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1. INTRODUCTION_

1.1 summary

Primary activities during 1982 consisted of (i) conducting

research in accordance with the Statement of Work given in Section

1.2; (ii) preparing eight technical papers, three M.S. theses, and one

invention disclosure; (iii) various interactions of the faculty with

the technical community through presentations of papers, participation

as nmbers of technical comnittees, etc.

Sections 2-8 summarize the research activities. The professional

personnel associated with the project and the outside activities of

the faculty related to composites are given in Section 9. The

Appendix contains nine articles on work published or completed in

1982.

1.2 Statement of Work

Specific areas to be investigated are:

1. micro- and macro-mechanisms of fracture of resins and
composites, with emphasis on processes involved in
delamination growth

2. effects of transient temperatures and moisture content on
deformation and fracture properties, including consideration
of residual stresses and their effect on intraply and
interply cracking (delamination)

3. behavior and structure of water in resins and model resin
systems, and its effect on basic deformation and fracture
properties

4. toughening mechanisms in high temperature resins, including
study of the separate effects of energy absorption in crack-
tip failure processes and far-field deformation and micro-
damage processes

5. improved theoretical models for characterizing and
predicting deformation and failure behavior of resins and
caeouites

*,,,',,- *- .- - ..-'.-. .. ..>.. ".-
t

. .. . .. ,.::.. . ... ... ,
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2. MATRIX CONTROLLE FRACTURE BEFIVI0R
OF GRAPHITE/EPOXY COMPOSITES

2.1 Delamination and Transverse Fracture in Graphite/Epoxy

Caosite Materials

The asymmetrically loaded split laminate specimen has been used

to study mixed mode I/mode II fracture in several graphite/epoxy

unidirectional systems with quite different neat resin toughnesses.

For the very tough F185 resin of Hexcel Corporation (Glc = 6000 J/m2 ),

the critical energy release for the composite ranged from about 2500

J/m2 for pure mode I delamination to 2000 J/m2 for mixed mode where

GII/(GI + GII) 0.40. For Hexcel 155 resin (Glc 730 J/m2) and

Hrcules 3502 resin (Glc U 70 J/m 2 ), the delamination critical energy

release rate monotonically increased from approximately 600-850 J/m 2

and 225-475 J/m2 respectively as GII/(GI + GII) increased from 0.0 to

0.40. Oe4o'

The results indicate that the introduction of strong but brittle

fibers into a tough resin decreases the energy dissipated in

delamination fracture by decreasing the total volume of resin

deforming ahead of the crack tip and possibly decreasing the strain

dn to the constraint provided by the fibers. By contrast, strong but

brittle fibers introduced into a brittle resin system whose strength

is less than the fibers' strength enhances the toughness of the system

against delamination fracture. This is because the fracture process

will include not only resin cracking but also some interaction of the

crack tip with the strong, brittle fibers, thus increasing the

resistance to crack propagation. Even for pure mode I opening on a

Prqmred by W.L. Bradley
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macroscopic scale, crack tip interaction with the fibers occurs on a

microscopic scale due to fiber misalignment, ply waviness, and other

microscopic heterogeneities.

3The effect of superposition of mode II loading onto mode I

loading is to repeatedly redirect the crack tip into the fibers. In

brittle resin systems, this increases the resistance to crack

propagation, whereas in tough systems it can actually decrease the

total energy dissipated in fracture, as was observed for the Hexcel

P185 system.

Compact tension specimens were used to study transverse cracking

4in the same systems. A comparison of transverse cracking to

delamination cracking suggested the same pattern. There is no resin

rich region in transverse cracking which is comparable to that seen by

the crack tip between plies during delamination cracking. Thus, a

greater incidence of crack tip interaction with the fibers is expected

than in delamination cracking. For a brittle resin, this would

enhance toughness whereas for a more ductile resin, it would give a

net decrease in toughness. These trends were noted in the systems

studied.

A more detailed summary of this effort is contained in the M.S.

thesis of Ron Cohen (cf. Section 8) and the paper "Delamination and

Transverse Fracture in Graphite/Epoxy Materials" contained in the

Apperuix, publication No. 1.

2.2 In-Situ Fractoqraphic Study of Graphite Epoxy Ccapsite

Materials

In-situ fracture in the scanning electron microscope was used to

better understand the various micromechanisms of fracture. These

Vi
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observations were subsequently compared with post mortem fractographic

observations to guide in interpretation of the various artifacts

observed in the fracture surface in delamination fracture.

The composite systems studied were found to be much more

heterogeneous in their fracture behavior than expected. The particle

toughened resins P155 and F185 were a'lso found to be quite

heterogeneous. In the tough resin systems, variation in thickness of

the resin rich region along the crack path gave fracture behavior

which varied from large scale deformation, with dimple like artifacts

similar to ductile fracture in metals, to a "furrowed field" look

similar to that observed in delamination fracture in brittle resin

system. The deformation and damage zone in the ductile systems was

often observed four to five diameters removed from the plane of the

crack and apparently accounts for the much higher Glc values observed

Iin these sysrtems. Fiber breakage was almost always associated with

fiber debord followed by stretching the fiber across the two surfaces

behind the crack tip until the resultant bending loads gave fracture.

The crack tip "meandered along" in a somewhat irregular way in the

1155 and P185. The heterogeneous distribution of rubber particles

added for toughening the system resulted in soft and hard spots in the

resin ahead of the crack tip. Coalescence of the voids with the crack

tip constituted crack tip advanm

The results of this investigation are presented in greater detail

in an invited paper prepared for the 6th Annual Structural Composites

Meeting in New Orleans, January, 1983, contained the in Appendix,

5 publication No. 2.
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3. MATRIX CNTROLED FRACTURE ANALYSIS

OF FIBROUS COMPOSITES

3.1 Defouation and Fracture Theory for Viscoelastic
CooVogites with Distributed Damge*

Methods of quasi-static deformation and fracture analysis have

5 been developed for nonlinear viscoelastic materials; they are

described in the Appendix, publications Nos. 5 and 6. The

correspdene principles which provide the basis for the viscoelastic

analysis are not limited to crack growth; they apply to crack closing

and healing as well as to other types of problems involving ablation

and interfacial contact and separation. However, only crack growth

examples are given. The theory, which allows for distributed,

microscale damage, is not much more involved than that of nonlinear

elasticity or special cases of linear viscoelasticity. This

simplicity, compared to what one might expect, is a direct result of

i the particular constitutive equations and mechanical variables

selected to characterize rheological behavior. We believe the theory

provides a practical approach to the development of realistic damage

and global fracture models for nonlinear elastic, viscous, and

viscoelastic media. It is potentially applicable to the mathematical

5modIeling of crack tip regions, such as the delamination tip in fibrous

cmqpoites with rubber-toughened matrices (cf. Appendix, publication

No. 1, Fig. 3).

33.2 Evaluation of 29MRelease Rates in
Unidirectional Split Laminate ipecln.u

An improved beam theory which accounts for rotation at the crack

tip is describe in th .S. thesis by J.R. Weatherby; see Section 8

*Sections 3.1-3.3 prepared by R.A. Schapery
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for the Abstract. The primary findings are:

Deformation of the laminate ahead of the crack affects stiffness
and energy release rate as a function of delamination length.

For mode I, a model consisting of a beam supported at the crack
tip by a torsion spring (with a length-independent spring
constant) can be used to predict stiffness and energy release
rate as a function of length. I
An approximate analytical prediction of the mode I spring
constant agrees well with finite element solutions. In a limited
analytical study of mode II delamination, the correction for beam
deformation near the crack tip is estimated to be 1/3 that for
mode I.

3.3 Slow, Stable Delamination in Graphite/Epoxy Cumposites

Using unidirectional, split laminates under fixed-grip

conditions, the relation between delamination crack speed, ;, and

energy release rate, G, was found for one tough composite (Hexcel

F185) and one brittle composite (Hercules AS/3502). This study is

reported in the M.S. thesis by H. Razi; its Abstract is in Section 8.

The principal conclusions are:
The energy release rate during slow growth is approximately 15%
less than the initiation value G for the brittle system (3502)

and 30% less than Gc for the tough system (F185).

For the brittle system, G a 20481 O4 5 (dry, RT) and G 195S0 46

(wet, RT) where G is J/u2 and a is cm/s.

For the tough system, G 1665#.022.

3.4 Analysis of Effect of Matrix Degradation Due to
Fatigue on Deformation and Strength *

Results of R.T. Arenburg's M.S. thesis (1] indicated a strong

correlation between matrix damage and ultimate failure of

graphite/epoxy. The current effort involves a more detailed study of

this phenomenon and quantification of the mechanisms involved.

*Prepared by D.H. Allen and W.E. Haisler
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In order to better facilitate the research, the finite element

code developed by Arenburg has been completely reconstructed and

streamlined. The current code has the capability of predicting the

strain energy release rate as a function of delamination crack growth

in layered orthotropic elastic media with any user-specified layup.

As shown in Fig. 1, the model has the capability of analyzing the

behavior of uniaxial specimens with cracks propagating longitudinally

between any user specified plies. Results have currently been

obtained for (0/90]s and [±45/902]s layups.

Future program development will involve the inclusion of residual

(thermal and moisture expansion) strains which will be predicted via

an already constructed and compatible heat conduction/diffusion

computer code. In addition, the material model is being internally

altered to include the effect of matrix degradation via a damage

growth law.

A coexisting effort with the computer code development involves

the construction of a growth law for the prediction of the global

damage state. It is well known that in graphite/epoxy laminates the
fatigue process causes multiple fracture events on different scales

[2,3]. These events are primarily characterized by microvoid growth

in the matrix, transverse cracking of the matrix, and fiber-matrix

debonding, eventually leading to fiber fracture and delamination

causing ultimate failure. Growth of this damage is strongly affected

by geometry of the layup (2,3], so that the damage growth law is quite

complex. Thermodynamic constraints have shown that a potential

function for stress exists [4], and this framework is being studied

along with the theory of Section 3.1 as a basis for development of a

continuum model. It is anticipated that the thermodynamic formulation

..- '....".*... '..*. . . - . .. 7 .. . ....
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will result in a model of the form

aij = l/ij , = t(eij, T, W)

where i is the Helmholtz free energy, aij is the stress tensor, Eij

is the strain tensor, T is temperature, and W is a scalar-valued

internal state variable modeling damage. The mechanisms of internal

damage discussed above will be related to a global damage parameter

using the following form:

" W I Aia i dV

V

where Ai are weighting parameters accounting for stacking sequence,

and ai are a set of coupled parameters modeling the growth of the

various damage mechanisms, with growth laws of the form:

ai (ij, T, ai ) .

SThis equation comprises the heart of the damage growth research in the

context of thermodynamics. Growth law development will involve

*; considerable coordination with experimental research currently

underway.

iSi

"*',-'/ • *~4 , -.- . - -.. -,. . ... . •.- . ... K. . -. . -
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4. STUDIES RELATED TO RESIDUAL STRESSES IN COMPOSITE MATERIALS*

4.1 Introduction

Much of the work summarized in Sections 4.2-4.4 will be detailed

in the Ph.D. dissertation "On the Effects of Post Cure Cool Down and

A Environmental Conditioning on Residual Stresses in Composite

Laminates", by B.D. Harper; completicn is expected by August 1983.

Portions of these studies on residual stresses are also covered in

publications 7-9 in the Appendix to this Annual Report. An

investigation of moisture diffusion in hybrid composites, Section 4.5,

was recently initiated as an M.S. thesis project by D.L. Clark.

*4.2 Residual Stresses Due to Moisture and Temperature

Effects of moisture and temperature on residual

stresses in composites were investigated by measuring the curvatures

of non-symmetric AS/3502 plates. The plates' dimensions (4" x 4") and

lay-up (O/90/O4/904/O/901T were selected so as to avoid premature

cracking and achieve appreciable curvatures, while remaining within

the range of linear plate theory. The plates were cured and postcured

at 350 F, following the standard cure process, and cooled down to room

Na temperature of 75F. Groups of specimens, three in each group, were

then subjected to controlled levels of moisture and temperature,

causing moisture to be absorbed in the plates. The various test

conditions are listed in Table 1.

Prepared by Y. Weitzman

*Is
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73 130 150 163

Dry X X

13% X X X

75% X X X

95% X X X X

Table 1: Environmental Conditions Employed in Test Scheme

Upon saturation, the plates were placed in a dry environment,

causing moisture desorption. Moisture content was measured by

periodical weighings of the specimens and compared with moisture

levels in uni-directional coupons that were exposed to identical

environments. Plate curvatures were measured periodically and

recorded. The distribution of moisture across the thickness of the

plates was calculated from classical linear diffusion theory.

Curvatures were then computed on the basis of linear elastic plate

theory, accounting for the thermal and moisture-induced strains.

Those calculations resulted in discrepancies of up to 50%, when

compared with experimental measurements. Employing a viscoelastic

characterization, which accounts for the effects on creep of both

moisture and temperature, the plate deformations and curvatures were

computed using linear theory, leading to much better agreement with

-experimental observations. See Figure 2.

Upon drying, the observed curvature was again found to be quite

different from that predicted by elasticity theory. However, as shown

in Figure 2, the experimentally observed curvature is shifted in the

opposite direction to the curvature predicted by viscoelasticity. We

thus conclude that the drying stage caused damage (microcracking or

r- . ,,, ... . _ . . . . ...... ,. . ... .
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1.1 -- Viscleastic

1.0Elsi

1 0.9

0.80
AData Absorption

KM 0.7 a Data Desorption

0.6 Elastic Absorption

-Elastic Desorption
/ - Wacoelastic Absorption

0.4 /Viscoelastic Desorption

1 0.3

0.2

0.1

0.0 
I

0 1 2 3 4 5 6 7 8 91011 2.1314 15

Figur 2. Oarvatures of Plates Eniromentally Conditioned at
1630F and 95% MRe Ilative to Initial Curvature K

(730 F, dry).
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me other physical change) in the laminate.

It was concluded that although linear elasticity may suffice to

analyze thermal effects in AS/3502 composites, the influence of

moisture on material response is large enough to require viscoelastic

as well as damage analysis. It was also noticed that moisture weight

gains in the cross-ply plates exceeded consistently the moisture

absorption in uni-directional plates. This phenomenon is likely due

to stress effects (e.g. damage) on moisture sorption, in view of the

tensile residual (thermal) lamination stresses which exist in an

4asymmetric plate, but which are absent in a unidirectional coupon.

4.3. Chemical Cure-Shrinkage Stresses

An assessment of residual stresses due to chemical cure-shrinkage

in 3502 (Hercules) resin was obtained by measuring curvatures in

plaminated 3502/aluminum beams during cure and following cool-down.

Strain-gages were attached at the resin/aluminum interface and at the

outer surface of the aluminum and readings were recorded vs. time

during cure, and vs. temperature during cool-down. The results were

analyzed by means of a linear, elastic laminated-beam theory It was

concluded that residual stresses due to cure shrinkage accounted for

about 30% of the total residual stresses after cool-down.

4.4 Thermo-viscoelastic Characterization of Polymeric Resins

The customary approach to correlating the effects of time and

temperature on creep (or relaxation) is to employ the so-called "time-

temperature" analogy. This analogy presupposes that when creep data

at several levels of constant temperature are plotted vs. time on log

scales, these data can be coalesced to form a continuous "master

curve" by shifting isothermal curves parallel to the log t axis
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(horizontal shift). This provides the "shift factor" function aT

which is then employed to cast the viscoelasticity formulation in

terms of "reduced" time =/a T

There are, however, circumstances in which isothermal data cannot

be shifted in the above manner, and vertical shifts are required in

addition to horizontal translations. The reduction is ambiguous in

the case of "power law" creep, where all isothermal data fall on

straight, parallel lines on log-log plots.

It has been shown that all such ambiguities and uncertainties can

be removed by conducting more generalized creep tests. These involve

creep and recovery measurements, in which creep is recorded at some

elevated temperature under constant load and recovery is recorded .

after an abrupt removal of the load accompanied by a simultaneous,

sudden reduction of the temperature to a fixed, lower level. These

OT-Drop" recovery data then serve to define the vertical and

horizontal shift and determine the appropriate manner in which the

vertical shift must be further split into two components to be

employed in a superposition integral. At this time the

characterization work is complete, both experimentally and

analytically.

To examine the validity of this approach, several verification

tests have been performed in which both temperature and stress were

allowed to fluctuate. In these verification tests, the stress was

increamd linearly from 0 to 10 MPa at a rate ranging between .01

to .03 MPa/sec, and then either held constant or returned to zero

at the same rate. The temperature was simultaneously increased in an

approximately linear path from 70 C to 120 C at a rate of around .05

C/sec, and then lowered at a much faster rate (from .5 - 2.5 C/sec).

I%*~ ~(V A. . . . . . . . . . . . . . . ."..A



In all cases, the predictions based upon t-he aforementioned

characterization agreed very well with the experimental data. A paper

outlining the theoretical aspects of this scheme appreared recently in

the Proceedings of the 4th International Congress on Composite

A Materials; see Appendix, publication No. 8.

4.5 Moisture Diffusion in Hybrid Composites

This investigation aims at developing a model for the diffusion

4 of moisture into hybrid laminates. The hybrid consists of materials

old that can be co-cured simultaneously but each one possesses its own

A diffusivity coefficient and reaches a different saturation level.5V Two materials, Hexcel F155 and F185, w ere selected for the

experimental task. Laminated unidirectional coupons, some consisting

Of 11552/18521Ss, [ 1 8 5 2/1 -5 5 21 s F and others made of four plies of each of

3 the above materials alone, were exposed to several levels of relative

humidity and temperature. Moisture uptake was recorded during the

past four months.

At the present time no analytical solution exists for moisture

diffusion in hybrids. The major complication involved in modeling

this case concerns the existence of discontinuities in moisture level

at interfaces; in addition, a solution by means of Fourier analysis

requires generalizations of such concepts as "inner product" and

orthogonality. A generalized solution has been developed and a

computational scheme is now in progress. The solution and

computational scheme have the required flexibility to include the

appropriate interface conditions based on thermodynamics.

t .- ..i ~ . . .
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5. STRUCTURE AND) BEHIAVIOR OF WA~TER IN RESINS*

5.1 General Studies

Water absorption in resins is often detrimental to the mechanical

properties. Since under atmospheric conditions water absorption is

slow, degradation may occur only after months or years, depending on.

the size of the body. It is our object to investigate the basic

mechanim of water absorption, as well as the diffusion rate, and to

develop reliable methods for predicting long-term usage. In order to

do this successfully, more insight in the process of water absorption

is required. Since epoxies absorb relatively small amounts of water

(a few percent) basic studies are dif ficult with this commonly used

* resin. Therefore, we have first conducted experiments with other

* model resins capable of higher water absorption, so the results can

more easily be interpreted. of course, these studies are based on the

premise that the behavior of water in different resins is similar.

Our previous studies have shown that, indeed, for quite different

resins water absorption follows similar patterns [51. The results of

further studies by Mr. Kinard on methylcellulose (publication No. 4 in

the Appendix) have been submitted to the Journal of Polymer Science.

The results can be summarized as follows. Even in rigid resins

diffusion of water is relatively rapid. Water molecules are not bound

to specific groups, but diffuse as a diluent through the resin in

liquid-like fashion. At low temperature no ice is formed, but-

diffusion slows until the temperature reaches 150 K. In this

temperature range diffusion ceases.

Pro parad by C.A.J. Hoeve
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5.2 Glass Points of Epoxies
.44

Although water absorption in epoxies occurs only up to several

percent, in view of the previous general conclusions we are in an

excellent position to extend these studies to epoxies. The glass

transition temperature T values of a resin is of paramount importance
g]

for its mechanical properties. Usually the modulus decreases more

than a thousand fold in raising the temperature through Tge Since

only a few mg of sample is required for the calorimetric measurements

(the Perkin Elmer DSC 2), we can absorb water in the sample rather

quickly and measure the effect of water on Tg in a relatively short

time. Preliminary measurements indicate that the Tg-values of epoxies

can be depressed by 20 C by water absorption of only a few percent.

5.3 Studies on a Model Epoxy

The commercial samples tested so far have been highly

crosslinked. In this the case the Tg value is above 100 C and the

modulus is high under atmospheric conditions. High crosslink

densities also lead, however, to brittle samples. In order to display

tougness the sample should be more linear. In addition, for a better

understanding of the mechanical properties in terms of the chemical

structure, simpler linear resins are preferable. For this reason we

have synthesized a linear model epoxy from the monomers Epon (Shell

Co.) and butylamine. Although its Tg value is only 40 C, too low for

a useful structural material, the glass transition is quite pronounced

and is easily measurable. Furthermore, the effect of water absorption

on Tg and on the mechanical properties should be relatively easy to

observe and interpretation of the results should be facilitated.

4-2
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6. TOUGHNESS REATED FFECTS OF MOLECJLAR CHAIN STIFFNESS*

Some rheological property measurements have been made on a

thermoplastic polysulfone, and the results are reported in a paper

presented at the American Chemical Society national meeting in Kansas

City in August 1982; see Appendix, publication No. 3. It has a

molecular structure which is similar to the chains between crosslinks

in a thermosetting material being developed by AFML as a candidate

resin for high temperature composites. The candidate material suffers

from brittleness at room temperature which will have to be reduced

before this material can be accepted. The thermoplastic material has

excellent toughness but cannot be processed with conventional

technique and lacks the solvent resistance coming from crosslinking.

4This study is an attempt to find the molecular size between crosslinks

sufficient for the material to have acceptable toughness and yet still

be processed with thermoset technology. These studies indicate some

unexpected behavior which is believed to be a consequence of chain

stiffness at room temperature in solution.

A paper in preparation, "Chain Stiffness in a Polysulfone", is an

elaboration of the included publication but also describes in greater

detail the rheometric data on the neat resin at high temperatures and

the solution measurements in moderately concentrated solutions at room

temperature. The static and quasi-static measurements such as

intrinsic viscosity and light scattering show beyond doubt that this

molecule is in a random coil configuration in solution. On the other

hand, an entanglement effect observed in moderately concentrated

*fepred by J.S. Ham

' . 9 . s
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solutions implies a stiffness exists within the molecule. The thermal

shifts of the rheometric data show marked deviations from the WLF type

shift with a tendency toward the Arrhenius behavior. This is in

keeping with what one would expect if the energy barriers for shape

changes depended to some extent upon the rotational barriers, which in

turn would give rise to a Arrhenius behavior (rather than the three

dimensional surroundings which give rise to the WLF behavior).

Another paper in preparation is on similar measurements on a

polyphenylquinoxaline. This is a thermoplastic material, also related

to a high temperature thermoset candidate, but the development on this

resin has been postponed by AFML since the polysulfones appear to be

more promising. This paper includes rheometric and moderate

Aconcentration solution data parallel to those in the polysulfone
paper. The data have been collected and partially analyzed so that

this paper can be completed shortly after the polysulfone paper.

A third study concerns the formation of thermosets with a glassy

transition higher than the actual cure temperature. The view of

curing of thermosets says that the curing reaction slows down

drastically whenever the glassy transition rises to the actual curing

temperature. There has recently appeared some cases in the literature

4 where this rule is violated. This is a very interesting phenomenon

since it could result in the curing of high temperature resins without

the very high curing temperatures normally required. This work is at

an early stage of development.

U''. • -° ° .° O , .-. , ,-•.°•
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7. DEVEOPMENT? OF ELASTIC STRAIN4 RATIO TRANSEATOR (ESRT) GAGE*

7.1 introduction

A device for measuring uniaxial strains was developed which is

believed will greatly enhance experimental capabilities in the

mechanical characterization of fibrous composites and other materials.

Efforts culminated in the filing of a "Disclosure of Invention"

through the Texas A&M University System, -dated Oct. 22, 1982. We have

complied with Air Force requirements regarding disclosure submittal

and the completion of the Air Force Systems Command Abstracts of bNew

Technology (ANT).

7.2 Description

Figure 3 is a schematic showing the basic elements of operation

of the "ESRT"N gage. Two stainless steel clamps, A, are secured to a

uniaxial test specimen by pressure applied from the clamps through a

pressure foot, B. Fixation of the position of the clamp to the

pressure foot is accomplished by indentation indexing through an

arrangemnt of steel balls or a knife edge.

Two such clamps are located on the test specimen, D, with the

gage length being determined by the on-center spacing between the two

clamps. The longitudinal strain sensing elements of the device are

compoed of two electrical resistant strain loops, E, which are made

of very small diameter alloy wires, coated with enamel. These loops

are in turn placed in a condition of pre-tension through the cantilever

springs,, F. Subsequent axial straining of the test specimen produces

*Prepared by B.C. Harbert
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C

101
I Gage

length

10 -77

A. Stainless steel gage clamps secured to test spectnen at
1' two locations. Gage length determined by on-center

&istazice between claiips.

B. Pressure-foot or raised surface.

C. Recessed hardened steel ball or kniife edge.

D. Typical tabbed end uniaxial, test specimien.

E. Electrical resiLstant strain loop.

F. Cantilever loading spring.

Figure 3. ESRT Gage Mounted on a Uniaxial Specimen
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changes in the wire tension and the electrical resistance of the

strain loops. The electrical changes can be treated in the usual

manner as with standard bonded resistance strain gages, regarding

electrical circuitry, signal conditioning, and analysis.

7.3 Results and Discussion

Operation of the ESRT gage on uniaxial test specimens has been

performed to check out various gage characteristics such as accuracy,

repeatability, sensitivity, calibration, linearity, fatigue limit and,

to a lesser degree, gage sensitivity to temperature and humidity.

Accuracy of the gage was established in part by comparing strains

measured with the gage and two independent strain measuring

techniques; a uniaxial graphite/epoxy composite test specimen

subjected to a sinusoidal loading history was used. Figure 4 shows

the comparison of mean cyclic strain measured by a conventional bornd

resistance strain gage, an Instron type extensometer and the Z."TRT

gage. Cyclic loading was performed on an Instron test machine at room

temperature and humidity. Loading was essentially linear it 0.5

Hertz, with a typical cycle initially being a 300 lb. peak decreasing

to 100 lb. The different steps on this curve reflect upward changes

in the peak loading and corresponding changes in the low level during

the cycle. The final cyclic load variation at the time of specimen

failure was 750/200 lbs. The correlation between the ESRT gage and

the clip gage extensometer is very good over the entire test range

including the point of failure. Initially the agreement between the

conventional bonded strain gage was good; however, disagreement

between the strain gage and the other two devices increased with each

increase in cyclic load level, until at a mean strain of 0.85% the
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conventional strain gage failed. Typical of these bonded gages, a

considerable zero shift occurs under cyclic loading above 0.2% strain,

increasing exponentially as the strain level increases. Therefore,

even though the conventional strain gage continued to provide data, it

was greatly in error by virtue of the zero shift which increased with

each increase of load at strains above 0.2%. In contrast, we have

obtained excellent agreement between the ESRT gage and a conventional

bonded strain gage on an aluminum specimen tested at a constant strain

rate of .01 mmn1 .

With additional experience and refinements it is believed the

ESRT gage will become a very valuable experimental tool because it

offers certain advantages over conventional strain measuring

techniques:

Large strains can be measured (in excess of 5% if desired)
because of the translation ratio imparted by the springiness of
the cantilevered beams (as opposed to a 1:1 relationship for a
bonded strain gage).

Since the strain loops are coupled through elastic metallic
elements, no adhesive bonding is required; thus performance of
the gage is not degraded at the high temperatures and high
humidities at which polymeric adhesives creep.

The "EST" has been demonstrated to function very reliably under
conditions of fatigue loading, both at high and low strain
levels, as illustrated in Figure 4, and observed during many
other tests. The levels of strain measured under fatigue
loadings greatly exceed the capabilities of coventional strain
gages.
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8. GRADUATE RESEARCH ASSISTANT ACTIVITIES

8.1 Summary

The fourth group of graduate engineering students to participate

on the M.S. level in the AFOSR research project entered the program in

September 1981. They have completed all of their requirements for a

Master of Science degree, and the results of the research are reported

in the following theses:

1. Cohen, R.N., "Effect of Resin Toughness on Fracture Behavior
of Graphite/Epoxy Composites".

2. Razi, H., "Slow, Stable Delamination in Graphite/Epoxy
Comp~osites".

3. Weatherby, J.R., "Evaluation of Energy Release Rates in
Unidirectional Double Cantilevered Beam Fracture Toughness
Specimens".

gI The abstracts are in Section 8.2. Copies of the theses will be

provided upon written request to the Principal Investigator (R.A.

Schapery).

To date, twenty two M.S. students have participated in the

project and graduated. Emphasis of the graduate program shifted from

the M.S. level to the Ph.D. level in 1981. The current group consists

of three M.S. and five Ph.D. students.

8.2 Abstracts of M.S. Theses

See pages 26-28.

......
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ABSTRACT

Effect of Resin Toughness on Fracture Behavior

of Graphite/Epoxy Composites (December 1982)

Ronald Nelson Cohen, B.S., Purdue University

Chairman of Advisory Committee: Dr. Walter L. Bradley

Energy release rates for delamination and transverse

fracture have been experimentally determined for three different

graphite/epoxy systems. Various combinations of mode I (opening)/mode II

(In-plane shear) load ratios for delamination fracture have been investi-

gated to determine the effect of resin toughness on delamination frac-

ture. The micromechanisms of fracture were determined using in-situ

fracture in a scanning electron microscope along with subsequent frac-

tography on fractured surfaces. The energy release rate for

delamination fracture and transverse fracture is less than the

energy release rate for the neat material for a tough resin system.

For a brittle resin system, the delamination and transverse toughness

is greater than for the neat material. The results have been inter-

preted in terms of the relative contributions of resin deformation and

fiber pullout and breakage to the total energy dissipated during frac-

ture.

. . .
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ABSTRACT

Slow, Stable Delamination in

Graphite/Epoxy Composites (December 1982)

Hamid Razi, B.S. Mechanical Engineering

University of Washington

Chairman of Advisory Committee: Dr. R.A. Schapery

Split laminated beam specimens tested under a fixed-grip condition

are used to obtain relationships between the opening-mode energy release

rate and crack speed in one brittle and one tough unidirectional, graph-

ite/epoxy composite with moisture contents corresponding to ambient

humidity, 45% RH, and 95% RH. The analysis employs a linear elastic

fracture mechanics approach coupled with nonlinear beam theory to account

for large deflections and rotations produced during the delamination

tests.

t

i .... ,1 ... :. : .,.. ... ...... . - . .. .. .
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ABSTRACT

Evaluation of Energy Release Rates in

Unidirectional Double Cantilevered Beam

Fracture Toughness Specimens (December 1982)

Joe Randall Weatherby, B.S. Mechanical Engineering

Texas AIM University

Co-Chairmen of Advisory Commnittee: Dr. R.A. Schapery5 Dr. M. Henriksen

An improved beam theory model is proposed for calculating energy

release rates in symmnetrically loaded unidirectional double canti-

levered beam fracture toughness specimens having longitudinally

oriented fibers. The proposed model consists of a beam supported at

the crack front by a torsion spring. Here the spring is used to

account for the strain energy in the region ahead of the crack front.

Values for the spring constant are obtained from a two dimensional

approximate analytical solution and from finite element models.

