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I. INTRODUCTION AND OQOVERVIEW
This report describes research performed by Berkeley
Research Associates under Contract #N00014-81-C-2371

with the Plasma Physics Division, Naval Research Laboratory.
4

LT S s
;lwhe-report covers the period June 1981 to June 1983, during

which time investigations were conducted into several major
topics concerning the behavior of an intense (multi-kilo-
ampere) electron beam in the modified betatron electron
accelerator.- The work described here was performed in sup-

port of and in close association with the staff of the NRL

special focus program, "Advanced Accelerators."
e \

' e
TS~ The modified betatron has been selected by NRL for

experimental evaluation as a high-current electron accelera-
tor. Theoretical support has been directed at identifying
those phenomena which will most directly affect accelerator
performance. To this end, research has been carried out in
the following areas: (1) Transverse linear beam dynamics in
time vg;xing, azimuthally symmetric fields, (2) Effects of
grad B;wi;duced drifts, (3) Orbital resonance effects due to
small field errors, (4) Nonlinear effects, especially those
due to non constant betatron field index, (5) Collective
effects, especially the negative mass instability, and (6)
Strongly focused systems. These studies were undertaken

f

with a view toward assisting in the choice of parameters for

an experimental device to be constructed at NRL. The results
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of this work have served as intended, to focus the experi-

mental design effort in that region of parameter space most

likely to produce a beam of the required characteristics.
This report is divided into eight sections. Follow-

ing the introduction, in Section II, we describe, in outline,

the assumptions, analysis, and conclusions of our study of

the dynamics of an intense, azimuthally symmetric beam. The
beam is studied in the paraxial approximation wherein all
fields, both self and externally applied, are taken to vary
linearly with displacement from the nominal design orbit
(assumed to be planar). This approximation allows us, by
performing an average over an ensemble of initial conditions,
to obtain equations for the motion of the keam centroid
about the center of the vacuum chamber, as well as for the
motion of individual particles about the center of the beam.
A WKB solution to these equations allows several conclusions
to be drawn about the stability of the betatron oscillations
and the adiabatic behavior of these oscillations, both during
acceleration and the subsequent removal of the toroidal
magnetic field.

Section III outlines our analysis of the effect of
the radial gradient of the toroidal field on beam motion--a
nonlinear effect. We find grad-B drift to be canceled by
the weak focusing forces, the net effect being a slight shift

in the equilibrium beam position, unless it happens that the
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focusing forces are just canceled by wall image forces.
The avoidance of this transition point, where betatron focus-
ing and wall image defocusing forces balance, leads to an

important limit on beam current which is independent of the

Y PRSP

e toroidal field. This limit is given in Section III.

2
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Sections IV and V deal with resonance effects. In

‘l
. l e e e

Section IV we describe the effect on the beam centroid of
small azimuthal variations in the applied fields. We obtain
an important bound on the allowable azimuthal field perturba-
tion in order that certain so-called integer resonances will
not disrupt the beam. The approach again employs the paraxial
fd equations of motion and the averaging technique developed in
c our study of the dynamics of the symmetric beam. The analysis
N of Section V presents certain results on nonlinear resonance
effects caused by the transverse variation of the field index
n.
I Next, in Section VI, some results on collective insta-
- bilities are given, building on work by Sprangle and Vom-
voridis. A novel result--a double valuedness in the current
i&f vs energy spread stability curve-~is predicted as a result
;._ of competition between growth and stabilization mechanisms.
A strongly stabilizing effect of the toroidal field is
evident.
'ELV In the final technical section, Section VII, a dis-
cussion is given of the sensitivity of a weakly-focused system

s to average beam momentum-vertical field mismatch.
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Consideration of this problem has led to a proposal for the

use of a type of strong-focusing coil arrangement in which
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- orbits have been studied in the linear approximation. -
In all technical sections, calculations are only sum-

marized or outlined. Details are relegated to Appendices.
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Additionally, computer codes developed in the course of this

"

work are documented in Appendices.
=l A final section, Section VIII, briefly summarizes the

work, states our conclusions, and suggests directions for ~]

further study.
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I1I. TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON Hj

The modified betatron electron accelerator field con- fﬁ
figuration consists of a conventional weak focusing betatron ;
field upon which is superimposed a toroidal magnetic field. ?;

1,2

It has been shown that this toroidal field greatly in-

creases the amount of charge that can be confined in a device ;;
of given size. Acceleration is accomplished as in a conven- :
tional betatron, that is, by changing the flux through the
electrons' orbit.

The orbit of any particular electron depends, however,
not only on the external fields as in a conventional (low v/Yy)
device, but also on the non negligible fields produced by
all other particles in the system. These fields are found
by solving Maxwell's equations with the correct sources.

Since we do not attempt here to calculate the particle dynam-
ics self-consistently, we are forced to make some approxima-
tion for these sources which we do by taking the number and
current densities as constants across the beam cross-section.
This approximation appears to agree fairly well with the
number and current distributions found in numerical simula-
tions and our final results are quite insensitive to the
exact distributions which affect only a certain coefficient
in the argument of a logarithm. Maxwell's equations are
solved through first order in the inverse aspect ratio of

the torus. It is very important to include these "toroidal
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corrections” to the self-fields for intense beams (v/y2.02).

They affect both the value of the required vertical field

needed to hold the beam at its equilibrium radius as well

as the values of the betatron frequencies. These corrections
1,2

were not included in previous treatments .

The resulting fields, when substituted in the equa-

tions of motion, yield a paraxial equation description of
the beam. When solved, the equations illustrate several

o interesting phenomena involving the beam. First, two basic
modes of oscillation exist, a "fast" mode corresponding
roughly to cyclotron motion about the toroidal field, and a
"slow" mode corresponding to an F x B drift motion where
here the force ¥ is due to a combination of the ordinary
weak focusing fields, image currents and charges in the wall,
- and hoop stresses on the ring. It may be arranged, by judi-
cious choice of parameters, that the fast mode will always
be stable, throught the injection-acceleration-ejection cycle.
The slow (drift) mode, however, is more complicated. Under
certain conditions the net radial focusing force (ﬁ) may
vanish, leading to a transition to unstable behavior fol-
lowed by a subsequent reversal in sign of the drift motion
that is described in detail in Appendix A. This transition
may be shown to occur at a boundary in parameter space on

s one side of which the toroidal field is essential for beam

stability, while on the other side the toroidal field is

P .
.....................




superfluous for stability. This "instability gap" may not

be so serious for single particle motion since it may be
shown that a small expansion of the beam restabilizes the
motion. For motion of the beam centroid, however, it is
much more serious. In fact, we have concluded, on the basis
both of this work and other numerical studies, that the beam
must be launched and accelerated so as to avoid passage
through the instability gap for beam center motion3. For-
tunately, this does appear possible to do, though it does
place a limit on the current that may be accelerated in a

device of given aspect ratio. That limit is given by

n_ = 2_"3_(ro/a) 2<1/2 (II-1)
Y

where r, and a are the major and minor radii of the toroidal
chamber, Iy is the beam radius, and ng is the so-called self-
field index. It is interesting to note that this limit is
independent of the value of the toroidal field and may in
fact represent a more stringent requirement than the basic
stability criterion for the fast mode, which can always in
principle be satisfied by choosing a large enough toroidal
field. For example, according to the above constraint, a

10 kA beam must be injected such that its in situ energy

(i.e., that energy retai =2d as ' .ietic energy by the beam

after the beam has given ur some fraction of its energy to
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the fields within the chamber, after leaving the diode)

L
P -

corresponds to a value of Yy in excess of 6.2 for a chamber
with ro/a = 10. (Toroidal corrections modify this number

somewhat; these are described in Appendix A.)

coaa ]

This constraint (II-1) also affects the workability of

certain injection schemes which are based on drifting the

. .
P

beam away from the injector structure during one major
transit of the machine. Since the drift frequency is pro-
portional to the quantity (1/2 - rﬁns/az) (B,/By), one does
not want to work too close to transition since a minimum
value of B is required to stabilize the fast mode and one

requires that the drift frequency wp be at least as large as

r

wg 2—Al—’ (I1-2)

3=

where A is the distance from the injector port to the beam
equilibrium orbit and T is the orbital (major) period. (Con-
straint (II-2) comes from requiring the beam center to drift
two beam radii during one transit around the machine--a mini-
mal requirement for achieving low levels of loss due to scat-
tering by the injector structure.) Both constraints (II-1)
and (II-2) favor a large value for vy at injection time.

The instability gaps for particle and whole beam motion

‘&f have no analog in a conventional betatron. They occur, rough-
E{ ly speaking, when self-fields become comparable to applied

F’k fields, which is never the case in a conventional, low current




device. The modified betatron, if it operates as projected,
will be the first cyclic particle accelerator in which beam
self-fields play a significant role in the particle dynamics.

Another phenomenon occuring in the modified betatron
does have an analog in a conventional betatron. This is the
adiabatic change in amplitude of the betatron oscillations,
as external parameters (Bz, Be, field index, flux, ...) are
slowly changed4. The solution to the linearized equations of
motion allows us to obtain explicit expressions for the ratio
of the beam radius at the end of the acceleration to that at
the beginning. The result is that the beam undergoes a
slight compression, as in a conventional accelerator. The
beam remains well-behaved during all slow changes in param-
eters as long as one avoids the instability gap, the bound-
aries of which appear mathematically as two turning points in
the WKB solution.

Unlike the case in a conventional betatron, however,
this adiabatic decrease in the betatron oscillation ampli-
tude does not help very much in the basic injection problem;
that is, ensuring that the beam misses the injector after one
turn. In a conventional betatron one has at least a few
turns to accelerate the beam before a particle returns to the
vicinity of the injector, since the betatron wavelength is
somewhat greater than the machine circumference. With a

strong toroidal field in place, however, particles in the
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modified betatron tend to follow the toroidal field lines
and one must depend on the slow drift to carry the beam away
from the injection port in only one turn. The beam, if
successful in missing the injector on the first turn, may

be subsequently trapped by changing external parameters.

In the course of these investigations on transverse
beam dynamics in azimuthally symmetric fields, two computer
programs were developed to assist in our understanding of
the electron orbits. First, a code LBE (for "Linearized
Betatron Equations") was written which integrates the linear-
ized equations of motion for either an individual particle
or the beam centroid in arbitrarily time-varying external
fields, Ee(t), Bz(t), Be(t). The code includes toroidal
corrections to the self-fields, assuming a given fixed beam
radius. It was used to generate Figs. 4-6 of Appendix A.

The code itself is documented by I/O description in Appendix
AA, where a listing is also given.

A second code, a single-particle integrator, was also
written for the purpose of studying nonlinear dynamics at
high energies, where self-field effects are less important.
This program, named BTRAK, was eventually modified to include
azimuthally varying fields for our study of resonance effects.
(See Sections 1V, V, and VII.) Its documentation, including

listing, appears in Appendix BB,

10
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3. There is another reason this beam motion instability gap

should be avoided. "Below" the gap, where the toroidal
field is essential for the stability of whole beam motion,
the so-called drag instability, due to finite wall resis-
tivity, becomes operative. See P. Sprangle and C.A.
Kapetanakos, NRL Memorandum Report 4950 (1983).

ﬁ: 4. D. Kerst, Handbuch der Physik, XLIV, 13 (1959).
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-ﬂ I1I. GRAD—Be DRIFT IN THE MODIFIED BETATRON —
. 4
The effect of nonlinearities in the self- and applied -
jf fields will modify the results of Section II; in general,
however, these corrections are expected to be small, and in
any event are hard to calculate. If the tornidal field Be

is strong, however, an important nonlinearity to consider

is the radial gradient in Be.
In general, an electron streaming along a field line
executing small gyro orbits will experience a drift in the
direction VB x B which, in the modified betatron, is vertical.
In the betatron however, the situation is complicated by the
- presence of the vertical field gradient which gives a verti-
cal restoring force; motion in the vertical field clearly
cannot be treated in the drift approximation, since the
orbit size is of the same order as the scale length of sz'
To find the true behavior in the combination of vertical and
toroidal fields, we must solve the betatron equations of
motion, including the 3B0/3r term. Such a calculation has
been carried out; the details appear in Appendix B, part V.
The conclusion reached in the Appendix is that, except
for the exceptional case in which the net radial focusing
force (due to the betatron field and image fields) vanishes,
the 3By/3r term affects the motion only slightly, giving a

radial shift in the position of the equilibrium orbit and a

resulting slight change in the betatron frequencies (which

12
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remain real). The radial shift in equilibrium may be inter-
preted as the result of a balance between the outward "dia-
magnetic” force, which tends to expel the beam from the

high field region and the inward radial restoring force.

;f When the radial restoring force vanishes, the grad-B drift
is free to operate. Since the resulting drift is extremely
fast, the only reasonable experimental alternative is to
avoid the vanishing point for the restoring force. The con-
dition for this has been given in Section II, Eq. (II-1),
which provides a bound on the accelerator current which is

independent of the toroidal field.

13
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IV. INTEGER RESONANCES IN THE MODIFIED BETATRON

-#;- Throughout the analysis of the previous sections it

. was assumed that all applied fields were perfectly azimuth-

ally symmetric. 1In practice, of course, any actual accel-

erator will have slight field imperfections in the toroidal

direction, which will be encountered periodically by each

;:f electron. In the general case these small periodically

133 applied perturbations to the electron's orbit cause only a

2 small response. However, if it happens that the frequency

of the betatron oscillations matches the circulation fre-

quency (or an integer multiple thereof) a constant phase

e relationship is maintained over many circulation times be-
tween the particle motion and a Fourier component of the

- field imperfection. The resulting "integer resonance" can

iﬁﬂ cause an enormous buildup of betatron oscillations and loss

3 of beam confinement.
;ﬁg In a conventional betatron integer resonances do not
occur (neglecting the marginally stable cases n = 0 or 1)

because the betatron frequencies, both radial and axial, are

-4

N necessarily always lower than the particle circulation fre-~

mppe.
W
. ..'

7’
I

quency. In the modified betatron, however, the fast mode

¥4

can be resonant. For motion of the beam center the gf-th

.'. l».}.

resonance occurs when the ratio of the toroidal to vertical

fields is

4 —1l,o2_1 -
e Be/B = Tf(z 2 + n )l (IV 1)

14
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where & is the Fourier harmonic number of the field error. ;j
"

Since both Be and B, will in general be changing in time =
o

during an experiment, some of these resonances may have to ;@
be passed through. This will necessarily be the case if *{
- 4

one anticipates rémoving the toroidal field prior to beam fﬁ
ejection. The question then arises as to how fast the £-th :i

resonance must be passed through in order to avoid beam
disruption.

To answer this question the equations of motion in
the presence of a field error were formulated and solved,
assuming that the fields varied slowly over a circulation
time. The result, derived in Appendixbc, gives a bound on
the magnitude of the field error that may be tolerated.

The bound, expressed in terms of the acceleration rate (?),
is rather restrictive, in a practical example that is worked
out in the Appendix, leading us to speculate on ways that the
resonant effect might be minimized.

One possibility which immediately suggests itself is
the use of short acceleration times, thereby limiting the
time during which the resonance effect may operate. Very
short times may be needed, however, since the required accel-
eration time for a given final oscillation amplitude scales
as the (field error)—z. (See Appendix C, Eq. [14].)

A second possibility for stabilization investigated

in the Appendix is thermal spread. Though thermal spread

) 1
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in the beam introduces a spread in resonant frequencies and —
subsequent reduction of the response of the beam center

motion when passing through resonance, individual particle
motion may still be such that an unacceptably large beam :i

expansion occurs.

Yet another possibility, which may be practical for
certain devices, involves maintaining the ratio Bz/Be con-
stant throughout the acceleration. This technique will keep
the tunes constant (save for the tune shift due to space
charge, which is small for large Be) during the experiment.
If the application involves use of the beam in situ, then
the presence of a strong toroidal field within the device
at the end of the acceleration should not be a problem. It
would probably complicate an ejection scheme, however.

A final possibility that was investigated for sta-
bilization is the frequency shifting effect of nonlineari-
ties. Specifically, both the toroidal field and the betatron
field index will generally vary with radial position. Since
the betatron frequencies depend on the values of these quan-
tities, it is possible that the frequencies will be shifted
sufficiently by a small (tolerable) radial displacement so
as to detune the resonance. A rather strong radial gradient
in n may be required to produce the desired effect, however.
Results of an investigation into this question are presented

in the next section.
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In order to be able to predict when certain resonances

will be crossed for a given time history of vertical and
toroidal fields, a computer program named TUNES was written.
This program searches for a specified set of resonances of
the form

gt Vv, =p (1v-2)

where Ve and vy are the numbers of betatron wavelengths of
o the fast and slow oscillation modes within the machine cir-
cumference, and ne, ns, and p are integers. The search is
restricted to [ng| + |ns|53 and p<p_ . where p__  is speci-
- fied by the user. Output includes the resonance label
3’ (nf, ng, p) . the time of crossing, and the values of various
parameters at crossing. TUNES is documented in Appendix CC.

Its use may be helpful in identifying experimentally observed

- resonance effects.

17
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V. EFFECT OF TRANSVERSELY VARYING FIELD INDEX —
ON SINGLE PARTICLE DYNAMICS 3

As discussed in the last section, one possibility con- -

A sidered for controlling resonant response is the intentional

introduction of strong nonlinearities (large values of rdn/dr »;y

where n is the betatron field index) which would result in

an amplitude-dependent betatron frequency. If this effect
were sufficiently strong, the resonant response of a particle
could be limited to small values if its finite amplitude
oscillations lead to a detuning of the resonance. We have
examined the effect of quadratic nonlinearities, limiting
ourselves to single-particle motion for simplicity. Though
this does not allow us to study the general case (since
cubic terms also contribute to frequency shifts), there is
o a special circumstance in which the contribution of the quad-
ratic terms dominate. This occurs when a coupling resonance
(defined below) ccincides with an integer resonance. In
this special circumstance, certain progress may be made
analytically in studying the effect of resonance detuning.
Both a coupling resonance by itself and this "coincidence
resoaance" have been examined. Details are given in Appendix
& D. Here we describe the results of this investigation.
The equations of motion of a particle in azimuthally

"o symmetric fields are

n_nz)yz + %(x'z—y'z) (V-1a)

n
x" + (l-n)x = by' + (2n—1-?%)x2 - (—




y" + ny = -bx' - (2n-n,)xy + x'y', (V-1b)

correct to second order where x = (r—ro)/ro, r, is the major

« ST
. N
PP AP AT SR GP

radius, b = Beo/Bz n is the linear field index, n

o'’ 2

is the :ﬁ
second order field index, and a prime indicates 3/96. These :
equations are solved perturbatively to second order in Appen-
dix D. To linear order one obtains the usual betatron oscil- ;ﬂ

lations with frequencies (Appendix D, Eq. [11].):

(v-2)

v _ b2+1% [ (b?+1) 2-4n(1-n)] %|%
f,S 2

where the subscripts £ and s refer to the fast (+) and slow

(-) modes respectively. These single-particle oscillations

are always stable if n(l1-n)>0.

By inserting the linear solutions into the equations
of motion, we find that the second order correction remains
small unless it happens that the following resonance condi-
tion is satisfied:

vf = 2vs. (V-3)

This condition turns out to be a generalization of the so-
called Walkinshaw resonance condition occuring for n=10.2 or
0.8 in conventional accelerators at which energy is exchanged

between radial and vertical oscillation modes. This phenom-

enon has been observed in early cyclotron experiments1 where,
due to small vertical aperture size, it has led to loss of

the beam. In the modified betatron the resonance is shown ‘*

19 -1
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in Appendix D to lead to energy exchange between fast and
slow modes, with no noticeable growth in beam size under
typical experimental conditions. Thus the resonance (V-3)

is fairly inconsequential in the modified betatron.

This picture changes somewhat when departures from

S

azimuthal symmetry are taken into account. It turns out
that when n=% the generalized Walkinshaw resonance coin-

cides with both ordinary integer (%2=1) and half-integer

Wl P ¥ A'.l_‘-. | N

orbital resonances. By including field error terms we may

derive equations governing the evolution of the mode ampli-
tudes for this "triple coincidence" resonance and use their
solution to study the effect of frequency shifts cn resonance
detuning in this special case. This program is described
in detail and carried through in Appendix D where particle
orbits under resonance conditions are illustrated and dis-
cussed. The basic result from this analysis is that even
fairly strong gradients in n (i.e., large values of n,) do
not adequately control the resonant response of a single
particle, that is, the frequency shifting effect is too
small to be helpful in the case we have studied.

Our conclusion from this and the preceding section

seems clear: It appears to be important to avoid machine

operation near low order integer resonances, the condition

for which being (IV-1).
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Vi. BEAM INSTABILITIES IN THE MODIFIED BETATRON

|

The question of what limits the current a particu-

oo
R
PULNAGN

Ly

lar accelerator can carry in a stable manner is a compli-

.
¢
PO

cated one. In the case of the modified betatron, the first

A'AA.L[' !

analyses (Section II, Refs. 1 and 2) suggested, based on

examination of individual particle betatron oscillations in

the self-fields of the beam, that particle motion could
be stable for large currents if the toroidal field were
made sufficiently strong. Later work (Section II, Ref. 3
and Appendix B), which considered motion of the beam centroid,
led to the discovery that the total beam current must satisfy
the constraint given by (II-1l), which is independent of the
strength of the toroidal field. These analyses, however,
treated the beam as smooth and azimuthally symmetric. It is
known that under certain conditions small azimuthally varying
density perturbations can grow exponentially in time leading
to either bunched or kinked beams. Such longitudinal and
transverse beam instabilities in general become more destruc-
tive (faster growing) the higher the current and so it be-
comes important to consider their current limiting effect in
the modified betatron.

A dispersion relation for longitudinal and transverse
modes for a beam in the modified betatron has been derived
by Sprangle and Vomvoridisl, where a stability condition is

also given. Building on this work, Sprangle and Chernin2

"."." 22

PV PTRYy ._'_."l"‘..-‘- PRSP PP GPTIT YR TR G ST S




TR TR ST TR

(Appendix E) have considered a slightly more general case,
taking into account short wavelength contributions to the
wave impedances and the stabilizing effect of finite ampli-
tude betatron oscillations. In Appendix E it is shown that
the presence of the toroidal field greatly enhances beam
stability to both longitudinal and transverse modes, thereby
greatly increasing the current limit over that of a conven-
tional betatron; this stabilizing effect was noticed in
Reference [1] where several numerical examples are worked
out. The growth rate of the negative mass/kink mode, for
example, scales as Bgl, a fact attributed to the inhibiting
effect the toroidal field has on transverse motion. Stabili-
zation of both longitudinal and transverse modes, for toroi-
dal mode number 2#0, is due to energy spread, or, more pre-
cisely, angular frequency spread in the beam; if two parti-
cles, initially traveling together, separate by a wavelength
or more in a (cold beam) growth time, clearly the coherence
of the instability will be lost and growth will stop. If
we call the spread in angular frequency in the steady state
beam AQ and the growth rate in the absence of frequency spread,
I', then we expect, on the above grounds, the stability condi-
tion to be given by

r < 2]aq| (VI-1)
to within a numerical factor. 1In fact, it may be rigorously

shown1 that for a beam with a Lorentzian distribution of
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canonical angular momentum (VI-1l), is the exact stability
condition.

The frequency spread A of the equilibrium beam is
related to the energy spread via the single particle momen- ;]
tum compaction factor; the relation is

laQ| = %wclcx[ (AE/E) (VI-2)

where o = (%-—n ) =Y W, is the cyclotron frequency,

and AE/E is the full width of the energy distribution. We
note the importance here of including self-field effects,
represented by the self-field index ng, in the definition of «a.
It is the appearance of ng in a, which leads to a novel
effect, predicted in Appendix E on the basis of (VI-1,2):

For low currents (ns<<%), o is effectively independent of
current and so, since the cold beam growth rate increases
with current, the beam energy spread required for stability
also increases. As one continues to increase the current,
however, o begins to increase significantly, eventually
overcoming the increasing growth rate beyond which point
increasing the current still further results in stabilization!

In fact, for nsz%, virtually no energy spread is required.

There results therefore, from this competition between growth

and stabilization mechanisms, a double valuedness in the
. current vs energy spread stability curve, illustrated and
discussed in Appendix E. The prediction of a second stable

operating regime for accelerators is the main new result of

24
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this investigation. Our conclusion is that the toroidal
field makes possible operation at high currents by (1) re-
ducing cold beam growth rates and, (2) giving access to
stable, nigh-current sectors of the current vs energy spread

diagram.

L
E: .
;
f
3
b

.
I.'.

n

1]

.
1
2

|3

A

25




DL et e g Padaty L A AP APl i ) TR o ‘

Pt e e S Aty Sait B Al Buk i At T S A At e et vt Jioe

4
N O Ty

REFERENCES 4

1

. ]
\',:;:.- l. P. Sprangle and J Vomvoridis, NRL Memorandum Report jj
(1982). ]

) 1
2. P. Sprangle and D. Chernin, to be published (Appendix E). '

!

e A PP UESPE. APUL WL TP VU W TN Sy PO




-----

VII. STRONG-FOCUSING SYSTEMS

Conventional betatrons are weak-focusing accelerators,
meaning that the wavelengths of the betatron oscillations are
of the order of the machine circumference. A second conse-
quence of weak-focusing is that the momentum compaction fac-
tor, defined as the fractional radial shift in a mismatched

beam divided by its fractional momentum mismatch:

a = (Ar/x )/ (Ap/p,) (VII-1)

is typically of order unity. For a conventional betatron it
may be shown, for instance, that a = (l—n)-l. As a result,
for weak-focusing systems one can typically tolerate only
a few percent momentum mismatch before a beam is lost to the
chamber wells. Strong-focusing systems, on the other hand,
have small values for the momentum compaction factor and
betatron wavelengths are much smaller than the machine cir-
cumference. A strong-focusing accelerator, consequently, can
tolerate a relatively large momentum mismatch. It was the
discovery over 30 years agc of the strong-focusing principle
which has allowed the construction of the large radius
research accelerators in use today.

