek and Newman Inc. 

these are communicated in the user's interactions with the system. Such a 

representational formal ism must also express, in usable form, information 

about the domain or situation being monitored and the nature of the display 

system itself. 

The development of the KL-ONE knowledge representation system has been a 

significant result of this aspect of our effort. KL-ONE has generated a great 

deal of interest in the research community and has been adopted by a number of 

groups. It has been transported to a variety of architectures and programming 

language*), v -sious of it have been implemented in SmallTalk, on various Xerox 

processors, airi in FranzLisp for the DEC VAX series and other DEC machines. 

The most complete implementations are in InterLISP on the PDP-20. the BBN 

Jericho and the Xerox Dolphin. 

Over the last two years, the development of KL-ONE has been greatly 

enriched by cooperation with the ARPA sponsored Consul group at ISI. Indeed, 

the major activity this year in knowledge representation has been the 

re-design and reimplementation of KL-ONE, a joint activity of the BBN and ISI 

groups. This effort has resulted in NIKL - a New Implementation of KL-ONE. 

NIKL .represents a significant streamlining and simplifying of the KL-ONE 

system - without significant loss of expressive power. The system has been, 

as hoped, much easier to comprehend, to implement and to debug. Moreover, 

there is a si'aple enough mapping between KL-ONE constructs and NIKL constructs 

to guarantee continued applicability of the descriptions and analyses of the 

KL-ONE system and to allow us to continue using essentially the same graphical 

notation for publication. 

M^^^rS^^'-t^^^J-^J^^^^^-*^^^.^^.^'^:*^.**. ^=^mu*~~ -ä^JR ■« W. mA. -. 
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Thr first two papers in this report are devoted to the knowledge 

representation system. The first presents an introduction to and overview of 

the new KL-ONE system, the second contains a semantic account of the core of 

the system and, based on that account, a description and analysts of the 

classification algorithm. These are followed by a short description of the 

facility for automatically drawing KL-ONE networks. 

One crucial feature of NIKL is that it was designed, and is being 

implemented, explicitly with the intent that it be interfaced with an 

assertional formalism which includes data structures for propositions, 

predicates and terms and algorithms that realize powerful, but controllable, 

inference procedures over those structures. As a first step, we have chosen 

to connect NIKL with RUP (Reasoning Utility Package), a truth maintenance 

system developed by David McAllester of MIT. This decision has meant that a 

number of KL-ONE constructs which were designed specifically to handle 

assertional phenomena have disappeared from NIKL, only to reappear in RUP 

- or, more accurately, in the NIKL-RUP system. The fourth paper is a 

description and analysis of the RUP-NIKL interface. 

One of the tasks of a system of the kind envisaged is the maintenace of a 

model of the user, in particular of his/her beliefs about the situation being 

monitored, about the display system itself and about the history and current 

state of his/her interactions with that system. The problems that arise in 

representing the mental states (beliefs and desires) of agents in ways that 

can be used to predict and explain their actions are highlighted in a 

situation in which the user is presumed to be communicating his beliefs and 
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I m 
desires  to a com-pulationel  artifact  through the medium of a high-level, 

implementation independent language.  The fifth section of the report presents 

an attempt at a uniform treatment of a large number of these issues,  a 

»$ treatment based on the  idea that sentences in a formal language are useful 

g| representatives of the contents of agents' mentai states. 

The work on knowledge representation has been motivated by the task of 

Si designing an intelligent computational  assistant  to a decision-maker who 

W communicates with the system in English.   An essential  component of  the 

overall  system is a grtmmar-parser formalism adequate to a rich fragment of 

English and able to produce appropriate structures on which to base semantic 
s 

interpretation. The RUfs purser and the PSI-KLONE (now PSI-NIKL) system for 

H semantic interpretation afford us these tools.  RUS,  like KL-ONE,  has been 

adopted by a number of research projects with a wide variety of domains. A 

major effort this past year has been directed at making RUS more accessible to 

tt users and investigating its application in other contexts.   A significant i 
result of this work has been the development of IRUS (Information Retrieval 

--.' Using RUS). a natural  language interface transportable to a variety of 

database systems. The seventh chapter in this report contains a descripl'or. 

Ji}'        and analysis of IRUS, and the eighth provides an update on the status of  the 

pi        basic RUS system. 

I 
In any natural  language understanding system, a crucial issue is the 

', treatment of the different kinds and uses of referring expressions.  The ninth 

m section of the report presents a systematic analysis of certain central uses 

of both definite and indefinite noun phrases.  One phenomenon treated in this 

■ 
A? 
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analysis; is that not all uses of referring expressions are intended to direct 

or even allow the hearer to fix on a particular object as the referent of the 

expression. The tenth section of the report analyzes a rang? of cases in 

which that is the speaker 0 intent but in which, for a variety of reasons, the 

hearer is unable to fix on the object that the speaker has in mind. A system 

for handling such cases of miscommunication is described and motivated. 

The last section of the report contains a lisi of publications in which 

other aspects of our research over the pa;.* year are presented. 

■- J-' ^I'j.' t-'   1.*.'j-_-'5j 
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2. AN OVERVIEW OF NIKL. THE NEW IMPLEMENTATION OF KL-ONE 

M G. Moser 

KL-ONE is a tool for forming conceptual descriptions, allowing the system 

using it to construct a knowledge base representing the beliefs of a reasoning 

entity. New descriptions can be formed with a small number of operations to 

combine and relate those already in the knowledge base or they can be 

introduced as primitves. This paper is an overview of the structures and how 

they interrelate in the latest implementation of KL-ONE, New Implementation of 

KL-ONE or NIKL. 

There are several interfaces to KL-ONE for building a knowledge base, or 

KL-ONE net. One of these, JARGON, was developed to investigate the idea lhat 

certain English syntactic structures are natural expressions of the semantics 

of KL-ONE structures. JARGON is only partially implemented, and its language 

will be used in this overview to clarify examples. The complete interface, 

CKuONE, allows users to define, name, update, and file KL-ONE Concepts using 

LISP forms. Typically, CKLONE is used to build a KL-ONE network for a 

particular Jomain and the domain application system will access the network 

using PENNI, a separate assertional language. 

A KL-ONE Concept is depicted with an ellipse to which depictions of the 

various structures used to describe that Concept are attached. Each Concept 

represents a class of things in the world of concern. We usually ncme a 

Concept after the elements  in the set it denotes. Figure 1 shows a Concept 
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ANIMAL 

FIG.  1 \C\ ANIMAL 

named "ANIMAL" that denotes the set of all animals.  |C|concept-name is used 

to denote a KL-ONE Concept structure we have named "corcept-name". 

Every KL-ONE network includes a Concept that is defined to represent the 

super-class of the classes denoted by all other Concepts. We call this Concept 

"C-TOP", or sometimes "THING". 

If we simply assert that there is some Concept called ANIMAL without 

describing this Concept further, we have established some sub class cf the 

class represented by |C|THING, as shown in Figure 2. 

FIG,  2.   AN ANIMAL  IS A  THING. 

' •-"^-'^'l\^;'wVil■l^ ^nn 
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The arrow in Figure 2 expresses that |C|THING subsumes, or is a SuperC 

of, |C|ANIMAL and that |C|ANIMAL specializes, or is a SubC of, |C|THING. When 

one Concept is a SubC of '"■»other, it denotes a subclass of the class denoted 

by its parent. In terms of a frame system, a Concept would correspond to a 

frame «id its relationship to its subsumers would correspond to an is-a link. 

A SubC will inherit all the components of its parents ard will have one 

essential component that distinguishes it as a specialization of its parent. 

(We have not yet established the specializing component for |C|ANIMAL.) 

The collection of Concepts is organized into a taxonomic net (See Figure 

3). Adding a concept to the net requires installing it in the taxonomy. 

Because Concepts derive much of their meaning from their SuperCs, it is 

crucial that each Concept be installed under the most specific Concepts 

possible and subsuming the most general Concepts possible. This is the job of 

the KL-ONE classification operation. 

There is an important distinction to be made between definitions of terms 

and statements about things represented by those definitions. Our knowledge 

base is definitional. Each Concept represents some class of things we want to 

Jl make assertions about. It may be thought of as a logical predicate, a complete 

specification of the necessary and sufficient conditions for membership in the 

class represented. Each member of this class is called an instance of the 

Concept. Concepts are definitional while instances are asse.-tional. 

^ 

'iA 

m 

i 

For systems to use an existing KL-ONE network, there is a companion 

assertional system for KL-ONE, PENNI. PENNI reasons about individuals (i.e., 

instances of Concepts) of  interest to the current domain application. 

9 

,„■-. ■. . N . • 
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FIG.  3.  An excmple KL-ONE taxonomy 

Assertions arc made in terms of the structures in the KL-ONE network, and 

consistency among assertions is maintained. 

There is a class of terms we would like to be able to represent in our 

knowledge base but which cannot be fully defined. Natural kind terms, such as 

person or e'ephant, can only be described. Such Concepts can be created in 

KL-ONE and their relevant properties described, but a PrimitiveClass marking 

must be assigned to indicate that there is some distinction between the new 

Concept and its subsumers which is not defined within the knowledge base. A 

PrimitiveClass marking for the Concepts in the ANIMAL taxonomy of Figure 3 is 

10 
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indicated with a "*". The KL-ONE components which could specify the Concepts 

not marked with a "*" will be introduced shortly. 

This PrimitiveClass is an important component of Concepts whose KL-ONE 

structure provides necessary but not sufficient criteria for membership in the 

class they are representing Marking a Concept with a PrimitiveClass 

indicates that membership in the class represented must be established in some 

way external to KL-ONE. Other Concepts will not be subsumed by a Primitive 

Concept unless explicitly stated. This allows natural kind Concepts to be 

included in the knowledge base and to be treated like defined Concepts. 

The classifier is only concerned with the presence or absence of a 

PrimitiveClass, the value and structure of the PrimitiveClass marking can be 

anything the system choses. It may contain information for the system to use 

to determine if it should explicitly state something is subsumed by the 

Concept, such as a function name. 

Some Concept descriptions are so specific they have only one instance in 

our world of interest. We think of these as Individual Concepts, vhile those 

with multiple instances are thought of as Generic Concepts. Although the 

distinction between individual and generic Concepts is assertional in nature, 

KL-ONE allows the system to mark a Concept as being individual. This marking 

is for the convenience of a system accessing a KL-ONE network and is ignored 

by KL-ONE. 

KL-ONE nets are built incrementally. We can not expect that the 

knowledge base be coherently and systematically described in its entirity at 

11 
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one time. There is an infinite number of conceptual specifications possible, 

and the current taxonomy is a small selection from them. Relevant 

generalizations and specializations of Concepts will become apparent both as 

the network is being built and as it is being accessed by PENNI. For instance, 

it might be useful to define |C|LIVING-BEING which would subsume |C|ANIMAL and 

|C|PLANT in our example, and |C[MAMMAL which would be between |C{ANIMAL and 

IC[PERSON. These new Concepts could be added as the network was being built or 

as it was being used. 

Since our taxonomy must evolve independently of the order in which 

Concepts are described, we must be able to install new Concepts anywhere in 

the taxonomy, i.e. to classify Concepts. A new Concept is descrjbed by 

building a ConceptSpec which is then installed in the taxonomy by the 

classification operation. Once installed, no more components may be added to 

that Concept, although it may be generalized and specialized by the 

classification of other ConceptSpecs. 

hi addition, there are several components which express interesting 

things but which are not used in classification. That is, any inferences that 

could be made on the basis of these components are not used by the classifier. 

These may be added to a Concept description before or after it is installed 

because they will not affect a Concept's place in the taxonomy. These things 

include Individual marking, explained above, and DisjointnessClass, Covering, 

Data, IData, and InverseRole, all to be discussed later. 

The names we choose are only convienent  labels  for our  Concept 

descriptions.  KL-ONE maintains the structure of  the network, leaving the 

interpretation of that structure to the system accessing it. 
12 
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Roles are KL-ONE entities which reprssent logical associations between 

Concepts. A Role describes an aspect or property of one Concept by relating 

it to another Concept. As the functional notation in Figure 4 illustrates, a 

Role is formally a two place relation whose domain and range are represented 

by Concepts. To expand the frame analogy, the slots of a frame would be 

similar to Roles. 

A Role maps each instance of the domain Concept into a set of instances 

of the range Concept. An instance of the range Concept is called a filler of 

the Role for the appropriate instance of the domain Concept. A Role actually 

represents a set of fillers for each instance of the domain Concept. 

HOBBY 
PERSON    yjLjyi^f PART-TIME-' 

ACTIVITY 

FIG.  4.   A PERSON HAS  Pi' HOBBY WHICH ARE PL PART-TIME-ACTIVITY. 

PART-TIME-ACTIVITY  = HOBBY (PERSON) 

A KL-ONE Role is depicted with a square enclosed by a circle. Figure 4 

denotes a relation, called "HOBBY", which, for every instance of |C|PERSON 

describes a set of instances of |C|PART-TIME-ACTIVITy. Roles, like Concepts. 

are labeled by the network builder to indicate what the structure represents. 

|R|role-name is used to denote a KL-ONE Role structure we have named 

"role-name". 

Nouns are pluralized in JARGON by using the special morpheme "PL". 

in 
13 
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(^ 

HOBBY 
(ONIL) 

FIG. A PERSON WHOSE PL HOBBY ARE PL HOBBY-SPORT IS CALLED AN ATHLETE. 

A Role is associated with, or attached to, its domain Concept, the most 

general Concept at which the Role makes sense. Because the relation denoted by 

a Role will also apply to all subclasses of its domain, Role attachment is 

inherited by all SubCs of the domain Concept. In fact, one way to define a 

SubC of the domain is to describe a more specific range of an inherited Role. 

In Figure 5. we have defined the Concept of an amateur athelete. |C|ATHELETE, 

by restricting the range of |R|HOBBY to |C|HOBBY-SPORT. This is expressed 

with a RoleRestriction. This definition of an athelete does not include people 

who have additional hobbies which are not sports. We will give a better 

definition shortly. 

Every attachment of a Role tc a Concept has an associated RoleRestriction 

which describes the range of the relation denoted by the Role when the domain 

is restricted to the class denoted by the Concept. A Concept inherits both the 

Roles and the RoleRestrictions of its SuperCs. A RoleRestriction has two 

elements, a value restriction, the VR, and a number restriction, the #R. 

14 
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When the domain of a relation is restricted to a Concept, the VR of the 

Role at that Concept is the Concept denoting the corresonding class for the 

range. This will be either the inherited VR or a SubC of the inherited VR. 

In the example in Figure 5, the VR of |R|HOBBY at |C|ATHLETE JS 

ICIHOBBY-SPORT. 

The #R is a number range of the form (Mm Max) that indicates how many 

members may be in the set of fillers of the Role for an instance of the 

Concept. This will either be the inherited #R, or a more restricted #R. 

Figure 6 shows an example of defining a Concept using its #R on a Role. 

I 

I 
1 

I 
m 

m 
. i 

IS 

■ 

JOB 
(ONIL) 

EMPLOYED-A r\ 
PERSON   7W 

(1 NIL) 

FIG.     6, AN EMPLOYED-PERSON IS A PERSON WHO HAS AT LEAST ONE JOB. 

Through their function of relating two Concepts. Roles describe the 

essential properties that allow us to distinguish SubCs. By tightening the 

inherited RoleRestriction of |R|HOBBY, we defined two SubCs of |C|PERSON. 

The structure of a Role includes the Concepts representing the domain and 

range of the relation denoted by that Role,  PrimitiveClass  (just  as  for 

15 
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Concepts),  and all  its SuperRoles.  A RoleRestncUon is a component of a 

Concept definition and is independent of the restricted Role's specification. 

The domain of a Role is the most general Concept at which that Role could 

make sense. A domain is a component of a Role specification and is 

independent of the domain Concept's specification. Usually, but not always, a 

Concept that is the domain of a Role has no RoleRestriction for that Role and 

so its place in the taxonomy is not affected by it. Absence of a 

RoleReslriction is equivalent to a RoleRestriction whose VR is the range of 

that Role and whose #R is zero to infinity, written (0 NIL). 

Wc- define subsumption among Roles just as we did for Concepts. In other 

words, we can express that one Role denotes a more specific relation than that 

denoted by another Role. Every KL-ONE net has a Role which is defined to 

represent the most general relation of the relations denoted by all other 

Roles. We call this Role "R-TOP", or "RELATION". Its domain and range are 

IdTHING, as shown in Figure 7. 

RELATION 

FIG.  7.   \R\RELAT10N 

Boles have their own taxonomy with many parallels to the Concept 

taxonomy. Some of the other Roles which describe our example taxonomy are 

shown in Figure 8. 

16 
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RELATION 

GENDER 

ATHLETIC-HOBBY JOB&HOBBY 

FIG.     8-       An example Role  taxonomy 

M 

M 

The subsumption arrow in Figure 8 indicates that |R|ATHLETIC-HOBBY 

differentiates, or is a SubB of. IRIHOBBY, and that |R|HOBBY subsumes or is a 

SuperR of |R|ATHLETIC-HOBBY. 

The specification of a Role consists of the conjunction of the 

specifications of its SuperRs plus an essential distinction. This essential 

distinction may be a PrimitiveClass, a more limited range, or multiple 

SuperRs. A RoleSpec is fully described and then classified, like a 

ConceptSpec. A classified Role's domain will be the conjunction of the 

domains of its RoleSpec and all its SuperRs. 

Just as with our Concept taxonomy, we need a classification operation 

that allows us to generalize and differentiate Roles whenever the need arises 

so that their place in the taxonomy is independent of the order in which they 

are installed. There are several Role descriptors for the convenience of a 

network user, not used in classification, which will be explained later. 

17 
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To return to our |C|ATHLETE exav ole. suppose we have established the 

ConceptSpec and RoleSpec shown in Figure 4. 

If we establish the subset of each person's hobbies which are sports. 

Figure 9, then an amateur athlete is someone who has at least one member in 

this subset, Figure 10. 

FIG.  9.  SOME OF A PERSON  'S PL HOBBY ARE CALLED PL    ATHLETIC-HOBBY WHICH 
ARE PL HOBBY-SPORT. 

Another component of Concepts, RoleConstraints, represents a relationship 

between the sets of fillers of Roles at that Concept. A RoleConstraint is 

defined at its enclosing Concept and is inherited by that Concept's SubCs. As 

shown in Figure 11, the introduction of a RoleConstraint is another way to 

describe the specialization of a Concept. 

A RoleConstraint consists of a constraint type which is either EQUAL, 

SUPERSET, or SUBSET and two RoleChains which are lists of Roles. The first 

Role  in the list must be attached to the enclosing Concept of the 

18 
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HOBBY 
(0N!U 

FIG.  10.  AN ATHLETE JS A PERSON WHO HAS AT LEAST ONE ATHLETIC-HOBBY. 

RoleConstraint. Each subsequent Role must be attached to the VR in the 

RoleRestriction at the Conc-pt where the previous Role in the list was 

attatched. 

In effect, each RoleChain represents a composite relation, composed of 

the relations represented by the Roles in the chain, with its domain as the 

enclosing Concept. In Figure 11, the functional notation for Roles illustrates 

the composite relation represented by the RoleChains. The constraint type 

establishes, for any instance o.f the enclosing Concept, the relation between 

the instances of the two composite relations. 

We are now in a position to give a more concise explanation of how one 

Concept or Role subsumes another.   For  simplicity,  the  terms Object  and 

19 
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FIG.  U.  A LOCALLY-EMPLOYED-PERSON IS AN EMPLOYED-PERSON. 
THE LOCATION OF THE COMPANY OF THE JOB OF A      LOCALLY-EMPLOYED- 

PERSON IS THE SAME AS HER HOME   'S TOWN. 

LOCATION (COMPANY (JOB (LOCALLY-EMPLOYED-PERSON)))  = 
TOWN (HOME (LOCALLY-EMPLOYED-PERSON)) 

ObjectSpec will be used for explanations which can apply to Concepts or Roles. 

Subsumption means that the subsumee represents a subset of the set represented 

by its snbsumer. The subsumee inherits all the structure of its subsumers. 

The local structure of the subsumee expresses the essential distinctions 

between it and its subsumers. 

The specification of an Object is achieved by creating an ObjectSpec 

which specifies subsumers for that Object and local structures. The ObjectSpec 

Is then installed in the most specific place and, simultaneously, the most 

general place possible in the taxonomy. Along with the subsumers specified in 

the ObjectSpec, additional subsumers may be identified by the classifier. That 

is,  there may be £:neralizations  installed in the taxonomy which were not 
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explicitly specified as subsumers in the ObjcctSpec.  The classifier may also 

dissolve an ObjectSpec if it discovers that the ObjectSpec has no properties 

, to distinguish it from an already taxonomized Object. 

A Role is described by its subsumers and its local structure which 

consists of its range and its PrimitiveClasses. Every Role wi'1 differentiate 

its subsumers in at least one of three ways 

o Role Conjuntion. If a Role is subsumed by two or more Roles, then it 
differentiates all of them. The conjunction of two Roles represents 
fillers which satisfy all relations represented by its parents for a 
single instance of the domain. In our example, |R|JOB&HOBBY 
represents the relation between a particular person and an activity 
that is both his or her hobby and his or her job. 

o VRDiff. A Role may differentiate a subsumer by restricting its range 
to a SubC of its subsumers' range. |R|ATHLETIC-HOBBY is |R|HOBBY with 
its range restricted to |C|HOBBY-SPORT. 

o PriraitiveClass Introduction. A unique PrimitiveClass may be 
introduced to express how a Role differentiates its subsumer. 
|R|RELATION subsumes |R|HOME, |RlHOBBY. |RiJOB, and |R|GENDER in ways 
not accounted for in the taxonomy. 

A Concept is described by its subsumers and its local structure which 

consists of RoleRestrictions of attached Roles, RoleConstraints, and 

PrÄ-nitiveClasses. A Concept must specialize its subsumers in at least one of 

four ways. 

o Concept Conjunction. When a Concept is subsumed by two or more 
Concepts, it specializes all of them. |C|WOMAN is defined as a SubC 
of both |C|PERSON and |C|FEMALE-ANIMAL. 

o Role Modification. A Concept may specialize its subsumer by creating 
a new RoleRestriction for an inherited Role. This will restrict the 
range for the subclass of the domain represented by the Concept in at 
least one of three ways. 

21 

O-V-^V'sV.V-':"-^"-''-.-'-.'".' ■."-." t'''.'" ^ ;>-: ^ «-. ^-J-^, " V Yijffai'l 



Bolt Beranek and Newman Inc Report No. 5421 

The VR may be a SubC of the VR of the inherited RoleRestriction 
In the  first |C|ATHLETE example, shown in Figure 5, |C|ATHLETE 
is defined as |C|PERSON with the VR of  |R|HOBBY restricted to 
|C|HOBBY-SPORT. 

The Min of the #R may be greater than the Mm of the #B. in the 
inherited RoleRestriction. |C|EMPLOYED-PERSON is defined as 
|C|PERSON with the Min of |R|JOB increased to one. 

The Max of the #R may be less than the Max of the #R in the 
inherited RoleRestriction. 

o RoleConstraint Introduction. The Concept may be the enclosing Concept 
for a RoleConstraint. 

o PnmitiveClass  Introduction.  A  unique  PrimitireClass may  be 
introduced to express how a Concept  specializes  its subsumer. 
|C|ANIMAL. |C|PLANT. |C(PERSON, and |C|UNICORN are natural kinds, and 
so will need a PrimitiveClass. 

As mentioned before, there are several descriptors which enhance Object 

specifications, but do not affect classification: local data, inherited data, 

disjointness, covering, individual marking, and inverse relations. These may 

be attatched to taxonomized Objects either before or after classification. 

KL-ONE provides a facility to associate keyed data with taxonomized 

entities. Concepts, Roles, and RoleRestrictions can all have three kinds of 

attached data. IData is attached to an item and inherited by all its 

subsumees. Data is local to the item to which it is attached. LocalIData is 

IData at its most general level of attachment. 

The nature of the data is unrestricted; it can be advice, procedures, 

indications of defaults. Because data can be added to taxonomized entities, a 

network user can may both access data and add it. Attached data allows a 

network user to hang information at its most general level af applicability 

and to distinguish it from information attached at a more specific level. 

22 
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i 

A DisjointnessClass represents a disjoint set. For Concepts, a 

DipjointnessClass is a set of Concepts for which there are no coiranon 

instances. For Roles, a DisjointnessClass is a set cf Roles which, for any 

particular instance in the conjunction of their domains, have no common 

members in their filler sets. 

3 

Each Object in the DisjointnessClass defines a branch of that 

DisjointnessClass, and all the subsumees of that Object come under that 

branch. That is. Objects subsumed by different Objects in a DisjointncjsClass 

will also be disjoint. Furthermore, disjointness can be derived for two 

Concepts when their VRs on the same Role fall under different branches of a 

DisjointnessClass. 

:•:! 

FIG.  12.  A Disjo'!ntnessClass with  three  branches 

<•< 

:i 

Because DisjointnessClasses are independent of classification, there is 

nothing to prevent an Object from being subsumed by multiple branches of a 

DisjointnessClass. Such an Object will be marked as incoherent with respect to 

the appropriate DisjointnessClass. 

23 
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A Covering is a set of Objects associated with an Object, the covered 

Object. It expresses that the set represented by the covered Object is 

exhausted by the sets in the Covering. Every instance of a covered Concept 

will also be an instance of at least one of the Concepts in the Covering. 

Similarly, for a particular domain instance, every filler of a covered Role 

will also be a filler of at least one of the Roles in the Covering for that 

same domain instance. 

FIG.  13.   A Covering for   \C\L1V1NG-THINC 

Because any subset of an exhausted set will also be exhausted, all the 

subsumees of the covered Object will also be covered. Usually, the Objects in 

a Covering are subsumed by the most general Object they cover. 

Both DisjointnessClasses and Coverings are not used by the KL-ONE 

classifier, but provide a us- ful reasoning tool for PENNI and any other system 

accesssing the network. A partition may be expressed with a Covering of 

disjoint Concepts. 

When the relation denoted by a Role has  an  inverse  relation,  we can 
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m 

HOME 

OCCUPANT 

i 
m 

FIG.  14.   A PERSON IS ITS PL HOME   'S OCCUPANT. 
A RESIDENCE IS ITS PL OCCUPANT  'S HOME. 

PERSON = OCCUPANT (HOME (PERSON)) 
& RESIDENCE  - HOME (OCCUPANT (RESIDENCE)) 

g i 

■.■: 

express this in KL-ONE by establishing an InverseRole. For any 

(instance,fiHer) pair described by a Role, the (fi1ler,instance) pair is 

described by that Role's InverseRole. This property is inherited by all SubRs 

of the Role. 

In summary, KL-ONE maintains a knowledge base using Concepts to represent 

classes of things in the world and Roles to represent relations between these 

classes. Concepts and Roles are interrelated; i.e.. Concepts are specified in 

terms of other Concepts and Roles , and Roles are defined in terms of other 

Roles and Concepts. Two subsumption taxonomies are maintained, one for 

Concepts and one for Roles. An Object's place in its taxonomy is defined by 

creating an ObjectSpec by using a small number of well defined operations to 

describe it in terms of other Objects. For Concepts the KL-ONE operations are 

establishment of SuperC, restriction of Role, and constraint of Role. For 

Roles, the KL-ONE operations are establishment of SuperR, and restriction of 

v 
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range When these operations do not establish a sufticient definition of an 

Object, a PrimitiveClass is introduced. The ObjectSpec is then installed in 

its taxonomy by the KL-ONE classification operation In addition, there are 

several Object components which are not used in classification and so may be 

established at any time. 
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3.  KL-ONE: SEMANTICS AND CLASSIFICATION' 

J. Schmölze and D. Israel 

3.1 Introduction 

*3 Citing Hayes ( [6], page 47), 

One can characterize a representational language as one which has 
f ... a semantic  theory,  by which I mean an account  ...  of how 

expressions of the language relate to the individuals or relationships 
■ or actions or configurations, etc., comprising the world, or worlds 
I about which the language claims to express knowledge  ...  Such a 

semantic theory defines the meanings of expressions of the language. 

i        KL-ONE is such a language. 

■ The original designers of KL-ONE were primarily interested in automating 

the understanding of natural language.  They needed a language  in which to 

B        represent the meanings of sentences (of English).  Thus, Brachman et al 

M [1, 2, 7] chose the "real world" as their primary domain and proceeded to i 
design a language  in which one could represent knowledge about important 

classes of real world objects and the relationships between them. 

H This chapter presents a description of most of the  language of KL-ONE. 

E 
We also specify a semantics for KL-ONE.  However, our primary interest is to 

A version of this paper has been submitted to the 11th Annual ACM 
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Salt Lake 
City, January, 1984. 
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show some interesting properties of the algorithm for the KL-ONE classifier, 

which deduces subsumption relationships between the terms of KL-ONE. KRYPTON 

[4] is the only other representational formalism, in the semantic network 

style, in which classification plays a central role. For more information 

plus a description of the system that implements KL-ONE, we refer the reader 

to [1, 2, 7, 8], 

3.2 A Brief Introduction to the KL-ONE Language 

KL-ONE lets one define a set of well formed terms, which are divided into 

three groups: Concepts, Rolesets and RoIe-Chains. Concepts denote properties 

(i.e., one-place relations) and Rolesets denote two-place relations. 

Role-Chains are formed by composing either Rolesets or other Role-Chains, and 

they denote the result of the corresponding relational composition. 

Alternatively, one can think of Concepts as denoting sets and both 

Rolesets and Role-Chains as denoting sets of pairs. A Concept, then, can 

denote all animals and a Roleset can denote all pairs (a,b) such that b is an 

offspring of a. By combining these appropriately, one can define a Concept 

denoting parents, where something is a parent just in case it is an animal and 

has at least one offspring. 

KL-ONE allows for both primitive and defined terms. The conditions 

specified for a primitive term are necessary but not sufficient. These terms 

are used to denote sets for which non-trivial, sufficient conditions for 

membership cannot be stated, as in sets corresponding to natural kinds. (Of 

course, KL-ONE does not commit itself to any particular term being primitive.) 
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The conditions specified for defined terms are both necessary and sufficient, 

such as  the Concept  for parents mentioned earlier.   Furthermore,  the 

t'l 
well-formed complex terms are generated by a small set of operitors for 

P combining Concepts, Rolesets and Role-Chains.  Each of these operators implies 
if 

a particular meaning for the construct as a function of the meanings of  the 

I        constituents. 

KL-ONE has been implemented as a semantic network in which the terms are 
I 

represented as nodes and certain relations between terms are represented as 

i 
■j links.  These relations correspond only to term forming operations.  Relations 

from a particular domain, such as the "offspring" relation, are expressed as 

m 
J«        terms.  This is unlike some other semantic network formalisms that allow 

H domain relations to be expressed as links (see [5, 3, 9]).  The most important 

inter-term relation that KL-ONE maintains is that of subsumption, which in the 

set-theoretic semantics denotes set inclusion between the sets denoted by the 

terms. Given the above specifications, the Concept for animals subsumes the 

Concept  for parents,  and the KL-ONE system puts a link denoting subsumption 

^y        between the corresponding nodes. 

i 
Thus, a portion of any KL-ONE network is actually a taxonomy based upon 

■ 
jg        subsumption.   This  is no coincidence - taxonomic reasoning has proven to be 

m extremely useful in the application areas mentioned earlier.    It yields a 

■■        class of  inferences that, when done quickly, greatly enhance the performance 

H        of such systems.  The classification algorithm, mentioned earlier,  takes a 
I 

term and attempts to find all other terms (from a particular, finite network) 

that either subsume it or that it subsumes.  It is a crucial component for our 

reasoning systems. 
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3.3 Syntax of the KL-ONE Language 

Let K^, denote all of the KL-ONE Concepts. KR denote all of the Rolesets, 

and KRC denote all of the Role-Chains. Also, let the Role-Chains include the 

Rolesets, so KRC includes KR, and let K be defined as the union of Kc and KRC. 

A precise definition of K is given below via a set of typed operators (this 

follows the style of Brachman, et al [4]). Alongside each element and 

operator is an intuitive description of its meaning (a formal description is 

in Section 3.5) 

There are two distinguished elements of K. 

RJQP is in KR.  It denotes the fop of the Roleset taxonomy, i.e., it  subsumes 
all Rolesets. 

CpQp is in KQ.     It denotes the fop of the Concept taxonomy, i.e., it subsumes 
all Concepts. 

KL-ONE allows one to draw from an infinite set of primitive Rolesets and 

an infinite set of primitive Concepts. The operator RP is defined as a 

bijection from the natural numbers to the primitive Rolesets such that (RP i) 

refers to the i-th primitive Roleset. (CP i) is similarly defined for the 

primitive Concepts. 

The definitions of the operators follow.  Let i and n be natural numbers. 

Furthermore, let R, R. R„ be elements of KD, C, C,, ..., C„ be elements i       n K     l       n 

of Kj,.  and RC,  RCj, . . . ,  RCn be elements of KRC.    (The terms "meet", 

"composition" and "filler" are defined in Section 3.5.) 
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(RP i) is in KR ami denotes the i-th primitive Roleset. 

(RMeet Rj ... R^)   is in KR and denotes the meet  of Rolesets Rj Rn. 

(RChain RC, ... RC )  is in KRC and denotes a Role-Chain as the composition of 
the Role-Chains RCj RCn. 

