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Abstract

As an alternative to probabalistic and exemplar models of
categorization, we develop a model based on the assumption of
distributed memory storage. Subjects in two experiments
performed tasks related to the categorization of random dot
patterns. First, the perceived similarity was measured between
two such dot patterns, one a distortion of the other. Second,
groups of exemplar patterns derived from a category prototype
were classified together in a category learning task. When the
number of exemplars was small, new dot pattern.m were classified
according to their similarity to learned exemplars; when the
number was large, accuracy depended on a dot pattern's similarity
to the prototype pattern. The distributed memory model is used
to explain a number of aspects of the experimental findings.
Detailed computer simulations are described for the similarity,
categorization, and prototype enhancement results.

.-
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Introduction

Because events in the world rarely repeat themselves
exactly, organisms must possess efficient procedures for relating
new information to what has been learned in the past. In
particular, the problem faced by a behaving creature is often to
reduce the complex and varied inputs it receives into a smaller
number of equivalence classes (for example, friend, foe, or food)
and to classify correctly novel inputs that are similar to, but
not identical with, what has been encountered previously.

Categorization -- the ability to organize information into
equivalence classes -- has fundamental importance for any

organism that relies on learning for survival. The purpose of
this article is to present a theory of memory in which, under
certain conditions, categories are formed automatically by the
act of storage. We will show that the proposed storage and
retrieval scheme captures some of the phenomena observed when
human subjects categorize in the laboratory.

Our approach derives from a view of memory that regards
information as being stored in a distributed fashion, with
separate traces losing their individuality in storage. In this,
we differ from many competing models of categorization, and a
brief discussion of these differences is warranted.

Models of Cate~oriz.atqn

Recently, a great deal of effort has been directed toward
the study of human categorizaton (see Mervis & Rosch, 1981, and
Smith & Medin, 1982, for recent reviews). According to the
formulation of Smith & Medin (1982), models of categorization
fall broadly into two families, depending on how categories are
assumed to be represented in memory.

Probabilistic models assume that the representation of a
category consists of a unitary description of valid category
members. However, not all properties of the description are
necessarily true of all category members, so that category
membership is actually a continuous rather than a two-valued
function. This class of models includes the spreading activation
model of Collins & Loftus (1975), the feature comparison model
(Smith, Shoben, & Rips, 1974) and several models that represent
categories as points in a multidimensional space.

One set of probabilistic models we shall be especially
concerned with are those that represent a concept by an average
(sometimes called a DrtOtY2e) of category instances. A body of
empirical evidence has been used to support the idea that, in
some tasks, subjects abstract a prototype from items classified
together during learning, and that novel items are classified
according to the prototype they most resemble. This evidence
includes the finding that category prototypes are sometimes
classified more accurately than other category members, including
the exemplars actualy seen during learning (Franks & Bransford,
1971; Posner & Keele, 1970, Strange, Keeney, Kessel & Jenkins,

i ... . . .-_- - .... .. . . . . ., . _ .. .... : ., ; . . . . ......... .. ... ...
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1970; also see Robbins, Barresi, Compton, Furst, Russo & Smith,
1978), suggesting that the prototype is a main constituent in the
category's mental representation.

Lmlg models make up the other main family of
categorization models. According to this view, no single
description of a category exists. Rather, an aggregate of
separate descriptions of some or all category members serves to
represent the category (Brooks, 1978; Nelson, 19714). According
to this view, stimuli are categorized according to the number of
stored exemplars they retrieve. These proposals include the

E proximity and best-examples models (Reed, 1972) as well as the
context model of Medin & Schaffer (1978). Proponents of exemplar
models have pointed out that many of the findings taken to
support prototype abstraction can be equally well explained if
only the learned instances are assumed to be stored in memory
(see, for example, Hintzman & Ludlam, 1980).

problem of categorization, the memory representations postulated

*b both probabilistic and exemplar models are similar in an
important respect. Both views assume the descriptions
representing learned categories to be stored separately from one
another. In the case of exemplar models, the descriptions of
individual category members which combine to make up a category's
representation are likewise assumed to be separate, identifiable
entities. The idea that items stored in memory reside in unique
'locations' or form distinct 'traces' is an implicit assumption
common to both families of models. Rejecting the assumption of
separate storage leads to a third class of models, which we will

* call distributed memoy models of categorization.

The fundamental assumption behind the distributed memory
approach is that remembered items share many or all of the same
storage elements, so that one cannot properly point to a single
memory 'trace.' Previous theoretical work has demonstrated that

- - information can be both stored and retrieved without assuming
separate storage of individual items (for reviews see Kohonen,
1977; Hinton & Anderson, 1982, Anderson & Hinton, 1982). In
addition, distributed-memory models have been applied to a
variety of cognitive processes, including associative learning
(Anderson, 1983; Murdock, 1983; Eich, 1982), list learning
taske (Anderson, 1973; Anderson, 1977), as well as categorical
perception, distinctive feature analysis and probability learning
(Anderson, Silverstein, Ritz & Jones, 1977). A model with
important similarities, in that it uses a parallel system with
diffuse connectivity, the 'interactive activation' model for word
recognition has been described and successfully applied to much
experimental data. (McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982).

It is worth emphasizing that the assumption of a distributed
memory does not strictly preclude the more familiar models of
categorization. it is perfectly possible to implement
probabilistic or exemplar model 'software' on distributed memory
'hardware.' However, the converse is not always true: the
behavior of some distributed memory models can be 'mimicked only
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with ad, hoc assumptions or at great computational expense if
separate storage is assumed. We will illustrate this point by
developing a distributed memory model that acts as a simple
categorizer. Then, we will compare the results of two
experiments pertaining to categorization with the predictions of1the model. Where appropriate, we will contrast the proposed
model with both probabilistic and exemplar models, but our main
intent is to demonstrate the viability of a distributed memory
approach to categorization.

P A Distributed Memory Categorizer: Introduction.

The model to be presented was inspired by speculation about
how associative learning might occur in the nervous system, but
we will develop it here without making any claims about physical
realization. A review of some neuroscientific evidence bearing
on the model is available (Levy, Anderson & Lehmkuhle, 19841).
More detailed presentation of the material in the following
section, with numerical examples is available (Anderson,
Silverstein, Ritz & Jones, 1977; Anderson & Hinton, 1981).

6:- We begin by assuming that a large number of richly
interconnected but rather simple elements participate in the
storage of information. This is the basic distributed memory
assumption. We refer to these elements as 'neurons' and to their
connections as 'synapses', while remaining agnostic about their
possible realization in real nervous systems.

In our idealized scheme, each neuron has an 'activity' that
depends on the synaptic inputs it receives from other neurons,
where a synaptic input is defined as the activity of the input
neuron multiplied by a weighting factor that we will call the
'strength' of the synapse. In particular, we assume that neurons
behave as linear integrators: a neuron's activity is simply the
weighted sum of its synaptic inputs. Thus, if a neuron receives
inputs from three other neurons whose activities are 20, -10, and
2, with synaptic strengths 0.5, 0.2 and -1.0 respectively, its
activity will be

(20)(0.5) + (-10)(0.2) + (2)(-1.0) 6

Note that both neuronal activities and synaptic strengths can
take on negative as well as positive values.

L Information is represented in such a system by the pattern
of activty across a large number of neurons. Formally, we denoteI, these activity patterns by Hi-component vectors, where each
element in the vector is the activity of a single neuron and ai is
the number of neurons. Now suppose there are two such sets of k
neurons, alpha and beta, connected so that every neuron in beta
receives an input from every neuron in alpha as illustrated in
Figure 1.
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Figure 1 about here

We can conveniently represent the J1 squared synaptic
strengths by an K by K~ connectivity matrix A, where each entry A
(1~,.J) is the strength of the synapse between neuron j in alpha
and neuron _I. in beta. In the absence of other inputs, the

* activity of each neuron in beta is thus completely determined by
* the activities of the neurons in alpha and by the synaptic
* strengths.

In vector notation, this relationship is

(pattern in beta) = A f.

Information can be stored in such a system by modifying the
*synaptic strengths as follows. Suppose that all the strengths

are initially zero, and that activity pattern f occurs in alpha
and pattern g simultaneously occurs in beta. Here f might denote
a stimulus and g a response that has just been rewarded. We

* assume that in such a situation the synaptic strengths are able
* to change according to the rule

A (j.j e f (1.) g(1)

That is, the strength of each synapse is incremented
proportionally to the product of the pre- and postsynaptic
neurons (cf. Hebb, 19149).