Energy release rate calculations based on the beam and spring model

are compared to those obtained by numerical evaluation of Irwin's

crack closure integral. Comparisons are also made with results from

*techniques previously used in the analysis of isotropic double canti-

levered beam specimens.
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9. PROFESSIONAL PERSONNEL INFORMATION

9.1 Faculty Research Assignments

Each participating faculty member is responsible for the research

conducted in at least one specific area of investigation, as shown

below. In addition, most serve as chairmen of one or more of the

graduate advisory committees for M.S. and Ph.D. students and, as such,

direct their students' research projects. The faculty also contribute

to other research activities on the project by serving on student

advisory committees, through technical meetings, informal discussions,

and, in some cases, through specific research.

The Principal Investigator (R.A. Schapery) has responsibility for

overall technical direction and coordination and for project management.

In addition he has direct responsibility for certain research work, as

noted below. It should also be observed that there is considerable

overlap between the areas in the Statement of Work, and therefore most

of the faculty are strongly involved in more than one area.

Faculty M, repamental Affiliation Primary Research Responsibility

Dr. David Allen/Aerospace Engineering (5)* theoretical models/formula-
tion and numerical solution
methods

Dr. Walter Bradley/1schanical (1) delamination fracture proper-
Engineering ties and SEM studies

Dr. Walter Haisler/Aerospace (5) theoretical models/numerical
Engineering solution methods

Dr. Joe Ham/Physics (4) toughening mechanisms (molec-
ular aspects)

Dr. Cornelius Hoeve/Chenistry (3) behavior and structure of
water in polymers

*Number in parenthesis indicates area in Statement of Work (p. 1).

c 1 ~ ~ . w-.--:-.;~&&&.....................
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Dr. Richard Schapery/Aerospace and (5) theoretical models/formula-
Civil Engineering tion and analysis

Dr. Jack Weituan/Civil Engineering (2) temperature and moisture
effects/residual stresses

9.2 Additional Professional Staff

Mechanics and Materials Center

Ms. Jennifer Casler - Systems Analyst

Mr. Carl Fredericksen - Electronics Technician

Mr. Bob Harbert - Assistant Research Engineer

Mr. Richard Tonda - Laboratory Manager

9.3 Spoken Papers and Lectures, Publications r and Other Composites-

Related Professional Activities of the Faculty

D.H. Allen

Lectures and Conference Presentations:

"Characterization of the Material Behavior of Inelastic Metals at
Elevated Temperature," Texas Institute for Computational Mechanics,
University of Texas at Austin, November 1982.

"Experimental and Analytical Correlation of Several Rate Dependent
Thermo-mechanical Constitutive Equations at Elevated Temperature,"
Society of Engineering Science 19th Annual Meeting, Rolla,
Missouri, October 1982.

"Experimental and Analytical Correlation of Current Constitutive
Models for Metals at Elevated Temperature," Symposium on Advances
and Trends in Structural and Solid Mechanics, Washington, D.C.,
October 1982.

W.L. Bradley

Conference Presentations:

"Delamination and Transverse Fracture in Graphite/Epoxy Composite
Materials," with R.N. Cohen, Gordon Research Conference on
Composite Materials, Ventura, CA, January 1982.

"Mixed Mode Delamination Fracture in Graphite/Epoxy Composite
Materials," Society of Engineering Science 19th Annual Meeting,
Rolla, Missouri, October 1982.



31

Publications

"In-Situ Fractographic Study of Graphite/Epoxy Composite
Materials," with R.N. Cohen, Proc. 6th Conference on Fibrous
Composites in Structural Design, New Orleans, January 1983.

"Delamination and Transverse Fracture in Graphite/Epoxy Composite
Materials," with R.N. Cohen, Proc. Fourth Int. Conf. on Mechanical
.Behavior of Materials, Sweden, August 1983.

"A New Method for Mixed Mode Delamination Fracture Studies," with
P. Vanderkley, Experimental Mechanics, (in preparation).

"Transverse Fracture in Graphite/Epoxy Composite Materials," with
D. Williams, J. of Engineering Materials and Technology, (in
preparation).

"Delamination and Transverse Fracture in Several Graphite/Epoxy
Composite Systems," with R.N. Cohen, J. of Composite Materials, (in
preparation).

"Micromechanisms of Fracture in Graphite/Epoxy Systems Based on In-
Situ Fracture Studies," with R. Cohen (in preparation).

Consulting:

Ashland Chemical, Columbus, Ohio, on mixed mode delamination
fracture behavior.

W.E. Haisler

Conference Presentations:

"An Uncoupled Viscoplastic Constitutive Model for Metals at
Elevated Temperature," with J. Cronenworth, presented at the
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials
Conference, Paper No. 83-1016-CP, Lake Tahoe, May 1983.

"Experimental and Analytical Correlation of Current Constitutive
Models for Metals at Elevated Temperature," with D.H. Allen and
W.L. Bradley, presented at the Symposium on Advances and Trends in
Structural and Solid Mechanics, Arlington, Virginia, October 1982.

"Experimental and Analytical Correlation of Several Rate Dependent
Thermomechanical Constitutive Equations at Elevated Temperature,"
with D.H. Allen and W.L. Bradley, Society of Engineering Science
19th Annual Meeting, University of Missouri, Rolla, October 1982.

"Application of an Uncoupled Elastic-Plastic Creep Constitutive
Model to Metals at High Temperature," with J. Cronenworth,
Symposium on Nonliner Constitutive Relations for High Temperature
Applications, University of Akron, May 1982.

[,- ., - .... -. .. .. ... .**..-.-. . . .. .- . . . .... . ...-.. . ... ... . .
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Consulting:

Finite element analysis of cord-rubber composite used in high
pressure hoses. Investigation of the forming process for metal
couplings on composite rubber hoses and prediction of optimum cord
layup and coupling geometry. Work is for Dayco Corporation under
Mr. Larry Oliver.

Development of material model and computer program for predicting
response of nonlinear, orthotropic composite behavior used in
rocket motor cases and nozzles. Classified work for the Navy.

J.S.Ham

Conference Presentations:

"Effects of Chain Stiffness in a Polysulfone," American Chemical
Society Annual Meeting, Kansas City, September 1982; also poster
session at American Physical Society Annual Meeting, Dallas, March
1982.

Papers in Progress:

"Stiffness in a Polysulfone Chain". (To be submitted to J.
Polymer Science).

"Stiffness in a Polyphenoxyquinoxaline Chain". (To be
submitted to Applied Physics Communicatiors).

"Attainment of Glassy Transition Temperature Above the Actual
Curing Temperature". (To be submitted to J. Polymer Science).

C.A.J. Hoeve

Publication:

"Heat Capacity of Water Absorbed in Methylcellulose," with D.A.
Kinard, submitted to J. Polymer Science.

R.A. Schapery

Lectures and Conference Presentations:

"Time-Dependent Deformation and Failure Behavior of Composite
Materials," 1982 Midwest Mechanics Lecture Series at Eight
Universities: Michigan, Michigan State, Wisconsin, Minnesota, Notre
Dame, Illinois Institute of Tech., Illinois, Purdue.

"Models for Damage Growth and Fracture in Nonlinear Viscoelastic
Particulate Composites," Ninth U.S. National Congress of Applied
Mechanics, Cornell University, June 1982.

"Characterization of Damage Growth and Fracture in Filled
Elastomers," IUPAC International Symposium on Macromolecules,
University of Mass., July 1982.
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"Research on Composite Materials for Structural Design," Eight
Annual Mechanics of Composites Review, Dayton, Ohio, October 1982.

"Micro-Damage Analysis for Composite Materials," University of

9Texas, Austin, December 1982.
Publications:

"Models for Damage Growth and Fracture in Nonlinear Viscoelastic
Particulate Composites," Proc. Ninth U.S. National Congress of
Applied Mechanics, 1982.

"Continuum Aspects of Crack Growth in Time Dependent Materials," to
be published in Encyclopedia of Materials Science and Engineering,
Pergamon Press.

"Correspondence Principles and a Generalized J Integral for Large
Deformation and Fracture Analysis of Viscoelastic Media," submitted
to Int. J. Fracture Mechanics.

Consulting:

United Technology Corp., Vought Corp., and Ashland Chemical Co. on
deformation and fracture of composites. Air Force Materials Lab.
(W.B. Jones) on fracture of resins.

Y. Weitsman

Lectures and Conference Presentations:

"On the Thermoviscoelastic Characterization of Adhesives and
Composites," 4th International Conference on Composite Materials,
Tokyo, October 1982.

"Optimal Cooling of Cross-Ply Composite Laminates and Adhesive
Joints," Winter Annual Meeting of ASME, Phoenix, November 1982.

"The Modeling of Crazes in Polymers," Technion, Haifa, Israel,
Deceaber 1982.

Publications:

"Optimal Cooling of Cross-Ply Composite Laminates and Adhesive
Joints," with B.D. Harper, J. of Applied Mechanics ASME, Vol. 49,I: pp. 735-739, December 1982.

"On the Thermoviscoelastic Characterization of Adhesives and
Composites," Proc. ICCM-IV, Tokyo, 1982.

"Assessment of Chemical Cure-Shrinkage Stresses in Two Technical
Resins," with B.D. Harper and D. Peretz, Proc. 24th SDM Conference,
Lake Tahoe, May 1983.

" - '" :: .-- "" .-I'> . . ,": '':': : " . ? . - . : . . . . .• . . . :. .
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Consulting:

Israel Aircraft Industry, December 1982.

Technical Committee Membership:

ASME Cumittee on Composite Materials

AIAA Sub-committee on Composite Materials

In addition to the above activities some of the faculty attended

other conferences, chaired technical sessions, and published papers and

served as consultants in areas not related to composites.



35

10. REFERENCES

1. Arenburg, R.T., "Analysis of the Effect of Matrix Degradation on
Fatigue Behavior of a Graphite/Epoxy Laminate," M.S. Thesis,
Texas A&M University, May 1982.

2. Stinchcomb, W.W., Reifsnider, K.L., Yeung, P., and Masters, J.,
"Effect of Ply Constraint on Fatigue Damage Development in
Composite Material Laminates," in Fatigue of Fibrous Composites,
ASTM STP 723, pp. 65-84, 1981.

3. Reifsnider, K.L. and Jamison, R., "Fracture of Fatigue-Loaded
Composite Laminates," Int. J. Fatigue, pp. 187-197, 1982.

* 4. Coleman, B.D. and Gurtin, M.E., "Thermodynamics with Internal
State Variables," J. Chem. Phys., Vol. 47, No. 2, pp. 597-613,
1967.

5. Hoeve, C.A.J., "Structure of Water in Polymers", ACS Symposium
Series, Vol. 127, pp. 135-146, 1980.

1.

I

f . "o * *," .'* . . ~ o. . . . . . . . .- -



r 36

APPENDIX

Recent Publications

of Work on AFOSR Project

"Delamination and Transverse Fracture in Graphite/Epoxy
Materials," by W.L. Bradley and R.N. Cohen.

2. "In-Situ Fractographic Study of Graphite/Epoxy Composite
Materials," by W.L. Bradley and R.N. Cohen.

3. "Effects of Chain Stiffness in a Polysulfone," by J.S. Ham.

4. "Heat Capacity of Water Absorbed in Methylcellulose," by D.A.
Kinard and C.A.J. Hoeve.

5. "Continuum Aspects of Crack Growth in Time Dependent Materials,"
by R.A. Schapery.

6. "Correspondence Principles and a Generalized J Integral for Large
Deformation and Fracture Analysis of Viscoelastic Media," by RLA
Schapery.

7. "Assessment of Chemical Cure-Shrinkage Stresses in Two Technical
Resins," by B.D. Harper, D. Peretz, and Y. Weitsman.

8. "On the Thermoviscoelastic Characterization of Adhesives and
CoMposites," by Y. Weitmamn.

9. "Optimal Cooling of Cross-Ply Composite Laminates and Adhesive

Joints," by Y. Weitmuan and B.D. Harper.
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Delamination and Transverse Fracture

In Graphite/Epoxy Materials

W.L. Bradley* and R.N. Cohen*

*Mechanical Engineering, Texas A&M University j
**General Dynamics Corporation, San Diego, USA

ABSTRACT

Four graphite/epoxy composite materials systems have been studied

to determine the transverse and delamination fracture behavior.

Measured energy release rates have been correlated with

micromechanisms of fracture determined using in-situ fracture

observations in a SEM in combination with post-mortem fractographic

examinations.

-'4 KEYWORDS

Delamination fracture; transverse fracture; graphite/epoxy;

fractography; in-situ fracture.

INTRODUCTION

Graphite/epoxy composite material systems have exciting potential

in weight critical applications because of their exceptional strength

to weight ratio when loaded in a direction parallel to the fibers.

However, in many practical applications of fiber reinforced plastics,

significant loads may arise in the component in directions not

reinforced by fibers, leading to component failure at relatively low

loads. Out-of-plane stresses resulting from local buckling or

geometric irregularities can lead to delamination. Loading

Prepared for the 4th International Conference on Mech. Behavior of

Materials, Stockholm, Sweden, August 1983.

. .. . + . - . + . . -
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.- perpendicular to the fiber direction in a to the fiber direction in a

lamina or a unidirectional laminate can also produce matrix cracking

parallel to fibers, and therefore as with delamination, result in

failure at relatively low stress levels by transverse cracking.

The initial development of graphite/epoxy systems emphasized

composite stiffness and high glass transition temperature, Tg, to

allow higher service temperatures. The resins which optimize these

properties, however, are generally quite brittle, making the composite

very vulnerable to transverse and/or delamination cracking. More

recent development work has sought to replace these brittle resins

with somewhat tougher ones that still have a reasonably high stiffness

and glass transition temperature. In this research program, we have

studied the delamination and transverse fracture behavior of four

graphite/epoxy systems. Our approach has been to characterize the

macroscopic fracture behavior using a fracture mechanics approach, and

then, relate this behavior to micromechanisms of fracture determined

using in-situ fracture in a scanning electron microscope and

correlated with the post-mortem fractography of the fracture mechanics

test coupons.

,. TRANSVERSE AND DELAMINATION FRACTURE

This study of the fracture behavior of graphite/epoxy composite

materials emphasized the macroscopic measurement of energy release

rate which was correlated with the microscopic observation of various

energy dissipative process.

Macroscopic Fracture Toughness Measurements Using Fracture
Mechanics Approach

Four different graphite/epoxy systems were chosen for this study:

Hercules ASl/3502 and AS4/3502 and Hexcel T6TI45/FI85 and T6CI90/FI55.



The comparison of the behavior of the two Hercules systems allowed us

to determine how much effect the fiber toughness and interfacial

strength have on transverse and delamination fracture toughness since

the AS4 fiber is significantly tougher than the ASI fiber (higher

strength and strain to failure) but less adherent to resin because of

its smooth finish. The Hexcel F185 and F155 are rubber toughened

epoxies with neat specimen critical energy release rates of 6000 J/m
2

and 730 J/m2 (Moulton, 1982), respectively, compared to the Hercules

3502 whose G is 70 J/m2 (Williams, 1981).

Transverse cracking was studied using compact tension specimens

with W = 5cm. and B = 0.5cm. These were tested in a 20Kip MTS machine

equipped with a 100 lb. load cell. LVDT's were attached to the ends

of specimens and were used to measure crack opening displcement. They

q were also used to control the closed loop system, allowing testing to

be done under crack tip opening displacement control rather than

simply actuator diaplacement control. This arrangement permitted very

stable crack growth completely across the width of the specimen.

Crack size was measured directly using resistance gages (Krak gages)

and unloading compliances were measured at intervals of crack growth

of about 0.1 cm. Energy release rates were determined in the usual

way using measured changes in compliance with crack size (dC/da) and

the loads required at each crack length to continue crack extension.

Corrections were made in the analysis to account for the fact that

displacement was measured at the edge of the specimen rather than

along the load line.

* Delamination cracking was studied using a split laminate (double -

cantilevered beam) arrangement. Crack growth was stable throughout



the test. Mode I fracture was produced using symmetric loading while

a mixed mode I/mode II fracture was produced using asymmetric loading

of the split ends of the laminate while supporting the uncracked end

of the specimen. The ratio of GII/(GI + GII) varied from 0.0 to 0.40

in this study. Cracking in these tests was continuous (no

interruption for unloading compliance measurements) with the energy

release rate calculated using an analysis previously developed by

Q. Devitt, Schapery, and Bradley (1980). This analysis involved the

measurement of load, displacement and beam stiffness El, allowing the

calculation of the crack length and energy release rate using linear

beam theory.

The results of the mode I delamination and transverse fracture

testing are summarized in Table I. In the very brittle 3502 resin,

the introduction of fibers is seen to increase the energy absorbed in

transverse and delamination fracture while in the more ductile F155

and F185, the introduction of fibers decreased the transverse and

delamination fracture toughness. These results may be interpreted to

imply that introduction of strong brittle fibers into a weaker,

brittle resin enhances the energy absorbed in fracture. This

enhancement is a result of the fact that the resin rich region between

plies is very thin and minor fiber misalignment or waviness will

result in some interaction of the crack tip with the fibers. The

details of this interaction will be discussed further in the

fractography section. The introduction of fibers into a more ductile

resin decreases the energy absorbed in fracture by decreasing the

volume of material ahead of the crack tip capable of significant

deformation and constraining the deformation of the available resin.

The result is a net decrease in energy absorbed in fracture, the
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increase in energy dissipation via crack tip/fiber interaction being

less than the decrease in energy dissipation resulting from the

reduced resin deformation.

TABLE 1 Transverse and Delamination Fracture Toughness

Type of Ave.a 2
Material Fracture (m/s) Gc (J/m

Neat 3502 Resin 69 [10]

AS1/3502 Delamination 155
AS1/3502 Transverse 225
AS4/3502 Delamination 2.8xi0-5 225
AS4/3502 Transverse 1.74xi0 5  120

Neat F155 Resin 730

T6C190/FI55 Delamination 3.5x0-55 600
T6C190/F155 Transverse 3.85xi0 410

Neat F185 Resin 6040

T6TI45/FI85 Delamination 4.5x10-_ 2600
T6TI45/F185 Transverse 1.39xi0 1525

It is further worth noting that the transverse fracture toughness

is less than the delamination fracture toughness in the tougher resin

systems. If these systems derive their toughness principally from

resin deformation, then one would expect delamination fracture to be

more difficult than transverse fracture. This is because the crack

tip extension in delamination occurs through a thicker resin rich

region in delamination than in transverse cracking. The ASl/3502

system shows increasing resistance to crack propagation comparing

delamination to transverse cracking, as one might expect in a system

where crack tip interaction with the fibers enhances resistance to

crack propagation. That this trend is not noted in the AS4/3502 may

be a result of the weaker interfacial bonding in AS4 than in AS1 due
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to the much smoother fiber surface finish.

The energy release rate versus degree of mode II loading is

summarized in Fig. 1. The toughest resin (F185) shows a monotonically

decreasing Gc with increasing degree of mode II loading, while the

3502 systems showed an increased energy absorbed with increasing mode

II shear. The change for T6C190/F155 at various ratios of mode II

shear was not very significant.

Fractographic results to be presented presently seem to suggest

that mode II shear simply rotates the mcroscopic plane of fracture

which continually redirects the crack tip into the fibers. Thus, the

mixed mode loading results in a series of mini mode I cracks joined by

tear ridges, giving a scalloped appearance to the fracture surface.

As previously explained, interaction of the crack tip with the fibers

enhances the energy absorbed in fracture in a system in which the

resin is brittle. Thus, the increasing mode II loading would be

expected to give an increasing total energy release rate for the 3502,

and it does. The very tough F185, which derives its toughness from

matrix deformation decreases, in toughness with increasing crack tip

interaction with the fibers, since this probably reduces the matrix

deformation locally.

A history effect has also been observed, particulary in the

systems with the brittle 3502 resin. When a high fraction of mode II

shear is followed by pure mode I loading, the observed energy release

is greater than it would be for a history of only mode I, as seen in

Fig. 2. This appears to be associated with fiber and bundle pullout

or even occasional local ply jumping which gives a significant

roughening of the slip plane which is not reversible when pure mode I

.......................... I
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loading is resumed subsequently. This rougher fracture plane

increases the actual surface area being created in fracture (as

distinct from the nominal projected area). The bundle pullout can

also lead to tie zone formation which does dissipate additional

energy.

Micrcmechanisms of Fracture Using In-situ Fracture in SEM

In-situ delamination fracture results are seen in Fig. 3 for the

tough F185 and the brittle 3502. Deformation and microcracking in the

F185 resin is seen to occur over 4-5 fiber diameters on either side of

the primary crack, while in the 3502 the deformation and resultant

energy dissipation is limited to the resin rich region between fibers

bounding the primary crack.

Fractographic results on the F185 and 3502 are seen in Fig. 4 for

13 mode I delamination fracture. Gross matrix deformation around the

rubber particles in the local resin rich regions is seen in the F185

system. The fractured surface of the 3502 is seen to be brittle and

fairly featureless with the only interesting artifact being the

scalloping in the resin rich regions which results from crack tip

interaction with the fibers. This interaction occasionally results in

fiber breakage, beginning with decohesion at the fiber/matrix

interface as shown in Fig. 5A. More typically it results in

;a initiation of a series of microcracks in the matix just ahead of the

crack tip as seen in Fig. 3. Small tear ridges then join the new

microcracks to the primary crack producing a series of scallops. This

repeated scalloping pattern is clearly seen in Fig. 4.

I
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Fig. 3. In-situ fracture of T6T145/F185 (top, 500X) and
AS413502 (bottom, 1300X).
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Fig. 5A and 58. In-situ fracture showing decohesion at interface leading
to fiber breakage in T6T145/F185 (top, 500X); T6C190/F155
showing heterogeneity of resin ahead of crack tip (bottom,
600X).
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The distribution of rubber particles as well as the cross-link

density in the F155 resin is apparently somewhat heterogeneous as

suggested by the in-situ fractography shown in Fig. 5B. The resin

ahead of the primary crack tip is brittle in some aras but quite soft

and ductile in others.

SUMMARY

The transverse and delamination fracture have been observed to

depend on the matrix ductility, and in more brittle systems, to the

incidence of crack tip interaction with the fiber. In such systems,

mixed mode loading increases the total energy dissipated in fracture.

History effects have been noted. In-situ fracture clearly shows the

large volume of matrix which may deform during delamination fracture,

including material 3-4 fiber diameters removed from the primary

fracture plane.
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ABSTRACT

Fractography may be used to better understand the micromechanisms of

fracture in composite materials as a guide to improving the fracture strength
and toughness. However, the fracture behavior of composite materials is
quite complicated and post-mortem interpretation of the artifacts on the
fracture surface is not straightforward. In-situ fracture of composite mate-
rials specimens in the SEM has been used to observe directly the fracture
processes and the formation of the various artifacts ususally observed in
post-mortem fractography. These results have clarified the significance of
many of the features commonly observed on the fracture surface of composite
materials.

INTRODUCTION

The utilization of graphite/epoxy composite materials for structural
components requires a better understanding of the fracture behavior of these
complex materials system. Various approaches to the characterization of the
fracture toughness of such systems have been developed in recent years. Using
fracture mechanics analysis in conjunction with mechanical testing of split
laminates (or double cantilevered beams) and compact tension specimens, the
fracture behavior has been characterized using the critical energy release
rate GIc or critical stress intensity Kic. Fractographic examination of the
fracture surface after test coupon failure has been used to identify the
various dissipative mechanisms responsible for the observed critical energy
release rate. Because the failure process in composite materials is quite
complicated, this post-mortem fractogaphic examination often reveals surface
aritfacts that are difficult to interpret.

Our objective in this research program has been to fracture graphite/epoxy
composite material specimens in a pure mode I delamination mode in the scanning
electron microscope, allowing direct observation of the fracture process as
viewed from the edge of the specimen. Subsequent examinations of the frac-
tured surface and interpretation of the artifacts observed thereon has been

guided by the prior direct observation of the fracture process.

Prepared for the 6th Annual Structural Composites Meeting in New Orleans,
January, 1983.
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i:i EXPERIMENTAL PROCEDURE

Four graphite/epoxy composite materials were selected for this study:
Hercules AS1/3502 and AS4/3502, and Hexcel T6T145/F185 and T6C190/F155. The
ASI and AS4 fibers differ principally in smoothness with the AS4 being much
smoother than the AS. This smoother surface gives a higher strain to frac-
ture as well as a higher strength. The Hexcel resins F155 and F185 are
rubber particle toughened epoxy systems differing principally in the volume
fracture of second phase present. The neat F185 resin has approximately 62
rubber particles and a C - 6000 J/m 2 . The F155 with only 1% rubber parti-
cles has a Glc of 750 j/m2. These systems were selected because they
gtve a wide variety of resin toughness, fiber toughness and interfacial bond
strength.

Specimens were fractured in-situ in a JEOL JSM-35 scanning electron
microscope using a special tensile stage (JEOL 35-TS2). These specimens
were cut to size (3.0 cm by 1.3 cm) from a 30 cm by 30 cm panels that were
8 or 10 plies thick. The delamination forces are applied by a wedge intro-
duced between the center plies. For the F185 and F155 epoxy systems, the
initial centerline crack into which the wedge was introduced was created
during fabrication of the panels by placement of a small teflon strip on
one edge between the center plies. A significant portion of the cracking
occurs with the wedge traversing newly fractured surface beyond the teflon.
Thus some frictional forces are present in addition to the pure mode I open-
ing forces.

UThe initial crack in the 3502 systems was introduced along one edge
using a razor blade, nominally along the centerline. The SEM photographs of
the crack path do not indicate a resin rich region, which implies that the
delamination of these specimens may not have occurred between the plies at
the centerline but rather in one of them.

The crack growth parallel to the fiber direction was viewed along the
edge of the specimen. Each specimen was ground on the edge to be observed
using emery paper, polished using diamond paste and then coated with a
100-200A thick gold/palladium alloy by vapor deposition using a Technics
Sumer. Several specimens were viewed without the coating to verify that
the artifacts being observed were generally associated with the fracture
of the specimen rather than the fracture of the coating. The microcracks
observed appear to develop in the coating prior to actual microcracking of
the specimen. However, the larger microcracks were found to be the results
of cracking in specimen and coating. The uncoated specimens. could be ob-

served n the SD( though charging significantly reduced the quality of the
photographs that could be taken. Thus, most of the photographs were taken
for specimens coated with the gold/palladium alloy.

EERIMENTAL RESULTS AND DISCUSSION

T6T145/7185 SYSTEM

In-sltu fracture of T6T145/F185 specimens coated with gold/palladium

ii
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and another uncoated specimen of the same material are seen in Figure 1.
The general features are seen to be quite similar. The microcracking in the
coated specimen is much more distinct than that observed in the uncoated
specimen. Because the coating is only 100-200A thick, a small amount of
strain may result in fracture of the coating. Since the F185 resin is quite
ductile, the coating fracture probably preceded fracture of the resin. Thus,
the fine microcracks in the coated material may represent regions of resin
deformation greater than some threshold strain required to fracture the coat-
ing. Therefore, the extensive microcracking observed in the coated F185
speicmens should be interpreted at this time as defining the volume of mate-

"'rial around the crack tip that has been deformed to a strain greater than
some critical value for coating rupture. Some of the microcracks do repre-
sent actual microcracking in the resin as well as the coating but further
study will be required to determine which these are. The coating effectively
enhances our ability to see the microcracks, but may exaggerate somewhat
their size and total number.

Figure 2 shows fiber breakage in progress, again in an uncoated and
coated specimen. The bright appearance of the uncoated fiber is a result of
charging. Though the graphite fiber is quite conductive, the coating, or
skin, is not. The fibers at the surface had their skin removed during the
polishing of the edge to be observed prior to fracture in the microscope.

.; "This fiber was beneath the surface; thus, its skin was wholely intact. The
coated specimen shows breakage of a small bundle of fibers in progress. Both
the uncoated and the coated specimens show significant microcracking, though
the microcracking is much more distinct in the coated specimen. Since the1coating rupture precedes resin rupture, coating rupture will have a more
significant crack open displacement by the time resin rupture occurs.
Furthermore, the imaging characteristics of the gold/palladium are much
better than the resin or graphite fibers. Thus, the microcracking is much
easier to see in the coated specimens, though the coating will tend to exag-
gerate the extent of the effect, as previously noted.

Figure 3 shows a sequal to the fiber bundle pullout prior to bundle
breakage shown in the coated specimen in Figure 2. The fibers are seen to
have debonded from the matrix (left), and final fracture (right) indicates the
bundle had five fibers. Fiber breakage in this investigation was always pre-
ceeded by debonding causing the fiber to be stretched across the crack opening
until rupture occurred. Where the matrix is fairly compliant, the fiber
breakage occurs only after the crack tip has progressed a considerable dis-
tance ahead of the fiber spanning the fractured surfaces. This phenomena of
fiber debonding leading to many fibers or bundles. of fibers spanning the
fracture surfaces gives rise to tie zones, which may significantly increase
the 'energy dissipated in fracture. It is clear that tie zone formation is

.- facilitated by a compliant resin and interfacial bonding that is not too
strong.

Figure 4 shows the deformation/damage zone extends 4-5 fiber diameters
from the primary fracture plane. The apparent heterogeneity in fiber spacing
in these pictures is a result in part of the fact that the plane of observa-
tion at the surface after polishing is a random plane in the composite,
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Figure 1. T6T145/F185 specimens photographed during in-situ fracture in tile
scanning electron microscope at 1500X, uncoated (left) and caited
with gold/palladium alloy (right).

Figure 2. T6T145/F185 specimens photographied during in-situ fracture- in tle
scanning e lectron microscope. Left, uncoated at 65X i', t
coated at SOOX.



'.Figure 3. T6T145/F18S specimen (coated) fractured in-situ in SF~ showing
clearly that fiber debond preceded fiber pullout (It,1300X)

* and that the pullout in this case involved at least fi've fibers,

Figure 4. T6T145/F185 specimen (coated) fractured in-situ in SEM (left, SOC'(;
right, 2000X) showing deformation/damage zone that extends four tc,*five fiber diameters from the plane of tfie priin:1ry crack.



cutting some fibers alon,, their axes and others parallel to their axes, but
near the edge of the fiber. The former case is seen as fibers whose observed
width corresponds to the actual fiber diameter and whose spacing is quite
close when several adjacent fibers are sectioned approximately through their
axes. Equally closely spaced fibers sectioned near their edges parallel to

.3 their axes will appear to be thin and more widely spaced. Thus, along the
crack front a mixture of more tightly packed and loosely packed fibers are
encountered, even in the absence of manufacturing heterogeneities such as

7 those seen in Figure 5.

Figure 5 shows a unidirectional (00) split laminate after fracture that
Nhas been sectioned perpendicular to the fiber direction, mounted in bakelite

ground with emery cloth, and polished with diamond paste on a lapping wheel.

The various ply interfaces are seen to be wavy rather than flat as is the
fracture surface (top) which resulted when delamination between the two center
plies occurred. Additional manufacturing irregularities are also noted, par-
ticularly a few resin rich regions.

Figure 6 is the fractured surface of a split laminate of T6TI45/F185
that was fractured in a materials tes ing system under pure mode I delamina-
tion loading. The duplex appearance of the microstructure is apparently the
result of the crack path traversing resin rich regions, as seen in Figure 1,
and resin lean regions, as seen in Figure 4. The relative roughness of the
two areas of the fractured surface seen in Figure 6 at 700X are quite consis-
tent with the roughness of the primary crack surfaces pictured in Figures 1
and 4 if one properly allows for differences in magnification. The inter-
facial strength relative to the resin strength appears to be quite good in
this system as evidenced by the fact that even in resin lean regions, contin-
uous cracking along the interface is not observed. The fractured surfaces
for these regions is still roughen on a scale commensurate with the thickness
of the resin layer between fibers. Fiber breakage which results from debond
at weak interfaces is also a relatively unusual artifact on the fractured
surfaces of specimens of T6T145/F185. A low interfacial strength relative
to resin strength will be seen in the AS4/3502 system to give a much smoother
fractured surface than is seen in the T6T145/FI85.

