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1. Introduction

From classical potential theory we know that the

(Newtonian) potential of the earth's body E

V(x) =4J P(y) 1 dV(y) (1.1)

E

(-A: gravitational constant)

is a harmonic function in free space. That is, V is

arbitrarily often differentiable in the earth's exterior

Ee and it satisfies Laplace's equation

AV(x) = 0 (1.2)

for all points x E Ee . Moreover, V is regular at

infinity, i.e. V and VV tend to zero

IV(x)l 0
(1.3)

IVV(x) I = 1

L.if lxi tends to infinity. Since the density function p is

better known only for parts of the upper crust of the

earth, the closed representation (1.1) of the potential V,

however, cannot be used in numerical computations. Instead,

we have to look for suitable approximations. In this

connection a result first formulated by C. Runge (1885)

and later generalized by J.L. Walsh (1929) and T. Krarup

(1969) is of particular importance. It states:

.-.... . ..... . .< . ,. . - . . . , 2, -
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Any function V harmonic outside the earth's

surface S and regular at infinity, may be

approximated by a function U, harmonic outside an

arbitrarily given sphere (Bjerhammar sphere) inside

the earth and regular at infinity in the sense that

for any given E > 0, the relations

IV(x) - U(x)j 4

resp. (1.4)

IVV(x) - VU(x)J <

hold for all points x of the Euclidean space R
3

outside and on any closed surface completely

surrounding the earth's surface in the outer space.

The value e may be arbitrarily small, and the

surrounding surface may be arbitrarily close to the

earth's surface (cf. Moritz (1980)).

In this formulation the Runge-Walsh-Krarup theorem is

a pure existence theorem, i.e. it guarentees only the

existence of an approximating function U and does not

provide a method to find it. Nothing is said about the

structure of the approximation U. The theorem describes

merely the theoretical background for practical purposes

of determining an approximation to the external

gravitational potential of the earth.

In a spherically symmetric model, however, the

situation is completely different. For a spherical earth,

constructive approximations of V are available by use of

trial functions with a larger harmonicity domain. As

trial functions the following (base) systems {n I can be

used, for example:

L!
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(i) "solid spherical harmonics

Ix -(+1S n( ) (x=r r=lxl) ,

{S n } maximal linearly independent system of

surface spherical harmonics (origin at earth's
center of gravity)

(ii) " mass points

:.. X-X n I

{x n } "fundamental" sequence of points in the

complement of Ee U S (cf. Chapter 8)

(iii) " multipoles

• j

ax 0 Ix-x 0

[j j=n

x is a fixed point in the complement of E e U S,

i = (j1 ,j2 ,J3 ) is a triple of non-negative

integers,

[j i = a1 +j2+j_3  _(_)
Sax 1 Jax22ax3j 3

0

We recapitulate the standard method of approximating an

external potential V in a spherical model.

.t .
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Spherical approximation

Let us suppose that S is a sphere with radius R about

the origin and Ee is the outer space of S:

S = {x E R I x = RI

E 3
e = (x E R I 1Xl > RI.

Let V be coitinuous in E e U S and twice continuously
differentiable in Ee . Moreover, let V satisfy AV(x) = 0

for all x E E

Let us denote by { I one of the linearly independentn
systems of trial functions listed above. Corresponding to

the countably infinite sequence {n I there exists a system
{ } of trial functions p* orthonormalized with respect to

n n
the inner product of the space X2(S) of all square

integrable functions on S (Gram-Schmidt orthonormalizing

process)

f Oq*(y) O*(yldS(y) = 6 (1.5)

(dS surface element)

Then the potential V can be represented by the expansion

V~x W V4* ~() (1.6)n n

where the numbers

(V,) fV(y) *(y)dS(y) (1.7)

S

are the Fourier (or orthogonal) coefficients of V on S

with respect to the -stem f' }.

!I

"2, . -.
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More explicitly this reads: given an error bound c > o,

then there exists an integer N = N(E) such that

N

IV(x) - (V'o1*) n~x 18

for all points x E G with G c Ee and positive distance to S

(dist(G,S) > X > 0). In each compact subset G c Ee the

convergence is uniform.

Therefore we have a constructive version of Runge's

theorem by means of the truncations

N
v (x) I [ (V,,*) *(x) (1.9)

r1=0 n n

in a spherical (earth's) model.

The approximation technique is formulated so as to

have the permanence property: the transition from V(N)

(N+1)t- V necessitates merely the addition of one more

term, all the terms obtained formerly remaining unchanged.

Furthermore, V (N ) has the following minimum property

N
f V(y) - [ (V,,) Onyi dS

S n o (1 .lo)

N 2
= min f JV(y) - a *(y)2 dS

nn On
a an S nmo

for any selection of coefficients an.

, .. t.-. . . .
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The considerations given above lead to the impression

that a least square approximation by truncated expansions

V (N) of the form (1.9) is intimately related to spherical

boundaries. Our purpose, however, is to prove that the

essential steps leading to a least square approximation

of an external gravitational potential by truncations of

series expansions into (multi)poles can be transcribed

in the same way to general (non-spherical) models.

We summarize the main results.

Not-necessarily spherical models:

Let us suppose that S is the boundary-surface of

a not-necessarily spherical earth's model (e.g.

ellipsoid, telluroid, geoid,.real(regular)earth's surface).

Let Ee be the outer space.

Let V be continuous in E U S and twice continuously
" e

differentiable in Ee . Moreover, let V satisfy

AV(x) = 0 for all x E Ee

Let us denote by {n one of the linearly indepen-
n

dent systems listed above. Corresponding to the

sequence { n} there exists a system {} of

trial functions 4 orthonormalized with respectn2
to the inner product of the space 2(S) of all square

integrable functions on S. Then the potential V can

be respresented by the expansion

00 *(x (I II
V(x) = (V,ct) n(x ' 1.1

n n
n=o

.
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where the numbers

"-(V,q) V(y) 0*(y) dS(y) (1.12)

S

are the Fourier (or orthogonal) coefficients of V on S

with respect to the system {:}.
n

More explicitly: given an error bound c > 0, then

there exists an integer N=N(E) such that

N

JVWx (V,O*) 4*(X)I < E (1.13)

for all x E G with G c Ee and dist(G,S) > X > 0. In

each compact subset G c Ee,the convergence is uniform.

lboufldlng

It should be pointed out

that the series (1.11)

guarentees ordinary point-

wise convergence not only

outside the smallest bouniing

sphere, but indeed in the

Figure 1 (whole) outer space Ee*

Our approach therefore avoids inadequate phenomena of

divergence in regions between a bounding sphere and the

surface S. The price to be paid is the orthonormalization

process with respect to the not-necessarily spherical

surface S.

As in the spherical case, the advantages are the

permanence property and the minimum property.

• ..
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At the surface S, the approximation by trial functions

depends closely on the smoothness presupposed for V.