A modified betatron is a strong-focusing system with
respect to particle orbits about the center of the beam,
but is a weak-focusing system with respect to motion of the

beam centroid about the center of the vacuum chamber. As a

27
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result, it is necessary that the average beam energy be -

matched to the vertical field to within a few percent. This

[
P,

may be done with careful injector and magnetic field design

N TR

but design tolerances tend to be tight.
It was the realization of this tolerance problem _
)
N
which led to the consideration of ways to implement strong-

focusing in a modified betatron in a way consistent with its

design. As a result of a study, it was proposed to add so-

S, s ‘
R . '
'A_‘IA_L‘ML

called £=2 stellarator windings to the betatron in order to

‘lc T
LA
e,

oy
dhakatith

obtain the beneficial effects of strong-focusing on the beam
centroid motion. This extra winding is basically a continu-
ously twisted quadrupole, the limiting case of conventional,

closely-spaced discrete quadrupoles which we used in alter-

N [N -‘r.-' .,
e T
A“A oy e

nating gradient focusing. Beam dynamics in the resulting
configuration, consisting of a conventional weak-focusing
betatron field, a strong-toroidal field, and an %=2 stellara- '¥
tor winding have been analyzed in the linear approximation

including the effects of self~fields. The results are given
and discussed in Appendix F where expressions for the betatron f‘
frequencies and momentum compaction factor are derived. We

find the results to be encouraging in the sense that the addi-
tion of the stellarator winding allows large beam currents _4
to be confined and a large beam momentum mismatch (~50% is

not unreasonable) to be tolerated. .
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The addition of the stellarator winding is not with-
out some drawbacks. As with any strong-focusing system, the
effects of orbital resonances must be carefully considered.
As discussed above in Section 1V, resonances are present and

may be a problem already in the modified betatron without the

stellarator field. Addition of the 2=2 winding introduces
new sets of resonances which must be examined. This work is
presently in progress and should lead to important guides for
design.

From a practical point of view, the stellarator winding
introduces some other possible complications. Injection may
become difficult due to the presence of the separatrix,
though one possible way to avoid this problem is to introduce
straight sections along which to inject. Construction, sup-
port, and power supply questions for the stellarator winding
also need to be examined. Some preliminary study of the
injection and coil design questions in £fact have led to con-
sideration of an =0 system which may be preferable from the
point of view of some of these problems. The £=0 stellatron,

or "bumpy torus accelerator" may have some practical advan-

tages over the £=2 system. It is described and analyzed
%?; in Appendix G.

5;u Despite possible drawbacks, we conclude that strong-
focusing systems show significant promise as high-current

E”‘ accelerators. Basic issues in orbital stability and
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momentum bandwidth have been addressed. Resonance effects,

beam instabilities, injection, and detailed coil design

issues remain to be studied further.
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VIII. CONCLUSIONS —

The analysis of beam behavior in the modified beta-
tron carried out by Berkeley Research Associates over the
past two years has led to a detailed understanding of how

such an accelerator should operate, its advantages compared

to conventional betatrons, and its limitations. Among the
advantages must be listed its ability to hold large currents
stably during acceleration. We have found that the toroidal
field greatly enhances the equilibrium current that may be
carried and also enhances the stability of the beam to the
longitudinal (negative mass) and transverse collective beam
instabilities which may affect the beam. We have found non-
linear effects, including grad-B drifts and effects of trans-
versely varying field index to be negligible as long as the
- net radial beam-focusing forces remain finite (II-1l). Orbi-
. tal resonances may be a problem in the device unless thay are
passed through very rapidly or avoided altogether; avoidance
-, of the low f-number resonances, at least, is probably essential
- and possible to do in some acceleration scenarios which have
been discussed.

Among the limiting features of the modified betatron
must be mentioned the sensitivity of the position of the beam
equilibrium orbit with respect to its momentum mismatch.

This feature, a consequence of the weak-focusing betatron

fields, may be overcome by the addition of stellarator fields,
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the effect of which is to allow beams with a large momentum
mismatch to be confined.

Studies of beam dynamics under this contract have
contributed in an important way to the selection of parameters
for the high-current injection experiment now being constructed.
This experiment will challenge and refine our understanding of
the properties of high-current electron beams in toroidal
devices. Once completed, the experiment should lead to an
operational high-current accelerator.

Theoretical issues which remain to be addressed include:
verification of the double-valuedness in the stability curve
discussed in Section VI, in a simple but rigorous (Vlasov-
Maxwell) model; analysis of the expected radiation spectrum
(for diagnostic purposes or for radiation source development) ;
and investigation of resonance effects, injection methods,
and coil design in the stellatron. Work in these areas is
presently being pursued in association with NRL personnel.
Combined with the efforts of the past two years, this con-
tinuing research will assist in a significant way in meeting
the goals of the NRL Special Focus Program on advanced high-

current electron accelerators.
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APPENDIX A

Beam Dynamics in the Modified Betatron
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1. INTRODUCTION

1t has been suggested'2 that the current carrying
capacity of a conventional betatron accelerator
might be improved dramatically by the addition
of a strong toroidal magnetic field. Such a field
acts to confine the beam during injection and
early stages of ncceleration when v, the usual
relativistic factor, is small and space charge ef-
fects which tend to expand the beam are large.
After acceleration is complete, v is large, space
charge effects are small, and the usual weak fo-
cussing betatron fields are sufficient to confine
the beam; the toroidal field may then be removed
to facilitate beam ejection. In gencral both ver-
tical and toroidal magnetic ficlds may be chang-
ing simultancously during beam injection and
ejection. It is the purpose of this paper to examine
the behavior of the beam in such time-varying
fields.

Some carly, though unsuccessful experiments
using this modificd betatron ficld configuration
were carried out in England after World War 11,3
subsequent analysis* attributed the poor results
to the injection method used at the time whereby
significant numbers of electrons intersected the
back of the injector structure after a few trips

* Supported by the Office of Naval Rescarch
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f:-__'_ TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON*

D. CHERNIN
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{Received December 16, 1981; in final form April 5, 1982)

The linearized equations governing the motion of the center of a beam about its equilibrium position in a modified
betatron, as well as equations governing the motion of an individual particle about the beam center, are presented
and solved. Self field effects, including toroidal hoop stresses and wall image forces, are included in the analysis.
All fields, both self and applied, are assumed to be azimuthally symmetric but are allowed to have arbitrary time
dependences. The solutions to the equations of motion are analyzed for stability and conditions for stability are
obtained. Further study of the solutions illustrates two phenomena of experimental interest: (1) the unavoidable
traversal of a finite *‘instability gap’ in parameter space during acceleration and (2) the adiabatic increase in the
amplitude of the betatron oscillations during removal of the toroidal magnetic field, prior to beam ejection. By
careful design, the effects of these phenomena can be reduced to insignificant levels in an actual accelerator.

around the device. Recently other, more prom-
ising injection schemes have been proposed® to
take full advantage of the focusing action of the
toroidal ficld. The resulting prospect of con-
structing a very high current (~ 1-10 KA) be-
tatron has prompted the analysis prescnted here.

We shall derive and solve equations governing
the motion of the center of an electron beam con-
fined in a modified betatron as well as equations
governing the motion of an individual particle
within the beam. Whole beam and single particle
stability criteria will be presented; the stabilizing
effect of the toroidal field for both beam and sin-
gle particle motions, noted earlier,"? will be ap-
parent.

When the fields are allowed to vary in time two
interesting phenomena occur. The first phenom-
enon, which occurs during acceleration, has no
analogue in.a conventional betatron: As the beam
accelerates (y increases) the betatron makes a
transition from a region in parameter space in
which the toroidal field is essential to stability
(modificd betatron regime) 1o a region in which
the toroidal field is superfluous to stability (con-
ventional betetron regime). It turns out that, ex-
cept under extraordinary circumstances, the sys-
tem must pass through an “‘instability gap™—a
rcgion of parameter space, separating the modi-
ficd and conventional betatron regimes, in which
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single particle motion is unstable, though beam
center motion may not be, irrespective of the
magnitude of the toroidal magnetic ficld. How-
ever, though the size of the instability gap is in-
dependent of the toroidal field, the instability
growth rate within the gap is inversely propor-
tional to this field. We find below that by judi-
cious magnet design and sufficiently rapid ac-
celeration, this gap may be successfully traversed
with minimal beam disturbance.

The second phenomenon occuring in time
varying fields does have an analogue in a con-
ventional betatron; this is the adiabatic change
in the amplitude of the betatron oscillations.®
Since the frequency of these oscillations depends

‘now on both the vertical and toroidal fields a slow

change in either is expected to alter the amplitude
of the betatron oscillations. During acceleration
we find, as in a conventional accelerator,® that
the oscillation amplitude decreases as the vertical
field increases. If one now considers removal of
the toroidal ficld prior to beam ejection, we find
that, as long as the toroidal magnetic field is much
larger than the vertical ficld, the beam motion
will describe orbits of increasing amplitude as the
toroidal field is decreased. Once the toroidal field
becomes comparable to the vertical field, how-
ever, the motion becomes more complicated and
the betatron oscillations no longer continue to
increase in amplitude. We find that, by careful
choice of field strengths, the ratio of the betatron
oscillation amplitude before acceleration to the
amplitude of oscillation following complcte re-
moval of the toroidal field can be adjusted to be
near one.

In the following analysis we assume *‘perfect,”’
i.e., azimuthally symmetric fields. By neglecting
the possibility of azimuthal variation in the self
fields (due to beam bunching or kinking) we omit
here consideration of a variety of beam instabil-
ities that may occur;” by neglecting similar azi-
muthal variation in the applied fields (*‘field er-
rors’") we neglect the effects of orbital resonances.
These will be addressed in a separate report.®

II. EQUILIBRIUM RADIAL FORCE
BALANCE

The geometry of the modified betatron is shown
in Fig. 1. The field configuration is that of an
ordinary betatron with the addition of a toroidal
magnetic ficld, Bgo, here taken to be positive and
constant across the minor cross section of the
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Cutaway view of modified betatron geometry

FIGURE 1

torus. We consider an electron beam of circular
cross section, as shown in Fig. 2, with center
located at (r., z.) = (ro + Ar, Az) where rgyis the
equilibrium radius for the center of the beam at
which the electric, magnetic, and centrifugal
forces on a particle at the center of the beam are
in balance. We shall take r, to be the major radius
of the accelerator chamber. In the abscnce of self
field effects radial force balance requires the
electron circulation frequency at r = rg, z = 0
to be given by

e0 = nZO (l)

= eB,o/myoc (no self field effects),

PARTICULAR
ELECTRON
POSITION

MINOR CROSS SECTION
OF TORUS

FIGURE 2 Coordinates of beam and particle in modified
betatron. Center of beam is at (r, 2) = (ro + Ar, Az). Electron
isat (r, 2) = (ro + Ar + br, &z + 82).
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MODIFIED-BETATRON BEAM DYNAMICS

where B,, is the value of the applied vertical be-
tatron field at the location of the orbit, vy, is the
usual relativistic factor, e(>0) is the magnitude
of the electron charge, m is the electron rest
mass, and c is the spced of light.

Self field effects will modify Eq. (1) however.?
A nonneutral current ring produces both a zero
order vertical magnetic ficld and a radial electric
field. In general, for a reference particle at r =
re, 2 = 0, radial force balance requires

. - | .
—YoroBo® = = [Er“” + —r06pB,® ] ()
m c

where E'” and B,? are the zero order fields at
r = ro, z = 0. From Appendix A, Egs. (A-25c,
26¢, 26d)

2

B = B,o — mnoePo Iy 3)
o
2
E® = —qnoe 2 Ie )
ro

where the notation is defined in Appendix A.

The terms proportional to I in Eq. (3) and I
in Eq. (4) are toroidal corrections to the self fields
of a cylindrical beam. They represent *‘hoop
stresses’'—self forces on a nonneutral ring of
current which act to expand the ring. Since we
do not attempt here to construct a consistent
equilibrium for the beam'®-!? we leave Ig and I
arbitrary in the analysis below since their precise
values depend upon the particular distributions
of charge and current in the beam. Still, one ex-
pects the leading order logarithms in the cxpres-
sions for Iy and I, Eqs. (A-27, 28) to be correct.

Using now the zero order fields, Egs. (3, 4),
in Eq. (2) we may write the condition for radial
force balance as

2
[] +l’g]002—nzoéo+‘1£‘2h§=0 (5)
Yo Yo ro

where

1 82 1 w;,zrbz
v/)'o = :;; ['nn,zno ;c"—z] = Z‘—zz—— 6)

and where w, is the beam plasma frequency,
(4wnoe?/myy)'. Here and below €1 retains the
definition assigned to it in Eq. (1).

Equation (5) is a quadratic equation for the
circulation frequency, 6,. The solution which

33.3

approaches 1,4 as v/yo — 0 is, to first order in

vio
éoznzo[] ——v"‘('l_zlb"‘l"lll)]v (7)
Yo \&

where a = ) ore/c. Self ficld effects, represented
by the v/y, term, are scen to reduce the single
particle circulation frequency beclow that ex-
pected for.zero density; the correction term can
be significant (20-30%) in presently contem-
plated devices. The general result, Eq. (7), will
be needed below in the derivation of the first
order equations of motion.

H1. FIRST ORDER EQUATIONS OF
MOTION

In this section the equations governing the mo-
tion of a bcam and motion of an electron within
the beam are obtained and discussed. We shall
consider in detail only motion transverse to the
toroidal magnetic field, assuming that all fields,
both self and applied, are independent of 6.

The equations of motion for a particle in the
fields of (A-25, 26) to first order in the displace-
ments from the reference orbit (ry, 0), are derived
in Appendix B. They are

1+ 1-071
Yo

+ ﬂ}o[l - n* — ‘yl(%le + 210)]“
0

2
- n:N% (8r + %Ar) - ,Y—VOIBQEOA"

eB . P
2 21 + Qoody + N0 LL
2mvyocC Yomry

-2
x [1 - 1(1—1“—%"—15 + 1,,)]
Yo a

o+ zgil
Yo

(8a)

. 2
p
+ QZin*zy - n,0% (Sz + ;;Az)

eBoo .
= - r — ooty

2m Yol (8b)
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where
n=r—r= Ar + br
21 =2 = Az + 8z
n* = n[l - %(ﬁls + 15)]
ns = wp2/(2v0°N:0%)
Qoo = eBoo/myoc

and where Pg; is equal to the canonical angular
momentum of the patticle at (r, z) minus the ca-

- nonical angular momentum of the refcrence par-

ticle at (ro, 0), to first order in small quantities.
It may be shown, using the definition of Py, Py

e
=r m'ng - ;Ae y that

Peor = myorp
)]
X [V01702 - ‘yi:linzolsn - lﬂzolsA’],
0

Yo

where Vﬂl = Vo - Voo.

As they stand Eqgs. (8a) and (8b) are not easily
solved since, before they can be solved for the
coordinates of a particle (ry, z,) the beam position
(Ar, Az) must somehow be known as a function
of time. However, a set of consistent equations
for beam and particle motion may be obtained by
performing an ensemble average of Eqs. (8a, b)

over initial particle coordinates and velocities.
Denoting such an average by brackets it may be
shown that, as long as the beam is assumed not
to kink (Ar, Az independent of 8), we will have

(r) = Ar, (89 = (81 = (6 = 0 (10a)
(1) = Az, (82) = (82) = (Bz) = 0. (10b)

Upon performing this averaging procedure on
Eqgs. (8a, b) we will obtain equations governing
the motion of the center of the beam. These may
subsequently be subtracted from the original,
unaveraged Eqs. (8a, b) to obtain equations gov-
erning the motion of a single particle within the
beam. Both resulting sets of equations may be
summarized by the following single set:

X+ wlx = Qooy + $Qe0y + F  (112)

¥+ 02y = —0gox — $Qox (11b)

where the various quantities appearing in Eqs.
(11a, b) are defined in Table 1.

Equations (11a, b) are our basic starting points
for the analysis to be presented below. In the
following sections we will derive and study the
WKB solutions to Egs. (11a, b). First we make
a few remarks on the equations thcmselves.

The term proportional to x on the lcft hand side
of Eq. (11a) and the term proportional to y on the
left hand side of Eq. (11b) represent radial and
vertical focussing forces respectively. In gencral
the coefficients of x and y in these terms are not

TABLE 1
Definition of Quantities Appearing in Equations of Motion, Egs. (11a,b)

Beam Equations

Particle Equations

x.y) vo'%(Ar, A2)
2 2 [ s’
[ Qo)1 - n* ~ ? n,

Ww/l 1y 1
Yo (uz le + 'B)] 250 + 4
5

Yo'*(dr, 52)

n}o[l - n* - n,

v {3 190 . 1 (¥o\?
-=1=1 +2!)]--—-+—(-—)
Vo(n’E s 2y 4 \vo

2 19 1 ("Yo)2
Qen* — s - == + - —
ol = ] 20 4\v
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MODIFIED-BETATRON BEAM DYNAMICS

equal which suggests that an initially circular
beam may not remain circular. The value of n
which makes these terms equal (the value re-
quired to maintain a circular beam cross scection)

is
| v (2
Neir = 5 [] - ; (;—2' le + lu)] (12)

which depends on v and therefore on time. In
what follows we wil! leave n arbitrary, though we
shall assume implicitly that its value is close to
nq.. This is necessary for self consistency since
we obtained the beam self fields Eqgs. (A-26) as-
suming a circular beam cross section.

In the case of constant fields Eqgs. (11a, b) are
elementary. For this case we have

() - (%)
+ 2 C; (W,—LIVJ":’Z) e (13)

where the eigenfrequencies (frequencies of be-
tatron oscillations) are given by

w2 + w,? + 0%
w, = *

2

* [(w:2 + 0,2 + Q%) — 4(:0,,2(9,2]"2]”2
2

(14)

and where the C;, j = 1, 2, 3, 4 are constants.

Stability conditions result in the usual way by
requiring w? > 0. We postpone examination of
these conditions, however, until the following
section. We note here only that for values of vy
above a value dependent on geometry (ry, a, ro,
n) but not on beam density, the self field contri-
butions to »,? and w,” fall off as y, ™!, rather than
vo~ 3. For whole bcam motion the valuc of vy at
Wthh the v/y, terms become comparable to the
ry2n,/a* term can be modest (y ~ 10) for typical
laboratory parameters (r, = 1 cm, a = 10 cm,
ro = 100 cm, n = 0.5). :

The particular solution in Eq. (13) represents
physically for particle motion a first order radial
shift of a particle which, while located initially
at the reference orbit (rg, 0) does not have the
correct energy to be maintained there by the local

vertical magnetic field. It therefore moves in or
out slightly depending on the sign of the encrgy
mismatch. If, however, the radial focussing
forces, represented by w,?, happen to vanish the
behavior becomes secular (no equilibrium radius
exists) and the particle- moves vertically, up or
down depending on the sign of the mismatch; this
secular motion is just the so called *‘curvature’’
or ‘‘centrifugal’’ drift.

The solution to the homogeneous part of Egs.
(I11a, b) also becomes secular when w,2 = 0. In
fact, when w,? = 0 and 0,® # 0,2 (n # n,), the
point w,> = 0 corresponds 1o a turning point
(transition from stable to unstable behavior) in
the WKB solution prescnted in the next section.
Since w,? for particle motion will pass through
zero dunng acceleration, it becomes important
to examine the behavior of the solutions to Eqgs.
(11a, b) for time dependent fields. In general, for
slowly time varying ficlds, a numerical solution
to Eqgs. (11a, b) over the entire acceleration cycle
is prohibitive since the numerical integration time
step must be small compared to Q5" which in
turn is extremely small compared to typical ac-
celeration times. An explicit solution for this case
is therefore essential.

IV. MOTION OF BEAM IN SLOWLY
VARYING EXTERNAL FIELDS
A. Stability Considerations

If the coefficients of the derivatives of x and y
in Egs. (11a, b) are slowly varying during a period
of a betatron oscillation, the equations may be
solved by the WKB method. (Sce Appendix C.)
To leading order the solution is

1 y _ mz)uz
()~ (0 = 23)
(15)

e [ K )]
xcxpr w,dt +f dt [K,.(t,t')] F('),

where the eigenfrequencics are thosc given in
(14) in which now all quantitics may depend on
time,

wa = [{(wy? + w, + Q30)? - 4(0,.20)_»-2]”4, (16)

and where the kernels K, (1, ') and K., (1, t') arc

.
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given in Appendix C. The A;,j = 1,2, 3, 4 are
constants in this approximation.

This solution, Eq. (16), is valid far from any
turning point, i.e. where any w, vanishes. Turning
points will occur if w,?w,? = 0 and if 0,2 # 2.
(See below.) Initially we shall confine attention
to a cold beam (no longitudinal momentum
spread) for which the particular solution in (15)
vanishes identically. Later we shall comment on
the effect of temperature.

The solution is unstable (exponentially grow-
ing) in time for such times that Im(w,) < 0 for any
Jj. Unstable behavior will occur therefore when-
ever either of the following conditions is violated:

020,2>0 (17a)
w2 + 0?2 + D% > 2wlw,?)?, (17b)

For n = ng, (0, = ,?) inequality (17a) is trivial
and (17b) gives the simplified stability condition

0320 > max(0, — dw,?). (18)

If n # ng, then both conditions (17a, b) must be
simultaneously satisfied for stability. Condition
(173) in particular cannot always be satisfied. At
injection n, is typically quite large and both w,?
and w,? for particle motion (and perhaps for beam
motion) are negative. Dniring acceleration, as g
increases n, decreases (n, ~ vo~*) and w,? and
w,? change sign (for different values of v, if n
# n..); an instability ‘‘gap™ therefore exists
whilc w,? and w,” have opposite signs.

It is important to point out that w,? and w,” for
beam center motion (Re: Table 1) may start out
and remain positive throughout the injection-ac-
celeration cycle while w,? and w,? for particle
motion change sign. We recall from Table I that
the small quantity (r,/a)® multiplies a, in the
expressions for w,” and w,? for beam center mo-
tion but not for single particle motion. Therefore
unless n, is extremely large initially, beam center
motion will remain stable.

The inequalities Eq. (17a-b) are illustrated
graphically in Fig. 3. The stable regions of the
(,/€260)?, (w,/Q60)* plane are those shaded re-

_gions 1 and II in the figure. After injection but

before acceleration both (w,/Q40)? and (w,/{eo)?
for particle motion are negative and in region 1.
In this region the toroidal magnetic field is es-
sential for stability (modified betatron regime).
Following acceleration both (w,/{s0)? and (w,/
40)? are positive, i.e., in region 11 in which the
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stable. Trajectors a and ¢ pass through unstable regions. Only
trajectories, such as b, avoid all unstable behavior.

toroidal field is no longer required for stability
(conventional betatron regime). Only by passing
precisely through the origin (e.g., trajectory b in
Fig. 3) can instability be avoided altogether.
While the size of the instability gap does not de-
pend on the magnitude of By, the value of Im(w;)
in the gap does and is inversely proportional to
Bgo. Therefore by choosing a sufficiently large
toroidal field it should be possible to pass through
the instability gap safely (within a few growth
times, or less).

We may be quantitative for a case in which
toroidal effects may be neglected: When Eq.
(17a) is violated and if Q30 > | w,2 |, | w,? ] then
for the unstable mode, from Eq. (14),

V=oole)?
Qoo

Im w; =

(19)

which has a peak value, assuming only vy, and
not By is changing in time, of

% = T -! H (20)

If

4] Y2
fd:lmw,-sf mo, <1, @
y ’Yo

n

where ¢, and ¢, arc the times at which the insta-
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MODIFIED-BETATRON BEAM DYNAMICS

bility gap is entcred and exited, respectively, then
one expects that the transit through the gap will
not significantly disrupt the beam; Eq. (21) trans-
lates into a constraint on vy
Yo
— >
Yo 3

i

By
Q20 Boo (n - 4. (22)

If the acceleration is fast enough to satisfy Eq.
(22) particle motion will be essentially unaffected
by passage through the gap. It should be possible
to choose a machine design (i.e., a sufficiently
large toroidal field and a field index close to §)
so that Eq. (22) is well satisfied.

The instability which occurs while w,?w,? < 0
has an interesting dynamical origin. Let us con-
sider the equations of motion, Egs. (11a, b), tak-
ing F = 0, and taking the external fields to be
constant in time:

% + we2x = Qooy (23a)
¥+ 0,y = —Qeof. (23b)

These equations are just those governing the
motion of a particle in an effective electric field

Ee" =~ ol (242)
ET = Tty (24b)

and a magnetic field Beo/yo. Converting to polar
coordinates p, ¢ we have

Ef" = gplwf cos’ ¢ + w,?sin’ $]  (25a)
Eo" = .'eﬁ plw,? — w,2) sing cosd. (25b)

The particle behavior may be understood as fol-
lows. Let us assume that n > §, from which it
follows that w,2 > w,? always, and let us consider
first the modified betatron regime (»,? < 0, v,?
< 0). E,*"in this regime is everywhere negative
thereby giving rise to a clockwise E % B drift,
assuming Beo is positive. E4", which is much
smaller in magnitude than E 7, gives a radial
drift of alternating sign as the particle moves from
quadrant to quadrant, thereby producing an el-

- liptical orbit. Stable motion is established by bal-

ancing the outward radial electrostatic + out-

33.7

ward centrifugal forces against the V x B
confining force.

In the conventional betatron regime w,?2 > 0,
w,® > 0 and the sign of E, 7 is reversed. Azi-
muthal particle drift is now counter-clockwise
and the major axis of the elliptical orbit is rotated
by 90°. Stable motion is achieved by balancing
the inward radial electrostatic force against the
centrifugal force; the toroidal field is no longer
needed.

In the instability gap E, 7 has zeroes at polar
angles given by

2\ -1
cos? ¢o = (1 - %) (26)

y

at which points the azimuthal drift velocity van-
ishes. The radial drift velocity, cE4"/B,, cannot
also vanish at the same point. Consequently the
particle drifts radially, with increasing velocity,
since E,°™ ~ p, at the angle ¢y, as long as w,’w,?
< 0. Increasing the toroidal B field, thereby re-
ducing the radial drift velocity, reduces the
growth rate of this instability, a fact reflected in
Eq. (19).

Typical orbits during transit of the instability
gap are illustrated for a simple case in Figs. 4 and
5 in which results of a numerical integration of

1.0

—
FINAL
ORIFT
DIRECTION

-1.0 1 I A I Il 1 I 2 A

-1.0 3¢ 1.0

FIGURE 4 Particle trajectory (8z vs. dr) in the modified
betatron during transit of the instability gap. vy varies linearly
in time from 7.0 to0 16.1 in 2.4 ps. By = 600 gauss, ro = 100
cm,a = 10cm,r, = Ycm, n = 0.53, v/y = 8.4 x 107 at
t=0.
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Egs. (11a, b) are plotted. In Fig. 4 condition (21)
is not well satisficd. The dramatic drift direction
reversal and instability are evident. In Fig. 5 con-
dition (21) is well satisfied (n is near ); particle
motion is virtually unaffected, except for the rev-
ersal of drift direction, by passage through the
gap. The two graphs, in Figs. 4 and 5 differ only
by the value of n used; all other external param-
eters and total intcgration time are identical.