For illustration, suppose that the proportionality constant
in the above learning equation is one and the vector f is
normalized so that the length of f is set equal to one and A is

* initialized to 0. (i.e. the inner product, f~ is one and A is
all zeros). The resulting connectivity matrix becomes

A = g f

Now suppose that after the synapses comprising A have been
modified, pattern f again occurs in alpha. By the above,
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(pattern in beta) = A f_
= g far
=g

Therefore, the result of this form of synaptic modification is
that subsequent occurences of f in alpha give rise to g in beta
-- the two patterns have become associated.

In general, such a simple system can associate as many as
pairs of patterns, (fl, gi ) , (fz, gZ), (f7 , g * • (4j, g#)
though the practical capacity is less. Each association
increments the matrix according to the above rule, so the final
matrix becomes

A g

Although the p associations are spread over and mixed
together at the same U synapses, information may not have been
lost.

When one of the f's, say f., occurs in alpha thenmL

(pattern in beta) A tf,

= f i.f g f( f).

t ' j

Consider the special case where the simulus set (the f's) are
orthogonal, that is, the f's are at right angles to each other
and their inner product fTf = 0 when i ,j and one when i =
Then the

(pattern in beta) g

since all the inner products are zero. This is a more useful
approximation than it seems, because if K is large and the f's
have statistically independent components, they will be close to
orthogonal.

Categorization

The model can function as a simple categorizer by making one
additional assumption. JLet UA make the fundamental codng
assumption that the a y patterns re re ent inmr
sta.ul e AX& t ghsel similar, tha I_. their etors are
correlated. This means the inner product between the two
patterns is not small.

Now consider the case described above where the model has

made the association (f, g). Let us restrict our attention to
the magnitude of the vector in beta that results when various
patterns occur in alpha. We have just shown that when f occurs
in alpha, g occurs in beta. When a new pattern ' occurs in
alpha, then

. -
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(pattern in beta) gf fl

If f' and V' are uncorrelated, their inner product fVis small.
If f is similar to V' then the inner product will be large. The
model responds to input patterns based on similarity to f.
Patterns similar to f give strong responses (as measured by the
length of the output vector) while dissimilar patterns produce
weak responses. Thus, the nature of the learning assumption

*gives us an automatic generalization mechanism. Furthermore,
this formulation suggests that the perceived similarity of two_
stimuli should be systematically related to the inner product f'pf We test this prediction in Experiment 1. If the network has
learned several associations, it can categorize novel input

- patterns according to their similarity to the patterns already
encountered.

Multiple Member Catggories

This is a rather limited form of categorization, however,
because each category has only one member. We will now apply the
distributed memory model to a more realistic situation where a
category contains many similar items. Here, an entire set of
similar activity patterns (representing the category members)
becomes associated with the same response, for example, the
category name. It is convenient to discuss such a set of vectors
with respect to their mean. The mean is taken over all learned
members of the category; if the categorizing system does not see
all the members of the category but some subset of them, the
interesting behaviors discussed next can appear.

Specifically consider a set of correlated vectors fl.
ft with mean p. Each individual vector in the set can be written
as the sum of the mean vector and an additional noise vector, do
representing the deviation from the mean, that is,

V=p + d'.

When these n patterns occur in alpha and are all associated
with tho same response, g, in beta, the final connectivity matrix
will be

A:g ft

- d
= n p + g9

The term containing the sum of the noise vectors (the di is
particularly important. Suppose that this term is relatively

Overy small, as would happen if the system learned many randomly
chosen members of the category. In that case, the connectivity
matrix reduces to
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A: 19p.

The system behaves as if it had repeatedly learned only one
pattern, p, the mean of the correlated p-it of vectors it was
actually exposed to. Under these conditions, the simple
association model can extract a 'noisy signal', just like an
average response computer. In this respect the distributed
memory model behaves like a prototype model, because the most
powerful response will be to the pattern p, which may never, in
fact, have been seen.

However if the sum of the d terms is not small, as might
happen if the system only sees a few of patterns from the set,
the response of the model will depend on the sum of the
similarities between the novel input and each of the learned
patterns, that is, the system behaves more like an exemplar
model. If the perturbing noise vectors are of roughly constant
size then the number of patterns in the correlated set of inputs
will be the primary factor determining whether the distributed
memory model behaves more like a prototype model or an exemplar
model. This is the topic of Experiment 2.

Finally, we need to consider what happens when members of
more than one category occur in alpha. Suppose the system learns
items drawn from three categories with means of pi, P 2 and P-i
respectively. If g,, gl, and glare the responses associated with
the three categories, then

A =g, ,+ g2a_ g 3-

where each sum s is once again of the form

To determine which response, g, , g-2, or g3 , most closely matches
the model's output when presented with an input f it is
sufficient to examine the inner products,

stf &L , and a f

and choose the largest. That is, the item will be classified
according to its similarity (measured, as before, by the inner

* product) to one of the stored sums. Due to superposition (this
is a linear system) the actual response pattern will be a
weighted sum of the three responses. If the inputs are
reasonably well separated (i.e. the inner product between
different inputs is small) the distortion of the appropriate
output will also be small. (This seems to be the case in the our
experiments, based on subject's responses to purely random
stimuli, as we shall describe.) If felt necessary for theoretical
adequacy, however, we can invoke a distributed non-linear
feedback model related to the model just presented, which can
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correct distortions and exactly reproduce the correct output
response. This model has been described elsewhere. (Anderson et
al., 1977). It, too, calculates similarity to the stored sums.

Random Dot Pattern Stimuli

In order to perform experiments that could be plausibly
related to the distributed memory model, it was necessary to use
stimuli whose relations to one another can be readily quantified.
In addition, we wanted to avoid well established naturalI categories such as common objects and facaes, because the model's
behavior depends in unpredictable ways on what stimuli have been
encountered in the past. These considerations led us to adopt
the artificial categories first conceived by Posner and Keele
(1968, 1970).

These stimuli consist of nonmeaningful arrangements of dots.
In a typical experiment, several readily distinguishable patterns
are produced by randomly distributing nine dots within a display
area. These original patterns are called prototypes. A family
of distortions of each prototype can then be generated by moving
dots random distances in random directions according to various
rules. A single distortion of a prototype is calleQ, in this
literature, an exemplar. By manipulating the motion of the dots,
category exemplars can be either grossly distorted versions or
only slight variations of the prototype. Each prototype and its
progeny constitute an artificial category. Like many natural
categories, dot pattern categories are ill defined (Neisser,
1967) because any pattern can be transformed into another by an
appropriate distortion.

Because all the experiments used the same basic materials,
the methods used to generate and present stimuli will be
described in detail at this point. Specific experimental
procedures will be described as each experiment is introduced.

General Method

The subjects were all paid volunteers from the Brown
University Psychology Department's pool of students and staff.
Subjects were assigned to experiments by order of appearance in

the laboratory and were tested either individually (Experiment 1)r or in groups of three (Experiment 2).
The studies took place in Brown University's Human Learning

Laboratory (Millward, Aikin & Wickens, 1972). The experiments
were controlled online by a Digital Equipment Corporation PDP-8/er-. minicomputer which generated all the stimuli, determined display
order and timing, collected subject's responses and reaction

k times, and gave subjects feedback about their responses. The dot
pattern stimuli appeared on Tektronix 502 oscilloscopes. The
display area of each oscilloscope screen measured 10 by 10 cm and
was divided into a 512 by 512 unit grid, this grain being
determined by the digital-to-analog converters used to transmit
the stimuli from the computer to the oscilloscopes. The
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intensity of the oscilloscope beam was adjusted so that the
stimulus dots were as small as possible while remaining clearly
visible.

The subjects sat in dimly lit booths. The display screens
were viewed through openings in the front wall of each booth,
approximately 75 cm from the subjects; the dot patterns thus
subtended about six degrees of visual angle. Subjects indicated
their responses by pressing keys on teletype keyboards located
below and in front of the display windows. A row of computer
operated lights mounted on the keyboards provided feedback when
required.

All the experiments involved two types of stimuli:
prototypes and exemplars. Each prototype pattern was created by
randomly placing nine dots within a 300 by 300 unit grid centered
in the 512 by 512 unit display area. Exemplars of a prototype
were constructed by displacing the prototype dots short
distances. For each dot, the direction of motion was chosen at
random (i.e. from a uniform distribution on the range zero to
360 degrees. The distance moved by a dot was determined by a
probability distribution specified by the experimenters.

Figure 2 shous a prototype and five exemplars at increasing
levels of distortion. Each exemplar is the result of moving the
prototype dots distances drawn from a normal distribution. The
mean of the distribution (in display screen units) is given above
each exemplar. The standard deviation of the distribution was
one third of the mean in all cases. Because the prototypes were
generated toward the middle of the display screen, the dots had
ample room to move. The computer halted at the border any dots
which attempted to stray beyond the confines of the display area,
but such events were rare, even for the largest displacments
used.