Provided that V is only assumed to be continuous on

the surface S, then it can be proved that, to every c > 0,

there exist an integer N = N(e) and coefficients b o,...,b N

such that
N

sup IV(x) I b *(x)I < E (1.14)
xES n=o

and by maximum principle of potential theory
N

sup IV(x) - ( bn *(x)1 ; (1.15)nn
XEeuS n=o

(cf. Freeden(1980) Chapter 6). But the coefficients bo,...,N

do not coincide, in general, with the Fourier coefficients(v,,*: ,...,I V4 )

Hence, "downward continuation" of the expansion

~ (V,)cp~j(1.16)
n=o

to the surface S cannot be assured generally under the

assumption of continuity of V over the surface S.

The series expansion

V(x) = (x), (1.17)
11-0 nn=o

however, remains true for all x E Ee U S in the ordinary

pointwise sense if stronger conditions of smoothness are

imposed on V in addition . In the spherical case, for

example, the continuous differentiabiitv' nf 1 on F is

sufficient to verify the validity ,f (1.17) on c for

spherical harmonics. ( detailed discussion f "rolF npar

continuaticn" of series exnainsions into triil Functicrs

for non-snherical cases seems to be cre).
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In detail we are concerned with the following

investigations:

In Chapter 2 and 3 notations are introduced.

Essential tools of the presentation are the "jump

relations" and the "limit formulas" of potential theory

(Chapt.4) and a regularization theorem (Chapt.5). The

adventages of an approximation by harmonic trial functions

are discussed in Chapt.6 and 7. Then non-constructive

approximation theorems (Chapt.8) and constructive

approximation theorems (Chapt.9) are developed. Chapt.10

gives an application to the external gravitational

potential of the earth. In Chapt.11 a numerical method

based on the Cholesky factorization is presented. The

efficiency of the numerical method is analyzed. Finally

(Chapt.12), some simple examples give an impression of

the accuracy.

Acknowledgements:

The author is indebted to Dr. R. Reuter, Aachen, for

the numerical computations..

Particular thanks go to Mrs. B. Seifert for preparation

of the typescript.
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2. Basic Settings of Functional Analysis

The following definitions and notations are standard

in functional analysis.

A linear space is a set of elements such that to any

finite subset P,...,Fn the linear combination

0 (o 0 + ... + an% (an : scalars) is also a member of the

linear space. We shall only consider real linear spaces.

Hence ' are assumed to be real. Any linear

space possesses a unique zero element. A collection

o o,..., n of elements out of a linear space is called

linearly dependent if there exist numbers a ...,an, not

all of them being zero, such that

S0(P0 + ... + an(n = O. (2.1)

Otherwise the elements ko,. ..,n are called linearly

independent.

For each subset of a linear space we consider the

space generated by this subset, i.e. linear combinations

of the form

(OP + ... +n n

The union of all such spaces is called the span of

,.p op...,n n

I span (to' 0 " "'n ) "
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A normed space X is a linear space which assigns to

any of its elements P a non-negativenumber IkpII, called

the norm of (p, with the following properties:

(i) 11PI1 > 0; I1oPI! = 0 ( P = 0

(ii) IP + 'I I(all + 1 1I

(iii) 1IcI pII = I It(PII. ((x: real).

The norm describes distances between pairs of elements

q~,~~E X. The distance between P and qP is defined by

dist(P, ) = Ip - P11 . (2.2)

The distance between two subsets A,B of X is defined by

dist(A,B) = inf Ikp - 011 . (2.3)
(PEA

Distances can be used to define convergence. Two cases

are of particular interest.

(i) Convergence to a limit element.

Let {(PnI be a sequence of elements out of

a normed linear space X. Let o be another element

of X. We say that the sequence {on)
n=o, I,.

converges to the limit element (P, in symbols,

lim W = P or (p in X,
n--n

if, given c > 0, there exists an integer N = N(E)

such that
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- (ilL ' £ (2.4)

for all n > N().

(ii) Convergence in the sense of Cauchy

A sequence {n} is called convergent in the
n n=o,1 ...

sense of Cauchy, if given E >0, there exists an

integer N = N(e) such that

11 - m11  E (2.5)

for all n,m > N(e).

We see that a Cauchy sequence is defined without using a

limit element. It merely requires that the elements of

the sequence cluster in a certain way.

A normed space X is called complete, if, to every

Cauchy convergent sequence { n}  in X, there

exists an element p E X, such that {p } converges

to the limit element (p.

As soon as the elements cluster in the sense of Cauchy

in a complete normed space, a limit element must exist.

Complete normed spaces are called Banach spaces.

For a normed space X, a system {T is called

n=o,I,...

a basis, if for any E > 0, p E X there exist an integer

N=N(£) and coefficients a., such that
N

hE-

11 (P - k(Pt k "

.o.
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A linear space X is called an inner product space,

if to any pair p,tP of its members a real number (i,4)

'. called the inner product, is assigned which has the

- following properties:

-'a)
(i) (p,p) = (,)

(ii) (p,p) = (P,p) (oc: real)

(iii) ((P+P2,1) = + ((2,0)

(iv) ((P, () 0 , (P, ) = 0 = 0.

A consequence of these properties is the Schwarz

inequality

2W. 0 ((P,.P) (,,) . (2.6)

We say that a system {(kk o of functions of an

inner product space X is an orthogonal system if its

elements are mutually perpendicular, that is

(Pk, i) = 0 (2.7)

if i K, and in addition

for all k.

An orthogonal system {pn} is called

n n=o,,. ...

* orthonormal system if (kp = 1 for all k. One can

always obtain an orthonormal system by dividing each

element by its norm.
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A further property of the inner product which may be

deduced from the defining properties (i) - (iv) is the

continuity of the inner product. This means that if

" "0 (Pm ' then ( (

The inner product induces a norm by defining

IkPI11 = /((P, ) . (2.8)

Hence, an inner product space X is automatically a

normed space. Schwarz's inequality may be reformulated

by taking the square root

I (P, 1 ) J I~pfl 1'II . (2.9)

A Hilbert space is an inner product space which, in

addition, is complete.

If a basis {P n} o in an Hilbert space X is

orthonormalized, each element (p of the space X is

" representable by the generalized Fourier series

~ = ,nO (2.1o)

n=o

in the sense of X.

An orthonormal basis in a Hilbert space is often

called Hilbert basis.
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3. The Banach Space C(o) (S) and the Hilbert S C(S)

3
If G is a set of points in R3 , aG will represent its

boundary. The set G = G U 3G will be called the closure

of G.

3
A set G c R is called a region if it is open and

connected.

The restriction of a function f to a subset M of its

domain is denoted by fjM, for a set I of functions we

define IJM as the set of restrictions fIM:

IIM= {ftMjf E I}

A function f possessing kcontinuous derivatives is

said to be of class C(k).

A surface S c R3 will be called regular, if it

satisfies the following properties:

(i) S divides three-dimensional Euclidean space 
R3

into the bounded region E = Ei (inner- space) and

the unbounded region Ee (outer space) defined by

Ee =R 3

(ii) S is a closed and compact surface with no double

points

(i i) S is a C 2 )-surface

From the definition it is clear that all (geodetically
!-.- relevant) earth's models are included. Regular surfaces

are for example sphere, ellipsoid, spheroid, telluroid,

geoid or real (regular) earth's surface.

p'.
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By C( 0 ) (S) we denote the set of all continuous

functions on S, endowed with the norm

ifl = suplf(x)I. (3.1)

xES

C(o) (S) is a complete normed space, i.e. a Banach space.

