
DO-AI34 891 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA i/i
INTEGRATED ENVIRONMENT..CU) INTERMETRICS INC CAMBRIDGE
MA 08 OCT 82 IR-MR-i42-1 F30602-88-C-8291

UNCLASSIFIED F/G 9/2 N

EONE Olson sol
EhEEEEEEEmmhnhE
EhhEEEEEEmmohshE

111i1 ,_.o 328.

MICROCOPY RESOLUTION TEST CHART
NATIOIAI, BUREAU OF STANDARDS-1963-A

MR-MA-142-1
COMPUTER PROGRAM

DEVELOPMENT SPECIFICATION
FOR

Ads INTEGRATED ENVIRONMENT:
VIRTUAL MEMORY METHODOLGY

85-AIE (1).VMM (2)

8 OCTOBER 1982 DTCS ELECTE
OCT 2 4 1983

CONTRACT F30602-80-C-0291
B

PREPARED FOR: ROME AIR DEVELOPMENT CENTER

CONTRACTING DIVISION/PKRD
GRIFFISS AF8, N.Y. 13441

PREPARED BY: E INTERMETRICS, INC.

733 CONCORD AVE.
CAMBRIDGE, MA 02138

La.J .DS3UflON STATEMENT A
.j ~Appmvod tat public oes

Distribution Unlimited]

INTERMETRICS INC. * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 ((617) 661-1840
TWX NO. 710 320 7523

.2

s5-AIZ(1) .VMM(2)

This docm.ut ws produced under contract F30602-60-C-0291/SA

P0009 for the Rome Air Developfmnt Center. Mr. Douglas White is the

Progw-m Engineer for the Air Force. Mr. Mike Ryor is the Project

Manager for Intemnetr'ics.

IV

L Accession For

bTSGRA&IIDTIC TAR 0
Urwnrnou~iced 0

--- -.

Distribution/
Availability Codes

,Avail and/or'Dist J Special

tWMTRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (6171 661-1840

........ ,. -- .

8S-AZE(1) .VM(l)

TABLE OF CONTENTS

PAGE

1.0 SCOP 1

1 .1 Identification 1
1.2 FUnctional Suimty 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Program Definition Documents 3
2.2 Inter Subsystem Specifications 3
2.3 Nilit<i Specififications and Standards 3
2.4 miscellaneous Documents 3

3.0 EUIR. hSM 5

3.1 Introduction 5

3.1.1 General Description 5
3.1.2 Peripheral Equipment Identification 6
3.1.3 Interface Identification 6

3.2 Functional Description 6

3.2.1 Equipment Descriptions 6
3.2.2 Computer input/Output Utilization 6
3.2.3 Computer Interface Block Diagram 6
3.2.4 Program Interfaces 6

3.2.4.1 KAPSE Interfaces 6
3.2.4.2 User Interface 7

3.2.4.2.1 Data Structure
Definitions 7

3.2.4.2.2 Primitive Operations a
3.2.4.2.3 Linear Representation a

3.2.4.3 Ada Compiler Interface 11

3.3 Detailed Functional Requirements 11

3.3.1 Rep Analyzer 11

3.3.1.1 Input 11
3.3.1.2 o*rocessing 13
3.3.1.3 Output 14

i

WVWMSRSINCORPORATD * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 61.1840

TABLE, OF CONTETS (Cont' d)
PAGE

3.3.2 Abstract Data Types Package 15

3.3.2.1 Virtual Record Type 15
3.3.2.2 Built-in Data Abstractions 16

3.3.2.2.1 Vectors 18
3.3.2.2.2 Lists 18
3.3.2.2.3 Sets 18
3.3.2.2.4 Text Strings 19

3.3.3 Basic Operations Package 19

3.3.3. 1 Creatin Dmains and Subdmiins 20
3.3.3.2 Sub-dcmain Characteristics 21
3.3.3.3 Locator'iodel 23
3.3.3.4 Mapping Locators to Objects 25
3.3.3.5 Dereferenwing 29
3.3.3.6 Pointer Computation 30
3.3.3.7 Pointer Dereferencing 32
3.3.3.8 Dereference Locking 32

3.3.4 VHM, Virtual Record Notation 1/O 32

3.4 Capacity 34

40 QULITY A8SURANEC PROVISIONS 37

4.1 Introduction 37
4.2 Test Requi rments 37
4.3 Acceptance Test Requirments 39

5.0 NOTES 41

AF PEXDfl As VIRTUAL RECtORD NOTATION GRAMMAR 43

FIGURES

Figure 3-1s REP ANALYZER 9
FIGURE 3-2t VMM PACKAGE HIERARCHY AND DATA PATHS 10
FIGURZ 3-3t DOMAIN STRUCTURE 26
FIGURE 3-4t VMSD STRUCTURE 27
FIGUR.E 3-5s LOCATOR DEREFERENCING 31

INTOWITRECS INCORIPORATED * 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

*: t
o

. - o -. * - w - . * .* . . . -. . ." ,

BS-AIE(1).VMM(2)

1.0 scOPE

.1identification

This specification defin equirements for the virtual
Nemory Methodology subsystem.(CPCI AZE.VMM.VWI). -VMM is a component
of the Minimal Ada Prog~rauun, pport Environment (MAPSE) of the
Ada Integrated nviroim__ent/ AIR, providing MAPSE tools with
facilities required to construct and manipulate data in a
consistent, reliable, and portable form. .

1.2 unctional Summary

1 ASE tools must be able to preserve data structures within the
Kernel Ada Programing Support Environment (KAPSE) Database in order
to cammnicate with other tools or with subsequent activations of
the same tool. In general, it cannot be assumed that the address
space of the host machine will be adequate to keep such data
• structures entirely within msmory while they are used. A Virtual

M nemory Methodology provides both a means of representing the dataistructres used by tools in a consistent and efficiently-accessed
external form, and a means of overcoming address space limitations
on the size of data structures. In addition, VMM provides aids to
debugging and co Ucation between hosts (ASCII, human-readable
form).

The VMN package consists of four major components (CPC's):

1. The Rep Analyzer (VMM.VMM.A), which converts user-defined
data structures into VMM structures and creates a VMM
access package via which user tools can access data;

2. The ABSTRACT DATA TYPES Package (VM.VMM.B), which defines
standard data aggregates such as lists;

3. The VRN 10 Package (VMM.VMM.C), which converts input and
output to or from a linear, human-readable form;

4. The BASIC OPERATIONS Package (VMM.VMM.D), which implements
the basic operations (e.g., create, delete, access) on VMM
structures.

I LMTEMETRIC INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1840

.4. .* - v i
. .. . 4 , , .,,' .• ", . -,, ,-.... .;- -' . ,,. ,,

B5-AIZ(1) .vMN(2)

2

B1UMU1• i 111TRI S INtRdORATUD 733 CONCORD AVENUE . CAMSRIOGE. MASSACHUSETTS 02138 * (617) 661-1840

i5-AIE(1) .VMM(2)

2 .0 APPLICABLE DOCUMETS

2.1 Program Definition Documents

_ ~ireents for Ada Programming Support Environments,

-KI3 -, 7 ebruary- 80, Department of DfenIe.

Rised Statemnt of ork, 1S March 1980.

Reference Manual for the Ada Programmin Lanquage, proposed
i Undard diet, .-S.-parmnt of DefenseI1R0

2.2 Inter Subsystem Specifications

Systm Specification for Ada integrated Environment, Type A.

C luter Program Development Specifications for Ada integrated
Unviroiment. Type as:

Ada Compiler Phases, AIZE(1).COMP(1)

KPS/Databaee, AlE 1) .KhPSE(1)

MAPSZ CAmuad Processor, AZ(1).MCP(l)

Program Integration Facilities, AIC(1).PIP(1)

MAPSI Debuging Facilities, AIE(1).DBUG(1)

MAPE Text Editor, AIZ(1).TXED(1)

Technical Report (Interim)

Computer Program Product Specification for Ada Integrated
Environment, Virtual Memory Methodology, Type C-5,
AIZ(1) .VMM(2) .VMM.

2.3 NilitM 12 ecifications and Standards

Data Itsm Description DI-E-30139, USAF, 14 July 1976.

2.4 Miscellaneous Documents

Diana Reference Manual, G. Goos and Wit. Wulf, Institut Fuer
AE'tR 'aT1-n-17lnverItaet Karlsruhe and Computer Science Dept,
Carnegie-Mellon University, March 1981.

Guido Perech, Georg Winterstein, Manfred Dausmann, Sophia
Drossopoulu, AIDA Implementation Description, Institut fuer
Autcmatik I, Dneiitaotrruhe, December 1980.

3

INMETI RICI INWRPORATID * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (6171 861-1840

: . BS-AIE(1) .VMM(2)

Wetherell, Charles, Alfred Shannon, LR: Automatic Parser
Generator and LR(1) Parser, Preprint UCR!"2926, University of

Pager, D., A Practical General Method for Constructing LR(k)
Parsers, Acta informatica-7,pp.2I4-268,-1977.-

Manfred Daussmann, Sophia Drossopoulu, Guido Persch, Georg
Winterstein, An Informal Introduction to AIDA, Institut fuer
Autmatik II, Uiversitaet Karlsruhe, Nov--er 1980.

Benjamin M. Broeqol, David Alex Lamb, David R. Levine, Joseph
M.o N4wmer, Mary S. Van Deusen, William A. Wulf, T
Revised rt on an Intermediate Representation for the

P-el nia= Ada -Tajua, " ,puter Science Dept,cane 1-mton-T~iver-91ty, February 1980.

R. Cattell, D. Dill, P. Rilfinger, S. Hobbs, B. Leverett, J.
Ncomer (principal editor), A. Reiner, B. Schatz, W. Wulf,
POCC Impl ementor's Handbook, October 1980.