Figure 2 about here

The significance level for all statistical tests was 0.05.
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Experiment 1. Similarity Between Two Dot Patterns

It is apparent from Figure 2 that the resemblance between an
exemplar and its prototype decreases as the dot displacements
used to create the exemplar increase. As described above, our
distributed memory model predicts a general form for this
relationship. According to the model, the perceived similarity
between two stimuli is related to the inner product f fl, where f
and V' are the distributed activity patterns representing the
stimuli. Testing this prediction requires (A-) empirical
mesurements of perceived similarity as a function of distortion,
and (h) a detailed formulation of the distributed representations
of stimuli, which until this point have been treated only as
abstract vectors. In Experiment 1, therefore, subjects judged
the similarity of prototype-exemplar pairs at several levels of
distortion. The dot-displacement probability distributions were
systematically varied in an effort to determine which parameters
of dot displacement influence perceived similarity. The results
of this experiment lead us to propose a specific distributed
representation for dot-pattern stimuli. Incorporating this
representational scheme into the model allows us to predict
subjects' similarity judgments quantitatively.

The present experiment extends Posner's (1964; Posner,
Goldsmith & Welton, 1967; see also White, 1962) investigations
of the determinants of similarity between dot patterns. Those
studies employed a variety of distortion rules, but found that
subjective similarity seemed to depend only on the average
distance moved by the prototype dots during the creation of an
exemplar. Subsequent investigators (Barresi, Robins, & Shamn,
1975; Homa, Cross,Cornell, Goldman, & Shwartz, 1973) have used
still other distortion rules but have continued to rely on this
average distance metric (or on an equivalent metric cast in the
language of information theory) as an objective index of
similarity.

It is a property of the average distance measure that vastly
different sets of individual dot displacements can give rise to
the same mean displacement. In particular, all the individual
dots can move roughly the same distance (low variance about the
average) or some dots can move a great deal, others not at all
(high variance, cf. Barresi et al., 1975). However, the effect
of variance on perceived similarity has not been systematically
investigated. In the present experiment, similarity ratings were
obtained for pairs of patterns which bore either a high- or a
low-variance relation to one another. If average displacement is
an adequate similarity metric, the variance manipulation should
have no effect on similarity judgments.

Method

Sublects. 10 members of the Brown University community
received $3.00 for participating in a single hour-long session.
Subjects were unfamiliar with the stimuli and unaware of the
purpose of the experiment. All subjects were tested
individually.
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Stimuli1 and design. Subjects viewed pairs of sequentially
presented dot patterns. The first member of each pair was a
prototype (generated as described previously), and the second was
an exemplar derived from that prototype. Clearly, the terms
'prototype' and 'exemplar' are somewhat arbitrary in this
context, because a new prototype was generated for each trial and
no prototype was repeated. A new set of stimuli was created for
each subject.

We manipulated the distortion used to create the exemplar
patterns as follows: Five levels of fixed distance distortion
were obtained by moving all the dots in the prototype pattern the
same distance -- 15, 30, 45, 60, or 90 units -- in random
directions. Corresponding levels of variable distance
distortions were created by moving five of the prototype dots a

* shorter distance than these same values, and moving four dots a
longer distance. The actual displacements used are shown in
Table 1.* This procedure ensured that each level of
variable-distance distortion involved a smaller average

*displacement but a larger displacement variance than the
corresponding level of fixed distance distortion. For example,
in generating exemplars at the third level of variable distance
distortion, the prototype dots moved an average of 40.7 units
(versus 45.0 units for the corresponding level of fixed distance
distortion), although each individual dot could move as much as
90 units or as little as 0 units (see Table 1).

Table 1 about here

Each subject rated 20 different prototype-exemplar pairs at
each level of fixed distance and variable distance distortion,
and 20 patterns in which the two patterns were identical. Trials
were divided into two blocks of 100 separated by a short rest
period. Within a trial block, there were 10 pairs at each
distortion level, ordered randomly for each subject.

*Together with subjects' similarity ratings, two measures
were recorded for each pattern pair: (g.) the average distance
moved by the dots, defined as the sum of the individual dot
displacements divided by nine (a displacement being the distance
from the dot's initial screen position in the prototype pattern

* to its final position in the exemplar pattern), and (h) the
root-mean-square (RMS) distance moved, defined as the square root

* of the mean of the squared invididual displacements. The latter
measure incorporates information not only about the mean of the
displacement distances, but also about their variance.

Procedure. Subjects were told they would be shown a series
of dot pattern pairs, presented sequentially. They were
instructed to rate each pair on an eight point similarity scale

-one meaning highly similar and eight meaning very different -
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by pressing the appropriate teletype key. Subjects were not told
that any of the patterns would be identical.

The first member of each pair was presented for five
seconds, followed by a one second interstimulus interval (151),
folowed by the second pattern, which remained visible until the
subject responded. A two second interval followed each response,
during which time a keyboard light indicated that the subject
should prepare for the next trial.

At the start of the experimental session, each subject rated
33 practice trials, three at each distortion level in random
order, to become familiar with the procedure and with the range
of similarities.

Results. Figure 3 plots the mean similarity ratings for
each level of fixed distance and variable distance distortion as
a function of average dot displacement. The identical patterns
received a significantly larger rating than the minimum possible
value of 1.0 (z.(200) = 2.02), while the largest mean rating (6.76
for the most distorted variable distance pairs) was substantially
less than the theoretical maximum of 8.0. These findings may
reflect a reluctance on the part of the subjects to use extreme
ratings.

Figure 3 about here

Nevertheless, the main result of the present experiment is
quite clear: variable distance pairs were consistently judged
more different than corresponding fixed distance pairs, even
though the average distance moved by the dots was always less for
variable distance distortions than for corresponding fixed
distance distortions. To test this result statistically, each
point on the variable distance and fixed distance curves in
Figure 3 was compared with the interpolated point below or above
it on the other curve in a large sample Z.-test (one-tailed).
Standard deviations of these interpolated similarity ratings were
estimated by choosing the standard deviation of the nearest point
on the same curve. This procedure is justified, since the
variability of the ratings was fairly constant (range of standard
deviations: 1.1 - 2.2). By this test, mean similarity ratings
for variable distance pairs were significantly larger than for
corresponding fixed distance pairs (y,(200) > 1.76 in all cases).

The results demonstrate that average dot-displacement is an
insufficient measure of similarity when some dots move a great
deal more than the average and others move much less. A
similarity measure weighting large dot movements more than small
ones would predict the present data more accurately, since large
displacements occur preferentially in the variable distance
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conditions. One (though by no means the only) such measure is
the RMS distance metric described above.

The finding that dot displacement variance influences
perceived similarity seems consistent with a study by Barresi et
al. (1975) in which the prototype of one dot pattern category
was actually a large distortion of the prototype of a second
category. Subjects learned to classify exemplars of the

variance distortions of each other than when they shared a low

variance relation, the mean dot displacement being the same for
both prototype pairs. The results of the present experiment
suggest that categories derived from high variance prototype
pairs are easier to learn because the prototypes are less similar
to one another than in the low variance case.

Theory: Siiaiy To obtain quantitative similarity
predictions from the distributed memory model we must specify a
neural coding of the input patterns, that is, we must describe
how the state vectors are generated from the physical input
pattern. We know from many sources that there is a powerful
topographic mapping of visual space onto the surface of the
cerebral cortex. Let us consider the coding due to a single dot
in visual space. We assume that this will map onto a 'bump' of
activity on a hypothetical surface composed of many elementary
'neurons' which represents the neural coding. Since real neurons
have receptive fields of varying width, even in a single cortical
region, we assume there is a fall off of activity from the
central location corresponding to the exact topographic location
of the dots: some cells have large receptive fields and respond
to a dot even if the center of their fields is far away from the
dot location; other receptive fields are much smaller and must
be precisely centered on the dot location. Figure 4~ shows an
exponential decay of activation, that is the activity at a point,
a(r_), is given by

a(r) =exp (-LI11)

where I(is the length constant of the exponential and r_ is the
distance from the center of the distribution to the point whose
activity is to be computed.

Figure 14 about here

Interactions Between Acivt Patterns. We are concerned
with inner products between two dot patterns. We can compute the
inner product between the activity patterns of any two single

L .. ,
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dots. If our activity patterns are composed of nine dots (as
ours were) then the basic linearity of the model lets us then
consider all pairs of dots (81 pairs) and add up the resulting
inner products giving the overall result. Note that the model
does not need to "match up" dots from the two stimuli; any
activity patterns that interact will contribute to the inner
product.