So far no mention has been made of the effect
of temperature, the inhomogeneous term in Egs.
(11a, b), on particle orbit behavior in or near the
instability gap. Particles having an energy mis-
match—either too little or too much energy to
be maintained at the reference orbit by the local
vertical field—will seek out their new equilibrium
orbits about which they will execute betatron
oscillations. Secular behavior is expected, as dis-
cussed earlier, when w,? vanishes.

The effect of energy mismatch on a particle
orbit is illustrated in Fig. 6 where the particle of
Fig. 5 has been given an energy mismatch of

Poy — (Pe1)
—_—— =y — = 0.10.

mroc Y = ) 0

The effect is twofold. The orbit center shifts
slightly outward and the amplitude of betatron
oscillations following passage through the insta-
bility gap has increased by a factor of ~35 over

0.3
FINAL

CRIFT
B DIRECTION

- D o INITIAL
5N DRIFT
DIRECTION

.74

-0.3 . L L A 1 Il L . 1

-0.3 r—_ - - 0.3

FIGURE 5§ Particle trajectory (5z vs. 8r) in the modified
betatron during transit of the instability gap. All parameters
are as in Fig. 4 except n = 0.51.

10.0

FINAL
DRIFT
DIRECTION

REVERSAL

POINT INITIAL

DRIFT
DIRECTION

_‘0.0 L 1 1 1 1 L L 1 1
-10.0 . Y — 10.0

FIGURE 6 Particle trajectory (8z.vs. &r) in the modified
betatron during transit of the instability gap, including energy
mismatch. All parameters are as in Fig. 5 except an energy
mismatch of (Ps, — (Pe1))/mroc = 0.10 has been introduced.

the zero mismatch case. Such a large expansion
of the particle orbits cannot, in fact, be reliably
computed using the linearized Eqgs. (11a, b) used
here. One non-linear effect in particular, namecly
the reduction of beam density during the orbit
expansion, will clearly speed the passage of a
particle through the instability gap. (Recall that
n is proportional to density.) Due to this density
reduction the actual degree of orbit expansion to
be anticipated in a real device is likely to be sig-
nificantly less than that seen in Fig. 6. Still, these
calculations suggest that a fairly cold beam will
be required for successful acceleration through
the instability gap. Poorly *‘matched” particles
are likely to be lost as w,? goes through zero. It
should be pointed out as well that a strong to-
roidal field greatly reduces the effects of energy
mismatch. The computer runs necessarily em-
ploy a very modest toroidal field (660 gauss in
the case of Figs. 4-6) due to time step consid-
erations. A stronger ficld, by further restricting
radial motion, is expected to improve the con-
finement properties of a warm beam.

B. Adiabatic Behavior

Let us next briefly consider, using the solutions
to the equations of motion, Eq. (15), the effects
on the particle orbits of the removal of the to-

33.8
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MODIFIED-BETATRON BEAM DYNAMICS

roidal magnetic ficld. The toroidal field may need
to be removed in order to facilitate beam extrac-
tion though this may not be essential. Let us as-
sume that Eq. (15) is valid throughout the accel-
eration cycle, i.e., that 0,2 and w,? pass through
zero simultaneously and that the solution to the
homogeneous equation (the sum in Eq. (15)) dom-
inates the solution. This is certainly true for
matched particles (Ps = (Ps) = 0) whenn = }
and when toroidal effects may be neglected (v/y
< 1). One may show, using Eq. (15) for such a
case, that for beam center motion in either the
fast or slow oscillation mode

[An? + (89%),
[(Ar)* + (A2)*);

1 "2 1 . 172
[(5 —- —ah—zn,)Bfo + '4‘850]

1 rbz 1

~ = 5, )B% + ;B3
[(2 a? ”:) z0 4300]!

while for particle motion about the beam center'?

(3 + (32)’)s
(®r)* + (82)’)i

o))

28

— [[(% —~ n,)B3 + }Béo].-]"z
I3 — n)B + ¥ Blols)

where the subscripts i and f correspond to any
initial and final states. The latter expression, Eq.
(28), may be interpreted as the fractional change
in beam cross sectional area. Note that for large
Bo the area of the orbits ~B, ™', as expected.

Expressions for these ratios in the case that
toroidal effects are not negligible and n # } may
be obtained from Eq. (15). The expressions are
complicated, however, and will not be cited here.

As a numerical example we consider a 1 kA
beam of 1 cm initial radius in an initial state cor-
responding to y; = 7, B,o; = 120 g, Beo; = 1.5
kg and a final state with y; = 100, Bos = 1.7
kg, and Byo s = 0. In such a case Eq. (27) gives
for the orbital area ratio a value of 0.63 while Eq.
(28) gives for the ratio of beam cross sectional
areas a valuc of 0.60. '

We conclude that it should be possible both to
accelerate the beam and to remove the toroidal

field to facilitate beam ejection without causing
either the beam orbit or individual particle orbits
to expand without limit.

V. CONCLUSIONS

The beam in a modificd betatron can be stably
confined both during the acceleration phase and
during the subsequent gradual removal of the to-
roidal magnetic field prior to beam ejection. As
the beam is accelerated, however, unless very
special conditions are satisfied, a region of insta-
bility will be passed through; however if the time
of transit through this instability gap is small com-
pared to the time specified in Eq. (20) the net
effect should be small.

As the toroidal field is removed to facilitate
beam extraction following acceleration no further
instability gaps occur but the magnitude of the
beam betatron oscillations will change adiabati-
cally. By arranging that the ratios, Eqgs. (27, 28),
be near one, one expects the beam to be well
behaved during the removal of the toroidal field.

It should be remarked however that changing
the toroidal field changes the *‘tune’’ of the be-
tatron which, in general, will necessitate the pas-
sage through orbital resonances as the toroidal
ficld is removed. These resonances, due to the
periodic encounter by a particle of a field error
or “'‘bump’’ are currently under investigation. It
is anticipated that a condition governing the min-
imum speed with which By must be removed,
expressed as a function of the magnitude of the
field error, will be obtained.®
Note added in proof: Duc to a quirk in the pub-
lication process the work of reference 8, while
completed and submitted for publication after the
present work, actually appears in print earlier in
this volume (Part. Acc. 12, 329 (1982)).
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APPENDIX A

Fields in the Modified Betatron

In this appendix we calculate the fields seen
by a particle in a modificd betatron. The particle
is assumed to be close to the axis of the torus,
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that is, the coordinates of the particle are taken
to be (refer to Figs. 1 and 2 in the text)

(r,2) = (ro + Ar + br, Az + 32)

and all fields will be calculated to first order in
Ar, br, Az, and 8z. Fields will be given in the (r,
8, z) coordinate system of Fig. 1 and all will be
assumed to be independent of 6. Superscripts a
and s will be used below to denote applied and
self fields, respectively.

Part I (Applied Fields)

Magnetic Field

The usual weak focussing betatron field has r and
z components. The z component is taken to be-
have near r, as

B,® = B.o(ro/r)"

( Ar + Br)
= B,o 1—-n ,
To

where B,, depends only on time and n, taken as
a constant to this order, is the so-called vacuum
field index. The radial field is obtained by re-
quiring (V x B)e = 0 and B,(z = 0) = 0 (making
the z = 0 plane a plane of symmetry). The result
is

(A-1)

(A-2)

Az + Bz)
To

B’a = - nBzO(

The applied toroidal field generally falls off as
r~" across the minor cross section of the torus

+ 3
BoazBoo(l - Ar r),

ro

where Byo depends only on time. However, in
the equations of motion B, multiplies only
fand 7 terms which are already first order.
Therefore the gradient of B, does not enter the
linearized equations of motion and we take only
the zero order value,

Bo® = By,o. (A-3)

33.10
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Electric Field

All applied electric fields are inductive. The to-
roidal electric ficld is governed by the changing
central flux and is taken to be a specified function
of time

Ey® = Ego(1)- (A-4)

E, is negative for electron acceleration with B,
positive.

Changing the toroidal magnetic field, Byo, will
induce a poloidal electric field, the r and z com-
ponents of which are easily found

Ef = - -I—Boo(Az + 82) (A-5)
2c
ES° = LBeo(Ar + &), (A-6)
2c

where a dot indicates a time derivative.

Part 11 (Self Fields)

Since we neglect beam diamagnetism and the
possibility of a change in self flux due to time
varying beam current we take Bg® = Eg° = 0. It
remains to calculate the r and z components of
the beam self electric and magnetic fields.
Consider a beam circulating inside a perfectly
conducting toroidal chamber of circular cross
section as shown in Fig. A-1. (The beam dis-

[}
!
z
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. N A
———— _-——————I \BEAM

FIGURE A-1 Geometry for scif ficld calculation
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placement is exaggerated for clarity; we will as-
sume A < a). The chamber major and minor radii
are ro and a respectively. The beam major and
minor radii are R, and r, respectively.. We must
calculate the ficlds inside the beam (p < r,), as-
suming the chamber is a perfect conductor. To
proceed we define a scalar potential ®(p, ¢) and
a magnehc flux or stream function ¥(p, ¢) = rA,
where A, is the usual vector potential. The equa-
tions for ® and ¥ are

18 (,99) 100
pop\P3p) T prag?

[cos ¢Q - 1sm ¢a¢]

ap od
= 4weno(p, d) — Ro+ pcosd>
(A-7)
15,0 10y
pap\Pap) " pa¢?
= - %(Rb + pCOS(b)-’o(P, d))
0 | v
[coscb ™ si n¢ad>]
Rb + pCOS¢
(A-8)

where ny, the beam number density and J,, the
beam current density, are assumed to have been
specified. Here we shall take both n, and Jg con-
stant, independent of p and ¢.

The boundary conditions on ® and ¥ are the
same; they both must vanish at the surface of the
chamber, specified by

p=a — Acos(y — ¢), (A-9)

correct to first order in Ala.

Scalar Potential and Electric Field

The general solution for @, including the first
toroidal correction, is

gp®

4R brbz

(
bo + g1 — prs?) + cos ¢

+A£sin¢+B£cos¢ p<ry
rs Iy

(A-10)

¢ =

‘ Do — 2gIn plry + ;]Tp In p/ry cos ¢
b

+ (A'ﬁ + C'Q’) sin &
rs Y]

(B'£+D'fi’) cosd p>rs
re P

+

\
where ¢ = —enomr,? and &y, A, B, A’, B', C',
and D’ are constants.

Applying now the correct boundary conditions
both at the beam surface and the wall determines
all of the constants:

@ = 2glnalr (A-11a)

A=A'= —2q%5afsin¢ (A-11b)

B=B'=-qInalr, - &’;2 (A-11c)
- 2q——"cos¢

C' = (A-11d)

D' = g% (A-1le)

Using this result in Eq. (A-10) we may calculate
the r and z components of E* inside the beam,
to first order:

P
Es= - —a--cosd) + 65$Sln¢
_ 2 re? q, a
== [ar + Ar] tr s A
P . ad
Ez’=—-a;S d)—-:agcos«b

[

2
29 [82 + Az], (A-13)
rs Q
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where (br, 82) = p (cos ¢, sin ¢) and (Ar, AZ) The resulting magnetic field, to first order, is k
= A (cos {, sin ). . B
BS = —1(£—P sin ¢ +§{cos¢) n
r\dp b p (A-16) 4
Magnetic Flux (or Stream) Function and
Magnetic Field =

n,z
— 2menoPol 8z + prl Az
The general solution for ¥, including the first (a‘l' 3V sin ¢)

.3 . . B} = _
toroidal correction, is 2 % s & % o |
Vo + Q1 — p2iry?) — %l_iQ_p_icos F) = 2menoflo (A-17)
x [& + ——Ar - ;—;—(lni + 1)]
+/i£sin'¢+1§—p—cos¢ p<rs b i
s e In the circulation frequency, 8o, rather than
(A-14) the current itself, is taken to be constant across
the beam (current ~ r) then it is straightforward
¥ = )
Yo — 20 Inplry — %9 In p/ry cos ¢ to show that lnrg + 1in Eq. (A-17) is replaced ;
» b i
) ) by ln — + 2. '
+(A'£+C'ﬁ)sin¢ ,
re p If the magnetic field of the beam has diffused
completely through the wall then the field sur- i
+ (B‘ LAY Q) cosd p>rs rounding the beam is most directly calculated |
{ rey P using the free space Green’s function
L. JGF)
where Q = ar,2 IR b/c = — wryZenoBoRs, Bo AR =~ | dF —~,—,-—. (A-18)
= Veolc, and ¥y, A, ' B', C’', and D’ are . . !
constants. If J = J, 8is constant across the bcam and J ’5
Applying the boundary conditions gives is independent of 6 then A = Ay6 where :
a A J Ry+ry 'd JrZw de fzb(r ) .‘\
\PO - 2Q In r—b (A‘lsa) O(r Z) Rp—rp r z»(r) :.
o Ary . N cos ' N
A=A =207 2siny (A-15b) [P+ 72 -2 cos0 + (z - 2 V1" -
e T u(') = I = (' = RPI'™. (A-19) -
B =B+ QE The integral over 0’ may be expressed in terms )
of the.complete elliptic integrals® :
Ryp+rp 25(r") .
= —2Q——cos¢ +Q——m— A,=4—J—°f r'dr'f dz’ -
b (4 Ry—rp —2s(r’) l b
1 -
rn 101 3
+ QI?; - Zk——-—z (A-]SC) X [(l’ _ r,)z +(z - Z,)zluz :'1
. H *
2 H 4
¢ =0 (A-15d) X [(l + ;21-) K(-m) - ;;E(-—m)], (A-20) 1
) .]. Iy ' Handbook of Mathematical Functions, M. Abramowitz ‘ :4
b’ = 4 e Ry’ (A-15¢) and I.agteg(:m. eds. Dover P:nblicalions. ch 17. ‘
3
-]
_‘1
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MODIFIED-BETATRON BEAM DYNAMICS

where where By, By, and Eyg are taken to be prescribed
: 4rr functions of time.
. m= rr
o r=-rPY+@-27
In the beam interior m is large. Using the
asymplotic expansions for K and E one may show

The self fields are ,

. 2 j
that B’ = — anocﬂo(ﬁz rab—zAz) (A-26a) ‘
2 2 f
! + — ) K(-m) - —E(—m) . i
m m By’ =0 (A-26b) |
(A-21) i
’.h2 rbz
- ~im " (Inm + 4In2 — 4). B} = 21moeBo(8r + ‘-‘-I;Ar - 271,;) (A-26¢c)
- [4}
e Using Eq. (A-21) in Eq. (A-20) the resulting , ;
s integrals are elementary. The result, for the vec- r? ry? i
3 tor potential inside the beam is ES = — 2mnge (8r + —‘;;Ar + ;IE) (A-26d)
- 1]
1
Ae* = — [2 In (EZR—‘") +1 - pz/l'b2
c ey Es'=0 (A-26¢) ™)
(A-22) -
2 s
s ry [
+ '—p‘COS¢ (_lngR_b + 3)]’ ES = _‘21\‘"0?(82 +FAZ) (A-26f) ‘.:-
Rs rs
=
where I = mr,2Jy, from which it follows that the where #
fields inside the beam, to first order in p, are
o Bs = u _p_2 sin ¢ (A-23) [I_ng— + 2if circulation frequency, 8, B
cry re
- ki [2 In 8R, , PCOS d)]. (A-24) is constant across the beam
cry | Re rs s ln =
p =
We may summarize all of the foregoing results a
as follows: In —+ 1if current density is constant
*. b
- The applied fields are,
A 5 | acrossthe beam (A-27)
B = — nBio~ :' 2 (A-252)
(]
lg=1In a if density is constant across the beam. :
By = Boo (A-25b) Iy ;
Ar + & (A-28) '
B = Bzo[l - n( 'r+ ’)] (A-25¢)
° For times long compared to the time it takes ;
o | the magnetic ficld to diffuse through the chamber
Ef= - EBW(AZ +82) (A-25d) wall the result (A-24) shows that onc must replace
a in the logarithm in the definition of 1, by (8 ro/
Eo¢® = Eno (A-25¢) e) = 2.9r,. This suggests that fields in an actual
. device may have to be programmed in time to i
a_ J 5 ) compensate for this extra change (reduction) in
E* = 2c Buo(Ar + 1) (A-250) B,, in order to hold the beam in place.
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D. CHERNIN AND P. SPRANGLE

APPENDIX B

Linearized Equations of Motion for a
Particle in the Modified Betatron

In this appendix the equations of motion for a

particle in the fields (A-25) and (A-26) are ob-

tained, correct to first order in small quantities.
The complete equations of motion are

d - A2 - £ [ l M I
dt(‘yr) o = - _E, + c(reBz zBs)]
(B-1)

1d,_ ... e 1.

rdt(‘yr 6, = m LEO + C(ZB’ "Bz)]

(B-2)

door_2lg + Yim, - ri
E(yz) = p -Ez + p (rBe reB,)].

(B-3)

We consider first the linearization of Eq. (B-
2). This equation has an exact first integral, as-
suming the fields do not depend on 6; it is the
canonical angular momentum

PgEr[myré—EAo]-  (B-4)

We now write all quantities O as @ = Qo +
0, where @, < Qo and Q refers to quantities
evaluated at the reference orbit (r, z) = (ro, 0).
Defining Vo = r8 it is straightforward to show
from Eq. (B-4) using (A-14) for (rA¢*); that

P nl. eBY®
Ver = o; —'l—z[eo" z()]

and where we have used v, = VYo Var/c?.
Now, using the expression for 6, in Eq. (7), one
obtains

Po, nvil

Vor = ——— + —— —
[:]] m‘yo}ro 702 Yo (Xz onIE
(B-6)
A
+ _'; on "',‘ IB
Yo Yo

where a = Q,oro/c.

The expression Eq. (B-6) will be needed next
in the linearization of the radial equation, (B-1).
Carrying out a straightforward linearization of
Eq. (B-1), using the zero order fields from Eqgs.
{A-25b, c) and Eqgs. (A-26c, d) gives

- e V,
n= - [Erl + _f,le] + Qeoil

mYo
- 19":1 - éoz":

Yo (B-7)
+ VoirQovo®

1+ y072
x [1 —1(—Z—°—IE+IB)]
Yo Qa

Qoo = eBoo/m‘yoC.

where

Using now Eq. (B-6) and keeping terms only
to first order in v/ye and using Eqs. (A-25¢, d)
and Egs. (A-26c, d) to write

mYyo'fo Yo Myo€ - = [Erl + Y—QB:I]
(B-5) mvyo c
B w,? rs?
Ar v = 200 b -
+ ano.'y—ola' 2myoc u + Tyo? or + pe: Ar
where + nboQory (B-8)
o re’ we obtain our final result for the radial equation:
B = B, — 'rrnoeﬁoTo' ls ; ]
. 0 . 2
2 2.2 n + — N + nw [l --n - -
ry_1 (.m,bzno_f_z) _lws ;b Yo Yo
Yo Yo mc 4 ¢ ( 1
| x(6-nkise-nu)l
wp? = 4‘"‘”082/”!70 a? £ o !
33.14
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MODIFIED-BETATRON BEAM DYNAMICS

B ,
= 2w 2 + DooZy + n0%
2myec
2
X (Sr + !—b—i Ar) + 2 QlpAr (B-9)
a Yo

P, -2
+ Qo —2 [1 —-‘i('—+—",—"—ls+za)],
Yomro Yo a

where n, = ©,2/2v,2Q% is the **self field index.”

The analogous linearization of the z equation
(Eq. (B-3)] is completely straightforward, using
!he fields (A-25a, b, f) and (A-26a, b, f). The result
is

4+ R4 na
Yo

x [1 - X (—'; lg + l,,)]z, (B-10)
Yo \a

eB .
= = __oo_n = Qoo
2m~yoc

2
+ n,02% (8r + % Ar).

APPENDIX C

WKB Solution of Equations of Motion

The linearized equations of motion are given in
the text, Egs. (11a, b). Below we shall obtain
first, an approximate solution to the homogene-
ous version of Eqs. (11a, b), assuming that all
coefficients are slowly varying. We will then give
the solution to the full, inhomogeneous equa-
tions.
The homogeneous equations are

X+ wlx = Qeoy + !ﬂeo)’ (C-1a)

¥+ wly = —Qeok - 1Q00x (C-1b)

Al coefficients, w2, w,?, and €y will be as-
sumed to vary significantly only over a slow time
scale. To carry out a formal asymptotic expan-
sion then we define

T =\,

where A is a large dimensionless parameter. De-

noting -;—T by a prime ('), Egs. (C-1a, b) become

(C-2a)

I

A
x" + Nwlx = Aoy’ + Eﬂoo'y

A
y" + Azwyzy = ‘—XQooX' - ‘inoo',\'. (C-Zb)

Now writing

al(‘l’; x)el’k!w(‘r')dr'

x (C-3a)

02(1’; x)elkfu(‘l")d'l' (C-3b)

y

we proceed to express a; and a; in formal asymp-
totic series

a(7;\) ~ i fa1)

C-4
n—-0 A" ( a)
a)(T;\) ~ 3 ___az),‘.f'r). (C-4b)
n—-0

We must now find the ay,, a;,, and .
Substituting Eqs. (C-4a, b) in Egs. (C-2a, b)
one finds the leading order (A\?) result

((.0;2 - wz)a.o - i(n)ﬂooazo =0 (C-Sa)

(C-5b)

iwQleoaio + (w2 — w3)az = 0

from which it follows that @ must be one of the
four quantities

Cwd + w? + Qb )
w =
. [t [(w? + w2 + Q%) — 4m,2m,,2]”2]”2
- 2

(C-6)

The next order (A') relation may be written, after
some manipulation, as

. (l.)z - (I)yz ’
i| 20 — —— ao
w

2 _ 2 v
+,'[w'._..l_.“3_.__“_’?'_9°_°]am )
2 w Qoo (C-7)
2
= [—Qeo + 0w (w? - w,-z)]aio
1, w' (0 - w?)
+ [ 2900 + o o
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D. CHERNIN AND P. SPRANGLE

Using Eq. (C-5a) or Eq. (C-5b) and Eq. (C-7) an
equation for just a,o (or just a,p) may be obtained.
The solutions are

ao = Aw ™ (w,® - w?)"?

(0l + o) + D% — 20272 (C-8a)
Az = Am—m(mz - wIZ)IIZ

(02 + 0 + O ~ 203~ (C-8b)

where A is an arbitrary complex constant.

Using Eq. (C-8a, b) and the definition of w we
may write the leading order WKB solution to
Eqgs. (C-1a, b) as

(;) ~ [(we? + 0,2 + O3)? — 40,20,

(C-9)

i (w, _ wJZ)l/Z gifos
= |/2 (w.l —-w 2)1/2 ’
where the sum extends over the four values of
w in Eq. (C-6) and where the A; are constants.
This solution is expected to be valid as long as
w,, w,, and g are slowly varying compared to
any w;, i.e.,

<ij|’ j= ]12’314y

'—lnw

where @ is w,, w,, or yo. The solution is there-
fore expected to fail when w; = 0, that is, near
a turning point. From Eq. (C-6) this can happen
when

olo? = 0.

(C-10)
Equalion (C-9) is bounded, however, if in addi-
tion w,2 = w,2 = 0. Breakdown of Eq. (C-9) (and
a transition to unstable behavnor) occurs only if
w20, = 0 and v,” # w2,

Once the solution to the homogcneous equa-
tions have been found the solution to the inhom-
ogeneous equations follows by the usual varia-
tion of parameters or some similar method.
Writing four independent solutions to the ho-

L N W R e - LR T

mogeneous equations as

x|

y(ﬁ J =
one finds in a straightforward way that a partic-
ular solution to Eqgs. (11a, b) in the text is given

by
X _ ! ' Kx(’, t,) ]
(y) —f dt (Ky(”’,)) F(t'), V(C-12)

where

1,2,3,4 (C-11)

1

Kot 1) = = & €iutm x 20O )y 1)y (1)
1

K,(t, I') = — Wﬁjklm y‘”(t)x“"(t')y"’(l')j""’(t’)

W = €jatm xP(OXR @)y P (1) y ™ (1),

and where the summation convention is under-
stood. The Wronskian W is a constant, indcpen-
dent of time; its value is determined once a choice
is made for the x‘?, yt?,
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Equilibrium of a High-Current Electron Ring
in a Modified-Betatron Accelerator
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Equilibrium of a high-current electron ring in a modified-betatron accelerator
C. A. Kapetanakos, P. Sprangle, D. P. Chernin,® S.J. Marsh,” and |. Haber

Naval Research Laboratory, Washington, D.C. 20375

{Received 17 September 1982; accepted 10 February 1983)

The dynamics of an ultrahigh-current electron ring in a modified-betatron configuration is
addressed. This study includes analytical and numerical results for both “‘cold” and “hot” rings.
It has been found that the walls surrounding the ring and toroidal effects play a very important
role in the dynamics of the ring, even when the wall conductivity is infinite. For finite wall -
conductivity, the diffusion of the ring’s self-magnetic field profoundly impacts its dynamics and in
general the equilibrium could be lost if means are not provided to compensate for this effect. In
addition, it has been found that the toroidal-field grad B drift is not important, except when the
bounce frequency is very small. The general conclusion of these studies is that equilibrium states
of ultrahigh-current rings in modified-betatron configuration exist over a wide range of
parameters. These states are accessible and within the reach of existing pulsed power technology.

I. INTRODUCTION

Over the last few years, several laboratories'™’ have
been engaged in studies that are intended to assess the feasi-
bility of developing ultrahigh-current accelerators. These
studies are mainly motivated by the potential application of
high-energy, high-current electron beams in nuclear physics
research, medical radiography, and the fusion program.

In general, the effort is not directed toward developing
novel accelerating schemes but rather toward modifying or
improving the existing accelerator technology. Among the
various proposed modifications, the addition of a strong tor-
oidal magnetic field to a conventional betatron®® has attract-
ed considerable attention,*” and the configuration has been
named the modified betatron.

In this paper we analyze and discuss the dynamics of a
high-current electron ring confined in a modified-betatron
configuration. When the intense electron ring is surrounded
by a finite conductivity wall, its dynamics can be divided,
rather naturally, into three distinct phases: The pre-accel-
eration phase follows the injection and trapping of the elec-
tron beam. The duration of this phase is short, typically a few
microseconds and the conducting wall surrounding the ring
can be treated as a perfect conductor. The pre-acceleration
phase is followed by the diffusion phase, which lasts for a
time that is of the order of the magnetic field diffusion time.
During the diffusion phase the self-magnetic field of the
beam diffuses out of the metal torus. As a result the electron
energy is reduced and the net radial force on the ring in-
creases, but at a different rate. Therefore, the equilibrivm
will be lost if means are not provided to balance these two
effects. The last phase, i.c., the main acceleration, starts after
the self-magnetic field diffuses out of the torus and has a
duration that is comparable with the acceleration time. For
most of the third phase the energy of the ring has increased
substantially and thus the effect of the self-fields is apprecia-
bly diminished.