J. D. Ichbiah, J. 0. P. Barnes, J. C. Helian, B.
Krieg-Bruechner, 0. Roubine, B.A. Wichmann, Rationale for the
Design of the Ada Programminq Language , ACM SIGPLAN Notices,
Vol. 14, No.6, June 1979, Part B.

Intermetrics LG Description, 31 August, 1980, IR-536

LG User's Guide, December 1979, IR-427

YACC - Yet Another Compiler Compiler, Johnson, Stephen, C-7,
dnts-Eor the PWP/UNIX Time-Sharing System, Edition 1.0,

October 1977.

4

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

" " " " ' '' ' " . . . ' " " ' " " " ' n, ,.'.- .-:.- l,,- ,,n- . a:- :---,d ,,,,., ,,.'- -',. ,,, ,,,7

B5-AIE(1) .VMM(2)

3.0 REUIRENTS

3.1 Introduction

The VMM (Virtual *Memory ethodology) subsystem is a tool for
creating and manipulating abstract data structures (attributed
directed graphs, in particular) in a machine-independent manner. A
virtual memory paging scheme makes the size of any data structure
independent of the memory constraints of any particular hardware
configuration. The Virtual Record Notation 1O package (VRN 10)
supports input and output of data in an external, human-readable
format, translating data into the terms of the particular
implementation thereby satisfying portability requirements. A
permanent, directly accessible representation of a VMM data
structure can be created in the KAPSEA4atabase and accessed by any
MAPSZ tool or user program, providing a standard data interface for
inter-programs communication.

VMM is written in Ada ad incorporated into the AIE as normal
Ada code (using the Rep Analyz r). The implementation packages are
also written in Ada and compil into the program library. VMM will
be used to implement the CPCI, OMP.DIANA.

3. 1 1 Gneral Desriptio

VMM provides support for:

1. Data Structure Definition. VMM translates Ada package
speoificaton defining the data 8ructures required by a particular
tool, producing a template which maps the data structures onto KAPSE
database objects when the tool is run.

2. Virtual Memor Management. VMM performs automatic paging
to provi -y tol -Twith"a dirctly addressable memory area well
beyond the actual addressing range of the host system.

3. Machine-Independent Data. Automatic conversions between a
directly accessible representation of a data structure and either of
two host-system-independent linear representations is a basic VMM
facility. A user may obtain:

a) a human-readable text describing the structure's
concrete realization, which is primarily of use for
low-level debugging and testing; or

b) a human-readable text describing the structure's
abstract properties, similar to the concrete form but
reflecting the logical, rather than physical, structure
(see 3.3.4).

INTIRMrrRICS INCORPORArD 7 3 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661.1840

R5-AIE(L)i .VK(2)

3.1.2 Peripheral Equipment Identification

As do all MAPSE tools, V'M relies on the KAPSE for all hardware
interfacing. See CB-5-AIZE(1).i-APSZ(1).

3.1 .3 Interface Identification

Vl' s primary software interfaces are the KAPSE, the user
(tool builder), and the Ada compiler.

3.2 1'nti.a Description

3.2.1 qiruipment Descriptions

N"t applicable.

3.2.2 Computer Input/output Utilization

Not applicable.

3.2.3 Computer Interface Block Diagram

Not applicable.

3.2.4 Proqgram Interfaces

3.2.4.1 APSE Interface

YN interfaces with the KAPSE database via package DIRECT IO in
PRZDEFIUD PACKAGES in KAPIS.RTS. VMM instantiates the package for
a single record type (which is known as a VMM page) and creates
dynmai objects that include objects of the type FILE TYPE from that
instantiation.

The string names for database objects, required by certain
input/Output operations, are obtained in one of the following ways:

a) as actual parameters to VMM operations that invoke
Input/Output operations,

b) as values from database objects whose names were previously
supplied as actual parameters to VMM operations; or

c) by default tng the ilename parameter (for temporary files).

6

INTURMCTRtcS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 861.1840
'rl~l -,, 11 • , . . . , . - .- . -- . - . . ."

B5-AZ(l) .VM(2)

VMM also operates on FILE TYPE objects of package TECT 10 in
PREDEFZINED PACKAGES in KAPSZ.RFS. These files are used for-error
messages and human-readable representations.

3.2.4.2 User Interface

Since VIM is a method for implementing data structures used by
MAPSE tools, a "user interface" to the tool builder is a major
consideration. This interface has three main components:

a) data structure definitions,-

b) primitive operations; and

c) linear representations.

3.2.4.2.1 Data Structure Definitions

Data structure definitions describe the data structures to be
accessed by a given tool. These definitions must provide sufficient
information so that the tool can access the data as an Ada object,
and so that VMM operations can be derived to create the object,
store and retrieve it in an "external file", and/or convert it to or
from a human-readable representation. To accomplish this, the tool
builder uses an Ada package specification to define a virtual record
type that describes the structure of the data and the allowable data
types for components of the structure. This virtual record type is
specified as an Ada variant record type with a single discriminant.
The discriminant must be of an enumeration type defined in the same
package.

A virtual record is named by a literal belonging to the
enumeration type, and consists of those components that are
applicable to the variant record having that value as a
diecriminant. This is a basis for mapping between internal and
husman-readable form.

The types of virtual record components are limited to a subset
of Ada type constructors and a set of types supplied by the VMM
implementation through generic packages. In particular, no Ada
ACCESS types may be used,- instead, VMM locator types are used.

While the definition package specification coded by the tool
builder is valid Ada, it is not directly compiled with the tool.
Instead, the specification is processed by a program referred to as
the Rep Analyzer, this combines the definitions for one or more
virtual record types and enforces the restrictions and conventions
required by VMM. The Rep Analyzer generates as output: a new
package specification and package body for each virtual record type
(called the virtual record type declaration); and a package
specification and body called the access package that provides
access to one or more virtual record definitions.

7

INTIRMITRICS INCORPORATED a 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

d* l d -- ,' . --.
-

--- '-,-. -.. -.

B5-AIE(1) .VMM(2)

Operations on VMM data that are available to the MAPSE tool are
declared in the visible part of the access package (see Figure 3-1).
It also includes additional declarations that are needed by VMM but
which would be tedious for the user to code explicitly. The package
also defines procedures which build a symbolic description of the
virtual records (a sbol table containing the character strings
which name virtual records andtheir components) and which access
symbol tables previously created and stored in the KAPSE database.
These symbol tables support the reading and writing of the
human-readnble forms of VMM data structures. See Section 3.3.4 for
a description of these forms. Any MAPSE tool using VMM must be
compiled with the appropriate VMM access package.

3.2.4.2.2 Primitive Operations

The VMM access package contains a set of user-callable
primitives that are used to create and access a VMM data structure.
The operations declared in the access package are generally
supported by more primitive operations defined in the VMM
implementation package which are, in turn, supported by package

-. DIRECT IO in a layered fashion (see Figure 3-2).

These primitives are used to establish which data structure(s)
.' will be referenced by the tool and to locate individual components

within the structure to store, access, and manipulate actual data.
The access package serves to collect together the operations for the
applicable Virtual Record Types, and to provide an environment for
default values.

3.2.4.2.3 Linear Representation

Linear representations of VMM data structures express VMM
objects in terms of name-value associations. These linear forms can

• .also be read by programs which use compatible virtual record types.
This facility is used by the tool builder to display and generate

., instances of data structures during tool development and testing.
Because the human readable form is simply a text file, it can be
easily manipulated using a text editor.

The representation used for VMM data structures is loosely
based on the form proposed for the external representation of the
Diana intermediate language for Ada programs. This form is an
adaptation of the linear graph notation used for the TCOLAda
intermediate language; the primary textual differences of interest
are the use of explicit bracket tokens which permit nested forms,
and a textual distinction between defining occurrences and
references. The form used to represent VMM domains reflects the
virtual memory subdomain structure explicitly and contains other
constructs found to be useful in the linear graph notation used to
represent virtual memory data structures in existing Intermetrics'
compilers. This form of representation is called virtual record
notation (VRN).

. INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

B5-AIE(1) .VMM(2)

U,- s

iE-1 7

I

-11
III

FIUR 3- : ANLYEI I
I ii

\ 1-

FIGURE 3-1: REP AN~ALYZER

9

INTIRMIrRICSINCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSE'fTS 02138 • (617l 661.1840

BS-AIZ(l) .VMM(2)

DeflitimI
(P igm sandfiatim) so.ql00

miNM IU Weta~ alyzer1

I~J~1 mbime dwl ratims
Guaepadwq mId body

Ppy tikay fm 1015 Tool

-- gs stcmpil.

Ph= IQc

*M&W~nlwiainpo

2128113*-11

FIGURE 3-2: VMM PACAGE HIERARCHY AN~D DATA PATHS

10

* INTIRMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

B5-AIE(l) .VMM(2)

3.2.4.3 Ada Compiler Interface

The Ada ACCESS types which designate 'JMM objects can be
specified as accessing checkpointed data by means of the MarkRelease
c=iler pragma. Such types are not subject to garbage collection
or explicit storage reclamation that depends on the type of the
object designated. Values for these types may thus be generated by
unchecked conversions of an integer type suitable for address
c-Mutatione without interacting badly with Ada run-time storage
methodology. For run-time realizations which do not use additional
dope information to implement unchecked deallocation, the language-
defined pragma "controlled" is used instead of "Mark Release".

The Rep Analyzer also has a direct interfac, with the compiler,
in that it invokes the compiler front end (COMP.FE) through the
c=mpiler driven (COWP. f.A) to perform syntactic and semantic
analysis of the package specification it processes.

3.3 Detailed Functional Requirements

Detailed requirements for VMM are discussed below in terms of
the four major components.

