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EXACT PERFORMANCE OF GENERAL SECOND-ORDER
PROCESSORS FOR GAUSSIAN INPUTS

INTRODUCTION

The performance of weighted energy detectors and correlators for
processing deterministic and/or random signals in the presence of
nonstationary noise is a topic of frequent interest. Most often, a second-
moment approach is adopted, whereby the means and variances of the decision
variable under the various hypotheses are evaluated and employed in a central
limit assumption to get approximate false alarm and/or detection probabilities.
This approach is suspect for small false alarm probabilities or for cases
where the decision variable is not the sum of a large number of independent
random variables all of comparable variance.

A recent technical report [1] has presented an accurate and efficient
method for evaluating cumulative and exceedance distribution functions
directly from characteristic functions. This approach is very fruitful for
determining the performance of general time-varying second-order processors
with nonstationary nonzero mean Gaussian inputs, since the characteristic
function of the decision variable can be evaluated in closed form in these
cases.

We will consider three classes of processors and derive the
characteristic functions for all three decision variables in closed form. The
first two classes are special cases of the third, but are of interest in their
own right, since they include and immediately reduce to many practical
processors in current use. Also there is no need to solve for the eigenvalues
and eigenvectors of a general symmetric matrix that is encountered in the
third more-general class of processors. Rather, the characteristic functions
are given directly in terms of specified processor weights and input
statistics.

There has been considerable effort on this problem in the past; for
example, see [2,3] and the references listed therein. Most of the lengthy
analytical derivations and results have been aimed at getting workable



TR 7035

expressions for the probability density function and/or cumulative
distribution function. Here, when we consider our three classes of
processors, we encounter characteristic functions which are more general than
that given in the recent paper for a filtered analog processor [3, eq. 5];
thus specialization of our results will yield those of [3] and the references
listed therein. The technique employed here to proceed directly to the
cumulative and exceedance distribution functions is a numerical one, as given
in [1], and does not require any series expansions or analytical manipulations
at all. The asymptotic behaviors of the cumulative and exceedance
diétribution functions on both tails are easily observed and will be found to
corroborate the comment made in [3, p. 673] that these tails are generally
exponential rather than Gaussian; however, there can be a considerable

transition region.

The programs listed in the appendices require the user merely to input
his processor weights, signal constants, and noise statistical parameters in a
series of data statements at the top of the program, and to select values for

L, Timit on integral of characteristic function,
A, sampling increment on characteristic function,
b, additive constant, to guarantee a positive random variable, and

Me, size of FFT and storage required.

Selection of L and A is largely a matter of trial and error and is amply
documented in the examples in [1].
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A PARTICULAR SECOND-ORDER PROCESSOR

Before we embark on the analysis of the particular second-order processor
of interest in this section, we solve the following simpler statistical
probiem. Let s and t be real jointly-Gaussian random variables with means

m., my, standard deviations og» 0, and correlation coefficient p;
thus s and t are statistically dependent. Consider the random variable

X = as® + bt + cst + ds + et, (1)

where weightings a, b, ¢, d, e are arbitrary real constants. The
characteristic function of random variable x is defined by*

fx(f) = exp(i§x) = exp(iE(as2 + bt2

+ ¢cst +ds +et)) =

= ‘yg\du dv exp(i;(au2 + bv2 + cuv + du + ev)) pst(u,v), (2)

where the joint probability density function of s and t is

2 2
(u-ms> . (v—m? 2p(u—ms) (v—mt>
-1 g g - o a
pst(u,v) = <21r csat\’l—p) exp |- S t 3 t . (3)

2(1—02)

Substitution of (3) in (2) and use of the double integral

2 2
g‘j\dx dy exp[—axz = Byz + 2yxy + ux + yy] = —F exp l-;u + av- * 2yuv

2
VaB—YZ L. Has—y )
for a.>0 B. >0 a B, > c (4)
r > r ’ rer 7 Y o

* Integrals without limits are over (eo,+).
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(where sub r denotes the real part of complex constants «, 8, v, u, v)
yields, after an extensive amount of manipulations, the characteristic
function of random variable x as the compact closed form expression

- TEN - BN,
z . (5)
2

. 20 \2 ). N
fx(§) = (é = 1§Dl -8 Dé) exp i€ - 1501 e

The required real constants in (5) are given directly in terms of the
processor weights and statistical parameters as

D1 = 2(ac§ + boi + Cposct) R
2 2, 22
D2 = (4ab - c)(1 - )csot ,
Ny = am2 + bm2 +cmm, + dm. + em
0~ s t s t S t 2
2,,1 22 1 22
Nl = (4ab - C )(? msct + ? mtos - pmsmtgsgt) +
~+ (2ae - cd)o (mt by = pmsot) +
+ (2bd - Ce)ot(msct - pmtos) -
- (% g +-% ezci + dEpcsot) s
Ny = - (ae2 + bd2 - cde)(l—pz)oici (6)

For later reference, the mean and variance of x follow from (5), upon
expansion of fn f (€) in a power series in ¥, as

vy = Ng * % Dy
2 1 D2



TR 7035

(When Dy =0 in (6), it can be shown that D, < 0; thus characteristic
function (5) never possesses any singularities along the real ¥ axis.)

Second-Order Processor

Now let x be the sum of K independent terms of the form of (1):

where real cons:ants 3, by, Cy» dk, e, can depend arbitrarily on k,

and where means Mek»> Myy» standard deviations Ogk» Otys and corre-
lation coefficients ok are unrestricted (except that Oek 2 0, Otk > 0,
lpk[ < 1). The pair of random variables Sg» Ly s statistically
independent of the pair Sp» t,, for all k # n. Thus random variable x is
composed of a sum of K groups of random variables, where each group is
statistically independent of every other group, but each group itself
contains two statistically dependent random variables.

This processor in (8) is the general form of interest in this section.
It can be time-varying when the weights {ak, by, ¢ dys ek} vary
with k, and nonstationary when the statistical parameters {msk’ Mis
Isk> Ttio pk} vary with k.

The characteristic function of (8) follows from (5) as

K -1/2

.6 = [T {1 - i§0; (k) - EZDZ(kj} *
k

It
P

Ng(K) = TN (k) - ;ZNz(k)
1~ 9§05 (k) - §°D, (k)

y\/17<

*exp|i§

(9)
k

1}
-

* These means can be interpreted as the deterministic signal components of

the channels s and t, if desired. 5



TR 7035

where the identification of Di(k), etc., is obvious from (6). Only one
(continuous) square root and one exponential per § value is required in (9),
regardiess of the number of terms added, K. The mean and variance of random
variable x in (8) follows from (9) as

T S
[-2- DI(K) + 2Ny (k) D (k) = D,(k) - 2N1(kﬂ. (10)

Any analytical attempt at determining the probability density function or
cumulative distribution function corresponding to characteristic function (9)
would be a formidable task indeed. However, it is a very simple task via the
method of [1] to get accurate numerical values for the cumulative and
exceedance distribution functions. The program listing in appendix A
accomplishes this task, based upon characteristic function (9) and the
constants listed in (6). A1l the weights {ék, bs Cps dis ek}? and
statistical parameters {msk’ Miks Ogk> Ttko pé& are arbitrary. Observe
that (9) is far more general than the characteristic function considered in
[3, eg. 5], which itself required a very lengthy analytic treatment to get the
probability density function and cumulative distribution function. In fact,
there is little hope of getting any tractable analytic results for (9) when K
is greater than 2.

Special Case 1

Suppose weightings a, b, ¢, d, e in (8) are independent of k and that

statistics Ogs Ogs p are also independent of k. The decision variable x
in (8) then simplifies to

K
X = ;Ei(asg + btg + csktk + dsk + etk) . (11)
k=1



TR 7035

Then Dl’ D,, N, are independent of k. If we define mean parameters

K K K
2 2
Myg = :Eg Moy » Moo = ;ZE M » Mg = ;EE Mok Mk
k=1 k=1 kel
K K
Mo = fii Moy > Mop = :ZE My s (12)
k=1 k=1

the characteristic function of x in (9) then takes the simpler form

P
£ (5) - (? i, - E202:>—K/2 ol No - TENI - FZNz (13)
1 - i§D, - §°D,
where D1 and D2 are still given by (6), and
Ny = My + By, * My +diy *edy
Ny = (420 - c¥)(5 afiyg + 5 adhgy = pogayMyy) *
+ (2ae - cd)os(cSM01 - pctMlo) +
+ (2bd - ce)ct(otM10 - ooSM01) -
- K (5 d%% + 3 €%l + depo o)
Ny = = K(ae® + bd? - cde) (1 - ¢%)o%? (14)

(The choice of K

2 and Ny =0 in (13) corresponds to the form given in

[3, eq. 5].) Observe that the characteristic function in (13) (and therefore
the performance) of the processor in (11) depends on the means {msg} and

fhtk} only through the parameters {Mii} defined in (12). The mean and variance

7
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of random variable x in (11) follow from characteristic function (13) as

! =%K01 + OND, - KD, - 2N'1 . (15)

071 a

Special Case 2

Let us also assume d = 0, e = 0 in (11) above; then the pertinent
decision variable is given by

K
X = :EE (as& + th + csktk) . (16)
k=1

Dl and D, are still given by (6), and there follows from (14),

N, = aM,, + bM

20 + cM

02

=
p—s
i
N
fo}]
o
i
(@]
N
——
~l
Q
=
=
N
o
~
Q
wy
=
[en]
N
he)
Q
w
Q
=
=
—
=
o

The characteristic function of x is given by (13), with Né = 0. The mean
and variance of x in (16) are given by (15).

