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1. Introduction

From classical potential theory we know that the
(Newtonian) potential of the earth's body E

V(x) =-¢j' o (y) T;éﬂ-dvm (1.1)
E

(# : gravitational constant)

is a harmonic function in free space. That is, V is
arbitrarily often differentiable in the earth's exterior
Eg and it satisfies Laplace's equation

AV(x) = O (1.2)

for all points x € E,. Moreover, V is regular at
infinity, i.e. V and VV tend to zero

IV(x)]| = °‘T:1?r’
_ (1.3)

lVV(X)l = O( 12) ’

: | x|

if |%x| tends to infinity. Since the density function p is
better known only for parts of the upper crust of the

x earth, the closed representation (1.1) of the potential V,
if however, cannot be used in numerical computations. Instead,
é we have to look for suitable approximations. In this

. connection a result first formulated by C. Runge (1885)

and later generalized by J.L. Walsh (1929) and T. Krarup
(1969) is of particular importance. It states:




Any function V harmonic outside the earth's
surface S and regular at infinity, may be
approximated by a function U, harmonic outside an
aroitrarily given sphere (Bjerhammar sphere) inside
the earth and reqular at infinity in the sense that
for any given ¢ > 0, the relations

|v(x) - U(x)] < ¢

resp. (1.4)

lVV(x) - VU(x)| < ¢

hold for all points x of the Euclidean space R3
outside and on any closed surface completely

surrounding the earth's surface in the outer space.

The value € may be arbitrarily small, and the
surrounding surface may be arbitrarily close to the
earth's surface (cf. Moritz (1980)).

In this formulation the Runge-Walsh-Krarup theorem is
a pure existence theorem, i.e. it guarentees only the

existence of an approximating function U and does not
provide a method to find it. Nothing is said about the
structure of the approximation U. The theorem describes
merely the theoretical background for practical purposes

(O ) 2 S n

of determining an approximation to the external
gravitational potential of the earth.

In a spherically symmetric model, however, the -
situation 1is completely different. For a spherical earth,
constructive approximations of V are available by use of -
trial functions with a larger harmonicity domain. As
trial functions the following (base) systems {¢n} can be

used, for example:

TeTaTITI T T AT E ATV v e

enndiendhn dna ind o




(i) " solid spherical harmonics "

-(n+1)

x| s () (x=r£ , r=|x|),

{s } maximal linearly independent system of

surface spherical harmonics (origin at earth’s
center of gravity)

"

(ii) " mass points

X=X
n

{xn} "fundamental" sequence of points in the
complement of E,US (cf. Chapter 8)

. (iii) " multipoles "
. J
3 1

(axo) ]x-x;T

[31=n
X, is a fixed point in the complement of E, U S,
j = (31,35,33) is a triple of non-negative
integers,
3 3 a[]]

. . . . 3
( ]] = JatI,t) vy (52) = - v
172773 . axo 8x1313X2]23X3J3

X
(o)

We recapitulate the standard method of approximating an
external potential V in a spherical model.

............
............
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Spherical approximation

Let us suppose that S is a sphere with radius R about
the origin and Ee is the outer space of S:

1

{x € R x| = R}

w
]

>

1
]

{x €R (x| > R}.

Let V be continuous in E_, U S and twice continuously
differentiable in Ee' Moreover, let V satisfy AV(x) =0

for all x € Ee'

Let us denote by {¢n} one of the linearly independent
systems of trial functions listed above. Corresponding to
the countably infinite sequence {¢ } there exists a system
{¢*} of trial functions ¢* orthonormallzed with respect to
the inner product of the space £2(S) of all square
integrable functions on S (Gram-Schmidt orthonormalizing
process)

[ opty) o2(y)ds(y) =6, . (1.5)
S

(dS : surface element)

Then the potential V can be represented by the expansion

V(x) =]  (V,0%) ¢*(x), (1.6)
=0 n n

where the numbers

(V,o2) = [ Viy) ¢*(y)ds(y) (1.7)
S

are the Fourier (or orthogonal) coefficients of V on S
with respect to the ¢ 'stem {+ }.

PR VPPN TR SR U PRI PN DU I J-A_i




....................

More explicitly this reads: given an error bound e > 0,
then there exists an integer N = N(e) such that

N
lvix) -} (V,0%) o*(x)| < ¢ (1.8)
n=0

for all points x € G with G < Ee and positive distance to S
(dist(G,S) # X > 0). In each compact subset G « Eg the

convergence is uniform.

Therefore we have a constructive version of Runge's

theorem by means of the truncations
o (N) N :
ViTx) =] (V,0%) ¢X(x) (1.9)
=0
in a spherical (earth's) model.

The approximation technique is formulated so as to

have the permanence property: the transition from V(N)

er g (N4

term, all the terms obtained formerly remaining unchanged.

necessitates merely the addition of one more

Furthermore, V(N) has the following minimum property

N
2
[ V) = 1 (V,0%) ox(y)| ds

s n=o (1.10)

N
=min [ |V(y) =] ag ¢;(y)12 ds
an s =0

for any selection of coefficients a,-

PTG D YRS I SR S/ WSS SR SO SO |
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The considerations given above lead to the impression
that a least square approximation by truncated expansions
V(N) of the form (1.9) is intimately related to spherical
boundaries. Qur purpose, however, is to prove that the
essential steps leading to a least square approximation
of an external gravitational potential by truncations of
series expansions into (multi)poles can be transcribed

in the same way to general (non-spherical) models.

We summarize the main results.

Not-necessarily spherical models:

Let us suppose that S is the boundary-surface of
a not-necessarily spherical earth's model (e.g.
ellipsoid, tellurcid, geoid,real(reqular)earth's surface).
Let Eg be the outer space.

Let V be continuous in Ee U S and twice continuously
differentiable in Ee‘ Moreover, let V satisfy
AV{x) = O for all x ¢ Ee.

Let us denote by {¢n} one of the linearly indepen-
dent systems listed above. Corresponding to the
sequence {¢n} there exists a system {¢;} of
trial functions ¢; orthonormalized with respect
to the inner product of the space £%(s) of all square
integrable functions on S. Then the potential V can
be respresented by the expansion

oo

V(x) = ] (V,0%) ¢X(x) , (1.11)
n=0

(R A Y
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. where the numbers
\c
A% .
N (V,02) = [ V(y) o*(y) ds(y) (1.12)
::"f S
. are the Fourier (or orthogonal) coefficients of V on S
- with respect to the system {¢;}.
g More explicitly: given an error bound € > O, then
there exists an integer N=N(e) such that
5 N A
- lVix) = [ (V,0%) oXx(x)| < ¢ (1.13)
. n=o
for all x € G with G c E, and dist(G,S) =2 A > 0. In
ii each compact subset G < Ee,the convergence is uniform.
’ oy
It should be pointed out
X that the series (1.11)
guarentees ordinary point-
o wise convergence not only
= outside the smallest bounding
'ﬁ sphere, but indeed in the
- Figure 1 (whole) outer space E,.
Our approach therefore avoids inadequate phenomena of
3 divergence in regions between a bounding sphere and the
- surface S. The price to be paid is the orthonormalization
process with respect to the not-necessarily spherical
. ) surface S.

As in the spherical case, the advantages are the
permanence property and the minimum property.




At the surface S, the approximation by trial functions
O; depends closely on the smoothness presupposed for V.

Provided that V is only assumed to be continuous on
the surface S, then it can be proved that, to every e > O,
there exist an integer N = N(g) and coefficients bo,...,bN
such that

N
sup {V(x) - ] b ox(x)| <c¢ (1.14)
XES n=o0
and by maximum principle of potential theory
N
sup [V(x) - ] b ¢X(x)| < ¢ (1.15)
ereuS n=o

(c£. Freeden(1980) Chapter 6). But the coefficients bo,.u,bN
do not coincide, in general, with the Fourier coefficients
(V/02) s (V08

Hence, "downward continuation" of the expansion

) (V.¢;)¢; (1.16)
n=o0
to the surface S cannot be assured generally under the
assumption of continuity of V over the surface S.