3.3.1 Rep Analyzer

3.3.1.1 Inut

Input to the Rep Analyzer is a sequence of Ada package
specifications defining the record types that define a VMM data
structure. A single VMN data structure is a directed graph,
constituting a (subdomain) (VMSD) that can, in several contexts, be
accesed as a single entity. The nodes in the directed graph are
VNN objects. The user defines nodes as <virtual records>, whose
format is described later. The VMM system also includes several
predefined data aggregates that are, in use, equivalent to
user-defined virtual records. (For simplicity of discussion, the
term virtual record will be used to denote VNM objects, with the
distinction between user and system-defined made only where
necessary.) Each VMSD contains VMM objects whose types are defined
in one package specification input to the Rep Analyzer. Thus, each
VNSD may be associated with a particular package name,- that package
n m is the name of the Virtual Record Type of the VMSD.

VMnDe can include references (called VM locators) to virtual
records that reside in other structures VMSDs. To implement such
inLter-VMSD references VMH defines the concept of a domain - a
collection of one or more VMSDs that may reference one another.
Since VMSDs may have different Virtual Record Types, use of the VMM
objects in a domain may require the use of declarations from
different Virtual Record Types. Therefore, the collection of all

11

INTIRMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 * (6171 661 -1840

[, ;. ,'** '-*..;.% --. ,-,-*....,. .-. -... , ,. ., ,.* . .-> * ,' '..". ."-". ' ,,. '. ...

BS-AIE(1) .VMM(2)

virtual record types that are to be known within a domain is
specified to the Rep Analyzer, which then generates an access
package containing the combined declarations for the specified
Virtual Record Types. Even in the case of a domain that uses a
single Virtual Record Type, an access package for that Virtual
Record Type must be specified. An access package is specified in
the Rep Analyzer input by a package specification containing a
pragma which names the Virtual Record Types to be accessed.

A virtual record is realized in Ada as an object of some record
type with a single discriminant of some enumeration type. The
component types have statically determined sizes and contain no Ada
ACCESS types or types for which assignment is not available. Thus
each value of the discriminant names a virtual record "kind" with a
statically determined size and representation; since it contains no
ACCESS, TASK, or LIMITED types, objects of the type can be safely
written to external files (i.e., KAPSE database objects accessed
through package DIRECT 10 in PREDEFINED PACKAGES in KAPSE.RTS) and
read by subsequent program activations. The central function of the
VMM package involves the creation of VMM objects within external
files and the support of direct references from one VMM object to
another in an efficient manner whether the VMM objects reside in the
same or different external files. (Note: the term external file is
used in these sections to designate a KAPSE database object
identified as a STRING to package DIRECT 10, while the term objc
is used in the Ada sense; the term VMM oNlect is used to designate
VMM aggregates and virtual recorM-wWic are allocated within
external files by VMM operations and are identified by VMM
locators).

An input Virtual Record Type package specification must include
a WITH clause specifying VMM generic packages that include the
declarations required to declare user-defined nodes and predefined
data types. These generic packages will be defined in
AIE(l).VMM(2).VMM. An input package specification which specifies
the generation of an access package must name each Virtual Record
Type package to be accessed in its WITH clause and also in the
pragma "VRTYPES" which is processed by the Rep Analyzer (not by the
compiler). In general, the input must be valid Ada, so any other
unit dependencies must be identified by appropriate WITH clauses.

The subtypes for virtual record components are restricted to
use a subset of the full type definition facilities of Ada. In
particular:

1. No ACCESS, PRIVATE, limited or real types may be used.

2. Subtypes must be statically constrained. (All components
must have statically determined sizes).

12

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIOCE, MASSACHUSETTS 02138 • i617) 661.1840

B5-AIE(1) .VM(2)

A type mark used in the declaration of a virtual record
co nent can be considered to fall in one of the following
categories:

I. A simple type. This category includes all discrete types.

2. A constructed type. This category includes records and
arrays. It also includes statically constrained sub-types
of the variable-length text string type.

3. A VMM locator type.

While the types in categories (1) and (2) are declared in the
conventional manner in Ada, VMM locator types are declared by
instantiating generic packages. One reason for this convention is
that it allows the Rep Analyzer to associate additional information
(the generic actual parameters) with virtual record components that
contain VMM locators. This additional information includes such
things as the type of elements in a VMM vector, list or set, or a
default size for a VKH seo. Such information is needed to support
conversions to and from human readable forms. Another reason for
the convention is that it allows the tool builder to associate a
specific derived locator type for a supported abstraction with the
type of element organized by the abstraction. The complete
specification of these generic packages and how they are used is an
implementatien issue.

3.3.1.2 Processing

The Rep Analyzer reeds one or more virtual record type
definitions supplied as Ada package specifications, enforces the

restrictions and conventions imposed by the VMM implementation, and
generates Ada package specifications and package bodies that define
an interface between the VMM implementation and tools using those
virtual record types. (See Figures 3-1, 3-2).

Since the input to the Rep Analyzer is legal Ada, the bulk of
the front end processing is done by invoking the Driver phase of the
compiler COMP.?!.

The Diana tree is examined to verify that the conventions and
restrictions for specifying virtual record types have been observed.
If not, messages are added to any messages already attached to the
compilation unit by the compiler. If no errors are detected by the
compiler phases, and no deviations from the VMM conventions are
found, new package specifications and package bodies are generated.

The package specifications generated by the Rep Analyzer are

straightforward mechanical transformations of the input package
specifications. For each package that defines a virtual record
type, the following processing takes place:

1. Verify restrictions and conventions.

13

INTRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

85-AIE(1) .VMM(2)

2. "Instantiate" generics using text substitution, producing
non-generic packages in the output.

3. Add (overloaded) declarations for virtual record creation,
locator dereferencing, attribute selection, and symbol
table generation.

4. Add PRACMAs and representation specifications where
appropriate.

5. Generate a package body containing bodies for each of the
subprogram. declared in 3, above.

These functions require imparting to the generated package
certain characteristics of virtual record types, such as the size of
an object of each subtype and the offset of each component
applicable to each subtype. This is done by generating expressions
which use the predefined language attributes SIZE and POSITION,
divorcing the Rep Analyzer from knowledge of the representation
decisions that will be made by the compiler when the access package
is compiled.

For each access package requested, a package specification and
package body are generated as follows:

1. Generate an enumeration type with enumeration literals
consisting of the name of each virtual record type
package.

2. Generate each operation from each virtual record type
definition package, declaring it in a package nested within
the new package.

3.3.1.3 Output

The output from the Rep Analyzer consists of an error/summary

listing and package specifications and bodies in source form. The
error/summary listing contains any messages generated by the
compiler phases used to process the input, as well as messages
indicating any violations of the restrictions and conventions
imposed by VMM. If there are no errors, a summary of the virtual
record types may be optionally produced, showing for each virtualrecord kind the names and types of components applicable to it.

The package specifications output are named the same as input,
and mention the appropriate VM.M implementation packages in WITH

clauses. The package bodies mention UNCHECKED CONVERSION (in
PREDEFINED PACKAGES in KAPSE.RTS) in WITH clauses -and supply the
bodies for those entities in the specifications which require them.

-. '

14

INTERMFTRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661.1840

TTCI7 - Wm 7 i77 7

B5-AIE(l) .'VMM(2)

3.3.2 Abstract Data Types

VMM objects are typed objects in the same sense that Ada
objects are typed. In general, a VMM object is designated by a
typed VMM locator, where the type of the locator identifies the
object as either:

a) a virtual record object with components defined by the user
of the 'MM iplemntation by means of virtual record type
declarationur or

b) an object representing a particular data abstraction
directly supported by the VMM implementation.

All such locator types are derived from a single locator type
defined by the VMM implementation package, for which the locate
pro edurse is defined.

The only operations available to the user of VMM are those
defined in the visible part of the VMM access package generated by
the Rep Analyzer. This access package contains dereferencing
operations only for the locator type that designates user-defined
virtual records. For the other locator types, only the appropriate
operations for each abstraction are provided. Thus, while VMM
locators can be seen as inherently "typeless" at the lowest level of
iuplmntation, indcating a position within an external file to be
translated to a umozy address within a buffer, derived types are
used to estabtlsh cospile-time verification of consistent locator
usage. further run-time checks are applied by both the compiled code
(e.g. discriminant verification) and by the VMM implementation (e.g.
virtual record type verification for each VMSD). In a
fully-debugged tool, certain of these checks may be disabled to
enhance performance.

3.3.2.1 Virtual Record Type

At the lowest level, a program examines and modifies a virtual
record by dereferencing its locator and then operating on the
components of the Ada record object designated by the ACCESS value
so obtained. However, the VMM access package contains a
function-procedure pair (attribute selectors) for each component of
a virtual record, which is used to obtain/assign the value of a
component. These are overloaded on the appropriate locator,
pointer, and accessor types, allowing the choice of reference value
and locking decisions to be made for performance tuning after the
tool works correctly. (The relationship between locators, pointers,
and accessors is explained in 3.3.3.)

In general, virtual record components are implemented as record
components, and the attribute selectors will then be inline and have
no additional runtime cost. It will also be possible to specify a
complete implementation for virtual record components by writing
procedure bodies for the attribute selectors. Besides simple scalar

15

INTIRMETICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

BS-AIZ(l) .VMM (2)

values or references to other virtual records, virtual record
components may contain statically-constrained arrays or text
strings, nested records, or references to objects of an abstract
data type supported by VMM.

The Rep Analyzer generates dereferencing and allocation
functions for each virtual record type. These are specified in the
visible part of the access package. An additional procedure is
generated for each virtual record type to support the reading and
writing of the human readable (VRN) representation of VMM data.
This procedure takes a string parameter that names a database
object: and it builds a symbolic description of the virtual record
type within that database object. The symbolic description includes
the (character string) name of each virtual record component
applicable to each virtual record subtype, and a description of the
type of each component sufficient to allow correct conversion
between the internal value held within the component and a textual
(VRN) representation of that value. The symbolic description is
itself represented by VMM objects of a virtual record type defined
by the VMM implementation. The database object containing the
description of virtual record type is associated with a VMM VMSD
that belongs to a domain which is managed by the VMM implementation
independently from user-specified domains.

