
'RD-Ai34 07e COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA
INTEGRATED ENVIRONMENT.. (U) INTERMETRICS INC CAMBRIDGE
MA 05 JAN 83 IR-682-i F306e2-88--C-629i

UNCLASSIFIED P/G 912 N

smmomEohEEssiE
EEEEEEohhohhhE
EhhEEmhEmhhmhI

111.0 W5 14-

-~ ii .- 1~ 1 2.2

36-

L62 1 20

1 1.

iilo

11111L2 -4 1-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -I963-A

.......- S
.

,. .- ' . , .. , , - • • ..-. -* . *, , _ , .* _ . , . .-. - . .- r . .

IR-682-1

COMPUTER PROGRAM
DEVELOPMENT SPECIFICATION

FOR Ada
INTEGRATED ENVIRONMENT:

MAPSE DEBUGGING FACILITIES
B5-AIE (1). DBUG (1)

5 JANUARY 1983

CONTRACT F30602-80-C-0291

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD
GRIFFISS AFB, N.Y. 13441

PREPARED BY: ZEE INTERMETRICS, INC.

733 CONCORD AVE.
L.J CAMBRIDGE, MA 02138

DTIC
i_ _ _C ELECTEI

Appoved for public release O

LLJ Distribution Uznimited
* B

83 09 !- 056

INTERMETRICS !NCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617)661.1840
TELEX NO. 710 320 7523

KIM:

B5-AI&E(l) .DBUG(l)

This document was produced under contract F30602-80--0291/
sAPOOO9 for the Rome Air Development Center. Mr. Donald Mark is the
Program Engineer for the Air Force. Mr. Mike Ryer is the Project
Manager for Internetrics.

A C CeSI -~For

DTV2

Distribi'tton/
N* Availabi1i ty Coacs,

* ar'~ ~ vail and/or

,fS~,r :Dis3t spucial

ail

BS-AIE(l) .DBUG(l)

TABLE OF CONTENTS

Page

1.0 SCOPE 1

1.1 Identification 1
1.2 Functional Summary 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Program Definition Documents 3
2.2 Inter Subsystem Specifications 3
2.3 Military Specifications and Standards 3

3.0 REQUIREMENTS 5

3.1 Introduction 5

3.1.1 General Description 5
3.1.2 Peripheral Equipment Identification 5
3.1.3 Interface Identification 5

3.2 Functional Description 5

3.2.1 Equipment Description 5
3.2.2 Computer Input/Output Utilization 5
3.2.3 Computer Interface Block Diagram 6
3.2.4 Program Interfaces 6

3.2.4.1 Compiler Interface 6
3.2.4.2 KAPSE Interface 7

3.2.4.2.1 DSR Interface 7
3.2.4.2.2 Control Interface 9

3.2.4.3 Program Library Interface 9

3.2.5 Functional Description 10

3.3 Detailed Functional Requirements 12

3.3.1 COMMAND PROCESSOR 12

3.3.1.1 Inputs 12

3.3.1.1.1 Language Overview 12

i

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

[.4

B5-AIE(I) .DBUG(1)

TABLE OF CONTENTS (Cont'd.)

Pace

3.3.1.2 Command Repertoire 14
3.3.1.3 Processing 23
3.3.1.4 Outputs 25

3.3.2 BREAKPOINT COMMAND PROCEDURES 25

3.3.2.1 Inputs 25
3.3.2.2 Processing 25

3.3.2.2.1 Creating Breakpoints 26

3.3.2.2.1.1 Statement
Breakpoints 26

3.3.2.2.1.2 Global
Breakpoints 26

3.3.2.2.2 Maintaining Break-
points 27

3.3.2.3 Outputs 27

3.3.3 EXECUTION CONTROL PROCEDURES 27

3.3.3.1 Inputs 27
3.3.3.2 Processing 28

3.3.3.2.1 Resuming a User
Program 28

3.3.2.2.2 Task Control 28
3.3.3.2.3 Returning From a User

Program 29

3.3.3.3 Outputs 29

3.3.4 UTILITY PROCEDURES 29

3.3.4.1 Processing 29

3.3.4.1.1 DBUG Support Routine 30
3.3.4.1.2 DSR Interface Routine 31
3.3.4.1.3 Ada Expression and

Evaluation 31

3.3.4.2 Outputs 31

ii

' .INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS C2138 • (617) 661.1840

B5-AIE(1) .DBUG(1)

TABLE OF CONTENTS (Cont'd.)

Page

3.3.5 INFORMATION COMMAND PROCEDURES 31

3.3.5.1 Inputs 32
3.3.5.2 Processing 32
3.3.5.3 Outputs 33

3.3.6 PROGRAM LIBRARY ACCESS PROCEDURES 33

3.3.6.1 Inputs 33
3.3.6.2 Processing 33
3.3.6.3 Outputs 34

3.3.7 DBUG DATABASE 34

3.3.7.1 Inputs and Outputs 35
3.3.7.2 Processing 35

3.4 Adaptation 35

3.4.1 DBUG Size Restrictions 35
3.4.2 DBUG Extensions 35.

4.0 QUALITY ASSURANCE PROVISIONS 37

4.1 Introduction 37
4.2 Test Requirements 37

4.2.1 Development Testing 37

4.2.1.1 Subprogram Testing 37
4.2.1.2 CPCI Testing 38
4.2.1.3 Subsystem Integration Testing 38

4.2.2 Formal CPCI Testing 38

4.3 Acceptance Test Requirements 43

FIGURES

FIGURE 3-1: DBUG Procedures and Interfaces 11

- I3Eiii

"" NTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETS 02138 * (617) 661-1840

-.- . a..........A..

B5-AIE(1) .DBUG(1)

LEFT BLANK INTENTIONA.LY

* iv

I N'rERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSET7TS 02138 *(617) 661.1840

B5-AIE(1).DBUG(l)

1.0 SCOPE

---,)This document specifies the requirements for the performance
and verification of the AIE debugging facilities. It includes
descriptions of: (1) the user debug command language; (2) the
DEBUGGER (DBUG) subsystem that provides these facilities; and (3)
the interface between DBUG and other AIE components, through which
debugging tasks are performed.

1.1 Identification r -

DBUG is classified within the AIE configuration both as a
subsystem and as a CPCIj It consists of the following CPC's.

- COMMAND PROCESSOR; (A)
EXECUTION CONTROL PROCEDURES, (B)

"-" BREAKPOI~ COMMAND PROCEDURES, (C)

UTILITY PROCEDURES (D)
INFORMATION COMMAND PROCEDURES; (E)
PROGRAM LIBRARY ACCESS PROCEDURES; (F)

* DBUG DATABASE. (G)

1.2 Functional Summary

DBUG provides facilities for dynamic, symbolic debugging of
user programs within the AIE. A program is run under DBUG control
with user-specified points at which execution is suspended
(breakpoints). At such points, the user can examine and modify
program variables, trace and modify the flow of execution, and
establish additional breakpoints. The user specifies debugging
actions via a command language that permits ordinary Ada
representations for most program elements. Commands can be issued
interactively or stored as scripts for batch mode processing.

N.

1

INTEMMETRICS INCORPORATED * 733 CCNCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02139 * 61,") 861.1840

q ; . .o ' ., , - . - - _- . . - - . : - -- , , . .-.

',

"" ~B5-AIE (l1). DBOG (l1)

2

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSE7 TS 02138 f* (67) 661.1840

' . -** . -

B5-AIE(1) .DBUG(l)

2.0 APPLICABLE DOCUMENTS

2.1 Program Definition Documents

Reference Manual for the Ada Programmin Lanauace, Draft
proposed ANSI standard document, July 1982.

Requirements for Ada Programming Support Environments,
"STONE4AN", February 1980, Depart.ment of-Defense.

Revised Statement of Work, (15 March 1980).

2.2 Inter Subsystem Specifications

System Specification for Ada Integrated Environment, Type A,
AIE(l).

Computer Program Development Specifications for Ada Integrated
Environment (Type B5):

Ada Compiler Phases, AIE(l).COMP(l)

KAPSE/Database, AIE(l) .KAPSE(1)

MAPSE Command Processor, AIE(1).MCP(l)

MAPSE Generation ind Support, AIE(l).MGS(l)

Virtual Memory Methodology, AIE(1).VMM(2)

Program Integration Facilities, AIE(l).PIF(l)

MAPSE Text Editor, AIE(1).TXED(1)

Technical Report (Interim), IR-684

2.3 Military Specifications and Standards

Data item description Dl-E-30139, USAF, 24 July 1976.

3

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 9 617) 661-1840

B5-AIE(1) .DBUG(1)

LEFT BLANK INTENTIONALLY

4

JNTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMSBRI DG E. MASSACH USETTS 02138 (6171 661-1B40

B5-AIE(l) .DBUG(l)

3.0 REQUIREMENTS

3.1 Introduction

This section provides the set of requirements for DBUG, a
symbolic debugging facility within the Ada Integrated Environment
(AIE).

3.1.1 General Description

DBUG is a MAPSE tool that allows a user to control an executing
program, suspending execution when desired to examine its state. To
do this, DBUG requires support from a variety of AIE components.
Suspension of program execution within the DBUG environment occurs
at preset breakpoints. Modifications to program variables can be
made at such breakpoints and execution resumed with these new
values. The user specifies debugging actions via a DBUG command

" language, either interactively or in a script for batch mode
processing.

-• 3.1.2 Peripheral Equipment Identification

Not applicable.

3.f.3 Interface Identification

As do all MAPSE tools, DBUG interfaces with the KAPSE [see
AIE(l).KAPSE(l)] for all machine-dependent operations. It
additionally requires a DBUG-specific interface with the KAPSE
Runtime System (KAPSE.RTS) to process breakpoints.

Other significant interfaces are with the Ada compiler [see
[. AIE(l).COMP(1)], which must provide an object module in a format

required for debugging purposes and with the Program Integration
Facilities [see AIE(l).PIF(l)] whose program library tools support
symbolic debugging. These interfaces are described in more detail

+. in 3.2.4.

3.2 Functional Description

* 3.2.1 Equipment Description

Not applicable.

3.2.2 Computer Input/Output Utilization

Not applicable.

5

" NTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 617) 661-1840

* **

B5-AIE(l) .DBUG(l)

3.2.3 Computer Interface Block Diagram

Not applicable.