We investigated a number of different activity patterns due
to single dots. The best fit to the data was obtained with the
exponential distribution shown in Figure 4. In this case, we are
able to obtain a closed form solution to the dot product.
Suppose we have two activity patterns due to single dots
separated by a distance d. Let us assume the distribution is
continuous, though in reality it is made up of discrete
neuron-like elements. For convenience let the length constant
equal one, and consider two exponential distributions, a(x, y)
and b(x, y) separated by a distance d along the x axis. We want
to evaluate the integral, I(d), which will only be a function of
displacment, d:

a(j, y) = exp (- (x + A/2)" + 1y1;)

b(xL, y) = exp (- (X- _/2) + y"s) and

(d) = Ja(X_, y) b(2, y) JA dv.

Let us normalize the function so that I(A) = 1 when d = 0.

This integral can be computed exactly and is given by

1(0) (1/2) 4K7j_ )

where K,(d) is a modified Bessel function of order 2. (See
Abramowitz & Stegun, 1964). Figure 5 shows shows I (!) graphed
with the ordinate inverted for comparison with Figure 3. This
computed function for a single pair of dots will approximate the
more complex situation where nine dots are involved, especially
at small displacements.

Figure 5 about here

For connoisseurs of integration, this integral can be done
by observing that the loci of constant product are ellipses. The
equations are converted to elliptical coordinates (Korn & Korn,
1968) and then integrated with the tables in Gradshteyn & Rhyzik
(1959).
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ComputerI Simulations f the Similarity Experiments. Let us
first describe the simulations of Experiment 1, the experimental
measurements of similarity. Computer simulations allows us to
handle these multiple dot experiment exactly. We can generate
patterns like those used in the experiments, distort the
patterns, compute the inner product, and then compute a measure
of goodness of fit of the inner product to the experimental data.

Note that in this simulation, we have 81 pairs of dots (9
dots taken two at a time, one from a pattern and the other from
its distortion) between which we must compute inner products. In
the computer program, we formed a matrix of distances between

*dots. Note that the diagonal of the matrix of distances
represents distance between the a dot and its displacement in the

* distortion. If average displacement was small, we would expect
most of the contribution to the inner product to be concentrated
along the diagonal. As the displacement increased, we should
expect more contribution to move off the main diagonal. The

*displacements used in our experiments had a significant
contribution from the off diagonal elements. Using the best
fitting length constants computed from the similarity experiments
the sum of the inner products due to the off diagonal terms and
the sum of the inner products due to the diagonal terms were
roughly equal.

The off diagonal elements of the matrix of distances also
* contain information about the entire pattern, in fact enough to

reconstruct the pattern bar rotations and inversions. A
criticism is sometimes made of these models that one could
present dots one at a time and one would predict the same results
as if all nine dots were presented at once, since only the sum of
activities is involved. There are two immediate responses to
this: First, one pattern of nine dots looks grossly like another
pattern of nine dots. Though we are only concerned with
differences between patterns, surely the full neural codings
contain a significant context which is identical between
different patterns: i.e. dot number, the experimental

*situation, etc. This constant part plays no part in our
computations because it is identical for all the dot patterns,
but if we make a significant change in experimental situation, it
will become important. Second, the off diagonal and diagonal
terms together respond to all possible dot-dot interactions in

*the pattern. Dots presented one at a time would have no off
*diagonal elements unless some rather arbitrary assumptions
* (things are summed up in a buffer, etc.) were made which

reestablish the pattern nature of the stimulus.

Programs were written in Pascal, which is exceptionally
convenient for this kind of simulation. We defined, for example,
a Pascal RECORD 'DotPattern' which has all the formal properties

* of a dot pattern. Copies of these programs are available.

By assumption, magnitude of inner product between activity
patterns is directly related to similarity. The only free
parameter in the simulation was the length constant.
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In the simulations, mathematical representations of the
* patterns were constructed which were statistically identical to
* those actually presented. For the similarity simulation, a dot
* pattern and a distortion were generated and the inner product of

the neural codings of the two patterns (using exponential decays)
Iwere computed. The experimental and theoretical values were

compared. Several measures of goodness of fit were used in the
computations. First, the best fitting straight line was computed
between predicted similarity and experimental similarity. The

* length constant which minimized the mean square distance between
this line and the experimental data was found. Second, the
correlation between predicted and experimental values was
computed.

The results of the measures were close to each other. Also,
the maxima of the relation between length constant and the
measures of goodness of fit was quite broad. There were no
critical aspects of the simulation.

Several functions representing falloff of activity due to a
single dot were investigated at various times: Gaussians,
exponentials, laterally inhibited functions, and others. The
best fits were obtained with simple exponentials and this
function was used in the simulations and in the figures. Exact
shape of the falloff not critical, that is, the pattern of fits
obtained was roughly the same for different falloffs, but best
fits were numerically not quite as good.

Experimental and theoretical fits are given in Table 2.
This table was computed from 100 simulated dot patterns at each

*level of distortion and is a typical simulation. Values of
* parameters were those used for best correlation between simulated

and experimental values. Best fitting length constant was
* computed for five different sequences of patterns. Each sequence

was generated from a different random number generator seed. The
average best fitting length constant for maximizing correlation
between computed and experimental similarity was 14.5 screen
units, producing an average correlation of 0.97. At this value
of length constant the mean square difference between the
simulated values and the best fitting line between experimental
and simulated values was 0.215. The best fitting length constant
for minimizing mean square difference between experimental and
computed values was 11.7 screen units (producing a mean square
difference of 0.210) and the average correlation was over 0.96.

Table 2 about here
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Experiment 2: Number of Exemplars

Experiment 1 demonstrated good agreement between the
distributed memory model's predictions and subjects, behavior
when asked to rate the similarity between two dot patterns. A
particular formulation of the model was developed to fit the
similarity model quantitatively. We next sought to test this

* same model's predictions for a true categorization tasks. As
described above, the model represents a category by associating
an entire set of correlated activity patterns with the same
response. If the activity patterns are of the form

f~ p + d

where p is the mean of the correlated set and d is the deviation
of the individual pattern from the mean, and if the d's are of
roughly constant magnitude, then the model's behavior depends
mainly on the number of activity patterns in the learned set. if
the model learns many different category members, it behaves if
it has seen the mean pattern p alone whereas if it learns only a
few members, those learned patterns will dominate the category's
representation.

-. In Experiwent 2, subjects learned three categories
* -containing 1, 6 and 214 members respectively. The learning

stimuli were exemplars of one of three prototypes, with the
degree of distortion between each exemplar and its prototype held
constant. Only the number of learned stimuli varied across the
categories. Subjects learned the categories by classifying the
exemplars and receiving feedback about their decisions. During
this process, the categories were presented with equal frequency,
to avoid biasing subject's classifications. Following the
learning phase of the experiment, subjects classified (without
feedback) a series of dot patterns, including the training
stimuli again, new exemplars created from the same category

- - prototypes, and the prototypes themselves.

Subjects. 21 paid subjects from the same pool drawn upon in
Experiment 1 participated in a single 20 minute session. To ease
data analysis, the subjects were tested in groups of three.
Within each group, all three subjects saw the same stimuli in the
same random order.

* Stimuli and desi~gn. The experiment had a learning phase, in
which subjects classified category exemplars with feedback, and a
testing phase, in which they classified old, new, and prototype
patterns without receiving feedback. For each group of subjects,
three prototypes (designated A, B, and C) were constructed.
Exemplars of the prototype were created bythe method described
earlier. The dot displacement were drawn from a normal
distribution with mean 214 and standard deviation eight; the
average RMS distance between prototype and exemplar was 25.2
units. This distance was chosen in pilot studies because it
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seemed to maximize the experimental prototype enhancement.

The learning stimuli consisted of one exemplar of prototype
A displayed 24~ times, six exemplars of B displayed four times
each and 2~4 exemplars of C shown only once each, for a total ofI 72 learning trials, with each category being represented 24 times

)during learning. In the testing phase, the single learned
exemplar from category A was presented eight times, four of the
old exemplars from category B were presented twice each, and
eight of the old C exemplars were each presented once. In
addition, eight newly constructed exemplars of each prototype
were presented once each and each prototype was shown eight
times. The subjects had encountered neither the prototypes nor
the new exemplars during learning. Finally, nine unrelated
control patterns (newly generated prototypes) were presented once
each for a total of 81 test trials: eight old exemplar trials,
eight new exemplar trials, and eight prototype trials for each
category, plus the nine control trials.