(CP i) is in Kj, and denotes to the i-th primitive Concept. 

(CMeet Cj ... Cn) is in 1^ and denotes the meet of Concepts Cj,   ., Cn. 

(CRestrict R C) is in Kp and denotes a restriction of the Roleset R to the 
Value-Description C. 

(CMin R n)  is  in Kc and denotes a Concept with at least n fillers  of the 
Roleset R. 

(CMax R n) is in K^-, and denotes a Concept with at most n fillers of  the Kp and de 
oleset R. Ro 

(CSubset RCj RCg) is in Kc and denotes a Concept with a subset relation 
between the fillers of the Role-Chain RC, with the fillers of 
RC2. 

I 
This defines all of K. 

While the operators RP and CP refer the primitive Rolesets and Concepts, 

their relationships to other elements of K are specified via primitive 

introductions. 

,> 

Let i be a natural number, R be in KRl and C be in KQ. 

(RPrim P. i) states that R subsumes „he i-th primitive Roleset. 

(CPrim C i) states that C subsumes the i-th primitive Concept. 

The precise meaning of these operators and restrictions upon their use 

will be explained in the next two sections. 
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3.4 Using KL-ONE 

We offer some examples of term specifications.  Our earlie- example for 

animals and parents is specified with. 

let ANIMAL ■ (CP 1),  let Offspring = (RP 1). 

let PARENT ■ (CMeet ANIMAL (CMin Offspring 1)) 

A parent is a animal with at least one offspring, i.e., PARENT is subsumed by 

ANIMAL and has at least one filler of the Offspring Roleset. If we wanted to 

state that all mammals were animals and that all people were mammals, we would 

use primitive introductions: 

(CPrim ANIMAL 2);  let MAMMAL ■ (CP 2); 

(CPrim MAMMAL 3),  let PERSON - (CP 3), 

Assuming animals, mammals and people are natural kinds, we denote them by 

primitive Concepts. 

When using KL-ONE, one builds a particular, finite network, i.e.-, a 

particular set of Rolesets, Concepts and Role-Chains. A network, called N, is 

defined to have two parts. Nt^ is a set of well formed terms of KL-ONE, and is 

a subset of K. Np is a set of primitive introductions. 

References to terms will be written in bold-face characters.  Concepts will 
be all upper-case, Rolesets w.ll be capitalized. 
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3.5 A Semantics tot  KL-ONE 

A semantics for a KL-ONE network will be given in a standard first-order 

language with lambda abstraction (called FOL+). With some network h, we 

associate a set of predicates, one predicate corresponding to each element of 

Nv, and a set of sentences in FOL+, one sentence corresponding to each element 

of Np. 

3 

Before specifying the semantics, we define a notation for expressing 

number  restrictions   (i.e.,  arising  from  CMin  and  CMax).     Let 

"[3n:x][px]" express that there are at least n distinct x's such 

that each is p-ish. 

Our semantic specification consists of two mappings. Ths first mapping, 

M, takes each element of NK into a (possibly complex) predicate, which is 

denoted in FOL+. The second mapping, AX, takes each primitive introduction 

into a sentence in FOLr. 

M is defined by: 

,"1 

I 

(M RjQp) ■ lambda xy.x=x&y=y 

i.e., the universal two-place predicate 

(M (RP i)) = the i-th primitive two-place predicate 

which we will write as r*. 

(M (RMeet Rj ... Rn)) = lambda xy,(M R1)xy&,..&(M Rn)xy 

(M (RChain RCj ... RCn)) = 

1 ambda xy. [ az j zn_ j ] 

[(M RC1)xz1&(M RC2)z1z2&...^(M RCn_1)zn_2za_1&(M RCn)zn_1y] 
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(M C^0p) ■ lambda x.x=x 

i.e., the universal one-place predicate 

(M (CP i)) = vhe i-th primitive one-place ^.edicate 

■»rtiich we will write as cv 

(M (C    Cj ... Cn)) - lambda x.(M C^Xä. . .&(M Cn)x 

(M (CResnict R C))  = lambda r.[Vy][{M R)xy->{M C)y] 

(*1 (CMin R n)) = lamoda x.[an:y][(M R)xy] 

(M (CMax R n)) = lambda x.~[3n+l:y]i(M R)xy] 

(M (CSubset RCj RC2)) = lambda x.[Vy][(M RC1)xy->(M RC2)xy] 

A filler for some Roleset R with respect to some Concept C is defined as 

some y such that "(M C)x&(M R)xy". A filler for a Role-Chain is defined 

rirai iarly. 

AX is defined by: 

(AX (RPrim R i)) = "[\fxy][rVxy->{M ^)xy]" 

(AX (CPrim C i)) =- "[Vx][JVX->(M C)x]M 

3.6 A Definition of Subsumption 

Let N be a network consisting of Nj^ and Np, where Nj^ contains the 

Concepts C1 and Cg, and the Rolesets Rj and Rg. Alsc let Tp be the 

conjunction all sentences associated with Np via AX.  C, subsumes Cg if; 

Tp -> [Vx][(M Cg)x->(M C^x] 

is valid.  Intuitively, C, subsumes Cg if every individual that is Cg-ishmust 
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also  be  C,-ish  given the relationships stipulated by the primitive 

...productions . 

Rj subsumes Rg if 

Tp -> [Vxy][(M R2)xy->(M R^xy] 

is valid. 

Subsumption is not defined between an element of Kc and an element of Kp. 

Also, for historical reasons, we have not utilized the relation of subsumption 

between elements of Kj^-,, as opposed to Kp, although that is an obvious 

extension we could make. 

■ 

-m-i 

I 
, *-i 

3.7 The Classifier Algorithm 

The classifier algorithm is based upon a function that attempts to 

determine whether or not two terms stand in a subsumption relation. The 

function's name is C-SubsumesP (for classifier subsumption) which maps two 

elements of K into one of TRUE, FALSE or INAPPLICABLE- C-SubsumesP defines a 

new relation between elements of K which we call c-subsumption. 

Using C-SubsumesP, the classifier algorithm takes a newly specified term 

(call it X) and determines those Concepts from a particular network that X 

subsumes and those that subsume X. Furthermore, it keeps a record of all 

subsumptions that it discovers (by adding a link in the network). 

I 
m 

Our original hope was that c-subsumption would be  identical  to 

subsumption, but our analysis shows that it is not. However, we have shown 
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that C-SubsumesP is sound, i.e., letting XI and X2 be members of K, then 

"C-SubsumesP(Xl,X2)=7'Ät/E"' implies that XI subsumes X2 by the definition in 

Section 3.6.  We have also shown that C-SubsumesP(Xl,X2) always terminates. 

But C-SubsumesP is not complete, i.e., it is not the case that XI 

subsumes X2 implies that "C-SubsumesP(Xl ,X2)=7/?t/£"'. There is a class of 

combinatoric analyses that is not done by C-SubsumesP which must be done in 

some cases where there are several uses of both CMin and CMax. However, we 

are hopeful that C-SubsumesP is complete if we eliminate the use of CMax. 

Before diving into C-SubsumesP, we first examine an algorithm named 

Reduce that takes an element of K and reduces it into canonical form. Let X 

be an element «f K. 

(Reduce X) = 

(Combine (CSubsetTransClosure (Simplify X))) 

Simplify "flattens" all terms, i.e., all Concept terms have just one 

(CMeet ...), or no CMeet at all. Also, all Role-Chains will have only 

Rolesets as their arguments (not other Role-Chains). 

CSubsetTransClosure computes the transitive closure of all uses of 

CSubset. 

Combine puts "like" components together, e.g., 

(CMeet (CRestrict R Cl) (CÄestrict R C2)) becomes (CRestrict R (CMeet Cl C2)). 

It also makes recursive calls to C-SubsumesP in order to eliminate redundant 

information, e.g., if "C-SubsumesP(Cl ,C2)=7Ät/£"', then (CMeet Cl C2) becomes 

just C2. 

36 

--*  -M m - 
* "^ VI • 1 < * 

*. j *^A   ...-= ...^ - ^ . ^- -^ *■- 



■ Report No. 5421 Bolt Beranek and Newman Inc. I 
m 

f We  finally arrive at C-SubsumesP.  Various cases for the second argument 

(the potential subsumce) are specified and each case tests  the structure of 

the first argument (the potential subsumer). 
.■4 

I 
I 

i 
(C-SubsumesP Xj Xg) = 

if Xj  and Xg are of  different   types 

then INAPPLICABLE 

S3 eise Xj <-  (Reduce Xj)   ;  Xg <- (Reduce Xg) 

.-, cond 
S3 

■"' ^^OP1 mjE 

:-i 

I Xl=CTOP:   TRUE 

Xg=R<|.Qp;   FALSE 

S X2=CTOp;  FALSE 

X2=(RP i);   X1=(RP i)   | 

let (RPrim R' i) be in Np; (C-SubsumesP Xj R') 

| X2=(CP i);   X1=(CP i)   | 

let (CPrim C i) be in Np; (C-SubsumesP Xl C) 

X2=(CRestrict  Rg Cg):   X1=(CRestrict  Rj  Cj)  & 

■ 
(C-SubsumesP Rg Rj) & (C-SubsumesP C1 Cg) 

X2=(CMin Rg ng); X1=(CMin Rj nj) & 

(C-SubsumesP Rj Rg) & nz^ni 

X2=(CMax Rg ng): X1=(CMax Rj nj) & 

(C-SubsumesP Rg Rj) & nginj 
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X2=(RMeet R^   . . .  R^); 

if X^imeet Rj   ...   R^) 

then for each RJ,   {C-SubsumesP R| Xp) 

eise  there  is  some R^ st   (C-SubsumesP X,   Rp 

X2=(CMeet C^   ..,   cjg): 

i/ X1=(CMeet  cj   ...   C^) 

</ien for each CJ. (C-SubsumesP c]  X0) 

else  there is some C^ st (C-SubsumesP X, Cp 

X2=(RChain Rj ... R^): jnote. n>l, thanks to Simplify} 

X^CRChain R| ... R^) & for Ui£n, (C-SubsumesP Rj R^) 

(CSubset RC^ Rc|); Xl»(CSubset Re} rtc|) &: 

(C-SubsumesP RC^ Rcj) ic  (C-SubsumesP RCg Rcf) 

3.8 Conclusion 

We have briefly described the KL-ONE knowledge representation formalism, 

sketching its syntax and characterizing its semantics. The system is meant to 

express a certain range of taxonomic or hierarchical relationships among 

properties and relations, both primitive and defined. Within this framework, 

the question of an automatic classification scheme arises quite naturally We 

describe such an algorithm and point toward a proof of its soundness with 

respect to a defined relation of subsumption between KL-ONE terms . 

The help and advice of Ron Brachman, Hector Levesque and Krithi Ramamritham 
is gratefully acknowledged. 
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4.  KLONEDRAW - A FACILITY FOR AUTOMATICALLY DRAWING PICTURES OF KL-ONE 
NETWORKS 

J, Schmölze 

KLONEDRAW is the name of a program that draws pictures of KL-ONE 

networks. One simply informs KLONEDRAW of which portion of some network to 

draw and it composes a picture of it using the familiar graphical notation for 

KL-ONE. Furthermore, this process ii completely automatic. Although, we 

already have several ways of displaying the contents of a network, KLONEDRAW 

is unique in its role as a pictorial pretty-printer for KL-ONE Concepts. 

One uses KLONEDRAW by creating one or more Pictures ("Picture" will be 

used as a technical term for the following discussion), each of which displays 

either part, or all, of the current KL-ONE network. The Picture appears to 

you as an Interlisp window that has a menu alongside. Associated with each 

Picture is an infinite 2-dimensional plane that we call a blackboard. When 

you request a Concept to be drawn in some Picture, it is (conceptually) drawn 

on the blackboard, and the Interlisp window is positioned on the blackboard 

just over the Concept; thus the drawing of the Concept is visible. The 

Picture's window is "scroll-able" and can be positioned anywhere on the 

blackboard. As more and more of the network is drawn, one scrolls the window 

in order to view different parts of the network. Of course, one can scroll 

the window semantically as well by requesting that certain Concepts be made 

visible. 

One can have any number of Pictures at any time and they can either have 
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their own, independent blackboards with a drawing of the current network, or 

they can share a blackboard. The function that creates Pictures, 

CREATE?ICTURE, has an optional argument named PictureForGroup If 

PictureForGroup is a Picture, the newly created Picture will share the 

blackboard of the given one. Of course, the new Picture will have its own 

window, thereby allowing multiple windows on the same blackboard. Eventually, 

there will also be a scale argument, letting you create several windows on the 

same blackboard, each with a different amount of detail. The small version 

could provide a global view while the normal version gives all of the details. 

Also, we recently expanded KLONEDRAW to use either a color monitor or the 

black and white monitor. 

4.1 Use of the Mouse 

Each part of a KLONEDRAW Picture that corresponds to a KL-ONE object is 

"mouse sensitive". If you depress the left mouse button, it begins to track 

ycur selections and highlights items as you go along, such as Concepts or 

Roles or SuperC links, etc. This is done by changing the color of the item. 

As you move away from an item, it is un-highlighted, by going back to their 

original "color". If you let up the left button over a node or link, you have 

selected it. Once you select some KL-ONE item, it remains highlighted (but 

with a slightly different pattern), and the i*em can be used as an argument to 

a command from the command menu. 

The command menu has several commands which work in the following way. 

They take zero or more arguments, where the arguments are selected from the 
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corresponding picture. As soon as a command and its required arguments are 

selected, the command executes, independent of whether you select the command 

first or the nodes first. Commands are selected in the normal menu way. 

Among the current list are commands that will re-draw the Picture (which takes 

zero arguments) or move the drawing of a Concept (which takes a Concept as an 

argument). 

4.2 Functional Interface to KLONEDRAW 

The functional interface to KLONEDRAW is so simple that we have included 

it below: 

CREATE?ICTURE[TITLE,P1CTUREF0RGR0UP;WINDOW] Creates a KLONEDRAW Picture. 

A Picture is a structure that includes a blackboard with some portion of the 

current network drawn on it, a window, and a command menu. TITLE is simply 

the (optional) title for the window. PICTUREFORGROUP is (optionally) another 

Picture; if supplied, the Picture being created will have the same blackboard 

as PICTUREFORGROUP.  WINDOW is an optional window to re-use.  If no window is 

S supplied, it prompts you for the size of the window. 

KLONEDRAW[ENTITYLIST.PICTURE] This is  the main function for drawing. 

ENTITYLIST is either a single entity or a list of entities.  An entity is 

i 
either a KL-ONE object, such as a Concept, or the name of a KL-ONE object. It 

draws the objects in ENTITYLIST and then scrolls the window so that at least 

some portion of the items in ENTITYLIST are visible. If the objects in 

ENTITYLIST are already drawn, the window is simply scrolled so that they are 

visible.  The PICTURE argument determines which Picture is affected. 
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ERASEPICTURE[PICTURE] Erases the blackboard of PICTURE. Note that if it 

shares the blackboard with another, only this Picture is affected by this 

function (i.e., it not longer shares a blackboard) 
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5. ASSERTIONS IN NIKI, 

M. Vilain and D. McAllester 

5.1  Introduction 

The KL-ONE knowledge representation system can be thought of as composed 

of two subsystems. One part of KL-ONE, the terminological component or Tbox, 

is responsible for providing a vocabulary of terms with which to describe the 

world. The Tbox maintains structural and taxonomic relations among these 

terms. The other part of KL-ONE, the assertional component or Abox, is used 

to make statements about the world. The Abox records the facts that hold of 

entities described by terms in the Tbox. 

In the past, much of the work done in designing and implementing KL-ONE 

has focused on the terminological component of the language. The KL-ONE Tbox 

has developed into a complex and richly expressive system. In contrast, the 

original KL-ONE system was given a simple assertional mechanism which has not 

changed substantially since it was first designed. Recent investigations have 

looked more closely at the KL-ONE Abox and pointed out some important 

shortcomings in its design [2, 1]. 

In particular, these investigations voiced dissatisfaction with the 

limited expressive power of the original KL-ONE Abox. Enhancing this 

expressive power is the subject of the research described in this article. We 

are replacing the old KL-ONE assertional mechanism with a considerably more 
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pow«rfui system, at its core is a reasoning engine for the propositional 

calculus. The new Abox has been named PENNI ' PENNI will sarve as the 

assertional component of NIKL, the new version of KL-ONE that is described in 

Chapter 2 of this report. 

This new Abox significantly changes the nature of the KL-ONE language; in 

the rest of this article we outline some of these changes. First we review 

the old KL-ONE assertional mechanism. We then describe the assertional 

language of PENNI, along with RUP, the prepositional reasoning engine on which 

the new Abox SJ built. Next we show how the terminological component of NIKL 

is interfaced to its assertional counterpart. We conclude with a review of 

how our work has extended the expressive power of KL-ONE. 

5.2 The old assertional system 

To give perspective on the PENNI system, we include a brief review of the 

old KL-ONE assertional mechanism.2 The old KL-ONE Abox is a simple extension 

of the terminological taxonomy; hence we begin our description of the Abox 

with a discussion of the taxonomic component of KL-ONE. Nodes in the taxonomy 

are descriptive terms; the subsumption relation between concepts is to be 

taken as relation between such terms. Thus in Figure 1, the node BICYCLIST is 

to be taken as a description of bicyclists: they have a TRANSPORT-MODE which 

is BICYCLEs.  The superc  (subsumption)  link between BICYCLIST and PERSON 

'The name PENNI is an acronym for the (P)ropositional (EN)gine for (NI)KL. 

The description of  the 
details can be found in [6], 

2The description of  the old Abox given here is necessarily cursory. More 
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states that anything which can be described as a BICYCLlSf can be described as 

a PERSON — the structure in Figure 1 can be read as saying "All bicyclists 

ere persons". 

TRANSPORTATION 
-MODE 

FIG.  1.  A KL-ONE NETWORK 

Absent from these descriptive readings of taxonomic terms is any claim 

that the terms describe entities which actually exist. The network in Figure 

1 makes no statement about the actual existence of bicyclists or persons. To 

provide a mechanism for notating existence, the constructs of nexus nodes and 

description wires were added to the KL-ONE language. 

'3 

i 

At the heart of the old Abox is the construct of nexus nodes. A nexus 

node in a KL-ONE network stands for an entity in the world; it denotes that 

entity. Unlike the descriptive nodes of the concept taxonomy, the nexus nodes 

are taken assertionally: a nexus in a network stands for an individual which 

is asserted to exist. Nexus nodes are connected into the network by means of 

description wires. These wires have Ihe following reading: if a nexus N is 

connected by a description wire to a concept C, then the entity denoted by N 

is desc-jbed by C. Consider the first network in Figure 2.   It has the 
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following interpretation: the nexus John denotes some individual in the world, 

rnd this individual can be described as a BICYCLIST. We can read this 

structure as asserting "John is r. bicyclist". As the second network in Figure 

2 suggests, a nexus can be described by JU,-e than one concept by running 

several wires - tt of the nexus. The second network can be read "John is a 

bicyclist «uid a red-haired persoi.". 

Network 2; 

Network 1; 

HAIR 
-COLOR 

John O John 

Ke7:   O — nexus 
— description rare 

FIG.  2.  A NETWORK WITH NEXUS NODES 
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5.3 Problens end Proposals 

The original KL-ONE Abox was a very simple mechanism, and its simplicity 

made it a straightforward and clean extension of the terminological part of 

KL-ONE. However, this very simplicity also posed great restrictions on the 

kinds of assertions that could be formed in KL-ONE The following are some of 

the more salient shortcomings of the old Abox. 

o In the old asserticnal language it isn't possible to make "weak", or 
not fully determinate, statements about individuals. One can not 
assert disjunctive propositions (e.g., "John is either a bicyclist or 
a motorcyclist"). Nor can one assert negated propositions (e.g., 
"John is not a motorcyclist"). This is a weakness of the description 
wire scheme: there are no special kinds of description wires that 
encode disjunction or negation. 

o The nexus nodes of the old Abox must be interpreted as denoting 
distinct individuals. It isn't possible to equate two nexus nodes 
— that is, one can't assert that the two nodes actually denote the 
sane individual. For instance, say we construct a nexus (called 
VENUS) that denotes the second planet orbiting our sun, and construct 
another node (called MORNINGSTAR) denoting the star ihat appears on 
the horizon every morning. If we later learn that these two 
celestial bodies are one and the same individual, we are at a loss to 
express this. Because the nexus nodes must denote different 
individuals, we can not equate VENUS and MORNINGSTAR. 

o The old Abox doesn't provide a way to assert propositions that have 
the status of inference rules. By this we mean that the language can 
not express implications (e.g., "if John is a bicyclist then he is 
not a motorcyclist"). Nor can it be used to express a wide range of 
quantified statements (e.g., "every bicyclist is not a 
motorcyclist"). 

o Finally, the old Abox doesn't provide any mechanism for making 
inferences automatically from statements in the assertional language. 

Each of these shortcomings of the old KL-ONE Abox constitutes a major 

restriction on the expressive power of the KL-ONE assertional language In 

fact, taken together these shortcomings define some appealing desiderata for 

the revised Abox of NIKL. 
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These desiderata resemble "a prescription ... for a language like that of 

First Order Predicate Logic" [2]. This view very much embodies the philosophy 

behind PENNI, the assertional component of NIKL. We have replaced the old 

assertional language of nexus nodes and description wires with a language 

based on a fragment of the predicate calculus. 

As was said at the start of this paper, statements in the assertional 

language are sentences formed out of terms in the taxonomic language. Because 

the A-language is based on predicate logic, we must agree to a formal 

(logical) reading of the T-language. Elsewhere in this report [9], we sketch 

a formal semantics for the taxonomic language. This account defines the way 

taxonomic terms are used in the A-language.  Briefly, we proceed as follows. 

For each concept node in the taxonomy, we identify a corresponding 

1-place predicate which has the same name as the concept. For example, to the 

PERSON and BICYCLIST concepts of Figure 1, correspond respectively the 

A-language predicates named "PERSON" and "BICYCLIST" — as in (PERSON John) or 

(BICYCLIST John). Similarly, each role in the NIKL role lattice has 

associated a 2-place predicate bearing its name. Thus to the 

TRANSPORTATION-MODE role in Figure 1 corresponds the A-language predicate 

named "TRANSPORTATION-MODE". Finally, constant symbols denote individuals in 

the world (e.g., the constant symbol "John" in (BICYCLIST John) denotes some 

individual person). Constant symbols correspond to the nexus nodes of the old 

assertional language. 

Wr v 1 also use the terms "A-language" (or "PENNI language") and 
"T-lang.jge" (or "NIKL" language) to refer to the assertional and taxonomic 
languages respectively. 
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■-. 

Constant symbols in the A-language denote individuals in the •world. To 

assert that a term in the T-language, i.e. a NIKL concept, describes an 

individual, one applies to the individual the A-language predicate 

corresponding to the T-language term. This statement is then tn assertion in 

the A-language. To illustrate this, the following table contains some 

examples of PENNI language assertions. The assertions in the table cover many 

of the examples given eaMier during the discussion of the old nexus node 

mechanism. The table also contains examples of A-language statements that 

could not have been expressed using the old Abox. Note that the examples 

refer to concept terms taken from the taxonomy in Figure 3. 

I 

TRANSPORTATION 
-MODE 

3 
FIG.  3.   THE TAXONOMY USED IN TABLE 1 
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"John is a bicyclist" 
"TrustyRusty is a bicycle" 
"John's transportation is 

TrustyRusty" 
"John is a bicyclist and 

a red-haired person" 
"John is either a bicyclist 

or a motorcyclist" 
"John isn't a motorcyclist" 
"if John is a bicyclist then 

he isn't a motorcyclist" 
"Venus is a planet" 
"The morning star is a 

celestial body" 
"Venus and the morning star 

are one and the same" 

(BICYCLIST John) 
(BICYCLE TrustyRusty) 
(TRANSPORTATION-MODE John 

TrustyRusty) 
(AND (BICYCLIST John) 

(RED-HAIRED-PERSON John)) 
(OR  (BICYCLIST John) 

(MOTORCYCLIST John)) 
(NOT (MOTORCYCLIST John)) 
(=> (BICYCLIST John) 

(NOT (MOTORCYCLIST John))) 
(PLANET Venus) 
(CELE?riALBODY MorningStar) 

(- Venus MorningStar) 

TABLE 1 A-LANGUAGE EXAMPLES 

These examples are suggestive of the scope of the PENNI language. More 

precisely, the assertional language is exactly defined by these four 

conditions: 

1. (Pa) is an assertion in the A-language, where £ is the predicate 
corresponding to some NIKL concept (We will use the terms "NIKL 
predicate" or "NIKL-pred" to refer to this kind of predicate.), and 
A is an individual term. 

2. (R ab) is an assertion in the A-Ianguage, where £ is a relation 
corresponding to a NIKL role (We will use the terms "NIKL relation" 
or "NIKL-rel" to refer to this kind of relation), and both a and h 
are individual terms. 

3. (= a b) is an assertion in the A-language, where both ä and fe are 
individual terms. 

4. Boolean combinations of assertions in the A-language are themselves 
assertions in the A-language. By these Boolean combinations we mean 
statements of the form (NOT P), (OR P Q), (AND P Q). (=> P Q), or 
(<«> P Q), where P and Q are both A-language assertions. 
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5.4 RUP, the system underlying PENNI 

In the preceding section we described the assertional language of the 

PENNI system. In this section we will discuss some of the functionality of 

PENNI. In particular, we will look at RUP , a powerful reasoning system on 

top of which PENNI was built. 

RUP is a system that was developed at MIT by David McAllester. The 

system consists of a set of reasoning utilities that are designed to underly 

knowledge representation systems. Within PENNI, RUP is used to maintain a 

database of A-language essertions and to perform inferences on these 

assertions. In the pages that follow, we will describe some of the features 

of RUP that are relevant to PENNI. We will gloss over many (significant) 

details about RUP; the interested reader is referred to [6] and [5]. 

6.4.1 The RUP truth maintenance system 

At the center of RUP is the RUP truth maintenance system, or TMS. The 

TMS contains a database of formulae of the prepositional calculus. Associated 

with each proposition is a truth setting which indicates whether the 

proposition is held to be true, false, or unknown (a proposition with a truth 

setting of unknown is a proposition which the system doesn't know to be true 

or false). These three truth settings are the only ones that can be assigned 

to a proposition. 

The user can enter propositions into the TMS incrementally. As each 

The name RUP is an acronym for the (R)easoning (U)tility (P)ackage. 
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proposition is entered, the user can assign it a truth setting, thereby 

asserting the proposition to be true or false When the user asserts a 

proposition, the TMS invoker an inference engine to derive the consequences of 

the assertion. This antecedent or premise driven inference engine deduces a 

subset of the consequences entailed by the addition of the new proposition. 

It is significant that the consequences which are actually deduced are only a 

subset of those which are entailed. Trying to deduce all of the consequences 

could  lead to an exponential effort.  RUP restricts the inferences that it 

2 
tries to make and thereby achieves considerable efficiency 

To illustrate the use of the TMS, consider the following example.  Say we 

add to the TMS the proposition. 

(=> (BICYCLIST John) (NOT (MOTORCYCLIST John))) 

This results in the creation of four TMS data structures (called TMS nodes). 

One of these TMS nodes correspond to the asserted implication, and the other 

three correspond to its component sub-expressions. fhis situation is depicted 

in Figure 4. 

Note that in Figure 4 the only proposition that has been given t» 

determinate truth setting is the one that was asserted.  The premise- driven 

The user can also leave the proposition with a truth setting of unknown; in 
this case the system will try to deduce a truth setting for the proposition 
from other propositions in the database. 

Tlowever, RUP does provide a consequent or goal driven reasoning mechanism 
that can capture deductions that were not made by the antecedent engine. For 
details see [6] and [5]. 
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N0DE1 

PNAME  («> (BICYCLIST John) 
(NOT (MOTORCYCLIST John))) 

TRUTH true 

JUSTIF 0 

NODES 

PNAlfE (NOT (MOTORCYCLIST John)) 

TRUTH unknown 

JUSTIF 0 

NODE 3 

PNAME (MOTORCYCLIST John) 

TRUTH unknown 

JUSTIF 0 

FIG. 4.  AN ASSERTED IMPLICATION 

engine was (justifiably!) unable to deduce truth settings for the 

sub-expressions of- the asserted proposition. 

To continue the example, say we now .\ssert the proposition: 

(BICYCLIST John) 

The TMS invokes its inference engine which can now make several deductions. 

On the basis of the proposition we just added and the one asserted earlier the 

system deduces that 

(NOT (MOTORCYCLIST John)) 

must be true. On the basis of this new inference, the system can further 

deduce that 
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(MOTORCYCLIST John) 

must be false. The database ends up as in Figure S. 

N0DE1 

PNAME  (=> (BICYCLIST John) 
(NOT (MOTORCYCLIST John))) 

TRUTH true 

JUSTIF 0 

NO DE2 

PNAME (NOT (MOTORCYCLIST John)) 

TRUTH true 

JUSTIF •^ 

N0DE4 

PNAME (BICYCLIST John) 

TRUTH true 

JUSTIF 0 

NODE 3 

PNAME (MOTORCYCLIST John) 

TRUTH false 

JUSTIF ^ 

FIG. AN INFERENCE IN THE TMS 

With each deduction made by the system, a record is kept of which 

propositions in the database were used in making the deduction. This is 

accomplished through the justification field of TMS nodes. Given a 

proposition P in the database, the justification field of its TMS node 

contains pointers to a set of propositions which together entail P. If P was 

asserted by the user, then the justification field of P is set to NIL. 

Alternatively, if P was deduced by the system, the field points to those 

propositions used by the system in deducing P.    This is illustrated by Figure 
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5. Among others, the figure depicts the justifications recorded by the system 

when running the example described above. 

The justifications that RUP records for its deductions are a very 

important aspect of the system. RUP uses the justifications it records to 

provide the user with a number of sophisticated features.  In particular; 

o RUP can use its recorded justifications to explain to the user how it 
arrived at a particular conclusion. It does this by searching 
through the justification pointers for the exact set of user 
assertions that underly the conclusion. This set is returned to the 
user. 

o RUP uses the justifications to perform efficient incremental 
retraction. 

o RUP also uses the justification pointers in its backtracker. The 
backtracker implements dependency directed backtracking, an extremely 
efficient backtracking technique. 

We will not describe these features in further detail here. The 

interested reader is referred to [6] and [5] for more information. 

5.4.2 The RUP equality system 

In the preceding paragraphs we described features of the RUP truth 

maintenance system. We now turn our attention to another component of RUF, 

the equality system. 

The equality system is responsible for maintaining a congruence relation 

between terms in the TMS database. The equality system groups congruent terms 

into congruence classes. It uses these congruence classes for performing 

substitution, of equal.» for equals in propositions stored in the database. 
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The equality system is activated by assertions in the database of form 

(» TERM1 TERMS). 

When the user asserts such a proposition, the equality system enforces the 

assertion by placing the two equated terms in the same congruence class. This 

is done according to the following scheme. When a term is first entered in 

the database, a new (singleton) congruence class is created and the term is 

made the sole member of the class. When two terms are equated, the equality 

system fetches their respective congruence classes and merges the two clashes, 

producing a single composite class. In this operation it doesn't matter 

wheth ,r the classes being merged are singleton classes or contain more than 

one member. This scheme ensures that any two congruent terms are always in 

the same congruence class. Consequently, to test whether any two terms are 

congruent, the equality system only has to check whether their congruence 

classes are the same. 

To illustrate the equality system, consider the following example.   Say 

we assert these propositions: 

(CELESTIAL-BODY MorningStar) 
(CELESTIAL-BODY EveningStar) 
(PLANET Venus) 

Figure 6 portrays the resulting state of the RUP system. In the left half of 

the figure are the TMS nodes corresponding to the three propositions. In the 

right half are three "Venn diagram bubbles", they correspond to the singleton 

congruence classes for the three terms MorningStar, EveningStar, and Venus. 

58 

111 *¥ itt'w# it tf^i MSA 



Report No. 6421 Bolt Beranek and Newman Inc 

TUB   I Equality System 

N0DE1 

PNAME  (CELESTIAL-BODY MorningStar) 

TRUTH true 

JUSTIF 0 

NODE 2 

PNAME  (CELESTIAL-BODY ETeningStar) 

TRUTH true 

JUSTIF 0 

NODE 3 

PNAME (PLANET Venus) 

TRUTH true 

1 JUSTIF ll 

Venus 

FIG.  6.  IMS NODES AND CONGRUENCE CUSSES 

Say we new add these assertions to the database: 

(= Venus MorningStar) 
(= Venus EveningStar) 

These additions will cause a sequence of events to occur. The first assertion 

causes the equality system to fetch the congruence classes for the terms Venus 

and MorningStar;  it merges these two classes. A similar operation for Venus 

59 

', ^ • A. -^ ^ - - 

lr>'fe"^'>Hiv H*'-mJ.K*^J~**j±JJ'^*Ll^*^Z^^^ »^-»-'i%/•-ft'".^--i'\«' tt~ -   i'^- 



Bolt Beranek and Ne "-.an Inc. Report No. 5421 

and EveningStar is brought about by the second assertion, leaving all three 

terms Venus, korningStar, and EveningStar in the same congruence class. This 

is depicted by Figure 7 

TkS 

NODE4 

PNAME (« Venus MorningStar) 

TRUTH true 

JUSTIF 0 

NODES 

PNAHE («Venis EveningStar) 

TRUTH true 

JUSTIF 0 

<Other TMS nodes not ■hown> 

Equality System 

FIG. 7. EQUALITY ASSERTIONS 

Figure 7 illustrates an important characteristic of the equality system. 

