TR 7035		READ INSTRUCTIONS BEFORE COMPLETING FORM
	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EXACT PERFORMANCE OF GENERAL SECOND- PROCESSORS FOR GAUSSIAN INPUTS	-ORDER	5. TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) Albert H. Nuttall	,	8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS A75205
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE 15 October 1983
		13. NUMBER OF PAGES 72
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		1
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20, if different fro	m Report)
18 SURRI SUSTITARY NOTES		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse aide it necessary and Distribution function Quality Fading Se Narrowband cross-correlator We	d identify by block number) uadratic form econd-order proce eighted correlate eighted energy de	essor

20. (Cont'd)

of M random variables, all statistically dependent on each other. Specializations to various forms of weighted energy detectors and correlators are made. Also, the characteristic function for the first class of processor subject to fading is evaluated.

Programs for evaluating the cumulative and exceedance distribution functions of all three classes of processors are given and have been used to plot representative examples of performance. A comparison with a simulation result corroborates the analysis and program of the first class of processor.

LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

NUSC Technical Report 7035 15 October 1983

Exact Performance of General Second-Order Processors for Gaussian Inputs

Albert H. Nuttall Surface Ship Sonar Department

Naval Underwater Systems Center/ Newport, Rhode Island / New London, Connecticut

Approved for public release; distribution unlimited.

Preface

This research was conducted under NUSC Project No. A75205, Subproject No. ZR0000101, "Applications of Statistical Communication Theory to Acoustic Signal Processing," Principal Investigator Dr. Albert H. Nuttall (Code 3302), Program Manager CAPT Z. L. Newcomb, Naval Material Command (MAT-05B).

The Technical Reviewer for this report was Dr. John P. Ianniello (Code 3212).

Reviewed and Approved: 15 October 1983

Associate Technical Director for Technology

WAVor Combe

The author of this report is located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut 06320.

TABLE OF CONTENTS

			<u>Page</u>
Lis	t of Illustr	ations	iii
Lis	t of Symbols	•••••••	iv
		••••••	
		cond-Order Processor	
		f Second-Order Processor (8)	
		s-Correlator	
		rmitian and Linear Form	
		inear Form	
		• • • • • • • • • • • • • • • • • • • •	
		cussion	
Арре	endices		
Α.	Second-Orde	er Processor	A-1
В.	Fading for	Second-Order Processor	B-1
С.		Cross-Correlator	
D.		adratic and Linear Form	
Ε.		of Second-Order Processor	
Ref	erences	• • • • • • • • • • • • • • • • • • • •	R _1

LIST OF ILLUSTRATIONS

<u>Figure</u>		
1.	Narrowband Cross-Correlator	14
2.	Distributions for Second-Order Processor	34
3.	Simulation Comparison of Second-Order Processor	36
4.	Second-Order Processor, K=10, Identical Statistics	37
5.	Second-Order Processor with Fading	38
6.	Distributions for Narrowband Cross-Correlator	39
7.	Distributions for Quadratic and Linear Form	41

LIST OF SYMBOLS

```
s,t
               jointly-Gaussian random variables
a,b,c,d,e
               constant weights
               output random variable of second-order processor
f ( ( )
               characteristic function of random variable x
overbar
               statistical average
D_1, D_2
               denominator constants in characteristic function
N_0, N_1, N_2
               numerator constants in characteristic function
               mean of random variable x
               variance of random variable x
               number of independent terms in random variables x and v
M_{i,j}
               mean parameters, (12)
               power scale factor, (18)-(19)
s_1(t), s_2(t)
               input signals to narrowband cross-correlator
n_1(t), n_2(t)
               input noises to narrowband cross-correlator
z(t)
               lowpass filter output
               narrowband cross-correlator system output random variable
a_{j}(t), b_{j}(t) in-phase and quadrature components of s_{j}(t); j = 1,2
A_{i}(t), P_{i}(t) envelope and phase modulation of s_{j}(t)
x_{j}(t), y_{j}(t)
               in-phase and quadrature components of n_i(t)
               variance of x_j(t) and y_j(t), (27)-(28)
               complex correlation coefficient of noises, (27)
               real and imaginary parts of \gamma, (27)
ρ,λ
               weight in narrowband cross-correlator
w(k)
ν<sub>7</sub>(s+n)
               mean of random variable z with signal and noise present
R_z
               signal-to-noise ratio of random variable z
               size of Hermitian and quadratic forms
Μ
Χ
               random complex vector, Mx1
Α
               constant complex linear weight matrix
В
               constant complex Hermitian weight matrix
```

LIST OF SYMBOLS (Con'd)

```
a<sub>m</sub>
                elements of A
b<sub>mn</sub>
                elements of B
                Hermitian and quadratic form outputs
q
χН
                transpose and conjugate of X
Ε
                mean of random vector X, (46)
ĩ
                ac component of X, (46)
K
                covariance matrix of X, (46)
W
                linearly transformed random variables, (54)
C
                modal matrix of BK, (58)
\Lambda
                eigenvalue matrix of BK, (58)
^{\lambda}m
                elements of \lambda
D
                auxiliary vector, (59)
                elements of D, (68)
                elements of \overline{W}, (68)
^{\nu}_{m}
                n<sup>th</sup> cumulant of random variable q
x_q(n)
                components of X, (71)
U, V
N
                number of elements in U and V; M=2N
Вįј
                partitioned matrices of B
A(j)
                partitioned vectors of A
u_n, v_n
                components of U, V respectively
K_{uv}
                partitioned matrices of K, (73)
Ko
                common covariance matrix in special case, (89)
Q
                modal matrix of K_0, (92)
                eigenvalue matrix of K_0, (92)
Г
                elements of \Gamma
Υn
```

EXACT PERFORMANCE OF GENERAL SECOND-ORDER PROCESSORS FOR GAUSSIAN INPUTS

INTRODUCTION

The performance of weighted energy detectors and correlators for processing deterministic and/or random signals in the presence of nonstationary noise is a topic of frequent interest. Most often, a second—moment approach is adopted, whereby the means and variances of the decision variable under the various hypotheses are evaluated and employed in a central limit assumption to get approximate false alarm and/or detection probabilities. This approach is suspect for small false alarm probabilities or for cases where the decision variable is not the sum of a large number of independent random variables all of comparable variance.

A recent technical report [1] has presented an accurate and efficient method for evaluating cumulative and exceedance distribution functions directly from characteristic functions. This approach is very fruitful for determining the performance of general time-varying second-order processors with nonstationary nonzero mean Gaussian inputs, since the characteristic function of the decision variable can be evaluated in closed form in these cases.

We will consider three classes of processors and derive the characteristic functions for all three decision variables in closed form. The first two classes are special cases of the third, but are of interest in their own right, since they include and immediately reduce to many practical processors in current use. Also there is no need to solve for the eigenvalues and eigenvectors of a general symmetric matrix that is encountered in the third more-general class of processors. Rather, the characteristic functions are given directly in terms of specified processor weights and input statistics.

There has been considerable effort on this problem in the past; for example, see [2,3] and the references listed therein. Most of the lengthy analytical derivations and results have been aimed at getting workable

expressions for the probability density function and/or cumulative distribution function. Here, when we consider our three classes of processors, we encounter characteristic functions which are more general than that given in the recent paper for a filtered analog processor [3, eq. 5]; thus specialization of our results will yield those of [3] and the references listed therein. The technique employed here to proceed directly to the cumulative and exceedance distribution functions is a numerical one, as given in [1], and does not require any series expansions or analytical manipulations at all. The asymptotic behaviors of the cumulative and exceedance distribution functions on both tails are easily observed and will be found to corroborate the comment made in [3, p. 673] that these tails are generally exponential rather than Gaussian; however, there can be a considerable transition region.

The programs listed in the appendices require the user merely to input his processor weights, signal constants, and noise statistical parameters in a series of data statements at the top of the program, and to select values for

- L, limit on integral of characteristic function,
- Δ, sampling increment on characteristic function,
- b, additive constant, to guarantee a positive random variable, and
- M_{f} , size of FFT and storage required.

Selection of L and Δ is largely a matter of trial and error and is amply documented in the examples in [1].

A PARTICULAR SECOND-ORDER PROCESSOR

Before we embark on the analysis of the particular second-order processor of interest in this section, we solve the following simpler statistical problem. Let s and t be real jointly-Gaussian random variables with means m_s , m_t , standard deviations σ_s , σ_t , and correlation coefficient ρ ; thus s and t are statistically dependent. Consider the random variable

$$x = as^2 + bt^2 + cst + ds + et,$$
 (1)

where weightings a, b, c, d, e are arbitrary real constants. The characteristic function of random variable x is defined by

$$f_{\chi}(\mathbf{f}) = \overline{\exp(i\mathbf{f}x)} = \overline{\exp(i\mathbf{f}(as^2 + bt^2 + cst + ds + et))} =$$

$$= \iint du \ dv \ \exp(i\mathbf{f}(au^2 + bv^2 + cuv + du + ev)) \ p_{st}(u,v), \tag{2}$$

where the joint probability density function of s and t is

$$p_{st}(u,v) = \left(2\pi \sigma_s \sigma_t \sqrt{1-\rho^2}\right)^{-1} \exp \left[-\frac{\left(\frac{u-m_s}{\sigma_s}\right)^2 + \left(\frac{v-m_t}{\sigma_t}\right)^2 - 2\rho \left(\frac{u-m_s}{\sigma_s}\right) \left(\frac{v-m_t}{\sigma_t}\right)}{2(1-\rho^2)}\right]. \quad (3)$$

Substitution of (3) in (2) and use of the double integral

$$\iint dx \, dy \, \exp[-\alpha x^2 - \beta y^2 + 2\gamma xy + ux + vy] = \frac{\pi}{\sqrt{\alpha \beta - \gamma^2}} \exp\left[\frac{\beta u^2 + \alpha v^2 + 2\gamma uv}{4(\alpha \beta - \gamma^2)}\right]$$
for $\alpha_r > 0$, $\beta_r > 0$, $\alpha_r \beta_r > \gamma_r^2$, (4)

^{*} Integrals without limits are over $(-\infty, +\infty)$.

(where sub r denotes the real part of complex constants α , β , γ , ν , ν) yields, after an extensive amount of manipulations, the characteristic function of random variable x as the compact closed form expression

$$f_{x}(\xi) = \left(1 - i\xi D_{1} - \xi^{2}D_{2}\right)^{-1/2} \exp\left[i\xi \frac{N_{0} - i\xi N_{1} - \xi^{2}N_{2}}{1 - i\xi D_{1} - \xi^{2}D_{2}}\right]. \tag{5}$$

The required real constants in (5) are given directly in terms of the processor weights and statistical parameters as

$$\begin{split} &D_{1} = 2(a\sigma_{S}^{2} + b\sigma_{t}^{2} + c\rho\sigma_{S}\sigma_{t}) \quad , \\ &D_{2} = (4ab - c^{2})(1 - \rho^{2})\sigma_{S}^{2}\sigma_{t}^{2} \quad , \\ &N_{0} = am_{S}^{2} + bm_{t}^{2} + cm_{S}m_{t} + dm_{s} + em_{t} \quad , \\ &N_{1} = (4ab - c^{2})(\frac{1}{2}m_{S}^{2}\sigma_{t}^{2} + \frac{1}{2}m_{t}^{2}\sigma_{S}^{2} - \rho m_{S}m_{t}\sigma_{S}\sigma_{t}) + \\ &+ (2ae - cd)\sigma_{S}(m_{t}\sigma_{S} - \rho m_{S}\sigma_{t}) + \\ &+ (2bd - ce)\sigma_{t}(m_{S}\sigma_{t} - \rho m_{t}\sigma_{S}) - \\ &- (\frac{1}{2}d^{2}\sigma_{S}^{2} + \frac{1}{2}e^{2}\sigma_{t}^{2} + de\rho\sigma_{S}\sigma_{t}) \quad , \\ &N_{2} = - (ae^{2} + bd^{2} - cde)(1-\rho^{2})\sigma_{S}^{2}\sigma_{t}^{2} \quad . \end{split}$$

For later reference, the mean and variance of x follow from (5), upon expansion of $\ln f_x(\xi)$ in a power series in ξ , as

$$v_{x} = N_{0} + \frac{1}{2} D_{1},$$

$$\sigma_{x}^{2} = \frac{1}{2} D_{1}^{2} + 2N_{0}D_{1} - D_{2} - 2N_{1}.$$
(7)

(When $D_1 = 0$ in (6), it can be shown that $D_2 < 0$; thus characteristic function (5) never possesses any singularities along the real f axis.)

Second-Order Processor

Now let x be the sum of K independent terms of the form of (1):

$$x = \sum_{k=1}^{K} (a_k s_k^2 + b_k t_k^2 + c_k s_k t_k + d_k s_k + e_k t_k) , \qquad (8)$$

where real constants a_k , b_k , c_k , d_k , e_k can depend arbitrarily on k, and where means ${}^*m_{sk}$, m_{tk} , standard deviations σ_{sk} , σ_{tk} , and correlation coefficients ρ_k are unrestricted (except that $\sigma_{sk} \geq 0$, $\sigma_{tk} \geq 0$, $|\rho_k| \leq 1$). The pair of random variables s_k , t_k is statistically independent of the pair s_n , t_n for all $k \neq n$. Thus random variable x is composed of a sum of k groups of random variables, where each group is statistically independent of every other group, but each group itself contains two statistically dependent random variables.

