
$~-H134 062 REASONING IN INTERYAL TE MPORRL LOGIC(U) STANFORD UNIV i/i
CA DEPrT OF COMPUTER SCIENCE B MOSZKOWSKI ET AL- JUL 83
STRN-CS-83-969 N08939-82-C-8250

UNCLASSIFIED F/G 9/2 N

mohhhmhmmhiu

+ -- ' .. . - . . . - . . . - . . - . , . + ' - . -+ . *7 -V -7,,, + V "j

"5

lij..2 ..o,.
*1j.

IIIIIII1-

~MICROCOPY RESOLUTION TEST CHART

'" NAM NAL BUREAUJ OF STANDARDS - 93-A

4-7

4.

AllL

-.1
2"LU

QQ .1 L '

i~ll " '% " .-..v -, -.* - • -... .. I..": +" "- -+' --" " " + -++ -+- ++ -"- -+ "fljfl 1 .2 jflf ++ " -hIIS -, , .c '-: --6 '

+ + " * " " + '_ " ,_ +' " - =_ + . " M ICROCOP RE O UTO TEST+ .. CHA . .+ , , RT' . . .i ..

. a .. -, .. 'o*. b.*-. '-. •. -. . -. ".- ., ., . -.. ,

July 1983 Report No. STAN-CS-83-969

N

V Reasoning in Interval Temporal Logic
1

by

Ben Moszkowski and Zohar Manna

Department of Computer Science

Stanford University
Stanford, CA 94305

DTIC

L.

83 0907 141

Reasoning in Interval Temporal Logic
by

Ben Moszkowski 1 2 and Zohar Manna1' 3

'Department of Computer Science, Stanford University, Stanford, CA 94305, USA
2 From July, 1983: Computer Lab., Corn Exchange St., Cambridge Univ., England
"Applied Mathematics Deparment, Weizmann Institute of Science, Rehovot, Israel

Abstract14 ~
Predicate logic is a powerful and general descriptive formalism v4'th a long history

of development. Hgwever, since the logic's underlying semantics have 9o notion of time,

2' statements such as 'I increases by 2'_cannot be directly expressed. , P, discuss interval
temporal logic (ITL), a formalism that augm. ts standard predicate logic with operators for

. time-depende4toncepts. f(ur earlier work used ITL to specify and reason about hardware.
- .In this paper -we show how ITL can also directly capture various control structures found

in conventional programming languages. Constructs are given for treating assignment,
iteration, sequential and parallel computations and scoping. The techniques used permit
specification and reasoning about such algorithms as concurrent Quicksort. We compare
ITL with the logic-based programming languages Lucid and Prolog.

This work was supported in part by the National Science Foundation under a Gradu-
ate Fellowship, Grants MCS79-09495, MCS80-06990 and MCS81-11586, by DARPA un-

- - der Contract N00039-82-C-0250, and by the United States Air Force Office of Scientific
Research under Grant AFOSR-81-0014.

This paper will appear in the Proceedings of the ACM/NSF/ONR Workshop on Logics of
Programs, June, 1983.

.oI
'I

*§1 Introduction

As a tool for specification and reasoning, predicate logic has many attractive features.
Here are a few:

* Every formula and expression has a simple semantic interpretation

e Concepts such as recursion can be characterized and explored.

* Subsets can be used for programming (e.g., Prolog [5]).

* Theorems about formulas and expressions can themselves be stated and proved
within the framework of predicate logic.

* Reasoning in predicate logic can often be reduced to propositional logic.

* Decades of research lie behind the overall formalism.

However, predicate logic has no built-in notion of time and therefore cannot directly
express such dynamic actions as

"I increases by 2"

or

"The values of A and B are exchanged."

We get around this limitation by using an extension of linear-time temporal logic
.' [6,10] called interval temporal logic (ITL). The behavior of programs and hardware devices

can often be decomposed into successively smaller periods or intervals of activity. These
!" intervals provide a convenient framework for introducing quantitative timing details. State

transitions can be characterized by properties relating the initial and final values of
variables over intervals of time.

We originally used ITL to specify and reason about timing-dependent hardware.
• "Moszkowski, Halpern and Manna [4,7,8] give details about ITL's syntax and semantics and

also show how to describe hardware ranging from delay elements up to a clocked multiplier

and an ALU bit slice. In this paper we show how ITL can also directly capture various
control structures found in programming languages. Constructs are given for treating
assignment, iteration, sequential and parallel computations and scoping.