Proceidure. The subjects were told that they would be shown
a series of dot patterns, and that their task would be to
determine which patterns were to be grouped together under the
same response. Subjects were instructed to classify each pattern
by pressing one of the three teletype keys. The keys were
randomly paired with the categories at the start of the session
and these pairings were the same for all subjects within a group.
All subjects responded with the forefinger of the dominant hand;
between responses they placed the response finger on a spot about
2 cm from the response keys and approximately equidistant from
them.

Stimuli were presented one at a time until all three
subjects had responded or for a maximum of five seconds. In the
learning phase, subjects were urged to respond during the display
interval if possible, but not to rush their responses. Each
stimulus presentation was followed by a five second feedback
interval, during which the correct response for that trial was
indicated by illuminating a light above the appropriate response
key. In this part of the experiment, subjects were instructed to
concentrate primarily on learning the classifications and were
encouraged to guess during the initial trials.

In the testing phase, a five second blank ISI followed each
stimulus presentation. Subjects were instructed to respond as
quickly as possible, based on what they had learned in the first
part of the experiment, and were informed that no feedback would
be given.
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Figure 6 about here

The data from two subject groups had to be discarded due to
equipment failure. Of the remaining 15 subjects, one performed
below chance level during the learning phase, but these data were
included because this subject performed at a high level of
accuracy during the testing phase.

The mean number of errors made in the learning phase was
15.1 (range 41 - 413). For categories A, B, and C, these means
were 2.8, 6.2, and 6.1 respectively (ranges: 0-16, 0-17, 1-10).
Subjects made signficantly fewer errors learning the one exemplar
category than the other two categories Ca~ 7.3 on a Friedman
test); several subjects made only one error on this category
during the entire learning phase. This advantage did not
transfer to the testing phase, where the overall classification
accuracy was 88% for categories A and B and 91% for category C.

Figure 6 shows the percent correct classification for each
test trial combination of stimulus type (old, new, prototype) and
number of learned exemplars (1, 6, 214) collapsed across subject
groups. A ceiling effect is apparent for the single old exemplar
in the one-instance category: all the subjects classified this
pattern correctly all the time.

An analysis Of variance was performed on the classification
data, treating stimulus type and number of learned exemplars as
within subjects variables, and group as a between subjects
variable. The main effect of Type was significant [ F_ (2,20)

* 7.21, Xl&0= 0.21) but the main effect of Number and Group were not
(both F's < 1). The Type by Number interaction reached
significance [ E (4,410) = 3.99, Xk 0.22); performance on the
old exemplars decreased with larger numbers of learned items,
while performance on the new and prototype instances increased.
The prototypes were always classified more accurately than other
novel exemplars, and by about the same margin. No other
interactions approached significance. In particular, Block did
not interact with either of the within-subjects variables. This
finding is reassuring, since it suggests that the present results
do not depend critically on peculiarities of the randomly
generated stimuli that we used.

Reaction time (RT) data were collected to provide convergent
support for conclusions drawn from the classification data.
Previous studies using dot pattern stimuli (Homa et al., 1973;
Posner & Keele, 1968; see also Omohundro & Homa, 1981) have
found that response speed tends to correlated with classification
accuracy. The HT data, summarized in Figure 7 generally confirm
the pattern of the error data. The latencies indicated that the
classification results are not the product of a speed-accuracy

do . . . .
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tradeoff.

Figure 7 about here

- - - - - - - - - - - - - - -

An analysis of variance was performed on the RT's to correct
responses, with HT's that exceeded a subject's mean by three
standard deviations or more deleted. As in the classification
data, the main effect of Type was significant [ E (2,20) =10.06,

IM=29.90 ] while the effect of Number was not (E < 1). The
Type by Number interaction was again significant [ E (14,40)=
3.30, IM~ = 48.67 ]. In addition, the main effect of block was
significant E (4,10) 5.15, Mae'= 566.71 ] indicating that
while the specific stimuli used did not affect subject's
accuracy, they did affect how long it took to make their
classifications. No other interactions reached significance (E <
1, in all cases).

Subjects assigned the unrelated control patterns to the one,
six and 214 instance categories 5.9%, 31.1%, and 63.0% of the
time, respectively. This corroborates the finding of Homa et
al., (1973) that subjects tend to assign random patterns to the
category containing the largest number of learned instances. The
mean RT for the control patterns was 1,556 msec, about 350 msec
longer than for the other stimuli. Clearly, these patterns are
recognized as not belonging to any of the three learned
categories. This finding provides reassurance that prototypes
chosen at random differ from one another a good deal, so there is
little category overlap in these experiments. This was the
subjective impression of the experimenters and seems to be
consistent with the data.

Discussion and Thegry

The results of Experiment 2 support the qualitative
predictions of the distributed memory model. While varying the
number of learned exemplars did not substantially affect
subjects' ove~rall1 accuracy in classifying test stimuli, it did
affect their relative accuracies for the different types of
category instances. Old exemplars were classified more
accurately for the smallest category, and a prototype advantage
was apparent for the largest category. We have proposed that
this result derives from representing a category as the sum of
the distributed activity patterns representing the category
members. We have also proposed a specific form for the activity
patterns representing dot patterns, so we can model Experiment 2
without making any additional assumptions.
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---F-gure----about --ere

Figure 9 about here

The model's behavior is more understandable if we begin by
considering the summed representation of a single dot in the nine
dot patterns. (Figures 8 and 9) These diagrams may be considered
"close-up" views of the category's representation, with similar
summation occuring in the regions of the other eight dots.

Figure 8 shows activity patterns due to four exemplar dots

equally spaced from each other and from the location of a
prototype dot. As the physical separation between the exemplar
dots increases, the peaks of activity in the sum separate. At
first, the distribution off activity in the sum as the dots
separate simply seems to broaden the peak located at the
prototype location. Then bumps due to the individual exemplars
appear. Even with dots well separated, there is still
substantial representation at the prototype location. It is
clear that some representation off variability (the width of' the
activity pattern) is present as well as representation of the
central tendency. In Figure 8, the left hand side shows the
actual sum, the right hand side has the maximum values in the
pattern drawn as the same height so relative curve shapes can be
compared.

Figure 9 shows the formation of a sum from two exemplars
(above) or from eight exemplars (below) In the diagrams, the
exemplar dots have been chosen to be equally spaced about a
central location corresponding to the dot in the prototype
pattern. In both sums, the activity at the prototype location is

Isubstantial. In the two-exemplar sum, the activity is greatest
at the location of the individual exemplars, but in the eight
exemplar sum, the activity is largest at the prototype location,
and the overall distribution of activity is more uniform, the
smaller number of exemplars produces a "lumpy" sum dominated by
learned exemplars, while the larger number yields a "smoother"
sum with the prototype enhanced.

The Computer gimulation of Prototy-De Extraction. Our
computer program is a very straightforward realization of the
distributed model. Prototype dot patterns were generated
randomly, with parameters identical to those 'used in the
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*experiments. Exemplars were formed according to the rules
followed in .he experiments. Sums of exemplars were constructed

*and a 'memory' was thereby formed. If there were three
* prototypes in a particular experiment, then three sums were

constructed and kept separate. An input was classified as to
which sum it was most similar to by computing the inner product
with each sum in turn and choosing the largest. The sum with
greatest similarity was the classification of the input, and the
associated response was assumed to occur.

In the experiments described previously, and modeled in ourhsimulations, 'we used groups containing 1, 6, and 214 exemplars of
particular prototypes. It might be pointed out, with justice,

* that a prototype cannot be formed when only a single exemplar is
presented. This is, of course, correct. However the model will
generate similarities for new exemplars and the prototype for
this case just as it will when many exemplars are presented so we
should be able to predict the responses in this special case with

r.the same model we used for multiple exemplars. A model for
* 'generalization' is to the prototype extraction model and should
* be predictable as a special condition of a prototype experiment.

The statistics of the patterns used in the simulations were
identical in all respects to those in the real experiments. The
only parameter to vary was the length constant of the fall off of
the individual dot activity patterns. A total of 50 different
sets of 24 patterns was used for each value of length constant.
Thus a total of 50 different dot patterns were used for the one
exemplar case, 300 for the 6 exemplar case, and 1,200 for the 241
exemplar case.

It is instructive to look at the qualitative results for
different length constants. Figure 10 shows the results for four
different values of length constant.