This processor in (8) is the general form of interest in this section. It can be time-varying when the weights $\{a_k, b_k, c_k, d_k, e_k\}$ vary with k, and nonstationary when the statistical parameters $\{m_{sk}, m_{tk}, \sigma_{sk}, \sigma_{tk}, \sigma_{tk}, \sigma_{tk}, \sigma_{tk}, \sigma_{tk}, \sigma_{tk}\}$ vary with k.

The characteristic function of (8) follows from (5) as

$$f_{X}(\xi) = \left[\prod_{k=1}^{K} \left\{1 - i\xi D_{1}(k) - \xi^{2}D_{2}(k)\right\}\right]^{-1/2} *$$

$$* \exp\left[i\xi \sum_{k=1}^{K} \frac{N_{0}(k) - i\xi N_{1}(k) - \xi^{2}N_{2}(k)}{1 - i\xi D_{1}(k) - \xi^{2}D_{2}(k)}\right], \qquad (9)$$

 $[\]star$ These means can be interpreted as the deterministic signal components of the channels s and t, if desired.

where the identification of $D_1(k)$, etc., is obvious from (6). Only one (continuous) square root and one exponential per ξ value is required in (9), regardless of the number of terms added, K. The mean and variance of random variable x in (8) follows from (9) as

$$v_{x} = \sum_{k=1}^{K} \left[N_{0}(k) + \frac{1}{2} D_{1}(k) \right],$$

$$\sigma_{x}^{2} = \sum_{k=1}^{K} \left[\frac{1}{2} D_{1}^{2}(k) + 2N_{0}(k) D_{1}(k) - D_{2}(k) - 2N_{1}(k) \right].$$
 (10)

Any analytical attempt at determining the probability density function or cumulative distribution function corresponding to characteristic function (9) would be a formidable task indeed. However, it is a very simple task via the method of [1] to get accurate numerical values for the cumulative and exceedance distribution functions. The program listing in appendix A accomplishes this task, based upon characteristic function (9) and the constants listed in (6). All the weights $\{a_k, b_k, c_k, d_k, e_k\}_1^K$ and statistical parameters $\{m_{sk}, m_{tk}, \sigma_{sk}, \sigma_{tk}, \rho_k\}_1^K$ are arbitrary. Observe that (9) is far more general than the characteristic function considered in [3, eq. 5], which itself required a very lengthy analytic treatment to get the probability density function and cumulative distribution function. In fact, there is little hope of getting any tractable analytic results for (9) when K is greater than 2.

Special Case 1

Suppose weightings a, b, c, d, e in (8) are independent of k and that statistics σ_S , σ_t , ρ are also independent of k. The decision variable x in (8) then simplifies to

$$x = \sum_{k=1}^{K} (as_k^2 + bt_k^2 + cs_k t_k + ds_k + et_k)$$
 (11)

Then D_1 , D_2 , N_2 are independent of k. If we define mean parameters

$$M_{20} = \sum_{k=1}^{K} m_{sk}^{2}, \quad M_{02} = \sum_{k=1}^{K} m_{tk}^{2}, \quad M_{11} = \sum_{k=1}^{K} m_{sk} m_{tk}^{2},$$

$$M_{10} = \sum_{k=1}^{K} m_{sk}, \quad M_{01} = \sum_{k=1}^{K} m_{tk}^{2}, \quad (12)$$

the characteristic function of x in (9) then takes the simpler form

$$f_{\chi}(\xi) = \left(1 - i\xi D_{1} - \xi^{2}D_{2}\right)^{-K/2} \exp\left[i\xi \frac{N_{0}' - i\xi N_{1}' - \xi^{2}N_{2}'}{1 - i\xi D_{1} - \xi^{2}D_{2}}\right], \qquad (13)$$

where D_1 and D_2 are still given by (6), and

$$\begin{split} N_0' &= a M_{20} + b M_{02} + c M_{11} + d M_{10} + e M_{01} \quad , \\ N_1' &= (4ab - c^2)(\frac{1}{2} \sigma_t^2 M_{20} + \frac{1}{2} \sigma_s^2 M_{02} - \rho \sigma_s \sigma_t M_{11}) + \\ &+ (2ae - cd)\sigma_s(\sigma_s M_{01} - \rho \sigma_t M_{10}) + \\ &+ (2bd - ce)\sigma_t(\sigma_t M_{10} - \rho \sigma_s M_{01}) - \\ &- K \left(\frac{1}{2} d^2 \sigma_s^2 + \frac{1}{2} e^2 \sigma_t^2 + de \rho \sigma_s \sigma_t\right) \quad , \\ N_2' &= - K(ae^2 + bd^2 - cde)(1 - \rho^2)\sigma_s^2 \sigma_t^2 \quad . \end{split}$$

(The choice of K = 2 and N_2 = 0 in (13) corresponds to the form given in [3, eq. 5].) Observe that the characteristic function in (13) (and therefore the performance) of the processor in (11) depends on the means $\{m_{sk}\}$ and $\{m_{tk}\}$ only through the parameters $\{M_{ij}\}$ defined in (12). The mean and variance

of random variable x in (11) follow from characteristic function (13) as

$$v_{x} = N_{0}' + \frac{1}{2} KD_{1},$$

$$\sigma_{x}^{2} = \frac{1}{2} KD_{1}^{2} + 2N_{0}D_{1} - KD_{2} - 2N_{1}'.$$
(15)

Special Case 2

Let us also assume d=0, e=0 in (11) above; then the pertinent decision variable is given by

$$x = \sum_{k=1}^{K} (as_k^2 + bt_k^2 + cs_k t_k) .$$
 (16)

 ${\rm D}_{1}$ and ${\rm D}_{2}$ are still given by (6), and there follows from (14),

$$N_{0}' = aM_{20} + bM_{02} + cM_{11} ,$$

$$N_{1}' = (4ab - c^{2})(\frac{1}{2}\sigma_{t}^{2}M_{20} + \frac{1}{2}\sigma_{s}^{2}M_{02} - \rho\sigma_{s}\sigma_{t}^{M}_{11}) ,$$

$$N_{2}' = 0 .$$
(17)

The characteristic function of x is given by (13), with $N_2' = 0$. The mean and variance of x in (16) are given by (15).

Fading for Special Case 2

Let the mean parameters $\left\{\mathbf{M}_{i\,j}\right\}$ in (12) be subject to slow fading; i.e., replace

$$^{M}_{20}$$
 by $^{rM}_{20}$, $^{M}_{02}$ by $^{rM}_{02}$, $^{M}_{11}$ by $^{rM}_{11}$, (18)

where power scale factor r has probability density function

$$p_r(u) = \frac{v^{\nu}}{\Gamma(\nu)} u^{\nu-1} e^{-\nu u}$$
 for $u > 0, \nu > 0$;

$$\overline{r} = 1$$
, $\sigma_{r}^{2} = \frac{1}{\nu}$, $\chi_{r}(n) = \frac{(n-1)!}{\nu^{n-1}}$ for $n \ge 1$. (19)

This form of fading is encountered in diversity combination receivers; see, for example, [4, eq. 9 et seq.] and [5, eq. 24 et seq.]. Then (13), (17), and (18) yield the conditional characteristic function, for a specified r, as

$$f_{X}(\mathbf{F}|\mathbf{r}) = \left(1 - i\mathbf{F}D_{1} - \mathbf{F}^{2}D_{2}\right)^{-K/2} \exp\left[i\mathbf{F}\mathbf{r} \frac{N_{0} - i\mathbf{F}N_{1}}{1 - i\mathbf{F}D_{1} - \mathbf{F}^{2}D_{2}}\right]. \tag{20}$$

Weighting (20) according to the probability density function in (19), and performing the integral, there follows, for the characteristic function of the decision variable x in (16), the result

$$f_{x}(\xi) = \frac{\left(1 - i\xi D_{1} - \xi^{2}D_{2}\right)^{v} - \frac{K}{2}}{\left(1 - i\xi(D_{1} + N_{0}^{\prime}/v) - \xi^{2}(D_{2} + N_{1}^{\prime}/v)\right)^{v}} . \tag{21}$$

(The limit of (21) as $v \to +\infty$ is again (13) with $N_2 = 0$, as in (17); this agrees with the fact that the corresponding limit of the probability density function in (19) is $p_r(u) = \delta(u-1)$.) The mean and variance of x in (16) follow from characteristic function (21) as

$$v_{x} = N_{0}^{'} + \frac{1}{2} KD_{1}^{'},$$

$$\sigma_{x}^{2} = \frac{1}{2} KD_{1}^{2} + 2N_{0}^{'}D_{1} - KD_{2} - 2N_{1}^{'} + N_{0}^{'}{}^{2}/v.$$
(22)

Observe that mean ν_{χ} is independent of ν , the power law in fading (19). A program for the cumulative and exceedance distribution functions corresponding to characteristic function (21) is given in appendix B.

SPECIAL FORMS OF SECOND-ORDER PROCESSOR (8)

Before embarking on the analysis of the other two classes of processors, we will explicitly detail some of the special forms that processor (8) reduces to, under particular selections of the weightings and statistical parameters. A rather broad collection of typical processors will be seen to be included. In the following, any unspecified weights $\{a_k, b_k, c_k, d_k, e_k\}$ are zero, and any unspecified statistical parameters that do not appear in the final characteristic function are irrelevant.

I. Gaussian

$$d_k = 1$$

$$x = \sum_{k=1}^{K} s_k$$

II. Chi-square of K Degrees of Freedom

$$a_k = 1$$
, $m_{sk} = 0$, $\sigma_{sk} = 1$

$$x = \sum_{k=1}^{K} s_k^2$$

$$f_X(\mathfrak{F}) = (1 - i\mathfrak{F}2)^{-K/2}$$

III. Non-Central Chi-Square (Q_M Distribution if K = 2M)

$$a_k = 1$$
, $\sigma_{sk} = \sigma_s$

$$x = \sum_{k=1}^{K} s_k^2$$

$$f_{x}(\xi) = (1 - i\xi 2\sigma_{s}^{2})^{-K/2} \exp \left[\frac{i\xi \sum_{k=1}^{K} m_{sk}^{2}}{1 - i\xi 2\sigma_{s}^{2}} \right]$$

IV. Weighted Energy Detector

$$a_k \neq 0$$
, $d_k \neq 0$

$$x = \sum_{k=1}^{K} (a_k s_k^2 + d_k s_k)$$

$$f_{x}(\xi) = \left[\prod_{k=1}^{K} \left\{1 - i\xi 2a_{k}\sigma_{sk}^{2}\right\}\right]^{-\frac{1}{2}} \exp\left[i\xi \sum_{k=1}^{K} \frac{a_{k}m_{sk}^{2} + d_{k}m_{sk} + i\xi \frac{1}{2}d_{k}^{2}\sigma_{sk}^{2}}{1 - i\xi 2a_{k}\sigma_{sk}^{2}}\right]$$

V. Weighted Cross-Correlator

$$c_k \neq 0$$

$$x = \sum_{k=1}^{K} c_k s_k t_k$$

$$D_1(k) = 2c_k^{\rho}k^{\sigma}sk^{\sigma}tk$$

$$D_2(k) = -c_k^2(1 - \rho_k^2)\sigma_{sk}^2\sigma_{tk}^2,$$

$$\begin{split} &N_0(k) = c_k m_{sk} m_{tk}, \\ &N_1(k) = -c_k^2 (\frac{1}{2} m_{sk}^2 \sigma_{tk}^2 + \frac{1}{2} m_{tk}^2 \sigma_{sk}^2 - \rho_k m_{sk} m_{tk} \sigma_{sk} \sigma_{tk}), \\ &N_2(k) = 0 \quad . \end{split}$$

Characteristic function $f_{\chi}(\mathbf{F})$ is given by (9).

VI. Two-Channel Energy Detector

$$a_{k} \neq 0, \quad b_{k} \neq 0$$

$$x = \sum_{k=1}^{K} (a_{k}s_{k}^{2} + b_{k}t_{k}^{2})$$

$$D_{1}(k) = 2(a_{k}\sigma_{sk}^{2} + b_{k}\sigma_{tk}^{2}),$$

$$D_{2}(k) = 4a_{k}b_{k}(1 - \rho_{k}^{2})\sigma_{sk}^{2}\sigma_{tk}^{2},$$

$$N_{0}(k) = a_{k}m_{sk}^{2} + b_{k}m_{tk}^{2},$$

$$N_{1}(k) = 4a_{k}b_{k}(\frac{1}{2}m_{sk}^{2}\sigma_{tk}^{2} + \frac{1}{2}m_{tk}^{2}\sigma_{sk}^{2} - \rho_{k}m_{sk}m_{tk}\sigma_{sk}\sigma_{tk}^{2}),$$

$$N_{2}(k) = 0.$$

Characteristic function $f_{\chi}(\mathbf{F})$ is given by (9). A simple application of this particular processor was encountered in [6, eqs. 25-26].

VII. Two-Channel Energy Detector and Cross-Correlator

$$a_{k} \neq 0, \quad b_{k} \neq 0, \quad c_{k} \neq 0$$

$$x = \sum_{k=1}^{K} (a_{k} s_{k}^{2} + b_{k} t_{k}^{2} + c_{k} s_{k} t_{k})$$

$$D_{1}(k) = 2(a_{k} \sigma_{sk}^{2} + b_{k} \sigma_{tk}^{2} + c_{k} \rho_{k} \sigma_{sk} \sigma_{tk}) ,$$

$$D_{2}(k) = (4a_{k} b_{k} - c_{k}^{2})(1 - \rho_{k}^{2})\sigma_{sk}^{2} \sigma_{tk}^{2} ,$$

$$N_{0}(k) = a_{k} m_{sk}^{2} + b_{k} m_{tk}^{2} + c_{k} m_{sk} m_{tk} ,$$

$$N_{1}(k) = (4a_{k} b_{k} - c_{k}^{2})(\frac{1}{2} m_{sk}^{2} \sigma_{tk}^{2} + \frac{1}{2} m_{tk}^{2} \sigma_{sk}^{2} - \rho_{k} m_{sk} m_{tk} \sigma_{sk} \sigma_{tk})$$

$$N_{2}(k) = 0 .$$

Characteristic function $f_{\chi}(\mathbf{F})$ is given by (9).