Notice that even though the terms "EveningStar" and "MorningStar" are  in the 

same equality system congruence class, there is no TMS node in the database 

corresponding to the proposition: 
60 
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(» MorningSlar EveningStar) 

The equality system didn't on its own enter the proposition in the database, 

even Lhough the proposition was entailed by the two earlier equality 

assertions. This is by design; it prevents the database from being overloaded 

with equality propositions. 

If we actually want to test whether EveningStar and MorningStar are 

congruent, it suffices for us to enter the proposition 

(= MorningStar EveningStar) 

into the database with a truth setting of unknown. Entering the proposition 

in the database invokes the equality system which then tries to derive a truth 

setting for the proposition. This derivation ;s done by simply comparing the 

congruence classes for MorningStar and EveningStar. Since the classes are one 

and the same, the equality system gives the proposition a truth setting of 

true, and leaves the database as in Figure 8. 

Our discussion of the equality system so far has centered on equality 

assertions and the congruence relation between terms. The equality system 

also performs substitut on of equals for equals. Consider again the example 

of Venus and the Evening Star.  In particul&r, consider the assertions: 

(PLANET Venus) 

Note that the equality system installed justification pointers  for  the 
proposition (= MorningStar EveningStar).  The details of how this is done are 
beyond the scope of this paper.  Once again, the reader is referred to [6] and 
[5]. 
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TMS 

N0DE4 

PNAME     {= Venus MorningStar) 

TRUTH    true 

JUSTIT    0 

NODES 

PNAME («Venus EveningStar) 

TRUTH true 

JUSTIF 0 

NODES 

PNUfE {■ MerningStar EveningStar) 

TRUTH true 

JUSTIF V 

Equality System 

<Other  TMS nodes not   H>iown> 

FIG.  8.  AN INFERENCE BASED ON EQUALiTIES 

(= Venus EveningStar) 

Together, they entail another proposition; (PLANET EveningStar). This 

proposition follows from substitution of equals for equals. However, the 

equality system does not add this propositisn to the database when Venus and 

EveningStar are equated. This is for the same reason that it doesn't assert 

all the equality propositions that follow frcia user-asserted equalities;  the 
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equality system tries  to prevent overloading the database with unnecessary 

propositions. 

If we want to query whether (PLANET EveningStar) is true, we proceed once 

again by adding the proposition to the database with a truth setting of 

unknown. This activates the equality system which then attempts to derive a 

determinate truth setting for the proposition. To do so, the equality system 

recognizes that EveningStar is in the same congruence class as Venus. From 

this it follows that 

(PLANET EveningStar) 

is logically equivalent to 

(PLANET Venus). 

The twe should have the same truth setting. Since the second of these is 

assigned a truth setting of true, the equality rvstem infers that the first 

one should be true as well.  Figure 9 shows the resulting state of the system. 

5.4.3 The RUF noticer compiler 

The final feature of RUP which we will describe here is the noticer 

compiler. The noticer compiler allows the user *o write demons s.milar to 

those in the PLANNER system. These demons (which we cell noticers) are LISP 

fv \ctions which are invoked when certain events occur within the RUP database. 

Characteristic of the events that will trigger noticers are the addition of a 

proposition to the database, a change in the truth setting of a proposition, 

and others. 
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N0DE4 

PNAlffi (= Venus MorningStar) 

TRUTH true 

JUSTIF 0 

TUS 

NODES 

PNAME (PLANET Venus) 

TRUTH true 

JUSTIF 0 

N0DE7 

PNAME (PLANET MorningStar) 

TRUTH true 

JUSTIF K. 

Equality System 

'<Other TUS nodes not shown> 

FIG.  9.  SUBSTITUTION OF EQUALS FOR EQUALS 

Vhen a noticer is defined by the user, it must be given two primary 

components: a trigger condition and a body. The trigger condition indicates 

in which situations the noticer should be invoked. The body of the noticer is 

the LISP code that gets executed when the noticer is activated. 

The trigger of a noticer has two components: a pattern that matches 

propositions in the database and an event marker which specifies a database 
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event (such as assertion or truth change). When an event specified by the 

event marker of a trigger occurs to a proposition that matches the trigger's 

pattern, the trigger is activated and the noticer associated with the trigger 

is invoked. The RUP noticer compiler provides a language which facilitates 

defining the trigger conditions of noticers. The compiler compiles these 

trigger conditions into internal RUP tests and actions that encode them. 

When a noticer is activated it is run just like any other LISP function. 

In practice, the noticer will often perform some specific computation and then 

(if needed) make changes to the RUP database to reflect the results of this 

computation. The language provided by the noticer compiler facilitates making 

these changes. The compiler compiles statements that manipulate the database 

into optimized invocations of internal RUP functions. 

We will not try in this paper to give a complete description of the 

features of the noticer compiler. Instead we will simply illustrate the use 

of the noticer system by giving an extended example of a noticer definition. 

This is a very simple noticer that recognizes predications of the form 

(PLANET ?x). It then asserts that if ?x (or rather, that term which matches 

?x) is a planet, then it must orbit the sun. The noticer is particularly 

simple in that it doesn't perform any computation before manipulating the 

database. For the sake of clarity, the following definition strays somewhat 

from the syntax which is actually recognized by the noticer compiler. 

This is a simplification. In actual fact, when a noticer is triggered it 
gets placed in a queue of activated noticers. Later on, the queue will get 
emptied and the noticer will be run. 

65 

*  . 1   n^    -    *   - 



Bolt Beranek and Newman Inc. Report No 5421 

(DEFNOTICER NoticePlanets 
(TRIGGER (PLANET ?x) INTERN) 
(BODY   (RUPAssert  (=> (PLANET ?x) 

(ORBITS ?x Sol))) 

)) 

DEFNOTICER is a function that defines RUP noticers. It is passed three 

arguments. The first is the name of the noticer; noticers (just as 

functions) are given a name — in this case the name of the noticer is 

"NoticePlanets". The second and third arguments to DEFNOTICER are the trigger 

and body of the noticer being defined. 

In this example, the trigger condition of the noticer specifies the 

pattern (PLANET ?x) and the event INTERN. The pattern matches any one-place 

predication whose predicate name is PLANET. The INTERN event marker indicates 

that the noticer should be invoked when propositions that match the trigger 

pattern are INTERNed, i.e. entered into the database. Note that the ?x term 

in the trigger pattern is taken as a free variable. It gets bound to the 

argument of any one-place PLANET predication that activates the noticer. 

For example, say we add the following proposition to the database: 

(PLANET Venus) 

This proposition matches the trigger pattern of the NoticePlanets noticer; the 

?x free variable in the trigger pattern gets bound to the term Venus. 

In the trigger pattern of a noticer, any atomic term that begins with the 

letter "?" is treated by Rl)f as a free variable that will get bound at the 

time the noticer is activated.  This binding is maintained while the noticer 
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is executed and is made available to tne LISP code in the body of the noticer. 

To continue our example, consider the body of the NoticePlanets noticer. This 

body contains a call to the function RUPAssert, the basic function for 

asserting propositions in RUP. The argument to RUPAssert is a proposition 

that mentions the variable ?,x: 

(=> (PLANET ?x) (ORBITS ?x Sol)) 

When the noticer got activated by our entering (PLANET Venus) into the 

database, the ?x variable got bound to the term Venus. Hence, when RUPAssert 

actually gets called in the body of NoticePlanets, its argument is the fully 

instantiated proposition: 

(=> (PLANET Venus) (ORBITS Venus Sol)) 

RUPAssert adds th.s proposition to fie database with a truth setting of true. 

Since we had just asserted (PLANET Venus) to be true, the new addition causes 

(ORBITS Venus Sol) to be deduced true as well. 

This concludes our discussion of the noticer compiler, and along with 

that our discussion of RUP. 

5.5 The PENNI System 

We will now resume our description of the PENNI system and the 

assertional language it provides. So far, this paper has described two 

aspects of our work on PENNI. We have talked about the assertional language 

provided by PENNI, and we have discussed RUP,  the propositional  reasoner 
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underlying PENNI. In the pages to come, we wi11 fit these two views of our 

work together. We will first describe briefly how RUP is used in PENNI. We 

will then consider how PENNI fits within the NIKL effort as a whole. In 

particular, we will show how the inference mechanism for the A-language is 

interfaced to the terminological component of NIKL. 

The wav PENNI uses RUP is actually very straightforward. As we alluded 

to earlier, PENNI uses RUP to maintain a database of A-language assertions. 

Within RUP, these assertions are not treated any differently from other 

propositions in the RUP database. Just as with any other proposition, 

A-language assertions can be incrementally asserted or retracted; they may 

serve to justify or be justified by other propositions; they may be involved 

in noticer invocations; and so on. Thus, PENNI uses the full features of RUP 

to implement its database of A-language assertions. Hence, at some level, 

much of the functionality that PENNI provides within NIKL is sinply that 

functionality which is provided by RUP. However, the A-language database is 

only one aspect of the features provided by the PENNI system. The remainder 

of PENNI's functionality stems from PENNI's position as part of a larger 

knowledge representation system — NIKL. 

Within NIKL, the Abox and the Tbox are distinct, but closely coupled 

subsystems. They are distinct in that each can be used independently: the 

former to perform assertional inferences, and the other to perform 

terminological inferences. However, the two subsystems are intended to be 

used together, as a connected whole. The connection between PENNI and the 

Tbox lies in the fact that PENNI recognizes when  it can use  terminological 
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inferences from the Tbox to supplement assertinnal inferences. This 

interconnection of the terminological and assertional con./onents of NIKL is a 

crucial feature of the system. Most of the remainder of this paper will be 

spent analyzing the Abox-Tbox connection and looking at how providing this 

connection affecis the use of NIKL. 

5.5.1 The PENNI-NIKL interface 

To appreciate the coupling between the nsserticnal and terminological 

components of the system, we must return for a moment to our original 

description of the Abox-Tbox distinction. The terminological component of 

NIKL, the Tbox, is responsible for providing a vocabulary of structured terms 

vith which to describe the world. The domain over which the Tbox reasons is 

this vocabulary of terms: in some sense the Tbox is about terms. On the 

other hand, the assertional component of NIKL, the Abox, uses terms from the 

Tbox vocabulary to build models of the world. In particular, it uses the Tbox 

terms to say things about individuals in the world. In the same sense that 

the Tbox is about terms, the Abox is about individuals. 

In NIKL, it is individuals (in the Abox) that serve as the locus of the 

interface between the assertional and terminological components of the system. 

For each individual x mentioned in the assertional database, PENNI keeps a 

record of all the assertions made of x. From this, PENNI isolates that 

particular set of assertions that consists of NIKL-predicat ions and 

NIKL-relations made of x  that are assigned a truth setting of true. 

NIKL-preds and NIKL-rels that are assigned truth settings of false or 
unknown are treated differently. We will not go into the details of this 
here. 

69 



Bolt Beranek and Newman Inc. Report No 5421 

Each of these NIKL-preds and NIKL-rels corresponds to a term in the Tbox 

taxonomy — a concept or a role. PENNI fetches these corresponding Tbox terms 

and combines them to produce a new composite term. This composition is a 

straightforward taxonomic operation and proceeds in the following way; 

1. Suppose PENNI is constructing the composite Tbox term for the 
individual x. Further, say the following NIKL-predications and 
NIKL-relations are true of x. 

(Cl X) 

(Cn x) 
(Rl x yl) 

(Rm x ym) 

2. First, PENNI constructs a new concept in the Tbox taxonomy which 
will be the composite term for i. (Note: we will also call this 
composite term the composite concept for x or the composite 
description of x.) 

3. For each NIKL-pred (Ci x) asserted of x, PENNI retrieves the 
corresponding concept in the taxonomy, Ci. This concept is made a 
subsumer of the composite description of x. 

4. For each NIKL-rel (Rj x yj) involving x, PENNI retrieves the 
corresponding NIKL role, Rj, and attaches information about this 
role to the composite concept for x. There are technical 
intricacies as to how this is done — among these: the composite 
concept for each of the yj must be computed before the role 
information can be attached. 

The result of this first set of operations is depicted in Figure 10. 

5. PENNI nrxt enters the composite term it has just constructed into 
the Tbox taxonomy; this is done by invoking the Tbox classifier. 
The classifier will ensure that the new term is entered into its 
most specific (appropriate) location in the taxonomy. 

For details about how the classifier performs this operation,  see [4] and 

[9] 
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Cl 

V^7 
Cn 

FIG.  10.   THE COMPOSITE CONCEPT FOR X 

The process we have just described results in the creation of a term in 

the Tbox taxonomy. Starting from Abox assertions about an individual x, PENNI 

produces a concept in the taxonomy which we take to describe x. By nature of 

the classifier, this new concept is in fact the most specific concept which 

can be deduced (from the taxonomy) to describe z. We call this concept the 

MSG of x;   this stands for the most specific generic concept that describes x. 

i 

PENNI records the association between an individual and its MSG by adding 

a NIKL-predication to the assertional database. The predicate that is added 

is simply the NIKL-pred that corresponds to the MSG of the individual. For 

example, if the MSG that was constructed for an individual x is the concept 

BICYCLIST. PENNI adds to the database the assertion (BICYCLIST x). 

Given the association between individuals and their MSGs,  the Abox can 

now invoke  the Tbox to make terminological inferences that have bearing on 
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Abox individuals. Several kinds of inferences can be made in this way. Some 

inferences follow directly from the very action of using the classifier to 

enter an individual's MSG into the taxonomy Others are implicit given the 

position in the taxonomy of an individual's MSG. These latter inferences are 

not made until the need for them arises. In the paragraph * "* 

illustrate some of these inferences by means of a few extended examples. 

5.5.2 An example involving classification 

As we mentioned above, some terminological inferences that get reflected 

in the Abox are immediate consequences of classifying the MSGs of individuals. 

As an example of this, consider the network in Figure 11. This network 

contains three concepts: LICYCLIST, RED-HAIRED-PERSON, and RED-HAIRED- 

BICYCLIST. The third concept is a subconcept of the first and second 

concepts. What is more, the RED-HAIRED-BICYCLIST concept is taken to be a 

defined concept. It is defined to be that concept which describes exactly 

those individuals that are described by both the BICYCLIST and 

RED-HAIRED-PERSON concepts. 

FIG.  11.   A NETWORK WITH A DEFINED CONCEPT 
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Say some user program now asserts the foi),owing propositions in the PENNI 

database: 

(BICYCLIST John) 
(RED-HAIRED-PERSON John) 

PENNI collects these two assertions about the individual John and uses them to 

construct the MSG for John. This MSG is depicted in Figure 12. It has two 

superconcepts: BICYCLIST and RED-HAIRED-PERSON. Note that this MSG is once 

again a defined concept; in fact, it is defined to be exactly the same concept 

as RED-HAIRED-BICYCLIST. When the MSG of John is given to the classifier, the 

classifier recognizes that the two concepts are defined identically. The 

classifier "merges" the MSG concept created by PEi-.lI and the 

RED-HAIRED-BICYCLIST concept. This results in the individual John's MSG now 

being the concept RED-HAIRED-BICYCLIST, as shown in Figure 13. 

FIG.  12.   THE COMPOSITE CONCEPT FOR JOHN 
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USG of John: 

FIG.  13.   THE MSG FOR JOHN 

After this classification step, PENNI associates John and its MSG by 

adding the follov.-mg proposition to the A-language database: 

(RED-HAIRED-BICYCLIST John) 

Adding this proposition to the database has several significant consequences. 

In particular, the predicate RED-HAIRED-BICYCLIST may have a particular 

significance to the user program that made the original assertions 

(BICYCLIST John) and (RED-HAIRED-PERSON John). Given that 

(RED-HAlTiED-BICYCLIST John) has now been asserted in the database, this user 

program may now be able to make new inferences. 

One way in which these inferences could be m&de is by using noticers. 

For examp?e, the user program we've been mentioning could have defined some 

noticer with the trigger pattern 

(TRIGGER  (RED-HAIRED-BICYCLIST ?x)  INTERN) 

This noticer would have been activated when PENNI associated John and its MSG. 
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5.5.3 An example involving subsunption 

The preceding example showed an instance of a terminological deduction 

that PENNI added automatically to its assertional database. This inference 

was added to the database as soon as PENNI bad an opportunity to do so — that 

is, immediately after invoking the classifier on an individual's MSG. Not all 

of the terminological inferences that PENNI makes use of are performed in this 

way. Many inferences are left implicit. One class of these implicit 

inferences are those inferences which are based on subsuir.pl ion. 

Consider the network in Figure 14. The network consists of the two 

concepts BICYCLIST and PERSON. BICYCLIST is subsumed by PERSON, and we read 

this subsumption relation (as usual) as a oniversally quantified implication. 

Vjt (BICYCLIST x) => (PERSON x) 

MSG o J t  John: •^Z 

TRANSPORTATION 
-MODE 

FIG.  14.  A NETWORK WITH THE MSG FOR JOHN 
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Say some user program now asserts 

(BICYCLIST John). 

The MSG of John if rivially computed to be the concept BICYCLIST, this is 

shown in Figure 14. Say the user program now wishes to query the truth of the 

propoai t:on 

(PERSON John). 

To do this, the program simply enters the proposition into the database with a 

truth setting of unknown. When the proposition is interned, PENNI recognizes 

it t" be a NIKL-predication of the individual John. PENNI then tried to 

derive a truth setting for the proposition by using the Tbox. It does this by 

first fetching the Tbox term corresponding to the predication — this term is 

simply the concept PERSON. PENNI then asks the Tbox whether this concept 

(i.e. PERSON) subsumes the MSG of the individual John (i.e. BICYCLIST). This 

is indeed the case, and given thir PENNI can now assign a truth setting of 

true to the proposition (PERSON JohnK 

Note that PENNI does not automatically infer the proposition 

(PERSON John) after calculating the MSG for John. The user program had lo 

intern the proposition ior the deduction to be made. This is by design: by 

following this scheme PENNI avoids adding unnecessary predications to the 

assertiona database. (The alternative to this scheme would be to add to th? 

database a NIKL-predication corresponding to ^very concept in the taxonomy 

which subsumes an individual's MSG — all the way up to THING. This .s 

impracttct. and grossly inefficient.) 
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Inferences based on subsumption should to be thought of as implicit. 

They are never made explicitly until they are needed, when they are needed 

they are made automatically. 

5.5.4 An example involving roles 

In this example we will look at an inference that PENNI makes using role 

information.  Consider o^ce again the network in Figure 14.    In particular, 

consider  the  TRANSPORTATION-MODE  role  attached to BICYCLIST.  This role is 

value-restricted  to  the  concept  BICYCLIST.   We  read  the  restriction 

information as follows: 
■•. 

" m 

Vx.y [(BICYCLIST x) Sc  (TRANSPORTATION-MODE x y)] 
=> (BICYCLE y) 

I 
Say some user program now asserts these predications: 

yM 

(BICYCLIST John) 
(TRANSPORTATION-MODE John TrustyRusty) 

After the  first   ^sertion,  the MSG for  the individual John is trivially 

computed to be the concept BICYCLIST.  When the second proposition  is added, 

_ PENNI  recognizes  it  to be an assertion of  a NIKL-relation between the 

£• individualfi John and TrustyRusty.  PFNNI then fetches the role (from the Tbox 

.>J role  lattice)  corresponding  to the relation,  and  looks up the  range 

restriction of the role.  This range restriction is computed using the domain 

restriction provided by thf MSG for  John.   As we just saw, this range 

restriction is simply the concept BICYCLE. 

PENNI reads this.restriction as the same universally quantified statement 

.V 

■1 m we gave above,  '''his allows PENNI to infer the proposition 
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(BICYCLE TrustyRusty) 

which is then added to the propositional database.  This addition has all the 

usual  consequences of asserting a NIKL-predication;   the MSG for the 

individual TrustyRusty will be updated (or created),  and further Abox 

inferences may occur. 

5.5.5 What do these examples have in common? 

Each of the examples we have Just seen shows the Tbox being used to 

supplement the Abox. In each example, the NIKL taxonomy was used to perform 

terminological deductions that were then reflected in the assertional 

database. In some cases, this enabled further inference to proceed in the 

Abox 

None of these terminological deductions could have been performed easily 

using the Abox alone. To capture the full scope of the terminological 

reasoning done by the Tbox would require adding to the Abox many rules of 

inference. This would prove to be a substantial burden. In fact, no general 

purpose inference engine could be expected to do this reasoning efficiently. 

By separating assertional and terminological reasoning, NIKL is able to 

provide efficient inference mechanisms for both. 

5.6 Conclusion 

We started our investigation of the new NIKL Abox with a list of 

desiderata. How does the work we have just described measure up to tftese 

wishes? We feel it measures up well.  In particular; 
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o The new assertional language supports "weak" statements. By 
providing propositional calculus as the basis for the A-language we 
allow for not fully determinate statements. 

o The new Abox supports reasoning about equality. Abox individuals can 
be equated, thereby asserting them to denote the same entity in the 
world. 

o The new Abox supports inference rules. By judicious use of noticers, 
the user can write rules that encode some quantified reasoning. 

o The new Abox provides a powerful inference engine. This inference 
engine is RUP, whose array of inference utilities makes it one of the 
most sophisticated and versatile reasoning systems currently in 
existence. 

We feel that our efforts towards building the assertional component of 

NIKL have met with some success. However, the efforts we have described here 

are just the beginning of our investigation. The development of PENNI is an 

ongoing process, and much work still remains to be done. This work isn't 

limited to our research alone. Indeed, the idea of separating a general 

knowledge representation system into distinct, but interacting, subsystems, is 

gaining serious acceptance in the field of AI. Other knowledge representation 

systems now exist that, like NIKL, distinguish different kinds of knowledge 

and provide separate, but coupled, inference engines for each [3, 7], We 

expect that this approach will yield many contributions to knowledge 

representation.  NIKL and PENNI are among the first of these. 
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6. BELIEF AND KNOWLEDGE IN ARTIFICIAL INTELLIGENCE1 

A Haas 

6.1 Representation and Search 

Artificial Intelligence programs must have common-sense knowledge. This 

includes knowledge about beliefs and knowledge. A program must be able to 

understand that Bill believes Mary's phone number is 5766, or that John knows 

the name of every person in the department. If a program is supposed to 

understand these facts, it should be able to make the right inferences from 

them. If Bill knows that Mary's phone number is 5766, he knows what Mary's 

phone number is. If a program thinks that Bill knows that Mary's number is 

5766, the program should be able to infer that Bill knows what Mary's number 

is. If we have a knowledge representation that can represent facts about 

beliefs and knowledge, and an adequate set of inference rules, we have taken 

the first step in building a program that can reason about beliefs and 

knowledge. The next step is to devise a search strategy: an algorithm that 

decides which inference rules to apply to which expressions to solve a 

problem. 

This paper is about the first step.  It proposes a representation and 

A version of this paper has been published as BBN Technical Report No. 
5368 "The Syntactic Theory of Belief and Knowledge" and, under this same 
title, has been submitted for publication in a collection, edited by Prof. 
Jerome Feldman, in the series Advances in Artificial Intel 1loence 
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inference rules for reasoning about belief and knowledge. Section 

6.2 presents examples of sound and unsound inferences about belief and 

knowledge. The problem is to allow all the sound inferences and rule out the 

unsound ones. The best treatment to date is Moore's [13], and I discuss his 

successes and failures. Section 6.4 presents the syntactic theory of belief 

and shows how to formalize it. Section 6.5 is the core of the paper: a series 

of examples of representation and inference in the formal system. These 

examples describe the processes that create, store and use beliefs and 

knowledge. Perception, introspection, memory, inference and planning are all 

considered. 

Recent work has made great  improvement  in AI theories of belief and 

knowledge, but they still have serious problems.  For example, Moore's theory 

predicts that agents always know every logical consequence of their knowledge. 

My theory tries to solve  the problems by formalizing familiar ideas from 

computer science.  For example, it says that sentences stored in an agent's 

memory represent his beliefs.  It makes three main improvements in the match 

between theory and common sense.  First,  it does not predict  that agents 

always  infer everything that follows from their knowledge.  It considers the 

agent's goals and his limited inference ability before predicting that he will 

make an inference, and it says that inferem- takes time.  Second, it gives a 

better account of what you must know about an object in order to know what 

that object is.  It says that you know what an object is if you know enough 

about  it  to carry out your  intended actions.  Finally, it gives a better 

account of when you need knowledge to perform an action.  It simply formalizes 

the obvious;  robots perform actions by sending commands to effectors, and to 

act they must find out which commands will produce the desired actions. 
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These improvements have practical importance. A planner will not get far 

if (following Moore's theory) it thinks that there is no point in planning to 

do inferences, since they all happen instantly and automatically. Nor will an 

interactive program do well if it thinks that a large mathematical expression 

is a good answer to a user's question because it is a standard name. 

These improvements are all made in the same way: by using familiar ideas 

from computer science. If an agent uses sentences to represent his beliefs, 

and applies inference rules to them, there is no rer.son to expect that he will 

r-4 
Q believe all consequences, of his beliefs.  If an agent acts by sending commands 

to his effectors, then of course he must find out which commands will produce 

the desired actions. Konolige took this line, but he only went halfway - he 

returned to Moore's theory in his treatment of knowing what and knowing how. 

As a result, the problems of Moore's theory reappear in Konolige's theory. 

There is also an important gain in the technique for reasoning about 

another agent's inferences. The idea of building a data base to represent 

another agent's beliefs has always appealed to AI workers. But it had a 

serious problem: there was no way to represent that John knows what Mary's 

phone number without putting Mary's phone number in the data base. The use of 

new constants to stand for unknown terms solves this problem. 

6.2 Some Inferences About Belief and Knowledge 

Let us consider some examples that show why reasoning about beliefs  is 

hard.   For one thing, the familiar rule of substitution of equals does not 

apply when one of the equals appears inside the scope of the verb "believe". 

For example, the following inference is not valid. 
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John believes that Mary's phone number is 444-1212 
Bill's phone number is Mary's phone number. 

John believes that Bill's phone number is 444-1212. 

It is easy enough to forbid the substitution of equals when one of the equals 

appears inside the scope of "believe", but this is not very satisfying. One 

would like an explanation of why substitution of equals does not apply. 

The following inferences are valid: 

John knows that snow is white. 

John believes that snow is white 

John knows that snow is white. 

Snow is white. 

That is, all knowledge is true belief. On the other hand, not all true 

beliefs are knowledge. Suppose somebody predicts that a horse will win a race 

when the odds are 30 to 1 against it. Sure enough, the horse wins. We might 

ask "How did he know the horse would win?". It would make sense to answer "He 

didn't know, it was just a lucky guess." That is, a true belief might not 

count as knowledge if there is no good reason for the belief. I will not 

consider this problem further. Suffice it to say that all knowledge is true 

belief. 

The following inference is valid. 
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John knows that Mary's phone number is 444-1212 

John knows what Mary's phone number is. 

But this one is not necessarily valid: 

John knows that Mary's phone number is Bill's phone number. 

John knows what Mary's phone number is. 

This raises the question: when does John's knowing that X is N entail that 

John knows what X is? The noun phrases "444-1212" and "Bill's phone number" 

both denote Mary's phone number, but knowing that Mary's number is Bill's 

number does not count us knowing what Mary's phone number is. In some sense 

the phrase "Bill's phone Tinmber" does not contain enough information, but it's 

hard to clarify this. 

Context helps to decide what knowledge about X counts as knowing what X 

is. Suppose that you and John are staying at a hotel in a strange city, and 

you go out for a walk. After a while John asks "Do you know where we are?" 

You realize that you're completely lost, and answer "No." Seeing a telephone 

you decide to call Mary and ask for directions. She answers and says "Do you 

know where John is? I need to talk to him right away." You answer "Yes, he's 

right here" and hand him the phone. When John asked if you knew where he was 

you said no; a moment later you answered yes to the same question. I 
If you had answered John's question with "Yes; we're right here",  he 

would not have been amused. John wanted information that would help him to 
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get back to the hotel. Mary wanted inlormation that would help her to get in 

touch with John, and for that purpose "right here" was a useful description of 

John's location. 

One clue to the problem of "knowing what"  comes  from the problem of 

"knowing how".  The following inference is correct: 

John knows that Mary's number is 444-1212. 
John knows how to dial a telephone. 

John knows how to dial Mary's number. 

This one is not. 

John knows that Mary's number is Bill's number. 
John knows how to dial a telephone. 

John knows how to dial Mary's number. 

We saw that if you have the name "444-1212" for Mary's number you know what 

her number is, but not if you only have the name "Bill's number". Similarly, 

if you have the name "444-1212" for Mary's number you know how to dial the 

number, but not if you only have the name "Bill's number". It is tempting to 

connect these two facts. In any case a theory of belief and knowledge must 

say something about what knowledge is needed to perform actions. So the 

theory of belief and knowledge is connected to the theory of planning 

The problem of "knowing what" is closely related to the so-called de re 

statements about belief.  Suppose you see John in a restaurant with a woman 
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you don't know, and you think "That must be John's wife". Later you find she 

was his sister. You might say '1 thought John's sister was his wife." The 

following inference is valid, at least in some contexts: 

I thought John's sister was an accountant. 

I believed the statement "John's sister is an accountant". 

But the following is surely not valid in this context 

I thought John s sister was his wife 

I believed the statement "John's sister is his wife" 

In this case the example seems to mean about the same as "I saw John's sister 

and thought she was his wife".  The  speaker uses  the description "John's 

sister"  to identify the woman he took for John's wife. Such statements are 

called de re reports of belief or knowledge. 

Truth is a crucial  property of beliefs.   Our  theory must  explain 

inferences like this 

John believes that gold is an element. 
Everything that John believes is true. 

Gold is an element. 

I 
If we know that someone's beliefs are true, we can infer things about the 

_        objects those beliefs refer to  We can also reason in the other direction: if 

an object has certain properties, then certain beliefs about it are true. 
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Coal is black. 
John believes that coal is black. 

John believes something true 

Common sense says that we think about objects outside our heads, and that our 

beliefs about them can be right or wrong. 

People use their beliefs to infer new beliefs What they infer depends 

on what problems they want to solve and how hard they think. For example, the 

following inference is very plausible 

John knows that Mary's number is 5766. 
John knows that Mary's number is Bill's number. 
John is trying to figure out what Bill's number is 

John will infer that Bill's number is 5766. 

On the other hand, a math teacher had better not accept the following 

The students believe the Axiom of Choice. 
The Axiom of Choice entails that every set can bt well-ordered. 

The students will infer that every set can be well-ordered. 

A theory of belief ought to distinguish hard inferences from easy ones, 

and it ought to say that what people infer from their beliefs depends on what 

they try to infer. 

People know about their own beliefs. They can easily answer questions 

like "Do you know what Mary's phone number is?".  Yet we don't want  to claim 
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that people always know about all their beliefs, anymore then we want to claim 

that they believe everything that they could infer from their beliefs. 

Otherwise, we 'jrould end up with the following as a valid chain of inference; 

John believes that snow is white. 

John believes that John believes that snow is white. 

John believes that John believes that John believes that snow is 
white. 

John believes that John believes \.hat John believes that John 
beileves . . . 

The second line is plausible enough, but the fourth line is weird, and if we 

continued the 500th line would be  impossible to read, let alone believe. 

Introspection is like inference: it is something people do on purpose, and 

they do as much of it as they need for the problem at hand. 

Many beliefs are the result of perception.  People make inferences like 

the following; 

John looked at a piece of paper with a number written on it. 

John knew what number was written on the paper. 

I stressed above that many beliefs arise from a deliberate effort of thinking. 

If we ray that inference and introspection happen automatically, we get into 

trouble because these processes take beliefs as input and produce new beliefs 

as output. Therefore their output can be used as input for more introspection 

and inference., and if the process  runs  on automtt ical ly we might  get  an 

89 

■V-^ii -"'■ *-* *-'* --> - ^ ■■ ^.'..J--^ a .^.Ji/-.* "-J -fi^.f'- Ji. *-- ■? 



Bolt Beranek and Newman Inc Report No 5421 

infinite set of beliefs. This problem does not occur with perception, because 

its input is not old beliefs, but physical events in the external world 

Therefore no problem arises if we claim that perception creates new beliefs 

automatically. And this seems to be true. If someone sneaks up behind your 

back and blows a bugle in your ear, you'll notice it whether you want to or 

not. 

6.3 The Situation Theory 

<3 

Robert Moore's dissertation [13] uses a theory of belief based on 

Hintikka's possible worlds theory [6]. Moore had the ingenious idea of 

replacing Hintikka's possible worlds with the situations of McCarthy's 

situation calculus. Recall that the situation calculus is a technique for 

reasoning about actions. It introduces entities called situations, such that 

an object can have different properties in different situations, and at each 

instant of time the world is in exactly one situation. Since the properties 

of objects vary from situation to situation, a sentence can be true in one 

situation and false in another. Also, a description like "Bill's phone 

number" can denote different objects in different situations. One describes 

an action as a relation over situations. If this relation holds between 

situations si end s2, you can perform the action at any instant when the world 

is in situation si, and if you do the world will be in situation s2 at the 

next instant. Moore dealt with knowledge only, but I wi11 consider a natural 

extension of his theory to belief. 

