
AD-A134 092 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA
INTEGRATED ENVIRONMENT..(U) INTERMETRICS INC CAMBRIDGE

MA 12 NOV 82 IR-678-2 F362-80-C-029i

UNCLASSIFIDi F/6 9/2 N7Ehh~hiEshhhhEEohhohE
omhmhmhohhhhhhI
smmhhEEmhhhoh
smmhmhhhmhmhE
smEEEEohEEEEE
EEohmhmhEmhohI

n77- 77 --

111-25 -A 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

" ' T- -- r>' ; z-'.t.-.-.---r.. -r° : r." " ''"*"i " "r " " ". ',-"-'"

0*

NCONTRACT F30602-80-C-0291

IR-678-2

COMPUTER PROGRAM
DEVELOPMENT SPECIFICATION

FOR
Ada INTEGRATED ENVIRONMENT:

KAPSE/DATABASE
TYPE B5

S5-AIE (1).KAPSE (1)

12 NOVEMBER 1982 DTIC
SELECTEI

OCT 2 4 19831

B

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD

W, GRIFFISS AFS, N.Y. 13441

PREPARED BY: ITERMETRICS, INC.
' 733 CONCORD AVE.

CAMBRIDGE, MA 02138

pi ?3151f W oSTATEMN *1' 83 09 1 Og

INTERMETRICS INC. * 733 CONCORD AVENUE o CAMBRIDGE. MASSACHUSETTS 02138 1 46171661-1840
TWX NO. 710 320 7523

++ I
I

, + , , , - , +- , . , ,,+ • •. . _+ +. - +, "- . -- .

This document was produced under Contract F30602-80-C-0291 for

the Rom Air Development Center. Mr. Donald Mark is the Program

Zngineer for the Air Force. Mr. Mike Ryer is the Project Manager

for Intermetrics.

Accession For

I NTIS GRA&I

DTIC TAB
Unannounced 0]
justificatiO

By-
Distribution/

Availability Codes
lAvaifjiari/or

Dist special

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMSRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

w - e.-

, , , !,- . .- . . ,... -. o t - . -.. *..:-. -.*.. -.. -' .. T '/ ": . . 7 _._: ' ' ..

CONTETS

1. SCOPE 1

1.1 Identification 1

1.2 Tunotional Smmar 1

2. AMPLICAM2 C010 =W0 3

2.1 Program Definition Doauments 3

2.2 Inter-Subsystem Specifications 3

2.3 Military Specifications and Standards 3

2.4 Miscellaneous Documents 4

3. UQUIRIWMTS 5

3.1 Introduction 5
3.1.1 General Description 5
3.1.2 Peripheral quipment Identification 5
3.1.3 Interface Identification 6

3.2 Functional Description 8
3.2.1 Equipment Descriptions 8
3.2.2 Computer Inwput/Output Utilization 9
3.2.3 Computer Interface Black Diagram 10
3.2.4 Program Interfaces 11

3.2.4.1 KAPSZ/Tool Interface
Requirements 11

3.2.4.2 KAPSE User Interface 12
3.2.4.3 Database/Tool Interface

Requirements 13
3.2.4.4 LAPSE/oast Interface - VLM/SP and

08/32 37
3.2.4.5 Compiler/Run-time System

Interface 39
3.2.4.6 Linker/Loader interface 39

3.2.5 Ftunction Description 41
3.2.5.1 Simple and Composite Objects

(KAPS.SIMPCIP) 41
3.2.5.2 Access Control and Category

(KAPSE .ACCECAT) 44
3.2.5.3 Maltiple Program Management

(KAPSZ.MLTPROG) 46
3.2.5.4 History and Archiving

(LAPSE .HISTARCH) 48
3.2.5.5 Run-time System (RAPSE.RTS) 48

3.3 Detailed Functional Requirements 50

0IM1RMIETRICS INCORPORATED • 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETrS 02138 • (6171 861.1840

.. .

3.3.1 Simple and Composite Obects
(KAPSE.SIMPCO(P) 50
3.3.1.1 Block TO 50
3.3.1.2 Device 10 57
3.3.1.3 Access Methods and Data Clumps

61
3.3.1.4 Simple Objects 67
3.3.1.5 Composite Objects 76

3.3.2 Access Control and Category
(KAPSE.ACCCAT) 79
3.3.2.1 Window Objects 79
3.3.2.2 Category and User-defined

Attributes 85
3.3.2.3 Access Control 90

3.3.3 [ultiple Program Management
(KAPSE .ULTPROG) 97
3.3.3.1 Program Loading 97
3.3.3.2 Low Level lAPSE/Program

Communication 99
3.3.3.3 Program Invocation and Control

104
3.3.3.4 lAPSE/lAPSE Communication 113
3.3.3.5 Terminal Screen Manager 113
3.3.3.6 Login/Logout and User Context

115
3.3.3.7 Intec-User Mail System 119

3.3.4 listory and Archiving
(lAPSE.9STARCH) 122
3.3.4.1 History and Archiving

Operations 122
3.3.4.2 Backup and Recovery 125
3.3.4.3 Configuration Management

Support 127
3.3.5 Run-time System (KAPSE.RTS) 132

3.3.5.1 Unit Execution Support 132
3.3.5.2 Storage Management 137
3.3.5.3 Tasking Support 143
3.3.5.4 Exception Handling 162
3.3.5.5 Language-defined Packages 166
3.3.5.6 Type Support Routines 169

3.4 Adaptation and Rehosting 172
3.4.1 Installation parameters 172
3.4.2 Operation pameters 172
3.4.3 Rehosting Requirements 172

3.5 Capacity 172

14. QUALITY ASSUJRANCE PROVISIONS 175

4.1 Introduction 175

4.2 Test Requirements 176

N- ii -

_ 1 INTERMSTN'ICS INCORPORATED * 733 CONCORD AVENUE • CAMURIOGE, MASSACHUSETTS 02128 • (617) 661-1840

4.2.1 Ada Machine Testing 176
4.2.2 Production Input/Output Tests 176
4.2.3 KAPSE Version 1 Test Case Generation 176
4.2.4 Ri Reliability Test 177
4.2.5 Pull Function Testing 177
4.2.6 KAPSE Version 3 Testing 178

4.3 Acceptance Requirements 178

INT3RMETRICS INCORPORATED 1 33 CONCORD AVENUS CAMORIOO2. MASSACHUSETTS 02138 - (6171 661. 840

FIGUBES

Figure 3-1 KAPS/Database Overview 6

Figure 3-2 Views of KAPSE/Tool Interface 13

Figure 3-3 Example of Database 16

Figure 3-4 Windows made Explicit 17

Figure 3-5 Composite Object Example 19

Figure 3-6 Extended Object Structure 24

Figure 3-7 Program and Context Objects 27

Figure 3-8 CPCI Dependencies 42

Figure 3-9 SInPCOKP CPC Dependencies 43

Figure 3--0 Physical vs. Logical Blocks 55

Figure 3-11 Logical Blocks and Clumps 62

Figure 3-12 Clumps and Files 66

Figure 3-13 Secondary Window Example 80

Figure 3-14 State Transitions (Caller) 160

Figure 3-15 State Transitions (Acceptor) 161.

-iv-

INTRMETRICS IN(ORPORATIED 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 - (617) 661.1840

"" '' '" '", -, ... •." "' '",- -.- '- '. . - -- -- -' --- '- -- '--'" " """. . . -- -. - "- .-' --. - -

35-AI(1) KAPSE (1)

1.SCOPE

11Identification'

This specification establishes the requirements for
performance, design, test, and qualification of a set of computer
Program mdules identified as the Kernel Ada Programring Support
Environm~ent (KAPSE) of the Ada Integrated Environment 0 (AIR).

1.2 Punctional Suary -

Th APSE provides seyeral.\ facilities to the Ada
Prograiing Support Environment/(APSE), which can be grouped into
the following five Computer Program Configuration Items '(CPC~s):

SINICMP - Database Operations on Simple and
Composite Objects.i

2.) ACCZCA? - Access Control and Categorization of
Database Objects, and the Manipulation of User-Defined
Attributes.

3, NUL22=0 Invocation of and Commnication
Between Multiple Ada Programs, plus Multi-User and Mlti-
&AMS SqWort and Synchro nization.i

4 NISTAC Configuration and System Management,
with History, Archiving, Backup, and Recovery. ~

5~) Ru - Ruin-Time Support for the Execution
of Ada ProgramsB, including Language-Defined input/output
Packages.

This specification identifies the functional ca .iJ, ities
of the various KAPS! computer program couponents'7CPCs')"and
describes the RAPSI/tool interfaces an well as the KAPSE/Host
computer interfaces.

INY3R11111RICSINCORPONATIED *733 CONCORD AVENUE * CAMBRIDGE, MASSACSUSETTS 02138 * 6171 661-1840

-.4- 77 T. .7 -. -" -.-.A- -.-. *L

US-AI~i) KAPSR (l)

This page left blank intentionally.

2

INTIMMETRIC3 INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(817) 661-1 840

35-AIE(l) .KAPSE(l.)

2. * PPLICABLE DOCUMETS

Note that bracketed or inter-subsystem identifiers are used
to refer to documents in the text.

2.1 Pcogram Definition Documents

ISOOKU1MSOIMRqurements for Ada Proq~ramminc Su2pot
Environments, "STONDIAN,* Departe~nt of Defense,

esbruary 1,960.

ISOUSO] Revised Statement of Work, 15 March 1980.

ELM]I Reference Manual for the Ada Programming Lagae
Drat Eai&rDbouxkiUt U.S. Department of Defense,

July 1982.

2.2 Intec-Subsystem Specifications

System Specification for Ada Integrated Environment, AIZ(1).

Computer Program Development Specifications for Ada
Integrated Environmant (Type 35):

a. AMa Compiler Phases, kIE(l) .CQIP(l).

b. NAMS Couenu Processor, AIZ (1) . MCP (1) .

c. NAPS! Generation and Support, AIZ(1) .bIS(l).

d. Progra Integration facilities, kIZ(l).PIF(1).

e. NAPS! Debugging facilities, AIE(1) .D8UU(l).

f. NAPSZ Text Editor, AIZ(1).TXED(l).

g. Virtual Naoy Mlethodology, AIZ(l) VMM(2).

h. Technical Report (Interim) 11-684.

2.3 Military Specifications and Standards

Data Item Description DI-3-30139, USA?, 14 July 1976.

3

INTERMSThICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 021398 (617) 661.1840

B5-1z3 (1). ZKASZ (1)

2.4 Miscellaneous Documents

[IM81] IBK Virtual Machine'ysten Product: Sxsem
E -' m-c'w-- Gui ", -'I '203-6, Intenat',ona1
Business Machines, Inc., December 1981.

[P3791 28/32 Programmer Reference Manual, Perkin-Elmer
Computer Systems Division, Oceanport, NJ, April 1979.

[Inuth73] The Art of Computer Proq ruam. in, V. 3., Donald Knuth,
A ison Wesley# 1973.

[WarshallS0] 'A Theory of Accountability,w Stephen Warshall,
CADD-8011-2401, Mass. Computer Assoc., Inc.,
Wakefield, MA, November 1980.

4

INTAMITRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

,.,,- -....-. - • - " - ."
* " "°"""" " ' ' ' ° " °% ." .o -, ,,,-° ,' ' - " ° '° . i

15-AIE (1) .KAPSE (1)

3. EQUIRUMENTS

3.1 Introduction

This section provides the set of requirements for the KAPSE
of the Ada Integrated Environment. This includes the performance
and interface specifications to which the KAPSE must comply.

3.1.1 General Description

The KAPSE provides database, program invocation, and run-
time support for all NAPSE tools and user Ada programs. In so
far as possible, the KAPSE isolates the rest of the AIE from host
machine idiosyncrasies, making the entire MAPSE toolset and
user-developed programs easily portable from one AIE to another.
Figure 3-1 is an overview of the KAPSE and its interfaces.

3.1.2 Peripheral Eluipment Identification

The 4341.KAPSZ shall interface with the following equipment
on an IBK 4341 comuter system:

a. 4Nb 4341 Central Processing Unit, Group I;

b. 3410 Magnetic Tape Drive;

c. 3705 Coumunications Controller;

d. 3278 Kalf-Duplz Full-Screen Display Terminals;.

e. 9712 8-line ASCII 1200 baud Ralf-Duplex TTY terminal
controller;

f. 3375 Direct Access Storage Devices (4 drives, with 600Mb
each)

g. 3203 igh Speed Line Printer;

The 832.KAPSZ shall interface with the following equipment on a
Perkin-Elmer (PE) 8/32 computer system:

a. 8/32 Central Processing Unit, with <<TBD>> memory;

b. <<TED>> Magnetic Tape Drive;

c. <<T8D>> Full-Duplex ASCII Terminals;

d. <<TBD>> Disk;

e. <<TZ>> Line Printer;

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE • CAMBRIDGE. MASSACHUSETTS 02128 * (6171 661-1840

85-AIZ (1) . KAPSE (1)

Ada PrOgrM (Including MAPSE Tools)

ToolIs

, KAPSE

Daa se File 1/0 Prgram Invocation Other
Access M and Control Services

KAPSE/Host Interface

most Operating System

Peripherals/
01 su ?eetworks

6282318-2

Figure 3-1: KAPSE/Database Overview and
Computer Interface Diagram

3.1.3 Interface Identification

The KAPSE shall interface with all subsystems within the
AMR, including:

a. MCP MAPSE Command Processor;

b. COKP Ada Compiler;

c. TXED Text Editor;

d. DBUG MAPSE Debugger;

e. Ply Program Integration Facility;

6

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

BS-AIE(l) .KAPSE(1)

f. VKH Virtual Memory Methodology;

g. ZGS MAPSE Generation and Support;

In every case, the KAPSE is providing the interface to the
program. The programs are all users of the KAPSE/Tool interface
(see 3.2.4.1) and the Database/Tool interface (see 3.2.4.3).
CCLP uses the Coupiler/Run-Tim. System interface (see 3.2.4.5).
PIP uses the Linker/Loader interface (see 3.2.4.6).

The 4341.KAPSZ interfaces with VM/SP [IBM81]. The KAPSE is
the user of this interface, VM/SP is the provider of the

-interface. All uses of this interface are encapsulated within
the KAPSE/Host interface packages.

The 832.KAPSE interfaces with OS 8/32 [PE791. The KAPSE is
the user of this interface, OS 8/32 is the provider of the
interface. All uses of this interface are encapsulated within
the KAPSE/Host interface packages.

'

47

.I

.4%

.o 7

INTIRMITRIcS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSET"S 02138 * t61'1 881 .1840

S-A (1) . KAPSZ (1)

3.2 Functional Description

3.2.1 Equipment Descriptions

The following equipment of the 4341 computer system impose

requirements on components of the KAPSZ:

a. 4Mb 4341 Central Processing Unit, Group 1;

The run-time system (KAPSZ.RTS) must be written to be
consistent with the interrupt and time clock facilities of
the 4341. In particular, interrupt identification
information must be fetched from the appropriate fixed
locations in low memory of the virtual machine address space
upon interrupt. The Set Clock Comparator instruction must
be used to handle the real-time-oriented tasking constructs.

The real memory capacity of the 4341 places no direct
requirements on the KAPSE because it runs in a virtual
machine provided by VW/SP. The addressing limitations of
the machine (16Mb) do represent an upper bound on the size
of a single virtual machine, and hence on the number of
programs which can simultaneously reside in the virtual
memory space. This bound imposes limitations on the
PROGRM WADING package of the KAPSE/Host interface
(KPSE .RzJL oG).

The instruction set of the 4341 processor places
requirements on the efficient design of the run-time system
routines (KAPSZ.RTS), in particular in the CPC of unit
execution support.

b. 3410 Magnetic Tape Drivei

The <<T2D>> tape device driver (KAPSE.SIMPCOKP.DEVICE 10)
must be consistent with the control and status register
layouts of the 3411 tape controller.

c. 3705 Comunications Controller;

The terminal driver (KAPSE.SIMCOMP.DEVICZ 10) must be
consistent with the facilities of the 3705-front-end. In
particular, the half-duplex nature of the 3705 must be
accommodated when implementing the host-independent
DEVICE 10 interface.

d. 3278 Half-Duplex Full-Screen Display Terminals;

The terminal driver (KAPSE.SIPCOMP.DEVICE 10) must perform
EBCDIC to ASCII conversions for 3278 terminals, as well as
accommdate the field-oriented nature of the 3278 while

8

INTERMETRICS INCORPORATED 9 733 CONCORD AVENUE * CAMSRIOGE, MASSACHUSETTS 02138 e (617) 661-1840

" ~ ~ ~ .". . .,' ".

B5-AIE(l).KAPSE(1)
providing a random-access host-independent interface via t-he

package TERMINAL 10.

e. 9712 8-line ASCII 1200 baud Half-Duplex TTY terminal
controller;

The terminal driver (KAPSE.SIMPCCMP.DEVICE 10) must convert

random-access cursor positioning requests to the proper
control character sequences for the connected ASCII
terminals.

f. 3375 Direct Access Storage Device

The disk device channel driver (KAPSE.SIMPCOMP.BLOCK IO)
must correctly set up channel programs to perform the
fixed-block-size read and write requests as part of
implementing the host-independent interface of the package
PUTS BLOCK IO.

g. 3203 High Speed Line Printer;

The line printer device driver (KAPSE.SIMPCOMP.DEVICE IO)
must provide the appropriate character code conversions and
format control characters to implement the host-independent
line printer interface.

The equipment of the Perkin-Elmer 8/32 computer system does
not in general impose direct requirements on components of the
KAPSZ, because the KAPSt runs under the host operating system
0S/32. 0S/32 and its device drivers handle all direct access to
the machine equipment.

The limitations of the addressing of the 8/32 processor ('
4b) places an upper bound on the size of the KAPSE, as well as
any user program.

The instruction set of the 8/32 processor places
requirements on the efficient design of the run-time system
routines (KAPSE.RTS), in particular in the CPC of unit execution
support.

3.2.2 Computer Input/Output Utilization

None of the peripheral equipment of the 4341 computer system
has critical 1/O timing requirements, because all devices are
operated by channel processors.

Some of the <<TBD>> peripheral equipment of the 8/32

computer system may place requirements on the
KAPSZ.SIMPCOKP.DZVICEZ O CPC because of interrupt-per-character
I/O controllers. In particular, if echoing is done by

.4

9
.I

INTERMETRIC.S INcORPO RATED * 733 C...ONCORD AVENUE * CAMBRIDGE, MASSACH4USETTS 02138 * 61,7) 661- .840

5S-AIZ (1). KAPS (1)

TERMINAL 10 for all terminals, then the amount of processing per
character should be kept to the order of one millisecond to
support thirty 300 baud input streams.

3.2.3 Co!Muter Interface Block Diagram

See Figure 3-1.

10

INTURETRICU INCORPORATEo D 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (6171 661.1840

B5-AIE(1) .KAPSE(1)

3.2.4 Program Interfaces

3.2.4.1 KAPSI/Tool Interface Requirements

The KAPSZ/Tool interface consists of the following set of
packages, detailed in section 3.3:

(KAPSZ.SXEPCOMP)

• Package SIMPLZ OBJECTS
Package NTZUr.&TIVE 10
Package FoRMATTED IO
Package CONPOSITE-OBJECTS

(ZAPS.ACCZCAT) :

Package WINDOW OBJECTS
Package CATEGORY
Package STRING ATTRIOUTES
Package HUMMR ATTRIBUT S
Package ACCUS tOMT0L
Package ACCSS-SNCRONI ZATION

(KAPSZ.NULTPROG)

Package PROGR W1INVOCATION
Package INTER PROGRAK COSMONICATION
Package DEBUGOER INThIFACE
Package USER CONTMXT
Package NAI -SYSTUK

(KAPSN.EISTAWH) :

Package HISTORY
Package BACKUP RECOVER!

(KAPS.RTS) :

Package DIRECT 10
Package SEQUETIALI0
Package TEXT 10
Package CALERDAR

These services are provided to Ada programs by a combination of a
Data Base Manager/KAPSE program, and interface packages linked
into the user's program. Inside the KAPSE there is one nagent"
task per running program, assigned to handle all communication
with that program, and perform the appropriate KAPSE calls on its
behalf.

11

INTIMMITRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE. MASSACHUSETIS 02138 * (617) 661-1840

B5-AE (lf). KAPSIf(c)
This structure is not visible to the user program, which can

view the KAPSE as set of packages linked into it. In fact, the
bodies for the interface packages linked into the user programs
do little more than bundle up each KAPSE/Database request into a
message and then send it across to its agent task within the
KAPSE. The agent task unbundles the request, and calls the
appropriate package within the KAPSE, but this time, the body of
the package actually does the desired work. See Figure 3-2.

The message-passing model of the KAPSE/tool interface allows
the design to be hosted more easily on truly distributed
processors, as well as the Ovirtually* distributed VM/SP system.
The option also exists for several KAPSE-like programs to exist,
each serving their local client programs, and communicating with
each other to synchronize use of shared resources, and retrieve
remotely stored data.

3.2.4.2 KAPSE User Interface

3.2.4.2.1 Overall User View of the Database

The overall structure of the database hierarchy is as
follows:

ROOT

SYSTEM USERS TOOLS PROJECTS

The root composite object contains four components: SYSTEM,
USERS, TOOLS, and PROJECTS. All of these components are
themselves composite objects. The SYSTEM composite object
contains objects of interest primarily to the system manager and
certain maintenance tools (eg., backup, history indices, etc.).

The USERS composite object contains the top-level
composite object (directory) for each user of the MAPSE. A
particular component is selected by the user's USERNAME (see
3.3.3.6).

The TOOLS composite object contains as components all of
the standard MAPSE tools (and others added by a system manager).
Each component is an executable program context object, or a
command language script, selected by the distinguishing attribute
TOOL NAM.

The PROJECTS composite object has the component
distinguishing attribute of PROJECT, and has initial components
(PROJECT->KAPSE) and (PROJECT->MAPSE TOOLS) for use by HAPSE
developers.

12

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 617) 661-1840

BS-AIE (1) .KAPSE (1)

Figure 3- 2,
User and Implementation View of KAPSE/Tool Interface:

User View: KAPSE linked into his program <IF P z APSE
mnterface

KIF Pkg ackaqe

User KAPSE
Program KIF Pkg Internal
Routines Routines

subroutine calls subroutine calls

Implementton View: User Program and K(APSE Separated by Protection Soundry

Protection
8oundry

KIF Pkg,

User KIF Pkg

Routines

KIF PkqKIF Pkg

•KIF Pkg KAPSE
• Internal
• Rou tines

KIF Pkg

messages 111!182392-5G
3.2.4.3 Database/Tool Interface Requirements

The KAPSE database is the repository for all user data
and programs, as well as the primary medium of tool to tool
coumunication and coordination. The KAPSE database facilities

13

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE •CAMBRIDGE, MASSACH-USETTS 02138 • (517) 661-1840

BS.-AZ (1) .KAPSE (1)

provide for the construction, organization, and partitioning of
large configurations of inter-related program, data, and
documentation elements. It records the nature and purpose of
these elements, and allows for access control and
synchronization. Finally, the KAPSE database facilities provide
historical information recording the derivation and relations
between the objects stored within the database, as well as
sufficient information to fully reconstruct from disk or archival
storage the content of old ot lost source text.

3.2.4.3.1 Database Objects

The database is a collection of objects, all of which
have attributes and content. These objects can be classified as
follows:

a. Primitive Files All of the data stored in the
database are represented using "Primitive File" objects.
Files have only pro-defined attributes like LENGTH, FIRST,
ACCESS METHOD, etc. These files are implemented using one
of the- built-in access methods (see 3.3.1.3), and are
designed to be efficient for representing both small data
items and large directories.

b. Extended Objects The user normally works with
*Extended Objects.0 Extended objects have a user-extendible
list of labeled attributes, as well as system-defined
attributes including CATEGORY, ACCESS CONTROL, and HISTORY.
The content and user-defined attributes of extended objects
are either Files or Windows (see below).

c. Window Objects "Windows" allow the user to go from
one extended object (the source) to another (the target) in
the database. Extended objects are available only through
such windows. The window also determines the 'role1 a user
plays in the extended object, and may limit the user to a
specific "partition" of the object's content or attributes.
Bach extended object is available through exactly one
Oprimry window. Any number of "secondary" windows may
also provide some (perhaps more limited) view of the object.

Each of the above objects can be further classified as follows:

a. Files fall into two classes: Simple and Composite. A Simple
file is a sequence of data bytes, and provides the
representation for Ada "external files,8 as well as for
simple string- and numeric-valued attributes. A Composite
file is a set of named or numbered component objects, which
may themselves be either Files or Windows, and provides the
representation for udirectories" as well as for relations,
tables, lists, sets, etc.

14

INIRMRICS INCORPORATED e 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

BS-AIE (). KAPSE (1)

b. Extended objects are generally classified by the nature of
their content, as either Simple Objects, Composite Objects,
or Extended Window Objects. Primary windows are used to
connect extended objects into enclosing composite files,
thereby providing for a hierarchy of composite objects. The
database as a whole is a single large composite object
called the "root,* whose direct components are major
divisions of the database.

c. As mentioned above, windows are classified as either primary
or secondary. Primary windows go from an enclosing
composite object to its components. Secondary windows allow
one to go from one part of the database to another part of
the database (i.e. to an object not directly enclosed by the
source of the window). Following only primary windows, the
entire database forms a tree of extended objects. With
secondary windows, the structure of the database becomes an
arbitrary directed graph. See Figures 3-3 and 3-4.

The term *object" alone will generally refer to extended objects

in the remainder of this specification.

3.2.4.3.2 Extenad Object Attributes

The attributes of an extended object may be any kind of
meta-inforcation describing its content, purpose, version,
revision, etc. As such they provide the primary means for
building, organizing, and partitioning the database.
Configuration anagment and other high-level tools will record
information appropriate to their needs as attributes of objects.

* Lower-level tools deal primarily with the content of extended
objects.

The attributes can be grouped as follows:

1. Distinguishing (name) attributes;

2. Mon-distinguishing attributes:

a. System-defined attributes (such as CATEGORY,
ACCESS CONTROL, and HISTORY);

b. Category-defined attributes;

c. User-defined attributes;

d. Content-defined and Path-defined attributes.

An attribute can be represented as a pair consisting of an
attribute label and an attribute value. For clarity, it will be
written in the unabbreviated form: label => value, to be read,
label Qis0 value. The label of an attribute must be a string of

15

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (6171 861-1840

*- - - + - + i - 0 . - . - * ' '. - + . - . , + - . .+ . . - . ,

95-&11() .APSE(])

Figure 3-3, Example of Database:

Example of Database

________ ~primary window~

secondary widow
ROOT copsteojc

* L...J ciolose object

TOOLS 8

USERST

SYSTEM
WL

EI

JOE RM TOO)LS

* 111182392-6

characters which satisfy the syntax of an Ada identifier (i.e.,
start with a letter, and continue with letters, numbers, or
underscores). The attribute value will also frequently be a
string, but It may in general be any kind of File or Window.

16

INTIRMETRICS INCORPORATED a 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIE(i) .KAPSE(i)

Figure 3-4, Windows made Explicit:

Windows made Explicit:

MY DIRECTORY

Primary Serimary ~
/eWndowa"A- K W i nd €ow" 8" r WiTd

'Mer each window may include a Role Translation Table such as:

Outside Role Inside Role Role Modifiors

"TESTER" "REAOER"
OCREATOR" "CREATOR" OWNER
"'WORLD" "REAOER" -READ ONLY
"USER" "USER"

111182392-2

The KAPSE supports a convenient parenthesized list notation
to specify attribute label/value pairs, as shown below:

(PROJZCT->SEUTTLE, FUNCTIONAL AREA->NAVZGATION)

17

INTERMETRICS INCORPORATED 9 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (1617) 661-1840

; ,',. ,.- -..j *1., .. . - . . :- ,% L
'

/ - . L ' , . .. " *-.*./ -- . - - .-'.- '-" .

35-AlE (1).KAPSE (I)

This would specify that the attribute labeled "PROJECTO has
the value "SHUTTLE and that the attribute labeled
61MCTIOUAL AREA" has the value *NAVIGATION.*

3.2.4.3.3 Naming and Partitioning with Distinguishing Attributes

Distinguishing attributes identify an object uniquely within the
content of its enclosing composite object. If the component is a
window, the name implicitly applies to the extended object viewed
through the window.

When a composite object is created, part of its definition
specifies the labels of the distinguishing attributes by which
its components will be named (i.e. distinguished from one
another). When a component is created within the content of this
composite object, values for these distinguishing attributes must
be supplied. These may be used later to select this component
from the composite object. The new component may not be created
if an existing component has the same list of distinguishing
attribute values.

For example:

CREATE CO4OSITE (=CCKP OBJ,
COKPOUUTDA=>8PROJECT FUNCTIONAL-AREA MODULE=);

creates a composite object with the three distinguishing
attributes: PROJECT, FUNCTIONALAREA, and MODULE. See Figure 3-
s.

Nov components could be created within this new composite
object Onamed" as follows:

1. (PROJECT>SEUTTLE ,FUNCTIONAL AREA=>NAVIGATION,
MODULZ=>INI TI ALI ZATION)

2. (PROJECT*>STTLE,FUNCTIONAL AREA->CONTROL,
MODULE->INITIALI ZATION)

3. (MODULE-> IN! TIALI ZATION,PROJECT-=>VOYAGER,
FUNCTIONAL ARSA->NAVIGATION)

4. (MODULEa> INTERPOLATION,FUNCTIONAL AREA->NAVI GATION,
PROJCT->VOYAGER)

*Two components need differ in only one of the distinguishing
attribute values to be considered distinctly named (e.g., (1) and
(2) above).

18

INTRMrrRICS INCORPORATED e 733 CONCORD AVENUE e CAMBRIOGE, MASSACHUSETTS 02138 * (6171 661-1840

, ,_: .. ,- .-,,,.,,,-,.-,,.. -, -.,.,..,- , ,. .,.,,,,. ,..-..,.., ,, , ,. .,. ,.* -

35-AIE (1) .KAPSE (1)

Figure 3-5,
COzuPOsite Object with Three Distinguishing Attributes:

FINCTORAL
* AREA

-J

REPRESENTS COMPONENT:
(FUNCTIONAL AREA -:- NAVIGATION,
PROJECT *~SHUTTLE.

MODULE *~INITIALIZATION)

111182392-4

Positional notation may be used instead of labeled
notation, based on the ordering specified when the composite
object was created:

1.9

INTERMETRICS INCORPORATED *733 CONCORO AVENUE a CAMS R IDGE.,MASSACHUSETTS 02138 *(6171 661-1840

BS-AIE (1) .LPSE (1)

1. SHUTTLE .NAVIGATION. INITIALI ZATION

2. SHUTTLE o CONTROL. INITIALI ZATION

3 . VOYAGER .NAVIGATION. INITIALS ZATION

4. VOYAGER.NAVIGATION. INTERPOLATION

3.2.4.3.3.1 Partitions of Composite Objects

Composite objects may be "partitioned" so as to identify a
subset of the components, by specifying values for some of the
distinguishing attributes of the components, while leaving others
unspecified, as follows:

(PROJECT->SHUTTLE) would include (1) and (2) from above.

(FUNCTIONAL AREA->NAVIGATION,MODULE->INITIALI ZATION) would
include-(l) and (3).

Positional notation may also be used to specify partitions, but
the special value " must be supplied as a place holder:

.CONTROL. would include only (2)

VOYAGER.*.* would include (3) and (4)

Attributes other than distinguishing attributes may be used
to specify partitions of a composite object. Non-distinguishing
attributes are not ordered, and a special labeled notation is
always required, using a distinguishing attribute label to
"qualify" the non-distinguishing attribute label. Here is an
example of a single partition specification giving values for
both kinds of attributes:

(FuNCTIONALARZA- >NAVI GATION , MODULE* PRIORI TY- >HIGH)

This partition would include (1), (3), and (4) from above only if
their current value for a non-distinguishing attribute labeled
'PRIORITY" were "HIGH." If a non-distinguishing user-defined
attribute has never been specified for an object, the value is

. taken to be the null string.

20

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTrS 02138 e (617) 661.t840

B5-AI E (1). KAPSE (1)

3.2.4.3.3.2 Object Pathnames

An object which is a sub-sub-component of a composite object, can

be identified relative to the upper level composite object by
specifying a sequence of two component names separated by periods
(each component name may itself be a sequence of distinguishing
attributes). This process may be continued leading to the
general concept of pathname, where a subcomponent of an object is
identified by a pat -i-Ehe composite through the intermediary
composites, leading finally to the desired object. Each object
in the entire database can be uniquely identified by the path to
it which follows only primary windows from the root composite
object. For example:

USERS .JONES. (SUBPROJECT->VOYAGER, PBASE=>DOCUMENTATION) . A .B

could be the pathname from the root to some sub-sub object.
Notice that the parenthesized, labeled notation and the
positional notation may be mixed if joined by dots, with the
parenthesized portions interpreted relative to the point reached
by the preceding part of the pathname.

Pathnames may also be used to identify -attributes rather
than components of the content. In these cases, the apostrophe
(single quote, "tic") is used to distinguish an attribute label
from a component name. The. attribute named may itself be a
complex object, in which case the pathname may continue after the
attribute label with further component or attribute names. For
example:

SYSTN4. PRINT QUEUz FIRST. BODY

might be the pathname to an object which is the body of a listing
that is first on the system print queue.

3.2.4.3.3.3 Secondary Windows and Pathnames

Object pathnames may be specified which do not follow
strictly down the hierarchy of composite objects and attributes,
by traversing secondary windows. When a secondary window is
encountered in a pathname, the rest of the pathname is
interpreted relative to the partition of the extended object
referred to by the window.

When a secondary window is created, the name of the target
object and the partition limitation, if any, are specified. In
addition, the user may specify further limits on the allowed
range of access to operations on the attributes and content of
the extended object. Secondary windows are the means by which a
user may delegate access to and/or responsibility for parts of
the database to other users.

21

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (6171 6611840

, ':' ' .. .'....." ."...... .. ""'' '.... *' , . , l.L, .:

B5-AIE (1) KAPSE (1)

The access limitations of a window are expressed as an
abstract role to which users of the window are limited. The role
is identil"Ie by an ASCII STRING, like "MANAGER0, "READER0, or
"DEVELOPER," which must be one of the roles listed in the ROLES
attribute of the viewed extended object. Within the partition of
the extended object designated by the window, the user is limited
to the operations allowed to the role by the object's
ACCESS CONTROL attribute (see below). Multiple windows may exist
specifying different roles relative to the same partition.