NARROWBAND CROSS-CORRELATOR

Figure 1. Narrowband Cross-Correlator

The processor of interest in this section is depicted in figure 1. Input signals $s_1(t)$ and $s_2(t)$ are arbitrary deterministic narrowband real waveforms:

$$s_{j}(t) = \text{Re}\left\{\underline{s}_{j}(t) \exp(i2\pi f_{0}t)\right\} = A_{j}(t) \cos(2\pi f_{0}t + P_{j}(t)) =$$

$$= a_{j}(t) \cos(2\pi f_{0}t) - b_{j}(t) \sin(2\pi f_{0}t) \quad \text{for } j = 1, 2, \tag{23}$$

where input signal complex envelope

$$\underline{s}_{j}(t) = A_{j}(t) \exp(iP_{j}(t)) = a_{j}(t) + ib_{j}(t)$$
 (24)

in terms of polar or rectangular low-frequency components, respectively.

Input noises $n_1(t)$ and $n_2(t)$ are zero-mean correlated narrowband jointly-Gaussian processes which may be nonstationary:

$$n_{j}(t) = \text{Re}\left\{\underline{n}_{j}(t) \exp(i2\pi f_{0}t)\right\} = x_{j}(t) \cos(2\pi f_{0}t) - y_{j}(t) \sin(2\pi f_{0}t), (25)$$

where noise complex envelope

$$\underline{n}_{j}(t) = x_{j}(t) + iy_{j}(t)$$
 for $j = 1,2$. (26)

The statistics of the input noise complex envelopes are arbitrary:

$$\frac{\left|\underline{n}_{1}(t)\right|^{2}}{\left|\underline{n}_{2}(t)\right|^{2}} = 2\sigma_{2}^{2},$$

$$\frac{\underline{n}_{1}(t)}{\underline{n}_{2}(t)} = 2\sigma_{1}\sigma_{2}\gamma, \quad \text{where } \gamma = \rho + i\lambda = |\gamma| \exp(i\phi),$$

$$\underline{\underline{n}_{i}(t)} \, \underline{\underline{n}_{m}(t)} = 0 \text{ for all j, m.}$$
(27)

The quantities σ_1 , σ_2 , γ can all vary with time t, for nonstationary noise processes. There follows, for the statistics of the in-phase and quadrature components defined in (25),

$$\overline{x_{1}^{2}} = \overline{y_{1}^{2}} = \sigma_{1}^{2}, \quad \overline{x_{1}y_{1}} = 0 ,$$

$$\overline{x_{2}^{2}} = \overline{y_{2}^{2}} = \sigma_{2}^{2}, \quad \overline{x_{2}y_{2}} = 0 ,$$

$$\overline{x_{1}x_{2}} = \overline{y_{1}y_{2}} = \sigma_{1}\sigma_{2}\rho ,$$

$$\overline{x_{2}y_{1}} = -\overline{x_{1}y_{2}} = \sigma_{1}\sigma_{2}\lambda .$$
(28)

The reason for breaking out this narrowband cross-correlator as a separate problem is now apparent from (28). Namely, at each time instant, a group of <u>four</u> random variables are statistically dependent on each other. This case does not fall into the framework of (8) above, since only two random variables were dependent there.

Using the narrowband character of all the waveforms in (24) and (26), the lowpass filter output in figure 1 may be expressed as

$$z(t) = \frac{1}{2}[x_1(t) + a_1(t)][x_2(t) + a_2(t)] + \frac{1}{2}[y_1(t) + b_1(t)][y_2(t) + b_2(t)].$$
(29)

The final system output in figure 1 is the weighted sum of K terms,

$$v = \sum_{k=1}^{K} w(k) z(t_k)$$
, (30)

where it is assumed that the time separations between samples at instants $\{t_k\}$ lead to statistically independent random variables $\{z(t_k)\}$. The weights and statistics can change with sample time t_k , in an arbitrary fashion.

Based upon the method in [7], we find the characteristic function of z(t) in (29) to be given by

$$f_{z}(\xi,t) = \frac{1}{1 - i\xi D_{1} + \xi^{2}D_{2}} \exp\left[i\xi \frac{N_{0} + i\xi N_{1}}{1 - i\xi D_{1} + \xi^{2}D_{2}}\right], \tag{31}$$

where the constants (in their most compact form) are given by

$$D_1 = \sigma_1 \sigma_2 \rho ,$$

$$D_2 = \frac{1}{4} \sigma_1^2 \sigma_2^2 (1 - \rho^2 - \lambda^2) ,$$

$$N_0 = \frac{1}{2}(a_1a_2 + b_1b_2)$$
,

$$N_{1} = \frac{1}{8} \left[\sigma_{2}^{2} (a_{1}^{2} + b_{1}^{2}) + \sigma_{1}^{2} (a_{2}^{2} + b_{2}^{2}) - 2\sigma_{1}\sigma_{2}\rho (a_{1}a_{2} + b_{1}b_{2}) - 2\sigma_{1}\sigma_{2}\lambda (a_{2}b_{1} - a_{1}b_{2}) \right].$$
(32)

(The characteristic function and constants in (31) and (32) are not to be interchanged or confused with any earlier results in previous sections. In fact, observe there is no square root involved in (31).) All of the parameters in (32) can vary with time t.

In terms of the signal polar definitions in (24) and the complex noise correlation coefficient γ in (27), alternative expressions to (32) (where we have emphasized the t-dependence) are

$$\begin{split} & \mathsf{D}_1 = \sigma_1(\mathsf{t}) \ \sigma_2(\mathsf{t}) \ \mathsf{Re} \left\{ \! \gamma(\mathsf{t}) \! \right\} = \sigma_1(\mathsf{t}) \ \sigma_2(\mathsf{t}) \ \left| \gamma(\mathsf{t}) \right| \ \mathsf{cos} \ \phi(\mathsf{t}), \\ & \mathsf{D}_2 = \frac{1}{4} \ \sigma_1^2(\mathsf{t}) \ \sigma_2^2(\mathsf{t}) \ \left(1 - \left| \gamma(\mathsf{t}) \right|^2 \right), \\ & \mathsf{N}_0 = \frac{1}{2} \ \mathsf{Re} \! \left\{ \! \frac{\mathsf{s}_1^{\star}(\mathsf{t}) \ \mathsf{s}_2(\mathsf{t}) \! }{ \mathsf{s}_2(\mathsf{t}) \! } \right\} = \frac{1}{2} \ \mathsf{A}_1(\mathsf{t}) \ \mathsf{A}_2(\mathsf{t}) \ \mathsf{cos} [\mathsf{P}_1(\mathsf{t}) - \mathsf{P}_2(\mathsf{t})] \ , \\ & \mathsf{N}_1 = \frac{1}{8} \! \left[\! \sigma_2^2(\mathsf{t}) \left| \underline{\mathsf{s}_1(\mathsf{t})} \right|^2 + \sigma_1^2(\mathsf{t}) \left| \underline{\mathsf{s}_2(\mathsf{t})} \right|^2 - 2 \ \sigma_1(\mathsf{t}) \ \sigma_2(\mathsf{t}) \ \mathsf{Re} \! \left\{ \! \frac{\mathsf{s}_1^{\star}(\mathsf{t}) \ \mathsf{s}_2(\mathsf{t}) \ \gamma(\mathsf{t}) \! \right\} \! \right] = \\ & = \frac{1}{8} \! \left[\! \sigma_2^2(\mathsf{t}) \ \mathsf{A}_1^2(\mathsf{t}) + \sigma_1^2(\mathsf{t}) \ \mathsf{A}_2^2(\mathsf{t}) - 2 \ \sigma_1(\mathsf{t}) \ \sigma_2(\mathsf{t}) \ \mathsf{A}_1(\mathsf{t}) \ \mathsf{A}_2(\mathsf{t}) \ \mathsf{p}(\mathsf{t}) \right| \mathsf{cos} [\mathsf{P}_1(\mathsf{t}) - \mathsf{P}_2(\mathsf{t}) - \phi(\mathsf{t})] \right]. \end{split}$$

The mean and variance of z(t) in (29) follow from (31) as

$$u_z = D_1 + N_0 ,$$

$$\sigma_z^2 = D_1^2 + 2D_2 + 2D_1N_0 + 2N_1 .$$
(34)

Finally, the characteristic function of the narrowband cross-correlator output v in (30) follows from (31) as

$$f_{V}(\xi) = \prod_{k=1}^{K} f_{z}(\xi w(k), t_{k}) =$$

$$= \left[\prod_{k=1}^{K} \left\{1 - i \xi w(k) D_1(k) + \xi^2 w^2(k) D_2(k)\right\}\right]^{-1} \exp\left[i \xi \sum_{k=1}^{K} \frac{w(k) N_0(k) + i \xi w^2(k) N_1(k)}{1 - i \xi w(k) D_1(k) + \xi^2 w^2(k) D_2(k)}\right],$$

where we have allowed all the parameters in (32) and (33) to vary with time t_k . The mean and variance of output v follow from (35) as

$$v_{V} = \sum_{k=1}^{K} w(k) [D_{1}(k) + N_{0}(k)],$$

$$\sigma_{V}^{2} = \sum_{k=1}^{K} w^{2}(k) [D_{1}^{2}(k) + 2D_{2}(k) + 2D_{1}(k)N_{0}(k) + 2N_{1}(k)]. \quad (36)$$
17

A program for the evaluation of the cumulative and exceedance distribution functions via (35) is given in appendix C.

In comparison with earlier results in [7], we have obtained the following extensions here:

- 1. The input signals are arbitrary narrowband waveforms; they are not limited to two sine waves at the same frequency;
- 2. The Gaussian input noises can be nonstationary;
- 3. The number of terms summed to yield the narrowband cross-correlator output can be greater than 1;
- 4. The characteristic function is in its most compact form, and the constants are expressed directly in terms of given quantities, having eliminated all auxiliary variables.

Output Signal-to-Noise Ratio

It is sometimes desirable to have simple expressions for the output signal-to-noise ratio of the narrowband cross-correlator in figure 1. In terms of the lowpass filter output z(t), we observe first from (32)-(34) that

$$u_z(s) = u_z(s+n) - u_z(n) = N_0 = \frac{1}{2} A_1 A_2 \cos(P_1 - P_2)$$
 (37)

We then have two alternative definitions of the signal-to-noise ratio at the lowpass filter output:

$$R_z(n) = \frac{u_z^2(s)}{\sigma_z^2(n)} = \frac{A_1^2 A_2^2 \cos^2(P_1 - P_2)}{2 \sigma_1^2 \sigma_2^2 (1 + \rho^2 - \lambda^2)}$$
,

$$R_{z}(s+n) = \frac{u_{z}^{2}(s)}{\sigma_{z}^{2}(s+n)} = \frac{A_{1}^{2} A_{2}^{2} \cos^{2}(P_{1}-P_{2})}{4(D_{1}^{2} + 2D_{2} + 2D_{1}N_{0} + 2N_{1})}.$$
 (38)

These closed form expressions allow for arbitrary noise correlations and are-considerably simpler than [7, eqs. 41-43]. The signal-to-noise ratios of system output v in figure 1 are K times greater than either form in (38).

Specialization to Narrowband Energy Detector

If the signal and noise parameters in (24) and (27) are chosen as

$$a_1(t) = a_2(t) = a(t)$$
,
 $b_1(t) = b_2(t) = b(t)$,
 $\sigma_1(t) = \sigma_2(t) = \sigma(t)$,
 $\rho(t) = 1, \lambda(t) = 0$, (39)

then figure 1 reduces to identical input channels, that is, a narrowband energy detector. There follows from (32),

$$D_{1} = \sigma^{2}(t), \quad D_{2} = 0,$$

$$N_{0} = \frac{1}{2} \left(a^{2}(t) + b^{2}(t) \right) = \frac{1}{2} A^{2}(t), \quad N_{1} = 0,$$
(40)

and (31) becomes

$$f_z(\mathbf{F}, t) = \frac{1}{1 - i \mathbf{F} \sigma^2(t)} \exp \left[i \mathbf{F} \frac{A^2(t)/2}{1 - i \mathbf{F} \sigma^2(t)} \right].$$
 (41)

Corresponding results for the system output v are easily obtained from this.

REDUCTION OF HERMITIAN AND LINEAR FORM

The most general case of interest in this section is as follows: random complex matrix

$$X = \left[x_1 \ x_2 \ \dots \ x_M \right]^T \tag{42}$$

is Mx1; constant complex matrix

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_M \end{bmatrix}^T \tag{43}$$

is Mxl; and constant complex matrix

$$B = \begin{bmatrix} b_{11} & \cdots & b_{1M} \\ b_{M1} & \cdots & b_{MM} \end{bmatrix}$$

$$(44)$$

is MxM and Hermitian. The Hermitian and linear form we consider is

$$q = x^{H}Bx + \frac{1}{2}(x^{H}A + A^{H}x) =$$

$$= \sum_{m,n=1}^{M} x_{m}^{\star} b_{mn} x_{n} + \frac{1}{2} \sum_{m=1}^{M} (x_{m}^{\star} a_{m}^{+} a_{m}^{\star} x_{m}^{+}), \qquad (45)$$

which is real. Random variable q is a weighted sum of all possible products of $\{x_m^*\}$ and $\{x_n\}$, plus linear combinations.* A and B are called the weighting matrices.