* Permanent address: Berkeley Rescarch Associates, Springfield, Virginia

22150.
™ Permanent address: Sacis, . eeman Associates, Bowie, Maryland 2071 5.
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The present work addresses the dynamics of the high-
current ring in a modified-betatron configuration. It in-
cludes both analytical and computational studies for “cold”
as well as “hot” electron rings. The main conclusions are:
First, if the energy of the injected electrons is not exactly
equal to the energy corresponding to the equilibrium orbit,
which is assumed to coincide with the minor axis of the
torus, the center of the orbit is displaced from the center of
the minor cross section of the torus. The displacement is
proportional to the energy mismatch. This imposes very
stringent constraints on the injector. Second, during the dif-
fusion of the self-magnetic field of the ring out of the
chamber, the equilibrium can be lost if means are not pro-
vided to balance the change of the ring equilibrium radius.
This change is due to the reduction of the relativistic factor
%o and the increased forces acting on the center of the ring.
Third, the modification in the flux rule for high-current
rings can be ignored, provided that v/y3 {v = Budker pa-
rameter) is very small. Fourth, with the exception of the ex-
pansion of the minor cross section of the ring, finite emit-
tance does not have any other noticeable effect on the
equilibrium, and fifth, considerably higher axial energy
spread can be tolerated in high- than in low-current rings.

The general and most important conclusion of these
studies is that equilibrium states of high-current rings in a
modified-betatron configuration exist over a wide range of
parameters. These equilibria are realistic and accessible with
existing technology.

Il. ORBIT STABILITY OF A COLD RING WITHOUT
SURROUNDING WALLS AND TOROIDAL
CORRECTIONS

The stability of a single particle orbit, when thermal
effects, wall effects, and toroidal corrections are neglected,
has been considered previously.* Using the coordinate sys-
tem shown in Fig. 1 and assuming that the external-field
components vary as

B, (rt)s=Bo,(t )1 — nlr — rol/ry), (1a)

© 1983 American Institute of Physics 1634
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FI1G. 1. Schematic of the modified-betatron configuration and system of
coordinates used in the analysis.

B, (rt)= — By, (tnz/r,, (1b)
1(.,.08, ,,
Eg(rit)= — pl rdr 7("”' (1c)
and
By(r)=Bog[t — (r — ro)/ro), (1d)

it has been determined that for B, » B, and v/¥,<1 the orbits
are stable, provided that the following condition is satisfied:

n, <(B09 /2802 )2. (2)
In the above equations B, (r,?) is the axial and B, (r,t) is the
radial component of the betatron field, B,(r) is the toroidal
magnetic field, E,(r,r) is the induced electric field, n is the
external-field index, (r,,0) are the coordinates of the center of
the electron ring, and 1, is the self-field index. The self-field
index is defined as

n, =} /(276125,) = 2v/vole/ Do, 1, Vs 3)
where w?( = 4me’ny/m) is the beam plasma frequency
squared, ¥, is the relativistic factor, £2,,( = eB,, /mc) is the
cyclotron frequency corresponding to the axial component
of the betatron field, r, is the minor radius of the beam, and v
is Budker’s parameter, i.e., the product of the number of
electrons per unit length times the electron classical radius.

The electron-beam current that can be stably confined
in a modified betatron can be obtained by substituting Eq. (3)
into Eq. (2) and is

1,.,<2.1(r, /ro)’¥s BalBoo /By ) (kA) 4)
where B, = vy/c. If yo> 1, then ry02,, /y,=c and Eq. (4) be-
comes

1.,<7.22X1077 rjy,Bls (kA),

with 7, in cm and By, in G.

In addition, it has been shown under the same condi-
tions, but with B, = 0 (conventional betatron), the beam is
stable provided

n, <1, conventional betatron (B, =0). ()
The electron-beam current that can be stably confined in a
conventional betatron can be obtained by substituting Eq. (3)
into Eq. (5) and is

Iy <8.2(ry /rof'vs By (kA), {6)
or
1.,<14.44X1077 R y,Bi, (KA),

1635 Phys. Fluids, Vol. 26, No. 6, June 1983

when y,» 1. Theratioof I, to ], obtained from Eqgs. (4} and
(6)1s

lmb/lrh = 5 (BO(I/BO: )2'

The above relation indicates that for B, » B,,,, the clectron-
beam current that can be stably confined in a modified beta-
tron substantially exceeds the current that can be confined in
a conventional betatron.

The modified-betatron stability condition given in Eq.
(2) can be easily obtained from the well-known confined
equilibrium condition'®

2(wi/N2)<1  (nonrelativistic), (7
where w,, is the beam plasma frequency and £2, is the cyclo-

tron frequency. For relativistic energies, and taking into ac-
count the self-magnetic field of the beam, w} becomes

wy— (@5 /rl1/73), (8)
where (1/73) accounts for the self-magnetic field of the
beam, and

N21-05/7s- )

Substituting Eqs. (8) and (9) into Eq. {7) we obtain the stabil-
ity condition of Eq. {2). The equality sign in Eq. (2) gives the
maximum electron density that can be supported at a specif-
ic value of By,/B,, and the corresponding equilibrium is
known as Brillouin flow.'°

iIl. WALL EFFECTS ON THE MACROSCOPIC MOTION
OF A COLD BEAM

In this section we analyze the effects of surrounding
walls on the motion of the center of the beam. In the Sec.
II1A, it is assumed that the perfect conductor that sur-
rounds the beam is a straight cyclindrical pipe of circular
cross section and thus toroidal effects (hoop forces) associat-
ed with the fields are omitted. These forces act to expand the
ring and are reduced with increasing ring major radius. The
toroidal effects are discussed in Sec. HIB.

A. Without toroidal corrections

Consider a pencil-like electron beam inside a straight,
perfectly conducting cylindrical pipe of circular cross sec-
tion as shown in Fig. 2. The center of the beam is located at a

z
N

Electron Ring

o

O cact+art

Pertect Conductor

FIG. 2. Wall {images) forces acting on a pencil-like clectron beam, situated
inside a perfectly conducting cylindrical pipe.
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distance Ar, 4z from the center of the minor cross section of
the pipe. As a result of the induced charges on the wall, the
center of the beam will experience a radial, outward-directed
force, which for small displacements, i.e., 4r, 4z<a is given
by

Fp = 2me’ny(r, /af{Are, + A28,), (10)
where g is the cylinder radius and n, the uniform beam den-
sity.

Similarly, as a result of the induced current on the wall,
the center of the beam will experience a radial force that is

directed toward the opposite direction than F, and is given
by

Fp = ~BiF:. (11)
Using the external fields of Eq. {1) and the induced fields of
Egs. (10) and (11), the equations describing the temporal lin-

ear evolution of the beam’s center, for time-independent ap-
plied fields, are

47 + Btar = e A2+(‘0°‘) (6P) (12)
Yo Yo 7/ YoMmro
and
Az + &l4z = — (45/7)4F, (13)
where

&} = (2o, /7o (V — n — n,r}/a%),
@; = (001/70)2('1 —n, r:/a!),
1oy = eBog/mc, Sy, = eB,, /mc,

8Yo/¥o = Bo(6Ps )/ yomree,
and 6P, is the difference between the canonical angular mo-
mentum of an electron at (r,z) and its corresponding value at
the equilibrium orbit (r,,0). The average is over initial coordi-
nates and velocities. Equations (12) and (13) do not include
the self-electric and self-magnetic fields, because both these
fields are zero at the center of a straight beam. In addition,
the nonlinear terms (Ar/rol{$200/Yold2 and {Ar/ry)20s/
¥olA7 have been omitted from Eqs. (12) and (13). These two
terms have their origin in the gradient of the toroidal mag-
netic field and are considered in Sec. V. In general these
terms are not significant except in the limit &, —0.

In Eq. (12), 8y, = Bo{8P, ) /mrc indicates the energy
mismatch, i.e., the difference between the energy of the refer-
ence electron {moving along the axis of the beam) and the
energy required for the same electron to move on the equilib-
rium orbit {r,,0). The solution of Egs. {12) and (13), for time-
independent fields, is

'002 <6P 0

Ar= + ¥ ¢(@? — o) 12", 14
7’510,’0"? Jz:l S /) (4
and
4 )
Az=Y ¢} - a})'"%™, (15)

J=1

where ¢, is a constant and

] = W&] + &} + (oo /¥o)

+ {[&} +wx+(ﬂ o/Yo)' )} — 42731}, (16)
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FIG. 3. Bounce frequency squared s a function of #, /4%, with the field

index n as a parameter, The orbits are open when @2 <0 and closed when
2

wy >0.

The first term on the right-hand side (RHS) of Eq. (14)
gives the displacement of the center of the orbit from the
center of the surrounding cylindrical pipe 2nd can be written
as

(6P5) /7,
(00:/7’0)(1 —n— n:r:/a ,m’O
Equation (16} has four roots. Two of them are fast (plus sign)

and two are slow (minus sign). When B, % B, , the slow modes
become

~ ~ \2
o] =0} = (____w,w, )
0o5/70

e eon )
(Bog yo)l PR\ ) (18)

and the fast modes are = + ({244 /7,). Equation (18) is plot-
ted in Fig 3 for two values of the external-field index. For
n >5 w} is negative when 1 —n <n,”/a® <n and for n <},
wn is negative when n <n,r}/a* <1 — n. Negative values of
@} indicate that the beam motion is unstable and the orbit in
the 7,z plane is open. Since the parameter n,72 /a? scale as
%5 > during acceleration n,r} /a® decreases rapidly. There-
fore, in order to avoid the instability, it is necessary that
before the commencement of the acceleration the parameter
n,ry/a* <1 —nwhenn>}and <nwhenn <}. Thisimplies
that the injected beam current should be limited to

I<8.5(1 — nBiysa’/ry (kA) forn>},
and

I<8.5nB5y3a%/ry (kA) forn <.

The orbit of the ring’s center is described by

4rr) = [4r0) — 4ry) cos wyt

+ [AH0Vwg] sin wyt + Ar,,
4z(t) = 42(0) cos(wpt) + [42(0)/w,) sinfwg?),

where the initial velocities and displacements are related by

(17)

Ary=

Ar0) = ~ [5’/(!2 0/Y0)}42(0),
4501 = — P4 Dy, \ (8P,)
0= '!200/ Yo) 0= (noa) Yo'nro
@, [(4r0) — 4
T Wiy 10— Al
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FIG. 4. Snapshots of the clectron-ring minor cross section at four different
times. The values of the various parameters are listed in Table 1. The center
of the ring’s minor cross scction describes a circle.

and

(6Pg) = yomrolve — rof2o. /¥o)-

The predictions of Eq. {18) are in good agreement with
the results of computer simulation shown in Fig. 4. This
figure shows four snapshots of the beam in the 7,z plane. At
t = O the circular electron beam is injected near the center of
the pipe. The values of the various parameters are listed in
Table 1. The electron-beam current is kept low (1 kA} in
order to minimize the toroidal effects. As can be seen from
Fig. 4, the center of the electron beam describes acirclein the
r,z plane with a period of about 188 nsec. For the same pa-
rameters Eq. (18) predicts a period 75 = 27/w 5 =180 nsec.
These numerical results are discussed further in the Sec.
IIIB.

The displzcement of the orbit’s center because of the
energy mismatch [Eq. (17)], imposes very stringent con-
straints on the injector. This becomes apparent when we
consider some limiting cases. For example, when n =} and
n,r/a*<1, Eq. (17) is reduced to

Aro/ro=28Yo/ o) (19)
Equation (19) predicts that for a major radius r, = 100 cm,
the ratio 5¥o/7, should be less than 1% in order that the
displacement of the orbit will be less than 2 cm. The condi-
tion 8y,/7,<1% requires that the uncertainty in energy
should be less than 35 keV, when the energy of the injected

TABLE L. Efectron-ring parameters for the results of Fig. 4.

Beam energy (MeV)

Beam current (kA)

Beam minor radius (cm)

Beam major radius (cm)

Torus minor radius {cm)

Vertical magnetic field (G) 2
Toroidal magnetic field (kG)

External-field index 047
Self-field index 0.88
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FIG. 5. An electron ring inside a conducting toroidal chamber. Because of
the toroidal effects, neither the self-electric nor the self-magnetic field is
zero at the geometric center of the ring.

beam is 3 MeV. Although such a small energy uncertainty
can be attained with sophisticated injectors, there are other
factors, such as space charge and inductive effects, which
contribute substantially to the uncertainty of energy. Al-
though the displacement cannot be eliminated, its negative
impact can be alleviated by elongating the minor cross sec-
tion of the torus along the 7 direction.

B. Toroidal corrections®1%

The cause of these effects is the finite curvature of the
electron-beam orbit. For relatively large aspect ratio (ro/
r, > 1) beams, the toroidal effects become important when v/
¥o exceeds a few percent. Previous work'? on toroidal effects
was limited to “bare” rings, i.e., without surrounding con-
ducting walls. In this subsection we briefly analyze the toroi-
dal corrections for the more realistic gecometry shown in Fig.
5, i.e., including the effect of conducting wall around the
beam. Since different physics issues are involved in the case
of a “bare” and a “‘shielded” ring, it is appropriate to start
our discussion with a bare ring.

Consider an intense electron ring as shown in Fig. 5, but
without the toroidal chamber. At the inner edge of the RHS
cross section of the ring the self-magnetic ficld is greater than
that of a straight beam with the same parameters, because of
the contribution from the left-hand side (LHS) of the ring. At
the outer edge of the cross section, the self-magnetic field is
reduced because the contribution from the LHS of the ring
has different polarity than the local field. Thus, the total self-
magnetic field is shifted upwards, as shown schematically in
Fig. 5. In contrast, the self-electric ficld decreases at the in-
ner radius and its magnitude increases at the outer radius of
the ring. Thus the self-clectric field shifts downwards. As a
result of these shifts neither the magnetic nor the electric
field are zero at the geometric center of the ring.

When the electron ring is surrounded by a perfect con-
ductor, the shift in the ficlds discussed above is reduced but
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additional field components appear as a result of induced
charge and current on the conducting wall. For small ring
displacements from the center of the minor cross section of
the torus, the induced fields vary linearly with the displace-
ment and are identical to those given in Eqs. {10) and (11), for
a cylindrical pipe. Quantitative extension of the previous
qualitative considerations has shown that the ficlds at the
center of a uniform-density electron ring inside a perfectly
conducting toroidal chamber of circular cross section are>*’

’2
Eps = —htclm{ —"ﬂ + L2 ( )]e
Ty

2
7
—i‘ié,]. 20)
a®r,
and
P
Bmd = —217']8]”030’0 J;Az—é'
r, Ar 'ﬁ }
—_— = — —l —_ 21
B4 2iednse @

where n, is the ambient density, Bo = py/¢, Y, is the azi-

muthal velocity defined by

rof2o. /Yo (22)
1+ 2(w/yg)[ 1 + Infa/r,)]

and thedisplacement 4r, 4z of the ring from the center of the
torus has been assumed to be much less than a. In addition,
the fields given by Eqgs. (20} and (21) have been derived under
the assumption that the angular frequency of the electrons is
constant and therefore the electron current density varies
proportionally to r.

Using Egs. (20)+22), it can be shown that the center of
the beam is described by Egs. (12) and (13) with @? and &?
replaced by

Vg =

o023,/ la — n* —n,r,/a%), (23)

&35, /7)n* —n,ry/d%), (24)
and

6P8_"§5P0,
where

a=¢7= {1+ @v/polll + Infa/r, )1} % (25)
and

n* = né.

The bounce frequency can be found by substituting Egs.
(23) and (24) into Eq. {18) and is

(Yo )
0wy = (Boo (yo)a n o n n,az.
(26}

When n* = a/2, for the reasons stated in the paragraphs
following Eq. (18), the orbits are closed (stable} as ¥, in-
creascs, provided

n,ri/a<a/2

or,
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2 ,
1<4.25(-"_) (1 LA i) 2 (kA) for yo> 1. 27)
To Yo T

The limiting current given by Eq. (27) is considerably
lower than that of Eq. (4} when B,,>B,,. In addition, in
contrast 10 the current given by Eq. (4), the current of Eq.
(27) is independent of the toroidal magnetic field B,, . Toroi-
dal effects shift the curves of Fig. 3 to the left and the critical
current given by Eq. (27} is lower than the corresponding
critical current when toroidal effects are omitted.

At this point, it is appropriate to return and discuss
further the computer simulation results of Fig. 4. For the 1

,kA, 3 MeV beam the v/y, = 0.0084. Even at this small value

of v/y, toroidal effects are noticeable. The value of £ com-
puted from Eq. (25) using the above value of v/y, and 6.4 for
the ratio a/r, is 0.95. According to Eqgs. (23) and (24) the
center of the beam will describe a circle when a — n* = n*
or for n = I[1 — (v/7,) In(a/r, )J¢ = 0.467, which is in excel-
lent agreement with the simulation. In addition, Eq. (26) pre-
dicts a period of 188 nsec, which also is in excellent agree-
ment with the simulation.

The most striking manifestation of toroidal effects is in
the value of the betatron magnetic field required to confine
the rotating beam at a specific radius. When the axis of the
beam lies along the axis of the torus, i.e., when Ar = Az =0,
it can be shown from Egs. (20) and (21) that the external
magnetic field required for the beam to rotate with a radius
ryis

By, = Bo{1 + (2v/7,)[1 + Infa/r, )1},

where B, is the magnetic field necessary for a single particle
of the same energy to rotate with a radius 7,.

The above expression for the magnetic field is based on
the assumption that all the electrons rotate with a constant
angular frequency, i.e., the current density increases linearly
across the beam. If the current density is constant across the
beam, the above expression is slightly modified and becomes

By, = Boi1 + (2v/7,)10.5 + Infa/r,)]}.

Fora 10KkA, 2 MeV uniform current density beam with
a ratio a/r, = 6.4, the correction is 55%, ie., B,/
B, = 1.55. This effect is demonstrated clearly by the results
of computer simulation shown in Fig. 6. The three snapshots
of the electron-ring minor cross section in a modified-beta-
tron field correspond to t =0, 20, and 40 nsec. For all practi-
cal purposes, the minor radius of the beam remains constant.
The external betatron magnetic field is 127 G, i.e., approxi-

¢ _TIME » 000 nsec : TIME « 20.00 nsec « TIME » 40.00 nsec
- L J

z / \ .
A4
Sl o ° °
M \ / b \ / . \Z
- L4 »
Tese 1064 ' 934 0se 'ese 108.4
Riem) Ricm) Ricm)

FIG. 6. Three snapshots of the electron-ring minor cross section in a modi-
ficd-betatron field. The external magnetic ficld required to confine the ring
is 50% higher than the single-particle field. The values of the various pa-
rameters in this run are listed in Table 11.
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TABLE 11. Parameters of the uniform current density ring for the results
shown in Fig. 6.

Beam energy (MeV) 2
Beam current (kA) 10
Beam minor sadius {cm) 1
Beam major radius (cm) 100
Torus minor radius {cm) 64
Vertical magnetic field (G) 127
Toroidal magnetic field (kG) 1.7
External-field index 0.25

mately 50% higher than the single particle field. The re-
maining parameters are summarized in Table I1.

Another conseguence of the toroidal effects is the in-
crease in the radial displacement of the orbit for fixed energy
mismatch and major radius. For n,r}/a’<}, the orbit dis-
placement becomes

Ary/ro=¥o[ 6o/ (Vs — N)/1 — n/E).
In addition, the w} vs n, 73 /a* curves of Fig. 3 are shifted to

the left and thus the maximum permissible current that can
be accelerated is reduced, as may be seen from Eq. (27).

iV. ACCELERATION

After injection and trapping the beam is accelerated to
high energy by the inductive electric field generated by the
time varying betatron magnetic field. As shown in Fig. 7, the
acceleration may be divided into three phases:(1) pre-accel-
eration, (2) diffusion, and (3) main acceleration.

The pre-acceleration phase occurs for times much
shorter than the field-diffusion time, i.e., 1</ =4n/
c?oba In(ry/a), where o is the conductivity, § is the thick-
ness, a is the minor radius, and r, is the major radius of the
torus. During the pre-acceleration phase the self-magnetic
field of the beam does not have time to diffuse out of the
conducting torus. In the example shown in Fig. 7 the total
acceleration time was chosen to be 1 msec and the diffusion
time 10 usec. The ratio of the temporal extent of each phase
tothe total acceleration timet /2, is also givenin the figure. It
is apparent that the beam spends most of its time in the main
acceleration phase.

During the pre-acceleration phase the metal wall sur-
rounding the beam can be treated as a perfect conductor. As
a result, for small displacement of the beam, the self-flux

Acceleration Phoses

-
B {
3 o
. 8, « Const,
-%8 :o (4
£2 1
‘ Pre-Acceleretion Diffusion Main Acceleration
1e 0° 0’ w0 0 0 107%ec
m-.-'mo ™) 1oo2) to® Lo
H 4 m

FIQ. 7. The three phases of acceleration. In the example shown the accel-

eration time is ] msec and the diffusion time is 10 usec.
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linking the axis of the electron ring remains constant 1o lo* -
est order. This point is discussed further later.

The condition for the major radius of the electron ring
to remain constant can be derived from the conservation of
canonical angular momentum

Py = mygrvge — (e/cllA §" + A %), (28)
where vy, is the toroidal velocity, 4 &' is the vector polenual
that describes the extcrnal-magnctlc (betatron) field, A 5 is
the vector potential that describes the self-magnetic field of
the beam and r is the instantaneous radius of the beam.

The self-flux linking the axis of the ring @° is

P =2mrAdy, (29)
and to lowest order is independent of the beam displacement
and thus of time [see Eq. (35)]. Substituting Eq. (29) into Eq.
{28) and using the expression for

2o, /Yo
14 2(v/y0)[1 + ln(a/r,,)]
Eq. (28) predicts that r remains constant, provided
_a_( Bo:(‘) ) ,-:;-l--é— (Bul) (30)
ot \1+ 2(v/y,)[1 + In(a/r,)] 2 o

In Eq. (30), B,,(r) is the local magnetic field, v is the
Budker's parameter, a is the minor radius of the torus, r, is
the beam radius, and (B°*') is the average applied magnetic
field within the electron ring.

Using the equation

Voo =

200 _ ..
me® —= i ev-E, (31a)
together with
Ey = — Z'a_(B" |3 (31b)
Egq. (30) becomes
aBo‘“) — _e_ ext
- [1+ > (1+1 )] (8. (32)

A similar condition has been derived previously.'?

Equation (32) is the condition that must be satisfied in
order for the radius of the accelerated electron ring to remain
constant. For low-v/y, beams, Eq. {32) is reduced to the
well-known flux rule, i.e.,

aBO.' (‘ ) l a eat
el AL B
at 2 o o BT

The correction term (2v/¥)[1 + In(a/r, )] in Eq. (32) is
very sensitive to the beam energy. For a 10kA, 3 MeV beam
injected into a 10 cm minor-radius torus with 7, = 1 cm, the
correction is only 1% and therefore can be neglected. How-
ever, when the energy of the same beam is reduced to 0.5
MeV the correction is 48%, i.e., very substantial. The design
of the accelerator is simplified considerably by choosing the
beam parameters such that the correction term is negligible.

The instantaneous value of y,(r) may bc determined
from Eqs. (30) and (31) and for 73(¢)» 1 is

volt) _ 11+ 20v/%d0)) [} +Infa/rs)] ] By, (1) ()
70 {1+ 2[v/rlt))[1 + Infa/r,)] ) Bo:(0)
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FIG. 8. System of coordinates: (a) depicts the various parameters appearing in Eq. (34}; and (b) depicts a displaced straight electron beam inside a perfectly
conducting pipe. The image current is located at a distance a®/{A7 + 42")'? from the center of the pipe.

In contrast to the low-current beams, in which (¢ )/B,,(t)
remains approximately constant during acceleration, for
high-current beams with toroidal corrections the quantity
that remains constant during acceleration is

Xolt) [y 45 ¥ [1 + ln(f-)” = const. (33)

B, (t) Yolt) Ty
As y,{t ) increases with time, the correction term decreases
and Eq. (33) is reduced to y,(t )/B,, (1) = const.

Now, we return to discuss the self-flux linking the axis
of the ring. In the notation of the toroidal geometry shownin
Fig. 8(a), the magnetic stream function ¥ = rd § forp <r, is
given, to lowest order, by"’

L4 a P p 4
Z =2In[Z ~E _2F = -
2 n(rb)+1 : pals cos(gbr é)
Plmfe)_ 3% 5 _5-”_2] 34
+ - ln(r,) 4az+2 g cosgd, (34)

where Q = — |elnari2R 1/c, 2 =vo/r, 4% = AP + A7,
n, is the uniform density, and it has been assumed that a<r,,

r, <a, and Ar,Az<a.
The sclf-flux through the axis of the ring (p = 0) is
@' =2a¢. (35)
Substituting Eq. (34} into Eq. {35), we get
@* =27Q[1 + 21In(a/r,)], (36)

which does not depend on the displacement Ar, Az of the
beam. This is a rather unusual result and deserves further
discussion.

To gain some insight into the problem, we have com-
puted the flux linking a horizontal surface s extended from
the axis of a straight beam to the inner wall of a perfectly
conducting cylinder of circular cross section as shown in Fig.
8(b). The beam displacement is arbitrary but the ratio r,/
a<l. Itis straightforward to show that the flux through such
a surface of length / is

1640 Phys. Fluids, Vol. 26, No. 8, June 1983

2
o = A [_l_ + |n/i) + |n(1 - M)]. 37)

c L2 r . a’
where I is the beam current.

For (47 + AZ2%)"/*/a <], Eq. (37) indicates that the flux
&' has a quadratic dependence on the beam displacement.
Therefore, since only the linear terms on beam displacement
were kept in the derivation of Eq. {34), it is not surprising that
the flux given by Eq. (36) is independent of the displacement
of the beam.

When the time approaches the magnetic-field-penetra-
tion time ¢, the self-magnetic field of the electron beam
starts to diffuse out of the finite conductivity metal torus.
Using the geometry shown in Fig. 9, it is shown in Appendix
A, that for a very thin conductor, i.e., a = b, to lowest order,
the self-magnetic field of the beam at time ¢ is

By(rt)=( /erfl —e™""™), r>b,

..Bdj (rt)=2I/cr, r,<r<a, 8

Y
1\
Electron

Ring

Hy (r, 1)

-

]

FIG, 9. System of coordinates used to compute the magnetic field during
diffusion.
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where

1, =:(4r0Sa/c*) In(ry/a).