3.2.4 Procram Interfaces

DBUG is invoked via the MAPSE Command Processor [AIE(l).MCP(l)]
with four parameters. The first parameter to DBUG specifies which
program DBUG is to control. This argument is a "window" on the
context object of the user program. See [AIE(l).KAPSE(l)] for a
description of window and context object. This parameter can be
either the name of a program that is to begin execution under DBUG
or the name of the program context object if the program to be
debugged has already begun execution and has been suspended (e.g.,
if an unhandled exception has been raised or the program has been
interrupted). The second parameter is an ASCII string containing
the parameters to be passed to the user program being debugged. If
the user program has already begun execution when DBUG is called,
this second parameter is ignored.

The third and fourth parameters, respectively, specify the
source from which DBUG commands are input, and the source to which
output is to be directed. The defaults for these are the standard
input and standard output devices, namely the user's terminal. In
the case that DBUG is being run in the background, these are a
script of DBUG commands and a file to write output to; the MCP
interface handles I/O direction.

3.2.4.1 Compiler Interface

The Ada compiler has two user-specified parameters that affect
the functionality seen by the DBUG user. These are DEBUG and
OPTIMIZE and are described in AIE(l).COMP(l).

The DEBUG parameter value of BREAK causes the compiler to
insert hooks before each statement in the object code of each module
compiled with this directive. There are four types of hooks. Entry
and exit hooks mark the entries and exits for subprograms; flow of
control hooks mark statements in the program where the flow of
control changes; and statement hooks mark the beginnings of all
other statements. See Section 3.2.4.2 for a discussion of the
processing of hooks. For modules compiled without hooks, the AFTER,
STEP and ON STEP commands, and the FLOW option for the TRACE command
are not avatlable.

The ALTER value of the DEBUG parameter restricts the compiler
to optimization within statement boundaries. If this option is not
specified, and the OPTIMIZE parameter value TIME (or SPACE) is used,
the compiler is permitted to move code and do other optimizations.
In this case the DBUG Execution Control Commands and the
modification of program variables are not guaranteed to have their
intended effect. In addition, the GOTO functions are not
available.

6

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSE TS 02138 * 617 661-1840

-. . .J

BS-AIE(l).DBUG(l)

When a user issues a DBUG command that might not have the
intended effect due to the OPTIMIZE or DEBUG parameters of the
specific compilation unit, DBUG prints a brief warning message and

*then will try to process the command. An example of this would be a
reference a variable or statement which has been optimized away. In

* order to use DBUG in complete confidence, the DEBUG (ALTER, BREAK)
* configuration should be used during compilation.

DBUG checks the options and pragmas used in each compilation
unit separately. The most optimized level found is used to
determine the restrictions which apply to the unit.

The back end of the compiler (COMP.BE) provides a statement
table which is used by the Breakpoint Command Package to set
breakpoints. This table has two kinds of records, one for code with
hooks and one for code without. The record for hooked code will
contain the statement number and address of the hook. The record
for unhooked code will contain the statement number, the address of
the first instruction for the statement, and the sum of the lengths
of those instructions that would have to be replaced by a hook,

3.2.4.2 KAPSE Interface

DBUG control over user program execution is accomplished by
communication primitives between the UTILITY PROCEDURES CPC and the
DBUG Support Routine (DSR), which is linked to the user program.

Various pieces of information need to be passed between the DSR
and DBUG. The following sections describe that information, as well
as defining the hook mechanism. Details of the implementation of
hooks, and the information passed between DBUG and DSR are described
informally.

3.2.4.2.1 DSR Interface

In general, information is passed to and from the DSR as a set
of codes representing specific actions to take or indicating events
that have occurred, and an object representing a value on the target
machine (e.g., the result of a memory fetch requested by DBUG, or
the identity of an exception).

(a) Execution Control. DBUG controls execution of the user program
by using communication primitives provided by the KAPSE to invoke
DSR functions such as continuing program execution and activating
breakpoints.

7

ITERMETRICS INCORPORATED 7 733 CONCORD AVENUE * CAMSRIDGE, MASSACHUSE TTS 02138 , (617) 661-1840H. ..77 .7. .. ,..._

i '[B5-AIE(1) .DBOGk(i)

The capability of halting the program at user defined
locations, as well as certain of the history trace functions, are
facilitated by the presence of hooks. Hooks are special branches to
the DSR. These are installed in the object module by the Ada
Compiler under control of the DEBUG parameter. When the value of
the parameter is BREAK, hooks are installed between every statement
of the compilation units affected by the parameter. If the DEBUG
(BREAK) parameter was not specified, the user may insert breakpoints
at specified statements, but will not be able to invoke some
commands that are available with hooks, such as single stepping and

*maintaining a history trace of flow-of-control constructs.

Both compiler-generated hooks and breakpoints inserted by DBUG
are special branches to the DSR. Special care is taken in the DSR

* and in the compiler code-generating phases to assure that the hooks
are as small and as efficient as possible so that an unactivated
hook or breakpoint has minimal effect on the executing program.

* When a program is run under DBUG, the execution of an activated hook
or breakpoint will result in the DSR giving control to DBUG to
perform the processing associated with the breakpoint. In certain

. circumstances, such as when single stepping is performed or when
some history trace functions have been invoked, unactivated hooks
may also pass control to DBUG.

In addition to halting the program, DBUG has the capability of
resuming the program at the point at which it was halted or at a
user specified statement (e.g., GOTO). To accomplish this, the DSR
passes the RTS the address at which execution should resume.

(b) Value Referencing. DBUG can modify and print the values of
program variables. DBUG accomplishes this by calling the DSR,
supplying an address and a value to be stored there.

(c) Exception Handling. The DSR can cause the RTS to trap specific
exceptions, all exceptions, or only unhandled exceptions. The RTS

*: raise handler does not unwind the stack until it finds a handler for
" the specific exception. (The run-time stack contains information

from which the raise handler can compute which stack frames handle

which exceptions.) This means that the user's program context is
saved when an unhandled exception occurs rather than having the
program unwind to top level. Control returns to DBUG and the user
can then take corrective action. This exception handling mechanism

" is always, used, even when DBUG is not present at the time of the
exception. This permits the user, once his program has terminated
due to an unhandled exception, to invoke DBUG, examine his program
state, and take corrective action as necessary.

If the user has specified that the program be halted whenever
certain exceptions occur, the DSR will inform the RTS to return to
the DSR when any exception is raised, indicating what exception has
occurred. The DSR will then determine if the particular exception
has been specified by the user and, if so, will return control to

8

* INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSA^HUSE TS 012138 9 (617 661 .84C

B5-AIE(l) .DBUG(l)

DBUG indicating the exception and where it took place. If the
exception has not been specified, the DSR will inform the RTS to
process the exception in the normal manner.

(d) Tkn Support. DBUG allows the user to control the execution
of tas within a program (see DELAY, PRIORITY and ABORT), as well
as to display the status of some or all of them (see DISPLAY TASKS).
This function is provided by communication between the DSR and the
tasking support package of KAPSE.RTS.

When a program is executing under DBUG, every creation and
activation of a task will result in the tasking support package
notifying the DSR of the current program location and the task
control block associated with the task. The DSR will record this
data to be used later in identifying the task while processing
breakpoints and exceptions and displaying information to the user.

* If the user has specified that a trace of tasking events be
maintained, the tasking support package will notify the DSR of every
tasking event, indicating which event occurred, as well as the
current program location.

The tasking support package will also supply, on request from
the DSR, access to the various data structures associated with a
task including its dependency list, ENTRY and ACCEPT body unit data
area, etc., as well as access to the priority queues.

In response to the user setting the %HI PRIORITY DBUG variable,
the tasking support package will be instructed to suspend any task
whose priority is less than or equal to the priority value specified
when control returns to DBUG.

3.2.4.2.2 Control Interface

The KAPSE provides a mechanism so that when a special character
(interrupt) is entered at the user terminal, the current program
associated with that terminal is suspended. If the program is being
debugged, the KAPSE will return control to DBUG. Otherwise, the
KAPSE will return control to the process that initiated the program
(e.g., MCP).

3.2.4.3 Program Library Interface

DBUG requires most of the information stored in the Program
Library for the program being debugged. This information is
accessed through the Program Library Interface Package of the

*Program Integration Facilities [AIE(l).PIF(l)].

The DIANA for the compilation units of the user's program is
accessed directly from the Program Library. It provides symbol
table information for the Analyze procedure, storage information for
Evaluate, and other information about user program entities such as
statements.

9

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02128 * 6171 661-1840

B5-AIE(l) .DBUG(l)

The remainder of the Program Library is referenced through CPCs of
the Interface Package.

The statement tables are accessed through the Object
Identification Package and Object Module Format CPCs. They provide
statement address and other information necessary for setting
breakpoints and displaying traces. The user program's relocation
map, created by the Linker, is accessed through the Library
Management Package. It is used to calculate absolute addresses of
variables and statements.

The Cross Reference Package supplies cross references for the
LIST and MODIFY commands. The Source Reconstruction Package

"- generates lines of source for the LIST command.

3.2.5 Functional Description

DBUG is composed of various Ada subprograms, tasks and packages
linked together into an executable program. Figure 3-1 indicates

"" the flow and data interfaces between the components of DBUG that are
described below.

COMMAND PROCESSOR accepts user commands in the DBUG Command
Language (DCL) and calls other CPCs as necessary for processing. It
generates and later interprets the parse trees representing
breakpoint scripts. It evaluates DCL expressions, which can include
DBUG and user-program variables.

BREAKPOINT COMMAND PROCEDURES contains the subprograms that
provide functions needed to create and maintain user specified
breakpoints. These functions include reading and writing to a
breakpoint table, and placing and removing breakpoint hooks as
necessary.

EXECUTION CONTROL PROCEDURES contains the subprograms that
provide the functions needed to control the execution of the user
program. These functions include stopping at a breakpoint and
executing any script that is associated with that breakpoint,
controlling the STEP function, providing the GOTO function, and
proceeding at the correct user program address.

UTILITY PROCEDURES contains the subprograms that provide
functions needed by several of the other DBUG CPCs. These functions
include communicating with the program context being debugged,
modification of storage and communicating with other programs such
as the program integration tools.

" INFORMATION COMMAND PROCEDURES provides the functions needed to
* display information to the user. This information includes the
• values of program variables displayed according to their type, the

announcement of b:eakpoints when they are encountered and the
listing of the program source.