Fading for Special Case 2

Let the mean parameters {Mij in (12) be subject to slow fading; i.e.,
replace

MZO by ™Mogs M02 by rMOZ, M11 by erl, (18)

where power scale factor r has probability density function

8
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pr(u) = va u\’—l e™  forus>0, v o> 0;
- 1 -1)!
r =1, 05 ==, ;(r(n) = (:nii . forn > 1. (19)

This form of fading is encountered in'diversity combination receivers; see,
for example, [4, eq. 9 et seq.] and [5, eq. 24 et seq.]. Then (13), (17), and
(18) yield the conditional characteristic function, for a specified r, as

Ny - 15N
1 - i§0; - §°D,

-K/2
f Elr) = <1 - 1%, —§’202> exp |iSr

Weighting (20) according to the probability density function in (19), and
performing the integral, there follows, for the characteristic function of the
decision variable x in (16), the result

K
o 2~ \° "~ 2
1 - i§D; - §°D,

f (¥) = (T .> : (21)

(1 - i§(D, + N(')/v) —§2(D2 + Ni/va

(The Timit of (21) as vs+ais again (13) with N, = 0, as in (17); this

agrees with the fact that the corresponding 1imit of the probability density

function in (19) is pr(u) = §(u-1).) The mean and variance of x in (16)
follow from characteristic function (21) as

0 0
UX—-NO+_2'KD13
2 1,12 ' ) ‘2
o) = 7 KD *+ 2NgD; = KD, — 2N; + Ny /v . (22)

Observe that mean vy 1s independent of v, the power law in fading (19). A
program for the cumulative and exceedance distribution functions corresponding
to characteristic function (21) is given in appendix B.
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SPECIAL FORMS OF SECOND-ORDER PROCESSOR (8)

Before embarking on the analysis of the other two classes of processors,
we will explicitly detail some of the special forms that processor (8) reduces
to, under particular selections of the weightings and statistical parameters.
A rather broad collection of typical processors will be seen to be included.
In the following, any unspecified weights {ak, bk’ Cy> dk’ ek} are zero,
and any unspecified statistical parameters that do not appear in the final
characteristic function are irrelevant.

I. Gaussian

dk =1
K
s
k=1
K K
12 2
fx(?) = €X0 1FZ Mok ~ ?f Z Ik
k:l k=1

II. Chi-square of K Degrees of Freedom

sk =0 og =1

10



ITI. Non-Central Chi-Square (Qu Distribution if K = 2M)

J =1, oy =,

K
.S 2

TR 7035

k=1
£ 2
xiz |1F= Mg
2 k=1
= (1 - 1}205 exp |————>—
1 - 1;205
IV. Weighted Energy Detector
3 # 0, dk £0
K
;Ei +d S )
k=1
K _'% K am d + 1§ld2 2
_ . 2 sk k''sk 2k sk
f (¥) = 'ﬂ' {1 - 1?2akask} exp[i§ 2 o 5
k=1 k=1 k% sk

V. Weighted Cross-Correlator

ck £ 0

K
X||= :Egcksktk
]

= 2¢C

o
—
—
=~
S
I

kPk%sk%tk?

2 2. 2 2
< (1 - o dogoys

(e
nNo

—

=

~
[t}

11
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Nolk) = cymgymy, s

21 2 2.1 _2 2
Np(k) = =C (3 Moy og + 7 Mg = 0Mey My o 0ay) s
N, (k) = 0

Characteristic function fx(g) is given by (9).

VI. Two-Channel Energy Detector

ay #0, bk #0

2 2
Dl(k) = Z(akosk + bkctk) .

2. 2 2
4ab (1 - pydogpory s

o
N

—

~

~—
[}

2 2
No(k) = am + bkmtk’

(1 2 2.1 2

2
4 by (7 Mooy * 7 Mok = oMMy os o)

k7k

=
[
—
x~
~—
[}

Characteristic function f (¥) is given by (9). A simple application of this
particular processor was encountered in [6, eqs. 25-26].

12



VII. Two-Channel Energy Detector and Cross~Correlator

3y + 0, bk +0, ¢ #0

K
2 2
X = (aksk + bktk + cksktk)
k=1
2 2

Dy (k) = 2(ayog + byoyy * Cpopogoy) s

2 2. 2 2
Dy(k) = (4ayby - ¢ ) (1 = o )ogop s
N~(k) = a.m z % b, m 2 4 c,m_,m
olk) = amg * bem +emome

201 2 2.1 2 2
Np(k) = (4ayby = € ) (5 Moy *+ 5 myog -
N, (k) = 0

Characteristic function fx(;) is given by (9).

TR 7035
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NARROWBAND CROSS-CORRELATOR

l.owpass z(t) _|Sample, Weight, .
Filter and Accumulate

Figure 1. Narrowband Cross-Correlator

The processor of interest in this section is depicted in figure 1. Input

signals Sl(t) and sz(t) are arbitrary deterministic narrowband real waveforms:

sj(t)

]

Re{§j(t) exp(ianotﬂ = Aj(t) cos(2wfot + Pj(t)) =
= aj(t) cos(anOt) = bj(t) sin(2wf0t) for j = 1,2, (23)

where input signal complex envelope

§j(t) = Aj(t) EXD(in(t)) = aj(t) + 1bj(t) (24)

in terms of polar or rectangular Tow-frequency components, respectively.

Input noises n,(t) and ny(t) are zero-mean correlated narrowband
jointly-Gaussian processes which may be nonstationary:

n(t) = Re{ﬂj(t) exp(ianot)} = x;(t) cos(2nf t) - y;(t) sin(2nft), (25)

where noise complex envelope
n.(t) = x,(t) + 1yj(t) for j = 1,2. (26)

The statistics of the input noise complex envelopes are arbitrary:

14



|ny(£)] © = 20f ,

2 2
202 .

>
nNo
—
—
~—
1]

1=
—
——
—
e
>3
o
——
ot
e
|

o+
1]

0 for all j, m.
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= ZGlGZY’ where y = o + ix = |y|exp(id),

(27)

The quantities 91> 95, y can all vary with time t, for nonstationary noise

processes. There follows, for the statistics of the in-phase and quadrature

components defined in (25),

N

ST L B <7
30 o 7 2

Xo = Y = 05, Xo¥p =0,

X1Xp = Y1¥p = 01900

The reason for breaking out this narrowband cross-correlator
separate problem is now apparent from (28). Namely, at each time

(28)

as a
instant, a

group of four random variables are statistically dependent on each other.

This case does not fall into the framework of (8) above, since only two random

variables were dependent there.

Using the narrowband character of all the waveforms in (24) and (26), the

Towpass filter output in figure 1 may be expressed as

2(t) = 30x,(8) * 2y ()10xy(t) + a,(£)] + 2Ly (8) + by (£) 10y (e) +

b,(£)]. (29)
15
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The final system output in figure 1 is the weighted sum of K terms,

K
V= > k) 2(t,) (30)
k=1

where it is assumed that the time separations between samples at instants
ftk} lead to statistically independent random variables fz(tkj}. The
weights and statistics can change with sample time tk’ in an arbitrary
fashion.

Based upon the method in [7], we find the characteristic function of z(t)
in (29) to be given by

. 2

f_(§,t) 1 exp |i§

- (31)
z 1-i§0; + §°D,

where the constants (in their most compact form) are given by

| e T
D2 = % 0%0%(1—92-)\2) s
N, = l(a a, *+ b.b,)

9 = 2SS il

Nl =-%{;§(a§ + bi) 5 o%(ag + bg) = 20102p(a1a2 + b1b2) - 20102x(a2b1 = albzi].

(32)
(The characteristic function and constants in (31) and (32) are not to be
interchanged or confused with any earlier results in previous sections. In
fact, observe there is no square root involved in (31).) All of the
parameters in (32) can vary with time t.

In terms of the signal polar definitions in (24) and the complex noise
correlation coefficient v in (27), alternative expressions to (32) (where we
have emphasized the t-dependence) are
16
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- %‘Eg(t) A%(t) + gg(t) Ag(t) - 2 a9(t) o,(t) A(t) Az(t)]v(tﬂ costPl(t)—Pz(t)—¢(tYﬂ-

(33)
The mean and variance of z(t) in (29) follow from (31) as
UZ=Dl+NO,
2 _p2 40, + 20N, + 2N (34)
Szem ] 2 170 1

Finally, the characteristic function of the narrowband cross—correlator
output v in (30) follows from (31) as

K
) =T fEn0.t) -

k=1

k=1 1

(35)
where we have allowed all the parameters in (32) and (33) to vary with time

tk' The mean and variance of output v follow from (35) as

K
UV =§ W(k) [Dl(k) e No(k)]s

k=1
S 2
o = ;EE wo(k) | DI(K) + 20 (k) + 201 (k)Ng(k) + 2N1(k{I (36)
k=1

K K w(k) Ny(k) + iFw(k) N, (
. el
{TY {1_1gw(k> D, (k) +F2W(K) Dz(k;E expEf§ e 0.6~ E5200) B
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A program for the evaluation of the cumulative and exceedance distribution
functions via (35) is given in appendix C.

In comparison with earlier results in [7], we have obtained the following

extensions here:

1. The input signals are arbitrary narrowband waveforms; they are not
limited to two sine waves at the same frequency;
The Gaussian input noises can be nonstationary;
The number of terms summed to yield the narrowband cross—correlator
output can be greater than 1;

4. The characteristic function is in its most compact form, and the
constants are expressed directly in terms of given quantities,
having eliminated all auxiliary variables.