The fracture of an even thicker resin rich region is seen in Figure 7.
In this region the effect of the rubber particles introduced to enhanceA ' toughness is more evident. The voids on the fracture surface are enlarge-
ments of spaces previously occupied by the rubber particles. The resin
deformation adjacent to these particles is significantly greater than in
other regions. The appearance of the fracture surface in this area is remi-
niscent of ductile fracture in metals which occurs by void formation at
second phase particles followed by void growth and coalescence.

Considerable microcracking ahead of the crack tip was often observed in
regions where the resin thickness was sufficiently great. This mtcrocracking

2is similar to that observed adjacent to the primary crack in Figures 1-4.
The resultant fracture surface formed as these microcracks coalesce,
advancing the macrocrackis seen in Figure 8. We had previously thought that
the hackles, or scallops developed one by one as the crack tip locally
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Figure 5. T6T145/F185 microstructure as revealed by sectioning perpendicular
to the fiber direction and preparing metallographically for examni-
nation one arm of a split laminate after delamination fracture.
Fractured surface at 45X is seen as top edge.

Figure 6. T6Tl45/F185 photographed in SF-1 after fracture in MTS using pure
mode I delamination loading. Note duplex appearance of micro-
structure on fractured surface. (left, 4SX; right, 70OX)
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repeatedly contacted a misaligned fiber or was directed into it by some mode -
II loading. The in-situ SF-M suggests in this very tough system, a series of
hackles is the result of the coalescing of a series of microcracks which may
form some distance ahead of the macroscopic crack tip.

T6C190/F155 SPECIMENS

In-situ delamination fracture of a T6C190/F155 specimen-is seen in Fig-
ures 8 and 9. In Figure 8, the crack is propagating from left to right with
a rather extensive damage zone seen ahead of the macroscopic crack tip. Rub-
ber particles and gross deformation are evident in the damage zone (lower
right) ahead of the macroscopic crack tip (upper left) of Figure 9A. Fiber
debonding and a more brittle microcracking is noted in Figure 9B, which is
an enlargement of Figure 8A. The rubber particles introduced to enhance
toughness may not be uniformly distributed, as suggested by the great vari-
ety of damage preceding the crack tip.

Figure 10 shows additional in-situ delamination in the same T6CI90/FI55
specimen seen in Figure 9. The resin again appears to have soft, ductile
regions in which cracking occurs ahead of the crack tip more easily. Macro-
scopic crack extension results when these areas of significant damage ahead
of the crack tip coalesce with the crack tip. The ductile damage zone ahead
of the crack tip on the right side of Figure 10A has become the macroscopic
crack tip in Figure 10B (center). Ahead of this new crack tip note the more
brittle cracking and debonding as the next segment of crack advance is
developing. The light regions of Figures 9 and 10 are the result of speci-
men charging after coating rupture has occurred.

.'a'

The appearance of the fracture surface is quite varied, showing regions
of fiber debond and brittle fracture and regions of much more ductile frac-
ture, which were always associated with the presence of rubber particles, as
seen in Figures 11 and 12. The shapes of the voids previously occupied by
rubber particles as well as the observation of a few rubber particles on the
fracture surface indicates that the particles are ususally oblong and rela-
tively thin. The regions of high rubber particle density apparently deform
more easily and to a much greater degree than those regions of the resin
where the rubber particle density is much lower. The very ductile and brittle
damage ahead of the crack tip in Figures 9 and 10 surely correlate with these
areas on the fracture surface. j

In regions where the fracture is more brittle and the fraction of
mode II shear loading is increased, a much greater incidence of hackles, or
scallops are noted on the fracture surface, as seen at high magnification
in Figure 1lD. These may be the result of repeated interactions of crack

tip in a region containing some modest amount of resin, but no local rubber a."

particle toughening.

1,



Figure 7. T6T145/F185 specimen photographed in SD1 after being fractured in
MTS using pure mode I delarnination loading. A re~sin rich region
shows sivnificant resin deformnation. Voids are eirrensof
sites previously occupied by rubber particl- -7 introduced to en-
hance toughness. (left, 700X; right, 300OX)

Ah.

Figure 8. T6Tl45/F185 specii~n photographed in th.2 S7'!M af tIr being- fr~~tr
In the M"CDS using purc modie r doiamnion lu -din .Snl<:_,c

* ~hackle marks are the re ,ult of conicscciicco of --Acir~cr±ck3 : i
to those seen in Fi1gures 1-4 od.cni cc) the r~i' ; ~
tils case alhcd olf tho r1croso2pDi'c crack tip. (1,It
2O'X)



Figure 9. In-situ delamination fracture of T6C190/F155 showing- both very
ductile and relatively brittle matrix cracking, fiber debonding
and a few rubber particles. (left, Figure 9A, 600X; right,
i ure 9B, 2200X)

Figure 10. In-situ delamination fracture of T6C190/F155 showing crack exten-
sion following damage zone development ahead of crack tip. (]e-ft,
Figure 10A, 650X; right, Figure 10B, 650X)



Figure IIA Figure 11B

Figure 11C FigurelI

Figure 11. Fracture surface of delamination specimen of T6CI90/FI55 showing
. fractured regions of quite ductile fracture and regions of brittle
... fracture due to fiber debonding or local absence of rubber parti-

cles responsible for roughening resin. Specimens A-C .vere frac-
tured with pure mode I loading, w'hereas D was f ractured with

°GII/(CI+ GII) 0.37. (A,45X; B, 450X; C, 700X; D, 30UOX)

S• qo o °°," p °- ° ," -, -, - .• • .° , - -Z.
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Figure 12. Fracture sraeof delaminated specimen of T6Cl90/FISS showing
ducilefratur reionconainngoriginally a high density of

* rubber particles. (left, 700X; right, 3000X)
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AS4/3502 SPECDIfENS

The crack tip region of the AS4/3502 specimens was quite different from
that observed in the Fi85 and F155 composite systems. There was no indication
of deformation at the crack tip, no damage zone of any kind preceding the
crack tip. In fact, the exact location of the crack tip was difficult to
define it was so sharp, as shown in Figure 13. Occasional fiber breakage
was noted and always associated with fiber debond. The debonds observed in
this AS4/3502 showed no indication of resin adhesion, suggesting a very weak
interface. In fact loose fibers were often found on the fracture surface,
as shown in Figure 14. Previous work at this laboratory on AS1/3502 indi-
cated a much stronger interface, with cracking usually occurring adjacent to
the interface, no loose fibers on the fractured surfaces and rather infrequent
fiber breakage associated with debonding. This may be due to a difference
in surface roughness of the ASI and AS4 graphite fibers, the AS4 being much
smoother. The skin is essentially the same in both fibers but the AS. fiber
is rougher, which implies that the interfacial adhesion in the AS1/3502 has
a significant mechanical component in addition to the chemical component.

AS4/3502 specimens fractured in mode I loading and mixed mode I/mode II
[GII/(GI+GII) - 0.3.9 and then examined in the SEM are shown in Figures 15
and 16. The fracture surface shows considerable debonding with the resin
fracture between adjacent fiber debonds showing hackle marks. The origin of
these hackle, or scallop marks is still uncertain since they were not observed
in the in-situ fracture. This is probably because our in-situ fracture for
this system did not occur in the resin rich region between plies. The forma-
tion of these artifacts may be unique to fracture in the resin rich region.

*Comparison of the results for pure mode I fracture (Figure 15) with the
results for mixed mode I/mode I (Figure 16) clearly indicates that the hackles
frequency increases with increasing mode II shear. One possible explanation
for hackles in this brittle system Is that they represent a brittle crack
extension that is interrupted by a misaligned fiber or by the crack movement
toward the fiber on a principal normal plane no longer parallel to the fiber
due to the mode II shear. The strength of the fiber forces renucleate the
crack in an adjacent, highly stressed region of the matrix and coalescence
of this new crack with the original one through formation of a tear ridge pro-
ducing a scallop. Repeated interaction of the crack tip with the fiber
produces many such scallops. The increasing frequency with increasing mode
II shear is- consistent with this hypothesis.

4SUNI'ARY
Many practical implications of these observations could be drawn. How-

ever, we will limit our summary to noting that in-situ fracture studies do
indeed give significant insight into the micromechanisms of fracture in
composite materials and the many varied artifacts that result from these frac-
ture processes. A better interpretation of these fracture processes will guide
further development of new composite materials with even better properties.



Figure 14. Fracture surface of AS4/3502 after mode I delamination fracture.
Note large number of broken and loose fibers. b0OX

Figure 15. Mode I delamination of AS4/3502 specimens indicating a very brittle
fracture. Consistent with the in-situ fractography, no resin
deformation is noted and fiber debond is indicated. (left, 2000X;
right, 4500X)
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EFFECTE OF UiAri STIFFNESS IN A ?OLYSULFONE characteristic of the molecular weight range where
by entanglements are not important. Nor were measurements

Joe S. 11"n obtained that indicate a plateau region in the relaxation
Dipartment cf Physics spectrum. Vithin a plateau region the steady state shear

Texas AL." Unive'rslty, College Stati.;n, TX 77841 compliance determines a molecular weight between entangle-~ments.
;t is crediblo that short molecular hains between

cross.inks i a tightly crosslinked thers.Lsetting material lerry established that the entanglement length can be
will prtduce anly a short elongation at break. Uowever, determined from the viscosity of concentrated solutions in
whether longer chains between the crosslinks will permit samples that have a molecular weight larger than that

.4 greater elongaLion at break is not clear. In thermosets, as between tntanglements. Griessley has criticized this
IM elastomert, a greater length betw-een crosslinks will approach and he and others have proposed theoretical

"§ possibl.. Increase the elongation at break until entangle- models.
meats replace the crosslinks as load bearing. Therefore, a
study of entanglements in a polysulfone was part of an Air According to lerry, the critical concentration
Force program to develop a family of acetylene-terminated multiplied by the molecular weight should be a constant.
sulfones. The polysulfone was selected to correspond to the In other words, each part of a chain can give rise to an
molecular chain in the thermoset. entanglement so that the onset of entanglements occurs when

the product of the contour length of the chain and the
A samnie of the comercial polyether. P-1800 Onion polymer concentration is a critical value. This implies

o o, . o_ . .cM - constant.

The viscosi.ty of each fraction was measured at various
Ela nJ concentrations. A change in the form of the concentration

dependence occurred in the solutions between the
Carbide), was crudely fractionated into five fractions, concentration of 2 and 7 g/dl. To determine the

%I Dilute and concentrated solution viscosities were measured in concentration at which this change occurred, the logarithm
a series of capillary viscometers using standard methods, of the viscosity was plotted against the logarithm of the
Sigh temperature measurements in a Rheouetric Mechanical concentration and shifted along the concentration axis
Spectrometer, using parallel plate geometry and small until the curves for each molecular weight would fall upon
strains. determined the melt viscosity, the same master curve. The concentration at which the

T .
- 3  

0.55 found by Allen change in dependence occurred is listed in Table I.
The expr~saion ['i) - 1.03 x 10~ H 05 fodbyAln1/2

and coworkers for this polysulfone in dYmethy1lformamide Table I shows that cM is not a constant but cM is4 solvent determined the molecular weights from the intrinsic much closer to a constant. If the volume occupied by the
viscosity. They used light scattering to standardize this chains in a random walk conformation determine the critical
exprestion. Lenner used osmotic~meau 3 ,.nts to standardize concentration, thel/ihe total volume in the chains is
the expression In] - 1.22 x 10 H in the same proportional to cM . The low critical concentrations
solvent, 1f the difference betweefl the number and weight show that the chains entangle at a low polymer concentration.

, averape molecular weights Is considered, these expressions 6
are consistent. Allen and coworkers found M N - 1.6 for Hills described the strong forces between the sulfone
amples fractionated n a fashion similar to that used here. groups as a possible contribution to entanglements. This is
The molecular weights of the five fractions studied are separate from the entanglements of chains wrapped around
shown = Tabi.e I. In addition, an unfractionated sample of their neighbors. However, little thermodynamic interaction
.ow molecular weight is listed. The molecular weight listed seems to occur between the sulfone groups in solution.
for this sample should be considered only as indicative Allen found the exponents in thl Mark-Houwink equation
since it Is beyond the calibration range of the equation, almost 0.50 for three solvents. Only in chloroform does

the exponent 0.72) deviate appreciably from the theoretical
Measurements of the real and Imaginary parts of the 0.5. The values of the second virial coefficient estimated

complex moduls were rade for each molecular weij:ht sample from the concentration dependence of the dilute solution
over a temperature range from 280 to 380 'C. A master curve viscosity indicate little nonideality in all of the
was obtained by standard shifting techniques. Measurements solvents. In chloroform the Flory interaction parameter is
of fractions 3,4 and 5 were in a spectral region where the 0.37 compared to the value of 0.5 under 0 conditions.
Imaginary part of the complex modulus was proportional to Although these thermodynamic quantities are the result of
:he frequency and the real part was proportional to the an average over all the forces between the molecules and
square of the f-equency. This implies that the frequencies are the differences between the solvent-polymer and the
are low compared to the inverse relaxation times. Measure- polymer-polymer forces, they show nothing unusual in the

S mer.s at "ower temperatures and thus at higher reduced forces between the chains in several different solvents.
frequencies involved stresses that were too large to be One would not expect strong forces to cancel out in such
measured wizh our geometry and load cell. varied solvents. Therefore, the entanglements do not

appear to be due to strong forces between the sulfone groups
Fraction I show a clear deviation from the above within the polymer.

S frequencr behavior in botlh. the real and imaginary parts of
the complex modulus, ludicatini that our range of measure- Allen has shown conclusively that the polysulfone has
meets included some relaxation times in this fraction. a random walk conformation in dilute solution. He found
Fraction 2 shows only a slight deviation from the frequency from the measurements of the intrinsic viscosity and from

deuce of fractions 3,4 and 5. calculations aflyming reasonable bon~llengths and angles
that [<r './H] - 602 + 20) x 10 cm. The rigid

The melt viscosity Involved no corrections to low aromatic groups spread Out the chain so it is unlikely to
frequencies in fractions 3, 4 and 3 and only a small curl back upon itself, creating steric effects which limit
correction in fraction 2. The met viscosity is consistent bond aniles. Ihis produces a very low value of 2 for
with the often obervod law - * ". Only fraction I C_ - <r >/nL.
eviated from this law with a larger viscosity due either to 6

Imprecise extrapolation to low frequencies or to the Mills estimated from the steady state compliance the
presence of a high molecular weight tail. entanglement molecular weight in the melt to lie between

2500 and 5000. Other mechanical properties supported this
A : None of the fractions showed evidence of a viscosity short entanglement length. The compressive yield stress

13
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reached a platea'vlea eaiel ml oeua 5. P. G. deCennes, J1. Chem. Phys. 55, 572 (1471).
weights and the fracture toughness showed little molecular 6. N. J. Mills, Rheol. Acta 13, 185 (1974).
weight dependence with only the sample of molecular weight 7. B. H. Bersted, J. Appl. Polymer Sci. 2:.. 37 ( 1379).
about 5090 showing an absence of pla.ic deformation. 8. S. H. Aharoni. Polymer Preprints 23, 273 (1932).
terated lists M - 6300 and Aharon£ lists N = 320 which --

corresponds to H C. 8600. These values are ali high
compared to the Zoncentrated solution entanglements in this Table I

paper. Fractions i] in M c in CH 
1/2  

CM

The ability of this polysulfone to entangle so dl/gm, gn/dl, x 10'.
readily is attributed to its stiffness. A chain may have 1 0.628 116,000 2.63 8.96 3.05 11.9
a random walk conformation but if the rotation about the
bonds is slow, it will then sluggishly change its shape. 2 0.512 80,000 3.31 9.36 2.65 1_2
Two such chains will entangle more readily if each chain
is so stiff that It cannot readily change its conformation. 3 0.480 71,000 3.63 9.A7 2.36 9.7
It a chain is completely stiff, it will entangle severely
at a concentration where the chains first begin to overlap, 4 0.396 50,000 4.07 9.10 2.04 3.7*
to a undiluted polymer very little flow could occur.

Changes in conformation must occur in this poly- 0.24 20,900 6.91 9.77 .3

sulfeme during viscous flow because the vomue of the Low 0.15 9,600 10.7 9.92 0-12
hydrodynamic spheres at the critical concentrations found
Ia Table I show the molecules must overlap. In addition, The viscosity is reduced to 138 *C. S imole 4 ;hitft,
the viscous flowis in the undiluted state require changes dif ferently from the higher molecular w-6tscls
L conformation. Yet, if these chains have some stiffness,
they can entangle at low concentrations without equilibrium
masuremmts showing strong interaction between the chains.

In contrast to this hypothesis of stiffness, Aharoni
classifies polymers as flexible or rigid, using two I og rt
parameters: the number of bickbone chain atoms between
emtanglements (N) and C. The values of N - 320 and
C. - 2 dfiitelysclassifies polysulfone withethe flexible
polymers. Even though a much smaller value of N is
predicted from entanglements in concentration solution, he
would continue to classify polysulfone as a flexible

- polymer since ! * 320 is already high compared to his best
cerrelation forcflexible polymers of N versus C. A
definice value for N Is not deduced fiom the data in Table
I since the solutioni do not follow the dependence of cM
constant.

%The presence of sulfone groups in a polymer promotes
a high glassy transition temperature. This high value /
can result from either strong forces between chains or
from stiffness within a single chain so that any motion
will require simultaneous movement of many atoms. If
the strong intermolecular forces are excluded because of
the small second virial coefficienti in solution, then a 4
stiffness of the chain could be "he'source of the high
gl $assy transition temperature.

Inelastic scattering of light or.neutrons should be

capable of detecting stiffness within the chains. The
dependence of viscosity upon shear rate should also depend ""
upon this assumed stiffness, but the interpretation of
such data Is not as direct as for inelastic scattering.
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Heat Capacity of Water Absorbed in

Methylcel lulose

0. A. Kinard and C. A. J. Hoeve, Department of Chemistry,

Texas A&M University, College Station, Texas 77843

Synopsis

The heat capacity of methylcellulose is determined at various water

jcontents over a wide range of temperatures, down to 125K. From the data

the partial specific heat capacity of water has been obtained. The results

show that water should be considered as a single, mobile phase. No evidence

exists for bound water. Near 130K water becomes imobilized in a glassy

state.
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Introduction

Mechanical properties of polymers are strongly affected by water

absorption. Even small amounts of water can significantly change the

modulus1 ,2 and crack propagation3 before rupture occurs. Often this large

effect of water is surmised to be resulting from specific interactions with

the polymer matrix. Usually diffusion of water through the matrix is

exceedingly slow, giving rise to the suspicion that water may be bound to

soce of the polar groups. Furthermore, considerable amounts of water fail

to freeze, even at liquid nitrogen temperatures, reenforcing the notion that

this water is strongly bound. Wideline NMR results of hydrated proteins
4 -8

have indeed been interpreted on the basis of two fractions of water, one of

which is bound and the other being liquidlike. Other than as a convenient

assumption for interpretation of the NMR results, however, direct evidence

for binding is lacking. A priori these assumptions are difficult to

understand on the basis of the available forces. Hydrogen bonds between

water and the matrix are prime candidates for strong forces. Surely in bulk

liquid water strong hydrogen bonds occur; in this case, however, they are

not strong enough to prevent rapid diffusion. It is then difficult to see

why the hydrogen bonds between water and the matrix would lead to stronger

binding.

A more direct way to study possible binding is to perform heat

capacity measurements of water absorbed over a range of concentrations. If

a small mumber of water molecules are so strongly bound as to become

immobilized then the heat capacity should be close to that of ice,

0.5 cal deg "I g- . This value has indeed been found for several crystalline

salt hydrates. Larger amounts of water, if unbound, should have a heat

,-,.... . .. . .....-



capacity of twice this value, comparable to 1 cal deg' g 1 for liquid

water. Thus if water is absorbed in. excess of the bound fraction the heat

capacity of water should increase significantly. On the basis of this

analysis no evidence was found for bound water in the proteins collagen
9'10

4 and elastin 11'12 and in poly[2-(2-hydroxyethoxy)ethylmethacrylate].13

It is important to establish if this conclusion is generally valid and

can be extended to other polymers. To this end we report the results for

water absorbed in methylcellulose. This polymer is relatively simple in

that it contains only hydroxyl groups as potential binding sites. Although

A cellulose is less suitable since its complex crystalline morphology might

obstruct interpretation, methylcellulose is devoid of any crystallinity as

shown by our heat capacity data. All measurements reported in this article

were carried out in the glassy state of methylcellulose. Thus we know that

the polymer matrix is amorphous and immobile.

2

. . . .



Experimental

Methylcellulose (Methocel) was obtained from Dow Chemical Company.

The number average molecular weight is given as 91,000. The degree of

substitution of hydroxyl groups by methyl groups is between 1.8 and 2.2

(out of a maximum of 3). The average of two combustion analyses yielded

carbon 50.8% and hydrogen 7.33% (the theoretical values for the degree of

substitution 2 are 53 and 7, respectively). These samples were purified by

extraction with water, as follows. Fifty times the amount of hot water was

added to the polymer during stirring. After the powder was thoroughly

wetted an equal amount of cold water was added and the mixture was stirred

in an ice bath until the sample dissolved. This solution was then filtered

through a sintered glass funnel and cast into plastic petri dishes. These

films were then dried at 310K for two days and stored in desiccators.

For the heat capacity measurements 5 to 10 mg of sample was placed in

jsmall aluminum pans. After the sample was weighed on a microbalance a

suitable amount of water was added with a mtcrosyringe and an aluminum

cover was placed on the pan and crimped tight. The amount of water was

determined by another weighing. Additional weighings were performed before

and after the heat capacity measurements to determine any leakage. If

leaking had occured the sample was discarded. To check the water contents

after the measurement the pans were punctured, placed in the oven at 373K

and weighed.

Heat capacity measurements were carried out with a Perkin-Elmer

Differential Scanning Calorimeter DSC2. Measurements at low temperature

were conducted using the cold finger immersed in liquid nitrogen. Heating

rates were at 20K per minute. Temperature calibrations were performed

3



using the melting points of water (273K), mercury (234K), and

methylcyclohexane (146K). Corrections were made for differences in

aluminum pan weights.

ii4



Results and Discussion

The results of the heat capacity measurements are given in Fig. 1 for

the temperatures 269, 226, 162, and 125 K. The heat capacity is expressed

*in cal K1 for Ig of methylcellulose and yg of water. The horizontal axis

y denotes the amount of water in g per g of methylcellulose. For each temp-

erature the least-square linear line was drawn through the experimental

points. As can be seen, within experimental error, the straight lines re-

present the data quite well. The plots are given in this somewhat unusual

manner since the partial specific heat capacity of water (the partial molar

heat capacity divided by the molecular weight of water) can be directly ob-

tained from the slope of these lines. Table 1 gives the values of the slope,

intercept and standard deviation of each line. Fig. 2 represents a plot of

the partial specific heat capacity of water at different temperatures.

It is noteworthy (Fig. 1) that for each temperature the partial specific

heat capacity of water is independent of its concentration between 0 and 30

ioercent based on the dry polymer weight. Since the value at 269 K, 1.2 cal

K-1 91 , is close to that of bulk water, no inmobile water is present at

this temperature. It should be noted that this value need not be exactly

equal to 1.0, since the structure of these small amounts of water in the

matrix is surely different from that of bulk water. The importance of the

* high value is that it is considerably above that for ice. We conclude that

extensive hydrogen bond rearrangements occur with temperature, in contrast

to the behavior expected for bound water. Although binding does not occur

at 269 K9 it is more likely to occur at lower temperatures. However, as

shown in Fig. 1, at lower temperatures, even down to 125K no evidence exists

for two fractions of water, since at all temperatures straight lines are

obtained. The partial specific-heat capacities of water are given in Table 1

and Fig. 2. It is to be noted that ice formation is ruled out, since our

5



heat capacity data would have revealed even traces of ice on heating the

samples through 273K. Although no ice is formed, the partial specific heat

capacity of water decreases gradually from the high value of 1.2 to the

value of 0.205 cal K191at 125K, close to the value of ice at that tempera-

ture. We conclude that the low value results from the irmobility of water

molecules at 125K. Although at first glance unbound water is expected to

freeze, in retrospect the failure to form ice is not surprising since the

space available for water molecules in the rigid polymer matrix does not

permit formation of large three-dimensional ice crystals. The alternative,

diffusion of water molecules out of the sample, followed by ice formation,

would rupture hydrogen bonds with the polymer matrix. Restoring hydrogen

bonds between the hydroxyl groups of the matrix would be too slow in the

J glassy matrix. If water remains absorbed in the matrix, it can provide

complete hydrogen binding by virtue of its mobility.

U The low heat capacity of water at 125K can be interpreted to represent

a glasslike structure of water. This proposal is consistent with the known

glass transition of bulk water at 135K. 14We would expect the mobility of

water absorbed in a glassy matrix to be less than in bulk. It is, therefore,

surprising that the transition from glasslike water to a more mobile state

does not occur at a considerably higher temperature in the matrix than in

bulk. Apparently, the mobility of water is not seriously impaired by the

glassy polymer matrix.

These results are similar to those observed for collagen 910and elas-
tin1 1 . It is significant that the glassy state of water absorbed both

in the proteins and in methylcellulose occurs in the same region. In view

of the similar results obtained for dissimilar matrices, we conclude that

contrary to widespread opinion, water appears not to be specifically bound

to polymer matrices.

* ~ 6
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Tabl e I

Least-square lines for the heat capacity of methylcellulose with absorbed water

Temperature, SlopeKg Intercept Stanard evi ation

K cal Kgcal K 1g 1  cal -9

;4269 .1.20 .321 0.013

226 .81 .264 .011

162 .298 .216 .011

125 .205 .163 .005



Fig. 1. Heat capacity in cal K( for ig of methylcellulose and yg of water.

Squares: 269 K; open circles: 226 K; filled circles: 162 K; triangles:

125 K.
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Fig. 2. Partial specific heat capacity in cal K- 1 9g1 of water in methyl-
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R.A. Schapery

Mechanics and Materials Center
Civil Engineering Department

Texas A&M University, College Station, TX 77843

]ABSTRACT
The effect of time dependent rheological properties on crack

growth in a class of nonlinear continua is studied. Starting with

a single-integral, nonlinear viscoelastic constitutive equation for

a monolithic or composite material, an elastic-viscoelastic corre-

-] spondence principle is introduced, which leads to crack growth cri-

teria expressed in terms of a generalized J integral. Rheological

properties of the continuum are reflected in the value of the J inte-

gral and a creep compliance, both of which appear explicitly in the

equations for time of initiation of growth and speed of continuous

growth. Concluding discussions include comparison of the present

results with some existing fracture models for materials which

exhibit linear viscoelasticity or nonlinear transient and steady-state

creep. A generalization of the theory to materials whose rheological

properties account for certain types of distributed damage is given

in the Appendix.

*Prepared for Encyclopedia of Materials Science and Engineering,
Pergamon Press.
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1. INTRODUCTION

The growth of microcracks and macrocracks is affected by time-

dependent material behavior, whether it is limited to the crack tip

neighborhood or exists throughout the body. This article is con-

cerned with specific ways in which rheological properties of continua

affect both initiation and continuation of crack growth under quasi-

static conditions (i.e. when inertia effects due to straining can be

neglected). The highly damaged and failing material at the tip of

growing cracks is not explicitly modelled; rather, emphasis is on the

use of mechanics and properties of the surrounding continuum to predict

local crack tip deformations and the mechanical work available for

extending cracks.

Equations are developed which relate initiation time and instan-

taneous speed to a generalized J integral as the driving force for

crack growth. This is done by combining methods and results from

existing theories of crack growth in linear viscoelastic and nonlinear

viscous media with a J integral theory previously developed for frac-

ture initiation in nonlinear time-independent materials. The unified

analytical framework is achieved by starting with a single-integral

nonlinear viscoelastic constitutive equation to represent rheological

behavior. A correspondence principle is then introduced which provides

a simple relationship between the mechanical states of elastic and vis-

coelastic media. Deformation fields based on bounded rather than in-

finite strains at the crack tip are used in order to retain important

local rheological effects. However, the analysis is simplified by

using small strain theory for the continuum, while allowing for large

strains in the failing material at crack tips. Certain generaliza-

tions, including large strain effects, are discussed in the Conclusions.

- "..
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2. CONSTITUTIVE EQUATIONS

Outside of the highly damaged and failing material in the

neighborhood of crack tips, the deformation behavior is assumed

to be characterized by a nonlinear viscoelastic constitutive

equation in the form of a single hereditary integral for the strains,

Cij = E D(t-T t) !i dT (1)

The quantities cii are second order tensor components which depend

on material properties and, in general, are functions of stresses

,ij, spacial coordinates xi , and time t,

j= ij(akv x, t) (2)

in which akZ =kf (xi' t), with all indices taking the values 1,

2, 3. The coefficient ER is a free constant which will be termed

the reference modulus; it is helpful in discussing special material

behavior and introducing dimensionless variables.

When eij is used in Eqn. (1), the time argument is specified

as the.variable of integration; viz., t should be replaced by T

where explicitly shown in Eqn. (2) and in the argument of stress.

Normally, to simplify notation, the arguments of stress and strain

will not be written out unless required for clarity. For all
1 

-ecases it will be assumed that ij = =ij 
= ij = 0 when t<O and

D(t-T, t) 0 when t <. In order to allow for the possibility of

a discontinuous change in cj with time at t = 0, the lower integra-

tion limit in Eqn. (1) and succeeding hereditary integrals should

be interpreted as 0- unless indicated otherwise.

The quantities ce will be called pseudo strains. Their



3

explicit dependence on x in Eqn. (2) accounts when necessary for
,4'

material nonhomogeneity, while t is introduced to allow for aging

and time-dependent residual strains (such as those due to thermal

expansion (Schapery, 1981)). The function D(t- T, t) is a creep

compliance; it provides creep under constant stress as well as other

hereditary effects under time varying stress in both aging and non-
e

aging materials. The significance of i and D will be brought out

by considering some special cases.

First, however, it will be useful to rewrite Eqns. (1) and

(2) by expressing stress in terms of strain history. Supposing

that the inverses exist, Eqn. (2) becomes

ij = axj(ek. x, t) (3)

where the eij are related to the physical strains through the

inverse of Eqn. (1),

e. 1 t€ij =R fo E(t -, T ) z()

in which E is a relaxation modulus; its relationship to D is given

by t ,

t D(t-T, t) E(T-T T)dT H(t (5)

0

where T >0 and H(t-T 0 ) is the Heaviside step function (i.e.,

H(t-o) =" 0 and 1 for t<T 0 and for t> To , respectively).

A linear viscoelastic material without residual stresses which

is isotropic, homogeneous, and has a constant Poisson's ratio v,

is characterized by Eqn. (1) if we use

e E_ V~z~j (6)Cij R E(l+v)oij 1okkij(

.. .. . . . . . . . . . .
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where 6ii is the Kronecker delta, and the standard summation conven-

tion is followed in which repeated indices imply summation over

their range. For a uniaxial stress state, all 0 and all other

a = 0, Eqn. (1) for ell becomes-, i
t l

£I fD(t-T, t) . dr (7)
0

If a11 = 0 H(T-to), where to 0 and ao is constant, Eqn. (7)

2 reduces to £11 = D(t- to, 0%. Inasmuch as eii/ao is customarily

termed the creep compliance, we shall use this name for D throughout

this article. Similarly, if cll = coH(T-to) for a uniaxial stress

state, where c is constant, one finds that the relaxation modulus,

0il/%, is equal to E(t-t o, t). When the second argument in E and

D in Eqns. (1) and (4) is dropped, so that D(t- T) and E(t-T) appear

in Eqns. (1) and (4), respectively, linear viscoelastic behavior for

a nonaging material is recovered.

