
ID-Ai34 033 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA i/i
INTEGRATED ENVIRONMENT.. (U) INTERMETRICS INC CAMBRIDGE
MA 01 DEC 82 IR-679-1 F3@682-08-C-029i

UNCLASSIFIED FI'G 9/2 N

*11

1 .25 1111.__ 1 .

ICROOP REOUTO TE.0 CHAR
NAINLBRA S TADRS 3 1 96-

SIR-679-1
COMPUTER PROGRAM

DEVELOPMENT SPECIFICATION
FOR Ad INTEGRATED

ENVIRONMENT:
MAPSE COMMAND PROCESSOR

B-AIE (1).MCP (1)

1 DECEMBER 1982 DTIC
ELECTE

~OCT 2 4 1983

CONTRACT F30602-80-C-0291 S
• B

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD
GRIFFISS AF8, N.Y. 13441

PREPARED BY: E1 INTERMETRICS, INC.

733 CONCORD AVE.
LL CAMBRIDGE, MA 02138

CS D~IP"UTSTATEMNTA1

LL&J Appzovod for public release
-.j Distribution Unlimited 83 0 19 059

~ !NTE.IVETRICS INC * 7:,- CONCORD AvENJUE * CAMBRIDGE MiASSACHUSETTS 0213' , -S 61 !4
TW NO. 710 32 7522

77 T.°7,

B5-AIE(l) .MCP(1)

This document was produced under contract 730602-80-C-0291,'SA
P0009 for the Rome Ai-r Development Center. Mr. Donald Mark is the
Program Engineer for the Air Force. Mr. Mike Ryer is the Project
Manager for Intermetrics.

iC

-.

.4

>1

.4

o4

" Accession For

NTIS GRA&I
DTIC TAB
Unannounced E]
Justificatio

By
Distribution/

Availability Codes
Avail and/or

. Dist Special

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

TABLE OF CONTENTS

PAGE

1.0 SCOPE

. 1.1 Identification 1
1.2 Functional Summary 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Program Definition Documents 3

2.2 Inter Subsystem Specifications 3

2.3 Military Specifications and Standards 3

2.4 Miscellaneous Documents 3

3.0 REQUIREMENTS 5

3.1 Introduction 5

3.1.1 General Description 5

3.1.2 Peripheral Equipment Identification 5

3.1.3 Interface Identification 5

3.2 Functional Description 5

3.2.1 Equipment Description 5

3.2.2 Computer Input/Output Utilization 5

3.2.3 Computer Interface Block Diagram' 7
3.2.4 Program Interfaces 7

3.2.4.1 KAPSE 7
3.2.4.2 Fundamental Programs 7
3.2.4.3 User Programs 7

3.2.5 Function Description 8'

3.3 Detailed Functional Requirements 11

3.3.1 Command Input 11

3.3.2 DRIVER 15

3.3.2.1 Inputs 15
3.3.2.2 Processing 15
3.3.2.3 Outputs 16

3.3.3 LEXPARSE 16

3.3.3.1 Inputs 16
3.3.3.2 Processing 16

3.3.3.3 Outputs 16

i

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACH USETTS 02138 • (617) 661.1840

47-..! , La.a."" , . -

TABLE OF CONTENTS (Cont'd.)

PAGE

3.3.4 ALLOC INTERP 16

3.3.4.1 Inputs 17
3.3.4.2 Processing 17
3.3.4.3 Outputs 17

3.3.5 TREE INTERP 17

3.3.5.1 Inputs 17
3.3.5.2 Processing 17

3.3.5.2.1 I/O Redirection 17
3.3.5.2.2 Pipes 18
3.3.5.2.3 Program and Script

Invocation 18
3.3.5.2.4 Other Command

Processing 18

3.3.5.3 Outputs 19

3.3.6 BACKGRD MGR 19

3.3.6.1 Inputs 19
3.3.6.2 Processing 20
3.3.6.3 Outputs 20

3.3.7 EXPR PROC 20

3.3.7.1 Inputs 20
3.3.7.2 Processing 20
3.3.7.3 Outputs 20

3.3.8 SCRIPT 21

3.3.8.1 Inputs 21
3.3.8.2 Processing 21
3.3.8.3 Outputs 21

, 3.3.9 PROGRAM INVOCATION 21

3.3.9.1 Inputs 21
3.3.9.2 Processing 22
3.3.9.3 Outputs 22

3.3.10 VARIABLE 22

3.3.10.1 Input 22
3.3.10.2 Outputs 23

INTIRMFTRIcS INcORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

TABLE OF CONTENTS (Con 'd.) j

PAGE

3.3.11 ERROR 23

3.3.11.1 Inputs 23
3.3.11.2 Processing 23
3.3.11.3 Outputs 23

3.4 Adaptation 23
3.5 Capacity 24

4.0 QUALITY ASSURANCE PROVISIONS 25

4.1 Introduction 25
4.2 Test Requirments 25

4.2.1 Unit Testing 25
4.2.2 Integration Testing 25
4.2.3 Functional Testing 26

4.3 Acceptance Test Requirements 26

APPENDICES

APPENDIX A THE MCL COMMAND LANGUAGE 27

A-1 Help Command 27
A.2 Program Invocation 27

A.2•1 Parameter Passing 27

A.2.2 Function Invocation 30

A.3 Expression Manipulation Commands 30

A.3•1 Assignment 30
A.3.2 GET 31
A.3.3 PUT 31

A•4 Database Commands 32
A.5 Control Commands 32

A.5.1 IF 32

A•5.2 Loop 32

A.6 MCP Termination 33

A.6.1 RETURN 33
A.6.2 LOGOUT 33
A.6.3 SUSPEND 33
A.6.4 Shutdown Commands 34
A.6.5 RESUME 34

iii -1

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 861-1840

TABLE OF CONTENTS (Cont'd.)

PAGE

A.7 1/O Redirection 34

A.7.1 Standard 1/O 34
A.7.2 Pipe. 35

A.8 Backgrd Execution of Commands 35
A .9 Compound Commands 37
A.10 MCP Variables 38

A.10.1 MCP Variable Attributes 38

A-11 MCP Predefined Variable. 39
A.12 External Program Invocation 39

A.12.1 Context Object Names 39
A.12.3 Control Commands 43

A.13 EXEC 44
A-14 RENAMES 44
A.15 Nested MCP's 44
A-16 Scripts 45

A.16.1 Script Parameters 46
A.16.2 Affecting the FCP's Environment 47

APPENDIX B : MCL LANGUAGE ELEMENTS 49

B.1 Lexical Elements 49
B.2 Types 51
B.3 Expressions 52

B.3.1 operands 52
B.3.2 operators 53
B.3.3 Type Conversions 53
B.3.4 Explicit Type Conversions 55

APPENDIX C: BNF FOR MAPSE COMMAND LANGUAGE (MCL) 57

APPENDIX D: STATEMENTS AND FUNDAMENTAL PROGRAMS 65

iv

INTERMLETRtCS INCORPORATED *733 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 *(617) 661-1940

TABLE OF CONTENTS (Cont'd.)

PAGE

FIGURES AND TABLES

FIGURE 3-1: KAPSE FUNCTIONAL RELATIONSHIP 6
FIGURE 3-2: PARAMETER PASSING 9
FIGURE 3-3: MCP MODULES 10

FIGURE A-1: SAMPLE MCP SESSION 28

TABLE 3.1: COMMAND SUMMARY 13

TABLE A.3: MCP PREDEFINED VARIABLE (%ENVIRONMENT 40
COMPONENTS)

TABLE A.4: MCP PREDEFINED VARIABLES (%STATUS COMPONENTS) 40
TABLE A. 5: CONTEXT OBJECT ATTRIBUTES 42

TABLE B * : MCL OPERATORS 54
TABLE B.2: IMPLICIT TYPE CON~VERSIONS 55

TABLE D.l: STATEMENTS 66
TABLE D. 2: FUNDAMENTAL PROGRAMS 67
TABLE D.3: COMMANDS. ADA - MCL COMPARISON 68
TABLE D.4: LANGUAGE ELEMENTS. ADA -MCL COMPARISION 70

v

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

,.1

.1

-J

h°

9

~INTIRFMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

oO . *

B5-AIE(i).MCP(l)

" 1.0 SCOPE

1.1 Identification

This specification describ s the MAPSEACommand Language (MCL)
with which a user selects AIE\ facilities, and establishes the
requirements for performaics.. design, test and qualification of the
MAPSE Command Processor (MCP), a computer program that interprets
and acts upon MCL commands. This specification also identifies
interfaces with the KAPSE and with other MAPSE tools that, together,
provide the full range of capabilities available to the AIE user.

MCP is classified within the AIE configuration both as a
subsystem and as a Computer Program Configuration Item.(CPCI). It
consists of the following Computer Program Components (CiC' s).

DRIVER(A)
LEXPARSE(B)
ALLOC INTERP(C)
TREE INTERP(D)
BACKGRD MGR(E)
EXPR PROC(F)
SCRIPT PROCESSING (G)
PROGRAM INVOCATION(M)
VARIABLE (I)
ERROR(J)

1.2 Functional Summary

The user communicates with the MCP via an Ada-like interpretive
language called MCL (MAPSE Command Language). In response, the MCP

• provides the following basic capabilities:

(1) invocation of specified MAPSE tools and user-defined
programs, and control over their execution;

(2) "help" facility that can be used on a per-program or
per-program-parameter basis;

(3) manipulation of built-in MCP variables to obtain status

information or to establish command scripts;

(4) redirection of input and output on a per command basis;

(5) the connection of commands as co-routines by specifying the
output of one to be the input of the other (via "pipes");

(6) execution of commands in the foreground, background,
interactively or in batch mode.

INTERMETRICS INCORPORATED • 733 bNCORD AVENUE * CAMBRIDGE, MASSACHUSETrS 02138 * (617) 661.1840

B5-AIE(1). MCP(1)

4l

PAGE LEFT BLANK INTENTIONALLY

-I

9

*" 2

INTIERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMSRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

C-!'

B5-AIE(1).MCP(1)

'S 2.0 APPLICABLE DOCUME.%TS

2.1 Program Definition Documents

. Requi.rements for Ada Programming Support Environments,
"STONEMAN", February 1980, Department of Defense.

Reference Manual for the Ada Progamming Language, draft
proposed ANSI stanrd-'ocument, July 1980, Department of
Defense.

• .Revised Statement of Work (15 March 1980).

2.2 Inter Subsystem Specifications

System Specification for Ada Integrated Environment, Type A,
AIE(1).

Computer Program Development Specifications for Ada Integrated
Environment (Type B5):

Ada Compiler Phases, AIE(1).COMP(1)

KAPSE/Database, AIE(l).KAPSE(1)

MAPSE Generation and Support, AIE(1).MGS(1)

Program Integration Facilities, AIE(l).PIF(1)

MAPSE Debugging Facilities, AIE(l).DBUG(1)

MAPSE Text Editor, AIE(l).TXED(l)

Virtual Memory Methodology, AIE(1).VMM(1).

Technical Report (Interim), IR-684

2.3 Military Specifications and Standards

Data Item Description DIE-30139, USAF, 24 July 1976.

2.4 Miscellaneous Documents

Diana Reference Manual (G.Goos and Wm. A. Wulf, eds.) Institut
Fuer Informatii II, Universitaet Karlsruhe and Computer Science
Department Carnegie-Mellon University, March 1981.

5PAGE

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

* .** l *a . ** . - *wi
'

. * J . - - . - . . .* *• , . : • _ ,- .

B5-AIE(1) MCP(1)

PAGE LEFT BLANK INTENTTIONALLY

44

INTERMETRICS INCORPORATED *733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

B5-AIE(l).MCP(l)
3 .0 REQUIREMENTS

3.1 Introduction

This section provides the set of requirements for the MAPSE
Command Processor (MCP). This includes a brief descriDtion of the
command language, MCL, with which a user communicates with the MCP.
A more detailed language description is provided in Appendices A-C.