A number of operations that are applicable to virtual records
use the same specification and body for locators designating objects
of different virtual record types. The specifications and bodies
for such operations are generally part of the VMM implementation
package. The operations are derived by the derived type
declarations in the access packages. Among these are operations
to:

a) set root locator value for a VMSD;

b) obtain root locator value for a VMSD;

c) iterate over all virtual records within a VMSD.

d) Output a sequence of domains, a sequence of VMSDs, or a
single virtual record in virtual record notation.

e) Read virtual record notation into one or more domains.

3.3.2.2 Built-in Data Abstractions

VMM directly supports abstract (or encapsulated) data types for
doubly-linked lists (chains), threaded lists of user-defined nodes,
vectors (one-dimensional dynamic-sized arrays), uncounted sets, and
variable-lenqth strings. Direct support means that operations on
the data types are defined by the VMM implementation, and that there
is a distinctive representation defined for the type in virtual
record notation. The fact that these types are directly supported

16

INTIRMITRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIZ(1) .vM1(2)

doe not mean that other commonly used structures such as trees or
dags (directed acyclic graph) cannot be defined as abstract data
typesi it simply means that the implementation of those types must
be pcovided by the user of VMM in terms of the virtual record types
on which they will operate, and that the VRN representation for
objects of those types will show the structure by means of label
references in virtual record components.

The directly supported types are not inherently more efficient
than corresponding user-defined records. The primary reason for
supporting these particular abstractions is the advantage gained in
having a simple "standard" human-readable representation for them.
Lists, vectors, and sets have a natural representation as a sequence
of elements which, with the possible exception of vectors, is much
more comprehensible than a lower-level exposition of the directed
reference structures used to implement them. A quoted string is
more pleasant to look at than a sequence of separate characters,
besides being able to represent clearly a zero-length string. While
tree can be expressed in a somewhat more comprehensible form (by
nesting, indenting, or a more graphic means) the gain in clarity
over a simple referential form is not nearly as great and quickly
becomes lost when structures approach the size and depth likely to
be encountered in actual tools, or when the form is adapted to
include the more frequently encountered dag. Of course,
supporting data abstractions which have a simple human-readable
representation is not useful if the abstractions themselves are not
useful. Ixtensive experience with compilers, linkers, separate
compilation databases and other software development and support
tools has shown the utility and effectiveness of the VMM-supported
abstractions.

The following paragraphs briefly describe the functionality of
each abstraction and the operations applicable to each. In general,
there is a group of operations whose bodies depend upon the type of
elements organized by the abstraction and another group whose bodies
are fixed. The first group is generated by the Rep Analyzer for
each element type defined to be organized by that abstraction in a
virtual record type definition using attributes of the generic
actual parameters which specify the element type. These operations
generally invoke operations with fixed specifications which are
parameterized by attributes of the elements such as size or position
of information within the elements. Operations in the second group
simply invoke fixed operations with type conversions applied to
parameters and function return values ('Reference Manual for the Ada
Programming Language' C6.4.13). Operations in the second group may
be thought of as operations "derived" from the types used to
implement the abstraction. These types are defined in a fixed
package which implements the data abstractions (the implementation
package). Detailed specifications are given in
AIZ(1).VMZ(2).VMM(l).

17

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

-.4 , , , ,' ' . ' , . ,, .; . . '." .,. ..,. . •. "i . i ..i. . . , .. _.

B5-AIE(l) .VMM(2)

3.3.2.2.1 Vectors

The vector abstraction supported by VMM is similar to the Ada
capability for dynamically-sized single-dimension arrays. However,
VMM vectors are not simply mapped into corresponding Ada array
objects since that would limit the size of a VMM vector to the size
of a page buffer.

Operations are generated by the Rep Analyzer to create a
vector, to access an element, and to obtain or set a value.

Operations are derived from the implementation package to
obtain the size of a vector or to delete it.

3.3.2.2.2 *Lists

VMN lists provide support for ordered sequences of values.
There are two distinct models: doubly-linked circular chains
(spredecessor lists") with with separately-allocated cells which
hold element values, and singly-linked null-terminated threaded
lists of user-defined modes. While predecessor lists naturally have
operations that the threaded lists do not (e.g., remove an arbitrary
element, change the value of an element, find the predecessor to an
arbitrary element, or insert between an arbitrary element and its
predecessor), the operations they have in common are specified such
that they are interchangeable when a node appears no more than once
in a list.

Operations are generated by the Rep Analyzer to create a list,
create a cell, and to access a cell to obtain or set a value.

Operations are derived from the implementation package to
locate the next or previous cell, to insert a cell, to remove a
cell, to append or prepend one list to another and to delete a
list.

3.3.2.2.3 Sets

VIEW sets are modeled on uncounted sets with a realization that
depends on the membership testing algorithm specified when the set
is declared. The primary concern with regard to sets is the speed
of finding a member: insertions, deletions, and even iterations over
all mmbers are not necessarily simple operations.

The algorithm for membership testing is specified by the
generic package name input to the Rep Analyzer and is known as the
equality type for the set. There are three basic equality types:

1. Bit vector equality. Applicable only to sets with elements
of a discrete type; the realization is a bit vector, as in
Pascal sets.

18

INTIRMUTRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

" "' , . -. % .'- '-. . ..- -.-. ...-.. -.-. .-.

T4

35-AXE(1) .VMM(2)

, 2. Value equality. Set members of a discrete type, a locator
type, or a statically - constrained record, array, or
string type. Set members are equal if their values are
equal.

3. Association equality. Set members are considered to have
two coponents: a key component and an associated value.
The type of the key component is as for Value equality,
above, and the comparisons are performed in the same way.
The associated value must be of a locator type or a
discrete type.

Operations generated by the Rep Analyzer include: creating new
sets and adding members, finding the value of a member, finding
specified values, and copying.

Operations derived from the implementation package include
finding the next member in a set, the size of a set, the basic set
operations (intersection, union, difference, symmetric difference),
and set deletion.

3.3.2.2.4 Text Strings

"NM variable-length text objects are implemented much as in the
TEXT HANDLER package used as an example in the 'Reference Manual for
the -Ad Programming Language' C7.63. Manipulations are performed
using Ada objects of type character, type string, and type Text,
with conversions from VMH text string objects (designated by
locators) to text objects and assignments from text objects to VMM
text string objects made explicitly when required. This makes
effective use of overloading and the power of Ada functions for
handling dynamically-sized objects, and also tends to reduce the
total number of locator dereferences. Besides the allocate and
delete operations there is only a single selection-function and
update-procedure pair defined to operate on VMM text string objects.
No specifications need to be generated by the Rep Analyzer.
Operations are derived from the implementation package to create and
delete strings and to access text values.

3.3.3 Basic Operations

A virtual record type defined via the Rep Analyzer is, in
effect, a relocatable template. A given tool must invoke a variety
of VH3M primitives to store, retrieve and manipulate actual data
within this template. A basic set of these primitives is devoted to
locating a given node - that is, establishing a domain, the VMSD of
interest, and, finally, the node of interest. Throughout this
process, the aim is to find the node's location in virtual memory
space (via VMM locators), to dereference the locator and obtain an
access value that can be used to directly access an object in
memory.

9,

S.19

* INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(6171 661-1840

BS-AIE(1) .VMM(2)

3.3.3.1 Creating Domains and Subdomains

A domain is a collection of one or more separate data
structures (VMSDs). While defined as part of the same domain,
independent structures may access one another.

In order to access VMM objects, a program must first create a
domain via one of the primitive functions, obtaining a domain that
is initially mpty (has no VMSDa). VMSD* can be built in this
domain by calling the appropriate function with parameters
specifying:

I. Domain

2. Nam of external file

3. Name of virtual record type

4. Mode of operation (read, update, extend, create)

5. List of segment numbers (optional)

This function only establishes the segment numbers (if provided) as
ones that may be used to build the VMSD within the domain, and
provides the information needed to access an external file when the
VMSD is referenced; it returns a value which designates the VMSD.
If the VMSD is never referenced, no database access occurs. If a
segment number in the list is already available to the domain, an
exception is raised. If the list is empty, segment numbers are
assigned as necessary by VMM. While a domain may contain virtual
records of various virtual record types, a given VMSD may only
contain virtual records of the same virtual record type.

A virtual memory domain is characterized by:

1. The set of virtual record types that are known within it.
*These types are defined by the tool builder and processed
by the Rep Analyzer to produce a single Ada package (a VMM
access package) which includes the tool builder's type
definitions. This characteristic is static.

2. The set of VMSDs of which the domain is composed. This
characteristic is dynamic, in the sense that VMSDs are
added to and removed from a domain by the execution of
procedures, subject to the constraint that the virtual
record type of each VMSD is known in the domain. The set
of VMSDs which compose a domain defines a virtual address
space in terms of VMM locators: each locator identifies a
VMSD and a position withir. that VMSD.

20

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(1) •VMM(2)

3.3.3.2 Sub-domain Characteristics

A VMSD is basically characterized by an external file which is
the repository for its data. Each such file has permanently
associated with it a virtual record type and a list of segment
nuers. The segment numbers of all VMSDs present in the same
domain mist be disjoint, i.e., given a segment number and a domain,
at most one VMSD within that domain will be identified. Thus, from
the point of view of a domain, a VMSD is identified by a domain and
a segment number list. A segment number is either present or absent
with respect to a domain. Each segment number present in a domain
identifies a VMSD which, in turn identifies an external file, a
virtual record type, and a mode of operation; it provides access to
a virtual address space in teoms of positions within the external
file. The external file is accessed using a single instantiation of
the generic package DIRECT 10 (in PREDEFINED PACKAGES in KAPSE.RTS)
for elsments of a record type defined by the VMM implementation as a
VM page: when the mode of operation for the VMSD is read-only, the
file is opened with mode IN FILE, and otherwise with mode
IWUTJ-ILZ.