§2 Expressing Programming Concepts in ITL

This section will show how ITL can express a variety of useful programming concepts.
We assume that the reader is familiar with the syntax and semantics of first-order ITL as
described by us in [4] and [8]. Upper-case variables such as A and I are signals and vary
over states. Lower-case variables such as b and i are static and thus time-invariant. In
general, variables such as A and b can range over all the elements of the underlying data
domain. On the other hand, J and n range over natural numbers. The variable X always
equals one of the truth values true and false.

2

...: , . ,i: .: :"_ .. :_, ." .'- ..::, -, "- : .. _ =:, ,.. .,._ ,..,. , __ . _ . .;" " • ' .- A

Assignment

The assignment A -. B is true for an interval if the signal B ends up with the signal
A's initial value. If desired, we can reverse the direction of the arrow:

B -A =def A- B.

Assignment in ITL only affects variables explicitly mentioned; the values of other
variables do not necessarily remain fixed. For example, the formulas

1 +- (1+2)

and
[I -(I + 2)] A [JI -J

are not equivalent.

Example (Leaving the elements of a vector unchanged):

A vector U ends up unchanged if[all of its elements end up unchanged:

(U .- U) - V o : i < IU. (Ufil +- Uji)).

For example, if U has 3 elements, the following formula leaves U unchanged:

(U[0] -U[O) A (UlI +-U[1) A (U[2J1-U[2]).

This illustrates a simple form of parallel processing.

Example (Swapping two variables):

We define the predicate A 4- B to be true iff the values of the parameters A and B
are swapped:

A .B -d., [(A 4B) A (B 4- A)]

A variable is swapped with itself iff it ends up unchanged: ,#
p. (A.- A) (A --A). I

If U and V are both vectors of length n then U and V are swapped iff their cor-
responding elements are swapped:

' *.(U -,V) -- V 0 <5 i < n. (Uji] +- Vji]).

3

.°• °% ° . % .°. "

.. .'.. - - : - - - ,- - _. . . " ." " " .- .- . -. -. -.. ' r' r .r- . - - " " " " " "

Example (In-place computation of inaximum of two numbers):

Let the function max(i,j) equal the maximum of the two values i and ". We can
define max(i, j) by means of a condition expression:

max(i,j) -dr if i > j then i else j.

The following two ITL formulas are then semantically equivalent:

S-- ma(I, J)

if I 2 J then (I e- I) else (I4- J)

Example (In-place sorting):

Suppose we have a function sort(U) that given a list U equals U in sorted order. The
following predicate Sort(U) then expresses that U is sorted in place:

Sort(U) =def U sort(U).

This is not the only way to express Sort. Let bagval(U) be a function that gives the bag
. (multi-set) containing exactly the elements of U and let the predicate sorted(U) be true of

U iff the U's elements are sorted. An alternative way to express Sort can then be given
by the following property:

12 Sort(U) =- ([bagval(U) 4- bagval(U)] A fin[sorted(U)]).

This says that a list is sorted in place iff the list's elements remain unchanged but end up
in order.

Example (In-place parallel doubling of the values of a vector's elements):

Here is a formula that represents the parallel doubling of the elements of a vector U:

Double(U) -dof V 0 < i < IUI. (U[i] -- 2U[i]).

The property below expresses Double recursively:

. Double(U) if IUI > 0 then[(head(U)4- 2head(U)) A Double(tail(U))].

Here the function head(U) always equals U's leftmost element and tail(U) equals the
remainder of U:

• head(U) =def U[0 tail(U) -def U(1 to 1U1- 11.

. "For example,
head((1,3,0)) = 1, tail((1,3,0)) = (3,0).

The behavior of head and tail on the empty list () is left unspecified. The logical construct
* . if wl then W 2 is the same as the implication w, W2.

4

-..-. • -.o- o..-.- ..

Ezample (In-place parallel reversal of vector elements):

The predicate Rev(U) specifies an in-place reversal of the vector U's elements:

Rev(U) -d, V 0 : i < n.(U[i] +- U[n - i - 1]),

where n = IUI. If the function reverse(U) equals the reverse of the vector U, we can
describe Rev as shown below:

Rev(U) [U - reverse(U)J
The following property expresses Rev(U) by symmetrically exchanging pairs of U's ele-

ments in parallel:

: = Rev(U) vo i < rn 21. (U[il . U[n - i - 11)

For example, if the vector U has 5 elements, then Rev(U) is equivalent to the formula

(U[01 +-+ U[4]) A (U[1] U[3]) A (U[2) +-+ U[21).