3.1.1 General Description

The MAPSE Command Processor serves as a basic interface between
the AIE user and the executable programs that reside within it. It
accepts as input user commands written in MCL and invokes the
appropriate functions to perform the task required. In addition to
program execution, the MCP activates KAPSE utility functions and
provides its own repertoire of services that permit the user to
modify the programming environment (for example, to establish
special procedures to be executed automatically at login or to
rename MCP commands). An important MCP-specific function is the
"help" facility that provides information on using system components
on a per-program or per-parameter basis.

3.1.2 Peripheral Equipment Identification

Not applicable.

3.1.3 Interface Identification

The Command Processor interfaces with:

1. the KAPSE;

2. fundamental programs

3. user programs and scripts.

These interfaces are diagrammed in Figure 3-1, and are
described in Section 3.2.4.

*. 3.2 Functional Description

3.2.1 Equipment Description

Not applicable.

3.2.2 Computer Input/Output Utilization

Not applicable. PREVIOUS PAGE

IS BLANK

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

.,. . . ~.

B5-AIE(1) MCP(l)

systgmTT rie K1ASE
initiator functions

t o K A P S E tq7 o C 0

-fwunmta1 mcp

uler pora

2128113t-9

FIGURE 3-1s KAPSE FUNCTIONAL RELATIONSHIP

6

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRI DGE, MASSACHUSETTS 02138 *(617) 661-1940

B5-AIE i) .MCP(1)

3.2.3 Comouter Interface Block Diacrar,

Not applicable.

3.2.4 Procram Interfaces

3.2.4.1 KAPSE

When a user logs in to the AIE, the system initiator within the
KAPSE invokes the MCP on the user's behalf. At the conclusion of
the MCP session, control is returned to the system initiator.

The MCP receives its input in interactive mode from the
terminal. The terminal driver within the KAPSE provides the user
with primitive editing capabilities such as character deletion.

In carrying out user-specified commands, the MCP invokes
various KAPSE functions. These are described in detail in Section
3.3.

3.2.4.2 Fundamental Programs

Many MCL commands require manipulation of data structures
defined within the MCP (e.g., MCP variables). To change the syntax
or eifect of such commands would require the recompilation of the
MCP.

Commands that do not reference any internal MCP data structures
are implemented as linked executable programs called fundamental
programs. The syntax or effect of a command implemented via a
fundamental program can be modified simply by recompiling the
fundamental program.

The MCL language description uses the term "statement" to
indicate those commands that are carried out within the MCP.
Appendix D lists fundamental programs referenced in this document.

3.2.4.3 User Programs

The MCP user can invoke an arbitrary program and may optionally

supply parameters. If the program does not require parameters, the
MCP simply makes the KAPSE call INITIATE PROGRAM. If, however, the
program does take parameters, special proessing is required on the
part of the MCP and of the invoked program. Parameters may include
MCP variables supplied as OUT parameters, whose value may be
modified as a result of the program's execution.

7

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * '6171 661-1840

R5-AIE(1) .MCP(1)

Each parameterized program must contain a preamble. This
preamble processes parameters con behalf of the program's main
parameterized subprogram, as follows (see also Figure 3-2).

First, the MCP evaluates the parameters and makes the KAPSE
call INITIATE PROGRAM to begin the execution of the specified
program using an MCP-named context object.

The program's preamble reads the user-specified parameter
values from the context object. The preamble then calls the
program's main parameterized subprogram, supplying it with the
user-specified parameter values. When that subprogram has
completed, the preamble writes the updated values of any OUT

* parameters back into the context object. The MCP can then read these
updated parameter values from the context object.

A program may also have help information associated with it via
"help attributes". These attributes include:

'GENERAL HELP: The name of a simple object containing general
help text for the program. If the program has no general help
associated with it, the attribute is undefined.

'PARAMETER HELP: The name of a composite object containing
"parameter help' simple objects. Each parameter help simple object
contains help text for a specific program parameter. If no such
parameter help text exists, this attribute is undefined.

'OWN PARAMETER HELP: If "TRUE", the program interprets the
actual parameter values of '7' as a request for parameter help, and
supplies this help itself.

* 3.2.5 Function Description

- The MCP is composed of various Ada subprograms, tasks and
packages linked together into an executable program. Figure 3-3
shows the flow of control between the components of the MCP. These
are described briefly below.

DRIVER, the main program of the MCP, reads user-typed commands,
calls LEXPARSE to parse input, and passes a parse tree on to the
TREE INTERP task to be interpreted.

ALLOC INTERP allocates/deallocates a tree interpreter task.
TREE INTERP walks and evaluates an input parse tree. BACKGRD MGR

* handles the background execution of commands. EXPR PROC evaluates
MCP expressions (see Appendix B.3).

INTERMETRICS INCORPORATED - 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 861-1840

..

B5-AI1E(1) .MCp(L)

CP
(Program
Invocation)Cotx

Preamble

Invoked Program

21261134-8A

FIUE32 AAEE ASN

99

INTURMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

S.w-"5-A:-l .MCP 1)

,DRIVER

F',,

ALLOC
I NTERP

LEXPARSE7

BACKGRD MGR

-TRE INTERP
:: PROGRAM
~INVOCATION

" ": SCRIPT
i ' PROCESSING

EXPR PROC VARIABLE

o. 21281134-6A

FIGURE 3-3: MCP MODULES

Arrows indicate flow of control.
Modules in rectangle* are procedures or packages.
Modules in circles are tasks.
All Modules invoke ERROR.

10

IN'TSRMETRICS INCORPORATED •733 CONCORD AVENUE CAMBRIDGE. MASSACMUSETTS 02138 •(617) Sol1110

-" 4
,4 . , - . , , . . - , .,'.. _ , / : , . : , , * . , . _

B5-AIE(l) .MCP(1)

SCRIPT PROCESSING manipulates script parameters. PROGRA!
INVOCATION starts program execution. VARIABLE manages MCP
variables. ERROR reports errors in MCL commands.

Any of these actions may manipulate MCP variables via the
VARIABLE task.

3.3 Detailed Functional Requirements

A summary description of the MCL Language is presented below to
give an overview of MCP functionality. This is followed by a
discussion of the components of the MCP. A more detailed view of
MCL is provided in Appendices A-C.

3.3.1 Command Input

The MCP interprets commands written in MCL and performs the
actions they specify. The MCP command repertoire, summarized in
Table 3.1, provides all standard functions required to run MAPSE
tools and user programs. Commands can be executed in the foreground
or background and can be executed as co-routines. The user can, via

• the MCP, interrupt and restart program execution, manipulate MCP
*'- variables and database objects, and direct the flow of control of

program executions. Commands may be entered interactively or stored,
as scripts, for later execution. Via the MCP, a user can invoke any

" Ada program, including itself. Further, any executing Ada program
can invoke the MCP.

The MCL language borrows Ada syntax wherever possible.
Appendix D summarizes those areas in which MCL syntax differs from
that of Ada. In the following discussion, all tokens or constructs
that are identical to Ada constructs are so noted with a
parenthesized reference to the appropriate Ada LRM section. Their
formal syntax (expressed via the variant of Backus-Naur Form used in
the Ada LRM) appears in the complete syntax in Appendix C. Tokens
or constructs that are MCP-specific are described in detail and
their BNF representation included in the text. Interactions between

*. a user and the MCP are included below for illustrative purposes. In
such samples, characters printed by the MCP are underlined.

An MCL command consists of a sequence of tokens separated by

blanks or carriage returns, and delimited by a semicolon (which can
be omitted if it immediately precedes a carriage return). A command
is optionally preceded by a label, of the form identifier:. Typing
the interrupt character (control-C) causes all tokens processed in
the current command to be ignored. If a command contains an error,

-* the MCP issues an error message.

INToRMETRICS INCORPORATED 723 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 861-1840

o .

B5-AIE(1) .MCP(l)

The MCP processes command input line by line, parsing a line
when a carriage return is entered. Any commands delimited by
semicolons are executed. If the tokens immediately preceding the
carriage return describe a complete command, the MCP assumes that
the semicolon was omitted, and executes the command. Otherwise, the
MCP examines the next line for continuation text.

In interactive mode, a prompt is printed after each line is
processed to indicate that the MCP is ready to process the next
line. This may be a primary default prompt (':'), which indicates
that the processed line ended with a complete command, or a
secondary prompt ("line number/") to remind the user that command
input is incomplete.

For example:

COMPILE MYFILE -- comments as in Ada
: %A t- 2; -- MCP variables begin with a '%'

COMPILE MYFILE; LIST MYFILE

LISTLOOP: FOR %I IN i..5
2/ LOOP -- comuand not complete yet
4 LIST MYFILE
4 END LOOP

-- primary prompt indicates the command is complete

Figure A-1 shows a sample MCP session.

When the user logs into the AIE, the MCP is invoked on his
behalf. Associated with this MCP is a database context object that
can be used to create temporary database objects, as well as a
"current" window for permanent database objects, and a "home" window
which serves as a user's home directory. See AIE(l).KAPSE(l) for a
description of the database. The user may specify a sequence of
commands to be performed by the MCP as part of its startup, by
placing those commands in the database object "MCP STARTUP" in
TOP LEVEL DATA. This startup file enables the user -to create a
pro-defined environment in which to work. For example,
"MCP STARTUP" might contain the text:

%LIB :ADALIB .YOURLIB.MYLIB

CHECKMAIL -- program invocation

"DON'T FORGET TO CALL HOME" -- expression to be printed

The MCP, as part of its startup, would define the variable
%LIB, invoke the CHECK MAIL program, and print a message. It would
then begin taking commands from the user.

12

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(1) .MCP(1)

TABLE 3.1: COMMAND SUMMARY

Command Purpose Example

help provide help for a program HELP COMPILE
or MCP script

program invoke a program or MCP COMPILE MYFILE
call script

assignment expression manipulation %A:- %B+2
- get

put

loop flow control IF %A<2 THEN
if PUT "OK" END IF

return terminate MCP processing LOGOUT
' logout

suspend

resume resume a previously sus- RESUME MYMCP
pended MCP session

-I connect commands as co- FLIGHT -I LANDER
routines via pipes

-> redirect a command's SORT MYFILE ->
-(standard input or output OUTFILE

-& execute a command in the COMPILE MYFILE -&
background

abort abort or wait for the ABORT T4
wait completion of a background

command

block group commands for I/O re- BEGIN COMPILE A
direction, pipes, or LIST A
background execution END - OUTPUT

13

INTERMETICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(l) .MCP(2.)

TABLE 3.1: COMMAND SUMMARY (Corit'd.)

*Command Purpose Example

stop control the execution of STATUS.T1.COMPILE
start an invoked program or MCP
cancel script
status

exec interpret data as a command EXEC %A &LOW

script import and export parameters PROCEDURE COt4PLIST
specifcto within a script (%FILE:STRING)

IS BEGIN
COMPILE %FILE
LIST %FILE

END

14

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRf DGE. MASSRACHUSETTS 02138 - (617) 661-1840

B5-AIE(1) .MCP(1)

3 .3. 2 DRIVER

3.3.2.1 Inputs

Driver accepts as input optional user parameters indicating a
source of command input other than standard input. This can be
either a string of MCP commands (COMMAND STRING) or the name of a
database object containing a command script (SCRIPT).

3.3.2.2 Processing

Since the MCP supports simultaneous command interpretation,
(background tasks and pipe processing) it is necessary that some
functions be performed by MCP-wide tasks. These functions include:

Global data management (VARIABLE task)
Simultaneous command interpretation (TREE INTERP task)
Task management (ALLOC INTERP task)
Backgrd task name management (BACKGRD MGR task)

These tasks are activated as part of the DRIVER initialization
" processing.