These equations are based on the assumptions that § /
a<l, [(6/b)In(ry/b)])''? <, and the inductive electric field
varies as E, (r,t) = (b /c)[0B,(b,t}/1] In(r/r,), i.e., goes to
zero at r = r, (pseudotoroidal geometry).

The self-magnetic flux in the three regions is given by

(411”0/6'), ln(a/r,,), rga,

@' =10, a<r<b,

(dar/I(1 —e™ """ In{ro/b), r>b,
and it diffuses out at the rate

do*  Amrd e~/ ln(%). (39)

dt Ipe

The inductive electric ficld generated by the changing
flux given in Eq. {39) acts to slow down the beam. In addi-
tion, for a constant current density ring, the hoop forces
increase by the ratio [1 + In(8r,/r, }}/[1 + In(a/r, )}, and the
induced magnetic-field components go to zero at the end of
the diffusion. However, the electric-field components re-
main the same. As a result, for an electron ring that is situat-
ed along the minor axis of the torus, the decrease in its equi-
librium radius associated with the reduction of y, is greater
than the corresponding increase of the equilibrium radius
associated with the enhanced hoop forces and thus equilibri-
um can be lost. This difficulty can be avoided by placing a set
of external conductors along the minor cross section of the
torus having a poloidal distribution that closely resembles
the distribution of wall currents in a perfect conductor, i.e.,

1, = —(I,/2wa)[1 —(a/2ry)cos ¢ ],

where I, is the wall current per unit length and I,, the ring
current.

This compensation is satisfactory even when the beam
is displaced off center and rotates around the equilibrium
position with wp, provided that w75 » 1. The reason is that
the correction terma in the fields at the center of the ring,'4
when the skin depth is much greater than the thickness of the
conductor, is

(—2e~"""®/wy7p) sin wgt,
and therefore, it can be neglected. Similarly, when the skin

depth is much smaller than the thickness, the correction
term is also small and is given by

(_Z(L—a_)/t_z_)"z + _ZLU'D.
@WpTp @pTp
In addition, we have shown that the components of the
magnetic field that are proportional to the displacement of
the beam do not diffuse out of the chamber when wz7,>73.
As a consequence n, r; /a* does not increase during diffusion
and w, does not change polarity. Therefore, the drag insta-
bility'* can be avoided by choosing the various parameters to
give w, > 0 at the commencement of the diffusion process.
During the main acceleration phase the significance of
toroidal effects is reduced becausc v/y,—0. When B, re-
mains approximately constant (as shown in Fig. 10) or in-
creases with time, the accelerated beam moves closer to the

sin wpl.
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FIG. 10. This figure illustrates a possible time dependence of the toroidal
and betatron ficlds. From the stability point of view other time variations
are more appropriate.

center of the minor cross section of the torus. This may be
seen from the beam equations, which, for By = const, are

a7+ X i 4 s2ar = Poo g3 4 Lo OPo)
LE 4 Y ymrp
4z 4 (P/7)A2 + B Az = — (40 /Y)AF. (41)

(40)

With the exception of the second term (y/y)4F, Egs. (40) and
(41) are identical to Eqs. (12) and (13). For n = |, Eqgs. (40)
and (41) can be readily solved. Introducing a new variable
¥ = Ar + iAz, these two equations can be combined into a
single equation

. . 0
bt L+ ool + wpy = Loo BPad )
14 Y vymrg
where w} = @} = .. The general solution of Eq. (42) is

¢=¢I+¢2+¢p'

where
g = rlz,.zexx)(-—i So @' dr’) '
Y [(00/7) + 405 ]"
v = :zlzzexp( —ify ' dt') ’
Y[ 2o /7Y + 403"
and

o (U= 20 /VN(EPs ) ymrolih,] dt
V=¥ L Wi ts)
" [(20a/VN{EPe )/ ymry) ], dt’
-'*- v J‘; wly),¥,) '

In the above equations @9 =(204/2¥) % [(200/
2y + wi ] "2 and w(ih,, ;) is the Wronskian of the two inde-
pendent solutions ¥, and ¥, of the homogeneous equation.

Since the denominators of ¢, and ¢, increasc when the
betatron field increascs in time, the center of the beam moves
toward the center of the minor cross section of the torus
during the acceleration.
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FIG. 11. System of coordinates used to analyze the drift resulting from the
gradient in the toroidal magnetic field.

V. GRAD 8 DRIFT IN THE MODIFIED BETATRON

Until now we have neglected in our analysis the radial
gradient in the toroidal magnetic field B,. In this section we
consider carefully the effect of this nonlinearity on particle
motion, assuming that it is the dominant nonlinear effect.

The linearized equations of motion of a particle located
at r=ry,+ Ar + 6r, z = Az + 6z, where Ar and Az define
the beam position with respect to the center of the torus (see
Fig. 11), are

~ - 7
B4 (1—n2%r, — n,!)fo(csr+ —‘;Ar)
a

=530(1" . 2+ 0,0 L) '
To Yo'ro

- ~ A
Z, 4+ nkz, — n,!)fo(b'z + ;';—Az)

= ~ 21 - 2,
To

where
rn=A4r+ér, z,=4z+ 8z,

- _ {43)
2,0=0,/Yor £260=125/70-

Choosing n =} simplifies the subsequent analysis.
Making this choice and defining ¢ = r + iz gives
v+ 5‘0:20¢l —-nM% [6y + ('%/az)dlﬂ

= — if29[1 — (Re ,/r}]¢); + £2,0(6P6 /Yomry).

(44)

We proceed to solve (44) perturbatively, assuming Re 3, <r,,.

The zero-order equation, neglecting the nonlinearity, is
easily solved. First an averaged is performed over initial po-
sitions and velocities of the particles to obtain a single equa-
tion governing the motion of the beam center 4¢. Denoting
this average by brackets we will have () = 0by definition
and, as long as no kinks develop in the beam, it may be shown
that (S5¢) = 0 = (6y). Once the average cquation is ob-
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tained it may be subtracted from (44) to obtain an equation
for 8y. Carrying out this program, we find for the zero-order
solution:

(5Po) — oyt — hayt
AP = — Ae "' 4 Be™ ",
02, 0vmro[ (4 = (R /a%)n, ] (45)
5¢(O) —_ ~6P0 _ (6},9) + Ce-lm,l+ De—iw,l,

02, o¥omrolk — n,)
where A, B, C, and D are complex constants dependent on
initial coordinates and where the frequencies w,---w are giv-
en by

@y = W20t (23, +402) [} —(r3/a%n, ]} 1"2),
_ _ _ {46)

Wys = 4{2o0+ [D5 + 42504 —n,)]'").
We shall take subscripts 1 and 3 to correspond to the +
signs.

In writing (45) we have assumed that neither
{1 — (r3/a’n, ] nor (} — n,}is zero. If either of these quanti-
ties does vanish {corresponding physically to the vanishing
of net radial restoring forces) the corresponding solutions to
(44) grow secularly, indicating a curvature or centrifugal
drift in the vertical direction. Below we assume that the radi-
al restoring forces do not vanish for either beam or particle
motion. In addition we shall make the assumption that
(6P, ) = 0. Thisis the same as the requirement that the equi-
Yibrium position of the beam be at the center of the minor
cross section of the torus. This assumption has no effect
whatsoever on the basic physical results and conclusions but
does simplify the mathematics somewhat.

We may return to (44) and calculate the first-order cor-
rection to the beam position 4¢'*. The equation to be solved
is

A" + Dol + D51} — 1R /a"n, ) AP
=120 (Re yi). (47)
[}
Substituting from (45) we find the right-hand side of {47) is

. 2 2
(Re gy = —i IZ. kE. w, p; pre” "

Xcoslw,t —a,) — -%- i mj(pf), (48)

i=3

where we have defined

ABCD=pe™, j=1234,
and where we have assumed that

(€)= (D) =0,
with the average taken over the initial positions and veloc-
ities of a particle.

From (47) and (48) we can sce that apart from the oscil-
lating terms the net effect of the radial gradient in B, is to

cause an outward shift in the equilibrium position of the
beam:

e/ 2r)(2! @, p])

AP = — + oscillating terms.
5[}~ (ry/a’)n, ]
. {49)
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This result is simply understood as the result of a balance
between the outward, “diamagnetic” force (which tends to
expel the beam frc:- the high field region) and the inward
radial restoring force.

Since the p; values in (49) depend on the details of the
injection process, it is difficult to draw practical, quantita-
tive conclusions from this result. However it is probably safe
0 conclude quite generally that any device should be de-
signed so that §>(r} /a’)n, for all times, or

v/Yo<lrof2, /e, (50)

for the case of a perfectly conducting wall. The ¥, should be
omitted in the parentheses on the right-hand side of (50} in
the case of a poorly conducting wall (diffusion time short
compared to a beam oscillation period). We note that the
constraint in (50} is independent of the strength of the toroi-
dal magnetic field.

Two-dimensional computer simulations bear out our
claim that self-consistent beam equilibria exist in the pres-
ence of a gradient in B,, as long as the net radial focusing
forces [proportional, basically, to the denominator in (49)
but generalized to include the case #7541, and to include toroi-
dal corrections to the self-fields] do not vanish. In Fig. 12 we
show a succession of *“snapshots” of a beam cross section,
which remains in its equilibrium position for significant
times compared to r,/V,, where V), is the single-particle
drift velocity,

Vo = £60p*/21,,
and where p is a particle gyradius. No drift is observed. (This

is not just a visual observation but is obtained from a plot of
average particle position versus time.)

Iy = 10 kA Ep * 3MeV
" 100cm as 6.4cm fp*lem
Bz* 1606 Be 1.4 kG n=03
TIME = 0.00 nsec «_TIME «5.00 nsec

6.4

2 {cm)

N
. ')X

V.
r
"

6.4 93.6 106.4
R (em R{cm)

TIME =10.00 nsec y _TIME =20.00 nsec

93.6

Z (em)
6.e

-
U
"N
U

! 93.6 106.4
R (cm)

938 106.4
R (cm)

FIG. 12. Four snapshots of the electron-ring minor cross section. The val-
ues of the various parameters used in this computer simulation run are
shown at the top of the figure.
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lb = 10 kA [b. 3 MeV
fg ° 100 cm c=64cm Tp= tem
Bz » 1506 B« 1.4kG ne=03

« _TIME = 0.00 nsec

._HTIME *5.00 nsec
o

N,

936 106.4 93.6 106.4
R (cm) R (cm) o

«_TIME »10.00 nsec e _TIME = 20.00 nsec

7oy 7S
z“\/ 3\

106.4 93.6

Z{cm)
Z (cm)

Z(cm)
Z(cm)

R (em) R (cm) do

FIG. 13. Reducing the betatron field by 10 G, but keeping the remaining
parameters fixed, as in the run of Fig. 12, the electron ring drifts rapidly in
the vertical direction.

In Fig. 13, on the other hand, we present a case in which
net radial focusing does nearly vanish. Loss of confinement
is extremely rapid under such conditions. The ring drifts
vertically with an average speed of 0.25 cm/nsec.

VI. THE EFFECT OF EMITTANCE

- Up to this point, we have dealt with the equations de-
scribing the motion of the center of an electron ring in a
modified-betatron configuration. In this section, we discuss
the effect of the finite emittance on the equilibrium of the
gyrating electron ring using the beam envelope equation.
When the major beam radius ryis large, n = 1, ¥, = const, v/
y<1, the thermal energy spread 4y, = 0, and the effect of
surrounding walls is neglected, the beam envelope equation
in the paraxial approximation for By, > B,, becomes,'?in the
Larmor frame of reference,

vy a L(Boo Y g 2V & _
G rs(wo.)"’“’ e nm O

where € is the beam emittance (unnormalized), s = Or, is the
length along the minor axis of the torus, and r; (s)=dr, /ds.
For a zero-emittance beam the motion of the particles is
laminar and the equilibrium is called either laminar flow or

Brillouin flow. The equilibrium radius in this case is ob-
tained from Eq. (51) by setting

rp =€=0,
and is
Pheq {26/ 0200)(2v/70)' "2, (52)

when y,» 1. For a finite emittance beam, the equilibrium
radius can be determined from Eq. (Sl) by taking ry(s} =0
and is
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RADIAL ENVELOPE

©
o,
" Byt 14156 €+0.
E
v
~ e
@ G-
Z
g ]
=2
X g
~
b
3
© Il T ¥ T 1
00 1O 2.0 30 40 8.0

TIME (nsec)

FIG. 14. Root-mean distance of the electrons from the center of the ring as a
function of time, when the emittance € is zero.

2 271/ 122
mad (o7 R o B
05 7o Yo 2
For small envelope oscillations r, =r,, +§, with
8 /rpq <1, and Eq. (51) gives
8" +2[(200/275cf + €/73,]6 =0,
which has a period

T, b.eq =

T 27/c
2[00 /2100 + €713 )"
The effect of emittance on the equilibrium of the ring
has been studied extensively using a computer-simulation
code. Numerical results from the computer simulation are
given in Figs. 14-17. For a beam with y, =17, 1 = 10 kA,
ry =100 cm, B,, = 160 G, and B,, = 1415 G, Eq. (52) pre-
dicts that the equilibrium radius for the Brillouin flow is 1
cm. The numerical results of Fig. 14 also give a radius of 1
cm, that for all practical purposes remains constant in time.
In this run the electron beam is injected into the torus with a
rotational frequency that is half of the local cyclotron fre-
quency. Figure 15 shows the envelope in time of a nonrotat-
ing beam. The various parameters in this run have the same
values as those in Fig. 14, except now the emittance is non-
zero in the Larmor frame. For the equivalent emittance of
€ = 50 mrad cm, Eq. (53) gives r, ., = 1.21 cm and the nu-

{54)

RADIAL ENVELOPE

o
i B,*1415G; € <50 mrod-cm
Er
~o
o
z
e
S0
-
Own
o
& o
o
°
° ™ | a— T v —
00 10 2.0 30 a0 5.0

TIME (nsec)

FIG. 15. Root-mean distance of the clectron from the center of the ring as a
function of time. In this run € = 50 mrad cm.
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RING CROSS SECTION
By=14156; €+50mrod-cm

. TIME = 0 00 nsec
L

« TIME - 1.00 nsec
©

Z(cm)

-~
N

(31 106.4 936 106.4
R{cm) R(cm)

«_TIME*® 2.00 nsec e _TIME = 3 00 nsec
L

N

96 106.4 936 106.4
R (cm) R {cm)

FIG. 16. Four snapshots of the electron-ring minor cross section when

Z (em)
Z (em)

" €= 50mrad cm.

merical results give an equilibrium radius approximately
equal to 1.24 cm. Similarly, Eq. (54) gives a period of 2.13
nsec and the numerical results give 2.28 nsec. Snapshots of
the beam cross section from the same run are given in Fig.
14. The oscillations observed in the run of Fig. 15 can be
avoided by “matching” the beam, i.e., by raising the By,
magnetic field to 1830 G. This value of the magnetic field
gives an 7, ., =1 cm, which is the radius of the beam for
Brillouin flow. Numerical results from this run are shown in
Fig. 17.

The electron beams discussed so far in this section were
monoenergetic with finite emittance. Such beams have an
axial velocity spread equivalent to that of a cold beam with
energy spread 4y that is given by'®

(Ay/7). = WvBe/r, ).
Hot beams have an additional energy spread. This thermal
energy spread in the direction of beam propagation has an
important effect on the dynamics of electrons as may be seen
as follows. The equations describing the motion of individual
electrons in cylindrical geometry are identical with those

RADIAL ENVELOPE
By 18306G; €*50 mrad-¢cm

ROCT MEAN R (cm)
050 075 .00

0.2%

i

0.00

¥ L v v
0.0 1.0 20 30 4.0 5.0

TIME (nsec)

FIG. 17. Root-mean distance of the electrons from the center of the ring.
The envelope oscillations are drastically reduced when the toroidal magnet-
ic field is increased from 1415 G to 1830 G.
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describing the motion of the center of the beam, provided
that &} and &? are replaced by

E’: = ('002 /70)2“ —n—n, )!
@} = (R, /7o (n —n,),

and

(6P) & Ay

Yo7, ref2o; Yo
The above set of equations are based on the assumption that
toroidal effects can be neglected. In addition, it should be
emphasized that Ay is the thermal energy spread and not the
energy mismatch 8§y, discussed in Sec. I1I.

For n = |, the solution of the individual-particle equa-
tions are

r-—-r‘,=¢$rocosa),,t—azt,sinm‘,t-pr‘,it
Yo
(1 — cos wpt)
X ——;—_—'—l'——. (55)
i !
Jz=5zocosw,t+6rosinw,t—roﬂsmma , (56)
Yo 43—,

where
wy = (1o, /Y)B, /B, )(i - n,)

According to Eq. (55), when n, ¢}, i.e., for low-current
beams, thermal effects substantially increase the minor radi-
us of the beam. In such beams the minor radius varies as
2rA7/ Yo

In contrast, when n,» 1, i.e, for high-current beams,
thermal effects do not change significantly the minor radius
of the beam, which varies as (ro/n, }{4y/y,).

LOW CURRENT (100 A)
Ac/e = 10%
" TIME = 0.00 nsec

HIGH CURRENT (10 kA)
Ae/e = 10%
o TIME = 0.00 nsec

<
%,

-——Z

- R =

—Ze

— R

- -

F1G. 18. Snapshots of the electron-ring minor cross section for low and high
current. The values of the various parameters for this run are listed in Table
11. The energy spread in both cases is 10%.
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TABLE 111. Electron-ring parameters for the two computer runs shown in
Fig. 18.

Parameters Low current High current
Beam current (kA) 0.1 10
Beam energy (MeV) 3 3
Energy spread (%) 10 10
Major radius (cm) 100 100
Beam minor radius (cm} ] 1
Initial betatron field (G) 116 146
Toroidal field (kG) 1.4 14
External-field index 0.5 0.35
Self-field index {n,) 0.37 23.4
Torus minor radius (cm} 3.2 3.2

The effect of the axial energy spread on the minor cross
section of the beam in a modified-betatron geometry has
been studied numerically. Results from both the high- and
low-current beams are given in Fig. 18. In these two runs the
various parameters have the values listed in Table 111. In the
high-current-beam case the minor radius expands by ap-
proximately a factor of two. However, in the low-current-
be~m run the beam expands significantly and strikes the
wall. Therefore, a substantial energy spread can be tolerated
in high-current beams without a catastrophic expansion of
the minor radius of the beam. Such energy spread may be
required to stabilize the various disruptive instabilities.'®'#

Vil. SUMMARY

In this paper we review the dynamics of ultrahigh-cur-

rent electron rings in the modified-betatron configuration.

Our discussion mainly addresses the evolution of the elec-
tron ring after injection. The formation of the ring during
injection has been analyzed and reported previously.'®

Our work includes both analytical and numerical re-
sults for “cold” and “hot” rings. The conclusion of these
studies is that equilibrium states of ultrahigh-current rings in
a modified betatron exist over a wide range of parameters.
These equilibra are realistic and accessible with state-of-the-
art injectors.

The results presented in this paper are based on several
simplified assumptions. Among them, we have assumed that
the various fields are free of errors, the conducting wall that
surrounds the electron ring was assumed to be smooth (i.e.,
without ports and gaps), and the external-ficld index was
assumed tobe constant in time and space. The consequences
of these assumptions are presently under investigation.
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APPENDIX A: DIFFUSION OF THE SELF-MAGNETIC
FIELD OF THE BEAM THROUGH A CONDUCTING LINER

The purpose of this appendix is to briefly outline the
calculation of the diffusion of the self-magnetic ficld of the
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beam through a conducting liner. To simplify the analysis, it
is assumed that the electron beam is located along the axis of
a straight, circular cylinder of inner radius a, outer radius b,
and thickness § = b — a, as shown in Fig. 9. In addition, it is
assumed that the current of the electron beam is a step func-
tion that is turned on at f = 0. Since the problem of interest is
that of an electron ring inside a torus, it is further assumed
that the axial inductive electric field goes to zero at r = r,,
where r, is the major radius of the torus.

Neglecting the displacement current {(quasistatic ap-
proximation), the fields inside the cylindrical conducting
shell (a<r<b ) are given in mks units by

VxXH =1, (A1)
V-B=0, (A2)
JB
VXE= — —, A3
X at (A3)
and
J =0E, (A4)

where J is the current density, H is the magnetic field, B is
the magnetic induction, and o is the conductivity of the con-
ductor.

Assuming that all quantities are independent of zand ¢,
Egs. (A1) to (A4) can be combined to give a diffusion equa-
tion for the azimuthal component of the magnetic field

g; (—l—— 9 [ritirt ]]) =ou

For r <a and r> b, the conductivity is equal to zero and Eq.
{AS) becomes

air (l 9 (rH,irs )]) (A6)
with the only acceptable solutions
Hy(rt)=(I/2mrB(t), r,<r<a, (A7)
H,(rgt)=H,bt)b/r, r>b, (A8)
where @ (t) is the step function and r, is the beam radius.

To complete the specification of the problem we have to
introduce boundary conditions. From Eqgs. (A3) and (A8), we

get
OE, _, 3Hulbt) b

i‘ (re). (AS5)

ar at r
which after integration yields
E(,,,)_ﬂa_ﬂdllﬂ.b] ( ) (A9)
To

where we have assumed that E, (r,t ) is zero at r = r,,
Combining Egs. (A1), (A4), and (A9) at » = b, we obtain
the first boundary condition, namely ¥

1 = —al
min =5 {2+ 5 on{ o)

-1 Oty

(% 9 (rH, ))” T gg’! (bt )b In (r%) (A10)

The second boundary condition is furnished from the con-
tinuity of the magnetic field at r =g, i.e.,

(1/27a)0(t) = H ,(a,t). (A11)

Since the magnetic field is zero at £ = 0, Egs. (AS), (A9}, and
(A 10} take the following forms in their transformed state

d*, | 19, (1 )
1 (1 f, =0, A12
a2 T o \g Torr)s (A12)
(2-(ri1¢ )) = oupH, (b )b> 1n(i) , (A13)
ar re=b ro
and
(U /2map) = [H,(r1 ), ..., (A14)

where, the Laplace transform of H, is defined by
Hyr,p)= fo e~"H,(rt)dt, Re(p)>T.

Equation {A 12} is the modified Bessel equation and its solu-

tion is

H,(r,p) = AL(Ar) + BK (Ar),

where 4 and B are constants and 4 ? = oup.
The two constant coefficients 4 and B, determined from
Eqgs. (A13) and (A 14), are

= (I/2map)[KyAb) + Ab In(b /r)K (Ab))/A,
= (I /2map)[I,{Ab) — Ab In(b /r,)I,(Ab)])/A4,
where
4 = KyAb ), (Aa) + I(Ab)K (Aa) + AbIn(b /r,)
X [K,(Ab)1,{Aa) — K,(Ab M,(Ab ). (A15)

The magnetic field in the region a<r<b as a function of space
and time can be obtained by inverting the Laplace transform,
ie.,

+ foo dpep,
€ — ieo 21rap

X—{[Ko(/lb)+/1bln( ) ,(/Ib)] A

Ho(”)—'—

[lo(lb)—lbln( ).(/zb)]l( (/lr)] (A16)

where the path of integration is a vertical line in the complex

p plane to the right of all singularities of the integrand.

Equation (A16) has a simple pole at p = 0 of residue a/r

and an infinite set of simple poles at 4 = 0.
Contour integration of Eq. (A16) gives

x[Yo(a,b WVia,r) — Y@, Woa,b) + ab ln(’%)[ Y,(a,b W a,r) - Y,(a,r).l,(a,b)]]”a,(-j—:)aa".] A

where e = p0, A
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= ia, Y and J are the Bessel functions, a, are the roots of equation
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Yola,bV\(a,a) — Yila,alla,b) + a,bInlb /r)[ Yi(a,b W {a,a) — Yi(a,aV \(a,b]] =0,

and

el b 4

a,(22), _. = a.alla,b Volaa) - Yolaalfa,b]) ~ a,b [ Yia,bVia,a) — Yifa,alfa,b)]
+ asb ln(b/ro)iba: [ YO(a.tb )‘,l(aaa) - Yl(asaVO(asb )] + axa[JO(a:a)Yl(a:b ) - Yo(a:a)‘,l(axb )] )'

Fora,a» 1, Eq. (A17) is reduced to

H,(rt ):_1_ a _ (i)m i exp( — ot )[cos a,lb—r+ab ln(—rg) sin a, (b — r)]-
=1 o

2ma \r r ony

X [a,s sin (@,5) — ab ln(i) cos a,8 ] ) '].

To

where the a, are now the roots of
cos{a,8) + a,b In(b /ry) sinla,6) = 0. (A20)

Equations (A19) and (A20) are further simplified when
a,6<1. In this case

H, (r,t):z—:m—[-g- - (—:—)m[cos a,b—r)

2
+a,b ln(—b—) sin a, (b — r)] exp( a,t)]’
o THto

which at r = b, becomes

H,(bt)=(I/2mb)[1 — exp( — ajt /op,)],
and

al=[8bIn(ry/b)) .

(A21)

Therefore, to lowest order, the magnetic field in the region
r>bis
— 2

H,(r,:):zim[l—exp( al:")], r>b (mks),
(A22)

or

H,(r,t)= (2 /rc)[1 — exp( — a?tc*/4mo)] (cgs).
(A23)

Under the same approximations, the electric field of the
inner edge (r = a) of the conducting shell is

—ait
E,(at)= — ——I—af ln(i‘l) exp( i ) (mks),
2n0 b g, (A2

Since the electric field is uniform in the region r<a, Eq. (A24)
also gives the electric field that acts on the beam. Substitut-
ing Eq. (A24) into the energy-rate equation

mc? v _ _ evE,
dt

we obtain for highly relativistic beams
Ay/y= —2v/y) In{ro/b). {A25)

For ro/b = 10 and v/y = 0.1, Eq. (A25) gives 4y/y = 0.46,
i.e., a substantial reduction in the energy of the beam. How-
ever, for highly relativistic beams v, ~¢ and thus the current
of the beam remains approximately constant.
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APPENDIX B: DESCRIPTION OF THE PARTICLE-IN-
CELL COMPUTER CODE

The Naval Research Laboratory (NRL) modified-beta-
tron accelerator is designed for a maximum v/y,=0.1, i.e.,
the current is high enough so that the self-fields of the ring
can exceed the externally applied fields. A realistic theoreti-
cal description must therefore self-consistently include the
beam’s self-fields as well as the effect of surrounding walls.
Since this is difficult analytically, particularly if the ring is
displaced substantially from the center of the minor cross
section of the torus, numerical simulations are useful both in
gaining insight into the important physical processes as well
as to provide a method to check the applicability of specific
assumptions in an analytic model.