Moore proposed to represent an agent's beliefs as a set of situations, 
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which I will call the agent's alternatives. If situation s is one of the 

agent's alternatives, then the agent's beliefs do not rule out the possibility 

that the current situation is s. In other words, for all he knows the world 

night be in situation s. Thus if the agent knows everything about the current 

situation, his set of alternatives contains only the actual situation. If he 

knows nothing at all his set of alternatives contains every situation. The 

more the agent learns, the more -.tuations he rules out and the fewer his 

alternatives . 

An agent believes that P if P is true in all of his alternatives. This 

explains at once why substitution of equals fails inside the scope of 

"believe". If John believes that Mary's number is 444-1212, then Mary's 

number is 444-1212 in all of his alternatives. If Bill's number is Mary's 

number, then Bill's number is Mary's number in the actual situation, and so 

Bill's number is 444-1212 in the actual situation. StiU John's alternatives 

might include situations in which Bill and Mary have different numbers, and in 

these alternatives Bill's number is not 444-1212. So John does not 

necessarily believe that Lill's number is 444-1212. 

This theory will also handle the first "knowing what" example. Moore 

says that an agent knows what X is if X is the same object in all of the 

agent's alternatives. That is, the agent's beliefs rule out all but one value 

of X. If the agent knows that Mary's number is 444-1212, then Mary's number is 

444-1212 in all the agent's alternatives. Surely 444-1212 is the same number 

in all situations. That number is Mary's phone number in all of the agent's 

alternatives, so the agent knows what Mary's number is. On the other hand, 
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suppose the agent knows only that Mary's number is Bill's number. Bill might 

have different phone numbers in different situations, so there need not be any 

one object that Is Mary's number in all of the agent's alternatives. Again we 

get the right prediction. 

Moore goes on to say that actions take arguments. For example, the 

action of dialing a phone number takes one argument, the number to be dialed. 

An agent knows how tc perform an action only if he knows what the action's 

arguments are. Then it follows that an agent knows how to dial Mary's number 

if he knows that Mary's number is 444-1212, but not if he only knows that 

Mary's number is Bill's number. 

I claim that the situation theory of belief is wrong, and that a very 

different approach is needed (this is also Moore's current view - see [14]). 

The first criticism is that it makes false predictions about "knowing what". 

We don't say that you know what Mary's number is if you know that her number 

is equal to six times thirty-one squared. Yet six times thirty-one squared is 

surely the same number in every situation. In this C!.se Mary's phone number 

is the same number in all of the agent's alternatives, yet he still doesn't 

know what her phone number is. Also, according to the situation theory 

whethe- an agent knows what X is depends only on the agent s alternatives. 

But we have seen that it can depend also on what the agent wants to do with 

the knowledge. If you want to put Mary in touch with John, and you know that 

John is standing next to you, you claim that you know where John is. If you 

want to direct John back to his hotel, and you know that he is standing next 

to you, you must learn more before you can claim to know where he is. 
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Suppose the agent believes that F, and P entails Q. Then P is true in all 

of the agent's alternatives and since P entails Q, Q is true in all of the 

agent's alternatives.  That is, the agent believes Q. So in the rtuation 

I theory an agent believes everything that follows logically from his beliefs. 

If the math professor in our previous example uses  the situation theory to 

•i-j reason about his student's beliefs, he will conclude that they believe that 

every set can be well-ordered as soon as they know the axioms of  set  theory. 

•J There  is a similar problem about introspection - as soon as an agent bei»eves 

P he believes that he believes that he believes..., and so on forever. 

al 
This problem is not surprising in a theory that talks about beliefs, but 

not about the reasoning that creates beliefs. There may well he an infinite 

set of beliefs that an agent could infer, given arbitrary time and scratch 

paper. But at any time only a finite number have actually been inferred. If 

■ we say nothing about the inference that creates beliefs we can't distinguish 

between those that are easy to infer and those that tak? a long time. Then 

it's no wonder if we end up with a theory saying that everything is inferred 

in zero time. I conclude that the situation theory of belief is on the wrong 

track. We need a theory that describes the inferences that create beliefs. 

m 

6.4 The Syntactic Theory 

a 
■■        6.4.1 A Robot and His Beliefs 

I have described some of the data that a theory of belief and knowledge 

must handle, and how Moore fared with the situation theory of belief. Now I 

consider the syntactic theory.  First comes a statement of  the theory in 
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English,  then the tools needed to formalize it, and then a series of example 

inferences 

I propose to take very seriously the idea that people are like computers. 

The agents in my theory look a lot like Von Neumann machines. Not that people 

are really like Von Neumann machines, rather common s<T-se does not tell us 

I about the massive parallelism and other non-Von Neumann things that go on in 

our heads. Let us imagine a simple robot, and build a theory that describes 

his beliefs. We will see that this theory can handle all of the given 

problems as well as the situation theory, and some of them better. 

'<'_ If we want to write a program that believes that snow is white, we devise 

jv 
■ a knowledge representation in which we can assert that snow is white - for 

j|        example,  by writing  "(white snow)".   Then we add this expression to a 

■ collection of expressions  that ere  supposed  to represent  the program's 
■ 
Ej        beliefs.  This practice suggests a theory:  that beliefs are expressions of a 
■ 
p|        knowledge representation language.  This is the syntactic theory of belief. 

B        It appears now and again in the literplure of philosophy - see [7j, [3], and 

^ [lij. McCarthy [ll] was the first Al worker to advocate this theory.  Moore 

m and Hendrix [14] argued that the syntact:  theory can solve many philosophical 

•S        problems about belief. 

p. 
*»-: Men, machines and Martians can use very different internal languages to i represent the same belief.  I propose to ignore this possibility,  and assume 

S'i that all  agents use the same representation for every belief.  Our robot 

'r4 assumes that everybody else represents beliefs exactly as he does,  and he i 
ignores the difference between a belief and his representation of that belief. 
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Konulige [8] was the first to formalize this version of the syntactic theory. 

His treatment diffsrs from mine in several important ways, which I will note 

as I come to them. 

Suppose John believes that snow is white. The robot thinks that John's 

representation of this belief is the same as the robot's representation, the 

expression "(white snow)". The robot also thinks that the representation is 

the belief. It forms a name for the representation by putting quotation marks 

around it. So it represents the fact that John believes snow is white by an 

expression roughly like this. 

(believe John "(white snow)") 

The first argument of "believe" is the name of a man. The second argument is 

the name of an «xpression. To formalize the syntactic theory, one must assign 

names to expressions.  That is, one must devise a system of quotation. 

6.4.2 Formalizing the Syntactic Theory 

I use predicate calculus with the following logical symbols 

(-> p q) - material implication 
(& p q) - conjunction 
(V p q) - disjunction 
i" p)  - negot ion 
(all x p) - universal quantification 
(some x p) - existential quantification 

■ 
■:•! 

This is the official notation; often I drop parentheses and use cc*mectives as 

infix operators. A few predicates, like "<" and "=", will also be used as 

infix operators. — . 

m 
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The beliefs of our hypothetical robot are sentences of a first-order 

logic extended with quotation. These beliefs need not be stored explicitly, 

but the robot must be able to find out whether he believes a given sentence or 

not in constant time by a standard retrieval algorithm We do not say that 

you believe something if you can infer it after ten minutes of puzzling All 

the beliefs are sentences of a single language L. When the robot forms beliefs 

about its own beliefs, those beliefs must be sentences of L that talk about 

sentences of L. This is a bit surprising We are used to talking about an 

object language LI by using a met a-language L2, where LI and L2 are distinct. 

Why not stick to this method0 Since the robot can form beliefs about beliefs 

about beliefs... up to any finite depth, we could set no limit to the number 

of meta-languages needed, but that is quite OK. If we follow this plan no 

language can ever talk about itself, but the robot can always form beliefs 

about his beliefs by going one step further in the hierarchy. Konolige used 

such a hierarchy of meta-languages in his formalization of the syntactic 

theory. 

This plan will not work, because it forbids any belief to refer 'to 

itself. A belief can refer only to beliefs in languages lower in the 

hierarchy. In fact beliefs do refer to themselves. For example, a human 

might notice that he never forgets anything that interests him strongly. 

Suppose this belief interests him strongly, then it refers to itself, and 

quite likely makes a true assertion about itself. Or suppose the robot uses a 

pattern-matcher to retrieve beliefs from memory. It will need a belief 

describing the pattern-matcher, and this belief can be retrieved by 

pattern-matching- live any other.  Thus it says of itself "I can be retrieved 
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by using such-and-such a pattern". There is nothing paradoxical or even 

unusual going on here. The point is important, because the decision to use a 

single self-describing language will involve us in the paradoxes of 

self-reference.  One can avoid these paradoxes, but it is not easy. 

*'4 

i 

i 

On« way to assign names to sentences is to let sentences be their own 

names. Then we could represent the fact that John believes snow is white by 

writing 

(believe John (white snow)) 

This might be a good system, but it is impossible in first-order logic. 

Sentences denote truth values in first-order logic, they do not denote 

themselves. We must look farther for a quotation mechanism that will fit into 

first-orc'er logic. 

f 

ft; 

I 

In English we form the name of a sentence by writing quotation marks 

around the sentence.  Thus the expression 

"Snow is white." 

denotes the sentence 

Snow is white. 

If we adopt  this scheme in our formal language we could represent the fact 

that John believes snow is white by writing 

(believe John "(white snow)") 

We can fit this scheme into first-order logic by saying that quoted 

expressions are constants that denote sentences. Yet this idea is not good 

enough, because it will not allow us to rcprssent the fact that John knows 

what Mary's phone number is.  We observed above that John knows what Mary's 
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number  is  if he knows that Mary s nutnber is n, where n is an Arabic numeral. 

We might try to represent this by writing 

1 

(some n (know John "(= (PhoneNumber Mary) n)") 
& 
(IsArabic n) 

But this will not do.  By definition of quotation marks, the second argument 

of the predicate letter "know" denotes the wff 

(= (PhoneNumber Mary) n) 

Thie  is  true no matter what the variable "n" is bound to.  So the quantifier 

"some" does nothing, and (1) means the same as (2). 

(know John "(= (PhoneNumber Mary) n)") 
& (some n (IsArabic n)) 

We need a quotation system that allows us to embed non-quoted expressions in 

quoted expressions. Then we can represent the fact we tried to represent with 

(1). 

Instead of using a quotation mark that applies to whole expressions, let 

us quote the individual symbols. If we put the character ' in front of each 

symbol that we want quoted, we can write 
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3 
(some n (know John ('= ('PhoneNumber 'Mary) n)) 

I * 
(IsArabje n) 

3       ' 
to represent the fact that (1) fails to express. All the symbols in the 

second argument of "know" are quoted, except for the variable "n" which is 

bound by the quantifier  in the ordinary way  If we can fit this quotation 
, « 

scheme into first-order logic, we can formalize the syntactic theory 

The problem is to ssign denotations  to the quoted symbols so that 
■I 
M sentences  like (3) win have the intended meanings, given the usual semantic 

rules of first-order logic.  To each constant of  our  language we assign a 

M name, formed by appending the character ' to that constant.  Thus if "Mary" is 

V a constant and denotes a woman, "Mary" is a constant and denotes the constant 

"Mary".   To each variable we assign a name in the same way.  If "x" is a 

■        varies e, then '"x" is a constant that denotes the variable "x". I 
.-| -Jow consider the symbols  that  take arguments - function letters, 

predicate  letters,  connectives and quantifiers.   These symbols are called 

functors.  The term "(& P Q)" consists of the functor "k"    and  its arguments 
B 

"P" and "Q".   If  "F" is a functor of n arguments, then "T" is a function 

letter.  It denotes the function tnat maps n expressions el ...   en to the 

expression with functor  "F" and arguments el  ... en.  For example, the 

function letter '"ic"  denotes the function that maps wffs wl and w2 to the wf f 

U        with functor "ic"  and arguments wl and w2 - which is the conjunction of wl and 

w2. The function letter ",~"  denotes the function that maps a wff  to  its 
ll 

iiegation, and so on. 
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If the variable "n" denotej the arable numeral "5766". then the term 

('« ('PhoneNumber Mary) n) 

should denote the sentence 

(» (PhoneNumber Mary) 5766) 

The function letter "'PhoneNumber" denotes the function that maps a term t to 

the term with function letter "PhoneNumber" and argument  t. The constant 

'"Mary" denotes the constant "Mary"  So the term 

('PhoneNumber 'Mary) 

denotes the term with function letter "PhoneNumber" and argument "Mary", which 

is 

(PhoneNumber Mary) 

The function letter "'=" denotes the function that maps terms tl and t2 to the 

wff with predicate letter "•" and arguments tl and t2.  So the term 

('= (PhoneNumber Mary) n) 

denotes  the wff with function letter "=" and arguments "(PhoneNumber Mftry)" 

and "5766". which is 

(= (PhoneNumber Mary) 5766) 

And that is the answer we want. 

Ml 

1 

So if the robot knows what Mary's phone number is. it can represent  this 

fact by the sentence 

(some n (know Me ('= ('PhoneNumber 'Mary) n)) 
& 
(IsArabic n) 

) 
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The constant "Me" is the robot's selfname - the robot's usual name for itself 

"know"  is an ordinary predicate letter - not a special modal operator as in 

Hintikka.  The model theory of our language contains no special  rules  for 

P interpreting the predicate "know" 

M 
On the other hand,  suppose  that the robot only knows that Mary has a 

phone number  We represent this as 

(know Me (some n ('= ( PhoneNumber Mary) n))) 

In this case the existential quantifier is inside the quotation mark. 

The term 

4 ('= ('PhoneNumber 'Mary) '5766) 

includes the quote name of the arable numeral for Mary's phone number.   The 

term 

5 ('« ("PhoneNumber 'Mary) n) 

has a variable in the same position.  (4) is the quote name of a wff, but (5) 

| is a wff schema.  The quote name of a wff includes a quote name for every term 

in that wff.  A wff schema is like the quote name of  a wff,  except  that 

«O variables can appear in place of the quote names of terms.  A wff w is called 
ffl 

an instance of a wff schema s if for some assignment of values to the  free 

i 
d||        variables  in s, s denotes w. For example, if the variable "n" is assigned the 

value "5766", then (5) denotes 

6 (= (PhoneNumber Mary) 5766) 

So the sentence (6) is an instance of the wff schema (5). 

Writing a quotation mark in front of every functor is a nuisance,  so we 

abbreviate by putting the .quotation mark in front of a whole expression.  Thus 
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"'(PhoneNumber Mary)" abbreviates "('PhoneNumber 'Mary)". I use infix 

notation for the connective "&", b\t never for the quot'd function letter 

'"k". Peopl« cion't usually use infix notation for function letters, and I 

want to emphasize that, quoted function letters rually are function letters. 

Tney obey every syntactic and semantic rule that governs function letters in 

first-order logic, hi particular, we apply quotation marks to quoted function 

letters like any other funct on letter. Thus "'Superman" denotes the quoted 

constant "'Superman", which denotes the quo\eless constant "Superman", vhich 

denotes the man from Krypton 

We also need the function letter "quote", which denotes the function that 

maps an expression to its quote name.  This function maps  the wff  "(white 

snow)" to the term "■whit« 'snow)", for example.  So we write 

(quote ('whit? 'snow)) • ('white ''snow) 

The argument of "quote" is a term that denotes the wff "(white snow)'. The 

right-hand argument of the equals sign denotes the term "('white snow)". 

This sentence says that the quote name of "(white snow)" is "('white 'snow)" 

- which is true. 

The difference between the quotation mark and the function letter 

"quote" is this. If "v" is a variable, then "'v" 4s a constant that denotes 

that variable, "(quote v)" is a term in which the variable "v" is free, and 

its value depends on the value of "v". If the ve ue of "v" is the constant 

"Superman", then "(quote v)" will denote the quo.e name of the constant 

"Superman", which is '"Superman". 
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f.S Applying the Syntactic Theory 

I have now explained the syntactic theory and the machinery used to 

formalize it.  The -t^xt task is to apply the formalized theory to the examples 

I 
m described in Section 6.3 

H 6.5.1 Observation 

W The robot forms new beliefs by observing the external world and his own 
m 

internal  state.  The world is always changing, so the robot needs a theory of 

I JH time, and it must be able to perceive the passage of time. 

"^        6.5 1.1 Time 

Time is a set of instants totally ordered by <.  If  instant  i precedes 

B instant  j  there  is an interval whose lower endpoint is i and whose upper 

endpoint is j. It contains the instants that are later than i and earlier than 

j. The lower endpoint of interval I is -I, and its upper endpoint is +1. 

Nearly all properties of objects hold during intervals. In particular, we 

write (believe ^ S I) to indicate that agent A believes sentence S during 

interval I. Actions happen during intervals. Thus we write (puton Robot A B 

1) to indicate that the robot puts block A on block B during interval I. 

We can define the order relations between intervals in terms of the < 

relation between thei- endpoints. For example, interval I is before interval 

J if the upper endpoint of I is before the lower endpoint of J: +1 < -J. 

Interval I meets interval J if the upper endpoint of I is the lower endpoint 

of J: +1 = -J. 

m io3 

■ H m 

w 

\;iV'^^,|0-^''.-Jinri''' •i'«^■■l^^^^v^i'■ hfrSfc&a&hfa '^i-^. ;...-~^-. **a:A,^...^ ...'-., 



Bolt Beranek and Newman Inc. Report No. 5421 

The robot has sensors - devices that detect events in the outside world 

and produce descriptions of those events in the robot's internal language. 

The sensors accept physical events as input and produce sentences as output. 

These sentences become beliefs A belief created by perception must note the 

time of the perception. For suppose the robot receives the same message from 

his sensors at two different times - hears two rifle shots in succession, for 

example. If the beliefs created by these two perceptions do not mention the 

times at which the perceptions happened, they will be identical. Then the 

robot s collection of beliefs will be the same as if it had heard only one 

shot. 

Therefore the robot will need names for intervals of time.   These names 

are constants of the internal language called time stamps.  If the robot hears 

the doorbell  ring during interval I, it creates a time stamp for interval I 

- say "IntervallOl".  Then it adds to its beliefs the sentence 

(ringing IntervallOl) 

which says that there is a ringing sound during IntervallOl. The robot 

automatically records every perception, and also other events such as 

inferences and commands to the effectors. Whenever it records such an event 

it creates a time stamp for the interval when the event happened. It uses 

that time stamp to name the interval in the belief thut records the event. 

A time stamp is a useful name for an interval  because  the robot keeps 

records of  the  lengths and order of intervals, and uses time stamps to name 

the  intervals  in those records. If  the robot creates a time stamp 

"Interval53"  for an interval J, then as soon as interval J is over the robot 
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forms a belief  that  records  its  length.  This estimate of the interval's 

length need not be accurate.  People can't tell a minute  from fifty seconds 

without a watch, but they can tell a minute from a second.  The robot can get 

by with rough estimates too.   Let us choose a small unit of  time and 

approximate the  lengths of intervals with whole numbers of units. Then if J 

is 30 units long, there is an interval K such that J meets K and 

(believe Robot '(= (length Interval53) 30) K) 

This belief gives the length of the interval in units, using an arable numeral 

to name the number of units.  For any integer n, let (arabic n) be the arable 

numeral  that denotes n. So (arabic 2+2) = (arabic 4) ■ '4.  Suppose the robot 

creates a time stamp t for an interval i whose length is n units. Then there 

is an interval j such that i meets j and 

(believe Robot ('= ('length t) (arabic n)) j) 

Setting t = 'Interval53, n = 30, j = K gives 

(believe Robot ('= ('length *Interval53) (arabic 30)) K) 

Since (nrabic 30) = '30. we have 

(believe Robot ('= ('length 'Interval53) '30) K) 

which is a notational variant of the last example. 

The robot also records the order relation.', between intervals that have 

time stamps.  To record the order relation between two intervals it is enough 

to record the order relations between their endpoints.  Given intervals I,J we 

must record the order relations between -I and -J, -I and +J, +1 and -J, +1 

and +J.  Consider the first case.  If i and j are intervals with time stamps 

tl,t2,  the robot will record the order relation between +i and -(-j immediately 

after the later of the two instants.  There are three case:, to consider.    If 

+i < +j there is an interval k whose lower endpoint is +j, and 
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(believe Robot ('< ('+ tl) ('+ t2)) k) 

If +i » +j there is an interval k whose lower endpoint is +i, and 

(believe Robot ('= ('+ tl) ('+ t2)) k) 

Finally, if +j < +i there is an interval k whose lower endpoint is +i, and 

(believe Robot ('< ('+ t2) ('+ tl)) k) 

So the robot always knows the order relations among all intervals that have 

been assigned time stamps.  Thus the robot has a sense of  time;  if  it 

remembers two perceptions  it remembers which came first and how long they 

lasted.  This particular axiomatization of the sense of time is crude, but  it 

will do for our purposes.  One could do a better job with the same formalism 

if necessary. 

6.5.1.2 Perception 

Certain physical events cause the robot's sensors to produce sentences 

that describe those events. Let us write (perceive Robot s i) to indicate 

that during interval i the robot's sensors produce the sentence s as a 

description of some event or state in the outside world. As an example, let 

us describe the robot's ability to read. The symbols we reed and write are 

expressions of English, not expressions of the robot's internal language. Let 

us gloss over this distinction and pretend that expressions of the thought 

language can be written on paper, and the robot can read them. 

Suppose that the robot's field of view is a rectangle, and the sensors 

use integer Cartesian coordinates to desoibe positions in the field of view. 

Let (written c x y i) indicate that the expression e is written down at 

coordinates  (x,y)  in the robot's field of view during interval i. If this is 
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the case  the robot's sensors will  report  it, using a quote name for the 

expression e, arable numerals for the integers x and y, and a time stamp  for 

the  interval i. Suppose that e is an expression, x and y are coordinates, and 

i is an interval.  If (written e x y i), there is a time stamp t  for  the 

interval i, and 

(perceive Robot ("written (quote e) (arable x) (arable y) t) i) 

Suppose that "(white snow)" is written at coordinates (150.150) In the robot's 

field of  view during interval I. Then there is a time stamp for interval I, 

say "Interval99", and we have 

(perceive Robot 
('written (quote "(white snow)) 

(arable 150) 
(arable 150) 
'Interval99 

) 
I 

) 

Using (quote "(white snow)) = ""(white snow) and (arable 150) = "150 gives 

(perceive Robot 
("written " "(white snow) "150 "150 "Interval) 
I 

) 

The robot believes what its sensors tell it.  That is, if it pe-ceives a 

sentence s during interval i, there is an interval j such that i meets j and 

the robot believes s during j. In this case there is an interval K such that I 

meets K and 

(believe Robot ("written "'(white snow) "150 "150 "Interval99) K) 
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6.5.1.3 Retriaying Beliefs From Memory 

The robot acts by executing programs, and its programming language is 

quite conventional. There is a fixed set of registers. Just like a Von 

Neumann machine, the robot must bring a data structure into a register before 

it can operate on that data structure. Remembering a belief means bringing it 

from memory into a register. If the robot has Bill's phone number stored in 

its memory, but for some reason can't retrieve it, it cannot call Bill. It 

has no way to pass the phone number to its telephone dialing routine. This 

matches our intuitions about people, if you know Bill's phone number, but you 

can't remember it at the moment, then you can't call Bill. 

The statements of the programming language are terms of the internal 

language, although they have no useful denotations. Considering them to be 

terms of the internal language is handy because we can then use quotation to 

name programs. The expressions of the programming language are terms of the 

internal language, and their values in the programming language are their 

denotations. Of course they are limited to terms whose values the agent can 

compute. 

All the expressions of the internal language are data structures of the 

programming language. There are other data structures in the programming 

language - lists of expressions, for example. Every data structure has a name 

in the internal language called its print name. The print names of 

expressions are just their quote names. The print name of the list (cons e 

nil) is {'cons (PrintName e) 'nil). 

.■  The robot uses a statement called the retrieve statement  to retrieve 
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beliefs from his memory. A retrieve statement has the form (retrieve r p c), 

where r is a register, p is a wff schema, and c is a wff. p is called the 

pattern and c is called the condition. Suppose the robot wants to retrieve a 

sentence that tells what John's phone number is.  Such a sentence has the form 

7 ('PhoneNumber John n) 

The term n must be an arable numeral 

8 (IsArabic n) 

The robot can retrieve a sentence that tells what John's phone number is by 

executing a retrieve statement with pattern (7) and condition (8); 

9 (retrieve Rl 
('PhoneNumber 'John n) 
(IsArabic n) 

) 

A sentence s matches the pattern "(PhoneNumber 'John n)" and the condition 

"(IsArabic n)" if for some binding of the variable "n", "('PhoneNumber 'John 

n)" denotes s, and "(IsArabic n)" is true. For example, if "n" is bound to 

"5766", then "('PhoneNumber 'John n)" denotes "(PhoneNumber John 5766)" and 

"(IsArabic n)" is true. Therefore "(PhoneNumber John 5766)" matches the 

pattern "('PhoneNumber 'John n)" and the condition "(IsArabic n)". If a 

sentence matches the pattern "('PhoneNumber 'John n)" and the condition 

"(IsArabic n)", then it has the form ('PhoneNumber 'John n) for some arabic 

numeral n. That is, it tells what John's phone number is. So if the robot 

knows what John's phone number is, he can retrieve that knowledge by executing 

the statement (9). 
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In general, a sentence s matches pattern p and condition c if p is a wff 

schema and for some bindings of the free variables of p, p denotes s and c is 

true. Suppose the robot executes the statement (retrieve r p c) in interval 

I, and the robot believes a sentence that matches pattern p and condition 

c. Then the retrieve statement returns a belief that matches the pattern and 

the condition. There may be several beliefs that match. If so any one of 

them might be returned. Register r is set to the belief that is returned 

That is, there is an interval J such that I meets J and register r holds the 

returned belief during J The retrieve statement allows the robot to search 

his memory. 

6.5.1.4 Introspection 

Now that we have a statement that searches the memory we can describe 

introspection very neatly. All we have to do is say that whenever an agent 

executes a statement he knows whether it returned a value, and if so what 

value. The agent can then find out whether he has a certain belief by trying 

to retrieve it. If he succeeds he will know this, and he can infer that le 

had the belief; if he fails he will know this also, and he can infer that he 

had no belief that matched the pattern an«? the condition. 

Suppose, then, that the robot executes a statement s of the programming 

language during interval I, and it returns a value v. The value v is a date 

structure. The robot has a time stamp t for the interval I. There is an 

interval J such that I meets J, and during interval J the robot believes the 

sentence 

('return (SelfName Robot) (quote s) (PrintName v) t) 
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This sentence says that the robot executed statement s during interval I, and 

it returned value v. The robot is named by his selfname,  the  interval  by a 

time stamp,  the statement by its quote name, and the returned value by its 

print name.  If the robot executes the statement 

(retrieve Rl ('PhoneNumber 'John n) (IsArabic n)) 

and it returns the sentence 

(PhoneNumber John 5766) 

he wil1 beiieve 

«f (returns Me 
'(retrieve Rl ('PhoneNumber 'John n) (IsArabic n)) 

m '(PhoneNumber John 5766) 
H Interval432 

) 

i 
assuming "Interval432" is the time stamp for interval I. The robot knows  that 

if he executes a retrieve statement during any interval i, and it returns a 

sentence s, he believed s during i. So he can infer 

m (believe Me '(PhoneNumber John 5766) Interval432) 

So if the robot believes that Johns number is 5766, he can find out  that he 

V| believes that John's number is 5766. 

Suppose the robot executes a statement s of the programming language 

during interval I,and it returns no value.  The robot has a time stamp t  for 

g        the interval I. There is an interval J such that I meets J and during interval 

J the robot believes the sentence 

('- (some 'x ('returns (SelfName Me) (quote s) 'x t))) 

This sentence says that the robot executed statement s during interval I, and 

it returned no value. 
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Suppose the robot does not know what John's phone number xs.  That is, he 

has no belief  of  the  form ('PhoneNumber  'John n), where n is an arable 

numeral.  If the robot executes the statement 

(retrieve Rl ('PhoneNumber John n) (IsArabic n)) 

it will return no value. For only a belief of the form ("PhoneNumber John 

n), where n is an arabic numeral, would match the pattern and the condition. 

If this statement returns no value, the robot will believe the sentence 

(~ (some x 
(returns Me 

'(retrieve Rl ('PhoneNumber 'John n) (IsArabic n)) 
x 
Ipterval82 

) 
)) 

This sentence says that the retrieve statement returned no value. The robot 

can now argue by contradiction: If I had a belief of the form (PhoneNumber 

•John n), where i was an arabic numeral, it would have matched the pattern 

"('PhoneNumber 'John n)" and the condition "(IsArabic n)". Then the retrieve 

statement would have returned a value. But the retrieve statement returned no 

value. Therefore I have no belief of the form ('PhoneNumber "John n), where n 

is an arabic numeral.  That is, I do not know John's phone number. 

Most theories of belief include an axiom saying that if an agent believes 

that P, he believes that he believes that P. This theory has instead a general 

axiom of introspection. It jays that if an agent executes a statement of his 

internal programming language, he knows w.iat value it returned. This axiom 

allows us to show that if an agent believes that P he can easily discover that 

he believes that P. We use the same axiom to show that if the agent does not 
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believe that P, he can discover that he does not believe that P Also we can 

show that if the agent does not know what X is, he can discover that he does 

not know what X is - at least in some cases. Later we will find another use 

for this axiom of introspection 

6.5.2 Inference 

Inference is another process that creates new beliefs. A.I. workers 

have often distinguished between data-driven and goal-driven inferences The 

data-driven inferences happen whenever certain kinds of data are added to the 

data base. The goal-driven inferences happen when the robot is trying to 

prove certain kinds of theorems. Data-driven inferences must be limited in 

some way, because the robot can have only a finite number of beliefs. 

Breaking up conjunctions is a reasonable data-driven inference: if p & q is 

added to the belief base, p and q are added too. We can easily describe this 

with an axiom: 

(believe Robot {'& p q) i) 
-> (believe Robot p i) & (believe Robot q i) 

-.' 

The new beliefs formed by breaking up conjunctions could be added explicitly. 

They could also be added implicitly, by using a belief retrieval program that 

looks inside conjunctions.  Such implementation questions are outside the 

scope of this theory. 

a.5.2.1 What Do John's Beliefs Entail? 

I turn now to the problem of predicting goal-driven inferences.  I begin 

with the usuaj distinction between search space and search algorithm.  To show 
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that an agent will infer a certain belief if he tries to infer it, we must 

show that there is a path in his search space that leads to that belief, and 

that his search algorithm is powerful enough to find it. I consider first the 

problem of showing that the path exists - that is, the agent's beliefs entail 

the given sentence. 

Suppose our knowledge of another agent's beliefs consists of a set of 

sentences of the form (believe agent (quote s) i) - that is, we have quote 

names for the sentences the other tgent believes. Then by removing the 

quotation marks we can reconstruct the exact sentences that the other agent 

believes. We build a data base, separate from our collection of beliefs, 

containing the sentences that the othar agent believes. Any theorem that we 

can prove using only the sentences in this data base follows from the other 

agent's beliefs. This is an old idea. Creary [2] was the first to point out 

that we can combine this kind of reasoning with the use of quotation to 

represent beliefs. 

This method is not sufficient to handle the following inference. 

John knows what Mary's phone number is. 
John knows that Mary's phone number is the same as Bill's 

John knows what Bill's phone number is. 

In our notation the first sentence becomes 

(know John 
('«= '(PhoneNumbcr Mary) (arabic (PhoneNumber Mary))) 
I 

) 
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We cannot reconstruct the sentence that John believes from this description, 

because the description doesn't tell us which arable numeral appears in John's 

belief.  So we can't build a data base containing John's beliefs. 

Konolige [8] suggested a solution to this problem. Instead of using 

simulation, he proposed to describe the proof rules of the other agent's 

language, and use this description to show that a theorem can be proved from 

another agent's beliefs. For example, we might describe the rule of Modus 

Ponens by writing 

(all p q (ModusPonens p ('-> p q) q)) 

This axiom says that p and ('-> p q) entail q by the rule of Modus Ponens. We 

do not need quote names for the wffs p and q to use this axiom - any names at 

all will do. If we follow Konolige the lack of quote names for John's beliefs 

creates no special problem. 

The difficulty with Konolige's proposal is that it leads to very long 

proofs. Suppose we try to find the conclusion of an n-step proof using axioms 

that deocribe the proof rules. For each step of the original proof we must 

build a short proof, which shows that that step produces a certain conclusion. 

Suppose the average length of these proofs is p steps. Then the proof that 

our n-step proof has a certain conclusion will involve p X n steps. 

Now consider what happens when we nest this kind of reasoning. Suppose 

John knows that Mary knows his phone number. Then John expects Mary to know 

how to call him. Suppose we apply Konolige's technique to this problem. 

There is an n-step proof whose premisses are among Mary's beliefs, and whose 

conclusion saysthat Mary can call Bill by dialing a certain number.  To show 
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that  the proof has this conclusion, John must build a proof of p X n steps 

To show that John can build this proof, we must build a proof of p x (p X n) 

steps.  The size of the proofs grows exponentially with the depth of nesting 

This :s clearly intolerable. 