10

INTERMETRICSINCORPORA7ED * 733 CONCORD AVENUE C ,AMBRIDGE, MASSACHUSETTS02138 t6i7 561-1940

USER B5-AIE(l) .DBUG(1)

I COMMAND D)BLG CPCI
PROCESSOR

CPC

BREAKPOINT EXECUTION INFORMATION

COMMAND COTOIOMN
PROCEDURES PROCEDURES PROCEDURES

CP CPIP

PROGRAM

DATABASE PROCEDURES j

PROCEDURESccCPI

4----CHANNEL
LIBRARY [1U
I NTERFACE ISUPPORTI
PACKAGE ROUTINES

CPCI KPE
USER PROGRAMj

-_ 0CALL

--KAPSE INTER-PROGRAM
COMMUN ICATION

1483414-1

FIGURE 3-1: DBUG Procedures and interfaces

INTERMVETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. ASSACHUSET-iS 02138 - (617) 661.1840

. r .o " -'-s.- " n , - S U.. .- , '/ " r - -r -" i
"
-- - -

"
' . " . .

B5-AIE(1).DBUG(!)

PROGRAM LIBRARY ACCESS PROCEDURES interfaces with the
user-proram's program library. They provide access to the symbol
and statement tables, linker information, cross reference
information and source listings.

DBUG DATABASE controls global DBUG information which must be
" accessed by more than one CPC. This information includes the

breakpoint tables, the breakpoint scripts and the current program
state.

* 3.3 Detailed Functional Requirements

3.3.1 COMMAND PROCESSOR

3.3.1.1 Inputs

Input to COMMAND PROCESSOR is a sequence of one or more
commands written in the DBUG Command Language described below.
There are four basic categories of commands:

(1) breakpoint commands - these allow the user to set, remove,
suspend and restore various breakpoints and actions associated with
them.

(2) execution control - these allow the user to stop, start,
and modify the execution of his program.

(3) information commands - these allow the user to inspect the
state of his program by examining the values of variables, the
current location of execution and the history of execution (call
chain, task scheduling, rendezvous, jump flow).

(4) DBUG control - these initiate and suspend DBUG processing,
read in command files, and redirect output.

3.3.1.1.1 Language Overview

The Debug Command Language (DCL) is based upon a subset of the
MCP command language (MCL). The subset excludes multiple streams of
execution and database object manipulation. The subset retains the
MCL syntax for commands, expressions, script specification and
script invocation.

DCL extends MCL in two ways. DBUG-specific commands and
predefined variables have been added. In addition, expressions have
been generalized to accept user-program variable names in the same

contexts as DBUG Command Processor (DCP) variable names. As in MCL,
DCP variable names begin with a "%".

12

INTERMETRCS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDG'. MASSACHUSETTS 0"238 • 617; 661-'340

B5-AIE(1) .DBUG(l)

* . A DBUG command generally consists of a keyword specifying an
action to be performed and any parameters required by the specific
command. When user-program variables are required in a DBUG
command, they may be expressed in normal Ada syntax. This includes
access dereferencing, array subscripting and record component
selection. Ambiguous names may be qualified using normal Ada syntax
as well. The expressions used as array subscripts may not include
function calls. In addition, operators are not resolved to any
overloaded definition. All lists of identifiers provided as
parameters to a DBUG command are separated by commas. These include
variable names, statement identifiers and exception names. A DBUG
command is terminated by semicolon or newline. The stored command
part of breakpoint commands which begin with the keyword "BEGIN", is

* terminated only by the matching "END".

-. The term 'statement', as used in this document, refers to
entities which are assigned a statement number by the Unit Lister
[see AIE(1).PIF(1) . These include simple or compound statements
(as described in the Ada LRM) as well as declarations of types and
objects.

User-program statement identifiers and scope identifiers are
expressed in DBUG commands using a simple extension to Ada name
qualification. Statements are referenced by suffixing their
procedure name by a dot followed by the sequential statement number
relative to the start of the procedure. This is the same statement
number used by the Unit Lister. When the user wants to put a

* breakpoint at a statement in the current scope, no subprogram name
is necessary. To distinguish between spec and body, the statement
number may be preceeded by a letter indicating either spec (S) or
body (B). Body is the default.

A subprogram is referred to by name, unless it is overloaded.
In that case it is referred to by its name followed by a
specification of its parameter types. The parameter specification
is similar to the formal part of a subprogram specification (Ada LRM
6-1), but without default expressions. It may be abbreviated by
leaving out identifier lists and modes or entire parameter
specifications which are not needed for overload resolution. For
functions, the parameter specification may optionally be followed by
the return type. DBUG will issue an error message if a subprogram

*. specification is ambiguous.

Examples:

*fl BREAK BEFORE 5 -- sets breakpoint before statement
-- 5 of current scope

* BREAK BEFORE proc(x,y: in integer; z: out real).Bl0
-- sets breakpoint before statement

1-- 0 of a definition
o--of proc in the current scope

BREAK BEFORE proc(integer; integer; real).10
-- refers to the same statement

13

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

, . .. -

B5-AIE(l) .DBUG(l)

* BREAK BEFORE proc(z: out real).10
-- proc is identified by its third
-- parameter

BREAK BEFORE proc(integer).10 -- proc is identified by its first
-- parameter

* BREAK BEFORE func(integer)real.10
-- sets breakpoint before statement

1-- 0 of a definition of the
-- function func in the current
-- scope

SCOPE TO prog.proc -- change scope to inside
-- procedure "proc" inside scope
-- "prog"

3.3.1.2 Command Repertoire

The following command descriptions use the following notation
* conventions: square brackets C] surround options; parentheses ()

surround optional words that help convey the meaning of the command;
angle brackets <> surround higher-level constructs.

(a) Breakpoint Commands. Breakpoint commands establish breakpoints
in user program. No other action is taken. A breakpoint
represents a place in a program where execution is to be suspended
to allow the user to examine various aspects of the program. User
commands to DBUG can be seen as executing at the point that the user
program is halted.

Breakpoints can be established at statements and the entry or

exit of subprograms, or on the occurrence of exceptions. The STEP

command also defines a breakpoint. Breakpoints may not be permitted
at all statements in optimized code. See Section 3.2.4.2.

Following is a summary of the breakpoint commands. Each
"- keyword given below may be prefixed by a breakpoint identifier

and/or the keyword BREAK.

AFTER <list of statement and label identifiers>

-- break after the specified
-- statements and labels

BEFORE <list of statement and label identifiers>

-- break before the specified
-- statements and labels

ON STEP -- perform this procedure at the
-- completion of single step

14

JNTERMETRICS INCORPORATED * 733CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS02138 • '67' 661 :840

, -I- . .* * e, ,h ,,, . ,.,. . ,:r,_. .,,L ... ,

B5-AIE(l) .BUG(l)

MODIFY (OF) <list of variables>

-- break before each statement
-- that modifies the specified
-- variables

EXCEPTIONS <list of exceptions>

-- break on raise of these
-- exceptions

ALLEXCEPTIONS -- break on raise of all
-- exceptions

UNHANDLED EXCEPTIONS -- break on unhandled exceptions

ON ENTRY -- break on entry to all
-- subprograms and entries

ONEXIT -- break on exit from all

-- subprograms and entries

Following are the breakpoint modification ccmmands.

DEACTIVATE <list of breakpoint
identifiers> ALLI <breakpoint command>

-- suspends action of breakpoint

REACTIVATE <list of breakpoint
identifiers> IALLI <breakpoint command>

-- restores action of breakpoint

REMOVE 'list of breakpoint statement and/or label
identifiers> IALLI <breakpoint command>

-- removes and forgets the
-- specified breakpoints.

Commands that set breakpoints may be labelled by an identifier
followed by a colon. Those commands not labelled by the user are
given a unique name by DBUG. The unique names are constructed by
concatenating the letters "bkpt" with an integer string. (Examples:
bkptl, bkpt465.)

"he breakpoints set by the commands can later be referred to by
breakpoint identifier. If the user specifies a breakpoint command
with an identifier which is already in use, the command is appended
to the commands already associated with that breakpoint identifier.

Breakpoint commands may contain a sequence of DBUG commands.
These commands are executed when the breakpoint is encountered in
the flow of the user program. After the ccmmands have been

15

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE , CAMBRIDGE. MASSACHUSETTS 02138 , 861 7 661-1840

B5-AIE(l) .DBUG(l)

executed, control is normally returned to the user. However, if one
of the commands is an execution control command such as PROCEED,
control will be returned to the program at that point. If no
sequence of commands is specified, the program execution is halted

" and the user is allowed to cive DBUG commands interactively.

These stored commands are specified by the keyword BEGIN
following the breakpoint command on the same line. The stored
commands may then be typed, one per f- ne or'separated by semicolons
as in the MAPSE Command Language. The BEGIN is terminated by the
matching occurrence of the keyword END. A stored command sequence
can contain nested BEGIN-END blocks.

Breakpoints can be removed by use of the REMOVE command. The
breakpoint and its stored actions can be suspended by use of the
DEACTIVATE command. The REACTIVATE command restores the actions of
a breakpoint that has been DEACTIVATEd. These three commands can be
followed by a breakpoint identifier list. Thus entire groups of
identifiers can be manipulated. The keyword ALL is permitted as a
breakpoint identifier and specifies all breakpoints in the user
program.

A second form of the REMOVE, DEACTIVATE and REACTIVATE commands
". is supplied to permit finer control over breakpoint insertion and
"* deletion. Each of the breakpoint commands may be preceded by any of

the three keywords of the breakpoint modification commands. For
example:

REMOVE BEFORE CALCSINE. 24

DEACTIVATE MODIFY MASTERSWITCH

Only the specified breakpoints are affected. These breakpoint
commands following the modification keyword may not include the list
of stored commands. (No BEGIN keyword is permitted at the end of
the breakpoint modification command.)

The stored commands for a breakpoint provide the DBUG user with
conditional breakpoints. For example:

* BEFORE STMT 26 BEGIN

2/ %MS : MASTER SWITCH

3/ IF %MS - ON THEN

4/ PROCEED

5/ ENDIF

This breakpoint command sets a breakpoint at statement 26 of the
current scope. When that statement is encountered, the value of the
program variable MASTERSWITCH is fetched and stored in the DCP

16

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE •CAMBRIDGE, MASSACHUSE.TS02'25• ,6 7, _6''S

.. . . .W~ - . .. ,- . - . - - - . -- - - --- - - . - : • -° . ,

B5-AIE(l).DBUG(l)

variable %M S. The DCP variable is tested and, if found equal to
the string-"ON", causes the breakpoint to return control to the
executing user program. Any other value of %M S causes control to
be automatically returned to the DBUG command processor. See the
next section for an explanation of the PROCEED command.

Breakpoints installed in task bodies cause the breakpoint to
occur at the specified point for all instances of the task. This
implies that the breakpoint occurs in the next task instance that
encounters the breakpoint. To have a breakpoint for a specific
instance of a task, the DBUG user can use the conditional breakpoint
commands and the assignment command to fetch information from the
program and check for the correct instance of the task.