For example, consider a pathname (starting at the root),
USRRS.JOHN.MARYS LIB,* that identifies a secondary window whose
target has the full name OUSERS.MARY.LIB.0 Then the pathname,
"USERS.JOHN.MARYS LIB.Q.R," would identify the same object that
the pathname, "USERS.MARY.LIB.Q.R," identified. However, because
different paths were followed to the object, different roles, and
hence different access rights, may be held at the object.

3.2.4.3.4 Non-distinguishing Attributes

3.2.4.3.4.1 System-Defined Attributes

Several attribute labels are predefined by the KAPSE to have
special meanings, and hence are not available as labels for
user-defined attributes. They include among others:

a. CATEGORY DESCRIPTOR

b. CATEGORY

c. USER DEFINEATTRIBUTES

d. CONTENT

e. ACCESS CONTROL

f. HISTORY

Such system-defined attribute labels will be capitalized in
discussions that follow.

3.2.4.3.4.2 Categqy Descriptor and Category-Defined Attributes

Every extended object has a CATEGORY and a
CATEGORY DESCRIPTOR. The CATEGORY DESCRIPTOR attribute is like a
type descriptor for a database object, and specifies the class
and structure of the object, and may place constraints on the
values of particular attributes. The CATEGORY attribute is a
string, like "ADA SOURCE" or "TEST SCRIPT," acting as the
identifier for the type of the databasi object. The CATEGORY
attribute is purposely similar to the notion of "type" in high

22

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840

BS-AIE(1) .KAPSE(1)

level languages and provides the user with much the same kind of
data abstraction and structuring.

The category descriptor includes a table of attribute
descriptors, keyed by the category-defined attribute labels.
Each attribute descriptor specifies whether the attribute is a
constant across the category, or defined as a particular element
of each object of the category (a "variable"). For category-
defined attributes that are variable, other limitations may be
placed on the range of permissible values, as well as a default
value when the value has not been specified.

The category descriptor of an object is set when the object
is created, and may not be changed. Nevertheless, the effect of
changing the descriptor can be effected by creating a new object
with the desired changed descriptor, and then copying the content
and appropriate attributes into the new object. During this
process, the KAPSE can verify that the values of the attributes
do not violate any constraints implied by the new descriptor.

3.2.4.3.4.3 User-defined Attributes

The CATEGORY DESCRIPTOR defines all of the category-defined
attributes for the object. Nevertheless, the KAPSE supports a
convention whereby the single system-defined attribute labeled
OUSE& DEFID ATTRIBUTES" may be used to stQre values of
attriButes n6it explicitly defined in the category. Hence, the
actual list of legal attribute labels is effectively unbounded
for extended objects.

User-defined attributes are created when assigned a non-null
value (which may be any file or window), and are deleted when
assigned a null value. individual attributes are retrieved using
the attribute label as the key into the composite
USER DEFINED ATTRIBUTES file. For instance, OBJECTPURPOSE is
equivalent To OBJECT'USER DEFINED ATTRIBUTES.PURPOSE if PURPOSE
is a user-defined attribute-label. -

See Figure 3-6 for an example of an extended object with
category- and user-defined attributes.
3.2.4.3.4.4 Other Attributes

3.2.4.3.4.4.1 Content-defined Attributes

For convenience, the attributes of the content of an
extended object are accessible as though they were attributes of
the extended object itself. Content-defined attributes are
hidden by other pre-existing attributes of the same label. The
attribute label may be prefixed by "CONTENT'" to override this.
For example, OBJECT'LENGTH is equivalent to OJECTCONTENT*LENGTH
if LENGTH is a content-defined attribute label.

23

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSET'iS 02138 e (617) 661-1840

85-AIE(1) .KAPSE(1)

Figure 3-6, Example of an Extended object's Structure:

Exmpe of an Extended Object's Structure:

CATEGORY
OESCRIPTOR 2 ACCESS CONTROL

-mqA~oIIvr - - CATEGORY USER OEFINEO ATTRIBUTES

TUO~ SRE 1values of
RLAELEVEL L user

def ined
CATEG~ KF ttributes

Aeyed a elit accessOAM

oted ates lies fti ataiusceesms ostln

1,2.3,and 4 are system defined.
111132392-10

To hide existing content-defined attributes with a new
*user-defined attribute of the same label, the attribute

USER DEFINED ATTRIBUTE must be referenced explicitly the first
time.

24

IN'TERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSET TS 02138 *(6171 661-1840

B5-AIE(1) KAPSE(1)

3.2.4.3.4.4.2 Target-defined Attributes

Again for convenience, the attributes of the target of a
window are accessible as though they were attributes of the
window itself. Windows have no nameable attributes themselves.
Certain special primitives (see 3.3.2.1) and path-defined
attributes (see below) are available to query and adjust
information about a window.

3.2.4.3.4.4.3 Path-defined Attributes

The path-defined attributes CURRENT ROLES,
CUET. MODIFIERS, CURRENT RIGHTS, CURRENT OPEPXTIONS,
CUURIT CHANNELS, and CURRWT PAATITION, are accessible to reveal
the access available at a particular moment via a particular
path. These attributes are not stored on any object, but are
rather derived from the path followed to reach the object.

3.2.4.3.5 Uses for Composite Objects

Composite objects are used for the normal concept of a user
directory. However, because of the ability to use multiple
distinguishing attributes, to define partitions, and to operate
and control the objects as a whole with the various KAPSE
database primitives, composite objects can serve many other
purposes as well.

3.2.4.3.5.1 Configurations as Composite Objects

Composite objects can be used to hold the set of component
objects which represent a particular configuration of a system.
The configuration can also be adjusted as necessary by Ada
programs. Now components can be created, existing components can
be modified or deleted. The configuration, because it is a
single composite object, can be copied as a unit. The structure
of the configuration can be laid out and controlled by a category
descriptor, and access control can be applied to the
configuration as a whole, or to its individual parts.

3.2.4.3.5.2 Program Contest Object

Each program running in the APSE has associated with it a
single composite object called its program context object, or
simply Ocontext object." It is through the context object that
Ada programs gain access to the rest of the database. All object
pathnames begin in the context object, and then go through
windows to other more permanent parts of the database.

The context object is normally deleted after the program
finishes execution, and its results and status have been reported

25

INTERMrTRICS INCORPORATED * 733 CONCORD AVENUE @ CAMBRIOGE, MASSACHUSETTS 02138 i '6171 661-1840

r.,I. * .' "-. ''' ,,';. . -:.> . "-,- -- .--. .- .-.- . .*.- -. ". --.-. .-.

35-AIR (1) .KAPSE (1)

to its invoker. Components and attributes of this context object
may be simple objects (temporary files), composite objects (a set
of temporary objects), or windows on the more permanent parts of
the database. All context objects are composite objects using a
single distinguishing attribute labeled LOCAL NAME for their
components.

When an Ada program creates or opens an object in the
database, it specifies the pathname. If the pathname begins with
a dot or a tic, then the rest of the path is interpreted relative
to the context object.

If the pathname does not begin with a dot or a tic, the
KAPSE uses the window attribute labeled CURRENT DATA of the
context object, and interprets the path relative to t at window.
In effect, it is as though "CURRENTDATA.* were inserted at the
front of the pathname.

When a program is to be invoked from some existing running
program (i.e. the compiler being initiated from the command
language processor), a new context object is created, initialized
with a window attribute called "'PROGRAM0 back on the executable
program object, and with other window attributes and parameters
inherited from the invoker and its context object. This new
(sub)context is by default created as a component of the content
of the invoker*s context object, allowing the invoker to refer to
the subcontext during its execution by its LOCAL NAME. See
Figure 3-7 and section 3.3.3.3.

3.2.4.3.5.3 Private Objects

The KAPSE supports the creation and controlled manipulation
of private objects, encapsulated abstract data objects analogous
to a ob ects of private type. Private objects are managed by
one or more "trusted" programs, instead of being directly
accessible to a user through the normal database I/O operations.
For example, the KAPSE mail system allows users to send and
receive mail using private objects called mailboxes, without
giving users the ability to corrupt the internal structure of the
mailboxes.

Two implementations of private objects are supported by the
KAPSE. The first takes advantage of the KAPSE's access control
facilities to implement an object manipulated by programs local
to the object. The second uses access control combined with the
INVOKE OPERATION primitive to implement an object manipulated by
programs ("operationsO) external to the object.

The simpler kind of private object is a composite object
with one data component, and a number of executable program
components, each with privileged window attributes back on the
data component. To most external windows, only "execute" access

26

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMSRIDGE, MASSACHUSETTS 02138 (!617) 661-1840

, -. -. ,- , ,. - , , .'.; , . . . -, .i : " ,:, . .,, , , " • . , ., ,

B5-AIE (1) .KAPSE (1)

Figure 3-7, Programs and Program Context Objects:

Programs and Program Context Objects:

PROGRAM EXECUTABLE
CONTEXT PROGRAM4
OBJECT OBJECT

PARAMETERS PROCESSOR

__ RESULTS LINK Aft________

CURRENT DATA PROG-LIB

CONTENT

(LOAD

CONTENTMODULE)

(Sub Contexts and Temorary Files)

is given to the program components, and no direct access to the
data component. In this way, direct access to the data is denied
most users, but they can access the data via the programs
supplied in the privat, object.

27

INTINMFETRICS INCORPORATED * 733 CONCORD AVENUE *CAMSBR1DGE,. ASSACMUSETTS 02138 V ~61761-1840

• . . . , ., Z :. , , . . r " ., " - - - - - -. - -' - . " - . - -' -Z - " . " . .-" "" " -"

B5-AINL (1). KAPSE (1)

When executed, the context objects for the program
components will have their 'PROGRAM window back on their program
objects. With that, and the privileged window attributes of the
program objects, they can implement, on the user's behalf, useful
high-level operations on the data component.

This kind of private object requires no special handling by
the KAPSZ, as the 'PROGRAM window attribute is a standard feature
available to all programs. This kind of encapsulation is
analogous to that provided by an Ada package with externally
visible procedures, but with private data.

The second kind of private object does not contain direct
program components, but rather has an attribute labeled
" OPERATIONS" which is a window on a composite object where the
trusted programs reside. These trusted program objects cannot be
attributed with windows on the private object, because they do
not know in advance which object is to be manipulated. Instead,
the RAPS! provides an IWV0KE OPERATION primitive which, given the
name of an operation as a simple string, and a path to the
private object, will look up the operation in the composite
referred to by the designated object's OPERATIONS attribute. If
there, it will initiate the selected program with a privileged
window in its context of the name "'IM PLICIT OBJECT" referring to
the private object.

By restricting access to the object so that the user can
only invoke the "operations" (see Operate access right, below),
the private object is analogous to an instance of a "private"
type of an Ada package.

It should be noted that an object need not be a totally
private object to have an OPERATIONS attribute; the ability to
invoke an operation on an object as well as gain other direct
access can be useful.

3.2.4.3.6 Access Control for Extended Objects

Access control within the KAPSE is based on the concept of
"role.0 Each extended object may define its own set of abstract
roles. A role represents a logical set of participants in the
access and manipulation of an extended object. For example, a
project manager might wish to define roles for a REVIEWER, a
TESTER, a PROGRAMMER, and a MANAGER within a particular extended
object.

The manager would then set up the ACCESS CONTROL attribute,
which is associated with every extended object, to define the set
of "concrete access rights" which each role may use in the
object. For example, (s)he could give read access to the
REVIEWER, read and execute access to the TESTER, and read, write,
and execute to the PROGRAMMER, while reserving the special
OVERSEER modifier for the MANAGER role, as shown below:

28

INTERMETRI1CSINCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIE(). KAPSE()

Role Concrete Access Rights
--- -- - --- - - - - - - - - - - - - - - -

REVIEWER Read
TESTER Read, Execute
PROGRAMMER Read, Write, Execute
4MAAGER Read (plus OVERSEER modifier -- see below)

3.2.4.3.6.1 Abstract Roles

The set of roles for an extended object is defined by the
ROLES attribute, an indexed list which serves to provide a
Mapping between role indices and role names. The role indices
are stored internally (as bit positions, generally) instead of
role names in all windows and attributes which refer to roles.
Role names are provided externally for the user's benefit.
Certain role indices are reserved for system-defined roles (e.g.
SYST3E, CALLER, SUBCONTEXT).

3.2.4.3.6.2 Access Control Attribute

The ACCESS CONTROL attribute for an extended object is a
list of access control elements. An element specifies the
following for a specific role:

a. A set of available concrete rights;

b. A set of available operations;

c. A set of available comunication channels;

These rights are possibly limited or extended by partition
limitations and role modifiers (see below). Each of the above
sets are represented with bit vectors, using the appropriate
index (role index, right number, operation index, channel index).

3.2.4.3.6.3 Concrete Rights

The following concrete access rights are pre-defined for the
AE:
a. Read This right is required to be able to read

the files which make up the content and attributes of the
extended object. It also controls whether one can go
through any of the enclosed windows.

b. Add This right is required to be able to add
information to any file or window, including appending to a
simple file and creating new elements of a composite file.

c. Delete This right is required to be able to delete
information from any file or window, including removing from
the head or tail of a simple file (aka "consuming"), and

29

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • '6171 861-1840

- • ,- _ ., o n O , . . tn . • -

35-AXE (1) .KAPSE (1)

deleting existing elements of a composite file. Both add
and delete rights are required for random-access writing of
a simple file, and replacing of existing elements of a
composite file.

d. Execute This right is required to be allowed to
execute the content of the extended object as a program. A
PROCESSOR attribute must also be defined for the extended
object. The PROCESSOR attribute specifies the processor
which will interpret the content of the extended object.
The attribute value is the name of the target machine for
comiled code, or a window on the interpreter for a command
language script.

e. Operate This right is required to be allowed to
invoke any of the operations of the extended object. An
OPERATIONS attribute maust also be defined for the extended
object, and the operation index must be included in the
available-operation set.

f. Comunicate This right, which is only relevant to
running program context objects, is required for any
comunication with or control over the running program. To
coemunicate on a program-defined channel, a CHANNELS
attribute (which associates a channel index with each of the
channel names accepted by the program) must also be defined
for the context object. The system-defined channels (e.g.
* CONTROL," O-DEBUGO) are assigned pre-defined indices. The
sfstem- or program-defined channel index must be included in
the available channel set.

Operate and communicate are mutually exclusive - communicate
only applies to running program contexts, operate only applies to
data objects with an OPERATIONS attribute. The operation index
set, and the channel index set may therefore be defined by the
same set of bits, interpreted appropriately.

3.2.4.3.6.4 Windows and Access Control

Windows specify the roles (and role modifiers, see below) to
be used within an extended object, in terms of the roles used in
the extended object enclosing the window. The concrete right
Oread" is also needed to "go through" the window at all.

The role Otranslationo is expressed as follows:

a. A set of outside roles which retain the same roles inside
the extended object (they "translate" into themselves).

b. A list of translations. The first part of each translation
identifies a set of outside roles; the second part
identifies the set of internal roles and modifiers inherited
by any member of the first set. This allows for the

30

INTIERNITRICS INCORPORATED 7 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETT S 02138 * i617) 661-1840

B5-AIE(l).KAPSE(l)

possibility that a user (typically a manager) may have
several roles at the same time. The set of internal roles
and modifiers resulting from a window translation is the
union of those provided to each of the outside roles held on
entering the window.

3.2.4.3.6.5 Role Modifiers

A set of role Omodifiers" are predefined for all extended
4 objects. These modifiers determine extra rights and limitations

associated with the roles held:

a. OWNER This modifier means that the ACCESS CONTROL
attribute of the extended object may be edited (see 3.3.2.3)
This modifier is always translated into OVERSEER on going
through a primary window, and is losE on going through a
secondary window. This modifier is automatically given to
the creator of an object.

b. OVERSEER This modifier means that the ACCESS CONTROL
may be edited if one of the roles held already has read
access as defined by the existing ACCESS CONTROL attribute.
This modifier is preserved on going- through a primary
window, but is lost on going through a secondary window.
This modifier is automatically given to the copyer of an
object, on the copy only.

C. READ ONLY This modifier mans that no modifications
may be made to the object or any of its components,
independent of any rights granted by access control
attributes. This modifier is preserved on going through a
window. This modifier is automatically given when the
partition of the window includes non-distinguishing
attribute limitations.

3.2.4.3.7 Primary Windows and Extended Objects
When an extended object is to be created, a primary window

is first created with the designated name, and then the new
object is created as its target. The creator must have the *add"
concrete right on the file in which this primary window is being
implicitly created. If an existing object is being replaced, the
creator mast have the *delete" concrete right as well. The ROLES
and ACCESS CONTROL attributes of the extended object areinitialized- by default to be the same as the enclosing extendedobject, unless overridden by additional parameters to the CREATE

primitive. The implicitly created primary window is initialized
to allow external roles to keep their role internally, but also
to give the OWNER modifier to the set of roles held by the
creator.

When an extended object is copied, a new primary window is
created to control access to the copy. The copy is otherwise

31

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE a CAMBRIDGE. MASSACHUSETTS 02138 • (817) 561- 340

. - . . .
'' '" " " '° '' '" " ''" "." " " " "".. . .-- . . . , . - . .r ' . . . - - - -

B5-AIE(l).KAPSE(l)

identical to the original. The translation table of the new
primary window is set up to translate the copyer's roles outside
this new window, to the same roles already held by the copyer
inside -the original extended object. This allows a large
extended object to be safely copied, without first having to
verify that the copyer has read access to all of its sub-
components. The copyer*s roles are given the OVERSEER modifier
for use in the new copy, so that its ACCESS CONTROL attribute can
be adjusted.

The OWNER and OVERSEER modifiers are important because of
the special nature of the ACCESS CONTROL attribute. It is the
attribute which defines the access Fights to the object as a
whole, and hence, any role which can edit the access control
attribute has effectively unlimited access to the object.

The OWNER modifier is given to the creator of an extended
object. The creator may then adjust the ACCESS CONTROL
arbitrarily. On the other hand, when an existing extendeZ object
is copied, only the OVERSEER modifier is given to the copyer on
the new copy. What tKis accomplishes is that the copyer can
adjust the access control of the copy only in components of it
that he or she could already read.

3.2.4.3.8 Secondary Windows and Extended Objects

As mentioned above, secondary windows may be created on an
extended object. Secondary windows have in addition to their
role translation table:

a. An object designator of the target;

b. An optional partition limitation.

3.2.4.3.8.1 Role Translation

When the secondary window is created, the translation table
is set up, by default, to translate the roles held outside the
new window, to the roles (and role modifiers) already held by the
creator inside the extended object. If desired, the creator may
further limit the roles and modifiers inherited via the new
window.

3.2.4.3.8.2 Target Object Designator

The target object designator of a secondary window consists

of a common ancestor label and a window key (see below). The
common ancestor label uniquely identifies an extended object
which must enclose both the window and its target. The common
ancestorcs label, stored in the system-defined attribute
1ODE LABEL, is assigned automatically when the first window
wanting to use it is created. These NODELABELs are large

32

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02128 * (617) 661 840

BS-AIE(l).KAPSE (1)

integers to minimize collisions (it should be noted, however,
that even given collisions the KAPSE will find a suitable, if not
optimal, common ancestor). The NODE LABEL of the root of the
database is distinguished (e.g. always 1) for efficiency. The
root can always be used as the common ancestor as a last resort.

The window key is assigned when the window is created, to be
unique among all windows using the same common ancestor, by
advancing the value of the attribute LAST WINDOW KEY of the
comon ancestor. These keys are never reused-. Peri~dically, the
KAPSE will do a "garbage collection" to identify keys that have
no further references and compress the key space.

The window key is used to select an element of the
WINDOW XREF attribute of the common ancestor. The element
selectd is a file with information relevant to the window, as
follows:

a. ORIGINAL WINDOW The path from the common ancestor
back down to the original window created. This attribute
does not change, hence it in effect "names" the window for
all time in terms that are meaningful to the creator of the
window. If the creator decides later to revoke the window,
then he can do so by specifying the value of this attribute
in the revoke operation.

b. TARGET The path down to the target. It is
an error if this path does not "end" on an extended object,
or passes through secondary windows.

c. PARTITION The partition of the target visible
to users of the window. By default, this partition is all
of the target.

d. ROLE SET The set of all roles available to
users of the window, as based on the original translation
table. This set is represented as a bit vector.

e. MODIFIER SET The set of modifiers for the users
of the window, as specified in the original translation
table. This set is represented as a bit vector.

f. PARENTS A list identifying all the parent
windows of this window (see 3.2.4.3.8.4 below).

g. TRANSITORY A flag, which indicates that this
window will soon disappear and may not be listed as the
parent of any window derived from it (see 3.2.4.3.8.4

* below).

h. HAS CHILDREN A flag, indicating that a window has
bee7n created with this as one of its parents.

33

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE • CAMBRIDGE. MASSACH-USET'S 02138 * 46171 661-1840

B.-AIE (1). KAPSE (-)

i. REVOKED A flag, indicating that this window,
and all of its copies, have been revoked, but their children
have not. The children are then treated as direct children
of the parent windows.

It is important to understand that window creation is
distinguished from window copying. No additional WINDOW XREF
elements are created for copies of windows (in particular those
copies due to the copying of a large enclosing extended object).
On the other hand, each creation of a new window involves the
creation of an element of the chosen common ancestor's
WINDOW XREF attribute.

3.2.4.3.8.3 The Common Ancestor

When a window is created, the target object is designated
relative to some "common ancestor" extended object. This allows
a large Extended object enclosing a window, its target, and the
common ancestor to be copied and preserve the window/target
relationship in the new extended object. Alternatively, if the
copied object does not include the common ancestor, then the new
copy of the window will continue to refer to the original target.
This flexibility means that the judicious choice of a common
ancestor can determine whether a window is considered to point to
a specific nabsolute" object, or just to an object in some local
relationship with it.

Besides enclosing the window and its target, the common
ancestor must enclose the common ancestors of all of the parent
windows (see below). If the common ancestor is not explicitly
specified, the nearest ancestor satisfying these requirements is
used.

3.2.4.3.8.4 The Parents of a Window

Whenever a secondary window is created, it may be recording
roles which were obtained as the result of traversing some pre-
existing secondary windows. The creator must specify a path to
the target (TARGETPATH), and a path to where the window should
be created (WINDOW PATH). Both of these paths as usual start in
the context object of the creating program. The new window is
defined to be "derived" from all those windows traversed by the
TARGET PATH which were not also traversed by the WINDOW PATH.
This doefinition is based on the theory that if the TARGET PATH
and the WINDOW PATH start out the same, those windows traversed
along this common part will still have to be traversed to reach
the starting point of the newly created window (i.e.
WINDOW PATH).

The *parents" of the new window are defined to be the union
of:

34

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET S 02138 ((617, 661-1840

B5-AIE (l). KAPSE (1)

a. Those windows from which it was "derived" which don't have
the TRANSITORY flag set;

b. The parents of those windows which do have the TRANSITORY
flag set;

The "parent" relationship forms a directed acyclic graph
recording window creation dependence. This forms the basis for
window revocation rights (see below).

The path to the conmon ancestor of each of these parents,
along with the parent~s key at the common ancestor, are recorded
in the PARENTS component of the WIDOW XREF element for the newly
created window.

3.2.4.3.8.5 Transitory Windows

The TRANSITORY flag is used to prevent permanent dependence
on temporary windows created simply for focusing on a part of the
data base. It is envisioned that an interactive user will move
through the data base by "changing view" from one location to
another traversing both primary and secondary windows. A
transitory window (i.e. OCURRENT DATA) will record each new
"view". The windows derived from t e transitory window will take
as parents not the transitory window itself, but rather the
parents of the transitory window, allowing the transitory window
to be deleted without affecting windows derived from it.
Interactive users may walk around the database until they have
precisely the view desired and then derive a more permanent
window from the transitory window.

3.2.4.3.8.6 Revoking a secondary window

After creating a window, there may come a time when the
rights thereby granted are to be revoked. The right to revoke a
window is limited to those with OVERSEER or OWNER role
modifiers at one of the following "places":

a. At the location of the window itself.

b. At the location(s) of the parent window(s).

c. At the target extended object, but only if none of the
parent windows es.d at the same target (this represents a
definition of the direct "children" of the tat).

A window may be revoked in only tio ways:

a. The window and all of its descendants may be revoked;
or

b. The window may be revoked, and its children remain to become
adopted children of its parents.

35

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMSRIDGE, MASSACHUSET S 02138 * 6171 661-184O

B5-AIE (1). KAPSE (1)

Note that it is only possible to revoke a direct child window.
It is not possible to selectively revoke "grand-children"
windows, without first revoking the responsible parent. This
provides sufficient flexibility, without sacrificing reasonable
accountability rules (see (WarshallSO] for a further discussion
of these issues).

3.2.4.3.9 History Recording and Management

from the point of view of history, two significantly
different kinds of extended objects exist in the database: source
objects and derived objects. Source objects are those with
content produced, in general, by a human using a text editor.
Derived objects, text or otherwise, are those produced as the
output of other tools or user programs, with little or no direct
input from the user other than parameters.

The history attribute is designed to uniquely identify a
particular "state" of an extended object's content, and to record
enough raw data to support present and future monitoring,
analysis, and rederivation tools.

In the case of a source object, the history attribute refers
to a "source archive" wherein an efficient representation of
multiple states (revisions or versions) of the same basic text
may be stored. The history attribute consists of a window on the
source archive, and an index used to locate the pieces of text
that make up this particular state of the object. Given a copy
of the history attribute of a source object, it is possible to
reconstruct the original text (subject to access control).

When an object is first created, it is considered by default
to be . derived object. It may then be explicitly identified as
a source object, at which time, it may be added to an existing
source archive, or used to create a new source archive. When
added to an existing source archive, the source object is
assigned the next sequential state index. With a new archive,
the source object is assigned state number one.

The history attribute of a "derived" object consists of a
window on a program invocation "script," and an index indicating
which output of the program gave this state of the object. Every
time a program is invoked, a script is created to record its
parameters, when it was invoked, an list of windows on the
objects manipulated by the program, and copies of their history
attributes (including the TERMINAL INPUT object -- see 3.3.3.5).
If the program modifies no objects, the script may be deleted
after the program completes. Otherwise, the script must be saved
permanently, and the history attributes of each of the modified
objects must be updated to point to the script.

The window mechanism keeps track of references to history
scripts and archives. Periodically, the contents of source

36

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02133 * '617) 661.1840

,,,,,V. . . ,. . ,-. .. .'- - -.... V * * . .V. - ,. , *. . . - V *:. , ; • . .

B5-AIE (1) .KAPSE (1)

archives and scripts that have not been referenced recently may
be dumped to tape through a KAPSE service (see 3.3.4.1).
Nevertheless, a "stub" remains to keep track of where the history
has been saved off-line. A user may explicitly request re-
activation of specific scripts or archives. Even recently
referenced archives or scripts may be written to tape to ensure
that the tape contains an internally self-consistent
representation of hist-ry. However, these history elements are
left on-line as well.

In addition to the data mentioned above, each history script
and source archive records the date and time, as well as the USER
NAME, when the program execution or source archiving occurred
(see 3.3.4.1).

3.2.4.4 KAPSE/Host Interface -- "M/SP and OS/32

The KAPSE is designed to be as host-independent as possible.
This is accomplished by defining KAPSE/Host interface packages
which provide for the rest of the KAPSE a uniform interface to
the host. Only the bodies of these interface packages will need
re-writing when re-hosting. Also, any embedded machine code is
restricted to the KAPSE/Host interface packages.

a The KAPSE/Host interface packages, detailed in section 3.3,€. are as follows:

(KAPSE.SIMPCOKP) a

Package PNYSBLOCK10
Package DEVICE 1O

(KAPSE.MULTPROG)

Package PROGRAM LOADING
Package KAPSE PROGRAM COMMUNICATION
Package KAPSEKAPSECOMMUNICATION

(KAPSE.RTS) :
(oast of it, except the

"Language-Defined Packages" CPC)

Note that, in a sense, these packages represent the opposite
"side" of the KAPSE from the KAPSE/Tool interface packages
identified in section 3.2.4.1.

3.2.4.4.1 Overall Architecture

The overall architecture provided by the KAPSE/Host
interface packages, using whatever host facilities are
appropriate, is a number of independently executing Ada programs

37

INTERMETRICS INCORPORATEOD 733 CONCORD AVENUE - CAMBRICGE. A'ASSACHUSETS0238 • .617) 561.240

* *1 A' * * <'.

777C.

BS-AIE(l).KAPSE(1)

running concurrently on the host machine. Each independent Ada
program has its own run-time system, including an Ada task
scheduler.

The KAPSE/Host interface packages implement (with help from
the host) device drivers, as well as the loading, timesharing,
memory management, and swapping of the independent programs. The
KAPSE/Host interface packages also provide a low-level
comunication path between the KAPSE and each user program
(package KAPSE PROGRAM CCIMUNICATION), and between two KAPSEs on
separate (virtual) machtnes (package KAPSE KAPSE COMMUNICATION).

The KAPSE itself is an Ada program, using a specialized
version of the Ada run-time system lacking the high-level 10
packages, and supporting the connection of entries of tasks
within the KAPSE/Host interface packages to real hardware
interrupts (see 3.3.5.3).

The communication path from the user Ada program to the
RAPSE is analogous to a "system call" or SVC. Except for this
comunication path, the KAPSE/Host interface packages entirely
isolate the user Ada programs from one another, from the KAPSE,
and from the host (using hardware protection where possible).

In summary, the KAPSE/Host interface packages insulate the
KAPSE from the idiosyncrasies of the host system facilities. The
rest of the KAPSE, in turn, implements the high-level KAPSE/Tool
interfaces in terms of these low-level host-independent
interfaces. In addition, the KAPSE/Host interface packages
prevent the application programs running under the KAPSE from
accessing the host facilities directly, thus ensuring that the
KAPSE Database is not contaminated.

3.2.4.4.1.1 134 VM/SP

This overall logical architecture is implemented on top of
the VM/SP system using multiple virtual machines IBMS1], each
with its own KAPSE program. A particular user is allowed to DIAL
into one of the running virtual machines, or to IPL his own (or
his projects) if it is not already running. After IPL, the
KAPSE begins running and spawns multiple LOGIN programs within
its virtual machine to handle the terminal associated with the
IPL, and each terminal which connects later via DIAL.

After connecting via IPL or DIAL, the user must LOGIN by
providing a user name and password. If accepted, LOGIN then
invokes the command processor identified in the user's
INITIAL PROGRAM CONTEXT attribute of his top-level directory.
The addTtional programs initiated by the command processor will
share the same virtual machine with the KAPSE and those of other
simultaneous users of the virtual machine. The multiple programs
within a single virtual machine are managed by the KAPSE/Host

38

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840
4 . , , - . - - . . - • ° / - . ° -

q 1 1. 77 - - -

B5-AIE (1) KAPSE (1)

interface package PROGRAMLOADING.

To provide access to each others databases, multiple KAPSEs
on the same physical machine may communicate -via t-he KAPSE/Host
interface package KAPSE KAPSE COMMUNICATION. This communication
between virtual machines is iplemented using the Virtual Machine
Communication Facility (VMCF) or the Inter-User Communication

S. Vehicle (IUCV), both of which are high-band-width memory-to-
memory data paths provided by the VM/SP Control Program.

3.2.4.4.1.2 Perkin-Elmer OS/32

The same overall logical architecture is implemented
differently on top of the OS/32 system, by placing each
independently executing Ada program in its own OS/32 task. User
programs execute in a mode whereby the only OS/32 SV- 6 system
calls they can perform are inter-task communication. They are
not permitted to directly stop, start, or otherwise interfere
with other tasks (NOCON mode) (PE79].

The KAPSE runs in its own 0S/32 task without NOCON mode,
allowing the KAPSE/Host interface packages access to all OS/32
system calls. They initiate all physical I/O, including terminal
and disk, and thereby can optimize physical disk access and
provide a central buffer cache. All 0S/32 tasks communicate
using the standard 0S/32 inter-task communication primitives, a
memory-to-memory queue-based data path [PE79].

3.2.4.5 Comile/Run-time System Interface

The Ada compiler (AIE(l).CCK4P(l)1, like any tool written in
Ada, depends on its own run-time system (KAPSE.RTS) implicitly
for proper execution. In addition, the middle and back end of
the compiler (CCKP.MID, COMP.BEND) depend on the interface
presented in general to compiled code by the run-time support
routines, because they expand and generate the code for Ada
language constructs which implicitly use those interfaces.

Each of the CPC's within the KAPSE.RTS CPCI provide a set of
routines, some expanded in-line, others called out-of-line within
compiled code. The interfaces to these routines, as known to the
compiler, are detailed in each of the discussions in section
3.3.5.

3.2.4.6 Linker/Loader interface

The linker (AIE(l).PIF(l)] depends on the load module
format, defined by the Loader within the package PROGRAM LOADING
of the KAPSE/Host interface, CPCI KAPSE.MULTPROG. This interface
remains to be fully specified, and may vary from host to host.

39

INTERMETRICS INCORPORATEC • 733 CONCORO AVENUE - CAMSRIOGE,. IASSACHUSETS 021.8 • 6171 661-1840

4

B 5-AI E (1) .KAPSE (1)

In general, a load module will be a single direct-access
file, written using the language-defined package DIRECT 10
(KAPSE.RTS). The information within the load module is
sufficient to identify the size, layout, and initialization of
virtual memory for the program s code and static data, as well as
identify where execution is to begin, and what initial stack
allocations are appropriate.

.-

P ,a

-44

.1,

40
.,A

,'qINThRMETRIcS INCORPORATED • 733 CONCORD AVENUE * CAM' BRID3GE. MASSACHUSETTS 02138 * i617) 661.1340

4 .'* 4

hi

B5-AIE (1) RAPSE (1)

3.2.5 Function Descriation

The KAPSE consists of five Computer Program Configuration
Items (CPCt's):

a. KAPSE.SIMPCOMP

b. KAPS! .ACCZCAT

c. KAPS!.MULTPROG

d. KAPSE.HISTARCH

e. KAPSE.RTS

A brief discussion of each of these CPCI's follows. See Figure
3-8 for an overall CPCI dependency diagram.