DRIVER determines the source of command input by examining the
input parameters. Commands can be read from a script file or a
string specified in the parameter list to MCP. If the parameters do
not specify a script file or command string, command input will be
read from standard input. If the MCP has been invoked to process a
script, then DRIVER saves the script parameters internally, so they
may be referenced later during the script header processing.

The DRIVER loops to process commands sequentially. It
processes each command by:

(1) polling the BACKGRD MGR task to determine if any
background tasks have terminated. If tasks have
terminated, the user is notified;

(2) invoking LEXPARSE to parse the next command in the input
stream into a parse tree; and

(3) invoking TREE INTERP to interpret the parse tree produced
by LEXPARSE.

If a syntax or interpretation error occurs during command
processing, tokens are flushed until the end of the script file or
end of the terminal input line and an error diagnostic is issued.

Before termination, DRIVER places any OUT script parameters in
the script's context object and processes a user shutdown command
file, if any.

15

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

. '. . o - o ,

. '-- ' . . ' . '-. . ' . . ' i - . - . " . - i 1'7 . _- '. .. °'' . -' , ." - , . ." . ' ' • • " .. •

B5-AIE(1).MCP(')

3.3.2.3 ou-uts

The outputs from DRIVER are the script OUT parameter values.
If the MCP was not processing a script, there are no output
parameters.

3.3.3 LEXPARSE

LEXPARSE reads and parses MCL commands into a DIANA-like parse
tree. The LEXPARSE package consists of two components:
LEXICALANALYZER and PARSE.

3.3.3.1 Inputs

LEXPARSE takes as its IN parameter an input stream from which
commands are read.

3.3•3.2 Processing

PARSE is invoked to build a DIANA-like parse tree. This tree
describes an MCL command, as well as any notation to be applied over
the command. This latter category includes: REDIRECT INPUT (-c),
REDIRECT OUTPUT (->), PIPE (-I) and BACKGRD (-&).

PARSE invokes LEXICAL ANALYZER to read lexemes from the input
stream. The parse algorithm is driven by tables generated from a

: LALR(1) grammar of the Mapse Command Language. The goal symbol of
the grammar is a complete MCL command.

PARSE contains an exception handler for the interrupt
exception, which causes the parse tree to that point to be ignored.

3.3.3.3 Outputs

LEXPARSE returns as its OUT parameter a DIANA-like parse tree.
The tree is the internal representation of a single legal MCL
command as parsed from the input stream.

3.3.4 ALLOC INTERP

The ALLOC INTERP task manages the family of TREE INTERP tasks
activated by the DRIVER. A TREE INTERP task must be allocated every
time a separate thread of execution in the interpretation of
cmands is needed. This is the case for the execution of
co-routines connected through a pipe or for background execution of
MCP commands.

16

INTERMETRICS INCORPORATED *723 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1940

B5-A:E(1) .MCP(l)

3.3.4.1 inputs
For allocation, no inputs are required. For deaiiocation,

input is an access to the TREE INTERP task to be deallocated.

3.3.4.2 Processing

ALLOC INTERP has two entry points, one to allocate (ALLOC), and
one to deallocate (DEALLOC) TREE INTERP tasks. ALLOC allocates a
TREE INTERP task from a pool of active but quiescent TREE INTERP
tasks. When the TREE INTERP task is completed, DEALLOC will be used
to return the task to the pool for future use. The MCP will need a
TREE INTERP task to process foreground commands, as well as a

* separate TREE INTERP task for each background command.

3.3.4.3 Outputs

ALLOC returns an access to a TREE INTERP task. DEALLOC has
no outputs.

3.3.5 TREE INTERP

The parse tree interpreter is the heart of the MCP. It
processes all MCL commands in the foreground, background, as
co-routines and in scripts. Since several of these interpretations
take place concurrently, TREE INTERP is a family of tasks of which
members are allocated via ALLOC INTERP to interpret a single
component of a co-routine or a background command.

3.3.5.1 Inputs

TREE INTERP takes as input: (1) a stream to be used as
standard input for executing commands; (2) a stream to be used as
standard output for executing commands; (3) the name of a composite
object in which context objects for program invocation may be
created, and (4) a DIANA-like parse tree (built by LECPARSE) to be
interpreted.

3.3.5.2 Processing

3.3.5.2.1 I/O Redirection

The TREE INTERP task first performs any I/O redirection that
affects the command being interpreted. Each TREE INTERP task
maintains a local copy of standard input and standard output. The
streams passed as IN parameters serve as the default standard input
and output if they aren't explicitly redirected. In the case of
explicit redirection from/to database objects, the objects are
opened and replace the local copy for standard input/output.

17

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

B5-AIE(l).MCP(l)

,. 3.3.5.2.2 Pines

The term "pipe" refers to the execution of concurrent commands
such that the standard output of one command is directed ("piped")
to the standard input of the next command. These two commands then
form a "pipeline" and can be visualized as a single process with a
standard input and standard output. The standard output from this
pipeline could be used as the input to another command through
another pipe, or redirected to a database object. A pipe is
implemented by the KAPSE (see AIE(1).KAPSE(l), "Access Methods").
The MCP processes a pipe by creating the pipe file and allocating
another TREE INTERP task to interpret the left side of the pipe.
(The right side is processed by the current TREE INTERP task.) Each
command within the pipeline does not need to know if it is accessing
a pipe or database object; the opened pipe file or database object
is passed to each TREE INTERP task as an IN parameter.

3.3.5.2.3 Program and Script Invocation

TREE INTERP generates a unique context object name and passes
it to the PROGRAM INVOCATION package along with the parse tree. It
is not necessary to distinguish between invoking a program and a
script; the KAPSE will recognize the object is a script and invoke
the appropriate interpreter/command processor. For parameterized
scripts, the script header is passed to the SCRIPT package to import
parameters. TREE INTERP recurses to interpret the script body. The
SCRIPT package is called again when the body commands are executed
or a RETURN command has been encountered. For background execution,
the parse tree is passed to the BACKGRD MGR for interpretation.

3.3.5.2.4 Other Command Processing

(a) Assignment. The right hand side of an assignment command is
evaluated by EXPR PROC and the resulting value is assigned to the

• variable or database object on the left hand side.

(b) RETURN, SUSPEND, LOGOFF. The POLL entry of BACKGRD MGR is
called to determine if any background tasks are active, in which
case the user is informed and the command is ignored. Otherwise the
MCP terminates.

(c) ABORT. The B ABORT entry of the BACKGRD MGR task is called to
abort th-especified-background command task.

(d) WAIT. The WAIT entry of the BACKGRD MGR task is called to wait
for t e-ompletion of the specified background command task.

(e) Expression. The expression tree is passed to the EXPR PROC
package to be evaluated. The resulting value is written to the
command's standard output.

18

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

* . .-

B5-AIE(l) .MCP(1)

(f) EXEC. The expression argument is evaluated by the EXPR PROC
package and converted into a strinc. The string is used as the
input stream to LEXPARSE to generate a new parse tree. TREE INTERP
recurses to interpret the new tree.

(g) IF. Successive conditions are evaluated until one evaluates to
TRUE. TREE INTERP recurses to execute the subtree associated with
that condition. If none of the conditions evaluate to TRUE, no..7 subtree is executed.

(h) CASE. The case expression is evaluated and compared to each
value -until the chosen alternative is found. TREE INTERP recurses
to execute the subtree for that alternative. If none of the
alternatives are acceptable, no subtree is executed.

(i) LOOP. The iteration clause is evaluated and TREE INTERP
recurses to execute the loop body until the iteration condition has
been fulfilled, or until a command within the loop terminates the

* loop (EXIT), or the MCP session (SUSPEND, LOGOFF, RETURN).

(j) EXIT. The immediately enclosing loop is terminated.

* (k) USE. User specifies a new default composite object prefix.
Subsequently, whenever a variable is begun with "%.", the default
prefix will be substituted.

(l) RENAMES. The command symbol table is updated to reflect the
new reserved word.

(W) Blocks. INTERPRET recurses to perform the commands within the
block.

3.3.5.3 Outputs

Not applicable.

3.3.6 BACKGRD MGR

A background command is processed by activating a TREE INTERP
task, associating a unique name to that task, and executing it. The
task identifier will allow the user to synchronize with it, abort
it, or locate its output.

3.3.6.1 Inputs

Input to BACKGRD MGR is a command tree (from PARSE) to be
interpreted in the background.

19

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(1).MCP(1)

3.3.6.2 Processina

First, a unique task identifier is created and associated by
the START procedure with an allocated TREE IN7TERP task. The TREE

. INTERP task will be passed the task identifier as its composite
object parameter. When TREE INTERP is ready to begin (once it
initializes itself with the composite object), the command tree will
be passed to it for interpretation.

The WAIT procedure synchronizes foreground with a given
background command. WAIT will not return to the calling TREE INTERP
task until the background task is finished interpreting its tree.

The B ABORT procedure aborts a background command, terminating
all active TREE INTERP tasks associated with the background command
and calling upon ALLOC INTERP to deallocate them.

The POLL procedure checks the status of currently active
background tasks. POLL determines the status of currently active
tasks by issuing conditional entry calls. Active task and "just
terminated" background command status is returned.

3.3.6.3 Outputs

Not applicable.

3.3.7 EXPR PROC

EXPR PROC evaluates expressions written in MCL.

3.3.7.1 Inputs

Input to EXPR PROC is an MCL expression in parse tree form.

3.3.7.2 Processing

EXPR PROC evaluates the tree by returning actual values of
primitive (leaf) nodes (e.g., literals, variables), calling itself
recursively on children of operator or function nodes, and then
calculating the result of the operation or function with the
returned values of the children.

Expression operators fall into the following classes:
arithmetic, boolean, string, and comparison. Also evaluated are
attributes LENGTH TYPE, and type compatibility attributes. Finally,
EXPR PROC will evaluate component selection of composite objects,
i.e., arrays and records.

3.3.7.3 Outputs

An MCL value is returned to the calling package or task.

20

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

• -. - . - " . , . - A - -

B5-AIE(1) .MCP(1)

* 3.3.8 sc-R:P"

3.3.8.1 Inputs

inputs to SCRIPT consist of script header IN parameters.

3.3.8.2 Processing

The SCRIPT package is called by TREE IN'rERP to process the
*script header. SCRIPT imports any input parameters and returns

output parameters so that the PROGRAM INVOCATION package can
*pass/receive values to/from scripts. (A script may be invoked with
*input parameters. These must be evaluated and substituted for

script formal parameters prior to execution of the script.)

A SET PARAMETERS routine imports parameter values as necessary
* by finding the IN parameters values stored internally by DRIVER at

Startup time; associating them with parameters named in the Script
header, either by name or by position: creating an MCP variable with
the same name for each parameter in the script header; initializing
the value of any input parameter's variable created above to the

*corresponding input value (with SET in the VARIABLE task),-
initializing any input parameter variable which does not have a
corresponding input value by its default, located in the script
header. On completion of the script, an OUT PARAMETERS routine will

* reverse this, taking values from the MCP variables that correspond
to OUT parameters in the Script header and setting each output

* parameter to its corresponding variables value. Any parameter which
* is passed for input but not specified in the script header will

cause a default out parameter to be created and initialized to the
input value. Scripts which are functions return their value as a

* parameter named RETURN.

3.3.8.3 outputs

Not applicable.

3.3.9 PROGRAM INVOCATION

PROGRAM INVOCATION calls on executable programs and scripts
located in the database. It is activated by a Program Invocation
command. Its input parameters are: a parse tree of the Program

* Invocation command and the name of a context object to be created
for the invocation.

3.3.9.1 Inputs

PROGRAM INVOCATION accepts as input a parse tree of the program
* invocation comnnd and the name of a context object to be created

for the program invocation.

21

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 02138 *(617) 661-1840

B5-AIE(l).MCP(l)

3.3.9.2 Processirnc

PROGRAM INVOCATION must evaluate its input parameters; invoke
the appropriate program via a KAPSE call, passing the parameter

. values; wait for the program to complete (unless program is invoked
directly in the background); update all OUT parameters to reflect
their values on termination of the program (export their values from
the invoked program to the parent MCP).