The dynamics of the accelerated electron ring are deter-

mined by forces that vary on a number of different time

scales which range from the electron cyclotron period, i.e., a
few nanoseconds, to the beam acceleration time, which is of
order of a millisecond. The code described here is tailored to

simulate efficiently the various phenomena on the interme-

diate time scale. This time scale is characteristic of the drift
{bounce} motion of the ring after equilibrium has been estab-
lished, rather than the rapid evolution occurring at injection.
Simulation of a single turn around the major axis that lasts
about 20 nsec using 4000 particles on a 64 X 64 grid typically
takes about one minute on the NRL Texas Instruments ASC
{Advanced Scientific Computer).

The simulation co~ is r — z, spatially two-dimension-
al, i.e., d/96 = 0, but with three velocity components. Al-
though B, is used in calculating the particle trajectories, it is
not solved self-consistently, i.e., it is assumed to be generated
from external coils only. This assumption is valid to first
order in v/¥. The radiative term (displacement current) is
also ignored, i.e., the code uses the Darwin model for Max-
well’s equations. ,

The electrostatic potential is computed from Poisson’s
equation

Vi =p/e,, {B1)
and the magnetic vector potential from
Vide — Ap/P = —pols, (B2)

with the boundary condition @ = 4, = 0 at the conducting
wall.

Equations (B1) and (B2) are solved by Fourier decompo-
sition in the z direction and then by Gaussian elimination of
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the resultant tridiagonal matrix of equations obtained froma
three-point differencing scheme for V2. The inverse Founer
transform yields A, and ¢ on the grid. Note that the 8-
particle velocities are advanced using the conservation of
canonical momentum in the @ direction, the equation for A,
is therefore not properly time-centered since the velocities
from the previous time step are used to calculate the currents
from the canonical momenta. This method was chosen pri-
marily for its speed and simplicity but care must be taken in
applying the code when the inductive acceleration of parti-
cles in the @ direction is significant.

If boundary conditions other than 4, or @ equaling
zero on a rectangular grid are desired, it is possible to obtain
relatively arbitrary boundary conditions using the capaci-
tive-matrix(Buneman) technique.?° In this method a matrix
is generated which is the Green’s function for discrete “wall”
points within the system. Then at each time step the field
solver described above is used. The potential at the discrete
(wall) points is obtained. By multiplying this vector potential
by the invense matrix obtained previously a set of (wall) cur-
rents or changes is generated, which is used to specify the
wall potential. These (wall} sources are then added to the
original beam source and the field solver is used again, The
result by the principle of superposition is correct inside the
system and has the correct boundary condition on the
“wall.”

The motion of the electrons is governed by the Lorentz
force

d{yv)

dt
where E and B are the total electric and magnetic field, re-
spectively.

In component form the equations used to update the
velocities and positions at each time step are

= 2E+vxB),
mg

Ve = Py/my — (g/mo\s, (B3)
VZ

dV.) _ 9 (g 4 v,xB, — V.xB,) + 122, (B4)
dt my

a{rv.) _ 2 _(E, — VoxB, + V,xB,), (B5)
dr mgy

Iy, (BS)

dt

&y ®)

dr

Equation (B3) is used at each timestep to compute yV,.
Equations (B4) and (B5) are coupled. To advance these veloc-
ities a leap-frog scheme is employed. At time ¢ all fields,
positions, and ¥, are known exactly. ¥, and ¥, however are
known at ¢ + 1 and the velocities will be advanced to ¢ + }.
Before the equations are differenced, it is convenient to re-
write the equations in terms of the relativistic momenta. Let-
ting

U=yV,
so Eqs. (B3), (B4), and (B5) can be writtenas
U = Py/myr — (g/molAe, (B3')
U!
AU, _ _9_(yE, + UyxB, — U,xBo) + —>, (B4)
dt ymeo yr
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Ve 9 GE, - Uk, § U xh,), (B5)
di ym,
a U (B6')
dt Y
dz _ U, (BT)
dt ¥
This formulation is then differenced by substituting
Ul4l/2__Ul—-l/z (IU
for ,
ar dt
and

r+ 172 - 12

o) +U for U.

After making these substitutions in Eq. (B4') and (B5’) it is
straightforward, if somewhat tedious, to solve the two cou-
pled equations for UL* > and U'* /% Since U, and U, are
calculated at the half-timesteps while U, is known at the full
timesteps, ¥ is not known at time ¢. This difficulty is over-
come using iteration.

After advancing the velocities, the partxclc posmons are
advanced using a simple centered difference

Pl =/ 4 4tU,/y,
and

2 =2 4 AU, /y.
Once all the velocities and positions are found the new cur-
rent and charge densities are used to update the fields and a
new time step begins.
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INTEGER RESONANCES IN THE MODIFIED BETATRON#*
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A The integer resonances affecting beam motion in the presence of external field imperfections in the modified betatron
X are studied. An upper bound is obtained on the magnitude of field error that may be tolerated. A numerical example
shows that for practical parameters the resulting bound is very restrictive. The effect of longitudinal temperature

Ry ~ . v % " TV TELTTYOw NTEILTRL Y TR

E-.l.;;; and other possible stabilizing effects are discussed.

1. INTRODUCTION

In a conventional betatron, low-order resonances
between particle motion and field imperfections
can be avoided by restricting the beam current
so that the tune shift' remains sufficiently small.
In a modified betatron, the addition of a strong
toroidal magnetic field raay allow large currents
to be accelerated,?* but resonances become
much more difficult to avoid, especially if one
contemplates removing the toroidal ficld before
the beam is extracted. This paper examines the
problem of integer resonances in the modificd
betatron* and obtains a condition bounding the
rate of change of the fields; when the condition
is satisfied the resonances are passed through
with sufficient speed so that the beam is not sig-
nificantly disturbed. We consider here only er-
rors in the fields themselves, not in field gra-
dients, so we discuss only integer, not haif-
integer resonances.

In what follows, we will first consider a *‘cold”
beam, that is, one in which there is no spread in
longitudinal energy or, therefore, in circulation
frequency about the machine. The effect of or-
bital resonances on such a cold beam will be seen
to place rather scvere limits on the magnitude of
the tolerable field imperfections. When the ef-
fects of temperature are taken into account, how-
ever, a numerical example below will illustrate
a reduction of the effect of the resonance on the

* Supported by the Office of Naval Research.
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motion of the beam center of mass. An expla-
nation of this temperature effect will be given.

I1. ORBITAL RESONANCES FOR A COLD
BEAM

We consider a beam of circular cross section and
uniform density and current profiles, as shown
in Fig. 1. The torus has a major radius 7, and
minor radius a; the chamber is assumed to be
perfectly conducting as far as the rapidly varying
part of the self-fields ts concerned. The beam
radius iIs r, with center located at r = ro + Ar,
z = Az, as shown in the figurc. If we define the
displacement of a particle from the design orbit
r=rq,z=0asr, = Ar + &r, 2, = Az + 8z
then the equations of motion for r; and gz, are, to
first order in the displacement from the design
orbit

Py + l‘-r; + ng] —n — nny
Yo

_ 81.300
2ntyoc

2 2
- “"’,(l ~ ) ar
270 a
e - -
~ < |E + Bob3
"TY()[ BO z

21 + QeoZy

+ N0 J; ' d:'ifs(:')] (1a)
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PARTICULAR
ELECTRON
POSITION

MINOR CROSS SECTION
OF TORUS

FIGURE 1 Minor cross section of modified betatron show-

ing beam center and particle coordinates. The major radius
of the device is ro.

L + -3—21 + Q%(n — ns)z

= - eBeo rn — ﬂoon
2myoc
2 2
Wy rs
- o2 (l - az) Az
- [E, - BoB], (ib)
nmyeo

where v, is the particle energy on the *‘ideal’’
design orbit (in units of mc?), N, = eB/myec,
Qg = eBgo/myyc, By is the vertical magnetic
field at the design orbit, By, is the toroidal mag-
netic field, n is the betatron field index (assumed
constant here), n, = w,,’l(Zyozﬂ ) is the self-field
index, w, = (41moe2/m'yo)"2 is the beam plasma
frequency and e, m are the magnitude of electron
charge and rest mass, and where field compo-
nents with a *‘wiggle'’ on the right hand sides of
(1a, b) denote the value of the field imperfection
which in general will depend on the value of 9,
the azimuthal position of the particle. In deriving
(1a, b) we have allowed all fields to depend on
time; we have therefore included the inductive
poloidal electric field (Beo terms). Also included
are the effect of wall image charges and currents

35.2

(r,*/a® terms), present when the beam is dis-
placed from the center of the chamber.

We desire to have equations which describe
only the motion of the beam center, Ar(9, ?),
Az(6, 1). To this end we define a distribution func-
tion f as

f(r, en 2, Vr, Vo, Vg, ’) = 2 g(r(O)v V(O))

LT )

500 — 6)

X 8(r — #) — 8z ~ )8y - %), @)

-~

where r'” and v are particle initial conditions,
¢, 6, Z, and ¢ are the solutions for the particle
trajectories as functions of initial position, ve-
locity, and time, and where g(r'®, v®) is a weight-
ing function. We then have that

Jrdrdzdv(r — ro)f
Jrdrdzdvf

_ 2 8, V)P ~ ro)8(0 — b)
2 g(r(O) V(O))S(O — e)

=(n).

Ar(e, 1) =

(3

A similar expression holds for Az(6, r). It may
be similarly shown that, for a cold beam,

(h) = ( + Q0 ) Ar )

3 2
(7)) = ( +onae) Ar, )

where, of course, analogous expressions hold for
(z1), {(21) and (#,). In Egs. (4) and (5) we have
assumed that all particles circulate the machine

with 6 Q0. This assumption will be relaxed
in the next section where the effects of finite
longitudinal temperature are considcred.

Using this averaging procedure on Eqs. (1a, b),
one obtains equations for the beam-center mo-
tion. Though these may be solved in general, the
special choice n = § (which is consistent with
our assumption of a circular becam) simplifies the
analysis. With n = 4 and defining

AY = Ar + iAz= D, A-\l;-,c"", 6)

= ~ o
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the equation for Ay is

2

9% — Yo , . ] Ay,
pyE Ay, + [W + if2eo + 2:10,0] Py
2 »
+ [ng (‘]' - r%n, et lz) + ”onl)
2 a Yo
4B _ 106000 + .md,] Al
2mvyoc
= F Q)

where F, is the I-th Fourier component of

_ e [;5, + BoB, + i(E. — BoBy)

mYo
+ Qo < fo ' dt'i:‘e(r')>] .

Equation (7) may be solved, assuming the func-
tions multiplying derivatives of Ay, are slowly
varying over the period of a betatron oscillation:

— ?
Al‘llz (.Yomo)—llzf dt’e"‘ di"(§Q g0 + 10 0

®)
[yo(1)]"? . o ] ,
X __—_wo(i')] sin l:f' dt"wo | Ft'),
where
[~ 2 12
o) = | 0% (% - 'a%n) " %ono:l . ©

For long times (many betatron periods), the in-
tegral in (8) may be evaluated by the method of
stationary phase. The points of stationary phase
(resonance points) occur when

0, = —§Qp — 0% w =0 (10)

for a given I. This is just the condition that the
betatron frequency be ! times the fundamental
cyclotron frequency, 1,. Condition (10) may
also be written

1 ry? 1
Beo = — 7(12 + -‘f;n; - ‘i) Bo. (1)
For positive By and B,o, Eq. (11) may be satisfied
only by negative [ and for such I, Eq. (10) may
be satisficd only for the lower sign (fast mode

resonance). Evaluating Eq. (8) then gives

172 in
An~iZ _ﬂ)__]
b '(2) ['Yo(l)wo(l)wo(t-) )

F’([—-) 'l' n _du -,
X -—-——-e' - T dr :m/l.
IQI_(I—)IIIZ
where ¢ _ is the time at which ;- = 0 and where

the + or — signis used in the exponent according
as {);7(1_) > 0 or < 0 respectively. If we neglect
the possibility of cancellation due to different
phases as we pass through different resonances
and if we interpret F, generically as [~ (e/mvy,)8f]
where 3f, is the /-th Fourier component of any
field error, we may obtain a lower bound
on | Q,~ | by requiring

[Ag] < a, (13)
which gives
s _ k14 e8f, 2
[ | » > [m_yomoa] , (14)

which is our basic result. For v, large enough
that we may neglect ),, compared with Qg9 and
ry’n,/a® compared with 1/2, this constraint may
be rewritten, using the relations

- e,
7= =i e (1)

and

P+
2|1}

Qo, (16)

wo

as

. 2n [8fic]?
|0 | > 5 [Bzoa] - an

As an example, we consider the problem of
passing through the | = —1 resonance. We con-
sider a hypothetical experiment (rg = 1 m, a =
10cm, r, = 1 cm) in which vy is increased lincarly
in time from an initial (injection) value of 7 to a
final value (f5oa = 1 millisecond) of 100, while
simultaneously Bg, is decreased from 1.5 kG to

0. The ] = —1 resonance will occur at 1 = 627
psec, at which time B,o = 1120 G, By = 560 G
and yo = 65.3. At resonance, {4 = —-6.2 X

35.3
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10"! sec ~2. Substituting in the expression (17) we
obtain an upper bound on the allowable field
error

8f -

—— < 1.3 x 1074,
z0

a rather severe requirement.

We conclude that, at least for the case of a cold
beam, it may not be desirable to remove the to-
roidal field and pass through these resonances.
Perhaps the toroidal field may be reduced some-
what from its initial value, assuming the high-/
resonances are not teo important and can be
passed through easily. It may then be possible,
by the use of an intentionally introduced field
perturbation, to use a low-/ resonance in a con-
trolled way to extract the beam before B, is com-
pletely removed.

It should be noted that it is possible, at least
in principle, to avoid the integer resonances al-
together by raising both B,y and By, proportion-
ately and in such a way that condition (11) is
never satisfied for any /. At the end of such an
acceleration cycle, however, one will have a very
large toroidal magnetic field in the device, pos-
sibly complicating the extraction process.

The above results apply to a beam all of whose
particles are traveling to lowest order at the same
azimuthal angular velocity. All particles are then
in resonance at precisely the same moment and
receive the same periodic perturbations to their
orbits. In the next section we relax this assump-
tion and examine the behavior of a beam, the
particles of which possess a spread in energy.

III. EFFECT OF FINITE BEAM
TEMPERATURE ON RESONANCES

To calculatc the effect of beam temperature on
beam behavior near a resonance, we consider an
ensemble of beams, each cold and each consist-
ing of particles traveling with a zero-order an-
gular frequency 0 , given by

8o = Q.0 — kP, (18)
where P is the canonical angular momentum of
a particle, which is related to the differencé in
energy between the particle under consideration
and the (reference) particle maintained at the de-

signorbitr = rg, 2 =10 by

Aymc?
on ’

P = (19)

and where, in Eq. (18),

(-1 2
-k = (‘702 12 — ns)/'yomru . (20)

For each cold beam, the relations (4) and (5) are
then modified by the replacement

Q0— Q0 — kP, (21
and therefore we may obtain the solution for each
cold beam by making the replacement, in Eq.

@®),

Ion-—> [(on - kP) (22)
The behavior of the actual warm beam will then
be given by

— L4
A~ <(vowo)—"2 | diretsarnmungsen

1] 2 I3
x [-——ZZZ;] sin [ f' ' dr'wo] F,(z')> ,
P

(23)

where the average is defined over some normal-
ized distribution function in P, i.e.

() = f: dPG(P). . .. (24)

In Eq. (23) we can immediately anticipate the
effect of temperature on the behavior of the
beam; the entire effect is included in the phase
factor, in the term kP. Such a term, when aver-
aged over any reasonable momentum distribu-
tion, will give a reduction in amplitude of the
average as the ‘‘width” of G(P) is increased.
Physically this means that the various particles
of different cnergics within the beam receive,
when passing through resonance, displacements
in slightly different directions. The net effect on
the motion of the beam center is therefore re-
duced. (Though our linearized treatment hcre
necessarily includes a fixed beam size, it may in
fact be the case that a warm beam will just expand

O
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FIGURE 2 Re(AY_,) vs. time for T, = 0.

slightly while passing through resonance while
the motion of the beam center remains relatively
undisturbed.)

As an example, we consider a beam made un
of particles having the energy distribution

VIL |Ay|< T2

Ge(Ay) ={ 0 |Ay|>Tu2r P

where T, is 2 measure of the longitudinal tem-

40x10"

~40% '0' A s A A i A A, A

6.27%10° TIME 629x10°*

FIGURE 3 Re (384 _,) vs. time for T, ~ 0.5.

. condition, Eq. (11), is satisfied at the center of

MODIFIED BETATRON RESONANCES

4.0x10°

_4‘0'40' W S I 1 1 i i3

62721074 TIME
—_—_—

6.29x10™* '
!
FIGURE 4 Re (A¥y_,) vs. time for T, = 1.0. ,

perature and where Ay is related to P by Eq.
(19). We consider again the hypothetical exper-
iment described in the preceding section. For
8f_y/B,o = 5 x 1073 the results of a numerical
evaluation of Eq. (23) are shown in Figs. 2-5,
which correspond to T, = (0., 0.5, 1.0, 2.0). In
cach figure, the real part of Ay _; in centimeters
is plotted versus time in seconds. The resonance

the time axis. Total elapsed time is 2.1 psec. The

40x10'

Re Ay,

-40x [ol 1.1 1 1 1 " 1 " A
6272107 TIME

6.29x16"

FIGURE S Re (Ay_,) vs. time for T, = 2.0.
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chamber diameter, 2a = 20 cm is indicated by
solid horizontal lines on each plot. W¢ observe
that for this example, T, = 1.0, or a 0.5-McV
energy spread, is adequate to smooth out the ef-
fect of the resonance. This is the same order of
magnitude of spread needed to damp the nega-
tive-mass/kink instability in this device®.

1V. CONCLUSIONS

We have obtained a bound on the magnitude of
field errors that can be tolerated in a modified
betatron in order that certain integer resonances
may be safely passed through. We have found
that for practical parameters the bound is ex-
tremely restrictive. The basic difficulty stems
from the fact that unless the external parameters
of the system are changed very quickly, the orbits
remain in or near resonance for many betatron
oscillations, allowing the displacements to grow
to large levels. Such a result suggests that non-
linear effects may play an important role in beam
behavior near a resonance. For example, one
may ask whether the radial dependence of B,
would be sufficient to ‘‘detune” the resonance
as the beam moves a finite but small distance
from its equilibrium position. This possibility is
receiving further study.

We have also shown that a finite longitudinal
beam temperature acts to reduce the effect of the

35.6
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resonance on the motion of the center of the
beam. The temperature spread required appears
to be comparable, in a specific example, to that
needed to stabilize certain microinstabilities.® It
remains unresolved in this analysis whether the
beam expands when passing through a reso-
nance. Such behavior, of course, if severe, could
be as unacceptable as large whole-beam displace-
ment.

Should it be possible to achieve significantly
lower field errors than those used in our example
(0.5%), or if it is possible expcrimentally to detect
and correct by some feedback mechanism the
sudden, resonant displacement of the beam, then
perhaps lower toroidal fields may be employed
initially and be removed either during or follow-
ing acceleration. The effects of passage through
the low-/ resonances may thereby be reduced to
a tolerably small level.
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Mode Coupling in the Modified Betatron
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a |
MODE COUPLING IN THE MODIFIED BETATRON !
ﬂ: I. Introduction s
For small displacements about a planar reference orbit, particle motion j

L~

transverse to the toroidal field in the modified betatron may be represented as a

i

linear superposition of two eigenmodes of motion: a "fast” mode, corresponding

to gyration about the toroidal field lines and a "slow” mode, corresponding to an

PR W Y TR

Fxb drift motion, where here the force ¥ 1s due to the weak focusing betatron

l 4
fields, space charge forces, and induced (wall image) fields. The linear theory 3

of orbits in the modified bétatron has been worked out in some det.ax:l.ll"5 and will

- only be reviewed as needed here. In the present paper we will mainly discuss the
L effect of quadratic non-linearities on the motion.
Non-linear terms in the equations of motion become ‘important to consider

< 1f: (1) displacements from the reference orbit become large, due say to the

method of injection used or due to the operation of an instability of some kind,

(2) strong non-linearitles (e.g. large values of 3n/3r) are present in the magnet

’ ".A.A‘ f 9

design, or (3) the non-linear term itself contalns a resonant part. In the

following we will illustrate two effects of quadratic non-linearities on single

Rl ol g

particle motion, viz. the amplitude dependence of the betatron frequencies and
the exchange of energy between the oscillation modes under certain conditions.
These conditions turn out to be analogous to the so-called Walkinshaw resonance®
in accelerators without a toroidal magnetic field7_11. We will limit ourselves
here to consideration of single particle motion only, neglecting the effects of

self fields; the treatment here then will only be valid for fairly large values

of y in high current devices, such that v/y << 1, where v 1s Budker”s parameter.
Four séctions follow. In the first we introduce some notation and sketch

the derivation of the equations of motion to second order in displacements from

and transverse velocities about the reference orbit, taken to be a circle in the ?

symmetry plane. In the second section the equations of motion are solved !

Manuscript approved February 15, 1983,
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perturbatively and a condition for the generalized Walkinshaw resonance is ,%
obtained. Under this condition we study the behavior of the betatron ;
oscillations, giving a numerical example as illustration. As an interesting -
result we find a particular value of field index gradient for which the resonance
ceases to have any effect on particle motion. ‘

In these first two sectlons the discussion will assume that all applied i?
fields are azimuthally symmetric. 1In the presence of fileld perturbations other

orbital resonances may occur and it 1s interesting to ask whether the amplitude

PR A O S IR

dependence of the betatron frequenciles induced by the non-linearities are %j
sufficient to keep the oscillation amplitudes at finite, but tolerably small ';f
values. Though in general this 1s a difficult question we will discuss a ?i
special, simple case in the third section of this paper in which the Walkinshaw »;é

resonance coincides with both an Iinteger and half-integer orbital resonance.

A final section summarizes these results and states some conclusions and

R
0
conjectures. ;%J
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II. The Equations of Motion

The geometry of the modified betatron is shown in Fig. l. We employ
standard (r,8,z) cylindrical coordinates. The exact equations of motion, using

6 in favor of time for our independent variable, are written

2 .2

d 2 -1/2
P - +
rT3 [xr*(r r + z

] = (e + 22 4 2272

) +27t (rB, - 2°B,)(1)

%3-[2'(r'2 + 2+ 2y M2 L, (r"B, - TB,) (2)

where 3 is any suitable function of position (r,0,z), A -mcst/e, e and m are

the magnitudes of the electron charge (e > o) and mass, B and y are the usual
relativistic factors, ¢ is the speed of light and a prime (°) denotes d/d8.

We shall assume that Br vanishes on the plane z = 0 and take all fields to
be independent of 8. (The assumption of azimuthal symmetry will be relaxed in
Section IV, below.) We take the equilibrium orbit of a particle of relativistic

factor Yoat T =1, 2= 0, so
A== r, Bz(ro,o). (3)

Let us now define the normalized coordinates x = (r - ro)/ro and y = z/ro.

The vector potential is glven correctly to third order by

_ 1-n 2 ,n. 2 "2 2.1 3
Ae roBzo[l +'—7_ x +-7 y —5 XY + 3-(n + n, 3) x7} (&)

where Bzo’ n, and n, are constants. The corresponding fields are

-~

B_=-B, [0~ nyxly (5)
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n n-n
~ 2 2 2 2 k
B, ™ By [1 —nx + = x" + —=y7] (6) "]

PR,

from which n, is identified as the second radial logarithmic derivative of Bz.

The toroildal field 1s assumed to be given by

where Beo is the value of the toroidal field at the reference orbit, x =y = 0.

L
__ By = By /(1+x) = By (1=x + « .+ 4) (7

Using the fields (5,6,7) in the equations of motion (1,2) and keeping terms

only of quadratic order gives the coupled equations:

n n-n

. » . 2.2 2,2 1,

!Er x** + (1-n)x = by” + (2n-1-~ i—)x - (—-E_)y *t 3 (x 2. y’z) (8)
y* + ny = ~bx” - (Zn-nz)xy + x°y’ (9)

where b = Beo/Bzo' These equations, (8) and (9), are our starting points. In
the following section we examine the behavior of an approximate solution to (8)

and (9) for various values of n, n,, and b.

‘_.!."'.'.
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I11. Perturbative Solution of Equations of Motion
In general the quadratic terms in (8,9) will be small so we attempt to treat
the equations perturbatively. Neglecting the non-linear terms altogether one has

the solution to the linear equations:

iv_, e ivse
= A e + A e + c.c.
] 1oy °l 1oy, (10)

where Af and As are complex numbers depending om particle inmitial conditions and

the frequencies are glven by

2,0+ 2.2 /2 172
- [b +1 = [(b +1)2 4n(l-n)] 1. 11y

s
The subscripts £ ana s are used here and below to label the amplitudes and
frequencies of the fast and slow oscillation modes. We will assume that the
linear motion is stable, that is n(l-n) > O.

We may calculate the correction to (10) due to the non-linear terms by
inserting (10) in (8,9) and resolving. The resulting equations will be
inhomogeneous with various “driving” terms at the frequencies
2y

2vs, 0, and v j:vs. Consequently, the non-linear correction to (10) will

£’ f

remain small unless it happens that
Ve TV, =V (12)

s

the condition for which, from (11), being
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b2 -2 [n(1-n)}1/2-1. (13)

In the absence of a toroidal field, (13) is satisfied for n = 0.2 or 0.8 which we
identify as the Walkinshaw resonance6, the consequences of which were first
observed in cyclotronslz- We proceed to examine particle behavior on this
resonance in the modified betatron.

On resonance conventional perturbation theory fails and one must resort to
some other method. A multiple "time” scale analysis of the problem gives a
solution of the form (10) in which the complex amplitudes Af and As are no longer

strictly constant but vary slowly with 8; they are found to obey the equations

aa_ .

RS AL PN a
Eﬁi = ir.( YA 2 (15
< {:] 2\ g/ )

where Iy o are two real valued functions of the field indices n and n
»

2’
vs2 -n 2 2vs2 +n
I'l = ———3— [2(1 + 6Vs + [12(——2—_ )]
6v v - n
s s
2
v&o - m
= -4 (—_TTff__ )T, (16)
Ve n
and where, on resonance, we have
vfz - 4v52 = 2(n(1-a) 2, (17)

(An asterisk denotes complex conjugate in (14).)

The question of orbital stability on resonance 1s thus reduced to the




..............

question of the behavior of the mode amplitudes in (14) and (15).