The gets Construct

We now introduce the gets construct, which is used for repeatedly assigning one
expression to another:

A gets B det keep(B = 0 A),

where the operator keep is defined as

keepw =def 9C-empty D w).

The effect of gets is that B's current value always equals A's next value. The keep construct
ensures that we don't "run off" the end of the interval. Note that gets is semantically
equivalent to the unit delay

B del A

described by us in [4,7,8]. It is also similar to the operator "followed by" in the program-
ming language Lucid 121.

Ezample (Synchronous incrementing of a variable):

The predicate gen" I initializes I to 0 and then repeatedly increments I by 1 until I

equals n:
get" I --r beg(I 0 0) A (I gets I + 1) A hait(I = n).

5

I -.

Example (Strength reduction):

The next formula has J run through 02, 12,... n 2.

genn I A J - 2 .

* Rather that compute 2 at each step, we can initialize J to 0 and continuously add 21 + 1
to it:

gen I A beg(J = O) A J gets (J + 21 + 1).

This is semantically equivalent to the previous formula but uses simpler operators. These
formulas illustrate a way of treating strength reduction in ITL. The expression 21 + 1 can
itself be strength-reduced if desired.

Example (Assigning a list the sequence (0,... ,2n - 1)):

The combined formula

(gen 2 n i) A (L =)) (L gets [L 11(1))

has the list variable L end up equal to the value (0,.. 2n - 1). We use the operator I to
append two lists together. Here is an example:

(1,2)11(5,0) = (1,2,5,0).

Example (Simple pipeline):

If U is a numerical vector of length m + 1, the following formula sends twice the value
of each element of U to the next:

VO <i < m. (Uji + 1) gets 2U[i]).

For example, if m equals 3, this is equivalent to the formula

(U(11 gets 2U[01) A (U[21 gets 2U11) A (U[3 gets 2U[21).

This illustrates a way of expressing highly parallel pipelines in ITL. By using the quantifier
V, we can obtain an arbitrary number of simultaneously executing processes.

Example (Keeping a variable stable):

The predicate stb A is true if the variable A has a fixed value throughout the entire
interval:

stb A =der 3b. (A : b).

We can achieve stb by means of gets:

s- stb A (A gets A).

".6

7%" 7

Ezample (Greatest common divisor):

The predicate GetsGed computes the greatest common divisor of two numbers:

GetsaGcd(M, N) =d.f M gets (N mod M) A N gets M A halt(M = 0),

where the construct halt u; is true for intervals that terminate the first time the formula
w, is true:

halt wo det WR(u empty).

Thus halt w can be thought of as a kind of wait-statement. Here is a corresponding
correctness property for GetsGcd:

I, GetsGcd(M, N) D [N - gd(M, N)J,

where the function gcd(i, j) equals the greatest common divisor of i andj. The following
property shows that throughout the computation, M and N's gcd remains stable:

:. ~ . Gets Gcd(M, N) stbfgcd(M, N)J.

Measuring the length of an interval

We can view the formula
ten - e

as an abbreviation for

31.[beg(I = e) A (I gets (- 11) A halt(I 0)].

The formula is true exactly of intervals with length e and illustrates how to localize or
"hide" a variable such as I by means of existential quantification. This is similar to a
begin-block in conventional block-structured programming languages. No conflicts arise
when such a formula is combined with others containing variables named I. We use this
technique elsewhere in this work.

Ezample (Constraining the length of a computation):

By using the construct ten, we can look at the length of computations. For example,
the formula

(I -P) A (ten I)

specifies that I is squared in at most I steps.

7

,-- •. . , o

,",",7- ." -,, .. '- -, :,, -. '.', ,-. :,,- :.', .. .- '.'-- .. / .. - -. , .""

Iteration

An interval can be broken up into an arbitrary number of successive subintervals, each
satisfying some formula w. For example, we use the construct w 3 as an abbreviation for

W; W; W

-" - We can extend ITL to include formulas of the form w*; this is the Kleene closure of
semicolon. Other constructs such as while-loops are also expressible within ITL:

whilew I do W2 -def [(beg[Wlj A 2)* A fin(-wi)]

ITL can also be augmented with iteration of the form w* where w is a formula and e is an
arithmetic expression. This repeats w for e times in succession.