The series expansion

Vi) =] (V,6%)0*(x), (1.17)
n=o n n

however, remains true for all x € Ee U S in the ordinary
pointwise sense if stronger conditions of smoothness are
imposed on V in addition . In the spherical case, for
example, the continuous differentiahility of ¥V on € is
sufficient to verify the validity eof (1.17) or © for
spherical harmonics. ( » detailed discussion of "Aovmward

continuaticn" of series exrmansions irtc trial furctione

for non-snherical cases seems to ke cper).
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In detail we are concerned with the following
investigations:

In Chapter 2 and 3 notations are introduced.
Essential tools of the presentation are the "jump
relations" and the "limit formulas" of potential theory
(Chapt.4) and a regularization theorem (Chapt.5). The
adventages of an approximation by harmonic trial functions
are discussed in Chapt.6 and 7. Then non-constructive
approximation theorems (Chapt.8) and constructive
approximation theorems (Chapt.9) are developed. Chapt.10
gives an application to the external gravitational
potentialnof the earth. In Chapt.11 a numerical method
based on the Cholesky factorization is presented. The
efficiency of the numerical method is analyzed. Finally
(Chapt.12), some simple examples give an impression of
the accuracy.

Acknowledgements:

The author is indebted to Dr. R. Reuter, Aachen, for
the numerical computations. -

Particular thanks go to Mrs. B. Seifert for preparation
of the typescript.
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2. Basic Settings of Functional Analysis

The following definitions and notations are standard

in functional analysis.

A linear space is a set of elements such that to any

finite subset Pgreser®y the linear combination

+ ... : i
PR + o @ (an scalars) is also a member of the
linear space. We shall only consider real linear spaces.
Hence a_,... » @, are assumed to be real. Any linear
space possesses a unique zero element. A collection

@7 e 1@y of elements out of a linear space is called

linearly dependent if there exist numbers a reee 0y, DOt

o

all of them being 2zero, such that
o @ + ... +a @ = 0. (2.1)

Otherwise the elements wo,...,wn are called linearly
independent.

For each subset of a linear space we consider the
space generated by this subset, i.e. linear combinations
of the form

The union of all such spaces is called the span of

(po,...,(pn :

span(wo,...,wn).

PV DU W W NN Y T A o
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3

A normed space X is a linear space which assigns to
any of its elements ¢ a non-negative number ligll, called
the norm of ¢, with the following properties:

(i) ol > O; llel = O @ @ = O
(i1) e + il < lol + iyl
(iii) ool = |al lel. (a: real).

The norm describes distances between pairs of elements
v, € X. The distance between ¢ and ¥ is defined by

dist,u) =l -yl . (2.2)
The distance between two subsets A,B of X is defined by

dist(A,B) = inf llo - yll. (2.3)
PEA
yeB

Distances can be used to define convergence. Two cases
are of particular interest.

(1) Convergence to a limit element.

Let {wn} ] be a sequence of elements out of
n=o0,1,...
a normed linear space X. Let ¢ be another element

of X. We say that the sequence {o }
n=0,1,...
converges to the limit element ¢, in symbols,

limo_ =0 or o > Q in X
n—b“ n n !

if, given £ > O, there exists an integer N = N(¢)
such that

2
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1
N
|

h H@n - ol < ¢ (2.4)

for all n 2 N(c).

(ii) Convergence in the sense of Cauchy

A sequence {wn} 1 is called convergent in the
n=0' 7000

sense of Cauchy, if given € >0, there exists an
integer N = N(e) such that

uwn - wmﬂ < € (2.5)

ran

for all n,m > N{g).

- § SR
. ST

We see that a Cauchy sequence is defined without using a

limit element. It merely requires that the elements of

LANU T s St W
AR ]

the sequence cluster in a certain way.

A normed space X is called complete, if, to every

Cauchy convergent sequence {wn} ] in X, there
n=o0,1,...

exists an element ¢ € X, such that {wn} 1 converges
. n=0, F LRI

to the limit element .

As soon as the elements cluster in the sense of Cauchy
in a complete normed space, a limit element must exist.

Complete normed spaces are called Banach spaces.

For a normed space X, a system {¢_} : is called .
n=°' AL NI

a basis, if for any € > 0, ¢ € X there exist an integer
N=N(e) and coefficients a such that

o’...'aN
N

e = § o @l <e.
k=0 k%%

P S PN E. PSP YUy g e W W Y ._J

le = - . . : - .
SO : : . : _
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A linear space X is called an inner product space,

if to any pair ¢,y of its members a real number (w,y),
called the inner product, is assigned which has the
following properties:

(v,0)

(i) (0,¥)
(i1)  (aw,y) = a(w,y) (e: real)
(iii) (w1+w2,W = (‘D1!W) + (Wzrw)

(iv) (p,9) 2 O ’ (w,w) =0 «» ¢ = 0.

A consequence of these properties is the Schwarz

inequality
- @, 0% < (0,9 (¥,¥). (2.6)
- We say that a system {¢, } of functions of an
k'k=0,1,...

inner product space X is an orthogonal system if its

;i elements are mutually perpendicular, that is

(wk.wi) =0 | (2.7)
if i # k, and in addition

(wk.wk) # 0
for all k.

An orthogonal system {wn}n_o ] is called
- r F 2L ]

orthonormal system if (wk,wk) = 1 for all k. One can

always obtain an orthonormal system by dividing each

element by its norm.
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A further property of the inner product which may be
deduced from the defining properties (i) - (iv) is the
continuity of the inner product. This means that if
O, * ©, @, + ¥, then (o ,¥,) ~ (9,¥).

The inner product induces a norm by defining

ol = V{p,o0). (2.8)

Hence, an inner product space X is automatically a
normed space. Schwarz's inequality may be reformulated
by taking the square root

(0, 0) | < ll-livl. (2.9)

A Hilbert space is an inner product space which, in
addition, is complete.

If a basis {o¢_} in an Hilbert space X is
N'n=o,1,...

orthonormalized, each element ¢ of the space X is
representable by the generalized Fourier series

o0

@ =] (9,000 (2.10)
n=o n n

in the sense of X.

An orthonormal basis in a Hilbert space is often
called Hilbert basis.

IR

.
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3. The Banach Space C(O)(S) and the Hilbert Space £2(S)

- If G is a set of points in R3, dG will represent its
- boundary. The set G = G U 3G will be called the closure
- of G.

: A set G < R3 is called a region if it is open and

connected.

The restriction of a function £ to a subset M of its
domain is denoted by £|M, for a set I of functions we
define I|M as the set of restrictions £|M:

I|M = {£f|M|f € I}

A function f possessing k continuous derivatives is
said to be of class C(k).

A surface S < R3 will be called reqular, if it
satisfies the following properties:

(1) S divides three-dimensional Euclidean space R3
into the bounded region E = E; (inner- space) and
the unbounded region Eq (outer space) defined by

3

Eg = R - E

(i1) S is a closed and compact surface with no double
points

(i:4) S is a C(z)-surface

From the definition it is clear that all (geodetically
relevant) earth's models are included. Regular surfaces
are for example sphere, ellipsoid, spheroid, telluroid,
geoid or real (regular) earth's surface.

[N P T A PERER : PR J P P T S e F =
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By C(O)(S) we denote the set of all continuous
functions on S, endowed with the norm

hEN = sup|£(x)|. (3.1)
X€S

C(O)(S) is a complete normed space, i.e. a Banach space.

