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I. INTRODUCTION AND OVERVIEW

This report describes research performed by Berkeley

Research Associates under Contract NO0014-81-C-2371

i ,with the Plasma Physics Division, Naval Research Laboratory.

S-The report covers the period June 1981 to June 1983, during

which time investigations were conducted into several major

topics concerning the behavior of an intense (multi-kilo-

ampere) electron beam in the modified betatron electron

accelerator.- The work described here was performed in sup-

port of and in close association with the staff of the NRL

* special focus program, "Advanced Accelerators."

2The modified betatron has been selected by NRL for

experimental evaluation as a high-current electron accelera-

tor. Theoretical support has been directed at identifying

those phenomena which will most directly affect accelerator

performance. To this end, research has been carried out in

the following areas: (1) Transverse linear beam dynamics in '.

time varying, azimuthally symmetric fields, (2) Effects of

grad B0 induced drifts, (3) Orbital resonance effects due to

small field errors, (4) Nonlinear effects, especially those

due to non constant betatron field index, (5) Collective

effects, especially the negative mass instability, and (6)

Strongly focused systems. These studies were undertaken

with a view toward assisting in the choice of parameters for

an experimental device to be constructed at NRL. The results

C4°
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of this work have served as intended, to focus the experi-

mental design effort in that region of parameter space most

likely to produce a beam of the required characteristics.

This report is divided into eight sections. Follow-

ing the introduction, in Section II, we describe, in outline,

the assumptions, analysis, and conclusions of our study of
the dynamics of an intense, azimuthally symmetric beam. The

beam is studied in the paraxial approximation wherein all

fields, both self and externally applied, are taken to vary

linearly with displacement from the nominal design orbit

(assumed to be planar). This approximation allows us, by

performing an average over an ensemble of initial conditions,

to obtain equations for the motion of the beam centroid

about the center of the vacuum chamber, as well as for the

" motion of individual particles about the center of the beam.

A WKB solution to these equations allows several conclusions

to be drawn about the stability of the betatron oscillations

and the adiabatic behavior of these oscillations, both during

acceleration and the subsequent removal of the toroidal

magnetic field.

Section III outlines our analysis of the effect of

the radial gradient of the toroidal field on beam motion--a

nonlinear effect. We find grad-B drift to be canceled by

the weak focusing forces, the net effect being a slight shift

S in the equilibrium beam position, unless it happens that the

2
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focusing forces are just canceled by wall image forces.

- . The avoidance of this transition point, where betatron focus-

ing and wall image defocusing forces balance, leads to an

important limit on beam current which is independent of the

toroidal field. This limit is given in Section III.

Sections IV and V deal with resonance effects. In

Section IV we describe the effect on the beam centroid of

-.. small azimuthal variations in the applied fields. We obtain

an important bound on the allowable azimuthal field perturba-

tion in order that certain so-called integer resonances will

not disrupt the beam. The approach again employs the paraxial

equations of motion and the averaging technique developed in

our study of the dynamics of the symmetric beam. The analysis

- of Section V presents certain results on nonlinear resonance

effects caused by the transverse variation of the field index

n.

Next, in Section VI, some results on collective insta-

bilities are given, building on work by Sprangle and Vom-

voridis. A novel result-.-a double valuedness in the current

"-"- vs energy spread stability curve--is predicted as a result

of competition between growth and stabilization mechanisms.

A strongly stabilizing effect of the toroidal field is

evident.

In the final technical section, Section VII, a dis-

cussion is given of the sensitivity of a weakly-focused system

to average beam momentum-vertical field mismatch.

3



Consideration of this problem has led to a proposal for the

use of a type of strong-focusing coil arrangement in which

orbits have been studied in the linear approximation.

In all technical sections, calculations are only sum-

marized or outlined. Details are relegated to Appendices.

Additionally, computer codes developed in the course of this

work are documented in Appendices.

A final section, Section VIII, briefly summarizes the

work, states our conclusions, and suggests directions for

further study.

4



II. TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON

The modified betatron electron accelerator field con-

figuration consists of a conventional weak focusing betatron

field upon which is superimposed a toroidal magnetic field.

It has been shown1 '2 that this toroidal field greatly in-

creases the amount of charge that can be confined in a device

of given size. Acceleration is accomplished as in a conven-

tional betatron, that is, by changing the flux through the

electrons' orbit.

The orbit of any particular electron depends, however,

not only on the external fields as in a conventional (low v/y)

device, but also on the non negligible fields produced by

all other particles in the system. These fields are found

by solving Maxwell's equations with the correct sources.

Since we do not attempt here to calculate the particle dynam-

ics self-consistently, we are forced to make some approxima-

-. . tion for these sources which we do by taking the number and

current densities as constants across the beam cross-section.

This approximation appears to agree fairly well with the

number and current distributions found in numerical simula-

tions and our final results are quite insensitive to the

exact distributions which affect only a certain coefficient

in the argument of a logarithm. Maxwell's equations are

solved through first order in the inverse aspect ratio of

the torus. It is very important to include these "toroidal

5



corrections" to the self-fields for intense beams (v/yZ.02).

They affect both the value of the required vertical field

needed to hold the beam at its equilibrium radius as well

as the values of the betatron frequencies. These corrections

1,2were not included in previous treatments

* The resulting fields, when substituted in the equa-

*tions of motion, yield a paraxial equation description of

the beam. When solved, the equations illustrate several

interesting phenomena involving the beam. First, two basic

modes of oscillation exist, a "fast" mode corresponding

roughly to cyclotron motion about the toroidal field, and a

"slow" mode corresponding to an F x drift motion where

here the force P is due to a combination of the ordinary

weak focusing fields, image currents and charges in the wall,

and hoop stresses on the ring. It may be arranged, by judi-

cious choice of parameters, that the fast mode will always

be stable, throught the injection-acceleration-ejection cycle.

The slow (drift) mode, however, is more complicated. Under

certain conditions the net radial focusing force (M) may

* - vanish, leading to a transition to unstable behavior fol-

lowed by a subsequent reversal in sign of the drift motion

that is described in detail in Appendix A. This transition

may be shown to occur at a boundary in parameter space on

one side of which the toroidal field is essential for beam

stability, while on the other side the toroidal field is

6
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superfluous for stability. This "instability gap" may not

be so serious for single particle motion since it may be

shown that a small expansion of the beam restabilizes the

motion. For motion of the beam centroid, however, it is

much more serious. In fact, we have concluded, on the basis

both of this work and other numerical studies, that the beam

must be launched and accelerated so as to avoid passage

3through the instability gap for beam center motion 3 . For-

tunately, this does appear possible to do, though it does

place a limit on the current that may be accelerated in a

device of given aspect ratio. That limit is given by

22-

-2 n Z 2 /a) <1/2 (II-l)
a2 s

where r0 and a are the major and minor radii of the toroidal

chamber, xb is the beam radius, and ns is the so-called self-

field index. It is interesting to note that this limit is

independent of the value of the toroidal field and may in

fact represent a more stringent requirement than the basic

stability criterion for the fast mode, which can always in

principle be satisfied by choosing a large enough toroidal

field. For example, according to the above constraint, a

10 kA beam must be injected such that its in situ energy

(i.e., that energy retai. 3d as ietic energy by the beam

after the beam has given ui.. some fraction of its energy to

.. .. * , . . . ... . . . . . - .: - , .-- o ,. "



the fields within the chamber, after leaving the diode)

corresponds to a value of y in excess of 6.2 for a chamber

with r /a = 10. (Toroidal corrections modify this number
0

somewhat; these are described in Appendix A.)

This constraint (II-l) also affects the workability of

certain injection schemes which are based on drifting the

beam away from the injector structure during one major

transit of the machine. Since the drift frequency is pro-

portional to the quantity (1/2 - rbns/a2) (Bz/B0), one does

not want to work too close to transition since a minimum

value of B is required to stabilize the fast mode and one

requires that the drift frequency w B be at least as large asbr
r b 1B> 2  (11-2)

A T

where A is the distance from the injector port to the beam

equilibrium orbit and T is the orbital (major) period. (Con-

straint (11-2) comes from requiring the beam center to drift

two beam radii during one transit around the machine--a mini-

mal requirement for achieving low levels of loss due to scat-

tering by the injector structure.) Both constraints (II-1)

and (11-2) favor a large value for y at injection time.

The instability gaps for particle and whole beam motion

have no analog in a conventional betatron. They occur, rough-

ly speaking, when self-fields become comparable to applied

fields, which is never the case in a conventional, low current

8



device. The modified betatron, if it operates as projected,

will be the first cyclic particle accelerator in which beam

self-fields play a significant role in the particle dynamics.

Another phenomenon occuring in the modified betatron

does have an analog in a conventional betatron. This is the

adiabatic change in amplitude of the betatron oscillations,

as external parameters (Bz , B., field index, flux, ...) are

4slowly changed4 . The solution to the linearized equations of

motion allows us to obtain explicit expressions for the ratio

of the beam radius at the end of the acceleration to that at

the beginning. The result is that the beam undergoes a

slight compression, as in a conventional accelerator. The

beam remains well-behaved during all slow changes in param- -

eters as long as one avoids the instability gap, the bound-

aries of which appear mathematically as two turning points in

the WKB solution.

Unlike the case in a conventional betatron, however,

this adiabatic decrease in the betatron oscillation ampli-

tude does not help very much in the basic injection problem;

that is, ensuring that the beam misses the injector after one

turn. In a conventional betatron one has at least a few

turns to accelerate the beam before a particle returns to the

vicinity of the injector, since the betatron wavelength is

somewhat greater than the machine circumference. With a

strong toroidal field in place, however, particles in the

9
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modified betatron tend to follow the toroidal field lines

and one must depend on the slow drift to carry the beam away

from the injection port in only one turn. The beam, if

successful in missing the injector on the first turn, may

be subsequently trapped by changing external parameters.

In the course of these investigations on transverse

beam dynamics in azimuthally symmetric fields, two computer

9- programs were developed to assist in our understanding of

the electron orbits. First, a code LBE (for "Linearized

Betatron Equations") was written which integrates the linear-

ized equations of motion for either an individual particle

or the beam centroid in arbitrarily time-varying external

fields, E (t), Bz (t), B0 (t). The code includes toroidal

corrections to the self-fields, assuming a given fixed beam

radius. It was used to generate Figs. 4-6 of Appendix A.

The code itself is documented by I/O description in Appendix

AA, where a listing is also given.

A second code, a single-particle integrator, was also

written for the purpose of studying nonlinear dynamics at

" - high energies, where self-field effects are less important.

This program, named BTRAK, was eventually modified to include

a azimuthally varying fields for our study of resonance effects.

(See Sections IV, V, and VII.) Its documentation, including

listing, appears in Appendix BB.

10
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III. GRAD-B0 DRIFT IN THE MODIFIED BETATRON

The effect of nonlinearities in the self- and applied

fields will modify the results of Section II; in general,

however, these corrections are expected to be small, and in

any event are hard to calculate. If the toroidal field B0

is strong, however, an important nonlinearity to consider

is the radial gradient in B0 .

In general, an electron streaming along a field line

executing small gyro orbits will experience a drift in the

direction B x A which, in the modified betatron, is vertical.

In the betatron however, the situation is complicated by the

presence of the vertical field gradient which gives a verti-

cal restoring force; motion in the vertical field clearly

cannot be treated in the drift approximation, since the

orbit size is of the same order as the scale length of Bz .

To find the true behavior in the combination of vertical and

toroidal fields, we must solve the betatron equations of

motion, including the DB0 /ar term. Such a calculation has

been carried out; the details appear in Appendix B, part V.

- The conclusion reached in the Appendix is that, except

for the exceptional case in which the net radial focusing

force (due to the betatron field and image fields) vanishes,

the 9Be/Dr term affects the motion only slightly, giving a

radial shift in the position of the equilibrium orbit and a

resulting slight change in the betatron frequencies (which

12



remain real). The radial shift in equilibrium may be inter-

preted as the result of a balance between the outward "dia-

magnetic" force, which tends to expel the beam from the

high field region and the inward radial restoring force.

When the radial restoring force vanishes, the grad-B drift

is free to operate. Since the resulting drift is extremely

fast, the only reasonable experimental alternative is to

avoid the vanishing point for the restoring force. The con-

dition for this has been given in Section II, Eq. (II-1),

which provides a bound on the accelerator current which is

independent of the toroidal field.

13



IV. INTEGER RESONANCES IN THE MODIFIED BETATRON

Throughout the analysis of the previous sections it

was assumed that all applied fields were perfectly azimuth-

ally symmetric. In practice, of course, any actual accel-

erator will have slight field imperfections in the toroidal

direction, which will be encountered periodically by each

electron. In the general case these small periodically

applied perturbations to the electron's orbit cause only a

small response. However, if it happens that the frequency

of the betatron oscillations matches the circulation fre-

quency (or an integer multiple thereof) a constant phase

relationship is maintained over many circulation times be-

tween the particle motion and a Fourier component of the

field imperfection. The resulting "integer resonance" can

cause an enormous buildup of betatron oscillations and loss

of beam confinement.

In a conventional betatron integer resonances do not

occur (neglecting the marginally stable cases n =0 or 1)

because the betatron frequencies, both radial and axial, are

necessarily always lower than the particle circulation fre-

quency. In the modified betatron, however, the fast mode

can be resonant. For notion of the beam center the k-th

* resonance occurs when the ratio of the toroidal to vertical

fields is

ar2

14



where X is the Fourier harmonic number of the field error.

Since both B and B will in general be changing in timez

during an experiment, some of these resonances may have to

be passed through. This will necessarily be the case if

one anticipates removing the toroidal field prior to beam

ejection. The question then arises as to how fast the k-th

resonance must be passed through in order to avoid beam

disruption.

To answer this question the equations of motion in

the presence of a field error were formulated and solved,

assuming that the fields varied slowly over a circulation

time. The result, derived in Appendix C, gives a bound on

the magnitude of the field error that may be tolerated.

The bound, expressed in terms of the acceleration rate (y),

is rather restrictive, in a practical example that is worked

out in the Appendix, leading us to speculate on ways that the

resonant effect might be minimized.

One possibility which immediately suggests itself is

the use of short acceleration times, thereby limiting the

time during which the resonance effect may operate. Very

short times may be needed, however, since the required accel-

eration time for a given final oscillation amplitude scales
i.. -2

as the (field error) (See Appendix C, Eq. [14].)

A second possibility for stabilization investigated

in the Appendix is thermal spread. Though thermal spread

15



in the beam introduces a spread in resonant frequencies and

subsequent reduction of the response of the beam center

motion when passing through resonance, individual particle

motion may still be such that an unacceptably large beam

expansion occurs.

Yet another possibility, which may be practical for

certain devices, involves maintaining the ratio B z /B 0 con-

stant throughout the acceleration. This technique will keep

the tunes constant (save for the tune shift due to space

charge, which is small for large B) during the experiment.

If the application involves use of the beam in situ, then

the presence of a strong toroidal field within the device

at the end of the acceleration should not be a problem. It

would probably complicate an ejection scheme, however.

A final possibility that was investigated for sta-

bilization is the frequency shifting effect of nonlineari-

* ties. Specifically, both the toroidal field and the betatron

field index will generally vary with radial position. Since

the betatron frequencies depend on the values of these quan-

tities, it is possible that the frequencies will be shifted

sufficiently by a small (tolerable) radial displacement so

as to detune the resonance. A rather strong radial gradient

* in n may be required to produce the desired effect, however.

Results of an investigation into this question are presented

in the next section.

16
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In order to be able to predict when certain resonances

will be crossed for a given time history of vertical and

toroidal fields, a computer program named TUNES was written.

This program searches for a specified set of resonances of

the form

nffV + n = p (IV-2)

where vf and vs are the numbers of betatron wavelengths of

the fast and slow oscillation modes within the machine cir-

cumference, and nf, ns , and p are integers. The search is

restricted to Infl + Ins5V3 and P<Pmax where Pmax is speci-

fied by the user. Output includes the resonance label

(nf, ns , p), the time of crossing, and the values of various

parameters at crossing. TUNES is documented in Appendix CC.

Its use may be helpful in identifying experimentally observed

resonance effects.

17
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V. EFFECT OF TRANSVERSELY VARYING FIELD INDEX
ON SINGLE PARTICLE DYNAMICS

As discussed in the last section, one possibility con-

sidered for controlling resonant response is the intentional

introduction of strong nonlinearities (large values of r~n/ar

where n is the betatron field index) which would result in

an amplitude-dependent betatron frequency. If this effect

were sufficiently strong, the resonant response of a particle

could be limited to small values if its finite amplitude

oscillations lead to a detuning of the resonance. We have

examined the effect of quadratic nonlinearities, limiting

ourselves to single-particle motion for simplicity. Though

this does not allow us to study the general case (since

cubic terms also contribute to frequency shifts), there is

a special circumstance in which the contribution of the quad-

ratic terms dominate. This occurs when a coupling resonance

(defined below) ccincides with an integer resonance. In

this special circumstance, certain progress may be made

analytically in studying the effect of resonance detuning.

Both a coupling resonance by itself and this "coincidence

resonance" have been examined. Details are given in Appendix

D. Here we describe the results of this investigation.

The equations of motion of a particle in azimuthally

symmetric fields are

x" + (l-n)x by' + (2n-l- -)x2 - (-- 2 -)y + _y(x'-y' ) (V-la)

18
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y" + ny = -bx' - (2n-n2 )xy + x'y', (V-ib)

correct to second order where x = (r-r0 )/ro, r0 is the major

radius, b = B0o/Bz, n is the linear field index, n2 is the

second order field index, and a prime indicates a/sO. These

equations are solved perturbatively to second order in Appen-

dix D. To linear order one obtains the usual betatron oscil-

lations with frequencies (Appendix D, Eq. [11].):

Vf = 1 b2+l±[(b2+l)2 -4n(l-n) ]2  (V-2)
Lfs [b 2 -

where the subscripts f and s refer to the fast (+) and slow

(-) modes respectively. These single-particle oscillations

are always stable if n(l-n)>0.

By inserting the linear solutions into the equations

of motion, we find that the second order correction remains

small unless it happens that the following resonance condi-

tion is satisfied:

Vf = 2v (V-3)
f S

This condition turns out to be a generalization of the so-

called Walkinshaw resonance condition occuring for n = 0.2 or

0.8 in conventional accelerators at which energy is exchanged

between radial and vertical oscillation modes. This phenom-

enon has been observed in early cyclotron experiments where,

due to small vertical aperture size, it has led to loss of

the beam. In the modified betatron the resonance is shown

O19
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in Appendix D to lead to energy exchange between fast and

slow modes, with no noticeable growth in beam size under

typical experimental conditions. Thus the resonance (V-3)

is fairly inconsequential in the modified betatron.

This picture changes somewhat when departures from

azimuthal symmetry are taken into account. It turns out

that when n= the generalized Walkinshaw resonance coin-

cides with both ordinary integer (t=l) and half-integer

orbital resonances. By including field error terms we may

derive equations governing the evolution of the mode ampli-

tudes for this "triple coincidence" resonance and use their

solution to study the effect of frequency shifts on resonance

detuning in this special case. This program is described

in detail and carried through in Appendix D where particle

orbits under resonance conditions are illustrated and dis-

cussed. The basic result from this analysis is that even

fairly strong gradients in n (i.e., large values of n2) do

not adequately control the resonant response of a single

particle, that is, the frequency shifting effect is too

small to be helpful in the case we have studied.

Our conclusion from this and the preceding section

seems clear: It appears to be important to avoid machine

"" operation near low order integer resonances, the condition

for which being (IV-l).

20
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VI. BEAM INSTABILITIES IN THE MODIFIED BETATRON

The question of what limits the current a particu-

lar accelerator can carry in a stable manner is a compli-

cated one. In the case of the modified betatron, the first

" . analyses (Section II, Refs. 1 and 2) suggested, based on

examination of individual particle betatron oscillations in

the self-fields of the beam, that particle motion could

be stable for large currents if the toroidal field were

made sufficiently strong. Later work (Section II, Ref. 3

and Appendix B), which considered motion of the beam centroid,

led to the discovery that the total beam current must satisfy

the constraint given by (II-1), which is independent of the

strength of the toroidal field. These analyses, however,

treated the beam as smooth and azimuthally symmetric. It is

* . known that under certain conditions small azimuthally varying

density perturbations can grow exponentially in time leading

to either bunched or kinked beams. Such longitudinal and

transverse beam instabilities in general become more destruc-

tive (faster growing) the higher the current and so it be-

comes important to consider their current limiting effect in

the modified betatron.

A dispersion relation for longitudinal and transverse

modes for a beam in the modified betatron has been derived

by Sprangle and Vomvoridis , where a stability condition is
%.2

also given. Building on this work, Sprangle and Chernin
2
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(Appendix E) have considered a slightly more general case,

taking into account short wavelength contributions to the

* wave impedances and the stabilizing effect of finite ampli-

tude betatron oscillations. In Appendix E it is shown that

* the presence of the toroidal field greatly enhances beam

stability to both longitudinal and transverse modes, thereby

greatly increasing the current limit over that of a conven-

tional betatron; this stabilizing effect was noticed in

Reference [1] where several numerical examples are worked

out. The growth rate of the negative mass/kink mode, for

example, scales as B. a fact attributed to the inhibiting

effect the toroidal field has on transverse motion. Stabili-

zation of both longitudinal and transverse modes, for toroi-

dal mode number Z/0O, is due to energy spread, or, more pre-

cisely, angular frequency spread in the beam; if two parti-

cles, initially traveling together, separate by a wavelength

or more in a (cold beam) growth time, clearly the coherence

of the instability will be lost and growth will stop. if

we call the spread in angular frequency in the steady state

beam AP~ and the growth rate in the absence of frequency spread,

r, then we expect, on the above grounds, the stability condi-

tion to be given by

r (vI-1)

to within a numerical factor. In fact, it may be rigorously

shown that for a beam with a Lorentzian distribution of

23



canonical angular momentum (VI-I), is the exact stability

condition.

The frequency spread AQ of the equilibrium beam is

related to the energy spread via the single particle momen-

tum compaction factor; the relation is

1IAQI = cI CI(AE/E) (VI-2)

1 -1 -2
where ax (.-n s ) - y ' *c is the cyclotron frequency,

S. and AE/E is the full width of the energy distribution. We

note the importance here of including self-field effects,

represented by the self-field index ns, in the definition of a.

It is the appearance of ns in a, which leads to a novel

* effect, predicted in Appendix E on the basis of (VI-l,2):

For low currents (ns<<1) , a is effectively independent of' 2

current and so, since the cold beam growth rate increases

with current, the beam energy spread required for stability

also increases. As one continues to increase the current,

however, a begins to increase significantly, eventually

overcoming the increasing growth rate beyond which point

increasing the current still further results in stabilization!
1

SIn fact, for ns2, virtually no energy spread is required.

There results therefore, from this competition between growth

and stabilization mechanisms, a double valuedness in the

current vs energy spread stability curve, illustrated and

discussed in Appendix E. The prediction of a second stable

operating regime for accelerators is the main new result of
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this investigation. Our conclusion is that the toroidal

field makes possible operation at high currents by (1) re-

ducing cold beam growth rates and, (2) giving access to

stable, iAigh-current sectors of the current vs energy spread

diagram.

2.5
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VII. STRONG-FOCUSING SYSTEMS

Conventional betatrons are weak-focusing accelerators,

meaning that the wavelengths of the betatron oscillations are

of the order of the machine circumference. A second conse-

quence of weak-focusing is that the momentum compaction fac-

tor, defined as the fractional radial shift in a mismatched

beam divided by its fractional momentum mismatch:

a H (Ar/r )/(Ap/po ) (VII-l)

is typically of order unity. For a conventional betatron it

may be shown, for instance, that a = (1-n) As a result,

for weak-focusing systems one can typically tolerate only

a few percent momentum mismatch before a beam is lost to the

chamber wells. Strong-focusing systems, on the other hand,

have small values for the momentum compaction factor and

betatron wavelengths are much smaller than the machine cir-

cumference. A strong-focusing accelerator, consequently, can

tolerate a relatively large momentum mismatch. It was the

discovery over 30 years agc of the strong-focusing principle

which has allowed the construction of the large radius

research accelerators in use today.

A modified betatron is a strong-focusing system with

respect to particle orbits about the center of the beam,

but is a weak-focusing system with respect to motion of the

beam centroid about the center of the vacuum chamber. As a
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result, it is necessary that the average beam energy be

matched to the vertical field to within a few percent. This

may be done with careful injector and magnetic field design

but design tolerances tend to be tight.

It was the realization of this tolerance problem

which led to the consideration of ways to implement strong-

focusing in a modified betatron in a way consistent with its

design. As a result of a study, it was proposed to add so-

called £=2 stellarator windings to the betatron in order to

obtain the beneficial effects of strong-focusing on the beam

centroid motion. This extra winding is basically a continu-

ously twisted quadrupole, the limiting case of conventional,

closely-spaced discrete quadrupoles which we used in alter-

nating gradient focusing. Beam dynamics in the resulting

configuration, consisting of a conventional weak-focusing

betatron field, a strong-toroidal field, and an Z=2 stellara-

tor winding have been analyzed in the linear approximation

including the effects of self-fields. The results are given

and discussed in Appendix F where expressions for the betatron

frequencies and momentum compaction factor are derived. We

find the results to be encouraging in the sense that the addi-

tion of the stellarator winding allows large beam currents

*to be confined and a large beam momentum mismatch (-50% is

not unreasonable) to be tolerated.
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The addition of the stellarator winding is not with-

out some drawbacks. As with any strong-focusing system, the

* effects of orbital resonances must be carefully considered.