The mechanisms which may require the aging form to be used for

E and D (e.g. D = D(t- T, t)) are not limited to chemical processes.

For example, this form accounts for the effect of transient tempera-

tures on the creep compliance and relaxation modulus and includes

the familiar thermorheologically simple behavior of polymers as a

special case. It should be noted that the expression D(t, T) is

sometimes used instead of D(t - T, t) in characterizing visco-

elastic behavior of an aging material. Although both forms are

equally general, the latter is used here as it is a more convenient

notation inequations which govern crack growth.

Allowing now for nonlinear, anisotropic, and nonhomogeneous

media, observe that for the special case of a constant relaxation

Off
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modulus, E : ER, Eqn (4) reduces to i Thus, Eqn. (3)
Ri E. (4=r ij .TuEn(3

becomes the constitutive equation for an elastic material (in that

the current stress state depends on the current strain state but

not past values of strain). Obviously, an equivalent result is

found by using D = E n
Rin Eqn. (1). Viscous behavior results by

using E = t E 6(t-T) in Eqn. (4) (where 6(t- T) is the Dirac delta

function ind tv is a time constant), or by setting D = (tvER)-1 (t-t)

in Eqn. (1). In this case the pseudo strains are found to be pro-

portional to the strain rates, i.e. cij = tvaei /at, and thus the

current stress state becomes a function of the current strain rates;

Eqn. (1) takes this form after integrating it by parts and then

differentiating and inverting the result.

Hereditary integrals will be used throughout this article, and

consequently it is desirable to introduce an abreviated notation

for them. Specifically, for any function f of time,

t
odfj E R9T(t-T, t) d , $Edf I  E-1 R (t--, t)-d (8)

Thus, Eqns. (1) and (4) are, respectively,

= 1Dd c = jEdE.. (9)i d j) 0 i j-

3. CORRESPONDENCE PRINCIPLE

The close relation between mechanical states of nonlinear
T

elastic and viscoelastic media with stationary or growing cracks

will be given in this section. It will be stated in the form of a

so-called correspondence principle, and will serve as the basis for

the development of crack growth theory. First, let us introduce a

R R R
reference elastic solution aij' Eij' ui corresponding to the case

*,*.
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in which D = E = ER. This solution is defined to satisfy the

field equations,

R l u u(10)
ax.

R I R R'+
Lij 2ax. ax.i

R = e.(R xm, t) (12)
£ij ij kl m

The following correspondence principle will be proved, in which the

instantaneous geometry (including cracks) is the same for both

elastic and viscoelastic problems:

Let surface tractions Ti = a.jn. be specified functions of

time and position (which vanish when t<O) on all surfaces S

and throughout the volume V, respectively. Then the nonlinear

viscoelastic solution based on Eqn. (1) is

Si, ij = Ddecj , ui = IDdu (13)

where the variables with superscript R are defined to satisfy

MIN Eqns. (IO)-(12) and the traction boundary condition Ti =in j

on all surfaces.

As proof, first observe that the viscoelastic stresses in Eqn.

(13) meet the condition Ti = Gin j on S (which includes the instan-

taneous crack faces) and satisfy equilibrium Eqn. (10). The pseudo

R
strains cij obey Eqn. (11) (compatibility conditions), and

clearly the viscoelastic strains in Eqn. (13) satisfy the same equa-

tions without the superscript R (since D is independent of xi and the

hereditary integral is a linear operator). Thus, except for

L. I



consideration of displacements due to crack growth, the proposed

viscoelastic solution is seen to meet compatibility requirements.

With or without crack growth, relative displacement between crack

faces, Aui , is the difference of the displacements in Eqn. (13)

evaluated on adjacent faces,

Aui = DdAu , (14)

where Au is the displacement difference in the reference elastic

problem. Since we specify the instantaneous geometry of all cracks

i i in the reference problem to be the same as in the actual viscoelastic

body, Aui is correctly predicted to vanish until the time tc, say,

a crack tip reaches any given physical location; this follows from

the fact that Au =0 at this same location when t <tc (assuming

prior cracking and rejoining of crack faces has not occured) which

in turn implies the hereditary integral in Eqn. (14) vanishes when

t <tc.

The correspondence principle may be generalized to allow for

specification of displacements Ui on some or all surfaces (Schapery

1981). In this case, the specified surface displacements in the

elastic problem are U = EdUi1 and, as in Eqn. (13), elastic and

viscoelastic stresses throughout the continuum are equal with

stationary and growing cracks.

4. GENERALIZED J INTEGRAL AND THE CRACK TIP MODEL

The widely used J integral for fracture analysis of time in-

dependent materials will be generalized in this section for subse-

quent use with the nonlinear viscoelastic materials described by

Eqn. (1). In the elastic problem the important path-independence

j
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of the J integral follows from the thermodynamically-based result

that a potential W exists with the property that aij = AW/eij. The

classical deformation theory of plasticity for loading of metals may

be expressed in terms of a potential analogous to the strain energy

density W, and therefore the J integral is often useful even if large

scale plastic deformation exists as long as there is not significant

unloading from the plastic state. Without excluding unloading, equa-

tions for crack growth in nonlinear viscoelastic media may be devel-

oped and expressed in terms of a J integral in many cases if aij in

Eqn. (3) can be written as

= (15)

It has been shown that the potential o exists for materials under

H general loading histories if they are at least elastic at short

times under sudden straining (Schapery, 1981). For linear viscous

media one may invoke Onsager's principle to establish Eqn. (15).

Although thermodynamic arguments apparently cannot be used to

justify Eqn. (15) for nonlinear viscous behavior, the standard equa-

tions used for secondary creep of metals may be written in this

form (e.g. Leckie and Hayhurst 1974). In analogy with elasticity

theory, 0 is called the pseudo strain energy density.

Before developing a fracture theory which uses Eqn. (15), cer-

tain simplifications concerning the crack tip will be introduced.

The idealized crack tip geox. try and a local orthogonal set of

Cartesian axes (xi) are shown in Fig. 1. In the unstrained state

£ the crack surfaces in the neighborhood of the tip are assumed to be

planar and to coincide with the local x, - x3 plane, where x3 is

.
.I , ,; ; ;. . ; ... . .>.., .. ? : . . .. i . .,, ,,:i:. --,,. ._,--.,. .:,,. -i ., , .
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perpendicular to the plane of the page; the x2 axis is embedded in

the continuum at any convenient horizontal location. The crack tip

or edge is a straight or curved line in space whose intersection

with the plane of the page (the x, - x2 plane) is indicated by the

point P. It is assumed the tip is essentially straight and parallel J
to x in the neighborhood of P. (By definition, the neighborhood

of P refers here to the material contained in a sphere which is A

centered at P and has a radius on the order of ten times the failure]

zone length a.)

The region designated as the failure zone in Fig. 1 is where

intense damage and material separation occurs. Outside of this zone

it is assumed that Eqn. (15) applies. We prefer to use this term

over other common names, such as process zone and damage zone, be-

cause the material outside may be damaged and the effects taken into

account in more general theories. Also, for analysis purposes it

is more convenient to define P as the crack tip location, instead

of the left end of the failure zone. The latter position is called

the apparent crack tip.

Consider now the line integral,

(odx 2 - T i D ds) (16)

where the path of integration is in the xI - x2 plane and is any

closed contour on and inside of which 4 exists and v. ich does not

enclose cracks; one such path is that designated as CT in Fig. 1.

This integral vanishes if i) au /P< 0 and ii) as/ax I = as/ax3 = 0

on and inside CT. The first condition implies the depth of the body

in the x direction near the tip must be large compared to a (the
3-
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usual case) or else much smaller than . According to the second

condition, the most general admissible form of 4 is D 4(Ei, x2,t);

dependence of i on xI is permitted, but any material nonhomogeneity

is restricted to variations normal to the local crack plane. Note that

S.= 0 follows directly from elasticity theory for the continuum

within the contour CT (Rice 1968) since X is expressed in terms of

mechanical state variables for the reference elastic problem and the

potential 0 is defined by Eqn. (15); recall that aij = aij and

E =J according to the correspondence principle.

A generalized J integral, denoted by J v' is now introduced,

v fi (dx 2 - Ti  ds) (17)

4 where C1 is the portion of CT indicated in Fig. 1; integration starts

at point 1 and is taken counterclockwise to point 2. In contrast

to the early elastic theory (Rice 1968), we do not assume the crack

faces are traction-free, and thus that part of C1 which is adjacent

to the surfaces is retained. (A later study by Palmer and Rice (1973)

included body forces and crack surface tractions in analyzing slip

surfaces in clay without time dependence.) The condition

0 may be written as

Jv Jf (18)

where R

J f j(4Ddx2  T T.-xds) (19)

and integration starts at point 1 and proceeds counterclockwise

along the edge of the failure zone to point 2. The path C1 for Jv

is arbitrary except that it starts and ends at the apparent crack

tip (points 1 and 2). Itis not necessary to use a contour having

,..... .. •......... .................... ,......... . . . ... ,... .... ,. . . . .
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segments parallel to the crack faces; but if the tractions T.

vanish on such segments to the left of the failure zone, there is

no contribution to J v (since dx2 = Ti = 0) and therefore C1 could

start and end anywhere along the lower and upper crack faces.

Equation (18) provides a basic relationship between the mechan-

ical state of the continuum through J~ and the characteristics of

the failing material at the crack tip through Jf. Given that real

stresses and strains (including those at P) are not infinite, in many

cases one can neglect the contribution to Jf from odx2 and assume the

tractions Tare equal (with opposite signs) across the upper and lower

parts-*of C2; such simplicity obviously exists if the failure zone is

U thin (in the x2 direction) relative to a. Then, Eqn. (19) becomes

+B f -2 =1 ) d (20)

Iwhere a f is the normal stress and Tfl and T f 3 are the shearing

stresses in the x, and x3 directions, respectively, along the inter-
-~xR

face between the failure zone and continuum; the A0. are the compo-

nentsof the relative displacement vector between initially adjacent.

material points on the crack plane. The normal stress and displace-

ment and the local coordinate a a- are indicated in Fig. 2.

5. CRACK GROWTH

Essential features of criteria for predicting the time at which

crack growth initiates, t., and subsequent crack propagation speed

1 i, will be illustrated by assuming a slender failure zone (cf. Eqn.

(20)) and the opening mode of crack tip displacement. In this case,

shearing stresses and sliding displacements along the crack plane are

zero in the neighborhood of the tip.
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Initiation of Growth

In order to avoid excessive mathematical complexity in pre-

dicting ti , the failure stress distribution af will be assumed

independent of E, and denoted by a m  Equation (20) becomes
m

Jf = amAu2  where Au R is the elastic opening displacement at

R- =. Using Jv = Jf9 the displacement is Au2( Jv/a m and the

correspondence principle, Eqn. (13), yields the time-dependent dis-

placement,

u2 ' Dd(Jv/am) (21)

where am is not necessarily constant in time. If the criterion for

initiation is based on a critical value of opening displacement,

AUc , one would determine the time for which Au2  in Eqn. (21) is

equal to Auc. An alternative, commonly used criterion is based on

mechanical work,

ti 3au 2
U.... . dt = 2ri  (22)

where ri is the mechanical work per unit surface area required to

break a fixed material column at the left end of the failure zone,

&= c; the factor of 2 is used to account for the two units of

surface formed for each unit of cross sectional area of the column.

The so-called fracture initiation energy, ri, may be affected by the

history of Au2(, depending on the characteristics of the failure zone.

For the case in which of = am , Eqn. (22) becomes
.4

fti am Dd(Jv/ m)I/t dt 2Fi (23)

0
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If am is independent of time and the explicit representation for the

hereditary integral is used (cf. Eqn. (8)), the criterion becomes

t- W
E/ti-r dt.) v1

ER D(ti -T, ti --r-dT = 2ri  (24)

For an elastic continuum, D =E the criterion reduces toR'

Jv = 2ri; the failure zone may be viscoelastic, and therefore 2ri
is not necessarily constant. If the continuum is a linear or non-

linear viscous material, D = (tvER)-1(t-T) where tv is a time con-

stant, as noted previously. After integrating Eqn. (24) by parts

it becomes t.
Jvdt = 2r. (25)

vo1

Finally, it should be observed that the failure zone length a has

not been assumed small in deriving Eqns. (21)-(25).

3 Propagation Speed

The failure criterion based on mechanical work may be written

in the form
fa AU2

ff -- d& = 2r (26)0

where the fracture energy r, just as ri, is the work required to

rupture a fixed column of material in the failure zone. In contrast

to the initiation problem, this column is not initially at the

apparent (free surface) crack tip; instead, the column is initially

within or ahead of the current failure zone, and its rupture is coin-

cedent with the arrival of the apparent tip. The left side of Eqn.