(b) Execution Control Commands. DBUG supports the following
commands to control execution of the user program. Most commands
are executed at a breakpoint and have an immediate effect. They
cause control to immediately return to the user program in the
manner specified, thus closing the breakpoint. The exceptions are
the ABORT, PRIORITY and DELAY which do not result in execution
resuming and have effect only when the program is resumed. Control
only returns to the DBUG Command Processor when another breakpoint
in the user program is encountered, or when the user hits the
"interrupt" key. The commands and their effects are given below.

GOTO <statement or label identifier>
proceed from the specified
statement or label

PCM RETURN [<expression>]
return from subprogram. <expression>
is need for function return values.

RAISE [<exception id>) raise exception and proceed

CALL <subprogram call> invokes a user program which must be
in the load module. Parameters are
TBD•

DELAY <task identifier> <n>
delay a task for n seconds

PRIORITY <task identifier> <n>
change the priority of a task to n

ABORT <task identifier> abort the specified task

STEP C<n>] stop after Nth executed stint b'ryond
current st.it

PROCEED continue the user program at the point
where it was suspended.

IGNORE <n> ignore breakpoint next n times

17

INTERMETRICS INCORPCRATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02128 • 617 66,-1840

. i. "

B5-AIE(l) .DBUG(l)

The integer argument to the IGNORE command specifies the number
of times to suspend the current breakpoint. Control is not returned
to the DBUG Command Processor from the current breakpoint until
control has passed it the specified number of times. An argument of
one (1) means skip the breakpoint once, and halt on the second
occurrence.

The RAISE command takes an optional argument, like the Ada
language statement. It is the exception to be raised. When no
exception is specified, the raise handler re-raises the current
exception. When there is no current exception, no processing is

. done. The syntax for the exception name is the same as in the Ada

The number of statements to the STEP command is optional, and
is defaulted to one.

The GOTO command has the same effect as the Ada goto statement;
it causes program control to be transferred to the specified label
or statement. The only check on the GOTO command is that the label
or statement is in the subprogram or (package) enclosing the current
breakpoint. The user is permitted to specify a GOTO that is illegal
by Ada language rules. These commands are not available unless the
DEBUG (ALTER) option is specified at compile time.

The PGM RETURN command has the same effect as the Ada return
statement; ii causes the subprogram enclosing the current breakpoint
to terminate. 'If the subprogram is a function, the PGM RETURN
command must be followed by an expression which becomes the return
value of the function. The types of function return parameters
which are allowed are a subset of the parameter types allowed for
the DBUG CALL command.

(c) DBUG Control Commands. DBUG Control Commands, listed below,
are d -etivesthat control the execution of DBUG itself.

VERBOSE [ON I OFF] default is on

BASE [<n>) set default base for output

of variables

TRACE EON I OFF] [option] [<n>3
sets trace option on or off,
default is on. Options are
chain, flow, task, all. n
specifies the circular buffer
size

APPEND COFF3 E[ON] 6file6 [ONLY]]
a copy of breakpoint and display
information is appended to the
given file. There is no output
to terminal when ONLY is
specified

18

INTEPPMETRICS I NCO RPORATS:. 733CONCORD AVENUE *CAMBRIDGE, MIASSACIHUSETTS Q2138 q 61, 661-3 0

B5-AIE(1) .DBUG(l)

SCOPE CALLER change scope to caller of
current scope

SCOPE ENCLOSING change scope to static
enclosing scope

SCOPE RESET reset scope to original break-

point scope

SAVE <file> save current breakpoints in file

LOAD <file> load saved breakpoints and DCP
variables from file

EDIT <breakpoint id> invoke the editor on the
commands associated with this id

PERFORM <file> E<parms>] executes file as a stream of
DBUG commands

<interrupt> stop the user program from
execution, and return control
to DBUG

<new name> RENAMES <old name> allows the renaming of commands
and variables
e.g., trap renames break
%aileron renames

main. controls -aileron

CP [<command> [-&] invokes a command processor and
processes the command if present

RETURN [SAVE <filename>] return to caller (e.g., MCP).
The save option saves current
breakpoints and DCP variables
to file

The VERBOSE command affects the length of the prompt given the
user when the executing program reaches a breakpoint; OFF makes a
shorter prompt.

The TRACE command tells DBUG to keep a circular buffer for the
option specified. The chain buffer contains currently active recent
subprogram calls. The flow buffer contains recent flow of control.
The task buffer contains a trace of recent tasking events. These
buffers may be inspected by the use of the special variable %TRACE.

T"he APPEND command redirects output for all subsequent DBUG
actions. If the file did not previously exist, it is created. The
ONLY option of the output command causes no output to the -.ser's
terminal other than a brief report when a breakpoint is reached.

19

N'ERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSErTS 02128 e 6.7) 661.1840

B5-AIE(l).DBUG(l)

The SCOPE commands change only the visibility of identifiers
for the DBUG command&. Each statement is contained within some
scope in an Ada program, and DBUG preserves this viewpoint for the
user. This means that all variables visible in the current scone
where the program is halted are also visible to the user. (At a
breakpoint within a declarative part, only declarations which have
been elaborated are visible.) Other variables in other scopes are
available via name qualification.

The SAVE command outputs a text file containing the necessary
breakpoint commands and DCP variable values to recreate the current
state of DBUG's data base. Only the breakpoints and variables are
recorded on this file, not current execution state, scope, etc.

*To read in a file containing SAVEd breakpoints and variables,
the LOAD command is used.

The EDIT command allows the user to edit previously specified

breakpoint scripts.

The PERFORM. command allows the user to execute a script of DBUG
commands which are in a file.

The user terminates a DBUG session by using the RETURN command.
The SAVE option may be used to save the current breakpoints to the

"' specified file.

(d) Information Commands. Information Commands permit the user to
examine the state of the user program.

PUT <expression> [BASE <n>J [VERBOSE]
to print out several variables,
<expression> can be an
aggregate. Put with the verbose
option prints each variable's
name with its value

PUT SCOPE [BASE <n>1 displays values of all variables
in scope

DISPLAY TASK [<options>] [<n>]
display the status of tasks at n
levels, starting at the current
b lock

<options>:

ACTIVATED tasks currently activated

RUNNING tasks that are running

20

INTERMETRICS INCORPORA7ED s 733 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 *'7 66-.840

B5-AIE(l) .DBUG(l)

CALL [entry] all tasks that are waiting at any
call point or those tasks that a;.e
waiting at a call point for a
particular entry [entry]

ACCEPT [entry] all tasks that are waiting at any
accept point or those waiting for
a particular entry call

DELAYED tasks that are waiting because of
a programmed delay

DEPENDENT tasks which are dependent on the
current block

BLOCKED tasks which are blocked and why

ALL all options

WHAT BREAK [<bkpt id>] default is to display all break-
points

WHAT SCRIPT <bkpt id> displays command and script
associated with bkpt i.d.

LIST <options> [<n>l list source text for n lines.
If n is negative, list n lines
above and below current line

<options>:

<stimt id> I <label id> * list at the specified stmnt
means current stint)

Ed][r][ml [<variable>] list at lines containina
references to the variable
according to the xref options
specified (d-declared,
r-referenced, mn-modify). Nc
variable name means use the
variable specified -in the last
list command, and show the next
occurrence

'The PUT SCOPE command is a shorthand for displaying all the
*variables in The current scope. The user can redirect the output of

this command by specifying a file name (ex. PUTSCOPE ->
,." prog.dump).

*.. The base option of the PUT and PUT SCOPE commands is an integer
- from two (2) through sixteen (16) specifying the base of the nu.eric

type desired and applies to the display of all variables in the
variable list. When no base is supplied, the variable is nrinted

21

INTERMETRICS !NCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • '61.. ,361-1840

..... *.

B5-AIE(l).DBUGC(1)

*out in its own mode (string, integer, floating point, enumeral,
etc). When the variable is a composite object (array, record, etz)
each component is printed in its own mode, unless a base was
specified. In that case, all of the components of the variable are
printed in the specified base.

(e) Predefined Variables. DBUG has the following predefined

variables:

%HI PRIORITY all tasks with priority greater than this
will continue executing when control is
returned to DBUG

%SCOPE name of current scope

%VARIABLES an array of all variable names defined in
the current scope

%TRACE.NEST(i. .n) shows n currently active subprograms and
their parameter lists

%TRACE.CHAIN(l..n) shows recently called subprograms
%TRACE.FLOW(l..n) shows recent flow of control
%TRACE.TASK(I..n) displays trace of tasking events

%ENVIRONMENT the same as the MCP predefined variable
%STATUS.CP status returned from the cp command

The %TRACE variable is maintained by DBUG as a record of arrays
of records. The trace variables, with the exception of %TRACE.NEST
are maintained at the user's request (see the TRACE command) with
the number of records to be maintained being defined at the time of
the request. The %TRACE.FLOW variable is not available if the
DEBUG(BREAK) parameter was not specified at compiler time.

f) Comparisons between MCL and DCL. The following commands and
predefined functions are common to both MCL and DCL:

BEGIN, END
WHILE
FOR
IF
CASE

GET

(assignment operator) user-program variables may also be
assigned to in DCL

PROCEDURE
EXEC
USE <DCP or userprocram variable>

one of each variable is allowed at
a time

22

INTEIMETR;CS INCORPORATED • 733 CONCORD AVENUE CAMR!DGE. MASSACHUSETTS C2138 • 617 6'-18-3

B5-AIE(l) .DBUG(1)

D MP VARS
HELP DCL provides help for debug only

ICONTENT()
BOOLEAN(), REAL(), INTEGER(), STRING()

The following MCL commands are not present in DCL:

CREATE SIMPLE
CREATE-COMPOSITE
DELETE
COPY
RENAME

ABORT
WAIT
START
CANCEL
STATUS

LOGOUT
SUSPEND the DCL SAVE command is very similar

3.3.1.3 Processing

COMMAND PROCESSOR is structured along the lines of the Mapse
, Command Processor. It is composed of the following major

procedures. Driver reads user commands from a terminal or
background script. It then calls Lexparse to parse the input, and
passes a parse tree on to the Tree Interpret procedure to be
interpreted. Tree Interpret uses Expression Processor to evaluate
DCL expressions and the Variable procedure to manage DCP variables.

(a) Driver. The Driver loops to process commands sequentially. -t
processes each command by:

(1) invoking Lexparse to parse the next command in the input
stream into a parse tree;

(2) invoking Tree Interpret to interpret the parse tree
produced by Lexparse.

(b) Tree Interpret. The parse tree interpreter (Tree Interpret)
borrows its design from MCP. It differs in that only a single
execution of Tree Interpret is active at any time in DBUG, although
several invocations of Tree Interpret can be stacked. This permits
it to be implemented as a procedure.