Figure 10 about here

Very short length constants produce a system which is
powerfully biased toward response to old exemplars. There is
relatively little prototype enhancement since the dot patterns
are so widely separated that they do not interact. The old
exemplars are recognized best, prototype next best, and new
exemplars least well. As the length constant increases, theK prototype is relatively enhanced and starts to generate a
stronger response than the old exemplars. With very long length
constants (very slow fall off of activity) responses tend to
become more equal to all patterns, presumably because there is so

litledifference in activity patterns that there is little to
discriminate among them.
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The length constant found for best correlation in the
similarity experiment was 141.5. Figure 11 show 's the results when
this value was used in the prototype simulation program.
Although there is no way to make a direct mapping of inner
product into percent correct response without numerous additional
assumptions, there should be a monotonic relation between
similarity and percent correct classification. The results in

*Figure 11 seem to show (to our biased eyes) remarkable
* qualitative similarity to the experimental results in Figure 6.

Note in particular the crossing over of the responses to old
exemplars shown for the six-exemplar case and the coming together

* of the responses to old and new exemplars in the 241 exemplar
case. There is a strong response to the single old exemplar in

* the one-exemplar case, but the responses to the prototype and new
exemplars for this (seemingly different) case fall right in line
with the other data.

Figure 11 about here

Note that by changing length constant we can shift the
emphasis of the system toward response to old exemplars at small
length constants and toward prototype response at longer length

* constants. We investigate this next.

Whenj 1-s a Prototvpl No.t~ Extracted (And Whjjy). Almost ir
interesting a phenomenon as the enhancement of prototypes is when
prototypes are not enhanced. We can predict when this occurs
with our model. Very large distortions, which are judged not to
be very similar might not give rise to much prototype

*enhancement. It is actually easy to see how this could occur.
* Let us consider the surfaces presented in Figure 8. Note that in

large distortions, though there is enhancement at the prototype
location, the peaks representing the individual exemplars are

* larger than the value of the sum at the prototype location. In
the smaller distortions, there may be an enhancement of the

* prototype over the individual exemplars.

Let us analyze the simple case presented in Figure 8. Four
*exemplars are presented equally spaced from the prototype
location (0,0), and from each other at locations (+x,0), (0,+x),
(0,-2L) and (-K,0). We assume the decay function is exp (-r)
where r is the distance from the peak, as before, with length
constant 1.* Let us consider only a single dot location. Two
dots are separated from it by a distance Vf2 X. The dot on the

4 other side of the square is 2 x distant. At the prototype
* location, (a distance x from each exemplar) the amplitude of the

sum, _s, is given by
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1(0,0) 4 1 exp (2)

At the location Of, say, the exemplar at (0, 1), the value of the
sUM is given by

s(0, x) =1 +2 exp (-~X.) + exp (2 xA).

The sums at the other three dot locations are identical.

It can be shown that if x is less than 0.692 there is actual
enhancement at the prototype location, that is the amplitude of

the sum at (0,0) is greater than at any dot location.

The situation can be analyzed in more detail analytically,
but without much improvement in our intuitive feeling for the
system, in our experiments. We are interested in a more complex
quantity, the relative sizes of the inner product between the
prototype or an exemplar and the sum of old exemplars. This can
be a relatively complicated function since the shape of the
activity patterns due to a single dot are involved.

We can easily simulate this situation, however. Let assume
that a number of exemplars are located equally spaced on the unit
circle, with the prototype at the center of the circle. The
number of exemplars in the simulations varied from two to a large
number. 'We varied the length constant and computed inner
products between an input pattern located at the prototype
location and at the location of one of the dots on the circle.
Figure 12 presents the ratio of the memory inner product at the
prototype location and at the location of an exemplar.

Figure 12 about here

It can be seen that when the distance to the exemplars is
very small (in length constants) the values at prototype and
exemplar locations are almost identical, because everything adds
without significant falloff. This case corresponds to very small
average dot movement.

When the distance to the exemplars is very large (in length
constants) activity from one exemplar decays to almost zero
before it encounters activity from another exemplar. There is
essentially no representation at the prototype location. This
case corresponds to storage only of single exemplars with no
prototype formation. This corresponds in the experiments to very
large average movement of dots.

There is also a region of optimal prototype enhancement,
which reaches a peak value around 20% greater than the value at
the location of any individual exemplar. We have pl'otted on the
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Figure 12 the length constant for best correlation, 14.5, derived
from the similarity measures of Experiment 1.

Note that the actual experimental values we used were quite
close to the point of maximum prototype enhancement. Although
the theoretical justification for this was not available when the
experiments were performed, it seems the intuitions and pilot
studies of the experimenters were sound, since we desired to
obtain the largest prototype effects possible.

Our experiment complements a similar investigation by Homa
et al. (1973; see also Homa & Chambliss, 1975) in which the
number of exemplars presented to subjects during category
learning was varied from three to nine. On a subsequent
classification test, subjects clasified all the training stimuli
with near perfect accuracy. Performance on new exemplars and
prototypes was worse that on old exemplars, but improved with
size of learning set. Homa et al. used considerably greater
distortions to generate the exemplars than we did; the
experimental setups differ somewhat but we estimate the average
dot displacement in their experiment to be about four length
constants. This value of displacement would not be expected to
yield prototype enhancement above response to old examples, which
was the experimental finding. (At four space constant
displacment, the maximum relative enhanoment of the prototype is
about 0.7). Also, Homa et al. found as the number of exemplars
(corresponding to more dots spaced around the unit circle in the
simulation) increased, the relative prototype enhancement
increased, as would be predicted from the family of curves shown
in Figure 12.
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General Discussion

We have attempted to account for some aspects of human
categorization with a model whose primary assumption holds that
memory traces can lose their individuality when added together in
storage. Although we are under no illusions about the
neurophysiological rigor of the model as formulated here, the
agreement obtained between theory and data suggests that a
neurally inspired explanation of categorization at least deserves
consideration along with rival models. However, two difficultiesp lie in the way of attempts to pit the distributed memory model
against competing proposals. First, in order for the distributed
memory model to generate specific predictions, one must make
assumptions about how stimuli might be represented. We have done
this for dot patterns, but not as yet for more commonly used
stimuli. Second, it is notoriously difficult to get the various
categorization models to make differential predictions (Hintzman
& Ludlam, 1980; Smith & Medin, 1981, p. 182.) Indeed, several
different models can be made to predict the experimental results
reported here.

Consider a pure prototype model that stores only the average
of learned instances, classifying novel stimuli according to
their similarity to the average. Such a model predicts the
results of Experiment 2 as follows. For the one item category,
the stored average is simply the lone learned item. Naturally
this pattern will be classified most accurately on a subsequent
test. The objective prototype will have an advantage over other
new patterns, being more similar to the learned pattern than a
randomly selected exemplar (25.2 RMS units versus 38.5 AMS
units). As category size increases, the pure prototype model
predicts that classification of the prototype should Improve,
because the computed average matches the actual prototype more
and more closely. Meanwhile, accuracy for the old and new
exemplars should converge, because they are equally similar to
the prototype.

Although it is possible to make differential predictions
between the prototype and exemplar models, simply based on
consideration of some special cases, the most telling differences
arise when one considers the effectively dual representation of
exemplars and prototype found in Figure 9, say. Here, the
response to a dot at the prototype location will be identical for
2 exemplars presented four times each and for 8 exemplars
presented once. The inner product in this case will depend only
on the eight distances between center and exemplar and will not
depend on exact arrangement of the exemplars. But the response
to an old exemplar will be greatly different in the two cases:
much larger for the small number of exemplars. A simple
prototype model would not predict this because the average
location is identical in both cases and the displacement from the
average location of an old exemplar is the same.

Exemplar models, too, can be used to explain the present
findings. As a trivial example, one can construct a model thatr stores learned exemplars separately, yet classifies- test items
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using a similarity computation equivalent to the inner product
function proposed here. It is difficult to conceive of a
theoretical motivation for such a model, however, whereas the
distributed memory categorizer is grounded in a theory of
associative memory. One well motivated exemplar model that also
predicts some of the present results is the context model (Medin
& Schaffer, 1978). The context model computes the similarity
between two items as the product of their similarity values along
one or more featural dimensions. As does the inner product
function, this multiplicative operation can judge two nearly
identical stimuli as being dissimilar if they differ in one
highly salient attribute. For the distributed memory model, the

* analogous situation occurs when corresponding elements in two
activity patterns are large compared to other elements and have
opposite signs, thus contributing negatively to the inner
product. It is difficult to compare the two models further,
because they assume such different forms of mental
representation, but if the context model's featural dimensions
are equated with individual dots in a pattern, and if similairty
along one such dimension is assumed to vary with dot
displacement, the the effect of displacement variance (Experiment
1) can be accounted for by the multiplicative rule.