• • In C(o) (S) we introduce the inner product

(f,g) = Jf(x)g(x)dS, (3.2)
S

the inner product (,- implies the norm

If ffi = f/i • (3.3)

In connection with (3.2), C(o) (S) is an inner product

space.

For each f E C(o) (S) we have the inequality

If I < C (Ifil (3.4)

with

C = C(S) = V77 (3.5)
S

We denote by 2 (S) the space of real functions

defined on S with second power absolutely integrable

over S. e 2 (S) is a Banach space with the norm

Ifl -r/J lf(x) 2 dS. (3.6)
S

' Furthermore, 9 2 (S) is a Hilbert space with inner product

L(,") analogously defined by (3.2).

-° . . . . .
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(S) is the completion of C(o) (S) with respect to

the norm
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4. Limit Relations and Jump Relations in Potential

Theory

At each point y of the boundary S = 3E we can construct

[a normal n(y) pointing into the outer space Ee . The set

S = {x E R3 1 x = y + Tn(y) , yE S} (4.1)

generates a parallel surface which is exterior to E for

T > 0 and interior for T < 0. It is well-known from

differential geometry (cf. Ci.Mfiller(1969),§ 13) that

if ITI is sufficiently small, then the surface ST is

regular, and the normal to one parallel surface is a

normal to the other.

Let g be a continuous function on S (g E C() (s)).

Then the functions UN defined by

a N-1
uN (x) = g l(y) ) j1 dS(y) (4.2)

are infinitely often differentiable in E. and Ee and
satisfy the Laplace equation. In addition, they are

regular at infinity.

The function U1 defined by

U1(x) = f g(y) 1 dS(y)

is called the potential of the single layer on S, while

U2 given by

U(x W f g(y) aSy
2  s g  (y) Ix-y dS(y)

is called the potential of the double layer on S.
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For g E C (S) the functions UN can be continued

continuously to the surface S, but the limits depend

from which parallel surface (inner or outer) the points x

tend to S.

on the other hand, the functions UN also are defined

on the surface S, i.e. the integrals

N-I
UNX W g (Y) any dS(y)

exist for x E S.

Furthermore, the integral

UW(x) = J g(y)(a-) -yj dS(y) (4.3)
n S

exists for x E S.

However, the integrals do not coincide in general with

the inner or outer limits of the potentials.

From classical potential theory (cf. e.g. O.D.Kelogg

(1929), J. Schauder (1931)) it is known that for xE S

lim U1 (x ± rn(x)) = U1 (x) (4.4a)
- T-)'O

T >O

lim -(x ± Tn(x)) = 2rg(x) + U (x) (4.4b)
an

,. T >O

lim U2 (x ± rn(x)) = ± 27rg(x) + U2 (x) (4.4c)
S+0

T >O

(" limit relations ")
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and

lim(U 1 (x +Tn(x)) U1 (x - [n(x)) = 0 (4.5a)
T -00T>O

lim (U1 + Tn(x)) - C(x - Tn(x)) =-4Trg(x) (4.5b)
3n* an

T >O

lim(U 2 (x + Tn(x)) - U2 (x - Tn(x))) = 4rg(x) (4.5c)
T- 0

lim(--(x + Tn(x)) (X -Tn(x)))= 0. (4.5d)

- T >O

'" jump relations ")

In addition , O.D. Kellogg has proved that the above

relations hold uniformly with respect to all x E S.

This means that

lim sup IU1 (x ± Tn(X)) - U,(X)I = 0 (4.6a)
T-0 xES
T >0

au1

lim sup J -- (x ± Tn(X)) ± 2rg(x) - U (x)I = 0 (4.6b)
T-0 xES
T >0

and
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lim sup U1 (x + Tn(x) - U31(x - n(x))I 0 (4.7a)
T-O XES
T>O

!aUl auI
lir sup I (x + Tn(x)) - a- (x - "tn(x))+4Trg (YO C 4.7b)
T-O XES
T >0

lir suplU2 (x + Tn(x)) - U2 (x - Tn(x)) - 4rg(x)j=o (4.7c)
T-0 xES
r >0

•au 2  aU2
lim sup - -(x + Tn(x)) - - Tn(x))I = 0. (4.7d)
T-O XE S
T >0

Herein

n -(x tn(x)) = nx)(7U) (x± rn(x))

These relations can be generalized to the Hilbert

space C2(S) using exclusively functional analytic

means (cf. Freeden(198o), Kersten (198o)).

-j For square-integrable functions g, i.e. g E e2(S), we

then have

lira u 1U (x U1n(x)- UI (x)I dS(x) = (4.8a)
T-00 S

-.' T>O

au 2
lirm f I3n--(x ± rn(x)- U (x) t 27Tg(x) dS(x)=0 (4.8b)
T-0O S
T >o
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lim f U2 (x -rn(x)) - U2 (x)27rg(x) 2 dS(x) = 0 (4.8c)
T--O S
T>O

and

lim f JU 1 (x + Tn(x)) - U(x - Tn(x))I 2dS(x) = 0 (4.9a)
T-0 S
T>O

-au I  auI
U f a-(x + Tn(x)) - - (x- n(x))+4Trg(x)j2dS(x)=0 (4.9b)

- ' 'O S

lim f 1U2 (X + Tn(x)) - U2 (x - Tn(X)) - 47g(x) dS(x)=0 (4.9c)
T -)'O S
T>O

-. au2  au 2 2
lir J -(x + rn(x))- -(x- Tn(x)) 12 dS(x) = o. (4.9d)

f an an
T>O

-.
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5. Regularization Theorem

Let $(E e) be the space of functions V with the

following properties:

(i) V is twice continuously differentiable in E and

continuous in Ee EeU S, i.e. VE C (Ee)f C(° ) (Ee)

(ii) V satisfies Laplace's equation in Ee

AV(x) = 0 for x E Ee-

(iii) V is regular at infinity:

Iv(x) l =

jVV(x)I =1

if 1xl

Suppose now that { n}  is a sequence of
- ~'no,1 , .. .

functions 0n belonging to the class P(E e ) . We denote by

..- no~i, the system of restrictions pn-4nIS,n=o,1,...

Assume that the system {p n}  converges
" nn=o, I,...

uniformly to the function T on S, i.e. for given e > 0,

there exists an integer N = N(E) such that

sup n(x) - W(x) E (5.1)
XES

for all n > N. Then the maximum principle of potential

theory assures that the sequence n converges
n=o,1,...

uniformly to the (unique) solution p of the exterior

(Dirichlet) problem 0 E (Ee), OIS = T.

.. . .
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In other words, this means that

sup I (x) - p(x) < C (5.2)
xEh

for all n > N.