There is an obvious way out of this problem, although it is not  trivial 

to show that  it is correct. We pick a new constant, say "C", and use it to 

stand for the arabic numeral that John uses to name Mary's phone number.  Then 

we car build a data base that approximates JoLi's beliefs.   It will  contain 

the sentences 

( i (PhoneNumber Mary) C) 
(= (PhoneNumber Mary) (PhoneNumber Bill)) 

from which we can infer 

(= (PhoneNumber Bill) C) 

Since "C" stands for an arabic numeral, John can infer a sentence of the form 

('= ("PhoneNumber Bill) n), where n is an arabic numeral.  That is, John can 

figure out what Bill's phone number is. 

& 

Let us state the argument more precisely. If we were to go through the 

proof we have just built, and replace the constant "C" with the arabic numeral 

that appeers in John's belief about Mary's phone number, the result would be a 

new proof. John believes the premisses of this proof, and its conclusion 

gives an rabic numeral for Bill's phone number. So tb«re is a way to prove 

from John's beliefs a theorem that gives an arabic numeral for Bill's phone 

number. The crucial assumption here is that if we go through the proof and 

replace "C" with another constant, the result is  still  a proof.   Given a 
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1 suitable version.of first-order logic, one can show that if we take any proof 

~ and replace all occurrences of a constant with a closed term,  the result  is 

%» still  a proof.  This theorem justifies the use of a new constant to represent 

C} an unknown term that appears in another agent's beliefs.   It allows us to 

prove the 'orrectness of an axiom schema called the Reflection Schema, which 

fJl does the kind of reasoning that we have informally described. 

6.5.2.2 The Reflection Schema 

Consiler first the simple case of the Reflection Schema, in which we have 

the quote names of the other agent's beliefs.   The proof  to be reflected 

consists of  a single step.  The rule of Substitution 01 Equals is applied to 

9        the premisses 

(= (PhoneNumber Mary) 5766) 
(= (PhoneNumber Bill) (PhoneNumber Mary)) 

producing the conclusion 

(= (PhoneNumber Bill) 5766) 

rx A proof is formed by starting with wffs called premisses and repeatedly 

applying prcoi rules. Every proof has a print name, which includes the quote 

names of all the premisses of the proof. Given the print name of a proof one 

can easily reconstruct that proof, just as one can reconstruct a sentence from 

its quote name.  The print name of the proof just given is 

^l        (EqSubst '(= (PhoneNumber Mary) 5766) 
'(= (PhoneNumber Bill) (PhoneNumber Mary)) 
"(= (PhoneNumber Bill) 5766) 
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(IsProof p) means that p is a correct proof.  If p is a correct proof, the 

sentence 

("IsProof (PrintName p)) 

is an instance of the Reflection Schema.  For the proof given above we have 

the instance 

10 (IsProof (EqSubst '(= (PhoneNumber Mary) 5766) 
'(= (PhoneNumber Bill) (PhoneNumber Mary)) 
'(= (PhoneNumber Bill) 5766) 

) 
) 

If  John believes the premisses of  this proof he can infer its conclusion 

- that is, he can infer that Bill's number is 5766. 

It is easy to implement this schema.  The  implementation is a program 

that takes a sentence as input and decides whether it is an instance of the 

Reflection Schema.  The input sentence contains the print names of a proof and 

its conclusion.  From the print names the program reconstructs the proof  and 

the conclusion.   Then it calls the programs that implement the other proof 

rules to decide whether the proof is correct.  If it is, the input sentence is 

an instance of the Reflection Schema. 

Suppose John knows Mary's phone number.  Then he believes the sentence 

('= "(PhoneNumber Mary) (arable (PhoneNumber Mary))) 

If he also believes that Bill's phone number  is  the  same as Mary's,  he 

believes the sentence 

'(= (PhoneNumber Bill) (PhoneNumber Mary)) 

By Substitution Of Equals he can infer 

('= "(PhoneNumber Bill) (arable (PhoneNumber Mary)) 
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The version of the Reflection Schema that we have just seen is not strong 

enough to prove this. It demands the quote names of the sentences in the 

proof to be reflected, and we do not have the quote name of the arabic numeral 

for Mary's phone number. We need a stronger Reflection Schema, which includes 

the following instance. 

H 
(all x 
(ClosedTerm x) 
-> (IsProof 

(EqSubst ('= '(PhoneNumber Mary) x) 
{'= '(PhoneNumber Bill) '(PhoneNumber Mary)) 
('= (PhoneNumber Bill) x) 

) 
) 

) 

Since an arabic numeral is a closed term, we infer 

(IsProof 
(EqSubst ('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary))) 

('« '(PhoneNumber Bill) '(PhoneNumber Mary)) 
('= "(PhoneNumber Bill) (arabic (PhoneNumber Mary))) 

) 
) 

And this is the desired conclusion. 

The argument of the predicate letter "IsProof" in (11) is called a proof 

schema. A proof schema is like the print name of  a proof,  except  that a 

variable can appear instead of the quote name of a term.  That is, a proof 

schema is to the print name of a proof what a wff schema is to the quote name 

of a wff.  The argument of "IsProof" in (10) is the print name of a proof.  It 

gives  the quote name ""5766" of the arabic numeral for Mary's phone number. 

The argument of "IsProof" in (11) is a proof schema.  The variable "x" appears 

in place of the quote name '"5766". 
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Implementing this version of the Reflection Schema is not as easy as 

implementing the first version. The first version reconstructed the proof to 

be reflected from its print name, and then called the other proof rules to 

dt i whether the proof was correct. The new version gets only a proof 

schema, which stands for a whole class of proofs called instances of the 

schema. A proof p is an instance of a proof schema s if fur some bindings of 

the free variables of s, s denotes p. The proof named in (10) is an instance 

of the proof schema that appears in (11). It is formed by binding the 

variable "x" to the term "5766'. An instance of the Reflection Schema is true 

only if all instances of its proof schema are correci proofs. 

The solution is to form a proof called the typical instance of the proof 

schema.  Every instance of the schema can be  formed by substituting closed 

terms for constants  in the typical instance.  If the typical instance is a 

correct proof,  then since substitution maps proofs to proofs,  all  the 

instances are correct proofs. 

The typical instance of a proof schema is its denotation in an 

environment that binds its free variables to new constants. For example, if 

we bind the variable "x" to the new constant "C", then the proof schema in 

(11) denotes a proof whose premisses are 

(= (PhoneNumber Mary) C) 
(» (PhoneNumber Mary) (PhoneNumber Bill)) 

Its conclusion is 

(= (PhoneNumber Bill C) 

and the rule used is-Substitution Of Equals.  Since this proof is correct, all 

120 

fc-i^ -*' , . »y-  A -f.--  -* 



Report No. 5421 Bolt Beranek end Newman Inc. 

instances of the proof schema in (11) are correct. Therefore (11) is a true 

sentence (in the intended model). This is a rough explanation of the 

Reflection Schema, omitting many complications. 

We have shown how to make inferences by simulation from atomic sentences 

like 

(believe John 
('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary))) 
I 

1 > 
1 

and from conjunctions of such sentences. What about the other connectives and 
I 
. quantifiers? We ought to be able to make  inferences  from disjunctions and 

negations of sentences about belief, and from universally or existentially 

quantified statements about belief.  Here we see the value of adding the 

Reflection Schema to a first-order logic. We can handle negation, disjunction 
i I 

and quantification without adding any more rules or axioms. 

I 
| 

Consider negation.   If John believes that Mary's number is 5766, and he 

,1 
! does not believe that Bill's number is 5766, he must not believe that Bill's 

number is Mary's number  (assuming that he can make trivial inferences). 

I        First-order logic allows us to argue by contradiction; to prove «-p by assuming 

,        p and proving a contradiction.  So assume 
i 

• (believe John '(= (PhoneNumler Mary) (PhoneNumber Bill)) I) 

.1 and 
'i 1 

(believe John ( = ('PhoneNumber 'Mary) '5766) I) 

'4        We can prove by simulation that  there  is a one-step argument  from these 
» 

beliefs of John's to the conclusion 
i 

n 
gf        (= (PhoneNumber Bill) 5766) 
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So if John can find this one-step argument, he believes that Bill's number is 

5766. This contradicts the assumption that he has no such belief, so we can 

conclude that John does not believe that Bill's number is Mary's number 

Suppose John believes that all millionaires are happy, and he either 

believes that Bill is a millionaire or that Bob is a millionaire - we don't 

know which. 

(believe John ('all 'x ('-> ('millionaire x) ('happy 'x)) I) 

(believe John ('millionaire 'Bill) I) 
V (believe John (millionaire Bob) I) 

We should be able to prove that he believes someone is happy (again assuming 

he can make trivial inferences). 

(believe John ('some "x ('happy 'x)) I) 

First-order logic allows us to argue by cases - to prove p  from q V r by 

proving p from q and proving p from r. Assume first that John believes that 

Bill is a millionaire.  Then we can build a data base that represents his 

beliefs, and it looks like this: 

(all x (millionaire x) -> (happy x)) 
(millionaire Bill) 

.N 

In this data base we can easily infer that someone is happy: 

(some x (happy x)) 

So John believes that someone is happy. Now suppose John believes that Bob is 

a millionaire. We can prove again that John believes someone is happy. Since 

John either believes that Bill is a millionaire or that Bob is a millionaire, 

it follows that he believes someone is happy. 
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Suppose  John knows every millionaire by name.   That  is, for each 

§ millionaire be be ie/es that N is a millionaire, where N is the millionaire's i 
personal  name.   Let  (name x) be x's personal name, for any person x. (name 

■ •\ John Smith) is "John Smith",  and so on.   Then we can describe John's 

-j exhaustive knowledge of millionaires by writing: 

(al1 x (mi 11ionaire x) 
-> (believe John ('millionaire (name x)) I)) 

159 

r-.j John also believes that every millionaire is happy. 

** (believe John '(all x (-> (millionaire x) (happy x))) I) 

5^ We should be able to infer that for each millionaire, John believes that he is 
Sät 

happy 

H (all x (millionaire x) -> (believe John ('happy (name x)) I)) 

First-order logic allows us to prove that everything has a certain property by 

proving that an arbitrary object has that property. In the first-order proof 

system used here, free variables represent arbitrary objects. So let z be an 

arbitrary object, and suppose z is a millionaire. Since John knows every 

millionaire by name, we have 
[ 

(believe John ('millionaire (name z)) I) 
I 
[        We choose the constant "C" to stand for the unknown term (name z).  Then the 

data base that represents John's beliefs contains the sentences 

(millionaire C) 
1 (all x (millionaire x) -> (happy x)) 

I 
2 These sentences entail 

I 
I        (happy C) 

\ We conclude 
i 
■i 
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(believe John ("happy (name z)) I) 

But since z represents an arbitrary millionaire, we have 

(all x  (millionaire x) -> (believe John ('happy (name x)) I)) 

which was to be proved.  The treatment of existentially quantified sentences 

about belief is similar. 

By adding the rule of Reflection to a first-order logic, and proving that 

it is correct, we gain two advantages. Because we have proved the rule 

correct, we can rule out the possibility of bugs caused by bad interactions 

between Reflection and some obscure feature of the logic. Because the rule is 

part of a system that represents negation, disjunction and quantification 

correctly and completely, no extra work is needed to handle negations, 

disjunctions and quantifications of statements about belief. Imagine what 

would have happened if we had first written a rough description of our 

inference rules in English, then written 30 pages of LISP to implement them, 

and then started "maintaining" the code so that it changed once a week. How 

would one show that replacing constants with closed terms maps proofs to 

proofs? The kind of work we have just done is possible only if the rules of 

inference are set down plainly. These considerations prove nothing about the 

merits of frames vs. semantic nets vs. logic. They do indicate that an if 

an AI system is going to use reflection to reason about belief, its inference 

rules must be made explicit, not hidden in the code. 

6.5.2.3 What Can John Infer from His Beliefs? 

The rule of Reflection allows us to show that an agent's beliefs entail a 

sentence.  To show that an agent will actually infer that sentence, we need to 
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show also that his theorem prover is powerful enough to find a proof The 

agent calls his theorem prover by executing a prove statement. This statement 

has the form {'prove r p c), where r is a register, p is a pattern, and c is a 

condition. When the agent executes this statement his theorem prover tries to 

prove a sentence that matches the pattern and the condition. If it succeeds, 

the prove statement returns that sentence and puts it in register r. Also the 

sentence is added to the agent's beliefs. 

This leaves the crucial questions: can the theorem prover prove a 

sentence that matches the pattern and th* condition? If it can, which one 

will it prove? Creary [2] offered a simple answer. If agent A can prove by 

simulation that agent B's beliefs entail P, then agent B can prove P. This is 

very different from saying that if agent B's beliefs entail P, agent B can 

prove P. It is quite possible that B's beliefs entail P but A cannot prove 

this fact. 

Agent A predicts the behavior of agent B's theorem prover by making an 

empirical observation of the behavior of his own theorem prover. This 

involves the assumption that agent A is not much brighter than agent B - an 

assumption that is reasonable in most common sense contexts, though not when A 

is a math teacher and B is a student. Agent A can answer the question "Which 

theorem will agent B prove?" by similar reasoning. Perhaps there are many 

theorems entailed by agent B's beliefs that would match the pattern and 

condition that B gave to his theorem prover. If A has shown that a particular 

theorem entailed by B's beliefs will match the pattern and condition, he can 

assume that this theorem is an obvious answer, and it is the one B wi11 prove. 
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This is not so convincing as the last assumption, but it is the same principle 

- A is predicting the behavior of B's theorem prover by observing the behavior 

of his own theorem prover. Agent A can even make a rough estimate of th<? time 

it will take for B to prove the theorem it should be no more than the time it 

took A to simulate B's reasoning. We already have an axiom of introspection, 

which says that when agent A executes a statement of his programming language 

he knows what it value it returned. So if agent A executes th«; prove 

statement he knows what theorem he proved. Also he has a time stamp for the 

interval in which he executed the prove statement, so he knows how long it 

took. 

Suppose then that A and B are two agents, and the following conditions 

hold. 

i.   Agent B executes the statement ("prove r p c) during an 
interval i. and sentence s matches the pattern p and 
condition c. 

ii.  Agent B's beliefs entail sentence s. 
iii. Agent A has proved during an interval j that agent B's 

beliefs entail s. 

Then agent B's execution of (prove r p c) returns the value s, and 

interval i is no longer than interval j. The first condition says that agent B 

is trying to prove sentence s. or one like it. The second condition says that 

there is a proof of s from agent B's beliefs. The third condition says that 

agent A has found such a proof, so it is not too difficult. 

Now we can do the following example from part 1. 
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John knows that Mary's number is 5766 
John knows that Marys number is the same as Bills number. 
John is trying to figure out what what Bills number is. 

John wi'l infer that Bill's number is 5766. 

We represent the statement that John «s trying to figure out what P is by 

saying that John has called his theorem prover and asked it to prove a 

sentence that tells what P is. in this case, John wants his theorem prover to 

prove a sentence that tells what Bill's phone number is. Using a new constant 

C to stand for the arabic numeral for Bill's phone number, the robot can 

simulate John's reasoning. Having simulated the reasoning, it infers that 

John can do the same reasoning, so he will figure out what Bill's number is. 

' 'i 

An agent figures out what inferences another agent can make by simulating 

his reasoning. If the other agent's beliefs include terms that are unknown to 

the simulator, he must use an approximation of the other agent's beliefs in 

his simulation. The simulator introduces new constants to represent the 

unknown terras in the other agent's beliefs. By noting the time that it took 

him to simulate the other agent's reasoning, the simulator judges how hard it 

will be for the other agent to find the same line of reasoning. The simulator 

does not have or need a theory that explains why one line of reasoning is 

harder to find than another. He uses empirical observations of the behavior 

of his own theorem prover to predict the behavior of another agent's theorem 

prover. So we have a theory of belief that talks about the processes that 

create beliefs. 
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6.S.3 Knowing What 

John kn.iws what Mary's phone number is if he knows that Mary's number is 

n, where n is an arabic numeral. We represent this as 

(some n  (know John ('= '(PhoneNumber Mary) n)) 
tt  (IsArabic n) 

) 

We can give a similar treatment of other "knowing what'' examples. An English 

teacher would say that a student knows who the author of "Hamlet" is if he 

knows that the author of "Hamlet" is n, where n is a personal name. We can 

represent this as 

(some n  (know student ('- '(author Hamlet) n) 
& (IsPersonalName n) 

) 

Since "Shakespeare" is a personal name, the student knows who the author of 

"Hamlet" is if he knows that the author of "Hamlet" is Shakespeare. When we 

say that someone knows what X is, we mean that he knows that X is n, where n 

is a name or description having some property P. In the first case, P is the 

property of being an arabic numeral. In the second case, P is the property of 

being a personal name. Kaplan [7] suggested this approacn. 

As we saw in the example of being lost in the city, the property P 

depends on context. In that example, the agent wanted to use the name n to 

accomplish a task. First the task was to get back to the hotel, and he wanted 

n to be something like "five blocks north of the hotM on High Street". Then 

he switched to a new task: helping Mary to find John.  For this task the  term 
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"here" described John's location quite well.  This example suggests that John 

vi knows what X is if he knows that X is n, where  the name or description n 

contains the information needed for the task at hand. 

| 

That would certainly explain why knowing an arabic numeral for Mary s 

;«-| phone number counts as knowing what her number is.  The arabic numeral  allows 
H 

us to call Mary, which is what phone numbers are for.  Or suppose John tells 

g 
B me that he lives in the grey house across the street frcm the Star Market  on 

m 

s 

% 

I 

m 

ks3 

Park Avenue.  Then if 1 know how to get to the Star Market I can get to John's 

house.   I could also clan,, that I know where John lives, even if I have never 

*.| seen his house.  This example fits the proposal nicely. 

According to Konolige 1 know where John lives only if I have a standard 

name for John's house - one that denotes the same house in all possible 

worlds. Certainly "the grey house across from the Star Market" does not 

denote the same house in all pissibie worlds, so Konolige predicts that in 

this case I do not know where John lives. Since Konolige does not suggest 

that the set of possible worlds under consideration can vary with context, he 

does not allow context to determine whether knowing that X is n entai s 

knowing what X is. Moore's proposal is that I know what X is if X is the same 

object in all my alternatives. This is different from Konolige's idea, 

because my alternatives are a small subset of the set of all situations. It 

still does not explain how I can know where John lives when I have never seen 

his house, and can only describe it as "the grey one across from the Star 

Market". 

i 
Alas,  th're are plenty of examples where my proposal fails.  Often there 

| 
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is no particular task at hand. In a discussion of politics I may ask "Do you 

know who the Saudi oil minister is?". Presumably I want his personal name, 

but there is no obvious task to be accomplished with this information. At 

least my pi ^jst accounts for the importance of context in deciding what 

knowledge one nt^ lout an object in order to know what that object is. The 

proposal is not helpful unless, having identified the task at hand, wt can 

decide what knowledge is needed to do that task This is the subject of the 

next section. 

One can give a similar account of de re belief reports. If you think, in 

the de re sensw, that John's sister is his wife, you have a belief of the form 

"n is John's wife", where the name n really denotes John's sister. Let 

"denotation" name the function that maps a term to its denotation. This 

function maps the name "Superman" to the man from Krypton, for example. We 

represent the fact that I think John's sister is his wife by 

(some n  (believe ! ('= n '(wife John))) 
it  (denotation n) = (sister John) 

) 

TL^.e must be some limitations on the choice of the name n. For example, if 

Bill is in fict the president of IBM, the name "president of IBM" denotes him. 

Still believing the tautology "The president of IBM is the President -«f IBM" 

will not qualify you as believing that Bill is the president of IBM. The 

conditions on the name n seem to be weaker in this ase than in the "knowing 

what" examples. 
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fl.6.4 Knerwi_ 'ow 

If you know that Mary's number Is 5766, you know how to call l«ary. When 

does knowing that P entail knowing how to perform action A? Moore proposed 

that actions have parameters - for example, the number to be dialed is a 

parameter of the action of dialing. You know how to do the action if you know 

what the parameters are. And ypu know what X is if X denotes one object in 

all your alternatives. Since "5766" denotes one object in all situations, 

someone who knows that Mary's number is 5766 knows how to call Mary. Konolige 

agrees that you know how to perform an action if you know what its parameters 

are. As mentioned above, Konolige holds that you know what X is if you have a 

standard name for X. Since "5766" is a standard name, someone who knows that 

Mary's number is 5766 knows how to call Mary. 

Both proposals go wrong in the same way. "Six times thirty-one squared" 

denotes 5766 in all situations. So if I know that Marys number is six times 

thirty-one squared I know how to call Mary according to both Moore and 

Konolige. And this prediction is wrong, I have to figure out that six times 

thirty-one squared is 5766 before I can call Mary, and if I don't have pencil 

and paper handy it may not be easy to call her. 

Even if these proposals could be made to work, they are not satisfying. 

There is no apparent reason why having a standard name should help you to 

perform an action. A better theory would have more intuitive appeal. It 

would make us say "Ah, now I see why you need that piece of knowledge to 

perform that action." 
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Let us return to our imaginary robot, and ask "How would the robot can 

Mary on the phone? At which point would he use his knowledge of her phone 

number?' The robot can act only by executing a program. He knows how to 

perform an action if he knows what program he should execute to perform that 

action, Since programs are expressions of the internal language, there is no 

mystery about when the robot knows what program to execute. He knows what 

program to execute if he has the quote name of the program. From the quote 

name he can reconstruct the program itself, he can then proceed to execute it. 

Our problem is then to show that the robot can construct a program for dialing 

Mary's number if he knows the arabic numeral for Mary's number. 

Intuitively it is obvious why you need to know the arabic numeral for 

Mary's number to call her. Te1ephones have arabic numerals printed on their 

dials. You use those numerals to identify the right holes to put your finger 

in. If phones had roman numerals printed on them instead, you would need the 

roman numerals for Mary's number to call her. We must reconcile this common 

sense observation with the claim that the robot knows how to dial Mary's 

number if he knows what program to execute in order to dial Mary's number. 

The robot performs physical actions by sending commands to his effectors. 

These are devices that accept commands in the internal language as input, and 

produce physical actions as output. A command is simply a sentence of the 

internal language that describes the desired action. If the effectors perform 

this action the sentence will be true. 

Of course the effectors can only accept certain sentences as commands. 

Even if two sentences describe the same action, it does not follow that if the 
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i 
effectors can accept one sentence as a command th^y can also accept the other. 

M 
m A real  robot can turn one joint of his arm through an angle of n degrees by 

putting a binary numeral for n in a certain register.  No other name  for the 

io        number n wi 11 do. 

I 
i 
g 

1 
i 

■ 

Actually the commands are not sentences but wffs. A sentence that 

describes an action must give the time when the action was performed. But 

wher the robot sends a command to his effectors he wants it carried out now, 

he does not need or want to specify the time. So the robot uses the free 

variable "Vnow" to stand for the present time in commands to the effector3. 

If the robot sends a command to his effectors during interval I, the action 

will be carried out during interval I. So the command will be satisfied when 

the variable "Vnow" is bound to the interval I. "(CloseHand Robot I)" means 

that the robot closes his hand during interval I. The robot uses his selfname 

to refer to himself in commands to his effectors. So he sends the wff 

"(CloseHand Me Vnow)" to his effectors when he wants to close his hand. 

"(coiranaad Robot w i}" means that the robot sends wff w to his effectors during 

interval i. So the robot believes 

(all 1 (comnujid Me "(CloseHand Me Vnow) i) -> (CloseHand Me i)) 

This sentence says that if the robot commands his hand to close,  it will 

close. 

Let us return to the phone dialing problem. Suppose for simplicity that 

the phone has push buttons rather than a dial. To "dial" Mary's number the 

robot must tell his- hand which buttons to push. The robot's hand is 

presumably guided by bis eye.   We assume that  the problem of hand-eye 
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coordination is handled by low-level routines that do not concern us. All the 

robot has to do to direct his hand to a certain object is to supply the 

coordinates of that object in the visual field. As mentioned above, the 

visual field is a rectangle, and the robot uses Cartesian coordinates to 

ri^ecify positions in the visual field, "(push Robot x y I)" means that during 

interval i the robot's hand reaches out and pushes the object at coordinates 

(x,y) in the robot's field of view. When the robot commands his hand to push 

the object at coordinates (x,y), he uses arabic numerals to specify the 

coordinates x and y. So if the robot issues the command 

("push 'Me (arabic x) (arabic y) 'Vnow) 

his hand will push the object at coordinates (x.y). 

When the robot points his eye at the buttons on the phone, he will see 

the arabic numerals from "0" to "9" printed on the buttons.   As stated in 

Section 6.5.1.2,  the sensors will  report  the.t a numeral n is written at 

coordinates (x.y) by producing the sentence 

('WrittenAt (quote n) (arabic x) (arabic y) 'Interval99) 

The numerals (arabic x) and (arabic y) are precisely the data structures  the 

robot needs  to build a command that will cause his hand to push the button 

with the numeral n printed on it.  If the sensors produce the sentence 

(WrittenAt '5 128 100 Interval99) 

the robot knows that the button with the numeral  "5" printed on  it  is at 

coordinates  (128,100)  in his field of view.  He can push it by issuing the 

command 

(push Me 128 100 Vnow) 
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So assume that the robot is looking at the telephone. He can dial the 

number "5766" by executing a program that looks roughly like this: 

Scan until you receive a percept of the form 
(WrittenAt '5 xl yl i); 
Send the command (push Me xl yl Vnow); 
Scan until you receive a percept of the form 
(WrittenAt '7 x2 y2 i), 
Send the command (push Me x2 y2 Vnow); 
Scan until you receive a percept of the form 
(WrittenAt '6 x3 y3 i), 
Send the command (push Me x3 y3 Vnow), 
Scan until you receive a percept of the form 
(WrittenAt '6 x4 y4 i); 
Send the command (push Me x4 y4 Vnow), 

Now it is clear why the robot needs the arabic numerals for the digits of 

Mary's phone number to construct a program for dialing her number. He needs 

to find the the right buttons to push, and he identifies them by the arabic 

numerals printed on them. The robot cannot dial the number in a pitch black 

room. Moore and Konolige treat dialing as a primitive action. They do not 

mention that you have to look for the buttons with the right numbers printed 

on them, so they do not predict any difficulty about dialing a telephone in 

the dark. They can of course assert that having light is a precondition of 

dialing. But it is better to derive this precondition from the general rule 

that you can't see in the dark. 

6.5.5 Belief and Truth 

Common sense says that snow is white if and only if it is true that snow 

is white.   One can formalize this idea with a Truth Schema.  For every 

sentence p, the sentence 

('<-> ('true (quote p)) p) 
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is an instance of  the Truth Schema.  This schema says that the truth of a 

sentence depends on the properties of the objects mentioned in the sentence. 

For example, one instance of the Truth Schema is the sentence 

(true ('white 'snow)) <-> (white snow) 

which says that the sentence "(white snow)" is true iff snow is white 

Now we can formalize the inferences involving truth in Section 6.2.  The 

following inference is correct: 

John believes that gold is an element 
Everything that Joftn believes is true. 

Gold is an element. 

The formal translations of the premisses are 

(believe John ('element 'gold) I) 
(all x (believe John x I) -> (true x)) 

T.-. 

These sentences entail 

(true ("element "gold)) 

The following is an instance of the truth scheme: 

(true ('element 'gold)) <-> (element gold) 

The last two sentences entail 

(element gold) 

that is, gold is an element. 

The Truth Schema captures our intuitions about truth nicely. 

Unfortunately, our intuitions about truth are not consistent. The problem is 

the celebrated liar paradox.  Suppose I say "This statement is false".  If the 

i 3 
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statement  is true, it is false, and if it is false, it is true.  We can get a 

formal version of this contradiction by assuming 

p » '('- (true p)) 

The following is an instance of the Truth Schema: 

(true '(- (true p))) <-> (~ (true p)) 

Substituting equals gives 

(true p) <-> ("  (true p)) 

which is an obvious contradiction. 

How we deal with this problem depends on what we think the goal of 

Artificial Intelligence is. If we are trying to make machines as intelligent 

hs possible, we must abandon the Truth Schema and look for a new schema that 

can handle the Liar sentence without contradiction. There are several ways to 

do this.  For example, see [15]. 

On the other hand, if we are trying to make machines as intelligent as 

people, we don't want to give them a solution of the Liar Paradox even if we 

know of one. Ordinary people can't resolve the Liar Paradox, they can only 

note that it is a paradox, and go on using the Truth Schema as before. If our 

machines are only supposed to be as intelligent as ordinary people, they 

should do the same. This does not mean that we should put the Truth Schema 

into our logic and forget about the matter. If we do that, we have no way of 

knowing when the contradictions will appear or how much trouble they will 

cause. Even if we find by experiment that no problem arises in this or that 

application, we can't just ignore the problem. It is our job, not just to 

build programs that work, but to understand why they work.  Our task  is not 
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done until we answer the question "How can machines (or people) get away with 

using an inconsistent theory of truth?". 

Let us look again at the Liar example, p = '(- (true p)). Suppose we try 

to discover whether this sentence is true by using the usual Tarskian rules 

for assigning truth values, along with the rule that (true x) is assigned the 

same truth value as x. The sentence is the negation of "(true p), so to find 

its truth value we must find the truth value of '(true p). To find the truth 

value of this sentence we must find the truth value of p. But p is the 

sentence we started with. The attempt to find the truth value of p thus leads 

to an infinite loop. A sentence is called grounded if we can find its truth 

value by the given rules without infinite loop. 

Kfipke [9] pointed out that many quite ordinary utterances can be 

ungrounded if circumstances are very unfavorable. Suppose Joe Smith is 

walking down a road at noon on July 1, 1982. He sees a sign by the road, too 

far away to read, and remarks "The statement on that sign is true." He 

approaches the sign and reads the words "The utterance of Joe Smith at noon on 

July 1, 1982 is false". If we attempt to find the truth value of this 

sentence by usual rules we get an infinite recursion. But of course the 

example was created only by assuming a very peculiar road sign. Although many 

utterances could lead to this kind of infinite recursion, ir practice not many 

do. 

Following Kripke, one can give a formal definition of this notion of a 

grounded sentence, and prove that in any model we can choose the extension of 

the predicate "true" so that  (true  'p) <-> p holds  for every grounded 
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sentence. Since ungrounded sentences seldom arise in practice, they are rare 

in the intended model of the robot's beliefs. Theiefore most instances of the 

Truth Schsma are true in the intended model. And that is why it is saf« for 

the robot to use the Truth Schema. 

6.6 Further Work 

Further work on these lines could be of two kinds: improvements in the 

theory, and applications of the theory. The theory has a major shortcoming as 

it stands: unlike Moore's theory, it does not include a formal theory of 

planning. Since my treatment of time uses intervals, not situations, one 

cannot simply add situation calculus. It would be straightforward to get rid 

of the intervals and add situation calculus to the theory. But situation 

calculus has its own problems, and people are working on better treatments of 

time [16]). It would be nice to keep the interval theory of time and find a 

planning theory based on intervals rather than situations. This problem is 

tackled in [12], [l] and [5]. 

One could make several other extensions to the theory, but real progress 

will come only from studying applications. A program can use this theory in 

two ways: to reason about its own beliefs and other people's. Planning 

programs need to reason about their own beliefs so that they can plan to 

acquire knowledge, either for its own sake or as a prerequisite to further 

actions. Since most planning work to date has used situation calculus, one 

might replace intervals with situations before applying the theory to 

planning. The theory would then allow a program to build plans involving 

perception, introspection, inference and physical actions. 
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Reasoning about other people's beliefs is important in interactive 

programs (whether or not they use natural language) and in story 

understanding. With a good representation of belief one can assert (for 

example) that agent A is lying to agent B, while B realizes that A is lying 

but pretends to be fooled. Here one would like to use knowledge of an agent's 

beliefs to predict his actions, a topic considered in [4]. This type of 

application should provide «vidence for a better theory of knowing what. 

Some people hope that Al programs in all domains can benefit from 

knowledge about their own knowledge. One might express heuristics by saying 

"This piece of knowledge is good for solving this type of problem". One could 

describe a default by saying "Assume that a human being has two arms unless 

you have knowledge to the contrary", thus avoiding the pitfalls of 

non-monotonic logic.  These ideas are attractive but untested. 
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7.  A TRANSPORTABLE NATURAL LANGUAGE INTERFACE' 

M Bates and H.J. Bobrow 

f.l    Introduction 

This paper describes wtrk in progress to develop a facility for natural 

language access to a variety of computer databases and database systems. This 

facility, called IRUS for Information Retrieval using the RUS parsing system, 

allows users who are unfamiliar with the technical characteristics of the 

underlying database system to query databases using typed English input. This 

system can be thought of as a stand-alone query system or as part of a 

management information system (MIS) or a decision support system (DSS). 

Many systems boast of having a "user-friendly" or "English-like" or even 

"English" interface so that users require a minimum of special training to use 

the system, but most such systems use shallow, relatively ad hoc techniques 

that are not robust or linguistically sound. We are using a large, 

well-tested, theoretically-based, general parser of English that has been 

developed and extended in a variety of research projects for over a decade. 

One of the primary emphases of IRUS is transportability, which includes 

thrti types of changes: (1) changing  the domain,  (2)  changing data bases 

This paper appears in the proceedings of the 6th Annual International ACM 
SIGIR Conference on Research and Development in Information Retrieval, 
Bethesda, Maryland, June 6-B, 1983. 
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within the sane domain, and (3) changing data base systems. The use of a 

general parser for Englih is an important pari of the solution to the 

trensportability problem, but there are other par's as well, since portions of 

the system beyond the parser must know the conceptual content of the 'iomain, 

the way in which this is reflected in a collection of datasets, and the 

operating characteristics of the dbms being used to access these datasets. 