Mh ' MM page is associated with an index value ('Reference
Manual for the Ada Programming Language' C14.23) that designates the
el ment in the file which is assigned to store the page when it is
not memory resident; this value is known as the page index. Read
and write operations move the contents of a VMM page between the
external file and a page buffer. Page buffers are assigned to the
external files on a demand basis from a common pool of buffers
allocated from the heap and shared by all VMSD* present in a
program. Demand for a page buffer occurs when a page index within
an external file is referenced, and that page index is not resident
in a buffer currently assigned to the file. When demand occurs and
all buffers in the cmmon pool are already assigned, a buffer is
selected for reassignment. If the contents of the page resident in
that buffer have been modified since the buffer was assigned, the
page is first written to its external file at the position indicated
by the page index, and then it is reassigned to the page of the
external file that was referenced.

When a VMM object is created within a VMSD, sufficient space
for the object is located within the pages already assigned to its
external file, or else a new page is created with a page index one
greater than the largest page index assigned to the file. In either
case, the space is reserved within a page and is designated by a VMM
locator which is constructed from the appropriate segment number
from the list for the VMSD which identifies the external file, the
page index, and a position within the page. The position within the
page is expressed as a VMM-defined integer type. The position is
coded as an offset (in storage units) relative to the beginning of
the page. The page index is coded as page number relative to the
page index of the first page in the segment. Thus, three components
are coded within the locator (segment number, page number, and
offset) in order to represent the three logical components (VMSD,
page index, and offset) without allocating a fixed addressing range

21

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1840

.~_ 1- ° WN. •

B5-AIE(1) .VMM(2)

for each VMSD. Note that no simple VMM object (a user-defined node
or any single data element organized by one of the abstract data
types) can be larger than a page.

When a VMSD is added to a domain, its external file, virtual
record type, and mode may be identified explicitly or a reference to
an existing VMSD may be provided instead, creating an alternate list
of segment numbers to access the same external file. The use of
alternate segments is restricted to contexts in which locators which
use the alternate numbers are dereferenced: no VMM objects can be
allocated using the alternate segment numbers. The purpose of using
an alternate number is to allow the automatic translation of VMM
locators which reference a given VMSD into the corresponding VMM
locators for a different VMSD (which is a new version of the first
VMSD).

The automatic translation is specified by creating a
translation VMSD which contains a VMM association set of locators.
The set (called the translation set) has membership testing based on
locators for objects in the first VMSD and associated values which
are locators for objects in the new version. This translation VMSD

- is created by comparing the two versions, and since all three are
then present in a domain at the same time, they all have distinct
segment lists. Once the translation VMSD has been created, the
original VMSD is removed and the translation VMSD is identified as
such. The effect is that the segment list for the original VMSD
(obtained from the translation set) is assigned to the translation
VMSD, but dereference operations on VMM locators containing such
segment numbers go through the translation set to obtain a new
locator (with a different segment number) which is then
dereferenced.

The primary motivation for translation VMSDs is to support the
MAP utility described in AIE(l).PIF(l). This allows the
recompilation of a unit without recompiling dependent units under
certain circumstances. When the change to the recompiled unit is
such that it would have no effect on dependent units already in the
library, it may be desirable to be able to use dependent units
without recompiling them (e • g., when only comments are changed).
The MAP utility first verifies that the old and new units are
sufficiently similar such that recompilation of dependents can be
avoided. It then constructs a mapping from each VMM object in the
old unit to the corresponding object in the new unit. This mapping
is built as a translation VMSD which translates locators for objects
in the old unit to locators for objects in the new unit. When this
translation VMSD is operating in a domain, both the references to
the old unit (occuring in dependents that were not recompiled) and
references to the new unit will be correctly mapped by VMM to the
appropriate objects in the new unit.

22

INTERMErRICS INCORPORATED • 733 CONCORD AVENUE s CAMBRIDGE, MASSACHUSETTS 02138 (017) 661-1840

.!

B5-AIE(1) .VMM(2)

Each VMSD has a distinguished VMM locator, known as its root
locator, which may be explicitly set or examined by VMM operations.
Since all operations on VMM objects require a VMM locator to
identify the object, the root locator generally identifies some
object in the VMSD which provides linkage to all the other objects
in that VMSD. However, since objects in one VMSD may be referenced
from another, this is not necessarily so: one VMSD might serve as a
directory for other VMSD*, in which case the directory VMSD might be
the only one with a non-null root locator. Further, a VMSD which is
temporary (i.e., its external file is created and deleted within a
program activation) can be accessed by VMM locators held in program
variables and need not provide for accessibility of its objects
across program activations. In summary, a VMSD is characterized

*- within a domain by (see Figures 3-3 and 3-4 for a logical
-. representation of these relationships):

1. list of segment numbers:

2. external file of VMM pages;

3. virtual record type;

4. mode of operation;

5. set of pages defined for placement in the external file:

6. set of buffers assigned to hold resident pages;

7. root locator.

An external file that contains VMM data objects, but whicv is
not seen in the context of an active domain and VM b, is
characterized by-

1. a list of segment numbers:

2. a virtual record type:

3. a root locator:

4. a set of pages:

3.3.3.3 Locator Model

When a locator is dereferenced, the first step is always to
examine the characteristics of the segment it references and perform
any indicated translation. This translation process has already

. been described in Section 3.3.3.2. This section, then is concerned
. with locators that have already had any needed translation applied.

23

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (6171 661-1840

- - - - -

B5-AIEM() .VMM(2)

VMN operations which involve VMM objects must have a method for
locating each such object within external files and establishing the
particular "kind" of VMM object so located. The method is that of
defining the VMM locator type as a segment number and a position
within that segment. (As described in Section 3.3.3.2, the segment
number identifies both a VMSD and a position within that VMSD, while
the page number and offset are relative to that starting position.)
A locator has moaning only with respect to a dynamically created
virtual memory domain: the VMH implementation maintains, during the
corse of a program activation, an association between a virtual
inery douain and a number of segments, each of which identifies a
VMSD within that domain.

A VMM locator is the only means of consistently designating a
VMK object. A locator is, in many ways, similar to an Ada ACCESS

values it is a "typed pointer" with values generated by allocation
operations, and a distinguished null value which designates no
object at all. Locators within virtual records are used to
implement data structures that can be conceptualized as attributed
directed graphs in the same way that Ada ACCESS values within Ada
record objects would be used. Functional differences between VMM
locators and Ada ACCESS values are:

1. A VMM locator value generated by an allocation during a
program activation can be written to an external file and
then be read by a subsequent program activation and still
be guaranteed to designate the same VMI4 object. By
contrast, an Ada ACCESS value is only defined within the
context of the program activation which performed the
allocation.

2. The addressing range of a VMM locator is defined by the
implementation of the VMM package, and is not dependent on
host machine characteristics or on the size of the run-time
heap available to the program activation.

Considering only the first distinction, the functionality of
VMM locators could be achieved by defining conversion operations
between external files of VMI objects with directed edges
represented by VNM locators, and internal collections of Ada objects
with directed edges represented by ACCESS values. This kind of
approach has been used in some test-bed compiler implementations
(e.g., TCOL, POCC) where the external file representation is a
sequential text file and each compiler phase reads, and converts to
internal form, the output from the previous phase, operates on the
internal form, and then writes a text file representation to be read
by the next phase. Another approach to achieving the first
functionality avoids using ACCESS values at all; instead, graph
nodes are represented by elements of a single array of variant
records, with directed edges stored as array indices (e.g., AIDA
implementation). Although this offers the advantage that no
conversion processing is needed when reading or writing an external
file, memory space utilization becomes a critical issue in the

24

INlIRMETRICS INCORPORATED • 733 CONCORD AVENUE e CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

- ' .- . - ... -_.4

WIRTETUT71- '7'~ r -. 3 --- 7 - .7 - - -

B5-AIE(1) .V-?4(2)

design of the record variants since the array elements will be
allocated the space required for the largest variant: optimal
utilization occurs when each variant is the same size. In addition,
using array indices to implement pointers results in a loss of
clarity and run-time efficiency, motivating the design of ACCESS
types in the Ada language in the first place.

The second functional aspect of VMM locators is not addressed
by the original implementation strategies for either TCOL or AIDA :
both rely on sufficient memory resources to contain the internal
representations for all nodes that are used during a graph
traversal.

While the direct addressability of both the VM/370 and OS/32

system is sufficient to accommodate intermediate representations
for useful Ada programs, an implementation of the compiler and
separate compilation facility that assumed adequate memory to
access all nodes as Ada objects could not be rehosted to a system
with a smaller address space without seriously impacting processing
capacity. The processing capacity on the 0S/32 system would also be
significantly less than on 13/370.

Further, experience with a separate compilation facility for a
Pascal dialect has shown that even the 24-bit addressing range of
'13/370 imposes compile-time limits that can be exceeded by
compilations of large applications programs. Therefore, the model
for '1M locators requires, as an integral part of their use, a
discipline which provides nearly complete independence from memory
and addressing constraints imposed by the host machine. Not only
does this requirement establish the portability of MAPSE tools to
smaller machines, but it removes the absolute limits on processing
capacity inherent in any program which relies on memory addressing
to access an internal database. The actual addressing range for
locators is an implementation choice; one possibility considered a
candidate is to implement locators to address 32767 segments, each
with up to 32 pages, and each page containing 2048 bytes. Such a
locator value could be represented in 32 bits and would permit a
wide range of VMSD sizes without wasting address bits.