If the system [(n} is only convergent to pn n=o,1,...

in quadratic sense, i.e. for given c > C, there exists an

integer N = N(E) such that

!2
.. n - D(x) 2 dS nx , (5.3)
S

then we cannot expect in general that the sequence

[on} n=0,1, is uniformly convergent in the whole

space Be= EeU S. Our intend, however, is to the show that

the quadratic convergence of a sequence {p }  ton n=o,I,...
a function tp on the surface S implies ordinary pointwise
convergence of the sequence (0n}  to the solution

n n=o,l ....
0 of the exterior (Dirichlet) problem for each point x of

the outer space Ee . In addition, for each compact

subset B c Ee with positive distance to the surface S

(dist (B,S) > A > 0) the convergence of {0 }

is uniform.

For that purpose we need the following regularization

theorem:

Let B be a compact subset of the outer space

Ee with dist(B,S) > A > 0.

Suppose that $,T are functions of the class P(Ee)

with 01S = (P , TIS = p. Then there exists a positive

constant C = C(S,B) such that
su x - ,X - ) ds. (5.4)

xEB S
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Proof. By the smoothness condition imposed on S =E,

there exists the classical Green function for the

scalar Dirichlet problem related to Eel i.e.:

0(x) = (P (Y)(y) (x,y)dS(y)

(x= 0(Y) n~y j(x,y)dS(y)

for all x E Be'

Consequently, we have

0 x) - (x) = fk( y) - P¢Y) (xy)dS(y)
S ~

for all x E Ee-

Put

C = C(S,B) = sup f !, (x,y)12dS(y)1

xEB S

Then, for each x E B, we have by the Cauchy-Schwarz

inequality

X)- x) = (x,y)dS(y)l 2
S

S S

c 2 f I(y)- ( y) 2 ds
S
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Thus

sup 14(xX)- W(x)12 4 C2 fIO(y) - 2dS(Y) 0

As consequence of the regularity theorem we obtain

the following Corollaries:

Corollary 1: Let { ni denote a sequence inSn~o,1I, .. .

P(Ee). Denote by {(On the restrictions
n=o,I,...

n= n IS of the functions n to the surface S.

Suppose that 0 is the (unique) solution of the

Dirichlet problem

SE P (Ee) , s =

If now p n - in e 2 (S):

lim IIPn (x) - P(x) J2dS(x) = O,

then 0 n - uniformly on each compact subset B c E e

with dist(B,S) > X > 0,

nlim sU I n (x) - = 0.
n- xE

Proof. According to the regularization theorem we have

supl (x) - <(x) ( C y- n (y) 2dS(y)
nxEB n

for n = o,1....
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Thus the a,2-convergence

(y) -s n (y) 2 dS(y) o 0

implies

suIp (x) - (n(x) 0,
xEB

as n tends to infinity. 0

Corollary 2: Let {,*} be an orthonormal
n -=o 1 b...

system in e 2 (5),p* E C0) , - the

squence of functions n* (Ee)ith €IS =p* for n=o,,

Suppose that 0 is the (unique) solution of the

(Dirichlet) problem

0 E V(Ee) , Is =

Then the sum
N

4 (N) (x) = I (('Pn

n=o

N

f= [f (P(y) * ( y ) dS(y) W(x)Sn o Sn

converges uniformly to O(x) as N - on each compact
subset B c Ee with dist(B,S) > X > 0,



-28-

i.e.

(N)
1r sum jU. (x W -

N-- xEB

I im su [f P(y),p*(y)dS (Y)]0 p(X) -q

=0.

Proof. According to the regularization theorem it

follows that

SC i1 l [ p(y) tp*(y) dS (y) p (x W ( WI dS(x)

As element of the Hilbert space Z2 (S), the function c(p can

be represented by its Fourier series with respect to the

system n (0,..

= 0.

This proves Corollary 2.0
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Before giving a list of the most important systems

of trial functions satisfying the assumptions of the

Corollaries stated above, we recapitulate some

functional analytic aspects concerned with the closure

and completeness of sequences in (general) inner product

spaces.
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6. Closed and Complete Systems

A sequence f(p is called complete in an
n=o,1 ,...

inner product space X with inner product (',', if, for

every P E X, the condition

( = 0

for all n = o,1,... implies

=-0.

A sequence {tp is called closed in a normed
n=o,l, ...

space X with norm II ", if, given (P E X and E > 0, there

exist an integer N = N(s) and constants ao , . . . , aN such

that

NIIP - a an(Pnl E

n=o

In an inner product space X, which can be regarded as

normed space with norm

a closed sequence is complete, but the reverse is not true

in general.

In a Hilbert space, however, the properties of closure

and completeness are equivalent.

In the special case that {tp*} is an

n

orthonormal system in a Hilbert space X the following

statements are equivalent:

,. .. , 2 ,- L
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}n p o is an orthonormal Hilbert-basis

(ii) {to*} is closed in X

(iii) {pl} is complete in X

(iv) For each p E X,

2 1I, ,pIJ = f 1cp,w )

n=o

is valid.

(v) For each p E X the Fourier expansion

( = (P *) n
nn

n=o

holds (in sense of the topology of X).

Ivi) For cp,' E X,

( ,) = ((, *) 1T, p*)
n=o

(" Parseval's identity ")

Proofs of these equivalences can be found e.g. in Davis

(1963).
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7. Trial Functions / Base Systems

Some base systems particularly important in geodetic

applications should be mentioned now:

(i) solid spherical harmonics

Let {S n, j  denote a maximal linearly

independent system of (Laplace's) surface spherical

harmonics of oder m. Let H nIj } be the
Nnj n=o,I,...

j=1,...,2n+

system of solid spherical harmonics defined by

Hn, j (x) = xl-(n+l)Sn,j (0

(x = IxI =

Then the system

{H IS} (7.1)
n=o,11 ...

j=l , . . . ,2n+1

is linearly independent and complete in the Hilbert

space f2 (S).

Proof.

The linear independence is a consequence of the linear

independence of the system {S n1 of surface spherical

harmonics S

Therefore it remains to prove that {H *IS
nj

j=1, ... , 2n+1

is complete (and consequently closed) in the Hilbert

space e2(S).
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Suppose that p is a square-integrable function

(E E e 2 (S)) satisfying

(p,H ) = Sf (x) H *(x)dS = 0
n,j S ~

for all n = 0,1,... ; j = 1,..., 2n+1

We remember hat the series expansion

1 4 1 n 2n+1- =4r2n+ n+1 I4 ( ) Sn,j (r)

Ix-y n L j=1 n 'j

(x = lxl , y = tyin, E2 = 2= )

is analytic in the domain given by

0 0 IxI r0 , r0 < poPo = inflYl
yES

x E Ei , y E S

For all x E Ei with jxj • r0 we thus find by virtue

of our assumption

U (x) = fp (y) 1 ds(y)
S Ixy7 Sy

- " 2n+1
47 1 2n-- Ix n I Sn f ( p )f(y)H j(y)dS(y)

n=o 2n+1 j=1 n~ S '

- 0.

Analytic continuation shows that the single-layer

potential UI (x) vanishes at each point x E E i -
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In other words, the equations

U (x - Tn(x)) 0

x (x - rn(x)) 0
n(x)

hold for all x E S and all sufficiently small r > 0.