IN parameter values are contained in the parse tree. The
program or script name to be executed is expanded into a full
database object name by a KAPSE routine. If the object is a

" program, KAPSE invokes it. If it is a script, KAPSE invokes the
proper interpreter (the MCP itself, if it is an MCL script) to
process that script, and the script file name itself is the first
input parameter. A KAPSE call will be made to await program
completion, after which all OUT parameters values will be obtained
and the variables corresponding to those parameters will be updated
by SET (in package VARIABLE). A program completion status is
output.

OUT parameters are obtained as follows. A KAPSE call is
invoked to return a parameter string. For each parameter in the

"" string, the parse tree of the program invocation command is examined
for a parameter which corresponds either positionally or by name.
If one is found, it is updated to contain the value of the variable
in the returned parameter string. If none is found, a default OUT
parameter will be generated, and its value set as above.

3.3.9.3 Outputs

PROGRAM INVOCATION outputs the status of the invoked program.

* 3.3.10 VARIABLE

VARIABLE maintains command processor variables in an internal
S- variable space. It is responsible for allocation, alteration, and

assignment to/from variables via the VARIABLE primitives SET and
FETCH.

3.3.10.1 Input

VARIABLE accepts as input: (1) an MCP variable name for FETCH,
or (2) an MCP variable name and the value to be associated with it

for SET.
FETCH finds a value for a variable name and looks up the given

name in a symbol table. If the variable is found, it's value is
returned, otherwise the NULL value is returned to the calling
package or task.

22

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

B5-AIE(l).MCP(1)

SET associates a MCP variable name and a value. IF the
variable did not previously exist, it is created implicitly by the
MCP in the internal variable space.

3.3.10.2 Outputs

VARIABLES outputs the value of the specified variable for
FETCH. For SET, there is no output.

I

3.3.11 ERROR

ERROR reports error messages and severities. It may be invoked
from any aforementioned package or task.

3.3.11.1 Inputs

ERROR outputs an error code, a message string (optional) and a
severity code.

3.3.11.2 Processing

For each error code there is an associated error message; that
message will be printed to standard output. The severity of the
error, passed in the severity code parameters, will also be posted.
If a message string is also passed as an input, it will also be
printed. Typically, it will report the location of the error in the
erroneous command, or the lexname which is erroneous.

Finally, a COMMAND ERROR exception will be raised in the inner
most TREE INTERP task enclosing the task or package which invoked
ERROR.

3.3.11.3 Outputs

None.

3.4 Adaptation

The following parameters may be supplied as part of MCP
installation:

1. The maximum number of concurrently executing background
, . tasks.

2. The maximum amount of storage to be allocated to the
variable symbol table.

3. The maximum amount of storage to be allocated to a single
command parse tree.

23

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

B5-A:E(l).MCP(l)

3.5 Capacity

A command line exceeding 255 characters will cause a SEVERE
error message to be generated. A compound MCL statement is limited
to roughly 2000 lines of substatements (this limit is dependent on
the maximum amount of space that may be allocated to a single
command parse tree). All variable data space may not exceed a limit
to be determined.

24

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

B5-AIE(1) .MCP(1)

4.0 QUALITY ASSURANCE PROVISrONS

4.1 Introduction

Testing of the Mapse Command Processor will be performed at
three levels.

1) Unit testing of the component parts

2) Integration testing of the component parts within the MCP

3) Functional testing of the MCP subsystem. The functional
test approach described below will be repeated on both AIE
configurations (IBM 4341 and PE 8/32).

4.2 Test Requirements

This section describes the requirements for each of the three
levels of testing.

4.2.1 Unit Testing

Each module internal to the MCP, as described in the functional
specification, and each subunit thereof will be tested prior to
integration. Testing will be implemented with the following
strategy. Small driver routines will be written for each unit to be
tested. The driver routines will be run many times with a series of
inputs to the invoked units. These inputs will either span the
entire set of possible inputs to the given unit or, if such a set is
prohibitively large, a representative selection of typical usage and
"worst-case" inputs will be tested. When primitive subunits have
been thoroughly tested and the interfaces have been integration
tested, the combined unit will be unit tested.

Modules will be unit tested in the following order, which
reflects dependencies: ERROR, LEXPARSE, VARIABLE, EXPR PROC, ALLOC
INTERP, TREE INTERP, PROGRAM INVOCATION, BACKGRD MGR, DRIVER.

4.2.2 Integration Testing

Integration Testing will be performed to ensure reliability of
unit interfaces. Once the units have been tested, integration tests
will be performed by using the invoking unit to call the invoked
unit, and examining input and output parameters. Alternatively,
stubs may be used to replace the invoked units. Their purpose will
be to report the values of all input parameters. In this way it may
be verified that the subunits are being invoked from calling units
with the proper parameters.

25

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIE(l) .MCP(1)

4.2.3 Functional Testinc

Functional tests will be defined to verify the requirements
contained in this specification. Formal functional testing will be
performed in three parts, testing: (1) the interaction of the MCP
with other tools of the MAPSE, (2) the command language lexical and
syntactic elements, and (3) the command statement processing.

The first part tests the MCP-KAPSE interface. The MCP
interfaces with other tools in the MAPSE through KAPSE primitives
and the database. Tests will check:

Program invocation of other tools.
Parameter processing and function return values.
Database object manipulation

The second part of the testing verifies that the language
elements (lexemes and syntax) correspond to the specification.
Tests will be performed to verify legal lexemes. Since the lexemes
of MCL closely resemble those of Ada, tests such as the Ada Compiler
Validation Facility can be slightly modified and used to test the
MCP. Tests will be performed as language scripts so that they may
be generated and run automatically. The interactive use of the
language will be tested by typing a few of the tests at the terminal
and checking that the same results are generated.

The third part of the formal tests verifies the processing of
statements done by the MCP. Tests will check:

I/O redirection
Background execution
Expression evaluation and manipulation
Flow control and block statement
Startup and Termination processing

4.3 Acceptance Test Requirements

Acceptance tests will be conducted to ensure that the MCP
conforms to the general requirements. These will include formal
tests (section 4.2.3) and capacity tests designed with the maximum
number of concurrently executing background tasks, using maximum
size symbol table, using maximum number of characters allowed on a

- command line and using very long command statements. In addition,
system testing will be executed using interactive MCL and scripts,
and will include acceptance testing for MCP.

26

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

B5-A:E(l) .MCP(l)

. APPENDIX A THE MCL COMMAND LANGUAGE

The following paragraphs describe the commands available to the
AIE user via the MCP. Figure A-I shows a sample MCP session.

A.1 Help Command

Information about invokable programs may be obtained via the
HELP command.

HELP with no parameter requests general information about all
MCP commands and invocable programs. Information about a specific

* program can be requested by providing the program name as an
argument to HELP. If the program specified does not exist or help
is not available for it, the user is informed. Notice that a
program name is specified as an unquoted string. Within commands,
the MCP interprets program names in terms of the PROGRAM SEARCH LIST
attribute associated with the MCP's context object. The program
must lie within one of the composite objects named in
PROGRAM SEARCH LIST.

A.2 Program Invocation

A program invocation is made by specifying the name of the
program to be executed after a prompt, followed, as required, by a
list of parameters.

The syntax for a program call is similar to Ada syntax for a
procedure call, except that: (1) the procedure name is replaced by
the name of the program to be invoked; and (2) the comma between

o: parameter associations may optionally be replaced by a blank.
However, if the user wishes to continue the parameter list on the
next line, a comma is required after the last parameter association
on the current line.

A.2.1 Parameter Passing

The actual parameter part of a program call consists of one or
more parameter associations, each of which specifies an actual
parameter to be passed to the invoked program, either positionally
or by name.

27

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 61-1840

B5-AIE(1) .MCP(1)

WELCOME TO THE MAPSE SYSTEM

*HELP COMPILE -- command help

help text

:COMPILE MYFILE LIEB- MYLIB -- compile program invocation with

-positional and named parameters

:FOR %I -- MCP variable names start with '

2/ IN 1..10 - secondary prompt

3/ LOOP -- flow control.
-LPT is a program which queues text

4/ LPT MYFILE -- files to be printed on the line printer

5/ END LOOP

: FLGTI LEVEL->3 -- another program invocation

:%STATUS.EXITSTATUS -- display exit status of the last invoked

OK -- foreground program

-LOGOFF

FIGURE A-l: SAMPLE MCP SESSION

28

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661.1840

B5-AIE(1) .MCP(l)

For positional parameters, the actual parameter corresponds to
the formal parameter with the same position in the invoked program's
formal parameter list. For named parameters, the corresponding
formal parameter is explicitly given in the call. As opposed to
Ada, positional and named parameters may be freely mixed. The MCP
parses the parameter association by grouping together all positional
parameters, followed by all named parameters. For named parameters,
the MCP convention is that only the last occurrence of a parameter
association is used, permitting a user to change a mistyped named
parameter without retyping others. For example, the line:

: FLIGHT 3 5 LEV->2 6 7 LEV->3

associates the value 3 with LEV.

An invoked program may associate a mode of IN, OUT, or IN OUT
with a formal parameter. An actual parameter of mode IN OUT or OUT
should be represented by a variable name. If it is not, a warning
is printed, and the parameter is ignored. (If its mode is IN OUT,
its initial value will be used). The specified variable's value is
updated when the program completes its execution.

As in Ada, if a program's declaration specifies a default value
for an IN parameter, then the corresponding parameter may be omitted
from a call.

MCL also implements default OUT parameters if the user fails to
specify an actual parameter of mode OUT, or if the specified
parameter was not a variable name. In these cases, the MCP generates
an implicit variable declaration. The generated variable's name is
the catenation of %' and the formal parameter name. For example,
if a program COMPILE's main subprogram had the specification:

procedure compile (file: string; lib: string;

max_error-severity: out string);

the MCP user could type

: COMPILE MYFILE MYLIB

At the conclusion of COMPILE's execution, an MCP variable named
%MAX ERROR SEVERITY would be generated and assigned the OUT
parameter value. The MCP user will be informed of any variables
generated via default OUT parameters if the pre-defined MCP
enviroment component INFORMDEFAULTOUT is TRUE (Section A.10).

A default OUT parameter may generate a variable name which
conflicts with a currently existing MCP variable. For example,

: %MAX ERROR SEVERITY:- OK
- COMPYLE MYFILE MYLIB
: --default OUT parameter variable
7 -- %MAXERROR SEVERITY is already defined

29

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

B5-AIE(l) .MCP(l)
* 14

if the pre-defined MCP variable component %E.'IRO.NEYT.AUTO REDEFINE
Is TRUE, the OUT parameter value replaces the current value of the
variable. If the %ENVIRONMENT.AUTOREDEFINE component is FALSE,
the out parameter value is ignored.

The user may request information about a positional or named
parameter by supplying a question mark in place of the actual
parameter value, followed by a new line. The action taken depends
on the manner in which the invoked program chooses to deal with
requests for parameter help. If the program can provide no
parameter help, the user is informed, and may continue specifying
parameter associations to the program.

If the called program provides help text for the relevant
parameter, then that text is printed, and the user may continue
specifying parameters. If the called program is set up to interpret

, any help requests itself, the actual parameter part is considered
complete, and the program is invoked. At the conclusion of the
program's invocation, the user will be allowed to resubmit his
program, this time presumably with actual parameters.

A•2.2 Function Invocation

An MCL function is a program that returns a value. Like
program, a function is invoked by name and supplied any
necessary parameters. A function call's actual parameter part
is similar to that of a program call, the differences being
that it is surrounded by parentheses, it can only contain IN
parameters, and no whitespace is permitted between the function
name and the left parentheses. The user may also request
parameter help for a function.