Other researchers have investigated similar iss es [8, 5, 6, 12], We 

have attacked this problem by building a knowledge-based system, with 

procedural components independent of domain and data base structure, directed 

by domain and database dependent knowledge structures. We are also building 

tools for conveniently creating and maintaining these knowledge structures, 

with a- eventual goal of allowing end-users to extend and modify these 

knowledge structures to suit their own needs. Given this set of goals, and 

these tools, we consider the current implementation, which uses the System 

1022 dbms on the DEC KL-2060, to be only one of a set of possible 

implementations, and are not constraining IRUS on tha basis of 1022's 

strengths and weaknesses. 

This paper presents an overview of the IRUS sy-tem, emphasizing those 

aspects of the design that are critical to transportabi1it". if' describe the 

parsing system, which is a completely independent module that has been 

interfaced to a variety of different applications, and then discuss the othsr 

modules which bridge the gap uetween the parser and the dbms. 
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7.2 Overview of IRUS 

Figure 1 shows a schematic diagram of the IRUS system. The RUS parser 

forms the linguistic front end, and interacts with an incremental semantic 

interpreter to produce formal semantic interpretations. These interpretations 

are represented in a formalism called the meaning representation language, 

MRL.  which is discussed in Section 4. 

The processing up to this point needs to have knowledge of the prrticular 

domain being addressed, but it is completely independent of any particular 

dbms. Thus, the relevant knowledge bases are the dictionary, which defines 

the vocabulary to be used in discussing the domain, and a set of semantic 

interpretation rules which specify the way in which different linguistic 

constituents are to map to expressions in MRL. 

The next step in processing is to fill out the interpretation using 

additional linguistic (but domain independent) information.  This includes; 

o resolving pronouns and other anaphoric references, 

o filling in ellipsed elements (such as expanding the interpretation of 
"Is the author from Ireland?" to mean "Is the author of that book on 
Shakespeare from Ireland?"), 

o and disambiguating references by using discourse information (such as 
identifying which book on Shakespeare was being talked about). 

This component is currently the least developed part of the system,  as  these 

topics are curren' research problems. 

The resulting interpretation, still expressed in MRL, is ready to be 

translated into a representation that makes explicit  reference to the 
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FIG.  1 ORGANIZATION OF THE IRUS SYSTEM 
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structure of the particular data base being used. The function of the data 

base translator is to take the MRL interpretation and, using information about 

the relationship between the real-world facts (the user's conceptual 

structure) and the particular data base being used (specific file names, 

record and field names). For example, the fact that a book with a particular 

Library of Congress number was acquired on a particular date might be 

represented in a variety of ways in different data bases, such as (1) fields 

named LC# and ACQDATE within a BOOK record, whose values area number and a 

date respectively or (Z) an ACQUISITION record with fields name DATE and 

BOOKID, where BOOKID is an internal identifier for a book that keys into a 

record BOOK which has a field for the Library of Congress number. 

The final stage of processing is to transform this data base 

representation language into a sequence of interactions or commands in the 

dbms query language mat will produce the answer to the initial query. This 

involves optimization to reduce search, based on the indexing characteristics 

of the dbms. 

7.3 The RUS System 

The RUS parsing system is based on the formalism of Augmented Transition 

Networks [l, 16]. It is a highly modular system, ccnsisting of a grammar, a 

parser, a lexical component, and an interface for communication of partial 

results to and from a separate semantic component. The details of the parsing 

mechanism will not be given here; they are discussed in [4] and [2](in 

progress).  Instead, we briefly sketch the capabilities and performance 
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characteristics of the parser, stressing the fact that the RUS design 

expresses syntactic constraints in a broad, general way while using tight 

semantic constraints (if they are available) to guide Ihe parsing and to 

interpret the resulting structure. 

7.3.1 The Grenmar 

When operating without semantic or other constraints, the output of the 

grammar is a syntactic case structure, or labeled tree, in which a variety of 

syntactic slots (HEAD. NUMBER, SUBJECT-NP, etc.) are filled by atomic entries 

or other case structures. This case structure represents in some sense a 

normalized breakdown of the input sentence. It preserves some information 

about the surface structure of the input (for example, what was the first noun 

phrase) while at the same time extracting common information from different 

surface structures. For example, the parses of the two sentences "John 

borrowed the book" and "The book wa. borrowed by John" both indicate that 

"John" is the subject of "borrow" and "hruk" is the object, but the latter 

parse contains information that the sentence was passive. 

The RUS parser u-,r an ATN grammar consisting of 92 states and 322 arcs. 

The syntactic coverage of the RJS grammar is quite broad, larger than the 

LUNAR system [17], and comparable to the SRI DIAMOND system [7] and the LSP 

parser of Sager, et. al. at NYU [9]. The following list exemplifies some of 

the structures that can be parsed: 

o Which of  the reports received from NLM in the last three years 
concerned treatments for infectious hepatitis? 

o What is the average length of the five most widely circulated reports 
written by our division staff? 
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o Which organizations that we receive reports from have responded to 
either of our recent questionnaires? 

o Of  the books on Artificial  Intelligence, how many have  been 
classified as text books? 

o Have there been as many requests for books about medicine this year 
as we planned for in our budget? 

o Has anyone from any college or university inquired whether we 
maintain a distribution list? 

o How much money have we spent on books on Artificial Intelligence this 
quarter? 

7.3.2 The Parser 

Although the parser can be used without semantic support, it has been 

designed to be part of a cascaded system [19, 10, 3] in which feedback from 

other components of a language understanding system (such as semantics, 

pragmatics, and a dialogue expert) can be used to improve the performance of 

the parser. The production of the semantic interpretation is interleaved with 

the parsing process, and the results of the interpretation process are used to 

guide the parser in producing only semantical.'y acceptable parses. 

When operating without semantic or other constraints, the output of the 

RUS system is a syntactic case structure, or labeled tree, in which a variety 

of syntactic slots (HEAD, NUMBER, SUBJECT-NP, etc.) are filled by atomic 

entries or other case structures. This case structure represents in some 

sense a normalized breakdown of the input sentence. It preserves some 

inforuation about the surface structure of the input (for example, what was 

the first noun phrase) while at the same time extracting common information 

from different surface structures.   For example,  the parses of  the two 

149 



Bolt Beranek and Newman Inc. Report No. 5421 

sentences "John borrowed the book" and "The book was borrowed by John" both 

indicate that "John" is the subject of "borrow" and "book" is the object, but 

the latter parse contains information that the sentence was passive. 

The parsing system is written in InterLisp and runs on several computers 

including the DEC Systejas 10 and 20, the VAX, the Xerox 1100 Series, and BBN's 

Jericho personal computer. We expect that it will soon be available in either 

Franz Lisp or PSL to run on the VAX and 68000 computers. The sample sentences 

listed at the end of the previous section have an average of 15.7 words and 

parse in an average of .7 seconds of CPU time using the DEC 2060 version of 

RUS. This is easily fast enough to be part of a front-end for a system that 

must satisfy an interactive user. 

7.4 The Database Interface 

In order to have an appropriately modular system, it is necessary to 

separate the user's conceptual view of the domain from the details of both the 

database structure and the particular database system being used. The result 

of parsing and semantic interpretation should be expressed in terms of the 

user's conceptual structure so that the database structure can be changed 

without having to modify the language understanding part of the system. This 

representation (interpretation) should have a clear formal semantics, so that 

it is possible to determine whether the system has adequately represented 

("understood") the user's input. 

The primary semantic representation or MRL used by IRUS is a descendant 

of the typed quantification language used in the LUNAR natural language 
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database system. This MRL has a formal declarative semantics that can be 

expressed in the predicate calculus as well as a formal procedural 

semantics [18, 20]. It is an extended form of the predicate celculus in which 

the domains of quantification for variables are made explicit. The general 

form is: 

(FOR <quant> X / <class> : (p X); (q X)) 

o where 

o <quant> is a specific quantifier such as EVERY,  SOME,  THREE,  HALF, 
etc. , 

o X is the variable of quantification, 

o <class> is  the domain of quantification (the set over which X can 
range), such as PERSON, DEPARTMENT, BOOK. MONTH, etc., 

o (p X) is a predicate that  restricts  the domain of  quantification 
(such as (IN-DEPARTMENT X DEPT45)), 

o (q X) is the expression being quantified (either a predicate such as 
(MALE X) or an action such as (PRINT X)). 

Consider the sample input sentence "Show the books charged out by people 

in department 45 in January." The corresponding MRL expression, generated by 

the semantic interpreter, has the form: 

(for all x / book: 
(for some y / person: 

(for the z / dept: 
(= (dept# z) 45); 
(dept-member y z)); 

(for some w / day: 
(in-month w January); 
(borrow x y w))); 

(print x)) 

There arc a number of requirements for a MRL,  the most  important  of 

which, according to [18], are: 
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o It must be capable of representing precisely, formally, and 
unambiguously any interpretation that a human reader can place on a 
sentence. 

o It should facilitate an algorithmic translation from English 
sentences into their corresponding semantic representations. 

o It should facilitate subsequent intelligent processing of the 
resulting interpretation. 

The procedural semantics for MRL makes it possible to define the 

operation of the system in any database which can provide (1) generators for 

the entities that are referred to by noun phrases, and (2) procedures to 

filter such generators to represent predicates. Any database system for which 

such a procedural semantics can be defined can be interfaced to the MRL 

output. From our experience, this includes the relational data base systems, 

and we believe it extends to CODASYL networks as well. 

To provide a concrete system on which to develop our ideas, we chose 

System 1022, a commercially available relational DBMS which was already in use 

within BBN. To provide a test of generality, we deliberately did not compare 

a number of dbms systems to choose the one most amenable to this application; 

we simply used the first dbms that was available to us. 

7.5 Conclusions and Future Directions 

The initial version of IRUS was operational at the end of January 1983, 

and we expect to use it as a basis for a number of experiments and practical 

in-house applications. The existence of a mature, well-engineered parser, the 

power of the InterLisp program development environment, as well as our past 

experience on earlier natural language query systems like LUNAR have made  it 
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possible to implement IRUS with only a few person-months of effort. Our 

experience in working with several systems based on RUS leads us to expect 

that the resulting system will be readily modifiable, as well as 

transportable. 

One of our next tasks will be to implement a user interface that will 

make possible the semi-automatic construction of domain and dataset models, to 

make it possible to transport IRUS to new domains using the 1022 system. In 

order to do this, we will define a formal specification language for domain 

and dataset models, which are now specified only as abstract data structures, 

and tie this in with a simple inference mechanism and a flexible human 

interface. 

In the long term, a number of important research problems still exist in 

such areas of anaphr.ä resdution, ellipsis processing and the discourse 

model. The initial IRUS system will include partial solutions to these 

problems which br« e been developed in previous natural language research 

projects at BBN, l^i Vru^ersity of Pennsylvania and SRI. Because the RUS 

system is also being used in several ongoing research projects which are 

focussing on discourse level language problems, we expect that results in 

these areas will be readily transferable to IRUS. 

The modularity of the parser's design, together with the potential for 

effective guidance from the cascaded interaction with semantic knowledge, will 

permit us to continue the development of linguistically well-founded 

extensions to the parser. In particular, we plan to investigate the 

techniques proposed by Weischedel and Sondheimer [13, 14, 11, 15] to process 
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input that is syntactically ill-formed. They have already started to use th-; 

RUS system in their work, and have proposed a number of extensions and 

modifications to RUS to facilitate the handling of ill-formed input. This 

would allow IRUS to accept and correctly process queries with minor errors and 

deviations from "standard" English. 
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8. PROGRESS REPORT: THE RUS SYSTEU 

M Betes and R. Ingria 

8.1 Introduction 

This year has seen continued extension and improvement of the RUS parsing 

system, resulting in a more robust, easier-to-use, more complete parsing tool. 

Many of the changes in the RUS grammar and dictionary feature system were 

the result of research reported in [4], This research consisted of two parts: 

(-1) a comparison of the constructions covered by the RUS parsing system with 

those handled in other parsing systems, as reported in such works as [7] and 

[11]; and (2) an examination of the various types of complements taken by 

verbs, adjectives, and nouns, as listed in such reference works as [10]. All 

the complement constructions dealt with in the sources consulted are 

catalogued in [4] and each construction is cross-referenced by the name which 

it is given in individual sources. This allows for inter-translation among 

the various grammatical and computational studies consulted. 

8.2 The Dictionary 

The dictionary has been increased by about a thousand words to its 

current total of 4700 base and irregular forms. Most prepositions, irregular 

verbs, and irregular nouns are now in the RUS dictionary. 
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All forirs of irregular verts have been entered which are in use in 

current American English For example, verbs such as "bend, bent" and "sing, 

sang, sung" have been entered, while archaic or bsolete forms, such as "sod" 

as the past tense of "seethe", and British English forms, such as "dipt" as 

the past tense of "dip", have been deliberately omitted. Also, in the case of 

verbs which have both regular and irregular forms (for example "lean" with 

past forms "leaned" and "leant"), the irregular forms of these verbs were also 

entered, so that either past tense can be ur,ed. 

To insure that the dictionary include all irregular verbs and nouns 

currently in use, a search was made of several reference works, including 

f2, 3], [5] and [iC], and our word list was checked against a recrnt 

dictionary [8]. In addition, where xhe sources consulted listed a verb which 

is now obsolete, but which possessed a past participle that survives in an 

adjectival use such as "accursed" and "molten", these forms were entered as 

adjectives. 

All irregular nouns with unpredictable plurals, such as "child, children" 

and "goose, geese" have been entered, as have the most frequently used 

compounds containing them, such as "fireman, firemen". In additiou, the most 

common nouns with foreign plurals have been added, for example Latinate nouns 

ending in "-um, -a", such as "erratum, errata", Greek nouns ending in "-ex, 

-ices", such as "vertex, vertices", etc. (For a full list of the classes of 

nouns entered, see Sections 4.47-4.57 of [10]. Sec ilso [81. Chapter XXV.) 

To insure the most complete coverage of these classes of nouns. Walker's 

"backwards" dictionary [12], which groups words by endings,  was  consulted 
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i 
This search revealed that  there are many highly technical nouns in some of 

•Hi 
m these categories, such as "endothelium", which it would not be appropriate  to 

a enter in the RUS dictionary.  Only those forms appearing in [9] were entered. 

In the case of those nouns with regular and irregular plurals, such as "index, 

indexes/indices", both plural forms were entered.  Finally,  nouns which are 

irregular by virtue of the fact tnat they appear only in the plural were also 

n m entered.   These  include historically  irregular plurals with  no  true 

corresponding  singular form at present, such as "kine", and "pluralia tantum" 

Igt nouns, i.e. nouns which are plural in form but singular in meaning,  such as 

m "pants".  (See [10], Sections 4.33 and 4.34 and [8], Chapter XXV.) 

i 

f 
'V 

All  single word prepositions listed in [l, 3] which are in current use, 

such as "aboard" and "underneath", have been entered, but obsolete forms, such 

as "adnro" and "overthwart" have not.  (Once again, [3] was used to determine 

the currency of t> form.)  In addition, many multi-word prepositions, such as 

"alongside of" and "on top of",  listed  in [l] were entered.   Only those 

multi-word prepositions which are idiosyncratic in form were entered; those 
IH 
M which are more productive were dealt with in other ways.    (For example, [l] 

?1 
lists 14 multi-word prepositions beginning with "from". Rather than enter all 

14 separately, the dictionary entry to "from" contains a feature indicatin£ 

that it may take a prepositional phrase as an object to handle these cases.) 

The fist few hundred most frequently used words of English (according to 

[6]) have also been added to the dictionary. 
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6.3 Lexical Acquisition 

The lexical acquisition component has been modified in accordance with 

the new feature set being used. A help facility is being addad which allows a 

user unfamiliar with gr«rn»-atical terms to get detailed explanations, examples, 

and negative examples of all the properties asked about in the lexical 

acquisition dialogue. 

When a sentence in mixed upper and lower case is given to the parser, and 

one of the capitalized words in the sentence is unknown to the lexical 

component, the word is assumed to be a proper noun (the user is asked to 

confirm this, but does not have to do anything further to define the word). 

A facility has been created to allow special syntactic classes such as 

dates (4/12/83), times (4.55, 9AM), social security numbers (444-56-7777), 

monetary expressions ($12.99, |50K) and phone numbers (491-1850x3634) to be 

recognized in the prepass phase of the parser. These are entered into the 

chart as single entities. The mechanism for defining special classes is 

extensible, that is, given a recognition function which takes an atom as its 

argument and returns a CHARTDEF structure for the atom, it is trivial to 

integrate lhat function into the prepass that builds a chart for the parser. 

This facility could be used to sensitize the RUS system to domain-specific 

words or numbers such as ID numbers, part rumbers, report numbers, job 

numbers, etc. 
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8.4 Documentation of RUS 

A draft of "The RUS Parser User's Guide" has been prepared, partially 

funded by the National Library of Medicine. Current users of the RUS system 

(ISI, the National Library of Medicine, and GTE Laboratories) are providing 

useful feedback on the usability, documentation, coverage, and other aspects 

of the system; a final version of the User's Guide will appear when we have 

assimilated that feedback. 
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9.  THE PRAQIATICS OF NON-ANAPHORIC NOKN PHRASES' 

C.L. Sidner 

9.1  Introduction 

2 
This paper is an exploration of some issues in the understanding of 

non-anaphoric definite noun phrases (hereafter defnps) and of those 

indefinites beginning with "a." In particular I examine what kinds of 

knowledge a hearer can use to understand such noun phrases, as well as what 

constitutes that understanding. I will emphasize the discourse and pragmatic 

components of understanding, that is, knowledge of the discourse context and 

the speaker's goals and beliefs; 1 will occa-ionally point out how various 

syntactic and semantic features of these noun phrases can be combined with 

such knowledge to allow the hearer to decide the way the noun phrase was used. 

I approach the problem of the the kinds of knowledge the hearer uses in 

noun phrase understanding from a process orientation. That orientation 

affects my research in two ways. First, throughout this paper I will be 

considering language use on the basis of the  interaction of  a speaker and 

Material in this paper was presented in an Invited Address to the Fifth 
Annual Conference of the Cognitive Science Society, Rochester, NY, May, 1983, 
under the title "A Computational View of the Pragmatics of Noun Phrase::". 

This paper has evolved from fruitful discussions with Barbara Grosz  on all 
£|        sorts of aspects of all sorts of noun phrases.  In addition, I have benefited 

from discussions with Rusty Bobrow, Brad Goodman, David Israel and Marc Vilain 
on drafts of this paper. 
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hearer; I will not treat language as though it exists independently from the 

occasions in which it is used. While the 'independence" approach is very 

fruitful for some language research, I find it necessary to consider the 

process of communication between speaker and hearer. Second, the process 

orientation affects the kinds of questions I ask about hearer's knowledge, in 

particular: what role does each kind of knowledge play in the understanding of 

the hearer, how do those sources of knowledge interact, and what limits the 

hearer's understanding when one or more kinds of knowledge are not available? 

In this paper I want to consider just what those sources of information are. 

An exploration of the sources of knowledge a hearer uses cannot be 

undertaken without also considering what the hearer is understanding. I take 

understanding to mean that a hearer can characterize a noun phrase as having 

one or more characteristics. The hearer uses these to decide how the noun 

phrase was used; as a description (and what it describes) or as a referential 

phrase (and what the referent is) or as underspecified in exact use. This 

description of understanding depends crucially on understanding what 

characteristics a noun phrase has in order to judge its use. 

Within the class of defnps and a-indefinites there are many distinctions 

to be drawn about a noun phrase's characteristics, both in terms of intended 

use and internal structure, and these distinctions affect the way in which a 

hearer interprets such noun phrases. Previous characterizations of these noun 

phrases have focused on such distinctions, as for example, whether the noun 

phrase is intended to be interpreted referentlally or attributively. 1 first 

review the major characterizations that have been proposed.  Later I wi11 draw 
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on these characterizations of noun phrases. Before I can do so, I must 

introduce a different framework which clarifies how the hearer is able to use 

his/her knowledge to characterize a noun phrase and understand its use. 

Within the process oriented framework that dominates this paper, I wi 11 

concentrate on what knowledge is brought to bear and what results from using 

that knowledge. Often I wi11 try to tease out the hearer's decision with an 

account that includes a model of processing, that is, an account of how the 

understanding takes place. In this paper I make no claims for the 

psychological or computational validity of such models. Rather my methodology 

assumes that processing is never totally divorced from knowledge; first one 

must be clear about the decision a process computes and then one can detail 

how the decision is realized. Nevertheless, it is sometimes difficult to 

imagine that a certain kind of knowledge i_s. used without providing at least 

one plausible picture of how it gets used, so from time to time I will suggest 

what processes could be at work. 

Before I turn to the main body of the paper, I want to describe in more 

detail what a hearer must determine about the speaker's intended use of a noun 

phrase.   A hearer must decide whether to take a noun phrase as picking out a 

individual or rather as providing a description;  in the latter case the 

speaker may have a referent in mind for the noun phrase, but the hearer is not 

expected to,  due to a lack of knowledge about some aspect of the phrase or 

referent-individual. Consider the following sentence. 

si Ih£ first place winn«?r Si    XhS.    Boston Marathon got  a cash 
prize. 

In si the defnp may be used simply as a description the speaker thought 
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appropriate, or as a referential description that would tell the hearer just 

who got a prize, or as a description for which the speaker actually knows the 

referent but the hearer knows simply that some person so described exists. To 

understand the noun phrase the hearer must determine just which way the phrase 

was used. 

Hearers may be intended to identi fv a referent.  In such cases, not only 

does the speaker think the hearer can determine the referent, but the speaker 

wants  the hearer to do so in the course of understanding the discourse.  The 

speaker may believe that the identification is possible either because  the 

defnp is sufficient  to distinguish someone (or some thing) already in the 

hearer's mind or because the hearer can use the defnp to locate the proper 

someone  (the referent)  in the world.   In Dl-1 the hearer is called on to 

identify the referent, whether the hearer already has a mental entity to which 

the defnp corresponds or s/he is actually to locate some appropriate person 

cannot be discerned without further information about the speaker and hearer 

of this discourse. 

Dl-1 I saw Xhs.  handsome man 1 met at Clarence's again today. 
2 Since you know him, could you call him and ask him to dinner? 

It is appropriate to combine a discussion of defnps with one of 

a-indefinites because  the two types of noun phrases may be used in similar 

ways.  Compare the alternate second sentences in the sample below: 

D2-1 TWiile I was at MIT, I went to the AI lab. 
2 a) I'd like you to meet the woman professor I met there, 

b) I'd like you to meet ä woman professor I met there. 

The two sentences seem quite similar as in both the speaker is talking about a 

particular woman professor met at MIT and one that the hearer is assumed not 
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to be familiar with. Also, in D2-2a, the speaker does not assume that the 

hearer knows the referent of the defnp (in contrast to Dl-l). Since both the 

defnp and the a-indefinite may be used in other ways, we can ask what 

knowledge the hearer uses to disambiguate ihr intended use of the defnp from 

other uses and to recognize the a-indefinites use as signifying one particular 

individual. We may also ask whether the two uses in D2 communicate some 

different information. 

••3 
3 

A-indefinites can be used in other ways as well. 

s2 A new employee will  be serving on the  labor relations 
commi ttee. 

In s2, the speaker is either saying: 

i 

1. that  there is at least one new employee who will participate in the 
committee, 

2. or of some particular new employee that s/he will participate in the 
committee. 

i 

8 

The ambiguity centers on whether the speaker has a particular object in mind 

to discuss or instead knows that at least one object is correctly described by 

the a-indefinite and wants to discuss such an object. This paper will explore 

just what knowledge the hearer can use to determine which interpretation was 

meant. 

In order to explore the issues I have raised, I wi 11 first categorize a 

number of characteristics that have been associated with defnps and 

a-indefinites by others. I will also show that a pragmatic theory of the 

hearer's interpretation of noun phrases must postulate and relate several 

distinct ways  in which a V -i--  is  intended to understand defnps  and 

a-indefini tes. 
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The second part of this paper presents a framework for integrating the 

knowledge which the hearer brings to bear in characterizing a noun phrase In 

particular, I wi 11 investigate why the hearer uses the following types of 

knowledge to determine these characteristics, and why they in turn allow the 

hearer to choose the pragmatic interpretation that the speaker intended: 

o the speaker's intention regarding the actual communication given to 
the hearer, 

o the sp ker's overall goals, both communicative and otherwise, 

o the beliefs of the speaker and hearer, 

o the role of focusing ( [10], [ll], [17], and [18]) 

o the effect of Grice's [9] maxims of ponversation. 

9.2 Setting the Stage: Previous views on defnps and a-indefinites 

Barwise and Perry [l] outline a view of defnps in which they formalize 

situation types (which are reflected in statements  in English) as partial 

functions from relations and sequences to T and F. A defnp is said to be value 

free relative to a set of situations when the elements of the phrase are 

interpreted without reference to a single distinguished situation.  Thus the 

defnp in "the first president of the US had to be less than 6 feet tall" is 

value free if it. is interpreted simply by combining the semantics of  its 

component parts.   When the defnp is given a value in a particular situation 

(e.g. Washington as the first president of the US), the use is value  loaded. 

Normally speakers and hearers jump to value loaded interpretations when they 

know a-distinguished context,  especiallv the context of  the real world. 

Sometimes, however, the speaker can intend that the value free interpretation 

be used instead 
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Not only does Barwise and Perry's distinction capture the P-issellian and 

Strawsonian view of reference in one framework, but, more important for the 

current purpose, it expresses in semantic terms a natural distinction in the 

use of language, the distinction between description and reference. It thus 

can lead to a valuable fanning out of pragmatic distinctions in the uses of 

defnps.  Just which uses are characterized will be discussed later. 

The notions of value  free/loaded defnps are closely associated with 

M Donnellan's [5], [6] attributive and referential  distinction.   Donnellan 
m 

exemplified the attributive use of a defnp by the following situation. Two 

people come upon a friend Smith who is lying on the ground and is dead of foul 

wounds. One of them says "The murderer of Smith must be insane." Neither 

person knows who the murderer is, and in fact there may be no murderer, but 

the defnp use is legitimate all the same, because, as Donnellan claims, the 

speaker is not really referring to anyone in particular, but rather 

characterizing whoever, if anyone, falls under the description. Barwise and 

Perry see value free/loaded interpretations as corresponding to Donnellan's 

attributive and refereatial uses respectively. The reason is that in both the 

value free and attributive cases, the speaker is not trying to refer to an 

si entity, but rather is using the description to attribute properties  to any 

entity that  satisfies  the definite description.   In the value loaded and 

referential cases, the speaker has a specific situation and individual in mind 

ijl and is pointing to that individual. 

Defnps can be characterized with a different semantic attribute, that  of 

describing or referring to a specific object (the so-called specific use) or 
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of mentioning a generic class  (the generic use).   Ihe  two cases are 

exemplified below: 

s3 Take XhSi  elephant for a walk, please. 

s4 JhSi  elephant is a large and powerful  beast  that dwells  in 
jungle terrain, 

A-indefinites also share this dual characterization as specific or generic: 

s5 Take an elephant for a walk today.  You'll be glad you did. 

s6 AO elephant  is a large and powerful beast that dwells in 
jungle terrain. 

As Lyons [12] points out, the generic uses of defnps and a-indefimtes 

are  not  interchangeable since s7 is acceptable English as a generic 

proposition, but s8 is not. 

s7 The lion is no  longer  to be seen roaming the hills of 
Scotland. 

s8 A lion is no longer to be seen roaming the hills of Scotland. 

Some  linguists (Lyons and Dahl [4]) seem to think that generic references are 

characterized by occurring in generic propositions.   Sidner [17], however, 

showed that whether or not a sentence is generic may depend on the preceding 

context.  This leaves open the question of whether hearers  first decide the 

sentence is generic and interpret all the noun phrases accordingly, or whether 

the hearer uses parts of  the sentence to help determine that the whole 

sentence is generic. 

Whether an a-indefinite is interpreted as generic is related to a 

distinction in the use of specific a-indefinites as either describing a 

particular object, or as mentioning an object that is representative cf one or 

more objects (e.g. the two interpretations of s2 given previously).   Generic 
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a-indefinites usually carry a sense that  the object being described is a 

|3 prototype of a generic class, as in. 

s9 An elephant can live to be 90 years old. ■ 
^1 This prototypical  sense  is similar  to the representative sense of  the 

a-indefinite.   While the hearer cannot distinguish any of  the uses of 

a-indefinites with just syntactic or semantic knowledge, if the hearer could 

eliminate the particular object reading, then it might be easy to distinguish 

generics from representative on the basis of knowledge about whether or not a 

prototype reading can be used in the sentence.  For researchers interested in 

organizing memory and inference machinery for  language understanding,  a 

required capability of  the machine becomes apparent:  it must be able to 

express the distinction between a generic class and prototypes of  it  and 

reason about the appropriateness of prototypes in certain semantic relations 

y 

■ i 

3 

I 
I 
W Now let us consider sow.  pragmatic attributes of defnps. Perrault and 

■ Cohen [14] point out some difficulties in stating necessary and sufficient 

conditions for a speaker's referring to an entity x by uttering expression 

Mi 
I E. They show that the speaker and the hearer must mutually believe that the 
II 

referring expression E is fulfilled by the entity in the given context.  They 

£| state certain conditions on mutual belief and then point out that these do not 

hold for uses where the speaker is seeking information (as  in "What  is  the 

i 
"        departure  time of the next train to Montreal") or for Donnellan's attributive 

,-J        case (where the hearer need have no beliefs about  the existence of  the 

I 
attributed object). 

** While Perrault and Cohen give conclusive evidence that mutual belief 

| 
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sometimes plays a role, there are ocher circunstances where it is possible for 

a speaker to use a definite expression E for entity x when the hearer does not 

share the speaker's knowledge of x or how it can be referred to.  Fcr example. 

thtj speaker siay say slO, Wi iout  assuming the hearer knows that there is 

someone in charge of admissions. 

slO Go to the Alfred Building and see the woman iji charge of 
admissions. 

In such cases  the defrjr acts as a description that the hearer is to use, 

either to identify the proper referent or simply to permit  the  speaker  and 

heartr to share additional information in a conversation {eg, sll) 

sll You know,  I still have the ballet c^gtumg i wpre in my first 
grt '; pageant). 

Cohen [3] has . .?en cxplo-ing types of situations  in which the speaker 

expresses his/her intention for the hearer to identify the object referred to 

by a defnp.  The intention may oe stated either indirectly or directly, and is 

sometimes isolated in a separate sentence.  Thun in slO, the speaker  intends 

for the hearer i.o identify a particular woma i as ^eing the woman in charge of 

admissions, in order to carry out some- bus ness with tu.-.   Sometimes  the 

requests  to  identify muLt be immediatel} followed by the identi'ication act 

before more is said, as  in Cohen's example below.    In this example,  a 

conversation about constructing water puiips, D3-1 is a request to identify. 

D3-1 Expert:  See the clear elbow tube? 
c Apprent;ce; Y-a. 
3 Expert: Place the large end over that same place. 

The hearer must identify the tube immediately after the identification request 

before proceeding to the next step of the construction.  Requests to identify 

arr a significant source of knowledge about how a noun phrase i& used because 

they provide conclusive evidence for the phrase's intended interpretation. 
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I I must briefly note an additional class of defnps which are different 

from those discussed in this paper, that is, those defnps that are anaphoric 

and those that are in implicit focus. Examples are given below: 

D4-1 Jeff owns a shiny new car. (focus is in boldface) 
2 Uifi. engine is so clean you could eat off of it.  (defnp in 

implicit focus) 

3! 

S 

1 

D5-1 Sally took her pet snake and hamster to the park (focus is in 
boldface) 

2 The hamster was afraid to leave its cage, 
3 but the snake slithered away and bit an old man. 

I assume*, following the work of Grosz [10] and Sidner [17], that such defnps 

can be easily distinguished due to rules governing anaphoric relations between 

defnps and the discourse focus, as well as rules governing global focusing and 

objects in implicit focus. These rules can easily predict when a defnp was 

used anaphorically or with an implicit focus, and hearers make use of the 

knowledge of which these rules are an encoding. Given such rules, I assume 

that anaphoric defnps and implicitly focused objects can be discerned as such, 

and that no consideration of i ^m as non-anaphoric defnps occurs. 

To summarize, the characterizations of defnps and a-indefinites  I have 

described are: 

a    for defnps:   value-lcaded/value-free interpretations (Barwise and 
Perry) 

o for defnps:  referential/attributive distinction (Donnellan) 

O  for both. fp^rifyr/a^nf^ir  noun phfeaes 

o for defnps; mutual beiief/speaker belief/no belief  in existence of 
the referent (Cohen and Perrault) 

o for a-indefinites: uriqueness of the object referred to/ choice of a 
representative object for a noun phrase 
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o for defnps: speaker intention for hearer to identify (Cohen) 

9.3 Distinctions in the use of defnps and a-indefinites 

In this section I want to sketch the full array of pragmatic uses of 

defnps and a-indefinites that are implicit in the preceding discussion. To 

begin exploring these uses, I wi11 rely on the diagram below to represent the 

basic mental situation that a speaker or a hearer havp. when using noun 

phrases. 