Qutput Signal-to-Noise Ratio

[t is sometimes desirable to have simple expressions for the output
signai-to-noise ratio of the narrowband cross-correlator in figure 1. In
terms of the lowpass filter output z(t), we observe first from (32)-(34) that

% A, A, cos(P,-P,) . (37)

u,(s) = v, (s*n) = v, (n) = N 172 172

z 0~

We then have two alternative definitions of the signal-to-noise ratio at the
lowpass filter output:

() ug(s) A? Ag cosZ(Pl—PZ)

R n = = q

z ci(n) 2 oi cg(l+pz-xz)
ui(s) A% Ag cosZ(Pl—Pz)

R_{s*n) = 5 = > (38)
cz(s+n) 4(D1 + ZD2 + 2D1NO + 2N1)

18
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These closed form expressions allow for arbitrary noise correlations and are
considerably simpler than [7, egs. 41-43]. The signal-to-noise ratios of

system output v in figure 1 are K times greater than either form in (38).

Specialization to Narrowband Energy Detector

If the signal and noise parameters in (24) and (27) are chosen as

o(t) =1, a(t) =0, (39)

then figure 1 reduces to identical input channels, that is, a narrowband
energy detector. There follows from (32),

D1=cr t), D2=O’

Ny = %(az(t) " bz(t)> =120, w -0, (40)
and (31) becomes

f_(B,t) = —____J;TT'__ exp 13-——AE£211%—— . (41)

g 1 - i$e°(t) 1 - i§s°(t)

Corresponding results for the system output v are easily obtained from this.

19
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REDUCTION OF HERMITIAN AND LINEAR FORM

The most general case of interest in this section is as follows:
random complex matrix

T

X = [x1 Xy vo xM] (42)
is Mx1l; constant complex matrix
A=la, a a, 1" (43)
l 2 L Y M
is Mx1l; and constant compliex matrix
By «v- by
B = (44)
Dy =+ Dy
is MxM and Hermitian. The Hermitian and linear form we consider is
- xMBx +-%(XHA+AHX) -
M M
1
= ;EE m mn*n ?'JEi X aX m (45)
m,n=1 ) m=1

which is real. Random variable q is a weighted sum of all possible products

* *
of ixm} and {xn}, plus Tinear combinations. A and B are called the
weighting matrices.

* For M=2 or 4, and real variables and weights, (45) reduces to the earlier
forms given in (1) and (29).
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We will concentrate in this section on reducing form (45) to a weighted
sum of squares of uncorrelated random variables. This stepping stone does not
require any Gaussian assumptions on X and is therefore useful as a separate
item.

The relevant statistics pertaining to random vector X are

X =E (mean matrix),
X=X-X=X-E,
Covix} = X&" = K (covariance matrix), (46)

where statistics matrices E and K are given. MxM matrix K is always Hermitian
and non-negative definite. We assume K is positive definite; otherwise
eliminate the linearly dependent components of X. We allow Xn and x, to

be correlated with each other for any m and n; this situation is much more
general than the investigations above.

Let C be a constant MxM matrix and form the linearly transformed variables

T

H
W=CX=[W1 W2 v e WM] . (47)
Then the statistics of W are given by
W= ce,
Wa=w-w=ch,
coviWy = W7 = ¢ - chke. (48)
Also, from (47), since
X = c M, (49)
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then we can express (45) as

H

q=WC—1

H 1
2

where we define constant Mx1 matrix

D= CA = [d, d

1 2-.-

We want to have, from (48) and (50),
e = 1

and

¢igcH = A= diag(xl Ao wee Ay)s

BCTW + =(W'D + D

"y, (50)

ie. c87lc -t (53)

for then, in addition to the relation between the means,

W= ce,

we have the desirable properties
CoviW} = 1,
and

M

M
g =wAw+ 3+ oty - S )‘m]wmlz +Re = dw

m=1

(56)
m=1

That is, the random vector W given by (47) is composed of uncorrelated unit-

variance components, and q is a weighted sum of magnitude-squares of these

components, in addition to a linear sum.

We now have to address the problem of determining the MxM matrices C and
Nin (52) and (53). From [8, p. 106, Theorem 2], we identify
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M=K, K=>B8"l A->A-L, (57)

then according to [8, p. 107, eq. 29], we must solve for C and A in the
equation

B=1c = kcA™l, i.e. BKC = CA. (58)

So the only matrix that need be considered is the MxM product BK. C is the
modal matrix, and A the eigenvalue matrix, of BK. Also, from (51),

D = ¢Ma, since ¢! = M, (59)

Letting C = [C(l) . uB C(M)], where eigenvector clm js a Mxl
matrix, (58) can be expressed as

Bke(™ = ¢ for 1 <mem, (60)

Several important properties hold for A and C:

The {im T are all real, but can be positive, zero, or negative.

If K and B are real, then C is real. (61)
If B is positive definite, then Ay > 0 for 1<m<M,

If A=0 and E = 0, there is no need to solve (58) for C,

because D = 0 and W = 0.
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QUADRATIC AND LINEAR FORM

If random vector X is real Gaussian, if A is real, and if B is real
symmetric, then mean E and covariance K are real, and it follows that modal
matrix C is also real. Also from (47) and (59), W and D are real. Equation
(45) reduces to

M M
T i
qg=XBX+XA-= E XeDon¥n +§ a X (62)
m,n=1 m=1

which is a quadratic form and linear form.

Letting mean W in (54) be expressed as

W= [v 1, (63)

1 \)2 «oe \)M

the Gaussian character of X and the linear transformation (47) allow us to
write the probability density function of W as a product:

M
p(W) = E {20112 exp (4 (w, - vm>2)}. (64)

Here we used property (55). Since we now have, from (56),

) (65)

M
2
q= %E% (Amwm *d v

the characteristic function of q is

M
fq(§) = exp(i¢q) = exp(i?mzl (men21 + dmwm>> =

-1/2
v2 +d

M M o 2
A v+ i8d°/2
= _ﬂ- {1—1’2>‘m§’} exp 1?2 nao i —migxm‘; =/, (66)

m=1 m=1
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where the square root must be a continuous function of §, not a principal
value square root.* Notice that only one square root and one exponential is
required per ¥ value. Observe that the characteristic function depends on the

separate values {QnﬁT and {dﬁ}T, not merely on their sums. If A =E = 0, the

exponential is unity, by virtue of (54) and (59). And if M=2, (66) reduces to
(5), while M=4 leads to form (31).

To summarize, the characteristic function f_(§) in (66) for random

variable q in (62) requires the constants {xﬁ}, {dms, and {vm} for 1 <m< M.
The initially given quantities are weighting matrices A, B and statistics
matrices E, K. We first solve the equation (58),

BKC = CA, (67)
for eigenvalue matrix A and modal matrix C corresponding to BK. Then
A= diag(x1 Ay wee AM) ,

T T
CA= [d1 d2 old dM] o

o
1]

T

W=CEt

T
[vl Vo e vM] . (68)
If the mean of input X is zero, E = 0, and if the linear weighting form is
zero, A = 0, then there is no need to solve for modal matrix C of BK in

(67). Then D = W = 0 and the exponential term in (66) is unity. One only
need compute eigenvalue matrix A of BK in this case.

A program for the evaluation of the cumulative and exceedance
distribution functions corresponding to characteristic function (66) is listed
in appendix D. The inputs to the program are considered to be M, {Am},

* That is, the square root is the analytic continuation of the function
defined as 1 at ¥ =0.
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dm}, Evﬁ}; that is, it is presumed that (67) and (68) have already
solved prior to use of the program.

The cumulants of q are obtained from (66) as

M
El (Am*')\mvr?l“’dmvm):uq forn=1
?Cq(n) =
M 2
1) > x;_zEﬁ + n(xmvm + % dr;] forn > 2
m=1

In particular, the variance of q is

5
1 2
_22[ 2 mm"'-z-d”})]:cq

been

(70)

If another random variable is formed by the sum of several independent

random variables a5 with the form (62), but with different sizes Mj,

new character1st1c function is the product of terms Tike (66).

Breakdown of X into Two Components

the

It is useful to investigate a particular version of the general results

above, because the resultant forms correspond to some often-realized practical

energy detectors and correlators. We let M = 2N, and

U B11 B12 A(l)

X = Sl I3 R N N

v B B

where U, V, A(l), A(Z) are Nx1 real matrices, and {813} are NxN real

T
matrices. Also Bll and 822 are symmetric, while 821 = B12 . Then
(62) can be expressed as

26
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Eai
i

WTax + xTa = [uT V7] [EZ IZM ] ] [A ]

uTelly + uTel2y + yTB2Ly + yTg22y + yTall) 4 Ta(2)

- uTelly + 20T8M2y + TR22y & yTall) 4 yTy(2) |
N N
11 12 22 (1) (2)
. Z ém bmn un * Zum bmn Vn g Vm bmn Vn> * zénan * Vnan =
m,n=1 n=1

W

ail possible auto and cross combinations of random

variables {u and { 31 plus linear combinations. (72)

We also have, from (47) and (68),

~
n

Cov{X} = R [ :] f‘l

Then the fundamental matrix required in (67) is expressable as

r“"“1

<<
—
~J
w
~—

11 12

B Kuu Kuv

K K
vu vV

B
BK =

BZl

8

which is a 2Nx2N matrix. Also random variable (65) is now

2N 2
q - Zémwm . dmwm) : (75)
m=1
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which has 2N terms. The characteristic function of q, in general, follows
from (66) and (68) as

2N -1/2 2N ) .
Av-o+td v o+ i%d/2
. . mm mm m
fo(§) = -(f f1-12xmé} exp 1§:§£~ 77 F , (76)
m=1 m=1
where
E (1)
— T AT T TIA
W= (v oen vp] = C B;;}, D=[d) dy ... dpl' = C [;(2;}. (77)
\
(1f all) 2 a2 _ E, = E, =0, then D = 0 and W = 0, and there is no

need to solve for modal matrix C; the exponential in fq(g) in (76) is then
unity.)