In C(O)(S) we introduce the inner product

(£,9) = [£(x)g(x)ds, (3.2)
S

the inner product (°,°*) implies the norm

1g} = Vig,6). (3.3)

In connection with (3.2), c‘°)(S) is an inner product
space.

For each f € C(O)(S) we have the inequality

{£} < c £l ' (3.4)
with
C =C(s) =9/ as. (3.5)
s

We denote by ECZ(S) the space of real functions
defined on S with second power absolutely integrable
over S.Z%(S) is a Banach space with the norm .

I£] = 4’£ |£(x)f? as. (3.6)

Furthermore, aﬂz(s) is a Hilbert space with inner product
(*»°) analogously defined by (3.2).
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Z (8) is the completion of C(O) (S) with respect to
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4. Limit Relations and Jump Relations in Potential
Theory

At each point y of the boundary S = 3E we can construct
a normal n(y) pointing into the outer space Ee' The set
3

l

S. = {x €R

. x =y + tn(y), y€S8} (4.1)

generates a parallel surface which is exterior to E for
T > 0 and interior for t < O. It is well-known from
differential geometry (cf. Cl.Mdller(1969),§ 13) that
if |t| is sufficiently small, then the surface ST is
regular, and the normal to one parallel surface is a
normal to the other.

Let g be a continuous function on § (g € C(o)(S)).
Then the functions Uy defined by

N-1
- ] 1

- are infinitely often differentiable in E; and E_ and
A satisfy the Laplace equation. In addition, they are
reqular at infinity.

. The function U, defined by

1
01(X) = é g(Y)T;:§T as(y)

is called the potential of the single layer on S, while
U, given by

Uy (x) = é IY) Falyy Tyl 45

is called the potential of the double layer on S.
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For g € C(o)(S) the functions Uy can be continued
continuously to the surface S, but the limits depend
from which parallel surface (inner or outer) the points X
tend to S.

On the other hand, the functions U
on the surface S, i.e. the integrals

N also are defined

N-1
- ) 1
UN (x) = é gly) (31'1 Y)) W ds(y)

exist for x € S.

Furthermore, the integral

' = 3 1
Uj(x) = é 9 () 5y Ty T &5 (V) (4.3)

exists for x € S.

However, the integrals do not coincide in general with
the inner or outer limits of the potentials.

From classical potential theory (cf. e.g. 0.D.Kelogg
(1929), J. Schauder (1931)) it is known that for x€ s

lim U1(x t tn(x)) = U1(x) (4.4a)
T+0
T>0

U
lim 3-l(x t Tn(x)) = ¥ 21g(x) + UJ(x) (4.4b)
>0 n
T >0

lim Uz(x t tn(x)) = t 2rg(x) + Uz(x) (4.4c)
1+0
T >0

(" limit relations %)
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and
§ lim (U, (x +tn(x)) - U,(x - tn(x)) =0 (4.5a)
. T+0
. T>0
W
’ 3u, 3u,
i %ig(ss—(x + t™n(x)) - 55—(x - tn(x)) =-4mg(x) (4.5b)
N 150

lim(Uz(x + tn(x)) - U2(x - tn(x))) 4mg(x) (4.5¢)

-0

T>0
aU2 302

lim(g——(x + tn(x)) - —=(x - ™n(x))) = 0. (4.54)
n on

T+0

>0

(" jump relations ")

In addition , O0.D. Kellogg has proved that the above

relations hold uniformly with respect to all x € S.

S This means that
r lim sup |U;(x £ tn(x)) - Uy(x)| = O (4.6a)
- T+0 XE€S
3 >0
BU1
lim sup IEE—(X t tn(x)) t 2mg(x) - Uj(x)| =0 (4.6b)
T+0 XES
>0

and

- v v v vw v
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lim sup [U;(x + tn(x) - U,(x ~ mn(x)) | =0 (4.7a)
T>0 XES

(|

N

‘-._,

X aU, CL

:} lim sup | Fao(x + nx)) - I (X - Tn(x)+4ng (W EC -4.7b)

-~ T+0 X€S

‘ 150

lim Sup|U, (x + tn(x)) - Uy(x - tn(x)) - 4mg(x)}=0 (4.7c)
T+0 XES
T>0

oU aU

lim sup Issz(x + Tn(x)) - sﬁg(x - ™n(x))| = oO. (4.74)
T*0 XES
T >0

Herein

U

an(x £ n(x)) = n(X)-(VU) {x £ tn(x)).

These relations can be generalized to the Hilbert
space £2(S) using exclusively functional analytic
means (cf. Freeden(1980), Kersten (1980)).

For square-integrable functions g, i.e. g e.fz(S), we
then have

lim | {U (x # ta(x) - U, (x) [ dS(x) = 0O (4.8a)
™0 S
>0

3y 2
lim [ |s=—(x * tn(x) - Uj(x) * 27 g(x)|* dS(x)=0 (4.8b)
™0 S

T>0

’ Yy |- : AN - : . D e .c.um.":-*-..i
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Lim [ {Uy(x * tn(x)) - Uy(x)¥21g(x)[%dS(x) = 0  (4.8c)
T+0 S
E. >0
and
- lim é IU1(x + t(x)) - Uy(x -rn(x)){zds(x) =0 (4.9a)
-, T+0
‘: T>0
] au, 3u, "
K lim é |57 (x + n(x)) - 3 (% = Tn(x)) +41g(x) | “dS(x)=0 (4.9b)
% >0
™0
n:_f
lim é le(x + Tn(x)) - Uy(x - tn(x)) - 4ng(x)[2ds(x)=o (4.9c)
T+0
>0
3U2 8U2 2
lim | IaT-(x + (x) - s==(x = tn(x))[“ds(x) = 0. (4.9)
>0 S
>0

|
1

B
'J—“AA.“-A.J
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5. Regularization Theorem

Let GNEe) be the space of functions V with the
following properties:

(1) V is twice continuously differentiable in Eg and
continuous in Ee= EeU S, i.e. V€ cf? (Ee)n ¢l &)

(ii) V satisfies Laplace s ecuation in Eg :
AV(X) = 0 for X € Eeo

(iii) V is regular at infinity:

V)| = Otz
\ 1
jwix)| = 0(—)
| x|
if (x| » = .
Suppose now that {¢n} is a sequence of

n=o0,1,...
functions ¢n Lelonging to the class f%Ee). We denote by
{o.} the system of restrictions ¢_=¢_|S,n=0,1,...
N'n=0o,1,... n 'n

Assume that the system {wn} . converges
n=0,1,...
uniformly to the function ¢ on S, i.e. for given € > O,

there exists an integer N = N{(e) such that

sup lwn(x) - p(x)| < ¢ (5.1)
X€S

for all n » N. Then the maximum principle of potential

theory assures that the sequence {¢n} . converges
n=0 ’ 7 v 0 o
uniformly to the (unique) solution ¢ of the exterior

(Dirichlet) problem ¢ € P(E), ¢|S

Q.

ey
.

H
-
b
f -
-
F
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In other words, this means that

sup | ¢ (x) - ¢(x)]| < ¢ (5.2)
X€L

for all n > N.

If the system {o_}
N n=0,1,...

in quadratic sense, i.e. for given e > Q, there exists an
integer N = N{(e¢) such that

is only convergent to o

/f lo, (x) - o(x)|%s < ¢ , (5.3)
S

then we cannot expect in general that the sequence

{¢n} ] is uniformly convergent in the whole
n=o,1,. -

space Eg= E,U S. Our intend, however, is to the show that

the quadratic convergence of a sequence {wn} : to
n=°, AN

a function ¢ on the surface S implies ordinary pointwise

convergence of the sequence {¢“}n=o : to the solution
¢ of the exterior (Dirichlet) problém’ééé each point x of
the outer space E,. In addition, for each compact
subset B ¢ Ee with positive distance to the surface §
(dist (B,S) > A > 0) the convergence of {¢“}n=o ]
is uniform. e

For that purpose we need the following reqularization

theorem:

Let B be a compact subset of the outer space
E, with dist(B,S) » X > 0.