3.2.5.1 Simple and Composite Objects (KAPSE.SIMPCCMP)

This CPCI defines simple and composite objects; it defines
the techniques used to implement objects as well as the
operations that can be performed on objects. Access methods and
data clumps define the techniques used to implement simple
objects. Simple objects correspond to files on a typical
operating system. Composite objects are collections of simple
objects. A traditional directory is an example of a composite
object. Also defined are the routines that do physical input and
output (I/O). Block I/O defines read and write routines between
a program and the disk; device 1/O defines read and write
routines between a program and an interactive terminal.

A short discussion of each of the CPC's that comprise this
CPCI follows. See Figure 3-9 for the inter-CPC dependencies
within this CPCI.

3.2.5.1.1 BLOCK 10

BLOCK 10 defines routines to read from and write to the disk
in fixed size blocks.

3.2.5.1.2 DEVICE 10

DEVICE 1O defines routines to read from and write to an
interactive terminal.

41.

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIDGE, MIASSACHUSETTS 02138 - ,617 661-1840

BS-AIZ (1) .KAPSE (1)

Figure 3-8, Top Level CPCI Implementation Dependencies:

Top Level Implementation Dependencies:

windows on f window for history
w now nACCECAT ___ _....__

mail boxes

i access methods/
files efficient

, storage ofIMPOMP copies,SIMPCOMP .r .ea 1
general08 features

prog context obj

message passing
and interrupts

111 182392-12

3.2.5.1.3 ACCESS MMSOS AND DATA CLU14PS

ACCESS METHODS AND DATA CLUMPS defines how file objects are
implemented by the KAPSE. Data clumps are units of disk storage
that ace convenient for building access methods. Files ace disk
structlces that are manipulated by access methods. The

42

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE 'CAMSRIDGE. MASSACHUSETTS 02138 (6171 61-1840

B5-AE (1).KAPSE(1)

Figure 3-9,
SI PCOMP Inter-CPC Implementation Dependencies:

Simpcomp Implementation Dependencies:

Simple Objects C omposite Objects

Dee 10 Access Methods and
Data Clumps

Block 10

Reference CountT1ree Manager 1

SPhysical Block 10

111182392-11

techniques used to implement the access methods are defined. The
four different kinds of files implemented by the KAPSE are
introduced:

a. Direct Access File;

43

INTERMITRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSE-TS 02138 * 6171 661.1840

' ! ' ?e% q "," % ,",". . ". -". "' ',".' . '_". '. . , '.

5S-AIE (1) . KAPSE (1)
b. Text Access File;

c. List Access File;

d. Key Access File.

3.2.5.1.4 SIMPLE OBJECTS

SIMPLE OBJECTS defines operations accessible at the
KAPSE/Tool interface for manipulating extended objects with
contents which are:

a. Direct Access File;

b. Text Access File.

3.2.5.1.5 COMPOSITE OBJECTS

COMPOSITE OBJECTS defines routines available as part of the
KAPSE/Tool interface, for manipulating extended objects with
contents which are:

a. List Access File;

b. Key Access File.

The routines to create composite database objects, to open and
close partitions of existing composite objects, and to get the
next component of a partition of a composite object are defined.

3.2.5.2 Access Control and Category (KAPSE.ACCECAT)

This CPCI defines the KAPSE s mechanism for controlling
access to database objects, and the KAPSE's mechanism for
classifying objects. The CPC's that comprise it are:

a. WINDOW OBJECTS

b. CATEGORY-DEFINED AND USER-DEFINED ATTRIBUTES

c. ACCESS CONTROL

Access control information in the KAPSE is distributed
throughout the database. Each extended object contains
information that defines the access rights available to users of
the object, according to the user's "role." A role is an abstract
property associated with a user that characterizes the activity

44

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (C617) 681-1840

.T - , ,- .- o o-. -. . • . . . - " . " . . " . " . . . ' . . - . "' :' ; ' ':' " " '" ": '. " '" '- ... "': , , "" ": ' " '_ .- .' " " . " .. ' , "- - - -

85-AIE (1).KAPSE(1)

expected of the user (such as "PROGRAMMER", or "REVIEWER"). A
role becomes associated with a user when the user goes through a
window; going through windows is also the means by which a user
traverses the database. Hence, the notions of access control,
windows, and roles are all inter-related.

The KAPSE's CATEGORY facility is a mechanism whereby the
user can define the structure and properties of a class of
database objects. This facility is analogous to the concept of

- type in high level programming languages. An object's CATEGORY
is stored as an attribute of the object. In general, an
attribute of an object can itself be any kind of database object.

A brief discussion of each of the component CPC's follows.

3.2.5.2.1 WINDOW OBJECTS

WINDOW OBJECTS defines routines to create, delete, copy, and
revoke windows.

3 .2.5.2.2 CATEGORY-DEFINE AND USER-DEFINED ATTRIBUTES

This CPC defines routines:

a. to create and manipulate category descriptors;

b. to get and set the values of user-defined attributes.

A category descriptor is a list access file, each element of
which describes the properties of a single category-defined
attribute. The CATEGORY CPC defines routines to create and
manipulate category descriptors, and thereby define new database
object structures.

User-defined attributes are those attributes that are not
defined by either the system or the category descriptor. Each
extended object has a system-defined attribute called
OUSER DEFINE ATTRIBUTES" whose value is a keyed access file.
The c&Monents of this attribute are keyed by user-defined
attribute labels, strings that satisfy Ada naming conventions.
The components have values that can in general be any kind of
object.

When the user gives the label for an attribute, the KAPSE
first checks to see if the label corresponds to a system-defined
attributer if not it then checks to see if it corresponds to a
category-defined attribute of the object. If the label is not
category-defined, it searches USER DEFINED ATTRIBUTES to see if
it appears as a key to one of its components. Finally, if not
there, the KAPSE repeats the process on the content of the
object.

45

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE a CAMBRIDGE. MASSACMUSETTS 02138 '617) 661.1840

BS-AIE(l).KAPSE(l)

3.2.5.2.3 ACCESS CONTROL

ACCESS CONTROL provides routines to get and set the
primitive access rights of an object that are associated with a
particular role, as well as adjust the role translation table
associated with a window.

3.2.5.3 Multiple Program Management (KAPSE.MULTPROG)

This CPCI defines how a program is invoked, how a program
communicates with another program, and what the environment of a
running program is. Also defined are the debugger interface to a
running program and the KAPSE mail system.

The CPC's for this CPCI are:

a. PROGRAM LOADING

b. KAPSE PROGRAM COMMUNICATION

c. PROGRAM INVOCATION AND CONTROL

d. KAPSE KAPSE COMMUNICATION

t. TERMINAL SCREEN MANAGER

f. LOGIN/LOGOUT AND USER CONTEXT

g. MAIL

A brief discussion of each follows.

3.2.5.3.1 PROGRAM LOADING

PROGRAM LOADING defines the mechanism whereby programs are
loaded into memory. It also defines the mechanism for sharing
code between programs, and other host related issues involving
needs of running programs. The PROGRAM LOADING CPC is part of
the KAPSE/Host interface.

3.2.5.3.2 KAPSE PROGRAM COMMUNICATION

KAPSE PROGRAM COMMUNICATION defines the interface that
allows a user program to request services of the KAPSE. To
ensure integrity of the KAPSE, a protection boundary exists
between the KAPSE and the user programs. The protection boundary
is crossed only by bundling up a user request into a message and
sending the message to the KAPSE via this special interface.
This CPC forms part of the KAPSE/Host interface, interface.

46

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1340

B5-ATE () . KAPSE (1)

3.2.5.3.3 PROGRAM INVOCATION AND CONTROL

PROGRAM INVOCATION AND CONTROL defines all interfaces
associated with invoking a program, communicating with a running
program, and manipulating a running program. In particular,
routines are defined to do the following:

a. To call a program and wait for it to complete.

b. To initiate a program and not wait for it to complete.

c. To await the completion of a program.

d. To suspend and resume a program.

e. To invoke an operation defined for a database object.

f* To allow communication between running programs.

g. To debug a program.

3.2.5.3.4 KAPSE KAPSE COMMUNICATION

<<TBD>>

3.2.5.3.5 TERMINAL SCREEN MANAGER

TERMINAL SCREEN MANAGER defines an abstraction of an
interactive terminal. This abstraction provides terminal control
facilities to start and stop terminal output (XON, XOFF), to
interrupt a running program (Control-C), to erase the previously
typed character (Control-H), and to erase the current line
(Control-X). It also implements a Scroll Control Mode that
provides to the user commands to review text previously displayed
on the terminal.

3.2.5.3,6 LOG IN/LOGOUT AND USER CONTEXT

LOGIN/LOGOJT AND USER CONTEXT provides routines to login, to
obtain the user name of the currently executing user, to change
the portion of the database viewed through the CURRENT-DATA
window, and to change the user's password.

3.2.5.3.7 MAIL

MAIL provides routines to send a message, to check if a sent
message has been read, to see if there are any waiting messages,
and to read mail.

47

INTIEMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE. MASSACHUSET" 02138 * 6171 661-1340

B5-AIE (1). KAPSE (1)

3.2.5.4 History and Archiving (KAPSE.HISTARCH)

This CPCI has three CPC's:

a. HISTORY

b. BACKUP RECOVERY

C. CONFIGURATION KANAGE4ENT

3.2.5.4.1 HISTORY

HISTORY defines the mechanism whereby the KAPSE records
enough information about an object to allow it to be
reconstructed.

3.2.5.4.2 BACKUP RECOVERY

BACKUP RECOVERY defines routines to do a full backup
(effectively a snapshot of the database), to do an incremental
backup (recording only those blocks that have changed since the
last backup), and to recreate a formerly backed up version of an
object.

3.2 .5.4,3 CONFIGURATION MANAG!1ENT

CONFIGURATION MANAGE4ENT defines a simple set of
configuration management tools, as an example of the use of the
configuration management support primitives provided within the
KAPSE as part of other CPCs. The configuration management
facility includes a tool to list the elements of a partition, as
well as tools to reserve and release items of a configuration for
the purpose of safe updating.

3.2.5.5 Run-time System (KAP6E.RTS)

This CPCI has the following CPC's:

a. UNIT EXECUTION SUPPORT

b. STORAGE MANAGEMET

c. TASKING SUPPORT

d. EXCEPTION HANDLING

e. PRDEFINE PACKAGES

f. TYPE SUPPORT

A brief discussion of each follows:

48

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET 7S 02138 ((617) 66,.1840

77- -74--.7.

B5-AIE (1) KAPSE (1)

3.2.5.5.1 UNIT EXECUTION SUPPORT

UNIT EXECUTION SUPPORT provides the basic support for the
execution of sequential program units, including subprograms,
blocks, and packages, and for the creation of local stack frames

* with a header, local variables, and subprogram communication
area.

3.2.5.5.2 STORAGE MANAGE4ENT

STORAGE MANAGEMENT provides routines for the allocation and

management of the various run-time storage structures, including
primary and secondary stacks, and controlled and checkpointed
heaps.

3.2.5.5.3 TASKING SUPPORT

TASKING SUPPORT provides the basic routines for task
creation, activation, synchronization, and termination.

3.2.5.5.4 EXCEPTION HANDLING

EXCEPTION HANDLING provides the basic support for raising
and handling exceptions.

3.2.5.5.5 PREDEFINE PACKAGES

PRDEFINE PACKAGES implements the five predefined packages:

a. 10 EXCEPTIONS

b. SEQUTIAL_1O

c. DIRECT 10

d. TEXT 10

e. CALENDAR

3.2.5.5.6 TYPE SUPPORT

TYPE SUPPORT provides routines to support basic operations
on typed objects, such as fixed point arithmetic, and IMAGE and
VALUE processing for scalar types.

49

INTIRMITRICS INCORPORATiED * 733 CONCOPO AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • k617) 661-1840

7-.7*~* -77 .- - . * - -

B5-AIE(l).KAPSE(l)

3.3 Detailed Functional Requirements

3.3.1 Simple and Composite Objects (KAPSE.SIMPCOMP)

3.3.1.1 Block I

3.3.1.1.1 Physical Disk I/O

3.3.1.1.1.1 Inputs and Outputs

The following low-level subprograms are implemented for each
host, to provide physical disk 1/O, as part of the KAPSE/Hostinterface:

with DATABASE DEFS; use DATABASE DEFS; -- Host dependent

Package PHYSICAL BLOCK IO is

type BLOCK ARRAY is array(l..BLOCK SIZE) of STORAGE UNIT;

procedure READ BLOCK(BLK: in BLOCK ID; DATA: out BLOCK ARRAY);
-- This procedure translates BLK into a physical
-- disk address and then reads the block at
-- that disk address into the buffer designated
-- by DATA. An entire block's contents is read.

procedure WRITE BLOCK(BLK: in BLOCK ID; DATA: in BLOCK ARRAY);
-- This procedure translates BLK into a physical
-- disk address and then writes the contents of
-- the buffer designated by DATA into that disk
-- address. An entire block's contents is
-- written.

end PHYSICALBLOCKIO;

3.3.1.1.1.2 Processing for VM/SP

Each KAPSE is given its own virtual machine which in turn is
assigned a number of virtual mini-disks within the VM/SP
Directory. Each of these mini-disks consist of a number of
cylinders, with each cylinder holding a number of the KAPSE
fixed-size blocks. A KAPSE data base can be logically viewed as
an array of physical disk blocks, each block identified by a

*so 50

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACH-USE'T'!S 32138 * 8617) 661.1840

-;j

"' ° ; . . . '"",. ".. . " ... , . -

B5-AIE (1) .KAPSE (1)

unique block identifier (BLOCK ID). Block identifiers are just
integers. A separate function is provided to map Block
identifiers into physical disk addresses (mini-disk, cylinder,
track, byte).

Blocks are allocated so that sequential blocks are in the
same cylinder, if possible, with a separation from the
predecessor block determined by the physical characteristics of
the device type of the mini-disk. The logically sequential
blocks of an object are allocated non-contiguously to allow for
the delays associated with a time-sharing environment, which
prevent a user program from processing data as fast as the disk
could provide it.

3.3.1.1.1.3 Processing for PE OS/32

The 0S/32 KAPSE task obtains disk storage by creating
contiguous OS/32 files with a consistent naming scheme. The
files are then assigned to the KAPSE with exclusive read/write,
thereby preventing other OS/32 tasks from corrupting the data.
After creating such a file, it is treated much like the V4/SP
mini-disk.

3.3.1.1.1.4 Special Requirements

The translation from BLOCK ID to a physical disk address
must be very efficient. Noie that the only direct user of
PHYSICAL-BLOCKIO is the buffer manager (discussed below).

3.3.1.1.2 Buffer Management

3.3.1.1.2.1 Inputs and Outputs

The parameters to buffer management routines are typically a
block identifier, a string to be read or written, and some
Obuffer management advice.* Routines are also provided to flush a
buffer, given the block identifier for the contents of the
buffer, and to flush all the buffers.

Buffer management advice is information that the caller
Nprovides (as an in parameter) to the buffer management routines

to help the buffer manager decide what to keep in memory and what
to flush to disk. Buffer management advice is specified as a
value from the enumeration: (WILL NEED AGAIN,
WILL NOT NEWDAGAIN, NO ADVICE).

* 51

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIDG. MASSACHUSETTS 02138 * 67 661-140

'S ,,. ",', , . :v . ; .".".... . . .'," ... ,... .. ,...... -"- '

B5-AIE(). KAPSEW(.)

3.3.1.1.2.2 Processing

Buffer management provides an in memory cache of the
contents of recently referenced disk blocks. Its job is to
minimize traffic to and from the disk, consistent with the
legitimate needs of the caller (such as the periodic need of some
applications to flush a particular buffer to disk).

Buffer management uses a "clock" algorithm in which all
buffers being used are linked into a doubly linked circular list.
This list (hereafter called the ring) is the Oclock face* of the
clock algorithm. A separate variable points to a particular
element on the ring; this variable is the "hand" of the clock
algorithm. When a buffer is needed, the hand sweeps forward
around the ring looking for an element that indicates that it has
not been recently referenced. As the hand passes over an
element, it sets the referenced flag to "NOT REFERENCEDO. In
this way, even if it has to sweep the entire ring, the hand will
eventually find a buffer with NOT REFERENCED set. This algorithm
implements an efficient approximaEion to "Least Recently Used."

Buffer management also maintains a free pool of buffers that
have been removed from the ring. A threshold value determines
when the pool must be replenished (via the algorithm described
above).

The buffer manager advice allows additonal control over this
caching algorithm, by causing it to favor or disfavor certain
blocks by moving them in the ring.

The flush routine forces the contents of modified buffers to
the disk, allowing higher level data base management routines
control over the order in which physical writes occur. This is
especially important for reduncancy/integrity structures such as
transaction logs. The contents of a transaction log entry must
be physically written to disk before the change it describes can
be written to the disk.

The buffer manager uses physical block I/O. The only direct
users of the buffer manager are the logical block manager and the
reference count tree manager. Both are discussed below.

3.3.1.1.2.3 Special Requirements

Since all traffic to and from the disk is via the buffer
manager, its performance is a very important part of the overall
performance of the KAPSE. The algorithm will be tuned to provide
a satisfactory level of performance.

52

INTERMITRICS INCORPORATED - 733 CONCORD AVENUE a CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-. 171 7- 7% SSa - '.*- 7 -7.7; -7. - 77% ."

3S-AIE(l) .KAPSE(l)

3.3.1.1.3 Reference Count Tree

3.3.1.1.3.1 Inputs and Outputs

The primary input to the reference count tree manager is a
block identifier. Routines are provided to get the reference
count of a block, to increment it, and to decrement it; each of
these return the reference count of the specified block as an out
parameter. The routine to allocate a block returns the block id
of the allocated block.

3.3.1.1.3.2 Processing

Reference counts are kept for every disk block in a
database. The reference count of a block is the number of disk
block pointers that point at the given block. If the reference
count of a block is zero, then the block is free and can be
allocated.

Reference counts are kept in a separate data structure
called the reference count tree. The reference count tree has a
root, some number of internal blocks, and leaf blocks. The root
and all of the internal blocks contain nothing but disk pointers.
The leaf blocks contain nothing but reference counts. The block
id assoiated with a particular reference count is known
impqliitly by the position of the reference count in the
reference count tree. The depth of the tree is uniform and is
expected to be small.

3.3.1.1.3.3 Special Requirements

As with the buffer manager, this routine is critical for the
overall performance of the KAPSE.

3.3.1.1.4 Loqical Blocks

3.3.1.1.4.1 Inputs and Outputs

Logical blocks are identified by a limited private type,
LOGICAL SLOCK RANDLE. A logical block handle is merely an access
value oF a data structure defined in the logical block manager
package. The operations provided are to read and write the
contents of a logical block, to copy all or part of a logical
block's contents, to move all or part of a logical block's
contents, and to allocate logical blocks.

33

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUS.TT S 02138 * (6171 61-1840

BS-AIE(l) .KAPSE (1)

The primary input is a logical block handle; secondary
inputs specify what part of a logical block is to be moved or
copied, or provide the data for write operations.

The outputs of logical block operations are logical block
handles or the data that were road.

3.3.1.1.4.2 Processing

The content and attributes of all non-device (see 3.3.1.2)
objects are recorded on the disk provided by the host machine.
At a low level, all recorded information consists of either bytes
of data or pointers to other disk blocks. In the KAPSE, this
distinction between data bytes and disk pointers is made by the
logical block manager.

Logical blocks are a logical view of a physical disk block.
They contain two distinct parts: a data byte part and a block
pointer part. Access to the data part of a logical block is
unrestricted. Access to the block pointer part of a logical
block, however, is restricted to a few operations, and the actual
value of a block pointer is neyer revealed to the caller. The
caller must identify a block poi tcr by its location in the block
pointer section. The location of a block pointer is referred to
as a 0slot,8 and the caller refers to a ,lot by a "slot number."
Access to block pointers is controlled to maintain for every disk
block an accurate count of all references to that block, needed
for "virtual" copying (see below).

Operations on the byte portion of a logical block are to
read or write all or part of the bytes stored.

Operations on the block pointer portion of a logical block
are to allocate a new block and store its identifier in a given
slot, to erase the block pointer stored in a given slot, to copy
a pointer from slot from one slot to another, and to move a
pointer slot from one slot to another.

The graph formed by disk block pointers is guaranteed by the

logical block manager to be acyclic, and there is a well-defined
root for the entire graph. This implies that the "children" of a
block (those pointed to from one of the block's slots) can never
be one of its "ancestors." Combined with the fact that the
reference count of each disk block in the database is known, this
makes it possible to determine if a block is shared. A block is
shared if its reference count is greater than one, or if any of
its ancestors along any path from the root are shared.

By keeping track of whether a block is shared, physical
copying of the block can be deferred until a change is actually
made to the original or some logical copy. To logically copy a
block and all of its decendants, one need only increment the

54

INTIERMETRICS INCO RIPRATEO • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - 6171 661.* 4

B 5-A E (1) .KAPSE (1)

reference count of the top block (making it and all of its
descendants shared); one need not physically copy all th1e
specified blocks. This mechanism of deferring actual copying is
referred to as "virtual"' copying. See Figure 3-10.

Figure 3-10, Physical Blocks vs. Logical Blocks:

Physical Blocks VS. Loalcal Blocks:

Physical Blacks:

05 inside blocks indicate block ids
-'s outside blocks indicate -ufetanCO Counts

-block is shared tsntarad flag)

2 3

1 2 1
4 S'

1 2
7

9

Logical Blacks.

vs inside blacks indicate which physical block contains datarblock is Shared (shared flag)

55 5

IN U~ rR c IN O PO A4
2 733OC

R V N E * C M R D E AS A li S 1 S 0 1 8 * 6 7 6 l~ 4

I

9. . . .9 9
.

35-AlE (1) .KAPSE(l)

When a logical block is to be changed, and the logical block
manager determines that it is in fact shared (by keeping track of
whether it or any of its ancestors have multiple references),
then a new block must be allocated to hold the changed data.
Since the changed data will be stored in a new disk block, the
parent of the old block (on the path taken from the root to this

.. block) must be changed to point to the new block. As before we
must check to see if the parent is shared to see if we can change
the parent in place or if we need to allocate another disk block.
Eventually we will find a parent that is not shared, and can be
updated in place.

Given an unshared parent block, we allocate a new disk block
and copy the contents of the old child of the parent into the
newly allocated block (incrementing the reference counts of all
blocks referred to by slots in the child, and setting the initial
reference count for the new block is set to be one). The parent
is then changed in place to point (via the appropriate slot) to
the new block and the reference count of the old child is
decremented. At this point the new child contains an exact copy
of the contents of the old child, but unlike the old child it is
not shared. Hence, it can be changed in place and the process
repeats (with the new child acting as the parent), until we reach
the original block that was to be changed.

The eventual amount of physical block copying required with
the logical copy approach is never more than if the object were
physically copied immediately, and is generally significantly
less for large, relatively stable objects. The cost of

.maintaining reference counts, however, can affect overall system
performance.

The header of a logical block also records the
TIME SEQUENCE NUMBER when the block was last written, which is
useful for system checkpoint and incremental backup (see
3.3.4.2).

3.3.1.1.4.3 Special Requirements

The virtual copy mechanism is central to the design of many
of the KAPSE's features. It permits multiple copies of stable
objects to be very space-efficient. In this way, for instance, a
category descriptor may be logically contained in thousands of*
objects, but only occupy the space required for one copy. The

. virtual copy mechanism is relied upon to efficiently store many
versions of the same object. It is also used to implement the
synchronization access modes (WRITE COPY, WRITE ORIGINAL), by
making a copy of the object that can be manipulated safely (see
3.3.2.3).

It is essential, therefore, that the virtual copy mechanism
be reliable and efficient.

56

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET7S 02138 617) 661 1340

:'. .

35-AIE (1). KAPSE (l)

The logical block manager uses both the buffer manager and
the reference count tree manager. It in turn is used only by the
clump manager (see data clumps and access methods).

3.3.1.2 Device 10

A small number of device objects are created by the system
manager to provide direct and import/export access to physicalI/O devices or disk files of the host system.

3.3.1.2.1 Terminal I/O

3.3.1.2.1.1 Inputs and Outputs

The following primitives are available to the KAPSE for terminal
input/output:

37

INTERMITRICS INCORPORATED • 733 CONCORD AVENUE • CAMSRIOGE, MASSACHUSETTS 02*138 : 617) 661-1840

B5-AIE(l).KAPSE(1)

Pac. Te TERMINAL TO is

procedure READ TERMINAL(TERM: in INTEGER; ECHO: in BOOLEAN;
DATA: in BUFFER PTR);

-- This procedure sets up a buffer for characters
-- to be read from the specified terminal,
-- with or without echoing.
-- The buffer will be released when full, or when any
-- ASCII control character is typed (including DEL).
-- NUM BITS of the associated BUFFER DATA
-- indicates actual number of characters accepted.
-- With MAX NUM BITS => ASCII.CHARACTER"SIZE,
-- the buffer Ts filled as soon as
-- the next character is typed.
-- ASCII control characters are never echoed
-- by READ TERMINAL, independent of ECHO.

procedure WRITE TERMINAL(TERM: in INTEGER;
DATA: in BUFFER PTR)

-- This procedure writes characters to the
-- specified terminal.
-- DATA must have been filled in previously,
-- and will be drained asynchronously.

procedure SET TERMINAL INFO(TERM: in INTEGER;
INFO: in TERMINAL INFO BLOCK);

procedure GET TERMINAL INFO(TERM: in INTEGER;
INFO: out TERMINAL-INFOBLOCK);

-- These procedures pass along information
-- between the host terminal device driver
-- and the KAPSE terminal handler.
-- In the case of hard-wired terminals, the host
-- may know the characteristics of the
-- terminal. For dial-up terminals, the user
-- must in general specify the appropriate
-- information explicitly via SET INPUT INFO
-- and SET OUTPUT INFO (see *** agove),-
-- which t~e KAPS! will then digest and send
-- along via SET TERMINAL INFO.

end TERMINAL 10;

3.3.1.2.1.2 Processing for VM/SP

3.3.1.2.1.3 Processing for PE 0S/32

The KAPSE task on OS/32 handleq all terminal I/O for the KAPSE.
Individual user tasks need not be rolled in for echoing to

58

INTERMETRICS INCORPORAT!.D * 733 CONCORD AVE=NUE=
* CAMBRIDGE , MIASSAC14.,SET'IS 32138 • (61 7) 61-1840

R- - - W- W4 -- 77

B5-AIE (1) KAPSE (1)

proceed, and character and line deletion to be processed.

For each user a separate Ada task within the KAPSE handles
the terminal. 'Ahen an input buffer is complete, the waiting user
program OS/32 task is activated by sending it a message
containing the characters.

3.3.1.2.1.4 Special Requirements

3.3.1.2.2 Other Device Input/Output and Import/Exlort

3.3.1.2.2.1 Inputs and Oututs

Device objects (see CREATE DEVICE OJ above) are used as the
access points for device 170 and Import and export. Because only
a system manager may create device objects, the correct syntax
for HOST DEVICE NAME need not be known to the normal user, and
may be hot-dependent.

The following primitives exist for the KAPSE to read or
write host files or physical I/O devices:

59

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

B5-AIE (1). KAPSE (1)

Package DEVICE IO is

type FILE MODE is (IN MODE, INOUT MODE, OUT MODE);
type DEVICE HANDLE is private; -

OPEN DEVICE(DH: in out DEVICE HANDLE;
HOST DEVICE NAME: in STRING; MODE: in FILE-MODE);

READ DEVICE(DH: in DEVICE-HANDLE; DATA: in BUFFER PTR);

WRITE DEVICE(DH: in DEVICEHANDLE; DATA: in BUFFERPTR);

CLOSE DEVICE(DH: in out DEVICE HANDLE);
-- Whenever a user reads or writes a device
-- object, the KAPSE retrieves the HOST DEVICE NAME
-- stored when the device object was created, -
-- and passes the request off to these KAPSE/Host
-- interface procedures.

SET DEVICE INFO(DR: in DEVICE HANDLE;
INFO: in DEVICE INFOBLOCK) ;

GET DEVICE INFO(DH: in DEVICE HANDLE;
INFO: out DEVICE INFO BLOCK) ;

-- A certai-amouFt of device control and status
-- information may be set and retrieved using
]-- these calls. These are externally accessible
-- as KAPSE calls SET FILE INFO and GET FILE INFO.

end DEVICE 10;

3.3.1.2.2.2 Processing for VM/SP

On the VM/SP the HOST DEVICE NAME implies the virtual device
address and device type. Using commands to VM/SP CP, a user or
operator can connect what appears to be a virtual punch on one VM
to be a virtual card reader on some other VM. In this way,
export/import can be with actual devices, or files on other
operating systems.

3.3.1.2.2.3 Processing for PE 0S/32

On OS/32 the HOST DEVICE NAME implies the physical device
mnemonic, or the volime and-file name of the host file.

3.3.1.2.2.4 Special Requirements

60

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMaMOGE, MASSACHUSET7S 02138 e ,61 7) 661840

....-.. ". . .

B5-AIE (1) .KAPSE(1)

3.3.1.3 Access Methods and Data Clumps

3.3.1.3.1 Data Clumps

3.3.1.3.1.1 Inputs

The routines of the data clump package within the KAPSE take
as input a specification of the clump to be created, read,
written, or otherwise manipulated, in general in the form of a
handle on the clump or one of its neighbors. When a simple clump
is being written, the input includes the data to write into the
clump. When a clump is being created, the input includes a
specification of the "size" (block/sub) and "kind"
(simple/composite) of the clump.

3.3.1.3.1.2 Processing

Recognizing the desireability of objects smaller than a disk
block, data clumps (or just "clumps") implement disk storage
units which can have any size up to a maximum equal to the size
of a disk block. Clumps are built on top of logical blocks and
like logical blocks consist of a data byte portion and a slot
portion. A logical block may be divided up into many clumps
which are constrained to form a well structured hierarchy
(described below). The bytes and slots of a logical block that
belonq to a given clump are determined from that clump's
byte offset, byte count, slot offset, and slot-count fields.

Clumps are further categorized by their constituents:
"Composite" clumps are those whose contents consist of smaller
clumps. "Simple" clumps are those whose contents are interpreted
directly as a group of bytes and slots. An entire logical block
may be thought of as a clump, with sub-clumps if it is
wcomposite," or bytes and slots if it is "simple." This top-
level clump will be called a "block" clump, while others are
called "sub*-clumps, or simply "clumps." See Figure 3-11. All
four combinations of block vs. sub, and simple vs. composite are
possible:

a. Simple Block Clump -- Basically just a "logical block"
under a fancier name.

b. Composite Block Clump -- A log cal block made up of sub-
clumps.

c. Simple Sub-Clump -- A constituent of some composite
clump, whose data is directly interpreted as bytes and
slots.

61

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MvASSACHUSETTS 02138 • 617) 661-1340

.. W - " - "

B5-AlE (1) KAPSE (1)

Figure 3-11, Logical Blocks and Clumps:

Logical 31oks and Clums

3verlayed view: - _.oica1 3lock

310 412J - lSock C'.umO

-= ud C"'Am

- D hys 3ock
:ointer 3!B0)

SID Z15I2~

F\

exploded View, Clumps Only*

Composit e Block-Blc
IM

ClumC

- Su~b Cla-m

111182392-8

d. Composilte Sub-Clump -- A constituent of some composite

clump, made up of further sub-clumps.

The byte and slot counts of a clump are actually stored
wit

it in the block. The offsets are derived during in-memory

62

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (17) 661-1840

- ,
C "- - .

" -

B5-AIE (1) KAPSE (1)

processing. Clumps are normally processed sequentially from left
to right within a block, and therefore the slot offset may be
found by counting the number of slots allocated to all clumps to
its "left* in the block.

3.3.1.3.1.3 Outputs

The routines of the clump package return as output the
handle on a created or located clump, as well the contents of a
simple clump when it is being read. Some routines also report
the size/kind of the clump.

3.3.1.3.1.4 Special Requirements

The maximum size of a block clump is determined by the block
size chosen for the database as a whole. This is allowed to be
host- and medium-dependent for efficiency. No user of clumps
should rely on the exact maximum size of block clumps. It is
required that this maximum be at least 500 bytes for all
databases, and this lower limit may be safely depended-on,
independent of the host.

Sub-clumps are purposely limited to a size that is less than
any anticipated database block size, to make the limitation
host-independent. Sub-clumps are designed for rapid left-to-
right processing, and proper use of them requires taking
advantage of this design.

3.3.1.3.2 Access Methods

3.3.1.3.2.1 Inputs

The routines of the access method packages generally take an
identification of the file being manipulated, in the form of a
basic object handle, or a component specifier (parent plus
selector). If the operation is a write to a simple file, the
data to be written is also an input. If the operation is a
create, a specification of the access method for the file is an
input.

3.3.1.3.2.2 Processing

Data clumps are not normally visible at the user level.
Instead, all data is organized into primitive data files, each
primitive data file managed by some "access method" which
provides for their creation, expansion, modification,
interrogation, compression, and deletion.

63

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIDGE. MASSACHUSETTS 02138 (6171 661-1840

m
S 5

-, ..- --.- .. - o. *.
-1- - .* 77 N

B5-AIE (1) KAPSE (1)

Access methods use clumps for all data storage purposes.
When a data file is small, a single (composite or simple) clump
is sufficient to represent it. This kind of file is called an
"embedded" file. When a data file grows too large to fit in a
single clump, the access method allocates additional block clumps
and manages them in some kind of multi-way tree structu-e. This
kind of file is called a "multi-block" file. Multi-block files
have their data spread across a file header clump, a set of leaf
block clumps, and sufficient "internal" block clumps to provide
efficient and complete access to the leaf block clumps.

When a particular file offset is requested, the multi-way
tree structure is walked by the access method, starting at the
top, following down the branch figured to contain the desired
data. The number of disk block references on average is equal to
the height of the tree. The height of the tree is kept low by
ensuring that each block is at least half full of data, using a
variant of the well-known B*-tree mechanism (Knuth73]. With an
average branching factor of BF in each block, and a total of N
leaf blocks, the height will be approximately (log N/log BF).

Several different access methods are supported by the KAPSE:

a. Direct Access Method -- This provides to the user program
an arbitrarily extendable file of bytes, indexed by byte
position, with a user adjustable first- and last-defined

*.byte position.

By adding bytes to the end of the file, and removing
- bytes from the beginning of the file (i.e. advancing the

first-defined byte position), a direct-access file can be
used as a FIFO stream of bytes.