...-. For-loops are expressible by means of while-loops. For example, the construct

for 0 <- 1 < n do(J J + I)

can be expanded to

be(I 0) A while(I < n) do([J-- J + I] A [I I+ 11)

Example (Sequential doubling of the values of a vector's elements):

The following formula achieves the predicate Double(U) by sequentially running through
the elements of the vector U and doubling each:

[for 0 < K < jU I doAlter(U,K,2U[K])] Double(U)

The predicate Alter(U, i, a) sets the i-th element of U to the value a and leaves the other

elements unchanged. We can define Alter in various ways. Here is one:

Alter(U, i, a) -df VO 5 < U. [ifi i= j then (U[j] ,- a) else (U[j .- U[])].

Sometimes a formal parameter of a predicate such as Alter has behavior that is slightly
incompatible with that of the corresponding actual parameter. For example, the formula

: '_ .Alter(U, K , 2U[K])

contains the signals K and 2U[K] where static objects are expected. We therefore view
the formula as an abbreviation for

3i, a. [beg(i K A a 2U[KI) A Alter(U, i, a)].

This form of temporal conversion corresponds to call-by-value in conventional programming
languages.

8

*1"•

Example (In-place sequential reversal of a vector):

The next formula reverses U by serially swapping pairs of U's elements:

forO :5 K < LUI + 2J doSwapU, K, UI - K - 1),

where the predicate Swap(U, i, j) exchanges the i-th and j-th elements of U, leaving the
other elements unchanged. We can define Swap in a manner similar to the predicate Alter
shown above. Note that sequential reversal provides one way to implement the parallel
reversal computation discussed earlier.

Example (Computation of greatest common divisor using while-loop):

As mentioned previously, we can specify the in-place computation of the greatest
common divisor of two variables M and N as follows:

N +- gcd(M, N).

The while-loop below implies this:

while (M 3 0) do

if(M > N) then(M ++ N) else ([M A-] A [N- N- M).

Example (Expressing gets using a loop):

The construct gets can be expressed using iteration:

(A gets B) -- (skip A [A +- B;)*.

Based on the semantics of while-loops and the predicate gets, we can rewrite the
while-loop

while (1 0) do(skip A (-1- 11 A [J - J + I])

* as
halt(I 0) A (I gets 1-) A (J gets J + I).

This gives us a decentralized, concurrent view of the computation.

Example (In-place partitioning of a vector):

The predicate Pariition(U 1) specifies that the vector U of numbers is reorganized in
place so that all e mnents ir .sitions less than the variable I are less than U[I] and the
elements in higher pr-, iorw -re at least as large as U[I:

Partition(U, I) d ([bagval(U) - bagval(U)] A fin[partition(U,I)])

g

I i |*~ ** ~ .. - . *....** * ***f ". ., . . . *. . -. t ."- .r - -. . .

*. where the predicate partition(u, i) is true iff u is partitioned about the i-th element:

* partition(u,i) -=df VO < lul- [(j i) =(u[i] > u[i])].

The following property shows how to achieve Partition in an algorithmic manner:

• [ifIUI > 0 then (Part(U, I); [SWap(U, O,1) A (I4- I)])] D Partition(U, I).

We use Part to partition tail(U) into elements < U[O] and > [01:

Part(U, I) =def

3J. [beg(I = 1 AJ =UI 1-) A while (1 _ J) do PartitionStep(U, I, J)].

Note that Part uses a localized variable J. Each iteration step of the while loop refers to
Partition(U, I, J), which either leaves U unchanged or swaps U[I] with U[JI:

PartitionStep(U, I, J) =def

if (U[I4 _ U[1o) then [(I +- I) A (J 4-- J - 1) A Swap(U, I, J)]
else [(I4--i + 1) A (J -.J) A (U +-U)).

Example (Parallel .Quicksorting of a vector):

Using the predicate Partition, we can describe an in-place Quicksort algorithm that
partitions a vector U and recursively sorts the resulting sections in parallel. The following
property of in-place sorting is used.

(if IU1 > 0 then 31. [Partition(U,I); SortPurts(U, I)])D Sort(U),

* where the predicate SortParts recursively sorts the two partitions of U in parallel:

SortParts(U,j) -def Sort(UfOtoj - 11) A Sort(UUj + 1 toIUI- 1) A (U[j 4- UIi).