The context model was prompted by Medin and Schaffer's
finding that a test item's similarity to learned exemplars was a
more important determinant of subjects' classification accuracy
than the item's similarity to the category prototype (a result

- - which incidentally argues against a pure prototype model). Since
average old-new similarity in Experiment 2 was correlated with
category size, the context model can explain the observed effects
of manipulating the number of learned exemplars too. However it
is not presently clear that old-new similarity is always a
determining factor of accuracy in categorization tasks. Homa,
Sterling, & Trepel (1981) trained subjects to categorize highly
distorted exemplars and explicitly manipulated the similarity
between old and new exemplars. Although classification accuracy

* for new patterns depended strongly on their similarity to old
* exemplars, the effect of old-new similarity was greater for small

categories (5 old exemplars) than for large ones (20 old
exemplars) a prediction of the distributed memory model. This
effect was especially pronounced for the category prototypes,
which were progressively enhanced in the larger categories (as
also found in Experiment 2). This finding was not well predicted
by the context model.

Homa et al. (1981) interpreted their results as support for
a mixed model of categorization in which a category's

* representation includes both abstracted prototypes and individual
exemplars, with their relative weights determined by a number of
aspects of the experimental situation. It is worth pointing out
that two of these aspects, category size and within-category
variability, are the primary determinants of exemplar versus
prototype dominance in the distributed memory model. Perhaps the
distributed memory model may best be considered as a particular
embodiment of the mixed model proposed by Homa et al. (1981),
since it both stores instances and given suitable input,
abstracts a prototype. Furthermore, the effects of category size
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and variability on the nature of a category's representation find
straightforward explanations in the distributed memory model,
because those effects are direct consequences of the proposed
memory storage operation.

The mixed behavior of the distributed memory model deserves
an additional comment. Intuition tells us that different
categories demand different kinds of mental representations. it
seems inefficient to have always to test a novel item against a
large number of highly similar traces, as required by a strict
exemplar view. Conversely, representing a small set of diverse
category members by their average, as required by a pure
prototype view, invites errors. An attractive feature of the
distributed memory model is that it automatically tailors its
representation of a category to accomodate the variability of the
learned items.

Let us take an important example from outside the world of
dot patterns. Intuitively, we feel some things are too different
from each other to form 'natural' equivalence classes, though it
is always possible to explicitly bind very different things
together to form complex concepts. As an example, consider 'A'
and 'a'. In some contexts, these two forms represent the same
noises and partake of identical interpretations. In other
contexts, they are clearly separated, having different names such
as 'Capital A' and 'small a.' It seems to us highly unlikely and
even rather undesirable that presentation of 'A' and 'a' and
distortions of them would lead to formation of their average as
the best example of the written letter 'ay'. In this case, it
seems best to assume that there are two simple prototypes formed
which in some contexts are given the same names. Formation of a
complicated concept from two simple ones is quite straightforward
in the association model, as a matter of fact. Suppose t,and fa..
are given the same name, g, and fj and f2, are sufficiently
different to be orthogonal to one another. Then we form the
overall A as

A g £l gfz

Presentation of either f, or f,1 would evoke the correct
output, 9. If it were possible to present the sum, (f,+ f,) we
would also evoke the correct output, with larger amplitude.
Sometimes it is not possible to present the two items
simultaneously: suppose 'A' give rise to coding f and 'a' gives
rise to coding f .Presentation of 'A' superimposed on 'a' does
not generally give the sum f, + f2, as the resulting neural

* representation because of a number of kinds of well understood
effects in the initial stages of the visual system. If, however,
the letters are presented in sequence or spatially separated,
generating something like a sum with less mutual interference, it
seems intituitive that the name 'ay' is indeed likely to be
evoked as the strongest common association of two different state
vectors. We can use this technique computationally to extract
common associations from ambiguous or complicated concepts,
(Hayes-Roth & Hayes-Roth, 1977; Elio & J.A.Anderson, 1981) an
application to be described elsewhere.
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Clearly, additional theoretical and experimental work will
* be required to differentiate the distributed memory model from
*other models of categorization. Even without definitive

experimental validation, the approach we have outlined can draw
support from the following observations: (1) The same model has
been successfully applied to a variety of other cognitive

* behaviors; (2) The model is robust with respect to its most
tenous assumptions, those concerning the details of the
representation of stimuli; (3) The model correctly predicts the

-quantitative (Experiment 1) and qualitative (Experiment 2)
results of the experiments presented here, and does so using a
rigl value of its one adjustable parameter. We hope this
discussion raises the possibility that theoretical investigations
of neural processes may shed light on psychological theory.



Page 2

References

Abramowitz, M. & Stegun, I.A. (Eds.) Handbook of Mathematical
Functions, National Bureau of Standards Applied Mathematics
Serie: Number 5_a. Washington, D.C.: U.S. Government
Printing Office, 1964.

Anderson, J.A. A theory for the recognition of items from short
memorized lists. Psychological Review, 1973, 8Q, 417-438.

Anderson, J.A. Neural models with cognitive implications. In D.
LaBerge & S.J. Samuels (Eds.), Basic Processes IM Reading.
Hillsdale, N.J.: Erlbaum Associates, 1977.

Anderson, J.A. Neural models for cognition. Proceedings 2f the
I.E.E.Er nSystem,. Mand Cybernetics, (in press)

Anderson, J.A. & Hinton, G.E. Models of information processing
in the brain. In G.E. Hinton & J.A. Anderson (Eds.),
Parallel Models 2f Associative Memory. Hillsdale, N.J.:
Erlbaum Associates, 1981.

Anderson, J.A., Silverstein, J.W., Ritz, S.A., & Jones, R.S.
Distinctive features, categorical perception, and
probability learning: some applications of a neural model.
Psychological Review, 1977,8A, 413-451.

Barresi, J., Robbins, D., & Shain, K. Role of distinctive
features in the abstraction of related concepts. Journal of
Experimental PJy.hogy_: Human Le and Memory, 1975,
"AL, 360-368.

Bransford, J.D. & Franks, J.J. The abstraction of linguistic
ideas. Cognitive Psychology, 1971, Z, 331-350.

Brooks, L. Non-analytical concept formation and memory for
instances. In E. Rosch & B. Lloyd (Eds.), Cognition and
Categorization. Hillsdale, N.J.: Erlbaum Associates, 1978.

Collins, A.M. & Quillian, M.R. Retrieval time from semantic
memory. Journal of Verbal Learning and Verbal Behavior,
1969, A, 240-248.

Eich, J.M. A composite holographic associative recall model.
Psychological Review, 1982, L2, 627-661.

Elio, R. & Anderson, J.R. The effects of category
generalizatons and instance similarity on on schema
abstraction. ourl Experimental Psycholo: Human
Learning la Me.r.x, 1981, Z, 397-417.

Franks, J.J. & Bransford, J.D., Abstraction of visual patterns.
Journal 2L Experinta Psychology, 1971, Q0, 65-74.

9i



Page 33

Ghiselin, M.T. Categories, life, and thinking. TIeh
An" Brain Seig s, 1981, !L, 269-313.

Goldman, D. & Homa, D. Integrative and metric properties of
abstracted information as a function of category
discriminability, instance variability, and experience.

Jgural 2 Exer en2tal. Psvchology: Human Learning an
Memory, 1977,.,18-28.

Gradshteyn, I.S. & Ryzhik, I.M. Table o Se nrie, ID
Products, Fourth Edition. New York: Academic Press, 1965.

Hartley, J. & Homa, D. Abstraction of stylistic concepts.
Journa2 Exoerimenta P ology: Human Learning and
Memory, 1981, 7, 33-46.

Hayes-Roth, B. & Hayes-Roth, F. Concept learning and the

recognition and classification of exemplars. jounal 21
Verbal Learnin and Verbal Behavior. 1977, 1§, 321-338.

Hebb, D.C. The Organization 2f Behavior. New York: Wiley,
1949.

Hinton, G.E. & Anderson, J.A. (Eds.). ParallelMode ls of
Associative Memory. Hillsdale, N.J.: Erlbaum Associates,
1981.

Hintzman, D.L. & Ludlam, G. Differential forgetting of
prototypes and old instances: Simulation by an
exemplar-based classification model. Memory & C,
1980, t, 378-382.

Homa, D. & Chambliss, D. The relative contributions of common
and distinctive information on the abstraction from
ill-defined categories. Journal of Experimental Psychology:
Human Learning and Memory, 1975,1, 351-59.

Homa, D., Cross, J., Cornell, D., Goldman, D. & Shwartz, S.
Prototype abstraction and classification of new instances as
a function of the number of instances defining the
prototype. Journal 2L Experimental P_ l , 1973, i__,
116-122.