FIG.  1.  MENTAL STATE OF SPEAKER OR HEARER 

/     \ 
- 

«M 

/ o  A- - • 
/ \l/  V^. 

o     I 

\  [pf] <7£—' 
>- -ä*0A 

\   / 
\  / 

real world 

hearer's mind 

0^ 
0 

o     { 

speaker's mind 

The figure 1 may be considered either from the hearer's viewpoint or the 

speaker's viewpoint. From the hearer's view, the hearer's mind is a 

collection of descriptions of entities, the speaker's mind is just another 
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B part of its mind that holds a collection of entities which the hearer 

attributes to the speaker (the details of any one entity may differ in the two 

spaces), and the real world is those actual items in the world. I 

I 

The hearer must always determine how to map entities in its mind onto 

items in the world. To do so, the hearer makes use of information in the 

entity as an argument to a mapping function. Sometimes the hearer can map 

directly to a particular item or individual from the mental entity 

(represented by the stick figure); sometimes the map only tells him/her that 

some item or individual is chosen but not which one in particular (represented 

by a question mark in the figure); this mapping will be called the anonymous 

individual mapping. Sometimes the map simply indicates that a item will be 

chosen from a set of possible items without stipulating which one; in Barwise 

and Perry's terminology the mapping is a partial function, and hence the 

mapping result is indicated by "pf." 

The items in the hearer's mind either have a connection to some previous 

items , (represented by an arrow between two points) or are connectionless. 

Connectionless items occur when new information, unrelated to any previous 

items, are introduced into memory. If a speaker's view is taken on figure 1, 

the hearer's mind is taken as those items attributed to the bearer. la this 

way, the figure can be used either to consider the speaker's situation in 

generating noun phrases or the hearer's in interpreting them. 

^ 

■i: 

They may specify some previous item in memory. A specification is just an 
item in a hearer's ir.md that stands in some representation relation to objects 
of the world. Specifications are assumed to re-«reser.t objects in the real 
world when such objects etist, or to represent e mental schema of properties 
associated with non-existent ejects, such as Santa Claus. See Sidner 

>;       [17, 18] for details. 
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How are items introduced into the hearer's mind? One way is by hearing 

and interpreting noun phrases. Let us first consider the kind of mappings 

that result from a-indefinites as shown in figures 

FIG. MAPPINGS FOR "A GUILTY MAN" 

speaker's mind 

There are two different types of mappings to consider: what the noun phrase 

maps into in the hearer's mind (or correspondingly, the noun phrase mapped 

from a mental item of a speaker), and what mapping exists between a mental 

item and the real world. 

An a-indefinite maps into a new item in the hearer's mind; we can imagine 

the new item has two parts: a description of the syntactic and semantic 

features of the phrase from a sentence (e.g. the head of the phrase is "man", 
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i 

it has a particular semantic role in a sentence, etc.), and a description of 

the kind of object described by such syntactic and semantic features  (a man 

who has committed some crime).  A new item is new because it does not specify 

any previous items.  A-indefinites, by their very nature, can only map to new 

items  for  the hearer.   However,  for the speaker, "a guilty man" could be 

generated because the speaker has either some previous item to speak about  or 

a new item.  On hearing the phrase "a guilty man," the hearer may believe the 
,*; 
H       speaker has in mind some item with many previous connections, but  the hearer 

.«.■ 

H 

Vi 

I 

ii 

vt- 

cannot discern about the speaker's situation how that item maps into the world 

for the speaker. The hearer does have to determine which mapping into the 

real world the speaker intended the hearer to use for the a-indefinite. 

After the hearer represents an a-indefinite as a new mental  item,  s/he 

chooses  from three possible mappings to the real world  These correspond to 
«a 
JÜ      the interpretations of "a woman professor I met" in D2-2a where the speaker 

m has some one person in mind (though there may be others as well) but does not 

believe the hearer knows which one,  the  "at  least one" or representative 

«I      reading of "a new employee" in s2 and the generic reading of "an elephant" in 

s6.  If the interpretation of "a guilty man" is that there is some one person 
m 
M the speaker had in mind, then the hearer must map the item A in figure 2 using 

the anonymous individual mapping. If "a guilty man" is used l.ke "a new 

employee" above, then the mapping is a partial function that is to be 

evaluated at some later point, and if "a guilty man" is used as a generic, it 

is a different partial function that maps to a prototype that describes 

members of the generic class. 
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i 

The speaker may have one additional mapping, namely to e particular 

individual. The hearer may actually have a previous item in memory which 

corresponds to the real world individual that the speaker has in mind when 

using an a-indefinite. For example, the speaker may say "Mary has a sneaky 

black cat." The hearer may already know all about Mary's black cat, but the 

speaker cannot expect the hearer to associate such information with the 

a-indefinite used simply because the speaker has not indicated his/her 

intention for the hearer to do so. Such intentions are expressed through uses 

of defnps. 

Turning to the uses of defnps, consider figure 3 which is a variation on 

the previous two. Unlike a-indefinites, defnps may map into either a new item 

A in the hearer's mind or to an item B which specifies a previous item. 

Defnps are also used to create mappings of four different types, three of 

which are similar to those for a-indefinites. 

The most common use of a defnp is the referential use. The defnp is 

meant to refer to some particular individual or item in the world. From the 

hearer's point of view, this use corresponds to mapping a mental item to a 

particular individual in the real world, as shown in figure 3. To assure such 

a map the hearer must have enough descriptions of the individual to 

distinguish it in any context. By having a canonical description, such as a 

name, this can be easily achieved. This type of knowledge will be called 

"referential knowledge of an individual." It is possible to have somewhat 

fewer descriptions and still map to an individual. However, if a speaker uses 

a defnp referentially with knowledge that the- hearer has  less  than complete 
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FIG.  3.   MAPPINGS FOR "THE GUILTY MAN" 

I 

I 

^ 
Ö 

I 
i 

'the guilty man" 

speaker's mind 

information,  the speaker runs the risk that the defnp will not map to the 

intended individual or to any individual at all. 

A defnp that maps to a mental item may also be used to create the mapping 

for an anonymous individual. While this is like the mapping for the anonymous 

individual with a-indefinites, for defnps there is a coramitnent to the 

existence of only one such individual. 

ä 

The anonymous  individual napping can be seen as the other end of a 
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continuum with the referential use. If the hearer has very little informatiou 

about the item to which the defnp corresponds, s/he will be unable to choose a 

particular individual in the world to map the item into and may have to settle 

for a map that says there is such an individual even if it cannot be picked 

out. Midway between this circumstance and referential knowledge are the 

situations where a hearer has enough knowledge to map to an individual in some 

contexts but not in others. For example if X and Y are discussing "the woman 

over there," X has enough information to map the defnp onto some woman in the 

room, but X may not know that her name is Ms. Jones, that she is the sister of 

Ms. Smith. X will not be able to map the mental item corresponding to "the 

sister of Ms. Smith" to the woman in the room. 

A mental item may also map as a partial function to be evaluated at a 

later time as in "The first president of the US had to be a Southerner"; the 

speaker is not saying that George Washington had to be what he was, but rather 

that, whoever it was that became president. had to have that trait. Another 

map to a partial function is the prototype map, this map is like the one for 

a-indefinites. It is also possible that no mapping at all is intended. For 

example, if a speaker says "The first president of the US could not have lied 

about his father's tree," it is possible to use the defnp without concern for 

whether it now maps to someone or ever will. The speaker's purpose may be to 

comment about the person, who as the first president, did or did not do 

something without regard for who that person could be. 

When the speaker uses a defnp, his/her own real world mapping for the 

mental item to which the defnp corresponds may be different than the one that 

the hearer is intended to use.  Reconsider sl2 below. 
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812 ih£ iix.5l place ytnner si Uae Eaalan Marathoa got a cash 
prize. 

A speaker could have complete referential knowledge of the defnp when uttering 

sl2, hence map the corresponding item into an individual, and yet expect only 

that the hearer treat the defnp as a description that maps onto some anonymous 

individual or as a partial function mapping 

B 
A crucial  question for defnp  interpretation is whether the speaker's 

mapping matters to the hearer.  If it did not,  the hearer would have  less 

■ information to consider in determining an interpretation (i.e. a mapping).  As 

Ej it turns out, the speaker's mapping does matter:  without knowledge of it, the 
'.1 yi 

hearer will  conclude that some utterances have peculiar intended meanings. 

Ü 
M Several cases need to be explored. 

^1 Suppose the speaker is about to construct  the utterance "Who  is the 
m Sap 

president of BBN?" and can use only an anonymous individual mapping for the 

■ item that corresponds to the defnp in his/her mind.   The speaker believes 
& 

however that the hearer can map to a particular individual.  The hearer of the 

8 
Ü        utterance maps "the president of BBN" to T. Jones.  If the hearer believes the 

dt speaker  is not aware of the particular individual, the question is a simple 

request for information about reference. Were the hearer to believe the 

speaker could map to the particular individual, the hearer would be forced to 

conclude that the speaker was asking e question for which s/he knew the 

answer. Such a question could make sense only if the speaker doubted the 

hearer had such knowledge and wanted to test the hearer. 

■''A 

t-j 

A second circumstance where the speaker's mapping plays a role  in the 

hearer's understanding can be exemplified with sl3 repeated below. 
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sl3 Go to the Alfred Building and see the woman in charge al of 
admissions. 

The speaker may utter sl3 having either an anonymous  individual mapping,  a 

partial  function mapping or a particular individual mapping in mind  In the 

first instance, the speaker may have some additional  information about the 

item s/he has chosen to describe  in words as  "the woman in charge of 

admissions" while not have referential knowledge.  In the second instance the 

speaker may  just believe there is some woman in that building in charge of 

admissions and who it may be will be found out at some later point  (such as 

after going  to the building).    In the  third instance  the speaker has 

referential knowledge of the individual described by the noun phrase.  At  the 

same time the noun phrase may map to the hearer's mind as a new item and hence 

one  for which the hearer has no referential knowledge.  The hearer's problem 

is to decide which mapping the speaker intended him/her to use  for  the noun 

phrase. 

The speaker could not have intended that the hearer use a particular 

individual mapping since the defnp maps as a new mental item (assuming the 

speaker Is aware that the description is new for the hearer). The hearer may 

believe the speaker has referential knowledge for the noun phrase but as long 

as the hearer believes the speaker knows that the hearer does not have 

referential knowledge, the hearer can rule out being expected to make an 

individual mapping. The hearer is also aware that the speaker has some 

mapping (rather than none) because if the speaker had no mapping in mind, the 

command gi^n in the utterance is vacuous. Were the hearer nware that the 

speaker had one or the other of  a partial  function map or an anonymous 
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individual map, the hearer would have evidence for which way to interpret the 

noun phrase. Lacking that information the hearer can determine which was 

meant only by considering other aspects of the intended meaning of the 

utterance besides the noun phrase. Thus knowledge of the speaker's mapping 

can help discern the noun phrase interpretation 

In the example below, the speaker may use the noun phrase with a partial 

function mapping interpretation . 

sl4 The wife of *he department head needs a tough skin and a 
pleasant smile. 

Upon hearing the sentence, the hearer may recognize that the defnp maps to an 

item which specifies some previous mental item for which there is a map to a 

particular  individual Mrs. Big.  However, this is not the mapping the hearer 

is intended to use.  The speaker, in saying sl4,  is stating  something s/he 

believes  true of whoever  is the department head's wife, not just Mrs. Big 

The hearer has  the burden of  recognizing  that  s/he must not  jump to 

conclusions about  the  individual map.   When the hearer is aware that the 

speaker knows that there is an individual map to Mrs. Big, the hearer can use 

this knowledge to conclude that the individual map was not meant, were it 

intended, the speaker could have signaled it by use of "Mrs. Big" in  place of 

the defnp and saved the defnp for the partial function mapping. 

One final comment is needed regarding the distinction between anonymous 

individual and partial function mappings. A certain example, from Barwise and 

Perry, will illustrate the difference between them. 

The defnp use here corresponds  the  most  closely  to  the  value 
free/attributive uses discussed earlier. 
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Sherlock Holmes and Watson are trying to determine who murdered Jones. 

They know that someone did, and the evidence suc'jests that the person loved 

Mary. Thus Holmes can say "The murderer of Jones loves Mary." Barwise and 

Perry claim that the defnp is value free: it cannot be otherwise since neither 

Holmes nor Watson know the murderer, and so the defnp must be evaluated at 

some later time. In the expanded schema of mappings given in 3, there seems 

to be a different interpretation, namely "the murderer of Jones" will be 

interpreted with an anonymous individual mapping rather than a partial 

function mapping. Why? Both Holmes and Watson believe there is £. murderer, 

and while they don't know who, they have more information in their memories 

than the belief that they will later find out who it is: they have evidence 

about the murderer. Hence the distinction in the two mappings comes simply 

from what other mental material is available besides that which is expressed 

in the noun phrase. Sometimes a hearer will nr» be cble to distinguish which 

of the two mappings was intended because s/he will not have any knowledge of 

the speaker's mental material beyond that expressed in the noun phrase; yet 

when s/he does, it is relevant in determining just who was being spoken about. 

W 

I will not explore examples of all tlie pairings of speaker and hearer 

mappings as there are no notable characteristi beyond the ones already 

discussed. Now that I have described some of the situations of a speaker and 

hearer with respect to interpreting a noun phrase, I want to ask what kinds of 

knowledge the hearer uses to recognize the proper mapping. One kind has been 

explored, but there are several other relevant kinds. I shall also comment on 

how the recognition might take place, but this topic remains speculative until 

further research is undertaken. 
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9.4 Recognizing Uses of A-Indefinites 

How might a hearer go about distinguishing the three uses of 

a-indefinites shown in figure 2? The hearer relies on a variety of factors to 

tease out the intended use, and some of these involve how the hearer's beliefs 

interact with the communicative purpose of an utterance In the discussion 

that follows the role of beliefs and communicative purpose will be of 

fundamental concern. They distinguish the perspective taken here from earlier 

research in linguistics and philosophy. 

To illustrate the factors involved, I wi 11 consider several examples that 

demonstrate that understanding is affected by the knowledge of the purpose of 

the utterance, of the speaker's overall goals and of the proper use of 

definite referring expressions as well as indefinites. I will also show how a 

hearer must use knowledge of everyday pragmatics and sentence semantics in 

understanding. Finally, some of these examples will illustrate cases where 

there is insufficient knowledge to determine which use the speaker intended. 

slS could be said in the situation where a user  is  talking to an 

assistant about a graphics display.  On the screen is a map, and the travel 

patterns of ships, boats, tankers and barges are being presented so that  the 

user can gather information about them. 

sl5 A ship LftflP should b« blue. 

The a-indefinite in sl5 is usually taken to be a generic, and the 

sentence is interpreted as a standing order for how to present ships on the 

graphic display.   Let us assume  that  the speaker's intention to issue a 
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standing order is not fully recognized before the indefinite is understood. 

The hearer will know, simply from conventions of English usagr, that the 

speaker intends the sentence to inform the hearer about the speaker's beliefs 

regarding contents of the sentence. The hearer must determine what else the 

speaker intended. 

To understand that the speaker intended to give a standing order, a 

hearer can hypothesize SUMI an intention a^d then examine the indefinite to 

decide on its use, and its acceptability as part of the standing order. Now 

the speaker may have used the indefinite either because s/he had in mind 

mapping with an anonymous individual or a partial function. It is possible to 

rule out the individual reading for the standing order interpretation because 

if the speaker had an anonymous individual in mind, the nature of a standing 

order demands that s/he communicate exactly which individual (and hence use a 

defnp that expresses the referential nature of the description). Note that 

ruling out the anonymous individual mapping does not imply that the hearer has 

to be certain that a standing order is the only possible intention. Rather, 

finding an interpretation of the a-indefinite that is consistent with the 

hypothesized standing order as the speaker'i intention lends support to that 

hypothesis. Other interpretations could hn considered in parallel with 

understanding the utterance as standing order and. the a-indefimte as a 

generic. 

Once the anonymous individual mapping is ruled out, the he    mst still 

See Sidner & Israel [16] for a discussion of a theory and a model based on 
Grice's [8] work for recognizing such intentions. 
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determine which type of partial function (a representative or generic) mapping 

was intended. Making a representative icon blue would mean choosing some one 

from the screen (or elsewhere) and changing its color. While it is possible 

for a user to want such a thing, it is difficult to imagine how this would 

accomplish his/her overall task of gathering information about screen items. 

Since such an interpretation cannot be easily explained in terms of the user's 

goals, it is not likely to be the intended interpretation. The generic 

interpretation, however, presents no such difficulties, making the generic 

ship icon blue as a standing order is possible as a way of distinguishing 

screen objects in general. Hence the generic reading can be chosen as the 

interpretation of the a-indefimte in sl5. 

For this example, two factors have been crucial to the interpretation of 

the indefinite (in addition to proper syntactic and semantic interpretation, 

which is assumed here): a recognition of plausible speaker intentions, 

including a context of overall goals in which the intention can be explained, 

and an understanding of the effects of both definite and indefinite 

descriptions to distinguish referential use. The first of these is a new 

iinding about speaker intentions and a-indefinites. That speaker intentions 

are crucial to referential interpretations of defnps is no surprise given the 

work of Perrault and Allen [13]. That the intentions must fit within a 

framework of overall goals has also been explored by Perrault and Allen and 

Sidner and Israel. However, the relation of intentions and indefinites 

suggests that indefinites must also be handled in theories of interpreting 

speaker intentions. 

187 



Bolt Beranek and Newman Inc Report No 5421 

Understanding the effects of using definite descriptions can be explained 

by two assumptions to be used when reasoning about noun phrases: 

1. A speaker who uses a particular individual mapping when creating a 
description and who expects the hearer to use on» as well for that 
description must use a definite reference for the description. 

2. A speaker can only use a definite description and a particular 
individual mapping, when s/he is cf.''tin that the description as 
argument to the mapping cannot be used to pick out several objects. 

Assumption 2 is a corollary to Gnce's [9] maxim of being perspicuous and 

avoiding obscurity. From the hearer's point of view, it insures that if a 

defnp is used, and the hearer believes several objects could be so described, 

then either there is an error in the communication channel, or the speaker 

intended the defnp to be used some other way (such as genericp.lly—with an 

implied universal quantifier, or with deixis). 

In D6,  U is a user of a message system and is looking at a list of 

message names that includes a summary line of the message contents and  its 

author.  S is the controller of the message system and knows how to carry out 

U's requests. 

D6-1 U 
2 S 
3 S 

Send messagel? to Jones. 
You can't send A deleted mSPSflge- 
You can undelete it and then send it 

The use of the a-indefinite in D6-2 is more complicated than the one in 

sl5 because it depends in part on alternate semantic interpretations, in 

particular, on the scope of negation. The scope could be interpreted in any 

of the ways below: 
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~ (Ex:a deleted message (You can send x)) 
Ex a deleted message ~ (You can send x) 
Ex:a deleted message (You ~(can) send x) 
Ex: a deleted message (You can (-send) x) 

Whichever scope is meant, the pragmatic interpretation of the indefinite might 

be to any of the three mappings in figure 2, and two of them must be ruled 

out. 

Let us begin unwinding the interpretation by asking whether the speaker 

could have intended an anonymous individual mapping for D6-2. The anonymous 

individual the speaker has in mind cannot turn out later to be messagel?. 

Why? Messagel? is mutually known to both the speaker and hearer, but 

a-indefinites are for use when the object the speaker has in mind is not known 

to the hearer. If messagel? were what the speaker wanted to talk about, it is 

misleading to use an a-indefinite. This explanation hinges on yet another 

Gricean based assumption about noun phrases: Avoid misleading the hearer by 

using an a-indefinite for objects both speaker and hearer know of. 

Suppose, however, that the speaker followed this rule and instead had 

some other deleted message in mind, one that neither speaker nor hearer can 

fully describe. For that a-indefinite description, the anonymous individual 

mapping for the a-indefinite would be appropriate However, the speaker's 

intentions for both D6-2 and D6-3 are unintelligible with that interpretation. 

Yor a discussion of scope of indefinite noun phrases, especially inside of 
other quantifiers,  see Webber [21].   Such surface a-indefinites seem to be 
governed by rules of quantification and hence  fall  outside  the discussion 
being pursued here. 
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Turning to the partial function interpretations, A must ask whether B is 

saying that A can't send some (i.e. representative) deleted message or a 

prototypic generic one. Since A can't send prototypic messages in any case, 

such an interpretation is unlikely. Which leaves only the representative 

reading, no matter what semantic scopes were given This interpretation is 

reasonable, since, whatever the scope, if a representative message can't be 

sent, then messagel? cannot be either. Hence Bs intention to communicate the 

limits on deleted messages in general reflects a goal to communicate how it 

will respond to requests regarding messagel7. 

The preceding explanation of the interpretation of D6-2 parallels much of 

the explanation of sl5 because it draws upon the hearer's knowledge of how 

referential and indefinite noun phrases are used, and what the speaker's 

intentions are. In both explanations I have described processes for how the 

a-indefinite gets understood, but I do not want to make claims about the 

specifics of such processes. What I have suggested is that the hearer 

considers readings and rules them out. This is only one explanation, and 

there is insufficient evidence at this time to exclude others. However the 

hearer actu&lly comes to the intendeH interpretation, we must first recognize 

the types of knowledge that are needed for the hearer to make his/her 

decision. 

To close the discussion of a-indefinites I want to return to the examples 

sl6 and D7-2b given at the beginning of this paper. 

sl6 A new employee will  be serving on the labor relations 
committee. 

D7-1 While I was at MIT, I went to the AI lab. 
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2 b)I'd like you to meet A woman professor I met there. 

Suppose sl6 was said by one friend to another in a conversation. Only the 

generic reading is nonsensical (one cannot have generic employees about to 

serve on committees), but nothing in the speaker's intention makes clear 

whether the speaker is talking about a representative employee or a particular 

one about whom there is no referential knowledge (i.e. an anonymous 

individual mapping). Nor without additional information about the nature of 

the discussion and the two discussants' histories, is it possible to recognize 

a set of goals for the speaker that would indicate why s/he might talk about 

the anonymous rather than representative employee. Hence such an example is 

ambiguous between two readings for the a-indefinite. In contrast, in D7-2b. 

the a-indefinite in isolation could be used with a representative partial 

function mapping, but ic the context of the speaker wanting the hearer to meet 

a person so described, the phrase must be taken as mapping to an anonymous 

individual. 

While  the two sets of examples,  sl6 and 07, and sl5 and D6, can be 

contrasted for the way the speaker's intention eliminates certain readings of 

the  indefinites,  both sets of examples depend on hypotheses about the 

speaker's intention,  on knowledge of how indefinites are used,  and on 

knowledge of  sentence semantics and of the pragmatics of the everyday world. 

When a relation between the speaker's intention and some more geieral  goals 

can be deduced, this information is crucial to eliminating certain readings. 

Generally without knowing both the speaker's  intention and his/her more 

general  goals,  ambiguous readings of a-indefinites result.  All the examples 

share in common a dependence on knowledge of sentence semantics and pragmatics 

of the everyday world. 
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To fummarize then, 1 have shown that the speaker's intention conveyed in 

an utterance containing an a-indefinite, and the overall goals of the speaker 

are significant to interpretiag the a-indefinite In addition, assumptions 

about how referring expressions are used, including the role of Grice's 

conversational maxims, knowledge of everyday pragmatics and sentence semantic 

information all contribute to distinguishing readings of an a-indefinite As 

we shall see, these same factors come to bear in interpreting defnps. 

9.5 Interpreting Defnps 

When a hearer comes to interpret a delnp, s/he must decide how it was 

used; given figure 3, we can see that the heerer must differantiate among many 

possible pairs of mappings (pairs of the speaker's and hearer's mappings to 

the real world), if a differentiation is possible at all. Each use described 

in the figure has a distinct intended effect on the hearer. 

The speaker is constrained to use a defnp with only certain expectations 

about how the hearer can make a mapping. Suppose the speaker knows that the 

hearer is mapping the defnp to a new item in memory. Then the speaker, 

depending on his/her own mapping to the real world, can intend only certain 

mappings to the real world to be discernible by the hearer. First, if the 

speaker maps with a particular individual mapping, s/he can expect the hearer 

to use either an anonymous individual mapping or a partial function mapping. 

A single exception to this circumstance is the presence of deixis. If the 

speaker says "May thinks lii£ ladv in black came with John," while looking in 

the direction of a woman so dressed, the speaker is using more than the defnp 
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to make a mapping available to the hearer, and hence can intend a particular 

individual mapping even when the defnp corresponds something new in memory 

Some uses may seem to be particular individual mappings as in "Pick up ihs. feig. 

red felflfilt," which can be said to a hearer who has no previous knowledge of the 

block. However, the use is really a partial function mapping that is intended 

to be evaluated in some appropriate immediate context (such as the table in 

front of the hearer) rather than at some future point in time 

For a new item in the hearer's memory, the speaker may have an anonymous 

individual mapping and can expect only an anonymous individual or partial 

function mapping of the hearer. When the speaker has a partial function 

mapping, s/he can only expect such a mapping of the hearer. The same is true 

of generic mappings. To expect any others would mean that the speaker 

believes the hearer has some additional information available, but since the 

defnp corresponds to a new item, the speaker cannot expect the hearer to have 

additional information. 

A similar analysis for the speaker's expectations results from 

considering mappings available to the hearer when the defnp maps to an item 

that specifies a previous memory item. Depending on whether the previous item 

already includes a real world mapping of one typ^ or another, the speaKer must 

behave in different ways. 

Suppose the previous memory item does include a mapping (and the speaker 

knows which). The speaker can expect the hearer to interpret the defnp using 

whichever non-generic mappings the hearer has when the speaker's own mapping 

is either an-anonymous or a particular individual mapping (just which depends 
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on other knowledge available to the hearer), because the hearer has sufficient 

information to make the mapping. When the speaker's own mapping is one of the 

partial function mappings, the speaker can only expect the hearer to use one 

of these. Were the hearer to use another mapping, the two people would be 

talking about different things. For example, if the speaker uses "the 

murderer of Jones" with a partial function map (and hence does not know who 

the murder is or much about him), while for the hearer "the murderer of Jones" 

maps to a person John Smith, the two people will reach different conclusions 

about whatever is said of the murderer 

When the previous item in the hearer's memory does not include a real 

world mapping, the speaker's expectations can differ The speaker can expect 

the hearer to use only those mappings with the same or less information than 

the one the speaker uses. For example, the speaker cannot have an anonymous 

individual mapping for a defnp and expect the hearer to map to a particular 

individual. The hearer may be able to do so, but the speaker can be assured 

of this possibility only by knowing the contents of the previous memory item 

and hence actually having enough information for a particular individual 

mapp i ng. 

While the speaker may be constrained in his/her mapping choices the 

hearer must discern whivh was intended. When the hearer has perfect knowledge 

of  the speaker's own mapp js as well as what the speaker thinks the hearer's 

This situation is not equivalent to the "who is the President of BBN" case 
because in that circumstance the speaker believes the hearer has a previous 
memory item that includes a mapping to a particular individual. 
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mappings are, the hearer's job is trivial, s/he can follow the outline above 

But usually hearers have much less information    They may know that  the 

speaker has a certain kind of mapping but not know what the mapping produces 

or they may not know the kind of mapping at all. 

In general the hearer uses whatever knowledge s/he has about the speaker 

as well as about pre-existing specifications for a defnp. In addition the 

hearer must consider the speaker's meaning and intentions for the whole 

utterance and his/her own pragmatic knowledge that is relevant for that 

utterance. 

To make this d* scus'i»on more concrete, let us consider a number of 

examples in which I will tease out the distinctions between what the speaker 

and hearer believe, and describe how the hearer s beliefs about speaker's 

intentions affect the interpretation of the defnp. 

I i 08 the hearer may first decide that the speaker has referential 

knowl.dge of "the handsome man" (otherwise the speaker could not have met  or 

seen him), but not know who the speaker takes the defnp to refer to. 

DB-l I saw ib£ handsome OAO. I H&i fii Clareact'S again today. 
2 Since you know him, could you call him and ask him to dinner? 

When the hearer turns to consideration of his/her own beliefs about the defnp, 

two situations can occur. First suppose that upcn searching memory the hearer 

discovers  a  specification that describes  the handsome man and gives 

referential information about who he actually is.  Therefore  the hearer can 

assume the defnp is to be mapped as a narticular  individual.   This 

Interpretation is consistent with the rest of the discourse where the speaker 

asks the hearer to call him up, something that requires referential abilities. 
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An alternative situation occurs when upon searching memory, the hearer 

discovers only a specification that notes that ;n the past the speaker met 

someone handsome at a soiree at Clarence's and told the hearer about him, the 

hearer never learned who this person was or met him. The hearer can conclude 

that the defnp is meant to be mapped with an anonymous individual mapping 

since %hs speaker should have reliable beliefs about what the hearer learned 

during their discussion When D8-2 is encoun*ered, the hearer can easily 

recognize the proper co-specification of "him," but will then be in a 

quandary since the speaker has said that the hearer knows this handsome man 

For that to be true, the hearer must have referential knowledge associated 

with the specification. Hence, the hearer can conclude that the speaker 

intended the hearer to use a particular individual mapping for the defnp in 

D8--1. Since it is not true that the hearer has such referential knowledge of 

the handsome man, the hearer may decide that s/he must tell the speaker about 

their roiscommunication or pick some other way to set the speaker straight 

about the hearer's knowledge of the handsome man. 

Suppose D8-2 had been "Could you call him and invite him to dinner?" with 

no statement about knowing such a person. The d^/np in D8-1 might be 

interpretable as any of the non-generic mappings. For the partial function of 

anonymous individual mappings, the speaker must intend for the hearer to use 

the description to locate the person described at some time in the future. An 

open question is whether a pragmatic theory ought to stipulate conditions of 

adequacy of a descriptiou for locating the object referred to; see Goodman [7] 

Accounts of \his process are given by both Sidner [IB] and Reichman [15] 
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■       for issues on failures to adequately describe en object.  This natter will not 

m be settled here. 

-S 
A contrasting use of the uefnp is given in D9-2a. 

ni 
D9-1 While I was at MIT, I went to the AI lab. 

2 a) I'd like you to meet ihs. woman professor I met there. 

-;i      While the hearer's reasoning about the defnp interpretation for the speaker 

and hearer is similar, the speaker's intention is different.  The speaker  is 

-rf      informing the hearer of his/her desire to have the hearer meet a particular 

i 

i 

person, and may also be doing so as part of beginning a social introduction. 

Given assumption 2 discussed before, the defnp use also conveys the fact that 

there is only one woman professor that fits the speaker's description. Hence 

the defnp use is either an anonymous individual or partial function mapping, 

depending upon the hearer's actual knowledge. 

.'■' It is possible for a defnp use to be ambiguous among all  the mappings. 

^ In the sample bt.Iow,  after A's first statements, it is possible that A has 

>-' used the defnp in correspondence with any one of those mappings and B may net 

(i$ be able to decide which. 
IB 

D10-1 Speaker A: The second musician is scheduled to go on at 11. 
-* 2    He will play for 15 minutes. 
V 3 Speaker B:  Oh. no. He'll play for longer than that. 

4       He s a real egotist. 
- 5 Speaker A;  Oh. do you know him? 

w      B nay decide (perhaps incorrectly) that A knows B has referential knowledge of 

musician #2, and reduce the choice to a particular individual napping.  Such a 
I 

decision would be in keeping with B's comments in D10-3 and 4.  Only at D10-5 

would B discover his error. m 

I 
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Ambiguities such as these need not be resolved totally for effective 

communication. In fact by the ind of the exchange it is unclear whether A has 

referential knowledge of the musician. Bobrow and Webber [2] and van Lehn 

[i9] have proposed retaining ttmbiguity until it must be eliminated when 

interpreting quantifier scope, and examples in this paper suggest that th« 

interpretation of noun phrases may be understood in a similar way. Naturally 

such a model will change '.he manner in which computational natural language 

systems go about finding references. 

Generic defnps present the greatest difficulty for theories of defnps 

because it is difficult to state what knowledge the hearer brings to bear to 

distinguish such uses. A representative set of perplexing examples of 

generics is given J>elow, in addition to s7: 

slT The Incas did not know of the wheel. 

818 * Monkeys do not use JJift instrument. 

sl6 The Rhodesian government prevents the dissioent from leading a 
normal life. 

s20 The Rhodesian government caught the dissident. <not a generic 
defnp> 

s21 TM    teenager in ih&    average US SChP«?)- reads below his 
potential. 

s22 That is t,he felut nasid mongoose. 

«23 The Chinese regime forces the country's newspaper to serve 
only as parrot of its views. <not a eneric defnp> 

In all  the examples above the hearer must dtl^rmine whether the speaker is 

intending to be informative about a class of objects  (and thus speaking 

The first two of these are from.Vendler [20] 
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generically) or about only one. While it is not easy to specify exactly what 

such an intention comes to, I can clarify some of the knowledge needed to 

discern such indentions. 

For examples  such as s7 and s21, the hearer must recognize that the 

speaker is being informative and is characterizing an object described by the 

defup  the hearer must also discern that the defnp by itself can describe any 

of several objects. With those twu facts and assumption 2, the hearer can 

recognize that  the speaker is  speaking generically with the defnp about a 

prototypical member.  Some sentences set a generic tone with ether kinds of 

noun phrases  (such as sl8).  defnps within a generic sentence can be 

interpreted generically, even when the resulting interpretation is 

ungranmatical. 