Here, for example, the expression U[0 to i - 1] equals the list

',~ [01l, ,~ vt- ID).

- We leave the "pivot" element U[j] unchanged. An actual implementation of this form of
sorting might execute more sequentially.

§3 Markers

As mentioned earlier, we can iterate a temporal formula w by means of the construct

w.*

10

=71

A useful variant of this has an explicit Boolean flag X that is true exactly at the end-points
of the individual iterative steps:

beg X A ([0 halt X] A w)*.

Variables such as X are called markers since they mark off the loop's steps. We abbreviate
the above form of looping by means of the operator cycle:

cycleW -- dc [beg W A ([0 halt w] A W2)].

Here the formula w, represents the marker and W2 gives the individual iterative steps.
From the semantics of ITL, every loop has an implicit marker. For example, the formulas

(I *- 1 + 1)* and 3X. cyclex(I *- I + 1)*

are semantically equivalent.

When a loop's marker is made explicit, we can sometimes express the loop as smaller
mutually synchronized loops that operate in parallel. For example, the loop

cyle([I - I -] A [J - J + I])
can be represented as

cyclex(I 4-- 1- 1) A Cyclex(J 4- J + I).

The individual steps of the loops start and end at the same times. This demonstrates one
use of markers since, for instance, the loop

([I - I- 11 [J +- J + A])*

is not readily decomposible without some additional means of synchronization.

If the marker X is identically true, then each step of the loop is reduced to having
unit length. Thus, the construct

cycletrue(I -- I - 1)

is equivalent to the formula
(skip A (I +- I- I])*

and therefore has the same meaning as

I gets (I - 1).

Markers can also be used with while-loops. We define a while-loop with an explicit
marker formula wt as follows:

while., W2 dow 3 -der beg W 1 A whilew 2 do(10 halt t] A 1A3).

For instance, the loop

whilex (I O) do([I -- 11 A [J- J + I])

can be alternatively expressed by means of the following conjunction of three formulas:

hall(I = 0) A cyclrX(I 4- I - 1) A cycleX(J .- J + I).

11

§4 Data Transmission

In ITL we can use shared variables for communication between different processes.
. Given an interval and some variable A, it is convenient to speak of the trace of A. We
.- define the function tr(A) to be the sequence of A's values in all but the last state of the

interval:
tr(A) "def ((0' A): 0 ! " < ten).

Thus, in an interval of length 2, the value of tr(A) is the sequence

(A, o A).

Note that in an interval of length 0, tr(A) equals the empty sequence (). A variant of tr(A)
that doesn't ignore that interval's last state can also be defined.

* -_ Example (Transmitting the elements of a list):

The formula WriteList 1(L) outputs the contents of the list L from left to right into
the variable I:

WriteListt(L) =def [tr(I) = L].

The next property shows a constructive way to achieve WriteList:

o. (keep[I = head(L)] A L gets [tail(L)] A halt[L =()]) WriteListt(L).

The predicate ReadListx(L) is similar to WriteListi(L) but requires that L end up with
I's trace: R,!adListl(-r) =- [L t--i(I)].

.. Example (Writing a set in sorted order):

The predicate WriteSortedt(S) outputs the elements of the finite set S in soz ted order
- to the variable I:

WriteSortedt(S) =ddr WriteList1 (sort(S)).

For simplicity, we assume that S contains only numbers. The following formula gives a
way to achieve WriteSorted:

keep(I= min S) A S gets (S ((I}) A halt(S - { }).

The ITL keep construct ensures that the variable I always equals the minimum element of
S except perhaps in the computation's last state. The gets subformula continually deletes
I's value from S. As the computation runs, S is reduced to being empty. In the combined

12

--

formula
WriteSortedi(S)

A ReadListi(L),

the list L ends containing the initial elements of S in sorted order:

[WriteSortedt(S) A ReadListi(L) D L - sort(S).

For example, if S initially equals the set {3, 5, 1} then upon termination, L equals (1, 3, 5).
Note that bags (multisets) can be used instead of sets if duplicate data values arise.

Example (Synchronous walk through an S-expression):

An S-expression is either an atom or a pair (a, b) where a and b are themselves S-
expressions. For our purposes, we restrict atoms to being nonnegative integers. Here are
some simple S-expressions:

3, (4,1), ((2,3),5).

The predicate atom(t) is true iff the S-expression t is an atom. If t is not atomic then left(t)
and right(t) access t's two parts. We can inductively define the frontier of an S-expression
as follows:

frontier(t) =def if atom(t) then (t) else [frontier(left(t)) 11 fronticr(right(t))].