Tree Interpret is called by Driver with parsed commands from a
terminal or script, by Execution Control with a breakpoint script
parse tree, or recursively for commands such as PERFORM and 1F.

23

tNTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ,617) 661-1840

L .

' B5-A:E(l) .DBtUG(:)

Tree Interpret takes as input: (1) a stream to be used as
standard input for executing commands; (2) a stream to be used as
standard output for executing comnands- ' a DIANA-like narse tree
(built by Lexparse) to be interpreted- and (4) a subtree containing
any actual parameters.

For constructs found in MCL, processing is the same as
performed by MCP Tree Interpret. These include program invocation,
assignment, expression, EXEC, IF, CASE, loops, EXIT, and blocks.
DBUG control commands are also performed within Tree interpret.

The DBUG-specific commands such as BEFORE, REMOVE, PROCEED, and

DISPLAY TASK are implemented by calls to EXECUTION CONTROL
PROCEDURES, BREAKPOINT COMMAND PROCEDURES, or INFORMATION COMMAND
PROCEDURES.

For the PERFORM command, the file to be interpreted is parsed
by Lexparse. Tree Interpret is recursively called with the
resulting tree and the parameters to PERFORM.

For the SAVE command, calls are made to INFORMATION COMMAND
PROCEDURES to convert all of the breakpoint script parse trees into
character representation. These scripts and other state information
are then formatted and written to a database object.

For the EDIT command, the DBUG Database is called to convert a
breakpoint script parse tr'ee into character representation and store
it in a KAPSE database object. The editor is then invoked on this
object. When the editor returns, Lexparse reparses the edited
breakpoint script, and the script is given back to the DBUG
Database.

. (c) Expression Processor. Expression Processor is similar to that
of the MCP, being tailored to DBUG expressions. In addition to the

S.MCP constructs, the Expression Processor also must recognize
user-program variable names.

The Expression Processor evaluates parse trees by returninc
actual values of primitive (leaf) nodes (e.g., literals, variables),
calling itself recursively on children of operator or function
nodes, and then calculating the result of the operation or function
with the returned values of the children.

(d) Variable. The Variable procedure maintains the DBUG "%"
variables in an internal variable space. It is responsible for
allocation, alteration, and assignment to and from variables.
Variable implements scopes to support DBUG script parameters.
Variable also detects occurrences of DBUG variables, calling the

* appropriate routine to compute or store the predefined variable's
value.

24K INTERIMIETRICS INCORPORATED 733 CONCOR0 AVENUE •CAMBRIDGE, MASSACHUSETTS =2.38 E'"- -'

B5-AIE(l) .DBUG(l)

(e) Script. Script is called by Tree Interpret to process a DBUG
script header. It is passed the actual parameters that were passed
to Tree Interpret. Script performs the same association of formal
to actual parameters that MCP SCRIPT does.

(f) Program Invocation. Program invocation implements the CP
command by calling executable programs or scripts located in the
KAPSE database. Its processing is the same as the MCP Program

*i Invocation.

3.3.1.4 Outputs

COMMAND PROCESSOR calls BREAKPOINT COMMAND PROCEDURES,
EXECUTION CONTROL PROCEDURES and INFORMATION COMMAOND PROCEDURES with
an indication of the command to be invoked and a parse argument
list. For breakpoint commands, the outputs include the breakpoint
script parse tree.

3.3.2 BREAKPOINT COMMAND PROCEDURES

BREAKPOINT COMMAND PROCEDURES handle the processes which create
and maintain breakpoints and the breakpoint table.

3.3.2.1 Inputs

BREAKPOINT COMMAND PROCEDURES has two types of input. One is
the necessary information to create a breakpoint, the other is the
information to maintain the breakpoints and the breakpoint table.

To create a breakpoint, the processor accepts as input from the
DCP the breakpoint identifier (if available), the option specified,
the script locator (if a script has been specified), and the command
line. Some commands require additional information. The BEFORE and

* AFTER commands require statement identifiers. The MODIFY command
requires variable identifiers. The EXCEPTIONS command requires
exception identifiers. The ALL EXCEPTIONS, UNHANDLED EXCEPTIONS,

. ON STEP, ON ENTRY, and ON EXIT commands do not require any
additional information.

• The statement identifier that is provided for some breakpoint
" commands may include scope identification as well as the number of

the statement. To maintain breakpoints, the commands DEACTIVATE,
REACTIVATE, and REMOVE require breakpoint or statement identifiers.

3.3.2.2 Processinc

- * The processing of breakpoint commands can be divided into two
parts: one which creates the various breakpoints and the breakpoint
table, and one which maintains the status of the breakpoints and the

breakpoint table.

25

'NTERMETRICSINCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSAC;LUSE-'S0219 5 S17 661-1340

B5-AIE (1).DBUG(!)

3.3.2.2.1 Creating Breakpoints

When COMMAND PROCESSOR receives a command to create a
breakpoint, it passes the necessary inputs to the breakpoint

* processor. Each breakpoint command creates one of two kinds of
breakpoint: statement breakpoints, which are associated with a
specific statement, and global breakpoints, which are associated
with an event such as an exception.

3.3.2.2.1.1 Statement Breakpooints

For the BEFORE and AFTER commands, PROGRAM LIBRARY ACCESS
PROCEDURES (PLA) is called to get the statement table for the
specified procedure. From this, the address for the hook (or first
instruction if no hocks are present) for each statement specified
can be determined. This address is stored in the breakpoint table
with the breakpoint identifier (either user supplied or assigned),
the option, the script locator (if one exists), and the command line
string. If there are no hooks present, the sum of the lengths of
those instructions which would have to be moved to place a hook is
also recorded in the breakpoint table. If the AFTER option is
specified for a statement in a procedure which has been compiled
without hooks, an error message is issued, and no breakpoint is
created.

To find the address associated with the specified label, PLA is
called to determine which statement is marked by the label.

For the MODIFY command, PLA is called to check the cross
reference for the statement identifier for each case where the
variable is modified.

Once the above processing has been done, if hooks are
available, the DSR is called to activate the hook in this location,
and the activate flag in the breakpoint table is turned on. If no
hooks are present, the instruction lengths is sent to the DSR to get
those instructions which have to be moved. These are stored in the
breakpoint table and the DSR puts an activated hook in that
location. The activate flag in the breakpoint table is turned on.

3.3.2.2.1.2 Global Breakpoints

When the commands EXCEPTIONS, ALL EXCEPTIONS,
UNHANDLED EXCEPTIONS, ON STEP, ON ENTRY and ON EXIT are specified,
the breakpoint identifier (either user supplied or assigned), the
command, the script locator (if one exists), and the command line
are stored in the breakpoint table, and the activate flag is turned
on. When the EXCEPTICNS command is specified, the exceotion ccmmand
identifier is recorded in the breakpoint table and sent to the DSR.
When an ON ENTRY or ON EXIT command is specified, the DSR is
informed to break whenever a subprogram is invoked or exited
(depending on the option specified).

26

INT-PM. ;!CS ,N.RPORA7TD * 732 CONCORD AVENUE 0 CAMBRIDGE. MASS6C1USE-S o * - 56'.:E4C

B5-AIE(l) .DBUG(l)

3.3.2.2.2 Maintaining Breakpoints

The DEACTIVATE, REACTIVATE, and REMOVE commands are used to
*: maintain breakpoint status. Again there are different processes for

hooked and unhooked code.

DEACTIVATE -may be specified with either a list of breakpoint
identifiers or statement identifiers as operands. For each
statement identifier, the specific record is found in the breakpoint
table, and the activate flag is turned off. If hooks are present,
the KAPSE is called to deactivate the hook. If no hooks are
present, the DSR is passed the code to be restored. For each
breakpoint identifier, the processor reads through the breakpoint
table and the records with that identifier are processed as above.

When REACTIVATE is specified, the processing is the same as for
DEACTIVATE, except that the activate flag is turned on, and the
KAPSE is called to put an activated hook into the location.

When REMOVE is specified, the records are found in the table.
The DSR is called to remove the breakpoint, with the instructions to
be restored if no hooks are present.

3.3.2.3 Outputs

The outputs of BREAKPOINT COMMAND PROCEDURES include the
breakpoint table, hooks to be inserted into code, instructions that
were overlaid by breakpoint hooks, indications to DSR that
exceptions, program entry and exit were called for, and an
indication as to whether or not a breakpoint is active.

3.3.3 EXECUTION CONTROL PROCEDURES

EXECUTION CONTROL PROCEDURES processes DBUG commands that
affect the execution of the user program. These commands resume
execution of the user program and control tasking. It also
initiates processing when control is passed to DBUG at a
breakpoint.

3.3.3.1 Inputs

The inputs required by EXECUTION CONTROL PROCEDURES with the
different commands received from COMMAND PROCESSOR. The IGNORE
command requires the current breakpoint and a parameter. The S"EP
command requires an integer parameter. The GOTO command requires a
statement or label identifier. The PGM RETURN COMMA ND may require a
return expression. The CALL command requires the subprogram name.
The task control commands require the task name and a parameter in
the case of DELAY and PRIORITY.

At a breakpoint, the current address and the type of break are
required. In the case of a break at exception, the exception
identifier is also required.

27

!NTERMETRICS INCORPCRATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02.38 6 1 661.'843

B5-AIE(l) •DBUG(l)

3.3.3.2 Processina

3.3.3.2.1 Resuming a User Program

The following processing is done when a command is issued to
resume the execution of the user program.

If IGNORE is specified, the count is stored in the breakpoint
table and a command to proceed is issued. Then when the current
breakpoint is reached again, EXECUTION CONTROL PROCEDURES will check
to see if this is the nth time. If not, a command to proceed will
be issued. If so, the processing for the breakpoint continues as
necessary. When a STEP command is issued, UTILITY PROCEDURES is
called with the STEP count. The STEP command is not available for
unhooked code.

,t - When a GOTO is issued, if a statement identifier has been
*:' specified, PROGRAM LIBRARY ACCESS PROCEDURES is called to get the

statement table for the correct subprogram. From this the address
for that statement is determined. This address is passed to UTILITY
PROCEDURES with a command to proceed. If a label identifier is
specified, the PLA is called to determine which statement is
associated with that label. The statement is then processed as
above.

When a PROCEED command is issued, UTILITY PROCEDURES is passed
the current program address and commanded to proceed. If the
current address has an instruction save for it in the breakpoint

f,[table, it is also passed to UTILITY PROCEDURES to be executed. When
a PGM RETURN is issued, if an expression is included this will be
evaluated. The PLA is called to determine the epilogue address.
UTILITY PROCEDURES is called to assign the return parameter, and to
process a proceed at the address.