Suppose that ¢,Y are functions of the class .‘p(Ee)
with ¢|S = ¢ , ¥|S = y. Then there exists a positive
constant C C(s,B) such that

v(x) | < Cyff lely) - viy) |%ds. (5.4)
S

sup | 9 (x)
X€EB
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Proof. By the smoothness condition imposed on S = 3E,

there exists the c¢lassical Green function ;'for the
scalar Dirichlet problem related to Ee’ i.e.:

6 (%) éw(y)ﬁ%, % (x,y)ds (y)

v = | 5(y)gat5) § (ooyIasy)

for all x € E,.
Consequently, we have

P(x) - ¥(x) = é[w(y) - w(y)lﬁ)f«(x.y)ds(y)

for all x € Ee.

Put

1/2

C C(s,B)

) 2
sup [ | |spr5y ¥ (x.¥)[7dS(y)]
X€B é niy ;

Then, for each x € B, we have by the Cauchy-Schwarz
ineguality

_ 2 _ - 3 2
|o(x) - ¥(x)] téwm W ) 5agy § (v asiy)l

< [lot)-vty) | 2as (y)él-é%w) $x,y) | %as(y)

< c? [loly) - uy) s .
S
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Thus
2 2 ‘ 2
sup [0(x) - ¥(x)|° < Cc® [loly) - v)]|“as(y). o
X€B s

As consequence of the regularity theorem we obtain
the following Corollaries:

Corollary 1: Let {¢n} . denote a sequence in
n=g ’ e
JD(Ee). Denote by {o } the restrictions
n=0 ’ 1 F A Y

e, = ¢n|S of the functions ¢, to the surface s.

Suppose that ¢ is the (unique) solution of the
Dirichlet problem

o € JD(Ee) , 0|S = .

If now ®, > @ in ofz(s):

n-~+oe

1im/élwn(x) - o(x)]2%as(x) = o,

then ¢n + ¢ uniformly on each compact subset B < Ee
with dist(B,S) » X > O,

lim sup |4 _(x) - ¢(x)| = O.
nom xeB D

Proof. According to the regularization theorem we have

sup|é(x) - 6_(x)| < C V/rw< ) - o_(y)|2ds(y)
sup n ()| él ' o () [“as(y

for n = 0,1,...

. . cLt . e A - . S N . i . L. .
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Thus the ifz-convergence

‘/flw(y) - 9 (y)l2 ds(y) =+ o
S n

implies

sup |[¢(x) - ¢ (x)] - o,
xég n

as n tends to infinity. O

Corollary 2: Let {m;} be an orthonormal
n=o0,1,...
2 (o) ’ ’
system in Z (S),\p; € C™' (S). Denote by {o2} T

sequence of functions or€ ?(Ee)wim ¢; |s =e¢; for n=o,1,...

the

Suppose that ¢ is the (unique) solution of the
(Dirichlet) problem

o€ P&y , dls=o.
Then the sum

N
(N)
¢ (x) = [ (9,0%)¢*
n=o noon
N

=1 [l’ w(ym;(y)dS(y)] o X (x)
n=o | 8§

converges uniformly to ¢(x) as N - = on each compact
subset B < E, with dist(B,s) > x > 0,

. N . o L L L L
e e e e e e e A e e b el dhntuanite P




qq ~ 28 -

i.e.
I
e .
- lim sup |¢(N)(x) - o(x) |
T N+= X€B
N
= lim sug l ) [f w(y)w;(y)ds(y)] ¢;(X) - ¢ (x)
N-+o x€ n=o0 LS
= 0.
Proof. According to the regularization theorem it
v follows that '
' N
sup| | [/ w(y)w;*,(y)ds(y)]q(x) -0 (x) |
x€BIn=0 {S
N ) 2
<C [ 11 [ J w(y)w;(y)ds(y)]w;(x) - o(x)|“ds(x) .
S n=o S
- As element of the Hilbert space-fz(S), the function ¢ can
:j. be represented by its Fourier series with respect to the
he system {02} :
_ n=o0,1,...
bl N 2
S lim [ | ] [1 w(y)w;(y)dsty)] ©* (x) -o(x)|“ds(x)
5y N-o S n=o LS

This proves Corollary 2. O
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Before giving a list of the most important systems
of trial functions satisfying the assumptions of the
Corollaries stated above, we recapitulate some
functional analytic aspects concerned with the closure
and completeness of sequences in (general) inner product

- spaces.

3

.

.
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6. Closed and Complete Systems

A sequence {wn} : is called complete in an
n=o0,1,...

inner product space X with inner product (-,"), if, for
every ¢ € X, the condition

(w.wn) =0

for all n = o0,1,... implies
® = 0.

A sequence {wn} is called closed in a normed
n=0,1,...
space X with norm il ll, if, given ¢ € X and € > O, there

exist an integer N = N(e) and constants agre.er Ay such
that

N
lo -} ae@l <e.
n=o

In an inner product space X, which can be regarded as
normed space with norm

Nl = V-, ),

a closed sequence is complete, but the reverse is not true
in general.

In a Hilbert space, however, the properties of closure
and completeness are equivalent.

In the special case that {o¢*} is an
N n=o0,1,...
4 14

orthonormal system in a Hilbert space X the following

statements are equivalent:

. - L P R oo ool P .
e PSP ST U WY TP P e - Sy e Ao 'y S 'S
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T Y3 G

(i) {p*} is an orthonormal Hilbert-basis
N n=o0,1,...

Aot s TF

i

(ii) {w;} is closed in X
(1i1) {o*} is complete in X

(iv) For each ¢ € X,

ot 2 = J l(w.w;)lz
n=o0
is valid.
(v) For each ¢ € X the Fourier expansion

o0
¢ =] (0,0%) 0%
n=o

holds (in sense of the topology of X).

{vi) For o,Y € X,

(p,¥) = 2 (0, 0%) (¥, ¥*)
n=o n n

(" Parseval's identity ")

 tu i

Proofs of these equivalences can be found e.g. in Davis
(1963) .
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7. Trial Functions / Base Systems

Some base systems particularly important in geodetic
applications should be mentioned now:

(i) solid spherical harmonics

Let {Sn .} denote a maximal linearly
'3 3=1,...,2n+1

independent system of (Laplace's) surface spherical

harmonics of oder m. Let {Hn } be the
'3 n=o,1,...
i=1,...,2n+1

system of solid spherical harmonics defined by

_ -{n+1)
Hnlj(X) = Ixl n,j

Then the system

{Hn

’

.| s} (7.1)
J n=o,1,...
j=1 7 oo ’2n+1

is linearly independent and complete in the Hilbert
space L2 (s).

Proof.

The linear independence is a consequence of the linear

independence of the system {Sn j} of surface spherical
’

nics S_ ..
harmo n,j

.| S}
*3° n=o0,1,...
j=1,...,2n+1
is complete (and consequently closed) in the Hilbert

space Z%(s).

Therefore it remains to prove that {Hn

e T s
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Suppose that ¢ is a square-integrable function
(p € sz(S)) satisfying

((len’j) = éw(x) Hn'J(X)dS =0

for all n =0,1,... ; jJ

1,04, 2n+1 .