For instance, the frontiers of the S-expressions given above are respectively

(3), (4,1), (2,3,5).

The predicate WriteFrontie" specifies that the frontier of tLe S-expression T is output
to the variable I:

WriteFrontier 1(T) -der WriteList i(frontier(T)).

The following property shows how to recursively use WriteFrontier to output the frontier
of a static S-expression t:

•.WriteFrontierl(t)

if atom(t) then[beg(i=t) A skip)

else [WriteFrontier t(left (t)); WriteFrontier t(right (t))].
,..

An S-expression T's frontier can for example be entered into a list L as shown by the
property

4 i [WriteFrontier 1(T) A ReadListi(L)] [L - frontier(T)].

13

§5 Comparison with the Programming Languages Lucid and Prolog

The innovative programming language Lucid developed by Ashcroft and Wadge [1,2,3]
is similar to parts of ITL. For example, the ITL formula

beg(l= 0 A J=0) A Igets(I+ 1) A Jgets(J+I)

roughly corresponds to the Lucid program

1=0 fb= (I + 1)
J=ofb (J+I).

Not surprisingly, many properties of gets involving such concepts as strength reduction
can also be handled in Lucid. On the other hand, the Algol-like ITL formula

while(I O) do([I1 I-1] A [J- J +)

has no direct analog in Lucid. Lucid's underlying semantics are rather different from
ITL's since Lucid uses a three-valued logic and has no notion of global state. Instead, each

• .variable has an infinite sequence of values.

Prolog [5] is based on an interesting subset of predicate logic in which formulas can be
. interpreted as applicative programs. Because Prolog has no sense of time, ITL formulas

cannt in general be directly expressed in it. For example, there is no true analog in Prolog
to ITL's while-loops and assigments. In practice, side effects are permitted in Prolog,
although the language's core is not really designed to handle them.

§6 Future Research Directions

Let use now consider some aspects of ITL that require further investigation.

Temporal types and higher-order objects

A theory of temporal types needs to be developed. This should provide various ways
of constructing and comparing types. Given two predicates p and q, we form the predicate

.. p x q which is true for any pair whose first element satisfies p and whose second element
" satisfies q. For example, the formula

(nat x bool)((3, true))

is true. In general, we write such a test as

(3, true): (nat x bool).

The operator x extends to n-element tuples:

P 1 X ... X Pn,

14

where p1,...,p, are unary predicates. In addition, the construct p" is equivalent to n
repetitions of p. For instance, the test

a: nat
3

is true if a is a triple of natural numbers. The predicate p* is truefor vectors of arbitrary,
possibly null length, whose elements all satisfy p. Thus, the type bool* is true for all
vectors of truth values. The type sig(bool*) is true for any Boolean vector signal with a
possibly varying length.

The predicate struct(XI: Pi, ..., Xn: Pn) checks for tuples whose elements have field
names Xl,...,X, and satisfy the respective types p1,...,pn. For example, the predicate

struct(X: nat, Y: boot 2)

is true for the tuple
(X: 3, Y: (true, false)).

Note that two types can be semantically equivalent. For example, the types sig(booL2)
and [sig(bool)]2 have the same meaning. On the other hand, the types sig(bool*) and
[sig(bool)]* are not equivalent. The type sig(bool*) is true for any object that is always
a Boolean vector signal with a possibly varying length. In contrast, the type [sig(bool)J*
requires that the object's length be fixed over time:

A: [sig(bool)]* _ [A: uig(boot*) A stblAI].

Type constructs of the form p* have other uses. For example, we can define the predicate
incr to increment a variable I by 1:

incr(I) -def (14-- 1+ 1).

Then given a vector U, the formula

U: incr*

specifies that each element of U is incremented by 1 in parallel. This technique is similar
to the mapcar function of Lisp.

It would be interesting to have a semantics of higher-order temporal objects such as
time-dependent functionals. Perhaps a suitable variant of proposition ITL can facilitate
some sort of Godelization by representing all values as temporal formulas. Alternatively,

. an encoding like that used by Scott [11,121 in developing a model of the typeless lambda
calculus might work. However, we wish to strongly resist the introduction of partial values.
One concession we make in this direction is to not require that every function have a fixed
point.

15

n%
.