Even short Add program objects may be efficiently
stored using the direct access method, with the entire
object in a single simple clump (see "simple clumps" above).

b. Text Access Method -- This provides to the user program
an arbitrarily extendable and editable file of ASCII text,
indexed by both character position, and line number. The
user may insert and delete characters and lines anywhere in
the file. A single ASCII character, the standard "line-
feed" character is used as a line separator within the file.

By adding characters to the end of the file, and

deleting characters at the beginning of the file, a text
file may be used as a FIFO stream of characters (or lines).

J'" Short ASCII strings are represented using the text
* access method, with the entire file held in a single simple

clump (see "simple clumps" above).
. 4

64

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE., MASSACHUSES 02138 * (617' 661-,43

I.'.--*- **-- - *". * "- ' - -. --. - -----. -. . - . "

-. R.W a-7, n 7 13 F. 77 -7 -

B5-AIE (1) KAPSE (1)

c. Key Access Method -- This provides to the user program
a primitive composite file, whose components are objects
identified by an ASCII string key. The key may be as short
as one ASCII character, or as long as 100 ASCII characters.
The components may be any kinds of files. The internals of
the components are managed by their respective accessmethods.

d. List Access Method -- This provides to the user program
a primitive composite file, whose components are objects
indexed by list position. The list of objects is
arbitrarily extendable, and the list positions are numbered
from one to the number of objects in the list. As with the
Key Access Method, the internals of the components are
managed by their own access methods.

Deletion of objects from the front of the list provides
a kind of object FIFO queue.

Short list files will be represented in a single
composite clump, with no additional indirect blocks
necessary.

e. Extended Access Method -- This provides to the user program
an extended, higher level object, with the structure, kinds
of attributes, and defined operations controlled by its
"category descriptor." This is not really a new access
method, but rather built on top of the above four access
methods.

Internally, an extended object appears as a composite
"list" file (see above), with the first element of the list
by convention being the category descriptor, and the
remaining elements being used for the content and other
attributes of the object, as specified by the descriptor.

A clump used to represent an entire file, or an file header,
begins with an "access method code," which specifies it as being
managed by one of the above access methods. Block clumps also
begin with an "access method code," which specifies which access
method is responsible for handling block overflow.

Each access method is responsible for distinguishing files
in embedded single-clump form from those in multi-block form
(with a header, internal blocks, and leaf blocks). See Figure
3-12.

3.3.1.3.2.3 Outputs

The outputs of the routines of the access method packages
include a basic object handle on the file if it is being created,
or the data from the file if the operation is a simple file
"read."

65

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 - (617) 66118-10

[-A

BS-AIE (1) KAPSE (1)

Figure 3-12, Clumps and Files:

MAN U FOiles:

Clum vial:
leger Info for Object A .1ck cIuve

c J. III, I .-' ---

----- -- --.-..........

arPe CD CD

I 9110 A andCAhe n
________ cI aitflock 'far

Itnfal

L bo"b
I

--- ---

A

File Vimw: -cmait. ile

-*sfoll gilt

66

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMSRIDGE, MASSACHUSE7 S 02138 a (6,7) 661-1840

%*'. '.~..%. *** **.~.** * ' . In, , ' , , , , ,.. - . ,.....,.,.,.-I,, ,,, ,. -. - ,,,, . ,,; ,. ~ ' ' '
,. ,-

B5-AIE(l) .KAPSE (1)

3.3.1.3.2.4 Special Requirements

The performance of the access methods are critical to the
performance of the KAPSE database as a whole. The access methods
must be designed to minimize the numbers of blocks accessed to
locate the desired element of a file, as well as minimize the
number of blocks affected when an element is added or removed
from the file.

All access methods are based on a B*-tree [Knuth73]
structure, which provides the desirable logarithmic dependency on
the number of elements. The other major determinant of B*-tree
performance is occupancy of the blocks, with both time and space
performance being improved when the blocks are more nearly
filled. The access methods must be designed to maximize
occupancy of the blocks consistent with the requirements of
efficient addition and removal of elements for typical access
patterns.

*Finally, the wembedded" form of files is essential to the

efficient storage of small objects within the database. The
algorithms within the access methods for determining when to go
to multi-block form must be carefully designed to minimize
internal fragmentation caused by small objects ending up being
allocated an entire block.

3.3.1.4 Simple Obiects

3.3.1.4.1 Inputs and Outputs

The primary user-visible interface to simple objects is provided
by the set of standard Ada input/output packages specified in the
[LBM82, 14.11. These packages are implemented in terms of a more
primitive set of access methods. See 3.3.5.5 for a definition of
the package 10 EXCEPTIONS and the skeletons for the other
language-defined71/O packages.

The basic primitives available are as follows%

67

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

BS-AE 1(1) KAPSE (1)

with 10 COMMON; use 10 COMMON;Package SIMPLE OBJECTS is

procedure COPY(OLDNAME: in STRING; NEWNAME: in STRING);
-- This procedure creates a logical copy of the
-- specified object, with identical content and
-- non-distinguishing attributes. The
-- distinguishing attributes of the copy are
-- implied by NEWNAME.
-- COPY involves no actual disk data block copying.
-- When either the original or copy is later
-- modified, the KAPSE makes actual physical
-- copies of the affected blocks.

procedure DELETE(NAME: in STRING);
-- Requires DELETE COMPONENT access on
-- the enclosing composite object.

procedure RENAME(OLDNAME: in STRING; NEWNAME: in STRING);
-- Defined to be equivalent to COPY followed by DELETE of
-- OLDNAME.

4

68

INTERMIETRICS INCORPORATED •733 CONCORD AVENUE •CAMB RIOG E, MASSACHUSETTS 02138 (617) 661-1940

4 ,, . . -

".9' , . .;i ' " i .i 'iid'i~ i|~~ L m~ni h _.m ~

3S-Al E (1). KAPSE (1)

Package DIRECT ACCESS is
-- Package to provide direct access file (a sequence
-- of storage units).

type FILE TYPE is private;
subtype STORAGE UNIT is Machine Dependent;
type STORAGE ARKAY is array(NATURAL range <>) of STORAGE UNIT;

-- All data converted to/from an array of storage units.

procedure CREATE(FILE: in out FILE TYPE; MODE: in FILE MODE;
NAME: in STRING; FORM: in STRING := a") ;

procedure OPEN (FILE: in out FILE TYPE; MODE: in FILE MODE;
NAME: in STRING; FORM: in STRING :0 "");

procedure CLOSE (PILE: in out FILE TYPE);
-- Create/open/close designated simple object.
-- The MODE selects input only, output only, or inout.
-- The NAME is a pathname to the object.
-- The FORM is an optional parameter, which
-- supplies additional control info (see below)

procedure WRITE (FILE: in FILE TYPE; ITEM: in STORAGE ARRAY);
procedure READ (FILE: in FILETYPE; ITE4: out STORAGE-ARRAY;

LAST: out COUNT) ;
-- ITEU'length determines amount to READ/WRITE.
-- LAST specifies amount actually READ if reached end
-- of file (ITEM(LAST) is last valid data).

procedure SET OFFSET(FILE: in FILE TYPE; TO: in COUNT);
function OFFSET (FILE: in FILE-TYPE) return COUNT;

-- SET OFFSET selects which storage unit within file
-- to-read/write next.
-- OFFSET returns offset of storage unit to be
-- next read/written.

function SIZE(FILE: in FILE TYPE) return COUNT;
-- return count of storage units in file.

end DIRECT ACCESS;

69

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, MASSACIUSETTS 02138 • 6171 861.1840

, .', . ' ' . ' ' -*' '. ' - . - .- -. * * .*...

BS-AIE (1) .KAPSE (1)

Package TEXT ACCESS is
-- Package to provide a text file (a sequence of
-- ASCII characters, accessible by character or
-- line).

procedure CREATE(FILE: in out FILE-TYPE; MODE: in FILEMODE;
NAME: in STRING; FORM: in STRING :- "");

procedure OPEN (FILE: in out FILE TYPE; MODE: in FILE MODE;
NAME: in STRING; FORM: in STRING := "");

procedure CLOSE (FILE: in out FILE TYPE);

procedure WRITE (FILE: in FILE TYPE; ITEM: in STRING);
procedure READ (FILE: in FILE TYPE; ITEM: out STRING;

LAST: out COUNT);
-- ITEM'length determines amount to READ/WRITE.
-- LAST specifies amount actually READ if reached end
-- of file (ITEM(LAST) is last valid data).

procedure READ LINE(FILE: in FILE TYPE; ITEM: out STRING;
LAST: out COUNT) ;
-- ITEM'length determines maximum amount to READ.
-- LAST specifies amount actually READ if reached end
-- of line (ITEM(LAST) is last valid data).

procedure SET OFFSET(FILE: in FILE TYPE; TO: in COUNT);
function OFFSET (FILE: in FILE TYPE) return COUNT;

-- SET OFFSET selects which character within file
-- to-read/write next.
-- OFFSET returns offset of character to be
-- next read/written.

procedure SET LINE (FILE: in FILE TYPE; TO: in COUNT);
function LINE (FILE: in FILE-TYPE) return COUNT;

-- SET LINE positions at beginning of selected line.
-- Th; first line is always numbered 1.
-- LINE returns current line's number.

procedure SET COL (FILE: in FILE TYPE; TO: in COUNT);
function COL (FILE: in FILE TYPE) return COUNT;

-- SET COL positions at given column within line.
-- COL returns current column number within line.

function CHAR COUNT(FILE: in FILE TYPE) return COUNT;
function LINE COUNT(FILE: in FILE-TYPE) return COUNT;

-- return count of characters7lines in
-- the text file.

end TEXT ACCESS;

70

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, .MASSACHUSE7"TS 02138 1 617 661.1840

BS-AI E (1) .KAPSE (1)

procedure CREATE DEVICE OBJ (NAME: in STRING;
HOST DEVICE NAME: i3 STRING; ROOT WINDOW: in STRING);

-This procedure is provided-for a system
-- manager to set up an association betweenS-- a special database object and
-- a host physical I/O device. The
-- HOST DEVICE NAME is host-dependent.
-- Requi~es CREXTE COMPONENT access,
-- as well as a .1YSTEM window on the root
-- of the database (restricted to system manager).

end SIMPLE OBJECTS;

3.3.1.4.2 Processing

The objects created by the packages of SIMPLE OBJECTS are all
simple "extended" objects, with a default null
CATEGORY DESCRIPTOR, and a CLASS of SIMPLE. The content of the
extended- object is a simple file, either a direct-access file or
a text-access file (see access methods above).

Most of the processing within the SIMPLE OBJECTS packages
consists of calling the appropriate access method routines.
However, the initial creation requires building the extended
object using a list access file with pre-defined elements for the
CATEG DSCSIPTOR, the ACCESS CONTROL, CONTENT, BISTORY, etc.

Opening an existing object requires the creation of an
extended object handle, with the implicit "offset" initialized to
the beginning of the file. The handle must be entered in the
table of open file handles associated with the running program
context object.

All operations in packages of the KAPSE/Tool interface must
verify that the proper access controls are applied. The checking
is performed by the access control CPC of KAPSE.ACCECAT (see
3.3.2) as part of its pathname lookup and handle initialization
routines.

The FOR STRING passed to OPEN or CREATE may be used to
convey extra information. The additional information is in the
form of a label->value list. With this syntax, it is possible to
specify the following extra information:

71

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661.1840

.]

BS-AIE ().KAPSE(i)

Call Extra labeled FORM specification

CREATE RESERVE MODE, ACCESS CONTROL, CATEGORYDESCRIPTOR,
ACCESS METHOD

OPEN RESERVE MODE

For example:

OPEN (FILE1, "STREAM OBJECT 1', "RESERVE MODE->SHARED STREAM");
CREATE (FILE2, NPUBLYC INFO-FILE",

nACCESS CONTROL-> (WORLD>-(READ,ADD))");

3.3.1.4.3 Special Requirements

This package, because it is part of the KAPSE/Tool interface
package, must ensure that the access control and synchronization
requirements are met. Lower level packages (such as the access
methods) assume that access control has been checked at the
higher level.

3.3.1.4.4 Interactive/Terminal I/O Extensions

3.3.1.4.4.1 Inputs and Outputs

As an addition to the facilities of the standard Ada package
TEXT 10 (LRM82, 14.3] (see 3.3.5.5), we make available the random
access by line number or character number of the package
SIMPLE OWJECTS.TEXT ACCESS (see above), and a package to handle
echoing and special-character processing:

72

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSET 7S 02138 - i617 661.140

B5-AIE(l) .KAPSE(1)

with TEXT IO; use TEXT 1O;
with TEXT ACCESS; use TEXT ACCESS;
Package LITERACTIVEIO is

type FILE-TYPE is TEXT10.FILE TYPE;

procedure SET ECHO(INPUT: in FILETYPE; OUTPUT: in FILE TYPE);
-- Ses cursorO and echoing of INPUT at current
-- line and column of output. Each character GET from
-- INPUT advances the column of both the INPUT and
-- the OUTPUT files (although the column numbers will
-- not necessarily be the same).

procedure NO ECHO(INPUT: in FILE TYPE);
procedure NO-ECHO(OUTPUT: in FILE TYPE);

-- Erther of these calls ill break any
-- echoing association.

procedure GET OUTPUT .INFO (FILE: in FILE-TYPE;
INFO: out OUTPUTINFOBLOCK) ;

procedure SET OUTPUT INFO(FILE: in FILE-TYPE;
INFO: in &3TPUT 7O BLOCK);

-- The CUTPUT INFO BLOCK retains information such as
-- the termial's screen height and width (zero height
-- indicates hard copy, zero width indicates FILE TYPE
-- is not associated with a physical terminal).

procedure GET INPUT INFO(FILE: in FILE-TYPE;
INFO: out INuTINFO BLOCK);

procedure SET INPUT INFO(FILE: in FILE TYPE;
INFO: in INPUT NFO BLOCK);

-- The INPUT INFO BLOCK retains information such as
-- the specific keyboard control characters used to
-- control the various terminal handling functions.
-- In addition, the INPUT INFO BLOCK records
-- which characters cause program wakeup when
-- typed (others are buffered up and a control
-- character may be used to delete them
-- before they are received by a program).

end INTERACTIVE IO;

3.3.1.4.4.2 Processing

All terminal output is actually written to a temporary file in
the program's context object. The terminal handler normally
keeps the last line of this temporary file as the last line on
the screen. However, the user may choose to scroll backward t6

73

INTERMETRICS1NCORPORATEO a 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET'"S 02138 • (6171 661-1840

35-AIE(l) .KAPSE (1)

see previous lines of output, or to simply hold the screen image
at a particular line. When echoing is set, the terminal handler
makes sure that the current LINE and COL of the output are on the
screen before setting the cursor there and requesting input on
the associated FILETYPE.

3.3.1.4.4.3 Special Requirements

The SET ECHO routines must work on terminals with local hardware
echo, full-duplex terminals without local echo, and normal text
files. In all cases, the effects should be meaningful and
analogous.

3.3.1.4.5 Package FORMATTED I0

3.3.1.4.5.1 Inputs and Outputs

Along with the above adjunct to TEXT 10, the KAPSE defines a
FORMATTED IO package to provide the facilities of Fortran-like
FORMAT I/O:

74

INTERMErTRICS INCORPORATED e 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 1 617) 661-1840

. .. . ,° "- *"- • - . ,.>., . ,, ,= e j, e= e B . .-.

B5-AIE(l).KAPSE(1)

with TEXT 1O;
Package FORMATTED 10 is

type FORMAT is private;

function CONV FMT(FMT: in STRING) return FORMAT;
-- Given a STRING in Fortran FORMAT syntax, check
-- the correctness of the syntax and compress to
-- facilitate further use.

procedure FWRITE(FILE: in TEXT IO.FILE TYPE; FMT: in FORMAT);
-- Start output using the given (compressed) FORMAT.

procedure FPUT(ITEM: in STRING);
-- This uses the "Aw" format.

procedure FPUT(ITm4: in FLOAT);
-- This typically uses "Fw.d" formats.

procedure FPUT(ITEM: in INTEGER);
-- This typically uses the "1w" format.
-- Continue output, using the next format specifier
-- from the format specified in the most recent FWRITE call.
-- The user may choose to further overload FPUT by writing
-- versions that take a sequence of INTEGERS or FLOATS or
-- some useful combination.

procedure FWD;
- Terminate output, force characters out to file.

procedure FREAD(FILE: in TEXT IO.FILE TYPE; FMT: in FORMAT);
-- Start input using the give (compressed) FORMAT.

procedure FGET(ITD(: out FLOAT);
-- This typically uses the "Fw.d" format.

procedure FGET(ITD(: out INTEGER);
-- This typically uses the "Iw" format.
-- Continue input, using the next format specifier from
-- the FORMAT specified in the most recent FREAD call.
-- The user may choose to further overload FGET by writing
-- versions that take a sequence of INTEGERS or FLOATS
-- or some other useful combination.

end FORMATTED tO;

3.3.1.4.5.2 Processing

The package FORMATTED 10 is implemented in Ada, using package
TEXT 10 and package- INPUT OUTPUT, ensuring that it is easily
transportable to other Ada installations.

75

IXTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE.,,MASSACHUSETTS 02138 (6171 661- 1840

BS-AIE (1) KAPSE (1)

3.3.1.4.5.3 Examples

declare
Fl: constant FORMAT : CONV FMT("213, F8.2");
I,J,K: INTEGER :- 5;
Z: FLOAT :- 3.22;

begin
FWRITE(FILE, Fl)
FPUT(I+J); FPUT(25); FPUT(Z); FEND;

FWRITE(FILE,CONV FMT(" 'The Answer is A,16//"))
FPUT(K*127) ; FEND;

end;

3.3.1.4.5.4 Special Requirements

The package FORMATTED 10 need not be within the protection
boundary surrounding the KAPSE, and hence the actual body of the
FORMATTED 10 package may be linked directly into user Ada
programs.

3.3.1.5 Composite Objects

3.3.1.5.1 Inputs and Outputs

The following primitives are available for creating and modifying
composite objects:

J

76

INTERMETRICS INCORPORATEO • 733 CONCORO AVENUE * CAMBRIDGE, MASSACH USETTS 02138 617) 661-1840

I "

B5-AIE (1) KAPSE (1)

Package COMPOSITE OBJECTS is

procedure CREATE COMPOSITE(NAME: in STRING; CMPONENT DA: in STRING;
FORM: in STRING :- "1) ;

-- COMPONENT DA is a space separated list of attribute
-- labels required of all components created in the object.
-- Requires CREATE COMPONENT access on the enclosing
-- composite object.
-- FORM is used to supply additional category description

type PARTITION HANDLE is private; -- Similar to FILE HANDLE.

procedure OPEN PARTITION(PH: in out PARTITION HANDLE; NAME: in STRING);
-- NAME is a specification of a partition,
-- like "(PROJECT->SHUTTLE)" or "*.CONTROL.*"
-- Requires LIST COMPONENT access on the composite
-- object implied by the partition.

.3 procedure CLOSEPARTITION(PH: in out PARTITION HANDLE);

procedure GET PARTITION INFO(PH: in PARTITION HANDLE;
INFO: out-PARTITION-INFO BLOCK);

-- Returns miscillaneous IWO about the partition,
-- including the number of components currently in
-- ~he partition, the FIRST, LAST, and NEXT component
-- names (in ASCII lexicographic order), etc.

function GET NEXT COMPONENT(PH: in PARTITIONHANDLE) return STRING;
-- This returns the name of the next component of the given
-- partition, as a concatenated STRING of distinguishing
-- attribute values. The names
-- are returned in ASCII lexicographic order.

Operations that create and delete components of a composite
object implicitly modify its content. The name of the object
specified to CREATE and CREATE COMPOSITE determines the composite
object in which it is created.

3.3.1.5.2 Processinj

The content of a composite object is represented as a keyed
access file, with the concatenation of the distinguishing
attributes as the key. Because a multi-way B-tree keyed access
file is used, the KAPSE provides fast (log N) access to
components of even large composite objects.

As with simple extended objects (see above) , composite
object creation requires the creation of the extended object
using the list access method, to hold the system-defined
attributes such as COMPONENT DA, ACCESS-CONTROL, CONTENT,
WINDOW XREF, etc.

* 77

;NTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

B5-AlE (1) •KAPSE (1)

3.3.1.5.3 Examples

CREATE COMPOSITE ("COMP", "MODULE RELEASE NUM");
CREATE(FH, "COMP. (MODULE=>DISPLAY, RELEASE_NUM->I)", OUTMODE) 7
CLOSE (FE) ;
OPEN(FH, "COMP.DISPLAY.l", N t40')EJ -- Using positional notation.
CLOSE(FH);
OPEN PARTITION(PH, "COMP.*.l"); -- Scan through partition.
STR -= GET NEXT COMPONENT(PH);
PUT LINE("First-component of COMP is: " & STR)
-- On the user's terminal should appear:
-- "First component of COMP is DISPLAY.1"
CLOSE-PARTITION (PH) ;

3.3.1.5.4 Special Requirements

Because this package is part of the KAPSE/Tool interface, it must
faithfully enforce the KAPSE access control mechanisms. This is
done by routines of the access control CPC (3.3.2.1) as part of
pathname lookup, and extended object handle creation.

78

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSE7TS 02138 * 617' 661-1840

BS-AIE(l).KAPSE (1)

3.3.2 Access Control and Cateqory (KAPSE.ACCECAT)

3.3.2.1 Window Objects

There are two kinds of windows: primary windows and
secondary windows. Primary windows link an extended object to
its enclosing composite object. Secondary windows allow an
object to be viewed from a location other than the enclosing
extended object. A thorough discussion of the tool interface to
primary and secondary windows can be found in 3.2.4.3,
subparagraphs 7 and 8.

3.3.2.1.1 Inputs and Outputs

A secondary window is created by the CREATE WINDOW primitive,
with parameters as follows:

a. WINDOW PATH Path where the window should be
createa

b. TARGET PATH Path to the target (relative to the
creating program's context object).

c. PARTITION Partition limitation, if any. This
limitation is in addition to any already implicit in

*1 TARGETPATH (i. e. TARGETPATH*CURRENT PARTITION).

d. TRANSLATION Translation table, expressed as
-(ext rolel,ext role2,...) =>

(int Folelintrole2,int modifier,...),..." By default,
WINDOW PATH8CUBRWT ROLES are translated into
TARGET-PATH'CURRENT-ROLES & TARGET PATH'CURRENT MODIFIERS.
That Is, the roles held by the Freating program via the
WINDOW PATH are translated to the roles and modifiers held
by thi creating program via the TARGET-PATH. See Path-
defined attributes in 3.2.4.3.4.

In any case, unless the window creator holds the OWNER
modifier, it is an error if this translation exceeds the
roles or modifiers already held at the target.

e. COMMON ANCESTOR PATH Path to the common ancestor
(relatTve to the creating program~s context object). It is
an error if this is not an ancestor of the window, its
target, and the common ancestors of all of the parents of
the window (see 3.2.4.3.8.4). In this context, an extended
object is considered an ancestor of itself.

79

INTERNMETRICS INCORPORATED *733 CONCORD AVESNUE *CAMBRIDGE, MASSACHUSET-iS 02138 - (6171 661.1840

This parameter will usually be defaulted. In that
case, the extended object nearest to the target which
satisfies the above constraints is chosen as the common
ancestor.

See Figure 3-13 for an example of a secondary window.

Figure 3-13, Secondary Window with Its Common Ancestor:

Secondary Windows and Common Ancestors:

Logical View: A omoosite Ob~ect

Simole bJect

- =rimary Aindow

C

*l e-tn e
Secondary

fiyow

0 E F
"A.3.0.3" and
"A.C. designate the

r4 same oject

Imolevientation View of Secondary Window: \A

Comm"n ODE LABEL ---- 56432
Ancentor: -ORIGTINAL 4ONCOW --- "803

ROLE TRAUSLATION --0
KEYI-PTARGET: "C.F.", ROLE(S,: "TESTER"

-KEY -w ..

B C

Secondary
Window: NODE LABEL OR C0141N ANCESTOR -o-S6432

KEY Z-KEY

80

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, !,IASSACHUSETiS O2138 ' 61 7,1661 1840

%. .6-

* -.. - -" _ - . , -

3 5-AI E(1) .KAPSE (1)

The following user-visible routines are available Ifor
creating, deleting, querying, and revoking windows, as part of
the KAPSE/Tool interface package WINDOW OBJECTS:

81

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE *CAMBRIDGE, MASSACH4USETTS 02138 (617) 661-1840

SB5-AIE (1) .KAPSE (1)

Package WINDOW OBJECTS is

type WINDOW ID STRING is new STRING;
-- Thii type is used to identify windows,
-- as a path to the common ancestor, and the
-- window key there.
-- The format of this string is irrelevant (though
-- visible) to the user, because all relevant
-- information is accessible via function calls.

type WINDOW ATTRIBUTE ENUM is
(ORIGINAL WINDOW, TARGET, PARTITION,
ROLESET. MODIFIER-SET, PARENTS);

type WINDOW FLAG ENUM is
(TRUSITMRY, HAS CHILDREN, REVOKED);

-- The above two-enumerations are used to
-- request information given a WINDOW ID STRING
-- (see 3.2.4.3.8.2). - -

procedure CREATE WINDOW(WINDOW PATH: in STRING;
TARGET PATH: in STRING;
PARTITION: in STRING := ""-
TRANSLATION: in STRING := " -

CCMMON ANCESTOR PATH: in STRING :U "");
-- This creates a new secondary window, which
-- may later be revoked by a parent window.

procedure DELETE WINDOW(WINDOW PATH: in STRING;
REVOKE NOW: in BOOLEAN := FALSE);

-- This deletes a wind-w, rather than the
-- object viewed through the window.
-- It is possible to "revoke" the window
-- at the same time, which invalidates
-- any copies or descendents.

procedure COPY WINDOW(OLD WINDOW: in STRING;
NEW WINDOW: in STRING);

-- This makes a copy of an existing window.
-- Copies cannot be individually revoked:
-- when one goes, they all go.

procedure RENAME WINDOW(OLD PATH: in STRING;
NEW PATH: in STRING);

-- This is defined to be equivalent to
-- COPY WINDOW followed by
-- DELETE WINDOW (OLDPATH, FALSE).

function WINDOW ID(WINDOW PATH: in STRING;
HIGHEST COMMON ANCESTOR:

in STRING : "ROOT")
return WINDOW ID STRING;

-- Return WINDOW ID STRING associated with

82

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSE7S 02138 * 617) 661-1840

B5-AIE (1) KAPSE (1)
-- window. Routine will fail if cannot read

-- common ancestor object, or if common ancestor
-- above HIGHEST COMMON ANCESTOR.

function NEXT CHILD WINDOW(PARENT WINDOW: in STRING;
PREV CHILD ID: in WINDOW ID STRING;
HIGHEST CaRMON ANCESTOR: -

in §TRING - ""ROOT")
return WINDOW ID STRING;

-- This function iterates through the "childrenT
-- of a window (see 3.2.4.3.8).
-- In general, the children are those windows
-- which the parent can legitimately revoke.
-- The returned string is an identifier of
-- the child. The window id can be used to
-- find the common ancestor, the path to
-- the "ORIGINAL WINDOW," the TARGET, etc.
-- (3.2.4.3.8.2).

function WINDOW ATTRIBUTE(WINDOWID: in WINDOW ID STRING;
ATTRIBUTE: in WINDOW ATTRIBUTE ENUM)
return STRING;

function WINDOW-FLAG (WINDOW ID: in WINDOW ID STRING;
FLAG: in WINDOW -FLAG ENUM)
return BOOLEAN;

-- The above two funations return information
-- associated with a window, identified
-- by its WINDOW ID STRING.

procedure REVOKE WINDOW(PARENT WINDOW: in STRING;
WINbOW"ID: in WINDOW ID STRING;
REVOKE DESCENDENTS: in BOOLEAN :- TRUE);

-- Revoke window(s) delignated by WINDOW ID.
-- If REVOKE DESCENDENTS is TRUE, revoke-all
-- descendents also.
-- Requires OWNER or OVERSEER modifier at parent.

end WINDOW OBJECTS;

This CPC also includes the KAPSE-internal routines to traverse
windows as part of database pathnames, and to provide window
cross-reference table maintenance during the copying and deleting
of extended objects which include secondary windows.

The inputs to the window traversal routine are a handle on
the window, and the current roles, modifiers, and partition
limitations held outside the window. The outputs of the window
traversal routine is a handle on the target, with an updated set
of roles, modifiers, and partition limitations.

83

INTERMrrRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE. MASSACHUSETTS 02138 • t617, 661-1840

- • . -

B5-AIE(1) .KAPSE (1)

The inputs to the cross-reference maintenance routines are
the handle on the object being manipulated, as well as the path
to the new location if it is being copied. The outputs from the
cross-reference maintenance routines are indications of whether
the operation is permissible, and updated ANCESTOR REFS
attributes on the objects enclosing the object being deleted or
created-by-copy.

%3.3.2.1.2 Processing

The routines visible as part of the KAPSE/Host interface
provide the basic creation and deletion operations on windows
appropriate access methods to manipulate the list-access file,

and the direct- and text-access components which are used to
represent the information in primary and secondary windows.

These routines also manage the information recorded in the
WINDOW XREF attributes of extended objects used as common
ancestors. All four access methods are used to manipulate the
complex structure of this attribute. Generally, a new element
must be added to the attribute at each window creation, and an
element may be removed at window revocation. When a window is
used as a parent, the appropriate HAS CHILDREN flag must be set.

The window routines also manage the ANCESTOR REFS attribute
present on each extended object with enclosed secondary windows
which have common ancestors outside of the object. This
attribute is a file keyed by the node labels of these referenced
ancestors, with a count of the number of direct components which
refer to each. As deletions and copies are made, the reference
counts in these elements are adjusted. When a new label is added
to an ANCESTOR REFS set, or one is removed because its reference
count goes to zero, a further adjustment must be made to the
ANCESTOR REFS attribute of the object enclosing this one. These
adjustments may propagate all the way up to the labeled ancestor
if this use of the common ancestor represents the first or last
use of it in the whole database.

When a copy is to be made, these routines also check whether
the new copy will remain a descendent of all of the ancestors
mentioned in its ANCESTOR REFS file. If this check fails, then
the copy is not performed and an exception is raised in the
user's program.

Note that enclosed secondary windows, with common ancestors
also enclosed by an extended object, do not appear in the
ANCESTOR REFS attribute, and hence never interfere with the
ability io copy such an extended object.

84

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSE-7"S 02138 • 6171 661 SZ0

.~ ~~ ~.. . . - .!' - . .a~l 1''i ' .'d -lid" lm ~ ' mm

B5-AIE (1) .KAPSE (1)

3.3.2.1.3 Eaples

CREATE WINDOW(".WORKSPACE", "SHUTTLE.NAVIGATION.INIT");
-- This creates a convenient shorthand window-- named .WORKSPACE.

OPEN(FILE, ".WORKSPACE.SPEC");
-- This is equivalent to:
-- OPEN (FILE, "SHUTTLE.NAVIGATION.INIT.SPEC");

CREATE WINDOW (. RESTRICTED WORKSPACE-, ".WORKSPACE",
TRANSLATION -> "*->REVIEWER");

-- Create sub-window limiting all to access rights
-- given to the REVIEWER role.

OPEN (FILE2, .RESTRICTED WORKSPACE.SPEC");
-- This may fail-if SHUTTLE.NAVIGATION.INIT.SPEC
-- doesn't give READ or ADD access to a REVIEWER.

CREATE WINDOW (". SMALLER VIEW", ".WORKSPACE.",
PARTITION->" (TEST LEVEL->) U);

-- The window-.SMALLER VIEW only lets its user
-- see objects with attribute TEST LEVEL having
-- a value of 2.

3.3.2.1.4 Special Requirements

Windows are used heavily in the AIE system to implement
access control, history references, private objects, current
view, etc. It is required that these routines which provide the
fundamental as well as user-visible interfaces to windows work as
efficiently as possible. Special mechanisms are provided to
retain a "cache" record of recently traversed windows, so that
actual walks up and down the database hierarchy can be minimized.

3.3.2.2 Cateqory and User-defined Attributes

Attributes may in general be any kind of object. As such, the
normal object manipulation routines will work on them.
Nevertheless, separate packages have been defined to simplify
access to certain kinds of attributes. In particular, special
support is provided for numeric- and string-valued attributes and
for the system-defined attributes (see below, 3.3.2.3, and
3.3.4.1).

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, ',MASSACHUSETTS C2138 * 6171 661-1840

...

BS-AIE (1) KAPSE (1)

3.3.2.2.1 Category Operations

3.3.2.2.1.1 Inputs and Outputs

The CATEGORY DESCRIPTOR attribute is filled in by CREATE and
CREATE COMPOSITE, both of which can specify a category template
as part of the optional FORM parameter. Complex category
templates may be built up using normal object operations, or may
be manipulated using one of the following routines designed to
ease the process:

36

INTERMETRICS INCORPORATED * 733 CONCORD AVSNUE • CAMBRIDGE. 'vASSACHUSE--S 02128 1 617) 661-1840

BS-AIE (1) KAPSE (1)

Package CATEGORY is

type CATEGORY CLASS is (SLIMPLE ,COMPOSITE,CONTEXT,WINDOW, DEVICE);

procedure CREATE CATEGORY TEMPLATE(
TEMPLATE: in STRING--
IDENTIFIER: in STRING;
CLASS: in CATEGORY CLASS);

-- Create a category template object,
-- with the given CATEGORY identifier,
-- for the given CLASS of extended object.

procedure DEFINE-VARIABLE ATTRIBUTE (
TEMPLATE: in STRING;
ATT LABEL: in STRING;
ATT INDEX: in POSITIVE;
ATT-CONSTRAINTS: in STRING :- "o);

-- Define specified attribute to reside within
-- extended object at specified index.
-- Extended objects are represented by
-- the list access method,
-- and ATT INDEX plus a system-defined offset
-- will be-he index into that list.
-- The ATT CONSTRAINTS string is interpreted as
-- described below.

procedure DEFINE CONSTANT ATTRIBUTE (
TEMPLATE: in-STRING;
ATT LABEL: in STRING;
CON9T OBJECT NAME: in STRING);

-- Specify that attribute will be constant,
-- and provide its value by naming object to
-- be copied into slot in descriptor.

procedure DEFINE CONSTANT STRING ATTRIBUTE (
TEMPLATE: in STRING;-
ATT LABEL: in STRING;
ATT VALUE: in STRING);

Specify that attrbute will be constant,
and provide its value as an ASCII string.