" When a CALL command is issued, UTILITY PROCEDURES is used to
initialize the IN formal parameters. The Program Library is then
accessed to get the address of the subprogram, and the call is made
through UTILITY PROCEDURES. When the subprogram returns, control
returns to COMMAND PROCESSOR and the OUT parameters are assigned to
DBUG variables.

When a RAISE commarn is issued, the exception identifier is
* looked up in the Program Library and sent to UTILITY PROCEDURES with

an instruction to raise the exception.

3.3.2.2.2 Task Control

When a DELAY, PRIORITY, or ABORT command is issued, the task
identifier is determined. This task identifier, the action to be
taken (change priority, abort or delay) and, in the case of PRIOIRTY
or rELAY, an integer specifying the new priority or the delay value
respectively, is passed to UTILITY PROCEDURES.

28

,NTEF(METRICSINCORPCRATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 2"'38 617: 661-40

B5-AIE(l) .DBUG(1)

* 3.3.3.2.3 Returning From a User Program

The following processing is done when control is passed to DBUG
at a breakpoint.

An exception breakpoint takes precedence over any other type.
* When an exception breakpoint is reached, the breakpoint table is

checked for an entry which contains the encountered exception
identifier. If one is found, a message is issued and control is
passed to COMMAND PROCESSOR along with any script that may exist for
that breakpoint. If not, the table is checked for an ALL EXCEPTIONS

* entry. If that is found, a message is issued and the-control is
passed to the Command Processor with any existing script.

In the case of an unhandled exception, the breakpoint table is
checked for an associated script. If found, a message is issued and
this script is associated script passed to the COMMAND PROCESSOR.
If not, a message is issued and control returns to the user.

When an activated statement hook is reached, the current
address is used to find the corresponding record in the breakpoint
table. The ignore count is checked and if zero, a message is issued
and control is passed to the Command Processor with any script that
may exist for that breakpoint. If not, a command to proceed is sent
to UTILITY PROCEDURES. If the option for the breakpoint is AFTER,
UTILITY PROCEDURES is told to step one hook. When control returns,
a message is issued, and control is passed with a script (if one
exists) to the COMMAND PROCESSOR.

When an ENTRY or EXIT breakpoint is reached, the breakpoint
table is checked for a script. A message is issued and control is
passed to the Command Processor with the script if it exists.

3.3.3.3 Outputs

The outputs from EXECUTION CONTROL PROCEDURES include the
address for proceeding, the exception identifier for a RAISE, task
identifier and parameter for task control, and message information
and script locators for breakpoints.

3.3.4 UTILITY PROCEDURES

UTILITY PROCEDURES consists of several subprograms and tasks
that provide functions used by other DBUG CPCs. Some of these
subprograms are called directly from the other CPCs and provide
communication with the KAPSE facilities, including the
KAPSE.,MULTPROG and KAPSE.RTS. All machine-dependent and
KAPSE-specific processing is contained within the Utility
Procedures.

3.3.4.1 Processino

29

,NTERMETRICSI NCORPORATED 733 CONCORD AVENUE. CAMBRIDGE, \ASSACHUSEr7S 02138 • 617 661-1843

B5-AIE(l) .DBUG(l)

3.3.4.1.1 DBUG Support Routine

The DBUG Support Routine (DSR) will process all information and
commands from the user program and KAPSE.RTS to DBUG. This includes
the processing of breakpoints when they are encountered and

. interpreting messages from the KAPSE.RTS when exceptions have been
raised or when history events (tasking, flow, program entry and
exit) have occurred. It will also process information and commands
sent by DBUG to the RTS of the user program. These include tasking
control commands, accessing of program values, and the manipulation
of breakpoints.

* When a breakpoint is encountered or, in single step mode,
before the beginning of each statement is executed, control passes

. from the user program to the DSR. The DSR will determine the
address of the statement and will pass this address along with an
indication of whether the break occurred because of an active

* breakpoint or because of single stepping to the DSR interface
'- procedures.

When the KAPSE.RTS encounters an exception, it will make a call
to the DSR indicating what exception has taken place. The DSR will
determine the address at which the exception occurred and, if

* necessary, will return to UTILITY PROCEDURES, passing the exception
* identifier and this address.

If any TRACE command has been issued, the KAPSE.RTS will return
to the DSR whenever an event specified by the command takes place.
It will return with an indication of the type of event (task, flow,
procedure entry or exit), an indication of the sub-type event (e.g.,
for tasking, the sub-types include activation, entry call, delay,

.- begin and end rendezvous, etc.), and the address where the event
* occurred. The DSR will enter this information into the appropriate

circular buffer for later access by INFORMATION COMMAND PROCEDURES.

The DSR is also called to continue user program execution. It
is passed the address where execution is to resume and it instructs

- the KAPSE.RTS to proceed. This function will be invoked not only to
*- proceed immediately from a breakpoint, but also as a result of the

GOTO, PGMRETURN and CALL instructions.

If the program has been suspended at a breakpoint which had
overlaid an instruction (i.e., a breakpoint is placed at a statement
for which there was no hook), the DSR will supply the overlaid
instruction to KAPSE.RTS to be executed before resuming execution
beyond the breakpoint.

30

INTERMETRICSINCORPORA-ED * 733 CONCORD AVENUE . CAMBRIDGE,,MASSACHUSErTS32.38 .6'' 661.IF40

BS-AIE(l).DBUG(l)

3.3.4.1.2 DSR Interface Routine

The KAPSE provides for communication between DBUG and the DSR
which is linked to the runtime system of the user program. In order
to localize KAPSE-dependent processing, the DSR interface routine
will process the communication between the DBUG CPC's and the user
program. This routine will translate the commands and request for
data into interprogram communication primitives to be transferred to
the DSR and will transform the data received from the DSR into a
format expected by the calling CPC.

*. 3.3.4.1.3 Ada Expression Evaluation

(a) Ada Parse Procedure. The Ada Parse procedure parses the subset
of legal Ada expressions and Ada name references that are supported
by DBUG. It is called by the Expression Processor and other

-" procedures to parse variable names, scope identifiers, labels, etc.
The output is an abstract syntax tree that can, by a call to the
Analyze procedure, be turned into a legal DIANA tree.

* (b) Evaluate Procedure. The Evaluate procedure is used to
reference and modify the variables, parameters and other data items
of the program being debugged. It is called when processing the
assignment, PUT and CALL commands, and to examine the program stack
(eg. for %TRACE.NEST).

Evaluate accepts a DIANA tree that represents the expression.
It also accepts or generate a DCP literal value. Evaluate accesses
the user-program data via calls to the DSR.

Evaluate interprets the storage information in the DIANA tree
to access the user-program data item. It also uses the storage and
type information to convert between the machine representation of
the data item and the DCP representation.

3.3.4.2 Outputs

The output of the procedures in UTILITY PROCEDURES take the
form of commands and data sent to the KAPSE.RTS and of data sent to
other DBUG CPCs. This output is specified in the description of

* these procedures above.

"- 3.3.5 INFORMATION COMMAND PROCEDURES

INFORMATION COMMAND PROCEDURES performs the processing
". necessary for the DBUG Information commands. This includes

displaying variables of different types (e.g., records, enumerals,
etc.) in a readable format, as well as displaying DBUG data such as
the output of trace functions and breakpoint scripts. These
procedures also format the program listing when requested by the

,. user.

31

LNTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 k 617) 661-1840

B5-AIE(l) .DBUG(1)

3.3.5.1 Inputs

INFORMATION COMMAND PROCEDURES is called by COMMAND PROCESSOR
any time the user requests information to be displayed. The input
is the identification of that information. For displaying user
variables the identification will include the variable name and
scope. For the display of trace information, COMMAND PROCESSOR will

. indicate the type of information to be displayed (flow, task, etc.).
- For listing the program source, the inputs will include an

indication of the starting line number and the number of lines.
When the user requests that a script be listed, the command
processor will supply the breakpoint identifier for the script.
These procedures are called from EXECUTION CONTROL PROCEDURES to

*" identify breakpoints and exceptions to the user when encountered.
EXECUTION CONTROL PROCEDURES will supply the current address and
scope information and the exception identifier in the case of an
exception.

In addition to the commands sent by COMMAND PROCESSOR and
EXECUTION CONTROL PROCEDURES, other inputs will include the

*breakpoint table that is maintained by BREAKPOINT COMMAND PROCEDURES
and the program source when the listing function is invoked.

3.3.5.2 Processing

The processing performed by INFORMATION COMMAND PROCEDURES
varies according to the information that is to be displayed.

For the PUT command, this CPC calls the Expression Processor to
evaluate the input argument. The result is then formatted for
display to the user. For the PUT SCOPE command, the Program Library

4. is accessed to find all the variables in the current scope. The
value of each variable is then found with the Evaluate procedure and
formatted for display to the user.

For displaying trace information, the package is passed the
type of information to be displayed. In the case of FLOW and CHAIN,
INFORMATION COMMAND PROCEDURES will call UTILITY PROCEDURES
requesting the information that has been maintained in the circular
buffers.

For NEST, a call will be made to UTILITY PROCEDURES to access
the user program's stack for the identity of the subprogram in the
current call chain. PROGRAM LIBRARY ACCESS PROCEDURES will then be
called to obtain the addressing information for the parameters of
these procedures. UTILITY PROCEDURES is called with these addresses
to get the values of these parameters. When tasking information is
requested, UTILITY PROCEDURES is called to access information
maintained by the KAPSE. RTS regarding the currently active tasks
and their status.

When a request is made to list lines from the program source, a
call is made to PROGRAM LIBRARY ACCESS PROCEDURES to supply the
specified lines and these are formatted and displayed.

32

" INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS02',38 * (61," 661-1840

B5-AIE(1) .DBUG(l)

To display the list of current breakpoints or the script
associated with a particular breakpoint, INFORMATION COMMAND
PROCEDURES will gather the information from the breakpoint table in
the DBUG database. In displaying scripts, the parse trees must be
converted to a textual form.

When a breakpoint is reached, EXECUTION CONTROL PROCEDURES will
- call INFORMATION COMMAND PROCEDURES indicating which breakpoint has

been reached and this package will format a message including scope,
task and nesting information.

3.3.5.3 Outputs

The output of this package is the specified information
displayed on the output device.

3.3.6 PROGRAM LIBRARY ACCESS PROCEDURES

PROGRAM LIBRARY ACCESS PROCEDURES provide DBUG with access to
. information generated by the Compiler and Linker which has been

stored in the Program Library of the executing program. These
packages provide identification of user-program names, information
regarding the addressing of variables, identification of the tasks
and sub-programs within the running program and source listings.