As discussed above in Section IV, resonances are present and

may be a problem already in the modified betatron without the

stellarator field. Addition of the k=2 winding introduces

new sets of resonances which must be examined. This work is

. presently in progress and should lead to important guides for

design.

From a practical point of view, the stellarator winding

introduces some other possible complications. Injection may

become difficult due to the presence of the separatrix,

though one possible way to avoid this problem is to introduce

straight sections along which to inject. Construction, sup-

port, and power supply questions for the stellarator winding

also need to be examined. Some preliminary study of the

injection and coil design questions in fact have led to con-

sideration of an £=O system which may be preferable from the

point of view of some of these problems. The k=0 stellatron,

or "bumpy torus accelerator" may have some practical advan-

tages over the Z=2 system. It is described and analyzed

in Appendix G.

Despite possible drawbacks, we conclude that strong-

focusing systems show significant promise as high-current

accelerators. Basic issues in orbital stability and
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momentum bandwidth have been addressed. Resonance effects,

beam instabilities, injection, and detailed coil design

issues remain to be studied further.

30
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VIII. CONCLUSIONS

The analysis of beam behavior in the modified beta-

tron carried out by Berkeley Research Associates over the

past two years has led to a detailed understanding of how

such an accelerator should operate, its advantages compared

to conventional betatrons, and its limitations. Among the

advantages must be listed its ability to hold large currents

stably during acceleration. We have found that the toroidal

field greatly enhances the equilibrium current that may be

carried and also enhances the stability of the beam to the

longitudinal (negative mass) and transverse collective beam

instabilities which may affect the beam. We have found non-

linear effects, including grad-B drifts and effects of trans-

versely varying field index to be negligible as long as the

net radial beam-focusing forces remain finite (II-1). Orbi-

tal resonances may be a problem in the device unless thay are

passed through very rapidly or avoided altogether; avoidance

of the low t-number resonances, at least, is probably essential

and possible to do in some acceleration scenarios which have

been discussed.

Among the limiting features of the modified betatron

must be mentioned the sensitivity of the position of the beam

* equilibrium orbit with respect to its momentum mismatch.

This feature, a consequence of the weak-focusing betatron

fields, may be overcome by the addition of stellarator fields,

31



the effect of which is to allow beams with a large momentum

mismatch to be confined.

Studies of beam dynamics under this contract have

contributed in an important way to the selection of parameters

for the high-current injection experiment now being constructed.

This experiment will challenge and refine our understanding of

the properties of high-current electron beams in toroidal

devices. Once completed, the experiment should lead to an

operational high-current accelerator.

Theoretical issues which remain to be addressed include:

verification of the double-valuedness in the stability curve

discussed in Section VI, in a simple but rigorous (Vlasov-

Maxwell) model; analysis of the expected radiation spectrum

(for diagnostic purposes or for radiation source development);

and investigation of resonance effects, injection methods,

and coil design in the stellatron. Work in these areas is

presently being pursued in association with NRL personnel.

Combined with the efforts of the past two years, this con-

tinuing research will assist in a significant way in meeting

the goals of the NRL Special Focus Program on advanced high-

current electron accelerators.
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Transverse Beam Dynamics in the Modified Betatron

LeL

33



..-.-.•.. . .•_•...-....... *-------*. .. -.. -

Particle Accelerators 4) Gordon and Breach, Science Publishers, Inc.
1982 Vol. 12 pp. 85-100 Printed in the United States of America
0031-2460/82/1202-0085$06.50/0

TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON*

D. CHERNIN

Berkeley Research Associates, P.O. Box 852 Springfield, Virginia 22150 U.S.A.

and

P. SPRANGLE

Plasma Theory Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 U.S.A.

(Received December 16, 1981; in finalform April 5, 1982)

- •The linearized equations governing the motion of the center of a beam about its equilibrium position in a modified
betatron, as well as equations governing the motion of an individual particle about the beam center, are presented
and solved. Self field effects, including toroidal hoop stresses and wall image forces, are included in the analysis.
All fields, both self and applied, are assumed to be azimuthally symmetric but are allowed to have arbitrary time
dependences. The solutions to the equations of motion are analyzed for stability and conditions for stability are
obtained. Further study of the solutions illustrates two phenomena of experimental interest: (I) the unavoidable
traversal of a finite "instability gap" in parameter space during acceleration and (2) the adiabatic increase in the
amplitude of the betatron oscillations during removal of the toroidal magnetic field, prior to beam ejection. By
careful design, the effects of these phenomena can be reduced to insignificant levels in an actual accelerator.

1. INTRODUCTION around the device. Recently other, more prom-
ising injection schemes have been proposed'-- to

It has been suggested1" that the current carrying take full advantage of the focusing action of the
capacity of a conventional betatron accelerator toroidal field. The resulting prospect of con-might be improved dramatically by the addition structing a very high current (- 1-10 KA) be-

of a strong toroidal magnetic field. Such a field tatron has prompted the analysis presented here.
acts to confine the beam during injection and We shall derive and solve equations governing
early stages of acceleration when 'y, the usual the motion of the center of an electron beam con-
relativistic factor, is small and space charge ef- fined in a modified betatron as well as equations
fects which tend to expand the beam are large. governing the motion of an individual particle
After acceleration is complete, -y is large, space within the beam. Whole beam and single particle
charge effects are small, and the usual weak fo- stability criteria will be presented; the stabilizing
cussing betatron fields are sufficient to confine effect of the toroidal field for both beam and sin-
the beam; the toroidal field may then be removed gle particle motions, noted earlier, t" will be ap-
to facilitate beam ejection. In general both ver- parent.
tical and toroidal magnetic fields may be chang- When the fields are allowed to vary in time two
ing simultaneously during beam injection and interesting phenomena occur. The first phenom-
ejectiott. It is the purpose of this paper to examine enon, which occurs during acceleration, has no
the behavior of the beam in such time-varying analogue in.a conventional betatron: As the beam
fields. accelerates (y increases) the betatron makes a

Some early, though unsuccessful experiments transition from a region in parameter space in
using this modified betatron field configuration which the toro.,khtl field is essential to stability
were carried out in England after World War If;' (modified betatron regime) to a region in which
subsequent analysis" attributed the poor results the toroidal field is superfluous to stability (con-
to the injection method used at the time whereby ventional betctron regime). It turns out that, ex-
significant numbers of electrons intersected the cept under extraordinary circumstances, the sys-
back of the injector stntcture after a few trips tem must pass through an "instability gap"-a

region of parameter space, separating the modi-
Supported by the Office of Naval Research fled and conventional betatron regimes, in which
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D. CHERNIN AND P. SPRANGLE

single particle motion is unstable, tJough beam
center motion may not be, irrespective of the
magnitude of the toroidal magnetic field. How-
ever, though the size of the instability gap is in-
dependent of the toroidal field, the instability
growth rate within the gap is inversely propor-
tional to this field. We find below that by judi-
cious magnet design and sufficiently rapid ac-
celeration, this gap may be successfully traversed
with minimal beam disturbance.

The second phenomenon occuring in time
varying fields does have an analogue in a con- UNPI--U-BE-I UN K ' 

RED

ventional betatron; this is the adiabatic change ORBIT
. in the amplitude of the betatron oscillations.6  T z .

Since the frequency of these oscillations depends

* now on both the vertical and toroidal fields a slow
change in either is expected to alter the amplitude FIGURE 1 Cutaway view of modified betatron geometry
of the betatron oscillations. During acceleration

*'- we find, as in a conventional accelerator,6 that
the oscillation amplitude decreases as the vertical torus. We consider an electron beam of circular
field increases. If one now considers removal of cross section, as shown in Fig. 2, with center
the toroidal field prior to beam ejection, we find located at (re, z,) = (ro + Ar, Az) where ro is the
that, as long as the toroidal magnetic field is much equilibrium radius for the center of the beam at
larger than the vertical field, the beam motion which the electric, magnetic, and centrifugal
will describe orbits of increasing amplitude as the forces on a particle at the center of the beam are
toroidal field is decreased. Once the toroidal field in balance. We shall take ro to be the major radius
becomes comparable to the vertical field, how- of the accelerator chamber. In the absence of self
ever, the motion becomes more complicated and field effects radial force balance requires the
the betatron oscillations no longer continue to electron circulation frequency at r = ro, z = 0
increase in amplitude. We find that, by careful to be given by

* " 'choice of field strengths, the ratio of the betatron
oscillation amplitude before acceleration to the 0= fZO (1)
amplitude of oscillation following complete re- eBzolm-yoc (no self field effects),
moval of the toroidal field can be adjusted to be
near one.

In the following analysis we assume "perfect," /TU
i.e., azimuthally symmetric fields. By neglecting POSITI
the possibility of azimuthal variation in the self
fields (due to beam bunching or kinking) we omit
here consideration of a variety of beam instabil-
ities that may occur;7 by neglecting similar azi-
muthal variation in the applied fields ("field er-

rors") we neglect the effects of orbital resonances.
These will be addressed in a separate.report.

II. EQUILIBRIUM RADIAL FORCE

BALANCE

The geometry of the modified betatron is shown MINOR CROSS SECTION

in Fig.. i. The field configuration is that of an OF TORUS

Sordinary betatron with the addition of a toroidal FIGURE 2 Coordinates of beam and particle in modified
magnetic field, Boo, here taken to be positive and betatron. Center of beam is at (r, z) = (ro + Ar, Az). Electron
constant across the minor cross section of the is at (r, z) (ro + Ar + br, Az + 8z).
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where B.. is the value of the applied vertical be- approaches 0,fo as vlfyo -- 0 is, to first order in
tatron field at the location of the orbit, -yo is the vf-yo
usual relativistic factor, e(>0) is the magnituder.of the electron charge, m is the electron rest ----- +1 (7)

. mass, and c is the speed of light. Yo02,

Self field effects will modify Eq. (i) however.9

A nonneutral current ring produces both a zero where a = fl~orolc. Self field effects, represented
- order vertical magnetic field and a radial electric by the v/-yo term, are seen to reduce the single

field. In general, for a reference particle at r particle circulation frequency below that ex-
ro, z = 0, radial force balance requires pected for.zero density; the correction term can

be significant (20-30%) in presently contem-r 0 EP) (2) plated devices. The general result, Eq. (7), will;:-"_ tro~o -eE~o) + IrooBJ (2

M m cbe needed below in the derivation of the first
order equations of motion.

where E,1°) and B,°) arc the zero order fields at
*..- r = ro, z = 0. From Appendix A, Eqs. (A-25c, F TI-'-"26c, 26d) III. FIRST ORDER EQUATIONS OF .

.cdMOTION
B,(°) = Bo - rnoePo rb2  (3)

ro In this section the equations governing the mo-

tion of a beam and motion of an electron within
() - r, the beam are obtained and discussed. We shallE,(°V ) = -rnoe I (4)

E ." ro consider in detail only motion transverse to the
toroidal magnetic field, assuming that all fields,

where the notation is defined in Appendix A. both self and applied, are independent of 0.
The terms proportional to 1B in Eq. (3) and IE The equations of motion for a particle in the

in Eq. (4) are toroidal corrections to the self fields fields of (A-25, 26) to first order in the displace-
of a cylindrical beam. They represent "hoop ments from the reference orbit (r, 0), are derived
stresses"-self forces on a nonneutral ring of in Appendix B. They are

-. current which act to expand the ring. Since we
do not attempt here to construct a consistent F1,+ oi,
equilibrium for the beam' 0-

1
2 we leave 1B and 1E 'to

arbitrary in the analysis below since their precise
values depend upon the particular distributions + f2[- n* - v I- + 21.)]r.
of charge and current in the beam. Still, one ex- [Yo a .pects the leading order logarithms in the expres-

sions for 1, and 1E, Eqs. (A-27, 28) to be correct. - rb V - -oo

Using now the zero order fields, Eqs. (3, 4), r 2 / o

in Eq. (2) we may write the condition for radial
force balance as e/oo Pat

I v,] 6 2  v6 02  
- 2m-yocZI + Iona +ro

[ "Y ] Yr- °X 1 --- 1E + 4y- )]z t (8a) ?'

where '(o 2,)8

V" Yo [ rrb2no e2 2 (6) z + Zio
^'?. /, Yo MC 2 4 C2 o

and where tob is the beam plasma frequency, + fl2on*z - nflno 8z + -TAz
(4'rnoc2/M-yo) . Here and below flo1 retains the
definition assigned to it in Eq. (1).

Equation (5) is a quadratic equation for the - e/o r - (8b)
circulation frequency, 00. The solution which 21nyoc
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. where over initial particle coordinates and velocities.
Denoting such an average by brackets it may be

r= r - ro= Ar + br shown that, as long as the beam is assumed not
to kink (Ar, Az independent of 0), we will have

z Z= AZ + 8Z
r I \ 1(rl) = Ar, (8r) (tr) =(r) = 0 (1Oa)

n* n Vi Ii+ I
'Y (o2 (Zi) = Az, (az) = ( z) = 0. (lOb)

n., = Wb2 /(2yo2fjz02) Upon performing this averaging procedure on
Eqs. (8a, b) we will obtain equations governing

fleo = eBoo/myoc the motion of the center of the beam. These may
subsequently be subtracted from the original,

and where P91 is equal to the canonical angular unaveraged Eqs. (8a, b) to obtain equations gov-
momentum of the patticle at (r, z) minus the ca- erning the motion of a single particle within the
nonical angular momentum of the reference par- beam. Both resulting sets of equations may be
title at (ro, 0), to first order in small quantities. summarized by the following single set:
It may be shown, using the definition of Pe, Pe

r(m-V -A that + a2x=floo9+hfeoy+F (lIa)

P + w,2y = - .. i - I (lIb)

(9) where the various quantities appearing in Eqs.
X 2 fl2olEr_ - __Lol8 Ar (Ila, b) are defined in Table I."O "yo a "yo ' Equations (I la, b) are our basic starting points

for the analysis to be presented below. In the
where VO, = V9 - V80 . following sections we will derive and study the

As they stand Eqs. (8a) and (8b) are not easily WKB solutions to Eqs. (I ]a, b). First we make
solved since, before they can be solved for the a few remarks on the equations themselves.
coordinates of a particle (ri, zj) the beam position The term proportional to x on the left hand side
(Ar, Az) must somehow be known as a function of Eq. (1 I a) and the term proportional to y on the
of time. However, a set of consistent equations left hand side of Eq. (I Ib) represent radial and
for beam and particle motion may be obtained by vertical focussing forces respectively. In general
performing an ensemble average of Eqs. (8a, b) the coefficients of x and y in these terms are not

TABLE I

Definition of Quantities Appearing in Equations of Motion, Eqs. (I Ia,b)

Beam Equations Particle Equations

(x, y) yo'"(Ar, Az) Yo"'(Sr, 8z)

WA (2 W'Yo n 2 ~ \ n,3\ lo - n,

!w"-' 'o- -"-toIV.t+ 1.t

12 n + ! Q.~ 2 f(* 1 Io ~ol

F 5)L flzoP~i -P, 1  ol

m-Voro m yoro

[I pt+0 + x + -O +y +t
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equal which suggests that an initially circular vertical magnetic field. It therefore moves in or
beam may not remain circular. The value of n out slightly depending on the sign of the energy
which makes these terms equal (the value re- mismatch. If, however, the radial focussing
quired to maintain a circular beam cross section) forces, represented by w,2, happen to vanish the
is behavior becomes secular (no equilibrium radius

S2exists) and the particle moves vertically, up or7
-cir = - -I" + (12) down depending on the sign ofthe mismatch; this

2 yo a 2 secular motion is just the so called "curvature"
or "centrifugal" drift.

. which depends on yo and therefore on time. In The sohition to the homogeneous part of Eqs.
what follows we will leave n arbitrary, though we (I Ia, b) also becomes secular when w.2 = 0. In
shall assume implicitly that its value is close to fact, when w,2 = 0 and W,2 

/ W 2 (n 0 nc.r), the
cir. This is necessary for self consistency since point o 2 = 0 corresponds to a turning point

we obtained the beam self fields Eqs. (A-26) as- (transition from stable to unstable behavior) in
*suming a circular beam cross section. the WKB solution presented in the next section.

- In the case of constant fields Eqs. (I la, b) are Since w, 2 for particle motion will pass through
elementary. For this case we have zero during acceleration, it becomes important

X) (F/o)2)  to examine the behavior of the solutions to Eqs.
= 1 (! la, b) for time dependent fields. In general, for

y 0 slowly time varying fields, a numerical solution
4to Eqs. (I Ia, b) over the entire acceleration cycle

+ C_ toj2 (13) is prohibitive since the numerical integration time
" i= step must be small compared to floo which in

turn is extremely small compared to typical ac-
where the eigenfrequencies (frequencies of be- celeration times. An explicit solution for this case
tatron oscillations) are given by is therefore essential.

wo2 + (0:
2 + 1)2

2 IV. MOTION OF BEAM IN SLOWLY
VARYING EXTERNAL FIELDS

_+ ( to + (t) + l 0 ())2 _ 4 2 ] 12l r 1/2
+ 2  

0  A. Stability Considerations

If the coefficients of the derivatives of x and y
(14) in Eqs. (I Ia, b) are slowly varying during a period

of a betatron oscillation, the equations may be
and where the Cj,j = 1, 2, 3, 4 are constants. solved by the WKB method. (See Appendix C.)

Stability conditions result in the usual way by To leading order the solution is
requiring w'. > 0. We postpone examination of
these conditions, however, until the following y /Aj ((o2 - t)
section. We note here only that for values of -y Y ,,As, 1 (j2 2

)1
12

)

above a value dependent on geometry (rb, a, ro,
n) but not on beam density, the self field contri- (15)
butions to 1.

2 and Wy2 fall off as -yo- 1, rather than
'Yo3 . For whole beam motion the value of y at ', ,K, t)

". which the v/yo terms become comparable to the x expij wjdt' + j dt' [K (t , t, F)' rtb2 nla 2 term can be modest (-y/- 10) for typical L..t 'lFt)

laboratory parameters (rb 1 cm, a = 10 cm, where the eigenfrequencies are those given in
ro = 100 cm, n = 0.5). (14) in which now all quantities may depend on

The particular solution in Eq. (13) represents time,
physically for particle motion a first order radial
shift of a particle which, while located initially WA [(w& 2 + -+ -10 )2 _ 4o,%by2 t,4 (16)
at the reference orbit (ro, 0) does not have the
correct energy to be maintained there by the local and where the kernels K.,(I, t') and K,.(t, t') are
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given in Appendix C. The Aj, j =, 2, 3, 4 are 2
constants in this approximation.

This solution, Eq. (16), is valid far from any
turning point, i.e. where any oj vanishes. Turning Iao,

points will occur if Wo2IW2 = 0 and if w 2 $ W,
2

(See below.) Initially we shall confine attention
to a cold beam (no longitudinal momentum
spread) for which the particular solution in (15)
vanishes identically. Later we shall comment on ,2
the effect of temperature.

The solution is unstable (exponentially grow- , * , , ,.,

ing) in time for such times that Im(wj) < 0 for any to a&2 -'-
j. Unstable behavior will occur therefore when-
ever either of the following conditions is violated:

• 2
W 2 > 0 (17a)

2.x + .2 + j12o > 2(,.,.,,v)'". (I17b) 2") 2:
W + a FIGURE 3 The -Ioo . - plane. Shaded regions are

For n = n1 i. (Y 2 
W,,

2 ) inequality (17a) is trivial stable. Trajectors a and c pass through unstable regions. Only
and (17b) gives the simplified stability condition trajectories, such as b, avoid all unstable behavior.

' " f12 o > max(0, - 4 ,) (18)']
[ho>max0, 4w~). 18) toroidal field is no longer required for stability

If n # n~i then both conditions (17a, b) must be (conventional betatron regime). Only by passing
simultaneously satisfied for stability. Condition precisely through the origin (e.g., trajectory b in
(17a) in particular cannot always be satisfied. At Fig. 3) can instability be avoided altogether.
injection n, is typically quite large and both w,2  While the size of the instability gap does not de-
and wl,2 for particle motion (and perhaps for beam pend on the magnitude of Boo the value of Im(oj)
motion) are negative. Dwing acceleration, as yo in the gap does and is inversely proportional to
increases n, decreases (n, _ yo- 3) and w,,2 and Boo. Therefore by choosing a sufficiently large
w,2 change sign (for different values of -yo, if n toroidal field it should be possible to pass through
"# eir); an instability "gap" therefore exists the instability gap safely (within a few growth
while w,' and wy'2 have opposite signs. times, or less).

It is important to point out that W, 2 and wy2 for We may be quantitative for a case in which
beam center motion (Re: Table I) may start out toroidal effects may be neglected: When Eq.
and remain positive throughout the injection-ac- (17a) is violated and if fld "> I w ,'2 [ J W then
celeration cycle while W. 2 and w7

2 for particle for the unstable mode, from Eq. (14),
motion change sign. We recall from Table I that
the small quantity (rbla)2 multiplies n, in the V -wx 2w~ 2

expressions for w, and 2 for beam center mo- (19)
tion but not for single particle motion. Therefore
unless n, is extremely large initially, beam center which has a peak value, assuming only yo and
motion will remain stable. not Boo is changing in time, of

The inequalities Eq. (17a-b) are illustrated
graphically in Fig. 3. The stable regions of the f(Boo] n - - (20)
(wy/floo)2 , (wo/floo)2 plane are those shaded re- oo 2
gions I and II in the figure. After injection but
before acceleration both (WY,/fl.o) and (w/flgo)2  If
for particle motion are negative and in region 1.
In this region the toroidal magnetic field is es- -" L" d(yo 2
sential for stability (modified betatron regime). , 70 1-

Following acceleration both (wtffloo)2 and (wt/
floo)2 are positive, i.e., in region 11 in which the where t, and 12 are the times at which the insta-
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bility gap is entered and exited, respectively, then ward centrifugal forces against the ' x
one expects that the transit through the gap will confining force.
not significantly disrupt the beam; Eq. (21) trans- In the conventional betatron regime W,2 > 0,
lates into a constraint on j'o oY' > 0 and the sign of Ep€e is reversed. Azi-

jo BIT 1)2. muthal particle drift is now counter-clockwise
- > f1.-o -:o (n - (22) and the major axis of the elliptical orbit is rotated
-yo 3 Boo by 90*. Stable motion is achieved by balancing

the inward radial electrostatic force against the
" If the acceleration is fast enough to satisfy Eq. centrifugal force; the toroidal field is no longer

(22) particle motion will be essentially unaffected needed.
* by passage through the gap. It should be possible In the instability gap Eleff has zeroes at polar

to choose a machine design (i.e., a sufficiently angles given by
large toroidal field and a field index close to I)
so that Eq. (22) is well satisfied. / -1

The instability which occurs while lw,2 <0 cos 2 )o =, - (26)
has an interesting dynamical origin. Let us con-
sider the equations of motion, Eqs. (I la, b), tak- at which points the azimuthal drift velocity van-
ing F = 0, and taking the external fields to be ishes. The radial drift velocity, cE,fflB9, cannot
constant in time: also vanish at the same point. Consequently the

2 particle drifts radially, with increasing velocity,
' + (to,X = feoY; (23a) since E, ff- p, at the angle 4)o, as long as w,'2y 2

< 0. Increasing the toroidal B field, thereby re-
.+ WYY = -118.i. (23b) ducing the radial drift velocity, reduces the

These equations are just those governing the growth rate of this instability, a fact reflected in
motion of a particle in an effective electric field Eq. (19).Typical orbits during transit of the instability

m 2 gap are illustrated for a simple case in Figs. 4 and
E =.--t X (24a) 5 in which results of a numerical integration ofe

Eeff = WY 2 y (24b) t.0
e

F NAL
DRIFT

and a magnetic field B9oI-1o. Converting to polar DIRECTION
coordinates p, 4, we have

peff - pIW, 2 cos 2 4) + W2 sin 2 4)] (25a)

= n pw 2 _ w1
2 ] sin4) cos4). (25b) u

e '

az

The particle behavior may be understood as fol-
"" lows. Let us assume that n > , from which it

follows that Wy2 > W,2 always, and let us consider
first the modified betatron regime (W,2 < 0, W,,2

< 0). Epe" in this regime is everywhere negative
thereby giving rise to a clockwise E x A drift,
assuming Boo is positive. E+ecf, which is much -1.0 ,_,___,_'__ ,.0

-1.0 1.0
smaller in magnitude than E.~f', gives a radial
drift of alternating sign as the particle moves from FIGURE 4 Particle trajectory (bz vs. 6r) in the modified

betatron during transit of the instability gap. -y varies linearly
quadrant to quadrant, thereby producing an el- in time from 7.0 to 16.1 in 2.4 pis. Be = 600 gauss, ro = 100
liptical orbit. Stable motion is established by bal- cm, a = 10 cm, rb I cm, n - 0.53, vI-y = 8.4 x 10- at
ancing the outward radial electrostatic + out- t= 0.
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Eqs. (I la, b) are plotted. In Fig. 4 condition (21) 10.0

is not well satisfied. The dramatic dfift direction
reversal and instability are evident. In Fig. 5 con-
dition (21) is well satisfied (n is near J); particle
motion is virtually unaffected, except for the rev- ---F NAL
ersal of drift direction, by passage through the DRIFT
gap. The two graphs, in Figs. 4 and 5 differ only DIRECTION
by the value of n used; all other external param- EVERSAL
eters and total integration time are identical. POINT

So far no mention has been made of the effect DIRECTION
of temperature, the inhomogeneous term in Eqs.