-- This routine is just a convenience,
-- and could be defined in terms of
-- DEFINE CONSTANT ATTRIBUTE above.

function CONSTANT ATTRIBUTE (
TEMPLATE: in-STRING;
ATT LABEL: in STRING)
return BOOLEAN;

-- Returns true if attribute is a constant.

end CATEGORY;

87

INT'ERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE. MASSACHUSETTS 02138 (617) .61-1840

B5-ATIE (1) KAPSE (1)

3.3.2.2.1.2 Processing

A category descriptor is created by copying a category
template object. Both a descriptor, and a template for a
descriptor have the same form, that of a keyed composite file,
with the attribute label being the key. The above routines
translate directly into operations on the category composite
file, and its components.

When specifying an attribute constraint (ATT CONSTRAINT
above), the limitation may be to a list of values (e.g. "source
object executable") or to a range of values (e.g. "0 .. 10" or "I

*U) with 0*0 meaning plus or minus infinity, as appropriate.
*U restricts the value to be numeric. An attempt to

violate the constraint on an attribute is automatically caught by
the KAPSE, and aborted.

As part of the delivered KAPSE, category templates will be
provided for such common composite objects as an Ada library, a
user mailbox, and a typical user top-level directory.

3.3.2.2.1.3 Special Requirements

3.3.2.2.2 Operations on Numeric and Strinq-valued Attributes

3.3.2.2.2.1 Inputs and Outputs

'Attribute values which are a simple ASCII string are actually
represented internally as a text file. This allows the strings
to grow arbitrarily long, but makes certain simple operations
clumsy. To alleviate this problem, a separate package is defined
to ease access to such string-valued attributes:

package STRING ATTRIBUTES is

procedure SET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING;
ATT VALUE: in STRING) ;

-- By setting an attribute value to the null STRING,
-- the attribute is effectively deleted.
-- Requires add/delete access.

88

INTERMETRIOS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 0213B • S6I"1 61-1S40

• °. " • . - "."

-7 7.

B5-AIE(1) KAPSE (1)

function GET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING)
return STRING;

-- Attribute value returned as null STRING if not
-- previously SET.
-- Numeric-valued attributes returned as their
-- decimal representation.
-- Requires read access.

function GET ALL ATTRIBUTES(NAME: in STRING) return STRING;
e-- eturn all non-null, string- or numeric-valued

-- attributes, in a label=>value list.

end STRING ATTRIBUTES;

Furthermore, certain attributes are limited to numeric values.
These include certain category-defined attributes, and system-
defined attributes of primitive files. Also, user-defined
attributes, though generally represented as a string, may
frequently be more easily manipulated as a number. The following

4package is provided for the manipulation of such numeric-value
attributes:

Package NUMERIC ATTRIBUTES is

procedure SET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING;
ATT VALUE: in INTEGER);

-- Set the designated attribute to the
-- s~ecified numecic value.
-- If the attribute label is user-defined,
-- still use a string to represent its
-- numeric value.

4 - Requires add/delete access.

function GET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING)
return INTEGER;

-- Return the current value of a numeric-valued
-- attribute.
- Exception if attribute does not have a numeric value.

-- Requires read access.

end NUMERIC ATTRIBUTES;

3.3.2.2.2.2 Processing

String and numeric attributes are actually stored as text- or
direct-access files. When SET ATTRIBUTE or GET ATTRIBUTE is
called, the full pathname of -the attribute is- created by
concatenating NAME and ATT LABEL separated by a "tic"
(apostrophe), and then the file is located and manipulated with
the appropriate access method (see 3.3.1.3).

89

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 t 617) 661.1840

BS-AIE (1) .KAPSE (1)

In the case of SET ATTRIBUTE, the contents of the ATT VALUE
string or number are simply written out to the file, and thin the
file is released. For GET ATTRIBUTE on a string, a string of
length CHAR COUNT(text file) is declared, the characters are read
from the file, the fil is released, and the string returned.
For GET ATTRIBUTE of a number, the attribute is read as a string
if it is text, and then converted using INTEGEROVALUE [LRM].

Given their label as a string, keyed access files are used
to locate the attribute descriptors or values. Hence,
SET ATTRIBUTE and GET ATTRIBUTE operate rapidly (log N) even when
the-number of attributes is large.

GET ALL ATTRIBUTES scans the object's category descriptor
and USERDEFINED ATTRIBUTES attribute looking for string-valued
attributes, and concatenates strings in the label=>value form
together.

3.3.2.2.2.3 Ex3ee

SET ATTRIBUTE("TEST FILE", "PURPOSE", "FUN");
SET ATTRIBUTE("TEST FILE", "CHECK LEVEL", "1);
SET ATTRIBUTE("XYZ", "PURPOSE", "FUN");
decTare

S: constant STRING :- GET ATTRIBUTE("XYZ", "CHECKLEVEL");
-- S is now the n ll STRING.

AA: constant STRING :- GET ALLATTRIBUTES("TESTFILE");beg in -
PUT LINE(AA);
-- Output will be: "PURPOSE=>FUN,CHECK LEVEL=>l"

end;

3.3.2.2.2.4 Special Requirements

3.3.2.3 Access Control

3.3.2.3.1 Static Access Control

90

INTERMETRICSINCORPORAT.D * 733 CONCORD AVENUE * CAMBRIDGE MASSACHUSETT.S02 12 - 617 661-7840

m 4 y.

I-I34 092 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR RDA 212
INTEGRATED ENVIRONMENT --(U) INTERMETRICS INC CAMBRIDGE
MA 12 NOV 82 IR-678-2 F30602-00-C-029i

UNCLSSIFIED F/G 9/2 N

mommmllsil
mEEmhhEEEmhmhE
EohhhEmhhEohEE
mEshhEEEEEmhEI
EhhmhhEohhEshE

II~~ 1.00o

1126. =

MICROCOPY RESOLUTION TEST CHART
NATION4AL BUREAU OF STANDARDS-1963-A

B5- AIE (1) KAPSE (1)
3.3.2.3.1.1 Inputs and Outputs

As part of the KAPSE/tool interface, the following primitives are
available for manipulating the extended object attributes
relevant to access control, including ACCESS CONTROL and ROLES,
and implicitly the primary or secondary window used to reach the
extended object:

Package ACCESS CONTROL is

subtype ROLE STRING is STRINGI
subtype ACCESS RTS STRING is STRING;

procedure SET ROLE ACCESS(OSJNAME: in STRING;
ROLE: in ROLE STRING;
ACCESS RTS: in ACCESS RTS STRING);

-- Set list of access rights associated with given
-- role. Format for ACCESS RTS is
-- comma-separated list of access right
-- names, with operations and channels specified
-- using an embedded list.
-- Requires OWNER modifier, or OVERSEER modifier
-- with RED access.

function ROLEACCESS (OBJNKLE: in STRING;
ROLE: in ROLE STRING)
return ACCESS RTS STRING;

-- Return list of access rights-ass~ciated with
-- specified role for the designated object.
-- Returned STRING is com-separated
-- list of access right names and embedded
-- list of operations/channels.
-- Requires READ access to the object.

function ALL ROLES (OBJNAME: in STRING) return STRING;
-- Return list of roles with any access rights
-- explicitly defined for this object.
-- Requires READ access to the object.

procedure CRFATE ROLE(NEN ROLE: in ROLE STRING;
WB.EEEz in STRIN);

procedure DELETE ROLE(NEW ROLE: in ROLE STRING;
WHERE: in STRING);

-- Edit the ROLES attribute.
-- Must have OWNER or read-able OVERSEER.
-- WHERE must "end" on an extended
-- object, and the last step must be
-- via its primary window.
-- Implicit ADOPT ROLE/ABANDON ROLE is performed.

O7091

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE •CAIMBRIOGE. MASSACH-USETTS 02138 •t617) 661-1840

BS5-AIE (1). KAPSE (1)

procedure ADOPTROLE (ROLE: in ROLE STRING;
WHERE: in STRING := "'CURRENT DATA");

procedure ABANDON ROLE (ROLE: in ROLE STRING;
WHERE: in STRING := O'C U RRENT DATA");

-- ADOPT requires "add" right at window
-- and OWNER inside target;
-- ABANDON requires "delete" at window.

procedure GIVE-ROLE (ROLE: in ROLESTRING;
TOROLE: in ROLE STRING;
WHERE: in STRING :- " 'CURRENT DATA");

-- Requires "add" at window, and giver
-- must hold ROLE (or OWNER
-- modifier) at target-of window.
-- TO ROLE is a role outside the window
-- riceiving the additional
-- ROLE inside the target.

procedure SET MODIFIER(MODIFIER: in MODIFIER STRING;
WHERE: in STRING :Z N'CURRENT DATA";
TO: in BOOLEAN :- TRUE);

-- Only legal to set READ ONLY true,
-- or to set OWNER or OVERSEER false,
-- unless already have -OWNER modifier.

end ACCESS CONTROL;

In addition to this user-visible package, the access control CPC
provides routines for use within t..e KAPSE, to lookup pathnames,
and verify access rights for primitive operations. The inputs
for these routines are generally the pathname, a handle on the
current program context object (where the pathname implicitly
starts), and an identification of what access rights are about to
be exercised.

The outputs from these KAPSE-internal routines are typically
a handle on the extended object and the particular file selected
by the pathname, or a failure indication indicating that an
access control violation has occurred.

3.3.2.3.1.2 Processing

The access control attribute is represented by a table indexed by
role index, with each element identifying the associated access-
rights and operations/channels. The primitive access method
routines (see 3.3.1.3) are used to perform the appropriate
manipulations, after verifying that the running program has the
appropriate access role modifiers/rights.

When the CPC wishes to check the legality of an operation,
it consults the access control attribute of the object, with a
set of roles and the number of the required access right. The

92

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAM*BRIDGE. ,,ASSACHUSE7,S 02138 * 6611,0

' ", :,/, ".,: ;,," ., .; ,,;.. ,:..,"..'o." ..'..'..,;.'..'..." .'..........-..-.... ,."......-..-......-..................................

5-AIE (1). KAPSE (1)

required access right must be granted to at least one of the
roles for the check to succeed.

The Lookup function of this CPC does pathname interpretation
(see 3.2.4.3.3). It implements the rules for content- and
target-defined attributes (see 3.2.4.3.4) as part of pathname
interpretation. It uses routines of the window object CPC to
locate the target of a window, and translate the roles as
appropriate.

3.3.2.3.1.3 Ixamles

SET ROLE ACCESS (OALPEA, ROLE->"XWORLD,
ACCEs9 RTS->- RAD,ADD)

-- Give all users with WORLD window over simple
-- object ALPHA, access rights READ and ADD.

SZT ROLE ACCES (SBETAO, ROLZ->'IPROJECT,
ACCSSRTS->" ZAD,OPERATE' (LIST,EXTRACT) ")

-- Give all users vith PROJECT role inside
-- object BETA, right to READ, and invoke
-- the LIST and EXTRACT operations.

TEXTIO * PUT (GET ROLS ("BETA"));
- Will print OPROJECO if above SET ROLE ACCESS
-- is the only one in effect for BO A.

3.3.2.3.1.4 Special Requirements

This CC in conjunction with the WfNDOW OBJECT CPC forms the
heart of the KAPSE access protection mechanism. It is required
that this CPC be thoroughly tested to ensure that no
possibilities for protection violation remain within the access
control implementation.

3.3.2.3.2 D.naic Access Synchronization

3.3.2.3.2.1 Inputs and Outputs

The following primitives are used to effect synchronization among
multiple Ada programs attempting to access overlapping parts of
the database:

93

INTIUMETRICS INCORPORATED - 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • ;617) 661.1840

"r ', - , ,,',; ',,'~~~....-. . . ,... * ...- i i... . •

BS-AIE(l).KAPSE(1)

Package ACCESS SYNCHRONIZATION is

type OBJECT HANDLE is limited private;
-- Reserved objects are referred tt* by
-- object handles, created within the
-- context object of the reserving
-- program.

type RESERVE MODE is (WRITE ORIGINAL, WRITE COPY, READORIGINAL,
READ COPY, SHARED STREAM, SHARED RANDOMT

-- WRITE ORIGINAL prevents afl access except
READ/WRITE COPY.

-- READ ORIGINAL prevents all write access.
-- READ7WRITE COPY never interferes, but may also be
-- reading/wiriting soon-to-be-obsolete data.
-- SHARED STREAM causes WRITE ORIGINAL reservation
S-- only it the time of actual READ or WRITE.
-- Stream READ always reads the first defined element of
-- ~the object, and then advances FIRST to the next element,
-- and requires READ/WRITE or CONSUME access.
-- Stream WRITE always appends a new element at the end of
-- the object and advances LAST.
-- SHARED RANDOM causes a reserve (WRITE ORIGINAL
-- or READ ORIGINAL) only at the time of actual READ or WRIT

procedure RESERVE(HANDLE: in out OBJECT .HANDLE;
MNAEt in STRING;
MODE: in RESERVE MODE;
TIME LIMIT: in DURATION :- DURATION'LAST);

-- The object named is reserved
-- according to the given RESERVE MODE.
-- If the RESERVE is not immediately possible
-- due to a conflicting RESERVE, the caller is delayed
-- up to the specified TIME LIMIT, when a TIMEOUT
-- exception will occur.

procedure RELEASE(HANDLE: in out OBJECT HANDLE);
-- RELEASE after RESERVE for WRITE ORIGINAL causes
-- modifications made since the RESERVE to become
-- permanent.
-- RELEASE after READ ORIGINAL allows waiting writers to
-- proceed to RESERVE.
-- RELEASE after READ/WRITE COPY throws away the logical
-- COPY made for the purpose of private work.

procedure ABORT RESERVE (HANDLE: in out OBJECT HANDLE);
-- ABORT RESERVE after WRITE ORIGINAL returns the
-- reserved object or partition to its original

pre-RESERVE state.
-- Fot all other modes, ABORTRESERVE is
-- equivalent to RELEASE.

I

,94

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET"TS 021-1a - 6;7' 661.1840

B5-AIE(l).KAPSE(L)

function HANDLENAME (HANDLE: in OBJECT.HANDLE)
return STRING;

-- This function returns a pathname string to
-- be used for opening the reserved object,
-- or passing the reserved handle off
-- ~ to a subsidiary program.
-- The pathname is always of the form
-- "OPEN HAkDLS.xx" where xx is an
-- index Tnto the OPENHANDLES list.

end ACCESS SYNCERONI ZATION ;

Besides these explicit synchronization calls, CREATE of a simple
object, OPEN of a simple object, and OPEN PARTITION result in
implicit reserves. By default, OPEN for- input only and
OPEN PARTITION do a READ COPY reserve. CREATE and OPEN for
outpit do an WRITE ORIGINAL-reserve. The default reserve may. be
overridden by additional information in the FORM STRING passed to
OPEN, poviding for READ ORIGINAL reserve instead of READ COPY,
or usecting SHARE STIRAM oc SEARED RANDOM, in which case, an
autoatic RESERVE/RZELASg takes place around each READ and WRITE
operation to the object.

3.3.2.3.2.2 frocessin

After an Ada program petform a RESERVE, it may perform a
sequence of operations using the reserved handle without
interference from other programs. When the sequence is complete,
the program may RELEASE or ABORT RESERVE. Each RESERVE starts by
making a logical COPY of the reserved object. odifications and
accesses performed between RESERVE and RELEASE use this logical
COPY, pceserving the integrity of the original object.

The CVC implemnts RESERVE/RELEASE at a low level to allow
efficient detection of conflicting reservations. When
READ/WRITE ORIGINAL reservation of all or part of an object is
requested,- this CPC determines whether a conflicting reserve is
already in progress. If so, the new reserve is delayed up to the
TINE LIMIT. If not, this CIC records the reservation, and for
WRIT1 ORIGINAL, creates a logical copy where the actual changes
will be made. READ/WRITE COPYers never need to check for
conflicting reserve. They sImply make a logical copy for their
own use of whatever is available, which may be somewhat out of
date.

3.3.2.3.2.3 Secial_ Requirements

Access synchronization routines are called implicitly by
every open/create operation on simple objects. It is required
that the creation of the reserved handles, including any logical

95

1K14IRMETRICS INCORPORATEO 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 66..1840

,•. .

BS-AXE (1).KAPSE (1)

copies, be as efficient as possible to preserve the overall
performance of the KAPSE.

96

INTIMMETRiCS INCORPORATED 73 3CONCORD AVENUE *CAPOSPIOGE. MASSACHUSET7S 02138 is 61 7 661 1240

*e it- 4. ~. - .**-*. *

S5-AIE (1). KAPSE (1)

3.3.3 Multiple Program Management (KAPSE.MULTPROG)

3.3.3.1 Program Loading

3.3.3.1.1 Inp~uts and Outputs

The following package is provided to interface to the host
loading, initiation, memory-allocation, and time-sharing
facilities, as part of the KAPSE/Host interface:

package PROGRAM LOADING is

procedure LOAD PROGRAM(LOAD MODULE NAME: in STRING;
ID: out PROGRAM ID);

- This procedure loads and initiates the designated
-- program. The returned PROGRAM ID may
- be used later to communicate wtth the
-- program.
- The LOAD MODULE NAME is a database pathname
- ~that id-ntifies a simple object suitable for
-- loading by the host System. The history
- attribute of the load module uniquely identifies
-- the State of its content, and the implementation
-- ma attempt to share code for multiple executions

us-n- the same load module. Extra effort will
-- be made to share the code of frequently
-- executed programs.

procedure UNLOADPROGUAM(ID: in PROGRAM ID);
- This procedure frees any space allocated to the

-- program identified by ID, and performs any
-- clean-up that may be required on the host
-- system to eradicate the program.

procedure GET STORAGE (AMOUNT: in STORAGE AMOUNT;
STORAG: ut STORGE PTR);

-- This procedure allocates storage of the amount
-- specified by the caller, and returns an access
-- value that identifies the storage that was
-- allocated.
- The allocated storage contains inside it a header

-- that indicates the size that was allocated.

procedure FREE STORAGE (STORAGE: in STORAGE PTR);
- Thil procedure returns storage to the system.
- The size of the returned storage is
- determined from a field in the header of the

-- storage area.

97

INTERMSTRICS INCORPORATED • 733 CONCORD AVENUE • CAMSRIDGE. MASSACHUSETTS 02138 • f6171 81-1840

35-AE (1). KAPSE (1)

end PROGRAM-LOADING;

3.3.3.1.2 Processin

This CPC has three distinct subdivisions.

a. GET STORAGE and FREE STORAGE, which are called by the run-
time system (see 1.3.5.2) in response to requests made by
the program.

b. LOAD PROGRAM and UNLOAD PROGRAM, which are called by Program
Invocation routines of KAPSE.MULTPROG (see 3.3.3.3), and are
used to start a program running and to clean-up any residue
left behind by a completed Ada program.

c. This CPC also guarantees that a program that has been loaded
via LOAD PROGRAM will be allocated sufficient processing,
memory, and other resources to complete. There is no
procedure call associated with this requirement; rather, the
scheduling happens automatically.

3.3.3.1.3 Processing for va/SP

This CPC allocates memory within the virtual machine, sets
up the segmentation and page maps appropriately, and then loads
the data from the load module into memory. When sharing is
warranted, the pure portion of the load module is separately
located, and multiple invocations of the same program will simply
map it in.

3.3.3.1.4 Processing foroPE OS/32

Unshared Ada programs are initiated by loading a pre-
initialized OS/32 task image whose sharable pure segment includes
the standard Ada run time system. The start-up code of the task
reads the blocks of code and data into its impure segments.

A limited number of host files are created and allocated
when the lAPSE is installed, for the purpose of holding OS/32
task images with sharable segments. When sharing is warranted,
the load module is copied into a file in Task Establisher Task
(TET) format; this file is then used for task loading. These
files are re-used dynamically on a "Least Recently Used" basis.

3.3.3.1.5 §pj.ial _Requirements

98

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MVIASSAC4USET'TS 32133 1617 661-1?,0

. .. . , . . o o e .. .- - • ". *. 4 .° o % . . "° "°
" .