But this yields using the relations (4.8) and (4.9)

lim f 1 (X + Tn(x)) 2dS(x) = 0
T-+O S

. -r T O,T-J.

"aS

fSm (x + Tl X ) + 4 (x) 2 dS(x) 0
T (X X+ 0 +47(

and

'li f U (x) + 2rnp(x) 12dS(x) =0

ST-*O S

. T -T-)'O

The last equation can be rewritten in the explicit form

f Up (y) + dS(y) + 2Op(x)12dS(x) 0

S S an (x)Tj-y

In other words we have

(P c(y) d S- d(y) =p D(x)
S

in the sense ofe 2 (Se

NI#5



-35-

Iteration yields

2

27(- I 7y n (Y(x)() 4iy-y2: Yn(xl)dS(Y2)

S(x)

and 3
1 f) I [ O IY3 3n I-( 17.F(- -(Y2) IY3-Y21 a 1Y2-YlI  a (x)

dS(yl)dS(y 2 )dS (y3)

= p(x)

Induction states that

_ )n 12Tr f ' (n( n~y i n-Yn~l **---x }y-dS(Yl)

S S
... dS(y)

n
"" = (x)

for all integers n (in the sense of g 2 (S)). Since

iteration reduces the order of singularity (Cf. Kellogg

(1929)) the left hand side is a continuous function of

variable x at S (n' ,rzoeP4Thus the function P can be

replaced by a function ' E C(o) (S) satisfying

flp(x) - (x) 2 dS = 0
S

i.e. P = P in the sense of

For the continuous function (p, however, the classical

limit and jump formulas are valid:

lim U1 (x + rn(x)) = 0

T -"'0

lim 1 (x T n(x)) =
-T W

d T-0-0
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The uniqueness theorem of the exterior Dirichlet

problem then yields Ui (x) = 0 identically for all

x E Ee . But this means that = 0. Consequently, o = 0

on the surface S.

(ii) singularity functions (mass points)

Let F be a (regular) surface in the inner region

E i with dist(F,S) > X > 0.

Suppose that {x } is a dense point-

n.n=o, 1 , ...

sequence in F(i.e.: to every > 0 and every point
xE F there exists a point xn such that X-x <

n n E

Denote by

1
n(x) = x-xI (Xn E FcEi) (72): Z n

the singularity function (fundamental solution)

at xn E F.

Then the system

n=o, 1,...

is linearly independent and complete in the

Hilbert space (S).

Proof.

Provided that xn xm if n * m we are immediately able

to prove the linear independence of the system

{cn IS} in e (S).n=o,lI, .. .

Our purpose is to verify the completeness of

f nIS in 2 (S).

Le
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To this end we again consider a function p Ee2(S)

We require that

f (x)dS = 0
S

for n = 0,1,....

The single-layer potential

U1 (x) = W ((y) 1 dS(y)

then vanishes at all points x n E F.

As U1 is continuous on the surface F, the density of

the system {x n } in F impliesn
n=o, ,....

U1 (x) = 0

for all x E F. The same arguments as given before then
3assure that U1 vanishes identically in R3 . But this

*?" yields w =0 in 02 (S). 0

* - *o.--
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(iii) "multipoles"

Let xO be a fixed point in R - Ee" Denote by

} the sequence of "multipoles"
n=o,

defined by

i 0 I(7.3)(Fxo) 'XXol a] =n

where

a+a +a3  (1 a2  at3

Then the system {nSn} is linearly
n=o,I ,2

independent and complete in the Hilbert space !2(S).

Proof.

It is clear that the potential U1 with all its

derivatives of arbitrary order vanishes in xo . For an

analytic function this implies the vanishing in a

neighbourhood of the point x0 , hence in R3 - Ee" The

next steps are exactly those presented above. 0

Other types of trial functions have been listed in

Freeden - Kersten (1982).

Remark: From theory of spherical harmonics (cf. e.g.

Freeden(1979)) it is well-known that every(surface)

spherical harmonic Sn may be expressed in the form

2n+1
Sn ( )  I = a, Pn( nj) , (j[=) j

*- j=1

K where P is the Legendre-polynomial of degree n and
n is a system of points nj with In 1=1 for

which
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det(P (n1)) * 0.

ti=I,...,2n+I

According to Maxwell's representation theorem

(nV)n 1 n Pn ( n )

Ixln+1

the Legendre polynomials may be obtained by repeated

differentiations of the fundamental solution of the

Laplace equation in the direction of the unit vector n

But this yields (cf. Cl. MUller (1966))

S n(&) n 2n+1
_ (-1) [ aj(fjV) n 1
ixn+1 n! j=l

In other words, spherical harmonics may be described

always by combinations of multipoles. Therefore any

approximation by spherical harmonics may be interpreted

as approximation by combinations of multipoles.
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8. Non - constructive Approximation Theorem

In the following we summarize our results developed

in Chapter 7 and give some first applications.

Let us denote by

%n} n=o,1 ....

one of the following linearly independent systems of

functions n (E

(i) solid spherical harmonics

lxi - ( n + l )  Sn,j( (x=lxl&, 2=I),

where Sn,j represents a maximal linearly

independent system of (Laplace's) surface

spherical harmonics.

(ii) "mass points" (reciprocal distances)

1

.XTXnl' xn E E

where {x n is fundamental in E,~~nn=o ,I, . ..

i.e.: (a) dist(xn ,S) > 0 for all n

(a) for each E d°)(ES)jn C( 2 ) (E)

with AO 0 in E the assumption

(Xn) = O,n=o,1,..., implies IE = 0.

(iii) "multipoles"a _ _1 _

(a) x al=n

where x0 is a point of the complement of

Ee = Ee US.

[-.
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Then the sequence

{(Pn} n=o,1,...

of restrictions

•0n  = n IS , n=o,1,...

is a closed system in the Hilbert space 2 (S), i.e. to

every (P E a2 (S) and every c > 0 there exist an integer
N=N(E) and coefficients ao,...,aN such that

,f _x - anpn(x) I2dS
S n-o

In particular, to every o E C(o) (S) and every c > 0, there
exist an integer N = N(E) and coefficients a0 ,...,aN such

that

S/N 2
_ I(x) - a nPn (x)I dS 4 E

v S n=o

(Observe the space C(o)(S) is subset of the

space 2(S)).

By application of the regularization theorem we obtain:

Let 0 be the (unique) function of class * 2 (E e ) with

cIS = (,p E C(o)(S). Then, to every E > 0, there exist

an integer N = N(c) and coefficients a0 ,... aN such that

4
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N

nn

Ssup I *(X) - [ n n x

xEB n=o

N
C V J p(Y), - an n (y) I 2 dS(y)

S n=o

C

for each compact subset B c Ee with dist (B,S) > X > 0.