As a special case, if A =0, 811 -0, 822 = 0, then (71) and (73)
yield

and (72) gives

T,12 12
q=20B"V =2 é:%él Un bmn Vo =

. . . N N
= all possible cross combinations of {u&}l and fvnzl. (79)

Then (74) specializes to

12 12
0 B K K B
uu uv vu vV (80)

BK = =
21 21
0 Sou Koy B Ky Ky

28



TR 7035

and (75) reduces to

2N 5
4= ¥y o
m=1
with characteristic function
2N -1/2 N v
W - [T T -] eolie S iy
M= M=

following directly from (76) and (78).
For the particular example of

12

0 T
812 = % diaglly &, .- 2y) +% (9, 9y --» gy [0y by oon BT,

then

N N N
q = 5 /Qnunvn + (ngl gn”n) (E hnvr) ;

with the same characteristic function (82).

As a still more-special case, let 812

(84)

= % I; then (79) and (81) give the

simple cross-correlator (but with correlated inputs for all time separations)

N 2N 9
q=§unvn=2 AW
n=1 m=1

and (80) and (77) become

(85)
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The important equations that must be solved are always
BKC = CA ' (87)
or
Bke(™ =5 M for 1ememaan, (88)

where all matrices B, K, C, A are 2Nx2N. The characteristic function of
(85) is again (82).

Special Case of Correlator (85)

Here we let components U and V have the same covariance and a scaled
cross~correlation; that is, let

=K, K =K, K_ =od |, (89)

where o is a scale factor. This case corresponds, for example, to a common
signal in two independent components:

u(t) = s(t) + ni(t),
(90)
v(t) = s(t) * n,(t),

where s(t), n(t), ny(t) are all independent and have a common covariance.
Then (86) becomes

BK = 5 (91)

| =

Now suppose that we can determine the NxN eigenvalue matrix [? and modal

matrix Q of Ko’ that is

30



KoQ = QT 5 = diaglyys vp --- vy)-
Then we have the standard relations [8]

K, =qrq’ where qq' = 1.
We can now express the 2Nx2N matrix in (91) as

QorQ' arq”

1 -
2
T

BK

QrQ

e Tt ol[q" o
Loy = .
0 Q 0 I 0 Q
There follows
o ollpr-ar ip |l
BK - Al =

2N

0 Q %F %pr—kl 0 Q

TR 7035

(92)

(94)

(95)

(96)

But the middle matrix in (96) can be developed in detail in the partitioned

form
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i i |1
Zy = A
! 1
FLATIES 2N
VI el
?Yl l ?DYI - A (97)
I »
1 |
2N : 7PYN T AJ

This matrix is singular when the kth row is equal to, or the negative of, the

kK*N th row. This leads to the eigenvalues {xnlz? of matrix BK:

(*1)vgs +oes ay = 3oy

N —

M

o)1y <o Ay = oDy - (98)

AN+

Thus we need only solve for the N eigenvalues {YnET of matrik K, and
then use them as above to determine all 2N eigenvalues of BK; this is a

significant shortcut.

If also Eu = EV =0, then W = 0 from (86), and the characteristic

function of q in (85) follows from (82) and (98) as

N -1/2
F(®) = ‘[Tl {116y (i)
M=
N -1/2
- '[[ {l—iZoYm? * (1-92)Y§ ;%} . (99)
m=1

This is a generalization of [1, eq. 54], which held for a single pair of
Gaussian random variables.
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EXAMPLES

The program listed in appendix A for the second-order processor (8) and
attendant characteristic function (9) has been employed to yield the result in
figure 2. The particular values for the number of terms K, the weights, and
the input statistics are listed in lines 20-120. There is no physical
significance attached to this particular example; rather it has been run
simply to illustrate the extreme generality that the technique is capable of.
Some negative values for the weights, means, and correlation coefficients have
been employed to emphasize this generality. This simple example (and others
to follow) can be used as a check case on any user-written program to evaluate
cumulative and exceedance distribution functions.

The selection of parameters L, A, b in lines 130-150 is discussed in
detail in [1]; the reader is referred there for the deleterious effects that
can occur for improper_choices of L, a, b. The selection of Mf, the FFT
size in line 160, is rather arbitrary; it controls the spacing at which the
probability distributions are computed, but has no effect upon the accuracy of
the results (except for round-off noise). Additional computational details on
the particular program for characteristic function (9) are given in appendix A.

The ordinate scale for figure 2 is a logarithmic one. The Tower right
end of the exceedance distribution function curve decreases smoothly to the
region 1E-11, where roundoff noise is encountered. The exceedance
distribution function values continue to decrease with x until, finally,
negative values (due to roundoff noise) are generated. For negative
probability values, the logarithm of the absolute value is plotted, but
mirrored below the 1E-12 level. These values have no physical significance,
of course; they are plotted to illustrate the level of accuracy attainable by
this procedure with appropriate choices of L and a.

The rates of decay of the cumulative and exceedance distribution
functions in figure 2 are markedly different for this particular example.
Additionally, since the decays are both linear on this logarithmic ordinate,
it means that both tail distributions are exponential, not Gaussian. These
attributes of the cumulative and exceedance distribution functions are easily
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and quickly discernible by use of the numerical technique in [1], for a
limitless variety of weights and input statistics, with a minimum of effort on
the part of the user.

As a check on the program in appendix A, the second-order processor in
(8) was simulated, and 10,000 independent trials were used to determine its
performance for the exact same parameters as used for figure 2 above. The
program is listed in appendix E and the results are given in figure 3. The
corroboration is excellent, even near the 1E-4 probability level.

As the number of terms, K, in the second-order processor (8) is
increased, and if the statistics are identical, the random variable x should
approach Gaussian, at least near its mean. The example in figure 4 was run
for K = 10, and all weights and statistics independent of k; the particular
choices were

a=.6,b=-6,c=.3d=-.2,e=.2,
m = 85 my = -.5, o = 1, op = 1, o = .4, (100)
L = 4, A = .05, b = 20”, Mf = 256.

The cumulative and exceedance distribution functions in figure 4 both display
a parabolic shape near the mean of x, which signifies Gaussian behavior of the
random variable, as expected. However, on the tails, the distributions are
tending to linear, which means an exponential decay there. This observation
for this example confirms the comments of [7, p. 673].

The cumulative and exceedance distribution functions for an example of
the second-order processor with fading are displayed in figure 5, as
determined from characteristic function (21) and the corresponding program in
appendix B. The power law, v, for the fading probability density function
(19) is 2.7 for this example, but can be easily changed. The particular
constants employed are listed in Tines 20-110 in appendix B.

An example of the distributions for the narrowband cross—-correlator of
figure 1 is presented in figure 6, as evaluated from characteristic function
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(31) and the program in appendix C. The weightings, signal components, and
noise statistics have no special values or interrelationships; the particular
values used here are listed in 1ines 20-110.

The distributions for the reduced quadratic and linear form (65) and
accompanying characteristic function (66) are presented in figure 7 for the
numerical example employed in the program listing in appendix D. If the given
form is instead that of (62), then (67)-(68) must first be solved before the
program in appendix D can be employed; that is, one must augment these results
with the capability for extracting the eigenvalues (and eigenvectors in some
cases) of the MxM matrix BK. The size of the FFT, Me, has been increased to
1024 in fiqure 7; this results in finer spacing of the distribution values and
additional spikes in the round-off noise region centered about 1E-12.
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SUMMARY AND DISCUSSION

Closed form expressions for the characteristic functions of the decision
variables of three classes of second-order processors have been derived. The
input noise to the processors must be Gaussian, but it can be nonstationary
with arbitrary statistics. Programs for the direct evaluation of the exact
cumulative and exceedance distribution functions have been generated and then
exercised for completely general values of the weights, signal parameters, and
noise statistics. There is no assumption needed about a large number of
statistically independent contributors, nor need any signal-to-noise ratio be
either small or large. The first two classes of processors are restricted in
form, but include many of the practical devices often encountered in detection
and estimation problems. The third class covers the most general second-order
processor; it requires the solution for the eigenvalue and modal matrices of
an MxM matrix (where M is the size of the general quadratic form) in addition
to the program furnished here. The approach utilized here allows a user to
quickly and easily obtain accurate quantitative information about the
performance of a particular processor, and to investigate the effects of
making changes in any of the input constants or parameters.