)°o , 4 , %,. .. J , ,.,

X 7. 7 7 67 -77 7. -7.7.- • -. . . -... . -4

..

Projection

Sometimes it is desirable to examine a computation at certain points in time and
ignore all intermediate states. This can be done using the temporal projection construct
WI1 7 W12. For example, the formula

Xfl (I gets [1+ 1])

is true if I increments by l over each successive pair of the states where X is true. Variables
like X serve as markers for measuring time and facilitate different levels of atomicity. If
two parts of a system are active at different times or are running at different rates, markers
can be constructed to project away the asynchrony.

Other definitions of projection are also possible. For example, a synchronous form can
be defined as follows:

WI1 aim WJ2 ~dt(begtIi A finW1 A [i112)

This forces the marker formula l to be true in an interval's initial and final states. We

can view this construct as simulating the formula w2 at at rate given by w c; hence the
name asim." For example, the formula

X aim [Readistj(L)

reads the variable I into the list L at the rate indicated by X.

In section 3, we showed how to express iterative constructs by means of markers: For
example, the following loop has X as a marker:

cycie x([I gets I + 1] A [J gets J + I]).

All loops have implicit markers that are accessible through existential quantification. This
aprovides a general means for identifying the end points of the iteration steps and extracting

them using projection. We feel that markers and projection provide a way to decoupled
low-level computational details from high-level ones.

Tempura, a prototype programming language based on ITL

Moszkowski and Manna [9] present a prototype programming language called Tempura
that is based on ITL. Along with the programming languages Lucid and Prolog, Tempura
has the property of having a semantics based on logic. Much work remains ahead in
exploring this temporal approach to language design and developing practical techniques
for specifying, executing, transforming, synthesizing and verifying Tempura programs.
Perhaps the state sequences of temporal logic can also be used as a convenient basis for
logics of, say, formal languages, typesetting and music. More generally, temporal logic
may provide a semantics of both time and space.

16

thmuigpoeto.W elta akrsadpoeto1rvd a odcuh

lo-.vel copuaioa detil from high-levelones....

§7 Conclusions

Interval temporal logic has constructs for dealing with such programming concepts
as assignment, iteration and computation length. Because ITL is a logic, programs and
properties can be stated in the same formalism. Unlike conventional first-order logic, ITL
can directly express computations requiring a notion of change. Moszkowski, Halpern and
Manna [4,7,8] have shown that ITL also provides a basis for describing timing-dependent
hardware involving clocking and propagation delay. ITL-based programming languages
such as Tempura [9] will be able to take advantage of this versatility. Thus, ITL appears
to have a wide range of application.

Acknowledgements

We wish to thank Martin Abadi, Joe Halpern, John Hobby and Yoni Malachi for
stimulating conversations and suggestions.

References

1. E. A. Ashcroft and W. W. Wadge. "Lucid: A formal system for writing and proving
programs." SIAM Journal of Computing 5, 3 (Sept. 1976),. 336-354.

2. E. A. Ashcroft and W. W. Wadge. "Lucid, a nonprocedural language with iteration."
Communications of the ACM 20, 7 (July 1977), 519-526.

3. E. A. Ashcroft and W. W. Wadge. Lucid, the Data Flow Programming Language. To
be published.

4. J. Halpern, Z. Manna and B. Moszkowski. A hardware semantics based on temporal
intervals. Proceedings of the 10-th International Colloquium on Automata, Lan-
guages and Programming, Barcelona, Spain, July, 1983.

5. R. Kowalski. Logic for Problem Solving. Elsevier North Holland, Inc., New York,
1979.

6. Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal framework.
In R. S. Boyer and J. S. Moore, editors, The Correctness Problem in Computer
Science, pages 215-273, Academic Press, New York, 1981.

7. B. Moszkowski. A temporal logic for multi-level reasoning about hardware. Proceedings
of the 6-th International Symposium on Computer Hardware Description Languages,
Pittsburgh, Pennsylvania, May, 1983, pages 79-90.

8. B. Moszkowski. Reasoning about Digital Circuits. PhD Thesis, Department of Com-
puter Science, Stanford University, 1983.

9. B. Moszkowski and Z. Manna. Temporal logic as a programming language. In
preparation.

17

L -.

10. N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, New York, 1971.

11. D. Scott. "Data types as lattices." SIAM Journal of Computing 5, 3 (Sept. 1976),
522-587.

12. 1. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, Masachusetts, 1977.

18

5 8

P444

Ot