Homa, D., Sterling, S., & Trepel, L. Limitations of
exemplar-based generalization and the abstraction of
categorical information. LJrnal of Experimental
Psychology: Human Larni and Memory. 1981, 7, 418-439.

Kohonen, T. Correlation matrix memories. IETi Transactions 2n
Coptr, 1972, C-21, 353-359.

Kohonen, T. Associatv _ A .st Thtic Approach.
Berlin: Springer-Verlag, 1977.

* Levy, W., Anderson, J.A., & Lehmkuhle, W. (Eds.). S
Change in t=& Nervou System. Hillsdale, N.J.: Erlbaum
Associates, 1977.

,°. . .. . . . . -'. I . ' . .. . . " . "



Page 34

Korn, G.A. & Korn, T.M. Mathematical Handbook __r Sientists
and Engineers, Second Edition. New York: McGraw-Hill,
1968.

McClelland, J.L. & Rumelhart, D.E. An interactive activation
model of context effects in letter perception: Part I. An
account of basic findings. Psychological Review, 1981, 88,
375-497.

Medin, D.L. & Schaffer, M.M. Context theory of classification
learning. Psychological Review, 1978, B5, 207-238.

.- Mervis, C.B. & Rosch, E. Categorization of natural objects.
Annual Reviei 2f Psyghol~gy, 1981, 3, 89-115.

Millward, R.B., Aikin, J. & Wickens, T.D. The Human Learning
Laboratory at Brown University. In Computers in the
Psychological Laborato.A. L.ql Z. Maynard, Mass.: Digital

. Equipment Corporation, 1972.

Murdock, B.B., Jr. A theory for the storage and retrieval of
item and associative information. Psychological Review,
1982, ., 609-626.

Neisser, U. Cognitive Psychology. New York:
Appleton-Century-Crofts, 1967.

Nelson, K. Concept, word and sentences: Interrelations in
acquisition and development. Psvchological Review, 1974,
81, 267-285.

Omohundro, J. & Homa, D. Search for abstracted information.
American Journal of Psychology. 1981, 9, 324-331.

Posner, M.I. Abstraction and the process of recognition. In
J.T. Spence & G.H. Bower (Eds.), Advances in Laning and
Mtai (oi 3_. New York: Academic Press, 1969.

Posner, M.I., Goldsmith, R. & Welton, K.E. Perceived distance
and the classification of distorted dot patterns. Journal
go Experimental PsYhQAo, 1967, 72., 28-38.

Posner, M.I. & Keele, S.W. On the genesis of abstract ideas.
Journal of Exerimental PEscoogy, 1968, 7, 353-363.

Posner, M.I. & Keele, S.W. Retention of abstract ideas.
Journal of jeimp1 Pychology, 1970, 8a, 304-308.

Reed, S.K. Pattern recognition and categorization. Cognitive
Psc. l. gy.Y, 1972, 3., 382-407.

Reed, S.K. Category V. Item learning: implications for
categorization models. Memory and Cognition, 1978, 6L,
612-620.



Page 35

Reitman, J.S. & Bower, G.H. Storage and later recognition of
exemplars of concepts. Cognitive Psychology, 1973, 1,
194-206.

Rips, L.J., Shoben, E.J. & Smith, E.E. Semantic distance and
the verification of semantic relations. Journal 2f Verbal
L-Arnin,& and Vrbal Behavior, 1973, 1Z, 1-20.

Robbins, D., Barresi, J., Compton, P., Furst, A., Russo, M. &
Smith, M.A. The genesis and use of exemplar vs. prototype
knowledge in abstract category learning. Memory and
CofnitiOn, 1978, 6, 473-480.

Rumelhart, D.E. & McClelland, J.L. An interactive activation
model of context effects in letter perception: Part 2. The
contextual enhancement effect and some tests and extensions
of the model. Psychological Review, 1982, B9, 60-94.

Smith, E.E. & Medin, D.L. The Psychology f Conceptual
Processes, Cambridge, Mass. : Harvard University Press,
1981.

Stevens, K.A. Computation of locally parallel structure.
Biological Cybernetics, 1978, 29, 19-28.

Strange, W., Keeney, T., Kessel, F.S. & Jenkins, J.J.
Abstraction over time from distortions of random dot
patterns -- a replication. Journal of Experimental
Psycholggv, 1970, 8a, 508-510.

White, B.W. Recognition of familiar characteristics under an
unfamiliar transformation. Perceptual and Motgr Skills,
1962, 1. 107-116.

..

................. .



Page 36

Figure Captions

Figure 1. Models assume two sets of N, neurons alpha
projecting to beta. Every neuron in alpha projects to every
neuron in beta. This drawing has N = 6. From Anderson,
Silverstein, Ritz and Jones, 1977. Reprinted by permission.
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examples at various levels of distortion. Dots were generated on
a 512 by 512 array and presented to subjects on a CRT screen.
The number refers to the average number of locations moved on the
array. A distance of 100 locations is indicated.

Figure 3. Mean similarity ratings as a function of average
displacement. Filled circles, no-variance pairs, open circles
high-variance pairs. The horizontal variablity of the high
variance points is smaller than the width of the symbols.

Figure 4. Activity pattern on a hypothetical cortex due to
a single dot in the real world. There is an exponential decay
with distance from a central point. Height corresponds to
activity. Length constant of the exponential is shown.

Figure 5. Value of integral between two activity patterns
with exponential falloff and relative displacement of their
centers. The graph is presented with the y axis inverted to
correspond to the graph of experimental data presented in Figure
3.

Figure 6. Percentage of correct test trial classifications
for Experiment 2.

Figure 7. Correct reaction times for classification for
Experiment 2.

Figure 8. The sum of four exemplars each due to a single
dot. Demonstration of the effect of increasing spacing between
dots. There is relatively greater representation of individual
exemplars as spacing increases but still a significant buildup at
the prototype location. The left hand column gives the simple
sum of the individual exemplar activity patterns; the right hand
column equates the maximum activity of each displacment so shapes
of curves can be compared.

Figure 9. Demonstration of the qualitative difference
between a 'memory, sum constructed from two different exemplars
and one constructed from eight different exemplars. Exemplars in
both cases had the same average separation from the prototype
location. Note the very 'lumpy' memory produced when only a few
exemplars are stored. In this case, there is representation of
item information; when many exemplars are stored, the prototype
gives the largest response.

Figure 10. Simulations of Experiment 2 with various length
constants, showing the shift from learning of specifics about old
exemplars (small length constants) to prototype representation
(with more presented exemplars and larger length constants).
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Figure 11. Simulation of Experiment 2 using the bestfitting length constant determined in the similarity experiment,
Experiment 1. Compare with Figure 6.

Figure 12. This simulation asssumed varying numbers of dots(from 2 to 214) were arranged on the unit circle. The prototy;ewas located at the center of the circle. The graph gives theratio of the system response to a dot at the prototype locationand the system response to a dot at the location of an oldexemplar. The y. axis gives the radius of the circle in lengthconstants. The average displacement of patterns used inExperiment 2 is indicated on the Figure.



Tabe I

Displacemeut,- used to create the distortions of

Experi.ment 1 and two distance measures

Level Displacements Average Distance RMS Distance

0 0 0.0 0.0

15 15 15.0 15.0

30 30 30.0 30.0
""45 45 45.0 4 .

60 60 60.0 60.0

90 90 90.0 90.0

151f 0-5, 25 -30a 13.6 + 0 .5b 18.5 + 0 5b

30H 0-10, 50-60 27.2 + 1.0 36.8 + 1.0

45H 0-15, 75-90 40.7 + 1.8 55.4 + 1.6

6011 0-20, 100-120 54.4 + 2.1 73. 7 + 1.6

9011 0-30, 150-180 81.4 + 2.8 111.1 + 2.6

aFive dots were displaced by sampi ing ',nifnrmlv from the first
interval, four by sampling from the second interval.

b~lean + standard deviation of 200 randomly chosern patterns at
each level.
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Table 2

Experimental and computed similarity values for

Experiment 1. Calculations as described in text

Ave--rage

Displacement in Observed Com~puted

Level Length Constants Similarity Similarity

0 0.00 1.59 1.59

15 0.81 2.43 2-.45

30 1.63 3.85 4.05

45 2.44 5.09 5.48

60 3.26 5.79 6.50

90 4.89 6.73 7.54

15H- 0.74 2.82 2.43

30H 1.46 4.45 3.70

45H 2.21 5.16 4.64

60H1 2.94 5.84 5.32

90H1 4.42 6.76 6.23

Note. The computed space constant for best fit

was 18.42 oscilloscope screen units.
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