Approximations to the performance of continuous quadratic processors are
possible by use of the above procedures. For example,

XIHtI dt2 x(tl) s(tl, tz) x(tz) = A 4, :E:x(mAl) s(mAl, nA2) x(nAz), (101)
m,n

which is of the form XTBX encountered in (62). Also
J]gtl dt2 u(tl) s(tl, t2) v(t2) = A By :E:u(mAl) s(mAl, nAZ) v(nAz), (102)
m,n

which is of the form UTBIZV encountered in (79).
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Receiver operating characteristics, that is, detection probability vs
fa]se alarm probability, can be easily determined from the above results.
First store the exceedance distribution for zero signal strength in an array.
Then plot the exceedance distributions for nonzero signal strengths vs this
stored array of numbers, each point for a common threshold. The common
thresholds are most easily realized by keeping sampling increment a and FFT
size Mf the same throughout all the computations.
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APPENDIX A. SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution
functions of random variable (8) via characteristic function (9). The
required inputs are listed in lines 20-120 and are annotated consistently
with (8). The parameters Dl, Dz, NO, Nl’ Né required in characteristic
function (9) are pre-computed once in loop 290-510 for the sake of execution
time. The mean of x is entered in line 520. When we enter loop 590-830 for
the actual calculation of the characteristic function (9), the number of
computations are minimized. For example, only one complex exponential and
square root are required per § value, in lines 740-750. The square root in
(9) is not a principal value square root, but in fact must yield a continuous
function in¥. In order to achieve this, the argument of the square root is
traced continuously from §=0 (1ine 530). If an abrupt change in phase is
detected, a polarity indicator takes note of this fact (line 780) and corrects
the final values of characteristic function fy(;) (1ine 790). More detail
on the selection of L, A, b in lines 130-150 is available in [1].

= -

1 | SECOHD-OJRDER PROCESSOR

29 K=35 I Humber of terms summed

34 DATA .5,-.3,.4,-.3,.2 | atk) wsightings

41 DATA .9,.8,.7,-.6,-.53 | bd(k) weightings

54 DATA -.&,-.2,1,1.2,1.4 | «cidk) weightings

58 DATH .1,-.2,-.3,.4,.5 | d{k) weightings

74 DATA -.7,.5,.5,.4,-.2 ! =¢k) weightings

=15 DATA .2,.3,.4,-.5,-.6 | HMeanz of random wariablez =(k?

28 DATA .8,-.V,-.5,.3,.4 ! HMeanz of random wariables tik)

154 DATA .1,.3,.3,.7,.%9 b Standard dewiations of =d(ko

114 DATH .2,.4,.58,.3,1 P Standard deviations of toko

128 DATA .4,-.5,.8,.7,~-.8 ! Correlation coeffz. of =ik and t{k>

139 L=25 ' Limit on integral of char, function

148 Delta=.485 ' Sampling increment on char. function

1548 Bz=,75#02%P1-Deltal ! Shift b, as fraction of aliaz interuval
I

168 Mf=2-~3

178 PRINTER IS B
1853 PRINT "L =";L,"Deita =";Delta,"b =";Ez,"Hf =";Hf
198 REDIM ACIIK),BCLIK), COLikY,DOLIK),ECLIED

35! REDIM MsClikd, Mt L kY, S201K), St 1KY, Rhodl1KD
218 REDIM DIcliky», DECL iKY, HBCT K, NIk, H2C1 KD

228 REDIM H(BiMf-1),¥C(BIMf-1>

238 DIM RACL:1@>, RC121@),C01019>,D01182,EC 1

244 DIM MsCli1@0, Mt C1i182,5301:180,34 1118, Rhodlig)
254 DIM DIdiztda,DEclilad,Had1i18), H1dcii1@y,H2C1:18)
268 DIM ¥<(B:18232,7Y(B11023)

2va READ AC#3,BC*),CC%0 , DC#0,E0%) I Enter

2848 READ Mz {xd, Mt 0xd S (%), 54 0%, Rho(*) b conztants

Size of FFT
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N
=

LSS I v's I O B SR A O ROV I LN
(oA 1 I N % B (S o ¥y |
o G oo %0 S G0

=
bex]

539
Y51t
618
624
536
6448
659
668
67Y
638
598
704
718
r2e
734
74
758
41"
vra
7ga
798
860
819
829
8349
248

A-2

FOR J=1 TO K b Calculation
Ti=Ms(Ju~2 Ioof
T2=MtL(Jr~2 I parameters

T3=5s(Jx~2

Td=5t(Jr2

To=Ms(JTssMt LD

TeE=Rho (I %S0 Js2 (T2

TP=4%HCI2#BCID-CO T2

T8=(1-RhoCJs~20%T3%T4

TI=Mt (Js%5sCJ2

TiB=Ms(J) %5t (T

Ti1=D<(JIy~2

Ti12=E(J)~2

T13=DC(Jy+ECTD

D1cId=2%CACTO#TS+BCT0#T4+C 0T TS5

D2CIy=T7+T8

HECT =ACTO*TI+BCT0#TE+C(To*#TS+D0 T oMz Ta+ECT 2 %Mt 0.0
T=T7%C.S*(T1#T4+T2#T3I0-TS*TE
T=T+e2#ACTI%ECT ) -C0Ta#D0 T2 0% 0T 0% T3-RhadJr*T1a>
T=T+0 2B J0*DCTI-COTr#ECT2 %31 (T2 (T1A-RholJr*T3
H1CT=T=.5%CT11#T2+T12#Td5-T13*TE

H2(J == CACI3#TI2+BCTp*T1I1-COT0%T130%TE

HEXT J

Mus=SUMCHB+. S*SUMCDL b Mean of random wvariable
R=8 ’ P Argument of =quare root
P=1 ' Polarity indicator
Muyv=Mux+Bs

®i@r=8

Y(BI1=,5%Delta®Muy
M=INTC(L-Deltal
FOR Ms=1 TO H

Hi=Deltashs Argument xi of char. fn.
K2=Xi*Xi Calculation
Pr=1 of

Pi=Sr=5i=0

FOR J=1 TO K
Dr=1-X¥2%D2<J>
Di=-XKi#D1d(J>

CALL Mul<{Pr,Pi,Dr,Di,A,E>
Pr=R

Pi=B

CALL Diwv(MBACT-H2&N2C T, -Ki*H1¢J>,Dr,Di,A, B>
Sr=Sr+A

5i=5i+B

NEXT J

CALL Exp{-X¥i#S5i,XKi*(Sr+B=),A,E>

CALL Sgqr{Pr,Pi,C,D>

Ro=R

R=ATHC(D~-C>

IF ABS(R-Ro»>1.5 THEH P=-P

CALL Divw(A,B,C#P,D*P,Fur ,Fuid

Ms=Ns MOD Mf b Collapsing
R{MsI=K¥{Ms>+Fur-HNs

Y(MsI=Y{Ms)+Fui Ns

HEXT Hs

CALL FftlB@zCMf,8i%0, %00 I 8 subscript FFT

characteristic
functiaon
fudxin



3954

564

278

588

298

904

914

928

9323

949

359

60

379

2329

Q90

1888
1918
1aza
1838
1840
16859
18£8
197a
1838
1998
11489
1118
1129
11320
1148
1150
1i1e8
1178
1138
1199
1209
1219
1220
1236
1240
123508
1268
1278
1238
1296
13808
1219
13209
1338
1349
1356
1350
1376

FLOTTER IS "GRAPHICS"
GRAPHICS

SCALE B,Mf,-14,8
LIME TYFE 3

GRID Mf-3,1

PEHUP

LIME TYFE 1
B=Bz#Mf+Delta (2%PI2
MOVE E,9

DRAW B,-14

PEHUP

FOR Kz=9 TO Mf-1
T=Y(Kz)» PI~-Kz-Mf
HiKa0=,5-T

YCKs =Pr=,0+T

IF Pr>=1E-12 THEM ¥=LGT(Fr
IF Pri=-1E-12 THEH ¥=-24-LGT(-Fr)
IF ABSCPr)<1E-12 THEH t=-12

PLOT Ks,Y
MEXT Ks
PEHUP

PRINT YC@aayY Loy iMe—2a3y

FOR Kz=8 T3 Mf-1
Pr=x(Kz)

IF Pr»=1E-12 THEM Y¥=LGT{Prd
IF Pri=-1E~-12 THEM %Y=~24-LGTC(-Pr>
IF ABSCPrJ<1E-12 THEH ¥=-12

PLOT Kz,Y
MEXT Ks

PENUP

PRUSE

DUMP GRAPHICS

PRINT LIM(SY

PRINTER IS 1§

END

|

SUB Mul(®1,Y1,42,%2,A,B)
A=R1#X2-Y1%Y2
B=X1#Y2+82%Y1

SUBEND

|

SUB Diw(X1,Y1,%2,%2,A,B)
T=R2%K2+7Y2%Y2

A=CHI*RS+Y 1220 /T
BE=(Y1#R2-K1%720 /T

SUBEND

|

SUB Exp(X,Y¥,A, B>
T=EXP(X)

A=T*COSCY)

B=T*SINCYD

SUBEND
!