We remember that the series expansion

1 oo 1 lxin 2n+1

2n+1 |y|n+1 j£1 Sn,j(g) Sn,j(n)

]
>
3

| x-y| n=o

(x = |x|€ , vy = |yln €2 =1n%=1)

is analytic in the domain given by

0 < [x]| < Lo+ Ty < PgrPg = infly]
YES

X € Ei r Yy €8

For all x € E, with |x] < r, we thus find by virtue

of our assumption

)
U1 (x) = é o(y) W ds(y)
o 1 n 2n+1
=d4r ] o x| j=21 sn,j(s)émymn 5 (¥1as(y)
= 0.

Analytic continuation shows that the single-layer
potential U, (x) vanishes at each point x € E;.

A
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: In other words, the equations
ﬂ u, (x - Tn(x)) =0
3u = 0

EEYE) (x - ™n(x))
hold for all x € S and all sufficiently small t > O.
But this yields using the relations (4.8) and (4.9)

lim [ |Uj(x + ta(x) |2ds(x) = 0

0 S
T-+0
U )
, sl 4 -
ii? é l e (x + Tn(x)) + 4m@(x)]|<ds(x) 0
T-+0
and
lim [ | Uj(x) + 210 (x) |2as(x) = 0 .
>0 S
T+0

The last equation can be rewritten in the explicit form

[1L ow SEGT TesT 45w + 2q0(x) | %ds(x) = 0.

In other words we have

1 3 1 _
- = é ©(Y) 3377 = ds(y) = w(x)

in the sense of JfZ(S).
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Iteration yields
12 3 1 3 i
- )] _— A iyl )
(= 7 {.é“"yz'an(y,) Y =¥, Tn(x TRy, sy
= @(x)

. 3 1 3 1 ) 1
(= 2m) ééé{w(yﬁ an(y,) Ty3-y2] n(yy) (yy=yqi an(x) erﬂ}

= @ (x)

Induction states that

3 1 3 1
nly 1) TY,¥q7 "77anx) Jy,=x]

(= 5=) f---é{“"l’n’ }as (y,)

S
ds(yn)

= @(x)

gor all integers n (in the sense of :82(5)). Since
iteration reduces the order of singularity (cf. Kellogg
(1929)) the left hand side is a continuous function of
variable x at S (n »n,,ne MThus the function ¢ can be
replaced by a function § € c () (s satisfying

élw(x) -%x)1%das =0,

i.e. ® =@ in the sense of Z2(s).

For the continuous function ¢, however, the classical
limit and jump formulas are valid:

lim U1(x + Tn(x)) =0
T+0
T+0

P10 -
lim ~— (x - Tn(x)) = 4rp(x).
o an(x)
T+0

SO AL i PP NPT U WU DI TUL U U P Gy Yo I Py iy YPRISPIN A W R SR
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The uniqueness theorem of the exterior Dirichlet

problem then yields Uq(x) = O identically for all

x € E,. But this means that ¢ = O. Consequently, ¢ = O
on the surface S. O
(ii) singularity functions (mass points)

Let F be a (regular) surface in the inner region
E; with dist(F,S) > X > O.

Suppose that {x_} is a dense point-
n
n=0,1%1,...
sequence in F(i.e.: to every € > O and every point

X € F there exists a point x_ such that {x-xnl< €).

n

Denote by
= 1 -
¢n(x) = T;(Tnl (Xn € F c Ei) (7.2)
the singularity function (fundamental solution)
at x, € F.

Then the system

{¢_|s}
n n=o0,1,...

is linearly independent and complete in the
Hilbert spacedez(s).

Proof.
: Provided that X, ¥ X if n # m we are immediately able
F7 to prove the linear independence of the system
re {o I8} in £2(s).
n=0,1,...

e Our purpose is to verify the completeness of
(o IS} in & %(s).




. - 37 -

R’ To this end we again consider a function ¢ EJfZ(S).
We require that

[ etx)o (x)@5 = o©
S

forn=0,1,... .

The single-layer potential

]
U, (x) = é ©(y) Tr=gT @S(¥)

then vanishes at all points X, € F.

As U,y is continuous on the surface F, the density of
the system {x_} in F implies
n
n=o0,1,...
Us;(x) =0

for all x € F. The same arguments as given before then
QZ assure that U, vanishes identically in R3. But this
yields ¢ = O in Z2(s;. ®;
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(iii) "multipoles”
Let x, be a fixed point in R> - Ee' Denote by
{6} the sequence of "multipoles"
n __
n—0,1,...
-defined by
9.X 1
(37) ' (7.3)
oxy 1x xol[a]=n
where
o a a
o 1 2 3
- Gy o2y (o 3
[a] = o taytay (ax) = (5x) (3x7)  (5x7) .
o 1 2 3|
o
Then the system {¢n|§ is linearly
=O,1,... ’
independent and complete in the Hilbert space ifz(S).
Proof.

It is clear that the potential U, with all its
derivatives of arbitrary order vanishes in X, - For an
analytic function this implies the vanishing in a
neighbourhood of the point x_, hence in R3 - Ee' The
next steps are exactly those presented above. aQ
Other types of trial functions have been listed in
Freeden - Kersten (1982).

Remark: From theory of spherical harmonics (cf. e.g.
Freeden(1979)) it is well-known that every(surface)
spherical harmonic Sn may be expressed in the form

2n+1
sp(6) = 1 ay P (eny o, (lgl=D),

3=1
where Pn is the Legendre-polynomial of degree n and

Nyre-+sNyn,q iS @ system of points ny with ]nj[=1 for

which
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det(P_(n, n,)) £ 0.
n-1e eeer2n+]
.o ee2n+]

- -

According to Maxwell's representation theorem

Pn(in)

len+1

(nV)n-W‘J = (-1)" nt

the Legendre polynomials may be obtained by repeated
differentiations of the fundamental solution of the
Laplace equation in the direction of the unit vector 7 .
But this yields (cf. Cl. Miller (1966))

S (&) n 2n+
n = {=1) n 1
Mz ar L& o

In other words, spherical harmonics may be described
alwayé by combinations of multipoles. Therefore any
approximation by spherical harmonics may be interpreted
as approximation by combinations of multipoles.
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8. Non - constructive Approximation Theorem

In the following we summarize our results developed

in Chapter 7 and give some first applications:

Let us denote by

{¢ }

N n=0o,1,...

one of the following linearly independent systems of
functions ¢ € JD(Ee):

(1) solid spherical harmonics

x|"0*Y s gy, (x=|xlg, £2=1),

n,j

where Sn j represents a maximal linearly
14

independent system of (Laplace's) surface
spherical harmonics.

(ii) "mass points" (reciprocal distances)
1
X~X ’ xn€ E , E-Ei’
n
where {xn} is fundamental in E,

n=o0,1,...
i.e.: (a) dist(x,,8) > O for all n
() for each ¢ € c‘°’(1-:us)n c(2) (E)
with A¢ = O in E the assumption
¢(x ) = 0o,n=0,1,..., implies ¢|E = O.

(iii) "multipoles"
o
(32) T
dx, [x -2;T fal=n '

where Xq is a point of the complement of

E, = E, U S.

P - « s L. .
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Then the sequence

S ’ n=o0,1,... ,

is a closed system in the Hilbert space afz(S), i.e. to
every ¢ € -{2(8) and every € > O there exist an integer

N=N(e) and coefficients Agreecsdy such that

N
[ lox) =7 ao (x)]%s < ¢.
/; n=o nn

In particular, to every ¢ € C(O)(S) and every € > 0, there

exist an integer N = N(e) and coefficients a _,...,a

(o] N
that
N 2
[ lo(x) =) anwn(x)l ds € ¢
S n=o0

(Observe the space C(O)(S) is subset of the
space & 2(s)).

such

By application of the regularization theorem we obtain:

Let ¢ be the (unique) function of class '.'p(Ee) with
t’ ¢|S = 9,0 € C(o)(S). Then, to every ¢ > 0O, there exist

an integer N = N(¢) and coefficients agre.-rdy such that

""'I-l. LA
P I

AL 0
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N
sup | ¢(x) -] a ¢ (x)]
X€EB =0 n'n

N
< C V/Jiw(yf -3 anwn(y)lzdS(y)
S n=o

for each compact subset B < Ee with dist (B,S) = A > O.