The equations (14) and (15) may be completely solved in a straightforward
manner; the solution is obtained and discussed in the Appendix.. To settle the
stabiiity issue, however, it 1s sufficient to note that there is a simple
integral of motion

%rl IAfI2 +-§ r, IASI2 = D/T), (18)

and consequently the motion Is necessarily bounded if T = rl r2 2 0 which, in
fact is true for all n and n,, as follows from (16). On this resonance energy is
simply exchanged back and forth between the fast and slow modes of motion.

Though we have argued that particle motion is bounded on this resonance we
have not in fact specified a bound or showed thét the bound is acceptable, in
terms of some machine aperture. One might conjecture, from (18), that if one of
r1,2 were significantly larger than the other then transfer of energy from the
more "stiff” (larger I' coefficient) mode to the less "stiff"” mode would result in
increasing particle oscillation amplitude. Hence one would be concerned if, from
(16), either vsz = n or vfz = n, It follows from (17) and (18), however, that
this can occur only for b = 0, n = .2 or .8. If n is chosen so that b is
0(1) when the resonance is crossed then rl and Pz are of the same order of
magnitude and one expects this resonance to be quite harmless. For specific
initial conditions ft is possible to find a.bound by calculating the turning
point of a certain particle-in-a-well problem, as shown in the Appendix.

Curiously, one can render this resonance completely inoperative for any
particular n by choosing n, so that ry and T, both vanish. From (16) and (17)

this value is found to be

36.10
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- ) 1/2 .
: n, =0, :2 (I3 “(1'“)?}7 ] (19) g
. 1 + [(1-n)/n] o
| ]
E‘_ Choosing this value ensures that the mode amplitudes remain constant when passing - 4
| through the "exchange" resonance. :2
?} We proceed to illustrate some of these results using a sipple single E
-.i particle numerical orbit integration. The algorithm includes the fields (5-7) ?
‘ but does not use an expansion of the force or acceleration. Figures 2 and 3 show %
the solutions to equations (14-15) and (1-2) respectively for the case n = 0.5, .:

n, = ;2 = 0.625, b = 0.5. The mode amplitudes are strictly constant, no exchange ?

occurs, and the particle orbit projection retraces itself in a stable manner over f

and over again. We contrast this case with that illustrated in Figures 4 and 5 j

for which the parameters are again n = 0.5 and b = 0.5 but now with %%

o, = 0. Now the mode amplitudes oscillate; one rises while the other falls in ﬁ

order to conserve D (Eq (18)). The oscillation period, from Equation (16) in the {#
Appendix, is 46.6 major periods for the particular initial conditions chosen. ?

The particle orbit projection now simply (and harmlessly) rotates slowly counter- .g
clockwise. ) :

Our conclusion 1s that in the case of azimuthally symmetric tields the
generalized Walkinshaw resonance is quite harmless in the modified betatron. The
exchange of energy between fast and slow modes is expected to cause no major
changes in the beam dimensions. When azimuthal field variations are present,
however, the situation changes dramatically due to a coincidence described in the

next section.
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IV. A Triple Coincidence Resonance

When n = 1/2 (the case illustrated in Figures 2-5) the values of the tunes
Ve and vy at the exchange resonance (13) are ve = 1, v, = 1/2; therefore in the
presence of field and focusing errors the generalized Walkinshaw resonance
coincides with an integer and a half integer orbital resonance. This triple
coincidence allows us to study in detail in this special case the effect of mode
coupling (and the amplitude dependence of the betatron frequencies) on the orbit
at an integer and half integer resonance. Though the restriction to n = 1/2 is
necessary for there to be a true coincidence, if n is near but not exactly 1/2,
the three resonances will be "nearby” and will occur nearly simultaneously and

the analysis below should still hold in an approximate way.

At the triple coincldence resonance the mode evolution equations become

dA

5 =ar.aa’ +ea”

) TiAghs * e (20)
-dif—=iI‘A2+ + e A (21)
de 2% €2 3% "

The €“s in (20) and (21) are complex constants proportional to certain
Fourier coefficlents in expansions of the fields and their gradients;
specifically, € is due to an ¢ = 1 term in the field gradient, leading to a half
integer resonance, €y is due to an 2 =1 term in the field, leading to an integer
resonance, and.e3 is due to an £ = 2 term in the field gradient, leading to a "2-
halves” integer resonance. Were they present alone ({.e. with no non-linearity)
in (20) and (21) the field imperfection terms are observed to lead to the usual
linear and/or exponential growth characteristic of integer and/or half integer
resonances. In the presence of mode coupling the situation 1is much less clear.

Since, as they stand, equations (20) and (21) cannot be solved analytically we
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wust in general resort to numerical integration. First let us comment on what we
might expect to see in the solution.

The field imperfection terms in (20) and (21) act roughly speaking as source
terms, pumping energy from longitudinal to transverse motion. If this energy
flow continues, and if there is no mechanism to return this energy to
longitudinal motion the result is disastrous -— a linear orbital resonance. Non-
linearities, however, can shift the betatron frequency of the resonant particle
off resonance for some finite amplitude of betatron oscillation. (The quantity
(n2 - ;2) is presumably a measure of the frequency shift induced by a given
amplitude oscillation.) 1In practice though one can not say a priori how much
frequency shift will be sufficient to terminate the growth of the resonant mode.
A numerical study seems to be essential.

For a numerical example we will examine the effect of the non—linear terms
in (20) and (21) on an integer resonance, that 1s, in the following we shall take
€) = €4 = 0. Cases have been examined numerically for various other combinations
of values for the £”s with no major differences appearing in the results.

In Figures 6 and 7 we illustrate the mode amplitudes and orbit projection

for a pure integer resonance with no mode coupling (n2 = n, = 0.625,

2
€y = .005). The (resonant) fast mode amplitude grows linearly without limit; the
(decoupled) slow mode stays at a fixed, small value. The particle orbit size
(Figure 7) consequently grows continuously.

Turning on the mode coupling changes the behavior of the mode amplitudes
dramatically but has little apparent effect on the particle orbit, which still
appears to grow to intolerable size. This 1s 1llustrated in Figures 8 ;nd 9
where we see that the mode amplitudes grow to a certain size and then turn over -

= presumably a reflection of the detuning of the resonance due to the frequency

shift. The "turnover”, however, is at extremely large amplitudes (Recall that
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the mode amplitudes are normalized to the radius of the device, ro.), therefore

the particle motion appears to be relatively unaffected, practic;lly speaking, by

changing n, from 5/8 to 0. This result does suggest though that by

increasing |n2 - Qzl we might reduce the resonant response to a tolerable value.
Figures 10-11, 12-13, and 14-15 show our results for n, = -1., -4., and

-10. respectively. We see that as ]n2 - EZI is increased the mode turnover

amplitude is reduced and the particle orbit becomes somewhat more compact,

staying within the plot boundaries for significantly longer times. (Even so, the

l

transverse orbit size is rather large, even for the largest values of |n2 - n2

we have tried.)

These results suggest that to stabllize the £ = 1 resonance a significant
non-linearity (large value of nz) could be intentionally introduced in the
betatron field. One must be careful in drawing this conclusion, however, because
such a non-linearity has well known adverse effects, among them a sensitivity of
the behavior of the orbit to initial conditiomns; that is, only some special class
of particles may be confined while others are lost. Also, if n,, which is
effectively the radial derivative of n, is very large, it then becomes difficult
to keep n itself within the stable range 0 S_n.$ 1 everywhere within the
aperture. Consequently we conclude that, as a practical matter, it is best not
to rely on non-linearities to stabilize the £ = 1 resonance 1in the modified
betatron and to design the machine with a flat radfal index profile. Avoildance
of this resonance as well as other low order resonances — — which then becomes
the only reasonable experimental alternative - - is possible in principle by
accelerating with constant b (i.e. Beo « Bzo)’ theredby keeping the tunes fixed5
- = except for the tune shift due to space charge, which affects the fast mode
tune only very slightly for large Be; the slow mode tune can generally be chosen

to be very small (~ .2 - .3) for all time.
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V. Summary and Conclusions ‘{

We have examined the effects of wode coupling on single particle orbits in ;j

the modified betatron. We find that a generalization of the Walkinshaw -
(exchange) resonance can occur for any value of field index in the range

«2 {n £ .8 but that its effect on particle orbits in general is quite modest
(Figures 2-5) and may be rendered completely ineffective by a special choice of
field index gradient (19).

When n 1s near 1/2 the exchange resonance coincides with both integer and

half integer resonances. An examination of orbit behavior at this triple
coincidence shows that, as a practical matter, the amplitude dependent frequency
shift in the betatron oscillation due to mode coupling is not sufficient to
stabilize the £ = 1 integer resonance (though presumably, as in the case of
accelerators not employing toroidal fields, higher order resonances will be
subject to non-linear stabilizations). This fact makes it advisable to allow, in
the design of an e#periment, for acceleration with constant or nearly constant

ratio 390/3zo thereby holding the tunes approximately fixed in tinme.
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@if In this Appendix we discuss the solution to Equations (14) and (15) in the ;j
b “
text. Writing i&
:: .{;
" -
. - = = :‘
o Af afexp(1¢f) As asexp(i¢s) (Al) %%
R
BN where ag o and $¢ o are real we find in a straightforward way an equation B
L4 s
= 1 2- _'A“
: for p = 2 ag * __%
1 .2 -
7o'+ V(p) = 0 (A2) -
o where
- V(p) = 41p> - 4Dp” + 3 ¢

2
- C = r, aga cos(¢f— 2¢S) = constant
and the constant D is defined in the text, Eq. (18). The other quantities are
X given in terms of p by
N
> /2

a, = (20)" (A3)

\ L

¢y = C/(2p) (A4)

5
PR R T T Ve, e e
et 3 Nttt "."'I‘ R &
L T RV R A an'Ea g o m 44 g

A = T‘I’Tf (C - 10”) exp(21p ). (A5)
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These expressions hold for o > 0. 1f p = 0 at 8 = O, say, then, from (14)
and (15) A8 z 0 and Af remains fixed for all 8 > O. Tﬁe modal frequency shifts
are given directly by (A4) for the slow mode and may be obtained from (A5) for
the fast mode.

:Q It may be shown that V(p) has one negative and two positive roots. Denoting

these by Py 2,3 with Py > Py >0> Py Ve find that the exchange period (period of
2

p(8)) is given by

K
(o=, p3)) = (46

where m = (pl_- pz)/(p1 - p3) and where K is the usual complete elliptic
integral.13
The special cases C = 0 and T = O lead to motion of infinite period and

p = constant, respectively.
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Fig. 1: Geometry of the modified betatron
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27.) n = 1/2; n, = 5/8. 1Initial (6 = 0) values of

- %
Af= 5.7735 x 10 3(1 - 1) and As = 2Af correspond to those of a
particle initially at x = y = .02 with zero transverse velocity. The

same initial values are used in all subsequent figures. ff*
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Abstract

Current thresholds for longitudinal and transverse instabilities are
calculated for beams of specified dimensions in conventional (Be= 0) and
modified (Be# 0) betatrons, using simple models for the longitudinal and
transverse impedances. Self field effects of the beam are included and lead
to a novel, competitive effect between the stabilization mechanism and
instability growth. This éompetition results in a multi-valuedness in the
limiting current vs beam energy spread plot, even for conventional
betatrons. Accessibility of the various limiting current levels appears to
depend upon the rate of beam injection. The stabilizing effects.of betatron
oscillations are discussed and written as the sum of three, physically
interpretable contriButions to an effective energy spread. We find that the
presence of a strong toroidal field can significantly improve the current

carrying capacity of the accelerator.
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I. Introduction’

The addition of a toroidal magnetic field to a conventional betatron has

v R
.t LA
.’ R

o

1-5

'k a A
i)

been shown theoretically to Iincrease the equilibrium current which may be

‘l
e l.

s s
i

N N .
LI L

. R oy
. . A

confined by a factor 1/2 (BG/Bz)z, for large values of Bele. In conventional

TNV N T

accelerators without solenoidal focusing, however, beam stability considerations

place the actual limit on beam current.6_8 Therefore it becomes important to

[

analyze the stability conditions and associated limiting currents for a given
beam equilibrium in the presence of a toroidal field. 1In this paper we present

such an analysis for both longitudinal and transverse modes.

A device in which a toroidal magnetic field is superimposed on the usual
weak focusing betatron field has come to be called a "Modified Betatron”. See
Figure 1. A stability analysis of this accelerator necessarily must include the

strong self and induced (wall image) fields of the electron beam. It is

primarily the inclusion of these fields which distinguishes this work from the

stability analysis performed9 for the so-called plasma betatron in which self

o
R
[y
Y

fields are much less important. These self field effects, however, will be seen

I R A A e n o o
Lo, . P L)

CetLtT L .

S0 1 . -~ (AN
et RV .

to have a dramatic effect on the current versus energy spread scaling; namely we

v— v
(RN
P

predict the existence of more than one stable value of current for a given beam

)
i a
e
.

._‘
[
'

.:f, energy spread. This somewhat surprising result will be discussed later. The
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central result of this work, however, is that significantly more current may be

|

carried by a beam in a modified betatron configuration than in a conventional

PR B\ ST Y YO

betatron of the same dimensions, assuming equal beam sizes and energy spreads.

s

In reaching this conclusion we have included not only the effects of self fields,

3o

but also the (stabilizing) effects of betatron oscillations and the

(destabilizing) effects of short wavelength enhancements to the longitudinal and

e
Yy

transverse impedances due to chamber resonances. Below we discuss the dispersion

al.

1

4

relation for arbitrary toroidal fields and currents, describe our model for the B
impedances, and present analytical and numerical results from the dispersion :j

relation.

e !7
[} LI %
PRV

I1. Discussion

L PO N DA

MY R

A dispersion relationship for both the longitudinal and iransverse modes in

’
el

a modified betatron accelerator configuration has been derived.? Included in

abacd ik,

Aalhe

the derivation are: beam self field effects, induced field effects arising from
wall image charges and currents as well as finite chamber wall conductivity
effects. Toréidal corrections to the equilibrium beam self fields and chamber
wall image fields have been neglected. The longitudinal and transverse
impedances, which characterize the beam environment, are incorporated in a

phenomenological way in the short wavelength limit. The dispersion relation,

]

1
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therefore, treats disturbances of all wavelengths, including wavelengths much

longer or shorter than the.chamber minor radius.

The short wavelength model for the 1mpedances contains effects assoclated
with propagating chamber modes. These effects can significantly affect the
instability growth rates. With the inclusion of the short wavelength
contributions to the impedances a realistic estimate for the current limitations

due to the various Instabilities can be obtained for the modified betatron

configuration and compared to those of a conventional betatron. To perform a

- meaningful comparison we will choose identical parameters for the two types of

Ei' betatrons, i.e., same geometry, injection energy,.field index, etc. The only

:f difference of course will be.that the modified betatron configuration will

include a toroidal magnetic field.

g The dispersion relationlo for the longitudinal and transverse modes of a

cold beam may be written

~2 ~2
(sz Ty )

~7 ~72 2= 1) !
sz Y (Awl oW ) -b sz

where AB£= (v - lqc)/wc, w 1s the complex mode frequency, £ = 1,2,3,...is the

- o
ﬁ

-

2 o\
e longitudinal (toroidal) harmonic mode number, w = Qz/Y is the electron rotation )
- ) .-1
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frequency, Qz = IeiBz/moc is the non-relativistic cyclotron frequency, y = i
_d
Q - v°2lc2)-1/2’ v, is the longitudinal (toroidal) beam velocity, Blz = - 2122 ;%
(vly)(znlzzo), v is Budker”s parameter(v = I[A}/17 x 103), z, = Zn(w) is the -
o

total effective longitudinal impedance, Z, = 4u/c (Zo = 377 Q in MKS

~ 3 2 .
units), 912= 1/2 - 2(v/y )(ro/rb) - 21(v/y)(ro lezo)’ r  is the major electron

bear radius, r, is the minor electron beam radius, Z, = Z (w) is the total
s Ty ? 1

1

e e .
e A b lLJ‘A

effective transverse impedance, b = Bele and Be is the toroidal magnetic

field. In (1) finite amplitude betatron oscillations were neglected, the
external field index was taken to be 1/2 and the electron beam was assumed to be
mono—-energetic, highly relativistic (vo= ¢) and circular in cross section.

I11I. Approximate Representation of Impedances

In our model the longitudinal impedance Zl(m) is taken to consist of three

terms

Z=2, +2, +1 (2)

The first term in (2) is the long wavelength space charge shielding contribution f%

associated with a smooth infinitely conducting chamber and is given by

37.6 —




‘Bt

e T Thal I AT & e e i Sl i Aaf Al RS
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Zu;s’ L 20(1/27w2)(1_+ 2.2n.a/rb5, (2a)

where Yy is the relativistic factor corresponding to the wave phase velocity and
a is the minor radius of the toroidal chamber. Due to the llyw2 factor this

impedance term is typlcally quite small; it may even change sign.

The part of the longitudinal impedance due to the resistive nature of the

chamber wall, in the long wavelength regime, is

zl'o= L z°(1 - i) &§/2a. (2b)

where & = ¢ (Zuolml)_llz is the skin depth and ¢ is the wall conductivity. It

has been assumed in (2b) that the skin depth is small compared to the thickness

of the chamber wall.

Finally, the last term in (2) represents the resonance contribution to the
total longitudinal impedance and arises from the fact that the chamber can

support propagating waves. To obtain the exact form for Zl r would require a
]

rather involved analysis of the beam-chamber structure and is beyond the goals of

the present paper. We will, therefore, simply represent this contribution by the

phenomenological expression11
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(2c)

vhere R, defines the chamber shunt impedance, w, = 2.4 c/a is the cutoff
frequency of the lowest order chamber mode, and Q is the quality factor

associated with the chamber. The chamber shunt impedance, R

o» can be estimated

by noting that near a resonant frequency w = W, the longitudinal impedance {is

roughly equal to the free space impedance

Z
2, o= (/3 - 1) 23, (3)

1/3

It follows, therefore, that R, = Zo 2r where £r is the toroidal mode number

associated with the resonant frequency, i.e., £ = wr/mc.

The expression for the total transverse impedance Zl(w) is also written as

the sum of three contributions
Z, =2, _+2 _+7 _. %)

The long wavelength space charge part of the impedance, for a smooth infinitely

conducting chamber, is
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Z, =1 rz (/e 2 - 178142, (4a)

The second term is the long wa§e1ength contribution due to the resistive nature

of the wall and is given by

, 3
zl,o = rozo(l - i) §/a”. (4b)

Chamber resonances contribute to the transverse impedance a part which we will

represent by the form!l

A =— 2 ’ (4c)

vhere Z' . is defined in (2c).
»

In the present work we will not be concerned with resistive wall effects
which lead, in conventional acclerators, to well known longitudinal and

transverse instabilities6

having, however, comparatively slow growth rates.
Equations (2b) and (4b) are included here only for reference purposes.

We remark that with the impedances as defined above the dispersion relation

is virtually independent of the beam minor radius, LI except for the weak
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logarithmic dependence in (2a). This.is reasonable if we think of the dynamics

involved in the various {nstabilities, that is, if we consider that it is the

) beam centroid which moves transversely, even in the “"longitudinal” or negative
!E mass instability in which beam bunching occurs as the beam centroid moves in or
out radially. Motion of the‘beam centrold is affected by the externally applied
fields, including those due to wall image charges and currents; these fields,

unlike beam self fields which are carried along transversely by the moving beam,

do not depend on the minor radius of the beam.

1V. Stability Condition and Limiting Current

To obtain the limiting current, based on stability requirements, for the
modified and conventional betatron a stability‘criterion is needed. If the
distribution in particle rotation frequencies is Lorentzian in shape the

criterion for stability 1is simply

r < 2laal, ' (5)

where T 1s the growth rate in the absence of a frequency spread and AN is the

half width of the frequency spread on the beam. It should be noted that the
37.10




large tails assoclated with a Lorentzian distribution make the criterion in (5)

somevhat less stringent than would be the case if a more realistic choice of

' frequency distribution were used. However, the use of a more realistic

distribution of particle frequencies would result in a considerably more involved
stability criterion. Since we are interested here mainly in making a comparison
of the limiting currents of the modified and conventional betatrons, consistent

use of a Lorentzian for both devices should serve our purpose.

Both an intrinsic longitudinal energy spread on thg beam electrons as well
as finite amplitude betatron oscillations will produce a spread in rotation
frequencies. Solving the particle orbit equations correct to second order in the
betatron oscillation amplitude, with self-field effects and intrinsic energy
spread effects included, the average spread in the beam”s rotation frequency is

found to be given by

lagl = |A§2|AE + IAQIB, - (6)

where

Lol o = 3w, lal CAE/E) (6a)
37.11
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laal, = o (r /2 )21b% /20 - 3/2] (6b) 4
B ¢ b o s ? 7
T
- -2 iy
with o« = (1/2 - ns) 1 Y + The two terms on the right hand side of (6) are due -j}
to an intrinsic energy spread and to finite amplitude betatron oscillationms, ‘7f
i

respectively. In (6a) the fractional intrinsic energy spread is denoted

by AE/E where E = 'ymoc2 is the beam particle energy, (y > 1) and

n = 2(v/Y3)(ro/rb)2 is the field index associated with the beam”s self fields.
In obtaining (6a,b) we assumed a circular beam cross section and an external
field index of 1/2. Note that it is here, in the relation between

AE/E and AR, that self fields play an important role.

By utilizing the beam envelope equation, the frequency spread term IAQIB can

be expressed in a more illuminating form. The condition for a matched beam, i.e.

non-oscillating minor beam radius, 1312

2
b = n - 1/2 + (r e )2/ (r, 2007, )

-

vhere €, is the normalized transverse beam emittance as measured in the Larmor

frame. Substituting (7) into (6b) glves
37.12




laol, = e |Cey/r )2 = 3 (x, /x 3% + vl2y] (8)
B Y2 N "b 8§ b o ‘
In (8), the first terﬁ in brackets is the fgmiliar longitudinal energy sPread due
to emittance, the second term is a toroidal correction to the first, while the
last term 1s the energy spread associated with the electrostatic potential drop.
across the béam. Both contributions to the total frequency spread,

| agl and [aQl_, are proportional to the various energy spreads. The two
B p

AE
different proportionality factors, lal in the case of |AQ|AE and y—z in the case
of |AQ|B, arise because the intrinsic particle energy spread produces a
rotational frequency spread primarily by changipg the particle’s radial position
whereas the various energy spreads contributing to IAQIB merely result in a

longitudinal velocity spread. Hence the various contributions to the longitudjinal

energy spread contribute differently to the frequency spread.

The desired stability criterion is obtained by substituting (6) into (5) and

becomes
r<re (5 lalGEE) + 1Ce fe)%/2 = 3 (e /e 0% + vyl (o)

Given the intrinsic energy spread, beam radius and emittance, the criterion in

37.13
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- 3
(9) implies a limiting beam-current which if exceeded will result in instability.

N, L.

?!n As a simple illustration we will first consider the negative mass mode In a low -j

current conventional betatron, i.e., B6 = 0, ns<< 1/2. From (1), the dispersion -

_ ¥

o . ~ 2 2, 2 4

relation fuor the negative wmass instability is sz = u /wl q

g

2 ~ ~ g

s 4ig (v/y)(Z'(w)/zzo), where we have assumed that |Aw2| <« Imll ~ 1//2. i

-

Approximating Zn(w) by Zl(zah) we find that the growth rate is -

1/2 1/2 1/2 b

T = 2£mc(vly, / I(Zn(gmc))l / /(EZO) / . Using (9) and neglecting the betatron B

5

! oscillations we recover the well known negative mass stability condition Q

- :j:

" B

- .1

VA . -3

v o AE\2 e

C v $ T2 (a7 = (10) ;

3

4

h— :

\‘

58 In obtaining (10) we have assumed that the rcal and imaginary parts of ZI are -

- approximately equal.

' {

Next we consider the full dispersion relation (1) for arbitrary b. Here and of

3

below we will continue to neglect the effect of betatron oscillations on the K

stability of the beam. The effect is generally small and, due to the b2

:f&ﬁ dependence in (6b), it favors the modified betatron. Therefore, neglect of the
}".
F-’f betatron oscillations is conservative when comparing the modified and

" conventional betatrons.
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If we may continue to approximate Z' r(w) by Z'~r(2wc) and if we B

: ’ L ) -

, .j
r set § = 0 then (1) is in general a sixth order (fourth order, if b = 0)

polynomial. By neglecting resistive wall effects we are assuming that these are

o
o v o
A g 2’ 4

negligible for the negative mass branch of the dispersion relation in which we

T EEER . -
S R

RS

will be interested here. Of the six roots, two pair correspond to transverse

I
S
[
»
'

o
(A0
V-

i
FE
b

modes (a palr being a forward and backward wave, essentially) and one pair to the

longitudinal mode.

For a given set of parameters, we have found the roots numerically, for a :E;
large range of £; a maximum value of I'/2 is then found and substituted into the ]
stability criterion from which a value of AE/E is computed. An important point l;l

to note is that the toroidal field has more of a stabilizing effect on the 7

high £ modes than on the low £ modes; consequently, as b is increased the ;

behavior of the impedance for small £ tends to determine the maximum T'/¢ and

therefore the limiting current.

Typical results are illustrated in Figures 2 and 3. Here we plot the beanm

r T
, . R
PR EPN N W

current vs the Lorentzian full width energy spread required for stable motion for

b=0,5, 10, 20, r,/a = 6, a/ry, = 3, R /2 = 4, and Q = 10. Figures 2 and 3 are

fu plotted for y = 3 and 6 respectively. The dashed lines are plots of

"
e
i'-
{ 37.15
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For consistency we must be to the left of these lines. This restriction may be

understood by considering the displacement of a particle from the center of the

beam:

b _eE/E

Yo -n
2

+ betatron oscillations

S

where 8E is the difference between the particular particle energy and the average

energy of the particles in the beam. It follows that

r .
b AE/E

2 i (12)
o] S

where AE is the full width of the distribution.

The effects of the self fields, as represented by ng in (6a) and (1ll1) are

‘is jmmediately evident in the plots of Figures 2 and 3. 1If n, were zero then the
.s
- dashed boundary lines would be a single vertical line and the curves would be -
.:\;
monotonic. As it is, the effect of the self fields is basically traceable to the -
;
increasing (as ng increases toward 1/2) then decreasing (as n, increases beyond )
1/2) factor lal. The multi-valuedness of the curves may then be understood as ;d
-

.