Examples of function calls:

STRING(%V)

SINE(2.0)

A-3 Expression Manipulation Commands

MCL includes commands that: store an expression's value in a
variable or database attribute (assignment), read and store a
user-typed literal (GET), and display the value of an expression
(PUT).

A.3.1 Assignment

The assignment command (:-) replaces the current value of an
MCP variable or database object attribute with the value of an
expression.

30

.E
a INTERME'rRIC$ INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTrS 02138 * (617) 681-1840

4.,

B5-AIE(1) .MCP(l)

Since all MCP options are controlled via nre-defined
components of the %ENVIRONMENT variable (Section A.10), the
assignment statement can be used to modify these options.

Examples:

: %Vl:="HELLO"

: %Vl:-HELLO - equivalent to above,
-- since identifiers don't
-- have to be surrounded
-- by quotes.

: .MYLIB.MYFILE'CONFIG := 4 -- an attribute (named
-- CONFIG) of the
-- database object
-- MYLIB.MYFILE

: %ENVIRONMENT.PROMPT := "%" -- modify MCP prompt

%

A.3.2 GET

The GET command causes the MCP to read an arbitrary sequence of
literals from standard input and store them in MCP variables. The
literals must describe values of valid MCL types, and must be
separated by blanks, commas, or newlines. Examples:

GET %Vl %V2 -- read values from standard input

"Vl's VALUE"

2.0

. A.3.3 PUT

The PUT command causes the MCP to print the values of an
arbitrary sequence of expressions to standard output. For example:

PUT %A %B

: PUT "THIS STRING IS PRINTED" & " TO STANDARD OUTPUT"

PUT HELLO -- unquoted string

31

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

B5-AIE(l).MCP(l)

The keyword "P7"." may be omitted when a single expression is to
be displayed except in the case of an unquoted strinc, which is
assumed to be a program call. For example:

%STATUS.EXECUTION TIME

5.2

:%X - %Y

FALSE

A.4 Database Commands

A variety of KAPSE primitives such as "delete" and "copy", may
be invoked directly through the MCP. See AIE(1).KAPSE(l) for a

. complete list of database manipulation facilities.

A.5 Control Commands

Commands in an MCP script are normally executed in the sequence
in which they appear. The sequence of command execution can be
altered via MCL control commands.

* A.5.1 IF

The IF command selects for'execution one or none of a sequence
of MCL commands, depending on the value of one or more corresponding
conditions. The syntax for the IF command is identical to that of
Ada. The expressions specifying conditions must be of the
predefined type BOOLEAN.

A.5.2 Loop

A loop command specifies that a sequence of statements is to be
executed zero or more times. As in Ada, an iteration clause (see
Appendix B) optionally precedes the loop. The loop command, like
all MCP commands, may be executed in interactive mode as well as the
batch like modes background and script.

Note that an EXIT command causes the termination of an
enclosing loop.

An exit command may only appear within a loop.

A loop command without an iteration clause specifies repeated
execution of the basic loop. The basic loop may be left via an
interrupt, via an EXIT command, or if a command within it terminates
the MCP session.

32

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

I

B5-AIE(1) .MCP(1)

If a loop commrand contains a 'WH'ILZ clause, the condition is
. evaluated and tested before each execution of the basic loop. If it

evaluates to FALSE, the loop statement terminates; otherwise, the
basic loop is executed.

If a loop command contains a FOR clause, the range is evaluated
once before the execution of the basic loop. If the range is an
aggregate value, the loop parameter sequences through the components
as the loop is executed. Examples:

_ FOR %I IN i..4 LOOP

2/ GET %A

3/ IF %A /='" THEN FLIGHTSIM %A END IF

4/ END LOOP

A.6 MCP Termination

There are several ways to terminate MCP processing. In all
cases, the MCP must be quiescent (i.e., no background commands can
be active); otherwise, the user is warned and the terminating
command is ignored.

A.6.1 RETURN

The RETURN command terminates the execution of the MCP, and
returns control to the MCP's invoker. If the MCP is processing a
script that describes a function, the RETURN command must include an

:. expression whose value is the result returned by the function.

A.6.2 LOGOUT

The LOGOUT command also terminates the execution of the MCP.
Unlike RETURN, LOGOUT causes the termination of interactive session.
Control is returned to the system initiator.

A.6.3 SUSPEND

The SUSPEND command terminates MCP processing, maintaining its
current context, and returns control to the invoker. It requires as
an argment, the name of a database object in which the MCP's context
is to be saved for reference by a subsequent RESUME command.

SUSPEND MYMCP

S•MCP SESSION SUSPENDED

MAPSE SESSION TERMINATED -- typed by the MCP's invoker which
-- was the System Initiator

33

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

S -'

"° ,''i- - - - - - - --•" -- -

-- 7.

B5-AIE(1).MCP(1)

•A.6.4 Shutdown Commands

The user may specify a sequence of MCL commands to be performed
automatically prior to MCP termination via LOGOUT or RETURN. Th.ese
commands must be contained in the database object "MCP SHUTDOWN" in
the MCP's TOP LEVELDATA window.

For example, "MCP SHUTDOWN" might contain the text:

PUT %STATUS
LIST MYFILE

A.6.5 RESUME

The RESUME command resumes a previously SUSPENDed MCP session.
The name under which the context of a previously SUSPENDed MCP was
stored must be supplied as an argument. Example:

RESUME MYMCP

--this prompt is printed by the resumed MCP session.

A.7 I/O Redirection

Many MCP commands (for example, PUT) read from standard input

or write to standard output. If unmodified, a command's standard
I,10 defaults to the MCP's own standard input and output. The user
may optionally redirect the standard input or output of any command.

A.7.1 Standard I/O

The notation -< is used to redirect a command's standard input.
The notation -> is used to redirect a command's standard output.
The specified database object is opened (for standard input) or
created (for standard output). The command is interpreted, and the
database object is closed. For example:

FLIGHTSIM -(CONTROL FILE ->RESULTS
--FLIGHTSIM reads its standard input from
--CONTROL FILE and writes its standard output
--to RESULTS

COMPILE MYFILE LIB->MYLIB ->RESULTS

Notice that the second output redirection to RESULTS caused the
first command's output to be overwritten.

34

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

B5-AIE(l) .MCP(l)

A.7.2 Pipes

The notation -I between two commands indicates that the
commands are to be connected via a pipe. Standard output of the
command to the left of the -I becomes the standard input of the
command to the right of the - and the commands execute as
co-routines. A sequence of commands connected via pipes is referred
to as a pipeline command.
For example:

PUT "STRING TO SERVE AS STANDARD INPUT" -1 LPT
--string is queued to
--be printed by line printer

_ DATE -l FLIGHT LOG OPTION-)HEADER

A.8 Backgrd Execution of Commands

An MCL command is normally executed in the foreground: i.e.,
the MCP waits for the command to complete its execution before
accepting further command input. To specify that a command is to
execute in the background, the user terminates a command with the
notation -&. In this mode, the MCP begins the execution of the
command, but does not wait for it to terminate before accepting

. subsequent user commands. For example:

* COMPILE .MYFILE LIB->MYLIB -&

A background command can be viewed as a task object that
executes asynchronously. This object has a name, of the form "TX",
where X is an integer incremented for each task generated.
Alternatively, if the background command is preceded by a label, the
task name is equivalent to the label name. In either case, the name
is displayed to the user when the task begins its execution, and is
also stored in the pre-de fined MCP variable component
%STATUS.LAST TASK. For example:

COMPILE MYFILE LIBinMYLIB -&

T4 executing

_ - ready to accept next command

MYTASK: FOR %I in 1..4 LOOP

2/ FLIGHTSIM %I END LOOP -&

MYTASK executing

The user is informed when the task completes its execution.
For example:

35

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 1 (617) 661-1840Le

[..".
- .. -

B5-AIE(l) .MCP(l)

MYTASK comDleted

The task name can be used to refer to a task in order to
abort it, via the ABORT command.

The user may begin the execution of a command in the
background, then decide to wait for it to conclude its execution.

-* The WAIT command causes the MCP to wait for the conclusion of the
specified task(s) before accepting further command input from the
user. For example:

. COMPILE MYFILE LIB=>MYLIB -&

T4 executing

" ABORT %STATUS.LASTTASK

T4 aborted

* COMP: COMPILE YOURFILE -&

COMP executing

WAIT COMP

COMP completed

A pipeline command may also be invoked in the background. For

example:

* FLIGHTSIM -1 SORT -&

T6 executing

"J2

36

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIE(l) .MCP(l)

A.9 Compound Commands

Multiple commands may be grouped together in a block in order
to apply a notation to all of them via the BEGIN and EYD block
commands. For example, the block

" BEGIN

2/ LIST MYFILE

2L COMPILE MYFILE LIB->MYLIB

4/ END -I LPT

pipes the catenated output of LIST and COMPILE to the LPT program.

The block commands may be applied to -< and ->. The specified
* database object is opened (for standard input) or created (for

standard output) and remains open for the duration of the block.

* For example, the block

BEGIN

2/ LIST MYFILE

3/ COMPILE MYFILE LIG->MYLIB

4/ END -- .TMP

redirects the catenated output of LIST and COMPILE to the .TMP
database object.

The block command also allows the user to group together
commands for sequential background execution. For example:

- BEGIN

2/ COMPILE MYFILE LIB-'4MYLIB

3/ FLIGHTSIM

4/ END -&

T12 executing

causes COMPILE to be executed in the background, followed by
FLIGHTSIM. Notice that this is different from:

37

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

B5-AIE(1) .MCP(1)

. COMPILE MYFILE LIB->MYLIB -&

T12 executina

: FLIGHTSIM -&

T13 executing

in which COMPILE and FLIGHTSIM execute simultaneously.

A.10 MCP Variables

The MCL user does not explicitly declare variables. Rather, a
variable is implicitly declared by its first use. Its value is a
string, with implicit conversions performed as required. The

,% pre-defined command DUMP VARS prints to standard output a list of
all MCP variables and their current values, separated by blanks.
This is useful for determining the current state of all MCP
variables.

A variable may contain an aggregate (Array or Record) value.
The user may choose a particular component of the aggregate by means
of the component select operations. A select operation may be
applied to a variable on the left or right side of an assignment.
-Components which are not present are evaluated to the null string ""
when selected on the right side of an assignment. If a named
component on the left side of an assignment is not already a

. component of the variable, it is added. Position components may be
appended to the aggregate variable by specifying one greater than
the last position. For example:

%X :- (A->l, B-)2)

%X.A : 3 -- Results in (A->3, B->2)

: %X.C "- 4 -- Results in (A->3, B->2, Cm>4)

: %Y :- (100, 200)

: %Y(3) :- 300 -- Results in (100, 200, 300)

A.10.1 MCP Variable Attributes

* The following attributes are defined for MCP variables. TYPE,
INTEGER, REAL, STRING, BOOLEAN, ARRAY, RECORD, LENGTH. These
attributes are preceded by a tic, e.g., %VAR'LENGTH. TYPE returns
the variable's type: integer, boolean, string, real, array, or
record. Attributes INTEGER, REAL, BOOLEAN, and STRING will return
TRUE if the given variable is convertible (see closely related
types, Appendix B.3.3) to the given attribute type. Otherwise,
FALSE will be returned. ARRAY returns TRUE if its argument is an
array; RECORD returns TRUE if its argument is a record. It should

38

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I .*
. *"* *

~~B5-AIE(1).MCP (1)

be noted that, unlike Ada, all arrays are records J- MCP. (See
Aggregate definition in Appendix B.2). LENGTH returns the length in
characters if its argument is a string, and the number of components
if a record or array.

* A.11 MCP Predefined Variables

The MCP predefines two RECORD variables named %ENVIRONMENT and
%STATUS whose components have special meaning to the MCP. The
components of %ENVIRONMENT control MCP options. The components of
%STATUS serve as placeholders for values generated during command
processing. When the MCP starts up, each %ENVIRONMENT component has
an initial value. If the user redefines an option or %ENVIRONMENT
illegally, the initial option value is used. Tables A.3 and A.4
list the component names, types, effect and initial value for each
of the predefined variables.