^{*} For M=2 or 4, and real variables and weights, (45) reduces to the earlier forms given in (1) and (29).

We will concentrate in this section on reducing form (45) to a weighted sum of squares of uncorrelated random variables. This stepping stone does not require any Gaussian assumptions on X and is therefore useful as a separate item.

The relevant statistics pertaining to random vector X are

$$\overline{X} = E$$
 (mean matrix),

$$\tilde{X} = X - \overline{X} = X - E$$

$$Cov\{X\} = \overline{\tilde{X}\tilde{X}^H} = K \quad (covariance matrix),$$
 (46)

where statistics matrices E and K are given. MxM matrix K is always Hermitian and non-negative definite. We assume K is positive definite; otherwise eliminate the linearly dependent components of \widetilde{X} . We allow x_m and x_n to be correlated with each other for any m and n; this situation is much more general than the investigations above.

Let C be a constant MxM matrix and form the linearly transformed variables

$$W = C^{H}X = [w_1 \ w_2 \ \dots \ w_M]^{T}.$$
 (47)

Then the statistics of W are given by

$$\overline{W} = C^H E$$
.

$$\widetilde{W} = W - \overline{W} = C^{H}\widetilde{X}$$

$$Cov\{W\} = \overline{\widetilde{W}}^{H} = C^{H}\overline{\widetilde{X}}^{H}C = C^{H}KC. \tag{48}$$

Also, from (47), since

$$X = C^{-H}W, (49)$$

then we can express (45) as

$$q = W^{H} C^{-1} B C^{-H} W + \frac{1}{2} (W^{H} D + D^{H} W), \qquad (50)$$

where we define constant Mx1 matrix

$$D = C^{-1}A = [d_1 \ d_2 \ \dots \ d_M]^T.$$
 (51)

We want to have, from (48) and (50),

$$C^{\mathsf{H}}\mathsf{KC} = \mathbf{I} \tag{52}$$

and

$$C^{-1}BC^{-H} = \Lambda = \operatorname{diag}(\lambda_1 \lambda_2 \dots \lambda_M); \quad \text{i.e. } C^{H}B^{-1}C = \Lambda^{-1}, \tag{53}$$

for then, in addition to the relation between the means,

$$\overline{W} = C^{\mathsf{H}} E, \tag{54}$$

we have the desirable properties

$$Cov\{W\} = I, (55)$$

and

$$q = W^{H} \Lambda_{W} + \frac{1}{2} (W^{H}D + D^{H}W) = \sum_{m=1}^{M} \lambda_{m} |w_{m}|^{2} + \text{Re} \sum_{m=1}^{M} d_{m}^{*}w_{m}$$
 (56)

That is, the random vector W given by (47) is composed of uncorrelated unit-variance components, and q is a weighted sum of magnitude-squares of these components, in addition to a linear sum.

We now have to address the problem of determining the MxM matrices C and Λ in (52) and (53). From [8, p. 106, Theorem 2], we identify

$$M \rightarrow K, \quad K \rightarrow B^{-1}, \quad \Lambda \rightarrow \Lambda^{-1};$$
 (57)

then according to [8, p. 107, eq. 29], we must solve for C and Λ in the equation

$$B^{-1}C = KC\Lambda^{-1}$$
, i.e. $BKC = C\Lambda$. (58)

So the only matrix that need be considered is the MxM product BK. C is the modal matrix, and Λ the eigenvalue matrix, of BK. Also, from (51),

$$D = C^{H}A$$
, since $C^{-1} = C^{H}$. (59)

Letting $C = [C^{(1)} ... C^{(M)}]$, where eigenvector $C^{(m)}$ is a Mx1 matrix, (58) can be expressed as

$$BKC^{(m)} = \lambda_m C^{(m)} \quad \text{for} \quad 1 \le m \le M.$$
 (60)

Several important properties hold for Λ and C:

The
$$\{\lambda_m\}_1^M$$
 are all real, but can be positive, zero, or negative. If K and B are real, then C is real. (61) If B is positive definite, then $\lambda_m > 0$ for $1 \le m \le M$. If A = 0 and E = 0, there is no need to solve (58) for C, because D = 0 and $\overline{W} = 0$.

QUADRATIC AND LINEAR FORM

If random vector X is real Gaussian, if A is real, and if B is real symmetric, then mean E and covariance K are real, and it follows that modal matrix C is also real. Also from (47) and (59), W and D are real. Equation (45) reduces to

$$q = X^{T}BX + X^{T}A = \sum_{m,n=1}^{M} x_{m}b_{mn}x_{n} + \sum_{m=1}^{M} a_{m}x_{m},$$
 (62)

which is a quadratic form and linear form.

Letting mean \overline{W} in (54) be expressed as

$$\overline{W} = [v_1 \ v_2 \dots v_M]^T, \tag{63}$$

the Gaussian character of X and the linear transformation (47) allow us to write the probability density function of W as a product:

$$p(W) = \prod_{m=1}^{M} \left\{ (2\pi)^{-1/2} \exp\left(-\frac{1}{2} (w_m - v_m)^2\right) \right\}.$$
 (64)

Here we used property (55). Since we now have, from (56),

$$q = \sum_{m=1}^{M} (\lambda_m w_m^2 + d_m w_m), \qquad (65)$$

the characteristic function of q is

$$f_q(\xi) = \overline{\exp(i\xi q)} = \exp\left(i\xi \sum_{m=1}^{M} \left(\lambda_m w_m^2 + d_m w_m\right)\right) =$$

$$= \left[\prod_{m=1}^{M} \left\{1 - i2\lambda_{m}\right\}\right]^{-1/2} \exp\left[i\sum_{m=1}^{M} \frac{\lambda_{m}v_{m}^{2} + d_{m}v_{m} + i\xi d_{m}^{2}/2}{1 - i2\lambda_{m}\xi}\right], (66)$$

where the square root must be a continuous function of \S , <u>not</u> a principal value square root.* Notice that only one square root and one exponential is required per \S value. Observe that the characteristic function depends on the separate values $\{v_m\}_1^M$ and $\{d_m\}_1^M$, not merely on their sums. If A = E = 0, the exponential is unity, by virtue of (54) and (59). And if M=2, (66) reduces to (5), while M=4 leads to form (31).

To summarize, the characteristic function $f_q(\xi)$ in (66) for random variable q in (62) requires the constants $\{\lambda_m\}$, $\{d_m\}$, and $\{\nu_m\}$ for $1 \leq m \leq M$. The initially given quantities are weighting matrices A, B and statistics matrices E, K. We first solve the equation (58),

$$BKC = C \Lambda, (67)$$

for eigenvalue matrix Λ and modal matrix C corresponding to BK. Then

$$\Lambda = \operatorname{diag}(\lambda_1 \ \lambda_2 \dots \lambda_M) ,$$

$$D = C^T A = [d_1 \ d_2 \dots d_M]^T ,$$

$$\overline{W} = C^T E = [v_1 \ v_2 \dots v_M]^T .$$
(68)

If the mean of input X is zero, E=0, and if the linear weighting form is zero, A=0, then there is no need to solve for modal matrix C of BK in (67). Then $D=\overline{W}=0$ and the exponential term in (66) is unity. One only need compute eigenvalue matrix Λ of BK in this case.

A program for the evaluation of the cumulative and exceedance distribution functions corresponding to characteristic function (66) is listed in appendix D. The inputs to the program are considered to be M, $\{\lambda_m\}$,

^{*} That is, the square root is the analytic continuation of the function defined as 1 at $\xi = 0$.

 $\{d_m\}$, $\{v_m\}$; that is, it is presumed that (67) and (68) have already been solved prior to use of the program.

The cumulants of q are obtained from (66) as

$$\mathcal{X}_{q}(n) = \begin{cases}
\sum_{m=1}^{M} (\lambda_{m} + \lambda_{m} v_{m}^{2} + d_{m} v_{m}) = u_{q} & \text{for } n = 1 \\
2^{n-1}(n-1)! \sum_{m=1}^{M} \lambda_{m}^{n-2} \left[\lambda_{m}^{2} + n \left(\lambda_{m} v_{m} + \frac{1}{2} d_{m} \right)^{2} \right] & \text{for } n \geq 2
\end{cases} .$$
(69)

In particular, the variance of q is

$$\chi_{q}(2) = 2 \sum_{m=1}^{M} \left[\lambda_{m}^{2} + 2 \left(\lambda_{m} \nu_{m} + \frac{1}{2} d_{m} \right)^{2} \right] = \sigma_{q}^{2}$$
 (70)

If another random variable is formed by the sum of several independent random variables q_j with the form (62), but with different sizes M_j , the new characteristic function is the product of terms like (66).

Breakdown of X into Two Components

It is useful to investigate a particular version of the general results above, because the resultant forms correspond to some often-realized practical energy detectors and correlators. We let M = 2N, and

$$X = \begin{bmatrix} U \\ V \end{bmatrix} , \quad B = \begin{bmatrix} B^{11} & B^{12} \\ B^{21} & B^{22} \end{bmatrix} , \quad A = \begin{bmatrix} A^{(1)} \\ A^{(2)} \end{bmatrix} , \quad (71)$$

where U, V, $A^{(1)}$, $A^{(2)}$ are Nx1 real matrices, and $\{B^{ij}\}$ are NxN real matrices. Also B^{11} and B^{22} are symmetric, while $B^{21} = B^{12}$. Then (62) can be expressed as

$$q = X^{T}BX + X^{T}A = \begin{bmatrix} U^{T} & V^{T} \end{bmatrix} \begin{bmatrix} B^{11} & B^{12} \\ B^{21} & B^{22} \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} + \begin{bmatrix} U^{T} & V^{T} \end{bmatrix} \begin{bmatrix} A^{(1)} \\ A^{(2)} \end{bmatrix} =$$

$$= U^{T}B^{11}U + U^{T}B^{12}V + V^{T}B^{21}U + V^{T}B^{22}V + U^{T}A^{(1)} + V^{T}A^{(2)} =$$

$$= U^{T}B^{11}U + 2U^{T}B^{12}V + V^{T}B^{22}V + U^{T}A^{(1)} + V^{T}A^{(2)} =$$

$$= \sum_{m,n=1}^{N} \left(u_{m} b_{mn}^{11} u_{n} + 2u_{m} b_{mn}^{12} v_{n} + v_{m} b_{mn}^{22} v_{n} \right) + \sum_{n=1}^{N} \left(u_{n} a_{n}^{(1)} + v_{n} a_{n}^{(2)} \right) =$$

= all possible auto and cross combinations of random

variables
$$\{u_n\}_1^N$$
 and $\{v_n\}_1^N$, plus linear combinations. (72)

We also have, from (47) and (68),

$$W = C^{\mathsf{T}}X = C^{\mathsf{T}}\begin{bmatrix} U \\ V \end{bmatrix}, \quad \overline{W} = C^{\mathsf{T}}\begin{bmatrix} \overline{U} \\ \overline{V} \end{bmatrix} = C^{\mathsf{T}}\begin{bmatrix} E_{\mathsf{U}} \\ E_{\mathsf{V}} \end{bmatrix}, \quad D = C^{\mathsf{T}}\begin{bmatrix} A^{(1)} \\ A^{(2)} \end{bmatrix},$$

$$K = \mathsf{Cov}\{X\} = \overline{X}\overline{X}^{\mathsf{T}} = \overline{\begin{bmatrix} \overline{V} \\ \overline{V} \end{bmatrix}} \overline{\begin{bmatrix} \overline{U}^{\mathsf{T}} \ \overline{V}^{\mathsf{T}} \end{bmatrix}} = \overline{\begin{bmatrix} K_{\mathsf{UU}} & K_{\mathsf{UV}} \\ K_{\mathsf{VU}} & K_{\mathsf{VV}} \end{bmatrix}}. \tag{73}$$

Then the fundamental matrix required in (67) is expressable as

$$BK = \begin{bmatrix} B^{11} & B^{12} \\ B^{21} & B^{22} \end{bmatrix} \begin{bmatrix} K_{uu} & K_{uv} \\ K_{vu} & K_{vv} \end{bmatrix},$$
 (74)

which is a 2Nx2N matrix. Also random variable (65) is now

$$q = \sum_{m=1}^{2N} \left(\lambda_m w_m^2 + d_m w_m \right) ,$$
 (75)

which has 2N terms. The characteristic function of q, in general, follows from (66) and (68) as

$$f_{q}(\xi) = \left[\prod_{m=1}^{2N} \left\{1 - i2\lambda_{m}\xi\right\}\right]^{-1/2} \exp\left[i\xi \sum_{m=1}^{2N} \frac{\lambda_{m}v_{m}^{2} + d_{m}v_{m} + i\xi d_{m}^{2}/2}{1 - i2\lambda_{m}\xi}\right], \quad (76)$$

where

$$\overline{W} = \begin{bmatrix} v_1 & \dots & v_{2N} \end{bmatrix}^{\mathsf{T}} = C^{\mathsf{T}} \begin{bmatrix} E_u \\ E_v \end{bmatrix}, \quad D = \begin{bmatrix} d_1 & d_2 & \dots & d_{2N} \end{bmatrix}^{\mathsf{T}} = C^{\mathsf{T}} \begin{bmatrix} A(1) \\ A(2) \end{bmatrix}.$$
 (77)

(If $A^{(1)} = A^{(2)} = E_u = E_v = 0$, then D = 0 and $\overline{W} = 0$, and there is no need to solve for modal matrix C; the exponential in $f_q(\xi)$ in (76) is then unity.)