TS D .
I P
L 74’ o

: e 3

.
]

follows (Refer to Figure 4.): For very small currents (Branch I, in Figure 4)

37.16
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the cold beam growth rate is small and an increasing function of current. The

self fileld index, n,, is negligible compared to 1/2 and the energy spread

ek bl

required for stability is an increasing function of current. This is the regime -

in which virtually all conventional accelerators operate. As the current is

VY R

further increased, however, a second branch becomes accessible, shown as Branch K

II, in Figure 4: While the cold beam growth rate continues to increase with
increasing current, the intrinsic energy spread stabilization mechanism becomes

more effective due to the increase in |«l until, near n_ £ 1/2 a very small

energy spread results in a large spread in angular velocity; the instability is

B T TN,

therefore easily stabilized. More simply said, we have stability on the low

current branch (Branch I) because the growth rate is small and on the high

E

)
o current branch (Branch II) because the stability mechanism is strong. ;
{Eg' There is a third branch which appears in the example of Figure 2 above :
»:';-L‘-' -
W)

n, = 1/2 (I > 316 A) for b = 10 and 20 and is illustrated as Branch III in Figure

4. This region 1s accessible only in the modified betatron since we are

constrained in the conventional betatron by the equilibrium condition ng < 1/2.
For b = 5 in the example shown in Figure 2 the stable points fall to the right of

the dashed line and so are not shown. As the current is increcascd beyound 316 A

the growth rate increases and the stability wmechanism becomes less effective

PR SN ¥ SISO IS ¥ QIS U IR <

5 37.17
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as lal decreases. Consequentiy as the current is increased beyond this point the

LA-._."L'- Py LJ_._\_..=

required energy spread increases monotonically. This is illustrated by the third

branch in the figure.

L_ Finally we comment on the accessibility of the various branches available

for small energy spreads. If beam injection proceeds slowly, over many growth

times, say, it appears that only the lowest branch is accessible; attempting to
add more current will drive the system unstable. ;f however current can be
introduced into the accelerator more rapidly, the higher current branches méy
become accessible. Only a carefully designed experiment can test this
speculation. For b = 5 and 10 for the parameters of Figure 2 typical growth
times are ~ 3 particle circulation periods so that high current injection on this
time scale is a practical experimental possibility. The third branch in Figure 2
is clearly the most promising for very high current operation.

V. Conclusions

We have shown that the addition of a toroidal magnetic field to a
conventional betatron may significantly improve the current carrying capacity of
the betatron by controlling the collective instabilities which limit the current.
The calculation has included self field effects and a simple, though realistic

model for the longitudinal and transverse impedances. The stabilizing effects of

37.18
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betatron oscillgtions, which have been shown to include the effects of emnittance, .

-

toroidal geometry, and energy shear due to the electrostatic potential drop '-J

= across the beam, become stronger as the toroidal field is increased, given a "3
r:. "4

<4
l- fixed beam radius. Inclusion of self field effects in the stability criterion ‘}
g
b( (6) has been shown to lead to a multi-valuedness in the current vs energy spread }
Vo - —

plot which has been interpreted as the result of the competition between the
growth and stabilization mechanisms. Accessibility of the high current branches ]

may depend on the duration of the injection process.
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Figure Captions

Figure 1. Modified Betatron configuration.

-

1'
y

. Figure 2. Instability threshold current vs energy spread for b = 0, 5, and - %
L, ' ]

10. The beam and chamber parameters are ry/a = 6, a/r, =

_."/‘—

3, vy =3, Ry/Z, = 4, Q = 10.

, - R
L R L
l o LT
' L Tt e
NPINC RIS Ry R Y A

B Figure 3. Same as Fig. 2 except y = 6. .
b, {3
- S
¥ Figure 4. Sample plot of limiting current vs energy spread, 1llustrating the A
»

T‘ three possible branches.
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High-Current Betatron with Stellerator Fields
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High-Current Betatron with Stellarator Fields

C. W. Roberson
Office of Naval Research, Arlington, Virginia 22217

and

A. Mondelli
Science Applications, Inc., McLean, Virginia 22102

Conventional betatrons!-? are current limited at
injection., Recently, efforts have been made to ex-
tend the current-carrying capability of the beta-
tron. For example, the plasma betatron® employs
a toroidal magnetic field in the direction of the
particle orbit to contain the plasma. Current in-
terest is focused on high-current nonneutral
electron acceleration in modified betatrons.*™®

By adding a stellarator field to a cyclic accel-
erator, a strong-focusing system’ is obtained
which can sustain high currents and large mis-
match between particle energy and vertical field.
The energy bandwidth relaxes the design require-
ments for the injector and the magnetic field sys-
tem.' Unlike fixed-field alternating-gradient beta-
trons,® the stellarator-betatron (or stellatron) in-
cludes a strong toroidal field to confine very high
currents, Figure 1 shows a sketch of the stel-
latron configuration.

We have quantitatively studied the stellatron
configuration. Our studies have consisted of nu-
merical and single-particle orbit calculations,
as well as analytical linearized orbit theory, in-
cluding the beam self-fields,

We may study the behavior of an intense elec-
tron beam in the stellatron quantitatively by con-
sidering small departures from a “reference
orbit,” a circle located at the null point in the
quadrupole field, at r=7,, 2=0. Here and below
we use a cylindrical (r,6,z) coordinate system
with origin at the center of the torus’s major
cross section. Quantities evaluated at the ref-
erence orbit will carry a subscript 0 below; de-
partures from this orbit will carry a subscript 1.

and
D. Chernin
Berkeley Research Assoctates, Springfield, Virginia 22150

‘ (Received 2 November 1982)
3 By adding an [ =2 stellarator field to a betatron accelerator, a new configuration is ob-
r tained which is capable of accelerating multikiloamp beams and which will tolerate a large

N (more than 50%) mismatch between the particle energy and the vertical magnetic fleld. The
b additional field is a twisted quadrupole which acts as a strong-focusing system. This de-
:-'.: vice has been analyzed both analytically and numerically.

-
- PACS numbers: 52.75.Di, 29.20.F)

The twisted quadrupole field, of period 21/m,
then is written as

B, =kB,(-7,sinm8+z, cosm8),

1)

B,=kB,(r, cosmb+z,sinm6), Bg=Bg,,

where k,B,,By, are constants, and the betatron
field is

'g__'_nB.ozl/r'o’ B.EB‘O[I-”(TI/‘YO)], (2)

where B, is the vertical field at the reference
orbit and » is the usual field index.

We consider the motion of an electron located
within a beam whose center is located at r =7,
+Ar, z=Az; the electron’s position is r =7,
+tAr+br=ry+r,, 2=A2+0z=2,, Using a cylin-
drical approximation for the beam self-fields, we

Betatron
Field

Stellarator
Field

FIG. 1. Stellatron configuration.

© 1983 The American Physical Society
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find
5+ 2(1 0 1w,? 7’ y,c? 2 .
#1491 -n+p cosm )r,-i v or+ e Ar =—1—Yr -~ (uQ,2sinm6)z, + Qg,2,), (3a)
o' 0
i
3400 1w (o, 70 , : ’
2,40, (n-ucosme)z,—i 73 bz+a, Az) =—(uQ,2 slnmbyr, - Qo 7, (3b)
[

0,=~(r,/r)%,

where Q,=¢B,,/my.c, 7, 18 the relativistic factor
for the reference orbit, w,?=4me*/my,, n, is
the beam number density, 7, is the minor radius
of the beam, a is the minor radius of the (perfect-
ly conducting) chamber, and p=Fkr,B, /B,,.

By performing a formal ensemble average of
(3a)-(3c) one may find equations governing single-
particle motion and that of the beam centroid,
Details will bé published elsewhere. By changing
the independent variable from ¢ to 6, and making
the transformation & = (r,+iZ,)/r,=¢ exp(im6/2),
ene obtains an equation for  which may be solved
in the special case, n=3, with the following re-
sults,

Particle motion is oscillatory (under certain
conditions; see below) about a center located at

Y ) @
vy By, +p3*mz+mb-n,)1?

where fi, =3 ~n,, n, =w,*/2y,*Q,2, b=Bg,/B,,,
A =y,/By,, and angular brackets denote an en-
semble average. There are five characterisitc
oscillation frequencies, mQ_, and (m/2+v,)9,,,
where

v 2=f + 32z Gt p2)/2 (5)

with A =R, +3b%, m=m+b. These frequencies

are real when the system is located within the
regions of the plane of Fig. 2 marked “stable.”
We remark that for low-current beams (2, 0)
the stability condition reduces to

sm*emb-1]>|2u|. (6)

The “most” stable configuration results when the
field lines are twisted clockwise (m >0) when
viewed in the direction of B48, i.e., in the same
sense as electron gyration about B.

Similarly, the motion of the beam center is it-
self oscillatory about a center located at

ar @)

7, = B, + pim2*+mbd -n, )’

M

where B, =1 - (r,2/a*n,, with characteristic fre-
quencies as in (5), under the replacement n,
- (r,2/a*hm,.

Two important features of the solution are worth

38.2

(3¢)

Binting out. First, stable motion is possible
throughout an injection-acceleration cycle. This
has been checked for many possijble time histo-
ries, A typical trajectory in the stability plane is
shown in Fig. 2. The unstable region on the left
of the diagram would not be entered in this case
even if the acceleration were continued; “u”
never changes sign in this case.

The second important feature of the solution
pertains to the energy bandwidth of this machine,
We note that the radial shift (7) of the orbit of a
mismatched beam is, as expected, much smaller
than that in a weak focusing (¢ =0) device. (u
can easily exceed 100-200 in designs we have
considered.) The stellatron’s large energy band-
width has very helpful consequences for injector
and magnetic field design tolerances.

The introduction of fixed toroidal and helical
fields to the betatron causes the betatron wave-
lengths to depend on energy, resulting in reso-
nant instabilities driven by field errors during
acceleration, If the toroidal field is sufficiently
large, the betatron wavelengths will be insensitive
to beara current. Such instabilities may be avoid-
ed by holding all the fields in constant ratio dur-
ing acceleration., Alternatively, the effect of the

05
v u=(6?+2-dn Mm + bP
04
v=jujlim + bP
o3}
02 FUNSTABLE UNSTABLE
oaf- 7
STABLE STABLE
-10 0.0 10 ~ 20

v

FIG. 2. Stellatron stability plane (n =1). The dotted
line is the trajectory of an experiment with I =10 kA,
Bgo=5KG, ¢, 5 2u/mb=1, m=20, ro=1 m, while B,
is raised from 118 to 1700 G, corresponding to an in-
crease in energy from ~ 3.5 to 50 MeV.
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instabilities may be minimized if the energy gain
per revolution is large enough to pass rapidly
through each resonance.

A single-particle code, which integrates the
relativistic equations of motion for an electron in
an applied magnetic field, has been utilized to
study certain nonlinear aspects of the stellatron
configuration, Unlike the analytical analysis of
the preceding paragraphs, this analysis does not
employ a paraxial approximation for the electron
motion and does not use an expansion in the parti-
cle displacement from a reference orbit. Also,
the applied field in this analysis includes toroidal
corrections to first order in the inverse aspect
ratio.

The total magnetic field utlllzed by the code
may be expressed as B= B +B, » where B, is
the conventional betatron neld given by Eq. (2),
and B, is the stellarator field, given by B,=veé,,
in terms of the magnetic scalar potential, 4’, s
which may be expressed as &, +¢ ", where

®,p,9,5)=Bg.{s +(€,/a),x)sinll(p - as)]}.

Here, x=Ilap, a=2n/L, L is the helix pitch
length, and /, represents the modified Bessel '
function. The coordinates (p,¢,s) form a local
cylindrical system centered on the minor axis,
where s =R 0 is distance measured along the
minor axis for toroidal angle 8, and {p,¢) are
polar coordinates in the plane transverse to the

200% -
A“_’ LINEARIZED ANALYTICAL THEORY
" L
0
\ NUMERICAL
RESULT
100% -

CONTAINED
ORBITS

~100% A ' — 1 Y

20 30
£

FIG. 3. Stellatron single-particle bandwidth., The

bandwidth Au/u,, whereu =yfi, is plotted against ¢,
2 2u/mb. The accelerator §s matched at y=7 with B,
=118 G, and Bgo=1 kG.
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minor axis at s, The toroidal correction, ¢, ",
is glven to first order in the Inverse aspect ratio
by Danilkin.® All calculations have been per-
formed for I=2. The variables p and m, which
describe the helical field in the previous analyti-
cal analysis, are given by p =emb/2 and m
=2aR, for 1=2,

This model has been utilized to investigate the
single-particle bandwidth of the stellatron. As
€, increases, the allowed mismatch in the stel-
latron becomes too large to be correctly modeled
by the linearized theory., Figure 3 shows the re-
sults from both models for bandwidth versus ¢,
These calculations assume a torus having a 1-m
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F1G. 4. Single-particle orbits. (a) Without the
helical field components (¢; = 0), Au/uy=13%; (b) stel-
latron orbit with ¢, =4, Au/u°= + 50%.
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major radius and a 10-cm minor radius. A test
electron is launched tangent to the minor axis
with relativistic momentum u =g, which differs
from the matched momentum, u,, by varying
amounts, Au, The figure shows Au/u, against €, ,
and represents the maximum |Au/uy] for which
the test orbit remained confined in the device.
Mismatch in excess of 50% can be tolerated for
these parameters.

Figure 4(b) shows typical stellatron orbits, pro-
jected on the minor cross section, for Bg,=5
kG, €,=1 for + 50% mismatch., The betatron field
is again 118 G with n=3. Without the helical field

‘contribution, Fig. 4(a) shows that as little as
+ 3% mismatch is not tolerable,

The superposition of twisted quadrupole, toroi-
dal, and conventional betatron magnetic fields ap-
pears to offer significant practical advantages
for the confinement and acceleration of large
electron currents (tens of kiloamperes) to moder-
ate energies (hundreds of megaelectronvolts).
Foremost among these advantages is the greatly
improved energy bandwidth over that of a weak-
focusing device. The large bandwidth of the stel-
latron relaxes the requirements for monoener-
getic injection, for a uniform (within a few per-
cent) magnetic field configuration, and for a rigid
mechanical design. Injection should not be any
more difficult than for other high-current ac-
celerator concepts, and is facilitated by the ex-
ternally applied rotational transform of the stel-
lerator field. The orbits should remain stable

38.4
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from injection up to the highest energies achiev-
able by conventional inductive acceleration,
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A Bumpy Torus Betatron
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ABSTRACT

The combination of a bumpy torus field and a conven-
tional betatron field leads to an interesting strongly-
focused, high-current accelerator configuration. We discuss .1
the single particle orbital stability gquestion and show that -
the strong-focusing in this accelerator can easily lead to

greater than 20% bandwidth in allowed mismatch between the

vertical magnetic field and the average beam particle energy.
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E‘ Conventional betatronsl are current-limited due to
the space charge at injection. Until recently, the approach

" to multi-kiloampere betatrons has concentrated exclusively -;

on overcoming this space charge limit. High current conven- hi
tional betatrons2 employ high-energy injectors, while modi-
fied betatrons3’4 employ a toroidal magnetic field to prevent rf
space charge blow-up. In both of these cases however, a mis- T?

match between the injection energy and vertical field of a
few percent will cause the beam to hit the wall. The maximum

allowed error in the vertical field is typically on the order

of a few gauss. Recently it was shown5 that the combination
of an 2 = 2 stellarator and betatron field results in a strong

focusing high-current betatron or, "stellatron," with a large

T

energy bandwidth. Such a configuration has the advantages of

relaxing the vertical field and injector tolerances. In addi-

tion, the strong focusing introduces a threshold for the :

o P Y
PRI S ¥ W PPN

negative mass instability, so that this instability does not o
operate at injection. In this note we report analytical and

numerical results on the bandwidth and stability of an alter-

e o FLor
skt bk S

native strong-focusing scheme, namely, a combination "bumpy

et
R ]

torus" and betatron field, corresponding to the £ = 0 stellatron.

'.Ln‘..r yl

The bumpy-torus betatron field consists of a super-
position of an £ = 0 stellarator field and the field of a ;i
conventional betatron. Near the minor axis at r = ye 2 = 0, if
this field has the form ;ﬁ

_ 1 .
B, = -nyB,_ + 3 GBe mx sin mo
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( 6Be )
9 B, = B 1 + — cos m8 (1)
}ﬂ 0 6o Beo

= - 1 3
B, = Bzo(l nx) + 5 GBe my sin mé6

Lo b

where x = (r-ro)/ro,y z/ro, ® is the azimuthal angle,

n is the vertical field index, and m is the number of bumpy-

torus field periods around the torus. B__, B, , and 6B

rAe) 6o 0

are constants.

In the paraxial approximation, the equation for parti-

1

cle motion is, for n = 5

2
dv ., 1 [2 - 4ns+b2 (1 + ecos2¢)2] Y

3 d¢? m? ib (2)
- = — e

- m? Po ’

’L where ¢ = m6/2, ¢ = (x+iy)exp [(i/Z)fb(l - £ cosmb) de] '

¥ b = Beo/Bzo' € = CBe/Beo, P, is the momentum of a particle

3 which would circulate on the minor axis, 6p is the "momen-
tum erroxr," and the self-fields are included via ng = wg/

(2yé Q;o) where w,, 2,  are the beam plasma frequency and

20

the vertical-field cyclotron frequency, respectively.

Eq. (2) is a Hill equation, which has characteristic

bands of stability, as shown in Figure 1. The shaded regions
in the figure are unstable portions of the plane, € vs. b/m, !
for the case ng = 30 and m = 30. The intersections of the fi
unstable regions with the abscissa are given by o

(b2 + 2 - 4ns)/m2 = g2, where q =0, 1, 2, ....
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AsS we increase Bz to accelerate the electrons, we

typically would not wish to increase By The result is that
the operating point of the accelerator will tend to move from :S
right to left in Figure 1. Consequently, the accelerator ;é
should be run in the left-most stable band to avoid crossing ‘
unstable bands. These considerations require m>b at injection
and force the use of a large number of field periods in the
design of the strong-focusing system.

The left-most unstable band, corresponding to q = 0,

is due to beam space-charge and rapidly disappears during
acceleration since the self-field index, ng, is proportional
to y~3!, where y is the relativistic factor. The left-most
stable band, therefore, becomes broader during acceleration.
In conventional betatrons, resonances are avoided by
increasing y and the accelerating field in synchronism. The

introduction of non-synchronous fields, as in the modified

betatron and the stellatron, makes the betatron wavelengths
energy-dependent, which can lead to the crossing of resonant
- instabilities driven by field errors during acceleration. As
in all strong-focusing devices, the occurence of orbital

resonances plays an important role in the operation of the

bumpy-torus betatron. Using the Floquet solutions to (2)
it is possible to obtain a condition for the integer reso-

nances, when space-charge effects may be neglected:

b+2n
wl(w) = cos [n( - >] (3)

2
d
d
3
~d

{
-
!
!
|



where wl(¢) is the solution to (2) with 6P=0 satisfying
¢,(0) =1, ¢;(o) = 0 where n is an integer, the Fourier

component number of the dipole field error. Equation (3)

.. .
U
Aod oA A Ak :

provides the basis for numerical calculation of contours in

the stability plane where (3) is satisfied for a given n;

NN '..AL hd

an example is given in Figure 2.
If all the fields cannot be made synchronous with the ]
particle energy, the effect of resonant instabilities could

be minimized by making the energy gain per pass large.

Finally, we consider the question of containment of
beams whose average momentum is not matched to the vertical
betatron field, i.e. the question of the momentum compaction

of this configuration. Figure 3 shows the allowed mismatch,

AP/Pb,plotted against € = SBG/Be for B60 = 2kG, BZo = 118G, )
n = %, Xy = 100cm and m = 30. This plot is generated numeri- 'G

cally by launching particles on the minor axis along the

Cpy e

toroidal direction with various amounts of mismatch. The

.
el

. sl s e
bt o i i

figure shows the largest mismatch for which the calculated

orbits are contained in a 10 cm minor radius chamber. Con-

.

tainment of particles with a mismatch of +20% is obtained S
for €=0.2. -
T

In conclusion, we find the spatially alternating trans- ;j

verse magnetic field associated with a bumpy-torus provides

an alternating field gradient on the minor axis, which leads

to a potentially interesting strongly-focused accelerator

. ' N A. L L
PP DU AL

configuration. This new accelerator is seen to have a region

39.6
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:‘n of stable orbits, and to have a significant bandwidth in
- allowed mismatch between the vertical magnetic field and the

particle momentum.
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Figure l: Stability plane for bumpy-torus betatron, for

A ad

the case n, =m = 30. The shaded regions are

unstable for particle motion.

E; Figure 2: Stability plane for bumpy-torus betatron, with
- the single particle resonance lines n = 0, 5,

1 10, 15, 20, 25, indicated for the case ng = 0,

m = 30.

Figure 3: Single particle bandwidth. Data points indicate
the maximum value of momentum mismatch tolerated
by the device vs. the bump size, €, for particles
initialized on the minor axis, for the specific

case Bzo = 118G, Beo = 2kG, rO = 100cm, m = 30.
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. 1'_-
b Program LBE T
3 f
' This program uses the IMSL subroutine DVERK to integrate the .
L linearized equations of motion for either the beam centroid -
- or for individual particles within a beam in a modified {
betatron. 1
- 3
Input Data Filelz FORZPE2.DAT .
] B
4
- IFLAG, IFLAG1 : IFLAG = g: beam center equations . 4
- = 1: particle equations =
5 IFLAG 1 = g: use nonlinear image fields
&: (IFLAG = g, only)
r' = 1: use linear image fields only
N (IFLAG = g, only)
» r-rg, f, z, z : Initial values for position and velocity
1
DPTH : mr o <6pe> for IFLAG = #
1 -
I [Gpe <6pe>] for IFLAG =1 ]
° 1
=]
r,ra, n : Chamber major, minor radii, field index £
. -, —1
I, Ty : Current (kA)z, beam minor radius
AE, AB : Dimensionless correction quantities added }
to &, and Lps respectively. .
(Logarithms appearing in toroidal correction ,_*
terns.) -

(R,E = ln(a/rb)+ AE; = Zn(a/rb)+ 1 + AB)

ZB
Dt, KMAX, KPT, TOL: Dimensionless time step3, total number

A
A
of steps, output file writing frequency’, :
integration error parameter :{

B,ir Bygr t e : Initial, flnal'vegtlcal field values; R
acceleration time S

cys . . . 1

Bei’ Bef' tBe : Initial, final toroidal field values; o

time for change of Be
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Notes: 1All quantities in cgs units unless otherwise specified.

é! 2If I is entered as a negative number, the density used
in calculating n_ is (lI]/l7)/ﬂrb2ro, as for positive I,
but all toroidal corrections to coefficients are set

to zero.

E- 3Time step = DT/(eBei/inc).

E; 4e.g. If KPT = 2, output is written (to file FOR@@3.DAT)
4 every other time step.

5 . . . . . .
A linear variation in time is used.

Output Data File: FOR@F3.DAT

RRARS 40X

Binary File
At successive times:
t' r-xr

2 2 2,2
of %+ Yir Wy /Qeo: wy/-“eo

40.1
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APPENDIX BB
Program BTRAK
This program uses the IMSL subroutine DVERK to integrate the
single particle equations of motion in various accelerator

field configurations.

Input Data Filel: FOR@25 .DAT

r, ¢+ Major radius
B., n, n,, n : Vertical magnetic field and field
ZO 2 3 -
indices at rs
B¢0 : Toroidal field at ry
KSTEL : (#,1) = (no,yes) stellarator field present
pu,m : (if KSTEL = 1, for stellarator fie1d3)
Model : Field error model4: 0 = No field error
1l = Cylindrical limit
(r2e)
o
2 = (r,z) cylindrical
coordinates
6B, m, % : Model =1

éB, o, Aro, m, NZ : Model = 2 .

D1, KTOT, TOL, MXOUT: Dimensionless step sizes, total number of
steps, integrator error control, max
number of points written to output file.

ér, 6z, ¢ Initial values

If |ér|>ér .
tion, program is halted.

(8x) paser (82) o or IGZ|>sz « during calcula-

a

H

e £, Yinitial’ fr = sr/s, fz =z BZ/B initial values.
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Notes: 1All quantities in cgs units

2B
z

4

dt

........
o

Model 1: B

1l 1
B (l-nx + 3n,x? + —z-(n—nz)y2 + n3x3/6

272

1 2
- 2(n+n2+n3)xy )

(r—ro)/ro; y = z/rO

Bzoufﬂcsinm¢ + v cosmé¢]

Bzou[x cosm¢ + y sinmd)

§BIm[ (kér + ikéz) ¥ leimd;

B, = GB%Re[(kGr + iksz) LelMd)
B, = 8BRe[(kér + ik&z)“"leim¢]
B_ = 18Bkér sinmé

by 2
B¢ = ¢éB cosmd
B, = %ﬁBkéz sinmé

where k = m/ro.

g T

2(Az) = sinh(\z) NZ =
z(Az) = cosh(Az) N2z #
t*dt where t* = Zw/max(Qz

41.1

o’

1

1
1

Qo) -

Pl W Ui W P

if 2 #0

if g

Model 2: B, = %%L [o + 2Bx)z(X2z)sin m¢
o}
B, = Jgiﬂn[l + ax + Bx%]z(Az)co
6 = Ar s mé
B, = SB[l + ax + Bx?]z'(Az)sin m¢
where x = (r-ro)/ro
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BTRAK OUTPUT FILE
FOR@26.DAT

Binary File

o At successive times:

::. r—ro, ¢/21T1 z, Brl l_Bq)l Bzr Y

41.2
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APPENDIX CC

Program TUNES

This program checks for resonances of the form

nv, +nyv_= P

where v+ are the tunes of the fast and slow modes and ni, P

are integers. The program checks those n, satisfying

t

In,| + |In_| < 3 and for P<P . where P is input.

ax
Input Data Filel: FOR@S5S5.DAT
IFLAG : (o,1) = (beam, particle) motion
yr @y Ty Chamber major, minor radii, beam minor radius
1 : Current (kA)
AE, AB : Toroidal corrections: &= tnf/r )+ AE;
5= tnf/r, )+ 1 + AB

Bzi' Bzf’ n: Initial, final vertical field valuesz, field index.
Bei’ Bef :+ Initial, final toroidal field valuesz.
Pmax : Maximum value of P to be checked.

Notes: lAll quantities in cgs units, unless otherwise specified.

2Linear variation in time used. (T: 0 - 1)
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Interactively Generated Plots

(Uses JAYCOR plotting routine)

Response to plot option? request: 0: No plot (Stop)
l: v v_ plane, showing
resonance lines

2: v, Vs time

+I

3: v_ vs time

4: vy vs time

Output File: FOR@57.DAT

: List of resonances crossed, with values of

Vyr Vo T, Y, Bz' and Be at crossing.
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