A.12 External Program Invocation

Some MCL commands are executed via internal MCP actions (e.g.,
assignment) while others cause the MCP to invoke external programs.

.* This latter category includes a program or function call and a
script invocation. Each invoked program has associated with it a

* context object, which can be referenced to control the program's
* execution and determine its status.

*: A.12.1 Context Object Names

Each background task creates, within the MCP's context object,
a composite object whose name corresponds to the task name. Within
this composite object, the task creates a context object for each
program it invokes. The name of each context object is equivalent
to the name of the invoked program. If the same program is

. subsequently invoked within the same task, its context object name
* is of the form "program nameX", where X is an integer starting from

2 and incremented for each repeated invocation of the program within
*. the task. For example, the commands:

: COMPILE MYFILE LIB->MYLIB -&

T4 executing

: COMP: BEGIN COMPILE MYFILE

2/ COMPILE YOURFILE END -&

COMP executing

39

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 ((617) 661-1840

B5-AIE(1) .MCP(l)

TABLE A.-3: MCP PDFEr 7:BL(% IRMNTCOMPON~ENTS)

INITIAL
NAME TYPE PURPOSE VALUE

PROMPT STRING Defines the MCP user416
prompt.

INFORM DEFALT BOOLEAN If TRUE, the user isFLS
informed of each default OUT
parameter variable generated.

AUTO REDEFINE BOOLEAN IF TRUE, a default FALSE
OUT parameter will replace
an already existing variable
with the same name.

TABLE A.4: MCP PREDEFINED VARIABLES (%STATUS COMPONENTS)

FCONTMCTS STRING Th. names of all context ~
objects within the last
foreground command.

EXCUTION-TIME REAL The execution time 0.
of the last completed
foreground job command.

EXIT-STATUS STRING The exit status of
the last completed
foreground job command.

LASTTASK STRING The name of the last
background task.

ACTIVE-TASKS STRING A list of all currently
executing tasks.

V, 40

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1940

B5-A"E (1.MCP(2)

would cause the creation c' :omnosite objects named ".74" and
".COMP", and context objects named ".T4.COMPILE", ".CCMP.CCMPLz1"
and ".COMP.COMPILE2".

Foreground MCP execution can be thought of as a task object
-[named "Ti" which interacts with the user and executes commands
-- synchronously. Context objects for any foreground programs are thus
. created in the composite object ".Tl". The predefined MCP variable

%FCONTEXTS contains a concatenated list of context object names
created in ".TI" for the last foreground job. For example:

COMPILE MYFILE LIB->MYLIB

: %STATUS.FCONTEXTS

.TlCOMPILE

The pre-defined MCP variable %STATUS.ACTIVE TASKS contains a
concatenated list of task names for all active tasks.

(b) Program Context Object Attributes: A program's context object
has various attributes that give information about the program's
execution (Table A.5). The context object may be treated as a
database object for the purpose of referencing these attributes. A
complete description of context objects is given in

-*[AIE(l).KAPSE(l).

The predefined variables %STATUS.EXECUTION TIME and
%STATUS.EXIT STATUS contain the execution time and exit- status for

* the last foreground command. If a program completes its execution
with an exit status of "OK", all database objects within its context

"' object are deleted.

Examples:-COMPILE MYFILE LIB->MYLIB
- %STATUS.EXITSTATUS

OK

: COMPILE YOURFILE LIB->MYLIB -&

T7 executing

: PUT •T7.COMPILE'TERMINATED

FALSE

41

* INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

- <..., .-. _----* - - -- ~

TABLE A.5: CONTEXT OBJECT ATTR'-rUTES

Attribute Name Possible Values Meaning

TERMINATED "TRUE" Indicates whether the
"FALSE"

program's execution has

completed.

EXECUTION TIME a string describing Total execution time

a REAL for the program (defined

only if TERMINATED

TRUE)

EXIT STATUS "OK", "CANCELLED" The program' s exit
"INTERRUPTED", or
the name of an status (defined only if: unhandl ed exception

TERMINATED - "TRUE")

42

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A.12.3 Control Commands

The MCL context object commands described below, -_take as
arguments a sequence of context object names or the names of
composite objects containing context objects, and perform actions on
the programs they represent.

STOP. The STOP command is invoked to stop the execution of an
arbitrary executing program. STOP takes as its argument one or more
context object names.

START. The START command allows the user to restart the execution
°O a command suspended by a prior STOP command. The specified

"- program(s) resume their execution in the background.

*CANCEL. The CANCEL command is invoked to terminate the execution of
one or more programs.

- STATUS. The STATUS command enables the, user to query the status of
programs.

If a program within the list is currently active, the user is
given the following information about its execution: execution time,

- memory used, I/O count. If the program is terminated, its total
* execution time and exit status are displayed.

-. Examples:

: F: FLIGHTSIM -J LANDER -&', F "executing

: STOP .F.PIGHTSIM
: DEBUG .F.FLIGHTSIM

debugging

: START •F.FLIGHTSIM
- STATUS .F.FLIGHTSIM

status information

: CANCEL .F -- all context objects
-- within .F, i.e,
-- .F.FLIGHTSIM and
-- .F.LANDER

43

INTERMETRfCS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

90"., - - - " " " ' " ' w " " "" '• . • • - "• "

,'. '-.. (.) c - -

A.13 XC

The MCP normally reads user-typed strings and interprets them
as comnmands. The MCP is also capable of interpretin_7 data as a
command, via EXEC. EXEC takes as its argument an expression that
must yield a string value that is recognizable as one or more MCL
commands. For example:

: %A := "COMPILE MYFILE LIB=>"

: EXEC %A & MYLIB -- the command COMPILE MYFILE LIB=>MYLIB is

-- executed

EXEC %A & YOURLIB -- COMPILE MYFILE LIB=>YOURLIB

EXEC's can be nested. For example

%A:- "EXEC ""BEGIN COMPILE MYFILE;"" & %B &""MYFILE END->.TMP"".

: %B:= LIST

EXEC %A -- BEGIN COMPILE MYFILE; LIST MYFILE END->.TMP

: %B:- DELETE

: EXEC %A -- BEGIN COMPILE MYFILE; DELETE MYFILE END->.TMP

A.14 RENAMES

Several reserved keywords have special significance in the MCL.
Whenever appropriate, Ada reserved words have been used. In
instances where new keywords are needed, the command language

* predefines identifiers to serve as keywords. These predefined
identifiers may be redefined using the RENAMES command. For
example:

: EX RENAMES EXEC

: EX %C

A.15 Nested MCP's

When the user logs in to the AIE, the MCP is automatically
invoked on his behalf. Since this MCP is capable of invoking any
program, it may also invoke itself.

MCP

-- This prompt is typed by the nested MCP.

44

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661.1840

B5-AIE(l) .MCP(1)

The user may then issue commands to the invoked MC=, is'.-

referred to as a nested MCP. The nested MCP has its own context
object,and any changes made to variables in the nested MCP are not
reflected in the invoking MCP.

If a nested MCP session is terminated by the MCP commands RETURN
or SUSPEND, control is returned to the invoking MCP. If the LOGOFF
command is issued, the MAPSE session is terminated (including the
invoking MCP).

A nested MCP inherits the standard input and output of the
- invoking MCP. It reads commands from its standard input, and
*- commands may in turn read from standard input or write to standard

output as part of their execution. As with any invoked program, a
nested MCP's I/O may be redirected via -> or -. If the MCP's
standard input is not the teletype an end-of-file is equivalent to
RETURN. For example, if a database object MCP INFILE contained the
text.

FOR %I IN l..5 LOOP GET%A; COMPILE%A; LIST%A END LOOP;

MYFILE YOURFILE Fl F2 TESTFILE -- This data in
-- standard input will be read
-by GET

the user might type

_ MCP -< MCP INFILE

The MCP can optionally be supplied with a string which is to
- serve as its standard input, via the parameter INPUT STRING. For

example:

MCP COMMAND-STRING -> "COMPILE MYFILE; %STATUS.EXITSTATUS"

Since the MCP is an ordinary tool, it can be invoked from any other
program. The COMMAND STRING parameter provides a convenient mears
of invoking the MCP within a program, specifying to it the

." command(s) it is to execute and data for those commands.

A.16 Scripts

A script is a sequence of MCP commands stored in a database
object. It is functionally equivalent to a linked executable
program in terms of invocation syntax, help information and
parameter passing. Any command within the script may read from
standard input or be written to standard output. For example, if a
script named "SIM" contained the text.

"HOW MANY TIMES SHOULD THE SIMULATION BE RUN?"

GET %TIMES

For %I IN i..%TIMES LOOP

45

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-A:E(1).MCP(1)

FL-GHTSIM DPTION=>FAST Lz-VEL=>3

END LOOP

the user might type

HELP SIM

help text

: SIM

HOW MANY TIMES SHOULD THE SIMULATION BE RUN?

*2 10
-- The script has completed its execution.

A script differs from an input file for a nested MCP in that it
contains only commands. The data for these commands comes from
standard input, not the script. This is in keeping with the model
of scripts as equivalent to linked executable programs.

A script can have its -I/O redirected or be executed in the
background. For example, if a database object "SIMIN" contained the
text "10", the user might type:

SIM -< SIMIN-&

A script's exit status and execution time are available to the user
. in a manner identical to that for programs. For example:

: SIM -< SIMIN

:%STATUS.EXIT STATUS

OK

A script is terminated when end-of-file is reached, or when a
RETURN, LOGOUT or SUSPEND command is encountered.

A.16.1 Script Parameters

A script may receive IN parameter values and return updated OUT
* parameter values 'f it contains a script specification command.

46

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

. . .*

The script specification command simulates the execution of a
parameterized Ada subprogram. It consists of a subprogran
specification that gives parameter information, and a script body,
which contains MCP commands to be interpreted in order to simulate
the subprogram's execution. If a script specification command is
given, it must be the first line of the script.

The subprogram specification is similar to an Ada subprogram
specification ELRM, 6.1]. It may specify either a procedure or a
function. Parameter declarations are separated by semicolons.
Parameters and function return values must be of one of MCL's
pre-defined types (Sec. B.2). Each formal parameter name must
follow the format of a MCP variable. An example of a subprogram
simulation statement is:

Procedure COMPILE AND LIST (%FILE:STRING;
%LIB: STRING;
%COMPILE STATUS: out STRING)

IS
BEGIN
%DEBUG:- "LOOP READ LINE %C; EXEC %CTEND LOOP"
COMPILE %FILE LIB->%LIB
%COMPILE STATUS :- %STATUS.EXIT STATUS
EXEC %DEBUG -- reads and executes user

-- commands until an EXIT command.
-- allows the interactive user to
-- examine script variables, etc.

IF %COMPILE STATUS - OK THEN LPT %FILE
END

If this text were placed in a database object named COMPLIST,

the MCP user could invoke it by typing

COMPLIST MYFILE MYLIB

Treatment of parameters is identical to that for program
invocation. The script receives parameters and performs type
checking based on the parameter specification. If an actual
parameter is not of the proper type, and cannot be implicitely
converted to the proper type, the script's execution is terminated.
Otherwise, the script performs the commands in its body, and returns
updated values of OUT parameters. If a script describes a function,
the function return value must be specifed in a RETURN command. As
in program invocation, default OUT parameters are generated on
behalf of the user. In the example above, a variable named
%COMPILE ERRORS would be generated.