. - - . .'

* ~~~~W- 7~.-~. ~~~

S5- AIE (1) .KAPSE (1)

3.3.3.2 Low Level KAPSE/Pro3fram Commuunication

3.3.3.2.1 Inputs and Outputs

The following package is part of the KAPSE/Host interface,
and provides the basic mchanism for communication between the
KAPSZ and the user program, in a host-independent manner:

99

INTERMETICS INCORPORATED 7 33 CONCORD AVENUE *CAMBRIOGE,M!ASSACMUSETTS 02138 *(617) 661-1840

3S-AXE (1) .KAPSE (1)

package KAPSEPROGRAH COMMUNICATION is

type PROGRAM ID is private;
-- Tge program id for each program is unique,
-- and is assigned by package PROGRAM LOADING
-- (see above).

type REQUESTINDEX is
INTEGER range l..<<Implementation Dependent>>;

-- Each Ada program is limited to a specific number
-- of outstanding KAPSE CALLS (the presence of
-- multi-tasking implies that there may be several
-- KAPSE CALL's outstanding at once). Each
-- KAPSE CALL is associated with an integer that
-- identifies which of the permitted requests
-- was responsible for the call.

type KAPSE PACKAGE ENUM is
(<<List of package id's for all

packages exported by KAPSE>>);
-- Each KAPSE interface package is associated with
-- a unique enumeration. The enumeration is used
-- as a discriminant to the MESSAGE RECORD and
-- RESULTS-RECORD types below.

type MESSAGE RECORD(KIND: KAPSE PACKAGE ENUM) is <<TBD>>;
-- Tis type defines the structure of messages
-- passed via the KAPSE PROGRAM COMMUNICATION
-- routines. The structure varies according
-- ~to the kind of kapse call.

type RESULTS RECORD(KIND: KAPSE PACKAGE ENUM) is <<TBD>>;
-- This type defines the structure of results
-- passed via the KAPSE PROGRAM COMMUNICATION
-- routines. The structure varies according
-- to the kind of kapse call.

package USERVERSION is

procedure KAPSE CALL (MESSAGE: in MESSAGE-RECORD;
RESULTS: out RESULTS RECORD) ;

- This procedure signals to the KAPSE via an
-- interrupt that a message should be sent
-- across the KAPSE protection boundary.
-- The procedure waits for the KAPSE to send
-- results back across the protection boundary.
-- The caller is suspended until the results
-- har" been -- sad back.

100

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 * !617) 561-1840

BS-AIE(1) .KAPSE(1)

end USER VERSION;

package KAPSE VERSION is

procedure RECZIVE-RQUEST (ID: out PROGRAZ4 ID;
INDEX: out REQUEST INDEX;
MESSAGE: out HESSAGE RECORD)

procedure RETURN RESULTS (ID: in PROGRAM ID;
INDEX: in REQUEST INDEX;
RESULTS: in RESULTS RECORD);

end KAPSE VERSION;

end KAPSE PROGRAM COIUUNICATION;

3.3.3.2.2 Processing

This dC implements a user Ocommunication task" and a lAPSE
wcoununication task" to actually send messages across the KAPSE
protection boundary. Those tasks are'also part of the lAPSE/Bost
interface implementation and are implemented differently on
different hosts. A table outlining the processing done on each
side of the protection boundary follows:

101

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSE "IS 02138 *617) 661-1840

a5-AIE (1) KAPSE (1)

KAPSE/Program Communicaton Mechanism

Program :

• KAPSE CALL:

1) KAPSE CALL makes an entry call on the user
communication task to send the message and
the results address to the KAPSE. The
request index is returned.

2) The user communication task determines the
program id of the caller, finds an
available request index, and sends the
program id, the request index, the
message and the results address to the
KAPSE. It returns the allocated request
index to the caller.

3) The KAPSE CALL makes an entry call on the
the member indicated by the request index
of the GetResults entry of the user
comunication task and is normally blocked.

4) A message interrupt causes the user
communication task to do an accept on
the entry member associated with
the request index for the completed
KAPSE CALL.

5) Awoken by the end of rendezvous, the
KAPSE CALL returns to the caller.

KAPSZE:

SRZECIVEREQUEST

1) A wserver" task calls RECEIVE REQUEST which
does an entry call on the KAPSE communication
task's "GetRequesto" entry and is normally
blocked.

2) A message interrupt causes a call to be made
on the KAPSE communication task which
copies the message across the KAPSE protection
boundary into the KAPSE.

3) The KAPSE communication task then does an
accept on its GetRequest entry and provides the

102

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, M.ASSACHUSET, S 02138 - 6i7) 661-1840

• - "-.. . . .-... -°% -.. . .- -

BS-AIE (1) KAPSE (1)

caller with the program id, the request index,
the message, and the result address of the
associated message.

4) The server, awoken by the accept, services the
request (as specified in the message).

E*_URN -UrLTS

5) Server calls RETURN RESULTS which does an entry
call on the KAPSE coinication task's
"SendResultsw entry which copies the results
back into the user's space and causes a
message interrupt (tagged with the request
index) to be sent to the appropriate program.

3.3.3.2.3 Processing for /

The KAPSE/Host interface under VM/SP implements this
KAPSE/user program communication using the SVC instruction. The
KAPSE/Rost interface has direct access to the address space of
the user program, so the data may be copied across using the MVC
instruction.

3.3.3.2.4 Processing for PE 0S/32

Communication between the KAPSE 0S/32 task and user program
05/32 tasks use the 05/32 task message facility. Pseudo
interrupts are provided to the receiving task when a message is
ready.

For large transfers, 0S/32 provides the ability to send and
receive open file handles. If the overhead of messages becomes
unwieldy in a running MAPSE, it will be possible to switch to a
method of data transfer involving writing to a scratch file from
one task, and then reading the data back in the receiving task.

3.3.3.2.5 pcial Requiriements

The KAPSE PROGRAM COiIUNICATION package is used for all
coinication -between- the KAPSE and user programs, and is
critical to the efficiency of KAPSE system calls in general.

103

INTIRMIrTRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 6171 661-1840

B5-AIE (1) .KAPSE (1)

3.3.3.3 Program Invocation and Control

3.3.3.3.1 Program Context

3.3.3.3.1.1 Input-.and Outputs

Each activation of a program has associated with it exactly one
program context object. The following primitives are available
to create new activations of a program with its new context
object, as well as suspend and resume the running program. The
context object is initialized from parameters, windows, and other
attributes inherited from the invoker, and with a window back on
the executable program object.

1.04

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617)661-1840

..

B5-AIE (1) KAPSE (1)

Package PROGRAM INVOCATION is

subtype PARAMS STRING is STRING;
subtype RESULTS STRING is STRING;

function CALL PROGRAM(PROGRAM PATH: in STRING;
PARAMETERS: in PARAMS STRING;
CONTEXT NAME: in STRING- :- ".SUB CONTEXT";
STh IN: in TEXT IO .FILETYE -

CURRENT INPUT;
STD OUT: -n TEXT IO.FILE TYPE :

CURRENT OUTPUT) -
return RESULTS STRING;

-- This function invokes an executable-program
-- context or command language script as
-- ~though it were a sub-program of

-- the calling program.
-- PROGRAM PATE is the access path to the program/script.
-- PARAMETRS is a comma-separated
-- list of parameters for the
-- program, using positional or keyword
.. notation (eg., OA,B,EXTRA->Cw).
-- The optional parameter CONTEXT NAME specifies
-- ~the LOCAL NAME for the contexT object
-- created f~r the called program.
- The returned RESULTS STRING is a
-- cmma-separated list of the out parameter
-- values of the called program .-
- If the called program is actually a function,
- ~the remlt is returned as though it were

-- an out parameter labeled RETURN
-- (eg., 9RETURN->1423").
-- By default, the current text input and output for
- ~the calling program become the standard

-- text input and output for the called program.
-- All attributes of the caller~s context with
-- INHERIT flag set are copied
-- into the sub-context created.

function PROGRAM SEARCN(PROG NAKEZ: in STRING) return STRING;
-- This runction looks for an executable program

c-- ontext or command language script with
-- name PROG MAKE in each of the composite
-- objects specified in the caller's PROGRAM SEARCH LIST.
-- The returned STRING is the full access patS to
-- ~the program context of script, ready to
-- be passed to CALL PROGRAM above.
-- The PROGRAM SEARCH LIST is an attribute of
-- the caller's context object. It is set using
-- SET ATTRIBUTE and specified as a
-- coma-separated list of composite object names.

105

INTERMETRICSINCORPORATED * 733 CONCORD AVENUE a CAMBRIDGE. MASSACHUSETTS02138 * t17) 661-*840

[.rJ ,re .,qA,' , .'w' ,'.%.','.' -,' '. ', .' ,'- ",",. .'..",..,.,', "... .'.....•.. "....,.

B5-AIEW(1).KAPSE (1)

procedure INITIATEPROGRAM(PROGRAMPATH: in STRING;
PARAMETERS: in PARAMS STRING;
CONTEXT NAME: in STRING;
STD IN: in TEXT IO.FILE TYPE;
STD OUT: in TEXT IO.FILE TYPE);

-- This procedure invoWes a program or
-- script exactly like CALL PROGRAM,
-- except that the caller ii not suspended
-- until completion, and no defaults are
-- provided for CONTEXTNAME, STD IN, or
-- STD OUT.

function AWAIT PROGRAM(CONTEXT NAME: in STRING;
TIME LIMIT: in DURATION : =

DURATIO LAST)
return RESULTS STRING ;

-- This function waits for the completion
-- of the specified program context object,
-- up to the specified TINE LIMIT.
-- The returned STRING is as in CALL PROGRAM.

procedure EXIT PROGRAM(RESULTS: in RESULTS STRING;
ABORT SUB CONTEXTS: in BOOLEAN :- FALSE);

-- This procedure exTts a program, either
-- waits for its sub-contexts or aborts them,
-- and then returns the results to the invoker.

procedure SUSPEND PROGRAM(CONTEXT NAME: in STRING);
-- The program executing in the named context is stopped,
-- allowing the state of the execution to be examined,
-- or a debugger to be initiated to control or trace
-- further execution of the program.
-- Normal tasks of the program are made dormant, but
-- the run-time system continues to respond to inter-
-- program communication on channels zero and one.

procedure RESUME PROGRAM(CONTEXT NAME: in STRING);
-- The program associate3 with the named context is
-- restarted. The program must have been previously
-- initiated and then suspended.

(continued below)

3.3.3.3.1.2 Processinq

A program context is a composite object using a single component
distinguishing attribute LOCAL NAME and with certain standard
windows and objects as components. In particular, every context
includes a window attribute labeled CURRENT DATA, which provides
the main link to the permanent part of -the database. The
CURRETDATA window may be shifted to view other parts of the

106

INTIRMITRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. -MASSACHUSE-7 S 02128 617' 661-1840

, , , . - a- a . , ., 4. * -,, . , . h , ' . S t
' ' , '

.
'

, --. . - . -. . : - -. . : - ,

B5-AlE (1) .KAPSE (1)

database using the CHNGE VIEW primitive (see 3.3.3.6 below). A
running program has an implicit OWNER window on its program
context.

The program integration facility [AI - (l) .PIF(l)] creates
executable program objects and by default deposits them in their
associated Aa program library. If the program is to be used by
many users, it will be copied to a central repository of
executable programs (eg., TOOLS component of the root). When an
executable program is called or initiated, this CPC creates a new
context object with a window attr ibute labeled PROGRAM whose
target is the executable program object, allowing the running
program to refer to attributes of the program object via a
pathname like "PtOGRh'*HZLPVILE."

When a coand language script is called, the APSE invokes
the command language processor identified by the PROCESSOR
attribute of the program object, and passes the name of the
object containing the script as an additional parameter.

3.3.3.3.1.3 1S__.al Pequiremnts

Program invocation is used heavily within the AXE, because
of the basic toolkit approach. Sophisticated tools can be built
up out of simpler fragments using program invocation as the
primary composition technique. It is required that the
implementation of program invocation be as time-efficient as
possible to preservt overall performance of the AIR.

3.3.3.3.2 Parameter Passing

3.3.3.3.2.1 Inputs and Outputs

Parameters are passed to a program context by CALL PROGRAM and
INITIATE PROGRAM (see above) as a couma-separatad list using
positionil or keyword notation. For example:

CALL PROGRAM (OCaPzL2, 8QSORT ,MXLZB, OPTIM*>T11E*);

Internally, these parameters are passed as the value of an
attribute of the created program context, labeled PARAMETERS.
This attribute is then retrieved by the called program's preamble
"[AIE().PIP(l)I, by GET ATTRIBUTE(".6,"PARAMETERS").

At the end of execution, values of out parameters are
rewritten by the called prog.am to the RESUETS attribute using
SET ATTRIBUTE, and are returned to the caller as the results
string of CALL-PROGRAM or AWAIT.PROGRAM. If the called program

107

INTEMETRICS INCORPORATED • 733 CONCORO AVENUE • CAMBRIOGE. MASSACHUSE rTS 02138 • (8171 661.1840

, 55-AIE (1). KAPSE (1)

is a function, the returned string is of the form
ORETURN->ceturn value." If the program ends due to an unhandled
exception, the returned string will be "EXCEPTIONS>exception_id."

The following function is defined to facilitate extracting a
single parameter from the string returned by GET ATTRIBUTE,
CALL PROGRAM, or AWAIT-PROGRAM:

function PICK PARAM(PARAMETERS: in STRING; PARAM NAME: in STRING;
POSITION:-in INTEGER :- 0; DEFAULT: in STRING :
return STRING;

-- This function extracts the specified parameter from
-- the given parameter string, as might be returned
-- by GET ATTRIBUTE(".", "PARAMETERS").
-- PARAM NAME may be null or POSITION may be zero,
-- but Rot both. The DEFAULT string is returned if
-- no parameter is present in PARAMETERS at the
-- designated POSITION or labeled by the
-- specified PARAM NAME.

3.3.3.3.2.2 Processinq

The list of parameters is represented as the attribute PARAMETERS
of the program context object. The function PICK PARAM is
provided to parse the parameter list, and does so by simply
scanning through the PARAMETERS string supplied, looking for
OPARAM NAME ->" if PARAM NAME is not null, or the unlabeled
argumeNt number POSITIUN. If neither is present, the supplied
DEFAULT string is returned.

3.3.3.3.2.3 Special Requi ements,

3.3.3.3.3 Private Object Operations

3.3.3.3.3.1 Inputs and Outputs

The following primitives are available for creating and invoking
private object operations:

108

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMSRIDGE. MASSACHUSE"TS 02'38 -. 61") 661-'840

B5-AIE(.) .KAPSE (1)

function INVOKE OPERATION (PRIV OBJ: in STRING;
OPERATION: in STRING;
PARA14ETERS: in PARAZ4S STRING;
CONTEXT NAME: in STRING :- O.SUB CONTEXT;
STD IN: in TEXT 1O.FILE TYPE :

ICURRENT INPUT;
STD OUT: in TEXT 10 .FILB TYPE:

CURIRENT OUTPUT)
return RESULTS STRING;

-- This routine attempts to invoke the spe~ified
-- operation.

-The operation will tail if the PRIV 09.7 does
-- not have an OPERATIONS attribute,
-- or the caller does not have access to it.

-The returned REULTS STRING is the
-- out parameters or t~e return value
- Tthe operation.

end PROGRAM IN VOCATION;

3.3.3.3.3.2 Processin

Ptivate objects are simply objects with an OPERATIONS attribute,
which is a window on a composite object full of operations (i.e.
executable program objects). When the user calls
INVOK1 OIZRATION, the KAPSZ constructs the pathname for the
operaion context object an ?RIV 08.7 a 4-OPERATIONSo- a
OPERATION. It then creates a context object, gives it a window
on PRhy 0OW called "IMPLICIT OJUCT of role 0OWNR,8 and
prepend- "IMPLICIT OWE7CT,* io- the parameter list (e.g. if
PARAMETERS is OA,80 then it passes "IMPLICIT OwDJT,A,B" as the
full parauter list to the operation) .

3.3.3.3.3.3 Special ftluirements

3.3.3.3.4 interprogran Communication

3.3.3.3.4.1 Inputs-and Outputs

Interprogram communication is performed by special operations on
the associated program context objects. The routines of this
package provide the equivalent of an inter-program rendezvous,
receiving the parameters, and returning results, in analogy with
task entry calls, just as CALL-PROGRAM provides an analogy to
subprogram calls.

109

INTIRMITRICS INCOPORATID 733 CONCORD AVIENUE *CAMBRIDGE. MASSAC4USTTS 021383 - t61 16561.1840

35-AXE (1) .KAPSE (1)

This package is part of the KAPSE/Tool interface:

with PROGRAM INVOCATION; use PROGRAM INVOCATION;
Package RNTEPROGRAM COMUNICATION ra

function IPC ACCEPT(CHANNEL NAME: in STRING;
TIME LIMIT: in DURATION : -

dURATIO LAST)
return PARAMS STRING;

-- This routine accepts the next waiting
-- IPC ENTRY CALL for this channel.
-- If Wone are already waiting, this
-- will suspend up to the TIME LIMIT.

procedure IPC END RENDEZVOUS (CHANNEL NAME: in STRING;
RESULTS: in RESULTS STRING);

-- This routine is called after an IPC ACCEPT,
-- to allow the IPC ENTRY CALL to proceed,
-- with the RESULTS provied.

function IPC ENTRY CALL (CONTEXT NAME: in STRING;
CHANNEL-NAME: in STRING;
TIME LIMIT: in DURATION : =

DURATIONW LAST;
PARAMS: in PARAMS STRING)
return RESULTS STRING;

-- This routine sends the PARAMS to
-- the designated context via the
-- named channel. It is delayed until
-- the entry call is accepted, and
-- the rendezvous is ended.
- Requires COMMUNICATE access over the

-- designated channel,
-- on the specified program context object.

procedure IPC SELECT(;
-- IPC Select statement <<TBD>>

end INTER PROGRAM COMMUNI CATION;

3.3.3.3.4.2 Processjm

These interprogram coimunication primitives necessarily rely on
the communicating programs agreeing on the format and
interpretation of the PARAMS STRING and RESULTS STRING. From the
lAPSE point of view, these are just character strings. A
TIME LIMIT of zero results in a conditional ACCEPT or ENTRY call.
A TfMi LIMIT of DURATION"LAST (the default) results in an
effectively un-timed call. If a single program wishes to receive
ENTRY calls on many channels simultaneously, it may execute the

110

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE e CAMBRIDGE, MASSACHUSETfS02128 . '617) 661-1840

• 7 -' ' ' , ' : ; ;~.'......... '..'............" . ,."".'. -,....'"".

j- 7 47 ir W-r V- -. "7 - -J - -

B 5-AIE (1) .KAPSE (1)

ZPCACCUT' calls from separate Ada tasks, or use the «<TED>>
IDCj311T.

Certain channel names starting with an underscore _CONTROL
nd DUN) are reserved for the Ada Run Time System (KAPSE.RTS)

and tffe Debugger Support Routines (see below).

3.3.3.3.4.3 §2ecial Requirements

3.3.3.3.5 Debqgging an oto Interface

3.3.3.3.5.1 Inputs and Outputs

The following procedures are available to a debugger for
inspecting, controlling, and modifying a suspended program:

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

85-All (1) .KAPSE (1)

Package DEBUGGER INTERFACE is

type PROGRAM STATE is <<cTED>>;

procedure SET ,CURRENT DEBUGGED CONTEXT (PROG CTX: in STRING);
-- Ths procelure is called once to specify

-- which program context is being debugged,

procedure GM -PROGRAM STATE (STATE: out PROGRAM-STATE);
-- Retrieve the current state of the

-- debugged program, including the program
-- counter and stack pointer.

procedure CONTINUE (STATE: in out PROGRAM STATE);
-- Allow the debugged program to continue.
-This procedure returns when the debugged
-- program reaches a breakpoint trap.

procedure SET PROGRAM DATA (ADDRESS: in ADDR TYPE;-
DATA: in STORAGE ARRAY);

-Store the array of storage units at the designated
-- address in the debugged program.

procedure GMTPROGRMK DATA (ADDRESS: in ADDR TYPE;
DATA: out STORAGE ARRAY) ;

-- Retrieve i~to the array of storage units
from the designated address in the

-- debugged program.

procedure SET ECP BREAKPO INT (ADDRESS: in ADDR TYPE;
ON OFF: in BOOLEA);

Ac tivate or deactivate a breakpoint at
-- the designated execution control point,
-- according to 0N-0FF.

procedure SZTECPIONERAKPOINT (EXCEPTION ID: in INTEGER;
0N30FF: in BOOLEAN :- TRUE);

Associate or disassociate a breakpoint
with the specified exception.

type BREAK GROUP is (ALL STATm4ENTS,
ALL CALLS,
ALL EXCEPTIONS,
UNHU4DLED EXCEPTIONS,

procedure SET GROUP DREARPO INT (GROUP: BREAK GROUP;
ON OFF: in BOOLEAN : - TRUE) ;

-- Associate or disassociate a breakpoint with
-- the specified group of execution control
-- points or exceptions.

112

INTERMSTRICS INCORPORATED * 733 CONCORD AVENUE *CAMBRIDGE, MASSACH-USETTS 02138 * 6171 661-1840

BS-AIE (1) KAPSE (1)

end DEBUGGERIVERFACE;

3.3.3.3.5.2 Processing

The above procedures are implemented using inter-program
comiunication primitives. When a program is suspended, all of
its normal tasks are made dormant, but a Debugger Support task
remains responsive to inter-program communication on channel
0 DEUG.0 The Debugger Support task performs the requested
ogerations on the debugger's behalf. See [AIE(l).DBUG(l)] for a
more complete discussion of the debugging interface.

3.3.3.3.5.3 S.ialReuirements

3.3.3.4 KAPSE/KAPSE Communication

3.3.3.4.1 Inputs and Outputs

This CIC will provide a <<TBD>> interface for communication
between KAPSEs on separate (virtural) machines. The interface
will be as close as possible to the interface provided by
LAPSX PIOGBAK COiIUNICATION.

3.3.3.4.2 Processin qon V1/SP

All co munication between virtual machines is accomplished using
the Inter-User Communication Vehicle or the Virtual Machine
Communication Facility [IdM81]. Both of these methods provide an
interrupt to the receiving VI when a message is ready. The data
is copied using a fast memory to memory transfer.

3.3.3.4.3 Processing on OS/32

. -DAg<<TB)>I>

3.3.3.4.4 Special Requirements

3.3.3.5 Terminal Screen Manag

113

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 1 6171 661-1840

B5-AIE (1). KAPSE (1)

3.3.3.5.1 Inputs and Outputs

The KAPSE provides a standard set of terminal control facilities,
directly available to the interactive ?APSE user:

ASCII Key Code Terminal Control Function

Control-S Stop terminal output.
(XOFM) Enter Scroll Control Mode.

(see belo) - - -

Control-Q Exit Scroll Control Mode.
(MON) Re-start terminal output.

Control-C Interrupt runninq program,
(ETX) Give control to program catching

or BREAK input interrupts.

Control- Erase previous entered character.
(Backspace)

Control-X Erase entire line entered.
(Cancel)

Scroll Control Mode is provided for terminal users to review
output which has gone off the screen of a video terminal, or was
illegible or lost from the printout of a hardcopy terminal.

In Scroll Control Mode, the terminal handler recognizes the
following small number of commands:

ASCII Key Code Scroll Control Mode Function

B *Back" -- Scroll the screen backward half
of a screen-ful, or simply retype the
previous line on a hardcopy terminal.

digit B Go back specified number of half screens
or lines, and redisplay.

F *Forward" -- Scroll the screen forward half
of a screen-ful, or simply retype the
next line which had been typed on a hardcopy
terminal.

digit F Go forward specified number of half screens
or lines, and redisplay.

114

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 617 661-'8540

BS-AlE (1) KAPSE (1)

Control-C Exit Scroll Control Mode and Interrupt
or BREAK program as above.

Control-Q Exit Scroll Control Mode, return to display
of current terminal output.

On terminals without normal ASCII keyboards, the user may define
alternate character sequences to replace the ASCII control
characters. On half-duplex systems, all control characters (or
sequences) must be preceded by an attention key, and terminated

*- by the end-of-line character so that characters are received by
the KAPSE.

3.3.3.5.2 Processina

* Scroll Control Mode is possible because all terminal output is
saved temporarily in the context object attribute
'TERKINAL OUTPUT. At the end of program execution, this

Scomponent may be saved if the output is considered valuable.

In addition, all terminal input to a program is stored
temporarily in the context object attribute 'TERMINAL INPUT, so
that historical records of program invocation can be complete.
At the end of program execution, a user may copy the
TZRMINAL INPUT component into a more permanent part of the

database to avoid having to re-enter the same input if the
program is re-run at a later time. From the point of view of
history, 'TERMINAL INPUT is treated as a source object.

It is expected that the terminal handler will be enhanced to
support multiple programs simultaneously on separate parts of the
screen, with additional control characters for moving between the
various screen windows.

3.3.3.5.3 Special Requirements

3.3.3.6 l.in/Logout .and User Context

3.3.3.6.1 Ljin/Logout and User Context Management

115

INTIRWRTICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 * 617) 661-1840

--,9 , 9 , 9,r . . . , , . . .- , ,..,, ,. ., .- .

BS-AIE (1). KAPSE (1)

3.3.3.6.1.1 Inputs and Oututs

Package USER CONTEXT is

procedure LOGIN(USER NAME: in STRING;
USER PASSWORD: in STRING);

-- This routine locates the user's
-- top-level directory ("*ROOT.USERS." & USER NAME),
-- encrypts and compares the password,
-- and then initiates the user's initial
-- command processor.

procedure LOGOUT;
-- This ends the current session, and
-- logs the user out.

function CURRENT USER NAME return STRING;
-- This function returns the current USER NAME
-- as specified to LOGIN.

procedure CHANGE VIEW(PARTITION: in STRING);
-- This procedure redefines the 'CURRENT DATA
-- window to refer to the newly selecte3

N -- PARTITION.
- It is implemented using standard window

-- operations (i.e., CREATE WINDOW)

procedure CHANGE PASSWORD (PASSWORD: in STRING);
-- This is meant to be suggestive. Change
-- password actually turns off echoing
-- and requests the new password directly
-- from the user's terminal. After
-- confirmation, the new password is
-- stored as the value of the USER PASSWORD

-- attribute of "*TOP LEVEL DATA. "(see below).

end USER CONTEXT;

3.3.3.6.1.2 Processing

When a user logs into the KAPSE, the LOGIN system requests a
USER NAME and a USER PASSWORD (not echoed). The USER NAME is
used to select a component from the USERS composite object. The
password is encrypted using a non-invertible function and
compared with the USER PASSWORD attribute of this component. If
the value matches, the component is taken to be the user's top-
level directory (composite object), within which, by convention,
exists an attribute named INITIAL PROGRAM CONTEXT, which
specifies what command processor is to be invoked-on the user's
behalf, with standard text input and output connected to the

116

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * 617 661.1840

....... •'," ,9 , f'r,- . ' -,
: , '

"* -. "- """" ",""

B5-AIE (1). KAPSE (1)

usercs terminal. The INITIAL PROGRAM CONTEXT normally identifies
the executable program for a full command language processor, but
may specify a more restrictive program designed to provide a user
with a more controlled environment (e.g., text editing only).

No additional primitives are needed to manipulate the USERS
composite object, or its components. Nevertheless, only users
with an appropriate window on the USERS composite object can add
new users to the system. Individual users may change their own
USER PASSWORD attribute, but not their USER NAME.

When the MAPS! is initially installed, there is a single
component of USERS named SYSTEM MANAGER, with password SYSTEM.
The SYSTEM MANAGER composite object has an
INITIAL PROGRAR CONTEXT with a SYSTEM window on the root of the
entire 3atabase- The first action after installation should be
to change the SYSTEM MANAGER password.

Although a sophisticated user or project manager could
create for themselves an arbitrary INITIAL PROGRAM CONTEXT
(limited of course by their access rights), most users will
choose to follow the APSE standard for program contexts
attributes, which include the following:

Standard program-context attributes:

String Attributes Value

PROGRAM SEARCH LIST - "*TOOLS.,*CURRENT DATA."

PARAMETERS => "

N-- o parameters to top-level
-- context.

"> U NAME.>ABC, COUNT-> 3
-- Example of parameters to
-- lower-level context.

RESULTS > "U
-- Empty string while still
-- active.

-> U, ,NUM ERRORS->5"
-- Out parameters after
-- the program completes.

-> "RETURN->3.1415"
-- Result of completed
-- "function" program.

117

INTERMITRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETrS 02138 * (617) 661-1840

85-AIE(1).KAPSE(l)

CONTEXT-STATE "> "TERMINATED"
-- State of program context
-- after termination.

.> ABORTEDa
-- State of program context
-- abnormally terminated.

-> COMPLETED"
-- State of program context
-- which has completed
-- processing but which

-- is waiting for its
-- subcontexts to complete.

=> RUNNING
-- State of program context
-- actively running.

"> "SUSPENDED"
-- State of program context
-- suspended by user.
-- Context is waiting for
-- debugging commands,
-- restart, or termination.

Window Attributes Typical Target
---------------------------- -------------------------------

'*CUIMET DATA User's top-level composite object

'TOP.LEVEL DATA User's top-level composite object

'ROOT Root of database

*TOOLS TOOLS component of ROOT

"CALLER CONTEXT Context of invoker

'PROGRAM The executable program object

Other Attributes Value
------ - ---------------------

'*TRMINAL INPUT Simple text object
'TZRMINAL OUTPUT Simple text object

--- These two objects are managed by the
-- KAPSE terminal handler. Program
-- I/O are connected to these text
-- objects, with TERMINAL INPUT lengthened,
-- and TERMINAL OUTPUT diiplayed
-- by the terminal handler under
-- keyboard control.

118

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE. MASSAC-USETTS 02138 • (6171 561-1340

As -", ,, ,""° ',""", ",,- ,,,.-'.°.' "-.".... .,... "-'": ..; " . -

8 5-AI E (1) . KAPSE (1)

OPEN HANDLES List of reserved handles
-- Each open file (or partition) handle
-- is represented by a reserved handle
-- on the opened object (or partition),
-- created within this list.
-- OPEN FILE HANDLES.1 and OPEN FILE HANDLES.2
-- are always associated with standard text
-- input and output, respectively.

SUB CONTEXT Program context object
-- This attribute is used by default to
-- hold the context object for a program
-- called as a sub-program.
-- The PARAMETERS attribute of the context
-- is the parameters to this sub-program.

The program context captures in one object the information the
KAPSE needs to know about a running Ada program.

3.3.3.6.1.3 Special ftguirements

The LOGIN procedure provides the primary protection against
unauthorized access to the AIXE. Therefore, it is required that
the encryption algorithm of LOGIN be thoroughly tested for non-
invertibility and for resistance to other code-breaking
techniques.

3.3.3.6.2- User Accounting

<<TBD>>

3.3.3.7 later-User Mail System

3.3.3.7.1 Iots and Outputs

The following programs are available for sending and receiving
inter-user mail:

.119

INTERMETReCS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 1 817) 861-1840

i , I','Z~~~~~~~~.'.'.." ,,, ...",..""..... *"" .,'.%

B5-AIE (1). KAPSE (1)

Package MAILSYSTEK is

procedure SEND MAIL(TO USER: in STRING; SUBJECT: in STRING;
MESSAGE OBJ: in STRING; MAIL SEQ NUM: out INTEGER);

-- This program sends maTl t3 the designated user.
The program constructs a path as

': - 'ROOT.USERS." & TO USER & ".MAILBOX"
-- and attempts to invoke the operation
-- SEND on this private object.
-- If the caller lacks sufficient access
-- rights through this path, SEND MAIL will fail.
-- In addition, this requires a window allowing
-- READ of the MESSAGE OW.
-- The returned MAIL SEU NUM may be used to check
-- if the mail has Seen-read.

function SEND MAIL CHECK (TO USER: in STRING;
MAIL SEQ NUM: rn INTEGER)
return BOOLEAN;

-- This function indicates whether the message
-- with the specified MAILSEQ JUM has been
-- read.
-- This function simply fails if the messageS-- was not sent by the caller.

function CHECK MAIL return INTEGER;
-- This function returns a count of the number
-- of message objects in the users MAILBOX.
-- The path to the mailbox is assumed to be
-- "TOP LEVEL DATA.MAILBOX"

procedure READ MAIL(MESSAGE OJ: in STRING);
-- The-next message in the user's mailbox is
-- is copied into the specified MESSAGE OBJ.
-- The following non-distinguishing attrTbutes
-- of this MESSAGE O33 will have appropriate values:

-- FROM -> USER NAME of SENDer,
-- SUBJECT => SUBJECT as specified by SENDer,
-- MAIL SEQ MUM -> ,ail sequence number of this
-- message.

end MAIL SYSTEM;

3.3.3.7.2 Processing

Mail is implemented using private object operations. When a new
user is added to the system, the system manager creates a private
object called MAILBOX in the user's top-level composite object by
copying the standard system mailbox template. Each of the MAIL

120

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661.1-840

- , ,,; ,~~~~~~~~~.. .,.,,.. . .,...... •..

B5-AIE(i).KAPSE(i)

subprograms given above simply invoke the appropriate operation
of a mailbox private object.

For example, SEND MAIL could be written in Ada as
follows:

procedure SEND MAIL (TO USER: in STRING; SUBJECT: in STRING;
MESAGE OB: in STRING; MAIL SEQ NUM: out INTEGER) is

MAIL PATH: constant STRING .u
"*ROOT.USERS.0 & TO USER & ".MAILBOX • ;

MAIL PARAMS: constant STRIN r :=
"FROM USER->a CURRENT USER NAME &
SSUDJECT->" a SUJECf &

",MESSAGEOBJ=>0 & MESSAGE O3J;beg in
MAIL SEQ NUN :-

INT'EGEI'VAUE (PICK PARAKM(
INwIKE OPMRTIONT

PRIV OBJ => MAIL PATH,
OPERXTION -> "SENUN,
PARAMETERS -> MAIL PARAMS

"MAIL SEQYUM-

end SEND MAIL;

3.3.3.7.3 cial Requirements

121

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840

"N ' :,: , r . : ,: " , . . . - . ,' - ; - ' , . .. : " . -.,. . : . - : .- ' . .-. . _/ . . .

BS-AIZ (1) .KAPSE (1)

3.3.4 History and Archiving (KAPSE.HISTARCH)

3.3.4.1 Historyand ArchivingOperations

History records manipulations of objects, and provides for
the reconstruction of previous states of objects.

3.3.4.1.1 Inputs and Outputs

History is recorded automatically while programs execute.
History is made available to tools via the KAPSE/Tool interface
package HISTORY:

122

INTERMETRICSINCORPORATEO 733 CONCORO)AVENUF. - CAMS R1OG E, MASSACHUSETTS 02138 •(6171 661-1840

..

BS-AlE (1) KAPSE (1)

with CALENDAR; -- Defines type TIME.
Package HISTORY is

type HISTORY CLASS is (SOURCE, DERIVED);
type HISTORY REF (CLASS: HISTORY CLASS :- DERIVED) is private;
type HISTORY"REF ARRAY is arrayTPOSITIVE range <>) of HISTORY REP;

function GET HISTORY REF(NAME: in STRING) return HISTORY REF;
-- get curret "STATE" of object.

Nprocedure RSCREATE(STATE: in HISTORY REF(CLASS->SOURCE);
NAKE: in STRING) ;

-- Given the *STATE* of a source object, recreate
-- its content and user attributes in a new database
-- object with the given NAME.

procedure NW SOURCE ARCHIVE(SOURCE OJ: in STRING);
-- ThTs creates a new source archive with
-- SOURCE ODJ as its state number one.

procedure OLDSOURCE ARCHIVE (SOURCE 037: in STRING;
STATE: in HISTORY REP (CLASS->SOURCE));

-- This specifies that SOURCE OB is a
-- revision of STATE, and should be
-~- assigned to the sam source archive.

function GET DIRECT CONSTITUMTS(STATE: in HISTORY REF)
return sfSTOu [W ARMAY;

-- Given S9ATEC return list of states from which
- this state was directly derived. If object is

-- a source object, no more than one state is
-- returned - that of the direct predecessor
-- to this state.

function GET SOURCE CONSTITT TS(STATE: in HISTORY REF)
return BYSTORY i. ARRAY;

-- Given SfAT# return list of source states from
-- which this state was derived, directly or
-- indirectly. Derived object states are included
-- in list only if their history was off-line
-- and thus could not be traced imediately.

function GET HISTOirPARAMETERS (STATE: in HISTORY. RE)
return STING ;

-- Por derived object state, return STRING
-- with parameters provided at
-- invocation of program producing STATE.
- For source object state, return list

-- of the user attributes of the object
-- at time of merge into archive.
-- STRING is returned in (label->value,...) format.

procedure HISTORY ACTIVATE (STATE: in HISTORY.REF;

123

INT21MITRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 861 .840

"*1 " % , ,e """"% . . . """° . , . . ''"""% ,*" ''

. .. :, a . ,-q . , . - .< .

BS-AIE(1) .KAPSE(1)

TIME LIMIT: in DURATION);
-- This procedures requests that a particular history
-- script or archive be activated (brought on-line).
-- Depending on bulk-storage hardware, this may occur
-- immediately or await operator attention, up to the
-- specified TIME LIMIT.

function HISTORY ON LINE(STATE: in HISTORY REP) return BOOLEAN;
-- This Tun~tion returns TRUE if the referenced history
-- script or archive is now active (on-line).

function HISTORY TIME(STATZ: in HISTORY_REU)
return CALENDAR.TIME;

function HISTORY MAKER(STATE: in HISTORY REP)
return STRI14;

-- The above two functions return the time/date and
-- USER NAME associated with the specified script
-- or source archive STATE.

3.3.4.1.2 Processing

The history attribute of a database object represents its
*stater and consists of a an index and a window on either a
source archive for a source object, or a program invocation
script for a derived object (see 3.2.4.3.9). The index is used
to select one state from all the states associated with the same
source archive or script.

Scripts and archives are exteneded objects created within
the SYSTEN component of the ROOT composite object, with
attributes to indicate whether the content is present, or has
been woved off-line to tape. When the script or source archive
is moved off-line, its content is copied to tape and then
deleted, and its attributes are set up to identify which tape
holds the data.

If the referenced history is off-line, many of the above
primitives will fail. The primitives HISTORY ACTIVATE and
HISTORYON LINZ may be used to affect or check the on-line status
of a particular source archive or script.

All objects when initially created are treated as derived
objects, with a HISTORY that refers to a program invocation
script. The primitives NEW SOURCE ARCHIVE and OLD SOURCE ARCHIVE
may be used to replace the 3INTORY attribute s window on the
script by a read-only window on a source archive. Source
archives ate used for maintaining multiple states of the same
basic text, where the content itself is more important than the
script of the program invocation used to create the content. The
date, time, and USER NAME from the program invocation script are

124

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

BS-AIE (1) KAPSE (1)

transferred to the source archive for each of its component
states.

The source archive is stored in a form allowing the
efficient reconstruction of any of the component states, while
minimizing the space necessary to represent the multiple states.

History scripts for derived objects are created
automatically while programs execute. The program invocation
script first records the date, time, USER NAME, and parameters.
The count of modified objects is initIalized to zero. As any
database object is opened/created for reading or writing, a
read-only window is entered in the script referring to the
object, plus a copy of its pre-existing history attribute (if
any). When an object which has been modified is closed, the
count of modified objects is incremented, and the object~s
history attribute is updated to include a read-only window on the
script, and the current modification count as the history index.

3.3.4.1.3 I .ial Requirements

The space occupied by history .scripts and source archives,
as well as the time required to record them (for scripts), or
insert in/extract from them (for archives) must be as small as
possible to preserve overall performance of the KAPSE.

3.3.4.2 Backup and Recovery

An important design feature of the KAPSE is that backup
and incremental recovery can be performed while the system is up
and running. The tape (or bulk-storage) backup program begins by
simply doing a READ COPY reserve of the root of the entire
database. After that pe ration, the backup program may progress
at its own pace through the hierarchy of objects, knowing that
the data it reads reflects an internally consistent snap shot of
the entire database.

3.3.4.2.1 1_s ,and Outputs

The following system programs are available for full and
incremental backup, and incremental recovery:

4

125

INTERMIrTRIC INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETrS 02138 (617) 661-1840

B5-AIE (1) .KAPSE (1)

Package BACKUP RECOVERY is

procedure FULL BACKUP (TIMZSTAMP: out TIME SEQ NUMBER);
-- This program copies a snapshot of the entire
-- database to the tapes mounted by the operator.
-- TIMESTAMP is the maximum time sequence number
-- of any of the blocks transferred to tape.

procedure INCREEITAL BACKUP(BASE LINE: in TIMESEQNUMBER;
TIMSTAMP: out TIME SEQ NUMBER);

-- This program copies blocks to tape that have been