Unfortunately, the theorem is non - constructive,

because we have no further information about the

coefficients ao ,...,aN. In order to derive constructive

approximation theorems we have to orthonormalize the

system {n }  by virtue of the well-known

Gram-Schmid=?6tr 6normalizaton) process.
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9. Constructive Approximation Theorem

Let {n }n=o, ... be one of the systems of harmonic

functions 0n E 2(Ee) listed in Chapter 8 (i.e. solid

spherical harmonics, mass points, multipoles). Let us

denote by {.P I as usual the sequence ofn n=o,1, ...
restrictions n= pnS,n=o,l,..... Then, corresponding to

the countably infinite sequence {pn}  a system

[(P*} of functions T* satisfying
n n=o,, ... n

= s *(y) p(y)dS(y) = (9.1)

n z2 = f n 4 ne

can be determined recursively in the following way

(cf. Davis (1961) Sec.8.3)

oP 2O T 0
S0 0 0

0

= (.L- (Pl ,(P*) (P*

I ° I j~ 10o<o  
I =0 ,o

2 = ip ' 2= '2  k=o

4U n
., n TTTlI#_, ' n+l = £°+- [ (Cn+1'q:k)'k

n+1 k=o

("Gram - Schmidt

orthonormalization")

| .t ; " i i. .- - . . . . _ __._--- " .
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According to the exterior Dirichiet problem of potential

theory, there exists one and only one function q,9 E DEn e
satisfying O*)S =(* n 0,...

Therefore, as application of Corollary 2 (Chapt. 5), we

obtain:

Let be the (unique) function of class

with jS (p s c().Teth 2 -convergence of

the sum

N N]
= I[ ay(*(~s (P*

n n f(P()(n (Y) nfl=O n=oLs

to the function (p, i.e.

N 2
li fi O~P, q*) ( Y) -tp (Y) d S(y) =0

implies ordinary pointwise convergence of the sum

N N .
((P,(P*)qo*x) p~) *(y)dS 0*(x)n n n in

n=on s(P(

to. f(x) as N for each x E Ee On each compact

subset B with B 4= Ee and dist(B,S) > X > 0 the

convergence is uniform:

].im sup I (optp*)4 *(X) - Oix)I 0
N-- xE9 n' n n
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The approximation technique proposed here, indeed, is

constructed so as to have the so - called permanence

property:

The transition from the N-th truncation

N

n nn=o

to (N+1)-th sum

N+1

n nn=o

necessitates merely the addition of one more term,

all the terms obtained formerly remaining unchanged.

The price to be paid for the convenience of the

permanence property is the process of orthonormalization.

The theorem is constructive, since the numbers

(p, (pn) = f p (y)p (y)dS (y) (9.2)
S

are the Fourier coefficients of (p with respect to the

system {p*}n n=o,I,...

It is clear from the structure of the recursion process

that , and hence, n+1 is a linear combination of

(Po'' (Pn+i (cf. (9 .1)). In order to determine the linear
combination P from (p I*.*, 0n+ we have to evaluaten+1 0 """'n+1

scalar products and norms, i.e. surface integrals over S.

Assumed the surface S is available in explicit form (e.g.

in the case of sphere, ellipsoid, spheroid) a direct attack

L.

.................
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k

to the integrals occuring in the orthonormalization

procedure seem possible using efficient methods of

numerical quadrature or cubature.

Furthermore, we have

N 1
f[lay) - d a (y)IdS (9.3);i:oy S I~ nn"
S n=o

1, fIYI12d N 1

N l an - f O(y)4(y)dSI 2

n=o S

for any selection of constants ao ,...,a n.

Since the first two terms on the right hand side are

independent of the coefficients ao,...,a n, the problem

of finding the best approximation by linear combination

of 00,.... 0

N
min I(y) - an(Y) 2 dS (9.4)

an  S n=o

is solved if and only if

an = f 0(y)4(y)dS. (9.5)
S

In other words,
N

flo(y) - E (d,,) ,(y)1 2 ds (9.6)
S n=o

N2

f'fl(y) - Z a np(y) ( 2 dS
S n=o
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for any selection of constants a~* ,..a n.

This is characteristic for (Fourier) expansions.
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10. Approximation Scheme

The constructive character of our arproxination theorem

now gives rise to the following scheme for the computation

of the earth's external gravitational potential V:

1. Choose a system {0 }n=C,1,... of the following type:
n

(i) solid spherical harmonics

lxl- (n+1)Sn~ ( x[!,2=1,

n,j

where Snj represents a maximal linearly independent

system of (Laplace's) surface spherical harmonics

(ii) sinqularity functions

1
X-Xn

where {x }n=O,1,... is fundamental in E E.

(cf. Chapter 8).

(iii) "multipoles"

() 1

0 '0 [tC1=n

where x is a point of the complement of E =E euS.

_e ,



(iv) unions of the base systems mentioned under

(i)-(i)

2. Choose an appropriate "approximation" to the eartl,'s

surface S (e.g. sphere, elljpsoid,spheroid, *.

3. Orthonornalize the system

n n n

with respect to the boundary S. This yields a closed

and complete syster

{wP n=O, 1...n

in the Hilbert space ;(2 (S).

Define the system

n

by n " E.O!'( n

4. Calculate the coefficients

WV, f V(y) 'P (Y) d S(y)
n ~ Sn

by numerical integratior methods.
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lu5o

5. the sum

(N) (x) [ V (y) (3F (Y)] (x)
r n

serves as (glohally valid) arproximation for the

gravitational potential

Therefore the whole approximation process essentially

amounts to computing various types of surface integrals

over S.

Remark: For a spherical earth's model

= 'xER ,xl< R}

(R: mean radius of the earth) and the base system of

spherical harmonics our (numerical) nrocedure coincides

with the conventional ccmputation of the '7-th truncated

series expansion of a harmonic function into solid spheri-

cal harmonics (cf. e.g. Heiskanen-Moritz, Chapter 1.16,

(1967)).

rrcm a geodetic point of view it should he note, that

the external gravitational notential 7 of the earth may he

uniformly approximated by the sum

() n " T =
(x) n n V~)' (X) = '[fI n ~(X

n=( n n=
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in the sense that for any aiven E > thorp exists ar intr. r

'= N(E) such that the relation

N
[ V (y).Qn(y)dS(y)n(X) - V(x)

holds uniformly everywhere outside and on any closed surface

completely surrounding the (earth's) curface F in tle outer

space Ee. The surrounding surface may he arbitrarily close to

the earth's surface.

Consequently the external gravitational potential 17 of the

earth can be expanded into the series

V (y ( p(Y)dS (y ] (y)

actually outside and on any' closed surface completely

surrounding the earth's surface S in the outer space Fe Tn

other words, we have quaranteed the possibility, of an an-

proximation of the external gravitational potential in the

whole outer space E bv a constructive v~rsi.on of 7unae'se -
theoren.
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11. Numerical Approximation

From the structure of the Gram-Schmidt orthonormalizing

process we know that the functions Cn are related to the

functions ¢n by the following linear equations

*N

On D n j(11 .1
j n, j

(n=O, ... ,N)

w-here the matrix

•-D = (Dn .) (11.2
n,j n=o ... ,N (11.2)

is a lower triangular matrix (cf. Chapter 9). Thus it is

clear that there are several ways to express the best

approximation (N) to an element 0 EO(Ee) by a combi-

nation of given (independent) trial functions:

(i) as a linear combination

(N) N
W = an On(x) (11.3)

n=O

of the given elements O,. N

(ii) as a linear combination

N*

(x) = Cn n (x) , c = , , (11.4)

n=) nn--n6
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of the orthonormalized elements

In order to exploit the permanence prorerty crthc-

normalization is indispensable. Orthonormalizaticn, ho-pevpr,

is equivalent to the determination of the T.atrix D, ane

computation of the matrix D is nothing else than the

inversion of a well-defined (triangular) matrix C

(cf. (11.18)). From a numerical point of view, ho,.ever,

inversion is often not very economical.