As a special case, if A=0, $B^{11}=0$, $B^{22}=0$, then (71) and (73) yield

$$B = \begin{bmatrix} 0 & B^{12} \\ B^{21} & 0 \end{bmatrix}, \quad D = 0 , \qquad (78)$$

and (72) gives

$$q = 2U^T B^{12} V = 2 \sum_{m,n=1}^{N} u_m b_{mn}^{12} v_n =$$

= all possible cross combinations of
$$\{u_n\}_1^N$$
 and $\{v_n\}_1^N$. (79)

Then (74) specializes to

$$BK = \begin{bmatrix} 0 & B^{12} \\ B^{21} & 0 \end{bmatrix} \begin{bmatrix} K_{uu} & K_{uv} \\ K_{vu} & K_{vv} \end{bmatrix} = \begin{bmatrix} B^{12}K_{vu} & B^{12}K_{vv} \\ B^{21}K_{uu} & B^{21}K_{uv} \end{bmatrix}$$
(80)

and (75) reduces to

$$q = \sum_{m=1}^{2N} \lambda_m w_m^2 \quad , \tag{81}$$

with characteristic function

$$f_{q}(\varsigma) = \left[\frac{2N}{m=1} \left\{ 1 - i2\lambda_{m} \varsigma \right\} \right]^{-1/2} \cdot \exp \left[i \varsigma \sum_{m=1}^{2N} \frac{\lambda_{m} v_{m}^{2}}{1 - i2\lambda_{m} \varsigma} \right]$$
(82)

following directly from (76) and (78).

For the particular example of

$$B^{12} = \frac{1}{2} \operatorname{diag}(\mathcal{L}_1 \mathcal{L}_2 \dots \mathcal{L}_N) + \frac{1}{2} [g_1 g_2 \dots g_N]^T [h_1 h_2 \dots h_N], \quad (83)$$

then

$$q = \sum_{n=1}^{N} \ell_n u_n v_n + \left(\sum_{n=1}^{N} g_n u_n\right) \left(\sum_{n=1}^{N} h_n v_n\right), \qquad (84)$$

with the same characteristic function (82).

As a still more-special case, let $B^{12} = \frac{1}{2} I$; then (79) and (81) give the simple cross-correlator (but with correlated inputs for all time separations)

$$q = \sum_{n=1}^{N} u_n v_n = \sum_{m=1}^{2N} \lambda_m w_m^2 , \qquad (85)$$

and (80) and (77) become

$$BK = \frac{1}{2} \begin{bmatrix} K_{VU} & K_{VV} \\ K_{UU} & K_{UV} \end{bmatrix}, \quad \overline{W} = C^{T} \begin{bmatrix} E_{U} \\ E_{V} \end{bmatrix} = \begin{bmatrix} v_{1} & \dots & v_{2N} \end{bmatrix}^{T}.$$
 (86)

The important equations that must be solved are always

$$BKC = C \Lambda$$
 (87)

or

$$BKC^{(m)} = \lambda_m C^{(m)} \quad \text{for} \quad 1 \leq m \leq M = 2N, \tag{88}$$

where all matrices B, K, C, Λ are 2Nx2N. The characteristic function of (85) is again (82).

Special Case of Correlator (85)

Here we let components U and V have the \underline{same} covariance and a scaled cross-correlation; that is, let

$$K_{uu} = K_{o}, \quad K_{vv} = K_{o}, \quad K_{uv} = \rho K_{o}, \quad (89)$$

where ρ is a scale factor. This case corresponds, for example, to a common signal in two independent components:

$$u(t) = s(t) + n_1(t),$$

 $v(t) = s(t) + n_2(t),$
(90)

where s(t), $n_1(t)$, $n_2(t)$ are all independent and have a common covariance. Then (86) becomes

$$BK = \frac{1}{2} \begin{bmatrix} \rho K_0 & K_0 \\ K_0 & \rho K_0 \end{bmatrix} . \tag{91}$$

Now suppose that we can determine the NxN eigenvalue matrix Γ and modal matrix Q of K_0 , that is

$$K_0Q = Q\Gamma$$
; $\Gamma = diag(\gamma_1, \gamma_2 \dots \gamma_N)$. (92)

Then we have the standard relations [8]

$$K_0 = Q \Gamma Q^T$$
 where $QQ^T = I$. (93)

We can now express the 2Nx2N matrix in (91) as

$$BK = \frac{1}{2} \begin{bmatrix} Q_{\rho} \Gamma Q^{T} & Q \Gamma Q^{T} \\ Q \Gamma Q^{T} & Q_{\rho} \Gamma Q^{T} \end{bmatrix} = \begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} \frac{1}{2} \rho \Gamma & \frac{1}{2} \Gamma \\ \frac{1}{2} \Gamma & \frac{1}{2} \rho \Gamma \end{bmatrix} \begin{bmatrix} Q^{T} & 0 \\ 0 & Q^{T} \end{bmatrix}, \qquad (94)$$

and 2Nx2N identity matrix

$$I_{2N} = \begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{\mathsf{T}} & 0 \\ 0 & Q^{\mathsf{T}} \end{bmatrix}. \tag{95}$$

There follows

$$BK - \lambda I_{2N} = \begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} \frac{1}{2}\rho \Gamma - \lambda I & \frac{1}{2}\Gamma \\ \frac{1}{2}\Gamma & \frac{1}{2}\rho \Gamma - \lambda I \end{bmatrix} \begin{bmatrix} Q^{\mathsf{T}} & 0 \\ 0 & Q^{\mathsf{T}} \end{bmatrix}. \tag{96}$$

But the middle matrix in (96) can be developed in detail in the partitioned form

This matrix is singular when the kth row is equal to, or the negative of, the k+N th row. This leads to the eigenvalues $\{\lambda_n\}_{1}^{2N}$ of matrix BK:

$$\lambda_{1} = \frac{1}{2} (\rho+1) \gamma_{1}, \dots, \lambda_{N} = \frac{1}{2} (\rho+1) \gamma_{N} ,$$

$$\lambda_{N+1} = \frac{1}{2} (\rho-1) \gamma_{1}, \dots, \lambda_{2N} = \frac{1}{2} (\rho-1) \gamma_{N} .$$
(98)

Thus we need only solve for the N eigenvalues $\{\gamma_n\}_1^N$ of matrix K_0 , and then use them as above to determine all 2N eigenvalues of BK; this is a significant shortcut.

If also $E_u = E_v = 0$, then $\overline{W} = 0$ from (86), and the characteristic

function of q in (85) follows from (82) and (98) as

$$f_{q}(\mathbf{r}) = \left[\prod_{m=1}^{N} \left\{ (1-i(\rho+1)\gamma_{m}\mathbf{r})(1-i(\rho-1)\gamma_{m}\mathbf{r}) \right\} \right]^{-1/2} = \left[\prod_{m=1}^{N} \left\{ 1-i2\rho\gamma_{m}\mathbf{r} + (1-\rho^{2})\gamma_{m}^{2}\mathbf{r}^{2} \right\} \right]^{-1/2} . \tag{99}$$

This is a generalization of [1, eq. 54], which held for a single pair of Gaussian random variables.

EXAMPLES

The program listed in appendix A for the second-order processor (8) and attendant characteristic function (9) has been employed to yield the result in figure 2. The particular values for the number of terms K, the weights, and the input statistics are listed in lines 20-120. There is no physical significance attached to this particular example; rather it has been run simply to illustrate the extreme generality that the technique is capable of. Some negative values for the weights, means, and correlation coefficients have been employed to emphasize this generality. This simple example (and others to follow) can be used as a check case on any user-written program to evaluate cumulative and exceedance distribution functions.

The selection of parameters L, Δ , b in lines 130-150 is discussed in detail in [1]; the reader is referred there for the deleterious effects that can occur for improper choices of L, Δ , b. The selection of M_f, the FFT size in line 160, is rather arbitrary; it controls the spacing at which the probability distributions are computed, but has no effect upon the accuracy of the results (except for round-off noise). Additional computational details on the particular program for characteristic function (9) are given in appendix A.

The ordinate scale for figure 2 is a logarithmic one. The lower right end of the exceedance distribution function curve decreases smoothly to the region 1E-11, where roundoff noise is encountered. The exceedance distribution function values continue to decrease with x until, finally, negative values (due to roundoff noise) are generated. For negative probability values, the logarithm of the absolute value is plotted, but mirrored below the 1E-12 level. These values have no physical significance, of course; they are plotted to illustrate the level of accuracy attainable by this procedure with appropriate choices of L and Δ .

The rates of decay of the cumulative and exceedance distribution functions in figure 2 are markedly different for this particular example. Additionally, since the decays are both linear on this logarithmic ordinate, it means that both tail distributions are exponential, not Gaussian. These attributes of the cumulative and exceedance distribution functions are easily

Figure 2. Distributions for Second-Order Processor

and quickly discernible by use of the numerical technique in [1], for a limitless variety of weights and input statistics, with a minimum of effort on the part of the user.

As a check on the program in appendix A, the second-order processor in (8) was simulated, and 10,000 independent trials were used to determine its performance for the exact same parameters as used for figure 2 above. The program is listed in appendix E and the results are given in figure 3. The corroboration is excellent, even near the 1E-4 probability level.

As the number of terms, K, in the second-order processor (8) is increased, and if the statistics are identical, the random variable x should approach Gaussian, at least near its mean. The example in figure 4 was run for K=10, and all weights and statistics independent of k; the particular choices were

a = .6, b = -.6, c = .3, d = -.2, e = .2,

$$m_s = .5$$
, $m_t = -.5$, $\sigma_s = 1$, $\sigma_t = 1$, $\rho = .4$,
L = 4, $\Delta = .05$, b = 20π , $M_f = 256$. (100)

The cumulative and exceedance distribution functions in figure 4 both display a parabolic shape near the mean of x, which signifies Gaussian behavior of the random variable, as expected. However, on the tails, the distributions are tending to linear, which means an exponential decay there. This observation for this example confirms the comments of [7, p. 673].

The cumulative and exceedance distribution functions for an example of the second-order processor with fading are displayed in figure 5, as determined from characteristic function (21) and the corresponding program in appendix B. The power law, ν , for the fading probability density function (19) is 2.7 for this example, but can be easily changed. The particular constants employed are listed in lines 20-110 in appendix B.

An example of the distributions for the narrowband cross-correlator of figure 1 is presented in figure 6, as evaluated from characteristic function

Figure 3. Simulation Comparison of Second-Order Processor

Figure 4. Second-Order Processor, K=10, Identical Statistics

Figure 5. Second-Order Processor with Fading

Figure 6. Distributions for Narrowband Cross-Correlator

(31) and the program in appendix C. The weightings, signal components, and noise statistics have no special values or interrelationships; the particular values used here are listed in lines 20-110.

The distributions for the reduced quadratic and linear form (65) and accompanying characteristic function (66) are presented in figure 7 for the numerical example employed in the program listing in appendix D. If the given form is instead that of (62), then (67)-(68) must first be solved before the program in appendix D can be employed; that is, one must augment these results with the capability for extracting the eigenvalues (and eigenvectors in some cases) of the MxM matrix BK. The size of the FFT, $M_{\rm f}$, has been increased to 1024 in figure 7; this results in finer spacing of the distribution values and additional spikes in the round-off noise region centered about 1E-12.

Figure 7. Distributions for Quadratic and Linear Form

SUMMARY AND DISCUSSION

Closed form expressions for the characteristic functions of the decision variables of three classes of second-order processors have been derived. The input noise to the processors must be Gaussian, but it can be nonstationary with arbitrary statistics. Programs for the direct evaluation of the exact cumulative and exceedance distribution functions have been generated and then exercised for completely general values of the weights, signal parameters, and noise statistics. There is no assumption needed about a large number of statistically independent contributors, nor need any signal-to-noise ratio be either small or large. The first two classes of processors are restricted in form, but include many of the practical devices often encountered in detection and estimation problems. The third class covers the most general second-order processor; it requires the solution for the eigenvalue and modal matrices of an MxM matrix (where M is the size of the general quadratic form) in addition to the program furnished here. The approach utilized here allows a user to quickly and easily obtain accurate quantitative information about the performance of a particular processor, and to investigate the effects of making changes in any of the input constants or parameters.

Approximations to the performance of continuous quadratic processors are possible by use of the above procedures. For example,

$$\iint dt_1 dt_2 x(t_1) \beta(t_1, t_2) x(t_2) \cong \Delta_1 \Delta_2 \sum_{m,n} x(m\Delta_1) \beta(m\Delta_1, n\Delta_2) x(n\Delta_2), \quad (101)$$

which is of the form X^TBX encountered in (62). Also

$$\iint dt_1 dt_2 u(t_1) \beta(t_1, t_2) v(t_2) \cong \Delta_1 \Delta_2 \sum_{m,n} u(m\Delta_1) \beta(m\Delta_1, n\Delta_2) v(n\Delta_2), \quad (102)$$

which is of the form $U^TB^{12}V$ encountered in (79).

Receiver operating characteristics, that is, detection probability vs false alarm probability, can be easily determined from the above results. First store the exceedance distribution for zero signal strength in an array. Then plot the exceedance distributions for nonzero signal strengths vs this stored array of numbers, each point for a common threshold. The common thresholds are most easily realized by keeping sampling increment Δ and FFT size M_f the same throughout all the computations.