(26) is the total work input to the column, starting with the time

the tip P (cf. Fig. 1) first arrives. For convenience in analyzing

continuous growth, the variable of integration has been changed from

~~~~~~~~~~.,.. ",.,..--..-............'....'...-...".;.... . ...... . .i -;.. ..... a- . .- X...-,.± . --
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t (cf. Eqn. (22)) to E, where = a-x I, and the differentiation and

integration in Eqn. (26) are made with xI held constant. The

time-dependent opening displacement at any point in the failure zone

is Au2 = 2DdAu 2 which is to be substituted into Eqn. (26). The

result is rather complex, as it requires two integrations and pre-

Rdiction of the elastic displacement Au2 . Also, of may be dependent

on Au2 .

The problem can be greatly simplified if i) a is small enough

that the neighborhood of the crack tip (say lO) is free of other

features involving characteristic dimensions (e.g. another crack

tip), ii) Of, a, and a are essentially constant in time during the

time interval a/; when the crack propagates a distance a, and iii)

aging changes in the creep compliance during this same interval are

negligible. With these conditions and the observation that the

relation between Au2 and Au Ris the same as for a linear viscoelastic2 2
material, an approximate evaluation of the hereditary integral may

be employed (Schapery 1975 II) to find

Au2 = ERD(t, t)Au (27)

where t k /a and k is a factor which is a very weak function of

the slope n = alogD/alogt; this factor is practically 1/3 for the

entire range of slopes (0 <n <l) encountered in practice, and stems

from the cusp-shaped opening displacement predicted for linear

materials. Assuming the strains are continuous at the tip P, the

local deformations will be close to those for a linear prestressed

body (Brockway and Schapery 1978). Thus, although more careful study

of this behavior is needed for highly nonlinear materials, the cusp

r * , . ~ o . ,'.... , .. . '.4 , - .2'. * - . . "-.' . . . . . . -
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shape is expected to exist in many cases, permitting the use of

k = 1/3. Substituting Eqn. (27) into Eqn. (26) and using the same

U type of approximation as in the linear theory (Schapery 1975 II),

which does not require of to be spacewise uniform, there results

a aAuR
ERD(kc/ at) f -- dE = 2r (28)

0

In view of Eqns. (18) and (20), the integral in Eqn. (28) may be

replaced by Jv to derive the very simple result

ERD(ka/at)Jv = 2r (29)

The integration and differentiation in Eqn. (28) is for xI fixed,

while that in Eqn. (20) is for t fixed (i.e., fixed crack tip loca-

tion); however, as Au= Au (W)for the steady-state propagation

3 assumed during the time a/i, these integrals are equal. Recall also

that t in the second argument of D accounts for aging in the creep

compliance, and the aging is assumed small during the time interval

a/i. In spite of the assumed constancy of a and aging during /

they may vary appreciably during the total time of crack propagation.

Likewise, the size a is not necessarily constant, as it is related

to other variables, such as Jv' through Eqn. (18); its prediction is

illustrated in Sect. 6 for a nonlinear power law material.

The similarity of the formulas for initiation, Eqn. (24), and

continuous growth, Eqn. (29), is noteworthy. As a special case,

suppose av is constant for t >0. Then Eqn. (24) reduces to

ERD(ti, ti)Jv = 2ri  (30)

This result and Eqn. (29) yield ti = ka/i if r = ri. Thus, with

' . .. - -.... .... 0 ....... . . . . ..
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k = l/3,the time required for initiation is only one-third of that

required for subsequent growth of an amount a. On this basis, it

can be expected in some problems that ti will be negligible compared

to the total time required for failure of a structure.

Whether or not r equals ri depends on the hereditary and multi-

axial stress characteristics of the failure zone, the phys-.al envi-

ronment (since the left edge, & = a, is at the surface during 0 <t <ti )

and on the state of the initial crack tip. In any event, one should

not assume these energies are equal without adequate support from

experimental data.

Energy Release Rate

The Jv integral is equal to the energy release rate for

self-similar crack growth in the reference elastic problem, which is

useful for experimental and theoretical determination of J V" Namely,

Sv = -3P R /3A (31)

where dPR is the change in potential energy of the reference elastic

continuum and applied forces; dA is the increase in crack-plane area.

This relationship can be derived by considering the work done by a

general three-dimensional elastic continuum on a failure zone of

width x3 >>a which is advanced an amount da without change; such

'i1 self-similar growth does not have to exist during actual fracture

tests for Eqn. (31) to apply if the length a is very small.

6. POWER LAW NONLINEARITY

Specific effects of nonlinearity on the opening mode of crack

growth will be illustrated using a power law nonlinear material.

By definition, the pseudo strain energy density for isotropic or

anisotropic materials is a homogeneous function of degree N+l,
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= l(32)

Iwhere N and c are constants and I I denotes absolute value. For

notational simplicity, the superscripts "e" and "R" will be omitted

in succeeding equations until specific results are applied to visco-

elastic crack growth analysis. With the definitions,

C i, Cc $(ej), sgn(c) = sign of c (33)

it follows that

sn c sgn(c)clN  (34)
aiE -j, ~ sgn(c)IcI aeij'(34)

For a uniaxial stress or strain state these relations imply

11 sgn(,)clle1 P Equation (32) contains as a special case the

power law strain energy function commonly used for isotropic elastic

materials (Rice and Rosengren 1968).

Let us introduce a set of dimensionless coordinates and mechan-

ical state variables,

i ij Oij m (35)

*l = sgn(-)o/amI1/ N u sgn(a)Ia°/a I /Ncii' sgn(amj0aj Cpm) 0m ui/C%

The quantities am and a0 are parameters with dimensions of stress,

which are introduced for the purpose of using a dimensionless fail-

ure stress distribution f and strain energy density ON'

f = °f/am ' ON = o/ao (36)

When these definitions are substituted into Eqns. (10), (11), and (15)

Le
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the field equations become

0, A = (37)

axj - 1i 2 (axj ) )ij

where o N ) "  Observe that allowance is made for negative

values of af through the factor am; for unloading of a viscoelastic

material this stress could be negative in limited periods of time

without crack face contact.

Locate the origin of the coordinates at the crack tip P (a= 0 in

Fig. 2), and assume the crack faces are traction free outside of

the failure zone. Then, with the additional definition n = E/a = - 1

the solutions to Eqn. (37) must satisfy the traction boundary

condition U22 = f(n)H(l-n) for n >0 as well as meet the symmetry

conditions associated with the opening mode. These solutions will

depend at most on the dimensionless coordinates &i, apart from

parameters in oN and those arising from conditions that would be

applied on the continuum surrounding the failure zone. For

example, the solution for dimensionless crack opening displacement

is simply A62 = g(n), where n = -X1. From Eqn. (35),

Au2 = sgn(am)m I  / N g(n) (38)

Equations (18), (20), (35), and (38) yield

iami1/N Jv l dd_ nd )
o i Iafl where If=ff(n (39)

From Eqns. (38) and (39),

AU2 = (j v/ mf)g(n) (40)
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The results in Eqns. (38)- (40) are not limited to a small-scale

failure zone and are valid for materials which age and are physically

nonhomogeneous with respect to x2 ; dependence of 0 on x2 and t and

related material parameters has been suppressed to simplify the

notation. The dimensionless displacement g and stress f in Eqn.

(38) and the integral If in Eqn. (39) could in general depend on all

dimensionless parameters associated with phenomena that influence

continuum deformation in the neighborhood of the crack tip. Con-

9siderable simplification in this dependency results if the the con-

tinuum is physically homogeneous (at least locally) and if a is

small enough that the failure zone is isolated from other geometrical

features. The immediate continuum surrounding the crack tip neighbor-

hood can then be analyzed by using a method similar to that

3 in Rice and Rosengren (1968) for an isotropic power law material.

'With a polar coordinate system (r, o) centered at P (cf. Fig. 2) it

is found that for r>> a,

= (If/r)l/(N+l )hi ( e), ij= Ifir) l/(N+l)f M

ij = If/rgij(e) (41)

where f = r/. The integral If is related to Jv through Eqn. (39),

and the functions of e are determined from the solution of Eqn. (37)

and the condition of traction-free crack surfaces for r>0. The

failure zone traction on the crack plane is neglected in solving this

boundary-value problem; its effect enters the solution in the form

of If after path-independence of Jv is taken into account through

Eqn. (18). The dependence of Eqn. (41) solutions on r is the same as
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found by Rice and Rosengren (1968), but the e-dependence is not

necessarily the same because the strain energy density used here

is more general. Such detailed information is not needed for

our purposes. Rather, it is sufficient to know that the entire

influence of external loads and other far-field parameters and

geometry (such as other cracks) on the dimensionless mechanical

state variables in Eqn. (35) is accounted for by If*

For the small-scale failure zone, given the shape-function

f(n) of the failure stress distribution, we conclude that the pre-

dicted shape-function g(n) of the crack-opening displacement can

depend at most on If and parameters which enter 4N (other than Ei.)

such as N. The integral in Eqn. (39) is thus an implicit relation-

ship for predicting If, Its significance may be clarified by imagin-

ing the problem in which f is the only applied loading is solved first,

not using Eqn. (39). External loading is then increased from zero by

means of If in Eqn. (41) until infinite stresses and strains at P are

removed. For the linear problem, N=l, it can be verified that the

removal occurs when If is equal to the integral in Eqn. (39); this

result becomes identical to a dimensionless form of the Barenblatt

(1962) condition for finite crack tip stress after a familiar rela-

tionship, based on Eqn. (31) for the far field,

v: (- 2 )KI/ER (42)

is employed (where KI is the opening-mode stress intensity factor,

ER is Young's modulus, and v is Poisson's ratio). Recall that

Eqn. (39) comes from Eqns. (18) and (19) (through the special case

Eqn. (20)) in which the portion of the contour C2 around the tip P

2
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vanishes on account of the physical requirement of finite stresses

and strains. Thus, it appears that Eqns. (18) and (19), with the

contour around P omitted, can be interpreted as a generalization

of Barenblatt's condition to nonlinear, anisotropic, viscoelastic

media with an arbitrarily large failure zone. For such a general

situation, these equations may not assure that the crack faces do

not overlap, and thus additional analysis involving contact phenomena

could be needed.

I Crack Growth

The analysis in Sect. 6 so far has been limited to a study of

the reference elastic problem. With the addition of the superscript

"R" to strains and displacements, we may use them with the results

in Sect. 5. Recall that Eqns. (23) and (24) for fracture initiation

were derived assuming of does not vary with , represented here by

f=l since m = of. In this case the criteria for initiation time ti

are very simple, and are not limited to a small-scale failure zone;

indeed, there is no need to use the results for a power-law material.

However, if df/dn * 0 one could predict ti by using the original

criterion, Eqn. (22), after substituting Eqn. (40) and the relation

between pseudoelastic and viscoelastic displacements (with g(l) = gl),

jAu R = Jv9l/a If' AU2  = DdAu R (43)

and recognizing that am can be defined as of at r = a without loss

of generality of the analysis. Observe that if gl/If is constant,

the resulting criterion becomes identical to Eqn. (23) except ri is

modified by the factor If/gI.

Equation (29) for crack speed depends on the size of the failure

. v% % , , '*, . •... •........•.. .. .- -. .
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zone a. This size, assumed small, is related to J v by Eqns. (18) and

(20), and for the power law material a is given by Eqn. (39). Let

us consider the physical significance of this result. First, we

observe that the parameter oo may be interpreted as a yield stress

for the continuum when N is small. Namely, using P = ao€N together

Swith Eqn. (32) and one-dimensional or proportional loading through

a stress a, one finds cealo/al l/N; hence, the strain is small when

U<aO and large when a>o o if N<<l. Also, am may be considered the

intrinsic strength if it is taken to be the maximum value (with

respect to location c) of the failure zone stress. Thus, the size c,

Eqn. (39), increases with increasing yield stress and is sensitive

to the ratio of yield stress-to-intrinsic strength, given Jv" In

elasto-plastic fracture mechanics it is common practice to assume a

is the yield stress and f= 1; in this case, the standard result

01--Jv/CO is recovered since If is a constant.

The results so far have been expressed in terms of material

functions for the failure zone, af and r. These quantities may de-

gpend on a, a and other variables such as temperature and moisture,

expecially if the zone is viscoelastic. One could explicitly incor-

porate specific physical models of the failure zone in order to

complete the formulation of the theory. If we assume the failure

process for material elements on the crack plane is unaffected by

stresses prior to the arrival or near arrival of the crack tip,

such an analysis for a small-scale failure zone would yield a func-

tion a = a(Jv), with possible dependence on physical parameters and

material constants such as temperature, age, nonlinear exponent N,

etc; that the instantaneous Jv (but not past values) determines the
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instantaneous a follows from the fact that the crack tip neighbor-

hood is surrounded by a stress field which is defin..d solely by

the current value of Jv (i.e., Eqn. (41) in terms of the dimensional

physical variables). Thus, when the dependence of S on basic mate-

rial parameters is not of direct interest, for many cases one could

characterize fracture behavior with the function A : A(Jv) found

directly from experimental data. If theoretical investigations
indicate a range exists for which di/dJv <0, unstable crack growth

(possibly in steps of stop-start behavior) may result and the in-

trinsic - v function for slow, continuous growth could not be

found experimentally. Indeed, for this case a more appropriate

analysis may involve initiation and dynamic arrest phenomena.

Power Law Viscoelasticity

The creep compliance for viscoelastic materials can often be

expressed as a power law in time. Thus, as an important special

case, let us consider nonaging material behavior for which

D(t- T) = D1(t-T)n (where D1 and n are positive constants) in

order to predict the form of the equation i = i(J ) using certain

specified failure zone characteristics. A small-scale failure

zone with a shape factor, f = of/am , that depends at most on n 
= /c

is assumed. In general, am and r may depend on crack speed. If, how-

ever, am and r are constant (so that this zone exhibits elastic-like

behavior) Eqns. (29) and (39) yield

v (44)

d where p=l+(l/n). If r and a (instead of om) are constant, Eqn.

(29) predicts p = 1/n. The failure zone dimensions are defined by

a and crack opening displacement Au2 at C = c; if these two quantities

I
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are constant, one may use Eqn. (27) for Au2 and Eqn. (38) for

Au2 at n = /a = 1 to find that p = [n(l+N)f . Notice that only

in this last case does the nonlinearity exponent appear in the

equation for p.

Experimentally determined values of p, when compared with the

results for these and other cases, may be helpful in determining

failure-zone characteristics and guiding theoretical model develop-

ment. The values of p = 3 and n = 0.5 were obtained from experimental

data on a globally linear elastomer; this is consistent with the

assumption of constant r and om (Schapery 1975 Ill). Some studies

of crack growth in metals undergoing secondary creep, n = 1, pro-

vide values of p 1 1 (Landes and Begley 1976, Nikbin et al. 1976);

inasmuch as N <<l typically, the data are consistent with the last

3 two cases for constant values of r and a or Au2a and a. It should

be added that the exponent N used here pertains to nonlinear behavior

of the continuum in the neighborhood of the crack tip. The relation-

ships are valid even if nonlinearity of material far from the tip

(relative to a) does not obey a power law, or is linear (N=1) while

its local behavior is described using N ' 1. The effect of the re-

mote nonlinear behavior does not enter the - Jv equation, but it

does affect the functional dependence of Jv on the externally applied

loads.

7. CONCLUSIONS

Through the use of a nonlinear single-integral constitutive

equation, generalized J integral theory, nd certain approximations,

it has been possible to derive relatively simple crack growth equa-

tions (.ased on mechanical work) for time of initiation, Eqn. (24),
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and speed, Eqn. (29). Only the opening mode of growth has been

analyzed in detail; but the basic relationships in Sects. 2-4 could

be used for shearing and mixed-mode conditions. All rheological

properties of the continuum are reflected in the creep compliance D

and the generalized integral Jv. The length a of the zone of failing

material at the crack tip appears in the equation for speed; it pro-

vides a scale which determines, in effect, the magnitude of local

strain rates resulting from crack growth. In general a is not con-

stant; instead, it is related to Jv through Eqns. (18) and (20),

which reduce to Eqn. (39) with power law nonlinearity.

All of these results come from an analysis of the continuum in

the vicinity of the crack tip and its wake. Thus, for limited crack

growth it is not necessary for the entire body to be represented by

Eqn. (1) and the local creep compliance D. However, if it is, Eqn.

(31) may be employed to predict Jv with an arbitrary amount of crack

growth by using theoretical and experimental methods similar to those

already developed for time-independent materials. In this expression
pR and av are defined just as for elastic materials, but displacements

R R Ed. an e ={Ec 1
and strains are pseudo quantities u. = Edui } and 10 = 13 {Ed~ij},

respectively. Stresses and loads are the actual physical quantities.

For example, experimentally measured displacements ui would be con-

verted to pseudo displacements uR through Eqn. (8) before evaluating

Jv from test data. The coefficient ER is a free constant, and could

be taken as the modulus or reciprocal of compliance at some specified

time.

The Bibliography includes publications which describe various

models for characterizing and predicting crack growth in different
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types of materials. Several models are special cases of the theory

presented here. For secondary creep (i.e. nonlinear viscous behavior),

experimental data on crack speed have been successfully correlated

in terms of a C* parameter by many investigators (e.g. Landes and

Begley 1976); the function a = a(C*) typically obeys a power law.

This characterization is obtained from the present theory by using

the relaxation modulus E = ER6(t- T) in Eqn. (8) which reduces the

pseudo variables to strain rates ( and velocities (u. =

in turn, J becomes identical to C*. The use here of non-singular

strains at the crack tip, in contrast to earlier work on secondary

creep, leads to a simple physical interpretation of Jv for viscous

media. Specifically, from Eqn. (29) with k = 1/3 and D = ER (t-T),

corresponding to the aforestated modulus, we find Jv = 3(2ri/a) = 3 x

(average mechanical power input to the failure zone). For viscoelastic

materials, Jv has a simple physical meaning if the continuum is essen-

tially elastic except for a small amount of material around the crack

tip. In this case Jv is approximately the energy release rate, -aP/aA,

since ui , ui; also, r/ERD in Eqn. (29) may be properly called an

effective fracture energy.

Crack growth in homogeneous linear viscoelastic media has been

characterized traditionally in terms of stress intensity factors be-

cause of the many situations in which viscoelastic stresses are the

same as in elastic materials. With isotropy, linearity, a constant

Poisson's ratio, homogeneity, and locally plane strain, Eqn. (31)

yields Eqn. (42). Substitution of Eqn. (42) into Eqns. (24) and (29)

results in the same crack growth relations derived earlier (Schapery

1975). Similar results in terms of stress intensity factors for linear

behavior exist without the restrictions of constant Poisson's ratio,

2 F ~ .
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isotropy, and homogeneity (Brockway and Schapery 1978, Schapery 1975,

1978). This observation includes cracks between dissimilar media

(i.e. adhesive fracture) if both materials are incompressible or one

is rigid and the other is incompressible; without the incompressible

behavior, tensile and shearing stresses act simultaneously on the

crack plane, and a complex mixed-mode condition generally exists at

the crack tip. The nonlinear theory in Sect. 5 is applicable to adhe-

sive fracture if the mixed-mode state does not exist and D is the same

for both materials (or one is relatively rigid); r. and r in Eqns. (24)

and (29) obviously have to be interpreted as the fracture energies

for the particular material combinations involved.

Primary creep of metals and ceramics is customarily represented

by using a nonlinear power law model of viscous flow with strain

hardening. When crack growth exists this behavior is not described

by Eqn. (1), and the correspondence principle, Eqn. (13), does not

apply. However, with proportional loading and a stationary crack

the constitutive equation becomes identical to that of a nonlinear,

aging elastic body (e.g. Riedel 1981). Equation (1) takes the appro-

priate form by using ERD = h(t). A suitable choice of h(t) and a

power law potential O(ej), where the only time dependence is through
*I je-

S= fij/h, yields the desired primary creep behavior as well as a

singular stress field parameter Ch (Riedel 1981) which is identical

to dv For a small scale failure zone, the early stages of crack

growth are determined by the stress field surrounding a stationary

crack tip and therefore by iv' However, a theory does not appear to

be available for characterizing crack speed, whether continuous or dis-

continuous, when the amount of growth becomes comparable to the scale
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of the initial singular stress field.

It should be observed that a different type of primary creep,

such as that used to characterize polymers, is contained in Eqn. (1)

through the dependence of creep compliance D on t- T. Also, through

the use of aging time in o =o(c., t), one may characterize different

types of nonlinear behavior at short and long times even though the

creep compliance itself is not a function of stress. Thus, in spite

of the apparent simplicity of Eqn. (1) compared to other available

nonlinear viscoelastic constitutive equations, it is really quite

general and yet permits the use of the correspondence principle with

large amounts of crack growth. Nevertheless, the accuracy of Eqn.

(1) for different types of materials under various stress histories

is not yet established.

3 The deformation and fracture analysis has been formulated using

small-strain theory for the continuum. This restriction is needed

because the correspondence principle is not rigorously valid with

nonlinear strain-displacement relations. If large strains exist only

where behavior is essentially elastic or at least if the quasi-elastic

approximation is applicable, e. = ERE(t,t)cij (which is often true

for nondecreasing strains) the present theory is approximately

correct. For example, the current practice of expressing crack speed

in rubber at large strains using a function a = a(-P/A) is consistent

with the present theory since Jv = -aP/aA for globally elastic behav-

ior. Another possible complication not explicitly treated here is

crack tip heating, which can be very significant in polymers because

of their typically low thermal conductivity and high ultimate strains.

If this heating is sufficiently localized, it could be included in the

characteristics of the failure zone, and thus not complicate the
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.3 continuum analysis.

The idealization of a slender failure zone is quite realistic for

crack tips in many materials, as well as for craze tips in plastics.

Even without this slenderness, the form of the crack growth equations

may not be different, but this has not been investigated. In consid-

ering the zone size, it should be recalled that only the part of the

body which does not obey Eqn. (15) has to be included in the failure

zone. In some cases it is helpful to represent part of the failing

material (such as craze) as a surface loading, consequently accounting

for it in J. Furthermore, it is shown in the Appendix that important

aspects of the theory remain valid even if there is distributed dam-

age, such as microcracks in the neighborhood of a much larger crack.

Considerable progress has been achieved in the last ten to twenty

years in understanding effects of time dependent rheological proper-

ties on crack growth. However, most basic experimental and theoret-

ical investigations have been for the opening mode of cohesive fracture

in essentially homogeneous materials. In this same time period,use of

fiber-reinforced materials, especially plastics, in load bearing struc-

tures has increased dramatically. Thus, considering the complex inter-

actions which may occur at various scales and the importance of

interfaces in fibrous lamina and laminates and in other multi-phase

materials, there is an especially important need for more basic studies

on mixed mode crack growth, adhesive cracking, and the effect of non-

homogeneous time-dependent properties on all types of crack growth.
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.,. APPENDIX

The Jv Integral with Time Varying Distributed Damage

Consider the one dimensional stress-strain behavior illustrated

in Fig. 3. The material is loaded to the strain m and then unloaded.

The curve for unloading may differ from that for loading because of

the viscoelastic and aging effects already discussed and/or micro-

structural changes. Depending on the material, these changes may

consist of microcracking, dislocation density increases, hole growth,

breaking of entanglement points along chains in polymers, etc. There

is no need in the present analysis to identify the particular physical

mechanisms involved, and therefore we shall use the term damage in

N accounting foi them in a continuum model (whether or not they are

beneficial or deleterious to structural performance). It will be

assumed the form of Eqn. (1) is the same with damage, where only the

material function Eqn. (2) or, equivalently, Eqn. (3), is affected

by damage; this has been shown for microcracking (Schapery 1981).

Additionally, to simplify the discussion, aging effects in the a ,e-

relationship will be omitted. Thus, if the abscissa in Fig. 3 is

ipseudo strain ce instead of strain c, the difference between loading

and unloading curves is due entirely to damage. Although it is not

necessary to assume the damage increases during loading and is other-

wise constant, it may be helpful to think in these terms.

Throughout this Appendix, the superscripts R and t which identify

pseudo variables will be omitted for notational simplicity; but it

should be understood that the mechanical state variables are those

for the reference elastic problem. (The correspondence principle,

Eqn. (13), is applicable if the elastic problem includes the effect of
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* .damage.) First, it will be argued that the potential s in Eqn. (15)

exists with realistic types of damage. Then, the validity of the

fracture theory in Sects. 4 and 5 will be demonstrated. It is phys-

ically reasonable to assume a potential sc exists with constant

damage. Examples are an elastic material with a fixed microcrack

state (in the absence of significant interfacial frictional losses)

and a ductile metal with constant plastic strain during unloading.

For reasons to be given, the potential for a three-dimensional state

of strain with constant damage is taken in the form

M
= o(Ei) + L s.[D (ci), D m] (45)

0 1Cc a 1 a

where o 10, I" are continuous functions of strains ci (i=1,2, ..6);

single index notation is used for convenience. With exception of 0,

g the strains enter through functions of strain D (assumed continuous);

as a special case, D. may be the strain e. or a strain invariant. By

definition, quantities Dom (which will be called damage parameters)

are constant during a constant damage process; for this case Eqns.

(15) and (45) yield

Mo 0 +M a aD 
(46)7 - a! a

i ac.i U=l a( lc

In the context of Eqn. (45), a damaging process is defined tempo-

rarilytobe one in which Dam =D for all of these parameters. (Observe

that this condition is analogous to cm = c on the loading curve in Fig.

3, where em is the current maximum strain.) Suppose now that a mate-

rial element undergoes a damaging process for the time period ti < t

and that all damage is constant for t2 t < t3. Because the damage is

*.1

i
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constant at t = t2, Eqn. (46) applies. Assuming the stresses vary

continuously with strains at all times including t = t2 , where t2 is

an arbitrarily selected time, Eqn. (46) also serves to define the

stresses during the damaging process. (Referring to Fig. 3, this

is simply the statement that a point on the loading curve is also

the first point on an unloading curve.) A potential 0D

exists during the damaging process, where

o= /aci  (47)

if and only if

= (48)

The variation of Dam with strain is to be considered in using Eqn.

(48) and when integrating Eqn. (47) to obtain oD. We find that Eqn.

(48) is indeed satisfied without imposing any further restrictions;

however, it is also found that if at least one of the functions *0

were to depend on more than one damage parameter (in a non-additive

form), Eqn. (48) would not generally hold. In order to define fully

the stresses by Eqn. (15), we assume o = oc when the damage is con-

stant, 0 = * D otherwise, and o = oc = *D at the transition t = t2.
Not only does the particular form of Eqn. (45) guarantee the

existence of oD, it appears to be general enough to account for some

*real damage processes. As one example, it is well-known that the

deformation theory of isotropic metal plasticity may be written in

the form of Eqn. (47). Given 0D, one may construct a potential Ac

for linear elastic unloading, which is found to have the form of Eqn.

(45); here, o contains the dilatational component of strain energy

density. Another example is a special case of the constitutive

theory with microcracking (Schapery 1981). The potentials are

U
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DJ

Dim c D
= f (Dl)dD1 , = f(Dlm)(Di - Dlm + t (49)

0

Without damage, p=1 and D1 =DI( i) is the pseudo strain enerqy density;

Dim is the maximum value of D1 with respect to the entire straining

history. The function , = (Dl) represents the direct softening ef-

fect of microcracks. The stress with constant or varying damage is

oi =4(Dim) - (50)

This result may be easily extended to allow for more general forms

of damage parameters, such as a Lebesgue norm of Dl (Schapery 1981)

instead of the maximum value. Inthis case, approximate representa-

tions of c and o appear as potentials for an aging elastic material

with damage; the strength of the time dependence decreases with in-

creasing order of the norm.

The next question concerns the vanishing of the line integral

f, Eqn. (16). From the analysis of Rice (1968, Eqn. (3)), = 0 if

dAJdA (51)
f')€ d A f Cij axI ..

A x2 A.-

where A is the area within the contour used in Eqn. (16). Write

0 (Cij x1 x2), allowing for nonhomogeneous material variations

in both x1 and x2; expand the left side of Eqn. (51) and use Eqn. (15) .

Sf' -)x di j dA (l)CdA (52)
A 2 A 1 A

For the damage model based on Eqn. (45), consists of a sum of terms

f. in both constant and varying damage regions, each corresponding

to one of the pairs D0, DoM. Assuming the crack tip neighborhood

* ,.°'
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is homogeneous in xI apart from damage, whenever Dam = D

the contribution of each o. is a function of only ei, and thus

(90/axl)c = 0. Where D( * Dam, the contribution of *a is a function

of Da(c i) and Dam; if aDm/ax = 0, the contribution to (as/ax )

vanishes. Thus, if aDam/ax = 0 for all damage parameters in the con-

stant damage part of A (for which Da 0 Dam) the last integral in Eqn.

(52) will vanish, and consequently = o. Observe that there is no

contribution from this last integral along the interfaces between *c

and tD because o is continuous across them.

Consider the material elements along a continuous segment of a

line x2 = constant. Using, for example, the damage model Eqn. (49),

the requirement is aDlm/8x l = 0 where Dl <Dim; namely,all of the ele-

ments on this segment must have the same amount of damage, as defined

by the maximum value of strain energy density experienced over the

loading history. The damage does not have to be independent of x,

where Dl = Dim. It is likely that a state of local homogeneous damage

in xi (where Dl <Dim) will be met in many cases, such as when the dam-

age is due to a crack propagating at constant or slowly changing speed.

Recall that the damaging process was defined previously to be

one in which Dam = D. for all parameters. This restriction, however,

was introduced only to simplify the discussion and can be removed.

It is easily shown that the arguments above remain valid if additional

groups of terms are added to Eqn. (45), with each group representing

1a different damage process. The regions or zones of constant and

varying damage for one group need not be the same physical locations

as those for another group.

Finally, it is of interest to consider the interpretation of Jv

as an energy release rate. Equation (31) may be established by dividing
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the body into zones of constant and varying damage (corresponding

to each group of damage parameters in 0), recognizing that o is

continuous throughout the continuum (including the interfaces be-

2.4 tween these zones), and then employing the same method of proof as

qI

This equation enables one to determine J, for elastic and visco-

elastic materials with damage by the same type of experimental and

theoretical methods as employed for nonlinear, completely elastic

materials.

*61
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ABSTRACT

Methods of quasi-static deformation and fracture analysis are

developed for a class of nonlinear viscoelastic media and sample

I applications are given. Selection of the class of media is guided by

-I actual rheological behavior of monolithic and composite materials as well

as the need for simplicity to be able to understand the effect of primary

3 material and continuum parameters on crack growth behavior. First,

pertinent aspects of J integral and energy release rate theory for

nonlinear elastic media are discussed. Nonlinear viscoelastic constitutive

equations are then given, and correspondence principles which establish a

simple relationship between mechanical states of elastic and viscoelastic

media are developed. These principles provide the basis for the subsequent

extension of J integral theory to crack growth in viscoelastic materials.

uEmphasis is on predicting mechanical work available at the crack tip for

initiation and continuation of growth; some examples show how viscoelastic

properties and the J integral affect growth behavior. Included is the

problem of a crack in a thin layer having different viscoelastic properties

than the surrounding continuum. The Appendix gives an apparently new

constitutive theory for elastic and viscoelastic materials with changing

microstructure (e.g. distributed damage) and indicates the conditions under

which the fracture theory in the body of the report is applicable.
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1. Introduction

Methods for characterizing and predicting crack growth in

materials which are elastic (except for the small-scale inelastic zone

at crack tips) are well-established theoretically, and considerable

experimental confirmation exists [1,2]. The methods for linear media

now commonly use criteria for initiation and continuation of crack

growth which are expressed in terms of stress intensity factors or

energy release rate. For nonlinear media, especially rubber (2],

energy release rate is often employed.

Fracture theory for materials exhibiting large scale inelastic

4behavior is considerably more limited. The J integral theory [1,3]

has been successfully applied to initiation of crack growth in time-

independent (elastoplastic) isotropic, homogeneous media under small

strains. An analogous parameter, the C integral [4], has served in a

similar manner to define crack speed in nonlinear viscous bodies.

-- Analytical methods and their verification for crack growth in

viscoelastic media are mainly limited to linear isotropic, homogeneous

materials, although some theoretical results exist for linear

orthotropic and nonhomogeneous materials [e.g., 5-9]; stress intensity

factor is the primary characterizing parameter for fracture initiation

time and crack speed.

The objective of much of the work on elastic and inelastic

materials has been to identify a basic crack-growth controlling

parameter, such as stress intensity factor or the J integral, which

accounts entirely for the geometry of a body (including crack

geometry) and the applied loads. Values of the parameter which

produce crack initiation and various crack speeds are then found for a

w
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given material, usually experimentally. This information, may be used

to predict crack growth in different geometries and] aid the selection

and design of fracture-resistant materials and structures. It is, of

course, very important that the characterizing parameter account fully

for the effect of geometry and loading conditions on crack growth if

empirical corrections for each application are to be avoided.

In this paper we show that parameters analogous to the J integral

and energy release rate may be used for quasi-static crack growth in a

class of nonlinear viscoelastic materials under finite strain. In

:4 Section 2, results on the J integral and energy release rate for

three-dimensional deformation of nonlinear elastic media are

collected. Included is a simple (and apparently new) derivation of

the relationship between the J integral and energy release rate. The

J integral formulation is guided by Chen and Shield's work [10,111,

and interpretations are given which are used for subsequent

application of the theory to viscoelastic fracture.

Viscoelastic constitutive equations and methods of quasi-static

deformation analysis using elastic solutions (correspondence