Unfortunately, the theorem is non - constructive,
because we have no further information about the

coefficients agre--say- In order to derive constructive
approximation theorems we have to orthonormalize the
system {o_} by virtue of the well-known

Gram-Schmidg=?6%tﬁéﬁormalization) process.
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;‘ 9. Constructive Approximation Theorem
- Let {¢_1} be one of the systems of harmonic
. nn=0,1,...

functions ¢ € P(Ee) listed in Chapter 8 (i.e. solid
spherical harmonics, mass points, multipoles). Let us

denote by {wn} as usual the sequence of
n=°'1’ooo

restrictions wn = ¢n S,n=0,1,... . Then, corresponding to

the countably infinite sequence {wn} : a system
n=0, F2C B

{o*} of functions ¢* satisfying
N n=o0,1,... n

(03,03) = éw;(y)w;(y)dS(y) = S, (9.1)

can be determined recursively in the following way
(cf. Davis (1961) Sec.8.3)

o* = %o Vo=@ Wil = ()
o Iwol ' (o} o '’ o o'vo
* ¢1 * *
o7 = '—W Yy = 0, - (w1,wo)wo
¢2 1
¢§ = l wzl ’ wz = (92 -kgo (‘92 lwlt) w]t
[:- . .
. . (p* = wn+1 ] = @ - rf (w *) *
4 n+1 iwn+1i ! n+1 n+1 KZo n+1 "% %

et
.

("Gram - Schmidt

orthonormalization")
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According to the exterior Dirichlet problem of potential
theory, there exists one and only one function ¢; € 53(Ee)
satisfying ¢;]S =<o;, n=o0,1,...

Therefore, as application of Corollary 2 (Chapt. 5), we
obtain:

Let ¢ be the (unique) function of class 5D(Ee)
with ¢ [ S = 9,0 € C(o)(S). Then the sz-convergence of
the sum

g N
AL ferep)ey —n£° [écp(y)w;(y)ds ] oX

to the function ¢, i.e.

N
lim yéi ) (w,w;)w;(y)-w(y)lzdS(y) =0
N+~ "S n=o0

implies ordinary pointwise convergence of the sum

N N .
) (0, 0%) 0% (x) = ) [f w(y)¢;(y)d8]¢g(X)
n=o n=olS
to. ¢(x) as N > = for each x € E_. On each compact

subset B with B < Eg and dist(B,S) 2 X > O the
convergence is uniform:

N .
lim sup Y O(0,0%)0*(x) - ¢(x)] = ©
N>  x€B in=o non

TR TP T AT AT e T e
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The approximation technique proposed here, indeed, is

constructed so as to have the so - called permanence
property:

The transition from the N-th truncation

N

nzo(w,w;)¢;(x)

to (N+1)-th sum

N+1

ngo(w,w;)¢;(x)

necessitates merely the addition of one more term,

all the terms obtained formerly remaining unchanged.

The price to be paid for the convenience of the

permanence property is the process of orthonormalization.

The theorem is constructive, since the numbers

(0,02) = | ®(y)ok(y)ds(y) (9.2)
5 ,

are the Fourier coefficients of ¢ with respect to the

system {w;}

n=o0,1,...

It is clear from the structure of the recursion process
that wn+1' and hence, w;+1, is a linear combination of
RN wn+1(cf.(9 .1)). In order to determine the linear
combination w;+1 from Ogrees1®p,q We have to evaluate
scalar products and norms, i.e. surface integrals over S.
Assumed the surface S is available in explicit form (e.q.
in the case of sphere, ellipsoid, spheroid) a direct attack
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to the integrals occuring in the orthonormalization
procedure seems possible using efficient methods of
numerical quadrature or cubature.

Furthermore, we have

Il¢<y) ) apozty) | %as
n=o

- [|¢(yﬂ2ds -3 |f o () o2 (v)as |
n=o

N
+ 1 la - ¢(y)¢;(y)ds|2
n=o S

for any selection of constants a_,...,a

o) n'

Since the first two terms on the right hand side

independent of the coefficients a reser@py the problem

of finding the best approximation by linear combination

of ¢°,...,¢ﬁ :

min [|é(y) - z a ¢(y)| 245

an S n=o

is solved if and only if

a, = é ¢ (ylop(y)ds.

In other words,
fl¢<y) - Z (6,0%) 02 (y) | 235
n=o

< fl¢(y) - Z a ¢*(y) | 23s

n=o0

T YW w d TR TR TV T oYL
r @iy radiie . L. . . . . .

TeTRTRTS MR |

(9.3)

are

(9.4)

(9.5)

(9.6)
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for any selection of constants agre--ed .

This is characteristic for (Fourier) expansions.
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10. Approximation Scheme

The constructive character of cur arnroximation theorem
5 now gives rise to the following scheme for the computation
of the earth's exterral gravitational pctential V:

1. Choose a system {¢n}n=o,1,... of the following tvpe:

(1) solid spherical harmonics

l'(n+1)s

x| (6) , (x=!x'£,£%=1),

n,j

where Sn j represents a maximal linearly independent
’
system of (Laplace's) surface spherical harmornics

(ii) singularity functions

where {xn}n=0,1,... is fundamental in E = Ei
(cf. Chapter 8).

(iii) "multipoles™

s X 1
(5§B) TXK=X |

o] [X] =n

where x_ is a point of the complement of §e=EéJS.

et it At datbd L'-a’
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(iv) unions of the hase systems mentioned under
(i) - (iii)

2. Choose an appropriate "approximation™ to the earth's
surface S (e.g. sphere, ellivsoid,spheroid, ...)

?ﬁ 3. Orthonormalize the system

' {¢n}n=ol1fo.. ’ ¢ !S=tD ’

- with respect to the boundary €. This yields a closed
: and complete system

*
lo In=0,1...

in the Hilbert space 12(8).
Define the system

*
{¢n}n=0,1,...

* * *
by o, €P(E,) . o ls=0

4, Calculate the coefficients

»* *
W,o) = [V e, (yIEsW)
2 .

o

by numerical integratior methods.
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5. the sum

V(N)(x) =

[/

n=0 " &

Il 12

* x
Viy)e. (v)as <y>] 5 (%)

serves as (glokhally valid) arproximation for the
gravitatioral notential

V ¢ ?(re) .

Therefore the whole appnroximation process essentially
arounts to computing various types of surface integrals
over S,

Remark: For a spherical earth's model

£ = (xex!

IxI< »}

(R: mean radius of the earth) and the hase system of
spherical harmonics our (numerical) nrocedure ceoincides
with the conventional ccmputation of the I-th truncated
series expansion of a harmonic furnction into solid spheri-
cal harmonics (cf. e.g. Heiskanen-Moritz, Chapter 1.16,
(1967)).

Troem a geodetic noint of view it should bhe noted that
the external gravitational notential V of tre earth may he
uniformly approximated by the sum

N i

-0 ., ¥ * * *

) = (Toon) s(x) = T [I v (v) e <y)as<y>] S
T‘EO n n n=n S n n
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in the sense that for any given € > 0 there exists ar inteqger
N = N{(¢) such that the relation

N
) [fv(y)to:(y)ds(yﬂ@;(x) - Vix) <€ ¢
n=0 ~ 8

holds uniformly everywhere outside and on any clcsed surface

completely surrounding the (earth's) scurface ¢ ir the outer

space Ee. The surrounding surface may bte arbitrarily close %o

the earth's surface.