The situation is different if we are interested only in

one best approximation of special (prescribed) degree

N. In this case, a numerical technique can be used without

any need of inverting. This technique is Based on Cholesly's

factorization theorem as will he described now.

To this end we begin with the proof of the followinc

theorem:

Let the sum given by

1(N) (x) = a n ¢ (x) (1 5

be the best approximation to t from amona the

linear combination of 6O 0 Then, the

coefficients a, a are the soluticnsof t'-e
-, n

following linear system

(, , ) a0  + . + ( a,, =

"-.,.

:."" ( ~ ~~,.,) a0  + • •.• + (>' :€-T av = ( ,

("r.or.al ealuat4 n-")
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Proof: The coefficients ao aN are determined

such that
":N N , *

an ¢n(X) = 7 ( nn (11.7)
n=O n=O

Now, it is easy to see that

N , * ,

j=0 ' J

n n

=0

for n=O,...,N.

But this means that

N
- ak *k'n ) = 0 (11.9)

for n=O,...,N.

In other words, 0 minus its best approximation by linear

combinations of *O, N is orthogonal to each 0

The normal equations (11.6) can be rewritten in the

vectorial form

TGa = b , bT = (bo,...,bN) (11.10)

Ga b
mN
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where b E RN + , is the (N+1)-tupel

b = .(11.11

and G is the Gram matrix

G = ".(11.12)

0u N' ..

As symmetric and positive definite ratrix, G can be

decomposed uniquely in the form

G = C "CT , (11.13)

where C is a lower triangular matrix with positive eiaconal

elements. This splitting of G is known as the Choleskv

factorization.
N+1 THence, the solution a E R a = (aO  aN), can be

found by the following direct method:

(i) factorization of the Grain matrixi

G = CCT

(ii) computation of the vector

N+1 Td 1 FN I d =

..............
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of the linear system

• -" Cd=b

by forward substitution

(iii) computation of the vector

a ERN+1 T (aO,a E ,R a =(ao..Ia f

of the linear system

cTa= d

by backward substitution.

Remark: As is well-known from numerical analysis, the

procedure is very economical ( as regards to the

algorithmic operations) and very stable. The

solution a E RN+ I is obtainable without any need

of inverting.

Observing the representation (11.1) we get

* * N N

(D = 6 (11.14)
k=O Dk i Z,j k,e

This is equivalent to

DGDT = (11.15)

(I: unit matrix)
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Consequently,

- -1) .r (11.1 )

G =D *(D1 T

On the other hand, we have the (unique) decomposition

G = C CT. (11.17)

Thus a comparison between the Gram-Schmidt orthonormalizina

and the Cholesky factorizing process shows that

C= . (11.18)

Moreover, the vector c E RN c 1 c T c ) , is

eaual to the vector d E I+I , = (d ... ,dN):

C. = ( , ) d. . 1 .

This is easily seen from (11.1) by the following

implications:
-1

Db =c b-D c

b = Cc
b = Cd (Cf. (ii))

i.e.:

c~ .(11. 2)

Hence, by Cholesky's method, the best aoproximation

to an element with respect to the (orthonorralized)

system *, 0., can be determined without explicit

computation of the system {6n  itself.

-' -. ''-'' -- -- 2 - " / . .2" . . • . . .. ,
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12. Simple Examples

In order to get an impression of the least square

method proposed here we discuss some simple numerical

examples:

Our aim is to approximate ' by best approximations
N

W= ak0(x) (12.1)~k--1

with respect to the system of (buried) mass points

1k = k  E (12.2)
"x-xkl

(i) Boundaries

The surface S we choose for our computations are

given by 2 2 2

S= {xj x1) + (2) + (-2 = 1 }

with

(a) a= b=c = 1 (Example 1)

($) a = 1,25 ; b = 1 ; c = 0,75

(Examples 2,3)

By the equations

x, = a sin tcos ( (0(P < 2T)

x2 b sin$ sin (p (0 < 9 <7)

x = c cost$

the rectangular coordinates x1 ,x2,x 3 are related to

the ellipsoidal coordinates:a,b,c ( axes ), i (polar

distance), (P (geocentric longitude).

%2. . ..... .. . . .. . .. .
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(ii) Boundary values

We discuss two types of boundary values defined on
the surface S under consideration

(a) potential of a mass point

'(x) -7x x E S y 4 (1,1,1)

(Examples 1 ,2)

(B) polynomial

p~x)2 2 2 T ( x).P (x) 3 + x +x - 2x xES, xT  (X 2X3

(Example 3)

The boundary values are shown pictorially by use of
*ellipsoidal coordinates in the following figures:

max. height

..

min. height

00 -u36



.~~~~~r . . . . . ..9 .-

-6o -

Figure 2: o(x) ! x-yj y 2 ~111

2 2 2
S =~xi1 + 2 3~ =1
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Figure 3: wp(x) 3 x + 2 - 2x~

S =xx + x2 x 3
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Figure 4: p(x) = x-yl -1 y T V3 (1111)

S xj (1 2 4 x 2
s~~~~~ (11 +x2

.......................... 2. 5,75). .
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Figure 5: (p(x) =3 + x2+ - 2x 3  2

S = xIl-+ + X2+ = 3}



q -64-

(iii) Trial functions

As trial functions we use the singularity functions

kW = IX-x xkE E .

The set Iof mass points x E E'N k i

I ={x ". x} (12.3)YN 1 N

is generated by radial projection of the points ~k
of the system N

"N N (12.4)

to a surface S .The systems I are unions of regularN
polyhedra:

-?4 {PSi} (Tetrahedron)

1I8 =PS (s I {PS2} (Cube)

=f~ {PS1I u, {PS2}I {PS3} (Dodecahedron)