Origin for

TR 7035

ravidom wvariable =

Cumulative probability in Hix)
Exceedance probability in Yo%)

A-3
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A-4

SUER Sgrid,Y,R,EBE ] FRIMCIFAL
IF ®<>3 THEH 1438

=E=SRC.S*ABSIY 22

IF v<{8 THEHW E=-I
GOTO 1548
F=SLRCSAR (XX +Y %Y 20

T=,3%*ATHC Y 7%
A=F*C05C(T>
B=F*3INCT
IF %>8 THEHN
T=HR
A=-E
B=T

IF Y=
A=-A
B=-E
SUBENHD
1

1548

B THEN 1548

SUE FFel@z (N, Hi%D, D) I N <= 2~18 = 1924, M=2~INTEGER B subscript
DIM CCB:256)
INTEGER I1,12,13,14,15, 13,19, J,K
DATA 1,.993981175233, . 5 @1533, B3BS217IE, . FIIEIBBIHETE, , FI529417S
3322384538, ITTTETTSE, . 9927 IS45E 392475580573, . 393118112365
DATA . 95772 c44, . 997296456679, . 9I6E2A299291, . 996312612183, . INSTEP 414458
54726672, . 994564570734, . QE3TEAR2, . 393211949235, . 952479534599
DATA .93170975366%, . 330302535428, . 090D5B210262, . 555176509965, . 388257567731
281418158, . 956308097245, . 985277642389, . 394210092357, . 983105467431
DATA . 981963 18, . 980735230403, . 9735697656585, . 97931 737E726, . 977022142658
B2130939,.974333382786, . 972939952206, . 9715035995955, . STOA31253195 _
DATA . 363522094274, . 966976471045, . 955394441695, . 9537TERESTHS, . 562121404263
38519416, . 998703474595, . 9569409335732, . 955141168366, . 353306040354
DATA .95143502096%, . 343525180533, . 947585591915, . 945607325381, . 943593458162
44865183, . 939459223602, . 9373390911913, . 935183509939, , 932952798835
DATA . 330766961679, . 928506050472, . 926210242138, . 923879532511, . 921514833342
13851698, .91 @59%21, . 914209755704, . 911766032005, . 309167953091
DRTA . 985595 15, . 303989293123, . 391348847045, . 595674455694, BI5REE249756
24281196, . 890443723245, . 357639620403, . 804797095431, . 881921264348
DATA .B7361222642%, . 87607A094135, . 873094972418, . 870085991169, . 567045245515
72856122, .56 33635, . 857728610004, . 354557988365, . 851355193185
DATA .545120344863, . 3948523565250, . 541554977437, . 935224705555, . 534862874956
639612303, . 923045045258, . 524559302725, . 8211925145951, . 817584513152
DATA 814836329706, 210457198253, . 206847552544, . 8032675314681, . 799537269103
369M4663, . TIZIAESTTI0A, . TABA46427E2T, . TR4SSESITISE, . PEOTITEZAST2
DATA 776228465673, . 773010453363, . 769103337645, . PE5167265622, . 761262385434
83246506, . 753186799044, . 749136394523, . 7450857785441, . 740951125355
DATRA 735816568377, . T32654271672, . 725464390445, . 724247052951, . 726002507961
30825284, . 711432195745, . 7OT1BE7S1187, . 7O2754744457, 6983762459485
DATA 633371450890, , 68954544737, . 625083667773, . 6806AA997795, . 67TE0927HISTS
58954847, .666993922304, . 662415777599, . 657806693297, . 653172842954
DATA .543514491022,.543831542890, 639124444864, . 634393284164, . 629638238515
52485142, .620057211763,.615231590581, . 510352806276, . 505511941404
DATA .5@8516479324, . 595693204492, . 590759701859, . 585797857455, . 580513958096
B3191418,.576720745537, . 565731510784, . 560561576197, . 555570223020
ATA .S5A457972937, . 545324908422, . 544171472730, . 524997619867, . 529803624686
39652673, .519355990166, . 514102744193, . 5853308142543, . 593538333726
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1768 DATA 450227860373, . 4922892132238, . 4875 31t514o, dEZ12EFV287, . 4VEVI92380883
y AT LIESEVISEZE, L 4ED9TE4 0578, (40ATERT A oe 2188, . 449511329555

1778 DATA 444122144570, . 428610232539, . 4236893 3, STE93436, . 422000272443
y » 415429588698, . 4103431710858, . 4853241314005, , 299624199246, . 332992040651

1738 DATAH 288345045699, , 382083432385, . 377887418216, . 37V1217193952, . 3656129372485
g » 3598 95H3E530, . 304163320428, . 343412888247, . 34208V ITVELE, . 336889853392

1798 DATH 331166385V ed, 325318292108, . 3135682038818, . 2313621740339, , 3873490400842
y - ZE2EDT949319, , 296108888244, (298284677204, . 284487537211, . 2TE01 9623280

126868 DATA 272521355458, . 2687127574V 5, 2668794117915, . 2548365559605, . 24832TA57 45
, » 2342988173983, . 23VHIICHT3I4, 2318523108323, . 225623911364, .212181240157

1218 DATH .21311B8319916,.2687111375132,.20811684534842, . 1950890322016, . 1289053654158
y « 1332839827955, . 177004225412, .178%3612238758, . 1549131264946, .152358143334

1828 DATA ., 192V37 1835258, . 146738474455, . 148858239353, .124523878285087, . 1284958114794
y» 1224185735199, . 1163135389312, . 1182222872594, . 184121633872, . 388171483229 6E~1

1839 DATH 41qEE95549?1E—1,.EST9F3123444E—1,.?953243???14E-1,.?3564533599?E-1..
Erd4439195837vE-1, .61 3287V 202822E-1,.551952443497E-1, . 43867 EV43274E-1 )
1244 DHTH L4E293225692349E-1, . ZE0BVIZ29414E-1, . ZASTYIAILITEEE-L, . 24541 220522%E-1, .
154857299058E-1, . 1227 13332857E-1, . 813583464215E-2,0

1859 REHD Ci*d
1368 K=1824-H
1378 FOR J=8 T0O H-4¢
1838 C(Jr=C(K%#J>
1838 HEXT J
19868 Hi=H-4
1918 H2=H1+1
1928 H3=Nz2+1
1338 H4=H1+N3
1948 Log2n=IMTo1.4427*L0OGCHM+. 52
1958 FOR I1=1 TO LogZn
1968 I2=2~C(Log2n~-I12
1978 I3=2%I2
1988 I14=H-1I3
1998 FOR I5=1 TO IZ
20088 I6=(I5-1)%I4+1
2818 IF I&<=H2 THEM 28359
2028 HNE=-C(N4-15-13
2038 HN?=-C(I&8-Ni-1>
2848 GOTO 2978
2858 HN&=C(I&-1)
2868 HN7=-C(H3-15-1>
2878 FOR I7=8 TO H-I3 STEP I3
2888 I8=I7+IS
2896 I19=I8+I2
2188 H8=X(IB8-11-KiI%-
2118 HN3=Y{I8-1)-Y(I9-1>
2128 KCIB-1)0=K(I8-1)+H{I3-1)
2138 YC(IB-10=Y(I8-11+Y(I3-1>
2148 H(I9-1)=HE#MH3-HT7*H9
2158 Y(I9-1>=NE*NI+HT7*HED
2188 HNEXT I7
2178 HEXT IS
2138 HEXT Il
21%8 Il=Log2n+l
2288 FOR Iz2z=1 TO 18 P 2~18=14824
2218 ClIz-1u=1
2228 IF I2>LogEn THEHW 2248
2238 CCI2-13=2~(I1-122
22483 HEKXT 12
A-5
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2258
22698
227

2288
2299
2380
2319
2328
2330
2340
2350
23609
2370
23508
23298
24080
2410
2429
2438
2440
2450
24698
2470
2420
24958
25068
2518
25208
2538
2548
2558

A-6

K=1
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

It=1 TO

I2=11
I3=12
I4=13
I5=I4
Ie=I3
I7=18
I13=17
I9=18

I11§=13 TQ C(@» STEP

J=118
IF K>J THEMN 2448
A=XC(K-12
BCK-12=X(J-12

®¥(T-

13=A

A=Y (K~-13
YK=1d=Y(J=12

Y{J=
K=K+
HEXT
HEXT
NEXT
MEXT
HEXT
NERT
NERT
HERXT
MEXT
NEXT

13=R

1
Itle
I3
Ig
I?
16
IS
I4
I3
I2
Il

SUBEND

T
TO
TO
T
TO
TO
TO
TO

Ceoo
Coso
Cien
L)
CoSo
Cidl
C{3n
coal
Cila

STEP
STEP
STEF
STEP
STEP
STEP
STEP
STEP

Cols
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APPENDIX B. FADING FOR SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution

functions for characteristic function (21), when the power fading factor r in
| '

1> Y20 Moo Ny
are pre-computed once in lines 210-310. The logarithms in 1ines 430 and 440
have arguments that never cross the branch line along the negative real axis
for the principal value logarithm; hence the calculated characteristic
function is automatically continuous for all ¥.

(18) has probability density function (19). The parameters D N~y N

ROCESSOR
Power law for fading
Humber of terms summed
atk? weighting

18 ! FADIHWG FOR SECOHD-ORIER
24 Mu=2.7

28 K=5

45 Ak=.7

F'
1
!
!
54 Bk=-.9 ' biky weighting
58 Ck=-.5 I ik weighting
7a DATA .2,.3,.4,-.3,-.5 | HMeans of random wariables sik?
=35 DATH .8,-.7,~.&,.9,.¢ | HMeans of random wvariableszs tlk?2
94 Ss=.3 ' Standard deviation of =sik2
168 St=. I Standard deviation of tik?>
114 Rho=-,4 I Correlation coeff. of =4{k) and tik?
125 L=158 b Limit on integral of char. functian
128 Delta=.25 ' Sampling increment on char. function
144 ==,6254C2%PI-Deltal ' Shift b, as fraction of alias interval
|