A.16.2 Affecting the MCP's Environment

* A script is functionally equivalent to a program, and cannot
directly modify the invoking MCP's environment. For example, any
variables declared in a script cannot be subsequently referenced in
the invoking MCP. The user may specify that the current MCP should

-' 47

1 INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

T-1

execute a secuence of MCL ccmrnards zorntain ed in a database object
via the EX C command. 'E 7r example, if a database object named
"VARIABLES" contained the text:

%MYLIB :ADALIB.YOURLIB.MYLIB

%MYFILE :ADALIB.SYSLIB.TESTFILE

* the user might type

EXEC CONTENTS(VARIABLES)

-variables defined in VARIABLES are now visible

-in the current environment

%MYLIB

ADALIB .YOURLIB .MYLIB

48

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

B5-AIE(1) NICP(

B.1 Lexical Elements

(a) Character Set. Identical to Ada [LRM, 2.1]. This includes a
basic graphic character set, as well as other characters from the
ASCII graphics set. Any command can be expressed using only the
basic character set. Any lower-case letter is equivalent to the
corresponding upper-case letter except within character strings and
unquoted strings.

(b) Lexical Units. An MCL input stream is a sequence of lexical
units. The lexical units are identifiers (including reserved
words), numeric literals, character literals, strings, delimiters,
and comments.

A delimiter is either one of the following special characters
*in the basic character set:

one of the following compound symbols:

• " > : ~/M >W = - < - & -

or the character:

from the ASCII graphics set. Adjacent lexical units may be
separated by spaces or by passage to a new line. An identifier or
numeric literal must be separated in this way from an adjacent
identifier or numeric literal. Spaces must not occur within lexical
units, except within strings and comments. Each lexical unit must
fit on one line. ELRM, Sec. 2.2]. A backslash ' character

" immediately preceding the newline character allows line
continuation. The character preceding the backslash is catenated to
the next line without any intervening characters.

* (c) Identifiers. MCL identifiers are identical to Ada identifiers.
As in Ada, identifiers differing only in the use of corresponding

. upper and lower case letters are considered to be the same.
S Examples:

INTI Ada LRM

(d) Numeric Literals. There are two classes of numeric literals:
integ4eriterals and real literals. Integer literals are the
literals of the MCL type INTEGER. Real literals are the literals of

- the MCL type REAL. As in Ada, isolated underscore characters may be
inserted between adjacent digits of a decimal number, but are not
significant. ELRM, 2.4]. The conventional decimal notation is used.
Real literals are distinguished by the presence of a decimal point.

49

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

B5-AIE(l).MCP(l)

An exponent indicates the power of 10 by which the preceding
number is to be multiplied to obtain the value represented. An
integer literal can have an exponent; the exponent must be positive
or zero.

Examples:

12 0 123_4561E6 -- integer literals

12.0 0.0 0.456 3.1415926 -- real literals

12.34E-4 -- real literal with exponent

. (e) Character Strings. Identical to Ada [LRM, 2.6].

Examples:

sl -- empty string

"ABC"

4-- a single included string bracket character

If a character string conforms to the Ada identifier syntax and
does not conflict with any reserved or predefined keywords, the
string bracket characters (") may be omitted.

(f) Aggregates. An aggregate is a sequence of component values.
As in Ada, components may be named or positional. ELRM, 4.3) Unlike
Ada, only one choice may be specified for each component value and
the choice must be an identified string.

(g) Database Literals. Database literals name database objects.
There are two classes of database literals: partition specifiers
and object names (see AIE(1).KAPSE(l)). The user may specify
database literals using full attribute value notation or shorthand
positional notation.

The first character of a database literal indicates the desired
window. If the first character is a "." or "'", the database
literal is rooted in the MCP's context object. Otherwise, the
database literal is rooted in the CURRENTDATA window associated

' with each user via the KAPSE.

A database literal beginning with a "." or "'" has different
* meanings to different program invocations, since each invocation has

its own context object. Howe-oer, each invoked program does
automatically receive a window on .e context object of its invoker,
its invoker's invoker, and so on, bDck to the first program invoked

. by the system initiator. Therefore, a user-typed database literal
beginning with a "." automatically has, the name of the window on
the MCP's context object appended to it by the MCP. This process,
referred to as normalizing the database literal, allows the literal

* to be passed to an arbitrary invoked program without changing its
meaning.

50

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

" . ** 0 . ,o . - . . . *.

B5-AIE(i).MCP(l)

The MCP's context object is automatically deleted at the
conclusion of the MCP session. Any database object whose name
begins with a "." or "'" is thus a temporary object that will be
deleted along with the context object. For example:

TEST -- a database object named "TEST"
-- located in the CURRENT DATA window

.TEST -- a temporary database object named "TEST"
-- If the window on the MCP's context
-- object were named
-- "F4", this database literal would be
-- normalized into ".F4.TEST"

FLIGHT.SIM.* -- a partition

FLIGHT.(RELEASE->3,MODULE->STICK) -- attribute value list
-- notation

(h) Comments. Identical to Ada.

Examples:

-- comments have no effect on the meaning of commands;
-- their sole purpose is the enlightenment of the human
-- reader

"" -- ELRM, 2.73

* (i) Keywords. The identifiers below are called reserved words and
are reserved for special significance in the language.

ABORT AND ARRAY BEGIN CASE ELSE ELSIF END EXIT FOR FUNCTION IF
IN LOOP MOD NOT OR OUT PROCEDURE RECORD REM RENAMES RETURN
REVERSE USE THEN WHEN WHILE XOR LOGOUT TYPE

The following identifiers are predefined. and have special
significance in the language.

GET PUT SUSPEND RESUME WAIT HELP EXEC STOP START CANCEL STATUS
, DUMFVARS INTEGER REAL STRING BOOLEAN

B.2 T

MCL contains no facility for declaring types. A MCP literal
must be one of the following predefined types:

1. INTEGER - This predefined type is implemented as in Ada
ELRM, 3.5.43. INTEGER values are expressed as integer
1 iterals.

2. REAL - This predefined type describes floating point real
numbers. Its Ada declaration is

TYPE REAL is digits NUMDIGITS

51

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-AIE(l) .MCP(1)

where NUM DIGITS is within the range of the most accurate
numeric type supported by the implementation. REAL values
are expressed as real literals.

3. STRING - The predefined type STRING denotes an
unconstrained, one-dimensional array of characters. Its Ada
declaration is

TYPE STRING is array (NATURAL range<>) of CHARACTER:

STRING values are expressed as character strings.
Catenation is a predefined operator for strings; it is
represented as &. The relational operators <, <=, >, and >-
are defined for strings, and correspond to lexicographical
order.

4. BOOLEAN - As in Ada, there is a predefined enumeration type
named BOOLEAN ELRM, 3.5.3]. It contains the two literals
FALSE and TRUE ordered with the relation FALSEtTRUE.

5. AGGREGATE - The predefined types ARRAY and RECORD are
expressed as aggregate literals. Component association for
array types is strictly positional. RECORD component
association may be both named and positional. The component
values may each evaluate to any MCL type. Component
selection and catenation ara defined for aggregates.

.*] B.3 Expressions

MCL expressions are a subset of Ada expressions. See Appendix
C for MCL expression syntax. Note that a carriage return cannot
appear between an operand and an operator of an expression, since a
single operand is itself a valid expression.

Examples of expressions:

HELLO -- unquoted string

HELLO & GOODBYE -- HELLOGOODBYE

%0 OR (%V AND FALSE) -- variable names begin with a 'V

2*3+5 -- 11.

B.3.1 Operands

An operand of an expression may be a literal, a function call,
a variable or a database attribute.

52

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

* - **"

B5-AIE(l).MCP(l)

A literal denotes an explicit value of any legal MCL type.
Examples of literals:

4 -- integer literal

4.0 -- real literal

TRUE -- Boolean literal

"OFF" -- string literal

OFF -- unquoted string

(X,Y) -- ARRAY literal

(A->X,Y) -- RECORD literal

A function call returns a value which can be used as an
operand.

- B.3.2 Operators

MCL operators, a subset of Ada, are divided into five classes.
They are given in Table B.1 in order of increasing precedence.J

B .3.3 Type Conversions

Any unquoted strings within an expression are implicitly
converted to strings. In the following discussion , the term STRING
refers to both strings and implicitly converted unquoted strings.

Each of the operations described expects its operands to be of
specific types. If an operand is not of the proper type, the MCP
attempts to implicitly convert it into a value of the proper type.
If the conversion fails, an error message is printed. This
conversion only occurs between closely related simple types, as
shown in Table B.2.

For operators whose operands can be one of several different
types, implicit conversion is attempted in the following order:
BOOLEAN, REAL, INTEGER, STRING. This ordering implies that: (1)
relational operators and catenation can be applied to operands of
any type, since any type can be implicitly converted to a string;
and (2) the result of adding, subtracting, multiplying or dividing
an integer and a real is a REAL. Examples of implicit conversion:

FLIGHT & SIM -- "FLIGHTSIM"

TRUE AND "FALSE" -- FALSE

3 +"51 -- 8

2.3 + 3 -- 5.3

"HELLO" & 2.0 -- "HELLO2.0"

53
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

', . *........ . * . p., .-. . -..- , ,.- >.. ." * - - -. - -

B5-AIE(1) MCP(1)

TABLE B. 1: MCL OPERATORS

uperator Operation Operana Type Result Type

(Logical)

AND conjunction BOOLEAN BOOLEAN
OR inclusive BOOLEAN BOOLEAN

disjunction
XOR exclusive BOOLEAN BOOLEAN

disjunction
(Relational)

- /- equality and Any MCL Type BOOLEAN
inequality

< <= > >= test for Any MCL type BOOLEAN
ordering

(Equality for reals is determined as in Ada ELRM 4.5.81)
(Adding)

+ addition Integer or real same type

subtraction Integer or real same type

& catenation Any MCL Type string or
aggregate

(Unary)

+ identity Integer or real same type

negation Integer or real same type

NOT logical BOOLEAN BOOLEAN
negation

(Multiply-

i multiplication Integer or real same type

/ division Integer or real same type

•* exponentiation Integer or real same type

MOD modulus Integer Integer

REM remainder Integer Integer

45

" 54

INTEiMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

.- ~~~~~~ ~ ~~ .-' '-. ."... ." . . ."..- . .

B5-AI!(1) .MCP(1)

B .3 .4 Explicit Tyo Conversions

Explicit functions exist to convert arguments from any given
type to any given type. They are overloaded, that is, they take
arguments of any "closely related type" (see Table B.2), and convert
to the type named by the function. They are BOOLEAN, REAL, INTEGER,
and STRING.

Table B.2: IMPLICIT TYPE CONVERSIONS

* Proper

Operand Type Closely Related Types

BOOLEAN STING(value must be "TRUE" or "AS"

REAL STRING(value must be the image of a

real number)

INTEGER
INTEGER STRING(value must be the image of an integer)

REAL (rounded to integer)

STRING BOOLEAN

REAL

INTEGER

55

INTERMETRICS INCORPORATED e733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

p.

I

.

lot

PAGE LEFT E

* INTERMETRICS INCORPORATED *733 CONCORD A

! S* *

- . . - -. . - ; ..

B5-A E(1) .MCP(l)

APPENZIX C: B.,F FOR NWSE COMMA'-'7D LAN GE (MC:)

-- LEXZCAL ELEMENTS

upper case letter : := A I B I C I D I E I F I G H I I

J K(LI M IN I IPI 0 RI S
I I T I U I V I W I X I Y I Z

digit ::-0 1 1 2 I 3 4 I5 I6 I7 8 9

special-characters ::-" I# %I&I(l)Istar +I

comma I - I dot I / I colon I semicolon

<I I I underscore I parallel-bar I tic

'- star : <

comma ::i <,>

dot ::i <.>

colon ::< (:>

semicolon ::< ;>

underscore ::2 ()

parallel-bar ::- <I>

-. blank::- >

-tic

57

* INTERMETRICS INCORPORATED * 733 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

L6. . ..-- - - 7- - -

...,. ,. .- .. , . ., . , -.. -...