_. (I la, b), on particle orbit behavior in or near the
instability gap. Particles having an energy mis-
match-either too little or too much energy to

. be maintained at the reference orbit by the local
vertical field-will seek out their new equilibrium
orbits about which they will execute betatron
oscillations. Secular behavior is expected, as dis- -to.0 _ _•_0

cussed earlier, when o.2 vanishes. -o.o s, 10.0
The effect of energy mismatch on a particle FIGURE 6 Particle trajectory (8z.vs. 8r) in the modified

orbit is illustrated in Fig. 6 where the particle of betatron during transit of the instability gap, including energy
Fig. 5 has been given an energy mismatch of mismatch. All parameters are as in Fig. 5 except an energy

mismatch of (P, - (Pe,))lmroc = 0.10 has been introduced.
Pei - (Pei)

____ _ - (-YI) = 0.10.

the zero mismatch case. Such a large expansion
*The effect is twofold. The orbit center shifts of the particle orbits cannot, in fact, be reliably

slightly outward and the amplitude of betatron computed using the linearized Eqs. (I la, b) used
oscillations following passage through the insta- here. One non-linear effect in particular, namely
bility gap has increased by a factor of -35 over the reduction of beam density during the orbit

expansion, will clearly speed the passage of a -

0o.3 particle through the instability gap. (Recall that
-FINAL n, is proportional to density.) Due to this density

eMIFT
DIRECTION reduction the actual degree of orbit expansion to

REVERSAL be anticipated in a real device is likely to be sig-
eONT nificantly less than that seen in Fig. 6. Still, these

calculations suggest that a fairly cold beam will
be required for successful acceleration through
the instability gap. Poorly "matched" particles
are likely to be lost as w2 goes through zero. It

INITIAL should be pointed out as well that a strong to-
DRIFT roidal field greatly reduces the effects of energy

mismatch. The computer runs necessarily em-
~Ej O Nploy a very modest toroidal field (600 gauss in

the case of Figs. 4-6) due to time step consid-
Zs erations. A stronger field, by further restricting

radial motion, is expected to improve the con-
finement properties of a warm beam.

-0.3-0.3 sr 0.3 B. Adiabatic Behavior

FIGURE 5 Particle trajectory (bz vs. 8r) in the modified Let us next briefly consider, using the solutions
betatron during transit of the instability gap. All parameters to the equations of motion, Eq. (15), the effects
are as in Fig. 4 except n = 0.51. on the particle orbits of the removal of the to-

33.8
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MODIFIED-BETATRON BEAM DYNAMICS

roidal magnetic field. The toroidal field may need field to facilitate beam ejection without causing
to be removed in order to facilitate beam extrac- either the beam orbit or individual particle orbits
tion though this may not be essential. Let us as- to expand without limit.
sume that Eq. (15) is valid throughout the accel-
eration cycle, i.e., that w.,2 and w 2 pass through V. CONCLUSIONS
zero simultaneously and that the solution to the
homogeneous equation (the sum in Eq. (15)) dom- The beam in a modified betatron can be stably
inates the solution. This is certainly true for confined both during the acceleration phase and.. matched particles (P8 = (P.) = 0) when n~ = t during the subsequent gradual removal of the to-
adchen poridlefects may=(Pe)= b e n n =I roidal magnetic field prior to beam ejection. Asand when toroidal effects may be neglected (vl/ teba i ceeaed oee, nesvr

<' I). One may show, using Eq. (15) for such a the beam is accelerated, however, unless very
Scase, that for beam center motion in either the special conditions are satisfied, a region of insta-caseht for bm oscetion i ebility will be passed through; however if the time

fast or slow oscillation mode of transit through this instability gap is small com-

(Ar)2 + (Az) 2]f pared to the time specified in Eq. (20) the net
"(r)2 + (A)21 effect should be small.* rAs the toroidal field is removed to facilitate

(27) beam extraction following acceleration no further
r"'2 2 2 

2  instability gaps occur but the magnitude of the
+ I beam betatron oscillations will change adiabati-

Sa2 n+B B 12 cally. By arranging that the ratios, Eqs. (27, 28),+- ] be near one, one expects the beam to be well

, )B
2 

+ j behaved during the removal of the toroidal field.N a2 4 o+"Bo It should be remarked however that changing

sj the toroidal field changes the "tune" of the be-
while for particle motion about the beam center' 3  tatron which, in general, will necessitate the pas-

sage through orbital resonances as the toroidal
I(6r)2 + (8z)2 ]f field is removed. These resonances, due to the
J(6r) 2 + (bz) 2fl periodic encounter by a particle of a field error

or "bump" are currently under investigation. It
(28) is anticipated that a condition governing the min-

2 2 12imum speed with which B. must be removed,
[I - n,)B~o + I B90]i expressed as a function of the magnitude of the

(I - n,)Bo + 'Boo]f field error, will be obtained.'
Note added in proof: Due to a quirk in the pub-

where the subscripts i and f correspond to any lication process the work of reference 8, while
initial and final states. The latter expression, Eq. completed and submitted for publication after the
(28), may be interpreted as the fractional change present work, actually appears in print earlier in
in beam cross sectional area. Note that for large this volume (Part. Ace. 12, 329 (1982)).
Be the area of the orbits -Be-', as expected.

Expressions for these ratios in the case that ACKNOWLEDGMENTS
toroidal effects are not negligible and n 9 j may
be obtained from Eq. (15). The expressions are We have benefitted from discussions with J. L.
complicated, however, and will not be cited here. Vomvoridis, C. A. Kapetanakos, and N. Ros-

As a numerical example we consider a I kA toker. We wish to thank J. D. Lawson for bring-
beam of I cm initial radius in an initial state cor- ing Ref. 4 to our attention.
responding to -y, = 7, Bo; = 120 g, B o. 1 1.5
kg and a final state with -yf = 100, Bzof = 1.7 APPENDIX A
kg, and B00. = 0. In such a case Eq. (27) gives
for the orbital area ratio a value of 0.63 while Eq. Fields in the Modified Betatron
(28) gives for the ratio of beam cross sectional
areas a value of 0.60. In this appendix we calculate the fields seen

We conclude that it should be possible both to by a particle in a modified betatron. The particle
accelerate the beam and to remove the toroidal is assumed to be close to the axis of the torus,
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that is, the coordinates of the particle are taken Electric Field
-'- •to be (refer to Figs. I and 2 in the text)t ( t g a i tAll applied electric fields are inductive. The to-

("r B +roidal electric field is governed by the changing"-"(r, z) = (ro + Ar + br, Az + z) central flux and is taken to be a specified function

and all fields will be calculated to first order in fl i te i
Ar, Br, Az, and 8z. Fields will be given in the (r, E" Eoo(t). (A-4)
0, z) coordinate system of Fig. I and all will be
assumed to be independent of 0. Superscripts a
and s will be used below to denote applied and E. is negative for electron acceleration with B,o
self fields, respectively, positive.

Changing the toroidal magnetic field, Boo, will
induce a poloidal electric field, the r and z com-
ponents of which are easily found

Part I (Applied Fields)

Er = - Boo(AZ + 6z) (A-5)
- -- Magnetic Field -c

The usual weak focussing betatron field has r and !
z components. The z component is taken to be- Ez =2c eo(Ar + Br), (A-6)
have near ro as

where a dot indicates a time derivative.
B.' Bo(ro/r)" (A-I)

r r Part 11 (Self Fields)
.o pSince we neglect beam diamagnetism and the

where B.0 depends only on time and n, taken as possibility of a change in self flux due to timewhee Bo dpens oly n tme nd , tkenas varying beam current we take Be"=s e = 0. It

a constant to this order, is the so-called vacuum remains to calculat e tr and z components of

field index. The radial field is obtained by re- teaself lctric and ncofieldsquirng ( x/ e =0 an B,( = ) = (maing the beam self electric and magnetic fields.-"
Consider a beam circulating inside a perfectly

the z 0 plane a plane of symmetry). The result conducting toroidal chamber of circular cross
is section as shown in Fig. A-I. (The beam dis-

B " nBo Az + z (A-2)
ro/

The applied toroidal field generally falls off as
r across the minor cross section of the torus z

"(1 Ar + 8
B e ' B , r o

where B 0 depends only on time. However, in ro
the equations of motion Be multiplies only BE-M

. and i terms which are already first order.
Therefore the gradient of Be does not enter the
linearized equations of motion and we take only
the zero order value,

Be' Boo. (A-3) FIGURE A-I Geometry for self field calculation
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placement is exaggerated for clarity; we will as- 2po + 3

sume A 4 a). The chamber major and minor radii 4o + q(1 - p2 /rb2 ) + 4Rbrb'
" are ro and a respectively. The beam major and

minor radii arc Rb and rb respectively. We must p p
calculate the fields inside the beam (p < rb), as- rb rb
suming the chamber is a perfect conductor. To
proceed we define a scalar potential 4)(p, 4)) and (A-1)
a magnetic flux or stream function q'(p, 4)) -rAe
where Ae is the usual vector potential. The equa- 4) qp cs-
tions for 4) and 'Y are - 2 p/rb +

*1 a4)\ + p- ,---+ (A' - + C' - sin,
2 rb PI

00 1. 04)] + ( + D'- cos4) p>rb
COS4 -- sin4) rb P14reno(p, 4) Rb + pcos4) where q -enotrb and 4),, A, B, A', B', C',

and D' are constants.
(Applying now the correct boundary conditions(A-7) both at the beam surface and the wall determines

all of the constants:1"-0p ( +/ -,.2 4)o = 2q In alrb (A-] la)

41r A = A' = - 2q-rsin ip (A-I lb)--- "RRb + pcos4)J0(p,4)) a a
B = alrqrb(0cos '_ - !~in60_'P '1 B=B' q- blnalrb -4R-ja 2  (A-lie)

COS 4) p 0 sn4)] Aj rb R

Rb + pcos4 ' aa

(A-8) C' = 0 (A-I Id)
Di q rb

where no, the beam number density and Jo, the D' =•.4R,,(-le
beam current density, are assumed to have been
specified. Here we shall take both no and J0 con- Using this result in Eq. (A-]0) we may calculate

5. stant, independent of p and 4). the r and z components of E inside the beam,
The boundary conditions on 4) and 111 are the to first order:

same; they both must vanish at the surface of the 04) 1 04)
, chamber, specified by Er= - cos 4) + - sin

Op p04
p - Acos( - ), (A-9) 2q 8 r -2  r q aIn - 1

&rb2L -A 2 + n (A-12)
. correct to first order in Ala.

I -- 4cos)
Scalar Potential and Electric Field ap p a4)

The general solution for 0, including the first 2q6z[z+rb!AZ 1(A-13)
toroidal correction, is rbi2  a 2
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where (6r, bz) = p (cos 4), sin 4)) and (Ar, Az) The resulting magnetic field, to first order, is
A (cos ,sin, ).Bf = - lfa-ps a cos

r au p p (A-16)
Magnetic Flux (or Stream) Function and2
Magnetic Field = - 2renopo 8z + - Az

The general solution for '1P, including the first C tap aq'sin 4
toroidal correction, is B3= - cos -.. r aa

To + Q(I - p2 Irb2 ) 3 p os 2"eno , (A-17)4 Rbrbb
X Sr+- -Ar-- - In-+ I

+ A- sinl4) + - cos 4) p<rb Rb
rb rb In the circulation frequency, Oo, rather than

(A-14) the current itself, is taken to be constant across
the beam (current - r) then it is straightforward

11= a
o- 2Q In p/rb -- In prb cos 4 to show that In - + I in Eq. (A-17) is replaced

Rb rb
a

Sp -_,,) by In + 2.
+ A' k + L- sin 4o rb ba h

rb P) If the magnetic field of the beam has diffused
/.-completely through the wall then the field sur-

+ ' + D'r cos ) p>rb, rounding the beam is most directly calculated+using the free space Green's function

% where Q =rrb2JRbc = - rrb2 eno~oRb, P o() = d ' (A-18)
- Voo/c, and 1 'o, A, B, A', B', C', and D' are c I- "8
constants. If = Jo 0 is constant across the beam and Jo

Applying the boundary conditions gives is independent of 0 then A = A0 6 where
- o=2 na (A-15a) AJrz j R(n+rb fow, d0 ' (r,)

bo 2Q In -A-(r, z) =- r'dr' dO' dz'
rb -br -Zb(r)

- - ArbCos 0'
A A' = - 2Q-- sin4. (A-15b) × [r2 + r'2 

- 2rr' cos 0' + (z - z')2]fa a

Zb(r') = Lrb2 - (r' - Rb)2 ]tr2 . (A-19)rb

B =B' + Q-
Rb The integral over 0' may be expressed in terms

of the-complete elliptic integrals'

Ar o rb a 4J jRb+
"rb ()

Q= -. - cos +Q- n- Ao r'dr' dz'
aa Rb rb c JRb-rb Jf-bzfW)

rb I Q rbr') !,_'- + Rb R a (A-15c) x [r 2 + (Z -z)] -

0 (A- 5d) × [-I + 3) K(-in) - 3-E(-n) (A-20)0 (A-15d RA-n0I

= fb Q .5e) Handbook of Mathematical Functions, M. Abramowitz
4 b )  and I. Stegun, eds. Dover Publications, ch 17.
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where where Bo, Boo, and Eo are taken to be prescribed
4rr" functions of time.4rr' ._"

-- (~r -r')' + (Q Z ')"
( -- r'Y + (The self fields are

In the beam interior m is large. Using the
asymptotic expansions for K and Eone may show B ( rb ) ( a,that B - 21Tnoel~o -az (A-26a) .

I + K(-m) - E(-m)

M Mni Be-' 0 (A-26b)

(A-21) 2 h2

-i -"n(In m + 41n2 - 4). B,' =2"noeo(8r + AAr - (A-26c)

" Using Eq. (A-21) in Eq. (A-20) the resulting
integrals are elementary. The result, for the vecrb rb2
tor potential inside the beam is E,= - 21Tnoe br + -r Ar + r 1) (A-26d)

a 2ro/Ae" r[1 (8Rb'
Ae [ In (Rb] + I -p2/rb 2

A [ 2+ - Ee= 0 (A-26e)

(A-22)

+ CsP InR 3),ES-' 2-Trnoe 8z + 2iz (A-260)
brb a

where I = irr,2Je, from which it follows that the where
fields inside the beam, to first order in p, are

21 p a
Br-' - 2 sin 4, (A-23) n a + 2 if circulation frequency, 0,

.',C rbr

I L- blRb- 2PCosb .  is constant across the beam
B~'- -l -- 2 'I (A-24)

Crb LRb rb rb j 1=

We may summarize all of the foregoing results
as follows: In -+ I if current density is constant

* The applied fields are,S"across the beam (A-27)
AZ + bz

Br* = - nBzo (A-25a)
ro a

E= In - if density is constant across the beam.
Be" = Boo (A-25b) rb

r Ar + 6r (A-28)
B ' = Bo I- n - (A-25c)

For times long compared to the time it takes
the magnetic field to diffuse through the chamber

Era = - Boo(AZ + 8z) (A-25d) wall the result (A-24) shows that one must replace
2c

a in the logarithm in the definition of 1, by (8 rol
Eq= Ego (A-25e) e) - 2.9ro. This suggests that fields in an actual

device may have to be programmed in time to
E B + )Acompensate for this extra change (reduction) in

EzO 2c / o(Ar + 8r) (A-250 B, in order to hold the beam in place.
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APPENDIX B and where we have used -y = Voo-oy 3 Vn I/c 2.
Now, using the expression for 0 o in Eq. (7), one

Linearized Equations of Motion for a obtains
Particle In the Modified Betatron=Pen r v I

Vo o3  + 702 0 1E

In this appendix the equations of motion for a myo ro Yo t

particle in the fields (A-25) and (A-26) are ob- (B-6)
tained, correct to first order in small quantities.

The complete equations of motion are + Ar

.Yo ' o

dt e + rBC where~ o fT2orofc.
I [rThe expression Eq. (B-6) will be needed next

(B-i) in the linearization of the radial equation, (B-I).

Id [E +BI Carrying out a straightforward linearization of
r " e Ee + !(B - ) Eq. (B-I), using the zero order fields from Eqs.

r d(2 m c (A-25b, c) and Eqs. (A-26c, d) gives
.£ (B-2)Vo

ri En- -B . + fleoii
d -- Ez + -(B or, r)myo c

E,+ Ve rOBr)]._

-. (B-3) - l -- '"-
._.3)Y0 (B-7)

We consider first the linearization of Eq. (B- + 1""

2). This equation has an exact first integral, as-
suming the fields do not depend on 0; it is the
canonical angular momentum +

p, rm~O-~CB4 where

We now write all quantities Q as Q = Qo +
Q, where Q, < Qo and Qo refers to quantities floo = eBolmyoc.

evaluated at the reference orbit (r, z) = (ro, 0).
Defining V = rA it is straightforward to show Using now Eq. (B-6) and keeping terms only

from Eq. (B-4) using (A-14) for (rAe'), that to first order in vyo and using Eqs. (A-25c, d)
and Eqs. (A-26c, d) to write

" Pei r, [ o e ] e
Vol myo3ro mYoc -e Er + - Bzl

(B-5) 
2

Ar v. eBoo Z,+ ( rb2  )
+,2m-yo 2 yo2  a-y2 fl o o 1B ,or

e + nOoflor| (B-8)" where _

.- rb2  we obtain our final result for the radial equation:
BR =Bo-1rfoePolio.+1,In-•ro 

i l + f 2

rb no-j 2

yo cI C2 x((3-n)-'iIE+(2-n)li)r,
wb2 =41Tnoe 21myo 

( n);21+(2 )1B r
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elioo where X is a large dimensionless parameter. De-
.]- Zi+ flaoi + nj2o d2moC noting by a prime ('), Eqs. (C-la, b) become

X br + -j r) + - f12 1I&,r (B-9) 2,
a " ) 7 r yo X" + x2w1

2x X= leoy + floo'y (C-2a)
2r V (I + yo- 2  +I)]

+"-omrol o ' + yM + X2to 2y = -looX' - -floo'x. (C-2b)

./where n0 (0b2y2,/o is the "self field index." Now writing
The analogous linearization of the z equation x = ai(r; X)e x J')' (C-3a)

[Eq. (B-3)] is completely straightforward, using
the fields (A-25a, b, f) and (A-26a, b, O. The result y = a2(T; X)et js'€')dT' (C-3b)
is

we proceed to express a, and a 2 in formal asymp-
is + - + nflo totic series

-. ~~alT X) El V !  ) - , (C-4a)

XI - -, IE + I Z (B-10) 0

-a 2,(T) (-b
a2(r; X) - (C-4b)

- - 2m yoc We must now find the a,., a2., and w.
,+ niZo br + ! Arf1. Substituting Eqs. (C-4a, b) in Eqs. (C-2a, b)

a 2 one finds the leading order (W2 ) result

(.)2 - W2)ao - itlfeoa2o = 0 (C-5a)

APPENDIX " iwtlooao + (wy 2 
- W2 )a 2 o = 0 (C-5b)-" - APPENDIX C

from which it follows that co must be one of the
four quantities

WKB Solution of Equations of Motion <&." + W,2 + f120

The linearized equations of motion are given in .+ [(Uo 2 + )y
2 + 0)") 2 - 40,26)Y2]/2 1/2

the text, Eqs. (I la, b). Below we shall obtain 0 -_4
first, an approximate solution to the homogene- [ 2
ous version of Eqs. (I la, b), assuming that all (C-6)
coefficients are slowly varying. We will then give
the solution to the full, inhomogeneous equa- The next order (X') relation may be written, after

" ' tions. some manipulation, as
The homogeneous equations are .2 2o.] a2
"-- "' i 2(aa~

"+ WX2x = fleo) + 1hooy (C-Ia) Io

(~. r',L .j, (I) WYOy + w 2y = - al oi - Ifl ox (C- b) + i 2 w fl a20 (C-7)

All coefficients, w,~2 , w,2, and floo will be as- + 2 (
* sumed to vary significantly only over a slow time Poo + - (W2 - 2) a;o

scale. To carry out a formal asymptotic expan-
sion then we define 2 - + - W.2 )]+ -fl.fo + -- ole

" = l, 2 o 9
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Using Eq. (C-5a) or Eq. (C-5b) and Eq. (C-7) an mogeneous equations as
equation for just alo (orjust a20 ) may be obtained.
The solutions are 1, 2, 3, 4 (C- 1)

(y(:J))alo = Aw- /2(to 2 - W 2)1/ 2

one finds in a straightforward way that a patic-(o2 + oy+ 0o - 2 o2)- n (C-8a) ular solution to Eqs. (Ila, b) in the text is given
by

a2o = A a)-12(0 2 _ W2)t/

(ma)2 + to2 + f12 _ 2to)- (C-8b) =(X) dt' K F('), (C-12)

where A is an arbitrary complex constant. where
Using Eq. (C-8a, b) and the definition of w we

* ' may write the leading order WKB solution to Kt, t') = -

- Eqs. (C-la, b) as W

Y).._I(w2 + t2 + -l o) 2 _ 4w 02 ]-|" K,(t, t') = - - Ejk, +2y 1(t)X(k)(t1)y(1)(t')y(m)(tt)

(C-9) W = .ikJ,,, XQ) ) (t) y(o(t)(m)(t),
4" aj f (wo2- 21/

X" I."/-, - 4oi2)t" eif,,,, and where the summation convention is under--/ 2 -(j 2  stood. The Wronskian W is a constant, indepen-

= j dent of time; its value is determined once a choice
where the sum extends over the four values of is made for the x(J, y(.
w in Eq. (C-6) and where the A. are constants.

This solution is expected to be valid as long as REFERENCES
w,., wo,, and l0o are slowly varying compared to
any wj, i.e., i. P. Sprangle and C. A. Kapetanakos, I. Appl. Phys. 49,

I (1978).
2. N. Rostoker, Bull. APS, 25, B54 (1980). N. Rostoker,d 3Comments on Plasma Physics 6, 91 (1980).

dt 3 J. D. Lawson, private communication.
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Li. Equilibrium of a high-current electron ring in a modified-betatron accelerator
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The dynamics of an ultrahigh-current electron ring in a modified-betatron configuration is
addressed. This study includes analytical and numerical results for both "cold" and "hot" rings.
It has been found that the walls surrounding the ring and toroidal effects play a very important
role in the dynamics of the ring, even when the wall conductivity is infinite. For finite wall
conductivity, the diffusion of the ring's self-magnetic field profoundly impacts its dynamics and in
general the equilibrium could be lost if means are not provided to compensate for this effect. In
addition, it has been found that the toroidal-field grad B drift is not important, except when the
bounce frequency is very small. The general conclusion of these studies is that equilibrium states
of ultrahigh-current rings in modified-betatron configuration exist over a wide range of
parameters. These states are accessible and within the reach of existing pulsed power technology.

I. INTRODUCTION The present work addresses the dynamics of the high-

Over the last few years, several laboratories1-7 have current ring in a modified-betatron configuration. It in-
been engaged in studies that are intended to assess the feasi- cludes both analytical and computational studies for "cold"
bility of developing ultrahigh-current accelerators. These as well as "hot" electron rings. The main conclusions are:
studies are mainly motivated by the potential application of First, if the energy of the injected electrons is not exactly
high-energy, high-current electron beams in nuclear physics equal to the energy corresponding to the equilibrium orbit,

" research, medical radiography, and the fusion program. which is assumed to coincide with the minor axis of the
In general, the effort is not directed toward developing torus, the center of the orbit is displaced from the center of

novel accelerating schemes but rather toward modifying or the minor cross section of the torus. The displacement is
improving the existing accelerator technology. Among the proportional to the energy mismatch. This imposes very

' various proposed modifications, the addition of a strong tor- stringent constraints on the injector. Second, during the dif-
oidal magnetic field to a conventional betatron" has attract- fusion of the self-magnetic field of the ring out of the
ed considerable attention,"' and the configuration has been chamber, the equilibrium can be lost if means are not pro-
named the modified betatron. vided to balance the change of the ring equilibrium radius.

In this paper we analyze and discuss the dynamics of a This change is due to the reduction of the relativistic factor
high-current electron ring confined in a modified-betatron Yo and the increased forces acting on the center of the ring.
configuration. When the intense electron ring is surrounded Third, the modification in the flux rule for high-current
by si finite conductivity wall, its dynamics can be divided, rings can be ignored, provided that v/y, (v = Budker pa-
rather naturally, into three distinct phases: The pre-accel- rameter) is very small. Fourth, with the exception of the ex-
eration phase follows the injection and trapping of the elec- pansion of the minor cross section of the ring, finite emit-
tron beam. The duration of this phase is short, typically a few tance does not have any other noticeable effect on the
microseconds and the conducting wall surrounding the ring equilibrium, and fifth, considerably higher axial energy
can be treated as a perfect conductor. The pre-acceleration spread can be tolerated in high- than in low-current rings.
phase is followed by the diffusion phase, which lasts for a The general and most important conclusion of these
time that is of the order of the magnetic field diffusion time. studies is that equilibrium states of high-current rings in a
During the diffusion phase the self-magnetic field of the modified-betatron configuration exist over a wide range of
beam diffuses out of the metal torus. As a result the electron parameters. These equilibria are realistic and accessible with
energy is reduced and the net radial force on the ring in- existing technology.
creases, but at a different rate. Therefore, the equilibrium
will be lost if means are not provided to balance these two
effects. The last phase, i.e., the main acceleration, starts after II. ORBIT STABILITY OF A COLD RING WITHOUT
the self-magnetic field diffuses out of the torus and has a SURROUNDING WALLS AND TOROIDAL
duration that is comparable with the acceleration time. For CORRECTIONS

- most of the third phase the energy of the ring has increased The stability of a single particle orbit, when thermal
substantially and thus the effect of the self-fields is apprecia- effects, wall effects, and toroidal corrections are neglected,

S-. bly diminished. has been considered previously." Using the coordinate sys-
tem shown in Fig. I and assuming that the external-field

"Permanent address: Herkeley Research Associates, Springfield, Virginia components vary as
22150.
Permanent address: Sacis, -eeman Associates, flowic, Maryland 20715. B, (r,t) Be. ( t )[ - n(r - re)/re], .Ila)
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B, when y> I. The ratio ofl,,, to I,,, obtained from Eqs. (4) and
[,ec ~r (6) is "

*Inductive Electric (6 is
Field rb lb/l = (Bot, IBo, )2.