3.3.3.4 Mapping Locators to Objects

The VMM strategy uses locators which have the same
representation internally within an executing program as they do on
an external file - in that sense similar to the AIDA approach using
array indices. However, instead of implementing each element of the
data structure as an element of an Ada array and using an array
index to provide access, the VMM approach implements a VMM object as
a block of storage units within a page buffer. The ADDRESS
pre-defined attribute is used to convert an ACCESS value for the
buffer to an implementation-defined integer type to which an offset
is added before being converted to an ACCESS value of a type
appropriate to the VMM object being accessed (by means of
UNCHZOXED CONVERSION in PREDEFINED PACKAGES in KAPSE.RTS. The
advantaqe, of this approach are basically two-fold:

25

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

W-A W!w 076 WM T.-.

B5-A1E(1).VMM(2)

Wr Available Segmants7

IN Translation Segments
D"cription

Virtual
Record
Types VRT Description

F.WL
N+ VRT Descri-pti-o7n

Sepat/pag*
Hub Table

Sub-

Segment Sub-Owain
Desc

foescriptioli
Description

t jse t
a ption

Sub-Domain
DescriptionPage

Buffer

Page Sub-Domain
Buffer Description

Pa" event
Buffer cripti n

9282358-1

rIGURE 3-3: DMAIN STRUC.URE

26

INTIRMITRICS INWRPORATID 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 - i617) 661-1840

B5-AIZ(1) .VMM(2)

Des rip io

Hash Table

. Cl.st-
-

-
ufpio _ _ _ __e_ -r

]I Ii
i

IiI I
-° I-I

N I

9282358-2

FIGURE 3-4: VMSD STRUCTURE

27

"] INt4IM UTrIqC INCORPORATED 733 CONCOR AVENUE CAMS I GE MASSACHUSETTS 02138 (617) 61.1840

° I f'+

El

,
-..

" - .
. .

Pain File. -.

NO"..

85-AIE(1).VMM(2)

1. The relative sizes of the record variants to be accessed
do not affect the efficiency of storage utilization: the
number of VMM objects accessible within a buffer is
determined by the minimum space required for each object
and not by a worst-case fit based on the largest variant.

2. Once an ACCESS value is computed for a VMM object,
references to its components do not require repeated
indexing operations.

Recalling that a VMM locator encodes a segment number, a page number
(relative to the segment) and an offset (relative to the page) the
mapping from locator value to ACCESS value is accomplished in two
steps:

1. Locate a page buffer assigned to the segment which
contains the specified page, returning an ACCESS value for
the buffer.

2. Compute the ACCESS value for the object as
ObjectType(Buffer.all' address+offset) where ObjectType is
an instantiation of the generic function UNCHECKED CONVER-
SION with input type an implementation-defined integer type
and result type an ACCESS type for a VMM object.

In terms of the VMM implementation, a single "locate" procedure
takes IN parameters consisting of the domain and the locator value
and produces OUT parmeters consisting of the ACCESS value for the
buffer and the value Buffer.all'address+Position. The locate
procedure is defined in the visible part of the VMM implementation
package, and is thus visible to the VMM access package produced by
the Rep Analyzer (since the analyzer places its name in the WITH
clause for the access package). Since the tool using the VMM access
package does not normally have the implementation package in its
visibility list, it only makes use of the locate procedure by means
of the dereferencing functions defined in the access package. These
functions return values of an, unconstrained ACCESS type for a
variant record type. (In general, the tool will not use this
facility directly, but use the selector functions and procedures of
Section 3.3.2.1 to fetch and store the values of virtual record
components.) Thus, the instantiation and use of UNCHECKED CONVER-
SION is limited to the package (body) generated by the Rep Analyzer
and is not used or seen by the tool which uses VMM. Furthermore,
the VHM implementation package verifies the virtual record type for
each VMSD (in term of the character-string representation of the

virtual record type name once, when the external file is first
accessed.

The dereferencing functions generated by the Rep Analyzer for
each virtual record type then use the ACCESS value for the page
buffer (returned by "locate") to verify that the "integer" being
converted to an ACCESS value is in fact the address of a VM object
that was created in a VMSD specified to contain objects of that same
virtual record type. Thus, the use of UNCHECKEDCONVERSION by the

28I INTEIMrrlECs INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (817) 661-1840

BS-AIE(l) .VKM(2)

VIK access package to achieve efficient storage utilization does not
cmpromise Ada type safety. Subsequent component selection using
the wconverted" ACCESS value is again subject to the normal
discriminant verification applied at run-time to record variants
designated by unconstrained ACCESS values.

3.3.3.5 Dereferencing

The process of obtaining an Ada ACCESS value in order to
perform operations on a VM object is called "locator
dereferencinqm. Since locators define an address space which is not
constrained by the addressing and memory-size limits of the run-time
model for Ada objects, it is clear that the memory available for Ada
objects will, in general, only be able to represent a subset of the
VMM objects accessible to a program through locators. The subset of
VHI objects resident in memory at any given time must include at
least tho objects that are named by ACCESS values in Ada
statements. However, a dereference operation which identifies a VMM
page that is not resident in memory at that time, may need to reuse
space previously assigned to a Vim object, causing the ACCESS value
computed for that object to become invalid: dereferencing drives
the demand paging mechanism. Since the algorithm that determines
which resident objects (i.e., which page buffer) will be replaced
during a dereference operation cannot predict the future pattern of
use for previously computed ACCESS values, it is always possible
that the replaced objects would include those which were about to be
referenced again. In the absence of further interaction with the
dereferenoing and underlying paging mechanism, only the most
recently computed ACCESS value could be considered valid at a given
point in a program execution; the ACCESS values invalidated by that
computation (if any) cannot be determined by the tool builder.
Figure 3-5 shown the basic steps involved in locator dereferencing.

Every use of data held within a VMM object could require a
locator dereference to obtain an ACCESS value guaranteed to be the
most recently computed value: dereferencing can be viewed as being
analogous to a "load" instruction on a single accumulator machine
(actually, rather than "load" and "store", VMM defines "load
read-only" and "load for update" operations with an implicit "store"
carried out when a value loaded by the second form is about to be
ovezwritten). Using the analogy, it should be clear that the
performance of a program using VMM depends critically on the speed
of the dereference operation, and that providing a capability
analogous to a multiple-register architecture would allow
significant performance enhancements to be. made. VMM defines a
metkod for reducing the cost of dereference operations in certain
cases by splitting the operation into two separable parts called
pointer computation and pointer dereference: a capability called
dereferente loking allows a program to force a VMM object to remain
resident and accessible by the same ACCESS value throughout a
specified region of program execution, effectively allowing full
access to more than one VMM object at a time (these locked
references are called VKM accessors).

29

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

"5-A1E(1) .VMM(2)

Note that these operations are essentially optimization
techniques that can be employed by the tool builder to improve the
performance of a program. Operations on typed locators are
generally overloaded on corresponding pointer and accessor types
such that code written using locators can be modified to use
pointers or accessors with minimal textual change (e.g., enclose the
code in a block which renames the locator object and then declares a
pointer or accessor object with the identifier of the locator).

3.3.3.6 Pointer Computation

The mapping from a VMM locator to an ACCESS value was described
as a two-step process: (1) locate a page buffer containing the
required page from the specified VMSD and (2) perform the address
arithmetic. Of the two steps, the first is much more costly. Even
when the desired page is already resident in a buffer and no I/O
operations are required, finding that buffer from the locator value
alone implies some type of indexing or searching operation. Given
the locator realization considered earlier, it is clear that direct
indexing using the segment number and page number would not be
practical, requiring some type of search. While the use of simple
hashing techniques can make the search time quite short, just
computing a hash may take longer than the time needed to access the
data once the buffer is found. A pointer computation converts a VMM
locator (in the context of a VMM domain) to a form that already has
had traaslations applied and which "remembers" intermediate results
frcm the last time it was dereferenced. In particular, a VMM

4 pointer contains:

1. VMM domain value;

2. VMM locator value;

3. ACCESS value for a page buffer;

4. An address within the page buffer (implementation-defined
integer);

5. A sequence number.

The first four values are obtained by performing any necessary
translation on the input locator value and then invoking the
"locate" procedure to compute the third and fourth values. The
timestamp value is simply copied from the page buffer.

Each page buffer has a sequence number component which is
updated by the page buffer methodology routines whenever the buffer
is reassigned to a different page or deassigned from active use
(e.g., when a VMSD is removed). The update consists of
incrementing a single counter which is maintained for the entire
pool of page buffers, and then copying the incremented value to the
particular page buffer being reassigned. The range of the counter
is such that it could never overflow during the course of a single

30

INTERMETRICS INCORPORATED 73 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 ((617) 661.1840

..-i i* - ' ' ' " ' " " t

.- 7w 7

BS-AXE(1) .vtH(2)

Loao:4get 40 Ofe

~Has
Fucto

SeSn/aeHs al

paeNt-e9m ag sdn

Mae*5iet d Ofe

File ~ Exera Poiioi illesto

PagedPares

Offset58-

FIGURE 3-OCAORDmZmRiIIn
Decrpto

31

IWMMUTRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 02138 *(617) 881-1840

B5-AIE(l) .V M (2)

program activation; it is initialized once (by elaboration of the
library unit for the VMM implementation package) and never reset.
(A 32-bit integer is adequate for this purpose). The result is that
the sequence number recorded in the buffer designated by a VMK
pointer will equal the sequence number recorded in the pointer
itself if and only if the same page has remained resident in that
buffer since the pointer was computed.

3.3.3.7 Pointer Dereferencing

Once a V4N pointer has been computed from a VMM locator,
dereferencing the pointer to obtain an ACCESS value can be
accomplished with no hash computation or searching at all as long as
the VNl object remains resident. If the object has not remained
continuously resident since the pointer was computed, the cost of
the dereforence is no greater than the cost of dereferencing the
original locator, and may be les (i.e., if the original locator
required translation). Furthermore, the processing is so simple
that pointer dereference functions can be specified as inline (via
the language-defined PRAGMA), with the result that no procedure
invocation is required when the object is resident.