158 Mf=2~3

168 PRINTER IS B
178 PRIMT "L =";L,"Delta =";0e1ta,"b =";Bz,"M{ =";Mf
188 REDIM MzClikK), My Cliky,BC0iMe=10,%CaIMf-12

178 DIM MaClil1@y,Me01i1@a, A0Ri18230,Y(021823)

Z2ag READ M=C*3, M%) ' Enter constants

219 M28=D0T (M=, M=> I Calculation

228 MB2=DOT ML, Mt I of

239 M11=DOT<Mz, Mt !

249 T1=5s%Ss

2589 T2=S1 %51

269 T3=Rho#35=%5t

278 T4=4#Ak #Bk-Ck *Ck

258 HBp=Ak *M2B+Bk *MBZ2+Ck*Mi 1

294 Mlp=T4%(, 5% (T24M2B+T1#MBI23=-T3xM11>

380 D1=2%(Ak*T1+Bk#T2+Ck*T32

318 D2=T4#(1-Rho*Rho>*T1%T2

329 Dip=D1+HBp- Hu

339 2p=D2+N1ip Hu

349 Mux=HBp+.,5%K*01 ' Mean of random variable x
358 Muy=Mux+Bs

368 T=Hu=-,5%K

Size of FFT

parametsrs

B-1
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ACBY=a

YiB =502l tasMuy
H=IHT(L-Deltad
FOR Mz=1 TO H
Bi=Delta*Ms Argument =i of char. fn.
Calculation

of

charactesriztic

function

fulxin

Ha=Hisni
CALL Logd1-X2#D2,~-Xi#D1,A,E>
CALL Log¢l-K2#D2p,-Xi*D1lp,C,D2
T1=T#A-Nu%C
T2=T*B-Nu%D+Bs#Hi

CALL ExplT1,T2,Fur,Fuwii

5] Ms=Hs MOD Mt I Collapsing

494 ACMs 1=K (Ms)+Fur Hs

589 YCMs =Y (Msd+Fui M=

519 HEXT Hs

529 CALL FftlBzoMf Ho%d, Y (%30 ' 8 =zubszcript FFT

539 PLOTTER IS5 "GRRPHICS"

549 GRAPHICS

358 SCALE B,Mf,-14,8

568 LINE TYPE 3

578 GRID M#~s8,1

538 PEHUF

594 LINE TYPE 1

588 B=Bs#Mf*Delta c2<PIy V' Origin for random wvariables =
518 MOYE B, 8 @
629 DRAW B,-14

638 PENUP

648 FOR Ks=8 TO Mt-1

658 T=¥{Ks2)/PI-Ks-Mf

BEQ “lKs)=.5-T I Cumulative probability in HWisd
e7e Y(Ks3=Pr=,3+T I Excesdance probability in Y(&)
688 IF Pr>=1E-12 THEH Y=LSTiPr>

658 IF Pr{=-1E-12 THEM ¥=-Z24-LGT(-Pr:

7o IF HBS(Pr»<1E-12 THEH Y¥=-12

711 PLOT Ks,¥

Fg=45] HEXT Ks

Facls) PEHUP

749 PRINT Yo@oi¥olasYamMf-2r;Yimf-17

rg=1"! FOR Ks=8 TO M{-1

-1 Pr=¥(Ks>

778 IF Pr>=1E-12 THEM Y=LGT{(Pr:

750 IF Pr{=-1E-12 THEH %¥=-24-LGT(=-Pr>

73 IF HES(FPra<1E-12 THEH ¥=-12

860 PLOT Ks,V¥

819 MEXT Ks

828 PEHUP

838 PRUSE

840 DUMP GRAPHICS

850 PRINT LIMCS?

260 PRIMTER I35 18

87n EMD

858 !

Lo I O W R N IS-I D A c-fn o

B O N G LR SO SN N A O VY I PV ]
Lo et I L) IO O O R el U BN W I RN |

B-2



354
984
918
328
93P
344
954
958
378
9384
9948
1686
1619
laza
1934
1048

SUE Expii,¥,A,E)
T=EHP (4D

A=T#COSCY)

B=T#SIHCY)

SUBEHD

|

SUB Logii,Y,A,E)

A=, SELOGCHER+Y#YD

IF %<>8 THEMN 1988
B=.S%PI%SGH(Y)

GOTO 1828

B=ATH(Y /%)

IF %<8 THEN B=E+PI#(1-Z#(r<@))
SUBEND

|

SUB FfRtelazCH, ¥ del,Wisid N

o
L

TR 7035

PRIMCIPAL LOGCZX

~18 =

1924,

H=2~IHTEGER B zubscript

B-3/B-4
Reverse Blank
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APPENDIX C. NARROWBAND CROSS-CORRELATOR

This program computes the cumulative and exceedance distribution

functions of random variable (30) via characteristic function (35). The

parameters D, D,, Ny, Ny are pre-computed in lines 280-390 and
weighted according to (35)-(36) in lines 400-440. A1l the functions employed
are analytic.

AT s Bt N U ) I
DU A I I8 I kA )

—
Pl
=

113
129
138
148
159
158
178
139
195
2ad
218
228
208
248
258
268
2re
238
299
388
319
328
328
348
358
368
378
338
399
488
414
4248
438
4448
458
4648

Delta=.5
B==,5%(2%¥P1-Deltal
Mf=2~8
PRIMTER I3 8
PRIMT "L =";L,"Delta =";Delta,"b =";EBz,"Mf ="M
REDIM WCliKI,ALCL1IKI,BICLIKD,R2C1KY, B2 KD
REDIM S1C1IK,S2011KY,RhodliK),LambdadliK)
REDIM DICLIKD,DEC1iK, HACL iKY ,H1CL1 KD
REDIM H{BIMf—-1),Y<(O:i1Mf=10,H2¢1 KD
DIM Wei:iad,A101:180,B101:18, A2¢1:18,B2C¢1:18)
DIM S1C1:18)5,82¢1:1185,Rhod1:18),Lanbdadi:1n)
OIM D1¢1:18>, 0201018, Hac1180,H1c1:18)
DIM X(B:I1B232,4(B8:1823),H2¢1:116)
PEAD W{#3,A1C%2,B1C* 3, A2(%2,B2¢%2 | Entepr
READ S1d#),52¢#,Rhod*),Lanbdad*) | constantsz
FOR J=1 70 K ' Calculatian
]
!

Sampling increment on char. function
Shift b, as fraction of alias interuval
Size of FFT

HARROWEAMD CROSZ-CORRELATOR

k=3 ' Humber of terms zummed
IATA .5,-.3,.4,-.3,.2 |  wik? weightings
DRTR .9,.5,.7,-.58,-.5 | alik> signal 1 in-phase components
IRTA -.&,-.8,1,1,2,1.4 | bilck> =ignal 1 quadrature componsnts
IDATA .1,-.2,-.3,.4,.5 |  a2(k> zignal 2 in-phase components
DATA -.7,.5,.5,.4,-.3 } b2k zignal 2 gquadrature componsnts
DATA .1,.3,.3,.7,.%9 bosigmaldky noizes 1 standard deviations
DATH .2,.4,.56,.3,1 ' sigma2dk? rnoize 2 ztandard deviations
DATA .4,-.5,.6,.7,-.2 | rhotk> roise in-phass corr., cosffs,
DATA .9,-.7,-.9,.3,~-.1 ! lambda noise gquadraturs corr. coeffs.
L=58 ' Limit on integral of char. function

]

]

]

Si1s=51¢Jr~2 ot
S52s=52C(J)~2 parameters
T1=31¢J2%82¢J>

D1¢J»=T2=T1+RhotJ)
D2¢J3=,25%51s%532=%1-RhotJr)~2-LambdacJy~21
T3=R1CJII#A2CT2+B1J#B2CT)

NB(JI>»=.5%T3

Td=A2C(I)*B1CJ2)=-A1C¢Ty#B2C T

T3=32s# (ALCI I ~Z+BL 0T 20+5 2 (A2CT I~ 2+E2CT0~20
H1CT)=,125%0T5-24T2%T3-2%T1*LanbdacJr%T4)

HEXT J

MAT W2=HW.H

MAT Di=W.D1

MAT D2=H2.02

MAT HB=W.,HB

MAT Hi=WZ.HN1

Mux=SUMCHO I +SUMCDL 2 ! Mzar of random wariable o
Muy=Mux+Ez

C-1
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5249
594
680
51
=8
538
548
658
5549
ava
680
659
vog
7l
v
r38
748
=1
1o
7
754
790
888
810
328
g83p
348
350
350
ave
328
899
964
918
929
938
9448
9359
960
979
958
998
levg
1918
168206

C-2

AlAr=9
Yi@r=,9%0eltasMuy
M=IHNTC(L-Deltan
FOR HMz=1 TO H
wi=leltasMs
nE=Kiedi

Pr=1

Pi=Sr=Si=8

FOR J=1 TO K

Dr=1+X2+«D2(J>

Di=-XKi#D1¢J3

CALL Muwl<Pr,Pi,Dr,Di,A,B>

Pr=H

Pi=B

CALL DiwdHBC(Id, Hi*H1K T, Dr,Di,A, B>
Sr=5r+n

Si=5i+B

HEXT J

CALL Exp(-Ri*#3i,#i%.3r+Bz2,A,8B)
CALL DiwCA,B,Fr Pi,Fur,Fui:

Ms=Hs MOD Mt !
A{MsI=R(M3I+FurH=
Y{Ms)=Y{(Msr+Fui Hsz

HEAT Hs

CALL Ffei1BziMf, W %3, Y (%0 !
PLOTTER IS "GRAFHICS"

GRAPHICS

SCALE 8,Mf,-14,8

LINE TYPE 3

GRID Mf~3,1

PEHUP

LINE TYPE 1

E=B=*Mi*Delita (2%PI: !
MOVE B, #d

ORAW B,-14

PENUP

FOR Kz=8 TO Mf-1

T=Y<(Ks)»/PI-Ks~Mf

HlKs)=.5-T !
YiRsIsSPr=,5+T !
IF Pr>=1E-12 THEH %=LGT(Pr:>

IF Prd{=-1E-12 THEN %=-24-LGT¢-Fr>
IF RBS(Pr <{1E-12 THEH ¥=-12

PL3T Ks,Y

HEXT Ks

PENUP

PRIMT Ye@i ¥l (MP-20; Y CMf-12

FOR Ks=8 TO Mf-1

Pr=K(Ks>

IF Pr>=1E-12 THEH Y=LGT¢Pr:

IF Pr{=-1E-12 THEH ¥==24-LGT(-Fr
IF ABS(Pr»<1E-12 THEHN ¥Y=-12

PLOT Ks,¥

NEXT Ks

PEMUP

PRUSE

Argument =i of char., fn.
Calculatian

of

characteriztic

function

kil

[yl
(u]

1lapsing

B zubscript FFT

Origin for random wvariable wu

Cumul ative probabilitu

Exceedance probability in

in Hixd



1929
1649
1859
1868
1670
1989
1639
1100
1118
1120
1130
1140
1150
1158
1178
1188
1190
1200
1210
1229
1238
12409
1250

DUMP GRAPHICS
PRINT LIHC(S?
PRINTER IS 16

EHD

i

SUB Mul¢®l,'¥1,%2,%2,f,B)
A=K1#R2-Y14Y2
B=X1#Y2+H2%Y 1
SUBEND

|

SUB Diw(®l,Y1,%2,Y2,A,B)
T=X2#KR2+Y24Y2
ASCRI#K2+Y1EY20 /T
B=(715X2-K1%Y2)/T
SUBEHD

|

SUB ExpC®,Y¥,A,BY
T=EXP (¥
A=T#COSCY)
B=T*SIH(Y)

SUBEMD

i

SUB FftlBz (M, %l W%

-
a =

r

[RS8
=
*
™~
"y

21rs22

—
=

= 1924,

TR 7035

H=2~IHTEGER 8 subscript

C-3/C-4
Reverse Blank
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APPENDIX D. REDUCED QUADRATIC AND LINEAR FORM

This program computes the cumulative and exceedance distribution
functions of random variable (65) via characteristic function (66).

The

required inputs to the program are M and the i*m}’ {dm}, {§m§ of (68).
The square root in (66) must again be continuous and is handled exactly as in

appendix A.
pre-computed in lines 170-210,

The parameters required in the exponential of (66) are
and the mean of q is entered in line 220.

16 REDUCED @UARDRATIC AMD LIMEAR FORM

pgs) M=5 ' Humbsr of terms szummsd

38 DATA .2,- .3,.4, S,-.5 ' Lambda walues

46 DATA -.1,.3,.5,.7,~-.%9 I d wvalues

58 DATH .6,.5,-.4. 32 boHu values

=15 L=204a ' Limit on integral of char. function
sl Delta=.H3 ' Sampling increment on char. function
35 Bes=.353#(2#P1 D=1t &) ' Shift b, az fraction of alias interwal
Sl Mf=2-~18 I Size of FFT

169 FRIMTER I35 B

118 PRIMT "L =";L,"Delta =";Delta,"b =";Bs, "M =";Mf

128 REDIM LambdaciiM>,DCiomy , HudliM), ACLIMy ,BCLaMY, CCLiMy

138 REDIM Hi@iMf-1a,¥C@iMf-12

148 DIM Lambdacl:ias, Datotdy, Hudlildy , ACLi18),Belri@y, 001180

154 DIM ®(B21823),7v(R:1823)

1@ READ Lambdadl#>,D %0, Hus) I Enter conztants

176 FOR M==1 TO H I Calculation

138 A(Msi=2%Lambdack=> ' of parameters

158 BiMsi={(LambdadMz #MHuiMz2+DiM=2 s sHu(M=

289 CCiMs)>=,5%#D(Ms)>~2

2108 NEXT Ms

2249 Mug=SUMILambdar+SUMIE) ' Mean of random wariable g
228 R=6 ' Argument of =zguare root
2448 P=1 ' Polarity indicator

259 Muy=Mug+Bs=

2608 ®(Br=8

279 YCBr=.5%#Deltaxmuyy

2808 N=INTC(L-D=1ta>

294 FOR Hs=1 TO H

360 #Ai=DeltasM= ' Argument xi of char. fn.
319 Pr=1 ' Calculation

328 Pi=Sr=5i=0 ' af

338 FOR Ms=1 TO M ' characteriztic

348 T=-RA{M=IxKi P function

354 CALL Mul<{Pr,Pi,1,T,A,BE> I fudxiD

3€8 Pr=A

370 Pi=B

3809 CALL Diw(CBC(Ms>,C<{M=r%Xi, 1, T,A, B

394 Sr=5r+A

488 S$i=5i+B

414 HEXT M=

D-1
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424
438
4408
458
464
479
4306
495
504
518
529
538
548
5518
Se8
578
5398
398
604
619

D-2

CALL Expi-5Si#ki, (Sr+B=z2%xi,A, B>

CALL Sgr<Pr,Pi,C,D>

Ro=R

R=ATH{D~C3

IF ABSi{E-Fo»kx1.5 THEHW F=-P

CALL DiviA,B,C#P,0%P,Fur,Fui

Ms=Ns MOD Mf ' Collapsing
KM =K (M3 2+Fyr Hs

Y(Msd)=Y(M2I+Fui~-Hs

HERT HNs ;

CALL FEt1BzaMf  Ka®d,YC#0D '8 subscript FFT
PLOTTER I5 "GRAPHICS"

GRAPHICS

SCALE B8,Mf,-14,8

LINE TYPE 3

GRID Mf-8,1

PENUP

LINE TYPE 1

B=B=+#Mf#Deltas(2%P1 ' Origin for random wariable g
MOWE B, 9

DRAW B,-14

PENUP

FOR Ks=8 TO Mt{-1

T=Y(Ks)/PI-Ks/Mf

H(Ks2=,5-T ! Cumilative probability in Edo#D
YCKs3=Pr=.5+T I Euxcesdance probability in ¥
IF Pr>=1E-12 THEH Y=LGTCPr:

IF Pr{=-1E-12 THEHMN Y=-24-LGT<-Fr
IF RBS(Pr <1E-12 THEHM ¥=-12

PLOT Ks,¥

HEXT Ks

PEHUP

PRINT YCBI ;W1 Mf=20; Y Mf=-12
FOR Ks=8 TO M{-1

Pr=X(Ks’

IF Pr»=1E-12 THEHN Y=LGT¢Pr>

IF Pri{=-1E-12 THEMW ¥=-24-LET(-Pr
IF ABS(Pr»<{1E-12 THEHN Y¥=-12

PLOT Ks,VY

NEXT Ks

PEHUP

PRUSE

DUMP GRAPHICS

PRINT LIN{SS

PRINTER IS 16

END
!



294
969
919
320
939
344
958
969
ava
939
954
1968
1919
18209
1838
1949
1858
1950
1678
1838
1698
1168
1118
1128
1138
1148
1158
1168
1179
11309
1198
1268
1219
1220
12308
1249

SUB Mul¢®l,Y1,%2,Y2,A,B)
A=K1#R2-Y1%Y2
B=X1#Y2+X2%Y1
SUBEMD

{

SUB Diw(®l,¥1,%2,%2,A,B)
T=H2*K2+Y 2272
A=(R1#X2+ Y 15Y20 T
B=(Y1#X2-¥1#Y2>-T
SUBEND

|

SUB Exp(¥,Y¥,A, B’
T=EXP (XD
A=T#COSCY)
B=T#SINCY)

SUBEMD

]

SUB Sqr(X,Y,A, B>
IF %<>@ THEMN 1118
A=B=SAR(.S*ABSCY) )
IF ¥<8 THEN B=-B
GOTO 1228
F=SAR(SARCKER+Y*Y D)
T=.S5*ATHCY # %)
A=F+COS(T)
B=F+SIN(T)

IF %58 THEN 1220
T=A

=~

B=T

IF Y>=8 THEM 1220

SUB Ffel@z(H,R(%), Y (%3

TR 7035

~
—
\'i.
&
(]

I ERWPC(Z

I PRIMCIPAL S@RCZ2>

H <= 2~18 = 1824, H=2~IHTEGER H subscript

D-3/D-4
Reverse Blank
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2848
294
388
318
328
36
348
358

b8

378 .

388
394
40849
418
428
428
448
458
468
470
488
498
S8
S5ie
529
338
548
5509
=117
Sve
Sca
594
580
&1

FOR I=1 TO Tt

n=0

FOR J=1 TOQ K
Y1=RMD-.5
V2=RND-.3

S=¥lsY1+V2xV2

IF 5».25 THEN 319
RA=(L-L0GCSH IS
R=SORCR+QD
Gl=V1xQ

G2=V2*Q

S=MsCJO+RICID*G1+Ee (T kG

T=Mt CJ2+St (TG

GEMERATE THWO
IMDEPEHDEHT
GAUSSIAN
FAMDOM
YARIREBLES VYIA
ACCEPTHHNCE
AND

REJECTION

HEW+ACT ) #545+B T #T#T+Co TS5 T+DC T 2S+ECT 0T

NERT J

KCTy=¥

MEXT 1

MAT SORT X
PLOTTER IS “GRAFHICS®
GRAPHICS

SCALE -38,18,-4,0
GRID 5,1

PENUP

FOR I=1 TO Tt
Y=LGT(CI-. 55Tt
PLOT XCID,Y

MEXT I

PEHUP

FOR I=1 TO Tt
Y=LGT(1~-¢I-.50-Tt )
PLOT ®CID,Y

NEXT I

PEHUP

END
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