/The above relation indicates that for B0 >B,,,the electron-

Br beam current that can be stably confined in a modified beta-
tron substantially exceeds the current that can be confined in

'b ra conventional betatron.
.• - ,.": The modified-betatron stability condition given in Eq.

Electron Ring ..... B* (2) can be easily obtained from the well-known confined
equilibrium condition'"

FIG. I. Schematic of the modified-betatron configuration and system of 2('/1i2 < I (nonrelativistic), (7)
coordinates used in the analysis. where aLb is the beam plasma frequency and f2, is the cyclo-

tron frequency. For relativistic energies, and taking into ac-
B, (r,t ) f: - Bo. (t )nz/r o, (I b) count the self-magnetic field of the beam, ,b becomes

* Eo(r,t) - f r'dr' B-- (r',t), (Ic) o- ( ro)(l ), (8)
rc 0 d

where (1/?) accounts for the self-magnetic field of the
and beam, and

Bo(r) Boe[l - (r - ro)/ro], (Id) 2_-_12 2 (9)2

it has been determined that forBo >B and v/on i the orbits Substituting Eqs. (8) and (9) into Eq. (7) we obtain the stabil-

are stable, provided that the following condition is satisfied: ity condition of Eq. (2). The equality sign in Eq. (2) gives the

ns <(Boo /2Bo )2. (2) maximum electron density that can be supported at a specif-

In the above equations B,(r,t) is the axial and B,(r,t) is the ic value of Boo/Blo and the corresponding equilibrium is

radial component of the betatron field, Bo(r) is the toroidal known as Brillouin flow.' 0

magnetic field, Ee(r,t) is the induced electric field, n is the
external-field index, (ro,O) are the coordinates of the center of IlI WALL EFFECTS ON THE MACROSCOPIC MOTION
the electron ring, and n, is the self-field index. The self-field OF A COLD BEAM

index is defined as In this section we analyze the effects of surrounding
walls on the motion of the center of the beam. In the Sec.n, = W A(2ro = 2(vlro)(clo, rb ( 3) .-

"." ( liA, it is assumed that the perfect conductor that sur-

where ( = 47re2n0/m) is the beam plasma frequency rounds the beam is a straight cyclindrical pipe of circular
squared, To is the relativistic factor, 2o, ( = eBo Inc) is the cross section and thus toroidal effects (hoop forces) associat-
cyclotron frequency corresponding to the axial component ed with the fields are omitted. These forces act to expand the -

of the betatron field, rb is the minor radius of the beam, and v ring and are reduced with increasing ring major radius. The
is Budker's parameter, i.e., the product of the number of toroidal effects are discussed in Sec. III B.

• " electrons per unit length times the electron classical radius.
The electron-beam current that can be stably confined A. Without toroidal corrections

in a modified betatron can be obtainedby substituting Eq. (3) Consider a pencil-like electron beam inside a straight,

into Eq. (2) and is perfectly conducting cylindrical pipe of circular cross sec-

.mb <2.1 (rb/ro)2? fi 3(Boo/Bo, )2 (kA) (4) tion as shown in Fig. 2. The center of the beam is located at a

wherep,0 = volc. If yo>l, then ro.o./yo-c and Eq. (4) be-
zcomes

": l1 b 0.22 X 1000rn (kA), "

with rb in cm and Boo in G.
In addition, it has been shown under the same condi-

tions, but with B0 = 0 (conventional betatron), the beam is

stable provided
n, <, conventional betatron (Bo = 0). (5) ro

The electron-beam current that can be stably confined in a ' ' a

conventional betatron can be obtained by substituting Eq. (3)
into Eq. (5) and is

,,I,<4.2(rb/r 2 Y1 fi (kA), (6) Perfect Conductor

0 FIG. 2. Wall (images) forces acting on a pencil-like electron beam, situated

",b < 14.44X u0s 4roBi (kA), inside a perfectly conducting cylindrical pipe.
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distance A r, Az from the center of the minor cross section of '

the pipe. As a result of the induced charges on the wall, the n > Y/
center of the beam will experience a radial, outward-directed
force, which for small displacements, i.e., Ar, Az<a is given n ./,
by

FE = 2re2no(rb/a)2(Ar , + Az ,), 110)

where a is the cylinder radius and n, the uniform beam den-
sity. 0

* Similarly, as a result of the induced current on the wall, (nn)
the center of the beam will experience a radial force that is ns ,b
directed toward the opposite direction than FE and is given 0

by FIG. 3. Bounce frequency squared as a function of n,, /a2
. with the field

FS = - f 
2 FE. (11) index n as a parameter. The orbits are open when w, < 0 and closed when"-"", >0.

Using the external fields of Eq. (1) and the induced fields of "
Eqs. (10) and (11), the equations describing the temporal lin- The first term on the right-hand side (RHS) of Eq. (14)
ear evolution of the beam's center, for time-independent ap- gives the displacement of the center of the orbit from the
plied fields, are center of the surrounding cylindrical pipe and can be written

.02. Al + = .( , s__
Ar + @Ar= fo (P 0  (12)

... ro Ao / (oro (P/re17)
and (12o,/yo)(1 - n - n,7 /a 2 )mro

Ai + id'Az = - (DJoe/Yo)A, (13) Equation (16) has four roots. Two ofthem are fast (plus sign)
where and two are slow (minus sign). When B9 lB,, the slow modes

&2 (Do07/ro)(1 - n - n, 4/a2 ), become

/a), O2 2 V ~~7 \

!= (2o, Y ,,)2(n B k Iro'

1.9= eB m, 12, = eB" mc, B 2
( i2 2""

bro/ro = go (P )/romroc, a B 8  -n -n, , oi
and 6P. is the difference between the canonical angular mo- and the fast modes are ± ( 2oe/ro). Equation (18) is plot-
mentum of an electron at (rz) and its corresponding value at ted in Fig. 3 for two values of the external-field index. For
the equilibrium orbit (r0 ,O). The average is over initial coordi- n> 1, ' is negative when I - n <n, /a 2 <n and for n'
nates and velocities. Equations (12) and (13) do not include ,4is negative when n<n,4/a2 <1 -n. Negative values of
the self-electric and self-magnetic fields, because both these W' indicate that the beam motion is unstable and the orbit in
fields are zero at the center of a straight beam. In addition, the rz plane is open. Since the parameter n,4/a 2 scale as
the nonlinear terms (Ar/roX4oo/yo)Ai and (Ar/re)(l 09 / ro ", during acceleration n,'/a2 decreases rapidly. There-
yo)A& have been omitted from Eqs. (12) and (13). These two fore, in order to avoid the instability, it is necessary that
terms have their origin in the gradient of the toroidal mag- before the commencement of the acceleration the parameter
netic field and are considered in See. V. In general these n,r/a' <I - n when n> I and <n when n < . This implies
terms are not significant except in the limit &,--,0. that the injected beam current should be limited to

In Eq. (12), by, = fo(6P)/mrOc indicates the energy 1<-8.5(l _ n a/ ' ..2/r. f .
mismatch, i.e., the difference between the energy of the refer-

- ence electron (moving along the axis of the beam) and the and
energy required for the same electron to move on the equilib- 1<8.Sn9,8oa 2/r (kA) forn<4.
rium orbit (r,O). The solution of Eqs. (12) and (13), for time- The orbit af t ' n

":'=~~~Th inepndnbels of the rings center is described by
S independent fields, is [4r(0) - A ro] cos w.

J2 oz(bPe + c( -o"e'
Ar= J(@2 i-I_1 el-1,  (14)

and Az1) =A4z(0) cos(ca ) + [A(O)/os] sin(w, t),
4 where the initial velocities and displacements are related by

. =~AZ I c,(2 - &2)1/ 2 ek, (15) Ao) - [,/foo/o)] o),

where c, is a constant and Ago) = ' A rO) -fl_ o, A(8PO
(2oe /o) U42o) yolro

* 2 p2 + F0 -2 +'''' y2
&2- + I + 10, / )2 2 [Aro) -Ar•,

""[i +,0 + "flo 2  
112). (16) 7 -oo-to)
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FIG. 4. Snapshots of the electron-ring minor cross section at four different
- times. The values of the various parameters are listed in Table I. The center FIG. 5. An electron ring inside a conducting toroidal chamber. Because of

* -. of the ring's minor cross section describes a circle, the toroidal effects, neither the self-electric nor the self-magnetic field is
zero at the geometric center of the ring.

and
(8Po) = yomro(Vo - roi2o,/yo) •  beam is 3 MeV. Although such a small energy uncertainty

The predictions of Eq. (18) are in good agreement with can be attained with sophisticated injectors, there are other
e rfactors, such as space charge and inductive effects, which

the results of computer simulation shown in Fig. 4. This contribute substantially to the uncertainty of energy. Al-
figure shows four snapshots of the beam in the rz plane. At though the displacement cannot be eliminated, its negative
t = 0 the circular electron beam is injected near the center of impact can be alleviated by elongating the minor cross Sec-
the pipe. The values of the various parameters are listed in tion of the torus along the r direction.
Table I. The electron-beam current is kept low (1 kA) in
order to minimize the toroidal effects. As can be seen from

Fig. 4, the center of the electron beam describes a circle in the

r,z plane with a period of about 188 nsec. For the same pa- The cause of these effects is the finite curvature of the

rameters Eq. (18) predicts a period rB = 21/) - 180 nsec. electron-beam orbit. For relatively large aspect ratio (ro/

These numerical results are discussed further in the Sec. rb > 1) beams, the toroidal effects become important when v/
IJIB. 'yo exceeds a few percent. Previous work 2 on toroidal effects

The displcement of the orbit's center because of the was limited to "bare" rings, i.e., without surrounding con-

energy mismatch [Eq. (17)], imposes very stringent con- ducting walls. In this subsection we briefly analyze the toroi-

straints on the injector. This becomes apparent when we dal corrections for the more realistic geometry shown in Fig.

consider some limiting cases. For example, when n = j and 5, i.e., including the effect of conducting wall around the

n,5 /a2< 1, Eq. (17) is reduced to beam. Since different physics issues are involved in the case
-" (1 of a "bare" and a "shielded" ring, it is appropriate to start
Ar0 /roz,2(6o/o). (19) our discussion with a bare ring.

Equation (19) predicts that for a major radius ro = 100 cm, Consider an intense electron ring as shown in Fig. 5, but

the ratio byorVo should be less than 1% in order that the without the toroidal chamber. At the inner edge of the RHS

displacement of the orbit will be less than 2 cm. The condi- cross section of the ring the self-magnetic field is greater than

tion bo/yo.< 1% requires that the uncertainty in energy that of a straight beam with the same parameters, because of

should be less than 35 keV, when the energy of the injected the contribution from the left-hand side (LHS) of the ring. At
the outer edge of the cross section, the self-magnetic field is

TABLE I. Electron-ring parameters for the results of Fig. 4. reduced because the contribution from the LHS of the ring .

has different polarity than the local field. Thus, the total self-
Beam energy (MeV) 3 magnetic field is shifted upwards, as shown schematically in
Beam current (kA) I Fig. 5. In contrast, the self-electric field decreases at the in-
Beam minor radius (cm)
Beam major radius (cm) 50 ner radius and its magnitude increases at the outer radius of

Torus minor radius (cm) 6.4 the ring. Thus the self-electric field shifts downwards. As a
Vertical magnetic field (G) 240 result of these shifts neither the magnetic nor the electric
Toroidal magnetic field (kG) 2field are zero at the geometric center of the ring.
External-field index 0.47

Self-field index 0.88 When the electron ring is surrounded by a perfect con-
ductor, the shift in the fields discussed above is reduced but
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,R- 4.25 !-I-In a - (kA) for ',> 1. (27)

charge and current on the conducting wall. For small ring yn r o
displacements from the center of the minor cross section of Tns
the torus, the induced fields vary linearly with the displace- he t n at gi4en B E . In i tion i n

-" ment and arc identical to those given in Eqs. (10) and (l1), for lower than that of Eq. (4) when B. B4,. In addition, in!.'yinrcl-ie'Qatttieete-o"o h peiu contrast to the current given by Eq. (4), the current of Eq.
a cylindrical pipe. Quantitative extension of the previous (27) is independent of the toroidal magnetic field BOo. Toroi-q u a lita t iv e c o n s id e r a t io n s h a s s h o w n th a t th e fi e ld s a t th ed a e f e t s h t t e c u v s o F i .3 o t e l ft n d h e r t c l

center of a uniform-density electron ring inside a perfectly dal effects shift the curves of Fig. 3 to the left and the critical
conducting toroidal chamber of circular cross scurrent given by Eq. (27) is lower than the corresponding

critical current when toroidal effects are omitted.
-|n Ar - + I - (a 1  At this point, it is appropriate to return and discuss

a22 r. 2 o n  further the computer simulation results of Fig. 4. For the I

+ d A, kA, 3 MeV beam the v/, o = 0.0084. Even at this small value
+ 2_iz- , , (20) of v/ro toroidal effects are noticeable. The value of " com-
a2 r. puted from Eq. (25) using the above value of v/yo and 6.4 for

- and the ratio a/rb is 0.95. According to Eqs. (23) and (24) the
jrb AZ center of the beam will describe a circle when a - n* = n*
aBi d -2rlern 0lr 2 or for n = I[1 - (v/yo) ln(a/rb )] = 0.467, which is in excel-

[ Y.(} lent agreement with the simulation. In addition, Eq. (26) pre-
- Ar 4..i. -I + In e 1. (21) dicts a period of 188 nsec, which also is in excellent agree-
a - ro 5 - 2 rb/i J ment with the simulation.

" where no is the ambient density, ,o  volc, v, is the azi- The most striking manifestation of toroidal effects is in
muthal velocity defined by the value of the betatron magnetic field required to confine

"""r /o the rotating beam at a specific radius. When the axis of the
Vo = , (22) beam lies along the axis of the torus, i.e., when Ar = Az = 0,

I + 2(v/yo)[ I + ln(a/rb)] it can be shown from Eqs. (20) and (21) that the external

- and the displacementAr, Az ofthe ring from thecenterofthe magnetic field required for the beam to rotate with a radius

* . torus has been assumed to be much less than a. In addition, re is

" the fields given by Eqs. (20) and (21) have been derived under Bo. = Bo0 I + (2v/ro)[l + ln(a/rb )],
the assumption that the angular frequency of the electrons is where Bo is the magnetic field necessary for a single particle
constant and therefore the electron current density varies of the same energy to rotate with a radius rp.

proportionally to r. The above expression for the magnetic field is based on
Using Eqs. {20)-22), it can be shown that the center of the assumption that all the electrons rotate with a constant

the beam is described by Eqs. (12) and (13) with @~ and @,2 angular frequency, i.e., the current density increases linearly
* replaced by across the beam. If the current density is constant across the

& '(-.0 {/-/ )(a - n - n, r'/a 2), (23) beam, the above expression is slightly modified and becomes

"- and L--+/. 2 0/o)(n* - nrb a2), (24) Bo, = Bel I + (2v/yo)[O.j + ln(a/rb)l.

and For a 10 kA, 2 MeV uniform current density beam with
a ratio a/rb = 6.4, the correction is 55%, i.e., Bo/.

-'.: Bo = 1.55. This effect is demonstrated clearly by the results
where of computer simulation shown in Fig. 6. The three snapshots

of the electron-ring minor cross section in a modified-beta-
a = 1 + (2v/yo)[lI + ln(arb)1 (25) tron field correspond to t=0, 20, and 40 nsec. For all practi-

cal purposes, the minor radius of the beam remains constant.
and The external betatron magnetic field is 127 G, i.e., approxi-

-n* =n.
* The bounce frequency can be found by substituting Eqs.

(23) and (24) into Eq. (18) and is

* - 21 (a n* - a)(n -n

(26)
When n* = a/2, for the reasons stated in the paragraphs (Cm) 4. . M 0 0 M .

following Eq. (18), the orbits are closed (stable) as yo in-
creases, provided FIG. 6. Three snapshots or the elect ron-ring minor cross section in a modi-

n r2 l/2 < a1/2 ficd.betatron field. The external magnetic field required to confine the ring
L"b".is 50% higher than the single-particle field. The valhes or the various pa-

or, rameters in this run are listed in Table II.
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o ,a. , . . . -1 1 . . .

TABLE II. Parameters of the uniform current density ring for the results linking the axis of the electron ring remains constant to Io - -
shown in Fig. 6. est order. This point is discussed further later.

The condition for the major radius of the electron ringBeam current kA) to to remain constant can be derived front the conservation of
Beam minor radius (cm) I canonical angular momentum

Beam major radius (cm) 100
Torus minor radius (cm) 6.4 Pe = my rvoe - (e/c)iJA " + A i1). (281
Vertical magnetic field (G) 127 is the toroidal theToridl agnti feld(k) .,where v 9 isteo ooia velocity,,A4~ is tevector potentialToroidal magnetic field (kG) 1. 70

External-field index 0.25 that describes the external-magnetic (betatron) field, A s is"
the vector potential that describes the self-magnetic field of
the beam and r is the instantaneous radius of the beam.

The self-flux linking the axis of the ring @ is
mately 50% higher than the single particle field. The re-
imaining parameters are summarized in Table 1I.

Another consequence of the toroidal effects is the in- and to lowest order is independent of the beam displacement
crease in the radial displacement of the orbit for fixed energy and thus of time [see Eq. (35)]. Substituting Eq. (29) into Eq.
mismatch and major radius. For n,4/a2 <l, the orbit dis- (28) and using the expression for
placement becomes rf/yo

A ro/ro = ro[ ro/(?o - 1)J/(l - nt). Voo = + 2(v/ro)[ l + ln(a/rb)]

In addition, the os vs n, 4/a curves of Fig. 3 are shifted to Eq. (28) predicts that r remains constant, provided
the left and thus the maximum permissible current that can Bo2 t) \ IB(B cxl)

be accelerated is reduced, as may be seen from Eq. (27). 1 +2(/)[1 + ]n~a/rb 2 a (30

IV. ACCELERATION In Eq. (30), Bo, (t) is the local magnetic field, v is the
After injection and trapping the beam is accelerated to Budker's parameter, a is the minor radius of the torus, rb is

high energy by the inductive electric field generated by the the beam radius, and (Be") is the average applied magnetic
time varying betatron magnetic field. As shown in Fig. 7, the field within the electron ring.
acceleration may be divided into three phases:(1) pre-accel- Using the equation
eration, (2) diffusion, and (3) main acceleration.

The pre-acceleration phase occurs for times much mc' = - ev.E, (31a)
shorter than the field-diffusion time, i.e., t<tD = (4ir/ at

ic)aa In(ro/a), where o is the conductivity, 8 is the thick- together with

ness, a is the minor radius, and ro is the major radius of the r ,

torus. During the pre-acceleration phase the self-magnetic E0 = - - (Best (31b)

field of the beam does not have time to diffuse out of Eq. (30) becomes
conducting torus. In the example shown in Fig. 7 the total
acceleration time was chosen to be I msec and the diffusion MB0 t) + 2v a +I (B") (32)

time 10psec. The ratio of the temporal extent of each phase at 2 A r .]
to the total acceleration time t /t. is also given in the figure. It A similar condition has been derived previously.".

is apparent that the beam spends most of its time in the main Equation (32) is the condition that must be satisfied in
acceleration phase. order for the radius of the accelerated electron ring to remain

During the pre-acceleration phase the metal wall sur- constant. For low-v/y, beams, Eq. (32) is reduced to the

rounding the beam can be treated as a perfect conductor. As well-known flux rule, i.e.,
a result, for small displacement of the beam, the self-flux

-. B (t) .

Accleration,, P,,. at 2 0t

The correction term (2v/?.)[ I + ln(a/rb )] in Eq. (32) is

o - G- , very sensitive to the beam energy. For a 10 kA, 3 MeV beam
Be" Cast.€,,, injected into a 10 cm minor-radius torus with rb = I cm, the

correction is only I % and therefore can be neglected. How-

__"____ ; ,,- ,, 1 I,d-_._ . ,__ ,_.,_, ever, when the energy of the same beam is reduced to 0.5
MeV the correction is 48%, i.e., very substantial. The design

." 'of the accelerator is simplified considerably by choosing the

111N'1 /-x0o") 1.002) 1.01a) 1.6) beam parameters such that the correction term is negligible.
,M I The instantaneous value of y(t) may be determined

"_ _ _ _ _from Eqs. (30) and (3 1) and for yo(t )> I is
:,:-' ot) [I + 2 v/yo(0}] I I + Inta/rb)] B0, (I) :

FIG. 7. The three phases of acceleration. In the example shown the accel- ---- "(/
eration time is I msec and the diffusion time is l0psec. Yo(0 ) (I + 2 [ v/ro(t )] [I + I n(a/rb)] J B, (0)
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, "'°(a) (b)

-Major Axis M~jf AisELECTRON IMAGE

a P "-S

-a
LV

/ rb

Toru$

:' . FIG. 8. System of coordinates: (a) depicts the various parameters appearing in Eq. (34; and (b) depicts a displaced straight electron beam inside a perfectly

',-, cnducting pipe. The image curren is located at a distance a/|,49 + , AiV'z from the center of the pipe.

"/ In contrast to the low-current beams, in which ro(t )/B0o (t) 211 [1 (a) \ (,AF +,) ] (7

remains approximately constant during acceleration, for ¢" = -- -I- Inf~~ +l II a2~I (37)
high-current beams with toroidal corrections the quantity w s

that remains constant during acceleration is FONre C ING + bea ,e .WAt h
FIG t) + 2 r ]+ n a = const. (33) in h a quadratic dependence on the beam displacement..

Bco (cti pie. ig Cr r. a ai Therefore, since only the linear terms on beam displacement

As o(t increases with time, the correction term decreases were kept in the derivatin of Eq. (34), it is not surprising that

and Eq. (33) is reduced to yo(t )/B ( a) const, the flux given by Eq. (36) is independent of the displacement

f the ring. In the notation of the toroidal geometry shown in When the time approaches the magnetic-field-penetra-

Fig. Noreman coetanto disgcusteelfflxtioning ther axi of the beam cret

Fg. 8(a), the magnetic stream function = r forp <rb is tion time t, the self-magnetic field of the electron beam

given, to lowest order, by' starts to diffuse out of the finite conductivity metal torus.

2 Using the geometry shown in Fig. 9, it is shown in Appendix

2' In(a ) 1 P - 2 P A cos(o- A, that for a very thin conductor, i.e., a= b, to lowest order,
-.,- Q \rb / ? a a the self-magnetic field of the beam at time I is

-. .... p n~a' 3 115b
+ "E In -- 1 cost,, (34) B,(rt)=(21/cr)l -'D r"b,

R .rb 4a 2  4 4 (38)

where Q = - lelnom4rfR I/c, 12 = v,/r, A 2 = Ar2 + AZ2, .8.(rt)=21cr, 4

no is the uniform density, and it has been assumed that a .ro,  •
rb -Ca, and Ar,Az<a.

The self-flux through the axis of the ring (p 0) is

(3) Elect ron
Substituting Eq. (34) into Eq. (35), we get Ring

V = 27rQ l + 2 ln(arb)], (36)

* which does not depend on the displacement Ar, Az of the (

beam. This is a rather unusual result and deserves further X
discussion.

To gain some insight into the problem, we have com-
* puted the flux linking a horizontal surface s extended from

the axis of a straight beam to the inner wall of a perfectly
conducting cylinder of circular cross section as shown in Fig.
8(b). The beam displacement is arbitrary but the ratio rb/ 8
a< I. It is straightforward to show that the flux through such FIG, 9. System of coordinates used to compute the magnetic field during
a surface of length I is diffusion.
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where

i, 4 aracalc") In ra).