Conseguently the external aravitational potential ¥ of the

earth can be expanded into the series

2 ’ * *
1 [{ vwegmasm]egem

actually outside and on anv closed surface completely
surrounding the earth's surface £ in the outer space ¥_ . In
other words, we have quaranteed the nossihilitv of an an-

proximation of the external gravitational octential in the

whole outer space Ee by a constructive version of Punae's

theoren.
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11. Numerical Approximation

From the structure of the Gram-Schmidt orthonormalizing
x*
rrocess we know that the functions 0, are related to the
functions ¢ by the following linear ecuations

v 11.1
o, = £ DL b (11.1)

where the matrix

D=, 3 n=o,...,n (11.2)

j=0,...,¥

is a lower triangular matrix (cf. Chapter 9). Thus it is
clear that there are several ways to express the hest

(N)

approximation ¢ to an element ¢ €.p(Ee) by a comki-

nation of given (independent) trial functions:
(i) as a linear combination

N
¢(N) (x) =n£oan ¢n(x) (11.3)

of the given elements %q 4
2 o s 0 g o

(ii) as a linear combination

6 (N)

W =L ey en W i,
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In order to exploit the permanence nrorerty artho-
normalizaticn is indispensahle. Orthonormalizaticn, howvever,
is equivalent to the determination of the matriy 2, and
computation of the matrix D is nothing else than the
inversion of a well~defined (triangular) matrix C
(cf. (11.18)). From a numerical point of view, hmwever,
inversion is often not very economical.

The situation is different if we are interested conly in

N
one best apoproximation ¢(J)

of special (prescrihed) deqrée
N. In this case, a numerical technicue can he used without
any need of inverting. This technique is hased on Croleslky's
factorization theorem as will ke descrihed now.

To this end we kegin with the proof of the followinc

theorem:

Let the sum given by

H
’b(N) (X) = z an ‘bn(x) (11.5)
n=0

be the best approximation to ¢ from amonc the
¢N‘ Then, the

AR N 4 .

coefficients a. a, are the soluticnscf tre

e w e g

following linear system

linear combination of ¢o

(3qr8Q) @4 + ...+ (a\,,%) ay, = (8,44)

. . .

. . (11./)

)

(6/)’6\:) ao + LI ) + (0tyl¢‘\r) a\q (éléxy) .

("rorral eaquations”)
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Proof: The coefficients aO aN are determined
- 7 o 0 0o
such that
) T toehyel
a_ ¢ _(x) = (6s0 Yo _ . (11.7)
n=0 nn n=0 n.n

Now, it is easy to see that

N

(2= § (¢,¢;) ¢;,¢:) (11.8)
3=0

* *
(¢I¢n) = (¢r¢n)

for n=0,...,N.

But this means that

3]

: (6 -3 a,_ ¢ ,6) =0 | (11.9)
:' =0 k ¢Ak n

for n=0,...,N.

In other words, ¢ minus its bhest appnroximation by linear
combinations of ¢O ¢N is orthogonal to each ¢n' O
o o 0

The normal equations (11.4) can be rewritten in the -
vectorial form

T (11.10)

Ga =b , b" = (bor-'irbN)
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where b € Rh+1, is the (N+1)-tupel

(¢,¢O)

o
]

(11.11

(¢,¢N)
and G is the Gram matrix

(¢Ol¢o) LY (¢nI¢N)

G = . . - (11.12)

(¢r]l¢o) « e (¢N'¢§I)

As symmetric and positive definite matrix, G can be
decomposed uniquely in the form

G = C-C ’ (11.13) |
)
N where C is a lower triancular matrix with positive diaconal
3 elements. This splitting of G is known as the Choleskvw
- factorization.
. Hence, the solution a € RN+1, aT = (ao’.",aN), can be

A found by the following direct method:

(i) factorization of the Gram matrix:

(ii) computation of the vector

ae N g7 - (4, )
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of the linear system
Cd=5~
by forwarc substitution
(iii) computation of the vector

a € R ra=( )’

%0,...,%

of the linear system

o by backward substitution.

Remark: As is well-known from numerical analysis, the
procedure is very economical ( as recards to the
N algorithmic operations) and very stable. The
: solution a € RN+1 is obtainahle without any need

of inverting.

Observing the representation (11.1) we get

N N
(0ny00) = L J D .D, . (8.,6.) =6, , . (11.14)

This is eguivalent to

(11.15)

pedT = 1

(I: unit matrix)
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Consequently,

oy~ ‘1"."'.'7': ]
P T e IR

m

c=p - HT . (11.16)

EL g

On the other hand, we have the (unique) decomposition

G=C-C . (11.17)

Thus a comparison between the Gram-Schmidt orthconormalizina
and the Cholesky factorizing process shows that

-1

2
a_a_a

C =D . (11.18)
N Moreover, the vector c € ﬁN+1, cT = (cn,...,cN) , is
- equal to the vector 4 € iq+1, a’ = (do""'dN)'

c. = (¢,6.) =4d. . (11.19)

- J ] J

This is easily seen from (11.1) by the following
implications:

S Db=c = b=0D'c

= Cc

g ¢
oo
! !

= Cd (cf. (ii))

c=d (11.20)

§ Hence, by Cholesky's method, the hest approximation
- (N)
-, ¢

*
system ¢O ¢, can be determined without exnlicit
? e e o ot

to an element ¢ with respect to the (orthonormalized)

computation of the systen {¢ } itself.

. . . - - [ .
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12. Simple Examples

In order to get an impression of the least square
method proposed here we discuss some simple numerical
examples:

Our aim is to approximate ¢ by best approximations
N
o™ x) =7 a6 (x)
k=1 k'k

(12.1)

with respect to the system of (buried) mass points

1

¢k(x) = Wk—r ' Xy, € Ei .

(12.2)
{i) Boundaries

The surface S we choose for our computations are

given by

2 2 2
X X X
_ 1 2 3 _
s = {x| ('3-) + ('-E-) + (—c ) = 1}
with
(a) a=b=c¢c =1 (Example 1)
(8) a=1,25;:; b=1; ¢c=20,75

(Examples 2,3)

By the equations

X, = a sin® cos o (o< < 2m)
x2=bsin19' sin o (0 < &< )
x3=ccos19°

-the rectangular coordinates Xq11Xy,Xq are related to

the ellipsoidal coordinates:a,b,c ( axes ), f*(polar
distance), ¢ (geocentric longitude).

T Y T ey
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(ii) Boundary values

We discuss two types of boundary values defined on
the surface S under consideration

(a) potential of a mass point

1 T
o(x) = pramy ’ XxX€S8 ,y =

N

(1,1,1)

(Examples 1,2)

(8) polynomial

@Iix) =3 + x 2 T

f + x% - 2x2 , X€S, x

= X1 Ix2 Ix3) .

(Example 3)

The boundary values are shown pictorially by use of
ellipsoidal coordinates in the following figures:

!