APPENDIX A. SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution functions of random variable (8) via characteristic function (9). The required inputs are listed in lines 20-120 and are annotated consistently with (8). The parameters D_1 , D_2 , N_0 , N_1 , N_2 required in characteristic function (9) are pre-computed once in loop 290-510 for the sake of execution time. The mean of x is entered in line 520. When we enter loop 590-830 for the actual calculation of the characteristic function (9), the number of computations are minimized. For example, only one complex exponential and square root are required per \mathbf{F} value, in lines 740-750. The square root in (9) is not a principal value square root, but in fact must yield a continuous function in \mathbf{F} . In order to achieve this, the argument of the square root is traced continuously from $\mathbf{F} = 0$ (line 530). If an abrupt change in phase is detected, a polarity indicator takes note of this fact (line 780) and corrects the final values of characteristic function $\mathbf{f}_{\mathbf{y}}(\mathbf{F})$ (line 790). More detail on the selection of \mathbf{L} , \mathbf{A} , \mathbf{b} in lines 130-150 is available in [1].

```
10 ! SECOND-ORDER PROCESSOR
      K=5
20
                                 Number of terms summed
      DATA .6,-.5,.4,-.3,.2
30
                                 a(k) weightings
      DATA .9,.8,.7,-.6,-.5 !
40
                                 b(k) weightings
      DATA -.6,-.8,1,1.2,1.4 !
50
                                 c(k) weightings
      DATA .1,-.2,-.3,.4,.5
DATA -.7,.6,.5,.4,-.3
60
                                 d(k) weightings
                              !
                                 e(k) weightings
      DATA .2,.3,.4,-.5,-.6 !
                                 Means of random variables s(k)
                             !
90
      DATA .8,-.7,-.6,.5,.4
                                 Means of random variables t(k)
100
      DATA .1,.3,.5,.7,.9
                                 Standard deviations of s(k)
110
      DATA .2,.4,.6,.8,1
                              ţ
                                 Standard deviations of t(k)
120
      DATA .4,-.5,.6,.7,-.8 !
                                 Correlation coeffs. of s(k) and t(k)
130
      L=25
                                 Limit on integral of char. function
140
      Delta=.05
                                 Sampling increment on char. function
150
      Bs=.75*(2*PI/Delta)
                                 Shift b, as fraction of alias interval
160
      Mf=2^8
                                 Size of FFT
170
      PRINTER IS 0
      PRINT "L =";L, "Delta =";Delta, "b =";Bs, "Mf =";Mf
      REDIM A(1:K), B(1:K), C(1:K), D(1:K), E(1:K)
200
      REDIM Ms(1:K), Mt(1:K), Ss(1:K), St(1:K), Rho(1:K)
210
      REDIM D1(1:K), D2(1:K), N0(1:K), N1(1:K), N2(1:K)
      REDIM X(0:Mf-1),Y(0:Mf-1)
220
      DIM A(1:10), B(1:10), C(1:10), D(1:10), E(1:10)
230
      DIM Ms(1:10), Mt(1:10), Ss(1:10), St(1:10), Rho(1:10)
240
      DIM D1(1:10), D2(1:10), N0(1:10), N1(1:10), N2(1:10)
250
260
      DIM X(0:1023), Y(0:1023)
270
      READ A(*), B(*), C(*), D(*), E(*) ! Enter
      READ Ms(*), Mt(*), Ss(*), St(*), Rho(*) ! constants
280
```

```
290
      FOR J=1 TO K
                                             Calculation
300
      T1=Ms(J)^2
                                            \circ f
      T2=Mt(J)\wedge 2
310
                                             parameters
320
      T3=Ss(J)^2
330
      T4=St(J) \wedge 2
340
      T5=Ms(J)*Mt(J)
350
      T6=Rho(J)*Ss(J)*St(J)
360
      T7=4*A(J)*B(J)+C(J)^2
370
      T8 = (1 - Rho(J)^2) * T3 * T4
380
      T9 = Mt(J) * Ss(J)
390
      T10=Ms(J)*St(J)
400
     T11=D(J)^2
410
     T12=E(J)^2
420 T13=D(J)*E(J)
430
     D1(J)=2*(A(J)*T3+B(J)*T4+C(J)*T6)
440
    D2(J)=T7*T8
    N0(J)=A(J)*T1+B(J)*T2+C(J)*T5+D(J)*Ms(J)+E(J)*Mt(J)
450
460
    T=T7*(.5*(T1*T4+T2*T3)-T5*T6)
470
      T=T+(2*A(J)*E(J)+C(J)*D(J))*Ss(J)*(T9-Rho(J)*T10)
      T=T+(2*B(J)*D(J)-C(J)*E(J))*St(J)*(T10-Rho(J)*T9)
480
      N1(J)=T-.5*(T11*T3+T12*T4)-T13*T6
490
500
      N2(J) = -(A(J) * T12 + B(J) * T11 + C(J) * T13) * T8
510
      NEXT J
520
      Mux=SUM(N0)+.5*SUM(D1)
                                             Mean of random variable x
530
      R=0
                                          1
                                             Argument of square root
540
      P=1
                                             Polarity indicator
      Muy=Mux+Bs
550
      X(0)=0
560
570
      Y(0)=.5*Delta*Muv
580
      N=INT(L/Delta)
590
      FOR Ns=1 TO N
600
      Xi=Delta*Ns
                                             Argument xi of char. fn.
610
      X2=Xi*Xi
                                          1
                                            Calculation
620
      Pr=1
                                          1
                                             of:
630
      Pi=Sr=Si=0
                                             characteristic
    FOR J=1 TO K
640
                                             function
650
    Dr=1-X2*D2(J)
                                             fy(xi)
660
    Di=-Xi*D1(J)
670
    CALL Mul(Pr,Pi,Dr,Di,A,B)
680
     Pr=A
690
     Pi=B
     CALL Div(N0(J)-X2*N2(J),-Xi*N1(J),Dr,Di,A,B)
790
710
      Sr=Sr+A
720
      Si = Si + B
730
      NEXT J
      CALL Exp(-Xi*Si,Xi*(Sr+Bs),A,B)
740
750
      CALL Sqr(Pr,Pi,C,D)
760
      Ro=R
770
      R=ATN(D/C)
780
      IF ABS(R-Ro)>1.6 THEN P=-P
790
      CALL Div(A, B, C*P, D*P, Fyr, Fyi)
                                          ! Collapsing
800
      Ms=Ns MOD Mf
810
      X(Ms)=X(Ms)+Fyr/Ns
      Y(Ms)=Y(Ms)+Fyi/Ns
820
830
      NEXT Ns
840
      CALL Fft10z(Mf,X(*),Y(*))
                                         ! 0 subscript FFT
```

```
850
      PLOTTER IS "GRAPHICS"
860
      GRAPHICS
870
      SCALE 0, Mf, -14, 0
      LINE TYPE 3
880
890
      GRID Mf/8,1
900
      PENUP
910
      LINE TYPE 1
920
      B=Bs*Mf*Delta/(2*PI)
                                       ! Origin for random variable x
930
      MOVE B,0
      DRAW B, -14
940
950
      PENUP
      FOR Ks=0 TO Mf-1
960
970
      T=Y(Ks)/PI-Ks/Mf
980
      X(Ks)=.5-T
                                           Cumulative probability in X(*)
990
      Y(Ks)=Pr=.5+T
                                           Exceedance probability in Y(*)
1000 IF Pr>=1E-12 THEN Y=LGT(Pr)
1010 IF Pr<=+1E-12 THEN Y=-24-LGT(-Pr)
1020 IF ABS(Pr)<1E-12 THEN Y=-12
1030 PLOT Ks.Y
1040 NEXT Ks
1050 PENUP
1060 PRINT Y(0); Y(1); Y(Mf-2); Y(Mf-1)
1070 FOR Ks=0 TO Mf-1
1080 Pr=X(Ks)
1090 IF Pr>=1E-12 THEN Y=LGT(Pr)
1100 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
1110 IF ABS(Pr)(1E-12 THEN Y=-12
1120 PLOT Ks,Y
1130 NEXT Ks
1140 PENUP
1150 PAUSE
1160 DUMP GRAPHICS
1170 PRINT LIN(5)
1180 PRINTER IS 16
1190 END
1200
1210 SUB Mul(X1, Y1, X2, Y2, A, B)
                                        ! Z1*Z2
1220 A=X1*X2-Y1*Y2
1230 B=X1*Y2+X2*Y1
1240 SUBEND
1250 !
1260 SUB Div(X1, Y1, X2, Y2, A, B)
                                        ! Z1/Z2
1270 T=X2*X2+Y2*Y2
1280 A=(X1*X2+Y1*Y2)/T
1290 B=(Y1*X2-X1*Y2)/T
1300 SUBEND
1310
1320 SUB Exp(X,Y,A,B)
                                        ! = EXP(Z)
1330 T=EXP(X)
1340 A=T*COS(Y)
1350 B=T*SIN(Y)
1360 SUBEND
1370
```

```
1380
     SUB Sqr(X,Y,A,B)
                                           PRINCIPAL SQR(Z)
     IF X<>0 THEN 1430
1390
1400
     A=B=SQR(.5*ABS(Y))
1410
     IF YKØ THEN B=-B
1420
     GOTO 1540
1430
     F=SQR(SQR(X*X+Y*Y))
1440
     T=.5*ATN(Y/X)
1450
      A=F*COS(T)
1460
     B=F*SIN(T)
1470
      IF X>0 THEN 1540
1480
     T = A
1490
     A = -B
1500
     B = T
1510
     IF Y>=0 THEN 1540
1520
     A=-A
1530
     B = -B
1540
     SUBEND
1550
1560
     SUB Fft10z(N,X(*),Y(*))
                                 ! N <= 2^10 = 1024. N=2^INTEGER
                                                                     0 subscript
     DIM C(0:256)
     INTEGER 11,12,13,14,15,16,17,18,19,110,J,K
     DATA 1,.999981175283,.999924701839,.999830581796,.999698818696,.9995294175
01,.999322384588,.999077727753,.998795456205,.998475580573,.998118112900
1600 DATA .997723066644,.997290456679,.996820299291..996312612183..995767414468
,.995184726672,.994564570734,.993906970002,.993211949235,.992479534599
1610 DATA .991709753669,.990902635428,.990058210262,.989176509965,.988257567731
,.987301418158,.986308097245,.985277642389,.984210092387,.983105487431
1620 DATA .981963869110,.980785280403,.979569765685,.978317370720,.977028142658
,.975702130039,.974339382786,.972939952206,.971503890986,.970031253195
1630 DATA .968522094274,.966976471045,.965394441698,.963776065795,.962121404269
,.960430519416,.958703474896,.956940335732,.955141168306,.953306040354
1640 DATA .951435020969,.949528180593,.947585591018,.945607325381,.943593458162
,.941544065183,.939459223602,.937339011913,.935183509939,.932992798835
1650 DATA .930766961079,.928506080473,.926210242138,.923879532511,.921514039342
,.919113851690,.916679059921,.914209755704,.911706032005,.909167983091
1660 DATA .906595704515,.903989293123,.901348847046,.898674465694,.895966249756
,.893224301196,.890448723245,.887639620403,.884797098431,.881921264348
1670 DATA .879012226429,.876070094195,.873094978418,.870086991109,.867046245516
,.863972856122,.860866938638,.857728610000,.854557988365,.851355193105
1680 DATA .848120344803,.844853565250,.841554977437,.838224705555,.834862874986
,.831469612303,.828045045258,.824589302785,.821102514991,.817584813152
1690 DATA .814036329706,.810457198253,.806847553544,.803207531481,.799537269108
..795836904609,.792106577300,.788346427627,.784556597156,.780737228572
1700 DATA .776888465673,.773010453363,.769103337646,.765167265622,.761202385484
,.757208846506,.753186799044,.749136394523,.745057785441,.740951125355
1710 DATA .736816568877,.732654271672,.728464390448,.724247082951,.720002507961
,.715730825284,.711432195745,.707106781187,.702754744457,.698376249409
1720 DATA .693971460890,.689540544737,.685083667773,.680600997795,.676092703575
,.671558954847,.666999922304,.662415777590,.657806693297,.653172842954
1730 DATA .648514401022,.643831542890,.639124444864,.634393284164,.629638238915
,.624859488142,.620057211763,.615231590581,.610382806276,.605511041404
1740 DATA .600616479384,.595699304492,.590759701859,.585797857456,.580813958096
,.575808191418,.570780745887,.565731810784,.560661576197,.555570233020
1750 DATA .550457972937,.545324988422,.540171472730,.534997619887,.529803624686
,.524589682678,.519355990166,.514102744193,.508830142543,.503538383726
```

```
1760 DATA .498227666973..492898192230..487550160148..482183772079..476799230063
,.471396736826,.465976495768,.460538710958,.455083587126,.449611329655
1770 DATA .444122144570,.438616238539,.433093818853,.427555093430,.422000270800
,.416429560098,.410843171058,.405241314005,.399624199846,.393992040061
1780 DATA .388345046699,.382683432365,.377007410216,.371317193952,.365612997805
,.359895036535,.354163525420,.348418680249,.342660717312,.336889853392
1790 DATA .331106305760,.325310292162,.319502030816,.313681740399,.307849640042
,.302005949319,.296150888244,.290284677254,.284407537211,.278519689385
1800 DATA .272621355450,.266712757475,.260794117915,.254865659605,.248927605746
,.242980179903,.237023605994,.231058108281,.225083911360,.219101240157
1810 DATA .213110319916,.207111376192,.201104634842,.195090322016,.189068664150
,.183039887955,.177004220412,.170961888760,.164913120490,.158858143334
1820 DATA .152797185258,.146730474455,.140658239333,.134580708507,.128498110794
,.122410675199,.116318630912,.110222207294,.104121633872,.980171403296E-1
1830 DATA .919089564971E-1,.857973123444E-1,.796824379714E-1,.735645635997E-1,.
674439195637E-1,.613207363022E-1,.551952443497E-1,.490676743274E-1
1840 DATA .429382569349E-1,.368072229414E-1,.306748031766E-1,.245412285229E-1,.
184067299058E-1,.122715382857E-1,.613588464915E-2,0
1850 READ C(*)
1860 K=1024/N
1870 FOR J=0 TO N/4
1880 C(J)=C(K*J)
1890 NEXT J
1900 N1=N/4
1910 N2=N1+1
1920 N3=N2+1
1930 N4=N1+N3
1940 Log2n=INT(1.4427*LOG(N)+.5)
1950 FOR I1=1 TO Log2n
1960 I2=2^(Log2n-I1)
1970 I3=2*I2
1980 I4=N/I3
1990 FOR I5=1 TO I2
     I6=(I5-1)*I4+1
2000
2010
     IF I6<=N2 THEN 2050
2020
     N6=-C(N4-I6-1)
2030
     N7=-C(I6-N1-1)
2040
     GOTO 2070
     N6=C(I6-1)
2050
2060
     N7=-C(N3-I6-1)
     FOR 17=0 TO N-13 STEP 13
2070
     I8=I7+I5
2080
2090
     19=18+12
2100 N8=X(I8-1)-X(I9-1)
2110 N9=Y(I8-1)-Y(I9-1)
2120 X(I8-1)=X(I8-1)+X(I9-1)
2130 Y(I8-1)=Y(I8-1)+Y(I9-1)
2140 X(I9-1)=N6*N8-N7*N9
2150 Y(I9-1)=N6*N9+N7*N8
2160 NEXT 17
2170
     NEXT I5
2180 NEXT I1
     I1=Log2n+1
2190
2200 FOR I2=1 TO 10
                                    ! 2^10=1024
2210 C(I2-1)=1
2220
     IF I2>Log2n THEN 2240
2230 C(I2-1)=2^(I1-I2)
```