These equations are based on the assumptions that/6/ . '- A2eleaion-

a< l, [(-5/bIln(rodb)]'<l, and the inductive electric field e ', ,
varies as E,(r,t) = (b/c)[dB (b,t)/d ] ln(r/ro), i.e., goes to , :

zero at r = r, (pseudotoroidal geometry). B.
The self-magnetic flux in the three regions is given by 4

3 eI(41rro/c)I ln(a/rb), rra, 2

0, a<r<b, I

1(4 1rr/c)I(l - e ln(rb, r>b, 0 3 6 9 .I(mec)

and it diffuses out at the rate

= - e-(39"Injecton

dt IDC

The inductive electric field generated by the changing FIG. 10. This figure illustrates a possible time dependence of the toroidal

flux given in Eq. (39) acts to slow down the beam. In addi- and betatron fields. From the stability point of view other time variations

tion, for a constant current density ring, the hoop forces are more appropriate.

increase by the ratio [I + ln(8ro/rb)]I/[l + ln(a/rb)], and the
induced magnetic-field components go to zero at the end of

-"" the diffusion. However, the electric-field components re- center of the minor cross section of the torus. This may be
main the same. As a result, for an electron ring that is situat- seen from the beam equations, which, for Bo, = const, are
ed along the minor axis of the torus, the decrease in its equi- 2 (40) -
librium radius associated with the reduction of yo is greater +r 7" 7A +tro ( P6

than the corresponding increase of the equilibrium radius Al + (r,Al + @Az -1o/2pA. (41)
associated with the enhanced hoop forces and thus equilibri- (

'-- um can be lost. This difficulty can be avoided by placing a set With the exception of the second term (,/y)Ar, Eqs. (40) and
of external conductors along the minor cross section of the (41) are identical to Eqs. (12) and (13). For n = , Eqs. (40)
torus having a poloidal distribution that closely resembles and (41) can be readily solved. Introducing a new variable
the distribution of wall currents in a perfect conductor, i.e., b = Ar + iAz, these two equations can be combined into a

1. = - (Ib/27ra)[! - (a/2ro) cos q 1, single equation

where 1. is the wall current per unit length and Jb the ring + - (+ i (6P ) (42)
current. Y ymro

This compensation is satisfactory even when the beam where m' &2 = F. The general solution of Eq. (42) is
is displaced off center and rotates around the equilibrium

position with a,, provided that waD I> 1. The reason is that 0 = 0, + 02 + 0,-
the correction terra in the fields at the center of the ring,"
when the skin depth is much greater than the thickness ofthe where

conductor, is a aexp( -ifo' do' d]')
(--2e-._'1"1/TD/ ) sin at, #

and therefore, it can be neglected. Similarly, when the skin a 2 exp( - a' - dt')
*. depth is much smaller than the thickness, the correction 2 - "2  [(lo0e/) 2 + 4Wo.] 4'

.--. term is also small and is given by".- and

-2(b-a)/a 1/2
+ sin wet.'..wo \ i, WBr I, -' [ (Vo2001('PO)17'Mro)¢,2l dt'.:

, In addition, we have shown that the components of the b uW(01,,2)

magnetic field that are proportional to the displacement of ' [(2 0 /r)((,Po)/rymro)]b, dt'
the beam do not diffuse out of the chamber when WO >'?. + " o W(01,,0)
As a consequence n, R/a 2 does not increase during diffusion
and wv does not change polarity. Therefore, the drag insta- In the above equations (o = (1200/2),) ± [(12001

bility| an be avoided by choosing the various parameters to 2 0' + co] '1 2and w(b,) is the Wronskian ofthe two inde-
give wa > 0 at the commencement of the diffusion process. pendent solutions ,, and 02 of the homogeneous equation.

During the main acceleration phase the significance of Since the denominators of 0, and 02 increase when the
toroidal effects is reduced because v/r 0 -.. 0. When Be re- betatron field increases in time, the center of the beam moves
mains approximately constant (as shown in Fig. 10) or in- toward the center of the minor cross section of the torus
creases with time, the accelerated beam moves closer to the during the acceleration.
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PARTICULAR tained it may be subtracted from (44) to obtain an equation
PICTION for tbo. Carrying out this program, we find for the zero-order

solution:

A 010=W ) + Ae + BeP
fl, oyomr, (Q - (r/a 2 )n, I A Be-

b. , bPe - (SPe ) 1W3 (45)

(r -5;e = -n) + Ce -  + De -  ,
fl, .rA - n.)

where A, B, C, and D are complex constants dependent on
ELECTRON initial coordinates and where the frequencies I...cW4 are giv-

en by

01. 2 V(eo - 1. o + 4F7k - (4/+ 2 )n.] 12,

(46)

W,.4 f.o + [i0 + 4.0i(j - nj] 1/21.

MINO CROS SETIONWe shall take subscripts I and 3 to correspond to the +
MNRCOS SECTION

OF TORUS signs.

In writing (45) we have assumed that neither
FIG. 1I. System of coordinates used to analyze the drift resulting from the [- (/a 2)n, ] nor (I - n, )is zero. If either of these quanti-
gradient itt the toroidat mgne~tic fieid, ties does vanish (corresponding physically to the vanishing

of net radial restoring forces) the corresponding solutions to
V. GRAD B DRIFT IN THE MODIFIED BETATRON (44) grow secularly, indicating a curvature or centrifugal

Until now we have neglected in our analysis the radial drift in the vertical direction. Below we assume that the radi-

gradient in the toroidal magnetic field Be. In this section we al restoring forces do not vanish for either beam or particle
consider carefully the effect of this nonlinearity on particle motion. In addition we shall make the assumption that

motion, assuming that it is the dominant nonlinear effect. (SP)= 0, This is the same as the requirement that the equi-

The linearized equations of motion of a particle located librium position of the beam be at the center of the minor

at r = re + Ar + br, z = ,dz + Sz, where Ar and Az define cross section of the torus. This assumption has no effect

the beam position with respect to the center of the torus (see whatsoever on the basic physical results and conclusions but

Fig. 11), are does simplify the mathematics somewhat.
We may return to (44) and calculate the first-order cor-

2+ n12 (5r+ A rection to the beam position A p"). The equation to be solvedis

= r - - + 0,o b , 01" + i2,41A . + 1 - (j/a 2 )n,]d "0"
to/ r0  yomro --- R

= i __ ((Re o)o>.(47)

S.n0 oz, - n. Fo z _.+ ro
.- a Substituting from (45) we find the right-hand side of (47) is

9o) (Re ;#t1 ,' 4) P, oPk e '

where " "

r,=Ar+4r, z, =Adz+5Z, XCOS(Wkt-a 5)-- asj pj), (48)
(43)":

. , = .0 a,/Yo, be o = 700 /Yo. where we have defined
Choosing n = j simplifies the subsequent analysis. A,B,CD pje"'" j= 1,2,3,4,

Making this choice and defining r - r + iz gives avt[-.'. and where we have assumed that
01 + ji O0&0 - n [ + (/a (C) = (D) =,

ifloe I -(Re 0b,/r0 )Ib, +1.Oz 0 (SP. /yomr).(C =(D =0
(44) with the average taken over the initial positions and veloc-

We p d o 4 t vities of a particle.
We proceed to solve (44) perturbatively, assuming Re 0I .4r,.  From (47) and (48) we can see that apart from the oscil-

The zero-order equation, neglecting the nonlinearity, is lating terms the net effect of the radial gradient in Be is to
. easily solved. First an averaged is performed over initial po- cause an outward shift in the equilibrium position of the

sitions and velocities of the particles to obtain a single equa- beam:
"" tion governing the motion of the beam centerA ,. Denoting

this average by brackets we will have (60,) = 0by definition dII (ned 2 r°)(ZX + oscillating terms.
and, as long as no kinks develop in the beam, it may be shown I2%[ -(2/a )n,
that (6h) = 0 = (6b). Once the average equation is ob- (49)
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This result is simply understood as the result of a balance lb - 10 kA Eb" 3 MeV

between the outward, "diamagnetic" force (which tends to t o . 1U0er cm a- 6.4 cm rb o 1cm'.,
expel the beam frc:- the high field region) and the inward 06

radial restoring force. B, 1 50 G 8 - 1.4 kG n 0.3
Since thepj values in (49) depend on the details of the

injection process, it is difficult to draw practical, quantita- TIME -0.00 nsec r TIME • 5.00 nsec
tive conclusions from this result. However it is probably safe
;o conclude quite generally that any device should be de- E

signed so that j>(r'/a2)n, for all times, or N0N
N

V/)o<('y/2 a/C)7, (50)

for the case of a perfectly conducting wall. The yo should be '3.6 106.4 93.6 R 1m) 106.4

omitted in the parentheses on the right-hand side of (50) in R (cm)
the case of a poorly conducting wall (diffusion time short 0 TIME * 1000 nsec % TIME- 20.00 nsec
compared to a beam oscillation period). We note that the
constraint in (50) is independent of the strength of the toroi- E

dal magnetic field.
Two-dimensional computer simulations bear out our

claim that self-consistent beam equilibria exist in the pres-
ence of a gradient in Be, as long as the net radial focusing 93.6 106.4 936 106.4

forces [proportional, basically, to the denominator in (49) R tn) R (cm) .

but generalized to include the case n $4 , and to include toroi-
dal corrections to the self-fields] do not vanish. In Fig. 12 we FIG. 13. Reducing the betatron field by 10 G, but keeping the remaining

parameters fixed, as in the run of Fig. 12, the electron ring drifts rapidly in
show a succession of "snapshots" of a beam cross section, the vertical direction.
which remains in its equilibrium position for significant
times compared to rb/VD, where V,, is the single-particle nd s"-:" dift ve ocityIn Fig. 13, on the other hand, we present a case in which '.
divlcynet radial focusing does nearly vanish. Loss of confinement

V, = Doop 2/2ro, is extremely rapid under such conditions. The ring drifts

and wherep is a particle gyradius. No drift is observed. (This vertically with an average speed of 0.25 cm/nsec.
is not just a visual observation but is obtained from a plot of
average particle position versus time.) V1. THE EFFECT OF EMITTANCE

Up to this point, we have dealt with the equations de-
I , 10 kA rb -3 UeV scribing the motion of the center of an electron ring in a

modified-betatron configuration. In this section, we discuss -
ro - 100cm a - 6.4 cm rb • 1 cm the effect of the finite emittance on the equilibrium of the
''160 G 8 1.4 kG n - 0.3 gyrating electron ring using the beam envelope equation.

When the major beam radius ro is large, n = , o = const, v/

TIME " 0.00 nsec TIME 5.00 nsec y< 1, the thermal energy spread Ay, = 0, and the effect of
surrounding walls is neglected, the beam envelope equation
in the paraxial approximation for Bo9 >Bo, becomes, ' in the
Larmor frame of reference,

I ( B,0 2 2v/ C2

o 0Z _1r(s) (s 0 ,

93.6 R (cm 106.4 R (93.)6,u.4 where c is the beam emittance (unnormalized), s = Or, is the

Tlength along the minor axis of the torus, and r;(s)-drb /ds.
T For a zero-emittance beam the motion of the particles is

laminar and the equilibrium is called either laminar flow or
S""Brillouin flow. The equilibrium radius in this case is ob-

tained from Eq. (51) by setting

,. = 0,

- and is
945.6 106.4 93.6 106.4

R em) R (m,) 4 .eq =(2C/J2oo)(2v/,o)' (52)

FIG. 12. Four snapshots of the electron-ring minor cross section. The val- when yo>1. For a finite emittance beam, the equilibrium
" es of the various parameters used in this computer simulation run are radius can be determined from Eq. (51) by taking r;(s) = 0
shown at the top of the figure. and is

Lei
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SRADIAL ENVELOP_ RING CROSS SECTION
Be. 141 5 G; -0. e- 1415 G; 5 - O r od-cm

E
0

Z - 0 fl ~ - 0 0 n se 1 0 T I E o s e rZ • ~~~TIME -Oone •TWE n s¢

93,6 106.4 936 10.4

R(cm) R(cm)

0. . . 3,.0 4.0 5 ,0

TIME (nsec)
• T IM E - 2 0 0 n s e c T M . 0 n e

FIG. 14. Root-mean distance ofthe electrons from the center of the ring as• funtion oftime, when the emittance c is zero. .i.

rb., D& + + 1(53) 16 , ,C,1, 1, ,,.4(T)R (cm) R (oM I

FIG. 16. Four snapshots of the electron-ring minor cross section when
For small envelope oscillations rb =rbq + 6, with e = 50 mrad cm.

merical results give an equilibrium radius approximately
• ' + 2 [(J2o,/2oC) 2 + e2/r4.,q ]5 = 0, equal to 1.24 cm. Similarly, Eq. (54) gives a period of 2.13

which has a period nsec and the numerical results give 2.28 nsec. Snapshots of
the beam cross section from the same run are given in Fig.

T=2r/c (54) 14. The oscillations observed in the run of Fig. 15 can be
2 [(fl 0 /2y(,c) 2 + I/r4.,q 11,2 avoided by "matching" the beam, i.e., by raising the B,,

The effect of emittance on the equilibrium of the ring magnetic field to 1830 G. This value of the magnetic field

* has been studied extensively using a computer-simulation gives an rbq =I cm, which is the radius of the beam for
code. Numerical results from the computer simulation are Brillouin flow. Numerical results from this run are shown in
given in Figs. 14-17. For a beam with -o = 7, I= 10 kA, Fig. 17.

r, = 100 cm, Bo. = 160 G, and Boo = 1415 G, Eq. (52) pre- The electron beams discussed so far in this section were

dicts that the equilibrium radius for the Brillouin flow is I monoenergetic with finite emittance. Such beams have an
cm. The numerical results of Fig. 14 also give a radius of I axial velocity spread equivalent to that of a cold beam with
cm, that for all practical purposes remains constant in time. energy spread A r that is given by' s

In this run the electron beam is injected into the torus with a (A y/r), = (rfe/rb )2.
rotational frequency that is half of the local cyclotron fre- Hot beams have an additional energy spread. This thermal
quency. Figure 15 shows the envelope in time of a nonrotat- energy spread in the direction of beam propagation has an
ing beam. The various parameters in this run have the same important effect on the dynamics of electrons as may be seen
values as those in Fig. 14, except now the emittance is non--

zeroin he armr fame Fo theequvalnt mitanc of as follows. The equations describing the motion of individualzero in the Larmor frame. For the equivalent emittance of electrons in cylindrical geometry are identical with those

e = 50 mrad cm, Eq. (53) gives rb., 1.21 cm and the nu-

RADIAL ENVELOPE
0

RADIAL ENVELOPE P_ Seo18300; e-5Omrod-cm
o 8e - 1415G; e•50mrod-cm "

Eaw 0

. P:. Zi

,Ir d

0

00

_____________________0.0 1.0 2.0 3.0 4.0 5.0

0.0 1.0 2.0 3.0 .0 5.0 TIME (nsc)
TIME (nsec)

FIG. 17. Root-mean distance of the electrons from the center of the ring.
FIG. 15. Root-mean distance of the electron from the center of the ring as a The envelope oscillations are drastically reduced when the toroidal magnet.
function of time. in this run e = 50 mrad cm. ic field is increased from 1415 G to 1830G.
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describing the motion of the center of the beam, provided TABLE 1II. Electron-ring parameters for the tIwo computer runs shown in -

that Z, and i- are replaced by Fig. 18. -.

Z = (.2o,/y')2(1 - n - n., Parameters Low current Ifigh current

, (0 (x/y) 2(n - nBeam current [kA) 0.1 0

and Beam energy (MeV) 3 3

2 Energy spread (%) 10 10

( =Pe C Ar Major radius (cm) 300 100
y'omr0  rof(2o, ro Beam minor radius (cm) I I

Initial betatron field (G) 116 146
The above set of equations are based on the assumption that Toroidal field (kG) 1.4 1.4

toroidal effects can be neglected. In addition, it should be External-field index 0.5 0.35
emphasized that Ay is the thermal energy spread and not the Self-field index (nJ 0.37 23.4Torus minor radius (cm) 3.2 3.2
energy mismatch 8yo discussed in Sec. II1.

For n = J, the solution of the individual-particle equa-
tions are

r - re = bro cos w,51 - 8zo sin wat + ro Ar The effect of the axial energy spread on the minor cross
ro section of the beam in a modified-betatron geometry has

- os t)  been studied numerically. Results from both the high- and
X n, (55) low-current beams are given in Fig. 18. In these two runs the

various parameters have the values listed in Table III. In the

6o +r sin w, t - )t high-current-beam case the minor radius expands by ap-
o -n proximately a factor of two. However, in the low-current-

where be'm run the beam expands significantly and strikes the
wall. Therefore, a substantial energy spread can be tolerated

- (120 /r0)(B,/BO)(I - n.). in high-current beams without a catastrophic expansion of

According to Eq. (55), when n, 41, i.e., for low-current the minor radius of the beam. Such energy spread may be
beams, thermal effects substantially increase the minor radi- required to stabilize the various disruptive instabilities.' t 8

us of the beam. In such beams the minor radius varies as
2red y/yo•  VII. SUMMARY

In contrast, when n 5>I, i.e., for high-current beams, In this paper we review the dynamics of ultrahigh-cur-
thermal effects do not change significantly the minor radiusof te bem, hichvares a (rn,)A y/o).rent electron rings in the modified -betatron configuration.
-_ of the beam, which varies as 1ro/nAro). Our discussion mainly addresses the evolution of the elec-

LOW CURRENT (100 A) tron ring after injection. The formation of the ring during . "
AE/f = 10% ACA = 10% injection has been analyzed and reported previously.' 9

TIME- 0.40 nsc TIME-0.00 ... Our work includes both analytical and numerical re-
sults for "cold" and "hot" rings. The conclusion of these
studies is that equilibrium states of ultrahigh-current rings in
a modified betatron exist over a wide range of parameters.
These equilibra are realistic and accessible with state-of-the-
art injectors.' "

"-- a ',s - - The results presented in this paper are based on several

TIME - 10.00 nsee TIME -10.00 ,,,c simplified assumptions. Among them, we have assumed that
IZ Ni the various fields are free of errors, the conducting wall that

18. N surrounds the electron ring was assumed to be smooth (i.e.,
* N N ' without ports and gaps), and the external-field index was

assumed to be constant in time and space. The consequences

of these assumptions are presently under investigation.
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as M.2 AU, , APPENDIX A: DIFFUSION OF THE SELF-MAGNETICR R (me) FIELD OF THE BEAM THROUGH A CONDUCTING LINER

FIG. 18. Snapshots ofthe electron-ring minor cross section for low and high
current. The values of the various parameters for this run are listed in Table The purpose of this appendix is to briefly outline the
1. The energy spread in both cases is 10%. calculation of the diffusion of the self-magnetic field of the
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beamn through a conducting liner. To simplify the analysis, it (IO~1 H dI~ )b -- ~ 0
is assumed that the electron beam is located along the axis of (rll) it _(b)bI n (0

a straight, circular cylinder of inner radius a, outer radius b, The second boundary condition is furnished from the con-

- and thickness 6 = b - a, as shown in Fig. 9. In addition, it is tinuity of the magnetic field at r a, i.e.,
assumed that the current of the electron beam is a step func-
tion that is turned on at t = 0. Since the problem of interest is (I /21ra)O (t = H. (a,[). (A 11)
that of an electron ring inside a torus, it is further assumed Since the magnetic field is zero at t= 0, Eqs. (AS), (A9), and

-.- that the axial inductive electric field goes to zero at r = re, (AI0) take the following forms in their transformed state
where r° is the major radius of the torus. 0_k l Ot, 2 -

Neglecting the displacement current (quasistatic ap- &2+ - F pp =0, (A+2)
proximation), the fields inside the cylindrical conducting Or2  r Or
shell (a<r~b) are given in mks units by (.-.rtiI}) =61, pH,(bt)b2In(b'), (AI3"

VXH = J, (Al)\Or ,b \r/
and

SV-B = 0, (A2)
OB (II27rap) = [H-(r,t )J... (A 14)

VXE dB , (A3) where, the Laplace transform of H# is defined by

and H4 (r,p}= e- H,(r,t)dt, Re(p)> r.

J = o'E, (A4)
where JEquation (A 12) is the modified Bessel equation and its solu-where J is the current density, H is the magnetic field, B is tion isthe magnetic induction, and o is the conductivity ofthe con-

ductor. y c(r, p) = Al,(Ar) + BK,(Ar),
Assuming that all quantities are independent ofz and ,

Eqs. (A l) to (A4) can be combined to give a diffusion equa- where A and B are constants and A 2 =lp
tion for the azimuthal component of the magnetic field The two constant coefficients A and B, determined from

S0 Eqs. (A 13) and (A 14), are
r. (I - rr,) o- (rt). (A) A = (I/27rap)[Ko(Ab) + Ab ln(b /ro)K,(Ab )]/-,

.*. For r < a and r > b, the conductivity is equal to zero and Eq. B = (I/2rap[Io(Ab) -Ab ln(b/ro)I,(Ab)l/A,
(AS) becomes where

O (l a IHI 'i1 -0 'A = Ko(Ab )I1(Aa) + 1o(Ab )K1(Aa) + Ab ln(b /r.)

rkdr X r~lr ) ] , A[K,(Ab)I,(Aa) - K1 (Ab)11 (Ab)J. (AI5)
with the only acceptable solutions The magnetic field in the region a <r<b as a function of space

H,(r,t) = (I /2rr)e (1), rb <r<a, (A7) and time can be obtained by inverting the Laplace transform,
i.e.,

H.,(rt) = H, (b,: )b Ir, r~b, (A8I)

o*" where e (f) is the step function and rb is the beam radius. _
To complete the specification of the problem we have to H(r,t) _= 1.

introduce boundary conditions. From Eqs. (A3) and (AS), we 2 1  Klab)+2 i nlrI)
get X~ IIKO(Ab) + Ab n±),A11Ar

OE, i OH,(b,t) b AL =

* Or Or r '+ [1 0(Ab) - Al In(.kII(Abl )KdAr)1, (A16)
which after integration yields \to

E, (rt OH, (b,t) bIn(rM (A9) where the path of integration is a vertical line in the complex
Ot \ro p plane to the right of all singularities of the integrand.

where we have assumed that E2 (rt) is zero at r= ro. Equation (A16) has a simple pole atp Oofresiduea/r
Combining Eqs. (A I), (A4), and (A9) at = b, we obtain and an infinite set of simple poles at, = 0.

the first boundary condition, namely Contour integration of Eq. (A 16) gives

H.(r,) + exp( .."

XIY0(a~b )J,(a,r) - Y1(a~r)J(a,b) + a,b In( l [Yd(ab )11(a,r) - Y1(a~r)Ji(a~b)]][ a, Z4. ]- (A17)
roa (dD%

wherct =Puo, A = id, Yand J are the Bessel functions, a, are the roots of equation
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Yo(a~b WJ1(a,a) - Y1(aa)Jo(ab) + ca b In(b /ro)[ Yr(ab WJ(aa) - Yr(cr,a )Ja,b )1 0. (AIS')

and

a, aa Yo(ab)Jo(aa) - Y(aa) Jo(ab)] - arb[ Y,(ab b)J(aa) - Y,(aa)J,(ab)]

.+ a,b ln(b /ro)Iba [ Yo(a~b )Jaa) - Y,(a,a)J0(a,b)] + aa[J0 (aa)Y(a,(b) - Yo(a~a)J2(a,b )] .
For a,a> 1, Eq. (A17) is reduced to

H {~(r,fz.-- { = (-)- /2_exp( - |:i )(cosa,(b-r)+a, bIn sin a,(b -r)"
*-' i'' 1 ~* -t ''-

X ta, sin (a,O)-a'b Inb cosa, 6 J- , (A19)

where the a, are now the roots of APPENDIX B: DESCRIPTION OF THE PARTICLE-IN-~~CELL COMPUTER CODE :
cos(a,5) + a,b ln(b /re) sin(a,b) = 0. (A20)

The Naval Research Laboratory (NRL) modified-beta- -Equations (A19) and (A20) are further simplified when Tro acc le rator maxLm m oife.,a, rgl In ths casetron accelerator is designed for a maximum v7o:=O.l1, i.e., -'
a.<1. In this case the current is high enough so that the self-fields of the ring

1/2 rcan exceed the externally applied fields. A realistic theoreti-

zra r r) a(b r)cal description must therefore self-consistently include the/b [ - at 2 beam's self-fields as well as the effect of surrounding walls.
+ ab[ sin a,(b - r)] expi----- o a , Since this is difficult analytically, particularly if the ring is

r displaced substantially from the center of the minor cross

which at r = b, becomes section of the torus, numerical simulations are useful both in
gaining insight into the important physical processes as well Wr

H0bt) (I/2irb) 1 - exp( - c4:/crii0) as to provide a method to check the applicability of specific *-

and assumptions in an analytic model.
:'" a = [6b Infr0 /b }] -. (A21) The dynamics ofthe accelerated electron ring are deter-mined by forces that vary on a number of different time

Therefore, to lowest order, the magnetic field in the region scales which range from the electron cyclotron period, i.e., aregion few nanoseconds, to the beam acceleration time, which is of
,- 2 Jsorder of a millisecond. The code described here is tailored to.

H (rt) =-L 1 -~( ep,] r-b (inks), simulate efficiently the various phenomena on the interme-
,.'.21r diate time scale. This time scale is characteristic of the drift

(A22) (bounce) motion of the ring after equilibrium has been estab-

or lished, rather than the rapid evolution occurring at injection.
Simulation of a single turn around the major axis that lasts

Ho(r,t) (21/rc)[ 1 - exp( - atc 2/4ira)] (cgs). about 20 nsec using 4000 particles on a 64 X 64 grid typically
(A23) takes about one minute on the NRLTexas Instruments ASC

(Advanced Scientific Computer).
Under the same approximations, the electric field of the The simulation co:- is r - z, spatially two-dimension-

inner edge (r a) of the conducting shell is al, i.e., /i0 -- 0, but with three velocity components. Al-

I -( (-at) though B& is used in calculating the particle trajectories, it is
E,(af -- - a a; bIn exp -- ) (mks), not solved self-consistently, i.e., it is assumed to be generated

21m (A24) from external coils only. This assumption is valid to first

Since the electric field is uniform in the region rga, Eq. (A24) order in v/r. The radiative term (displacement current) is
also ignored, i.e., the code uses the Darwin model for Max-also gives the electric field that acts on the beam. Substitut- well's equations.

ing Eq. (A24) into the energy-rate equation The electrostatic potential is computed from Poisson's
-mc d - ev.E, equation

dt V24 = pie0, (BI)
we obtain for highly relativistic beams and the magnetic vector potential from

Ay/y= - 2(v/r) ln(ro/b). (A25) V2Av - A0./r2 = - p,4, (B2)

For ro/b = 10 and v/r = 0.1, Eq. (A25) gives Ar/r 0.46, with the boundary condition 0 = A = 0 at the conducting
i.e., a substantial reduction in the energy of the beam. How- wall.
ever, for highly relativistic beams v, t-c and thus the current Equations (B 1) and (B2) are solved by Fourier decompo-
of the beam remains approximately constant. sition in thez direction and then by Gaussian elimination of
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the resultant tridiagonal matrix of equations obtained from a dU. q 3.. .. .___ , - U, B U, x!,, ). (13S')-
three-point differencing scheme for V'. The inverse Fourier dt yt ..:

transform yields A o and 0 on the grid. Note that the 0- dr U,
particle velocities are advanced using the conservation of d y')

canonical momentum in the 0 direction, the equation for A,
is therefore not properly time-centered since the velocities d(z U. (87')
from the previous time step are used to calculate the currents dt r

from the canonical momenta. This method was chosen pri- This formulation is then differenced by substituting
marily for its speed and simplicity but care must be taken in U' 4/2 _ U' - 1/2 d U
applying the code when the inductive acceleration of parti- for

As ihd
cles in the 0 direction is significant.