N principles) are discussed in Sections 3 and 4, respectively.

Correspondence principles are given for a broader class of problems

than considered in the fracture analysis; for example, they represent

a new approach to analyzing crack closing and healing phenomena and

ablation effects.

Sections 3 and 4 provide the basis for using the J integral and

energy release rate in nonlinear viscoelasticity problems. This

generalization, along with results in Section 5 for mechanical work

input to the crack tip, is applied in Section 6 to relate fracture

initiation time and crack speed to the J integral and viscoelastic
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properties of the continuum and failing material at the crack tip;

" these relationships represent extensions of the author's earlier work

[121 based on a two-dimensional J integral and small strains. Then,

as another application of the theory, in Section 6 we also predict the

effect on crack speed of the rheological properties of a zone of

damaged or otherwise special material surrounding the crack tip. In

practice, viscoelastic behavior of this zone is often significantly

different from that of the far field as a result of high local

stresses, dissipative heating, or the particular physical situation;

the craze zone near crack tips in glassy polymers [13] and an adhesive

interlayer are important examples. Surface or path-independence of

the J integral exists for materials with certain types of distributed

damage as shown in [12] and generalized in the Appendix; we use this

* important property here in accounting for behavior of the material

surrounding the crack tip.

The deformation and crack growth theory in this paper is not much

more involved than that of nonlinear elasticity or special cases of

linear viscoelasticity. This simplicity, compared to what one would

expect for nonlinear viscoelasticity, is a direct result of the

particular constitutive equations and mechanical variables selected to

characterize rheological behavior. We believe the theory provides a

practical approach to the development of realistic damage and global

fracture models for nonlinear elastic, viscous, and viscoelastic

media, as illustrated by the author for a particulate composite

material and polycrystalline metal (14,15].

ao - , * -oUo ° . * - -
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2. The Reference Elastic Problem

Certain basic equations for elastic materials under large strains

are summarized in this section. They are expressed in terms of

stresses o?. (i,j = 1,2,3) and displacements uF referred to an

orthogonal set of Cartesian coordinates xi which define the location

of material points in the undeformed state of the body, Bo. (Although

Bo is called the "undeformed state", it could be any fixed reference

configuration, such as that existing at one time during the actual

deformation history, without necessitating a change in the basic

theory.) The instantaneous Cartesian coordinates yR of material

points in the deformed body BR are referred to the same fixed axes as

used for Bo, and thereforeyR = u? + xi. In some cases aij or u? will

be equal to the stresses or displacements in a viscoelastic body; but

in general they are different, and therefore the superscript R is used

to make this distinction. Section 4 is concerned with the

correspondence between states of elastic and viscoelastic bodies. For

now we shall just list and discuss relevant equations for elastic

media.

The stresses a j are taken to be the components of the so-called

Piola stress field [161. The components of the Lagrangian stress

tensor T ( [17] are given by the transpose of aj; viz., Ti - .-

Although acj is not in general symmetric, these components are very

convenient for our purposes because the equilibrium equations,

+ F 0 (1)

and the relation between surface tractions TR and stresses,

T C jnj(2)

.U
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are identical in form to those in the linear theory. (Throughout this

paper the summation convention is followed wherein repeated indices

I imply summation over their range unless stated otherwise.) All

quantities are referred to Bo, in which xi are the independent

variables. Namely, FRS is body force per unit undeformed volume, TR is

the surface force per unit undeformed area, and nj is the outer unit

normal of an area element defined in the undeformed state; force

quantities are defined as the vectors existing at the current time t,

but referred to the undeformed geometry, Bo.

A potential 4 is assumed to exist with the property that

ORj = a/a (uR j) (3)

where, by definition,

uj a- x (4)

For an elastic material * is the strain energy per unit undeformed

volume [17]. If we invoke the physical requirement that P is

unaffected by rigid body rotation (and recall that we are using the

coordinates xi as the independent spacial variables) the dependence of

0 on the displacement derivatives can enter only through the syrrmtric

Green's strain tensor 117],

ER.(1/2)[d .+ 0 + R R (5)

However, considering the association between the present elastic

problem and the actual (viscoelastic) problem introduced later, we

shall not restrict t by this usual physical condition. Instead,

unless stated otherwise, we suppose only that

i = Ru ,j, x2, x3 , t) (6)

I -
p " ' "' ";, .., " " v ' -' -.--,. .- .-.-' . .-...- ..
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implying possible dependence on the nine displacement derivatives,

spacial variables x2 , x3 (allowing for nonhomogeneity with respect to

x2 and x3 ) and time t (allowing for "aging" changes). The body is

assumed to be homogeneous with respect to xl for now to achieve

surface-independence of an integral that is useful in fracture

analysis. With the same objective in mind, we assume a body force

potential #F = $F(u1 x2, x3 t) exists, in which

1(

Consider a generic volume V throughout which D and IF exist with

properties defined by Eqs. (3) and (7). Denote the bounding surface

of this generic volume by S and let TR be the surface tractions and n

the components of the outer unit normal. Multiply Eqn.(l) by -3uR/ax l ,

integrate over the volume V, and then use the divergence theorem [18]

to convert the integral to an integral over the surface S. The result

.is

f [(' + OF)n, - TAu./ax]dS = 0 (8)

s

where ds is an area element in the undeformed body. When DF = 0 and

the body is homogeneous, the integral I becomes identical to the x,

7component of the integral vector derived by Knowles and Sternberg

[161; however, we have followed Chen and Shield [10] and not limited

o to dependence on strains. By considering only the x, component,

material nonhomogeneity with respect to x2 and x3 may be taken into

account while retaining the property that of= 0. Only this component

is needed in the fracture analysis to follow.

The J integral and crack tip model: Suppose the body contains one

.1 or more cracks. Figure 1 shows as an idealization the intersection of
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a crack tip region and local crack faces with the plane of the page.

The dashed line is the intersection of a representative surface S with

the same plane. In order to meet the conditions which lead to JA= 0,

no crack can exist inside or on S.

The region designated as the failure zone in Fig. 1 is where

material separation or at least intense damage occurs. The material

comprising this zone in the undeformed state is of length Ot (not

necessarily small) and is assumed to exist in a layer which is thin

-~ (in the x2 direction) relative to a. outside of the failure zone it

is assumed there exists at least a small neighborhood around the crack

tip for which J = 0. A useful def inition of the crack tip P, and one

that we employ, is that it is the leading edge of the material for

which the conditions used in deriving =0 are not met.

It should be noted that tractions may exist along the crack faces

to the left of the failure zone; for example, these may be due to a

pressurized fluid, interfacial friction and contact pressure, or

damaged material connecting the faces of the intact continuum (as in a

craze zone in some plastics). In these cases, especially the last

one, location of the left end of the failure zone (points 1 and 2) is

somewhat arbitrary and its selection may depend on the particular

application of interest. However, normally one would choose it so

that Ca efltends at l east over the part of the surface x2 = 0 for which

crack tip material behavior is too complex to be able to predict the

* detailed traction distribution.

Next, weintroduce the integral Jf:

R
if aT R DAu.1(9

0
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where T 2is the normal stress and T and T are the shearing stresses

g in the x, and x3 directions, respectively, along the interface between

, the failure zone and continuum; these are Piola stresses, as defined

previously. It is assumed that the failure zone is sufficiently thin

that the stresses in Eqn. (9) are the same along both top and bottom

portions of the interface. The AuR are the components of the

relative displacement vector between initially adjacent interface

points across the local crack plane x2 = 0. The viscoelastic normal

stresses, C2 and a22' and displacement, Au2/2, along the upper surface

of the continuum are indicated in Fig. 2.

For later use we shall suppose that the crack tip or edge P is

essentially straight and parallel to the x3 axis over at least a short

distance £3 from the plane of the page (x3 = 0). Over this same

distance it is assumed the failure zone integral Jf does not vary.

Since n, = 0 along the top and bottom interfaces it is readily shown

,2n that the contribution to J, Eqn. (8), from the portion of S along the
top and bottom boundaries of the failure zone over the crack edge of

length £3 is equal to -JfZ 3, assuming the integral over the small

curved surface at the tip P can be neglected; this latter assumption

is reasonable as long as the undeformed failure zone layer is thin

.7J relative to a and we impose the physical requirement of finite

stresses (including those at P). Thus, from the condition 0,

Jv = Jf (10)
.

where

R
Jv (- +l1) O(+F) nl- T' Ids (11)

S 1

and S1 is the portion of S not included in the integration along the

-° -- - S . ... - .• o . , . .. - .. .. V . .
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failure zone over the length t3"

Notice that Jv is a surface-independent integral in that its

value is the same (i.e. Jf) regardless of the choice of S1 except for

the conditions stated above. It can be reduced to Rice's path-

independent J integral [31 by omitting the body force and assuming

two-dimensional deformations. Specifically, let S be a cylinder

(having the cross-section in Fig. 1) with generators and with normals

to the end areas which are parallel to x3. At the ends n, = 0, and

therefore the contribution to J from the cylinder ends vanishes if

TR3uR/axl = 0; this condition exists on the ends when T? = 0 (e.g.

plane stress) or TR = 2 -u 3 x, = 0 (e.g. plane strain) or T=

au U/ x = 3u R/x I = 0 (e.g. antiplane strain). With the integrand in

Eqn. (11) further assumed to be independent of x3,
J uR

= J [(4 + P.) dx2 - T 1 dL] (12)
Cl 1

- where the integration path C1 starts at point 1 in Fig. 1 and proceeds

counterclockwise to point 2. Assuming oF = 0, crack faces parallel to

x, and traction-free, small strains and rotations, and further that

(P is a function of uRj through the strains, Eqn. (12) reduces to the

original form of Rice's J integral.

Suppose S1 in the three-dimensional version of Jv, Eqn. (11), is

chosen so as to not include any portion of the failure zone-continuum

interface (outside of t 3 ). We may then consider Eqn. (10) to give a

basic relationship between the mechanical state of the continuum

through Jv and the characteristics of the failing material along a

segment of the crack edge. In some cases one may want to use a

failure zone integral in which Z3 includes the entire crack edge (or a3I
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large segment of it). If the integral, Eqn. (9)., is not constant or

the edge is not straight along the length of interest, one would

return to Eqn. (8) to derive the desired form, accounting as necessary

for curvature of the edge.

Finally, it should be noted that Eqns. (10) and (11) do not

depend on crack faces being parallel to the x, - x3 plane. Rather,

this condition is imposed only on the layer of material comprising the

" undeformed failure zone.

Energy release rate: Up to now we have not considered crack

growth. By introducing a virtual crack extension, the value of Jv can

be related to a global change in energy. This relationship may be

useful for the experimental or theoretical determination of Jv for

elastic and viscoelastic materials, as an alternative to evaluating it

directly from the integral, Eqn. (11). The desired equation may be
derived by first multiplying Eqn. (1) by a change in displacement u ,

integrating over the volume V of Bo , and using Eqns. (2), (3), (4),

and (7) along with the divergence theorem. There results, finally,

the familiar equation for virtual work,

fT 6U ds=J (' + F)dv (13)
S V

Both S and V have been assumed constant in deriving this result;

e.g., there is no explicit change in crack tip locationt or phenomena

such as material removal through melting. Crack growth will be

simulated through a suitable choice of 6u, as in [14], thus

permitting the use of Eqn. (13). An edge segment of length £3 (in the

*.A

%- . 4.............. ....... ... ,- m *-, a iaa "in', -,
m ' - a ' ' a . '

a m,



X3 direction) of only one of possibly many cracks in the body is to

be advanced an amount da, as illustrated in Fig. 3; this advancement

is assumed independent of x3. The interface between the failure zone

material and continuum of undeformed planar dimensions (u + 6a) by 3

is denoted as Sf and considered to be a portion of S in Eqn. (13). As

before, we denote by AuR the current relative displacement components

between originally adjacent material points across the local crack plane

(which are specifically the displacements between the portions of Sf

above and below the crack plane). Self-similar crack growth is now

imposed: AuR = Auf(C)along the failure zone; i.e., the relative

displacement is a function of only E, where from Fig. 3

a= -a -a O + a (14)

is the distance between a material point and the advancing crack tip.

The location of a material point referred to a fixed axis is defined

by X. Also, the crack tip location is given by a, with the initial

value being ao and final value a0 + 6a (at the end of the virtual

displacement process).

• ELet 6WR be the virtual work of the failure zone on the continuum.

Then, if 6a<< t,

aW~fRu dsu T ' 6a j T - - 6a ds (15)
sf f f

From Eq. (14) a&/aa = 1. Using the previously introduced notation

for interface tractions and relative displacements (cf. Eqn. (9)), Eqn.

(15) becomes Rf+6a dhu.R
6w - -3a TR d d (16)

0

Observe that mui/ax = d~ul /d& since 3/a = 1 from Eqn. (14).

I . -W , " , " . "., " . " . " . . . . ". .



12

Moreover, when we let 6a O the integral in Eq. (16) becomes Jf, Eq.

(9), because E in the latter equation is equal to I. This result,

together with Eqn. (13), yields,

Jf = -aPv/A (17)

where a Pv/A 6 Pv/ 3 6 a and

Pv f(t + oF)dv + f 'tTdS (18)

V ST
where we have introduced a surface traction potential, OT = T(U?,

xj,t), with the property that

T '= -a40T/auO (19)

for the portion of the surface ST- It is assumed that over the

remaining surface, SU = S - Sf - ST, the displacements are given; i.e.

6U = 0 in the virtual crack growth process. Although it will not be

done here, Eqn. (18) can be easily generalized to the case of mixed

traction-displacement conditions, in which different components of

traction and displacement vectors are specified over the same surface.

Equations (10) and 17) provide the familiar result for the J

integral,

J = -aPv/DA (20)

Recall that Eqn. (10) is dependent on the assumption that the material

is physically homogeneous in the x, direction for the portion of the

continuum bounded by the failure zone and the surface S1 used in Eqn.

(11). In contrast, this assumption is not needed to derive Eqn. (17),

in that 4, 41, and OT in Eqn. (18) may depend explicitly on all

coordinates xi (as well as on displacement derivatives or displacements,

as previously indicated).

F + ' ':."; ,,,,'.-'--- ;-,;--,.,,'-"-"-J -; :.i.: .' -,, -.; .;.; a ..-;. - . a. -.;-,::; ., -.- -. , - - -. .;-.. ... .-
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Finally, it is to be observed that when surface tractions on ST

or body forces are specified functions of x. (or treated as such), the

potentials are

Equation (18) then takes the familiar form,

Pv ( F~u?) dv f T~u? ds (22)
V ST

For elastic materials, the quantity Pv is the potential energy. Its

physical significance is somewhat different for the class of

viscoelastic materials discussed in the next section.

3. Viscoelastic Constitutive Equations

The constitutive equations which will be used are based on Eqn.

(3), but the displacements uF and stresses aF are not necessarily

physical quantities in the viscoelastic body. Instead, they are

related to the physical displacements ui(xk,t) and stresses Oij(xkt)

through hereditary integrals.

Specifically, considering displacements first, and assuming they

vanish for t<O,

Ot au.Rs  = - It- 1123)
u? ER) E(t - Dt)--!dT (3

where ui - ui(xjr) is the physical displacement in terms of the time

variable of integration, T, and, as before, the coordinates xi of the

undeformed body. The quantity E = E(t-t,t) is called a relaxation

modulus, which imparts hereditary characteristics to the deformation

behavior. The coefficient ER is a free constant which will be termed

the reference modulus; it is helpful in discussing special material .

'" l =% ' :'%'II . . .I n '- m I n .. ,' ". •" " '-
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behavior and introducing dimensionless variables. In order to allow

for the possibility of a discontinuous change in ui with time at t=O,

the lower integration limit in Eqn. (23) and succeeding hereditary

integrals should be interpreted as 0- unless indicated otherwise. The

inverse of Eq. (23) is

t R

ui = E D(t-T,t)!--- dT (24)

0

where D = D(t-T,t) is termed a creep compliance. It is readily shown

that E and D satisfy

tJD(t - T,t)-E(T - toT)dT H(t - to ) (25)

where to >0 and H(t - to) is the Heaviside step function: H(t-t) =0

and 1 for t <tO and t >to, respectively.

It will be helpful to use abbreviated notation for the hereditary

integrals. For any function of time, f,

{Edf} -- E(t- ,t)ad , (26a)

Ddf= T,t)dT (26b)

0

Also, in view of Eqns. (23) and (24),

f ="d{Ddf1l =Dd{Edf1j (26c)

Equations (23) and (24) become, respectively,

0~ {Edui} , i u {Ddu } (27)

Similar hereditary integrals are assumed to relate aij and jij'

but modulus and compliance are interchanged,

Oj = {Dldaij}, ij ={EldRj}  (28)
0 i Ddoj E'o~
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where the subscript 1 is used to indicate that the relaxation modulus

and creep compliance (as well as another reference modulus ERI) are

not necessarily the same quantities as in Eqn. (27). Inasmuch as aj

and uF are not in general the physical variables, we shall call them

pseudo stresses and pseudo displacements, respectively. Similarly,

the adjective pseudo will be used when referring to the potentials ,

Eqn. (3), *F' Eqn. (7), and T' Eqn. (19) in the context of

viscoelastic analysis.

The hereditary integrals used here are linear functionals with

relaxation and creep functions which are independent of xi. This

behavior provides the useful property that differentiation with

respect to xi and hereditary integration may be interchanged; e.g.,

a = IEd(aui/9xj)I , aui/axj = $Dd(D/Dx)I (29)

The choice of constitutive Eqn. (3), with pseudo and physical

variables related in accordance with Eqns. (27) and (28), is motivated

by the fact that this constitutive theory approximates well the

deformation behavior of various materials, and leads to relatively

simple equations for viscoelastic deformation and fracture analysis.

The latter point will be brought out in this paper. The validity of

the constitutive theory has been discussed in [12,14,151 for the case

in which a j =ij. Observe that it reflects the commonly reported

behavior in which stress-independent relaxation or creep functions in

single integrals serve to characterize hereditary phenomena exhibited

by many nonlinear materials. Also, some important special cases may

be readily recovered through an appropriate choice of the material

functions. Specifically, if E = E1 =D- D1 = ER = ERI, Eqns.
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(27) and (28) reduce to uR ui and a = aij; consequently, Eqn. (3)

reduces to that for nonlinear elasticity. If D = E1 = ERI and

D = (tvER)- (t-T) (30)

(where t v is a time constant) we find aRj =ij and

u= tvaui/t (31)

which, together with Eqn. (3), yields linear or nonlinear viscous

behavior. The general creep compliance D = D (t - T,t), together with

0ij= a ij (corresponding to E1 = E R ) and a pseudo strain energy

density which is proportional to that for a linear elastic, isotropic

Rmaterial in terms of ui j , yields the standard constitutive theory for

an aging linear viscoelastic material with constant Poisson's ratio;

nonaging behavior results if D = D (t - T). The generalization

provided by Eq. (28) in which pseudo and actual stresses are not equal

is useful for crack closing and healing analysis, as discussed later.

It should be mentioned that the notation D = D (t,r) is employed

in [141 instead of D = D(t - T,t). These forms are equivalent, but

the latter is more convenient in the study of crack growth. The

pseudo energy 0 may also depend explicitly on time to account for

effects of aging in the nonlinear behavior. "Aging" is not limited to

intrinsic material changes, but may be due to direct physical causes

such as transient temperatures and residual stresses [141.

4. Correspondence Principles

Correspondence principles in linear viscoelasticity theory

usualy refer to elastic-viscoelastic relationships involving Laplace

transformed stresses and displacements. Instead, here we shall give

three correspondence principles for time-dependent, quasi-static

.... . . . . .*. *.. . . . . . . * -. . . . -:
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solutions to nonlinear elastic and viscoelastic boundary value

problems; they enable a viscoelastic solution to be easily conbtxucted

from an elastic solution. In terms of Piola stresses and coordinates

xi of Bo the equilibrium equations are

3a /a + Fi = 0 (32)

The stress-pseudo displacement derivative equations,

, = jEld(H/9(u'd (33)

and body forces

Fi = - Eld(aOF/auJ) (34)

in which

R -,(auilaxji}, u0 R {Edu i}  (35)

lead to three integro-differential field equations for the three

displacements ui when substituted into Eqn. (32). The functions 0 =

O(uR,j,Xk,t) and OuF = sF(U, xk,t) are considered to be known; until

Section 6P where the Jv integral is used, we allow for explicit

dependence on all three coordinates xk -

As boundary conditions we assume the traction potential O T=

(11, x,t) is specified on a portion ST of the surface; viz.,

aijnj = Ti= - IEld(DOT/au )l on ST (36)

Elsewhere, displacements Ui = Ui (xj,t) are given,

ui Ui on SU (37)

The total surface is S =S + S U .  Although not treated

!',..-v,-V V ,_ . ,- . ,,,, . *.'.. , - '.. .*-"" -"' " " " ' " ' . . • - . *; / - ,:
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here, generalization of the analysis is easily made for mixed

conditions in which different traction and displacement components are

specified over the same part of the surface.

In all three correspondence principles the reference

configurations Bo of the elastic and viscoelastic bodies are specified

to be identical (with identical cracks, if any). The first

correspondence principle is restricted to time-independent surfaces:

SCP- I. The viscoelastic solution (i.e., the stresses and

displacements in the viscoelastic body which satisfy Eqns. (32)-

(37)) is

a ij={Elda'.} , ui= {DduR }  (38)
1 :i

where aj and uR satisfy equations of the reference elastic

problem, Eqns. (1), (3), (4), and (7), together with the boundary

3 conditions,

a jnj= T? -on ST, (39a)

L? = {EdU i}  on S (39b)

It is seen from Eqn. (39b) that we first transform the given

displacements Ui (if any) using the hereditary integral and obtain

those needed in the elasticity problem. The governing equations of

elasticity for the variables aj and u? are then solved. This

solution is used in Eqn. (38) to obtain the viscoelastic solution.

That Eqn. (38) is correct is easily established by substituting it

into Eqns. (32)-(37). If the body forces Fi or surface tractions Ti

are specified in the viscoelasticity problem, then one transforms them

to obtain FR -- {DldF i } or T - {DldTi}, after which the elasticity

L,-. .
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". problem is solved using the potentials in Eqn. (21).

When ST and SU vary with time certain difficulties arise. If

niAt d 0 on ST, then Eqn. (39) does not result in the correct

condition, Eqn. (36). This problem may be seen by observing that for

the solution in Eqn. (38),

aijnj = {EldOj}nj ' {EldOn j } on ST  (40)

and therefore aijnj X Ti. Other difficulties are due to the effect of

past values of Ti and Ui on current values of TR and UR. For example,

consider dST/dt > 0 and DT in Eqn. (21). (By this shorthand notation

we mean at least a portion of SU becomes in time a surface on which

Ti is given.) Then* the traction Ti cannot be predicted for all t > 0

from the given boundary conditions on the part of S where the change

3 from a displacement to traction condition occurs.

The next correspondence principle is for this type of boundary

value problem, but we assume El = ER . Hence, {Eldf} = f for all

functions f, and therefore the constitutive equations and body forces

are, respectively,

RR
,i F 1

a ij =l(u.,j), F. = - R/Du (41)

Also,

ijnj = T1 S -10T/u R on -ST, ui :U on SU (42)

CP- II. If dST/dt Z 0, the solution of viscoelastic Eqns. (32),

(35), (41), and (42) is

R RC *. j u. = fDdu (43)

where a?. and uF satisfy the equations of the reference elastic

1) 1

A s: ' .' ' ' , ; ' , L ' " ' ' ,- , ' , .' , ' .- ., ' .-, , ' .. .



J

20 1
problem, Eqns. (1), (3), (4), and (7), together with the boundary

conditions in Eqn. (39) in which Ti H T..
1 12

Verification of Eqn. (43) is readily accomplished as before by

substituting this solution into the governing viscoelasticity

equations. Inasmuch as the elastic and viscoelastic stresses are the

same throughout V and on S at all times, no basic difficulties arise

in verifying the solution if Dni/at 7 0 on ST and in determining TR

when Eqn. (21) is used for OT" However, the present class of problems

obviously allows for crack growth, and certain physical questions of

material continuity and interference have to be addressed. Pursuing

this point, we observe that the relative displacement between crack

faces, Aui , in the viscoelastic body is the difference of

displacements in Eqn. (43) evaluated on adjacent crack faces,

Aui = {DdAu} (44)

where Au? is the displacement difference in the reference elastic

problem. Since we have specified the instantaneous geometry of all

cracks in the elastic problem to be the same as in the actual

viscoelastic body, Aui is correctly predicted to vanish until the time

tl, say, when a crack tip reaches any particular physical location;

this folloWs from the fact that Au? = 0 at this same location when

t < t, (assuming prior cracking and rejoining of the crack faces has

not occurred) which in turn implies the hereditary integral in Eqn.

(44) vanishes when t < tI .

The present solution, Eqn. (43), does not account for contact or

rejoining of crack faces. Rather, it would predict that adjacent

crack faces pass through one another if in the actual situation they

rejoin and interfacial compression exists. Following such rejoining,

..................
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the stresses in Eqn. (43) are not valid, and the solution may become

much more involved. We shall not consider the general problem here;

rather, only the case in which cracks are initially open and then

close or shorten through a healing process is discussed. The third

correspondence principle is concerned with the problem dST/dt 0 0, and

it is limited to the case E = ER; Eqns. (32)-(37) still apply except

u= u and u -,j = ui,j are now used.

CP- III. If dST/dt <_O and if 3ni/at = 0 on ST, the viscoelastic

solution for the case E = ER is

aij = {E R = u (45)

where oaj and u? satisfy the equations of the reference elastic

problem, Eqns. (1), (3), (4), and (7), together with the traction

boundary conditions in Eqn. (39) and

u Ui onS (46)

Verification of Eqn. (45) is made as before. Observe that

elastic and viscoelastic displacements are now equal, while the

stresses depend on the relaxation modulus E 1 . Also, it is of interest

to observe that if tractions Ti are specified on crack surfaces (such

as in the failure zone) the tractions TF in the elastic problem are

different from the actual values since TR = {DldTi}.
The Correspondence Principles II and III are not limited to crack

problems. For instance, they may be applied to problems involving

contact between different continua or ablation. Furthermore, even

though they are based on apparently different constitutive equations

they may in some cases be used for the same material, at least as an

. . ..,
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approximation. Indeed, for linear viscoelastic behavior in which the

only effect of aging is in the relaxation moduli E and E1 (i.e. 4) does

not depend on tim other than through the displacement derivatives), the

two constitutive equations are easily shown to be equivalent if E=

E.j
The remainder of this paper is concerned with crack growth

analysis for materials obeying Eqns. (41) and (42). The

Correspondence Principle II (CP-II) and Jv integral theory will be

used in the development of criteria for predicting growth initiation

time and crack speed.

5. Work Input To The Crack Tip

An important quantity in crack growth analysis is the mechanical

work available from the viscoelastic continuum for producing the

separation (or at least a significant change of state) of material in

the failure zone. This work, Wf, will be defined using an idealized

model of the crack tip, and subsequently expressed in terms of the

parameters Jf and Jv of the reference elastic problem.

Consider as before a slender failure zone (in which a is large

compared to the initial thickness of the failure zone in the x 2

direction) and locally two-dimensional deformations plus antiplane

shearing. Before discussing Wf, let us recall that Jf for the elastic

problem was defined through a line integral taken along the

instantaneous interface between the continuum and failure zone.

Furthermore, the surrounding material was assumed to obey Eqn. (3),

while no such restriction was imposed on the zone itself. For the

present purposes of discussion, let us suppose this zone consists of

the thinnest material layer for which Eqn. (3) provides an adequate

representation of the surrounding material. Figure 4 depicts the

U "-¢. - '. -". '. . v .' . ." .. .". ." " " . , ., , k ll *.',t,,U,,,,,,. .,. ,t , . . . ' ' ' . . . •. . - . . .' . .- -. -
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deformed failure zone (in the opening mode for simplicity) using a

solid line to indicate the interface.

For the viscoelasticity problem, the work per unit undeformed

area (in the x, - x3 plane) input by the continuum to a given material

element (of width dxl) in the failure zone from the time the crack tip

arrives at the element, t a , to the time the left end of the failure

zone arrives, t., is

ta u

Wf = Ti -- dt (47)
t a

The quantities ri and Aui (i =, 1,2,3) are Piola stresses and relative

displacements, respectively, along the interface, and therefore they

have the same significance as their counterparts in Jf, Eqn. (9).

Notice, however, that differentiation and integration in Eqn. (47) is

3I for a fixed value of x I , whereas that in Eqn. (9) is for a fixed time;

thus, Jf does not in general reflect the deformation of a given

material element. As a result, quite apart from the distinction

between elastic and viscoelastic solutions, Wf is believed to be a

more basic parameter than Jf for defining material failure.

There is an additional important difference between Wf and Jf as

they have been introduced. Since Wf is the work input to one material

element, the continuum-failure zone interface has to consist of the

same continuum material points at g = 0 as at E = a. The dashed line

in Fig. 4 is intended to represent this interface. The height of the

material element at E = 0 is indicated by ho , which defines the

thickness of the layer that ultimately becomes part of the failure

zone; depending on the material behavior, the two interfaces may

essentially coincide along a partial wirith or entire width 0 < C

II
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s c, or may not coincide until E = a (t = to). Considering the

-2A analysis to follow, in which AuF and Aui are to be related through CP-1

II, we should use the same material interface in the elastic and

viscoelastic problems; the outer interface (the dashed line in Fig. 4)

may be used if the undeformed value of ho is small enough to not

invalidate Eqn. (10). We shall assume that this is indeed the case.

According to CP-II, the relative displacements in the elastic and

viscoelastic problems satisfy Eqn. (44) if the tractions acting on the

elastic and viscoelastic continua are the same. (Recall that a

traction potential 0T was used in the boundary conditions of CP-II

(cf. Eqn. (42)); but it is clearly sufficient to use the same

tractions, regardless of whether or not they are actually known or are

expressed in terms of a potential.) Noting that stresses Ti and T.R1

are tractions along the continuum surface (apart from a sign change

due to hi), we specify TR = Ti in order to be able to use Eqn. (44) in

the next section. Criteria for the time tj at which crack growth

initiates and for the speed of propagation a will be studied.

6. Analysis of Crack Growth

Initiation of growth: For initiation we consider a material

element which is at the left end of the failure zone a = from t = 0

to tj. As the body is loaded (beginning at t = 0) the crack tip P

moves to the right but the element at =a does not necessarily break

immediately. Rather, it breaks at t = ti, the so-called initiation

time. We are interested in expressing the work input to this end

element in terms of the far-field parameter Jv. In order to simplify

the analysis so that viscoelastic effects may be shown clearly,

behavior of the material in tne failure zone will be idealized to that

of a time-independent, rigid-plastic body; viz., we assume the T i are
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independent of t and E. Thus, from Eqns. (9), (44), and (47),

Jf = Ti~u (48)

and

" Wf = TiAuia = Ti{DdAuaR} = {DdJfl (49)

Q1

where AS, and Auia are the relative displacements at & = a. The last

result together with iv = Jf, Eqn. (10), and the notation in Eqn.

(26b), yields an explicit formula for work input at t = ti:

Wf = ERf D(V-Tt)-- (50)
0

This result is the crack tip work per unit undeformed area in

terms of two continuum-related parameters, Jv (which accounts for the

geometry of BO and applied loads) and D, the creep compliance of the

continuum. The Jv integral is the same as J for an elastic material

when expressed in terms of the surface tractions. Thus, just as for

an elastic material, if the failure zone size a is small compared to

all other geometric features, Jv is essentially independent of failure

zone size and properties. Recall that ER is a free constant, and may

be selected as desired. (Its value does not actually affect Wf

because Jv turns out to be inversely proportional to E R.) Thus, if

the continuum is elastic with a constant compliance D, we may use ER =

r-land obtain the familiar result Wf = Jr.

An equation for predicting t i is obtained by introducing the work

2ri required to fail the element at = a. Thus, Eqn. (50) becomes

2r i = {DdJv} (51)
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The factor of 2 is used because the "fracture initiation energy," ri,

is defined like a surface energy, counting the cross-sectional area of

each side of the failed element at E = a as one unit of area. This

energy is not necessarily a constant, even when the physical state of

the crack tip is the same for all conditions of interest; if the

failure zone is viscoelastic, r i may depend on t i . Whether r is a

given constant or a given function ri(ti) Eqn. (51) is an implicit

equation for predicting tj in terms of the history of Jv"On the

other hand, one could use Eqn. (51) to obtain r i from tests of

laboratory specimens by determining the value of the right hand side

of Eqn. (51) when the crack starts to grow under various test

conditions.

Finally, we observe that for the opening mode of crack tip

deformation in a locally isotropic, linear viscoelastic material in

plane strain,

Jv= (1 - V2)K2/ER (52)

where KI is the stress intensity factor and v is the Poisson's ratio,

assumed constant. (This familiar expression for elastic materials may

be derived from Eqn. (10), for bounded crack tip stresses, by using

[5, Part I, Eqn. (22)] for the displacement.) Substitution of Eqn.

(52) into Eqn. (51) to express the initiation criterion in terms of KI

yields the author's earlier result for linear viscoelasticity [5, Part

II, Eqn. (64)].

Crack speed: Predictions of Wf for the next case with a>O is

facilitated by using E rather than t as the independent variable.

Thus, Eqn. (47) becomes

- ' % , ~ i ' ',' 'i _ , 4, -" ', . • " -i. . - . " . . .o- . . . -. .• .
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Wf= Ti  d (53)

where Aui = Aui(xl,&). Equation (53) will be expressed in terms of Jv

for short-term steady state conditions. Namely, the speed a,

interface stresses ri, and failure zone length a are assumed to be

essentially independent of time during a generic time interval a/i for

which the crack tip moves a distance a; during this same interval it

is further assumed that Aui is essentially independent of x, and t

(although it depends on E), a is small compared to the distance to

other geometric features, and that there is no significant change in

D (t - T,t) due to aging (through the second argument, t).

These conditions, together with the observation from Eqn. (44)

that Aui and Au? are related in the same way as for a linear

viscoelastic nonaging material, lead to the approximation [5, Part

II], u = ERD(,t)AuR (54)
R I

where t E kE/i. The factor k is a very weak function of slope n E

alogD/Blogt, and is practically 1/3 for the entire range of slopes

(0 1 n ! 1) encountered in practice. Equation (54) and the value of k

stem from the smooth, cusp-shaped relative displacement Au?(&)

predicted for a linear continuum (with bounded crack tip stresses),

such as that illustrated in Fig. 2 for the opening displacement.

Although further study of the accuracy of Eqn. (54) seems warranted

for nonlinear continua, it is likely to be a good approximation in

many cases in view of the insensitivity of Aui/AuF to the detailed

behavior of Au]R(&) [5, Part II]; indeed, Eqn. (54) may not require

a to be small.

Substituting Eqn. (54) into (53) and using the same type of

.1 approximation as in the linear theory [5, Part II], which does not
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require Ti to be spacewise constant, we find
,aaAuR

Wf =- ERD t . ~~d (55)

where

t- ka/i (56)

The integration and differentiation in Eqn. (55) is for x, fixed,

while that in Eqn. (9) is for t fixed (i.e., fixed crack tip