2240 NEXT I2

```
2250
     K=1
2260
     FOR I1=1 TO C(9)
     FOR I2=I1 TO C(8) STEP C(9)
2270
     FOR I3=12 TO C(7) STEP C(8)
2280
     FOR I4=13 TO C(6) STEP C(7)
2290
     FOR 15=14 TO C(5) STEP C(6)
2300
     FOR 16=15 TO C(4) STEP C(5)
2310
     FOR 17=16 TO C(3) STEP C(4)
2320
     FOR 18=17 TO C(2) STEP C(3)
2330
     FOR 19=18 TO C(1) STEP C(2)
2340
2350
     FOR I10=19 TO C(0) STEP C(1)
2360
     J=I10
     IF K>J THEN 2440
2370
     A=X(K-1)
2380
     X(K-1)=X(J-1)
2390
2400 X(J-1)=A
2410 A=Y(K-1)
     Y(K-1)=Y(J-1)
2420
2430
     Y(J-1)=A
2440
     K=K+1
2450
     NEXT I10
     NEXT 19
2460
     NEXT 18
2470
     NEXT I7
2480
     NEXT 16
2490
     NEXT I5
2500
     NEXT 14
2510
     NEXT I3
2520
     NEXT I2
2530
     NEXT II
2540
2550
     SUBEND
```

APPENDIX B. FADING FOR SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution functions for characteristic function (21), when the power fading factor r in (18) has probability density function (19). The parameters D_1 , D_2 , $N_0^{'}$, $N_1^{'}$ are pre-computed once in lines 210-310. The logarithms in lines 430 and 440 have arguments that never cross the branch line along the negative real axis for the principal value logarithm; hence the calculated characteristic function is automatically continuous for all §.

```
10 ! FADING FOR SECOND-ORDER PROCESSOR
      Nu=2.7
                                 Power law for fading
20
      K=5
30
                                 Number of terms summed
      Ak = .7
40
                                 a(k) weighting
50
      Bk = -.9
                                 b(k) weighting
      Ck = -.6
                                 c(k) weighting
70
      DATA .2,.3,.4,-.5,-.6
                                 Means of random variables s(k)
80
      DATA .8,-.7,-.6,.5,.4
                                 Means of random variables t(k)
90
      Ss=.3
                                 Standard deviation of s(k)
                                 Standard deviation of t(k)
      St = .2
100
                                 Correlation coeff. of s(k) and t(k)
110
      Rho=-.4
120
      L=150
                                 Limit on integral of char. function
130
      Delta=.25
                                 Sampling increment on char. function
140
      Bs=.625*(2*PI/Delta)
                                 Shift b, as fraction of alias interval
150
      Mf=2^8
                                 Size of FFT
160
      PRINTER IS 0
      PRINT "L =";L, "Delta =";Delta, "b =";Bs, "Mf =";Mf
170
180
      REDIM Ms(1:K), Mt(1:K), X(0:Mf-1), Y(0:Mf-1)
190
      DIM Ms(1:10), Mt(1:10), X(0:1023), Y(0:1023)
200
      READ Ms(*), Mt(*)
                                             Enter constants
210
      M20=DOT(Ms,Ms)
                                             Calculation
220
                                             of
      M02=DOT(Mt,Mt)
230
      M11=DOT(Ms,Mt)
                                             parameters
240
      T1=Ss*Ss
250
      T2=St *St
      T3=Rho*Ss*St
260
270
      T4=4*Ak*Bk-Ck*Ck
      N0p=Ak*M20+Bk*M02+Ck*M11
280
290
      N1p=T4*(.5*(T2*M20+T1*M02)-T3*M11)
300
      D1=2*(Ak*T1+Bk*T2+Ck*T3)
310
      D2=T4*(1-Rho*Rho)*T1*T2
320
      Dip=Di+N0p/Nu
330
      D2p=D2+N1p/Nu
      Mux=N0p+.5*K*D1
340
                                          ! Mean of random variable x
350
      Muy=Mux+Bs
360
      T=Nu-.5*K
```

```
370
      X(0)=0
380
      Y(0)=.5*Delta*Muy
390
      N=INT(L/Delta)
400
      FOR Ns=1 TO N
410
      Xi=Delta*Ns
                                             Argument xi of char. fn.
420
      \times 2 = \times i * \times i
                                             Calculation
430
      CALL Log(1-X2*D2,-Xi*D1,A,B)
440
      CALL Log(1-X2*D2p,-Xi*D1p,C,D)
                                             characteristic
      T1=T*A-Nu*C
450
                                             function
      T2=T*B-Nu*D+Bs*Xi
460
                                             fv(xi)
      CALL Exp(T1,T2,Fyr,Fyi)
470
480
      Ms=Ns MOD Mf
                                             Collapsing
490
      X(Ms)=X(Ms)+Fur/Ns
500
      Y(Ms)=Y(Ms)+Fui/Ns
510
      NEXT Ns
520
      CALL Fft10z(Mf,X(*),Y(*))
                                        ! 0 subscript FFT
      PLOTTER IS "GRAPHICS"
530
540
      GRAPHICS
550
      SCALE 0, Mf, -14,0
560
    LINE TYPE 3
570
      GRID Mf/8.1
580
      PENUP
590
      LINE TYPE 1
      B=Bs*Mf*Delta/(2*PI)
600
                                        ! Origin for random variable x
610
      MOVE B.0
620
      DRAW B, -14
      PENUP
630
640
      FOR Ks=0 TO Mf-1
650
      T=Y(Ks)/PI-Ks/Mf
660
      X(Ks)=.5-T
                                             Cumulative probability in X(*)
670
      Y(Ks)=Pr=.5+T
                                             Exceedance probability in Y(*)
      IF Pr>=1E-12 THEN Y=LGT(Pr)
680
      IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
690
      IF ABS(Pr)<1E-12 THEN Y=-12
700
710
      PLOT Ks, Y
      NEXT Ks
720
730
      PENUP
740
      PRINT Y(0);Y(1);Y(Mf-2);Y(Mf-1)
750
      FOR Ks=0 TO Mf-1
760
      Pr=X(Ks)
770
      IF Pr>=1E-12 THEN Y=LGT(Pr)
780
      IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
790
      IF ABS(Pr)(1E-12 THEN Y=-12
800
      PLOT Ks.Y
810
      NEXT Ks
820
      PENUP
830
      PAUSE
840
      DUMP GRAPHICS
850
      PRINT LIN(5)
860
      PRINTER IS 16
870
      END
880
```

```
890
     SUB Exp(X,Y,A,B)
                                      ! EXP(Z)
900
     T=EXP(X)
910
     A=T*COS(Y)
     B=T*SIN(Y)
920
930
     SUBEND
940
950
     SUB Log(X,Y,A,B)
                                      ! PRINCIPAL LOG(Z)
960
     A=.5*LOG(X*X+Y*Y)
970
     IF X<>0 THEN 1000
980
    B=.5*PI*SGN(Y)
990
    GOTO 1020
1000 B=ATN(Y/X)
1010 IF X<0 THEN B=B+PI*(1-2*(Y<0))
1020 SUBEND
1030 !
1040 SUB Fft10z(N,X(*),Y(*)) ! N <= 2^10 = 1024, N=2^1NTEGER 0 subscript
```

APPENDIX C. NARROWBAND CROSS-CORRELATOR

This program computes the cumulative and exceedance distribution functions of random variable (30) via characteristic function (35). The parameters D_1 , D_2 , N_0 , N_1 are pre-computed in lines 280-390 and weighted according to (35)-(36) in lines 400-440. All the functions employed are analytic.

```
10 ! NARROWBAND CROSS-CORRELATOR
                                    Number of terms summed
       DATA .6,-.5,.4,-.3,.2
      DATA .6, -.5, .4, -.3, .2 ! w(k) weightings DATA .9, .8, .7, -.6, -.5 ! a1(k) signal 1 in-phase components
40
                                            signal 1 quadrature components
50
      DATA -.6, -.8, 1, 1.2, 1.4 ! b1(k)
60
      DATA .1,-.2,-.3,.4,.5 !
                                ! a2(k) signal 2 in-phase components
! b2(k) signal 2 quadrature components
      DATA -.7,.6,.5,.4,-.3
70
      DATA .1,.3,.5,.7,.9
      DATA .1,.3,.5,.7,.9 ! sigmal(k) noise 1 standard deviations DATA .2,.4,.6,.8,1 ! sigma2(k) noise 2 standard deviations DATA .4,-.5,.6,.7,-.8 ! rho(k) noise in-phase corr. coeffs.
80
90
100
110
      DATA .9,-.7,-.5,.3,-.1 !
                                    lambda noise quadrature corr. coeffs.
120
      L=50
                                 ! Limit on integral of char. function
130
      Delta=.5
                                 ! Sampling increment on char. function
140
      Bs=.5*(2*PI/Delta)
                                 ! Shift b, as fraction of alias interval
150
      Mf=2^8
                                 ! Size of FFT
160
      PRINTER IS 0
      PRINT "L =";L, "Delta =";Delta, "b =";Bs, "Mf =";Mf
170
      REBIM W(1:K), A1(1:K), B1(1:K), A2(1:K), B2(1:K)
180
190
      REDIM S1(1:K),S2(1:K),Rho(1:K),Lambda(1:K)
200
      REDIM D1(1:K),D2(1:K),N0(1:K),N1(1:K)
210
      REDIM X(0:Mf-1),Y(0:Mf-1),W2(1:K)
      DIM W(1:10), A1(1:10), B1(1:10), A2(1:10), B2(1:10)
220
      DIM S1(1:10),S2(1:10),Rho(1:10),Lambda(1:10)
230
240
      DIM D1(1:10), D2(1:10), N0(1:10), N1(1:10)
250
      DIM X(0:1023), Y(0:1023), W2(1:10)
260
      READ W(*), A1(*), B1(*), A2(*), B2(*)! Enter
270
      READ S1(*), S2(*), Rho(*), Lambda(*) ! constants
280
      FOR J=1 TO K
                                                 Calculation
290
      Sis=Si(J)^2
300
      S2s=S2(J)^2
                                                 parameters
310
      T1=S1(J)*S2(J)
320
      D1(J)=T2=T1*Rho(J)
330
      D2(J)=.25*Sis*S2s*(1-Rho(J)^2-Lambda(J)^2)
340
      T3=A1(J)*A2(J)+B1(J)*B2(J)
350
      NO(J) = .5 * T3
      T4=A2(J)*B1(J)-A1(J)*B2(J)
360
370
      T5=S2s*(A1(J)^2+B1(J)^2)+S1s*(A2(J)^2+B2(J)^2)
380
      N1(J)=.125*(T5-2*T2*T3-2*T1*Lambda(J)*T4)
390
      NEXT J
400
      MAT W2=W.W
410
      MAT Di=W.Di
420
      MAT D2=W2.D2
430
      MAT NO=W.NO
440
      MAT N1=W2.N1
450
      Mux=SUM(N0)+SUM(D1)
                                              ! Mean of random variable v
460
      Muy=Mux+Bs
```

```
TR 7035
470
      X(0)=0
480
      Y(0)=.5*Delta*Muy
      N=INT(L/Delta)
490
500
      FOR Ns=1 TO N
510
      Xi=Delta*Ns
                                              Argument xi of char. fn.
520
      X2=Xi*Xi
                                              Calculation
530
      Pr=1
                                              οf
540
      Pi=Sr=Si=0
                                              characteristic
550
      FOR J=1 TO K
                                              function
560
      Dr=1+X2*D2(J)
                                              fy(xi)
570
      Di=+Xi*D1(J)
580
      CALL Mul(Pr,Pi,Dr,Di,A,B)
590
      Pr=A
600
      Pi=B
      CALL Div(N0(J), Xi*N1(J), Dr, Di, A, B)
610
620
      Sr=Sr+A
630
      Si=Si+B
640
      NEXT J
650
      CALL Exp(-Xi*Si,Xi*(Sr+Bs),A,B)
660
      CALL Div(A,B,Pr,Pi,Fyr,Fyi)
679
      Ms=Ns MOD Mf
                                              Collapsing
680
      X(Ms)=X(Ms)+Fyr/Ns
690
      Y(Ms)=Y(Ms)+Fyi/Ns
700
      NEXT Ns
710
      CALL Fft10z(Mf, X(*), Y(*))
                                              0 subscript FFT
      PLOTTER IS "GRAPHICS"
720
730
      GRAPHICS
740
      SCALE 0, Mf, -14, 0
750
      LINE TYPE 3
760
      GRID Mf/8,1
770
      PENUP
780
      LINE TYPE 1
      B=Bs*Mf*Delta/(2*PI)
790
                                         ! Origin for random variable v
800
      MOVE B,0
      DRAW B,-14
810
820
      PENUP
830
      FOR Ks=0 TO Mf-1
840
      T=Y(Ks)/PI-Ks/Mf
850
      X(Ks)=.5-T
                                              Cumulative probability in X(*)
860
      Y(Ks)=Pr=.5+T
                                              Exceedance probability in Y(*)
870
      IF Pr>=1E-12 THEN Y=LGT(Pr)
880
      IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
890
      IF ABS(Pr)<1E-12 THEN Y=-12
900
      PLOT Ks, Y
910
      NEXT Ks
920
      PENUP
930
      PRINT Y(0);Y(1);Y(Mf-2);Y(Mf-1)
940
      FOR Ks=0 TO Mf-1
950
      Pr=X(Ks)
960
      IF Pr>=1E-12 THEN Y=LGT(Pr)
970
      IF Pr = 1E-12 THEN Y = 24 - LGT = Pr
980
      IF ABS(Pr)<1E-12 THEN Y=-12
990
      PLOT Ks, Y
1000
      NEXT Ks
1010
      PENUP
```