If boundary conditions other than AG or 0 equaling and
zero on a rectangular grid are desired, it is possible to obtain U' + 1/2 + U1 - 112

for U.
relatively arbitrary boundary conditions using the capaci- 2
.tive-matrix(Buneman) technique 20 In this method a matrix After making these substitutions in Eq. (84') and (B5') it is

is generated which is the Green's function for discrete "wall" straightforward, if somewhat tedious, to solve the two cou-

points within the system. Then at each time step the field pled equations for U'mw and U', t Since U, and U, are
solver described above is used. The potential at the discrete calculated at the half-timesteps while Uo is known at the full
(wall) points is obtained. By multiplying this vector potential timesteps, y is not known at time f. This difficulty is over-

by the invense matrix obtained previously a set of (wall) cur- come using iteration,
rents or changes is generated, which is used to specify the After advancing the velocities, the particle positions are
wall potential. These (wall) sources are then added to the advanced using a simple centered difference

original beam source and the field solver is used again. The a ed u a sipl centere dfrn
result by the principle of superposition is correct inside the d,+ AtUl/r

system and has the correct boundary condition on the and
"wall." z =z'+AtU2 /r.

The motion of the electrons is governed by the Lorentz Once all the velocities and positions are found the new cur-
'. force rent and charge densities are used to update the fields and a

d (nV) = q ew time step begins.
dlyV = q T + VXB),"

dt mo 'T. J. Fessenden, W. A. Atchison, D. L. Bir, R. 1. Briggs, I. C. Clark, R. E.

where E and B are the total electric and magnetic field, re- Hester, V. K. Neil, A. C. Paul, D. Rogers, Jr., and K. W. Struve, in Pro-

spectively. ceedings of the Fourth International Topical Conference on High-Power
In component form the equations used to update the Electron and Ion Beam Research and Technology, Palaiseau, France, 29

June-3 July, 1981, edited by H. J. Doucet and 1. M. Buzzi (CNRS, Paris,
velocities and positions at each time step are 1981), p. 813.

yV = P./mor - (q/mo)A 9, (B3) 7R. Briggs, IEEE Trans. Nuci. Sci. 28, 3660 (1981).
d(- 'A. 1. Paulovskii, D. G. Kuleshov, A. 1. Gerasimov, A. P. Klementev, V. D.

(1V) q Kuznetsov, V. A. Tananakin, and A. D. Tarasov, Fov. Phys. Tech. Phys.

dt m o  
r 22.218 (1977).

'P. Sprangle and C. A. Kapetanakos, J. Appl. Phys. 49, 1(1978).
d{yV() ,- - (E_ - VoxB, + V, xBo, (135) P. Sprangle' C. A. Kapetanakos and S. J. Marsh, see Ref. 1, p. 803.

dt Mn "G. Barak, D. Chernin, A. Fisher, H. Ishizuka, and N. Rostoker. see Ref. I,
- . drp. 795..' =dr V, (86) H. S. Uhm and R. C. Davidson, Massachusetts Institute of Technology

di , Plasma Fusion Center Report No. JA-81-30, 1981.

'D. W. Kerst, G. A. Adams. H. W. Koch, and C. S. Robinson, Rev. Sci.

" -- (B7) Inst. 21,462 (1950).
dt 

9D. W. Kerst, Nature 157, 90 (1940).

Equation (B3) is used at each timestep to compute yV 0 . '*R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin. New York,
1974).

- Equations (B4) and (135) are coupled. To advance these veloc- "D. P. Chernin and P. Sprangle, Part. Accel. 12, 85 (1982).
ities a leap-frog scheme is employed. At time I all fields, "G. Schmidt, Phys. Rev. Lett. 26. 952 (1971).
positions, and V0 are known exactly. V, and V, however are "J. D. Lawson, The Physics ofCharged Particle Beams(Clarendon, Oxford. -7,

known at t + I and the velocities will be advanced to t + . 1977).
"P. Sprangle and C. A. Kapetanakos (submitted to Part. Accel., 1983). The

Before the equations are differenced, it is convenient to re drag instability is a special case of the resistive wall instability and occurs
write the equations in terms of the relativistic momenta. Let- when the beam current exceeds the value given by Eq. (27).

ting "V. K. Neil, Jason Technical Report No. JSR-79-10, 1979.
U "~11P. Sprangle and J. Vomvoridis, Naval Research Laboratory Report No.U ="v 4688, 1982. r

so Eqs. (83), (B4), and (B5) can be written as "D. P. Chernin and P. Sprangle, Part. Accel. 12, 101 (1982).
= r- m(83') "T. P. Hughes and B. B. Godfrey, Mission Research Corporation Report

No. AMRC-R-354, 1982; also Report No. AMRC-R-322, 1982.
= ... - E + U x -U2)+ "C. A. Kapetanakos, P. Sprangle, and S. J. Marsh, Phys. Rev. Lets. 49,741,. d, q(rE, + UexB, -UxBo) + (B4') 11! Itz1

di ymo yr 0J. ' and G. LaFrange, 3. Comp. Phys. 23, 86 (1977).
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The integer resonances affecting beam motion in the presence of external field imperfections in the modified betatron
are studied. An upper bound is obtained on the magnitude of field error that may be tolerated. A numerical example
shows that for practical parameters the resulting bound is very restrictive. The effect of longitudinal temperature
and other possible stabilizing effects are discussed.

1. INTRODUCTION motion of the beam center of mass. An expla-
nation of this temperature effect will be given.

In a conventional betatron, low-order resonances
between particle motion and field imperfections I1. ORBITAL RESONANCES FOR A COLD
can be avoided by restricting the beam current BEAM
so that the tune shift' remains sufficiently small. We consider a beam of circular cross section and
In a modified betatron, the addition of a strong uniform density and current profiles, as shown
toroidal magnetic field may allow large currents in Fig. 1. The torus has a major radius ro and
to be accelerated, 2 "3 but re'sonances become minor radius a; the chamber is assumed to be
much more difficult to avoid, especially if one perfectly conducting as far as the rapidly varying
contemplates removing the toroidal field before part of the self-fields is concerned. The beam
the beam is extracted. This paper examines the radius is rb with center located at r = ro + Ar,
problem of integer resonances in the modified z = Az, as shown in the figure. If we define the
betatron" and obtains a condition bounding the displacement of a particle from the design orbit
rate of change of the fields; when the condition,. .. r = ro, z = 0 as ri = Ar + br, zi = Az + 8z
is satisfied the resonances are passed through,'.- ".-then the equations of motion for rn and z, are, to
with sufficient speed so that the beam is not sig- first order in the displacement from the design
nificantly disturbed. We consider here only er- orbit
rors in the fields themselves, not in field gra-
dients, so we discuss only integer, not half- 0 + yo' + fo(I - n -

integer resonances. 7o
In what follows, we will first consider a "cold"

beam, that is, one in which there is no spread in eBoo
longitudinal energy or, therefore, in circulation 2myoc

*- frequency about the machine. The effect of or- /
bital resonances on such a cold beam will be seen ,- I - Ar
to place rather severe limits on the magnitude of 2yo2  a-/
the tolerable field imperfections. When the ef-
fects of temperature are taken into account, how- e |& +
ever, a numerical example below will illustrate nYo[
a reduction of the effect of the resonance on the

".•"." + flzo dt'(t') 0a)Supported by the Office of Naval Research.
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"RTCULAR (rb2/a2 terms), present when the beam is dis-
ELECTRON placed from the center of the chamber.POSITION  We desire to have equations which describe

only the motion of the beam center, Ar(O, t),
Az(O, t). To this end we define a distribution func-
tion f as

x 8(r - f)8( - z - )bO)(v - 0), (2)
r

where r(° ) and V() are particle initial conditions,
f, 0, 2, and are the solutions for the particle
trajectories as functions of initial position, ve-

MINOR CROSS SECTION locity, and time, and where g(r(° ), v(O)) is a weight-
OF TORUS ing function. We then have that

FIGURE 1 Minor cross section of modified betatron show-
ing beam center and particle coordinates. The major radius f r dr dz dv(r - ro)f
of the device is ro. Ar(0,t) dd.f.. f r dr dz dvf .,

Sg(r(°), v~0 )(F - ro)8(0 - 0)

i+ t, + le(n n-,)zt g(r( °), v°)) (0 - 0) (3)

"" elooo
2myoc ri-floor, A similar expression holds for Az(0, 1). It may

2be similarly shown that, for a cold beam,2-o" - AZ
(i ,) = + fllo- A (4) .

E, - 1poB], (lb)/ a 2

() +n'o-) Ar, (5)
where 0yo is the particle energy on the "ideal" ae
design orbit (in units of me 2), flo = eBolm-yoc, where, of course, analogous expressions hold for
feo = eBoolmyoc, Bo is the vertical magnetic (z,), (z,) and (z,). In Eqs. (4) and (5) we have
field at the design orbit, Boo is the toroidal mag- assumed that all particles circulate the machine
netic field, n is the betatron field index (assumed with = lo. This assumption will be relaxed
,.. constant here), n, = wb /(2yO ) iS the self-field in the next section where the effects of finite

7:.' index, wgb = (4-rnoe2/lm-yo)"2 is the beam plasma longitudinal temperature are considered.
frequency and e, m are the magnitude of electron Using this averaging procedure on Eqs. (Ia, b),
charge and rest mass, and where field compo- one obtains equations for the beam-center mo-
nents with a "wiggle" on the right hand sides of tion. Though these may be solved in general, the
(la, b) denote the value of the field imperfection sial Thoite = solve in enent th
which in general will depend on the value of 0, uspeciaon o (hirch isacosistentithe

the zimtha postio ofthe artcle In eriing our assumption of a circular beam) simplifies the":"the azimuthal position of the particle. In deriving analysis. With n = and defining
(la, b) we have allowed all fields to depend on
time; we have therefore included the inductive .
poloidal electric field (Boo terms). Also included Ai = Ar + iAz - A--c'10, (6)
are the effect of wall image charges and currents
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the equation for aT is resonance). Evaluating Eq. (8) then gives

&02 + + ifloo + 2ilflo] Aa,- i

2.o jyoMt )O(1 ) (12)
+ [f2 r 12i 'Fl o n. + ,~ X U2_ e

r-2 -a + fin o-d2 xi,(

eBo .1- where t- is the time at which fl, = 0 and where
+ i loofl o+ilfkoJ , the + or - sign is used in the exponent according

-" ias (t_ -) > 0 or < 0 respectively. If we neglect
S(7) the possibility of cancellation due to different

(7) phases as we pass through different resonances
where F, is the I-th Fourier component of and if we interpret F generically as [- (elm-tyo)8f]

where 8f, is the I-th Fourier component of any
e [kk field error, we may obtain a lower bound

... [er" + J3o/B + i(Ez - I3on,) on Irfi- I by requiring

+ o (fdt'E(t') (13)

0" which gives

Equation (7) may be solved, assuming the func- r [ef l ] 2

tions multiplying derivatives of At are slowly I h- I - L o (14)
varying over the period of a betatron oscillation: 2 LyocooJ

(o)_r dte .tn9O+1J which is our basic result. For yo large enough
'41 A owo)- f dte3 (8) that we may neglect flo compared with floo and

1/°(2)
'r  [rb 2 rnfla2 compared withl1/2,'this constraint may

.sin dt"o FX'), be rewritten, using the relations

12

" where -= - F fpoo (15)

f12)[ rb2 + I n2 (9) and

12 + 1/2
For long times (many betatron periods), the in- to = 2 Ill (16)
tegral in (8) may be evaluated by the method of
stationary phase. The points of stationary phase as
(resonance points) occur when

fl,- 0i - mfeo o_ Wo = 0 (10) Ifnoo> 1 +l 2 [B-] (17)

for a given I. This is just the condition that the
betatron frequency be I times the fundamental As an example, we consider the problem of
cyclotron frequency, fifo. Condition (10) may passing through the I = - I resonance. We con-
also be written sider a hypothetical experiment (ro = I m, a =

10 cm, rb = 1 cm) in which -yo is increased linearly
b B2o / in time from an initial (injection) value of 7 to a

B.oo.- - !1 + n, - Bzo. (11) final value (tfin.1 = I millisecond) of 100, while
". 2  2simultaneously Boo is decreased from 1.5 kG to

For positive Boo and B,o, Eq. (1l) may be satisfied 0. The I = -I resonance will occur at t = 627
only by negative I and for such 1, Eq. (10) may p.sec, at which time B1o = 1120 G, B.o 560 G
be satisfied only for the lower sign (fast mode and -yo = 65.3. At resonance, foo = -6.2 x
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10" sec 2. Substituting in the expression (17) we sign orbit r = ro, z = 0 by
obtain an upper bound on the allowable field 2

errorP (19)

8f._n 1. 3 X 10 - 4 ,

B o and where, in Eq. (18),

a rather severe requirement. 2k(i /! 2 (0
We conclude that, at least for the case of a cold 2  1/2 -n "!omro (20)

beam, it may not be desirable to remove the to-
roidal field and pass through these resonances. For each cold beam, the relations (4) and (5) are
Perhaps the toroidal field may be reduced some- then modified by the replacement

*what from its initial value, assuming the high-/
resonances are not too important and can be flo- fo- kP, (21)
passed through easily. It may then be possible,
by the use of an intentionally introduced field and therefore we may obtain the solution for each
perturbation, to use a low-/ resonance in a con- cold beam by making the replacement, in Eq.
trolled way to extract the beam before B, is com- (8),
pletely removed. _00 _ l(Fzo - kP). (22)-
inIt should be noted that it is possible, at least l(
in principle, to avoid the integer resonances al- The behavior of the actual warm beam will then
together by raising both Bzo and B90 proportion- be given by
ately and in such a way that condition (11) is
never satisfied for any !. At the end of such an
acceleration cycle, however, one will have a very " i (yowo) J dt'e - , +Iunl-- )]

large toroidal magnetic field in the device, pos-
sibly complicating the extraction process. [yo(t')l 1/ ,

The above results apply to a beam all of whose X I sin , dt"wo F,(t'),
particles are traveling to lowest order at the same [ iJ0
azimuthal angular velocity. All particles are then
in resonance at precisely the same moment and (23)
receive the same periodic perturbations to their where the average is defined over some normal-
orbits. In the next section we relax this assump-
tion and examine the behavior of a beam, the
particles of which possess a spread in energy. r**

)p dPG(P). ... (24)

I . EFFECT OF FINITE BEAM In Eq. (23) we can immediately anticipate the
TEMPERATURE ON RESONANCES effect of temperature on the behavior of the

beam; the entire effect is included in the phase
To calculate the effect of beam temperature on factor, in the term kP. Such a term, when aver-
beam behavior near a resonance, we consider an aged over any reasonable momentum distribu-
ensemble of beams, each cold and each consist- tion, will give a reduction in amplitude of the
ing of particles travelingwith a zero-order an- average as the "width" of G(P) is increased.
gular frequency 0 o given by Physically this means that the various particles

of different energies within the beam receive,
Oo = n"1o - kP, (18) when passing through resonance, displacements

in slightly different directions. The net effect on
where P is the canonical angular momentum of the motion of the beam center is therefore re-
a particle, which is related to the difference in duced. (Though our linearized treatment here
energy between the particle under consideration necessarily includes a fixed beam size, it may in

* and the (reference) particle maintained at the de- fact be the case that a warm beam will just expand
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40a 10' 4.0"IO'

-. I -4 -4.0 10 4 IM -4

&27XI10- TIME 6.29X10 ~ 627XI0 4  TIME9 1

FIGURE 2 Re (A*-a vs. time for TL =0. FIGURE 4 Re (A~)vs. time for TL = 1.0.

slightly while passing through resonance while perature and where A&y is related to P by Eq.
the motion of the beam center remains relatively (19). We consider again the hypothetical exper-
undisturbed.) iment described in the preceding section. For

As an example, we consider a beam made un bf -I.,/ = 5 x 10-3 the results of a numerical
of particles having the energy distribution evaluation of Eq. (23) are shown in Figs. 2-5,

which correspond to TL = (0., 0.5, 1.0, 2.0). In i
Gdy lITL IA-y < Tj-2 each figure, the real part of Atp- 1 in centimeters10 A-, > TL,/2' (5 is plotted versus time in seconds. The resonance

condition, Eq. (11), is satisfied at the center of
where TL is a measure of the longitudinal temn- the time axis. Total elapsed time is 2.1 pRsec. The

4.0K 10' 4.Ox 10'

-4.011 . . 4 -4.0xi10 . . I
1r4 IME 629110*- 6.27110-4 TIME 6_29X,64

FIGURE 3 Re (1*-- vs. time fo~r T, - 0.5. FIGURE 5 Re (A+-) vs. time for TL =2.0.
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chamber diameter, 2a = 20 cm is indicated by resonance on the motion of the center of the
solid horizontal lines on each plot. Wd observe beam. The temperature spread required appears
that for this example, TL = 1.0, or a 0.5-MeV to be comparable, in a specific example, to that
energy spread, is adequate to smooth out the ef- needed to stabilize certain microinstabilities. - It
fect of the resonance. This is the same order of remains unresolved in this analysis whether the
magnitude of spread needed to damp the nega- beam expands when passing through a reso-
tive-mass/kink instability in this devices. nance. Such behavior, of course, if severe, could

be as unacceptable as large whole-beam displace-
ment.

IV. CONCLUSIONS Should it be possible to achieve significantly
lower field errors than those used in our example

We have obtained a bound on the magnitude of (0.5%), or if it is possible experimentally to detect
field errors that can be tolerated in a modified and correct by some feedback mechanism the
betatron in order that certain integer resonances sudden, resonant displacement of the beam, then
may be safely passed through. We have found perhaps lower toroidal fields may be employed
that for practical parameters the bound is ex- initially and be removed either during or follow-
tremely restrictive. The basic difficulty stems ing acceleration. The effects of passage through
from the fact that unless the external parameters the low-i resonances may thereby be reduced to
of the system are changed very quickly, the orbits a tolerably small level.
remain in or near resonance for many betatron
oscillations, allowing the displacements to grow REFERENCES
to large levels. Such a result suggests that non-
linear effects may play an important role in beam I. L. J. Laslett in "Proc. of the 1963 Summer Study on Stor-
behavior near a resonance. For example, one age Rings, Accelerators and Experimentation at Super-

High Energies" BNL-7534.
may ask whether the radial dependence of Be 2. P. Sprangle and C. A. Kapetanakos, 3. Appl. Phys. 49, I
would be sufficient to "detune" the resonance (1978).
as the beam moves a finite but small distance 3. N. Rostoker, Bull. APS. 25, 854 (1980).

from its equilibrium position. This possibility is 4. Laslett (ERAN-51, Jan 1970 (unpublished)) has discussed
receiving further study. certain aspects of the resonance problem in the ERA with

a toroidal field, lie has derived explicit expressions for v.
We have also shown that a finite longitudinal 5. P. Sprangle and J. L. Vomvoridis, NRL Memorandum

beam temperature acts to reduce the effect of the Report 4688 (to be published).
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MODE COUPLING IN THE MODIFIED BETATRON

I. Introduction

For small displacements about a planar reference orbit, particle motion

transverse to the toroidal field in the modified betatron may be represented as a

linear superposition of two eigenmodes of motion: a "fast" mode, corresponding

to gyration about the toroidal field lines and a "slow" mode, corresponding to an

* PA drift motion, where here the force P is due to the weak focusing betatron

fields, space charge forces, and induced (wall image) fields. The linear theory

of orbits in the modified betatron has been worked out in some detail1-5 and will

only be reviewed as needed here. In the present paper we will mainly discuss the

effect of quadratic non-linearities on the motion.

* Nlon-linear terms in the equations of motion become important to consider

if: (1) displacements from the reference orbit become large, due say to the

method of injection used or due to the operation of an instability of some kind,

"* (2) strong non-linearities (e.g. large values of an/3r) are present in the magnet

* * design, or (3) the non-linear term itself contains a resonant part. In the

following we will illustrate two effects of quadratic non-linearities on single

particle motion, viz. the amplitude dependence of the betatron frequencies and

the exchange of energy between the oscillation modes under certain conditions.

These conditions turn out to be analogous to the so-called Walkinshaw resonance6

7-11

in accelerators without a toroidal magnetic field 7 -I . We will limit ourselves

here to consideration of single particle motion only, neglecting the effects of

self fields; the treatment here then will only be valid for fairly large values

* . of y in high current devices, such that v/y << 1, where v is Budker's parameter.

Four sections follow. In the first we introduce some notation and sketch

. the derivation of the equations of motion to second order in displacements from

and transverse velocities about the reference orbit, taken to be a circle in the

symmetry plane. In the second section the equations of motion are solved

Manuscript approved February 15, 1983.
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perturbatively and a condition for the generalized Walkinshaw resonance is

obtained. Under this condition we study the behavior of the betatron

oscillations, giving a numerical example as illustration. As an interesting

result we find a particular value of field index gradient for which the resonance

ceases to have any effect on particle motion.

In these first two sections the discussion will assume that all applied

fields are azimuthally symmetric. In the presence of field perturbations other

orbital resonances may occur and it is interesting to ask whether the amplitude

dependence of the betatron frequencies induced by the non-linearities are

sufficient to keep the oscillation amplitudes at finite, but tolerably small

values. Though in general this is a difficult question we will discuss a

special, simple case in the third section of this paper in which the Walkinshaw

* resonance coincides with both an integer and half-integer orbital resonance.

* A final section summarizes these results ane states some conclusions and

conjectures.

-A

36.5
E-7-



1". The Equations of Motion

The geometry of the modified betatron is shown in Fig. 1. We employ

standard (r,O,z) cylindrical coordinates. The exact equations of motion, using

0 in favor of time for our independent variable, are written

d 2 + 2  2 -1/2 2 2 2 -1/2 -1
[r(r + r + z' r(r + r + z' + (rB - )(1)

dO z

d 2 2 2)-1/2 -1
- z(r' +r +z =X (r'B - rB) (2)

.where is any suitable function of position (r,O,z), X -mc2 y/e, e and m are

the magnitudes of the electron charge (e > o) and mass, 0 and y are the usual

relativistic factors, c is the speed of light and a prime () denotes d/d0.

We shall assume that Br vanishes on the plane z 
= 0 and take all fields to

be independent of e. (The assumption of azimuthal symmetry will be relaxed in

Section IV, below.) We take the equilibrium orbit of a particle of relativistic

factor y at r = r, z = 0, so

(rr B ,o). (3)0 z ro9

Let us now define the normalized coordinates x (r - r )/r and y z/r
0 0 0

The vector potential is given correctly to third order by

n
B-1-n 2 n 2 2 2 1

AO  rBozo[ + x + 2 y -- xy + (n + n2 -3) x (4)

*. where B 0 , n, and n2 are constants. The corresponding fields are

B ""-B [n-n 2 x~y (5)
r zo
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n2 2 n 2 2B [1 -nx + x + (6)z zo 2 2

from which n 2 is identified as the second radial logarithmic derivative of B .Z

The toroidal field is assumed to be given by

BO B /(1+x) B (l-x + . . .) (7)
0 o 8o

where B60 is the value of the toroidal field at the reference orbit, x y 0.

Using the fields (5,6,7) in the equations of motion (1,2) and keeping terms

. only of quadratic order gives the coupled equations:

x" + (l-n)x = by' + (2n-l- n
2  2  n- 2 2  1 _2 2 (8)

-- ] (-__-)y + . (j y ) (8
2 2

y" + ny = -bx - (2n-n 2 )xy + xy" (9)

where b B 6o/B zo. These equations, (8) and (9), are our starting points. In

* the following section we examine the behavior of an approximate solution to (8)

and (9) for various values of n, n2, and b.
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III. Perturbative Solution of Equations of Motion

In general the quadratic terms in (8,9) will be small so we attempt to treat

the equations perturbatively. Neglecting the non-linear terms altogether one has

the solution to the linear equations:

f -

A (:)= A \ ef + A s()b es + C.c. (10)
fo "

f s

* . where A and A are complex numbers depending on particle initial conditions and
f S

the frequencies are given by

2. .- 2 1/12 1/2

= [b+1 [(b 2 +1) 2 
- 4n()11

f 2
S

The subscripts f ana s are used here and below to label the amplitudes and

frequencies of the fast and slow oscillation modes. We will assume that the

linear motion is stable, that is n(l-n) > 0.

*'- We may calculate the correction to (10) due to the non-linear terms by

Inserting (10) in (8,9) and resolving. The resulting equations will be

inhomogeneous with various "driving" terms at the frequencies

2vf, 2vs, 0, and vf + v . Consequently, the non-linear correction to (10) will

remain small unless it happens that

V V v (12)

the condition for which, from (11), being
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.. -. .