location); however, because 1uR is independent of x, and t for short-

term steady-state growth, these integrals are equal. Equation (55)

thus reduces to

Wf = ERD(ta,t)Jf (57)

Upon equating Wf to the work required for failure of a material

element, 2F, and using Eqn. (10) we obtain the desired result for A,

2r = ERD(ta,t)Jv (58)U
It should be recalled that the crack speed has been assumed constant

for only the generic period a/a. Consequently, a as well as the other

relevant parameters may vary over much longer periods without

invalidating Eqn. (58). Similar to the initiation problem, the linear

theory [5, Part III is recovered from Eqn. (58) by using Eqn. (52) for

JV.

The failure zone may be viscoelastic, and therefore F could

depend on a as well as other local parameters. After allowing also

for possible dependence of a on Jv and ;, Eqn. (58) provides

implicitly the functional relationship = (Jv) , as discussed in [121

and in the next subsection using two zones. The effect on a of the

geometry of the undeformed body BO (in which crack lengths vary with

time) and applied loads is entirely accounted for by the instantaneous

.P%.J%.'' --*& % % " % .' % " ".'j' ' . - ' " " " " ... . " : - . .
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value of ir. In principle, a detailed model of the failure zone could

provide this function; but if the effect of fundamental material

parameters is not of concern, one would normally determine ;(Jv)

experimental ly.

Effect of a process zone or interlayer on crack speed: Figure 5

shows a failure zone within a "process zone" of length a. The latter

zone is introduced in part to account explicitly for the fact that

with some materials, especially plastics, there is a zone around the

crack tip which has different viscoelastic properties than the

surrounding continuum [e.g., 13]. Also, Fig. 5 can be interpreted as

a model for crack growth in an adhesive layer, in which the

adjacent continuum represents the two elastic or viscoelastic

adherends. Besides these uses, we may consider the process zone to

be a failure zone as previously defined (but now with some limitations

on its constitutive properties), and thereby obtain detailed

information on r fron the subsequent analysis.

For the class of damageable materials introduced in [12], and

discussed further in the Appendix to the present paper, a pseudo

strain energy density 0 exists for the response to both loading and

unloading. Additionally, iv is independent of path under many

conditions. We shall assume one path-independent integral exists for

the process zone, and another exists for the surrounding continuum.

The creep compliances and 0 for the two regions may be different, and

therefore these integrals are not necessarily equal.

Local two-dimensional deformations, appropriate to the use of

Eqn. (12) for the process zone, are assumed. Furthermore, Cl, is now

taken to be the dashed line in Fig. 5, which is adjacent to the

continuum-process zone interface. Subscripts "a" and "b" will be used

-. 'a.
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when necessary to distinguish between quantities for the failure zone

and process zone, respectively. A letter subscript will not be used

with parameters of the continuum.

The process zone is assumed to be thin in the x2 direction

(relative to 8 ) so that arguments similar to those given previously

for the failure zone may be employed; this slenderness greatly

simplifies the analysis while the essential physical features are

jretained. Thus, Eqn. (10) is used,

iv = Jfb (59)

where is in Eqn. (11) and (cf. Fig. 5),

fb Bn dn (60)
0

Similarly, for the J integral in the process zone,

Jvb = Jfa (61)

where R
a 3Au.Jfa = f 'rib a& dt (62)

0

It iS important to recognize that in using Eqns. (59)-(62) we

are, in effect, neglecting the contribution of the vertical segments

Yd at P and Q, Fig. 5, to the integral in Eqn. (8) for each contour. The

other simplification employed is that the Piola stresses along the top

horizontal line of each contour equal those along the bottom. The

same simplifying features are assumed to apply to Jvb when evaluated

on CI; thus, Eqn. (12) yields

T 2kdn +1 (3vb b B 63" I o
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-where I. is the integral along the vertical segment below point 1 and

above point 2 in Fig. 5. This contribution is retained even though

the integral along the vertical path at Q (within the process zone) is

neglected. The difference is due to the value of bat = a, which

may be very large as a result of damage in the process zone (cf.

• Appendix), while 1b at n = 0 will be small if I uRb/axjI is small; the

contribution of the integral of Ti R b/Jxl on the vertical lines is
'I

considered to be negligible due to, for example, smallness of

I u /ax1I at n=0 and IT.bI at E=a or the slenderness of the process

zone. Considering the fact that the vertical paths at Q in the

process zone and the continuum have been neglected and recalling

conditions for which 0 = , we are, in effect, defining Q to be close

to or ahead of the leading edge of major damage processes and to

straddle the location where the creep compliance D and function 0

(for the continuum) change to Db and Ob ,respectively (for the process

zone); of course, if D = Db and € = Cb the latter constraint is not

involved. The distance over which the change in functions occurs

should be small compared to 8 or at least be such that the result of -.

interest, Eqn. (73), is rot sensitive to the physical location selected

or calculated for Q.

Approximations like that in Eqn. (54) will be used to evaluate

the viscoelastic displacement. Thus, for the continuum just outside

the process zone,

Aui = ERD(t,t)Au , t- kn/a (64)

the process zone just inside the continuum,

AUib = ERDb(tb,t)ui t b  kbn/a (65)

" ' '- 4 *-' " ' " " "- ."- _ _" "- "..'. o .'". " - - - " -" " - . - . - --
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and the process zone just outside the failure zone,

Aui- Lf(taEt) u? , a k C/ (66)

Aib -ic- a'Aib a-a

In view of the local steady-state assumption implicit in these

9 approximations, a = b; also, because ERb and ER are free constants, we

Let us next relate Jvb to Jv- This may be done by using the

continuity of displacements and normal and shearing stresses across

the continuum- process zone interface: A Ui = Auib and Ti = tib. The

first condition together with Eqns. (64)and (65) yields

R D (t, t) R 67

Substitute this result into Eqn. (63), use the same type of

approximation that lead from Eqn. (53) to Eqn. (55) (but now with the

D-ratio in Eqn. (67) entering in place of D in Eqn. (54)), and then

employ Eqns. (59) and (60). There results, finally,

Dl(B,t) .

= J (68)

where

%- k0/i tB E kb/a (69)

and approximately k kb 1/3. Additionally (cf. Appendix),

I. -f bdx2  (70)

where the integral is taken upward along the vertical lines at =;

on the basis of the physical significance of 4b we have Ia _ 0, where

El

* .. .- ~. . . . . ..
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I= 0 when there is no damage in the process zone. It should be

observed that we have neglected the contribution from the body force

potential because of the slenderness of the process zone.

The work input to the failure zone is given by Eqn. (57) after

replacing D by Db, Jf by Jfa, Eqn. (62), and then using Eqns. (61) and

(68),
Fr-D(t 't) "

Wf E t, n--b--- Jv -bdX2 (71)kf t-(the't)a

where

- kaa/a, ka 1/3 (72)

Equating Wf to the work required for rupture of an element of unit

area in the failure zone, 2r , we find the implicit equation for a,

2 b  ERD(t)Jv (73)

where

2r +2r bt) (74...

The quantity rb is the "fracture energy" of the process zone; it is

introduced in order to write the crack speed relation, Eqn. (73), in

the same form as Eqn. (58) for the failure zone alone; rb consists of

the failure zone energy r, the work of damage (given by the integral

in Eqn. (74)), and the "local" creep compliance Db in terms of two

local times, t and tb .

As a result of damage in the process zone, the fracture energy r

may be negligible (or, equivalently, the failure zone may not exist).

Equation (74) then reduces to

2 r b= ERIb(j Olt)f thb, 2 (75)
at

",. ;-.% 40,' - a-".; ;.'... ."-- 1.4.- • ,< .. "- . . . .. i':. . :: .: . ,•. .
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which is to be substituted into Eqn. (73) to obtain the equation for

(- i). This result corresponds to using Jvb = 0 in Eqn. (68).

If Wf in Eqn. (71) is negative, i.e.,

JV< f Obtl d % (76)
Dlta8 t) (

there is insufficient mechanical work available to break material

elements in the process zone. In this case, the crack will not

propagate or, at least, quasi-static steady-state propagation cannot

exist. Even if Wf > 0, steady-state propagation may not exist when

Eqn. (73) predicts dJv/da < 0. An examination of Eqn.(73) indicates

this situation is a physical possibility without having to consider

dependence of a, 8, r, and 0bon a. For example, suppose f b = 0, DER = 1

and that a , 8, and r are independent of A. Also, let k = ka = kb so

that 8 = tb8 - k8/ and t o = ka,/a. Equations (73) and (74) yield

oa = (77)

anda

It is helpful to express the derivative of Jv using logarithms, T

-n b + na =d log /v/d log (78)

where ..

a -logs at s (79)nb log s=t ..

3 log Db s t ..
n na a o St at s = ta/o (80),

are logarithmic slopes of the creep compliance curve (for a fixed age

t) at a creep time of s = t 8 and the shorter creep time s = at 8 /8.

For real materials (na,nb) 0 0 and na < nb if s is sufficiently small;

in this case, dJv/da < 0. For many materials na > nb at long creep
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times s, and thus dJv/da > 0; the function Jr(a) is therefore

predicted to have a maximum at an intermediate crack speed.

Prediction of process and failure zone sizes: The lengths 8 and a

which appear in the argument of creep compliance in the equations for

crack speed are not necessarily constant. In fact they are related

through Eqns. (59) and(61), respectively, to the Jv integrals and to a

measure of the stress in the two zones. In [12] it was noted that for

the failure zone alone the condition Jv = Jf leads to such a

relationship, which in turn reduces to that derived earlier for a

small-scale failure zone in linear viscoelastic media using

Barenblatt's condition for finite crack tip stresses [5, Part I].

Equations (59) and (61) are for slender zones, but 8 and a may be

large and the material may be nonlinear, viscoelastic, and

anisotropic.

Mechanical state solutions, including zone size, were derived in

[12] for a failure zone in a power law material. Here, we use the

same approach to derive 8 and a. Consider, for example, the use of

Eqn. (59) and the power law potential (a so-called homogeneous

function of degree M + 1),

O(cuij) = cIM+ 0 ~u,j) (81)

to obtain an expression for 8. The result is (cf. derivation of Eqn.

(39) in (12]),

b 1 V (82)
a b labIfi

where % and a0 have dimensions of stress and are independent

of xi , but may vary with t, A, etc. ; they are introduced to express

the interface stresses Ti and potential D in terns of dimensionless

functions f and OM

*~~~ ~ -* -. -. -. . - -- - -
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bfi ' =0o$M (83)

Also, I I denotes absolute value and

(agi/az) fidz (84)
f -f

0

where z - /, and gi are dimensionless interface displacements,

gi E sign (0b) IodobI'M uR/a (85)

As in [121, it can be shown that under certain conditions If is a

constant (apart from parameters which appear in IM' such as M and

j aging time t); although linhx strain-displacement relations were used

previously, the form of the mechanical state solutions and the

conditions are unaffected by the magnitude of the strains if the power

law, Eqn. (81), is applicable. These conditions are: (i) the "shape

factor" for interface tractions is given as fi= fi(z) where z R i/8;

(ii) the continuum is locally homogeneous (i.e. oM is independent of

xi, other than through 3uR/axj); (iii) the process zone size 8 is

small compared to the distance to geometric features outsideof the

zone; (iv) the crack faces are locally traction free, apart from the

interface tractions Ti. Without further analysis one cannot quantify

"local" ald say how small 8 must be. However, it may be necessary for

there to be a neighborhood of the crack tip on the order of 10- 1008 in

which conditions (ii)-(iv) are met. The process zone must be small

enough that the remote stress field is essentially the singular

solution cYj r - W ( M + 1), where r is the distance (in the x1 - x2

plane) to the crack tip. Condition (iv) may be relaxed to allow for

spacewise uniform tractions on a linear continuum and spacewise

uniform normal tractions on an incompressible, nonlinear continuum;

= . nmnnn n nunnnumnnm mm I~~------------------ ----------- r,-----------.---,-----------------"------- .• .'t* >2',- .
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the extension is achieved through superposition of a uniform stress
field. Also, if fi= fi (z,&,Jv, a) in cordition (i), then If= If( ,JV,%).

* For uniaxial stress oa I-strain ER1 behavior, Eqn. (81) implies

Icll I Ill/olI / M . Thus, ifMl<<, aO may be interpreted as a yield

stress; if M = 1, ao is a modulus. Equation (82) in turn provides the

relation between ao, a measure of the intrinsic strength of the

process zone ab, and a measure of the external loading Jv. If the

process zone is also a power law material (in the neighborhood of the

failure zone) with nonlinear exponent M, a similar analysis yields

a a Ia I (86)

where the parameters are analogous to those in Eqn. (82). If,

however, there is considerable nonuniformly distributed damage

surrounding the failure zone, it is not likely that a power law

nonlinearity with a single exponent M will be a good representation.

iv as a characterizing parameter: Consider again a power law

nonlinear material with a small scale process zone, in which the

damage and failure behavior of material elements is unaffected by

stresses and deformations prior to the arrival of the tip Q, Fig. 5.

Further, assume Jv and b (Ea) are essentially constant during the time

8/a* required for the process zone to propagate its length. The state

.A- of stress in the remote continuum where the aforementioned singular

V solution applies is determined solely by the current value of Jv (12],

just as for an elastic material. This dependence implies Jv is the

- only remote field parameter which affects Au? ; the process zone

characteristics of course affect AuF. From Eqn. (64) we see that the

same conclusion applies to the viscoelastic displacement, Aui, except

crack speed now appears. The damage and failure parameters a, 8, r,

'.. ..........-. ...............
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and fob in Eqns. (73) and (74) may not be constant, but any variation

will be due to J and i (e.g. Eqn. (82)), apart from aging or

environmental parameters such as the external temperature. (Local

temperature changes due to mechanical deformation are determined

similarly by Jv and .) Equation (73) therefore serves to define the

.2 function a = v), indicating that Jv is the "characterizing

parameter" for crack speed. In principle, this function could be

obtained experimentally through measurements of speed. However, by

introducing specific models for behavior of the process and failure

zones, one could use Eqn. (73) to relate crack speed to material

parameters as well as Jv- Elementary examples are given in [121 for

a failure zone in a continuum obeying a power law with respect to both

time (through the creep compliance) and strain; the relation a J jk'is

derived, where k° is a simple function of both exponents which depends

on characteristics of the failure zone. The assumption of an

"elastic-like" failure zone for opening mode propagation (r and T2

independent of speed) was shown in [5, Part III] to provide a function

Qv= (J) which agreed well with experimental data on a crosslinked

rubber; in this study there was no process zone and the continuum was

linearly viscoelastic (cf. Eqn. (52)). See also [7, 20, 21] for

linear behavior.

The Jv integral may serve as the characterizing parameter for

initiation time or crack speed when some of the previously stated

conditions (e.g. small-scale crack-tip zone) are not met, depending on

characteristics of the process and failure zones. An example was given

earlier for initiation time, Eqn. (51), in which a was not restricted

in size. However, further experimental and theoretical studies are

needed to establish the necessary conditions.

"°-
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,,. 7. Concluding Remarks

Methods of quasi-static deformation and fracture analysis have

been developed for nonlinear viscoelastic media. The correspondence

principles which provide the basis for the analysis are not limited to

crack growth; they apply to crack closing and healing as well as to

other types of problems involving ablation and interfacial contact and

jseparation. However, only crack growth examples are given.
Constitutive equations: Nonlinear effects in Eqn. (41) for

stresses are characterized by a potential D which is analogous to

strain energy density. This pseudo energy is expressed in terms of

the history of displacement derivatives through Eqn. (23), rather than

the history of Green's strains, and therefore material objectivity may

not be satisfied when large deformations exist; i.e., depending on the

deformation history and material type, 4 could be affected by rigid

rotations. Material objectivity can always be satisfied when linear

strain-displacement equations are applicable. In this case, one would

express 0 as a function of displacement derivative history through

the strain history [12].

A single hereditary integral, Eqn. (23), is used in Eqn. (41) to

account for viscoelastic effects, and therefore some details of the

Acomplex stress-deformation behavior of many materials may not be

followed However, the theory does contain general material-objective

representations of the important cases of nonlinear elastic and

C) viscous media under small or large deformations and the common type of

linear viscoelastic material which is characterized by one independent

relaxation or creep function. In certain problems of crack growth in

linear viscoelastic orthotropic materials, the several independent

creep functions combine into just one function for predicting load-

= ' ; ,IJ ,: : ,,. . . ..
,
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displacement response of the crack plane [8]. This feature enables us

to generalize Eqns. (58) and (73) for crack tip work by simply

replacing D with this group of creep compliances.

For large deformations of viscous materials, the current geometry

would be considered the "undeformed" state Bo in order to recover the

classical constitutive equations [171; the basic expression for

relating crack tip and far-field behavior, Eqn. (10), is not

invalidated in this case if the opening displacement Au2 along the

failure zone, Fig. 1, or process zone, Fig. 5., is small compared to

the length a or 8, respectively. On the other hand, this condition of

a slender crack-tip zone in the current geometry is not needed for an

elastic material.

As discussed in earlier work [12, 14], the nonlinear viscoelastic

constitutive equations used here in th- fracture theory may be written

in the form of a special type of a so-called modified superposition

principle employed successfully with polymers and metals [e.g. 15,

191. We have introduced effects of aging and microstructural changes

(e.g. damage) in the standard modified superposition principle. This

aging" is not limited to independent physical or chemical processes,

and may be used to account for differences in nonlinear behavior at

short and long times and, as shown in the Appendix, to account for

damage characterized by Lebesgue norms of deformation-related

parameters.

In view of these extensions of the standard single-integral

representation for hereditary behavior, and the important limiting

cases contained in the theory (including deformation theory of

plasticity with elastic unloading), it is believed the constitutive

;% "'4
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equations are sufficiently general to account for the primary features

if not all details of actual deformation behavior of a wide variety of
materials. Nevertheless, considerable additional study is needed to

establish the range of validity of the equations for different

materials and conditions. For example, it would be interesting to

determine for rubber the accuracy of the stress-deformation relation

in Eqn. (41), which is similar to the theory developed and

successfully applied to rubber by Tschoegl and coworkers [221.

R
The "pseudo displacements", up, which appear in Eqns. (41) and

(43), are related to the physical displacements ui through the

hereditary integral, Eqn. (23). If the constitutive theory is valid

for global response, the material behaves overall as an elastic body

when loads or stresses are expressed in terms of pseudo displacements;

3as illustrated in [15], this type of behavior for nonaging materials L

with constant damage may be easily checked by converting

experimentally measured displacements to pseudo displacements through

Eqn. (23) and then examining measured load-pseudo displacement

diagrams.

Crack growth: Considering the cc mplex states of deformation and

damage around real crack tips, indirect determination of specific

constitutive equations using specimens with stationary and propagating

cracks may be an important complement to studies of specimens under

homogeneous deformation histories. This determination would be aided

by the simple relation between elastic and viscoelastic displacements,

Eqn. (43), and the fact that Eqn. (41) for stresses, including the

generalization in the Appendix, leads to relatively simple equations

for crack growth, Eqns. (51), (58), and (73).

The quantity iv in these equations has a very simple meaning in
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certain cases. If hereditary behavior of the entire continuum outside

of the process and failure zones can be represented by the one creep

compliance D (or relaxation modulus E), then Jv is the same as the.-i

familiar J integral for nonlinear elastic materials and C* for viscous

materials when expressed in terms of externally applied loads (rather

than displacements). The pseudo potential energy Pv, Eqn. (18), is

related similarly to the potential energy for elastic media. If ui

u!, except possibly for a small neighborhood of crack tips, Jv and Pv

are essentially the elastic J integral and energy release rate,

respectively. The ratio 2r/ERD from Eqn. (58), or 2rb/ERD , Eqn.

(73), then appears as the fracture energy for an elastic material if

-v Pv; this "apparent fracture energy" may depend on crack speed

through D, r, or rb. For the rubber studied in [5, Part III], all

effects of speed come through the nonaging form of compliance, D =

D (ta). For a viscous body, C* is approximately three times the

length-averaged power input per unit area to the failure zone during

short-term steady state propagation if we use TV = 1 in Eqn. (30)

112); it can be shown that the factor is exactly three for a linear

viscous material.

Direction of crack growth: Prediction of the direction of crack

growth has not yet been discussed in this paper. Many of the

relationships hold whether or not the direction changes, but the

problem is too complex to treat here in any detail. We would only

suggest a possible approach. Referring to Fig. 3, puppose for

purposes of discussion the local coordinate axis is fixed and various

relative orientations e for the continuum are considered. The actual

O's for initiation and continuation of growth may correspond to the
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predicted directions for which t is a minimum and b is a maximum,

respectively. These criteria automatically account for local and

global material anisotropy through the variation of values of the

material and loading parameters (such as r, a, and J in Eqn.

(58)) with respect to e. Also, these proposed criteria reduce to the

weil-established one of maximum energy release rate for crack growth

in an elastic isotropic body. The equations for crack speed have been

derived under the simplifying condition of short-term steady state

behavior;, with crack tip reorientation it is likely that the equations

will remain valid if e is small in magnitude and essentially constant

for an amount of growth equal to the length a or 8 of the crack tip

zone,

Crack tip models: Emphasis of the fracture analysis in this paper

has been on predicting the mechanical work available at the crack tip

for initiation and continuation of growth. The right-hand side of

Eqns. (58) and (73) is this work at the failure zone (without a

process zone) and process zone edges, respectively. By assuming the

theory in the Appendix is valid for the process zone, we have obtained

some information on how the creep compliance Db and pseudo energy Ob

of the process zone affect the required work 2 rb, Eqn. (74).

Viscoelastic behavior of the embedded failure zone in Fig. 5 is

reflected in the value of r, and it may be different from that of the

process zone and continuum. Because the process zone is slender, we

were able to obtain a relatively simple relationship, Eqn. (68),

between its Jv integral, Jvb, and Jv for the surrounding continuum (or

the adherends, in the case the process zone is actually a thin

adhesive interlayer). Also, it should be observed that Equation (73)

for available work allows for distributed damage outside of the
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process zone as long as the theory in the Appendix applies. This

feature is important for many materials, especially composites.

With the dual crack tip zones, Fig. 5, one can account for a

distinct, complex material separation zone (a) within a relatively

well-defined layer of damaged material (8). This geometry may be a

realistic model of the delamination tip region in fibrous composites

with rubber-toughened matrices (23, Fig. 31 and a cracked craze layer

in plastics. As a special case the failure zone could be omitted; one

may interpret this situation as the original one in which only a

failure zone exists, Eqn. (58), but with an explicit viscoelastic

representation for the fracture energy. As shown in [5, Part III]

this energy for rubber may be independent of crack speed. When this

is true, the molecular theory for fracture energy of rubber in its

elastic range [2] serves to relate rb to molecular parameters, and

Eqn. (73) brings in the only viscoelastic effects through D; the
0

notch-tip diameter (=50 A) used in [2] is to be associated with the

process zone height in the undeformed state.

It is believed the theory in this paper will be helpful in

developing detailed crack tip models which relate growth behavior

directly to local physical, chemical, and mechanical processes; a

possible general approach would consist of using the available crack

tip work, Eqn. (73), in a local nonequilibrium thermodynamic

formulation for the process and failure zones. Much of the published

work on crack tip models employs the classical singular solutions for

the local mechanical state. However, whether propagation is continuous

or occurs in steps [e.g. 24, 25], use of continuum mechanics and

thermodynamics with bounded stresses should lead to more direct

.,,5" , ,--* ;**-.-'.?"- ... . ...* . . ."\-* ." ..-. . .. .'" .... ."."-" "." .. * ..*. , ,,. ... .**,. * - , -,, .. '.. ,- ".. * .- . .* i -. . .: / . -,.
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relationships between basic material parameters and crack growth, as

illustrated here.
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APPENDIX

Effect of Time-Varying Microstructural Changes

In earlier work on small deformation behavior [121 it was shown

that certain important inelastic effects, besides those represented by

the creep compliance, could be taken into account in the Jv integral

theory. These additional effects were associated with "distributed

damage" or, what may be a better term, "microstructural changes".

Special cases are microcracking and dislocation motion and generation.

Here, we review the damage theory in the broader context of large

deformations and a three-dimensional Jv integral and discuss some

additional features. The formulation is in terms of the reference

problem, which is the reference elastic problem with damage; the

viscoelastic variables are still related to those for the reference

problem through Eqns. (27) and (28). For lack of a better short name,

3 we are using "damage" when referring to changes in the microstructure

or fabric of a material. However, the specific "damaging process"

does not have to be identified; it could include healing (decrease in

damage) as well as other changes which are beneficial to structural

performance.

Constitutive theory: It is assumed on physical grounds that a

strain enekgy potential exists when the damage is constant (for

instance, during unloading without significant interfacial friction

following development of microcracking in a composite or following

plastic deformation in a metal). Denoting this potential by 4C, for

reasons to be given we assume it has the form

N "

*C 0(U,, X k  t) + E 0n (Fn  Fcn X ,t) (A.1)

a n=1

7 ....... "'-." . .-. '-""-.. '."• • '- . ." .". ."



49 

The UPj enter (n through the functions F n Fn(uR,j); as a special

case, Fn may be a strain or a strain invariant. We further assume j
that all of the functions are smooth enough to permit the various

mathematical operations which are performed. The V's may depend on

xi and t, as indicated, but this material nonhomogeneity and aging

will not be explicitly shown in subsequent work unless needed for

clarity. Also, throughout the Appendix summation over n is not

intended unless E is used.

By definition, all quantities Fcn (which will be called damage

parameters) are constant during a constant damage process. In this

case Eqns. (3) and (A.1) yield the Piola stresses,

Ro N# ' OIn DFn
R = + 2)

a(uR j) n=l n a(u. j)
1,) 1,3

By further definition, the only other process which can occur is

called a damaging process and is such that Fcn = Fn for all parameters

Fcn; at the end of this Appendix a simple generalization will be made

in which Fcn # Fn for some of the damage parameters. It is assumed

that the stresses are continuous in the displacement derivatives, and

therefore Eqn. (A.2) defines the stresses with constant or varying

damage.

This formulation for constant damage may be visualized very

easily by considering a uniaxial stress a(- )-strain E 0 au axI)

equation written in the form a = ,(cicc) for unloading from a maximum

strain ccc The first-time loading curve with changing damage is a =

4I a(c,c), where ec=cisboth the maximum strain and the current strain.

A point on the stress-strain curve for loading a = a(c,c) is also an

I end point on an unloading or reloading curve, a = a(c,c) at E = cc.

4j " " ". . .



A potential OD exists during a damaging process, where

31 j DaD/a (u?~ (A. 3)

because

/ a/ tl,)  ark/a(u,'j) (A.4)

Equation (A.4) is easily verified for the stresses in Eqn. (A.2); in

evaluating the derivatives of stress, one must first set Fcn Fn and

then differentiate both arguments of each On- It can also be shown

that if at least one of the functions tn were to depend on more than

one damage parameter, Eqn. (A.4) would not necessarily hold. In order

* to fully define the stresses by Eqn. (3), we write =C when the

damage is constant, 0 = OD for a damaging process, and 4) = OC = OD at

the transition between the two types of processes.

3 As an aid in constructing 4P from Eqns. (A.2) and (A.3) and the

transition continuity condition, and in providing a physical

interpretation of this damage theory, let us rewrite OC in a

3 different but equally general form. Specifically, eliminate On (n =

1,...,N) from Eqn. (A.1) in favor of new functions Pn and hn , where

in Pn(Fn,Fcn) +f n h(Fn (A.5)

and

Pn(FnFn) = 0 (A.6)

Notice that Eqn. (A.6) implies Pn(Fcn,Fcn) = 0, and thus the integral

in Eqn. (A.5) is equal to 0n at the transition, Fn = Fcn. The

potential for the constant damage process may be written in the form,

OC D D + F Pn(FFc) (A.7)

. .j
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where

"c -t E h Fn (A. 8)

The stresses for constant damage are

as N 3P 3F~ A90 n=l n(ui j)

Requirements of stress and potential continuity at the transition, Fn

=Fcn, together with Eqn. (A.3), yield for the damaging process,

0 D o n (A.1O)

and,= +1-:n h (F')dF'

R a.0  N 3F~
aR O + h (Fn) (A.lI)ij a(uR j) R a(U R)

where '

hn(Fn) = aPn(Fn,Fcn)/Fn when Fcn= Fn (A.12)

Observe that OD at Fn = Fcn. Equations (A.6)-(A.12) constitute

the damage theory which will be used in the remainder of the Appendix.

In using Eqn. (3) with the damage theory, it should be kept in mind

that o= OC for constant damage, t = OD for a damaging process, and

that stresses are given explicitly by Eqns. (A.9) and (A.11).

Let us next consider the relationship of P and oC to mechanical

work and dissipation. Without body forces, the mechanical work input

per unit initial volume for the reference problem in any given time

interval ta _ t tb is
t a  t%

W~in~taltb) = jaJj/td (A. 13)

which may be readily established by means of the divergence theorem.

Take ta = 0 and assume the material is initially in its undeformed

~. ~ * * . % V 1. ~ a '~' *** .... . * . . . .
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state (u = 0) and that it does not age during the period 0 totb

(i.e. € depends on time only through u? j). Without loss in physical

generality, we may set €o = OD = 0 at t = 0. Consider next an

arbitrary number of intervals of damaging and constant damage

- processes, starting with a damaging process. Substituting Eqn. (3)

into Eqn. (A.13) and using continuity in 0 at the transition between

each process,

R. Wn(O,tb) = $D(tb) (A.14)

when tb falls within a damaging process, and

in(Otb) = $C(tb) (A.15)

when tb falls within a constant damage process. Thus, for nonaging

elastic materials with damage, oD and oC have a very simple physical

meaning. Notice that if aij(t) = 0 and the damage is constant at tb,

Eqn. (A.9) gives implicitly the residual values of u also, (t
1j; also,(b)

is the mechanical work "dissipated" as a result of damage. (If

healing occurs during "damaging processes", the work input could be

negative.) For uniaxial stress-strain behavior, one can think of

0D(t) as the area under a stress-strain curve for loading, and ¢C(tb)

as this area less that under the curve for unloading.

It is believed the dam .age theory, Eqns. (A.6)-(A.12), is

sufficiently general to provide a good approximation to the behavior

of many real materials under many deformation histories. For example,

one can show that the classical deformation theory of isotropic metal

plasticity (with linear elastic unloading) conforms to these

equations. Another applicable example is a special case of a

constitutive theory with microcracking [14], as noted previously 112].

-.....................
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The special microcracking case may be obtained by setting

R ... = o. N =1, F m =F F1) ij Fcl =  F1 ,

(A.16)
~~P 1 , (F o) (F l F n g (o ) = 0_[

The damage parameter Fm is the maximum value of Fl, considering the

entire deformation history up to the current time. Equation (A.12)

yields hI (Fl) = -g(FI). Also, we find

Fm
= C 1 - g(Fm)] [F1 - Fm] + [1 - g(FI)]dF1  (A.17)

0and

D= fi - g(Fl)]dF1  (A.18)0 P

0

The stresses for a constant damage process are

aij = [1 - g(Fm)]aFl/9(u,j) (A.19)

For a damaging process set Fm = F1 in Eq. (A.19). The function g(F1 )
.4 reflects the softening effect of microcracks; for no damage g = 0, and

for complete damage (uniform failure) g = 1. Observe from Eqn. (A.19)

that F1 is the pseudo strain energy density for an undamaged material.

It should also be added that g may vanish over an F1 range,

0 < F1 s VD.  In this case, the "damaging process" would not actually

produce damage until the energy FD is exceeded. According to Eqns.

(A.17) and (A.18), @C = D= F1 for 0 < F1 < FD, as expected.

A damage parameter which is more general than Fm appears in

[14,15]. It is derived from viscoelastic crack growth theory, and may

be written in the form of a so-called Lebesgue norm,

.,Lp =- Edt / (A. 20)
r~t~,, li
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If p = -, Eqn. (A.20) reduces to Lp= Fm; this case leads to the

previous theory, Eqns. (A.17)-(A.19). On the other hand, if p is not

infinite but is at least moderately large (pZ4), and if the

deformation history over a period 0 < t < tm is one in which Fm = F1 , then

[151,
Lp = A F1 tI/p  (A.21)

where A is essentially constant. If Eqn. (A.21) applies up to t = tm ,

and Fl < Fm for t > ti, then

L = A Fm tl/p (A.22)

at least for a limited period of time beyond tm. The damage model for

Uwhich Eqns. (A.21) and (A.22) apply may be used to generalize Eqns.

(A.17)-(A.19); viz., replace g(Fm ) with g(Fmtm I/P) and g(FI) with

g(Fltl/p). Hence, microcracking for which p is finite leads to an

3"aging" elastic material with damage.

The Jv integral: By dividing the continuum into regions of

.2 c, ,J-tant and varying damage we may easily extend the theory in the

body of the report to allow for damage if the displacement field is

sufficiently smooth. In effect, the material may be treated as

nonhomogeneous whether the nonhomogeneity is intrinsic or is due to

damage. As justification for this extension, consider first the

integrall, Eqn. (8). We will allow for explicit dependence on x2,

x3, and t in the potentials to and Pn in Eqns. (A.7) and (A.8)

(besides dependence on u? j); but dependence on xl, either explicitly

or in Fcn, is excluded.

At any given time, let S Sc enclose a region of the body

undergoing a constant damage process. Clearly = 0 if OC is used for

0. If, for example, we were to use OC for the special microcracking
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model, Eqn. (A.17), it would be necessary for the maximum energy FmF.,
experienced by each material element to be independent of xI , although

Fm could vary with x2 (distance from the local crack plane) and x3.

Now, let S S SD enclose an adjacent region undergoing a damaging
process. Here, Fcn = Fn, and thus = if D is used for P; even

though Fcn may vary with x1 , this dependence is through Fn = Fn(uRj)

and therefore it causes no problem. Next, take S = Sc + SD, andi D.
consider the interface where Sc and SD are adjoining surfaces. The4 D
contribution toi along the interface from both Sc and SD vanishes if

au R/axl, , and F are continuous across the interface; this follows

from the fact that n, and Ti are continuous in magnitude at the

interface but have opposite signs on Sc and SD. Consequently, if the

* transition between a damaging process and a constant damage process is

sufficiently smooth Eqns. (8) and (10) hold, and surface- independence

of Jv' Eqn. (11), and path independence of J., Eqn. (12), exists; as

an obvious generalization, S may surround an arbitrary number of

connected zones with both types of processes.

It is important to recall that 9Fcn/ax 1 = 0 is required in each

constant damage process zone. For example, suppose the body is

loaded and a damaging process zone with nonuniform damage is produced.

Upon partial unloading, this zone may become a constant (with respect

to time) damage process zone; but aFcn/3x 1 and therefore for this

zone would not in general vanish.

As an illustration of the use of this theory, consider the crack

growth problem of Fig. 5 treated in the body of the report. Locally

steady-state crack propagation is assumed. We suppose that a given

material element in the process zone b undergoes a damaging process as