3.3.3.8 Dereference Locking

When a dereference is locked, the VKM object that is designated
by the dereference is forced (by the buffer methodology routines) to
remain resident in the same buffer, and thus remain accessible by
the same ACCESS value for as long as the lock remains in effect.
This capability allows a program to safely designate more than one
VMM object by an ACCESS value, at any point in a program, the VMM
objects that can be designated by ACCESS values are those that are
locked plus the most recently dereferenced value.

A VNH procedure, overloaded on locators and pointers,
establishes a locked dereference, producing a VHM accessor which
designates the same VHM object as the input locator or pointer.
Operations on VNM accessors require no hashing and no validation
since the designated object is guaranteed to remain resident until
the accessor is explicitly unlocked.

3.3.4 VNK Virtual Record Notation I/O

This facility supports the input and output of data in a
human-readable form called Virtual Record Notation (VRN). A MAPSE
tool that operates on a virtual memory domain can convert the entire
domain or a set of VMSD* to or from VRN, using operations declared
in the VKH access package. (The various input subprograms are
collectively known as the "reader", while output subprograms
comprise the "writer"). VRN preserves the semantics of VMM data
structures, including the distribution of virtual records among
VHSDs and explicit sharing of data values. All values (not just

32

INTERMETRICS INCORPORATED * 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

B5-AIE(1) .VMM(2)
9'

nodes) are optionally labelled. This provides a means to explicitly
represent that objects are identical (i.e., not two different
objects containing the same value). A domain containing an active
translation VMSD (Section 3.3.3.2) would be output without any
explicit representation of the translation VISD. Any references to
the "from* VMSD which it translates would be translated to
references to the "too VMSD. On input, the structure is re-created
without a translation VMSD. Alternatively, if a translation VMSD is
present but not active (i.e., it has not been specified to begin
automatic translation for its alternate segment numbers), the
translation VKSD is output normally, on input the complete structure
is re-created and the translation VMSD could be activated.

The syntax of VRN is derived from the syntax proposed for an
external representation of Diana with some significant departures.
These are motivated by the fact that VRN describes a data structure
implementation as well as a data abstraction. The concrete notation
explicitly shows how the data structure is realized in terms of Ada
records, database objects, and the set of data abstractions
implemented by VtKM. Thus, each '1MK object is associated with the
database object in which it is stored. On the other hand, the
precise mapping between VRN and VMN objects is based on name
associations determined by the Rep Analyzer. A grammar for VRN is
given in 10.1.

Referring to the grammar, it can be seen that VRN is defined as
a sequence of virtual memory domains, and that a virtual memory
domain is represented as a sequence of VMSDs. Each domain first
declares a list of VMSD specifications that it will use in reference
to virtual records, a FREE SPEC, an ASSIGNED SPEC, an ABSOLUTE SPEC,
and a USE SPEC. Each VMSD-declaration assocTat:es a label for a VMSD
with components that identify a database object for that VMSD and a
virtual record type description produced by the Rep Analyzer. An
optional list of segments to us& for the VMSD can be specified.

A FREE SPEC is a list of segment numbers which can be used in
the domain.- An ASSIGNED SPEC is a list of assigned segment numbers

9. for the domain. An ABSOLUTE SPEC specifies a list of absolute
labels for the domain. An ibsolute label contains the segment
number, page number and offset to be used to locate a data object.
A USE SPEC associates an ordinary string label with an absolute
Label-

The writer uses VMM basic operations to iterate over VMSDs and

4 nodes (virtual records) within a domain. The symbolic description
of virtual records, called the symbol table, is used to determine
attributes (components) each node along with their type, size, and
range. The symbol table describes virtual record types and
specifies all of the node kinds for each type. For each node kind
it creates a character string for the identifier and describes all
of the possible attributes for that kind. Attribute values are
output by converting data at the node locator's address to the
specified data type.

33

INTERMETrICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

B5-AIE(1) .VMM(2)

The reader takes a file of VRN as input and either creates the
domains and VMSDs represented in the input or adds to existing
domains and VMSDs. The symbol table is used to determine the
allowable attributes for each node along with their type, size and
range. Constraint checks are made on the data values read in and
then the values are written to a cell which is allocated for that
node.

Following the declarations are representations of the virtual
records within each VMSD (called VMSD definitions). The Root
identifies the root object of that VMSD. Each DEF represents a VMM
object that is located within that VMSD or it defines a cluster (a
group of VMM objects allocated "together" with respect to the paging
file).

A virtual record object (node) is represented by an identifier
followed by components (attributes) enclosed in special brackets.
The identifier names a discrininant value used in the virtual record
description for the VMSD. That discriminant value identifies the
names and types of all components that may be part of the virtual
record. Each component associates a value with a name. The name
must be one of those component names that are applicable to the
discriminant value, and the value must be compatible with the type
defined for that component in the virtual record description. While
the discriminant value restricts the names and types of components
that may appear within the record's delimiting brackets, it does not
require that each possible component be explicitly represented.
Those components that have internally the value they are assigned
when a virtual record is created (i.e., the default value) need not
appear in the external representation.

There are two forms of VRN-concrete and abstract, both adhering
to the same syntax. Concrete VRN represents virtual records in the
order in which they were created. Nodes are output sequentially
within each VMSD and the node labels are a hex representation of the
node locators. A VMSD label is the first segment number for that
VMSD. In abstact VRN0 VMSDs and nodes have decimal numbers as
labels. Nodes are sorted within a VMSD according to node kind or
c luster number.

3.4 Capacity

The overall capacity of VMM (i.e., the number of buffers,.9
structures, domains) is constrained by the heap usage requirements
of the program using VMM. The following capaciti&a are the minimal
performance standards.

(1) (231-1) *8 bits of information per domain (17,179,869,176).

(2) 256 VMSDs accessible at one time within a single domain.

(3) (223-1) *8 bits of information per VMSD (67,108,856).

34

• INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661.1840

BS5-AZ(l1) .VMM(2)

(4) simple objects at least as large as 7680 bits

(5) 1 domain with controlled segments in addition to 4 domains
without controlled segments.

(6) 4 clusters per VMSD

(7) 8 virtual record types per domain

(8) 256 distinct node kinds per virtual record type.

(9) Locator dereference is fewer than 20 machine instructions
when the referenced object is memory resident and all
optimizations have been applied (inline code, no
constraint checking).

(9) Pointer dereference is fewer than 10 machine instructions
when the referenced object is memory resident and all
optimizations have been applied.

(10) Accessor dereference in fewer than 5 machine instructions
when all optimizations have been applied (the object is
guaranteed to be memory resident).

35

INTIRMITRICS INCORPORATED 733 CONCORD AVENUE •CAMBRIDGE, MASSACMUSETTS 02138 (6171 661-1840

• . - .-*. .. -. - .-4, . . ,,. • .. . ' -. " - .- - . .,.

t. .. .t qt - ~.. - . - . - . C -. -- -- -- . .- -. --.-. -- - - . . -

* .4

-4
V.-..'

-. 4.,

0

MS
4-.

*I~ .1

4.-

-9
N...

4...

.4

t

3:

r
'I.

~4

.4.

.1'

'4

36

INlERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOOE. MASSACHUSE17S 02136 * (617) 661.1840

%' y,% ,%' .;v '~,-g~c -, *. .. - 4.

B5-AIE(1) .VMM(2)

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

A quality product is assured by a combination of sound design,
careful implementation and effective testing. This section
identifies specific issues of quality that are significant for VMM4.
The levels of testing to be conducted for VMM are as follows:

(1) Computer subprogram (CPC) testing for the Rep Analyzer
(VMM.VMM.A), Abstract Data Types (VMM.V!M.B), Virtual
Record Notation Input/Output (VMM.VMM. C), and Basic
Operations (VMM.VMM.D).

(2) Computer program testing (CPCI) for the complete VMM.

(3) Subsystem acceptance testing for the complete VMM.
(4) integration testing for VMM.

4.2 Test Requirements

Computer subprogram tests are tests of the Computer Program
Components (CPC). They are designed to verify the specifications
presented in the C-5 documentation EC5-AIE(1).VMM(l)J• These
include integration tests to verify interfacing among the CPC's.
All computer subprogram tests are designed and executed by the
implementation personnel; test descriptions and test reports will be
submitted to Quality Assurance (QA) after testing.

Formal Test Procedures define the functional computer program
testing for VNM. These tests must verify that VMM meets the
requirements presented in this document. Specifically, these tests
must verify:

(1) that the Rep Analyzer generates correct and compilable
virtual record type declaration and access packages:

(2) that the Rep Analyzer correctly detects and reports user
errors-

(3) correct operation of paging mechanism;

(4) allocation and dereferencing operations;

(5) domain and subdomain operations;

(6) data abstraction definitions and operations;

(7) VRN input/output operations.

S-~ 37

INTIRMIETRICS INCORPORATED 9 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

BS-AIE (1) .VMM(2)

These tests will be executed when VMM is completed using the
Bootstrap compiler, and after VMM is compiled using the production
compiler. Formal tests for VMM will be defined in formal test
procedures. These tests will be executed: once after the
production compiler is complete and has been rehosted to the Kapse;
a second time, when the full Kapse is complete; and, finally, when
the Kapse is rehostd to OS/32. The primary formal test of VMM is to
build the Ada compiler and execute the Ada Compiler Validation
Capability (ACVC) tests. In addition, formal tests will contain a

"i set of development tests provided by the implementors, a set of
functional tests, and a test to verify the detection and reporting

-"of errors using the critical record type Diana with errorsintroduced. Test reports for these formal tests will be issued by

QA.