1020

PAUSE

APPENDIX D. REDUCED QUADRATIC AND LINEAR FORM

This program computes the cumulative and exceedance distribution functions of random variable (65) via characteristic function (66). The required inputs to the program are M and the $\{\lambda_m\}$, $\{d_m\}$, $\{v_m\}$ of (68). The square root in (66) must again be continuous and is handled exactly as in appendix A. The parameters required in the exponential of (66) are pre-computed in lines 170-210, and the mean of q is entered in line 220.

```
10 ! REDUCED QUADRATIC AND LINEAR FORM
      M=5
                                  Number of terms summed
30
      DATA .2,-.3,.4,.5,-.6
                                 Lambda values
40
      DATA -.1,.3,.5,.7,-.9
                               ! d values
50
      DATA .6,.5,-.4,-.3,.2 ! Nu values
60
      L=800
                               ! Limit on integral of char. function
70
      Delta=.08
                               ! Sampling increment on char. function
      Bs=.5*(2*PI/Delta)
80
                               ! Shift b, as fraction of alias interval
90
      Mf=2^10
                               ! Size of FFT
100
      PRINTER IS 0
      PRINT "L =";L, "Delta =";Delta, "b =";Bs, "Mf =";Mf
      REDIM Lambda(1:M), D(1:M), Nu(1:M), A(1:M), B(1:M), C(1:M)
120
130
      REDIM X(0:Mf-1), Y(0:Mf-1)
      DIM Lambda(1:10), D(1:10), Nu(1:10), A(1:10), B(1:10), C(1:10)
140
      DIM X(0:1023),Y(0:1023)
150
160
      READ Lambda(*), D(*), Nu(*)
                                           Enter constants
170
      FOR Ms=1 TO M
                                           Calculation
180
      A(Ms)=2*Lambda(Ms)
                                            of parameters
190
      B(Ms)=(Lambda(Ms)*Nu(Ms)+D(Ms))*Nu(Ms)
200
      C(Ms)=.5*D(Ms)^2
210
      NEXT Ms
      Muq=SUM(Lambda)+SUM(B)
220
                                         ! Mean of random variable o
230
      R=0
                                         ! Argument of square root
240
      P=1
                                         ! Polarity indicator
250
     Muy=Mug+Bs
260
     X(0)=0
270
     Y(0)=.5*Delta*Muy
280
     N=INT(L/Delta)
290
      FOR Ns=1 TO N
      Xi=Delta*Ns
300
                                           Argument xi of char. fn.
310
      Pr=1
                                         ! Calculation
320
      Pi=Sr=Si=0
330
      FOR Ms=1 TO M
                                            characteristic
340
      T=-A(Ms)*Xi
                                            function
350
      CALL Mul(Pr,Pi,1,T,A,B)
                                         ! fy(xi)
360
      Pr=A
370
      CALL Div(B(Ms), C(Ms) *Xi, 1, T, A, B)
380
390
      Sr=Sr+A
400
      Si=Si+B
410
     NEXT Ms
```

TR 7035

```
CALL Exp(-Si*Xi,(Sr+Bs)*Xi,A,B)
430
      CALL Sqr(Pr,Pi,C,D)
440
      Ro=R
450
      R=ATN(D/C)
      IF ABS(R-Ro)>1.6 THEN P=-P
460
479
      CALL Div(A, B, C*P, D*P, Fyr, Fyi)
480
      Ms=Ns MOD Mf
                                          ! Collapsing
      X(Ms)=X(Ms)+Fyr/Ns
490
      Y(Ms)=Y(Ms)+Fyi/Ns
500
510
      NEXT Ns
      CALL Fft10z(Mf,X(*),Y(*))
520
                                          ! 0 subscript FFT
530
      PLOTTER IS "GRAPHICS"
540
      GRAPHICS
550
      SCALE 0, Mf, -14,0
560
      LINE TYPE 3
570
      GRID Mf/8.1
580
      PENUP
590
      LINE TYPE 1
      B=Bs*Mf*Delta/(2*PI)
600
                                         ! Origin for random variable q
      MOVE B, 0
610
620
      DRAW B,-14
630
      PENUP
640
      FOR Ks=0 TO Mf-1
650
      T=Y(Ks)/PI-Ks/Mf
      X(Ks)=.5-T
660
                                             Cumulative probability in X(*)
670
      Y(Ks)=Pr=.5+T
                                             Exceedance probability in Y(*)
      IF Pr>=1E-12 THEN Y=LGT(Pr)
680
690
      IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)</pre>
700
      IF ABS(Pr)(1E-12 THEN Y=-12
710
      PLOT Ks, Y
720
      NEXT Ks
730
      PENUP
740
      PRINT Y(0); Y(1); Y(Mf-2); Y(Mf-1)
750
      FOR Ks=0 TO Mf-1
      Pr=X(Ks)
760
779
      IF Pr>=1E-12 THEN Y=LGT(Pr)
780
      IF Pr(=-1E-12 THEN Y=-24-LGT(-Pr)
790
      IF ABS(Pr)<1E-12 THEN Y=-12
800
      PLOT Ks.Y
810
      NEXT Ks
820
      PENUP
830
      PAUSE
840
      DUMP GRAPHICS
850
      PRINT LIN(5)
      PRINTER IS 16
860
870
      END
880
```

```
890 SUB Mul(X1,Y1,X2,Y2,A,B) ! Z1*Z2
    A=X1*X2-Y1*Y2
900
910
    B=X1*Y2+X2*Y1
920
      SUBEND
930
    SUB Div(X1,Y1,X2,Y2,A,B) ! Z1/Z2
940
950
      T=X2*X2+Y2*Y2
960
      A=(X1*X2+Y1*Y2)/T
     B=(Y1*X2-X1*Y2)/T
970
      SUBEND
980
990
1000 SUB Exp(X,Y,A,B)
1010 T=EXP(X)
1020 A=T*COS(Y)
                                       ! EXP(Z)
1030 B=T*SIN(Y)
1040 SUBEND
1050 !
1060 SUB Sqr(X,Y,A,B)
1070 IF X<>0 THEN 1110
                                       ! PRINCIPAL SQR(Z)
1080 A=B=SQR(.5*ABS(Y))
1090 IF Y<0 THEN B=-B
1100 GOTO 1220
1110 F=SQR(SQR(X*X+Y*Y))
1120 T=.5*ATN(Y/X)
1130 A=F*COS(T)
1140 B=F*SIN(T)
1150 IF X>0 THEN 1220
1160 T=A
1170 A=-B
1180 B=T
1190 IF Y>=0 THEN 1220
1200 A=-A
1210 B=-B
1220 SUBEND
1230
1240 SUB Fft10z(N,X(*),Y(*)) ! N <= 2^10 = 1024, N=2^INTEGER
                                                                     0 subscript
```

TR 7035

```
FOR I=1 TO Tt
280
290
     X=0
      FOR J=1 TO K
300
                                  ! GENERATE TWO
310
      V1=RND-.5
      V2=RND-.5
                                  ! INDEPENDENT
320
      S=V1*V1+V2*V2
330
                                  ! GAUSSIAN
                                 ! RANDOM
! VARIABLES VIA
     IF S>.25 THEN 310
340
      Q=(L-LOG(S))/S
350
                                  ! ACCEPTANCE
360
      Q=SQR(Q+Q)
370 .
     G1=V1*Q
                                  ! AND
380
     G2=V2*Q
                                  ! REJECTION
     S=Ms(J)+Al(J)*Gl+Be(J)*G2
390
400
     T=Mt(J)+St(J)*G1
410
     X=X+A(J)*S*S+B(J)*T*T+C(J)*S*T+D(J)*S+E(J)*T
420
     NEXT J
430
     X=(I)\times
      NEXT I
440
450
      MAT SORT X
      PLOTTER IS "GRAPHICS"
460
      GRAPHICS
470
480
      SCALE -30,10,-4,0
     GRID 5,1
490
500
      PENUP
     FOR I=1 TO Tt
510
      Y=LGT((I-.5)/Tt)
520
530
      PLOT X(I),Y
540
     NEXT I
550
      PENUP
560
      FOR I=1 TO Tt
     Y=LGT(1-(I-.5)/Tt)
570
     PLOT X(I),Y
NEXT I
580
590
600
      PENUP
610
      END
```

REFERENCES

- 1. A. H. Nuttall, "Accurate Efficient Evaluation of Cumulative or Exceedance Probability Distributions Directly from Characteristic Functions", NUSC Technical Report 7023, 1 October 1983.
- 2. M. M. Siddiqui, "Approximations to the Distribution of Quadratic Forms", The Annals of Mathematical Statistics, Vol. 36, pp. 677-682, 1965.
- 3. C. S. Brice and L. C. Andrews, "New Expressions for the pdf and cdf of the Filtered Output of an Analog Cross Correlator", IEEE Trans. on Information Theory, Vol. IT-28, No. 4, pp. 668-677, July 1982.
- 4. A. H. Nuttall, "Error Probability Characteristics for Multiple Alternative Communication with Diversity, But Without Fading", NUSC Technical Report 6473, 4 May 1981.
- 5. A. H. Nuttall and P. G. Cable, "Operating Characteristics for Maximum Likelihood Detection of Signals in Gaussian Noise of Unknown Level; Part III, Random Signals of Unknown Level", NUSC Technical Report 4783, 31 July 1974.
- 6. A. H. Nuttall, "Probability Distribution of Array Response for Randomly-Perturbed Element Gains", NUSC Technical Report 5687A, 20 May 1981.
- 7. L. C. Andrews, "The Probability Density Function for the Output of a Cross-Correlator with Bandpass Inputs", IEEE Trans. on Information Theory, Vol. IT-19, No. 1, pp. 13-19, January 1973.
- 8. J. N. Franklin, Matrix Theory, Prentice-Hall Inc., NY, 1968.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
OUSDR&D (Research & Advanced Technology)	2
Dep. USDR&E (Research & Advanced Technology)	1
ONR (ONR-200, -220, -400, -410, -414, -425AC)	6
CNM (MAT-05, (Capt. Z. L. Newcomb), SP-20, ASW-14)	3
NRL	1
NORDA	1
NAVOCEANO (Code 02)	1
NAVAIRSYSCOM, (PMA/PMS-266)	1
NAVELESYSYCOM (ELEX 03, PME-124, ELEX 612)	3
NAVSEASYSCOM (SEA-63R (2), -63D, -63Y, PMS-411, -409)	6
NAVAIRDEVCEN, Warminster	4
NAVAIRDEVCEN, Key West	1
NOSC	4
NOSC, Library (Code 6565)	1
NAVWPNSCEN	2
NCSC	2
NAVCIVENGRLAB	1
NAVSWC	4
NAVSWC, White Oak Lab.	4
DWTNSRDC, Annapolis	2
DWINSRDC, Bethesda	2
NAVTRAEQUIPCENT (Tech. Library)	1
NAVPGSCOL	· 4
APL/UW, Seattle	1
ARL/Penn State	2
ARL, University of Texas	1
DTIC	2
DARPA (CDR K. Evans)	1 .
Woods Hole Oceanographic Institution	1
MPL/Scripps	1.