¢ max.height

N\

min.height

o° 3e0® P

-
1
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2 2

_ 2
oix) = 3 + Xy + Xy - 2x3

_ 2 2 2
S = {x[x1 + X, + X3 = 1}
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Figure 4: (.D(X) = IX‘YI-1 ’ YT = ‘{%(11111)
X 2 X, 2
_ 1 2 3¢
$=lxilyzg) +x* (g = 1
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-
4

1o e
8.9

Figure 5: o (x) = 3 + xi + x

X
. 1
S = ‘_x!q—lz—S) + X
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(iii) Trial functions

As trial functions we use the singularity functions

1
¢)k(X) - x_xk"' ’ Xk e Eio

P

The set f of mass points x, € E,
N T k i
:fN = {xq,.cixgd (12.3)

is generated by radial projection of the points Ek

of the system .f%

d& = (€00 08y . (12.4)

,-l
to a surface S . The systems J% are unions of regular

polyhedra:

)
"

{PS1} (Tetrahedron)

= {PS1} v {Ps2} (Cube)

o
|

7oe = {PS1} U {PS2} u {PS3}  (Dodecahedron)

= ig v {PS4} (Icosahedron/Dodecahedron)

N
|

326 = jgz v {PS5} v {PSé6} (Icosahedra/Dodecahedra)

wr2re the point systems (PSi), i=1,...,6, are given
as follows:
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-
&I point systems
PS1 a(-1,—1,-1) r QO (-11111)
5 a(11‘1,1) r QO (111'-1)
N (o= /173)
- PS2 a(+1,+1,+1) , o (=1,=-1,+1)
5 al=1,+1,-1) , o (+1,=1,=1)
(¢ = A73)
PS3 (0,1, 21/1)
a(tl1/t, O,tT)

a(¢7, £1/7,0) (a = /T73,1=(1+/5)/2)

PS4 Bo,t1,2T)
B(tr,0, £1)
B(t1,:70) (1= (1+/8)/2 , 8= 1/¥(1+1%) )

PS5 a(0,x1/71,t1)
at, O,£1/1)
a®1/t,£1t, O)
(0 = /173,71 = (1+/5)/2)

PS6 B(Og T,£1)
B 1, O, 1)
8(xt,21, 0)
(r= 1+/5/2 , 8

17 V141%)

- The point system fgz is chosen as the union of f56
and the points

p (¢ 11'000) ’ (O, 11,0) ’ (0,0, £1).

. L e e e e, e . Lt o L ' . . . N s
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h (iv) Integration method
4

The integrals over S occuring in the Gram matrix G
were computed in the following way:

- The integrals over S are transformed using polar

. coordinates. Then all the computations of the
(transformed) integrals are performed by (iterated)

3 application of Romberg's quadrature formula (Romberg
%l extrapolation). Using the subrcutine DCADRE (cf. de
Boor (1977)) we are able to compute both the approxi-
mation of the integral and the estimation of the
error between integral and quadrature formula. In all
E‘ the cases, the actual resulting error was about 10-8.

Remark:

-ﬁ: For the Cholesky factorization, the forward and

backward substitution powerful routines are available
(cf. Dongarra et.al.(1979)).
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(v) error estimates

The accuracy of the best approximation ¢(N) to ¢

will be investigated by discussing the errors
s [ lety) - o™ (y? as
S

(least square error)

_ . (N)
MAR : max | &) ¢¢zx) (x)
XES

(maximal absolute
relative error)

(N)
. o(y) - ¢ (y)
M fsl T | ds

(mean absolute relative error)

The errdr LS is determined by the Romberg
integration mentioned above.

The errors MAR,M are evaluated for a discrete

lattice of 181 = 91 points in the @ ,9 -plane ( &:

polar coordinates).

)
L 1§1 I GRS
T3 32y o lx;5)
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Example 1:
_ 2. .2 . .2 _
s = {x|x] + x5 + x5 =1}
(unit sphere)
~ 2 2 2
S = {x|x] + x5 + x3 = 7/10}
Boundary values:
-1 _ V3
o(x) = |x-y| » Yy =-3 (1,1, , x€Ss8.
N LS MAR M
. 0,25 0,80 0,24
. ga=2 . qa=1 L oqa
8 0,12 10 0,93 10 0,16 10
5o | 0150 1073 | 0,62 * 107" | 0,77 + 1072
35| 0,23 1073 | 0,48 * 1071 | 0,50 * 1072
56 | 0s21 ° 1073 | 0,46 * 107" ! 0,40 * 1072
ﬁ}
l'~.‘_;-
E;:f;
N
10
v
S | . j
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Example 2:
%9 2 2

7]
|

S = {x|x =rw , we€sSs
Boundary values:
olx) = 'x-y!7! , y =

/3
=

2

X
) = 1)

(5,75

(ellipsoid)

, r =0,75}

t1,17,1) , x € 8

Dl B S it A dge gane St o

LS

0,32

0,33°10"2

. 0,17°10"% 0,10

-2 4=
32 0,11-10 0,82°10

0,99°10~3 | 0,817 10

56

0,25

0,21 ° 10

0,12

Y1 o,78

-1

AAAAAA

T W ™ T""‘




¢t

-~
A

190

~

N LS MAR M
4 1,37 1,01 ‘ 0,42
8 1,25 0,85 0,42
20 0,29 0,42 0,13
* -1 ' . _1
32 0,53°10 0,24 0,38 10
.1 "1 " 1 -1
o, | 0,98:107% | 0,35:107" | 0,88 - 1072
'S
%i
3
: A
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X 2 X 2
- | 1 2 3 _
S = {xl (7725) * X+ Fyx) =)

(ellipsoid)

S={x=xw,w€S, r=0,75}

Boundary values:

2

- 2 2 _
wix) =3 + x1 + X5 2x3
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(N=8, Example 2)

(x), xe€8§

(M)

Figure 7a: error ¢(x) - ¢

(N=8, Example 2)

X€ES

(x) ,

()

relative error ¢(x) - ¢

Figure 7b:
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Figure 8a: error ¢(x) - ¢ )(x), xeS (N=20, Example 2)
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Figure 8b: relative error ¢(x) - ¢ (x) , xeS (N=20, Example 2)
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(N)
Figure 10a: error ¢(x) - ¢ (x), xS (N=56, Example 2)
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xe§ (N=8, Example 3)

(x),

(M)

(x) - ¢

12a: error

Figure

x€S (N=8, Example 3)

(N
$x) - ¢ )(X) ’
$(x)

tive error

12b:

Figure
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The numerical computations were done on the CYBER 175
at the "Rechenzentrum Aachen"
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e Final Remarks:

. Mass model representations have been shown to be

Ei adequate tools for the purpose of representing the external
gravitational potential. The relations of the models to

E; the physical realitiy are transparent: the harmonicity of

: the approximation by mass model representations is

guaranteed. Point masses (reciprocal distances) are easy
to handle, reciprocal distances and their derivatives
provide simple expressions of any desired gravitational
field quantity. The relation between point masses and
spherical harmonic coefficients of the external potential
is straightforward (cf. Chapt. 7). By combination of the
base functions (e.g. low degree spherical harmonics and
mass points) physical meanings (center of mass, moments
of inertia etc.) can be easily implemented into the model.
Least square approximations by mass model representations
can be deduced for not-necessarily spherical earth's
models, the approximations are best in the sense of the

root - mean~-square error.

There are of course some drawbacks in the approximation
of this technigue:theoretically there exist infinite
numbers of mass distributions compatible physically with
the earth's gravitational field; in practical
applications, however, we have to select a finite number
of (multi)poles which are both economical computationally
and relevant geophysically. Approximation of boundary
values ¢ and external gravitational potential ¢ is achieved

(M) of oscillating character. As illustrated in our

by sums ¢
BExample 3 (Chapter 12), the oscillations often grow in

number, but they decrease in size with increasing N.
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Least square approximation as described in this report
provides a suitable procedure for macro modeling by
successive oscillations. It is not a technique of
osculating character (as, for example, the Taylor
series).

Remar k : A detailed discussion of oscillating and osculating

approximation in classical Fourier theory has been given by

A. Sommerfeld (1947): PARTIELLE DIFFERENTIALGLEICHUNGEN DER
PHYSIK, Vorlesungen Gber Theoretische Physik, Bd. 6, Akademische
Verlagsgesellschaft, Leipzig (6.Auflage (1966)).
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