-- modified since the BASE LINE time sequence number.
-- It also copies any block-superior to a block that
-- has been modified, to ensure that the copy on
-- tape is a connected DAG (directed acyclic graph).

procedure RECOVERY(OLDNAME: in STRING; NEWNAME: in STRING;
TIMESTAMP: in TIME SEQ NUMBER);

- This program attempts to re-create as NEWNAME
-- the specified object as it was at the specified
-- time sequence number.

end BACKUP-RECOVERY;

3.3.4.2.2 Processing

The KAPSE maintains an index of all backup tapes, indicating the
range of time sequence numbers appearing on the tape. Each
backup tape includes a header identifying its range. The rest of
the tape is in a standard format with each block including its
BLOCK ID and reference count from when the block was dumped from
disk.- The blocks-are topologically sorted before being dumped so
that any element of the hierarchy on the tape may be located in a
single sequential scan through the tape.

On recovery, the KAPSE instructs the operator to mount
the appropriate incremental and full backup tapes, in order from
latest to earliest, until the full content of the specified
object has been reconstructed as of the requested time sequence
number.

3.3.4.2.3 I _ial Requirements

126

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * t617) 661-1840

35-AIE(.) .KAPSE(i)

3.3.4.3 Configuration Management Support

Configuration reporting and management are not separabLe from the
rest of the KAPSE database facilities, but are rather integral to
the reporting and management of attributes and partitions. The
following KAPSE primitives, described in other sections of this
document, are particularly relevant:

KAIPSE Primitive Section of this document

SET ATTRIBUTE 3.3.2.2
GET ALL ATTRI BUTES

CREATE WINDOW 3.3.2.1

OPEN PARTITION 3.3. 1.5
GilT NEXT COMPONENT

SET ROLE ACCESS 3.3.2.3.1
GET ROLE ACCESS
GET ROLES

GET DIRW CONSTITUENTS 3.3.4.1
GET SOU R-CONSTI TUMTS
GZT SI STOR REFS

In addition to the above primitives, a small set of standard
MAPSE tools are provided to exemplify the use of the facilities.

3.3.4.3.1 Partition Listing Tool

3.3.4.3.1.1 Inputs and Ou uj

This tool is designed to produce the configuration and attribute
reopOts required by the [SOWSO]:

127

1NTERMER CS INCORPORATED * 733 CONCORD AVENUE * CAMERIOGE, MASSACHUSETTS 02138 * (617) 661-1840

. -- - C- %- -. V-

B5-AIE (1) .KAPSE (1)

procedure LIST PARTITION(PARTITION: in STRING : "CURRENT DATA.";
ATTRIBUTES: in STRING := "");

-- This program prints on the standard text
-- output the distinguishing attributes
-- (ie., names) of all of the components of the
-- specified partition, as well as the requested
-- non-distinguishing attributes, specified in
-- the parameter ATTRIBUTES as a
-- coma-separated list of attribute labels.
-- If ATTRIBUTES is 0"* then all non-null
-- attributes of the components are printed.
-- If ATTRIBUTES is null then no non-distinguishing
-- attributes are printed.
-- Notice that by default, the program lists only the
-- distinguishing attributes of all of the components
-- of the partition implied by the .CURRENT DATA
-- window.

This program may be used to list attributes of:

1. The components of a composite object
(ie., a configuration) ;

2. Some subset of the components, which satisfy a
more complicated partition specification;

3. A single simple object.

3.3.4.3.1.2 Processing

The program LIST PARTITION is implemented using the KAPSE
primitives OPEN PARTI TION, GET NEXT C CMPONENT, and
GET LL ATTRIBUTES. -

3.3.4.3.1.3 Examples

41

128

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

La T

B5-AIE (1).KAPSE(l)

SET ATTRIBUTE ("ALPHA", OPURPOSE", "FUN");
SET ATTRIBUTE (*ALPHA", C'HECK LEVL", "2");
SET ATTRIBUTE (ETA0, 'PURPOS ', *WORK");
SET ATTRIBUTE ("BETA", "CHECK LEVEL", "2");
SET ATTRIBUTEO(GAMMA" I PURPUSE0, "FUN) ;

LI ST PARTITION (w(CHECK LEVEL>2)*, "PURPOSE);
-The following w~uld appear on the standard output:

-- Partition (CEKLVL~) Attributes PURPOSE
-- ALPHA PURPOSE->FUN

>i--BETA PURPOSE->WORK

LIST PARTTION ("(PURPOSZin>FUN)0, "CHECK LEVEL");
-- The following would appear.-

-- Partition (PURPOSEa>FUN) Attributes CHECKLEVEL
-- ALPHA CHECK LEVEL->2
-- GAMMA No CH!CKL LEVL

LIST PARTITION7 - Use the defaults
-The following might appear:

-- Partition 'CURRENT DATA.
-- ALPH

-- BTA

-GAMMA

-- KAPPA

-Notice that all partitions are sorted in ASCII
-- lexicographic order..

3.3.4.3.1.4 Special Reauirements

3.3.4.3.2 A Configuration Management Facility

3.3.4.3.2.1 Inputs and.Outputs

This set of tools provides a simple configuration management

facility:

129

INTIERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMSBRIOG E, MASSACHUSETT7S 02138 * 617) 661-1840

.

B5-AI E (1) .KAPSE (1)

function MOST RECIT (PARTITION: STRING; ATTRIBUTE LABEL: STRING)
return STRING;

-- This program scans the designated partition for the item
-- with the largest value for the specified
-- attribute, and returns that value as a string.
-- The presumption is that the designated attribute is
-- being used as a revision number, and the desire is
-- ~to determine the most recent revision.

procedure ITEM RESERVE (ITEM NAME: STRING; WINDOW PATH: STRING);
-- This tool reserves the item with the specified name,
-- and creates a window at WINDOW PATH through which
-- the item can be created/edited-as necessary.
-- The ITM NAME may be the name of an existing object,
-- or it mly be a name generated by determining
-- the MOST RECENT revision and incrementing the revision
-- attribute value to create a new name, or by assigning
-- it a new value for some version-like distinguishing
-- attribute.
- A copy of the state of the object is made for fallback

-- on ABORT (see below).
-- This program will exit with an error if the ITE is
-- already reserved, or the user does not have rights
-- to reserve it.

procedure ITEM RELEASE(WINDOW PATH: STRING);
-- This tool deletes/evokes the designated window, and
-- releases the item associated with it for access by
-- others via ITEM RESERVE. The fallback copy is deleted.

procedure ITEM ABORT RESERVE(WINDOW PATH: STRING);
-- This tool -aborts the reservation of the associated
-- item, and restores it to the fallback state.

function WHO HAS IT(ITEM NAME: STRING) return STRING;
-- This tool returns the USER NAME of
-- the user who performed the reserve on the item,
S-- or returns the null string if the item is not
-- reserved.

* 3.3.4.3.2.2 Processing

The processing of these tools can all be quite easily
defined using the primitives of the KAPSE/Tool interface,
especially those primitives identified at the beginning of this
section. In general, they create and delete windows on the
partition which includes exactly the item being reserved, and
record in user-defined non-distinguishing attributes of the item
the fact that it is reserved, and a fall-back copy of it.

Note .that this notion of "RESERVE" persists across program
executions, while the RESERVE of the KAPSE/Tool interface package

130

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSET'S 02138 * (617) 661-1840

* - ''';% .- >. .? V .V .-.°? ?..-?.i.. ;.-...? :...?.. . - ----.- ..-.-. , . -..--..----.-.- ;,

95-AIE (1) .KAPSE (1)

ACCESS SYNCHRONIZATION (1.3.2.3) only applies while a program is
running, and is automatically released when the program exits.
Nevertheless, the primitives provided by the KAPSE are essential
to safely implementing a persistent reservation, if only to
ensure that two independent programs do not accomplish the
ITE4 RESERVE simultaneously.

131

INTERMETRICS INCORPORATED • 733 CONCORO AVENUE • CAMBRIOGE, MASSACHSETT, S C2138 (6171 561-1940

B5-AIE (1). KAPSE (1)

3.3.5 Run-time System (KAPSE.RTS)

3.3.5.1 Unit Execution Support

The following sections describe the techniques used to
support the execution of Ada subprograms and blocks on IBM 4341
VM/SP systems. The subprogram calling conventions used are not
compatible with existing IBM 4341 conventions; special interface
coding will be required if subprograms compiled by other language
processors are to be called.

3.3.5.1.1 Inputs

3.3.5.1.1.1 Call Frames

A call frame is a contiguous block of storage, normally
allocated on the primary stack, which contains the saved
registers, parameters, and static-sized local variables
associated with a particular subprogram or entry invocation. A
typical call frame is laid out as follows:

----------... ...--- - - - > - -4a4- - - - - -

frame header area

------------- + ~arameter
spill area I I I area

+- -+ - .-.-..

local storage
area

4-------- -........
subprogram

commnication
area

The fields in a call frame contain the following information:

1. Frame Header. A frame header contains a register save area
and paiameter area. The register save area is used to store
the contents of general registers which must be preserved
across the execution of the unit. These registers are saved
on entry and restored on exit. The parameter area contains
actual parameter values and references. The size and layout
of the parameter area is dependent on the number and type of
formal parameters specified for the subprogram.

132

INTERMrTRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (6171 561-18.10

'II BS5-AI E (1) .KAPSE (1)

2. Spill Area. The spill area is used by the generated code to
temporarily store the contents of registers when they are
needed for other purposes. The size of the spill area
needed is statically determined by the compiler.

3. Local Storage Area. The local storage area contains all
stat cally-izIr-(i.e. those whose size is known at compile
time) local variables. The local storage area also contains
pointers to dynamically-sized local variables for which
space has been allocated on the secondary stack.

4. Subprogram Comunication Area. The subprogram communication
area is required in 7-call frame if any non-static
subprograms are called from within the body of the current
subprogram. The communication area is used to store the
frame headers for these called subprograms, and has a pre-
allocated size sufficient to contain the Largest of the
headers.

3.3.5.1.1.2 Parameter Passing

The method used to pass a parameter is dependent on the type
declared for the formal:

1. Scalar or access. Passed by copy.

2. Constrained record or . If the values are 8 bytes or
less in lenqtb, pasisBycopy, otherwise pass by reference
(address).

3. Unconstrained record. Passed by reference. If the actual
parameter valTueis constrained, the caller sets a flag in
the reference, the formal parameter then inherits the
constraints which applied to the actual.

4. Unconstrained aray. Passed by reference. A descriptor for
the array must e-provided by the caller, a reference to the
descriptor is passed as an additional implicit parameter.

5. Task. Passed by reference (address of TCB).

The parameters are passed in the parameter area, with those
needing double-word alignment (long floating values) first,
full-word alignment (references, access values, integers, etc.)
second, and half-word alignment (enumeration, short integer
values) last.

Scalar values less than 16 bits in length (enumeration and
boolean types) are passed right-justified and zero padded in a 16
bit half-word.

References consist of a 24 bit memory address right
justified in a 32 bit full-word. References to unconstrained

133

INTERMrrRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 - t6i7) 661-1840

- ' , , ,,. ,,,.,. , , ., ,, ,, .. '............,.............,...-..-............-.,.-.-.....,.,.."....,,'.....--,....-..,......-,.."-'.,"."

B5-AZE (1). KAPSE (1)

record types contain a constrained flag in the leftmost (sign)
bit of the word.

3.3.5.1.1.3 Unit Data Area

Each subprogram body is preceded by a unit data area which
contains static information specific to that body. The unit data
area contains the following fields:

4------------- ------------

I unit type I

I call frame size I

I frame header size I
•---! ----------------

I exception map ptr I
I.------ ..---------------------.
I exit code address I

- -------------------
The executable code for a unit begins at a fixed (for all units)
offset from the beginning of its unit data area.

3.3.5.1.1.4 Register Usage

The operations provided use the following registers for

passing parameters:

M_. normal use

CODE Code base register.
GLL Global base register.
FRRME Pointer to current call frame.
RET Subprogram return address.
SaC Static back chain.
DA Pointer to unit data area for current unit.

SCA Pointer to subprogram communication area in
current call frame.

3.3.5.1.1.5 Execution Support Operations

The following operations are provided to support the
execution of executable units:

134

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 i617i 681-1940

L

B5-AIE (1) KAPSE (1)

oper. parameters description

SAVREG SCA, FRAME, UDA Save caller's registers.
RSTREG FRAME Restore caller's registers.
SUBCALL UDA, SBC, SCA, RET Call subprogram.
GUPASS UDA, SBC, SCA, RET Pass generic subprogram parameter.
GUICALL UDA, SBC, SCA, CODE, RET Call generic subprogram parameter.

3.3.5.1.2 Processing

3.3.5.1.2.1 Subprogram Calls

SUBCALL is used to call subprograms which follow the
standard Ada calling conventions. Prior to executing a SUBCALL,
UDA must contain the address of the unit data area for the
subprogram, and SBC contains the address of the call frame
belonging to the static parent of the subprogram (when needed).
SUBCALL loads the address of the instruction following the
SUBCALL into RET, and branches to the body of the indicated
subprogram (which is at a fixed offset relative to DA).

All general registers, other than the designated
temporaries, are preserved across a SUBCALL. All of the floating
point registers are considered to be temporary, so they must be
saved by the caller as needed.

3.3.5.1.2.2 Subprogram Prologue Code

Prologue code precedes the code which actually implements
the body of a subprogram. The standard prologue executes SAVREG
to save the caller's general registers in the caller's subprogram
comiunicaton area. ALPEAME (see Storage Management) is then
called to allocate the subprograms call frame on the primary
stack. Following the prologue code, FRAME contains the address
of the call frame, and CODE has been loaded with the base address
of the first subprogram code section.

3.3.5.1.2.3 Subprogram Code Sections

A subprogram body consists of one or more code sections.
Each code section is a maximum of 4096 bytes long and consists of
a series of instructions followed by the literal pool for that
section. Base register CODE always points to the beginning of
the current code section, and must be set up prior to entering a
new section.

135

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 61.-140

B5-AIE (1) •KAPSE (1)

.3 3.3.5.1.2.4 Subprogram Exit Code

The normal exit code executes RSTREG to restore the caller's
registers, then returns control to the next instruction in the
caller's code (which is pointed to by RET). A call to RLSTKSEG
is automatically executed if the subprograms call frame was the
last one in the current stack segment.

The address of the normal exit code is stored in the unit
data area so that it will be available to the exception handling
mechanism.

3.3.5.1.2.5 Static Subprograms

The call frame for a static subprogram is allocated in
static storage rather than on the primary stack. The caller
stores the actual parameters directly in the preallocated frame.
When calling a static subprogram, SCA must be loaded with the
address of this frame; the calling sequence is otherwise
identical to that for normal subprograms.

$ In addition to the statically allocated frame, a static
subprogram requires a vestigial call frame on the primary stack,
consisting only of a subprogram communication area, if normal
subprograms are called from within the body. If no such calls
are made, the code to allocate a frame on the stack may be
omitted from the prologue.

3.3.5.1.2.6 Generic Subprogram Parameters

Ada permits entries or procedures to be used interchangeably
as actuals for generic formal subprogram parameters (see Generic
Instantiation). Inside an instantiation, it is not possible to
31stinguish between the two cases. Two operations are provided
permit transparent implementation of calls to generic subprogram
paramters. GUPASS is executed to pass an actual entry or
procedure to a newly instantiated generic. Prior to executing
GPASS, UDA, SCA, and SBC must be loaded with the information
neeed when the actual entry or procedure is called. GENPASS
stores the contents of these registers in the generic subprogram
paramter descriptor corresponding to the parameter.

GEDCALL is executed to actually call the parameter. UDA,
SCA, and SOC are reloaded from the parameter descriptor, and
control is passed to the actual procedure or entry.

3.3.5.1.3 Outputs

A function subprogram returns a scalar value in one of the
following registers:

136

IP4TIMMITRIC5 INCORPORATED *733 CONCORD AVENUE * CAMBRIDGE. MASSACHtUSET~TS 0213S (617) 661-1840

U..9 W- W . - * -.

B5-1kIE (1 . KAPSE (1)

VAL Integer, enumeration, fixed point or
access values.

FPVkL Floating point values.

Mon-scalar values are returned as follows:

1. Constrained a or record. Space for the result is
prealroIIated by t caller, address passed to function via
an implicit parameter.

2. Unconstrained record. Result allocated by function on
secondary stack,address returned to caller via an implicit
parameter.

3. Unconstrained aa. Same as unconstrained record types, in
addition, arr&y---escriptor is returned to caller using a
second implicit parameter.

3.3.5.1.4 Special Sequirements

Due to the special interfaces required and to achieve a
reasonable level of efficiency, all unit execution support
operations will be implemented in IBM 4341 machine language.

3.3.5.2 Storage Management

The following run-time storage structures are used to
support the execution of compiled Ma code:

1. StocaLe Segment. A storage segment is a contiguous block of
memory wilhichs a multiple of PAGESZ (a compiler parameter)
bytes in length. Storage segments are used to implement
stacks and heaps.

2. PrimazZ Stack. Primary stacks are used exclusively for the
storage o-- call frames (see Unit Execution Support)
following normal stack discipline. -ach itaski na program
(and the main subprogram) has a primary stack associated
with it.

3. Secondacy Stack. Secondary stacks are used for the storage
of o va rables and function return values whose size
could not be determined at compile-time. A secondary stack
is managed using a mark/release strategy. A main program
and each of the executable tasks within the program has a
secondary stack associated with it.

4. Collections. A collection is used for the storage of access
datia1.e.7data referenced by access values) associated wit-h
an access type which was defined with a STORAGE SIZE clause.
Storage for individual data items within a collection can
not be reclaimedl the storage occupied by the entire

137

INTIRMITRICI INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 f '617 661.'840

. -

'SI

BS-AIE (1) . KAPSE (1)

collection is reclaimed on exit from the unit in which the
type was declared.

5. Controlled Heap. Access data belonging to a type for which
a CONTROLLED pragma has been supplied is allocated on the
controlled heap. Controlled heap data is not automatically
reclaimed; the user may explicitly deallocate such data
using an UNCHECKED DEALLOCATION procedure which has been
instantiated for t~e type.

6. Chep. Access data belonging to a type for which
a -pragma has been supplied is allocated on the
checkpoTnt heap. The user may mark the checkpoint heap
using the supplied MARK procedure. The user may at some
later time call the RELEASE procedure to reclaim storage
allocated after the corresponding call to MARK.

7. Default Rea.. For an access type, the user may specify at
most one of the three preceding storage categories (through
a STORAGE SIZE clause, or a CONTROLLED or MARK RELEASE
pragma). If none of these categories is specified, data is
allocated on the default heap. The default heap is
allocate-only, storage can not be reclaimed through user

*action or automatically.

3.3.5.2.1 Inputs and Outputs

The storage management package implements a variety of low-
level operations which are invoked by the generated code. A user

*I visible package is also provided which allows the user to mark
and subsequently release storage on the checkpoint heap.

3.3.5.2.1.1 Register Usage

The low-level operations use the following registers for
4i passing parameters:

L.. normal use

SIZE Size of object (in bytes).
PTR Pointer to object (address).
VAL Function return value.
DESC Pointer to collection descriptor.
FRAME Pointer to current call frame.
SCA Pointer to subprogram communication area in

current call frame.
UDA Pointer to unit data area for current unit.

138

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 61,' 661-1840

., 1

35-AIS (1) KAPSE (1)

3.3.5.2.1.2 Primitive Storage Operations

M.. registers description

ALMQ 512a PR Allocate a block of memory pages.
ALAGI SIZE, PTI Allocate a storage segment.
RLT SIZZ, PT! Release (deallocate) a storage segment.

3.3.5.2.1.3 Stack Operations

Over. registers description

ALf fZ SCA, UDA, FRM Allocate a call frame on primary stack.
RLSTKSWG SCA, VENUE Release a primary stack segment.
MKS==? PT Mark secondary stack.
ALSCO.7 SIZE, PTR Allocate object on secondary stack.

SRLSUCUK PTr Release secondary stack storage.
CPSECSTI V&L, PTt, S3Z2 Copy secondary stack object.

3.3.5.2.1.4 Neap Operations

ope. registers description

ALCOLO D C, SIZE, PTR Allocate object in collection.
ALCTLO SIZE, PTR Allocate object on controlled heap.
Rl TLOL7 SIZE, PT! Release controlled heap object
ALCHKOU SIZE, M Allocate object on checkpoint heap.
ALOUECT SIZE, PT! Allocate object on deLult heap.

3.3.5.2.1.5 User Checkpoint Heap Operations

package MA! RELEASE is
type CHEICPOINT is limited private;
exception RELEASE ERROR;
procedure MARK (CIS: out CHECKPOINT);
procedure RELEASE (CP: CRECKPOINT);

end MA- RELZASE;

3.3.5.2.2 Processina

3.3.5.2.2.1 Primitive Operations

A two-level storage management scheme will be used to
minimize the effects of storage fragmentation. The operations
discussed in this section manipulate storage segments, which are
a fundamental storage structure used to implement both stacks and
heaps. Storage segments are always allocated in increments of
the host machines page size (4096 bytes on the IBM 4341). A pool
of free storage segments is maintained on a program wide basis.
When this pool is exhausted, additional memory is obtained
directly from the host operating system.

139

INTERMETRICS INCORPORATEO * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETfS 02138 * 617' 861-1840

-" " ,..---. ,..*

3.S -AlE (1) . KAPSE (1)

ALPAGES is called to obtain a contiguous block of virtual
memory pages. On entry, SIZE is expected to contain the size of
the block needed (which should be a multiple of PAGESZ bytes).
The block of memory is obtained through a request to the host
operating system (VM/SP). The base address of the block is
returned in PTR.

ALSEG is called to obtain a storage segment. On entry, SIZE
is expected to contain the size of the segment (which should be a
multiple of PAGESZ bytes). If the free segment pool contains a
segment of at least the requested size, then that segment will be
returned. Otherwise, ALPAGES is called to obtain additional
memory. If ALPAGES is unable to obtain additional memory,
STORAGE ERROR is raised. The base address of the segment is
returnea in PTR.

RL3S is called to release a storage segment which is no
longer in use. On entry, SIZE must contain the size of the
segment (which must be the value specified when the segment was
allocated), and PTR must contain the base address of the segment.
The segment is returned to the free segment pool.

3.3.5.2.2.2 Stack Operations

A primary stack consists of zero or more, not necessarily
contiguous, storage segments. Call frames are normally allocated
on the primary stack on entry to subprograms, accept bodies, and
othte executable units. h call frame must fit entirely within a
single stack segment to avoid addressing problems.

ALFRAME is called to allocate a call frame on the current
primary stack. On entry, SCA is expected to contain the address
of the subprogram communication area (see Unit Execution Support)
in the call frame of the calling unit, and tUD should contain the
address of the unit data area for the current (called) unit. The
size of the stack frame needed is obtained from the unit data
area. The new frame is allocated starting at the base of
caller's communication area. If there is not sufficient room in
the current segment to allocate the frame, a new segment is
obtained by calling ALSEG, the caller's communication area is
copied to the beginning of that segment, and the frame is then
allocated. The base address of the frame is returned in FRAME.

Call frames are implicitly deallocated on exit from the
units where they were allocated. When the last frame in a
segment is deallocated, RLSTKSEG is called to return the segment
to the free pool (through a call to RLSEG).

4 A secondary stack consists of zero or more storage segments.
It is normally marked on entry to, and released on exit from,
executable units and blocks which contain dynamically-sized local
variables and do not return a dynamically-sized result. An

140

INTERMETRICS INCORPORATED ° 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 i 617) 661-1340

......... "...,
J

35-AIE (1).KAPSE (1)

object allocated on the secondary stack must reside entirely
within a single storage segment.

MKSECSTK is called to obtain the current secondary stack
mark. On entry, PTR must contain the address of a location which
will receive the mark. Pointers to the current secondary stack
segment and the next available byte within that segment are
stored at that location.

ALSECOJ is called to allocate an object on the current
secondary stack. On entry, SIZE must contain the size of the
object in bytes. If there is sufficient room in the current
secondary stack segment, then the object is allocated there.
Otherwise, a new secondary stack segment is obtained through a
call to ALSEG, and the object is allocated at the beginning of
that segment. The address of the allocated object is returned inPTR.

RLSUCSTK is called to release the storage allocated on the
current secondary stack since an earlier call to #MKSECSTK. On
entry, PTR must contain the address of the location where the
mark was stored. Secondary stack segments allocated since the
mark was set are released through calls to RLSEG, then the
secondary stack pointers are reset specified by the mark.

A special case in Ada is the declaration of a constant whose
size is known only after *the initialization expression is
evaluated. Since space for the constant can not be allocated on
the secondary stack before the expression is evaluated, CPSECSTK
is called after evaluation to copy the constant to a mark which
was set prior to evaluation. On entry, SIZE must contain the
actual size of the constant, VAL must contain the address at
which the constant was left following evaluation, and PTR must
point to the location -of a secondary stack mark which was set
before evaluation. If there is sufficient room in the secondary
stack segment indicated by the mark, the constant is copied
there. Otherwise, a new secondary stack segment is obtained and
the constant is copied to it. Any unused segments in the
secondary stack following the mark are then released through
calls to RLSEG. The new address of the constant is returned in
VAL.

3.3.5.2.2.3 Heap Operations

The allocation operations described in this section are used
to implement allocators (new operators) for the corresponding
categories of access types.

A fixed amount of space is allocated for a collection when
the access type definition is elaborated. The space may be
allocated in static storage, in a call frame, or on the secondary
stack, depending on where the type was declared, and whether the

141

INTERMETRICS INCORPORATED a 733 CCNCORD AVENUE * CAMBRIDGE. MASSACHUSET"TS 02138 (t617) 661-1840

B5-AIE (1) .KAPSE (1)

size of the collection could be statically determined. A
collection descriptor is constructed at the beginning of the
allocated space. This descriptor contains an allocation pointer,
which initially points to the first free location within the
collection, and a pointer to the end of the collection.

ALCOLOWJ is called to allocate an object within a
collection. On entry, DESC must contain the address of the
collection descriptor, and SIZE must contain the size of the
object in bytes. If sufficient space remains in the collection,
the object is allocated, and its address is returned in PTR.
Otherwise, STORAGE ERROR is raised.

An UNCECE DEALLOCATION procedure may be instantiated for
an access type which is implemented using a collection. The only
effect is to clear the specified access variable.

The controlled heap is implemented using zero or more
storage segments. The size of the controlled heap may be
expanded through allocation of additional segments, however,
these segments are never reclaimed. A pool of the free objects
within the segments is maintained for the entire program.

ALCTLODJ is called to allocate an object in the controlled
heap. On entry, SIZE must contain the size of the object in
bytes. If there is an object in the free pool of at least the
specified size, that object is removed from the free pool.
Otherwise, a new segment is obtained by calling ALSEG, the object
is allocated within that segment, and any excess space is added
to the free pool. The address of the object is returned in PTR.

RLCTLOBJ is called to deallocate an object previously
allocated using ALCTLOWJ. On entry, SIZE must contain the size
of the object (which must be the value specified when the object
was allocated), and PTR the address of the object. The object is
returned to the free object pool.

Instantiation of an UNCHECKED DEALLOCATION procedure for a
controlled access type results in the generation of a routine
which calls RLCTLOBJ to deallocate the specified object, then
clears the access variable.

The checkpoint heap is implemented using zero or more
storage segments. Storage allocated to the checkpoint heap may
be explicitly reclaimed by the user through calls to the
procedures provided in package MARK RELEASE, which is described
in the next section.

ALCKODJ is called to allocate an object in the checkpoint
heap. On entry, SIZE must contain the size of the object in
bytes. If there is sufficient room in the current checkpoint
heap segment, the object is allocated there. Otherwise, a new
segment for the checkpoint heap is obtained through a call to

142

INTERMUTRICS INCORPORATED - 733CONCORO AVENUE * CAMSRIOGE, IASSACHUSE1TS 02138 * 8171 661-184C

BS-AIE (3). KAPSE(i)

ALSEG, and the object is allocated at the beginning of that
segment. The address of the object is returned in PTR.

Instantiation of an UNCHECKED DEALLOCATION procedure for a
checkpoint access type results in the generation of a routine
which simply clears the specified access variable.

The default heap is implemented using zero or more storage
segments. Space allocated for the default heap can not be
reclaimed. ALOBJCT is called to allocate an object in the
default heap. On entry, SIZE must contain the size of the object
in bytes. if there is sufficient room in the current default
heap segment, the object is allocated there. Otherwise, a new
segment is allocated for the default heap, and the object is
allocated at the beginning of that segment. The address of the
object is returned in PTR.

Instantiation of an UNCHECKED DEALLOCATION procedure for a
default access type results in the generation of a routine which
simply clears the specified access variable.

3.3.5.2.2.4 User Checkpoint Reap Operations

* Package MARK RELEASE is visible to the user, and the
procedures contaiged within may be called to manage the storage
associated with the checkpoint heap. MARK is called to obtain
the current checkpoint heap mark. The parameter must be a
variable of type CHECKPOINT. Pointers to the current checkpoint
heap segment and the next available byte within that segment are
stored in the variable.

RELEASE is called to reclaim the storage occupied by
checkpoint heap objects allocated since the specified CHECKPOINT
variable was set. Any checkpoint heap segments which are no
longer needed are released through calls to RLSEG, and the
checkpoint heap pointers are reset to the values indicated in the
variable. If the variable does not contain a valid mark within
the checkpoint heap, RELEASE-ERROR is raised.

3.3.5.2.3 Special Requirements

Due to the special interfaces required and to achieve a
reasonable level of efficiency, all storage management operations
will be implemented in IBM 4341 machine language.

3.3.5.3 Tasking Support

The AdaTasking package implei ents Ada tasking operations by
providing a number of types, objects, and low-level operations to
compiled code. Compiled Ada code executes each Ada tasking

143

INTERMETRICSINCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSET'TS 02138 6 (617) 661.840

* *(*~W* ~ ~ -.-.. -

.4

*1 B5-AIE (1). KAPSE (1)

construct by calling one or more of the operations in the
package. The AdaTasking package also contains internal types,
objects, and operations which support the implementation of
tasking operations, but are not available outside the package.
These internal operations perform functions such as queue and
list management, task scheduling, and context-switching between
tasks.

Ada identifiers defined in this section are given in mixed upper
and lower case. Machine language identifiers, and Ada
identifiers defined in language standard packages are given in
upper case.

3.3.5.3.1 Inputs

Interfacing between compiled code and the AdaTasking package
utilizes the following types of data, in addition to items
described in Special Calling Sequences:

A list of dependent tasks for each master, and lists of
unactivated tasks for allocators:

type TaskListType is private;
type TaskListPtr is access TaskListType;

A task type descriptor for each task type:
type TaskTypeDescriptor is private;
type TaskTypePtr is access TaskTypeDescriptor;

A task Control Block for each task:
type TaskControlBlock is private;
type TCBptr is access TaskControlBlock;

A unique index (l..MaxEntry) for each simple entry and each
member of an entry family in a task:

type EntryIndex is private;

Unit Data Areas for each task body's code, for each ACCEPT
body's code, and for each entry:

type UnitDataArea is private;
type UDAptr is access UnitDataArea;

Task priorities, from PRAGMA PRIORITY statements:
type Priorityumber is private;

Delays and time limits:
type DURATION is private; -- In package STANDARD.

Interrupts:
type InterruptType is private;

Work spaces for certain tasking operations:
type SelectRecord is private;

144

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE CAMIBRIOGE, MASSACHUSETS 02138 • 6171 661.-940

7
I

.

B5-AIE (1) KAPSE (1)

3.3.5.3.1.1 Task Body Unit Data Area

Each task body may contain some executable code. Associated
with this code is a Unit Data Area (UDA), which describes the
stack frame, exception mip, and starting code address for the
task body. The format for this Unit Data Area is identical to
the Unit Data Area for subprograms (see Unit Execution Support).

3.3.5.3.1.2 ACCEPT Body Unit Data Area

Each simple ACCEPT statement and each ACCEPT alternative of
a SELECTIVE WAIT may have code in an ACCEPT body. Associated
with this code is a Unit Data Area, which escribes the stack
frame, exception map, and starting code address for the ACCEPT
body. The format for this Unit Data Area is identical to the
Unit Data Area for subprograms (see Unit Execution Support).

3.3.5.3.1.3 Entry Unit Data Area

Associated with each entry in a task type is an additional
Unit Data Area, which specifies the stack space required for the
entry's parameters. The tasking package uses this UDA for any
entry call for which no corresponding ACCEPT has yet been
executed. In addition to the Unit Data is a unique integer index
for the entry. In the case of entry families, it is the index
preceding the first family member.

3.3.5.3.1.4 Task Control Block

Each task has a task control block (TCB), and is identified
by a pointer to that TCB. The TCB contains run-time information
about the task, including:

Task status,

Delay information,

Code and stack context (when not running),

Links on queues and lists,

The set of currently open entries,

Information for each entry:
The queue of callers waiting on the entry,
If the entry is open, a UDA pointer to the ACCEPT body.

145

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSFT7S 02!3S - t617) 661-1840

_7" .. ~.a.Lts& .. a. s- .

B 5- Al E (1) .KAPSE (1)

3.3.5.3.1.5 Dependency List

All dependent subtasks of a master (subprogram, task, block,
or library package) are kept on a dependency list for that
master. The tasking package uses this list to det--ermine when
tasks can be terminated, whether a block can be exited, and which
subtasks are affected by an ABORT statement.

3.3.5.3.1.6 Special Calling Sequences

All AdaTasking operations not listed in this section are
called from compiled code with the normal subprogram calling
sequence (see Unit Execution Support). The following operations
require specia calling sequences from compiled code. The
calling sequences are described fully in the sections following.

Oper. Parameters Description

SECALL SCA, CLD, UDA, RET Simple single entry call.

SFCALL SCA, CLD, UDA, EFI, RET Simple family entry call.
TESCALL SCA, CLD, UDA, EAI, RET Time sil entry call.

j TECALL SCA, CLD, UDA, DELAY, RET Timed single entry call.
' TFCALL SCA, CLD, UDA, EFI, DELAY, RET Timed family entry call.

TACCEPT ENT, UDA Simple accept statement.

SELCLR SSI Get caller (selective wait)

ENDRND ASP, CLR, RET End of rendezvous.

The registers used to pass parameters to these operations are as
follows:

UDA Address of an entry's Unit Data Area.

RET A return address.

SCA Address of the Subprogram Communication Area (see
Unit Execution Support).

CLR Address of the calling task's Task Control Block.

CLD Address of the called task's Task Control Block.

ASP Accepting (called) task~s Saved Priority.

DELAY Delay time, in clock ticks.

146

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE , CAMBRIDGE. MASSACHUSETTS 02138 , (617 66,-1840

-

%;I Z-F. %1 -% - ,- . -I..-..

55-AIE (1) KAPSE (1)

EF7 Index (member number) within an entry family.

ENT Absolute entry index (there is a unique index for
each entry and each family member within a task).

SSI Address of a work area of type SelectRecord, used
to accumulate information for a SELECTIVE WAIT
statement.

3.3.5.3.1.7 Notation Conventions

The following sections describe the calling sequences which
the compiler must produce in the compiled code. Most of these
are descriptions of machine instructions. Portions which are
described using Ada syntax (terminated by semicolons) indicate
that normal code is generated for the Ada constructs used.

In addition to the types listed under Inputs, the following

abbreviations are used:.I
a An integer (greater than 0). For a SELECT

statement, it specifies one of the alternatives.

T A task name.

Cn A conditional expression (a guard).

En Name of a simple entr-y, or family member.

In Absolute index of an entry or family member. The
task's first entry has an index of 1, the second
2, etc. Each family member also has a unique
index.

Dn Delay time or time limit, in seconds.

Pn A list of formal parameters.

Body n The sequence of statements in an ACCEPT body.
The body is null if there are no statements
between the DO and the END, or if the DO and the
END are missing.

Code n Any other (possibly null) sequence of statements.

- An Address of a Unit Data Area or code for one of
the alternatives of a SELECTIVE WAIT.

CF Clock frequency, in ticks per second
(3/SYSTE4.TICK).

147

INTERMETRICS INCORPORATEO * 733 CONCOR0 AVENUE * CAMBRIOGE. M1ASSACHUS -ToS 02138 • i617) 681-1840

j • - " " .. - -' - t -- - - - | . ,jj ' _ .~

B5-AIE (1). KAPSE (1)

SelectInfo A work area used by the operations which set up a
SELECTIVE WAIT. It is of type SelectRecord.

Branch to X An unconditional branch to a code location
labelled X (IBM 4341 "BN instruction).

Branch to X,
Link R An unconditional branch to a code location

labelled X, after saving the address following
the branch instruction in register R (IBM 4341
"BAL" instruction).

3.3.5.3.1.8 Simple Entry Calls

. Refer to Processing for a general description of rendezvous

implementa tion.

The format of a simple entry call in Ada is as follows:

T.El (P); -- Call task T, entry El, with parameter Pl.

The compiler-generated code for an entry call is similar to
that for a procedure call (see Unit Execution Support), but
requires different register values, and branches to tasking