the crack tip P approaches it, which changes to a constant damage B',

- " " "-B:".. ". " .' i ." : - -: i-."-. . -. B. ".-B?. B -- ' .B - ? 'B-- :: - - :.:.



6-56

process by the time the left end of the failure zone, a = , arrives.

Now, by definition, the steady-state condition is one in which each

element in the constant damage part of the process zone has damage

parameters which are independent of xl; e.g., for the simple

microcracking model aFm/axi = 0. Path independence in the process

zone b then permits us to evaluate Jfa from Jvb (cf. Eqn. (61)) using

the contour C1 in Fig. 5. The result for Jvb is in Eqn. (68), where

Ia is the line integralof-#b at E = a, Eqn. (70). The potential 4b

is actually OC if a constant damage process exists at E = a above

and below the failure zone. In view of Eqn. (A.15), the integral,

Ia , is the net work input to the process zone per unit volume

integrated from the bottom to the top of the process zone. If there

is no damage in the process zone (P. = 0) and the pseudo strain energy

density vanishes at =a, then Ia = O. However, dissipation would

still exist for a viscoelastic material; it is reflected in the speed-

dependent creep compliances which appear in Eqn. (71).

Energy release rate: Equation (17) applies with damage, even if

the homogeneity condition in x, needed for Jv is not satisfied. This

generalization may be shown by retracing the proof without damage, but

using oC and oD for 0 where appropriate. Only the virtual work Eqn.

(13) needs to be examined as the subsequent steps, Eqns. (14)-(16),
are unaffected, Self-similar, virtual crack advancement is imposed

through application of appropriate surface tractions to derive Eqn.

(17) , even though in an actual crack growth process this type of

advancement may not occur.

The validity of Eqn. (13) may be established using the same

procedure as for Eqn. (8) with damage. Namely, divide the body into

Ls.-.
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constant damage and damaging process regions. Inasmuch as a change in

the displacement field occurs due to 6a, thin layers of thickness on

P the order of 6a have to be excluded; these are the layers in which the

type of process changes during the crack advancement. However, ifj

4* and 6ui are continuous in x1, the work and pseudo strain energy

associated with these layers is of order (6a) 2, i.e. thickness x 6i

and thus the layers do not affect the result in the limit 6a-*O; other

contributions to Eqn. (13), including 6 WR in Eqn. (16), are of order

6a.

-~Generalization of the damage model: So far we have considered

only the case in which all of the damage parameters satisfy F. = Fn

or else all are constant. The model may be easily generalized by

adding one or more additional groups of terms to OC, Eqn. (A.1) or

(A.7), with each group possibly representing a different physical

mechanism. The regions of constant and varying damage for one group

need not be at the same locations as those for another group. All of

the results in the Appendix are valid except with this more general

formulation the potential 0 at any given time and location consists of

a sum of potentials; some may be for damaging processes and others for

constant damage processes.
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(a) Undeformad body (b) eformed body

Figure 1. Cross-section of crac in neighborhood of the tip P.
The region of intense damage and material separation
processes is designated the failure zone, %hose length
is cg in the undeformed body.
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Figure 2. Normal stresses and opening displacement along
contiuumn above local crack plane. -
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Figure 34 Virtual crack growth referred to undeforned body.
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WAKE OF DAMAGED MATERIAL
FROM GROWING CRACK

CONTI NU UM-FAI LURE(ZONE INTERFACES

FAILURE ZONE

Figure 4. Deformed cross-sectioni of crac in opening mode
showing currnt, interface between the continuum
and all elements in the failure zone (-,and3 trajectory of the interface for the element cur-
rently at the left edge of this zone (-)
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62.

PROCESS ZONE, b

X2 /-FAILURE ZONE, a

b

Figure 5. Cross-section of crack in undeformed body
with crack tip P 8ltedded in material layer
(process zone) having deformation character-
istics different from surrounding continuum.
Theu failure zone is not necessarily centered.
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Abstract Experimental Procedure

This paper concerns the effects of chemical The assessment of cure shrinkage effects was
cure-shrinkage on the residual stresses which arise provided by strain measurements in a laminated
in geometrically constrained resins. Results are beam formed by pouring the resin on a 2024 T3

presented for the FM-73U adhesive, and for the aluminum coupon. A narrow dam of soft cork was

Hercules 3502 resin used in graphite/epoxy compos- built around the edges of the aluminum coupon to
ites. It is shown that when cure occurs above the prevent resin spillage. Two "Micro Measurement"
glass transition temperature T5 , like in FM-73U, strain gages were attached to both faces of the
the stresses are negligible. On the other hand, aluminum coupon and, after placing a resin layer
when cure takes place below T the chemical of a predetermined thickness on top of the alumi-
cure-shrinkage stresses are significant. num, the laminate was placed in a curing oven and

heated to the cure temperature Tc. For the 3502
resin Tc = 180

0 C, while for FM-73U adhesive
Introduction Tc 120

0
C. A sketch of the experimental set-up

is shown in Fig. 1.
This paper concerns the residual stresses

which arise in geometrically constrained polymeric
resins due to chemical shrinkage during cure. In
addition, these stresses are compared with stresses
at the end of cool-down.

Re " emp

The study involved two materials. The first
was the unscrimmed FM-73Ut adhesive, whose glass
transition temperature is T = 85°C (185°F) and Strain Gages
which was cured at T = l20gC (250'F). This mate-
rial has a glassy moulus Eg = 2000 MPa (290 ksi),
a rubbery modulus Er = 5 MPa (1.5 ksi), and glassy
and rubbery coefficients of thermal expansion
a = 66 x 10-6 m/m/10 C and ar = 10- 4 m/m/10 C, re- Plotter Signal
spectively. Its chemical cure-shrinkage strain Conditioning
is unknown, but from available information on
similar materials 1, 2 we assumed it to be Ech =5%,
which is most likely an exaggerated value in the
present case.

Fig. 1 A schematic drawing of the experi-
The second material was the Hercules 3502 mental set-up.

resin, which is widely used in graphite/epoxy
composites. For this material the glassy modulus It should be noted that the 3502 resin was
has an approximate value of E - 2900 MPa (425 first placed in a vacuum oven at 110°C (230°F) for
ksi) and the coefficient of thermal expansion is about 30 min. until removal of all visible air
a 30 x 10-6 m/m/10 C. This material is cured at bubbles. At that stage the resin was liquid-like
Tc = 1800C (3550F), which is below its glass and could be poured on top of the aluminum coupon.
transition temperature Tg = 2300C (4500F). The cure time was six hours for the 3502 resin

and one hour for the FM-73 adhesive.

Our approach is basically experimental, with
calculations based on simple beam-theory. The Upon termination of cure the coupon was
main purpose of this investigation is to demon- cooled down gradually to room temperature of 25'C
strate a simple method to assess the significance (77 F). It should be noted that in the case of
of chemical cure-shrinkage effects. FM-73U the cooling passed through the glass-

transition temperature T = 850C, while for the

3502 resin all temperatures were below its Tg of
2300C.

Fig. 2 (a, b, c) show top, side and httom
*Graduate Student views of a typical test specimen after cure and

*Visiting Scientist, on leave from the Armament cool-down.

Development Authority, Israel
tProfessor

tThe letter U designates an "Unscrimmed" adhesive

C0drMf l i)Am InlatwiC ll Af onul f .d
Agioouuelt,.. 141111. All dhlht rened. 29
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(a) Tce.... Tc.. Tc..

ZONE I: Transition Zone T,oom

ZONE I: Chemical Shrinkage Zone
ZONE!!: Cool Down Zone

- Calibrated Zero Base Line

------ Strain Reading

Fig. 3 Typical chart recordings of upper

strain-gage (top) and lower

(b) strain-gage (bottom) with cali-

brated lines.

700

600
S/ Lower

Gage" 500 . Strain ,

i ~~400 . /..

.,_. 300 .'

200(c) E/ .....
-100

Fig. 2 A laminated polymer/aluminum coupon: 1 230 .%170 150 130 110 90 70

(a) top, (b) side, (c) bottom views. 0

z ~' TMERATURE C
0 F)

The readings of both strain gages were record- R -100
ed throughout the curing and cooling process. Sche- I

matic charts are shown in Fig. 3. These "raw (n -200
data" charts included the effect of aluminum ther-
mal strains as well as the yet uncalibrated thermal -300
effects on the strain gage readings. Those effects
were determined by recording strain readings on -400

aluminum coupons undergoing the same temperature RESIN CROSS SECTION
excursions as our test specimens, but in the ab- -500
sence of resin. Subtracting "dummy" effects we o.5 x 0.11 on.
obtained the stress induced readings. 04 x 0.168 ".n 35 x 0.09 i. Strain"

The dimensions of the aluminum coupons were . 0., x O.' 'u in. Gage

8"x0.8"x0.038" for the FM-73 adhesive and -700

8"x0.8"x0.0261" for the 3502 resin. The dimen-
sions of the cross-sections of both adhesive and
resin varied, as indicated in Figs. 4-6. Fig. 4 Cure-shrinkage and thermal cool-down

strains vs. temperature for coupons
Fig. 4 shows the calibrated records of the of different cross-sectional areas

upper and lower strain-gages vs. temperature during of FM-73U adhesive. (Areas indi-
cure and cool-down of laminated aluminum/FM-73U cated in figure)
coupons. Figs. 5 and 6 show similar results for
aluminum/Hercules 3502 coupons. Fig. 5 relates

30
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The close reproducibility of the strain reading

500 indicates that, for both materials, c,,re was prac-
Lower tically complete during its original stage and400 -Strain

....... Strain shows that viscoelastic effects during cool down
4 :n......Gage

300 . are insignificant.

E 200 
.E

100 Lowe, Gage
000

X 0 .z TIME (hours)
;R -100 .
CC 0 240 230 220 2 0 210 190 405 030 2 ' '0. P

-300 " --- -- PERATURE F,

-40-Upper 
7.

-400 ~Strain < o

-500 RESIN CROSS SECTION " Gage.uGag
-600 0.077 X 0.50 in. ""

0.078 X 0.47 in.
........... 0.102 X 0.55 in.

0.105 X 0.53 in. -600-
_ -. .- 0.106 X 0.55 n.

700 Lipge, Gage

Fig. 5 Cure-shrinkage strains vs. time,
measured at T= 350°F, for coupons Fig. 7 Cure-shrinkage and thermal strains
with several cross-sectional areas vs. temperature due to thermal
of the Hercules 3502 resin. (Areas cvcling of an FM-73U/Aluminum coupon.

indicated in figure)

1400. Lower Gage

la0 1200.

1400100

1200 Lower
Strain 800

1000 Gage 600.

Sc 200.

" 'lE 4o11 350 310 270 230 190 150 110 70 -

200200
350 310 210 230 190 150 110 70 - T UE

00
z .200 TEMPERATURE I- F)m 60

-1000-

RESN ROS0 -1200--1000 REraN cRo SECTION

-1200 0.077 x 0.50,n. Upper Upper Gage
-1 ----... . 0.078 x 0.47 n.* Strain

.1400 - .102 - 0.55 I. Gage

0. oo xo5n Fig. 8 Cure-shrinkage and thermal strains
vs. temperatLre due to thermal
cycling of an Hercules 3502/Aluninum -

Fig. 6 Thermal cool-down strains vs. tem- coupon.

perature for coupons with several

cross-sectional areas of the An Elastic Laminated 1% .12 MIcl

Hercules 3502 resin. (Areas indi-

cated in figure) Consider the laminated beam shown in Figure 9.

the strain records vs. time at the cure tempera- Let e denote the shrinkage strain of an unrestrict-

ed resin. In the laminated beam ht deformation
ture of 3500? while Fig. 6 exhibits strains vs. of the resin is constrained ,v the aluminum. As
temperature during cool-down. The cross- the resin contracts during cure it induces an
sectional dimensions of adhesive and resin are es eteliJsted within Fig. 4-6. eccentric compressive force on the laminated beam, ,

causing both normal and bending strains in the

In subsequent tests the temperature was re- resin and aluminum layers. In keeping wit.-

cycled back up to the cure temperature Tc and classical beam theory we assume that the bending
strains vary linearly across the thickness of thedown to room temperature. Typical calibratedbemrsutninapcws lersrssd%

strain-gage readings are shown in Fig. 7 for the ear, resulting in a piecewise linear stress dis-
FM-73U adhesive and in Fig. 8 for the 3502 resin. tribution.
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k (R - Ru)/h a  (9) 2

-. Room Sof Combining eqns. (6) and (9), and expressing zb in
AO r Dam terms of p by eqn. (3) we get

AlIlj i@ii:-: iiuminum Eminum h! "whb. 1 - (R -  R u )  --1 g (10 )

e h p(1+p)

2 3

Fig. 9 Geometry of the laminated beam In (10), g = 
.+Ap+Bp + Cp

(coupon). where A = 5+6n+4n
2  

B = 4+6n+5n
2  C n

Let F and Ee denote aluminum and resin modu- with n = h /h
1l, respectively. Also let c and k be strain and

curvature, and 
0
a, e designate the aluminum and Eqn. (10) thus relates e to p.

resin stresses. Finally, let z denote the thick-

ness coordinate, measured from the yet unknown Note that p can be determined by two different

position of the neutral axis of the laminated beam. methods. If both moduli Ee and Ea are known, then

Elementary calculations then yield P is given directly by eqn. (4). On the other
hand, if Ee is unknown thenp can be evaluated from

e = -pe/(l+p) - Ak (1) the upper and lower strain-gage reading Ru and R
by manipulation of eqns. (7) and (8). In that

Pe case we obtain
* zk) Ea (2a)

a Re A0 +Alp+A 2p - n 2 
P (11)

A) E e (2b) R B+B p+B 2 P

The requirement that the net normal force on 2

the beam vanishes determines the location of the 0

neutral axis. Measured from the bottom face of 2 2
the beam its value zb is given by A2 = 2+3n-2n

2
, B0 = 4+3n, B1 = 8+6n+n

b (2+he/ha) p ha ( B2 =
4 +3T+2n and n = h e/h as before.

Zb " 1+p 2 3 :.

The determination of p in eqn. (11), in terms
of known Rt/Ru, is accomplished numerically, for
instance by Newton's method of tangents. With p

known, Ee can be determined from eqn. (4) and the

P . ehe (4) shrinkage strain e from eqn. (10).

a a a Significant simplifications occur in eqns.
Furthermore, it can be shown that the moment in (10) and (11) when p << , like in the case of

Ftherlumori t ce s the mccentricity toent iFM-73U (but not for the 3502 resin). In that

the aluminum due to the eccentricity introduced circumstance eqns. (1) through (11) reduce to

by the shrinkage of the resin is

~1z -h /2 (12a)
M kf (5) b a

where M k E b h.3 '.2

3 E h b eh 1 aa12

k = 2 (l+p)f (6a) k 
6
hpe/h2 (12c)

and

2 
2  2  2 Rt pe(-l+3h/h) (12d)

f - h ahb a { h a + 3z b - 3ha zb + p [ h e + (h a - Z b 2 ".

R - pe(-1-3h/h) (12e)+3Ae(ha - zb)A) (6b)u""..

There exists, nevertheless, an inherent difficulty
In employing eqns. (12) if Ee (and thus p) is not

Our purpose mow is to relate the shrinkage known. This difficulty is due to the fact that in

strain e to the strains recorded by the gages those equations the product (pe) is lumped together
attached to the upper and lower faces of the and thus those two unknowns cannot be separated

aluminum coupon, denoted by Ru and Rp, respec- from each other.

tiwely. From eqn. (1) we have

Addition and subtraction of (12d) and (12e)
Ru - -pe/(l+p) -k(ha- zb) (7) yield

R t -pe/(l+ p) + kzb  (8)Pe - R R )/(1 a' bpe = -(Rt +Ru)/ 2  (13a) ':

Subtracting (7) from (8) we obtain and h

pe= -. (R -R)/
6  

(13b)
hf .
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Of the two alternatives, eqn. (13b) is much more
reliable. This is due to the fact that Rt and R
are of opposite signs, so that even small errors
in those individual readings can result in a gross 0
mistake when using eqn. (13a). On the other hand, 1

if Ee is not known from an independent experiment
then even the use of the more detailed equations
(l)-(11) poses a difficulty. This is due to the 0.8

fact that eqn. (11) employs the ratio Rt/R, which T = T , : 250OF 4
may accumulate errors in these individual record-

ings. 0.

Consequently, we shall resort to independent 0.6

data on the moduli Ee of the resins and determine
0 from eqn. (4). Equations (10) or (13b) will 0.4-

then be used to evaluate e, while eqns. (11) or 5• E 51,: T 212'F .

(13a) will be employed as a partial check on our
results. 0.2 5v: T - 250'F

------------------------------------- -- 2 -5%: T 212°F

Determination of Resin Moduli •-
0.0 .

As noted in the previous section, the utili- 0 10o0 20 300 400 500 600

zation of the strain-gage records Ru and Rt in the TIME (sec)
context of laminated beam theory may be very sen-
sitive to experimental error if both resin shrink- Fig. 10 Stress-relaxation data for a "neat"
age e and resin modulus Ee are unknown. FM-73U coupon at three temperature

and strain levels.
Consequently, the moduli Ee of both the FM-73U

adhesive and the Hercules 3502 resin were deter-
mined from independent tests. Of these two mate- Assessment of Cure-Shrinkage Effects
rials the FM-73U presented a more complicated
problem, because the temperature excursion under- Consider first the FM-73U adhesive. The pro-
gone by that adhesive carried it from its liquid cess undergone by this material can be viewed as
and rubbery stages above T down to a glassy state occuring in three stages. In the first stage,
below T . On the other hald, the Hercules 3502 whose duration tch was not clear, the liquid-like
resin Js processed entirely at temperatures below material had a relaxation modulus Ech(t) and it
its T . For temperatures below T , the glassy underwent chemical changes. In the second stage,
moduli for both materials were obfaIned In experi- the material was above Tg and it had a rubbery
mental programs which provided complete visco- modulus Er(t) like that shown in Fig. 10. This
elastic characterizations of those polymers.3  ' stage lasted until time t , when cool-down began
These characterization schemes involved creep and and the temperature Tg was encountered. The third
recovery tests at several temperature levels, stage was the glassy state at temperatures below Tg,
supplemented by sharp temperature-drop tests characterized by the glassy modulus Eg(t).
("T-Drop" tests). An outline of such generalized
characterization schemes appeared recently.6  A viscoelastic formulation for the viscoelas-

tic stress a in the adhesive under complete in-
Both materials exhibited time-dependent, plane constraint reads

viscoelastic behavior. However, in the context
of the present work, which aims at providing an tch de (-)
assessment of the relative significance of chemi- (1-)(t) E (t-h) Ch dT
cal cure-shrinkage on residual stresses, the f ch d
detailed variations in the relaxation moduli with 0 (14)
time are of secondary importance. Consequently, t t
.we approximated those moduli by constants, and + gEr (t-

() dT +] E (t- T) de(T) d-
their reasonable average values were Ee = 2900 HPa frt d f g dT d
(425 ksi) for the Hercules 3502 resin and tch tg
Eeu2000 NPa (290 ksi) for the FM-73U adhesive. In (14), v designates the Poisson's ratio of the
The modulus of the aluminum was Ea = 73,700 MPa FM-73U adhesive.
(10,700 ksi). To assess the response of the
1If-73U adhesive during cure we conducted several Furthermore, under complete in-plane con-
stress-relaxation experiments at 1000 C and 1200 C. straint the strains c(t) for t > tch are the thermal
In those tests stresses in "neat" coupons of ad- strains c(t) = aT(t) where a and T are the coef-
hesive material were recorded vs. time due to the ficient of thermal expansion and temperature
sudden application, and subsequent maintainance, difference, respectively. Consider the highly
of strains o of magnitude 2.5% and 5%. Results exaggerated circumstance that ech = 5% occurs at
are shown in Fig. 10. We observed that, after the fully developed rubbery modulus Er and discard
an abrupt sharp drop, the rubbery modulus all relaxation effects in eqn. (14). Then
approached an equlibrium value of about 5 Mpa. (l-v)o = ErEch +nr(Tcure-Tg)] (15)

Considering Er - 5Pa, cch 5, ar  10- m/m/10 C.
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v - 0.35, T cure= 120"C and T = 85*C we obtain the more accurate expressions (l)-(11). As noted
a = 0.41 MPa. earlier we took the modulus of this material to be

Ee = 2900 MPa, thus determining the value of P in
For purposes of comparison, employ an approxi- eqn. (4) for all laminated coupons, whose dimen-

mated version of eqn. (14) to evaluate the stress sions are listed within Figs. 5 and 6. With p
at the end of cool-down, namely known, the shrinkage strain e at the end of cure

can be evaluated from the strain-gage readings
S(Tc Tg)] according to eqn. (10). Alternately, we employed(0 jc rcr (10) and (11) simultaneously to determine both E

+ E ag(T - TR) (16) and e. Due to the error sensitivity of eqn. (11.
we can expect disagreement between both approaches.

where, in (16) E = 2000 K'a, ag = 66 x 10-6 m/n/ 0 C, Employing the data plotted in Fig. 5 we obtain

and Tg - TR = 60°C. Then a - 12.4 nPa. the values of Ee and e listed in Table 1 below:

It is seen, then even under highly exaggerated Resin Ist Method 2nd Method
assumptions the cure shrinkage effects contribute
less than 4Z to the total residual stress. A more Ce

accurate evaluation of stresses can be obtained Section e from eqn. (10) Eqns. (10) and (11)

by relating the bending moment in the laminated (in x in) e(m/m) Ee(MPa) e(m/m)
coupon to temperature, through a conversion of the
strain-gage readings. Since for the FM-73U adhe- .077 x .5 .00277 4750" .00182
sire typical value of P are p = 0.03, we can employ .078x .47 .00218 9090 .00232
the simplified equations (12). This results in a .09

plot shown in Fig. 11. Comparing the values of .102x .55 .00257 3220 .00254
moments at 185OF and 770F we note that the chemical "539
cure shrinkage effects in FM-73U contribute about .105x .53 .00332 940 .00392

3-4% to the residual stress at the end of cool-down, .105x .55 .00298 3450 .00295
in agreement with our conclusions from eqns. (15)
and (16). The chemical effects can thus be ne- Average .00276 4130 .00271
glected. Values +.00043 ±2800 ±.00079

110"
Table 1: Values of cure-shrinkage strain

100- e, from data on five Hercules
3502 coupons, determined by two
methods.

go-
Note that in spite of the substantial varia-

X tions in the calculated values of Ee and e from
the individual tests, the predicted average value

7 of the cure shrinkage e is roughly the same in
both methods. We took e = 0.27%.

The average stress in the resin is given by

avg Ee '-.e k .
40 e he . .,zz (17)

z resin
thickness

Z 30"
which reduces to

20 E
avg . 1
ae  l+p (e - kh) (18)io ":

The average stress in the resin at the end of cure

0., and during subsequent cool-down is shown in Fig.,~ ~ F 1 2. The results were derived for Ee = 2900 MPa -

250 230 210 190 170 150 130 110 90 70 1.TerslswedridfoEe 20 ~
(assumed known). These calculations indicate

TEMPERATURE ('F) that the average stress in the resin due to
cure shrinkage is about 30% of the average residual
stress at room temperature after termination ofFig. 11 Computed values of bending moment "a.

vs. temperature in an F-73U/Alumi- cool-down.
num coupon. Note the comparatively
small values due to cure-shrinkage _+_'_

(T>Tg " 185°F) We could, in fact, show four plots in Fig. 11,
corresponding to the four coupons and four sets

Consider now the Hercules 3502 resin. Since of strain-gage readings shown in Fig. 4. The
is this case P%.0.l and he/han4 we refrained from conclusions would have been the same.
usio the approximate equations (12), and employed

3.
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Fig. 12 Computed values of average-stresses 6. Weitsman, Y.: "On the Thermoviscoelastic
in several Hercules 3502/aluminum Characterization of Adhesives and Composites,"
coupons (with cross-sectional areas Progress in Science and Engineering of Compos-
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due to cure-shrinkage, subsequent Japan. T. Hayashi, Editor, Vol. 1, pp.
values include effects of thermal 771-779 (1982).
cool-down.

Conclusions

An experimental study was conducted to assess
the effects of chemical cure-shrinkage on residual
stresses in two polymeric adhesives. The experi-
mental results were analyzed by means of a simple,
laminated berm theory. In the case of the FM-73U
adhesive, which was cured above its glass transi-
tion temperature, it was found the chemical
cure-shrInkage contributed no more than 3-42 to '.-

the residual stresses after cool-down. On the
other hand, in the cast of the Hercules 3502 resin,
which was cured below its glass transition tempera-
tuare, the effects of chemical shrinkage contributed
about 302 to the total residual stress at the
termination of cool-down.

It should be noted that our experiments were
perfore under In-plane geometric constraints,
allowing volumetric strains to develop freely in
the polymers. Such in-plane constraints seem to
apply in composite laminates and some adhesive
joints. However, in adhesive joints involving
thick adherends the geometric confinement of the
polymer my restrict its volumetric deformation.
In such circumstances the effects of chemical
cure-shrinkage may become significant even in the
P-73U adhesive.
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Reprited from Decemrber, 1982, Vol. 104, Journal ot Applied Mechanics

Optimal Cooling of Cross-Ply

prfeso. Composite Laminates and
Adhesive Joints

B. 0Hapr This paper concerns the optimal cooling of symmetric, balanced, cross-ply corn-
Graduate Student. posite laminates and adhesivye joints so as to minimize the residual thermal stresses

upon termination of the cool-down process. The computations are based on a
Toma AMM Univerity, recently developed analytical scheme and employ up-to-date data on

Col"sg Station, Texas 77843 graphite/epoxy laminas. The calculations consider the thermoviscoelastic response
of the polymeric resins and incorporate the temperature dependence of the coef-
ficients of thermal expansion. It is shown that the viscoelastic behavior may con-
tribute to a significant reduction of the residual stresses.

This paper presents results based on a recently developed laminate, consisting of equal number of 0 and 90 deg plies
otnmiaton scheme 1111 and data on viscoelastic response of exposed to fluctuating ambient temperature T(t). In view of

graphite/poxy composites 131 whereby specific time- the small thicknesses of the composite laminates employed in
temperaure paths art Selected during the cool-down stage so practice it is permissible to ignore the process of thermal
a* to minimize the residual thermal stresses in cross-ply diffusion and employ the approximation that T = T(i)
lsonles andl in adhiesively bonded aluminum/epoxy joints, throughout the laminate. A similar circumstance also holds

The cross-ply laminates under consideration consist of a for adhesive joints.
symmetri and balanced lay-up of 0 mid 90 deg plies. When Denoting by subscripts L and T the longitudinal (parallel to
suchi lasma are cooled from the presumed stress-free cure fibers) and transverse (perpendicular to fibers) directions,

ofuuats to room temperature, the stiffer fibers within respectively, we have the following stress-strain relations in
*a&h ply restrain the trnsverse shrinkage of the adjacent, each individual lamina [4, 5]
purpeniculauly directed plies and these mutual geometric U T
eftmiris introduce substantial residual stresses in the (L - aL AT- rT  T

kmdtwEL ET

Consider a finite cool-down time. During this time interval()
the temperature introduces two counteracting effects. On one CT -(XTAT= - ELK oL+ or
hand,. imc ager temperaur drops induce larger residualELT
strose it appears thiat sharp and early temperature drops will In (1) e and a designate strain and stress, while a, E, and a,
ewate shifcon stresses that may undergo relaxation. On denote coefficient of thermal expansion, modulus, and
t*e ate hnd, the relvaiation process is retarded at lower Poisson's ratio, respectively. AT represents temperature4

tmw . The optimal time-temperaiture path achieves difference.
the bat interplay between the aforementioned competing In view of the particular lay-up under consideration we
MOMst so a to minimize the residual thermal stress at the have

fteAt Mob and straightforward manipulations yield

Cornddes a symmetric, balanced, cross-ply composite ET (ar -aL )AT* -o
(2)

-1 6..h. ter wo"M ofttmesamewoP. I + FTL )(+ 1
+VLT E - )

CM011000 by On ApOWe Meclunics Division and presented at the Winter \ \ I + PTL EL
A0si Iubs ftW Ada..A o111r0006118115 Ti uacA. For typical graphite/epoxy laminae we have EL - 20ET

Chosm do mb paper told be addessed to the Editorial Dcoartinent, (whereby VLT - 2OPTL). With VLT =0.28 we obtain
V INI UuJW Utqin Cooler. U4S Em 47th Samee, Ni w York, N.Y. rt(ta)A 3

16". WAd wU'16 aeue "Md two 00Mos after fnal pit (3o)o he0
b go~ Jimmm or AM= a? itAmcs. Mane- ' received by 090.3

AffW111A k5g5~ Dyiision Apr' final wn November, Typically r -09-.3
M, te W~ Ns..A 24. Alternately, consider two adherend plates, each of
QW**bsvdbWbUmIJuy 196. thickness h, bonded together by an adhesive layer of thicknes! '.
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a. Let the joint undergo a spatially uniform temperature In (10) and (11) primes indicate derivatives with respect to Ii
excursion AT. Elementary calculations then yield the argument. Also

E, (a,-QA )AT d(sJI=
I=E (4) "~l , , (T(s))".-oe -'e lI-vu4  Ee a ,"'.

S- EA 2h With given E(t), a(T), and T1, he value of To is deter-
2h mined by (10) and the optimal temperature path can be

In (4) subscripts "A" and "e" refer to the adherend and constructed by iteration through the employment of (11). In

adhesive, respectively. For typical joints EA/E = 50 and most cases the final prescribed temperature TR is reached

hla= 100. Consequently (4) can be approximated by through a second abrupt step at time tf.
A particular simplification occurs for a "power law"

E- (cx-aA)AT (5) response, as expressed in (6) and, in addition, when the shift-
factor function is given by (8). In this case it was shown [1]

Viscoelastic Formulation that the optimal path is given by

Data on graphite/epoxy laminas [3] and on "neat" epoxy T= In (12)
resins [6] indicate that ET and E, are time and temperature C k + Ct
dependent. 2 The time dependence can be approximated by the where, in (12)
form

fr E=Eo(t +o) - (q (6) C q and L=Kexp(CTo)
while the temperature dependence can be related by means of (q + I)A

a shift-factor function a(T), with a( TR) = 1, where The term K is determined as the root of the transcendental
customarily TR is room temperature (293°K). Consequently equation t..
(6) is extended to read qi q'__

~ -q Keer o ] q+l (13)
E=Eo t0 + [ta (T)]1 (7) [ (q+I)A

Available data [3, 61 indicate that a(T) can be expressed by Under the simplifications that occur in the present cir-
cumstances the iterative process alluded to in [!] reduces to

a(7) = exp - + (8) the search for the root K of equation (13).
A In view of (8), equation (10) yields

Employing the superposition integral, equations (3) and (5) To = T, -A (14)
With the optimal temperature-path prescribed by (12) the

da[ [ + q d (9) stresses are obtained by direct substitution of (12) into (9).
(= o a(T(s)) +  d After several manipulations we get

In (9) and the sequel, a represents (aT - aL) or (a, - ,A) (I' )
and Eo absorbs the .factors r or I/(I-v,), respectively. It a(t)aEo10 Q(rt)dr+K(T-To)Q(0,t)1 (15)
should be noted that in the viscoelastic case the factor r in
equation (3) becomes a complicated function of time and its where

incorporation into the subsequent analysis requires cum- -q"

bersome details. However, in all the practical cases which we to(\K+ Cl q K +C / - +1"

considered r(t) varied at most by 1/2 percent about its .+ C, K+CJ

average value over the time span of interest. Consequently we Q(7,) =_._
employed the approximation r(t) = r = const. in our work, K+ CT I-
without sacrificing accuracy. Data on graphite/epoxy [31 a(tj ) is obtained by setting t = t/ in (15). Att = tj we get
indicate that aT and LO vary significantly with temperature. o(tf) = o(t) + XEoto- (Tf-TR) (16)
This aspect of the material response will be considered later. f --TR-

Otm CoigahTemperature-Dependent Coefficients of Thermal
Optimal Cooling Paths Expansion
Consider now the case of cooling from the initial cure Recent data on graphite/epoxy composites indicate that the

temperature T, to room temperature TR in a given time in- quanLity (ar- C) increases monotonically with temperature.
terval if. It has been shown [I, 21 that if an optimal path exists Consequently (9) must be modified to read
then it is possible to obtain a minimal value for a(t) in (9). In
such a case this minimal value of a(t) is obtained by Olt)=Eo ]-q d
following a path T(t) that includes an abrupt initial drop a(Td W (T"-(']
from T, to To. This initial drop was given by solving the (17)
transcendental equation Il] where a-( T(t) ) ( T(t) ) - T(t))

'To - T = a(To) (10) Consider the thermal straina' (TO) e, (t) = i T() a AT(t) (18),-.- ,

In the open interval 0 < t < tf the optimal path T(t) was h),-).-8
shown to be smooth and continuous, where it is governed by In view of the one-to-one correspondence between ch and T
the nonlinear integrodifferential equation we have

dT El(tf) a'(T(t)) a(T(t))=11),h(t) (19)

_ d t E'(ttf) a(T(t))a-(T(t)) Therefore (17) can be rewritten as follows

-tes data are clrrolrated by many other sources and publications, whichnu(. )= o ( +to] ' ed ( r) d7 (20)

736 I Vol. 49, DECEMBER 1982 Transactions of the ASME
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Table I Material parameters

Eo r q fo a A B
Material (min) ( K)
system (KN/m 2) (cm/cm'K)

>' AS/3502 107.055 0.9 0.00775 1 CaL = -0.217x 10 6 6.258 46.81
8. aT=24. 7 3x 10-6

(at T= 372*K)

"- T300/5208 107.014 0.93 0.00717 1 aL = -0.593x 10-6
aT=25.65 x 10 6  6.792 43.14

Q8(at T= 372"K) ...

aluminum epoxy 106.54 1 0.036 0.5 ae = 5 X 10 -5  7.91 37.05 . -
CA =2.4x 10-"

Table 2 The temperature dependence of the thermal expansion coefficients. & 7) = a0 + 0-
a, T.

aL aCICT
Material (cm/cm/°K) (cm/cm/K)

system a0  al a0 2)
(cm/cm/*K) (cm/cm/K 2 ) (cm/cm/*K) (cm/cm 'K-)

AS/3502 -0.484x 10-6  0.72 x 10 9  9.5 x 10- 6  0.41 x 10

T300/5208 -0.418x 10-6 -0.47 x 10- 9  1 1.9x 10 - 6 0.37 x 10

Note that (20) is analogous to (9). Accordingly, (10) and 2

(11) yield the following expressions for the optimal path

0' ,;) (21) 10.
13' (E,;)450

and

deh(t) E'(t,tf) 0_1 (_h (10______

dt E'(t,tf) 0(e,(t))0#(',(t)) (2 o
IL -400

In(22),E( t I)=E [1,2 ds )-

Equations (21) and (22) can be expressed in terms of a(T) X
and Tthrough the reintroduction of (18) and (19). We obtain 2 350

4- ( TT~at(TO) 4•-"i"

a ( To)a( To) TO)

dT E(t 1 ) a' 2 300

E 2(4t,t f) -2a'+a' (T- ] O
a+ a+'(T- Td) o....-..

In(24)a =a(T(t)) anda=a (T(t)). TIME? I o mm.
The solution for the optimal path T(I) can be generated by Fig. I The optimal cooling path T(t) and the accompanying thermal

means of an iterative scheme, as noted in reference [l]. stress ( versus time t for epoxylaluminum joints and cooling time . -
However for the AS/3502 and T300/5208 graphite/epoxy = 50 min

systems the data listed in Tables I and 2 indicate that (23) and
(24) differ by at most 2 percent from expressions (10) and (11) lt )=olt l +E 010

- q [(TfI(T -T,)-alT IIT -Ti)]

which assume constant a. Consequently, we shall retain (12) .-.-.
as our solution for the optimal path even for the variable a
case at hand. We note however, that although the optimal (28)

temperature paths remain unaffected by the variation of a, Computations
the thermal stresses do differ significantly. Calculations were performed for two graphite/epoxy

In the particular circumstance that materials and for an epoxy/aluminum joint. The data [3, 61

a(T7) = ao + a, T (25) was reduced to conform with expressions (3), (7), (8), and (25)
we obtain as shown in Tables I and 2.
a {) -( c,[ + -TI] in our computations we employed T, = 450"K, TR =u~~t)= QroI) [o + a, (2T(7) -T)d

__. , (26) nd293°K, and considered cooling times I, = 10, 50, 100, 500,

+Kct(O)(T-To)(O,0and 1000 minutes.+Kga( To)(T!-To) Q(0,/)J 26
The integrations (14) and (26) were performed numerically.

with the same Q(r,:) as in (14). The stress immediately For this purpose the time interval tf was divided into n equal

following the initial discontinuity is subintervals At = I/n, resulting in intermediate times t, = i
At and intermediate temperatures 7, evaluated by means of

.(0 )=Eoto- qa(ToXT,-T o) (27) (12). It was found that sufficient accuracy was obtained with

After the final discontinuity we have n = 100. In order to assess the significance of the variation of

Jo.a- of Applied Mechanics DECEMBER 1982, Vol. 491737
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Fig. 4 The optimal cooiing path T(t) and the accompanying thermal
3 stress @(Q) versus time t fcr T300IS208 symmetric, baianced amW dog -

laminates and cooing time it 100 mi

25-3
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Fig. 3 The optimai cooling path 7(1) and the accompanying thermal
ab se 4) ave s tim e for 73 M1 10 sym m et ic balanced 010 d g 5

a with T, we computed (15) with a1, = (cv(T,) +a(TR) )/2.___________
The results are shown in Figs. 1-9. In all those figures tern- L .0 10 io jo 4 .0 so

perature Tis in *K, stress is in NIPa, and time is in minutes. TEI(

Figues an 2 xhiit he ptiml colig pthsT( ), ith Fig. 5 The optimal cooling path T(t) and the accompanying thermal
Figues an 2 xhiit he ptial oolng ath T~), ith stress 4)q Versus time t for A81350 symmetric, balanced O19 deg

the accompanying residual stress, generated during the cool- laminates and cooling time if = 50 min
down process of typical aluminum/epoxy joints for cooling
times f = 50 and 100 minutes, respectively. Note the jump lines in Figs. 8 and 9 the final residual stresses c(tj) which

discntiuites t 10 ad 11,.Anaogos rsuls ae sown result from considering a constant, average value of cr,,

in Figs. 3 and 4 for the 0/90 dgT300/5208 laminate and in ((T)+a R 2isedo h cultmeaue
Figs. 5Sand 6 for the 0/90 deg AS/3502 laminate, dependent cr( T). Shown in dashed lines is the elastic value of

In all the figures the optimal temperature paths were a(t+ ), which is computed with a = a,,..
determined by (12). We note that those paths "undershoot" We observe that by taking appropriate account of
the level of room temperature (293*K), requiring an upward viceatcfetstispsbltotairduinsfaot

according to (15) and (16) employing constant at. On the other predictions.
hand, the curves a(t) in Figs. 3-6 were obtained by employing
(26)-(28) considering vribeai accordance with Table 2. Remarks on Data Reduction

The variation of the residual thermal stress o(tfq) with the
cooling time f is shown in Figs. 7-9. Also shown are the The "power law" representation of relaxation or creep data

variations of the terminal temperature Tf = T(q) with if. for polymeric resins or f iber-reinforced composites 131 in the
Note that alogarthmic scale is employed fort1 ,. form E(t) = Et-", can be surmised from the fact that the

For comparison purposes we also exhibit by dashed-dotted plots of log E versus log iare represented by straight lines [3.

M I1 Vol. 49, DECEMBER 1982 Transactions of the ASME...
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Veo"u leg If~ for epoxy aluminiom joints we@h Fig 9 The variation of T(tfr anid the residual thermsal stress it(tt)

versus log If for the AN1 lamninates. (The dashed-doffed line

6). The slopes of those lines determine the power q. Obo- sod o (j')vlaedwt a.
viously, these plots cannot be extrapolated to time t = 0, lest F49620-78-C-0034 from the Air Force Office of Scientific
E(O)- ai. Furthermore, creep or relaxation data are unreliable Research (AFOSR) whose support is gratefully
at very short times because of the dynamic effects that are ad owee.
technically unavoidable at the early stages of experiments. ainwegd
Finally. it may also be noted that for E~t) = Er-q the OP- References
timization scheme (11) fails because it yields linm tI (I) - - c
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