Integration testing for VMM must verify the interfaces between
VMM and any subsystem or CPCI which it uses and the interface
between VMM and the tool builder. Thus the integration tests will
verify the interfaces between: the Rep Analyzer and the compiler
phases LEXSYN and SEM in COMP.FE: VMM and direct and text external
file facilities in KAPSE.RTS; and VMM and specific tool users. In
addition, VMM will be used during compiler development, once the
production compiler is available, during all development
compilations. This use will provide continual informal integration
testing for VMM.

Formal integration testing will consist of the following
procedures:

Step 1. The Rep Analyzer will be invoked using the virtual record
type definition (see 3.3.4) as input.

Step 2. The virtual record type declaration and access packages
generated in Step 1 and the test program will be compiled
where the test program first calls the procedure which
builds a symbol table description for the virtual record
type in Step 1 and then calls the Virtual Record Notation
output procedures. (The specifications and bodies for the
procedures in the test program are in the access package.)

Stop 3. Finally the test program is executed and the Virtual Record
Notation which was created by the test is examined.

-' In Step 1, the Rep Analyzer uses the compiler phases in COMP.FE and
the external file facilities of KAPSE.RTS; In Step 2, the user tool
interface is used, since for any compilation the compiler uses VMM
objects and operations as does the program library tools (which are
invoked by the compiler). In Step 3, the text file facilities of
KAPSE.RTS are used by the VMM operations.

38

INTERMSTRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIDGE. MASSACNUSE TS 02138 (617) 661-1840

4 *. .. . 7- a 7 -

B5-AE(1) .'VMg(2)

4.3 Acceptance Test Requirements

Since the VMM subsystem is designed primarily for use by the
compiler and the program library, it alone does not address any of
the initial contract requirements except by virtue of being
available for use by future MAPSE tools. Therefore, the functional
accceptance tests for VMM will be tests to verify the use of the Rep
Analyzer and its error reporting and to verify the operations in the
access packages which are generated. These tests will be a subset
of the functional computer program tests described in Section 4.2.

The performance tests for VMM will be designed to verify the
VMM capacity and performance data presented in this document. These
tests will demonstrate that the capacities specified can be

.* supported by creating objects, subdomains and domains with the
specified sizes or properties and either accessing the objects or
invoking the domain and subdomain operations (e.g., listing the
subdomains in the domain). The performance of dereference
operations will be evaluated by examining the generated code from
the ceompiler.

i39

.4-4",

El ,

14.:

39

*- INTENMUTRICI INCORIPORATEO * 733 CONCORO AVENUE • CAMURIOGE. MASSACI4USETTS 02138 * (617) 681-1840

40

I 0teINIRuics INCORPORATED 733 CONCORD AVENUE CAMRIOG E. MASSACHUSETTS 02138 (617) 661-1840

4t ~ V.Q-~4XX Qt2h -. < -

BS-AIU(1) .VMM(2)

5.0 -ITZ

41

INTRUIRCS INCORP0RATUO *733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

42

INTIRMETRICE INCORPORATIO • 733 CONCORD AVENUE * CAMURIDGE, MASSACHUSETTS 02138 ((617) 661-1840

i-- t , - ~-,ro .S--'- - . . -, "'- ,' .. -'. -*'.-' - -. - - - " -- " - . - . " - "

B5-AIE(l) .VMM(2)

APPENDIX A: VIRTUAL RECORD NOTATION GRAMMAR

The following grammar describes both the concrete and abstract
forms of virtual record notatation. It is specified in a simple
variant of BNF formalism which is acceptable to the YACC parser
generator program on the PWB/UNIX Time Sharing System. Note that
comnts are embedded in the grammar using /. ... */ conventions.
The VRN itself has a cmmentinq convention that is not described in

* the gramar. The commenting convention differs from Ada, allowing
coments to be mbedded within lines, and to span lines: comments
are both introduced and terminated by a vertical bar (or exclamation
point, depending on the available character set). This convention
allows programs which generate virtual record notation to place
comments beside a token without altering the line structure, and it
allows a human reader to commnt out" portions of lines easily when
using VIR for debugging and testing purposes.

. ii

-443

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840
I '/.1= -" .- . -,, . '

-/

B5-AIE(1) .VMM(2)/ ******************************.*****************.*****.**********/

/* In gratmar rules, reserved words and special characters ./
/* are in lower case within apostrophes, while token classes *1
/* recognized by the lexer appear in lower case and syntax */
/ categories appear in upper case. When a syntax category or a
/* token class is prefixed by a lower-case descriptive word with '/
/ underscore, the descriptive word provides a semantic hint *I
/* regarding the use of that item in the surrounding context, 0/
/* but is not of consequence in parsing.

~~~~/ e* **ltt.,**** , i****.*, ******i, **00000000000000000000000000000000000000..../

/* The following name token classes recognized by the lexer. */

I token id integer quoted arrow lbrack rbrack

/* id and integer are as defined by Ada Lexical rules. '/
/* quoted is a doubly-quoted string of characters with IDL
/0 escape sequences for non-printing characters. 0/

/* arrow is a "reference* indicator, ':' or 'C-' depending on
1* available printing characters. .1
/* lbrack and rbrack are '' and ') or '(.'*'.)', as above. '1/ ***.******.*****************************************************

READABLE:
I abstract ' ASCI I
'concrete' ASCII I
I

ASCIMI
lascii, is'

begin' DOMAINDECLPART
DOMAIN DEF PART

'end' 'ascii' 'v' ;
DCKAIN DECL PART:

Dc4un VZcLS I

DOMAIN DECLSs
DoCaIN DZCL I
DMAXlCDECLS DMIN DCCL

DOHMAN Dzdr
'domain' domain id 'declares'

ASSI D SPEC '' IASSOLUTE' v' I
USEz ' I

'8.UD DECL PART
'end' dmain id 'r'

SUSD DECL PART:
JUD IZCS I

5USD DECLSB
TUDD DECL I
SU3D7DZCLS 8USD.DECL

SD DECI

44

INTERMTRICS INCORPORATED * 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETS 02138 * (617) 861-1840

"--ri# ;,' . -,,,;,, ,, - / '. . .', -... .. '-<'-...,..,. -, ,,. --.'', --. ., -- - . - ,,. - . . - .. . - . . -



N -W 7V - - . * - .- - .

B5-1.EZ(l).VKM(2)

SUD DUC.:
*1itbdisain LABEL ' subdornain' lbrack

object' '-,' STRING
/* identifies "paging file" '
nodes' '-,' STRING '
1* identifies virtual record type '
' Segments'n),('segment LABLIST')' 

1;'
1* identifies available segments*/

rbrack

integer i
LABLIsT

LABELI
LABL IS? ', LABEL

FluE SPECS
'rfreel IV segint LABLIST ):

ASSI SPEC:
assIgneds'(' segment LABLIS? )

ABSOWUT~a
*Abeolutel 'C node LABLIST )

NODS SUID LABEL:
7node' node LABEL
Ssubdoain' s ubdornain LABEL:

Iforl NODE SUID LABEL 'us*' integer,-
DOWAN DEW PAOY:

DOAIN US:

DCKAIgDWs DowAN Dar
DOMAIN DE:36

'dmain' domsain id lis,
SUD Diff PART

'iendl doiainid 'r'
StUD DEW PARM:

SBUD DEWS
ITAD DEW
SUDbDEW8 SUID DEW

SBUD Ods'
TsUbdoinn subdomain LABEL 'is$

ROOT ,is

DEW PART
*eads sUbdcain LABEL''

ROMT
RwI
DEW

REW
onu3.I'I
arrow REP-LABEL

REW LABEL:
LABELI

45

IW1'RMUMhC INCORPORATED a 732 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840



17L.~* *47. -" a w

B5-AIE(l) .VMt4(2)
ATTRIBUTES

DZIl PART:

DEFS IZ

nod* LABEL N kODE ;

ocluster' cluster LABEL
NODE:

node, 4id
node ±4 ATTRIBUTES

*ibrak ATTRPART rbrack
ATTNL PART?:

ATTR
ATTRS ATTR:-

ATTI:
attr id '=3, VALUE ;

VALUE:
U11XABELXD VALUEI
VALUE LABIL ~0UNLABELED VALUE

VALUE LABELS
simple LABELI
zwouE1IIm LABEL

IwVoUInE LABILS
#,* LAJEL INFO simple LABEL"s

LABEL IWO:
ift-PAM?

IWO PAS
INFO PART
IWOn PAT nFo PAR?;-

INFO PART?:
'Tubdcmain' I=),' subdamain LABEL ;

I'aluster ) 1 cOaluster-LABEL ':

UNXABELED VALUE:

t rual-I Lfa' I
NOt. I
integerI
STRINGI
REF
AGGREGATEI

AGGREGAT~s
''SIZE PART ELEMENT PART '

SIZ PAR?:i
3Srack size LABEL rbrack
lbrack size LaEL '..' size LABEL rbrack I

ELEMEN-T PAR?:
ZLEHMS I

46

1NIIRMffRIC8 INCORPORATIO 733 CONCORD AVENUE. o C14M3RIOGU, MASSACHUSETT 02138 *(617) 661-1840



-J.. a ii,.2 'a-At- . . -r r r " - -.- ". , _7 '-r -W-- - r u-r-. -'-' . ".S . . 1. ; . . . .' ". . C

85-A.IE(l).VKMH(2)

ZLEKZWSx
ELD4NT I
ELDIENTS ELENEWT

othez' I)- ' VALUE ':
VALUE '=)' VALUE '1'I

SEQUENCE:
It' SIZ PART, VALUE-PART ''

VALUE PAM s
VKmLs I

VALUESs
4 VALUEI

VALUES VALUE
STRZNs

quaoted
STRIM 'W' quote.d

47

I#TOM ICI INCORP ORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (617) 661-1840



34

I~IMT~SINOPRTD* 3 OCRFAEU BIGMAACETD 23 61)6114

lr 1 83