operations rather than directly to a code prologue.

There are three types of entry calls: simple, timed, and
conditional. For each of these types, the called entry may be a
simple entry, or a member of an entry family.

In each of the six possible combinations, any non-register
parameters must be copied to the Subprogram Communication Area,
and the following registers must be set:

SCA - Address of the Subprogram Communication Area.
CLD - Address of the called task's Task Control Block.

In addition to SCA and CLD, a simple entry call to a single

entry requires the following:

UDA - Address of the called entry's Unit Data Area.
Branch to SECALL, link RET (return address).

In addition to SCA and CLD, a simple entry call to an entry
family member requires the following:

148

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE * CAMBRIDGE. VASSACHUSET'S 02138 • ;617) 661-1840

B5-AIE (i) KAPSE (1)

UDA - Address of the called entry family's Unit Data Area.
BPI - The index of the member within the family.
Branch to SFCALL, link RET (return address).

3.3.5.3.1.9 Timed Entry Calls

A timed entry call in Ada has the following format:

select
T.El (P); -- Call task T, entry El, with parameter Pl.
Sl; -- Code following the call (possibly NULL).

or
delay D2; -- Delay time D2 is in seconds.
S2; - Code following delay (possibly NULL).

end select;

The compiled code for timed entry calls is similar to that
for simple entry calls (see the preceding section).

In addition to SCA and CLD, a timed call to a single entry
requires the following:

UDA = Address of the called entryos Unit Data Area.
DELY a Delay amount, in clock ticks.
Branch to TECALL, link RET (return address).

In addition to SCA and CLW, a timed call to an entry family
member requires the following:

UDA - Address of the called entry's Unit Data Area.
W! - The index of the member within the family.

DE AY a Delay amount, in clock ticks.
Branch to TYCALL, link RET (return address).

TECALL and TFCALL each return a function value in the normal
way (see Unit Execution Spor). The return value is BOOLEAN
TRUZEif the*iWnEry was succeisfully called, or FALSE if the delay
time expired. If code for S1 or S2 is present, the code
following the call to TECALL or TFCALL must test this value, and
execute the code for S1 or 52 accordingly.

149

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, .ASSACHUS'-T S 2138 • (617) 561.1840

+ ' -,f + ,+.,, ,_...+.. , .. ,.++........ , .
i,,+ - ~ * * *

'

+ - * ' ' * '

35-AI2 (1). KAPSE (1)

3.3.5.3.1.10 Timed Entry Calls

A conditional entry call in Ada has the following format:

select
T.El (P1); -- Call task T, entry El, with parameter P1.
Si; -- Code following the call (possibly NULL).

else
S2; -- Executed if no acceptor (possibly NULL).

end sealect;

The compiled code for conditional entry calls is identical
to that for timed entry calls (see the preceding section), except
that the value for DELAY must be 0 in both cases. TECALL and
TVCALL will return TRUE if the entry was called, or FALSE if the
ELSE is to be taken.

3.3.5.3.1.11 Simple Accept Statements

Refer to Processing for a general dpscription of rendezvous
implementation.

Code for an ACCEPT body resembles that for a procedure body
(soe Unit Execution Support), in that it has a Unit Data Area and
code. wever, tere is no prologue, and at the end of the
ACCEPT bodys code is a Branch-and-L.nk to ENDRND, rather than a
return to the caller.

The simple ACCEPT statement may be in two possible forms:

accept E1 (Pl); -- Null ACCEPT body.

accept 1 (P1) do
Body 1; -- Code of ACCEPT body.

end El;

The generated code for a simple ACCEPT statement is as follows:

ENT a Absolute index of the entry or family member.
UDA - Al (Address of the ACCEPT body's Unit Data Area).
Branch to TACCEPT.

Al: <Unit Data Area for ACCEPT body>
Body 1; -- May be null
Branch to ENDRUD, link RET (return address).

<Code following ACCEPT body>

150

INTERMETRICSINCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE IASSACHUSETTS 02 138 e 617) 661*1340

S- . . . -7

B 5-AIE (1) .KAPSE (1)

3.3.5.3.1.12 Selective Wait Statement

The following is an example of Ada source code for a
selective wait with only ACCEPT alternatives, and the
corresponding generated code:

Ada Source Generated Code

select InitSelect (SelectInfo) i
when C1 -

accept El (P1) do if Cl then
Body 1; SetOpen (1I., Al, SelectInfo);

end; endif;

ord-1 if C2 then
when C2 -> SetOpen (12, A2, SelectInfo);

accept 32 (P2) do endif;
Body_21

end; if C3 then
Code 2; SetOpen (13, A3, SelectInfo);

or endifi
when C3 -3

accept Z3 (P3) do SSI - Address (SelectInfo)
Body_31 Branch to SELCLR

end;
Code 3; Al: ODA for Alternative 1>

Bodyl;
end select; Branch to EIND, Link RET

Code 1;
Branch to ES

A2: <UDA for Alternative 2>
Body_2;
Branch to DMRND, Link RET
Code 2;-
Bran~h to ES

A3: OUDA for Alternative 3>
Body 3;
Bran~ch to DZDRND, Link RET
Code 3;

ES: <End of Select Statement>

INTERMETRICS INCORPORATSD 733 CONCORO AVENUE a CAMSBRIDG E. MASSACHUSETTS 02138 * 6171 661-1840

B5-AIE (1).KAPSE (1)

3.3.5.3.1.13 Selective Wait with Delay Alternatives

The following is an example of Ada source code for aselectiv, wait with DELAY alternatives, and the corresponding
generated code:

Ada Source Generated Code

select InitSelect (SelectInfo)
when Cl1-

accept El (P1) do if Cl then
Body 1; SetOpen (Il, Al, SelectInfo);

Code ; endif;
or Cd-;if C2 then

when C2 -> SetDelay (D2*CF,A2,Selectlnfo);
delay D2; endif;
Code-2;

or if C3 then
when C3 ->SetDelay (D3*CF,A3,Selectlnfo);

delay E13; endif;

or Cd-;if C4 then
when C4 -> SetOpen (14, A4, SelectInfo);

accept E4 (P4) do endif;

end; 551-4 SS Address (Selectlnfo)
Code 4; Branch to SELCLR

end select:-
Al: <UDA for Alternative 1>

Body_3;
Branch to ~END, Link RET
Code-3;
Branch to ES

A2: Code-2:
Branch to ES

A3: Code 3;
Branch to ES

A4: <UDA for Alternative 4>
Body_4;-
Branch to ENDRND, Link RET
Code 4;

ES: <End of Select Statement>

152

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 f 617) 661-1840

B5-AIE (1) KAPSE (1)

3.3.5.3.1.14 Selective Wait with Else

The following is an example of Ada source code for a
selective wait with an ELSE case, and the corresponding generated
code:

Ada Source Generated Code

select InitSelect (SelectInfo);
when Cl -

accept El (P1) do if C1 then
Body_l; SetOpen (Ii, Al, SelectInfo);

end; endif;
or ;if C2 then

.when C2 => SetOpen (12, A2, SelectInfo);
accept Z2 (P2) do endif;

Body_2;
end; SetDelay (0, A3, SelectInfo);

Code2; -- Zero delay - ELSE

SSI - Address (SelectInfo)
Code 3; Branch to SELCLR

end select; Al: <UDA for Alternative 1>
Body 1;
Branch -o ENDMN, Link RET
Code 1;
Branch to ES

A2: <UDA for Alternative 2>
Body_2;
Branch to ENDRND, Link RET
Code 2;
Branch to ES

A3: Code_3;

ES: <End of Select Statement>

153

INTERMErTRICS INCORPORATED * 733 CONCORD AVENUE * CAM8RI0GE,, .1ASSACHUSETrS 02138 * (617) 661-1840

: , , •. ',., ,.: '- -. .- '. • •-' . " .. . -".. . .•.... ,...." .

85-AZE (1). KAPSE ()

3.3.5.3.1.15 Selective Wait with Termi:nate Alternative

The following is an example of Ada source code for a
selective wait with a TEMINATE alternative, and the
corresponding generated code:

Ada Source Generated Code

select InitSelect (SelectInfo);
when C1 a>

accept E1 (Pl) do if Cl then
Body.;l SetOpen (I, Al, SelectInfo);

end; indif;Code 1;
oC if C2 then

when C2 -, Setopen (12, A2, SelectInfo);
accept 32 (P2) do endif;

Body_21
end; if C3 then
Code 2; SetTerminate;

or endif;
when C3 a>

terminate; SSI a Address (SelectInfo)
Branch to SELCLR

end selecty
Al: <UDA for Alternative 1>

Body l;
Branch to ENDRND, Link RET
Code 1;
Branh to ES

A2: <UDA for Alternative 2>
Body 2;
Branch to ENDRND, Link RET
Code 2;
Branch to ES

ES: <End of Select Statement>

154

INTErRME rRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.. -

-wX 2Lf ..n

BS-AIE (1) . KAPSE (1)

3.3.5.3.1.16 Tasking Initialization Operations

The operations listed below perform all scheduler, task, and
task list initialization.

procedure StartScheduler -- Initialize AdaTasking package.
D

procedure InitList (- Initialize a dependency list.
Dependents: in TaskListPtr

function CreateTask (- Create a task on a dependency list.
List: TaskListPtr -- Activation list.
Master: TaskListPtr; -- Dependency list.
Code: UDAptr; -- Task body UDA location.
.Descriptor: TaskTypePtr;
Priority: Pr ior ityNumber)
return TCaptr; -- Returns pointer to new TCB.

procedure ActivateTasks (- Activate all tasks on a list.
List: in TaskListPtr -- List to activate.

- Each block, subprogram, task, and library package with
- directly dependent tasks must call ActivateList as its
-- first executable statement (immediately after
-- establishing the exception handlers for the block). In
- addition, Activat*List must be called for each list of
- ~tasks created by an allocator.

3.3.5.3.1.17 Task Termination Operations

The tasking operations in this group implement task
termination and abort.

procedure TaskWait (- Wait for dependents to terminate.
Dependents: in TaskListPtr - List of dependents.

- Every block, subprogram, and task with directly
- dependent tasks must call TaskWait as its last
-- I executable statement.

- procedure AbortTask (-- Ada ABORT statement.
Task: in TCBptr - Task to be aborted.

155

INTERMETRICS INCORPORAT-D • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSET'S 02138 1 '6171 6 -1840

.* * * * . **,. * *~-

.. -1 -. .4

BS-AIE (1) .KAPSE (1)

3.3.5.3.1.18 Simple Delay Operation

The tasking operation in this section handles delays. This
operation is called via the normal subprogram calling sequence
(see Unit Execution Support).

procedure TaskDelay (- Ada DELAY statement.
Amount: in Duration -- Delay in clock ticks.
)I

3.3.5.3.1.19 Interrupt Operations

The operations described in this section control the
association of interrupts with task entries.

procedure CatchInterrupt (- Declare interrupt handler.
Task: in TCBptr; -- Task to handle it.
Entry: in EntryIndex; -- Entry within task.
Interrupt: in InterruptType; -- The interrupt.

- Called for each interrupt address clause,
-- at the activation of the task.

function PseudoInterrupt (- Simulate an interrupt.
Interrupt: InterruptType;

return BOOLEAMi - FALSE if the interrupt
-- is not being handled.

3.3.5.3.1.20 Task and Entry Attributes
These tasking operations provide values for task and entry

attributes, with the exception of SIZE, STORAGE SIZE, and
ADDRESS.

function IsCallable (- Attribute T'CALLABLE.
Task: TCBptr

return BOOLEAN?
-- I TRUE if the task exists and is neither completed,

terminated, nor abnormal.

function IsTerminated (- Attribute T'TERMINATED.
Task: TCBptr
)
return BOOLEAN; -- TRUE if the task is terminated.

156

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 , (617) 661.1840

-i

~~2~ti.77 7-7- '7 7- 7 1 77. 7 7 * .

B5-AI E (1) KAPSE (1)

function CallerCount (- Attribute E"COUNT.
Task: TCBptr;
Entry: EntryIndex;)
return Count; -- Number of callers on entry.

3.3.5.3.1.21 Debug Support Operations

The following is a partial list of operations which will be
provided to support the debugger.

procedure Suspend (-- Suspend low priority tasks.
Limit: in PriorityNumber

-- I Causes the scheduler to ignore tasks with
--Ipriority less than or equal to the limit.

procedure Resume -- Cancel Suspend.

-- I Causes the scheduler to consider all runnable
tasks.

3.3.5.3.1.22 Other Tasking Support Operations

procedure GiveopPocessor -- Give control to scheduler.

function KyTCBP -- Return TCBptr of running task.
return TCBptr;

157

INTERMVETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, -MASSACHUSETTS 02138 i (617 661-1840

S. -.A,.-.

BS-AIE (1). KAPSE (1)

3.3.5.3.2 Processing

3.3.5.3.2.1 Queues and Lists of Tasks

A globally accessible variable contains a pointer to the
current running task TCB.

The running task, tasks waiting for a caller (not delayed),
calling tasks in rendezvous, and tasks waiting for their
dependents to terminate are on no queue (but are still on a
dependency list). All other tasks are also on either an
activation list, a runnable task queue, an entry call queue, or
the delay queue.

3.3.5.3.2.2 Task Creation

For each task to be created, CreateTask allocates and
initializes a TCB, and places it on the specified activation
list. There are separate activation lists for the current master
and for allocators.

3.3.5.3.2.3 Task Activation

At the end of each allocator, and after the BEGIN of a
block, ActivateTasks is called to activate each task on the
corresponding activation list, and to add them to the appropriate
dependency list. If any tasks complete due to exceptions during
activation, ActivateTasks raises TASKING ERROR.

3.3.5.3.2.4 Task Termination

When a task terminates, or when it opens a TERMINATE
alternative by calling SetTerminate, or when a master completes
and calls TaskWait, the master's dependency list is checked. If
the master is completed, and there are no non-terminable tasks,
then all tasks on the dependency list and its sublists are
terminated. Any task waiting for a list thus terminated is made
runnable, so that it can leave its current block.

3.3.5.3.2.5 Call, Accept, and Rendezvous

In order to minimize scheduling overhead and stack frame
allocation, at the beginning and end of a rendezvous, entry calls
are made as much as possible like procedure calls. If the called
entry is open when an entry call is made, the rendezvous is
started immediately with no scheduling operations. At the end of
the rendezvous, the higher priority task continues to execute;

158

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1S40

4d J ' = • , , ' - : . ' . ., ; . . - . - ,. . . - ,: . . . '. : .:

-:, . 1_ - - - ., . .- -~ • . . - - - , . b ° . b . . " - , - . • . . - - ,

SB5-AIE (l). KAPSE (1)

the only required scheduling operation is to make the other task
runnable.

The ACCEPT body is executed as if it were a procedure; i.e.
the caller's primary and secondary stack are used to execute the
ACCEPT body's code. However, in order to preserve the identity
of the acceptor as the running task, the acceptor's Task Control
Block is used. In addition, the acceptor"s static link is used,
so that scoping is correct within the ACCEPT body. The priority
used within the rendezvous is the higher of the two.

At the end of the ACCEPT body is a branch (and link) to
I NDED, which ends the rendezvous. If the caller has higher
priority, the acceptor is set runnable, to continue with the code
following the ACCEPT body, and a RETURN is made to the caller,
thus completing the entry call. If the acceptor has higher
priority, the caller is set runnable, to continue by executing a
RETURN, and the acceptor continues immediately with the code
following the ACCEPT body.

Figures 3-14 and 3-15 summarize the task state transitions
and queues for entry calls and accept's.

V 3.3.5.3.2.6 Interrupts

Interrupts are equivalent to simple entry calls, in that
interrupts which occur while an interrupt entry is closed are
queued. However, if the task with the interrupt entry is
unactivated or terminated, the interrupts are ignored.

A call to CatchInterrupt creates an entry in an interrupt
table: for each interrupt, the TCB address and the entry index of
the interrupt entry are insertad.

When an interrupt occurs for which there is a table entry, a
counter for that interrupt is incremented, and a call to the
entry is made. Interrupts which occur while a previous interrupt
is being serviced cause their counters to be incremented, but
cause no additional entry call. After every return from an
interrupt entry call, the counter is decremented. If it is non-
zero, another entry call is made to service the pending
interrupt, and so on until the counter goes to zero.

When a task with interrupt entries terminates, its entries
are removed from the interrupt table. Further occurrences of
these interrupts will then be ignored.

159

INTIRMITRICS INCORPORATED * 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETrS C2,38 (6171 661-1840

' ; ,** ,- *5,,,;,, '.- .,'.'.... .. ".. ,.-........ .. ".. -. -: S, ; S' -, -. _.,' ,•,'

B5-AIE(l) .KAPSE(1)

Figure 3-14, State Transitions (Caller)

STATE TRANSITIONS (CALLER)

IUNACTIVAT D

I BEGIN OR ALLOCATOR

ACCEPTOR HIGHER RUNNAELE
(PRIORITY

CUEUE) DELAY

SCHEDULER
EXPIRY

CALLER HIGHER
I --I RUNN ING

Emw RENDEZVOUS CONDITIONAL
CALL OR
DELAY =

__No ACCEPTOR

W''A I T I NG IM I PLE ATN

TIMEDTWAIT_ llALl, iCALL
CALLR I IWAIT 'FOR TIMED WAIT

CALLER IN ACCEPT FOR ACCEPT
RENDEZVOUS (ENT Y CUEUE) (ENTRY QUEUE,

(E. T -- EUE)DELAY QUEUE)

ACCEPT ,

102982389-2

160

INTIRMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE , MASSACHUSETTS 02138 (6171 661-1840

.......................................

I -~V*.

BS-AIE (1) .KAPSE (1)

Figure 3-15, State Transitions (Acceptor):

STATE TRANSITIONS (ACCEPTOR)

UATVATED]

BEGI ORALLOCATOR

CALLER HIGHER RUNNABLE
(PRIORITY DELAY

OII-)Ex I RY
SCHEDULER4I GIVEUP

ACCEPTOR HIGHER- RUNNING

rD RENDEZVOUS

ELRSEAOR

CALLVUS COPLTo CALLE

ALRMERNAABLE

IF 02838-

fNERrrnc I COR ALER W 3 ONO AIENU FOARIDE FASA OSER 02CALLER~66.1

95-A E (1). KAPSE (1)

3.3.5.3.3 Outputs

Nearly all AdaTasking operations produce changes in the
state of the scheduler. Those listed below produce tangible
outputs (see Inputs for a full description).

function TECALL - Timed entry call.
function TPCALL - Timed family member call.
procedure InitList -- Initialize a task list.
procedure CreateTask - Create a task on a list.
procedure ActivateTasks -- Activate tasks on a list.
function PseudoInterrupt - Simulate a hardware interrupt.
function IsCallable - Attribute TCALLABLE.
function IsTerminated -- Attribute T*TERMINATED.
function CallerCount -- Attribute E*COUNT.
function YTCBP -- Return TCB of running task.

3.3.5.3.4 Special Requirements

The following registers are set before entering an ACCEPT

body, and must be preserved (or restored) at the end of the body:

ASP Acceptor.s Saved Priority.

CLR Pointer to callers Task Control Block.

Due to the special interfaces required, and to maximize the
efficiency of rendezvous operations, the operations listed in
Special Callin Sequences, which support entry calls, accept
statements, and--seeive waits will be implemented in IBM 4341
machine language.

3.3.5.4 Exception Handling

The following sections discuss the implementation of the Ada
exception handling mechanisms.

3.3.5.4.1 Inputs and Outputs

The exception handling package implements a variety of low-
'level operations which are invoked by the generated code.

162

INTIRMIRTRICS INCORPORATED . 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 * (6171 661-1840

.. .,t " -

i7

B5-AIE (1) .KAPSE (1)

3.3.5.4.1.1 Exception Identifiers

Each exception name declared within a program is assigned a
unique 32 bit exception identifier. Exceptions in Ada are, in
effect, statically declared; an exception declared in a recursive
subprogram is the same exception for each recursive invocation.

3.3.5.4.1.2 Register Usage

The low-level operations use the following registers for
passing parameters:

reg. normal use

EXC Current exception identifier.
LOC Location at which exception was raised.
RET Subprogram return address.
FRAME Pointer to current call frame.

3.3.5.4.1.3 Exception Handling Operations

oper. registers description

RAISE EXC, FRAME, RET, LOC Raise exception.
PRCALLER EXC, FRAME, LOC Propagate exception to caller.
PRRENDV EXC, FRAME, LOC Propagate out of rendezvous.
EXABORT Abort task due to unhandled

exception.

3.3.5.4.1.4 Exception Maps

The compiler generates an exception map for for each
executable subprogram, package, generic and task unit. A unit
may have several handlers associated with it, since nested blocks
and inline subprograms execute on the call frame belonging to the
containing unit. A pointer to the map is contained in the unit
data area (see Unit Execution Support) associated with the body.
The map consists ra sequence Of double-word entries, where the
first word contains the address of the last instruction to which
this particular entry applies, and the second word contains the
address of the corresponding exception handling code. The

' entries are sorted in order of instruction address:

163

INTERMFTRI S INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • 6171 661-1840

35-AIE(L).KAPSE (1)
procedure A is
p-- elaboration code for procedure

i instruction al
beg in

declr
-- elaboration code for nested block

beg in

Cc]
exception - hl

end:,

[d]
exception -- h2

.;i
end A;

instruction handler

a PRCALLER
b h2
c hl
d h2
a PRCALLZR

3.3.5.4.1.5 Hardware Detected Excep!tions

The IZ3 4341 hardware is capable of detecting a number of
exceptions. The following hardware exceptions are intercepted by
the run-time system and cause NUMERIC ERROR to be raised:

exponent under flow
exponent overflow
floating point divide
signif icance
fixed point divide
fixed point overflow

All other hardware detected exceptions cause PROGRAM ERROR to be
raised.

3.3.5.4.2 Processing

164

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (617) 61-1840

7. o7 .. .-.. --..

B5-AIE (1). KAPSE (1)

3.3.5.4.2.1 Raising an Exception

When a raise statement with an exception name specified is
seen by the compler, code is generated to load the corresponding
exception identifier into EXC, load the current program counter
into LOC, and then branch to RAISE. A raise statement with no
exception name differs only in that the ex Eie-'Zon identifier for
the exception in progress is loaded into EXC. When a hardware
detected exception occurs, the intercept routine loads the
exception identifier for NUMERIC ERROR or PROGRAM ERROR into EXC,
loads the address of the interrupted instruction Tnto LOC, then
branches to RAISE.

Upon entering RAISE, the current call frame (addressed by
FRAME) is examined to obtain the address of the unit data area,
which was saved in the call frame on entry to the unit. The
address of the exception map is then obtained from the unit data
area. If LOC currently points to an instruction within a run-
time routine, then LOC is loaded with the address at which the
run-time routine was called, which should be in RET. The
exception map is then scanned for the first entry with an
instruction address greater than LOC. When the entry is located,
control is passed to the corresponding handler.

3.3.5.4.2.2 Exception Handlers

The code generated by the compiler for a set of exception
handlers first performs a series of tests to determine if EXC
specifies an exception for which the user has provided an
explicit handler. If so, the corresponding code is executed. If
not, and a handler was provided for the others choice, that code
is executed. If the user did not provide an others choice, the
compiler generates a branch back to the RAISE -Fouine, causing
the exception to be propagated to the enclosing exception frame;
the contents of EKC and LOC are not disturbed.

When execution of a handler is completed without propagating
an exception to a containing exception frame, control is passed
to the normal exit code for that block or unit. When an
exception is to be propagated out of the handler, the compiler
generates code to, when needed, perform a dependent task wait,
release secondary stack storage, and/or release the current
prixary stack frame, prior to branching to RAISE. If the user
has not provided an exception handler for a block or inline
subprogram which has dependent tasks, the compiler generates a
handler which performs the dependent task wait, then branches to
RAISE.

165

INTEftMETRICS INCORPORATED *733 CONCORD AVENUE *CAMS RI OGE, MASSACHUSETTS 02138 *(6171 661-,40

SS-AIZ().KAPSE (1)

3.3.5.4.2.3 Propagating Out of a Called Subprogram

An entry in an exception map specifying PRCALLER as the
handler is used to cause propagation of an exception out of a
called subprogram. PRCALLER loads the contents of the return
address field in the current call frame into LOC, stores the
address of RAISE in the return address field, obtains the address
of the normal exit code for the subprogram from the unit data
area, then branches to that address. The exit code will, when
needed, perform a dependent task wait and/or release secondary
stack storage, restore the calleros registers, then pass control
to the address indicated in return address field, which is now
RAISE.

3.3.5.4.2.4 Propagating Out of a Rendezvous

An entry in an exception map specifying PRRENDV as the
handler is used to cause propagation of an exception out of a
rendezvous. Such an entry is always provided for the last
instruction in an accept body. PRRENDV calls a tasking support

~ routine to propagate the exception to the participating tasks.

3.3.5.4.2.5 Unhandled Exceptions

An entry in an exception map specifying EXABORT as the
- handler is used to force completion of a task which has an

unhandled exception. Such an entry is always provided for the
last instruction in a task body. EXABORT obtains the address of
the normal exit code for the task from the task's unit data area,

I! then passes control to it.

If an exception is propagated out of the main subprogram, a
post-mrtem routine is called which will display the information
concerning the state of the program at the point at which the
exception was raised, then pass control to the debugger (when
present).

3.3.5.4.3 Special Requirements

Due to the special interfaces required and to achieve a
- reasonable level of efficiency, all storage management operations

will be implemented in 1-I 4341 machine language.

3.3.5.5 Language--efined Packages

.,'

166

INTERMETRI S INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSET'TS 02138 1 •617) 661.1840

BS-AlE (1) KAPSE (1)

3.3.5.5.1 Standard Input/OutPut Packages

3.3.5.S.1.1 Inputs and Outputs

The XAPSE will implement the complete set of Ada Language
Standard Input/Output packages. The specifications given in
chapter 14 of the Ada Language Reference Manual will serve as the
official definition of these standard input/output Packages. The
headers of the specifications of these packages are given here
for reference:

package 10 EXCEPTIONS is
MANE ERROR : exception;
USI maO : exception;
STATUS ERROR : exception;
MOO ZRAOR : exception;
OIwIE EURR : exception;

DERROR : exception;
DAT I : exception;
lAroft ==a : exception;

end 1I0O1CZT IIS

with ZO Z€CE 0T;
gener ic-

type K UIT TI is private;
package UQUITXL 10 is

type FILE ftPE is limited private;
type FILP-00 is (IN FILE, INOUT FILE, OUT FILE);
type COnUW is range 0-.. Implemen-tation Deflned;

end SEQUETIAL 10

with O EXCEPTIONS;
generic-

type ELUKM TYPE is pcivate;
package DIRET IO in

type IvLZ TYP2 is limited private;
type FILE'MODE is (IN FILE, INOUT FILE, OUT FILE);
type COONl is range 0-.. Implementation DefTned;

end DIRUC*TIO;

167

IN1'IRMUTRtCS IN~CORPORATED 733 CONCORD AVENUE * CAMBRIDGE. MSSACHUSETTS 02133 1 617) 661.1840

35-AIE(l).KAPSE(l)

with IO EXCEPTIONS;
package TEXT 10 is

type-FILE TYPE is limited private;
type FILEZKODE is (IN FILE, INOUT FILE, OUT FILE);
type CWUY is range 0 .. Implementation Deftned;
subtype FIELD is INTEGER range 0 .. ImpTementation Defined;
subtype NUNBER BASE is INTEGER range 2 .. 16;

generic
type NUN is range <>;

package INTEGER 10 is
DIWAULT WIDTH : FIELD :- NUN'WIDTS;
DEFAULT BASE : NUMBER BASE : 10;

end INTEGER 10;

end TEXT 10;

package LOW LEVEL 10 is
-- declirations of the possible types for DEVICE and DATA;
-- declarations of the overloaded procedures for these types:
procedure SEED CONTROL (DEVICE: device type;

DATA: in out data type);
procedure RECEIVE CONTROL (DEVICE: device pe;

DATA: inlout7 d t
end;

3.3.5.5.1.2 Processing

Internally, all operations are converted to operations on
storage unit arrays, allowing arbitrary types of objects to be
handled. The conversion to standard types is made within the
generic body of the package, while the bulk of the processing is
done in a non-generic package to avoid multiple instantiations.

3.3.5.5.1.3 Special Requirements

3.3.5.5.2 Calendar Package

3.3.5.5.2.1 Inputs and Outputs

The TAPSE will implement the complete Ada Language Standard
Calendar package. The specifications given in chapter 9 of the
Ada Language Reference Manual will serve as the official
definition of this package. The header of the specification of

168

INTERMITRIC INCORPORATEO - 733 CONCORD AVENUE * CAMBRIDGE, M ASSACHUSETTS 02138 (I61716 61.1840

BS-AIE (1) KAPSE (1)

this package is given here for reference:

package CALENDAR is
type TIME is private;
subtype YEAR NUMBER is INTEGER range 1901 .. 2099;
subtype MONTH NUMBER is INTEGER range 1 .. 12;
subtype DAY NUkM is INTEGER range 1 .. 31;

end CALENDAR;

3.3.5.5.2.2 Processing

All CALENDAR operation will be implemented using well-known
algorithms, such as described in D. E. Knuth, The Art of Computer
Pro2rammin1, Vol. 1: FUNDAMENTAL ALGORITSMS, Addison Wesley,
1975t pp 155 - 156. The basic unit for conversions will be type
DURATION, which will be one clock tick (SYSTEM.TICK).

3.3.5.5.2.3 Special Requirements

3.3.5.6 Type Support Routines

Type support consists of a set of subroutines used by
compiler generated code to do simple operations on typed objects.
Type support run-time routines include: arithmetic on reals,
image and value functions for discrete types, and POS, VAL, SUCC,
and PRD functions for enumeration types with representation
specs. These should not be confused with compiler generated
routines for doing operations on objects of a particular type,
such as array indexing routines.

3.3.5.6.1 Inputs and Outputs

Type support routines take as input and return as output
scalar values, pointers to run-time system data structures that
describe the mappings needed to convert position number to
enumeration values, and position number to the string image of an
enumeration value.

The arithmetic subprograms on reals include: add, subtract,
hIegate, multiply, divide, and power, for the built-in types
float, and long float as well as the built-in fixed point types.
There are 32 built-in fixed point types, one for each possible
position of the binary point in a 32-bit machine word. There is
one set of arithmetic run-time subprograms for all fixed point

169

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSE7TS C2138 * '617) 661.1940

S5-AIE (i) .KAPSE (1)

types; these routines take, in addition to their normal
arguments, the position of the binary point of each argument.

There are IMAGE, VALUE, and "WIDTH functions for each of the
built-in numeric types: SHORT INTEGER, INTEGER, FLOAT, and
LONG FLOAT, as well as one pair ?or the built-in fixed point
typeis. Additionally, there is a set of conversion routines;
there is one member in this set for each pair of built-in numeric

- types.

There are IMAGE, VALUE, and 'WIDTH functions for natural
machine storage unit size of enumeration types, byte, half word,
and word. These routines take, in addition to the object or
string passed, a pointer to a data structure, generated by the
compiler, which maybe used to guide the mapping between string
representation to position number.

There is a set of routines - POS, VAL, SUCC, and PRED - for
each natural machine storage unit. Byte, half word, and word,
are provided for manipulating enumeration types that have
received representation specfications. Like the IMAGE and VALUE
functions for an enumeration type, these functions take an
additional parameter: a pointer to a data structure generated by
the compiler, that can guide the mapping between position number
and a the user-specfied representation number.

3.3.5.6.2 Processing

The conversion and numeric operations are implemented in the
usual manner. Where it is appropriate, the code for them is
inserted inline by the back end during code generation. On a
machine with hardware support for such functions the operations
are generated by the compiler and no use is made of the run-time
system routines.

The enumeration mapping functions, for conversion to and
from strings, and for conversion to and from position number, use
maps generated by the compiler for each particular enumeration
type. Consider a possible string to position number map built
for this enumeration type:

type color is (red,white,blue) ;

This map might be an instance of the following data structure:

type literal image is record
image offset: integer;
image-width: integer;

end literal image;

type literal-images is array (integer range <>) of literal image;

170

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 • (617) 661-1840

......

B 5- AIE(1) .KAPSE (1)

type enumeration image map
string space: - nteger,
enum length: integer

is record
map: literal images (l..enum length)7
images: string ?l..stringspace7;

end enumeration image map ;

The particular map for this enumeration would then be the data
Structure generated by the compiler for this aggregate:

color image vsupos map: enumeration-image map :

string space - 1
enum lngth ->3,
pairs map -> ((1,3), (4,5), (9,4)), -- (posn,width)
images -> wredwhitebluel

The STORAGE phase of the compiler generates this
uenumeration -image map," for each enumeration type. The actual
implementation may differ in detail from the one described here.

3.3.S.6.3 Special Requirements

171

INTIRMITRICS INCORPORATED *733 CONCORD AVENUE * CAMS RI DG E. MASSACHUSETTS 02138 61 7) 661-1840

B5-AIE (1). KAPSE (1)

3.4 Adaptation and Rehosting

3.4.1 Installation oarameters

The following parameters must be supplied as part of installing a
KAPSE on a particular host:

1. The block size;
2. The number of block buffers in the buffer cache;
3. The maximum number of simultaneous users;
4. The maximum number of simultaneous programs.

3.4.2 Operation parameters

The following parameters may be adjusted on a running KAPSE to
reflect a changing operational environment:

1. The maximum memory allocation per program;
2. The limit on number of simultaneous

programs per user;
3. Host-dependent scheduling parameters;
4. The names and numbers of device objects (see ***).
5. Processing and disk budgets (see ***).

3.4.3 Rehosting Requirements

Rehosting the KAPSE will require retargeting the Ada compiler and
re-implemting the lAPSE/Host interface. The KAPSE/Host interface
has been kept as simple and low-level as possible to facilitate
rehosting to a new host system or bare machine.

Any host must provide some kind of direct access disk or
other on-line storage device. The host must also provide some
kind of asynchronous pseudo interrupt to implement Ada real-time
constructs and inter-program communication.

3.5 Capacity

lAPSE performance will vary according to user load and host
system speed and capacity. In addition to the above installation
and operation parameters, the following parameters will have a
significant impact on throughput and response time:

172

INTERMITRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ! 617) 661-1840

' ~ r? ¢;; ' ;.% '; ",/'; ' " " ".'":" " " '" ' " "" " '' "" '': " " : ; '"" ' '*. : -:,

B5-AIE (1) .KAPSE (1)

1. The current number of simultaneous programs;
2. The amount of database access;
3. The locality of database access;
4. The amount of inter-program communication;
5. The number of simultaneous interactive users.

173

INYIRMSTRICS INCORPORATED , 733 CONCORD AVENUE * CAMSPIOGE. MASSACHUSETTS 02138 * 617) 661-1840

B5-AlE (1) .KASE (1)

This page left blank intentionally.

174

INTERMETRICS INCORPORATED *733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 6171, 661 -1340

B S-AI E(1) . KAPSE (1)

4.* QUALI TY ASSURANCE PROVISIONS

4.1 Introduction

Because the lAPSE serves as the guardian of the entire
database, the testing and validation procedure must be very
intensive. The general approach is to use automation and
parallel efforts to achieve a high level of confidence in a short

* time. These activities are illustrated below:

lAPSE Sub-Project

set*

175

INTURMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 , 6171 661-1840

BS-AZE (1) .KAPSE (1)

4.2 Test Reuirements

4.2.1 Ada Machine Testing

The Run-Time System or "Ada machine" consists of
implementations of all routines called implicitly by Ada
programs, and the specifications and bodies of all subprograms
defined by the standard environment. It includes storage
management, tasking, exception handling, unit execution support,
and type support routines. The Ada machine test consists of the
ACV compiler validation set.

4.2.2 Production Input/Output Tests

The next test/production phase covers basic database
functions below the user level. These include the following
functions:

a. KAPSE/Host interfaces;

b. Physical disk block allocation, reference counting, and
read/write;

c. Logical disk block read/copy/write, with join-counting and
automatic copy-on-write;

d. Data clump, and access methods, used to implement primitive
files;

e. Primary windows on extended attributed objects;

f. User-defined attributes;

g. Path names via distinguishing attributes, creating and
deleting simple object components of composite objects;

h. Primitive program invocation facilities;

i. A primitive history attribute, logging all KAPSE calls.

When the units listed above have been tested individually, the
project begins to develop the production software on the system
developed so far, rather than the bootstrap environment.
Database integrity is the responsibility of a juman software
libcacian, who does manual backups daily. "Self-use," or further
development of the KAPSE on the KAPSE is the primary form of
integration testing at this point.

1.2.3 KAPSE Version 1 Test Case Generation

The scripts saved during this phase, especially those which
failed or caused a system crash, will become the primary set of
regression tests. The MAPSE project manager will run the

176

INTERMETRICS INCORPORATED 9 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETrS 02138 * (6171 661-1840

2 ,- - - - . 7..-. - .:,. -- 2. - -'- ..- ..-. .- --. -. *-./. . - .

.'A +-. . . + , . + , . + + + -+. -

B5-AIE(l).KAPSE(l)

regression and other tests and commit the entire KAPSE/MAPSE
project to the use of "KAPSE-1l as a development system, after
the following additional features have been developed:

a. Category-defined attributes;

b. All remaining operations on components of composite objects;

c. Partitions and secondary windows;

d. Access control via roles and access control attribute;

e. Automatic backup and recovery.

The combined set of unit, integration, and regression tests
developed by this point are a proposed AIE validation set (PAVS).
They are used as an acceptance test for new releases of the KAPSE
to the rest of the AXE project. A program will be developed to
automatically run test suites once, or repeatedly, and check for
correct execution of all tests.

4.2.4 KI Reliability Test

The PAVS tests will be run cyclicly on the version 1 KAPSE
for two weeks without crashing. It is estimated that four weeks
of calendar time will be needed to debug version 1 to the point

- of surviving two weeks. This reliability testing overlaps
additional development work in the areas of:

a. Full history and archiving support;

b. Configuration management tools;

c. Full program invocation and control, including private
objectsi

d. Login/Logout processing with user budgets and accounting;

e. System operation and maintenance procedures;

f. Full terminal screen management software.

4.2.5 Full Function Testing

After incorporating any changes indicated by the outcome of
9l reliability testing, and the list of new developments above,
KAPSE version two and test set K2 are developed. Set K2 includes
Il, specific unit tests for the new features, scripts saved from
all Xl crashes, and other tests which will be required for
government acceptance. Testing and debugging are continued until
all X2 tests have been passed. Next the KAPSE is recompiled with
the production compiler, and set K2 is repeated. KAPSE version
three consists of version two as recompiled and re-debugged with

177

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - i6171 661. 1840

B 5-Al Z (1) ._KAPSE (1)

respect to test set K2.

4.2.6 KAPSE Version 3 Testin

Version three testing will proceed as three parallel
efforts: The first will be the capacity and reliability test,
consisting of running the full X2 set continuously for two weeks
with a database constantly growing in number of objects, users,
categories, etc. At the same time, there will be diabolical
testing, consisting of giving skilled programers specific
instruction and motivation to find ways to defeat access
controls, corrupt the database, etc. And finally, as programmers
make corrections and performance improvements, they will perform
development testing.

4.3 Acceptance Requirements

The acceptance test consists of the K2 set, the capacity and
reliability test, the scripts generated during successful and
unsuccessful diabolical tests, and throughput tests to measure
performance against the level A requirements.

178

INTIIMETRICS INCORPORATED * 733 CONCORD AVENUE & CAMSRIDGE, MASSACHUSETTS 02138 • (617) 681-1840

~N~RMTR~SICO~QN~I L M3 CCOAVN E D A9IG.ASCU2~TO18*(I~6114