3.3.6.1 Inputs

The inputs to this CPC differ according to the information that
is being requested and are described below for each.

3.3.6.2 Processing

(a) Analyze. The Analyze procedure is called to look up all
user-program names recognized by DBUG. These names include program
variables, exception names, and formal parameter names found in the
cross reference.

The inputs include the name, the program environment, which
specifies a point in the user program, and a DIANA tree for an Ada
expression. Analyze references the complete program symbol table to
look up the name.

Processing is similar to the semantic analysis phase of the
Compiler Front End (COMP.FE), using the Names and Expression Package
from the compiler front end. The output of Analyze is a completed
DIANA tree contained addressing information.

33

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

4-
"

. . . - - - -. - . . . -: . . -i. . : .

B5-AIE(l) .DBUG(1)

(b) Statement Table Access. The statement tables generated by the
compiler are used to re-locate the address of a statement number or
to identify a statement number when its address is known. They are
used to set breakpoints, process single step, implement the GOTO
commands, and display trace and task information.

The Statement#Table Access procedures accesses these statement
tables to return the requested information. It also uses the
Relocation Map to convert between relative and absolute addresses.

(c) Relocation Map Access. The relocation map refers to all of the
symbo aEnd statement tables which make up a program. It is used by
Statement Table Access and Evaluate to translate between an address
relative to a compilation unit and an address global to the entire
user program. The map is also used to determine the new scope when
the user changes current scope.

Information in the relocation map can be accessed by either a
global addressed or the name of the relocatable unit. The names of
all compilation units in a program can also be requested.

(d) Cross Reference Access. DBUG inspects the global cross
reference for the locations at which a user-program name is either
declared or referenced, or where a variable is modified. This
information is needed by the LIST command. The MODIFY breakpoint
command only requires locations at which variables are modified.

The input to Cross Reference Access is a name which has been
processed by Analyze and the types of references which are to be
returned. The name can be a variable name or any other type of name
kept in the cross-reference data base (e.g., a type name).

The package is implemented using the CROSS REFERENCE PACKAGE in
PIF.PLIF.

(e) Source Pretty Printer. Source Pretty Printer is used to
implement the LIST command. For the range of lines specified, it
returns a formatted version of the source program, including
comments. This package is implemented using the Source
Reconstruction Package in PIF.PLIF.

3.3.6.3 Outputs

The outputs to these procedures differ according to the
information that is being requested and are described above for
each.

3.3.7 DBUG DATABASE

DBUG DATABASE controls global DBUG information which must be
accessed by more than one CPC. This information includes the
breakpoint tables, the breakpoint scripts and the current program
state.

34

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETS 02138 * (6171 661-1840

S* * *-A

B5-AIE(1) .DBUG(l)

3.3.7.1 Inputs and Outputs

The breakpoint tables are maintained by BREAKPOINT CCMMAND
PROCEDURES and EXECUTION CONTROL PROCEDURES. Associated with each
breakpoint identifier are one or more groups of breakpoints, grouped
according to the commands such as BEFORE and MODIFY which set them.
For the breakpoint identifier there is also its activated flag and a
locator to the breakpoint identifier's parse tree of stored
commands.

Information is also kept for each statement which has a
breakpoint. This includes an activated flag, the ignore count, the
label by which the user referred to the statement, and invariant

* program state information such as the address and scope.

The breakpoint information may be located in many ways, such as
by breakpoint identifier, statement identifier, label or address.

The information for the current program state includes the
program counter, the stack pointer, descriptions of the scope and

* task, and the currently raised exception.

3.3.7.2 Processing

Processing involves insertions, deletions and searches of the
- database.

3.4 Adaptation

3.4.1 DBUG Size Restrictions

DBUG has no size restrictions other than those imposed by the
KAPSE.

3.4.2 DBUG Extensions

DBUG is carefully designed to permit extensions to the set of
commands for future AIE development. It is expected that APSEs will
use the debugging facilities as a test bed for debugging embedded
software applications by writing various control scripts and
possibly extending its set of commands and control over the user
program execution. The nature of these extensions is expected to be
in the direction of enviromental and functional simulation of the
target environment.

35

•INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(1) .DBUG(l)

LEFT BLANK INTENTIONALLY

36

INTERMETRICS INCORPORATED *733 CONCORD AVENUE sCAMBRIDGE, MASSACHUSETTS 02138 *(817) 661-1840

B5-AIE(1) .DBUG(1)

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Development testing of DBUG will be conducted in three stages.
The first stage is subprogram testing which tests each CPC and its
subunits. The second stage is CPCI testing which will test the
interaction between CPCs. The third level is subsystem integration
testing which will verify the Debugger's performance in combination
with other MAPSE tools (e.g., Compiler, Linker, etc.) that produce
output on which it depends. The results of the development will be
documented and submitted to Quality Assurance (QA).

Formal CPCI testing will be conducted on DBUG according to
formal Test Procedures. Since the Debugger subsystem consists of a
single CPCI there are additional formal subsystem tests for the
subsystem DBUG. Acceptance testing of DBUG will be conducted

,.* according to the AIE Test Plan EAIE(1).TPLAN(1)] and Section 4.3.

4.2 Test Requirements

This section describes the requirements and techniques for
development testing at each of the levels described above. It also
lists the test requirements for formal CPCI testing.

4.2.1 Development Testing

4.2.1.1 Subprogram Testing

Each CPC internal to DBUG, as described in the Computer Program
Product Specification, and each subunit contained within a CPC will
be tested in the following manner. For each CPC, an input driver
and a test output module will be developed. The input driver will
accept input devised by the implementor to exercise each of the
CPC's subunits. In addition to legal input which will test the
normal functioning of the CPC, illegal input will be submitted to
verify all error conditions. The test output module will contain
test stubs for each of the external procedures and packages with
which the CPC interfaces. These tests stubs will produce verifiable
results (e.g., a human readable representation of a parse tree from
the command processor) as well as data suitable for input to the
input drivers of other CPSs. Each output test module will also
provide suitable return values to its CPC. Test descriptions and
results for each CPC will be submitted to QA.

37

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * 617) 661-1840

B5-AIE(1) .DBUG(l)

4.2.1.2 CPCI Testing

CPCI testing will be performed to ensure the reliability of the
interfaces between the CPCs. All interactions between the CPCs will
be exercised and the validity of the communication verified. This
verification will include the inspection of input and output
parameters as well as the effect produced on shared data. In some
cases these tests will utilize the data generated by the test output

* modules described above. Detailed descriptions of these tests and
test reports will be submitted to OA.

4.2.1.3 Subsystem Integration Testing

Subsystem integration tests will be designed to verify proper
interfaces with the other components of the AIE on which the
Debugger depends. These test will ensure that external data (e.g.,
the statement table generated by COMP.BE) is correctly accessed and
processed. This testing will also exercise the real time
interaction with the KAPSE.RTS. Support may be needed from the

*other AIE components in the generation of test data.

4.2.2 Formal CPCI Testing

The following design requirements, which are specified in this
document, will be verified by formal CPCI tests. The tests will be
described in the Test Procedures tAIE(1).DBUG(1).DBUG(l).TPROC(l)].

(1) Use of the DBUG

a. DBUG is invoked with four parameters:

0 The first specifies which program DBUG is to control -
either the name of a program that is to begin
execution, or the name of the program context of a
suspended program.

0 The second consists of an ASCII string containing the
parameters to be passed to the program to be debugged;
if DBUG is being called for a suspended program, this
parameter is ignored.

* The third specifies the source from which DBUG commands
are input, default is standard input, can contain the
name of a script for background debugging.

* The fourth specifies where the output is to be
directed; default is standard output, can be a file for
background debugging. (3.2.4).

38

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

BS-AIE(l) .DBUG(l)

b. A suspension of a program executing under DBUG will cause
the control to return to the DBUG Command Processor; a
suspension is:

0 The user hits an "interrupt" key. (3.2.4.2.2)

* An unhandled exception. (3.2.4.2.1.c)

c. After an unhandled exception during normal program
execution, DBUG may be invoked to examine the state of the
program at the point where the exception was raised.
(3.2.4.2.1.c)

d. After a suspension due to an interrupt during normal
program execution, DBUG may be invoked at the point that
the interrupt occurred. (3.2.4.)

(2) Language Overview

a. A command consists of a keyword specifying an action and
any required parameters.

b. Lists of identifiers provided as parameters are separated
by commas; identifiers include variable names, statement
identifiers, and exception names.

c. A command is terminated by a semicolon or a newline.

d. User-program variables can be expressed in normal Ada
syntax;

0 Available are access dereferencing, array subscripting,
and record component selection.

* Expressions used as subscripts may not include function
calls or overloaded operators.

e. DBUG Command Processor variables are analogous to MCP
variables;

* Begin with %.

* Values can be set and retrieved.

0 MCP variables from the processor where DBUG was invoked
are not accessible.

f. Ambiguous names may be qualified using normal Ada syntax.

g. User-program statement and scope identifiers are specified
using an extension to Ada name qualification:

39

INTERMETRICS INCORPORATED . 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

B5-AIE(1).DBUG(l)
0 Within the current scope, use the sequential statement

number relative to the start of the subprogram or
package; the number is the same as that given the
compilation unit.

* For bodies outside of the current scope, use the
subprogram or package name followed by a dot and then
the sequential statement number.

* To distinguish between spec and body, the statement
number may be preceded by a letter indicating either
spec (S) or body (B); body is the default.

* For overloaded procedures or functions, the name is
followed by a distinguishing parameter specification
and return type if necessary. (3.3.1.1.1)

(3) Compiler Interface

a. When a DBUG command might not have its intended effect due
to the OPTIMIZE or DEBUG parameters or the pragma OPTIMIZE
of the compilation unit, DBUG prints a warning message and
then tries to process the command.

- Without DEBUG (BREAK), the AFTER, STEP, ON STEP, and
the FLOW option for the TRACE are not available.

* DBUG checks the options and the pragma OPTIMIZE of the
compilation unit and determines the restrictions for
the whole unit by the most optimized level found in the
unit.

* Without DEBUG (ALTER) and with compiler parameter or
pragma OPTIMIZE being TIME or SPACE, the Execution
Control commands and the modification of program
variables are not guaranteed to have their intended
effects, and the GOTO function is not available.
(3.2.4.1)

(4) DBUG Commands

The following requirements are divided into four sections
covering the Breakpoint, Execution Control, DBUG Control, and
Information Commands. For each section, the first requirements are
the ones that are applicable to all or most of the commands. These
are followed by the individual requirements for the commands of the
section. This part will avoid repeating the basic functional
requirements of each command since the appropriate location within
this document can be referenced when tests are written to exercise
each command. Requirements that will be specified are those which
list defaults for parameters, maximum values, results of
nteractions, and special conditions which are not readily
discernible from the functional descriptions.