BS5-AIEC1).MCP(l)

lower caseleeer ::aa b c dIe f gIhli j

Sk I1 m n o p q r s t u

v lw I ly l z

other special characters ::! lquestion mark I @ I 1 3 1 1 1 1

question-mark ::

*identifier ::- letter{I[underscorejletteror digit)
-- identical to ADA

letter or digit ::- letter I digit

letter ::- upper_case letter I lower case letter

numeric literal ::= decimal number

decimal number g integer C.integer][exponentJ

integer ::- digit(Cunderscoreldigit)

exponent ::- E [+j integer I E - integer

characterstring -:- "f character) "

character ::- letter or digit I specialcharacters I blank
other apecia lchiracters

string ::- database-literal I character-string

database literal ::- objname I partition

objname ::- [path-sepj attribute { path_sep attribute }

pathsep ::- dot o

partition t:- [path sep3 attribute or stare I (path-sep attribute
or star -..

attribute ::- identifier I aggregate

lo attribute or star ::- attribute I star

,. aggregate ::- (component association I
{ sop componentassociation))

*-. component association -:- E choice -;], expression

choice a: - identifier I identifier tic identifier - the latter
-- is for database literals only

58

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

°.*.

B5-AE (.MCP (I)

-- EXPR PROC

expression ::= limited expression I database literal
-- A single database-literal may be an expression,
-- except within an expression statement

limited expression::- limited relation { logical operator relationl
I-expression { logicaloperator relationT

relation ::= simple expression
I relation relationaloperator simpleexpression

limited relation ::= limited simpleexpression
-1 relation relationaToperator simpleexpression

* simple expression ::- [unary 3 term
I simple_expression adding_operator term

""- limited expression ::- unary term
" limited term
I simple_expression addingoperator term

term - primary
I term multiplying_operator primary

limited term ::- limited primary
-1 term multiplying operator primary

- primary ::- database literal
" limited_prTmary

-' -4.limited primary ::- literal
,- variable expression

I (expreaion

literal :.- character string
I decimal litiral

logical-operator ::- AND I OR I XDR

relational operator >:-- I / i I I" I > i >"

unaryoperator ::- + I - I NOT

adding operator + I - I &

multiplyingoperator MO-* I / I * I OD I REM

variable expression t:- %identifier { component selector I

component selector ::- (expression) - Positional selection
I-dot identifier -- named Selection.

59

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B5-A-E (I) .MCP (I)

--COMMANDS

command input command {terminator command)

terminator newline J semicolon

newline ::= [commentJ <CR>

comment ::= - { character I
-- As in ADA

command .

[label] statement{-(statement } C-< objname J E -' objname J C -& 2
[Clabel] statement {-i statement) -> objname -< objname E-eJ

-- The notation -1 between two commands indicates that
-- the command are to be connected via a pipe.
-- Standard output of the left side of a pipe becomes
-- standard input of the right side of a pipe.
-- The notation -& indicates that the command's execution should

2-- take place in the background. A task is generated to perform
-- the command.
-- The notation -< is used to indicate that the leftmost command's
-- standard input should be directed from OBJN.AME.
-- The notation -> is used to indicate that the rightmost command's
-- standard output should be directed to OBJNAME.
-- Note that redirection may be specified in either order

label : :- identifier colon

statement ::-simplestatement I compound statement

simplestatement ::- null statement I
program or 7cript -call statement
assignment statement I
return statement I
suspenZ statement I
logoff-itatement I
abort statement I
wait statement I

7 dump-vars statement I
exit statement I
expression statement
exec statement I
renames statement I

60

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

B5-A:E(:) .MCP (I

compound statement if statement loon statement
I script_ statement
I block_statement

null statement ::

program or script call statement -:= objname[actual parameter_partJ
-- OBJNAM may bi a linked executable object or a RCP script.
-- Invocation syntax is the same for either.

actual_parameter part •:- parameter association

(separator parameter association)

separator ::- blank I comma
-- Parameters are separated by blank or comma.
-- However, if the user wishes to continue the parameter list
-- on the next line, a comma is required.

parameter association •-- [formal parameter -> actual parameter
.. Named-and positional parameters can be in any order Tn
-- the parameter association. For example,
-- prog 1 parm4 -> 2 5
-- The semantics of this ordering is as follows:
-- All positional parameters are grouped together, followed
-- by all named parameters.

-- Parameter values can be specified more than once in the
-- same command invocation. For example,
-- prog 1 parm4 -> 2 5 parm4 -> 3
-- The MCP also implements default OUT parameters., as follows:
-- If, at the end of parameter specification, an OUT
-- parameter has been omitted, the MCP will implicitely
- declare a variable named %formal parameter name, and will

-- generate a parameter specification of the 'orm
-- formal parmameter - %formal parameter name

16

.,ID

°.

"'" 61

• _ INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

=.." - - -~. ~ - ~ -

35-AIE (l) .:.ICP (1)

formal parameter identifier

actual_parameter ::-expression I help_mark

help mark ::= question mark
_-- nstead of typing in actual parameter value, the user can type

-- a question mark to find out information about the parameter.
-- Action taken depends on the "help" attributes of the
-- invoked program or script.
-- If those attributes indicate that the program
-- wishes to handle help requests itself, the
-- actual parameter part is considered to be complete, and the

program is invoked. The program will presumably take special
-- actions when it encounters the '?' as an actual parameter
-- value.
-- If the "help" attributes indicate that help files are

available, the MCP prints the appropriate
file, and allows the user to continue specifying the

-- actualparameter_part for the program or script.

function call ::- objname([actual parameterpart])
-- Un1ike a program call, the fuNction parameters
-- must be surrounded by parentheses&
-- As in a program call, help may be requested
-- on a per-parameter basis.

assignmentstatement :t- attribute :- expression I
variable :- expression

-- As in ADA, except that attribute references to database
-- objects can appear on the statement's left hand side.

return statement ::- RETURN E expression 3
-- CaUses termination of the MCP. Control is returned to the
-- MCP's invoker.
-- If the MCP was processing a script which described a

function, the function is given the return value described
- by the expression.

62

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

BS-AIE (1) .MCP (1)

suspend statemen: = SUSPEND objname
-- Suspend the current MCP's execution and return control to

th-- e MCP's invoker.
-- The MCP's state is saved in OBJNAME, which may be
-- used as RESUME's argument.

logoffstatement ::- LOGOFF
-- The current MCP session is terminated, along with the
-- entire MAPSE session.

abort statement ::- ABORT tasknames
-- Abort the specified background tasks.

wait statement ::- WAIT tasknames
-- Wait for the specified background tasks to complete before
-- accepting more commands.

tasknames :- identifier {separator identifier}

expression statement ::- limited expression
-- Any expression is legal but a database literal.

exec statement ::- ,EC expression
E-- xecutes the string described by the expression as a command.

Jo.

if statement ::- IF condition THEN command input
ELSIF condition THEN comrand input)

t ELSE command-input J END IF
-- Same as ADA

condition :- expression
-- Must evaluate to boolean.

loop statement ::- [iteration clause) basic loop
o-- ps are legal in interactive as well as script mode.

iteration clause ::M FOR variable IN discrete range
WHILE condition

.

::: 63

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

J.

B5-AIE (1) .MCP (1)

discrete range : [REVERSE3 expression E.. expression3

-- If a single expression is specified, it must be an aggregate
value.

-- If both expressions are specified, they must be integer valued.

basicloop : :- LOOP commandinput END LOOP

exit-statement ::- EXIT

block-statement ::- BEGIN command input END

script statement : :
script header IS block statement tidentifier)

-- Execution of this statement-causes the MCP to import
-- from the MCP's context object

"- - -- parameters specified in the SUBPROGRAM SPECIFICATION,
- -execute the commands contained in BLOCK STATEMENT,

then write updated OUT parameter values back to
-- the MCP's context object.
-- This enables the user to create a MCP script which simulates

. -- an ADA program.

script header -
PROCEBURE identifier tformalyart]
FUNCTION identifier [formal part] RETURN subtype indication

"-- General scheme for script parameters: their-formal name
-- must have the same format as any MCP variable - i.e.,
-- %identifier. Thus, they can be treated as any MCP
-- variable.

The program invoking the MCP script may optionally
-- omit the leading '%' when specifying a script's
-- formal parameter name.

"4

formalpart ::- -
. (parameter declaration (terminator parameter declaration)

-- Parameter declarations can be separated by-newline or semicolon.

-... ; parameter declaration :-
mcp identifier list: mode subtype indication t:m expression)

mcp_identifier list :- variable { , variable I

mode :--IN) I OUT I IN OUT

subtype indication ::- INTEGER I BOOLEAN I STRING I REAL I ARRAY
I RECORD

-- Any legal MCL type.

dump_vars statement : :, DUMP VARS

64

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

" % -, -- 4% -*4 . - . • . .
. . -- .

APP' 'DIX D: STATEMENTS AND FUN MENTAL PROGRAMS

The following tables summarize those MCL commands which are
statements (i.e., executed via internal MCP actions) and those which

* are effected via invocation of a fundamental program.

65

* INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(6171 661-1840

B5-AIE(l).MCP(1)

TABLE D. 1: STATEMENTS

Name Reason for Internal Execution

get References internal MCP variables.
put
dup_vars

- return Checks for active internal background tasks,
logoff terminate MCP invocation.

. suspend

wait
abort Affects the status of background tasks.

- if Modifies flow of MCL
* loop command execution.

exit

script header Reads and writes parameters from MCP's
context object.

block Notation following the block (i/0
redirection, pipe or background) must be
interpreted by the MCP.

exec String is evaluated by the MCP as if it
were typed by the user as a comand

renames Modifies internal symbol table

9

s66

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

, --...-.f - .-. - "7 , .,

* B5-AIE(1) .MCp(1)

TABLE ID. 2: F-UNDAME--NTAL PROGRAMkS

Name Comments

HELP

RESUME .Invokes the MCP. RESUME's argument
Specifies the MCP's context object.

STOP KAPSE function.

START to

CANCEL I

STATUS

database manipulation

Commnds

67

INTERMETRICS INCORPORATED V, 722 CONCORD AVENUE *CAMBRIDGE. MASSACmuSETTS 02138 - (617) 661-1840

-" B~5-A1E (1).•MCP (1)

TABLE D.3: COMMANDS. ADA- MCL COMPARISON

MCL Ada Differences
Command Statement

Program Call Procedure Call 1. program name replaces the
procedure name.

2. parentheses surrounding the
actual parameter part
are omitted.

3. parameter associations may
be separated by a blank.

4. positional and named para-
meters may be freely mixed.

5. default OUT parameters are
generated.

6. parameter help available.

assignment assignment left-hand side may describe a
database attribute.

get get 1. reads from standard input

only.

2. reads text only.

3. reads a variable number
of values.

put put 1. writes to standard output
only.

2. writes text only.

3. writes a variable number
of values.

68

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 681-1840

B5-AIE(1) .MCP(1)

TABLE D.3: COMMAN.DS (Con-'d.)

MCL Ada Differences
. Command Statement

if if

loop loop 1. for loop may generate over
the component fields in an
aggregate.

exit exit 1. only the enclosing loop
may be exited.

2. no condition may be
associated with the exit.

return return

abort abort

block block

script subprogram formal parameter names must
header specification follow the format of MCP

variables (i.e., must begin
with %).

.1.

69

INTERMrrRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACMUSETTS 02138 • (617) 661-1840

-. *v. ...

" -.. . (i i d m k

TABLE D.4: LA11GUAC-E ELEMENTS. ADA -MCL COMPARS01

MCL Ada
Element Element Differences

numeric numeric
literals literals

string string may be unquoted.
literals literal

boolean bool can

literals literals

types types pre-defined set.

*variables variables name must be preceded by 'U'.

I expressions expressions no and then, or else operators.

70

INTURMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACMUSETTS 02138 *(617) 661-1840

nX

00

0 AlI1