2 5 r~.~1/2_i(3b2 = [n(l-n)]l21. (13) I

In the absence of a toroidal field, (13) is satisfied for n = 0.2 or 0.8 which we

identify as the Walkinshaw resonance 6, the consequences of which were first

observed in cyclotrons We proceed to examine particle behavior on this

resonance in the modified betatron.

On resonance conventional perturbation theory fails and one must resort to

some other method. A multiple "time" scale analysis of the problem gives a

solution of the form (10) in which the complex amplitudes Af and As are no longer

strictly constant but vary slowly with 0; they are found to obey the equations

dA
ir (nn 2 )AfA (14)

f•2

d8 ir 2(n,n2 )As  (15)

where r are two real valued functions of the field indices n and n2,

2, 2$
V2 - n 2v 2+ n

.- s 2 s
r [2n + 6v + n]

1 6v 2s 2('
S S

2
4 .s ) 2  (16)

and where, on resonance, we have

= 2 2 2(n(l-n))l/2. (17)

(An asterisk denotes complex conjugate in (14).)

The question of orbital stability on resonance is thus reduced to the
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question of the behavior of the mode amplitudes in (14) and (15).

The equations (14) and (15) may be completely solved in a straightforward

manner; the solution is obtained and discussed in the Appendix. To settle the

*stability issue, however, it is sufficient to note that there is a simple

integral of motion

r1 lf 12 2  sA 2 Dr,(8

and consequently the motion is necessarily bounded if r r1 r>0whci

12-0wici

fact is true for all n and n2  as follows from (16). On this resonance energy is

* simply exchanged back and forth between the fast and slow modes of motion.

Though we have argued that particle motion is bounded on this resonance we

* . have not in fact specified a bound or showed that the bound is acceptable, in

terms of some machine aperture. One might conjecture, from (18), that if one of

r 32were significantly larger than the other then transfer of energy from the

more "stiff" (larger r coefficient) mode to the less "stiff" mode would result in

increasing particle oscillation amplitude. Hence one would be concerned if, from

(16), either v n or v2 n. It follows from (17) and (18), however, that

this can occur only for b 0, n -. 2 or .8. If n is chosen so that b is

0(l) when the resonance is crossed then r1and r 2 are of the same order of

magnitude and one expects this resonance to be quite harmless. For specific

*initial conditions ft is possible to find a bound by calculating the turning

- point of a certain particle-in-a-well problem, as shown in the Appendix.

Curiously, one can render this resonance completely inoperative for any

* particular n by choosing n2 so that r1 and r2 both vanish. From (16) and (17) .

** this value is found to be
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1~ 7n - 3+ 4[(1-n)n] 12-
n2 n2 11/ (19)

1 + [(1-n)/n]

Choosing this value ensures that the mode amplitudes remain constant when passing

through the "exchange" resonance.

We proceed to illustrate some of these results using a simple single

particle numerical orbit integration. The algorithm includes the fields (5-7)

but does not use an expansion of the force or acceleration. Figures 2 and 3 show

the solutions to equations (14-15) and (1-2) respectively for the case n 0.5,

lip n 2 n 2 = 0.625, b -0.5. The mode amplitudes are strictly constant, no exchange

occurs, and the particle orbit projection retraces itself in a stable manner over

and over again. We contrast this case with that illustrated in Figures 4 and 5 -

*for which the parameters are again n =0.5 and b 0.5 but now with

* n2  0. Now the mode amplitudes oscillate; one rises while the other falls in

* - order to conserve D (Eq (18)). The oscillation period, from Equation (16) in the

Appendix, is 46.6 major periods for the particular initial conditions chosen.

The particle orbit projection now simply (and harmlessly) rotates slowly counter-

clockwise.

Our conclusion is that in the case of azimuthally symmetric fields the

- generalized Walkinshaw resonance is quite harmless in the modified betatron. The

* exchange of energy between fast and slow modes is expected to cause no major

* changes in the beam dimensions. When azimuthal field variations are present,

however, the situation changes dramatically due to a coincidence described in the

*- next section.
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7. P. .9

IV. A Triple Coincidence Resonance

When n = 1/2 (the case illustrated in Figures 2-5) the values of the tunes

V f and v sat the exchange resonance (13) are v f .1, vs =1/2; therefore in the

presence of field and focusing errors the generalized Walkinshaw resonance

coincides with an integer and a half integer orbital resonance. This triple

coincidence allows us to study in detail in this special case the effect of mode

coupling (and the amplitude dependence of the betatron frequencies) on the orbit

* at an integer and half integer resonance. Though the restriction to n =1/2 is

necessary for there to be a true coincidence, if n is near but not exactly 1/2,

the three resonances will be nearby" and will occur nearly simultaneously and

the analysis below should still hold in an approximate way.

At the triple coincidence resonance the mode evolution equations become

dA**

do iAf As i As (20)

2rA + £2 + C A* (21)

The c's in (20) and (21) are complex constants proportional to certain

Fourier coefficients in expansions of the fields and their gradients;

specifically, e1 is due to an 1 1 term in the field gradient, leading to a half

integer resonance, £2 is due to an 1 1 term in the field, leading to an integer

resonance, andc £3 is due to an I = 2 term in the field gradient, leading to a "2-

halves" integer resonance. Were they present alone (i.e. with no non-linearity)

in (20) and (21) the field imperfection terms are observed to lead to the usual

linear and/or exponential growth characteristic of integer and/or half integer

resonances. In the presence of mode coupling the situation is much less clear.

Since, as they stand, equations (20) and (21) cannot be solved analytically we
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must in general resort to numerical integration. First let us comment on what we

might expect to see in the solution.

The field imperfection terms in (20) and (21) act roughly speaking as source

terms, pumping energy from longitudinal to transverse motion. If this energy

flow continues, and if there is no mechanism to return this energy to

* longitudinal motion the result is disastrous -- a linear orbital resonance. Non-

linearities, however, can shift the betatron frequency of the resonant particle

off resonance for some finite amplitude of betatron oscillation. (The quantity

(n2 - n ) is presumably a measure of the frequency shift induced by a given

amplitude oscillation.) In practice though one can not say a priori how much

frequency shift will be sufficient to terminate the growth of the resonant mode.

A numerical study seems to be essential.

For a numerical example we will examine the effect of the non-linear terms

in (20) and (21) on an integer resonance, that is, in the following we shall take

C, £3 0. Cases have been examined numerically for various other combinations

of values for the ces with no major differences appearing in the results.

In Figures 6 and 7 we illustrate the mode amplitudes and orbit projection

for a pure integer resonance with no mode coupling (n - n = 0.625,

E .005). The (resonant) fast mode amplitude grows linearly without limit; the2

(decoupled) slow mode stays at a fixed, small value. The particle orbit size

(Figure 7) consequently grows continuously.

Turning on the mode coupling changes the behavior of the mode amplitudes

* dramatically but has little apparent effect on the particle orbit, which still

appears to grow to intolerable size. This is illustrated in Figures 8 and 9

where we see that the mode amplitudes grow to a certain size and then turn over-

-presumably a reflection of the detuning of the resonance due to the frequency

shift. The "turnover", however, is at extremely large amplitudes (Recall that
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the mode amplitudes are normalized to the radius of the devices' ro.), therefore

* the particle motion appears to be relatively unaffected, practically speaking, by .

changing n2 from 5/8 to 0. This result does suggest though that by

increasing In2 - n I we might reduce the resonant response to a tolerable value.

Figures 10-11, 12-13, and 14-15 show our results for n2  -1., -4., and

* -10. respectively. We see that as In2 - n I is increased the mode turnover

amplitude is reduced and the particle orbit becomes somewhat more compact,

staying within the plot boundaries for significantly longer times. (Even so, the

* transverse orbit size is rather large, even for the largest values of In2 n-

we have tried.)

* These results suggest that to stabilize the I. I resonance a significant

non-linearity (large value of n) could be intentionally introduced in the

* betatron field. One must be careful in drawing this conclusion, however, because

* such a non-linearity has well known adverse effects, among them a sensitivity of

* the behavior of the orbit to initial conditions; that is, only some special class

of particles may be confined while others are lost. Also, if n 2 1 which is

effectively the radial derivative of n, is very large, it then becomes difficult

to keep n itself within the stable range 0 < n < 1 everywhere within the

aperture. Consequently we conclude that, as a practical matter, it is best not

to rely on non-linearities to stabilize the I. I resonance in the modified

betatron and to design the machine with a flat radial index profile. Avoidance

of this resonance as well as other low order resonances -- which then becomes

the only reasonable experimental alternative -- is possible in principle byH

accelerating with constant b (i.e. B eccB zo), thereby keeping the tunes fixed5

-- except for the tune shift due to space charge, which affects the fast mode

tune only very slightly for large B0; the slow mode tune can generally be chosen

to be very small (-.2 -. 3) for all time.
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V. Summary and Conclusions

We have examined the effects of mode coupling on single particle orbits in

the modified betatron. We find that a generalization of the Walkinshaw

*" (exchange) resonance can occur for any value of field index in the range

.2 < n < .8 but that its effect on particle orbits in general is quite modest

* (Figures 2-5) and may be rendered completely ineffective by a special choice of

* field index gradient (19).

When n is near 1/2 the exchange resonance coincides with both integer and

half integer resonances. An examination of orbit behavior at this triple

-" coincidence shows that, as a practical matter, the amplitude dependent frequency

shift in the betatron oscillation due to mode coupling is not sufficient to

stabilize the X. 1 integer resonance (though presumably, as in the case of

accelerators not employing toroidal fields, higher order resonances will be

... subject to non-linear stabilization8 ). This fact makes it advisable to allow, in

* the design of an experiment, for acceleration with constant or nearly constant

ratio B /B thereby holding the tunes approximately fixed in time.

6o zo
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Appendix

In this Appendix we discuss the solution to Equations (14) and (15) in the

text. Writing

A - a fexp(if) A,= a exp(ios) (Al)
ff f s s s

where afs and fs are real we find in a straightforward way an equation

1 2
for p y a.

s1 2
-. -p + V() 0 (A2)

where

V(p) 4rp 3 - 4Dp 2 + -C
2

r=r 1 r2

.I~ 22

2
C = r afas cos(f- 2.) = constant

and the constant D is defined in the text, Eq. (18). The other quantities are

given in terms of p by

a. (2p) (A3)

-s C/(2p) (A4)

A f (C - ip') exp(21os)• (AS)
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These expressions hold for p > 0. If p 0 at 0 0 0, say, then, from (14)

and (15) A a 0 and Af remains fixed for all 9 > 0. The modal frequency shiftsS

are given directly by (A4) for the slow mode and may be obtained from (A5) for

the fast mode.

. It may be shown that V(p) has one negative and two positive roots. Denoting

these by p 1,2, 3 with p1 > P2 > 0 > P3 we find that the exchange period (period of

* p(6)) is given by

• ' 1/2 -
2 K(m) (A6)1rp - P31)(6

* where m = (p- p 2 )/(p 1 - P3 ) and where K is the usual complete elliptic

integral13

. The special cases C = 0 and r 0 lead to motion of infinite period and

S p = constant, respectively.
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Abstract

Current thresholds for longitudinal and transverse instabilities are

calculated for beams of specified dimensions in conventional (B,= 0) and

modified (B0* 0) betatrons, using simple models for the longitudinal and

transverse impedances. Self field effects of the beam are included and lead

- - to a novel, competitive effect between the stabilization mechanism and

instability growth. This competition results in a multi-valuedness in the

limiting current vs beam energy spread plot, even for conventional

betatrons. Accessibility of the various limiting current levels appears to

*" depend upon the rate of beam injection. The stabilizing effects of betatron

oscillations are discussed and written as the sum of three, physically

* interpretable contributions to an effective energy spread. We find that the

presence of a strong toroidal field can significantly improve the current

carrying capacity of the accelerator.

L
.

37.2

....................-.... ... ... . ....



I. Introduction'

The addition of a toroidal magnetic field to a conventional betatron has

been shown theoretically to increase the equilibrium current which may be

confined by a factor 1/2 (B /Bz)2, for large values of B /B z . In conventional

Saccelerators without solenoidal focusing, however, beam stability considerations

place the actual limit on beam current. 6- 8 Therefore it becomes important to

analyze the stability conditions and associated limiting currents for a given

beam equilibrium in the presence of a toroidal field. In this paper we present

such an analysis for both longitudinal and transverse modes.

A device in which a toroidal magnetic field is superimposed on the usual

weak focusing betatron field has come to be called a 'M4odified Betatron". See

Figure 1. A stability analysis of this accelerator necessarily must include the

strong self and induced (wall image) fields of the electron beam. It is

primarily the inclusion of these fields which distinguishes this work from the

stability analysis performed 9 for the so-called plasma betatron in which self

fields are much less important. These self field effects, however, will be seen

to have a dramatic effect on the current versus energy spread scaling; namely we

predict the existence of more than one stable value of current for a given beam

K energy spread. This somewhat surprising result will be discussed later. The

37.3
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central result of this work, however, is that significantly more current may be

carried by a beam in a modified betatron configuration than in a conventional

betatron of the same dimensions P assuming equal beam sizes and energy spreads.

In reaching this conclusion we have included not only the effects of self fields,

* but also the (stabilizing) effects of betatron oscillations and the

* (destabilizing) effects of short wavelength enhancements to the longitudinal and

* transverse impedances due to chamber resonances. Below we discuss the dispersion

relation for arbitrary toroidal fields and currents, describe our model for the

impedances, and present analytical and numerical results from the dispersion

relation.

11. Discussion

- A ~dispersion relationship for both the longituiaan Lransverse modes in

- amodified betatron accelerator configuration has been derived.10  Included in

the derivation are: beam self field effects, induced field effects arising from

*wall image charges and currents as well as finite chamber wall conductivity

* effects. Toroidal corrections to the equilibrium beam self fields and chamber

* wall image fields have been neglected. The longitudinal and transverse

* impedances, which characterize the beam environment, are incorporated in a

*phenomenological way in the short wavelength limit. The dispersion relation, T
37.4
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. therefore, treats disturbances of all wavelengths, including wavelengths much

* longer or shorter than the.chamber minor radius.

The short wavelength model for the impedances contains effects associated

with propagating chamber modes. These effects can significantly affect the

instability growth rates. With the inclusion of the short wavelength

contributions to the impedances a realistic estimate for the current limitations

due to the various instabilities can be obtained for the modified betatron

configuration and compared to those of a conventional betatron. To perform a

meaningful comparison we will choose identical parameters for the two types of

betatrons, i.e., same geometry, injection energy, field index, etc. The only

difference of course will be that the modified betatron configuration will

include a toroidal magnetic field.

10The dispersion relation for the longitudinal and transverse modes of a

cold beam may be written

-2 2 -2

-2 2 ;2 2 2:
bzWL Y (tA z L A

where Aw (w Lw /1w c w is the complex mode frequency, L 1,2,3,...is the

longitudinal (toroidal) harmonic mode number, wc= f /y is the electron rotation

z
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frequency, 0 f Ie1Bz/moC is the non-relativistic cyclotron frequency, y -

-v 
2/c2 )-1/2, v is the longitudinal (toroidal) beam velocity, 2 - 2it2

3
(V/y)(Z /EZo) v is Budker's parameter(v IA]/17 x 10, Z = Z is the

total effective longitudinal impedance, Z. 4ir/c (Zo  377 R in MKS

units), w2 = 1/2 - 2(v/y3 )(r /rb)  2i(v/y)(ro Z1/Zo) r° is the major electron

beam radius, rb is the minor electron beam radius, Z. Z.(w) is the total

effective transverse impedance, b = B lB and B is the toroidal magnetic
Sz

field. In (1) finite amplitude betatron oscillations were neglected, the

external field index was taken to be 1/2 and the electron beam was assumed to be

mono-energetic, highly relativistic (v c) and circular in cross section.
0

Ill. Approximate Representation of Impedances

In our model the longitudinal impedance Z () is taken to consist of three

terms

z1= zn+ zm I+ z,r (2)

The first term in (2) is the long wavelength space charge shielding contribution

associated with a smooth infinitely conducting chamber and is given by
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2
z, L z (i/2y )(I+ 2.1n a/rb), (2a)

where y is the relativistic factor corresponding to the wave phase velocity and

2
a is the minor radius of the toroidal chamber. Due to the l/yw factor this

impedance term is typically quite small; it may even change sign.

The part of the longitudinal impedance due to the resistive nature of the

chamber wall, in the long wavelength regime, is

:::-:ZI'o= I zo(1 J ) 6/2a. (2b),!.

0

where 6 = c (2olhIwI)1/2 is the skin depth and a is the wall conductivity. It

has been assumed in (2b) that the skin depth is small compared to the thickness

of the chamber wall. -A

Finally, the last term in (2) represents the resonance contribution to the

total longitudinal impedance and arises from the fact that the chamber can

support propagating waves. To obtain the exact form for Z I,r would require a

• rather involved analysis of the beam-chamber structure and is beyond the goals of

the present paper. We will, therefore, simply represent this contribution by the

.-* phenomenological expression1 1
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/ i Q(l - (W/W
z s'r ( 2' 2r2  (2c)3?.0 'O r (W/Wr) + Q (1 -( )

r r

where Rdefines the chamber shunt impedance, wr 2.4 c/a is the cutoff

frequency of the lowest order chamber mode, and Q is the quality factor

associated with the chamber. The chamber shunt impedance, Ro, can be estimated

by noting that near a resonant frequency o the longitudinal impedance is

roughly equal to the free space impedance

1/3z'_ " (/3s. 1)- 1C3)

'" £1 2

It follows, therefore, that R Z where I is the toroidal mode number0 r r

associated with the resonant frequency, i.e., £r = wr/w

The expression for the total transverse impedance Z (w) is also written as

the sum of three contributions

Z. Z + Z + z (4)
I 'Is 1,o L,r'

The long wavelength space charge part of the impedance, for a smooth infinitely

conducting chamber, is

37.8
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Z ir (/ 2 - 2 2
;.. .. Z.L' s  i r rZo(1/r 2  1 /a2)VXz  (4a);-

The second term is the long wavelength contribution due to the resistive nature

of the wall and is given by

3 .

Z rZ(l- I) 6/a. (4b)
",a 00

Chamber resonances contribute to the transverse impedance a part which we will

represent by the form11

2r
0a2  (4c)

J-, r"la.

where Z1 r is defined in (2c).

In the present work we will not be concerned with resistive wall effects

which lead, in conventional acclerators, to well known longitudinal and

transverse instabilities6 having, however, comparatively slow growth rates.

Equations (2b) and (4b) are included here only for reference purposes.

We remark that with the impedances as defined above the dispersion relation

' is virtually independent of the beam minor radius, rb, except for the weak
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logarithmic dependence in (2a). This.is reasonable if we think of the dynamics

involved in the various instabilities, that is, if we consider that it is the

beam centroid which moves transversely, even in the "longitudinal" or negative

mass instability in which beam bunching occurs as the beam centroid moves in or

out radially. Motion of the beam centroid is affected by the externally applied

fields, including those due to wall image charges and currents; these fields,

unlike beam self fields which are carried along transversely by the moving beam,

do not depend on the minor radius of the beam.

IV. Stability Condition and Limiting Current

To obtain the limiting current, based on stability requirements, for the

modified and conventional betatron a stability criterion is needed. If the

distribution in particle rotation frequencies is Lorentzian in shape the

criterion for stability is simply

r < xlIal, (5)

* where r is the growth rate in the absence of a frequency spread and Afn is the

half width of the frequency spread on the beam. It should be noted that the
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large tails associated with a Lorentzian aistribution make the criterion in (5)

somewhat less stringent than wouldbe the case if a more realistic choice of

frequency distribution were used. However, the use of a more realistic

" - distribution of particle frequencies would result in a considerably more involved

stability criterion. Since we are interested here mainly in making a comparison

- of the limiting currents of the modified and conventional betatrons, consistent

* use of a Lorentzian for both devices should serve our purpose.

* Both an intrinsic longitudinal energy spread on the beam electrons as well

as finite amplitude betatron oscillations will produce a spread in rotation

frequencies. Solving the particle orbit equations correct to second order in the

betatron oscillation amplitude, with self-field effects and intrinsic energy

[ spread effects included, the average spread in the beam-s rotation frequency is

found to be given by

IAQI = IAlIAE + InIB ,  (6)

where

I An =AE 7 IcuacAE/E) (6a)
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2 2

BAS  Ec(rb/2ro)2 lb2 /2-n - 3/21, (6b)

)-1_-2
with a = (1/2 - n ) • The two terms on the right hand side of (6) are due

S

to an intrinsic energy spread and to finite amplitude betatron oscillations,-

respectively. In (6a) the fractional intrinsic energy spread is denoted

2
by AE/E where E Ymoc is the beam particle energy, (y >> 1) and

3 2n = 2(V/Y )(rO/r is the field index associated with the beam-s self fields.

In obtaining (6a,b) we assumed a circular beam cross section and an external

field index of 1/2. Note that it is here, in the relation between

§ AE/E and AQ, that self fields play an important role.

* -. By utilizing the beam envLlope equation, the frequency spread term 1ABI can
B

be expressed in a more illuminating form. The condition for a matched beam, i.e.

non-oscillating minor beam radius, is
1 2

1b 2  rb2 2122 on )2(2)2 (7) .
-b n-1/2 +(r c (e7:£. s  ro n  b ,Y

where c is the normalized transverse beam emittance as measured in the Larmor

frame. Substituting (7) into (6b) gives
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W~ =c 2 5 *2
I AQB 2 (CN/r1) /2- (rb/r) Y + v/2y1  (8)

Y

~1

In (8), the first term in brackets is the familiar longitudinal energy spread due

to emittance, the second term is a toroidal correction to the first, while the

last term is the energy spread associated with the electrostatic potential drop

across the beam. Both contributions to the total frequency spread,

Ail I and B are proportional to the various energy spreads. The two

different proportionality factors, Ial in the case of IAQt and y-2 in the case
AE

of ItAQft, arise because the intrinsic particle energy spread produces a

rotational frequency spread primarily by changing the particle's radial position

whereas the various energy spreads contributing to IAS] B merely result in a

.B

longitudinal velocity spread. Hence the various contributions to the longitudinal

energy spread contribute differently to the frequency spread.

The desired stability criterion is obtained by substituting (6) into (5) and

becomes

1- ( /b22 5 (r/o2 2 / y2

-r < [ - IaI(AE/r) + I(e rb) - () + 212/yI+2] (9)

Given the intrinsic energy spread, beam radius and emittance, the criterion in

-°-..3 7 .1 3



(9) implies a limiting beam-current which if exceeded will result in instability. j
As a simple illustration we will first consider the negative mass mode in a low

current conventional betatron, i.e., B. 0, n << 1/2. From (1), the dispersion

relation f..r the negative mass instability is -2w W W2/2

S4it2 (v/y)(Z ()/1Z ), where we have assumed that IAZI << z I 12.

Approximating Z (w) by ZI(1wc) we find that the growth rate is

r = 21w (v/y,1 /2 I(z (£w))ll/2/(Wz)l/ 2 • Using (9) and neglecting the betatron

oscillations we recover the well known negative mass stability condition

92 < AE2 (0
z (tw ) 2.

SIz c (10)

In obtaining (10) we have assumed that the rcal and imaginary parts of Z are

approximately equal.

Next we consider the full dispersion relation (1) for arbitrary b. Here and

below we will continue to neglect the effect of betatron oscillations on the

stability of the beam. The effect is generally small and, due to the b
2

dependence in (6b), it favors the modified betatron. Therefore, neglect of the

betatron oscillations is conservative when comparing the modified and

conventional betatrons.
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If we may continue to approximate Z ,r(w) by Z -,r(lwc) and if we

set 6 0 then (1) is in general a sixth order (fourth order, if b 0)

polynomial. By neglecting resistive wall effects we are assuming that these are

negligible for the negative mass branch of the dispersion relation in which we

will be interested here. Of the six roots, two pair correspond to transverse
I,.4

modes (a pair being a forward and backward wave, essentially) and one pair to the

longitudinal mode.

For a given set of parameters, we have found the roots numerically, for a

large range of £; a maximum value of m/ is then found and substituted into the

stability criterion from which a value of AE/E is computed. An important point

to note is that the toroidal field has more of a stabilizing effect on the

high Z modes than on the low I modes; consequently, as b is increased the

behavior of the impedance for small I tends to determine the maximum rlI and

therefore the limiting current.

Typical results are illustrated in Figures 2 and 3. Here we plot the beam

current vs the Lorentzian full width energy spread required for stable motion for

b10, 5, 10, 20, ro/a =6, a/rb 3, Ro/Zo  4, and Q =0. Figures 2 and 3 are

plotted for yj 3 and 6 respectively. The dashed lines are plots of

. I[ -A



rbIi - 2n I -. (1)
E s r

For consistency we must be to the left of these lines. This restriction may be

understood by considering the displacement of a particle from the center of the

beam:

-r 6E/E + betatron oscillations
r I

2 s

where 6E is the difference between the particular particle energy and the average

energy of the particles in the beam. It follows that

rb I AEE (12

r-Z (12)

where AE is the full width of the distribution.