40

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

B5-AIE(l) .DBUG(l)

Breakpoint Commands

a. A breakpoint on an exception takes precedence over any
other type of breakpoint. (3.3.3.23)

b. All breakpoints must have names.

* The user may specify the name by prefixing the
breakpoint command with an identifier followed by a
colon.

* If the user does not specify a name, a unqiue one will
be generated by concatenating the string form of an
integer with the letters '"bkpt".

* The name serves as an abbreviation for all the
breakpoints created by the breakpoint command.

* The identifier has the syntax of an Ada identifier.
(3.3.1•2.a)

c. Breakpoint commands may contain a sequence of DBUG and DCP
commands to be performed when the breakpoint is
encountered.

* Stored commands are specified by the keyword BEGIN
following the breakpoint command on the same line.

0 Stored commands are typed one per line or separated by

semicolons.

0 Ended by a matching END.

* Can contain nested BEGIN-END blocks.

* After the commands are processed and if the last was
not an Execution Control command causing execution to
resume, the control will break to DCP. (3.3.1.2.a)

d. A user may specify a breakpoint command using a name
already in use.

- The new breakpoints are appended to the old one already
associated with that name.

0 If a script of stored commands was specified with the
old breakpoints, it will also be processed after a
break on the new breakpoints.

" An issuance of a breakpoint command with stored
commands will replace any old script which had been
associated with the namee, and the new script will
become associated with both new and old breakpoints.
(3.3.1.2.a)

41

3Ao!i! INTERMETRICS INCORPORATED ,73:3 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(617) 661-1840

. ' : " " . . L . L 1 :. ,

B5-AIE(1) .DBUG(1)

e. Breakpoints installed in task bodies cause the breakpoints
to occur at the specified point for all instances of the
task (3.3.1.2.a)

f. If an AFTER command is specified for a statement in a
compilation unit without hooks, an error message is issued
and no breakpoint is created. (3.3.2.2.1.1)

g. An exception raised will first be examined for a match with
the EXCEPTIONS command, then the ALL EXCEPTIONS command,
and then if neither is found, the execution will resume
with the normal exception handlers of the program
(3.3.3.2.3)

h. The keyword ALL used as an argument to a breakpoint
modification command specifies all the breakpoints in the
user program (3.3.1.2.a)

i. Breakpoint modification commands cannot specify a script of
stored commands. (3.3.1.2.a)

j. Finer control for specifying individual breakpoints can be
accomplished by following the modification keyword with the
breakpoint command specifying the desired breakpoint.
(3.3.1.2.a)

Execution Control Commands

a. These commands are not guaranteed to have their intended
effects if the unit was compiled without DEBUG -> ALTER,
and with OPTIMIZE , TIME (or SPACE) or with a pragma
OPTIMIZE specifying one of the two. (3.2.4.1)

b. Statements or labels for the GOTO commands must be within
the subprogram (or package) enclosing the breakpoint.
(3.3.1.2.b)

c. They may specify transfers which are illegal by Ada rules.
(3.3.1.2.b)

d. The RAISE command without an argument re-raises the
currently raised exception or if there is none, just causes
execution of the program to proceed. (3.3.1.2.b)

e. DELAY, PRIORITY, and ABORT affect tasks from the
user-program but do not cause execution to proceed.
(3.3.1.2.b)

f. The number argument to STEP is optional and defaults tc
one. (3.3.1.2.b)

g. An argument of zero (0) to IGNORE means to skip the current
breakpoints the next zero times (break on the next
occurrence). (3.3.1.2.b)

42

." INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840

,o*. . -

B5-AIE()).DBUG(l)

*DBUG Control Commands

a. Trace information can be inspected when the TRACE command
has been specified through the predefined variable %TRACE.
(3.3.1.2.e)

b. The FLOW option for the TRACE command is not available
without the compiler parameter DEBUG (BREAK). (3.2.4.1)

c. At a breakpoint in the middle of a declarative section, the
user can only refer to those declarations that have already
been elaborated. (3.3.1•2•c)

Information Commands

a. The BASE option of the PUT and PUT SCOPE commmands may be
an integer from two through sixteen.

b. When no base is specified, the variables (and the
components of variables) are printed out in their own modes
(integer, string, enumeral, etc.).

c. When a base is specified, all the components of a composite
variable are printed in the specified base. (3.3.1.2-d)

(5) Predefined Variables

The following requirements, like those for DBUG commands,
address only issues beyond the basic functionality of the
variables.

a. When the user sets the %HI PRIORITY DBUG variable, all
tasks below or equal to tie specified value will be
suspended when control returns to the DCP. (3.2.4.2.1.d)

b. The %TRACE.NEST variable always contains information while
the other components of %TRACE require a TRACE command to
have been given with the proper keyword option or the
option ALL. (3.3.1.2.e)

c. The %TRACE.FLOW variable is not available if the DEBUG ->
BREAK parameter was not specified at compile time.
(3.3.1.2.e)

4.3 Acceptance Test Requirements

In this section the requirements to be verified by the
Acceptance Tests are listed as well as a description of the testing
sessions which will comprise the Acceptance Tests. These testing
sessions will also be a part of the AIE system testing which will be
performed by test personnel prior to Acceptance Tests.

43

*INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

IV . , . .. -, . .,4" ' " . . °' ,a . -',a . , -.. -,

B5-AIE(1) .DBUG(l)

The following requirements are specified in Section 3.7.6 of
* the AIE system specification (AIE(l)). These specify functional

characteristics required of the debugger.

1. DBUG shall be capable of controlling the execution,
examination, and modification of an Ada program.

2. DBUG shall process a control language that permits a user
to specify a variety of actions to be taken at execution
control points (breakpoints).

3. Breakpoints shall be based on Ada statements or labels,
task activations, subprogram calls, returns, and
exceptions.

4. When a program in execution is suspended at a breakpoints,
a user shall be able to display, dump, or modify selected
data values in either machine or scalar type
representation, trace the flow of program control, as well
as display the formal names and values of subprograms.

5. DBUG may be used either interactively or in batch mode via
command scripts.

6. The design shall provide interfaces for functional
simulation.

7. The design shall be compatible with a future APSE tool
that permits control and debugging of embedded computer
software executing on a target machine.

The acceptance tests for these requirements will consist of
three debugger sessions covering requirements 1-5 and a paragraph
describing conformance to requirements 6 and 7. To satisfy
requirement 5, one of the sessions will be interactive and the other
two will use command scripts. The interactive session will be a
small test while the background debugger sessions will be more

v complex they will demonstrate the conformance to the first four
*. requirements.

The interactive session will be done by testing personnel using
a pre-constructed sequence of debugger commands expected results.
The debugger will be invoked to examine the execution of a simple

"" fucntion in which a single breakpoint will be set using the BEFORE
coummand. At the suspension due to the breakpoint, a GOTO command

* will be used to cause execution to resume at another part of the
program. The return value from the function will depend on the
correct transfer of control. A correct return value will be
interpreted to satisfy the requirement specifying interactive
debugging. The correct processing of the GOTO command will also
demonstrate the first part of requirement 1 specifying control of
program execution.

44

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 ! (617) 661.1840

B5-AIE(1) .DBUG(l)

The second debugger session will use prepared input scripts and
will direct the output to a file to provide automatic testing of
requirements 2 and 3 and to verify the second part of requirement 5.
The program to be debugged will be designed to provide structures to
facilitate the setting of the desired breakpoints and the raising of

- the desired exceptions. Various breakpoints commands will be given
to satisfy each part of requirement 3. These individual
requirements will be met by the following commands: BEFORE, LABEL,
ON ENTRY, ONEXIT, EXCEPTIONS and ALL EXCEPTIONS. At each
breakpoint, a LIST command will be issued to print the targeted
statement in the output file to verify the break, and then a PROCEED
will be issued to resume program execution. The LIST and PROCEED
commands will be considered to demonstrate a variety of actions
which can be.specified at a breakpoint as in requirement 2. After
these commands are successfully processed and the correct statements
are found in the output file, requirements 2 and 3 will have been
verified.

The third debugging session will be designed to verify
requirements 1 and 4. This session will also use an input script
and an output file so that it can be done automatically. The
debugged programed used to demonstrate the conformance will be
sufficiently complex to provide the information and control flow
necessary to verify the requirements. Breakpoints will be set to
provide enough information so that the output from the commands can
be verified by test personnel at a later time. The commands that
will be used to demonstrate the first part of requirement 4, that of

*displaying, modifying, and dumping of data values, will be the
assignment command, PUT, and PUT SCOPE with the BASE parameter being
used to change the printed representation. The rest of requirement

* 4 will be verified using various options of the TRACE command.
These as a group will be considered to be the acceptance test for
the last two parts of requirement I.

The last two requirements above, 6 and 7, specify certain
design issues to be met by the structure of the debugger.
Requirement 6 specifying interfaces for functional simulation was
met by the hooks which may be inserted into the object code of a
program by the compiler. These hooks provide branches to the DBUG
Support Routine where additional operations for functional
simulation can be added. Requirement 7 specifying compatibility
with a future tool was met by the modular design of the debugger.
The DBUG Support Routine interfaces with the DBUG COMMAND PROCESSOR
only through the UTILITIES PROCEDURES CPC. Small changes to the
UTILITIES PROCEDURES and the movement of the DBUG Support Routines
to a target machine allows debugging on the target.

There are also speed and size requirements specified in AIE(l),
Section 3.2.1.1.

1. The debug support task linked into programs for debugging
shall not exceed 256K bytes.

45

•JNTERMETRICS INCORPORATED e 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661.1840

B5-AIE(l) .DBUG(l)

2. The average time to start printing a simple Ada scalar
variable after a complete request by name is entered to the
debugger while at a breakpoint shall not exceed 1/2
second.

SThe first requirement will be passed by an examination of the
" statistics produced by the compilation of the DBUG Support Routines
" since they are a separable module. The second requirement will be

demonstrated by the performance of the debugging in a background
debugging session. The input will contain a command to print the
time, ten DBUG commands requesting the printing of a scalar variable
from the program, and another command to printing of a scalar
variable from the program, and another command to print the (real)
time. Since the printing is all being redirected to a file, each
request is processed immediately after the last printing request has
been procesed. The debugger will have passed the requirement if the
time taken was not greater than five (10/2) seconds.

46

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-,840

-.

:* * * .'