AF one would expect there are constraints on whether a defnp can be 

interpreted as a generic, either in a generic sentence or in one that is not 

apparently generic. The hearer must have knowledge that there is a class of 

objects fil'ing the description in the defnp. Thus for "the wheel," "the 

dissident," and "the blue nosed mongoose," the hearer may easily discern a 

class. But for "the instrument" and "the country s newspaper," no such class 

is evident. In a generic sentence, a defnp that does not describe a prototype 

of a natural cla.'s gives an odd reading (as with sl8), but in a sentence that 

can be interpreted non-gene'-ically (s23), the defnp serves as a specific. 

Another constraint on the generic defnp is that the sentence semantics 

must permit a generic reading to go through. In s20, the generic reading of 

"the dissident" expresses a possible class, but  it  is not possible for a 
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government to have caught a prototype in that class Just how to characterize 

sentence semantics in general is a non-trivial matter since metaphorical uses 

of certain verbs will permit generic readings of their objects while others 

will not. 

The previous collections of examples, while not exhaustively illustrating 

all the cases of defnps, describe some strategies a hearer might use in 

interpreting defnps and demonstrate what knowledge s/he must factor into those 

strategies. I have also shown that defnp interpretation relies on the same 

kinds of information as a-indefinites, namely, 

o the speaker's intentions, 

o the speaker's overall goals, 

o assumptions about use of referring expressions as a reflection of 
Gricean maxims, 

o beliefs of the speaker and hearer, including knowledge of everyday 
pragmatics. 

o sentence semantic information. 

9.6 Looking Ahead 

In this paper I have explored the kinds of pragmatic knowledge that a 

hearer needs to use to understand tha speaker's intended interpretation of a 

noun phrase. I have presented a computational viewpoint on these matters b> 

exploring the interactions between kinds of knowledge and the manner in which 

the hearer takes into account the speaker's role in the communication. 

This paper is limited in its scope since it only provides a framework f or 
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describing »'hat knowledge a hearer brings to bear. It does not detail the 

form or content of such knowledge, suggest how to reason about beliefs (which 

is complicated by a number of """-esolved problems in epistemology) nor 

crucially does it account for how hearers use their knowledge. I assume that 

research on thtse topics lie ahead, and that it will tell us more about the 

pragmatics of non-anaphoric noun phrases 
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10. REPAIRING MISCOMMUNICATION: RELAXATION IN REFERENCE1 

Bradley A. Goodman 

10.1 INTRODUCTION 

In natural language interactions, a speaker and listener cannot be 

r^sured of having the same beliefs, contexts, backgrounds or goals. This 

leads to difficulties and mistakes when a listener tries to interpret a 

speaker's utterance. One principal source of trouble is the description 

constructed by the speaker to refer to an actual object in the world. The 

description can be imprecise, confused, ambiguous or overly specific; it might 

be interpreted under the wrong context. This paper explores the problem of 

resolving such reference failures in the context of the task of assembling a 

tiy water pump. We are using actual protocols to drive the design of n 

program that plays the part of an apprentice «ho must interpret the 

instructions of an expert and carry them out. A primary means for the 

apprentice to repair such descriptions is by relaxing parts of the 

description. 

Consider the dialogue below which exemplifies some kinds of  complex 

descriptions used in utterances.  Here A is instructing B to assemble part of 

The following is a revised version of a paper [13] given at the 1983 
National Conference on Artificial Intelligence (AAAI 83). Other related 
papers include [11, 12]. 
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a toy water pump [14, 9, 10]. Refer to Figure 1 for a picture of the pump. A 

and B are communicating verbally but neither can see the other. (The bracketed 

text in the excerpt shows what was actually occurring while each utterance was 

spoken.) Notice the complexity of the speaker's descriptions and the 

resultant processing required by the listener. In Line 1, B interprets "the 

long blue tube" to refer to the STAND. When A adds thn relative clause "that 

has two outlets on the side," B is forced to drop the STAND as the referent, 

to relax the color "blue" to "violet," and to select the MAINTUBE. In Line 6, 

As description "the nozzle-looking piece" fits more than one object and B 

selects the NOZZLE instead of the SPOUT. The speaker was sloppy here because 

he didn't know the word "spout." A's addition of "the clear plastic one" in 

Line 7 rules out the NOZZLE - which is red and opaque - in favor of the SPOUT. 

Line 16 demonstrates a case where A previously focused B's attention on one 

object and intends to switch that focus to another one. In this case, B 

doesn't shift focus. This lack of agreement on what is in focus leads to 

confusion later on in the dialogue. 

A:  1.  Take the long blue tube 
[B reaches toward STAND] 

2. that has two outlets on the side - 
[B takes MAINTUBE] 

3. that's the main tube. 
4. Place the small blue cap 

[B takes CAP] 
5. over the hole on the side of that tube. 

[B pushes CAP on OUTLET!] 
6. Take the nozzle-looking piece, 

[B grabs NOZZLE] 
7. the clear plastic one, 

[B takes SPOUT] 
8. and place it on the other hole 

[B identifies OUTLETS of MAINTUBE] 
9. that's left, so that the nozzle 

10. points away. 
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[B instftllf SPOUT on 0UTLET2 of UAINTUBE] 
IS. Okay? 

B: 12.  Okay. 

A: 13. Now take the blue lid type thing 
[B takes TUBEBASE] 

14. and screw it onto the bottom 
[B screws TUBEBASZ on MAINTUBE] 

15. ooops, 
[A realizes he has forgotten to have B put 

SLIDEVALVE into 0UTLET2 of MAINTUBE] 
16. undo the plastic thing 

[B removes TUBEBASE but A meant the SPOUT] 

Nozzle <3 

r\ 

y 
Air 

Chamber 

Plunger 

Spout 

Cap ©  S5 
Outletl 
putlet2 

Slide Valve 

Main 
Tube 

Base Valve 

Tube Base 
B 

Stand &»$ 

FIG.  1.   THE TOY WATER PUMP 

In conversation people use imperfect descriptions to communicate about 

objects; sometimes their partners succeed in understanding and occasionally 

they fail. I am working on a tneory of the use of extensional descriptions 

that will explain how people successfully use such imperfect descriptions. 

One means of making sense of an approximate description is to relnx 
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portions of it that don't match objects in the hearer's wor'd. Relaxation 

then is a foru of communication repair [6] that hearers can use. As part of 

my work I am developing a reference identification module for a natural 

language system that will treat descriptions as approximate It can relax a 

description in order to find a referent when the literal content of the 

description fails to provide the needed information. In this paper I will 

describe the relaxation component of the reference identification module and 

illustrate seme of the sources of knowledge that guide it in relaxing a 

description. 

10.2 THE DOMAIN 

We are following the task-oriented paradigm of Grosz [14] since it s 

easy to study (through videotapes), places the world in front of you (a 

primarily extensional world), and limits the discussion while still providing 

a rich environment for complex descriptions. The task chosen as the target 

for the system is the assembly of a toy water pump [9, 27. 10]. The water 

pump is reasonably complex, containing four subassemblies that are built from 

plastic lubes, nozzles, valves, plungers and caps that caa be screwed or 

pushed together. A large corpus of dialogues concerning this task was 

collected (see [9]).  These dialogues contained instructions from an "expert" 

This domain was chosen over the KL-ONE-Ed graphics editor domain because a 
large corpus of protocols were previous y collected [9, 27]. We believe that 
the reference identification mechanism developed is transferable to the 
KL-ONE-Ed domain because both domains refer to real objects that are rich in 
perceptual features and have similar physical actions that can be performed on 
them. 
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to an "apprentice" explaining the assembly of the pump. This domain is rich 

in perceptual information, allowing for complex descriptions of elements in 

it. The data provide examples of imprecision, confusion, and ambiguity as 

well as attempts to correct these problems. 

10.3 THE KNOWLEDGE TRANSFERRED IN AN UTTERANCE 

In a task-oriented domain there is limited shared knowledge between 

speaker and listener (i.e., less than other domains since usually one 

participant knows a lot more about the task than the other). The underlying 

context is the achievement of the task. This requires a transfer of knowledge 

from the speaker - who is explaining how to perform the task - to the listener 

- who is to perform the task. The listener, thus, is building up knowledge 

(which becomes shared knowledge, i.e., mutually believed [7, 21, 16, 20]} from 

the speaker's utterances while attempting to perform the task. 

At least two kinds of knowledge are conveyed in an utterance. For this 

paper I will focus on task knowledge [14] and communicative 

knowledge [25. 8, 22, 2, 3, 18]. Task knowledge is knowledge about the 

specific domain. It has three aspects: (1) the objects, the set of parts 

available to accomplish the task (the Real World), (2) the actions, the set of 

physical actions available to the listener; and (3) instructions linking 

objects and actions together to achieve some goal. Communicative knowledge 

consists of speech acts, communicative goals, and communicative actions. 

Speech acts are underlying surface forms that are performed by the speaker in 

making an utterance (e.g., REQUEST, INFORM) [25, 8, 2].   Communicative goals 
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reflect the structure of the discourse (e.g., setting up a topic, clarifying, 

or adding more information [3]) and express how the utterance is to be 

understood and hence how the task ii examines is used. A communicative act is 

a way of expressing the communicative goal that one wants to convey (e.g., 

communicate the goal, communicate the object'? description, communicate the 

action). Only some of the possible communicative acts may be reasonable at 

any one time to accomplish the current communicative goal [23, 3, 18]. 

^ 

Things can go awry during -jommunication. Trouble can occur due to either 

the way the information was transferred or the content of what was 

transferred. Problems can occur with the task knowledge; (1) the listener 

has a different view of the task than that of the speaker, (2) the listener is 

considering a different subset of objects than the speaker, or (3) the 

listener is considering a different subset of actions than the speaker 

Difficulties with communicative knowledge are also possible. The speaker may 

ase the wrong speech act (e.g., utters something (inadvertently) that would be 

conventionally interpreted as an INFORM when meant as a REQUEST) or the 

listener errs when interpre-.ing the speaker's intention. In both cases it is 

the effect of the speech act that causes the trouble since it influences what 

the listener will do with what was said (i.e., what are the proper responses). 

Finally, communicative knowledge can cause mistakes and confusion it the 

listener and speaker differ on the communicative goal. They will feel they 

are communicating at cross purposes - leading to frustration. 
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10.4 THE KINDS OF PROBLEMS 

Part of my research has been an examination of how a listener discovers 

that a repair of a description is needed, and how the listener discovers the 

source of the problem in the communication. 

o How the problems are discovered: 

1. The  listener  finds nsi.  Real World object to correspond to the 
speaker's description; 

2. the listener finds other than the requested numb»r of Real 
World objects (i.e., too many or too few), 

3. the listener cannot perform the action specified by the speaker 
because of some obstacle, or 

4. the  listener performs  the action but does not arriv« at its 
intended effect. 

o Where the problems may reside: 

1. In the speaker's description of an object presented in the 
utterance; 

2. in the speaker's description of a physical action presented in 
the utterance; 

3. with the set of Real World objects that have been brought into 
attention (the speaker's set may differ from the listener's 
set); 

4. with the set of Real World actions that have been brought into 
attrntion (the speaker's set may differ from the listener's 
set); 

3. in the interpretation of the underlying force of the utterance 
(e.g., does the speaker want the listener to simply note the 
information in the utterance or to use it to do something); or 

6. with the hearer's concentration (e.g., the hearer may fail  to 
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pay attention, missing or mishearing a word or the like). 1 

These observations signal conditions in which a mistake might occur and where 

it might be found. W« will now explore what a listener has available for 

resolving niscommunication. 

10.5 KNOWLEDGE FOR REPAIRING DESCRIPTIONS 

When things go wrong during a conversation, people have lots of knowledge 

th-it they bring to be... to get around the problem (see [24]). Much of the 

time the repairs are so natural that we aren't conscious that they have taken 

place. At other times, we must make an effort to correct what we have heard, 

or determine that we need clarification from the speaker. This repair process 

involves the use of knowledge about conversation, its social conventions and 

the world around us. 

i 

In this work, I chose to consider the repair of descriptions rather than 

complete utterances. The most relevant knowledge for repair depends on the 

conversatim itself and the Real World described therein. There are numerous 

soarces of knowledge to consider that drive the reference repair process. 

Linguistic knowledge is the use of the structure and meaning of a description. 

Perceptual knowledge is a person's abilities to distinguish feature values, 

one's preferences in features by considering which seem more important (with 

respect  to the person and the domain), and one's perception of an object. 

I am including this kind of problem because I have been talking about human 
dialogues.  J wil? not, however, pursue it any further. 
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Discourse knowledge has to do with notions of the flow of conversation and its 

effects on highlighting relevant parts of the world. Hierarchical knowledge 

is concerned with generality and specificity information to determine if a 

description is \oo vague or too specific. Trial and error knowledge is 

information about how well a requested cction succeeds (as specified) on the 

requested objects. Other knowledge sources, such as pragmatic 

knowledge [8, 2, 21, 4], and domain knowledge [14] will not be covered here. 

10.5.1 Linguistic Knowledge in Reference 

Different linguistic structures can be utilized to describe objects in 

the extensional world.   This section outlines some of these structures and 

their meanings and sho^s how they can be used to guide repairs in the 

description. 

A description of an object in the extensional world usually includes 

enough information about physical features of the object so that listeners can 

use their perceptual abilities to identify the object. Those physical 

features are nomally specified as modifiers of nouns and pronouns. The 

typical modifiers are adjectives, relative clauses (adjective clauses) and 

prepositional phrases (adjective phrases). They are often interchangeable; 

that is, one could specify a feature using any of the modifiers. One 

modifier, however, may be better suited for expressing a feature than another. 

Relative clauses are well suited for expressing complicated information 

since they are separate from the main part of the noun phrase and can be 

arbitraril> complex themselves. 
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o Complex relationships such as spatial relations {< .g., "the blue cap 
ihat ig gp the main tube"), and function information (e.g., "the 
thing with the wire Xh&L  acts like ä plunger") 

o Assertions of "extra" information, information possibly outside the 
domain knowledge and not useful for finding the referent at this 
time.  (e.g. , "an L-shaped tube of clear plastic XhSd. 15. defined as A 
ssaaL"). 

o Material useful  for confirming that the proper referent was found 
(e.g., "the long blue tube that has two outlets an the side"). 

o A respecification of the initial description in more detail. For 
example, in the case of the descriptions "the thing that is flared at 
ihs. top" and "the main tube which jjs the biggest tube." the relative 
clauses are needed because the initiel descriptions are too vague 

Prepositional  phrases are better  fitted  for  simpler  pieces  of 

information. They are often part of expressions of predicative relationships. 

o A comparative or superlative relation (e.g., "the smallest of the red 
pieces"), 

o A subpart specification - used to access the subpart of the object 
under consideration (e.g., "the top end of the little elbow joint." 
"that water chamber with lite, blue bottom and the globe top"), 

o Most perceptual features (e.g., "with a clear tint," "with a red 
color"). 

Just  like relative clauses,  prepositional  phrases  can  also  provide 

confirmation information. 

Adjectives are used to express almost any perceptual feature - though 

complex relations can be awkward. Usually they modify the noun phrase 

directly, but sometimes they are expressed as a predicate complement. In 

those situations, the complement describes the subject of the linking verb 

(e.g., "the tube is large"). As with some of the relative clauses above, 

predicate complements have an assertional nature to them. 
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10.5.2 Relaxing a Description Using Linguistic Knowledge 

If 

M 

i 

The relaxation process attempts to relax features in a description in the 

order: adjectives, then prepositional ihrases and finally relative clauses 

and predicate complements. This order was chosen by examining the w-Uer pump 

protocols and by noting where the linguistic forms come into play during 

reference resolution. Adjectives and prepositional phrases play a more 

central role while relative clauses usually play a secondary role during 

referent identification. Relative clauses and predicate complements exhibit 

an assertional nature that reduces their usefulness for resolving the current 

reference (whereas the information they express can be useful in subsequent 

references). The head noun can also be relaxed. It normally is relaxed last 

but could be relaxed prior to a relative clause (especially in the instances 

where the relative clause expresses confirmational information). 

I 

I 
m 
m m 

m 

For example, consider the description "the large violet cylinder that has 

two outlets." Here, the features size, color and shape are described in the 

adjectives and head noun of the description, and the two subparts' function in 

the relative clause. Following the above rules, the relaxation of size, color 

and shape should be attempted before either the number of subparts or the 

subparts' functions. The relaxation order is influenced by the other 

knowledge sources so the ord r proposed here is not hard and fast. 

10.5.3 Perceptual Knowledge in Reference 

A major factor involved here is how people perceive objects in the world 

and how this can be simulated in my system.  Each object for my system is 
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denoted by two forms. a spatial (3-D) representation and a 

cognitive/linguistic form that shows how the system could actually talk about 

the object. The spatial description is a physical description of the object 

*n terras of its dimensions, the basic 3-D shapes composing it, and its 

Physical features [l]. The cognitive/linguistic form is a representation of 

the parts and features of the object in linguistic terms. It overlaps the 

spatial form in many respects but it is more suggestive of the listener's 

perceptions. The cognitive/linguistic form describes aspects of an object 

such as its subparts by its position on the object ("top", "bottom") and its 

functionality ("outlets", "places for attachment"). More than one 

cognitive/linguistic form can refer to the same physical description. Some 

properties of an object differ in how they are expressed in the two forms. In 

the 3-D form, there are primarily properties such as numerical dimensions 

(e.g., "3 feet by 5 feet") and basic shapes (e.g., generalized cylinders), 

while, in the cognitive/linguistic form, there are relative dimensions (e.g., 

"large") and analogical shapes (e.g., "the L-shaped tube"). 

Perception, hence, may involve interpretation. This can lead to 

discrepancies between individuals. People usually agree on the spatial 

representation but not necessarily on the cognitive/linguistic description and 

this can lead to problems. For example, misjudgements by the speaker in 

calling an object "large" can cause the hearer to fail to find an object in 

the visual world that has d-^-asions that are perceptually "large" to the 

listener. 

To avoid confusing the listener, a speaker must distinguish the objects 
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in the environment from each other. The perceptual features of an object 

provide people with a way to discriminate one object from another. A speaker 

must take cp.re when selecting from these features since they can induce their 

own confusion. Perceptual features may be inherently confusing because a 

feature's values are difficult to differentiate (e.g., is the tube a cylinder 

or a slightly tapering cone?). They may also be confusing because the speaker 

and listener may have differing sets of values for a feature (e.g.. what may 

be blue for someone may be turquoise for another). These characteristics 

affect the salience of a feature (see [19]) which in turn determines the 

feature's usefulness in a description. A feature that is common in everyday 

usage (e.g., color, shape or size) is salient because the listener can readily 

distinguish the feature's possible values from one another. Of course, very 

unusual values of a feature can stand out, making it even easier to 

discriminate a unique object from all other objects [19]- 

The objects in the world may exhibit a feature whose possible values are 

difficult to distinguish. This occurs when a perceived feature does not have 

much variability in its range of values: all the values are clustered closely 

together making it hard to tell the difference between one value and the 

next. This increases the likelihood of confusion because the usefulness of 

specifying the feature to a non-expert is diminished (especially if the 

speaker is more expert than the listener in distinguishing feature values). 

Hence, if one of these difficult  feature values appears  in the speaker's 

For example,  certain Eskimo  languages have names for seve  ' different 
states of snow that may be difficult for-most non-Eskimos to dist»   ish [29]. 
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description, the listener, if he isn't an expert, will often relax the feature 

value to any of the members of the set of feature values. 

10.5.4 Relaxing a Description Using Perceptual Knowledge 

When examining the features presented in a speaker's description, one can 

consider perceptual aspects to determine which features are most likely in 

error. Such an inspection can generate a partial ordering of features for use 

during the repair process to determine which feature in a description to 

relax As shown below, the relaxation ordering suggested by the inspection of 

features interacts with ordering proposals from other knowledge sources 

Active features are ones that require a listener to do more than simply 

recognize that a particular feature value belongs to a 5et of possible values 

- the listener must perform some kind of evaluation. When considering the 

water pump domain, it seems that one should first relax those features that 

require less active consideration such as color (though it is easier to relax 

red to orange than red to blue), composition, transparency, shape and 

function. Only after this should one relax those features that require active 

consideration of the object under discussion and its surroundings (such as 

superlatives, comparatives, and relative values like size, length, height, 

thickness, position, distance and weight). People tend to be casual with less 

active features while the active ones require their full attention. Hence, in 

a reference failure the source of the problem is likely to be the less active 

ones. 
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10.5.5 Discourse Knowledge in Reference 

Discourse kiowledge concerns discourse structure, the flow of discourse 

and the use of discourse to highlight parts of the Real 

World [14, 22. 26, 23, 3, 18]. There are several mechanisms that can 

highlight objects in discourse (see work on focus by Grosz [14], Reichman [22] 

and Sidner [26]). This provides a partition of the Real World that prunes 

down the set of objects to consider during referent identification. When no 

referent corresponds to a description and recovery is attempted, discourse 

knowledge can be used to determine whether the problem resides not in the 

description itself but possibly at the discourse level. For example, 

midstream corrections in a description by a speaker could confuse a listener 

causing one to either miss a shift in focus or to shift focus when no shift 

was intended. The work of [14, 22. 28, 26, 15, 23] provided rules on 

deictics, anaphoric definite noun phrases, the use of pronominals versus 

nonprononunals, and so forth, that can be used to clue in on discourse 

problems. 

10.5.6 Hierarchical Knowledge in Reference 

Imprecision in a speaker's description can lead to confusion. Being too 

specific can lead to similar results. Hierarchical knowledge - that is 

knowledge about hierarchies - can be used by a listener to determine the 

degree of imprecision or specificity of a description. This effort entails 

consulting a prestored generic/specific hierarchy of world elements and using 

the current context to guide the comparison of the current description to 

elements in the hierarchy. 
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An imprecise description, missing details to fully distinguish a Real 

World object, should point out numerous candidates that exhibit the general 

features in the description rather than none at all. Imprecise descriptions 

can, however, lead to confusion that blocks the listener from finding a 

referent. If a feature is difficult to apply because it isn't specific or 

well-defined, then it may be necessary to ignore it (e.g., the use of a value 

like "funny" such as in "that funny red thing"). If a feature is ambiguous 

with respect to how it should be applied, then it may either require 

relaxation or further restriction (e.g., for the use of a feature value like 

"rounded," we must ask whether we mean "2-D" or "3-D" rounded? "cylindrical" 

or "bell-shaped"? and so on). The determination that a feature is too 

imprecise might be possible before a search for a referent is commenced. An 

examination of how high in the hierarchy the feature value appears could 

signal when a more detailed value is needed. 

The condition of being too specific is more difficult to detect.    In a 

task-oriented environment, one would not easily notice that something was too 

specific since normally being very specific is a wise goal for a speaker.  The 

condition of being too specific has drawbacks that occur due  to detrimental 

side-effects.   A description can be  overspecific if it contains jLaa many 

feature values.  The listener can lose confidence in the referent he  found 

because while  it was described with many features, it was very easy to find 

(with just a few of the features); and so the listener concludes that perhaps 

be has missed something in his search.  Another possible side-effect of being 

too specific is that the  listener  ignores  the speaker's  full  description 

because one feature  is  too overpowering.   That  feature dominates  the 

description causing the other features net to be attended to. 
220 
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10.5.7 Relaxing a Description Using Hierarchical Knowledge 

Hierarchical knowledge can resolve certain ambiguities by climbing or 

descending the hierarchy. This requires looking at a description at two 

levels: (l) the description's placement in the generic/specific hierarchy and 

(2) the placement of the filler of each feature of the description in the 

generic/specific hierarchy. 

Hierarchical knowledge also interacts with perceptual knowledge. 

Confusion can occur when a feature value is too hard to judge. For example, 

it is difficult to determine which particular feature value applies when the 

set of possible feature values are too specific. If a more imprecise value is 

used (and it applies only to one object), it might be easier to find the 

described object (e.g., "hippopotamus shaped valve" would be better stated as 

"rounded valve"). 

10.5.8 Trial and Error Knowledge in Reference 

The primary use of *rial and error knowledge is to determine whether a 

referent was properly identified (including ones found with the relaxation 

process). Performance of a requested action is the strongest determining 

factor of whether or not the listener correctly interpreted a speaker's 

description. Successful completion of an action will likely build confidence 

in the listener that he correctly interpreted a description.  Failure to find 

In more complex domains - such as ones requiring tools - the actions 
themselves may be helpful in both finding the referent and confirming wheth»»- 
the choice was correct. 
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an object after relaxation leads the listener to ask the speaker to clarify, 

failure to successfully perform the requested action on the object found 

during referent identification causes the listener to ask himself what is 

wrong. The trouble might be due to: (l) the object identified from the 

speaker's description, (2) the action attempted, or (3) some prior (probably 

unnoticed) mistake that occurred. Failure may come not only from the 

inability to perform an action but due to an action s postcondition failing. 

Determination of how badly a postcondition must fail before the listener asks 

for clarification - instead of reconsidering the description - is unclear and 

not being investigated here. 1 will not discuss the actual error recovery 

that occurs when an action fails since I am currently exploring that area. 

10.0 THE RELAXATION COMPONENT 

I have discussed some of the numerous kinds of knowledge available to a 

listener to interpret a speaker's description. I pointed out places where 

that knowledge affects the listener's ability to interpret a description and 

ways in which it is helpful to the listener for overcoming poor descriptions 

When a description fails to denote properly a referent in the Real World, it 

is possible to repair it by a relaxation process that ignores or modifies 

parts of the description.  Since a description can specify many features of an 

^This postcondition need not always be specified explicitly since some 
postconditions automatically come with an action. For example, if the speaker 
said the utterance "fit the red gizmo into the bottom side outlet of the main 
tube," the listener would expect that the red gizmo would fit snugly into the 
outlet. If, however, it fit loosely, than the listener may feel a mistake has 
occurred. 
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object, the order in which parts of it are relaxed is crucial. There are 

several kinds of relaxation possible. One can ignore a constituent, replace 

it with something close, replace it with a related value, or change focus 

(i.e., consider a different group of objects.). In this section, I will 

describe the overall relaxation component that draws on the knowledge sour es 

as it tries to relax an errorful description to one that suffices. 

10.6.1 Find a Referent Using a Reference Mechanism 

Identifying the referent of a description entails finding an element in 

the world that corresponds to U i speaker's description (where "described by" 

means every feature specified in the description is present in the element in 

the world but not necessarily vice versa). The initial task of our reference 

mechanism is to determine whether or not a search of the (taxonomic) knowledge 

base is necessary. A number of aspects of discourse pragmatics can be usfd 

in that determination but I will not examine them here. 

Assuming that a search of the knowledge base is considered necessary, 

then the reference search mechanism is invoked. The search mechanism uses the 

KL-ONE Classifier [17] to search the knowledge base taxonomy. The Classifier 

uses Ihn subsumption relationships inherent in the taxonomy to place the 

description in the correct position [17]. What this means with respect to 

reference is that the possible referents of  the description will  be found 

The knowledge base contains linguistic descriptions and a description of 
the listener's visual scene itself. Here it is represented in KL-ONE [5], a 
system for describing inheritance taxonomies. 

This search is constrained by a focus mechanism [14, 22, 26]. 
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below the description after it has been classified irto the knowledge base 

taxonomy. If more than one referent is below the classified description, 

then, unless a quantifier in the description specified more than one element, 

the speaker's description is ambiguous. If one description is below it, then 

the intended referent is assumed to have been found. Finally, if no referent 

is found below the classified description, the relaxation component is 

invoked. 

10.6,2 Collect Votes For or Against Relaxing the Description 

It is necessary to determine whether or not the lack of a referent for a 

description has to do with the description itself (i.e., reference failure) or 

outside forces that are causing reference confusion. Pragmatic rules are 

invoked to decide whether or not the description should be relaxed, These 

rules will not be discussed here. 

10.6.3 Perform the Relaxation of the Description 

If relaxation is demanded, then the system must (1) find potential 

referent candidates, (2) determine which features to relax and in what order, 

and use ♦.hat to order the potential candidates with respect to the preferred 

ordering of features, and (3) determine the proper relaxation techniques to 

use and apply them to the description. 

For example, the problem may be with the flow of the conversation and the 
speaker's and listener's perspectives on it; it may be due to incorrect 
attachment of a modifier; it may be due to the action requested; and so on 
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10.8.3.1 Find potential referent candidates 

Before relaxation can take place, potential candidates for referents 

(which denote elements in the listener's visual scene) must first be found 

These candidates are discovered by performing a "walk" in the knowledge base 

taxonomy in the genera) vicinity of the speaker's classified description. A 

scoring KL-ONE partial matcher is used to determine how close candidate 

descriptions found during the walk are to the speaker's description. The 

partial matcher generates a score to represent how well ths descriptions match 

(it also generates scores at the feature level to help determine how the 

features are to be aligned and how well they match). The best of the 

descriptions returned by the matcher are selected as referent candidates. 

10.6.3.2 Order the features and candidates for relaxation 

At this point the reference system inspects the speaker's description and 

the candidates and decides which features to relax and in what order. Once 

the feature order is created, it determines the order in which to try relaxing 

the candidates. 

Various knowledge sources are consulted to determine the relaxe'ion 

ordering. These include the perceptual and linguistic knowledge sources that 

were discussed above, as well as others not discussed in cctail here Th<? 

suggestions from the knowledge sources are then integrated. This integration 

requires evaluating the partial orderings imposed by each knowledge source. 

Of ccurse, once a particular candidate is selected, then deciding which 
feature.«- to relax is relatively trivial - one simply compares feature by 
feature between the candidate description (the target) and the speaker's 
description (the pattern). 
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For example, perceptual knowledge may say to relax color. However, if the 

color value was asserted in a relative clause, linguistic knowledge would rank 

color lower. This leads to a conflict. Thus, the relaxation of some other 

feature ^y  n  out over color should it cause less conflict. 

Thus, the .mature c-dering can be used to order candidates: choose first 

those candidates that bist f.-How the feature order when determining changes 

that must be made to the speaker's des ;ription. The control structure to 

enforce this rule exarranes each candidate and assigns a higher priority to 

those candidates that exhibit a feature ranked higher in the crder of 

features. Hence, the candidates with the least imporLant features slip to the 

back of the queue. 

Once a potential candidate is selected by the controller, the relaxation 

mechanism begins step 3 of relaxation; it tries to find proper relaxation 

methods to relax the features that have jusi been ordered (success in finding 

such methods "justifies" relaxing the description) 

• i.3.3 Determinf which relaxation methods to apply 

Relaxation can take place with many aspects ot a speaker's description: 

with the focus of attention in the Real World where one attempts to find a 

match, with complex relations specified in the description and with 

individual features of a referent specified by the description. 

Often the objects in focus in the Real World implicitly cause other 

objects to be in focus [14, 28]. The subparts of an object in focus, for 

example, are reasonable candide.tes for the referent of a failing description 
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~ and should be checked.  At other times, the speaker might attribute features 

".v of a subpart of an object to the whole object (e.g., describing a plunger that 

is composed of a red handle, a metal rod, a blue cap, and a green cup as "the 

green plunger").   In these cases,  the relaxation mechanism uti1izes the 

part-whole relation. 

Complex relations specified in a speaker's description can also be 

relaxed. These relations include spatial relations (e.g., "the outlet near 

the top of the tube"), comparatives (e.g., "the larger tube") and superlatives 

(e.g., "the longest  tube"). 

Finally, the simpler features of an object (such as size or color) that 

are specified in the speaker's description are open to relaxation. 

I 
Relaxation of a desc-iption has a few global strategies that can be 

i tallowed:   (l) drop the errorful  feature value from the  description 

altogether,  (2) weaken or  tighten the feature value but keep its new value 

I 
I        close to the specified one, or (3) try some other feature value. 

t 

The realization of these strategies is through a set  of procedures  (or 

relaxation   methods)     that are organized hierarchically.  Each procedure is an 

expert ^t  relaxing  its particular type of  feature.   For example,  the 

|        Generate-Similar-Feature-Values procedure  is composed of procedures  like 
I 

Generate-Similar-Shape-Values and Generate-Similar-Size-Values.  Each of those 

I        procedures are further divided into specialists that first  attempt  to relax 
3 

the feature value  to one "near" the current one (e.g., one would prefer to 

first relax the color "red" to "pink" before relaxing it to "blue") and then, 

m 
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if  that  fails,  to try relaxing it to any of the other possible values.  If 

those fail, the feature could be dropped out of consideration. 

10.7 CONCLUSIONS 

Natural language interactions in the Real World invite contextually poor 

descriptions. This paper sketches the ideas behind an on-going effort to 

develop a reference identification mechanism that can exhibit more "human" 

tolerance of such descriptions. My goal is to build a more robust system that 

can handle errorful descriptions when looking for a referent, and that is 

adaptable to existing systems. My work tackles the use of descriptions 

rei'erring to objects in the Real World and the repair of problems in those 

descriptions. 

The work attempts to provide a computational scheme for handling noun 

phrases (following the work on noun phrases by [14, 28, 22, 26]) that is 

robust enough to provide human-like performance. When people are asked to 

identify objects, they go about it in a certain way: find candidates, adjust 

as necessary, re-try, and, if necessary, give up and ask for help. I claim 

that relaxation is an integral part of this process and that the particular 

parameters of relaxation differ from task to task and person to person. My 

work provides a forum for trying out the different parameters. 
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