The effects of the self fields, as represented by ns in (6a) and (11) are

immediately evident in the plots of Figures 2 and 3. If n were zero then the

dashed boundary lines would be a single vertical line and the curves would be

monotonic. As it is, the effect of the self fields is basically traceable to the

" increasing (as n. increases toward 1/2) then decreasing (as ns increases beyond

1/2) factor lac. The multi-valuedness of the curves may then be understood as

follows (Refer to Figure 4.): For very small currents (Branch I, in Figure 4)
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the cold beam growth rate is *saland an increasing function of current. The

self field index, ns, is negligible compared to 1/2 and the energy spread

required f or stability is an increasing function of current. This is the regime

in which virtually all conventional accelerators operate. As the current is

further increased, however, a second branch becomes accessible, shown as Branch

11, in Figure 4: While the cold beam growth rate continues to increase with

increasing current, the intrinsic energy spread stabilization mechanism becomes

more effective due to the increase in lal until, near n < 1/2 a very small
5-

energy spread results in a large spread in angular velocity; the instability is

therefore easily stabilized. M~ore simply said, we have stability on the low

current branch (Branch I) because the growth rate is small and on the high

current branch (Branch II) because the stability mechanism is strong.

There is a third branch which appears in the example of Figure 2 above

n. 1/2 (1 >316 A) for b 10 and 20 and is illustrated as Branch III in Figure

4. This region Is accessible only in the modified betatron since we are

*constrained in the conventional betatron by the equilibrium condition n8 < 1/2.

For b 5 in the example shown in Figure 2 the stable points fall to the right of

the dashed line and so are not shown. As the current is increased beyound 316 A

the growth rate increases and the stability mechanism becomes less effective
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as lal decreases. Consequently as the current is increased beyond this point the

required energy spread increases monotonically. This is illustrated by the third

branch in the figure.

Finally we comment on the accessibility of the various branches available

for small energy spreads. If beam injection proceeds slowly, over many growth

times, say, it appears that only the lowest branch is accessible; attempting to

add more current will drive the system unstable. If however current can be

introduced into the accelerator more rapidly, the higher current branches may

become accessible. Only a carefully designed experiment can test this

speculation. For b 5 and 10 f or the parameters of Figure 2 typical growth

times are 3 particle circulation periods so that high current injection on this 7
time scale is a practical experimental possibility. The third branch in Figure 2

is clearly the most promising for very high current operation.I

V. Conclusions

We have shown that the addition of a toroidal magnetic field to a .

conventional betatron may significantly improve the current carrying capacity of

* the betatron by controlling the collective instabilities which limit the current.

* The calculation has included self field effects and a simple, though realistic 4

model for the longitudinal and transverse impedances. The stabilizing effects of
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betatron oscillations, which have been shown to include the effecrs of emittance,

toroidal geometry, and energy shear due to the electrostatic potential drop . -

across the beam, become stronger as the toroidal field is increased, given a

fixed beam radius. Inclusion of self field effects in the stability criterion

(6) has been shown to lead to a multi-valuedness in the current vs energy spread

plot which has been interpreted as the result of the competition between the

growth and stabilization mechanisms. Accessibility of the high current branches

may depend on the duration of the injection process.
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Figure Captions

Figure 1. Modified Betatron configuration.

Figure 2. Instability threshold current vs energy spread for b 0, 5, and

10. The beam and chamber parameters are ro/a = 6, a/rb =

3, y = 3, Ro/Z o = 4, Q = 10.

Figure 3. Same as Fig. 2 except y = 6.

Figure 4. Sample plot of limiting current vs energy spread, illustrating the

three possible branches.
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By adding an 1 =2 stellarator field to a betatron accelerator, a new configuration is ob-
tained which is capable of accelerating multikiloamp beams and which will tolerate a large
(more than 50%) mismatch between the particle energy and the vertical magnetic field. The
additional field is a twisted quadrupole which acts as a strong-focusing system. This de-
vice has been analyzed both analytically and numerically.

PACS numbers: 52.75.Di, 29.20.FJ

Conventional betatrons' 2 are current limited at The twisted quadrupole field, of period 2w/m,
injection. Recently, efforts have been made to ex- then is written as
tend the current-carrying capability of the beta-
tron. For example, the plasma betatron' employs B. kB,(-r sinm0+z, cosm 0)
a toroidal magnetic field in the direction of the (1)
particle orbit to contain the plasma. Current in- B, L kB,(r cosm0+zsinm0), B e -B 0,
terest is focused on high-current nonneutral
electron acceleration in modified betatrons. 4 "6  where k,B,,Boo are constants, and the betatron

By adding a stellarator field to a cyclic accel- field is
erator, a strong-focusing system7 is obtained
which can sustain high currents and large mis- B, S - nBz,/0o, B, B o-n(r/r)], (2)
match between particle energy and vertical field.
The energy bandwidth relaxes the design require- where B,o is the vertical field at the reference
ments for the injector and the magnetic field sys- orbit and n is the usual field index.
tern. Unlike fixed-field alternating-gradient beta- We consider the motion of an electron located
trons,' the stellarator-betatron (or stellatron) in- within a beam whose center is located at r =re
cludes a strong toroidal field to confine very high +AT, z =Az; the electron's position is r =r,
currents. Figure 1 shows a sketch of the stel- +Ar+ Or--r0 +r1 , z =Az +6z = z,. Using a cylin-
latron configuration. drica approximation for the beam self-fields, we

We have quantitatively studied the stellatron
configuration. Our studies have consisted of nu-

* merical and single-particle orbit calculations,
as well as analytical linearized orbit theory, in- B
cluding the beam self-fields.

We may study the behavior of an intense elec-
tron beam in the stellatron quantitatively by con- Betatron

. sidering small departures from a "reference Field
orbit," a circle located at the null point in the
quadrupole field, at r=r, z=O. Here and below:..*. ~Stellorator -" '

: we use a cylindrical (r, 0,z) coordinate system Field
with origin at the center of the torus's major
cross section. Quantities evaluated at the ref-
erence orbit will carry a subscript 0 below; de- R
partures from this orbit will carry a subscript 1. FIG. 1. Stollatron configuration.

© 1983 The American Physical Society
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find

2 o\ o 2

I..2 - = cosm0)z,n- 1 ne)rj- no (3b)

" (r /r)f,. (3c)

where Q~o=eBadmyoc, - 0 is the relativistic factor
for the reference orbit, wb -2 = 4vnoe/myo, no is 'pointing out. First, stable motion is possible
the beam number density, rb is the minor radius throughout an injection-acceleration cycle. This

. of the beam, a is the minor radius of the (perfect- has been checked for many possible time histo-
ly conducting) chamber, and / =krB, /B,,. ries. A typical trajectory in the stability plane is

By performing a formal ensemble average of shown in Fig. 2. The unstable region on the left
(3a)-(3c) one may find equations governing single- of the diagram would not be entered in this case
particle motion and that of the beam centroid. even if the acceleration were continued; "u"
Details will be published elsewhere. By changing never changes sign in this case.
the independent variable from t to 0, and making The second important feature of the solution
the transformation t = (r1 + iZ,)/ro,= 4 exp(im0/2), pertains to the energy bandwidth of this machine.
one obtains an equation for 4 which may be solved We note that the radial shift (7) of the orbit of a
in the special case, n = 2, with the following re- mismatched beam is, as expected, much smaller
suits. than that in a weak focusing (v. = 0) device. (1i

- Particle motion is oscillatory (under certain can easily exceed 100-200 in designs we have
conditions; see below) about a center located at considered.) The stellatron's large energy band-

"* width has very helpful consequences for injector

;r, 1+i 2(m+ mb -Ff), "i V (4) and magnetic field design tolerances.e RioThe introduction of fixed toroidal and helical
* where A. = - n, , n. = wb 0/2yo2 l, b=Bo/B,, fields to the betatron causes the betatron wave-

A = v1//]po2 , and angular brackets denote an en- lengths to depend on energy, resulting in reso-
semble average. There are five characterisitc nant instabilities driven by field errors during
oscillation frequencies, m n.. and (m/2*. ,)n,, acceleration. If the toroidal field is sufficiently
where large, the betatron wavelengths will be insensitive

, n ( 5 to bcara current. Such instabilities may be avoid-
2, = :  5 + + (, p2)I/Z (5) ed by holding all the fields in constant ratio dur-

withh=I, + b 2, f=m+b. These frequencies Ing acceleration. Alternatively, the effect of the

are real when the system is located within the
regions of the plane of Fig. 2 marked "stable." 0.5

We remark that for low-current beams (no- 0) V u=(b2+2-4r3Il/m+b2
the stability condition reduces to 0.4

I.m 2 + mb - I1 >12tI. (6) v=ItaI'm + 0

The "most" stable configuration results when the 0.3

field lines are twisted clockwise (m > 0) when
viewed in the direction of B0 , i.e., in the same UNSTABLE UNSTABLE

sense as electron gyration about Be .
Similarly, the motion of the beam center is it- 0.1 -

self oscillatory about a center located at STABLE STABLE

Ar _ _ )(-1.0 0.0 . 2.0

r, = o, +p(m2+mb -f.)"' (7)-
FIG. 2. Stellatron stability plane (n =4). The dottedwhere n* = - (rb2/a 2 )n,, with characteristic fre- line is the trajectory of an experiment with I =10 kA,

quencies as in (5), under the replacementn. Bo=5 kG, E1 -2,u/mb =I, m20, ro=I m, whilen,,
. (r.'/a)n . Is raised from 118 to 1700 G, corresponding to an In-

Two important features of the solution are worth crease In energy from - 3.5 to 50 MoV.
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instabilities may be minimized if the energy gain minor axis at s. The toroidal correction, 9,
per revolution is large enough to pass rapidly is given to first order in the Inverse aspect ratio
through each resonance. by Danilkin." All calculations have been per-

A single-particle code, which Integrates the formed for I = 2. The variables p and m, which

relativistic equations of motion for an electron in describe the helical field in the previous analyti-
an applied magnetic field, has been utilized to cat analysis, are given by p =E mb/2 and m
study certain nonlinear aspects of the steilatron = 2aR0 for I = 2.
configuration. Unlike the analytical analysis of This model has been utilized to investigate the
the preceding paragraphs, this analysis does not single-particle bandwidth of the stellatron. As
employ a paraxial approximation for the electron C, increases, the allowed mismatch in the stel-
motion and does not use an expansion in the parti- latron becomes too large to be correctly modeled
cle displacement from a reference orbit. Also, by the linearized theory. Figure 3 shows the re-
the applied field in this analysis includes toroidal suits from both models for bandwidth versus 4E.

corrections to first order in the inverse aspect These calculations assume a torus having a 1-m
ratio.

The total magnetic field utilized by the code
. may be expressed as B = B + B,, where Bb is

.. ". the conventional betatron field, given by Eq. (2), ,, -
and B, is the steilarator field, given by B, =V4,,,,
in terms of the magnetic scalar potential, 4,,
which may be expressed as 4b (o)+ ,(,, where

'k (-)(p,,s)=Beo{s + (E 1a)1,(x)sinl(V -

Here, x=lap, a=2 i/L, L is the helix pitch -3"

. length, and 1, represents the modified Bessel D -
function. The coordinates (p,rps) form a local z -

* cylindrical system centered on the minor axis, +3
where s =Ro is distance measured along the
minor axis for toroidal angle 0, and (p,V) are
polar coordinates in the plane transverse to the

L .
200% -.- 0.1 0.1

" OR

LINEARIZED ANALYTICAL THEORY b) 0.1

U. .NUMERICAL

100%

-50% +50%

l CONTAINED

0.

BITS

-l u/ , •hre )1 , lte gis I.4 igepril ris a ihu h
.1.0 2.0 3.0 -0.1

M--0.1 0.1-'C . D R ,, .'.,FIG. 3. Stellatron single-particle bandwdth , The
L.--' bandwidth Au 140, where u =-yP, Is plotted against c, FIG. 4. Single-particle orbits. (a) Without the

'm 2p/b. The accelerator is matched at y7 with B, 0  helical field components (U = 0), Au/uo * 3%; (b) stel-
=118 G, and Bo0 - kG. latron orbit with & =4 *u/uo= 5n .
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major radius and a 10-cm minor radius. A test from Injection up to the highest energies achiev-
electron is launched tangent to the minor axis able by conventional inductive acceleration.
with relativistic momentum u =-y1, which differs It is a pleasure to acknowledge numerous dis-
from the matched momentum, u0 , by varying cussions with members of the Naval Research
amounts, Au. The figure shows Au/u o against E, Laboratory Special Focus Program "Advanced
and represents the maximum IAu/uj for which Accelerators." This work was supported by the
the test orbit remained confined in the device. Naval Research Laboratory.
Mismatch in excess of 50% can be tolerated for
these parameters.

Figure 4(b) shows typical stellatron orbits, pro-
jected on the minor cross section, for Beo= 5
kG, IC =- for ± 50% mismatch. The betatron field

sD. W. Kerst, Phys. Rev. 58, 841 (1940).is again 118Gwithn=*. Without the helical field 2D. W. Kerst, G. D. Adams, H. W. Koch, and C. S.
contribution, Fig. 4(a) shows that as little as Robinson, Phys. Rev. 78, 297 (1950).
* 3% mismatch is not tolerable. 3L. A. Ferrari and K. C. Rogers, Phys. Fluids 10,

The superposition of twisted quadrupole, toroi- 1319 (1967).
dal, and conventional betatron magnetic fields ap- 4P. Sprangle and C. A. Kapetanakos, J. Appl. Phys.
pears to offer significant practical advantages 49, 1 (1978).
for the confinement and acceleration of large iN. Rostoker, Comments Plasma Phys. Controlled
electron currents (tens of kiloamperes) to moder- Fusion 6, 91 (1980).

eP. Sprangle, C. A. Kapetanakos, and S. J. Marsh,
ate energies (hundreds of megaelectronvolts), in Proceedings of the International Topical Conference
Foremost among these advantages is the greatly on High-Power Electron and Ion Beam Research and

improved energy bandwidth over that of a weak- Technology, Palaiseau, France, 1981 (unpublished),
focusing device. The large bandwidth of the stel- p. 803.
latron relaxes the requirements for monoener- ?A. A. Mondelli and C. W. Roberson, NRL Memoran-

getic injection, for a uniform (within a few per- dum Report No. 5008, 1982 (unpublished).

cent) magnetic field configuration, and for a rigid 8K. R. Symon, D. W. Kerst, L. W. Jones, L. J. LAs-

mechanical design. Injection should not be any lett, and K. M. Terwilliger, Phys. Rev. 103, 1837
(1956).

more difficult than for other high-current ac- .S. Danilkin, in Ste larators, Proceedings of the
celerator concepts, and is facilitated by the ex- P. N. Lebedev Physics Institute, edited by D. V.
ternally applied rotational transform of the stel- Skobel'tayn (Consultants Bureau, New York, 1974),
lerator field. The orbits should remain stable Vol. 65, p. 61ff.
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ABSTRACT

The combination of a bumpy torus field and a conven-

tional betatron field leads to an interesting strongly-

focused, high-current accelerator configuration. We discuss

the single particle orbital stability question and show that

the strong-focusing in this accelerator can easily lead to

greater than 20% bandwidth in allowed mismatch between the

vertical magnetic field and the average beam particle energy.

39.
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Conventional betatrons are current-limited due to

the space charge at injection. Until recently, the approach

to multi-kiloampere betatrons has concentrated exclusively

on overcoming this space charge limit. High current conven-

tional betatrons2 employ high-energy injectors, while modi-

fied betatrons3 ,4 employ a toroidal magnetic field to prevent

space charge blow-up. In both of these cases however, a mis-

match between the injection energy and vertical field of a

few percent will cause the beam to hit the wall. The maximum

allowed error in the vertical field is typically on the order
5

of a few gauss. Recently it was shown that the combination

of an £ = 2 stellarator and betatron field results in a strong

focusing high-current betatron or, "stellatron," with a large

energy bandwidth. Such a configuration has the advantages of

relaxing the vertical field and injector tolerances. In addi-

tion, the strong focusing introduces a threshold for the

negative mass instability, so that this instability does not

operate at injection. In this note we report analytical and

numerical results on the bandwidth and stability of an alter-

native strong-focusing scheme, namely, a combination "bumpy

torus" and betatron field, corresponding to the t = 0 stellatron.

The bumpy-torus betatron field consists of a super-

position of an Z = 0 stellarator field and the field of a

conventional betatron. Near the minor axis at r r0 , z = 0,

*Q this field has the form

1Br =-nyB + - 6B mx sin mOr -yBzo 2

39.3
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SBe

B0 = Bo + -cosm (1) -

1 °~
B z = B (- nx) + - 6B my sin m-zo 2 0 ry n0

where x - (r-r0)/roy - z/ro, 0 is the azimuthal angle, 1
~-1

n is the vertical field index, and m is the number of bumpy- J
torus field periods around the torus. B zo, Beo, and 6Ba

are constants.

In the paraxial approximation, the equation for parti-

cle motion is, for n =

d + [2- 4n + b2 (1 + e cos2o) 2 i (2)
d2 m ib (2)

we * /_ r4 6p e 2m (20 + c sin 20)
'm 2 Po0

where -m/2, E (x+iy)exp i/2) b(l - c cosmO) d ,]

b H B80 /Bz°' E - Be/Be°' p0 is the momentum of a particle

which would circulate on the minor axis, 6p is the "momen-

tum error," and the self-fields are included via n - 2/

(2yo 0 o) where wb' zo are the beam plasma frequency and 1

the vertical-field cyclotron frequency, respectively.

Eq. (2) is a Hill equation, which has characteristic

bands of stability, as shown in Figure 1. The shaded regions

in the figure are unstable portions of the plane, c vs. b/m,

for the case n = 30 and m = 30. The intersections of the

unstable regions with the abscissa are given by

+2b4n +)/m 2 = q where q = 0, 1, 2,..

39.4 1
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As we increase B to accelerate the electrons, we

typically would not wish to increase B0 . The result is that

the operating point of the accelerator will tend to move from

right to left in Figure 1. Consequently, the accelerator

should be run in the left-most stable band to avoid crossing

unstable bands. These considerations require m>b at injection

and force the use of a large number of field periods in the

design of the strong-focusing system.

The left-most unstable band, corresponding to q = 0,

is due to beam space-charge and rapidly disappears during

acceleration since the self-field index, n5 , is proportional

to y-3 where y is the relativistic factor. The left-most

stable band, therefore, becomes broader during acceleration.

In conventional betatrons, resonances are avoided by

increasing y and the accelerating field in synchronism. The

introduction of non-synchronous fields, as in the modified

betatron and the stellatron, makes the betatron wavelengths

energy-dependent, which can lead to the crossing of resonant

instabilities driven by field errors during acceleration. As

in all strong-focusing devices, the occurence of orbital

resonances plays an important role in the operation of the

bumpy-torus betatron. Using the Floquet solutions to (2)

it is possible to obtain a condition for the integer reso-

nances, when space-charge effects may be neglected: -
1P (r)= cos (b+2n(3)

39.5
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where 'P(#) is the solution to (2) with 6PO satisfying

' 1(o) = 1, 4"'(o) 0 where n is an integer, the Fourier

component number of the dipole field error. Equation (3)

provides the basis for numerical calculation of contours in

the stability plane where (3) is satisfied for a given n;

an example is given in Figure 2.

If all the fields cannot be made synchronous with the

particle energy, the effect of resonant instabilities could

be minimized by making the energy gain per pass large.

Finally, we consider the question of containment of

beams whose average momentum is not matched to the vertical

betatron field, i.e. the question of the momentum compaction

of this configuration. Figure 3 shows the allowed mismatch,

AP/P, plotted against e E 6 Bs/Bo for B = 2kG, Bzo = 118G,

1 1
n -., rO = 100cm and m = 30. This plot is generated numeri-

cally by launching particles on the minor axis along the

toroidal direction with various amounts of mismatch. The

figure shows the largest mismatch for which the calculated

orbits are contained in a 10cm minor radius chamber. Con-

tainment of particles with a mismatch of +20% is obtained

* for =0.2.

In conclusion, we find the spatially alternating trans-

verse magnetic field associated with a bumpy-torus provides

an alternating field gradient on the minor axis, which leads

to a potentially interesting strongly-focused accelerator

configuration. This new accelerator is seen to have a region

39.6
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of stable orbits, and to have a significant bandwidth in

allowed mismatch between the vertical magnetic field and the

particle momentum.

This work was supported by the Naval Research Labora-

tory. We wish to acknowledge discussions with members of

the Advanced Accelerator Project at NRL.
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Figure 1: Stability plane for bumpy-torus betatron, for

the case ns= m =30. The shaded regions areL unstable for particle motion.

Figure 2: Stability plane for bumpy-torus betatron, with

the single particle resonance lines n = 0, 5,

10, 15, 20, 25, indicated for the case n = 0,

M = 30.

Figure 3: Single particle bandwidth. Data points indicate

the maximum value of momentum mismatch tolerated

by the device vs. the bump size, e, for particles

initialized on the minor axis, for the specific

case B =118G, Be 2kG, ro 100 cm, m =30.
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APPENDIX AA

Program LBE

This program uses the IMSL subroutine DVERK to integrate the
linearized equations of motion for either the beam centroid
or for individual particles within a beam in a modified
betatron.

Input Data File1 : FOR002.DAT

IFLAG, IFLAG 1 : IFLAG =: beam center equations 7

1 I: particle equations

IFLAG 1 =: use nonlinear image fields
(IFLAG = 0, only)

1 1: use linear image fields only
(IFLAG = 0, only)

r-ro, r, z, z Initial values for position and velocity

1DPTH mrSc '~> for IFLAG = 0

m moc [Sp-<6p >] for IFLAG = 1
0

r a, n . Chamber major, minor radii, field index

I, rb  :Current (kA) , beam minor radius

AE, AB . Dimensionless correction quantities added
to E and ZB, respectively.

(Logarithms appearing in toroidal correction
terms.)

= £nla/rb)+ AE; XB = n(a/rb)+ 1 + AB)
3

* DT, KMAX, KPT, TOL: Dimensionless time step , total number
of steps, output file writing frequency 

4

integration error parameter

B B t Initial, final vertical field values;
Bzi' Bzf' tacc acceleration time5

BGi, BOf, tB6 Initial, final toroidal field values;
time for change of B 

5

40



Notes: IAll quantities in cgs units unless otherwise specified.

2If I is entered as a negative number, the density used

in calculating ns is (III/17)/mrb2rO, as for positive I,

but all toroidal corrections to coefficients are set

to zero.

3 Time step = DT/(eB0 i/mYic).

4 e.g. If KPT = 2, output is written (to file FOR003.DAT)

every other time step.

5 A linear variation in time is used.

Output Data File: FOR003.DAT

Binary File

At successive times:

t, r-ro, z, y, W
2  /2 y o
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APPENDIX BB

Program BTRAK

This program uses the IMSL subroutine DVERK to integrate the ii
single particle equations of motion in various accelerator
field configurations.

Input Data File FOR025.DAT

r0  Major radius

B n, n2, n3  Vertical magnetic field and field
indices at r 0

Bo :Toroidal field at r

KSTEL : (0,1) = (no,yes) stellarator field present

p,m : (if KSTEL = 1, for stellarator field3)

4
Model : Field error model 0 = No field error

1 = Cylindrical limit
(r-*o)

2 = (r,z) cylindrical
coordinates

6B, m, £ : Model = 1

6B, a, Xro, m, NZ : Model = 2
.5

DT, KTOT, TOL, MXOUT: Dimensionless step size , total number of
steps, integrator error control, max
number of points written to output file.

6r, 6z, 4 Initial values

. (6r)m, (6z) If 16r]>6r or 16zl>6z during calcula-max max I~I6max 16I6max
tion, program is halted.

Y' fr' fz Yinitial' fr Rr/08' fz z/ initial values.
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Notes: All quantities in cgs units

B= B (1-nx + -n x + 1(- )y n+ /z o2 2 ~.nn 2  n3 x

- (n+n +n )xy 2 )

x =(r-r )/r; y =z/r 0

3B r B zvI-x sinm4) + v cosm)I

B = B Pfx cosm) + y sinm)]z zo

Model 1: B = 6BIm[(k~r + ik~z)k- e m

B 6Bj1 j~~ + ik~)eif k 79 0
B* 6Re (k6r +ik6z) t eimo I

Br = f6Bek6r + ikn )

z

Brdel2: B 6Bkr sia 4 + 'I(z)snm

r 2r

0

B = S l+ CLX + aX 2 ]Z(XZ)COS M* X r 0

B =6B[l +acx + X 2 IZv (Xz)sin m4)z

where x =(r- 0)/r0

fM _ ai -(r)2)

z(Xz) = sinh()Xz) NZ = 1

z(Xz) =cosh(Xz) NZ yi 1

5dt t td where t* 2Tr/max(Q IS)
zo' Oo
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BTRAK OUTPUT FILE

FOR026. DAT

Binary File

At successive times:

r-r 0 12, z, r, i , z ,1 t.

".- ,
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APPENDIX CC

Program TUNES

This program checks for resonances of the form

n+V+ + n-v =P

where V + are the tunes of the fast and slow modes and n±, P

are integers. The program checks those n± satisfying

In+ + in_J < 3 and for P<Pmax where Pmax is input.

Input Data File I: FOR055.DAT

IFLAG (o,l) = (beam, particle) motion

r , 0a, rb Chamber major, minor radii, beam minor radius

I : Current (kA)

AE, AB : Toroidal corrections: kE = Lna/rb)+ AE;

LB= 9n /rb)+ 1 + AB
2 '

Bzi, Bzf, n: Initial, final vertical field values field index.

2Boi, Bef : Initial, final toroidal field values

P Maximum value of P to be checked.
Pmax

Notes: All quantities in cgs units, unless otherwise specified.
2Linear variation in time used. (T: 0 - 1)

42



'7 .'° - -7

Interactively Generated Plots

(Uses JAYCOR plotting routine)

Response to plot option? request: 0: No plot (Stop)

1: V+, v_ plane, showing
resonance lines

2: v vs time

3: v vs time

4: y vs time

Output File: FOR057.DAT

List of resonances crossed, with values of

+, vv, T, y, B , and B at crossing.
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