'3 =4, {PS4} (Icosahedron/Dodecahedron)

~~~56~~ 'S P5}'.PS6} (Icosahedra/Dodecahedra)

whe3re the point systems (PSi), i=l,...,6, are given

as follows:
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point systems

PS2 a(+I,+1,+I) , a (-1,-I,+I)

(a = 013)

PS3 a(O,* T, *I/T)

a" (I T, O,tT)

a(*T, *1/T,O) (= VT7 ,=(l+V/)/2)

."PS4 6(O,1 1 , T )

v(*T ,O , "' )
"" 8 (tI ,± * ,O) (T= (1+/5-)1/2 ,6 I ( + 2

PS5 (0,* 1/T,± )

(. (t T, 0,* 1/T)

a(* /r,±T, 0)

(a = v'17,T = (1+/5)/2)

.. PS6 6 (0,* T,* 1)

S(*1, O,±T)

,( T,* , 0)

(T = (1+/5)/2 , = 1/ (+

The point system f2 is chosen as the union of f6

and the points

(± 10,0) , (0, ±1,0) , (0,0, ±1).
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(iv) Integration method

The integrals over S occuring in the Gram matrix G

were computed in the following way:

The integrals over S are transformed using polar

coordinates. Then all the computations of the

(transformed) integrals are performed by (iterated)

application of Romberg's quadrature formula (Romberg

extrapolation). Using the subroutine DCADRE (cf. de

Boor (1977)) we are able to compute both the approxi-

mation of the integral and the estimation of the

error between integral and quadrature formula. In all
0~-8.

the cases, the actual resulting error was about 10

Remark:

For the Cholesky factorization, the forward and

backward substitution powerful routines are available

(cf. Dongarra et.al.(1979)).

I

S...
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(v) error estimates

The accuracy of the best approximation (N) to

will be investigated by discussing the errors

LS 1 .[ (y) _ (N)(Y)l2 dS
b.. S

(least square error)

(- W(x)MAR: max (x)
xES

(maximal absolute
relative error)

""~ ~ S f y  () I

S 0(y)

(mean absolute relative error)

The err6r LS is determined by the Romberg

integration mentioned above.

The errors MAR,M are evaluated for a discrete

lattice of 181 x 91 points in the (p,N)-plane (,,,&:

polar coordinates).

M 1 181 91 (xij)- (xi)M -- T-iT 1 7 1i:I j=l )xij)

-LO
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Example 1:

1xx x2  x3

(unit sphere)

= 2xl + 2x 2= 7/10}{x1  x2  x3

Boundary values:

=I-yI -1 y /3 (1,1,1) ,x E S.

N LS MAR M

0,25 0,80 0,24

8 o,12 10 0,93 10~ 0,16 1

2o 0,50 .10~ 0,62 -101 0,77 102

320,23 -3 04 10-1 0,50 i 2

56 0,21 .10- 0,46 -10- 0,40 10
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Example 2:

2 2x I  x 3

S = {xi 12) + x+ 3 =

(ellipsoid)

. {xlx = rw , w E S , r 0,751

Boundary values:

t(x) = x-yl - 1 y r (1,1,1) , x E S

N LS MAR M

0,32 1,12 0,25

8 0,33"10 2  0,13 0,21 101

"0,1710 0,10 0,12 10

2-1

32 011110-2 0,82-10-1 0,78 10- 2

056 ,99 10 - 3  ,817"10 0,59 102

I.

... 10

°°56
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Example 3:

S ={ 1 ,-~25) 2+ x2 2,75

(ellipsoid)

S x Z w ,w E S ,r 0 ,75}

Boundary values:

(p(x) =3 + x1 2+x 2  2x 2

N LS MAR M

4 1,37 1,01 0,42

8 1,25 0,85 0,42

2o 0,29 0,42 0.,13

32 053101 0,24 0,38 101

0,10,10-1 0,10 0,19 10- 1
5o

62 0 810 0,35*101 0,88 10 2
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(N)
Figure 6a: error p(x) ( x), xES (N=4, Example 2)

(N)
Figure 6b: relative error O(x) 0 (x) ,xsS (N=4, Example 2)
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(N)
Figure 7a: error *(x) -* (x), xcS (N=8, Example 2)

Figure 7b: relative error O(x) - ( x) ,xeS (N-8, Example 2)
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(N)
Figure 8a: error OW) 0 (x), xES (N=20, Example 2)

Figure 8b: relative error O(x) -0 (x) ,xeS (Nin20, Example 2)
OWx

,. 
. . .k
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(N)
Figure 9a: error Ox) - (x), xES (N=32, Example 2)

Figure 9b: relative error O(x) - (N (x) ,xcS (N-32, Example 2)
O(x
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Figure 10a: error OWx - (N (x), xES (N=56, Example 2)

Figure 10b: relative error O(x) - (N (x) ,xcS (N-56, Example 2)
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(N)
Figure Ila: error OWx - (x), xES (N=4, Example 3)

Figre lb:reltiv eror W 0 (x) ,xcS (N4-4, Example 3)
OWx
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Figure 12a: error (x) (N) (x), xES (N=8, Example 3)

Figure lib: relative error *(x) (N) (x) ,xcS (N-8, Example 3)
OW x
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(N)
Figure 13a: error (x) -4 (x), xcS (N=20, Examnple 3)

(N)
Figure 13b: relative error OW) (x) ,xcS (N-20, Example 3)

OWx



-79-

Figure 14a: error O(x) - (N (x), xES (N=32, Example 3)

Figure 14b: relative error O(x) - (N (x) ,xeS (N-32, Example 3)
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(N)
Figure 15a: error Op(x) -4 (x), xcS (N=56, Example 3)

(N)
Figre 5b:reltie error O(x) - (x) ,xeS (N-n56, Example 3)

Fie b ;7ti .,.... OW



N= 62, Example 3

~ / /

Figure 16a: error $(x) (N) (x) ,x E s

h/ /\J"

'Ofi

Figure 16b: relative error (x (X E s

-. p , , : .~ - - - . - - . - - - t.. t.. 2 ~ a a t ~ . P . ' . .
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The numerical computations were done on the CYBER 175
" 4 at the "Rechenzentrum Aachen"
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Final Remarks:

Mass model representations have been shown to be

adequate tools for the purpose of representing the external

gravitational potential. The relations of the models to

the physical realitiy are transparent: the harmonicity of

the approximation by mass model representations is

guaranteed. Point masses (reciprocal distances) are easy

to handle, reciprocal distances and their derivatives

provide simple expressions of any desired gravitational

field quantity. The relation between point masses and

spherical harmonic coefficients of the external potential

is straightforward (cf. Chapt. 7). By combination of the

base functions (e.g. low degree spherical harmonics and

mass points) physical meanings (center of mass, moments

of inertia etc.) can be easily implemented into the model.

Least square approximations by mass model representations

can be deduced for not-necessarily spherical earth's

models, the approximations are best in the sense of the

root - mean-square error.

*. There are of course some drawbacks in the approximation

of this technique:theoretically there exist infinite

numbers of mass distributions compatible physically with

the earth's gravitational field; in practical

applications, however, we have to select a finite number

of (multi)poles which are both economical computationally

and relevant geophysically. Approximation of boundary

values P and external gravitational potential is achieved

by sums (N) of oscillating character. As illustrated in our

Example3 (Chapter 12), the oscillations often grow in

number, but they decrease in size with increasing N.
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"- Least square appfoximation as described in this report

provides a suitable procedure for macro modeling by

successive oscillations. It is not a technique of

osculating character (as, for example, the Taylor

series).

R e m a r k : A detailed discussion of oscillating and osculating

approximation in classical Fourier theory has been given by

A. Sommerfeld (1947): PARTIELLE DIFFERENTIALGLEICHUNGEN DER

PHYSIK, Vorlesungen Uber Theoretische Physik, Bd. 6, Akademische

Verlagsgesellschaft, Leipzig (6.Auflage (1966)).

-. ,

"4

-. --- -°o .- *.,- -
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